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ABSTRACT

DEVELOPING DECISION TOOLS FOR INLAND LAKE MANAGEMENT

THROUGH FIELD SAMPLING AND STATISTICAL MODELS

BY

Tyler Wagner

My research encompasses several aspects of fisheries management, ranging from the use

of historical databases to help guide monitoring programs to a field study examining the

effects of natural and anthropogenic factors on largemouth bass nest success. A common

feature ofmy research is the use of mixed models and generalized linear mixed models to

partition variance in ecological response variables and to account for hierarchical data

structures. Because the use of mixed models is not commonly employed in fisheries

research, where hierarchical data structures are common, my first chapter is an

instructional paper on the advantages of using mixed models versus general linear models

and how to implement mixed model analyses in a common statistical package, SAS. My

other chapters use mixed models to address specific questions and hypotheses. For my

second chapter, the specific research question was: are the ecoregion and watershed

frameworks for lake classification useful approaches for grouping lakes with regards to

fish growth rates (i.e., can mean fish length at age be partitioned by ecoregions and

watersheds)? For the ecoregions analysis, I also examined if within-ecoregion variability

could be explained by local water quality and lake morphometry characteristics. Variance

in mean length at age between ecoregions for all species was not significant, and

between-watershed variance estimates were only significant in 3 out of 14 analyses,

indicating that ecoregions and watersheds were ineffective in partitioning variability in

mean length at age. The results suggest that managers should not rely solely on



ecoregions or watersheds for grouping lakes with similar growth rates. For my third

chapter, I examined if habitat alteration and spring angling could explain variability in

largemouth bass nest success. In 2004, we monitored nest distribution and success and

quantified local nest habitat features, lakewide angler effort, and lakeshore development

in five Michigan lakes to determine the extent to which habitat alteration and/or fishing

limit the number of successful nests. Surprisingly, local habitat characteristics were not

important determinants of the probability of a nest producing swim-up fry (P > 0.05). At

the whole-lake scale, however, nest success was negatively related to dwelling density,

with the probability of a nest producing swim-up fi'y declining from 0.77 in the lowest

dwelling density lake to 0.45 in the highest dwelling density lake (P = 0.018). These

results demonstrate that knowledge of the magnitude of anthropogenic effects and the

spatial scale at which they operate is integral for black bass management. For my fourth

chapter I examined statewide trends, and the statistical power to detect trends, in mean

length at age for seven fish species in Michigan and Wisconsin inland lakes. Of the 42

datasets examined, only four demonstrated significant regional trends. The structure of

variation differed substantially among datasets and these differences had a strong effect

on the power to detect trends. To maximize trend detection capabilities, fisheries

management agencies should consider variance structures prior to choosing indices for

monitoring and realize that trend detection capabilities are species-specific. Through the

use of historical data analysis, field sampling, statistical modeling, my research informs

monitoring efforts, quantifies anthropogenic effects on an important demographic

parameter for largemouth bass, and helps understand the underlying variation among

lakes.
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INTRODUCTION

Freshwater ecosystems and inland lake ecosystems in particular, are important and

valued resources, providing services that are essential for the sustainability ofboth

aquatic and terrestrial life. These services include the direct use of water and aquatic

organisms by humans and other ecosystem services, including nutrient cycling and

enhanced biological production (Lubchenco 1998). Over the foreseeable future there will

be an increasing demand on this finite resource due to increasing global population

growth. For example, the global human population is estimated to be growing at a rate of

1.2% per year, resulting in an increase of 80 million people annually (PRB 2005). Also,

the uncertain effects of global climate change and its interactions with human population

growth on aquatic ecosystems (Verbsmarty et a1. 2000), further demonstrate the need for

sustainable management of freshwater ecosystems. The sustainable management of

freshwater ecosystems includes ensuring that they are functionally intact and biologically

diverse. Maintenance of the structure and function of aquatic ecosystems is necessary not

only to retain the integrity and diversity of natural ecosystems, but also to ensure that

humans benefit from these systems well into the future (Baron et a1. 2002).

Sustainable management of inland lake ecosystems requires an understanding ofhow

factors, both natural and anthropogenic, affect the structure and/or function of these

ecosystems. Implicit in this understanding is the need to identify the role of scale, both

spatial and temporal, in identifying the most important controlling factors of variables

and processes of interest, such as water clarity and fish production. Because lakes are

strongly linked to terrestrial environments, this also means that studying lakes within a



landscape context is critical to identifying factors that affect lake structure and function.

Therefore, in my research I use a multiple spatial scale approach to identifying important

drivers of in-lake processes and I examine the temporal dynamics of lake systems while

estimating the magnitude of several spatial and temporal sources of variation.

Collectively, this research provides insight into the sustainable management of inland

lake ecosystems, with an emphasis on the design of monitoring programs, which is an

essential component of aquatic resource management.

Research questions.-Through the use of historical data, statistical and simulation

_ modeling, and field sampling, my research addresses the following questions and

challenges faced by ecologists. (1) How do we account for the spatial structure/hierarchy

inherent in ecological data? (2) How do we monitor and manage many aquatic systems

over large geographic regions? (3) How can we quantify the effects of anthropogenic and

natural features, at multiple spatial scales, that affect within-lake processes?

Synthesis and applications

The hierarchical structure of ecological data (e. g., a hierarchical data structure may

consist ofmeasurements taken on individual fish (lower level) that are nested within

lakes or streams (higher level)) along with inherently high variability makes studying and

managing aquatic ecosystems difficult. With methodological advancements and advances

in computing over the past several decades, we are better able to meet these analytical

challenges. For example, statistical methods (e.g., mixed effect models) can assist with

the management of aquatic systems by allowing for the analysis ofpatterns across spatial

and temporal scales. Thus I use mixed models extensively in my dissertation research.



To address question 1, I explain how multilevel models (i.e., mixed models), that

account for multilevel (hierarchical) data structures in fisheries data, can be used to test

hypotheses, and discuss how the analytical approach (accounting for versus ignoring

multilevel data structures) affects hypothesis testing and inferences. To accomplish these

goals I provide two examples using simulated data similar in structure to published

studies and contrast the findings obtained using mixed models with those obtained using

traditional ordinary least squares methods. This paper also provides examples ofhow to

implement the analyses in a commonly used statistical software package. This research

will provide fisheries scientists and professionals with an accessible example ofhow to

analyze data using mixed models.

Because environmental policy is developed over broad spatial scales, regional (e.g.,

statewide) management of aquatic systems is a necessity. A common first step in the

development of regional management plans involves dividing the landscape into

management units that, ideally, group waterbodies that are ecologically similar. In my

second chapter, through the use of historical datasets, I address question 2 by examining

how variability in inland lake fish growth rates is partitioned within and between

ecoregions and major river watersheds in Michigan. In the United States, these two

approaches (ecoregions and watersheds) to regional management dominate how agencies

divide land into management units (Brown and Marshall 1996); however, they have yet

to be evaluated for fish growth. The goal of this research was to determine if commonly

used classification frameworks, ecoregions and major river watersheds, are useful for

grouping lakes based on fish growth. The results of this analysis indicate that both

ecoregions and watersheds are ineffective at partitioning variability in fish mean length at



age and therefore are not useful regionalization frameworks for this metric. Thus,

although ecoregions and watersheds have partitioned variability in some stream and lake

water quality and aquatic invertebrate diversity metrics, these frameworks need to be

further evaluated prior to wide-scale implementation for multiple metrics, especially in

lakes.

Also during this analysis, I determined what lake morphometric and water quality

characteristics can predict within-ecoregion variability in fish growth rates. The results of

this study indicate that relatively little of the total variance in fish mean length at age can

be accounted for by lake morphometry and water quality characteristics (accounting for 2

— 23% of the total variance). However, this study provides insight into what variables

might be useful in future efforts to develop a lake classification scheme that facilitates

monitoring ofmean length at age as a monitoring metric.

To further explore issues related to regional lake management, in my fourth chapter,

I used historical time series data on fish growth (mean size at age), mixed models, and

simulations, to examine regional (statewide) temporal trends of growth for seven fish

species in Michigan and Wisconsin inland lakes, quantify the structure of the total

variation in the time series, and explore how the variance structure affects the statistical

power to detect temporal trends (question 2). This research, along with the research

examining the ability of ecoregions and watersheds to partition variability in mean length

at age, has implications for the design and implementation of regional ecological

monitoring programs for inland lake fisheries. For example, the ability to detect regional

(e. g., statewide) temporal trends is crucial for the evaluation ofmany management

actions and to examine responses to natural or anthropogenic perturbations. Furthermore,



the early detection of regional changes is important in many cases to allow time for

managers and policy-makers to respond and take appropriate action (Vaughan et al.

2001). Through the use of a components of variance analysis (decomposing the total

variance into several spatial and temporal components, including (1) lake-to-lake (spatial)

variation, (2) coherent (year-to-year) variation affecting all lakes in a similar manner, (3)

ephemeral temporal variation (e.g., lake-by-year interaction) corresponding to

independent yearly variation at each lake, (4) trend variation where each lake is allowed

to have its own trend, and (5) residual variation (variation due to sampling error)), I

demonstrate that the partitioning of variance differed substantially among species, ages,

and states and that the variance structure greatly influences the power to detect regional

temporal trends in mean length at age. For example, the power to detect a trend in age 4

walleye size at age was greatly reduced compared to Michigan age 4 walleye due to the

influence of a significant coherent temporal variation component for the Wisconsin data.

This illustrates the importance of evaluating metrics for monitoring prior to

implementation of the monitoring program.

Both studies examining the regional management of fish mean length at age

(dissertation chapters 2 and 4) pose the question ofwhether or not fish mean length at age

is a “good” metric to monitor from a fisheries management perspective. I show that it will

likely be difficult to partition variability in mean length at age, especially at the state

level, and that the power to detect trends is greatly reduced if coherent temporal variation

is present. Fisheries management agencies measure and monitor mean length at age

because it is understood that it is important both ecologically and from a management

perspective (e. g., Shuter et al. 1998). However, if regional management is the goal, then



other potential metrics should be evaluated to determine if a different metric is more

informative for fisheries monitoring and management. So, if fish size at age is not a very

informative metric, then other aspects of fish population size structures should be

considered and evaluated.

How “useful” a metric is, however, depends on the specific management and

monitoring objectives. Furthermore, metrics should meet the following requirements

(Graedel and Allenby 2002):

1. They must be related to underlying causal relationships within the systems being

monitored, and must aggregate as much information as possible into a meaningful

composite measure. Metrics should also be easy to understand.

2. They must accurately reflect a trend within an appropriate timescale.

3. They must link to existing management objectives.

4. They must be clear and understandable to the public.

Other metrics, besides fish mean length at age, have been identified for marine

fisheries that are simple and easy to understand. These metrics also give insight into

population dynamics as well as to the effects of the fishery on the fish population(s).

Some of these metrics include, (1) the percentage of mature fish in catch, (2) percent of

fish with optimum length in catch (optimum length is often larger than length at first

maturity), and (3) percentage of “mega-spawners” in catch (i.e., the percentage of old,

large fish in the catch; Froese 2004). Indicator 1 can be described as “let them spawn”,

indicator 2 as “let them grow”, and indicator 3 as “let mega-spawners live” (Froese

2004). These metrics, if they help meet the objectives of an inland lake fisheries

management agency, might represent more reliable, useful metrics to monitor over time



compared to fish mean length at age. However, because fish grth data can be useful

(e.g., Shuter et al. 1998), new metrics could be monitored in conjunction with fish length

at age to better inform regional management of inland lake fisheries. I would recommend

that alternative metrics, such as those identified by Froese (2004) be evaluated for inland

lake monitoring and assessment.

Finally, in my third chapter I examine the importance identifying controlling factors

of within lake processes. It is well established that both natural and anthropogenic

factors, acting at different spatial scales, can be important in driving lake processes. So,

through the use of a multi-lake field study and the application of a generalized linear

mixed model, I examine the importance of local nest habitat features and lake—wide

features, such as dwelling density and angling effort, in determining largemouth bass nest

success (question 3). This research also provides another demonstration of the

hierarchical nature of ecological data. In this case, bass nests (lower level) are nested

within lakes (higher level), and there are covariates measured at each level.

Largemouth bass are keystone predators and a valued sport fish in North American

lakes. They also possess life history characteristics that make them vulnerable to within-

lake habitat conditions and perturbations associated with human development of lake

shorelines. Because of their ecological and socioeconomic importance and life history

characteristics, largemouth bass populations represent an opportunity to quantify the

effects of habitat conditions and anthropogenic activities, at multiple spatial scales, on

important demographic properties of fishes. Our results indicated that nest success was

negatively related to lakeshore dwelling density, with the probability of a nest producing

swim-up fi'y declining from 0.77 in the lowest dwelling density lake to 0.45 in the highest



dwelling density lake. Examining covariates at multiple spatial scales (e.g., local nest-

level and lake-wide) allowed for the identification of a covariate (i.e., dwelling density)

important to nest success that would have been overlooked if a multiple spatial scale

approach had not been used. Furthermore, this research is rather new, as most studies

examining factors affecting nest success focus on single lakes and ignore the hierarchical

nature of the data. This study helps illustrate that knowledge of the magnitude of

anthropogenic effects and the spatial scale at which they operate is integral for black bass

management.

My dissertation research is an example of combining multiple approaches to address

ecological and lake management issues. The use of historical data can provide valuable

information to address research questions and to provide information to help guide future

management decisions and design statistically powerful monitoring programs. The use of

multilevel models provides a useful framework to not only account for hierarchical data

structures often encountered in ecology, but also to examine questions that span multiple

spatial and temporal scales. The design of statistically powerful monitoring programs, as

well as implicitly accounting for the spatial and temporal variation in ecological data,

provides researchers and managers with some of the necessary information for the

sustainable management of aquatic ecosystems.
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CHAPTER 1: ACCOUNTING FOR MULTILEVEL DATA STRUCTURES IN

FISHERIES DATA USING MIXED MODELS

Abstract

Multilevel data structures are those that have a hierarchical structure, in which

response variables are measured at the lowest level of the hierarchy and modeled as a

function of predictor variables measured at that level and higher levels of the hierarchy.

For example, a multilevel data structure may consist of measurements taken on individual

fish (lower level) that are nested within lakes or streams (higher level). Multilevel data

structures are a common feature in fisheries research. We provide simulated fisheries data

examples, similar in structure to other published studies, to illustrate the application of

multilevel models and discuss how hypothesis testing and inferences can be incorrect if

multilevel data structures are ignored. Ignoring multilevel data structures has implications

for the use of commonly-used ordinary least squares (OLS) approaches to test hypotheses

and to make inferences. Multilevel models are an alternate approach that circumvents

problems associated with traditional OLS methods and allows valid inferences to be

made.
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Introduction

Aquatic systems are often viewed as being hierarchically organized, with lower

levels of organization nested within higher levels (e.g., Frissell et al. 1986; Irnhof et al.

1996). For example, a hierarchy may consist of headwater streams nested within

subwatersheds that are nested within larger watersheds, or lakes nested within

ecoregions. This hierarchical organization provides a conceptual basis for testing

hypotheses, often leading to sampling designs that are also hierarchically organized. A

common feature of such sampling designs is that the response variable is measured at the

lowest level (i.e., finest scale) of the hierarchy and is modeled as a function of predictors

measured at that level as well as one or more higher levels. This hierarchical organization

leads to multilevel data structures for which traditional methods of statistical inference

are often inappropriate (Raudenbush and Bryk 2002).

The fisheries literature is replete with examples of studies that have collected data

with a multilevel structure. Despite this prevalence, the hierarchical structure of the data

is often ignored during statistical analysis. A fundamental problem with ignoring the

multilevel structure during analyses is that observations measured within a higher level

(e. g., measurements made within the same stream) are likely to be more similar to each

other compared to observations between levels (e. g., measurements made in different

streams). Therefore, analyses that ignore the multilevel structure of the data violate a

critical assumption to commonly-used analyses, namely the assumption of independence.

Although the importance of accounting for the correlation structure of repeated

measurements on individuals has received attention in the fisheries literature, especially

with respect to laboratory studies and analyzing size-at-age data obtained from scales and
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otoliths of fishes (e. g., Jones 2000; Schaalje et al. 2002; Pedersen and Malte 2004),

multilevel data structures in field settings have been largely ignored.

The goals of this article are (l) to explain how to use multilevel models that account

for multilevel data structures in fisheries data to test hypotheses and (2) to discuss how

the analytical approach affects hypothesis testing and inferences. To accomplish these

goals we provide two examples using simulated data similar in structure to published

studies. We illustrate the analysis of these data with a commonly used statistical package,

SAS®. The first example uses data with a two-level data structure to emphasize how

hypothesis testing and inferences are affected depending on the statistical approach used,

while the second example provides a detailed example ofhow to model data with a three-

level data structure.

Example 1: Examining the effects of in-stream barriers on fish density

To introduce a simple multilevel data structure we present the following example.

Data were generated to emulate a commonly-used field study design to examine the

effects of instream barriers on fish density. The simulated dataset contains sample sites

(level 1) nested within streams (level 2; Figure 1). We used these data to test the null

hypothesis that fish densities do not differ between sites above and below barriers or

between streams with or without barriers. The dataset contains measurements for eight

streams: four ”treatment” streams that contain instream barriers and four ”control”

streams that lack instream barriers. For each treatment stream, fish density measurements

were generated for three sites below the barrier and three sites above the barrier (or

”reference line” for control streams; Figure 1; Table 1). The data were then analyzed two

ways—using a general linear model (GLM) and a multilevel model (MIXED) in
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Statistical Analysis System (SAS), and using the GLM and MIXED procedures,

respectively (Littell et al. 1996; SAS Institute Inc. 2000; Littell et al. 2002). The data

were generated to represent a case where mean fish densities were reduced in treatment

streams as a whole relative to control streams, and with a greater reduction in sites above

the barriers in the treatment streams. In the control streams, mean fish density was similar

in sites above and below the reference line.

Contrasting traditional and multilevel models

Traditional approaches - Two ordinary least squares (OLS) approaches are

commonly used to analyze multilevel data: an aggregating and a disaggregating

approach. For the aggregated approach, observations within each higher level group are

combined (analysis is performed at the higher level). For our stream barrier example,

aggregation would occur ifmean densities were calculated for each stream based on the

six sample sites within each stream (Figure 1). When this approach is used, within-group

variation is ignored (e.g., within stream), which may be a large proportion of the total

variance, resulting in a loss of information and statistical power. For the disaggregated

approach, all observations are used, but the higher level grouping factor (e.g., stream) is

not factored into the analysis. For our stream barrier example, disaggregation would

occur if each measurement of fish density was treated as an independent replicate sample

from each stream. This approach is inappropriate however, because the experimental unit

is actually the stream, not individual sites, and because the between-group variation is

ignored (analysis is performed at the lower level). When this occurs “replicate” samples

from a higher level grouping factor are assumed to be independent, which is often an

invalid assumption and results in pseudoreplication (Hurlbert 1984). This approach can
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underestimate standard errors and thus increase the probability of type I errors, i.e.,

finding a significant difference when one does not actually exist. Furthermore, groups

with the largest sample size may dominate the coefficient estimates.

Multilevel models - Multilevel models have received much attention in the past

several years, especially in the social and behavioral sciences. Their increase in

popularity is partly due to methodological advances and advances in statistical computing

over the past several decades. As a result, several excellent references on the theory and

application of multilevel models in the social and behavioral sciences are available; we

refer readers to these references for more detailed information (e. g., Hox 2002;

Raudenbush and Bryk 2002; Duan and Reise 2003).

Multilevel models are represented in the literature under a variety ofnames including

mixed-effects models, hierarchical linear models, random-effects models, and random

coefficient regression models. Multilevel models circumvent the problems described

above associated with using OLS approaches. For example, multilevel models estimate

standard errors correctly and result in improved estimation of fixed effects when

multilevel data structures exist. Furthermore, both continuous and categorical variables

can be specified to have fixed or random effects. A factor is fixed if it represents all

possible levels of a factor for which inferences are to be made. For the instream barrier

example, if the streams used in the analysis were the only streams for which inferences

were to be made (e.g., if the researchers did not want to generalize their results to other

streams) then stream would be specified as a fixed effect. A factor is random if it

represents a random sample of a larger set of potential factors. For the instream barrier

example, if the study streams represented a sample of streams from a larger population of
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streams with and without barriers, stream would be specified as a random effect. Another

way to illustrate the difference between fixed and random effects was presented by

Bennington and Thayne (1994). Their definition is presented in terms of the null

hypothesis being tested for each effect. “Consider two effects, A and B, where A is fixed,

B is random, and there is an interaction (A x B) possible between them. For a given

dependent variable, the null hypothesis concerning A is that there is no difference in

means among the levels ofA in the experiment. For B, the null hypothesis is that there is

no variability among all possible levels of B (including those not sampled), not that there

are no differences among levels of that effect included in the experiment. For the

interaction term (A x B), the null hypothesis is that variability among levels of B is the

same for all levels of A. This differs from the case for fixed effects in that the null

hypothesis for an interaction between two fixed effects (A and C) is that the response of

the dependent variable is not different among specific levels ofA depending upon the

particular level of C.”

Analysis of Example 1

Ordinary least squares - We first analyzed the simulated stream data assuming all

factors are fixed effects (we assumed streams were not randomly selected from a larger

population of streams) while ignoring the fact that sites are nested within streams. This is

equivalent to using a disaggregated OLS approach, and was performed using the GLM

procedure in SAS. An aggregated approach could also be implemented with these data,

but for illustration purposes we restrict our analysis and discussion to the disaggregated

approach, which is a common approach used in the analysis of fisheries data. Fish density
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was the response variable and site position (above or below a barrier) and stream type

(barrier or no barrier) were fixed effects. The general form of this model is as follows:

Yijk = u + Position,- + Stream _ Typej + (Position x Stream _Type)l-j + eijk (1)

Where Yijk is the kth measurement on the ith position, in thejth stream, u is the overall

mean, (Position x Stream _ Type),-j is the interaction effect, and errors (eijk ) are assumed

independent and eijk ~ N(O, 0'2 ). An example of the data structure needed for analyzing

the dataset in SAS is given in Appendix I. The SAS code for performing the GLM

analysis is as follows.

PROC GLM DATA = barrier_data;

CLASS stream stream_type position;

MODEL density = stream_type position stream_type*position / SOLUTION;

LSMEANS stream_type position stream_type*position / STDERR PDIFF ADJUST =

tukey;

RUN;

For a detailed description of the SAS syntax, see Littell et al. (2002). Briefly, the

CLASS statement contains the classification variables (categorical independent

variables), the MODEL statement defines the model to be fit, and the SOLUTION Option

requests the parameter estimates. The LSMEANS statement requests that the least-

squares (LS) means be calculated for each classification variable listed in the statement.

Least-squares means are within-group means adjusted for other effects in the model and

are also known as the population marginal means (Searle 1987). The PDIFF option

reports the results of the hypothesis test of the differences between LS means (Ho: LS
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mean; = LS mean,). The ADJUST = tukey statement requests a multiple comparison test

with adjusted P-values and confidence limits for the LS means using the Tukey-Kramer

method. This adjustment controls for the overall experiment-wise error rate (e.g., controls

for type I error rate). Note that PROC GLM allows for random terms; however, the

standard errors from the LSMEANS statement are usually not computed correctly (Littell

et al. 1998). The GLM procedure in this example was run with only fixed effects.

The Type III sums of squares tests for the significance of the fixed effects, which

account for the other effects in the model, are as follows, stream type F = 58.31, P =

<0.0001, position F = 1.01, P = 0.319, stream typeXposition interaction F = 1.71, P =

0.197. The analysis indicates there is a significant difference in mean fish density

between stream types, with barrier streams having significantly lower mean density levels

compared to control streams (barrier stream 2? = 26.8 fish/m2, standard error (SE) = 2.92;

control streamf = 58.4 fish/m2, SE = 2.92). Table 2 contains the LS means and standard

error estimates for each stream type and site position. The analysis did not detect any

interaction between site position and stream type, although we had simulated an

interaction effect in the dataset.

Multilevel model - Because multilevel models have received more attention in the

social and behavioral sciences and thus references are not available specifically for the

natural sciences, we use symbols consistent with Raudenbush and Bryk (2002) in our

description of multilevel models. For this analysis, the dependent variable was the same

as in the GLM analysis; however, we took into account the nested structure of the data

(sites nested within streams) and analyzed the data using the MIXED procedure in SAS

with random effects. Position, above or below the barrier, was the site-level (level 1)
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predictor and stream type (with or without a barrier) was the stream-level predictor (level

2). Stream was regarded as a random effect. Typically, it is likely that measurements of

fish density from the same stream are correlated (i.e., lack statistical independence); one

way to model this correlation is by treating each stream as having a random effect.

Furtherrnore, we assumed that streams used in the study represented a random sample of

a larger population of streams; therefore, we can generalize our results to other similar

systems.

The model can also be viewed in two levels and in a combined form as follows:

Level 1 model: Yij = ,BOj + ,8” (Position) + ry- (2)

where Yij is the density of fish in site i in streamj, ,Boj is the mean outcome for stream

j, ,8”- is the coefficient for the fixed effect of site position on fish density, rij is the level-1

error, where ry- ~ N(0,02) , and 0'2 is the variance at level 1 after controlling for the

effects of position.

Level 2 model: 1601’ == 700 + 701(Stream_ Type) + u0j , and

1311' = 710 (3)

where 700 is the grand mean density, 701 is the estimated coefficient for the fixed effect

of stream type (i.e., barrier or control) on stream mean fish density, 710 is a fixed effect

representing the coefficient for the effect of position on fish density, and uoj is the

residual, where uoj ~ N(0, too) and too is the conditional variance (the stream-level

Variance after controlling for stream type). The combined model can then be written to

contain the site positionxstream type interaction as follows:
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Yij = 700 + 710(Position) + y01(Stream_Type) + 711(Position >< Stream _Type) + “Oj + ’i‘j

(4)

where 711 is the estimated coefficient for the interaction term and all other variables are

defined as above. The model can be implemented using the following code:

PROC MIXED COVTEST DATA= barrier_data;

CLASS stream stream_type position;

MODEL density = stream_type position stream_type*position / SOLUTION;

RANDOM intercept / SUBJECT = stream;

LSMEANS stream_type position stream_type*position / PDIFF ADJUST = tukey;

RUN;

For an extensive explanation of the PROC MIXED syntax, see Littell et al. (1996). The

syntax is similar to that used in the GLM procedure; however, important differences

exist. The COVTEST statement produces asymptotic standard errors and Wald Z-tests for

the covariance parameter estimates, 6'2 and foo. The CLASS statement is the same as

described for the GLM procedure, while the MODEL statement lists the dependent

variable and only the fixed effects. The SOLUTION option after the MODEL statement

requests the parameter estimates and their standard errors for the fixed effects. The

RANDOM statement specifies the random effects in the model. The intercept is

designated as random in this model because it is assumed that the stream—level intercepts

are from a larger population of stream-level intercepts. The SUBJECT option identifies

the subject(s) in the multilevel model. Specifying a subject is equivalent to nesting all

effects in the RANDOM statement within the subject effect (Littell et al. 1996).

Therefore, the above syntax is modeling fish density while accounting for the data being
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clustered (grouped) by streams. As in the GLM procedure, the LSMEANS statement

requests the LS means estimates for the specified fixed effects and the PDIFF option for

the LSMEANS statement requests the differences between the LS means.

The analysis indicated that there was a significant position X stream type interaction.

The overall Type 111 tests for the fixed effects are as follows: stream type, F = 9.44, P =

0.0039; position, F = 5.56, P = 0.024; and position X stream type interaction, F = 9.39, P

= 0.004. Note that because PROC MIXED uses a likelihood—based approach to

estimation it does not directly compute or display the sums of squares; however, the Type

III tests are equivalent to those produced by PROC GLM. Table 2 contains the LS means

estimates and standard errors for each stream type and site position. In treatment streams,

sites located above the barrier had significantly lower mean fish density estimates

compared to sites below the barrier; whereas, in control streams mean fish density did not

differ between sites located above or below the barrier reference line. Treatment streams

had lower fish density estimates compared to control streams, regardless of position, but

considering only sites below the barriers, treatment and control streams did not differ

significantly in mean fish density estimates.

Both the traditional (OLS) and multilevel analyses resulted in the same LS means

point estimates and they were equal to the arithmetic means of the values outlined in

Table 1. Least-squares means will be equivalent to arithmetic means for cases with

balanced designs, as in this example. However, for unbalanced designs, which are

common in ecological studies, the LS means estimates will typically not equal the

arithmetic means.
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There are two major differences between the traditional and multilevel analyses that

have implications for hypothesis testing and inferences: (1) the difference in standard

error estimates and (2) the specification ofrandom versus fixed effects. In the multilevel

analysis, the standard error estimates of the means are about two times larger compared

to the OLS estimates. This difference is due to the fact that the standard error in the

traditional analysis is calculated using only the residual variance (the residual variance is

the only variance component in fixed effects models); whereas, the standard error in the

multilevel analysis is calculated using two variance components: the residual variance

and a between-stream variance. The smaller standard errors estimated using the

traditional approach can lead to increased probabilities of type I error rates, i.e., finding a

significant difference when one does not actually exist.

The second major difference between our two analyses is the specification of stream

as a random effect in the multilevel analysis. The specification ofrandom effects has

implications for what inferences can be made based on the results of the analyses. For the

traditional approach, with stream as a fixed effect, results can not be generalized to

streams that were not used in the analysis and must be restricted to the eight streams used

in the study. For the multilevel analysis, where stream was specified as a random effect,

inferences can be generalized to a larger population ofbarrier and no-barrier streams.

Often a goal of a study is the ability to generalize results found from a subset of study

streams or lakes to a larger population of streams or lakes of interest. The use ofrandom

effects allows for such inference whereas purely fixed effects models do not.

Example 2: Examining the relationship between aquatic macrophyte percent cover

and stomach fullness of yellow perch (Percaflavescens) in inland lakes
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For this example, we focus our analysis on the multilevel modeling approach to

demonstrate how to analyze and interpret datasets with three levels. As a result, we do

not compare this multilevel analysis with a traditional OLS analysis. The limitations of

using traditional OLS approaches as discussed previously, however, do exist for

analyzing these data. We realize that some of the following model details are fairly

dense; however, it is our goal that these details will aid in the understanding and

interpretation of the model. ,

Data were generated to emulate a field study designed to examine the effects of

macrophyte cover on percent stomach fullness of yellow perch in inland lakes. The

dataset contains individual fish (level 1), nested within sampling sites (level 2), nested

within lakes (level 3). In this example, sample sites were assumed to be randomly chosen

within lakes and lakes were randomly selected from a larger population of lakes. The data

were used to test the null hypothesis that percent stomach fullness is not related to

percent macrophyte cover while controlling for the effect of individual fish weight on

stomach fullness. The dataset contains measurements of percent stomach fullness and

weight (g) for individual fish sampled from eight sample sites within each of four lakes.

Sample sizes of individual fish varied among sites and lakes, ranging from 0 — 46 fish per

site and from 160 — 245 fish per lake for a total of 751 observations. Weight and percent

stomach fullness of individual fish ranged between 110 — 293 g and 14.4 — 42.2%,

respectively. Percent macrophyte cover was generated for each sample site and ranged

from 2 — 97%.

We introduced complexity to this dataset by not only introducing a third level to the

hierarchy, but by also including predictors at multiple levels: the predictor at level 1 (the
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individual fish level) is fish weight and the predictor at level 2 (the site level) is percent

macrophyte cover. Because of this complexity, we are going to view this analysis as a

two-stage process.

Stage 1 - The first stage involves obtaining initial estimates of the total variance,

how the variation is partitioned (i.e., obtain variance estimates that describe how much

variation in stomach fullness there is due to individual differences of fish within sites

nested within lakes, among sites nested within lakes, and among lakes). These variance

estimates are also used, along with variance estimates obtained in stage 2, to determine

the percent variation explained at each level of the model by the predictor variables. The

model that produces these estimates is a one-way ANOVA with random effects and is

also referred to as an unconditional model because it does not contain any predictor

variables. This one-way ANOVA with random effects can be viewed as a three-level

model as follows:

LCVCI 1 mOdel: Yljk -——’ ”Ojk + el'jk (5)

where Yijk is the percent stomach fullness of fish i in sitej and lake k, flojk is the mean

stomach fullness of sitej in lake k, and eijk is the random “fish effect”, and

eijk ~ N(0, 0'2 ), where 0'2 is the residual variance component due to individual

differences of fish within sites nested within lakes.

Level 2 model: ”Ojk = 500k +r0jk (6)

where 500k is the mean fullness in lake k, r0jk is the random “site effect”, and

rOjk ~ N(0,23,), where r” is the variance between sites nested within lakes.

Level 3 model: 500k = 7000 + “00k (7)
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where 7000 is the overall grand mean fullness, “00k is the random “lake effect”, and

“00k ~ N(0, rfl), where rfl is the variance between lakes. The combined unconditional

model, therefore, has a fixed effect (7000) and three random effects (“00k , rOJ-k , and

eijk ) and is as follows:

Yijk = 7000 + “00k + rOjk + eijk (8)

Examining the initial variance estimates provides information regarding how much total

variation there is at each level that can subsequently be modeled with predictor variables.

The code required for performing the one-way ANOVA with random effects for this

example is:

PROC MIXED COVTEST DATA = lake_data;

CLASS lake site;

MODEL fullness =/ SOLUTION;

RANDOM intercept / SUBJECT = lake;

RANDOM intercept / SUBJECT = site(lake);

RUN;

The syntax for this unconditional model is similar to that described in example 1;

however, there is an additional RANDOM statement which specifies that sites are nested

within lakes.

Results from the one-way ANOVA with random effects show that the grand

mean ()7000) stomach fullness over all lakes is 24% and the estimates of variance among-

fish-within-sites-nested-within-lakes (6' 2 ), among-sites-within-lakes ( f7; ), and among-

lakes (ffl) are 8.67 (SE = 0.46, P < 0.0001), 7.44 (SE = 2.18, P = 0.0003), and 2.18 (SE
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= 2.6, P = 0.202), respectively. The percent variance among fish within sites nested

within lakes, among sites within lakes, and among lakes is 47%, 41%, and 12%,

respectively. We now have information on how the variance is partitioned in our dataset

and a conditional model can be specified in stage 2.

Stage 2 - The predictor of interest in this study is percent macrophyte cover.

However, we also need to account for the effect of individual fish weight on stomach

fullness in the model. Therefore, our two predictors are fish weight, modeled at level 1,

and percent macrophyte cover, modeled at level 2. Level 3 (the lake level) is left

unconditional, with no predictor variables (covariates). Again, the model can be viewed

as three levels and in a combined form as follows:

Level 1 model: Yijk = Irojk + ”ljk(Weight)1jk + er'jk (9)

where Yijk is the stomach fullness for fish i in sitej in lake k, ”Ojk is the intercept for site

j in lake k, rrljk is the estimated coefficient for the fixed effect of fish weight on stomach

fullness, and ey-k is the level—l random effect.

Level 2 model: flojk = 600k + ,601k (Percent_Cover)jk + "0jk

mfi=aa am

where flOOk is the intercept for lake k, 16011: is the estimated coefficient for the fixed

effect ofpercent macrophyte cover, [310k is a fixed effect representing the coefficient for

the effect of fish weight on stomach fullness, and "Ojk is the level-2 random effect.

Lével 3 model: floor = 700013101. = rrooaflmk = 7010 (11)
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where 7000 represents the coefficient for the level 2 intercept, 7100 represents the

coefficient for the fixed effect of fish weight on stomach fullness, and 7010 represents the

coefficient for the fixed effect of percent macrophyte cover on stomach fullness. The

combined model is as follows:

Yijk = 7000 + 7100(Weight) + 7010(Percent _ Cover) + 7110(Weightx Percent _ Cover) +

“00k + rOjk + 80k

(12)

where y] 10 is the estimated coefficient for the interaction term and all other variables are

defined as above. The model can be specified using the following code:

PROC MIXED COVTEST DATA = lake_data;

CLASS lake site;

MODEL fullness = weight cover weight*cover/ SOLUTION;

RANDOM intercept / SUBJECT = lake;

RANDOM intercept / SUBJECT = site(lake);

RUN;

The syntax is similar to that described in the unconditional model; however, we now have

specified the full model in the MODEL statement.

The analysis indicated that both fish weight and percent macrophyte cover were

significantly and positively associated with percent stomach fullness and that there was

not a significant interaction effect (Table 3). Variance estimates obtained from the final

model (full model) can be used along with the variance estimates from the unconditional

model to determine how much variation was explained at each level as follows:
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Varianceunconditional — Variancefu1,

(13)
 

Percent variance explained = _

Varlanceunconditional

, o . A 2 A A o u

where Varzanceuncondmonal rs an estrmate of o: , r”, or 7'3 from the unconditional

model and Variancefull is an estimate of 6'2 , f” , or {'5 from the full model. For

example, to determine how much of the variation in stomach fullness among fish within

sites nested within lakes was explained by fish weight we perform the following

calculation:

8.67(6'2unconditional)‘1-O7(&2full) ___
.2 0.88 (14)

8.67(0' unconditional)

 

thus, fish weight explained 88% of the among-fish-within-site-nested-within-lake (level

1) variation in stomach fullness. Using equation 13, we can determine that percent

macrophyte cover explained 31% of the variation in fish stomach fullness among sites

within lakes (level 2). Because we did not have predictors at the lake-level (level 3), we

do not need to calculate percent variation explained at this level. However, if predictors

were included at level 3, the same calculation could be performed to determine percent

variation explained.

In this example, the multilevel model accounted for the fact that fish were nested

within sample sites within lakes and sample sites were nested within lakes. As in example

1, the specification of random effects allowed us to account for the lack of independence

of observations within sites and lakes with similar implications for inferring (e. g., the

ability to generalize to a larger population of lakes). The analysis also allowed for the

partitioning of variance among the three levels. Variance partitioning provides valuable

information on how much variation is contained at each level. Knowledge ofhow much
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variation exists at each level can also help guide future data collection efforts by allowing

researchers to focus data collection at the level (e.g., spatial scale) that contains much of

the variability that needs to be explained.

Conclusion

Multilevel models provide several advantages over the more commonly-used OLS

approaches when analyzing data with a hierarchical structure. Because hierarchical

structures are common to both experimental and field (observational) studies in fisheries

research, we encourage the use of multilevel models where appropriate. Some other

examples of where hierarchical data structures may arise in fisheries research, where

multilevel models would be applicable, include investigations of fishing tournament

related mortality, where fish are nested within tournaments and tournaments are nested

within lakes, and investigations of landscape features on lake or stream attributes, where

waterbodies are nested within watersheds and watersheds are nested within ecoregions.

Furthermore, due to statistical computing advances, multilevel models can be

implemented in widely available statistical software packages. These approaches provide

better estimation of fixed effects, allow for the partitioning of variance components

across levels, and allow for generalizations beyond the particular groups (e.g., streams or

lakes) used in the study.
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Table 1. Simulated dataset used for example 1. Numbers represent simulated fish

densities (fish/m2) for sites nested within treatment (banier) and control (no barrier)

streams and for sample sites above or below the barrier or reference line. Values used to

calculate within group means are shown outlined in a dashed line.

 

 

 

 

 

Barrier Control

Stream A B C D E F G H

Site Position

1 Above """1'5""W49WW'1'4""""i'2’"? "'"4'6""""07'"""4'5"m"7'4""

2 Above 14 47 15 9 41 70 45 67

3 Above 7 39 25 18 42 82 57 72

4 Below §""3’8""""4'5""""2120 {"49""""7.6-"""3'9'"""'6"6""

5 Below 13 50 31 24 50 76 37 64

6 Below 24 50 33 30 55 74 35 72

.-------_-------_-__----------------_--_--- >-------- ------------------------------
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Table 2. Least-squares means (LSM) and standard error (SE) estimates for example 1

analyzed in SAS using a general linear model (PROC GLM) and a multilevel model

(PROC MIXED). For each analysis (column) least-squares means with different

superscripted letters are significantly different (P < 0.05 using Tukey-Kramer multiple

comparison test). Least-squares means correspond to the arithmetic within group means

which can be calculated using the values in Table l.

 

General linear model Multilevel model

 

 

Stream type Position LSM SE LSM SE

Barrier Above 22.0a 4.14 22.0“‘ 7.38

Barrier Below 31.6: 4.14 31.61) 7.38

Control Above 59.0b 4.14 59.0b 7.38

Control Below 57.8b 4.14 57.8b 7.38

 

32



Table 3. Final parameter and variance estimates, standard errors (SE) and P -— values for

 

 

 

example 2.

Parameter Estimate SE P — value

Intercept ()3000) 5.92 1.31 0.02

Weight ()9100) 0.10 0.003 <0.0001

Percent cover (£010) 5.02 1.26 <0.0001

Weight X percent cover ()7110) -0.005 0.004 0.24

Variance components

Among fish within sites nested within lakes (6'2) 1'07 0'05 <0'0001

Among sites within lakes (in) 5.15 1.48 0.0002

1.71 1.95 0.19Among lakes (f5)
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Figure 1

Treatment streams Control streams

A - D E - H

In-stream barrier

 

Sample sites
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Figure 2
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Appendix I. An example of the data structure required to analyze the stream barrier

dataset (example 1) using SAS. The DATA statement specifies the name of the dataset

that is generated. The INPUT statement specifies the variables that are read from the

program editor window and the “$” designates variables as character variables. The data

corresponding to the variables listed in the INPUT statement are entered after the

DATALINES statement.

DATA barrier_data;

INPUT density stream $ site stream_type $ position S;

DATALINES;

15 A 1 Barrier Above

14 A 2 Barrier Above

7 A 3 Barrier Above

49 B 1 Barrier Above

47 B 2 Barrier Above

39 B 3 Barrier Above

14 C 1 Barrier Above

15 C 2 Barrier Above

25 C 3 Barrier Above

72 E 6 Control Below
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CHAPTER 2: A MULTILEVEL MODELING APPROACH TO ASSESSING

REGIONAL AND LOCAL LANDSCAPE FEATURES FOR LAKE

CLASSIFICATION AND ASSESSMENT OF FISH GROWTH RATES

Abstract

The ecoregion and watershed frameworks are landscape-based classifications that

have been used to group waterbodies with respect to measures of community structure;

however, they have yet to be evaluated for grouping lakes for demographic

characteristics of fish populations. We used a multilevel modeling approach to determine

if variability in mean fish length at age could be partitioned by ecoregions and

watersheds. For the ecoregions analysis, we then examined if within-ecoregion variability

could be explained by local water quality and lake morphometry characteristics. We used

data from agency surveys conducted during 1974 — 1984 for age 2 and 3 fish of seven

common warm and coolwater fish species. Variance in mean length at age between

ecoregions for all species was not significant, and between-watershed variance estimates

were only significant in 3 out of 14 analyses; however, the total amount of variation

between watersheds was very small (ranging from 1.8 to 3.7% of the total variance),

indicating that ecoregions and watersheds were ineffective in partitioning variability in

mean length at age. Within ecoregions, water quality and lake morphometric

characteristics accounted for 2 — 23% of the variation in mean length at age. Measures of

lake productivity were the most common significant covariates, with mean length at age

increasing with increasing lake productivity. Much of the variability in mean length at

age was not accounted for, suggesting that other local factors such as biotic interactions,

fish density, and exploitation are important. The results indicate that the development of

an effective regional framework for managing inland lakes will require a substantial
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effort to understand sources of demographic variability and that managers should not rely

solely on ecoregions or watersheds for grouping lakes with similar growth rates.

1. Introduction

Over past decades, many state and federal agencies have moved toward a regional

approach for biological assessment and monitoring. This approach often entails

delineating an area of land into discrete management units, which are based on physical

geographical features. In the United States, two approaches dominate how agencies

divide land into management units: basinwide or watershed approaches and ecoregion

classification (Brown and Marshall, 1996). An ecoregion is defined as a unit of land that

is homogenous with respect to multiple landscape characteristics such as geology, soil

characteristics, natural vegetation, and climate. A watershed is defined as the

topographical area which drains water into a waterbody (Omemik and Bailey, 1997). In

the United States, however, the use of hydrologic units (HUS) as proxies for watersheds

has increased since the development of digital HU maps by the United States Geological

Survey (Seaber et al., 1987). Hydrological units may or may not overlap with a

waterbody’s topographical watershed (Omemik, 2003); however, they represent a

valuable and accessible framework for classifying waterbodies. Hydrologic units are

classified into several levels and are identified based on a unique hydrological unit code

(HUC). Spatial scales ofHUCs range from “regions” (2-digit HUC) to “subwatersheds”

(l4-digit HUC).

Although watershed-based approaches are still used in many states, the ecoregion

framework is becoming increasingly popular as ecoregion delineations are becoming
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available for most states and from multiple sources, including the US. Environmental

Protection Agency (e. g., Bailey, 1983; Omemick, 1987; Albert, 1995). The use of

watershed and ecoregion frameworks is not limited to the United States, as several

European countries have also adopted these approaches for regional environmental

management (Sandin and Johnson, 2000; Santoul et al., 2004). The underlying

assumption behind the use of ecoregions and watersheds is that classification of surface

waters will reduce natural within-class variation of ecological data (Genitsen et al.,

2000). If so, then the grouping of lakes that are ecologically similar will facilitate the

identification of reference conditions, allow for more precise assessment of aquatic

communities, and provide the opportunity to extrapolate biological information to other

lakes within a relatively homogenous landscape (Gerlitsen et al., 2000).

Although ecoregions or watersheds are often adopted as a framework for classifying

aquatic systems, several limitations exist regarding their ability to group waterbodies

(Johnson, 2000; Van Sickle and Hughes, 2000). First, the delineation of ecoregion

boundaries is subjective at some level. Second, as mentioned above, the delineation of

HUS does not always overlap with topographical watersheds and thus defining a HU is

not Simple (Omemik, 2003). Third, one of the primary assumptions of the ecoregion and

watershed approaches to classifying aquatic systems is that the Spatial variability of the

abiotic features constrains important properties of aquatic ecosystems. If the properties of

aquatic systems that are being measured are not constrained spatially, for example, if

properties vary independently over the landscape, then these frameworks will be

ineffective at partitioning variance (Hawkins and Vinson, 2000). This highlights the need

to determine how well ecoregions and watersheds (i.e., HUS) actually partition variability
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prior to their implementation for ecosystem management (Johnson, 2000; Omemik,

2003)

To date, most investigations into the effectiveness of ecoregions and watersheds as

frameworks for ecosystem management have focused on streams (Newall and Magnuson,

1999; Pan et al., 2000), with fewer studies examining lakes (but see Johnson, 2000 and

Jenerette et al., 2002). Furthermore, the emphasis of these investigations has often

focused on measures of community structure, such as species richness or diversity and

results from these studies often conflict. For example, Newall and Magnuson (1999)

demonstrated fish community structure was not related to ecoregions in Wisconsin

streams. Conversely, Van Sickle and Hughes (2000) found that stream fish and

amphibian assemblages were more similar within ecoregions than between ecoregions in

Oregon streams and that ecoregions performed better in grouping Similar stream

vertebrate assemblages as compared to watersheds. Studies have yet to investigate if

ecoregions or watersheds are effective at partitioning variability in demographic

characteristics of aquatic organisms. An understanding ofboth the spatial patterns of

species assemblages and the Spatial variability in demographic characteristics is

necessary for the conservation and management of aquatic populations.

Although many demographic characteristics are difficult to measure, growth rates of

fishes are relatively easy to determine and often readily available from state and federal

management agencies. Fish growth rates are of great importance to ecological

interactions in aquatic systems (Weatherley, 1972) and of particular interest to fisheries

management agencies because they can be used to assist management decisions regarding

stocking programs and size and bag limits for sport fishes (e. g., Shuter et al., 1998).
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Furthermore, fish growth rates are inherently variable among lakes, making regional

management difficult (Shuter et al., 1998). Therefore, fish growth data represent an

opportunity to assess the ability of the ecoregion and watershed frameworks to partition

variance of demographic data.

Many studies evaluating the ecoregion and watershed approaches have focused

primarily on how well the framework maximizes between-class variability, without

exploring factors that explain within-class variability. However, factors that regulate the

structure and function of aquatic communities operate at multiple Spatial scales (Roth et

al., 1996; Jackson et al., 2001). Identifying whether local or regional controlling factors

explain the most variability among waterbodies will greatly assist the development of

regional management plans. For instance, there is a paucity of information on the relative

importance of local factors such as lake morphometry and water quality versus regional

factors in explaining variability in fish grth rates and whether potential relationships

vary among ecoregions (or watersheds). The use of multilevel mixed models, as

employed in this study, is a novel approach for the evaluation of the ecoregion and

watershed frameworks that allows for the investigation of factors (covariates) that operate

at multiple Spatial scales in a Single statistical model.

Elucidation of relationships between physical and chemical lake properties and

growth of fishes can lead to the development and/or refinement of lake classification

tools to be used independently or conjointly with existing frameworks. Therefore, the

objectives of this study were to: (1) examine how variability in inland lake fish growth

rates is partitioned within and between ecoregions and major river watersheds in

Michigan, (2) determine what aspects of ecoregions or watersheds can explain between-
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class variation, if it does exist, and (3) determine what lake morphometric and water

quality characteristics can predict within-class variability in fish growth rates. Due to data

restrictions, we limited our analysis of factors explaining within-class variation to the

ecoregion analysis (see Methods). We analyzed data for seven fish species including the

warmwater species bluegill Lepomis macrochirus, pumpkinseed L. gibbosus, largemouth

bass Micropterus salmoides, and the coolwater species smallmouth bass M. dolomieu,

yellow perch Percaflavescens, walleye Sander vitreus, and northern pike Esox lucius.

1.1 Hypotheses

Our model-building process was driven by a priori hypotheses, in that covariates

were selected for inclusion in the model-building process based on hypothesized

relationships between the covariate and the growth of fishes. As a framework for

selecting potential covariates, we considered fish growth to be a function of consumption

and metabolic costs, which is Similar to many bioenergetics models (Hansen et al., 1993).

We restricted our analysis of within-class variation to ecoregions, because sample sizes

were larger than those associated with watersheds. Within this bioenergetics framework,

we hypothesized the following water quality and landscape characteristics to be

important factors influencing the growth of fishes within and between ecoregions and

between watersheds.

1.1.1 Consumption

We hypothesized that water quality and landscape characteristics would influence

fish consumption through three mechanisms, and that these characteristics would show

Similar effects at the local lake scale and the regional watershed/ecoregion scale. The

three mechanisms are: (1) prey availability, (2) prey diversity, and (3) predator-prey
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overlap. Because species density and diversity (richness) tend to increase with increasing

productivity (Waide et al., 1999), we hypothesized that measures of productivity (e.g.,

chlorophyll a and total phosphorus) would be positively associated with fish growth

rates. The diversity-productivity relationship in lakes is often considered unimodal, with

diversity decreasing under hypereutrophic conditions. However, given the relatively low

nutrient status of our study lakes, we expected a positive linear relationship.

Species diversity of both fishes and zooplankton is related to local landscape

characteristics (e.g., basin morphology), with diversity increasing with increasing lake

size and depth (Barbour and Brown, 1974; Dodson, 1992). We did not expect, however,

that larger and deeper lakes would necessarily be associated with faster fish growth rates

because shallower lakes may increase the amount of foraging habitat for Species that

depend primarily on littoral prey (but see Mittelbach and Chesson, 1987; Mittelbach and

Osenberg, 1992). Therefore, because the species we included in our analyses all utilize

the littoral regions of lakes for foraging (see below), we hypothesized that large shallow

lakes with extensive littoral areas would be associated with faster growth. Accordingly,

we also hypothesized that lakes with a high shoreline development factor (SDF), which is

a measure of Shoreline complexity, would be positively associated with fast fish growth.

A lake’s hydrologic position in the landscape is also related to fish Species richness

(Kratz et al., 1997). For example, lakes that are isolated from other sources of surface

waters (e. g., seepage lakes) have lower species richness as compared to lakes that are

connected to other lakes and streams (Riera et al., 2000). The isolation of seepage lakes

may result in lower richness due to lower invasion probabilities. Therefore, we
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hypothesized that isolated lakes would have fish with Slower growth rates compared to

lakes connected to streams and other lakes.

1.1.2 Metabolic costs

Temperature influences rates of fish metabolism, consumption, and growth (Power

and van den Heuvel, 1999; Zweifel et al., 1999). Growth increases as temperature

increases to a maximum point (i.e., grth plateaus), beyond which growth decreases as

metabolic costs exceed energy intake at higher temperatures (Kitchell et al., 1977).

Because Michigan is located in the northern portion of the country and therefore has

relatively mild summers, and because we examined data for warm and coolwater fish

species, we predicted the growth-temperature relationship to be linear and not parabolic,

as temperatures exceeding the thermal optimum for an extended length of time are

unlikely.

We also hypothesized that a lake’s morphometry would indirectly influence fish

metabolic rates by affecting the amount of thermally optimal habitat by influencing

thermal stratification and growing season length. Because warm and coolwater species

are included in our analysis, we predicted that deep lakes would have slower growth rates

compared to shallower lakes. Furthermore, large, shallow lakes are predicted to have

highest growth rates due to potentially higher prey diversity and warmer temperatures.

For all species, we also predicted that a large amount of variability in fish growth rates

would remain unexplained, as biotic interactions and fish density can substantially

influence fish growth rates (Werner and Hall, 1977; Mittelbach, 1988; Pazzia et al.,

2002). The specific covariates we included in the analyses and their sources are described

in detail below.
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2. Methods

2.1 Datasets

Growth data (mean length at age) for seven warm and coolwater fish Species (Table

I) were obtained from historical fish growth surveys conducted by the Fisheries Division

of the Michigan Department of Natural Resources. Species used in analyses included the

warmwater Species bluegill Lepomis macrochirus, pumpkinseed L. gibbosus, largemouth

bass Micropterus salmoides, and the coolwater Species smallmouth bass M. dolomieu,

yellow perch Percaflavescens, walleye Sander vitreus, and northern pike Esox lucius.

Mean length at age data from surveys conducted during 1974 — 1984 were used in the

analyses because they coincide with years during which water quality was also sampled

(see below). In each survey, fish growth was recorded as the mean length at age for a

given species and age. The corresponding number of fish that contributed to the mean

was also reported; however, data for individual fish were not reported. Other data

contained in the surveys included the season of sampling (categorized as spring, summer,

fall, or winter) and the sampling year. The gear type used to collect the fish was

sometimes reported; however, often multiple gear types were used or no gear type was

reported. Due to the inconsistencies in reporting gear types and the fact that multiple gear

types were often used, we were unable to control for this potentially important covariate.

Historically, the Fisheries Division did not randomly sample lakes. However, the fish

growth surveys used in this analysis represent a large sample ofpublic lakes (surface area

> 20 ha) distributed across the entire state (Figure 1). We restricted our analyses to mean

length at age 2 and 3 for each species because the reliability of fish aging decreases with

increasing age (Ricker, 1975) and because the growth of early age classes of fishes is an
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important factor in determining predator-prey and competitive interactions, which can

affect species distributions, Size-structure, and population dynamics (Ekliiv and Hamrin,

1989; Diehl and Eklév, 1995; Persson et al., 1996).

Water quality data were obtained from the US. Environmental Protection Agency’s

data storage and retrieval system (STORET). All data were collected by the Michigan

Department of Environmental Quality from public lakes greater than 20 ha during 1974 -

1984. We extracted from the database those variables we hypothesized would affect fish

growth rates, including Secchi depth, water color, total phosphorus, total nitrogen,

chlorophyll a, and alkalinity (Table II). All data are summer (July, August, and

September) values collected from the epilimnion. Growing degree days (GDD) were also

calculated for each lake as the sum of the amounts that daily average air temperature

exceeded a base of 10°C (MDNR 2003). Growing degree days are based on 30 yr average

(1951 — 1980) air temperature records (http://www.climatesource.com) and calculated as

an area-weighted average for each lake to represent a proxy for the thermal conditions

experienced by aquatic organisms throughout the state. Air temperature was used instead

of water temperature because it was more readily available and is correlated with fish

growth (McCauley and Kilgour, 1990).

Landscape data consisted of measures of lake morphometry and lake connectedness

(i.e., landscape position, Riera et al., 2000). Lake morphometry data were obtained from

a lake polygon coverage for the state of Michigan (MDNR 2003) and include lake area,

perimeter and SDF, which is defined as the ratio of the length of the Shoreline to the

circumference of a circle of area equal to that of the lake (Wetzel, 2001) and is an

indicator of lake shoreline complexity (Table 11). Lake mean depth was calculated by
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overlaying a grid of points on bathymetric lake maps and calculating the average depth as

the average depth value of all points (Omemik and Kinney, 1983). This approach was

verified by comparing values to those calculated by measuring the volume of each depth

contour for a sub-sample of lakes (Spence Cheruvelil, unpublished data). Each lake was

classified according to its hydrologic connectivity as visible on 1:100,000 scale maps as

(1) a seepage lake, with no connections to other surface waters, (2) a lake connected only

to streams, or (3) a lake connected to lakes and streams. We calculated ecoregion and

watershed averages of the covariates listed in Table II, which were measured at the local

lake scale. These averages were then used as covariates to explain any Significant

between-class variance in fish growth. Therefore, we had water quality and

morphometric covariates representative of both local and regional scales. We used

ecoregion sections in the analysis as defined by Albert (1995) which are primarily based

on long-term climate records. We used 8-digit HUS for our major river watershed

delineation (Seaber et al., 1987; Figure l).

2.2 Statistical analysis

In our analyses, lakes comprised the units of analysis and each lake was represented

once within the 10 yr period. If a lake was sampled in multiple years, the sampling year

with the most data was retained in the analysis. If a lake was sampled more than once in a

season within a year (e. g., sampled twice in the spring), the average of the mean length at

age was calculated and the total number of fish contributing to the mean was recorded.

However this rarely occurred; less than 5% of the lakes in each dataset were sampled

more than once per year.
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To accommodate possible dependency among lakes within ecoregions and

watersheds, we employed a multilevel mixed modeling approach which enabled us to

partition the variance in mean length at age within and between ecoregion sections and

watersheds and to examine the importance of water quality and landscape features in

predicting mean length at age within ecoregion sections (Raudenbush and Bryk, 2002). A

separate analysis was performed for each species/age combination. For each analysis,

mean length at age was the dependent variable and the number of fish contributing to the

mean was used as the weighting factor.

2.2.1 Model building

Because each dataset consisted of a somewhat different suite of lakes (and

watersheds for the watershed analyses; Table I), a general model building strategy was

followed for each species/age dataset. First, descriptive statistics were generated to

examine each dataset for outliers and for collinearity among covariates. The assumption

of normality was assessed for each covariate by examining normal probability plots.

Non-normally distributed covariates were log-transformed to accommodate the

assumptions of normality and homogeneity of variance. Second, an unconditional means

model was fitted to provide baseline variance estimates which were used to calculate an

intraclass correlation coefficient, which measures the proportion of variance in mean

length at age that is between ecoregion sections and watersheds (the level-2 units). The

unconditional means model can be viewed as a two-level model as follows, using

ecoregions as the level-2 unit:

(1) Level-l model: Yij -_- 1601' + rij
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where Yij is the mean length at age for a Species in lake i in ecoregionj, floj is the mean

outcome for thejth ecoregion, ’1] is the level-l error, where "ij ~ N(0,0'2) ,

andO'2 represents the within-ecoregion variability in mean length at age.

(2) Level-2 model: floj = 700 + uoj

Where 700 represents the grand mean of mean length at age for all ecoregions, uoj is the

random effect associated with ecoregionj, and uoj ~ N(0, 100 ) , and too represents the

between-ecoregion variability in mean length at age. The combined unconditional model

is therefore:

(3) Yij =700 +“0j +6]

The intraclass correlation coefficient can then be calculated as follows:

(4) t3: 2°00 /(f00 +52)

As a third step, because the sampling season will affect mean length at age estimates, we

controlled for season by including dummy variables for fish collected in the spring,

summer, fall, and winter. Each level-1 covariate was then added separately as a fixed

effect (covariates were added as fixed effects because of small sample sizes within

ecoregions) to the model that controlled for the season to identify Significant covariates

(or—level = 0.05). After Significant, non-correlated level-1 covariates were identified,

those covariates were included in a single model. With the addition of each covariate, the

more complex model was compared to the simpler model using a likelihood ratio test.

Furthermore, all continuous covariates were grand-mean centered to aid in model

interpretability. The general form of the final models is as follows, using ecoregions as

the level-2 unit:

49



Q

(5) Level-l: Yij =30]: +fl1j(summer)+fl2j(fall)+fl3j(winter)+Z] flququ +ry'

q:

where summer, fall, and winter are dummy variables for sampling season (spring is the

reference category) and Q is the number of level 1 covariates. IfXqij was a continuous

variable, it was grand mean centered by subtracting it from the grand mean of all

observations (X(”j — XQ“) .

s

(6) Lem-2150; : 700 +220ng +u0j-fl1j = how-fig =7q0

s=l

where 705 is the effect of ecoregion-level covariates (WSj ) on the adjusted mean

(floj ) after controlling for season of sampling and any differences among lakes due

to X1...XQ . Thus, the level-1 model models mean length at age as a function of lake-

level covariates and the level-2 model models the average mean length at age of each

ecoregion as a function of ecoregion-level covariates. For example, if the Significant

variation in mean length at age occurred among ecoregions, then ecoregion attributes

(e.g., ecoregion average lake total phosphorus) were used to try to explain that variation.

The unconditional model (equations 1 and 2) and the two-level model described above

(equations 5 and 6) were also used for the watershed analyses. However, because the

analysis of within-class variation was restricted to ecoregion analyses, equation 5 only

included the covariates to control for season of sampling (i.e., we were interested in

determining which watershed-level covariates could explain between-watershed

variability in mean length at age after controlling for season of sampling at level-1). After

the final model was selected, homogeneity of variance was assessed by examining scatter
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plots of the residuals against predicted values and histograms of the residuals. All

analyses were performed using the SAS MIXED procedure (SAS Institute Inc., 2000).

3. Results

3.1 Explaining between-ecoregion/watershed variation

Mean length at age for all species varied considerably (Figure 2). For all ecoregion

analyses, between-ecoregion variance estimates in mean length at age were not

significant (Table III). For those analyses where the between-ecoregion variability was

not estimated as zero, the intraclass correlation coefficients ranged from 0.04 — 8.4%,

with most < 2% (Table 111). Because the between-ecoregion variance estimates were

nonsignificant, all models were unconditional at level-2. For the watershed analyses,

there were significant between-watershed variance estimates for ages 2 and 3 northern

pike and age-2 yellow perch; however, the total variation between watersheds was small,

ranging from 1.8 ~ 3.7% of the total variance (Table IV). Therefore, conditional level-2

models were constructed for these three datasets to determine which watershed-level

attributes could explain between-watershed variance in mean length at age. All other

between—watershed variance estimates were nonsignificant (Table IV).

Watershed average chlorophyll a explained all of the variance between watersheds

for ages 2 and 3 northern pike (Table V). Contrary to our predictions, for age-2 and age-3

northern pike, as watershed average lake chlorophyll a increased, watershed average

mean length at age decreased. No watershed-level covariates were significant for

predicting between-watershed variance in age-2 yellow perch mean length at age.

3.2 Explaining within-ecoregion variation
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After controlling for the effects of sampling season, water quality and landscape

covariates explained between 2 — 23% of the variability in mean length at age within

ecoregions (Table VI). However, we were unable to explain any variation in mean length

at age for age-2 largemouth and smallmouth bass and age-3 walleye. The estimated

intercepts can be interpreted as the mean length at age for fish sampled in the spring from

a lake with characteristics equal to the grand mean of the Significant covariates. For

example, the )700 estimate for age-2 northern pike is 466 mm. This is the estimated mean

length at age-2 for northern pike sampled in the spring from a lake with total nitrogen

equal to 577 ug°L", water color of 13.7 platinum-cobalt units, and a mean depth and lake

area of 4.6 m and 404.6 ha, respectively (values from Table II).

3.3 Consumption

We hypothesized that fish mean length at age would increase with measures of lake

productivity and Shoreline complexity, and would be highest in large, Shallow lakes, and

lowest in isolated seepage lakes. Consistent with our initial hypothesis, mean length at

age increased with increasing lake productivity (e.g., total nitrogen, total phosphorus,

Chla); Significant, positive relationships existed for age-2 and 3 bluegill, age-3

smallmouth bass, age-2 yellow perch, and ages-2 and 3 northern pike (Table VI).

Lake area and mean depth were significant for several species; however, the Sign of

the coefficient varied among analyses. When lake area was significant, mean length at

age generally increased with increasing lake area (e. g., for age-2 pumpkinseed, ages-2

and 3 northern pike). However, mean length at age decreased with increasing lake area

for age-2 bluegill. Also consistent with our hypotheses, mean length at age for ages-2 and

3 pumpkinseed decreased with increasing mean depth. However, mean length at age for
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age-2 northern pike increased with increasing mean depth. Shoreline development factor

was only significant in one analysis (age-2 yellow perch), with mean length at age

decreasing with increasing Shoreline complexity. A lake’s hydrologic position was not

significant in predicting mean length at age for any analysis.

3.4 Metabolic costs

We hypothesized that direct and indirect effects of temperature would be a primary

influence on metabolic processes and subsequently on growth. We specifically

hypothesized that mean length at age would be positively correlated with GDD and

negatively correlated with mean depth due to a larger volume of cooler water and a

potentially shorter growing season in deep lakes. Contrary to our predictions, GDD was

negatively correlated with mean length at age for age-2 bluegill and age-3 pumpkinseed.

However, mean length at age for age-3 yellow perch was positively correlated with GDD.

Our hypothesis with regards to mean depth was supported in two of the three analyses

(age-2 and 3 pumpkinseed) in which mean depth was a Significant covariate (see above,

Table VI).

4. Discussion

4.1 Explaining between-ecoregion/watershed variation

Variance in mean length at age between ecoregion sections for all species was not

Significant, while between-watershed variance estimates were only significant in three

analyses. These results indicate that ecoregions and HUC8 watersheds were ineffective in

partitioning variability in mean length at age. Other geographic grouping factors should

be investigated to determine their effectiveness in classifying lakes based on

demographic data.
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Although it is difficult to hypothesize causal mechanisms for the unexpected

significant negative relationship between watershed average chlorophyll a and watershed

average age-2 and age-3 northern pike mean length at age, it is likely due to the spatial

distribution of this covariate in the landscape (i.e., Spatial autocorrelation). For example,

watersheds with higher average lake chlorophyll a levels are located in the southern

portion of the Lower Peninsula of Michigan, while watershed averages for chlorophyll a

are lower in the northern Lower and Upper Peninsulas. This suggests that on average,

watersheds in the northern Lower Peninsula and Upper Peninsula ofMichigan have

larger mean length at age-2 and 3 northern pike as compared to the southern part of the

state. Therefore, the watershed groupings may be identifying a latitudinal gradient in pike

mean length at age. The actual mechanism behind this relationship cannot be determined;

however, other unmeasured variables that potentially vary from south to north could be

responsible, such as fish density. Nonsignificant between-watershed variance estimates

for other species-age combinations are likely partly due to small sample sizes. For

example, once all watersheds with less than three lakes were excluded from analysis the

sample sizes were often reduced substantially.

The ecoregion analyses suggest that the use of ecoregions as a framework to manage

fish populations, especially with respect to mean length at age, is not appropriate. Our

watershed analyses also suggest that HUC8 watersheds are of limited use as a spatial

framework for classifying lakes based on mean length at age. Although significant

between-watershed variance estimates were obtained for 3 analyses, the proportion of the

total variance that was between watersheds was less than 4% in all cases. Van Sickle and

Hughes (2000) examined the ability of watersheds to group aquatic vertebrate
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assemblages in western Oregon streams and concluded that watersheds did have utility

for classifying stream vertebrates; however, their ability to classify assemblages was

likely due to spatial autocorrelation effects, as was evident in our watershed analysis. Van

Sickle and Hughes (2000) also concluded that geographic classifications can be expected

to account for only a small portion of the total variance in stream vertebrate communities,

which is in agreement with our results regarding fish mean length at age data.

Studies that have evaluated the ecoregion framework using lake ecosystems have

been equivocal to date. Jenerette et al. (2002) concluded that ecoregions were relatively

ineffective at minimizing variability in lake water quality in the northeast United States.

In contrast, Johnson (2000) found that ecoregions performed relatively well when

discriminating between measures of species richness and diversity in littoral

macroinvertebrate assemblages in Swedish lakes. The ecoregions used in the study by

Johnson (2000) spanned a larger geographic region, from arctic-alpine to nemoral regions

characterized by deciduous forests, compared to those used by Jennerette et al. (2002)

and those used in our study. This broad geographic range likely contributed to the

differences found in invertebrate assemblages. In fact, most differences occurred between

the ecotone that delineated northern and southern forests types (Johnson 2000). It could

be argued that if our analysis were performed using a landmass equal in size and

geographic diversity to that used by Johnson (2000), we would detect significant

between-ecoregion and between-watershed variability due to large differences in growing

conditions over such a broad geographical area. At smaller scales, however, such as the

state-level, ecoregions and HUC8 watersheds are of limited use in partitioning variance

in fish mean length at age.
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The poor performance of ecoregions in our study is partly due to the fact that each

ecoregion is composed of a relatively large land area relative to the entire study area of

Michigan. Therefore, even though an ecoregion is defined as a relatively homogenous

landscape, in our case there was still substantial variability in growing degree days,

geology, soils, etc. within ecoregions, which may have contributed to the relatively large

amount of variability within ecoregions in fish mean length at age. Watersheds were of a

smaller area as compared to ecoregions; however, they were also relatively ineffective at

grouping similar lakes, firrther demonstrating the need to better understand sources of

variability in fish growth. Another contributing factor to large within-ecoregion and

within-watershed variability is the alteration of these lake ecosystems by anthropogenic

disturbances and activities that may have removed any or a substantial amount of Spatial

patterns in fish growth rates that may have previously existed (McCormick et al., 2000).

Given this large amount of variability within these classification systems, future research

should focus on alternative ways to classify lakes, perhaps at a smaller spatial scale or by

using different grouping criteria, in order to group ecologically similar lakes for

management and conservation purposes.

4.2 Explaining within-ecoregion variability

We explained 2 — 23 % of the variability in mean length at age within ecoregions

using lake morphometry and water quality variables. This amount of variation lies within

the range found in other studies. For example, Tomcko and Pierce (2001) were able to

explain 16 — 33% ofthe variation in bluegill growth using lake morphometry and water

quality variables in Minnesota lakes.

4.3 Consumption
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In 6 of 14 analyses, mean length at age was positively associated with measures of

lake nutrient status. Tomcko and Pierce (2001) also found bluegill length at ages 1 — 6 to

be positively correlated with lake productivity. Greene and Maceina (2000) found the

grth of age-0 largemouth bass was faster in eutrophic as compared to less productive

reservoirs in Alabama. Although causal mechanisms cannot be identified from these

studies, these patterns are likely due to higher prey abundance or production in more

productive systems.

Morphometric characteristics were important for predicting mean length at age for

several species. The relationship between mean length at age and lake area and depth for

age-2 pumpkinseed was consistent with our hypothesis that mean length at age would be

highest in large, Shallow lakes. This Species Spends a majority of its time in nearshore

waters, using these areas for foraging on littoral prey such as gastropods (Huckins, 1997).

Therefore, a potential mechanism for this relationship is with increasing mean depth,

pumpkinseeds experience a decrease in the amount of foraging habitat, resulting in

slower growth rates in deeper lakes. Also, deeper lakes warm up at a slower rate as

compared to shallower lakes; thus pumpkinseed in deeper lakes may experience a shorter

growing season as compared to shallower lakes that warm up more rapidly in the spring.

Mean length at age for age-3 pumpkinseed also showed a negative relationship with

mean depth; however, lake area was not a Significant covariate. Contrary to our

predictions, mean length at age for age-2 yellow perch was negatively associated with

SDF. It is unclear what mechanism is responsible for this relationship. One possibility is

that SDF covaries with another controlling factor. However, in this analysis SDF was not

significantly correlated with any other lake morphometry or water quality covariate,
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suggesting that SDF may be correlated with a covariate that was not used in this study.

Alternatively, because this study relies on variables that are surrogates for hypothesized

mechanisms, there is an increased probability of chance correlations a’eters et al., 1991),

which may explain the Significance of SDF in this analysis.

Northern pike length at ages-2 and 3 was positively related to lake area. Contrary to

our initial hypothesis, mean length at age for age-2 northern pike also was positively

related to mean depth. As northern pike grow, their depth preference changes, with older

fish utilizing deeper water and larger individuals using a wider range of depths compared

to smaller individuals (Casselman and Lewis, 1996). Therefore, large lakes and lakes

with a variety of depth habitats may provide conditions conducive to faster growth. Also,

prey diversity and abundance may be higher in these larger, more productive lakes

providing a wider forage base for northern pike.

4.4 Metabolic costs

Contrary to our predictions, mean length at age was negatively related to GDD for

age-2 bluegill and age-3 pumpkinseed. The reasons for these negative relationships are

unknown. However, because GDD was only Significant in three models (positively

associated with mean length at age-3 yellow perch) it may indicate that the GDD data did

not accurately represent the thermal conditions experienced by the fish populations. The

GDD data used in these analyses were a 30-yr average and because annual temperature

variability can be high, this long-term average may have attenuated any affect of

temperature on fish growth rates. Alternatively, lakes with high GDD may differ in

angling pressure or other biotic or abiotic factors we were unable to measure as compared

to lakes with lower GDD.
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Also consistent with our initial hypothesis, a large amount of within-ecoregion

variability in mean length at age was unaccounted for by water quality and morphometric

characteristics. Other factors such as fish density and exploitation, which can greatly

influence growth of fishes, were unaccounted for in this analysis and may prove useful in

predicting fish growth rates in future studies. For example, Drake et al. (1997) found

higher growth of brood-guarding bluegill in lakes with low angling effort as compared to

lakes with higher angling effort. Pierce et al. (2003) found that northern pike density

explained 36 — 57% of the variation in mean back-calculated lengths at ages 2 — 5 for

northern pike populations in north-central Minnesota lakes. This suggests that classifying

lakes based on demographic characteristics may be more difficult compared to

classifying lakes based on species assemblages or water quality variables, especially

when using landscape characteristics to build the classification scheme. For example,

variance in lake water chemistry variables was partitioned for Michigan inland lakes

using HUC8 watersheds, with Significant among-watershed variance estimates ranging

from 6 to 67% of the total variance. Landscape features were then able to explain

significant variation in water quality variables at both the local and watershed scales

(Spence Cheruvelil, 2004). Furthermore, the classification ofwaterbodies should be

based on multiple demographic characteristics; however, this will not be possible until

such data are routinely collected and become widely available. The identification of lakes

with Similar demographic properties would facilitate regional management of aquatic

populations.

4.5 Study limitations
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Although we can learn much from the results in our study, there are some limitations

due to the use of existing historic data. For example, the lack of standardized sampling

protocols and often incomplete or summary records limited the scope of our analyses and

clouded the interpretation of our results. The mean length at age data were collected over

a ten year period, which allowed us to expand the spatial scale of our analyses, but also

added temporal variability to our analyses. To determine if temporal trends influenced

our findings, we ran the models with sampling year as a covariate. The parameter

estimates for sampling year were rarely significant and when they were, they did not

account for much additional variability, nor did they change the results presented here.

Also, the clear identification of mechanisms and processes responsible for the observed

patterns is not possible in our study (Peters et al., 1991). Given these limitations,

however, we were still able to account for Significant within-ecoregion variation in mean

length at age using lake morphometry and water quality characteristics in 11 out of 14

analyses, suggesting that the use of data collected from a statistically valid sampling

program (Hayes et al., 2003) will likely provide further insight into the effects of lake

morphometry and water quality on fish growth. Although there are limitations to the use

of historic data, this approach also has advantages. For example, the ability to examine

patterns at such a large spatial scale would likely not be possible otherwise. This

approach is also useful in generating new hypotheses and prioritizing research questions

to address in future research (Peters et al., 1991).

4.6 Conclusions

We determined that local lake characteristics can explain a significant amount of

variation in mean length at age; however, the relative importance of abiotic factors versus
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biotic interactions remains unclear. A better understanding of the importance of abiotic

and biotic factors and how they affect fish populations is needed if the classification of

lakes based on demographic properties is going to be successfully implemented for

regional aquatic conservation and management. The relative importance of these factors

in affecting demographic properties of aquatic communities is species- and scale-

dependent. Therefore, it will be necessary for management agencies to have well defined

goals with respect to the target Species and the Spatial scale ofmanagement prior to the

development of a classification system. Furtherrnore, for regional management to be

effective, agencies must design and implement statistically valid sampling programs with

standardized sampling protocols (Hayes et al., 2003). Our analysis also demonstrates that

ecoregions or watersheds (i.e., HUS), are not effective in grouping lakes with similar fish

growth rates.

61



References

Albert, D. A.: 1995, ‘Regional Landscape Ecosystems of Michigan, Minnesota, and

Wisconsin: A working Map and Classification’, USDA Forest Service North Central

Forest Experiment Station General Technical Report NC-l78.

Bailey, R. G.: 1983, ‘Delineations of ecosystem regions’, Environ. Manage. 7, 365-373.

Barbour, C. D. and Brown, J. H.: 1974, ‘Fish species diversity in lakes’, Am. Nat. 108,

473-489.

Brown, R. S. and Marshall, K.: 1996, ‘Ecosystem management in state governments’,

Ecol. App]. 6, 721-723.

Casselman, J. M. and Lewis, C. A.: 1996, ‘Habitat requirements ofnorthern pike (Esox

lucius)’, Can. J. ofFish. Aquat. Sci. 53, 161-174.

Diehl, S. and Ekldv, P.: 1995, ‘Effects ofpiscivore-mediated habitat use on resources,

diet, and growth of perch’, Ecology 76, 1712-1726.

Dodson, S.: 1992, ‘Predicting crustacean zooplankton Species richneSS’, Limnol.

Oceanogr. 37, 848-856.

Drake, M. T., Claussen, J. E., Philipp, D. P. and Pereira, D. L.: 1997, ‘A comparison of

bluegill reproductive strategies and grth among lakes with different fishing

intensities’, N. Am. J. Fish. Manage. 17, 496-507.

Ekldv. P. and Hamrin, S. F.: 1989, ‘Predatory efficiency and prey selection: interactions

between pike Esox lucius, perch Percafluviatilis, and rudd Scardinus

erythropthalmus’, Oikos 56, 149-156.

Gerritsen, J ., Barbour, M. T. and King, K.: 2000, ‘Apples, oranges, and ecoregions: on

determining pattern in aquatic assemblages’, J. N. Am. Benthol. Soc. 19, 487-496.

Greene, J. C. and Maceina, M. J.: 2000, ‘Influence of trophic state on spotted bass and

largemouth bass Spawning time and age-O population characteristics in Alabama

reservoirs’, N. Am. J. Fish. Manage. 20, 100-108.

Hansen, M. J., Boisclair, D., Brandt, S. B., Hewett, S. W., Kitchell, J. F., Lucas, M. C.

and Ney, J. J.: 1993, ‘Applications of bioenergetics models to fish ecology and

management: where do we go from here?’, Trans. Am. Fish. Soc. 122, 1019-1030.

Hawkins, C. P. and Vinson, M. R.: 2000, ‘Weak correspondence between landscape

classification and stream invertebrate assemblages: implications for bioassessment’,

J. N. Am. Benthol. Soc. 19, 501-517.

62



Hayes, D., Baker, E., Bednarz, R., Borgeson, D. Jr., Braunscheidel, J., Breck, J .,

Bremigan, M., Harrington, A., Hay, R., Lockwood, R., Nuhfer, A., Schneider, J.,

Seelbach, P., Waybrant, J. and Zorn, T.: 2003, ‘Developing a standardized sampling

program: the Michigan experience’, Fisheries 28,18-25.

Huckins, C. J. F.: 1997, ‘Functional linkages among morphology, feeding performance,

diet, and competitive ability in molluscivorous sunfish’, Ecology 78, 2401-2414.

Jackson, D. A., Peres-Neto, P. R. and Olden, J. D.: 2001, ‘What controls who is where in

freshwater fish communities — the roles of biotic, abiotic, and spatial factors’, Can. J.

Fish. Aquat. Sci. 58, 157-170.

Jenerette, G. D., Lee, J., Waller, D. W. and Carlson, R. E.: 2002, ‘Multivariate analysis of

the ecoregion delineation for aquatic systems’, Environ. Manage. 29, 67-75.

Johnson, R. K.: 2000, ‘Spatial congruence between ecoregions and littoral

macroinvertebrate assemblages’, J. N. Am. Benthol. Soc. 19, 475-486.

Kratz, T. K., Webster, K. E., Bowser, C. J., Magnuson, J. J. and Benson, B. J.: 1997, ‘The

influence of landscape position on lakes in northern Wisconsin’, Freshwater Biol.

37, 209-217.

Kitchell, J. F., Stewart, D. J. and Weininger, K.: 1977, ‘Applications of a bioenergetics

model to yellow perch (Perca flavescens) and walleye (Stizostedion vitreum

vitreum)’, J. Fish. Res. Board Can. 34, 1922-1935.

McCauley, R. W. and Kilgour, D. M.: 1990, ‘Effect of air temperature on grth of

largemouth bass in North America’, Trans. Am. Fish. Soc. 119, 276-281.

McCormick, F. H., Peck, D. V. and Larsen, D. P.: 2000, ‘Comparison of geographic

classification schemes for Mid-Atlantic stream fish assemblages’, J. N. Am. Benthol.

Soc. 19, 385-404.

Michigan Department of Natural Resources (MDNR): 2003, ‘Digital Water Atlas

version 1’, Institute for Fisheries Research, G18 Working Group. Ann Arbor, MI

48104.

Mittelbach, G. G.: 1988, ‘Competition among refuging sunfishes and effects of fish

density on littoral zone invertebrates’, Ecology 69, 614-623.

Mittelbach, G. G. and P. L. Chesson.: 1987, ‘Predation risk: indirect effects on fish

populations’, in: W. C. Kerfoot and A. Sih (eds). Predation: direct and indirect

impacts on aquatic communities University Press ofNew England, Hanover, pp.

315-332.

Mittlebach, G. G. and C. W. Osenbergz 1992, ‘Stage-structured interactions in bluegill:

consequences of adult resource variation’, Ecology 74, 2381-2394.

63



Newall, P. R. and Magnuson, J. J.: 1999, ‘The importance of ecoregion versus drainage

area on fish distributions in the St. Croix River and its Wisconsin tributaries’,

Environ. Biol. Fish. 55, 245-254.

Omemik, J. M.: 2003, ‘The misuse of hydrologic unit maps for extrapolation, reporting,

and ecosystem management’, J. Am. Water Res. Assoc. 39, 563-573.

Omemik, J. M.: 1987, ‘Ecoregions of the conterminous United States’, Ann. Assess. Am.

Geogr. 77, 118-125.

Omemik, J. M. and Bailey, R. G.: 1997, ‘Distinguishing between watersheds and

ecoregions’, J. Amer. Water Res. Assoc. 33, 935-949.

Omemik, J. M. and Kinney, A. J.: 1983, An improved technique for estimating mean

depth of lakes’, Water Res. 17, 1603-1607.

Pan, Y., Stevenson, R. J., Hill, B. H. and Herlihy, A. T.: 2000, ‘Ecoregions and benthic

diatom assemblages in the Mid-Atlantic Highlands streams, USA’, J. N. Am.

Benthol. Soc. 19, 518-540.

Pazzia, I., Trudel, M., Ridgway, M. and Rasmussen, J. B.: 2002, ‘Influence of food web

structure on the growth and bioenergetics of lake trout (Salvelinus namaycush)’,

Can. J. Fish. Aquat. Sci. 59, 1593-1605.

Persson, L., Andersson, J., Wahlstrc‘im, E. and Ekldv, P.: 1996, ‘Size-Specific interactions

in lake systems: predator gape limitation and prey growth rate and mortality’,

Ecology 77, 900-911.

Peters, R. H., Arrnesto, J. J., Boeken, B., Cole, J. J ., Driscoll, C. T., Duarte, C. M., Frost,

T. M., Grime, J. P., Kolasa, J., Prepas, E. and Sprules, W. G.: 1991, ‘On the

relevance of comparative ecology to the larger field of ecology’, in: J. Cole, G.

Lovett, and S. Findlay (eds), Comparative analyses ofecosystems: Patterns,

mechanisms, and theories, Springer-Verlag, New York, New York.

Pierce, R. B., Tomcko, C. M. and Margenau, T. L.: 2003, ‘Density dependence in grth

and Size structure of northern pike populations’, N. Am. J. Fish. Manage. 23, 331-

339.

Power, M.R. and van den Heuvel, M. R.: 1999, ‘Age-O yellow perch growth and its

relationship to temperature’, Trans. Am. Fish. Soc. 128, 687-700.

Raudenbush, S. W. and Bryk, A. S.: 2002, Hierarchical linear models (2” ed.),

Thousand Oaks, CA: Sage Publications.

Ricker, W. E.: 1975, Computation and interpretation ofbiological statistics offish

populations, Bull. Fish. Res. Board. Can. Bulletin 191.

64



Riera, J. L., Magnuson, J. J., Kratz, T. K. and Webster, K. E.: 2000, ‘A geomorphic

template for the analysis of lake districts applied to the Northern Highland Lake

District, Wisconsin, U.S.A’, Freshwater Biol. 43, 301-318.

Roth, N. E., Allan, J. D. and Erickson, D. L.: 1996, ‘Landscape influences on stream

biotic integrity assessed at multiple Spatial scales’, Landscape Ecol. 11, 141-156.

Sandin, L. and Johnson, R. K.: 2000, ‘Ecoregions and benthic macroinvertebrate

assemblages of Swedish streams’, J. N. Am. Benthol. Soc. 19, 462-474.

Santoul, F., Soulard, A., Figuerola, J., Cére’ghino, R. and Mastrorillo, S.: 2004,

‘Environmental factors influencing local fish species richness and differences

between hydroecoregions in south-westem France’, Internat. Rev. Hydrobiol. 89, 79-

87.

SAS Institute Inc.: 2000, SAS/STAT user '5 guide, SAS Institute Inc., Cary, NC.

Seaber, P. R., Kapinos, F. P. and Knapp, G. L.: 1987, Hydrologic Unit Map, USGS

Water-Supply Paper 2294.

Shuter, B. J., Jones, M. L., Korver, R. M. and Lester, N. P.: 1998, ‘A general, life history

based model for regional management of fish stocks: the inland lake trout (Salvelinus

namaycush) fisheries in Ontario’, Can. J. Fish. Aquat. Sci. 55, 2161-2177.

Spence Cheruvelil, K.: 2004, Examining lakes at multiple spatial scales: predictingfish

growth, macrophyte cover and lake physio-chemical variables, PhD thesis, Michigan

State University.

Tomcko, C. M. and Pierce, R. B.: 2001, ‘The relationship of bluegill growth, lake

morphometry, and water quality in Minnesota,’ Trans. Am. Fish. Soc. 130, 317-321.

Van Sickle, J. and Hughes, R. M.: 2000, ‘Classification strengths of ecoregions,

catchments, and geographic clusters for aquatic vertebrates in Oregon’, J. N. Am.

Benthol. Soc. 19, 370-384.

Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I.,

Juday, G. P. and Parrnenter, R.: 1999, The relationship between productivity and

species richness’, Annu. Rev. Ecol. Syst. 30, 257-300.

Weatherley, A. H.: 1972, Growth and ecology offish populations, Academic Press Inc.,

London.

Werner, E. E. and Hall, D. J .: 1977, ‘Competition and habitat Shift in two sunfishes

(Centrarchidae)’, Ecology 58, 869-876.

65



Wetzel, R.G.: 2001 , Limnology lake and river ecosystems 3rd edition, Academic Press,

San Diego, CA 92101.

Zweifel, R. D., Hayward, R. S. and Rabeni, C. F.: 1999, ‘Bioenergetics insight into black

bass distribution Shifts in Ozark border region streams’, N. Am. J. Fish. Manage. 19,

192-197.

66



TABLE I

Sample Size ranges (number of lakes per ecoregion or 8 digit hydrologic unit (HU)) and

the number ofHUS used in the analysis of each species and age combination. The number

of ecoregions used in the analyses was always four

 

 

Ecoregion section 8-digit HUS Number of HUS

Species (age)

Bluegill (2) 10 - 90 3 - 21 21

Bluegill (3) l3 - 102 3 - 26 24

Pumpkinseed (2) 10 - 35 3 - 8 l3

Pumpkinseed (3) 13 - 49 3 - 10 16

Largemouth bass (2) 3 - 49 3 - 23 21

Largemouth bass (3) 4 - 96 3 - 23 22

Smallmouth bass (2) 9 - 35 3 - 7 10

Smallmouth bass (3) 9 - 33 3 - 7 9

Yellow perch (2) 22 - 74 3 - 19 22

Yellow perch (3) 22 - 69 3 - 19 23

Walleye (2) 6 - 28 3 - 6 7

Walleye (3) 4 - 24 3 - 8 8

Northern pike (2) ll - 65 3 - 15 19

Northern pike (3) 9 - 69 3 - 16 19
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TABLE 11

List of water quality and landscape covariates used in the analyses. Means for each

species/age combination are followed by ranges in parentheses. SDF = shoreline

development factor, GDD = growing degree days (see Methods for description)

 

 

Species (age) Secchi depth Color 1 Total Total Chlorophyll

(m) (platinum- nitrogenl phosphorus1 al (ug0L'1)

cobalt units) (pg-L”) (ug°L'l)

Bluegill (2) 2.9 12.0 644.7 20.1 6.3

(0.5-7.3) (LO-54.0) (112.0-2756) (l .0-155.0) (0.5-66.0)

Bluegill (3) 3.0 11.8 640.3 21.1 6.4

(0.5-7.3) ( l .0-54.0) (112.0-2756) (1 .0-155.0) (0.2-66.0)

Pumpkinseed 2.8 13.8 61 1.4 21.2 6.5

(2) (O.5-7.3) (2.0-61 .0) (112.0-2756) (l .0-155.0) (0.7-35.0)

Pumpkinseed 2.9 13.2 592.3 19.9 5.8

(3) (05-73) (1 .0-61 .0) (112.0-2756) (1 .0-155.0) (0.2-35.0)

Largemouth 3 .0 1 1.5 645 .3 19.7 6.4

bass (2) (05-78) (1 .0-75.0) (112.0-1717) (LO-155.0) (0.5-66.0)

Largemouth 3.0 1 1.7 650.0 21.0 6.6

bass (3) (0.5-7.0) (l .0-75.0) (130.0-2756) (l .0-155.0) (0.5-66.0)

Smallmouth 3.4 1 1.4 439.2 14.1 4.3

bass (2) (0.9-7.3) (1 .0-80.0) (92.0-850) (IO-73.0) (0.2-32.0)

Smallmouth 3.5 13.0 454.8 17.0 5.3

bass (3) (0.6-7.3) (1 .0-80.0) (92.0-1130) (1 .0-1 18.0) (0.2-60.0)

Yellow 3.1 12.7 572.0 18.5 6.3

perch (2) (06-78) (LO-80.0) (112.0-1430) (1 0127.0) (0.5-66.0)

Yellow 3.1 12.6 579.1 19.4 6.1

perch (3) (05-78) (1 080.0) (111.0-2756) (l .0-155.0) (0.5-66.0)

Walleye (2) 3.1 14.3 484.5 21.0 7.3

(06-73) (1 .0-80.0) (112.0-1406) (2.0-118.0) (0.2-60.0)

Walleye (3) 2.9 15.3 515.7 22.0 8.2

(O.6-7.3) (LO-80.0) (l 12.0-1406) (2.0-118.0) (0.2-60.0)

Northern 2.8 13.7 577.1 21.1 7.4

pike (2) (05-58) (1.7-80.0) (130.0-2756) (1 .0-127.0) (0.5-66.0)

Northern 2.9 12.9 570.6 21.0 6.6

pike (3) (05-70) (1 .0-80.0) (130.0-2756) (l .0-127.0) (0.5-60.0)
 

1Variables were log-transforrned prior to analyses to accommodate the assumptions of

normality and homogeneity of variance.
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TABLE II CONTINUED

List of water quality and landscape covariates used in the analyses. Means for each

Species/age combination are followed by ranges in parentheses. SDF = shoreline

development factor, GDD = growing degree days (see Methods for description)

 

 

Species (age) Alkalinity GDDI SDFI Mean Lake area

(mg-L'l as depth1 (m) (ha)

CaCO3)

Bluegill (2) 105.9 2344 2.2 4.8 210.7

(4.0-197.0) (1451-3121) (1 .0-6.3) (1.2-18.0) (20.9-6988)

Bluegill (3) 103.5 2354 2.2 4.7 243.4

(2.0-66.0) (1451-3121) (LO-6.3) (0.9-18.0) (20.8-6988)

Pumpkinseed 89.6 2105 2.2 4.4 270.6

(2) (4.0-190.0) (1416-2891) (1.1-4.7) (1.2-18.0) (20.8-6988)

Pumpkinseed 88.5 2122 2.2 4.4 321.6

(3) (LO-190.0) (1416-2902) (1.1-6.5) (l.2-18.0) (20.8-1988)

Largemouth 109.8 2413 2.2 4.7 188.2

bass (2) (1 .0-197.0) (1539-3121) (1.1-6.3) (1 .2-1 1.6) (20.8-3545)

Largemouth 107.5 2390 2.2 4.6 183.4

bass (3) (LO-197.0) (1539-3121) (1.1-6.3) (1 .2-1 1.6) (20.8-1848)

Smallmouth 86.3 1919 2.1 5.7 619.6

bass (2) (2.0-166.0) (1488-2747) (1.1-5.4) (1.5-20.4) (31.7-7039)

Smallmouth 85.3 1971 2.2 6.4 668.6

bass (3) (2.0-166.0) (1500-2747) (1.1-5.4) (1.5-42.4) (31 .7-7576)

Yellow 97.9 2197 2.1 5.3 373.9

perch (2) (2.0-186.0) (1416-3121) (l.0-6.5) (1.2-42.4) (20.8-7576)

Yellow 98.1 2184 2.2 5.3 370.0

perch (3) (l .0-190.0) (1451-3121) (1.0- (l.2-42.4) (20.8-7576)

6.45)

Walleye (2) 93.2 1937 2.2 5.3 786.8

(2.0-197.0) (1451-2820) (1 .2-4.7) (1.5-18.0) (30.0-7039)

Walleye (3) 83.2 1897 2.1 4.7 662.5

(2.0-197.0) (1451-2670) (1.1-5.4) (1.5-12.8) (31.7-7039)

Northern 94.7 2123 2.1 4.6 404.6

pike (2) (l .0-197.0) (1416-3121) (1.1-6.5) (1.5-18.0) (20.8-7039)

Northern 96.1 2139 2.2 4.8 396.4

J1k€(3) (l .0-197.0) (1451-3121) (1.1-6.5) (1.2-18.0) (20.9-7039L
 

1Variables were log-transformed prior to analyses to accommodate the assumptions of

normality and homogeneity of variance.
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TABLE III

Fixed effects and variance estimates for ecoregion unconditional models. )700 =grand

mean of mean length at age for all ecoregions (mm), 6'2 represents the within-ecoregion

variability in mean length at age, TAOO represents the between-ecoregion variability in

mean length at age, and f) is the intraclass correlation coefficient

(%,,D = {:00 «2100 + 6'2)

 

 

Species (age) )700 (95% confidence interval) 5.2 {00a ‘ b

Bluegill (2) 108.7(105.7, 111.7)' 5820' 0.0 na

Bluegill (3) 136.0 (132.5, 139.5)’ 6596‘ 2.3 0.04

Pumpkinseed (2) 111.6 (107.2, 116.0)‘ 2748' 3.4 0.12

Pumpkinseed (3) 135.6 (130.0, 141.2)‘ 2947‘ 19.4 0.65

Largemouthbass 214.1(208.9,219.3)‘ 12014‘ 0.0 na

(2)

Largemouth bass 260.1 (242.3, 277.9)‘ 9939‘ 204.6 2.02

(3)

Smallmouth bass 203.8 (190.9, 216.7)‘ 9898‘ 89.1 0.89

(2)

Smallmouth bass 245.4 (218.7, 272.1)‘ 7175‘ 659.5 8.42

(3)

Yellow perch (2) 154.0 (145.1, 162.9). 7108' 64.1 0.89

Yellow perch (3) 171.4 (162.2, 180.6)‘ 5182‘ 72.5 1.38

Walleye (2) 330.3 (318.9, 341.6)‘ 22765‘ 0.0 na
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Walleye (3) 379.9 (354.4, 405.4)‘ 32326' 402.3 1.23

Northernpike(2) 480.9 (455.2, 506.6)’ 37108‘ 483.3 1.28

Northempike(3) 545.3 (505.8, 584.8)‘ 34098‘ 1377 3.88

 

‘ n o a

Variance estimate Slgnlficantly dlfferent from zero (P < 0.05).

a 700 of zero represents variance estimates of near zero.

bIntraclass correlation coefficient was not calculated when 1:00 was estimated near zero.
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TABLE IV

Fixed effects and variance estimates for watershed unconditional models. 700 =grand

mean of mean length at age for all watersheds (mm), 62 represents the within-watershed

variability in mean length at age, foo represents the between-watershed variability in

mean length at age, and [3 is the intraclass correlation coefficient

(%,,£3 = TOO «2:00 '1' 6'2)

 

 

SPCCICS (age) )700 (95% confidence interval) 6'2 i300 a . b

Bluegill (2) 110.1 (104.6, 115.5)' 5890' 57.8 0.97

Bluegill (3) 137.1 (132.9, 141.3) 11628‘ 0.0 na

Pumpkinseed (2) 106.1 (99.1, 113.2) 1566’ 70.9 4.33

Pumpkinseed (3) 134.3 (128.7, 139.8) 2608‘ 45.4 1.71

Largemouth bass 215.9 (208.5, 223.4) 14440‘ 37.4 0.26

(2)

Largemouth bass 266.2 (253.7, 278.7) 27648“ 264.9 0.94

(3)

Smallmouth bass 214.6 (196.8, 232.4) 29264‘ 0.0 na

(2)

Smallmouth bass 266.5 (246, 287) 35321‘ 0.0 na

(3)

Yellow perch (2) 152.9 (144.9, 161 .0)‘ 5578‘ 214.6‘ 3.70

Yellow perch (3) 172.1 (166.1, 178) 8954. 49.8 0.55

Walleye (2) 318.9 (291.3, 346.6) 19479’ 335.6 1.69
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Walleye (3) 395.0 (344, 446.0) 190944' 0.0

Northern pike (2) 490.4 (470.4, 510.3)‘ 28422‘ 1046‘

Northern pike (3) 544.8 (526.9, 562.7)’ 31298' 561.6“

na

3.55

1.80

 

* a o o c a

Varlance estrmate Significantly dlfferent from zero (P < 0.05)

a £00 of zero represents variance estimates of near zero.

bIntraclass correlation coefficient was not calculated when foo was estimated near zero.

"P = 0.074, however after controlling for season of sampling there was significant

between-watershed variation to model (1’00 = 635.48, P = 0.04).
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TABLE V

Final multilevel mixed model parameter estimates for the watershed analysis. Summer,

fall, and winter are dummy variables for sampling season (reference category is spring).

No Significant between-watershed variance remained in either northern pike models after

watershed average chlorophyll a was included in the models

 

 

Species (age) Coefficient (if t -value P-value Between-

watershed variance

explained (%)

Northern pike (2) 100*

Intercept 456.8 17 48.1 1 <0.0001

Summer 25.5 89 1.97 0.052

Fall 45.6 89 3.31 0.001

Winter 73.0 89 4.31 <0.0001

Chlorophyll a -7.8 89 -2.55 0.013

Northern pike (3) 100'

Intercept 508.9 1 7 62.46 <0.0001

Summer 42.3 91 3.28 0.0015

Fall 51.9 91 4.04 0.0001

Winter 80.1 91 3.90 0.0002

Chlorophyll a -10.1 91 -3.86 0.0002

 

tVariance estimates were not Significantly different from zero (P > 0.05).
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TABLE VI

Final multilevel mixed model parameter estimates for the ecoregion analysis. Summer,

fall, and winter are dummy variables for sampling season (reference category is Spring),

TN = total nitrogen, TP = total phosphorus, Chla = chlorophyll a, GDD = growing degree

days, SDF = Shoreline development factor, NS = no Significant covariates

 

Species (age) Coefficient df t -value P-value Total Variance

variance explained after

explained controlling for

 

(%) season (%)

Bluegill (2)

Intercept 107.2 3 30.0 <0.0001 37 14

Summer -8.1 154 -1.89 0.06

Fall 10.0 154 2.03 0.044

Winter 12.5 154 3.01 0.003

TP 6.6 154 2.98 0.003

Lake area -3.1 154 -1.97 0.050

GDD -22.5 154 -2.98 0.003

Bluegill (3)

Intercept 135.3 3 25.64 0.0001 11 2

Summer -3.0 180 -0.77 0.44

Fall 9.1 180 2.17 0.032

Winter 10.5 180 2.61 0.010

TN 7.7 180 1.99 0.048

Pumpkinseed (2)

Intercept 116.2 3 22.13 <0.001 39 18

Summer 0.7 82 0.15 0.88

Fall 14.3 82 3.18 0.002
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Winter

Mean depth

Lake area

Pumpkinseed (3)

Intercept

Summer

Fall

Winter

Mean depth

GDD

Largemouth bass (2)

Largemouth bass ( 3)

Intercept

Summer

Fall

Winter

Color

Smallmouth bass (2)

Smallmouth bass (3)

Intercept

Summer

Fall

Winter

Chla

Yellow perch (2)

Intercept

Summer

Fall

33.5

-ll.l

5.5

134.9

-8.88

3.1

8.3

-37.7

NS

250.8

7.9

14.1

22.7

10.5

NS

224.6

13.1

41.2

33.7

9.8

136.5

15.7

23.5

82

82

82

111

111

111

111

111

158

158

158

158

53

53

53

53

175

175

4.78

-2.70

3.70

26.28

-2.22

0.80

1.00

-2.78

-2.43

22.31

1.25

1.65

3.38

2.84

15.47

1.23

3.72

2.31

2.03

19.55

2.89

3.91

<0.0001

0.009

0.0004

0.0001

0.028

0.42

0.32

0.006

0.017

0.0002

0.21

0.10

0.009

0.005

0.0006

0.22

0.005

0.025

0.048

0.0003

0.004

0.0001

27

26

18
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Winter

TN

SDF

Yellow perch (3)

Intercept

Summer

Fall

Winter

GDD

Walleye (2)

Intercept

Summer

Fall

Winter

Alkalinity

Walleye (3)

Northern pike (2)

Intercept

Summer

Fall

Winter

TN

Color

Mean depth

Lake area

Northern pike (3)

Intercept

30.7

9.5

-l3.3

164.5

5.8

10.8

20.0

30.9

317.7

32.6

30.5

NS

466.5

6.7

43.0

67.1

56.6

-l6.0

21.1

16.4

512.5

175

175

175

179

179

179

179

48

48

48

48

124

124

124

124

124

124

124

5.07

2.08

-2.91

36.18

1.41

2.21

4.14

2.35

27.33

-0.04

1.24

2.00

-2.15

56.56

0.62

3.26

4.49

5.03

-2.28

2.42

4.43

26.58

<0.0001

0.039

0.004

<0.0001

0.16

0.028

<0.0001

0.019

0.0001

0.97

0.22

0.052

0.037

<0.0001

0.54

0.001

<0.0001

<0.0001

0.025

0.017

<0.0001

0.0001

19 6

l7 7

35 23

12 6
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Summer

Fall

Winter

Lake area

TN

36.9

32.3

68.1

11.8

34.2

128

128

128

128

128

2.83

2.36

3.30

2.58

2.50

0.005

0.020

0.001

0.011

0.013
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CHAPTER 3: CAN HABITAT ALTERATION AND SPRING ANGLING EXPLAIN

LARGEMOUTH BASS NEST SUCCESS?

Abstract

Largemouth bass Micropterus salmoides nest in shallow littoral areas, making them

vulnerable to negative effects of habitat alteration due to development of lake shorelines

and fishing during the spring nesting period. For instance, alteration of shorelines may

reduce the quality and abundance of nesting habitat, and the high visibility of nests and

the aggressive guarding behavior of nesting males increase their vulnerability to fishing.

In 2004, we monitored nest distribution and success, and quantified local nest habitat

features and lakewide angler effort and lakeshore development patterns, in five Michigan

lakes in an effort to determine the extent to which habitat alteration and/or fishing limit

the number of nests that produce swim-up fry. Lakes spanned a range of lakeshore

dwelling density (8 — 22 dwellings/km), allowing us to determine the extent to which nest

success varies within and among lakes due to local (e.g., substrate and cover) and

lakewide (e.g., dwellings/km and fishing effort) factors. Surprisingly, local habitat

characteristics were not important determinants of the probability of a nest producing

swim-up fry (P > 0.05). At the whole-lake scale, however, nest success was negatively

related to dwelling density, with the probability of a nest producing swim-up fry

declining from 0.77 in the lowest dwelling density lake to 0.45 in the highest dwelling

density lake (P = 0.018). Lakewide estimates of angling effort could not explain this

difference among lakes, indicating the likely importance of quantifying angling at finer

Spatial scales. Knowledge of the magnitude of anthropogenic effects and the Spatial scale

at which they operate is integral for black bass management.
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AS keystone predators and a valued sport fish in North American lakes, black bass —

specifically largemouth Micropterus salmoides and smallmouth M. dolomieui — possess

life history characteristics that make them vulnerable to perturbations associated with

human development of lake Shorelines. These species Spawn in the Spring when water

temperatures are near or above 15°C. Males construct nests in the substrate of relatively

shallow, littoral areas often in close proximity to physical structure (Annett et al. 1996;

Hunt and Annett 2002; Wills et al. 2004). After attracting and mating with a female, male

bass guard the eggs and deveIOping fry until the brood disperses (Ridgway 1988;

Ongarato and Snucins 1993; Philipp et al. 1997). This period of parental care by males

may last more than a month (Brown 1984), during which time the male bass are highly

active and guard offspring aggressively, while feeding only opportunistically (Ridgway

1988; Hinch and Collins 1991).

Events occurring during these early life stages are important for first year

recruitment ofbass (Ludsin and DeVries 1997). Therefore, an understanding of

anthropogenic factors affecting black bass early life history is necessary to further our

knowledge of their biology and effectively manage them. Nest success, often defined as

the occurrence of a nest producing swim-up fry (Philipp et al. 1997), is considered to be

an important event in the recruitment process that may affect the abundance of age-0 bass

that will ultimately survive to the first winter (Ridgway and Shuter 1997). Although

compensatory mortality may occur, neither the magnitude of the effect on nesting

success, nor the capacity of bass populations to compensate, is fully understood.

Because bass typically nest in shallow littoral areas, human development of lake

Shorelines (i.e., lakeshore dwelling density) and associated activities may negatively
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affect nesting success in two ways. First, removal of structure (i.e., rooted vegetation or

coarse woody material) and alteration of littoral substrate may increase risk of predation

and/or siltation (Christensen et al. 1996; Radomski and Goeman 2001; Jennings et al.

2003). For instance, Hunt and Annett (2002) concluded that male largemouth bass

selected nest-building sites near physical structure such as woody debris compared to

habitats that lacked structure, suggesting that removal of structure, through activities such

as lakeshore development (LSD), may alter bass nest distributions and ultimately

negatively affect nest success. Second, the high visibility of black bass nests and the

aggressive guarding behavior of nesting males increase their vulnerability to angling

(Ridgway 1988). Removing male bass from the nest, even for short periods of time,

reduces the male’s ability to guard the nest, which ultimately increases predation risk on

bass eggs and larvae, and increases the likelihood that the male will pre-maturely

abandon the nest, thereby negatively affecting production of successful nests (Philipp et

al. 1997; Ridgway and Shuter 1997; Suski et al. 2003).

Most studies of nesting black bass have been conducted in ponds or on a single lake

or reservoir, with the focus often on smallmouth bass (but see Philipp et al. 1997). There

is therefore a paucity of information on the potential impacts and relative importance of

LSD (and associated habitat modification) and angling for patterns of nest distribution

and nesting success of largemouth bass within and across lakes. Furthermore, because

most previous studies examining factors affecting nesting success have only been

performed at one spatial scale, that of the local nest, it is unclear as to whether these

assorted factors operate at the local nest scale (i.e., through factors measured at the nest-

scale such as the depth of the nest), lakewide scale (i.e., through factors measured at the
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lake-scale such as lake productivity), or both. The goals of this study were to determine

whether largemouth bass nest success varies with both local and lakewide features, and to

explore the relative importance of habitat modification versus Spring angling to patterns

of nest success. To accomplish these goals we conducted a study examining largemouth

bass reproductive success at multiple spatial scales in six southeast Michigan lakes with a

wide range of lakeshore dwelling density (8 — 22 dwellings/km). Our primary objective

was to determine the extent to which residential LSD and habitat variables, at both local

and lakewide scales, and lakewide angling pressure affect the probability of largemouth

bass producing successful nests. AS a secondary objective, we sought to gain further

insight into our nest success findings by evaluating the Spatial distribution ofbass nests

relative to natural and anthropogenic lakeshore habitat characteristics. We also highlight

the use of generalized linear mixed models, which have properties that make them useful

in the analysis of fisheries data (Venables and Dichmont 2004), but have not been widely

applied in fisheries to date.

Methods

Study area—We monitored Six lakes located in Washtenaw and Livingston counties

in southeast Michigan, USA during May and June 2004 to assess the importance of local

nest and lakewide- scale habitat characteristics to largemouth bass reproductive success

(Figure 1). We selected lakes that were similar morphometrically but that spanned a wide

range of lakeshore dwelling densities from 7.8 — 22.3 dwellings/km (Table 1). All lakes

were mesotrophic, stratified, and accessible to public fishing.

Lake characteristics—We viewed nest success as a function of lakewide and local

characteristics. We included three whole-lake features: lakeshore dwelling density
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(lakewide LSD), angler effort, and total phosphorus (TP; Table 2). Lakeshore dwelling

density was determined using visual observations by boat to quantify the number of

riparian dwellings within 50 m of each lake, and then dividing the number of dwellings

by lake perimeter (km). We sampled for TP using integrated epilimnetic water samples

collected using a tube sampler during the month of July. TP was measured using a

persulfate digestion (Menzel and Corwin 1965) followed by standard colorimetry

(Murphy and Riley 1962). We determined angler effort separately for May and June by

conducting two instantaneous angler counts per week in each lake (once per randomly

chosen week day and weekend day). We randomly selected (without replacement) time

of day (morning, mid-day, or evening) for each survey, and surveyed lakes in haphazard

order. During each survey, we visually assessed fishing activity for all boats on the lake

from the vantage of a boat and using binoculars. We recorded the number of anglers per

boat, the location of the boat (near the shoreline or open water), and the gear type used

when possible. Following Philipp et al. (1997), we recorded an angler as potentially

targeting black bass if he/she was using tactics (fishing near the Shoreline and using

appropriate lures or jigs) that could potentially catch nesting bass. We followed the

methods of Lockwood et al. (1999) to expand each survey count to an estimate of the

total number of angler hours, using the equation:

(1) E = FpAdj
pd}

where E = estimated angler hours, F = number of fishable hours during the entire period,

p (e. g. weekends or weekdays during May or June), A = number of anglers, d = day, andj

= count. We calculated two estimates of lakewide angling effort (total hours/km

shoreline): all anglers and just anglers potentially targeting nesting black bass. We
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generated separate estimates for May 8 — 28, and May 29 — June 27 because it is illegal to

target or harvest bass in Michigan lakes prior to the Saturday of Memorial Day weekend

(May 29 in 2004). Within each month, we averaged weekend estimates and also weekday

estimates, and then summed those means to generate the final estimates for each month.

We calculated variance separately for weekend and weekday estimates (as per equation

58 in Lockwood et a1. 1999) and then summed the two values.

Nest location and reproductive success—We surveyed the littoral area for

largemouth bass nests using boats powered by electric trolling motors. We conducted

surveys at least biweekly for new nests and to examine the status of previously located

nests. Once a new nest was located, we marked it with a numbered marker and recorded

its location using a differentiated global positioning system (GPS; Trimble GeoExplorer

®). After marking the nest, we observed local nest characteristics (see below), the

presence/absence of a male bass, eggs, larvae, and/or fry, with either an aqua-scope or by

snorkeling. We considered a nest successfill if fry were observed actively swimming

above the nest (Philipp et al. 1997).

Nest characteristics—Once a nest was located, we recorded the dominant substrate

type (e. g., silt, sand, etc.) and the presence of cover (boulders, woody debris,

macrophytes) within a 1 m radius of the nest, along with the depth of the nest. We also

recorded the development type of the nearest shoreline (local LSD type) as either

undeveloped, developed maintained (developed, but with no retaining wall, e.g., a

Shoreline with a maintained lawn), or developed retained (a shoreline with riprap or a

retaining wall). Using the GPS locations, we calculated distance to shore. Also, we

determined wind exposure for each nest from existing GIS coverages. We classified each
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nest as having high or low wind exposure based on the location of the nest in relation to

the prevailing SW winds (Table 2). In addition, we used the existing GIS coverages to

quantify the total amount of spawning habitat with regards to local LSD type and wind

exposure.

Statistical analyses

Nest success.— We omitted nests from our analysis if their fate could not be

determined. We only included predictor variables in our analysis for which we had

mechanistic hypotheses regarding their likely effects on bass nest success. We recognized

two general mechanisms through which local habitat features and/or angling pressure

could affect nest success. First, habitat features may directly affect nest success through

physical and chemical constraints on egg survival. Second, local habitat features and

angling pressure, in combination, may indirectly influence the vulnerability of nests to

failure through parental male abandonment and nest predation. Two additional factors

potentially affecting nest success must also be factored into the analysis. First, nest site

features not subject to anthropogenic alteration may influence nest success. Second,

attributes at the whole-lake scale may affect the average probability of nest success for a

given lake.

We used a generalized linear mixed model to determine if local nest Site

characteristics or whole-lake characteristics affected the probability of a largemouth bass

nest successfully producing swim-up fry (Table 2). Generalized linear mixed models

(GLMMS) are extensions of generalized linear models (GLMS) with the inclusion of

random effects. Fixed effects models (e.g., GLMS) assume that all observations are

independent of each other, and thus are not appropriate for analysis of hierarchical or
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correlated data structures (see Wagner et al. in press). In our analysis, GLMMS are used

to accommodate dependence among observations within lakes and to accommodate the

hierarchical nature of the data (e.g., bass nests nested within lakes). Both GLMS and

GLMMS are extensions of the general linear model that allow response variables to

follow any probability distribution in the exponential family (e. g., normal, binomial, and

Poisson). GLMMS are composed of three model components including: (1) a linear

predictor that is a linear combination of regression coefficients; (2) a link function that

relates the mean of the response data to the linear predictor; and (3) a response

distribution from the exponential family of distributions. For a more detailed overview of

the theory and use ofGLMS and GLMMS in fisheries research see Venables and

Dichmont (2004).

To begin, we built separate models of nest success as a function of each covariate

hypothesized to affect nest success. After Significant, uncorrelated predictors were

identified we then included them in a Single model. The model can be described as a two

level model, with the first level modeling the probability of a nest succeeding as a

function of local nest characteristics and the second level modeling the average

probability of nest success for each lake as a function of lake characteristics. The

probability of success was assumed to be Bernoulli distributed. The response

variable er'j) is binary, where Yij = 1 if nest i in lakej was successful and Yij = 0 if nest i

in lakej failed. The probability of success of nest i in lakej is defined as (pl-j = Pr (Yij = l).

The general form of the two-level model is as follows.

Level 1 model:
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Q

(2) ’79 = For + Z flquij
q=1

where 77,-j is the log odds of success for nest i in lakej, 77,-j is the level 1 link function

(logit link), 77,]- : log[1—¢L] , 601- is the mean log odds of success for lakej, ,qu is the

’1

effect of covariate Xqij on the log odds of success, q = 1 to Q, with Q equaling the total

number of level 1 covariates.

Level 2 model:

S

(3) floy' =700 + Z7stsj +qu ~61): = 710’°'°flqj = 7q0

s=1

where 700 is the average log odds of success when all level 2 covariates (Wstjare equal to

zero (3 = 1 to S, with S equaling the total number of level 2 covariates) and represents a

grand mean value, 75]- is the effect of covariate Wsj on the average log odds of success,

uoj is the random effect associated with lakej, and uoj ~ N(0, too) , where 2:00 is the

variance between lakes in lake-average log odds of success. A predicted log odds of

success can then be converted to a probability by calculating

1

(4) (0y _ 1+ exp{— 771]}

 

To provide further illustration of the model structure, assume that we are interested

in modeling nest success as a function of a single nest level covariate (level 1), nest depth

and a single lake level covariate (level 2), lakeshore development (LSD). The model can

be viewed in two levels and in combined form as follows, with parameters and subscripts

defined as above:
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Level 1:

(5) r7,- = poj + ,Blj(nest_depth)ij

Level 2:

(6)/301' = 700 + 701050),- +“0j’ fllj = 710

Combined form:

(7) 77g- = 700 + 7100795t _deplh),_-,~ + 701(LSDlj + “0j

We performed generalized linear modeling using the GLIMMIX macro of the

MIXED procedure in SAS (SAS Institute Inc. 2000). When using many generalized

linear models, there is a possibility that the conditional variance of the errors may differ

from theory. The GLIMMIX macro allows for the possibility that the conditional error

variance differs from theory by adding an additional parameter to the conditional

variance, the extra-dispersion parameter (4;). If (I; < 1, the distribution of the conditional

errors is said to be underdispersed and if (f > 1 the distribution is overdispersed. If(ii is

close to 1, the variance is consistent with the assumed distribution (Littell et al. 1996).

Underdispersion can lead to inflated standard errors, while overdispersion can lead to

underestimated standard errors and thus inflated type I error rates. Therefore, we assessed

the final model for over- or under-dispersion by examining the extra-dispersion

parameter.

Nest habitatfeatures—Because we hypothesized that nest depth, substrate type, and

the presence/absence of cover would be influenced by anthropogenic effects associated

with LSD, we modeled these nest attributes as a function of local LSD type and lakewide

LSD. For nest depth, we used a two-level mixed model, with lake as a random effect and
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local LSD type and lakewide LSD as fixed effects. Local LSD type was included in the

model by designating developed maintained and developed retained shorelines as dummy

variables (undeveloped shorelines were reference cells). For substrate type and the

presence/absence of cover, we used a generalized linear mixed model, with predictor

variables designated as above. The analyses were preformed using the GLIMMIX macro

and MIXED procedure in SAS (SAS Institute Inc. 2000).

Nest distribution—To explore if patterns of nest distribution relative to available

habitat, we used a chi-square goodness of fit test to determine if habitat used for

constructing nests was significantly different from the distributions of available habitat.

We reasoned that if most nests were located in a relatively rare habitat type, it would be

indicative of high nest site selectivity and potential limitation of preferred nesting habitat.

Habitat was categorized into proportions of each development type and wind exposure

combination. The analysis was performed for each lake individually.

Results

A total of 178 largemouth bass nests were located during the study period (Table 3).

The number of largemouth bass nests located in each lake ranged from 0 (in Blind Lake)

to 51 (in North Lake). Because largemouth bass did not Spawn in Blind Lake it was

excluded from further analyses. Largemouth bass initiated nest building in early May,

with the number of nests peaking in all lakes in mid-May. Both the last, new nest and the

last successful nest were located on 8 June.

Nest success—To determine the magnitude of variation among lakes in the

probability of nest success, we estimated an unconditional model, with no predictors at

either the nest or lakewide level. The average log-odds of success across lakes was )900 =
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0.26. Therefore, the probability of success in an “average” lake, with a random effect of

1in = 0, was 0.56. The variance between lakes in lake-average log odds of success was

estimated as foo = 0.193; thus we would expect that 95% of the lakes in our study have a

probability of nest success between 0.35 and 0.75.

Surprisingly, no nest-scale habitat characteristics were Significantly associated with

the probability of a nest successfully producing swim-up fry (P 2 0.10). At the whole-

lake scale, however, the probability of a nest producing swim-up fry decreased markedly

with increasing LSD (intercept (7‘00) = 1.96, standard error (s.e.) = 0.748, P = 0.078;

Slope, effect of LSD ()301) = -0.096, s.e. = 0.04, P = 0.018). The predicted probability of

success ranged from 0.77 in Bruin Lake, the lowest LSD lake to 0.45 in Patterson Lake,

the highest LSD lake (Figure 2). No other lakewide covariates were significant (all P >

0.20). Over or underdispersion were not evident in our analysis, with the extra-dispersion

parameter estimated very close to 1 ((13 = 1.02, Littell et al. 1996).

Angling effort—Our estimate of total fishing effort (total angler hours per km of

Shoreline) were quite variable among lakes, but did not vary predictably with LSD in

May or June (May, P = 0.75; June, P = 0.21). Estimated total angler hours were much

lower during the May period (ranging 0 — 227 hrs/km; standard deviations ranged 0 —

64.5), when the majority of nesting occurred, than in June (ranging 65 -— 453 hrs/km;

standard deviations ranged 29.3 — 158.3), when the legal season for bass fishing was

open. Anglers using techniques likely to target bass represented a substantial component

of total angling effort both before and after opening of the legal season for targeting bass

(35% and 42% of angling effort in May and June, respectively). Thus, even though the
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predominance of angling that potentially targets nesting bass increased in June, it still

occurred in May to a substantial degree despite the fishing regulations.

Nest habitatfeatures—Nest depth was the only nest habitat feature that differed

Significantly among shoreline development types. Local LSD type explained 8.5% of the

variation in depth of largemouth bass nests. According to our model, on average, if a

largemouth bass nest was constructed near an undeveloped Shoreline it was shallower

compared to nests constructed near developed shorelines, and nests constructed near

retaining walls were, on average, constructed in yet deeper water (intercept = 0.845, s.e.

= 0.065, P = 0.002; fixed effect of developed maintained shoreline = 0.135, s.e. = 0.047,

P = 0.004; fixed effect of developed retained Shoreline = 0.197, s.e. = 0.058, P = 0.0009).

The grand-mean depth at which largemouth bass nests were constructed was 0.92 m

(95% confidence interval = 0.83, 1.01) and did not vary Significantly among lakes

(between lake variance estimate = 0.008, P = 0.12). Surprisingly, substrate type and the

presence/absence of cover did not significantly differ among either local LSD types or

among lakes according to lakewide LSD.

Nest distribution—Largemouth bass used Shoreline habitats to construct nests in

different proportions compared to what was available in 4 of 5 lakes (Figure 3), although

patterns of selection varied among lakes. The only lake in which largemouth bass used

habitat in proportion to what was available was Bruin Lake (7.8 dwellings/1cm), with the

majority of habitat, and nest sites, comprised ofundeveloped shoreline. For East Crooked

(14.6 dwellings/km) and Patterson (22.3 dwellings/km) lakes, largemouth bass selected

undeveloped shorelines for nest construction, as we had expected. In East Crooked, bass

utilized undeveloped Sites that were both exposed to low and high wind, whereas bass in
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Patterson Lake primarily used undeveloped sites that were located in low wind exposure

sites in greater proportion compared to what was available. Contrary to our expectations,

in both Halfrnoon (17.7 dwellings/km) and North lakes (21.5 dwellings/km), largemouth

bass primarily used developed maintained Shorelines in low wind exposure areas for

nesting. In Halfrnoon Lake, in particular, largemouth bass nests were located in

undeveloped sites less than expected given the available proportion of this habitat type.

Discussion

We expected local and lakewide features to influence the distribution and success of

largemouth bass nests. In particular, we hypothesized that nests would be concentrated

along undeveloped shorelines within lakes, and that these nests would have a higher

probability of success than nests located along developed Shorelines. We thought that

availability of cover and visibility to anglers (i.e., nest depth) would explain, in large part,

differences in nest success between developed and undeveloped Shorelines. We also

expected nest success to vary predictably among lakes, with nest success declining with

increasing lakewide LSD, due to higher levels of angling pressure and generally lower

availability of preferred nesting habitat. AS expected, at the whole-lake scale, nesting

success declined with increasing lakewide LSD; but surprisingly, whole-lake angling

effort could not explain the differences in nest success among lakes. Further, we saw no

evidence that local nest features, such as availability of cover or nest depth, could explain

variability in success among nests. Patterns of nest distribution relative to available

habitat varied among lakes, with some indication that preferred habitat becomes limiting

at high LSD, but also that additional refinement of habitat categories is required (see nest

distribution, below).
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Nest success—Contrary to our expectations, neither nest depth, nor other local nest

features, could explain a Significant amount of variation in nest success. Although this is

consistent with findings by Gross and Kapuscinski (1997), where local habitat

characteristics such as nest depth and dominant substrate type could not predict

reproductive success of smallmouth bass in Lake Opeongo, Ontario, Canada, we view

these findings as somewhat surprising given the attention in the literature on local nest

habitat features and the documented habitat preferences ofblack bass (Hunt and Annett

2002; Saunders et al. 2002; Wills et al. 2004). Why did we detect no local effects on nest

success? The answer may be in part that a more detailed quantification of structure is

needed. In our field observations, available structure was treated as a categorical variable

(presence/absence), such that we failed to consider varying degrees of cover. For

example, an extensive stand ofvegetation and a few sprigs ofmacrophytes in close

proximity to nests were both considered equal vegetative cover, when they may, in fact,

influence the fate of an individual nest differently. Also, angling may need to be observed

at a finer (i.e., local) Spatial scale (see below), and/or variation in the abundance and

spatial distribution of nest predators (a factor that we did not quantify), both within and

across lakes, may play a predominant role in determining variation in nest success. In fact

the interaction between fishing pressure and nest predator abundance may be important,

as the removal of guarding male bass during fishing, even for a brief period of time,

increases the probability of nest failure due to predation (Kieffer et al. 1995; Phillipp et

al. 1997).

Contrary to our expectations, fishing effort did not increase with lake dwelling

density. Hence, fishing pressure could not account for the ~35% decline in probability of
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nest success across lakes. Fishing pressure may not increase with dwelling density in our

lakes because they all have public access. Therefore, a large component of the anglers

likely do not reside on the lake. Still, we were initially surprised that fishing effort could

not explain the variation in nest success because the effects of fishing on nest success

have been investigated in ponds and sections of lakes, with convincing evidence that

fishing negatively affects the success of individual nests (Neves 1975; Ridgway 1988;

Kieffer et al. 1995). This reduction in nest success is often due to nest predation either

while the male bass is off the nest, or even after the male bass has returned, because such

males Show decreased ability to defend the nest and increased likelihood of abandoning

the nest (Philipp et al. 1997; Suski et al. 2003).

Our working hypothesis for why fishing effort did not explain a significant amount

of variation in nest success is that the spatial distribution of angling, relative to nest

distribution, is a critical factor to observe. Our angling surveys may have been conducted

at too broad of a scale. For example, anglers in Patterson Lake were observed to be using

methods that targeted nesting bass in a small cove with a high number ofbass nests. Nest

predators also appeared to be particularly abundant in this cove. Nest failure rate in this

cove was particularly high. It is likely that the spatial distributions of fishing and of nest

predators interact to influence nest success, such that both factors should be observed at

finer Spatial scales to be able to determine their combined effect on nest success. It may

be that high levels of shoreline development result in concentration of nesting bass and

potential nest predators, such as other centrarchid species.

Finally, although we chose our lakes to be Similar morphometrically, we cannot

conclusively rule out the possibility that other unmeasured features of our study lakes,
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either natural or due to human activities, covaried with LSD, and provided the

mechanism driving the observed negative relationship between nest success and LSD.

For example, it is possible that some feature of a lake, such as an unmeasured indicator of

littoral habitat quality, which makes it unfavorable for bass reproduction also makes it

preferable for human development. Future studies examining the relative importance of

LSD on nest success that include more study lakes and contain more detailed

measurements of habitat will help address such questions.

Nest habitatfeatures—We hypothesized that nest habitat features (e.g., nest depth,

substrate type, and presence/absence of cover) would vary predictably among local LSD

types and lakewide LSD. Nest depth was the only variable that varied, differing among

local LSD types. The construction of retaining walls, and to some extent maintained

shorelines, apparently reduced the availability of Shallow-water spawning habitat,

resulting in bass constructing nests in deeper water. However, because neither nest depth

nor local LSD type were significant in predicting nest success, the difference in nest

depth among local LSD types does not appear to have substantive effects on nesting

success. Research has demonstrated that local modification affects substrate type,

vegetation cover, and course woody material abundance in these lakes and others in

Wisconsin and Minnesota (Radomski and Goeman 2001; Jennings et al. 2003; Jubar

2004). Therefore, the fact that these factors did not vary predictably among nest Sites

according to modification type indicates that bass effectively seek out these features,

even if they are relatively less abundant at developed sites.

Nest distribution—Habitat availability may affect the overall outcome of nesting for

a population through altering the number of nests, the distribution of those nests, and/or
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the success of those nests in producing swim up fry. The number of largemouth bass

nests that we detected ranged from 0 — 51 across lakes, with 5 of the 6 lakes having at

least 21 largemouth bass nests. We can not decisively discern the influence of the

abundance of adult male bass on nest number across lakes; however, bass catch per effort

ranged from 47 - 92 largemouth bass per hour and was not correlated with the number of

nests located in each lake (r = 0.28, P = 0.59), nor was it related to the average

probability of success in each lake (P = 0.30; A. K. Jubar and M. T. Bremigan,

unpublished data). Determining the potential influence ofmale bass abundance on the

number of nests and nest success is further complicated by the fact that not all adult

males breed each year (Raffetto et al. 1990).

We reasoned that if nests were disproportionately abundant along undeveloped

Shorelines and rare along developed Shorelines, that this would be an indication that local

LSD influences nest site choice (or the very early success or failure of nests, i.e., failure

before we detected them). Although local habitat features of nest sites have been studied

(Gross and Kapuscinski 1997; Rejwan et al. 1999), to our knowledge, the distribution of

nest sites relative to local LSD status has not been evaluated. Given the propensity of

baSS to select nest Sites with nearby structure (Bozek et al. 2002; Hunt and Annett 2002),

one would expect fewer nests to occur along developed shorelines, due to the reduction in

coarse woody material that occurs due to residential LSD, which has been documented in

northern Wisconsin lakes (Christensen et al. 1996) and our study lakes (Jubar 2004).

There was substantial variation among lakes with regards to the distribution of nests

relative to development type. Overall, patterns appeared to roughly correspond to

lakewide LSD. For example, Bruin Lake, our lowest development lake with bass nests,
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was the only lake in which nest distribution did not differ from random, with respect to

development type and wind exposure. From this pattern we infer that strong selection for

development status or wind exposure did not occur. The majority of nests in Bruin Lake

were located along undeveloped shoreline, indicating that strong “selection” was not

necessary because the majority of available shoreline was of this type. In contrast, in

Patterson Lake, our highest development lake, strong selection for nesting along

undeve10ped Shoreline with low wind exposure was evident. The majority (~65%) of

nests were located in this category that comprised only ~10% of the shoreline. In the

remaining three lakes, we saw intermediate results, generally with selection for

undeveloped and developed maintained shoreline, and avoidance of developed retained

Shoreline. In fact, developed retained shoreline was avoided in all but one lake

(Halfmoon). It may be that additional habitat features need to be taken into account to

explain the distribution of bass nests in lakes. For example, in Halfrnoon Lake, where

nests were concentrated along developed maintained shorelines with low wind exposure,

much of the undeveloped Shoreline was ofpoor habitat quality for nesting, consisting of

shallow (< 0.5 m) depths, and consolidated, compacted substrates with little cover. Poor

“natural” habitat likely also explains the lack of nests in Blind Lake, where most of the

littoral substrate consisted of consolidated clay (A. K. Jubar, pers. observation). Although

the observed patterns did roughly correspond to LSD patterns, we cannot rule out other

factors that may influence nest distribution. For example, Rejwan et al. (1999) identified

a positive relationship between smallmouth bass nest densities and temperature and

Shoreline reticulation in Lake Opeongo, Canada.
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Conclusions.—Elucidating the spatial scale at which controlling factors operate is a

challenge in ecological studies. The use of multilevel models, however, as were used in

our study, allows for the investigation of potential controlling factors (i.e., covariates) at

multiple spatial scales in a Single statistical model. We determined that, although local

habitat characteristics are likely important factors affecting nesting success, lakewide

features of lakes are also important (actually more important in our study) and they help

explain large-scale patterns in nesting success that would be missed if only local habitat

characteristics or Single lakes were considered.

Understanding the ecology and management ofblack bass is challenged by the

disconnect between the effects of fishing and habitat on individual nests, and the ultimate

population level effects. Certainly events after nesting are also important contributors to

recruitment. To date, most research on black bass nesting success has been done in ponds

or sections of lakes, in an experimental context. Such work is important, but it does not

quantify the magnitude of anthropogenic and natural effects at the whole-lake scale. Our

findings demonstrate that dwelling density warrants more attention. It provides valuable

information for modelers by quantifying the scope of the response and hence it begins to

define the compensatory capacity (in subsequent life stages) needed to nullify negative

effects of lakeshore dwelling density on nest success. This constitutes a critical step in

ultimately determining the population level effects of habitat modification and fishing on

black bass recruitment.
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TABLE 1.—Lake morphometry and water quality characteristics for the Six study

lakes surveyed for black bass reproductive success. Shoreline complexity is defined as

the ratio of the length of the Shoreline to the circumference of a circle of area equal to that

 

 

of the lake.

Lake Dwelling density Lake area Mean depth Total Shoreline

(dwellings/km) (ha) (m) phosphorus Complexity

(rig/L)

Bruin 7.8 52.7 3.74 15.3 1.20

Blind 9.5 28.8 4.05 12.5 1.32

East Crooked 14.6 100.5 3.97 19.9 1.84

Halfrnoon 17.7 97.4 6.77 13.1 2.12

North 21.5 90.5 3.53 16.6 1.67

Patterson 22.3 64.1 5.58 22.0 1.79
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TABLE 2.— List of covariates used in the analysis of largemouth bass nest success

using a generalized linear mixed model. Level 1 covariates are those measured at the

nest-scale; level 2 covariates are those measured at the lake scale.

 

 

Level 1 covariates Level 2 covariates

Dominant substrate type Lakeshore development (dwellings/km)

Presence/absence of cover (boulders, Angler effort (hrs/km)

woody debris, macrophytes)

Depth (m) Total phosphorus levels (pg/L)

Lakeshore development type

Distance to shore (m)

Wind exposure (high, low)
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TABLE 3.—The total number of largemouth bass nests and the number of successful

and failed nests located at each study lake. The sum of the numbers of successful and

failed nests is leSS than the total number of nests because the total number of nests

includes those nests for which the fate could not be determined. Lakes are ordered

according to increasing dwelling density.

 

 

Lake Total number of Successful nests Failed nests l

nests

Blind 0 - -

Bruin 21 12 5

East Crooked 48 23 9

Halfmoon 24 9 9

North 51 19 18

Patterson 34 10 16
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CHAPTER 4: REGIONAL TRENDS IN FISH MEAN LENGTH AT AGE:

COMPONENTS OF VARIANCE AND THE POWER TO DETECT TRENDS

Abstract

We examined statewide time-series (1940s —— 2002) of mean length at ages 2, 3, and 4

for seven fish species sampled from Michigan and Wisconsin inland lakes for temporal

trends. We also used a components of variance approach to examine how total variation

in mean length at age was partitioned into five components, including several sources of

spatial and temporal variation. Using these estimated variance components, we Simulated

the effects of different variance structures on the power to detect trends in mean length at

age. Of the 42 datasets examined, only four demonstrated Significant regional (statewide)

trends. The slope estimate for age 4 largemouth bass from Wisconsin lakes was

significant, with an increase of about 0.7 mm°yr'1 in mean length at age. In contrast, ages

2, 3, and 4 walleye from Wisconsin lakes showed a negative trend, decreasing between

0.5 and 0.9 mm-yr". The structure of variation differed substantially among datasets and

these differences strongly affected the power to detect trends. To maximize trend

detection capabilities, fisheries management agencies should consider variance structures

prior to choosing indices for monitoring and realize that trend detection capabilities are

species-Specific.
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Introduction

Knowledge of trends in fish growth rates is important ecologically, as growth rates

influence ecological interactions and population dynamics, and are often used along with

recruitment and mortality information to assist management decisions (Trippel 1993).

Furthermore, growth rates are influenced by environmental conditions and can represent

an integrative measure of conditions experienced by a fish over its lifetime.

Consequently, one goal of many fishery monitoring programs is to determine whether

growth of fish populations (e. g., mean size at age) is changing with time and if so, if such

changes are consistent across Species and across systems. Most work on evaluating trends

in fish growth have focused on individual populations (e.g., Reckahn 1986). There have

been some regional evaluations of trends in fish demographics, although most have

emphasized abundance (McDonough and Buchanan 1991; Beard and Karnpa 1999;

Maceina and Bayne 2001; Grant et al. 2002), the majority of aquatic work evaluating

trends has emphasized single systems and water quality across rivers (Antonopoulos et al.

2001), lakes (JaSSby et al. 1999), and seas (Sandén and Hékansson 1996). Although

investigations into temporal trends within individual systems provide valuable

information, the ability to detect regional (e.g., statewide) temporal trends is crucial for

the evaluation ofmany management actions and to examine responses to natural or

anthropogenic perturbations. Furthermore, the early detection of regional changes iS

important in many cases to allow time for managers and policy-makers to respond and

take appropriate action (Vaughan et al. 2001). This said, detection of regional trends in

fish growth (or other parameters) is a challenge, both because available data are often

limited, and because regional trends can become obscured by the large amount of
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temporal variation common to the region and unique to particular populations within a

region. In this study we provide one approach to evaluating regional trends in fish growth

(mean size at age), and then use the estimated structures of variance to evaluate the

statistical power of different sampling designs for detecting regional trends in fish growth

to lend insight into design and feasibility of reliable monitoring programs.

Trends and components of variance

A components of variance approach has been advocated to address the issue of

variability in ecological data when evaluating regional temporal trends and monitoring of

ecological systems (Urquhart et al. 1998; Larsen et al. 2001; Kincaid et al. 2004). Under

this framework, total variance is partitioned into four components including, (1) site-to-

site (Spatial) variation, (2) coherent (year-to-year) variation affecting all sites (e.g., lakes)

in a Similar manner, (3) ephemeral temporal variation (e.g., site-by-year interaction)

corresponding to independent yearly variation at each site, and (4) residual variation

(Larsen et a1. 2001; Kincaid et al. 2004). A fifth component can be included in this

framework. In this approach, each site has its own trend (i.e., trend variation: allowing

the slope of the response variable versus time at each site to be a draw from a distribution

and estimate the variance of the distribution of slopes).

Although the total variance of the data is one of the primary factors affecting the

ability to detect trends (Stow et al. 1990), the partitioning of the total variance among

these sources also influences statistical power. Power analysis is a useful tool for

evaluating the performance of ecological monitoring programs (Peterrnan 1990;

Fairweather 1991; Hatch 2003) and in particular for investigating how specific variance

components affect the power to detect trends. Ideally, a monitoring program should have
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high statistical power, the ability to detect a specific deviation from the null hypothesis.

More formally, power is defined as 1 - )6 , where ,6 is the probability of a type 11 error

(failing to reject the null hypothesis when it is actually false).

To our knowledge, a components of variance approach has not been applied to fish

growth data (i.e., mean length at age data) within the context of trend detection over a

large Spatial region (although random effects models have been used to partition

variability in fish growth data to test other hypotheses; e.g., Osenberg et al. 1988), even

though fisheries agencies are collecting fish growth data through time to monitor regions

of lakes and streams (e.g., Hayes et al. 2003). The specific objectives of this study were

to (1) determine if trends are evident in mean length at age for seven fish Species in

Michigan and Wisconsin inland lakes, (2) quantify the components ofvariance for mean

length at age and (3) perform power analyses to investigate the effects of the different

components of variance on the statistical power to detect trends, and to evaluate

alternative sampling designs.

Methods

Datasets

We obtained mean length at age data for seven fish species from fish growth surveys

of inland lakes conducted by the Fisheries Division of the Michigan Department of

Natural Resources and the Wisconsin Department ofNatural Resources. We included

bluegill Lepomis macrochirus, pumpkinseed L. gibbosus, largemouth bass Micropterus

salmoides, smallmouth bass M. dolomieu, yellow perch Percaflavescens, walleye Sander

vitreus, and northern pike Esox lucius because of their prevalence in the historical data. In

each lake survey, fish growth had been recorded as the mean length at age for a given
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species and age. The corresponding number of fish that contributed to the mean was also

recorded along with the day of year that sampling occurred. We restricted our analyses to

mean length at ages 2, 3, and 4 for each species because the reliability of fish aging

decreases with increasing age (Ricker 1975) and because these ages had adequate sample

sizes.

Mean length at age time series were available beginning in the early 19603 to the

early 2000s for fish collected in Michigan and from the late 19403 or late 1950s to the

early 20003 for fish collected in Wisconsin (Table 1). Fish were collected using a variety

of gear types over the time series. Thus, in an effort to reduce potential biases introduced

by using different sampling gear, we only retained fish collected using the same gear type

in the analyses for each species, age, state combination (Table 1). For nets, however,

(e. g., trap nets and fyke nets) the mesh size was not recorded over time; thus we could not

control for any potential changes in mesh size. Historically, fish were not sampled in a

truly random design by the state agencies. However, the fish growth surveys used in this

analysis represent a large sample ofpublic lakes broadly distributed throughout both

states, thus reducing the likelihood of substantial bias.

Temporal trend statistical analysis

A weighted mixed model was used to assess the presence of regional (statewide)

linear trends in mean length at age for each Species, similar to that suggested by Piepho

and Ogutu (2002). Although we restricted our analysis to the investigation of linear

trends, if a monotonic increase or decrease is present then a linear trend will be present

(Urquhart and Kincaid 1999). Each state, Species/age dataset was analyzed separately.

States were analyzed separately to reduce potential biases introduced by differences in
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sampling methodologies between agencies. Each data point (mean length at age) was

weighted by the number of fish that contributed to each mean for each lake. To account

for potential biases introduced by fish being sampled during different times of the year

(i.e., seasonal trends in mean length at age), seasonal trends were examined prior to the

interannual analysis by fitting linear and quadratic least-squares regression models (Grant

et al. 2004). For each Species/age combination with a significant seasonal trend, the

regression equation was used to adjust mean length at age to the median sample date.

Because we could not estimate the lake x year interaction effect for most datasets

(e.g., the data sets did not contain sufficient data on lakes sampled multiple times within a

year or overall sample size was small), we used a simpler model to examine temporal

trends that excludes the estimation of the variance due to lakex year interaction. In this

case the variance due to the lakex year interaction is contained within the residual error

term. Not estimating this parameter, however, does not affect the estimate of the slope.

The mixed model fit to detect interannual trends was

(I) Ylj =,u+a,- +y(/l.+li)+bj +31]

where Yij is the mean length at age for lake i in yearj, ,u and ,1 are the fixed intercept and

Slope (fixed regional trend), respectively, y is thejth year minus the mean year used in the

analysis. This standardization of year was performed to provide numerical stability. a ,- is

a random effect for lake i, representing lake-to-lake variability, iid as N(0, 0'02),bj is a

random effect for thej‘h year (coherent temporal variability), iid as N(O, 07,2 ), t,- iS a
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random effect for the trend for lake i, iid as N(0, 0,2 ), and eg- is the unexplained error

(residual error), iid as N(0, 0'32 ).

Components of variance

To partition the total variance among the various components, where possible, we

also fit a mixed model identical to equation 1, except that an additional random effect for

the lakex year interaction (c0. )was added to the model, yielding

(2) Yij =,u+a,- +y(/1+t,)+bj +c +e

where all parameters are defined as in equation 1 and cij is the random effect for

lakex year interaction (ephemeral temporal variability). Note that eg- represents sampling

error that influences the observed mean and its variance and its variance is inversely

related to sample Size. In practice this means that the model was fit by weighting

observations (means for a year and age) by their sample Sizes. We estimated variance

components using restricted maximum likelihood and P-values were estimated using a

likelihood ratio test (Self and Liang 1987). We considered all analyses significant at P <

0.05.

Power analysis

We used a simulation approach to examine the statistical power to detect temporal

trends using the variance components estimated from equation 2. For each simulation,

one thousand datasets were generated containing species Specific mean length at age data

for a population of lakes (50 or 1,000 lakes, see below) over 25 years. First, a ‘true’ mean

length at age for each lake in the population was generated over the 25 year time period.

A trend of known magnitude (e.g., a decease of 1 mm-yr") was also incorporated into the
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dataset. Using the ‘true’ mean lengths at ages for each lake, an ‘observed’ mean length at

age was then generated for each lake. The observed mean length at age was created by

randomly generating lengths for a pro-specified number of fish (ranging from 5 — 30) for

each of the lakes from a normal distribution with a mean equal to the “true” mean and

variance equal to the estimated residual (sampling) variance from equation 2. From these

1,000 datasets, a user-Specified number of lakes (ranging from 10 — 40) were then

randomly sampled from the population 50 or 1,000 lakes each year. When the number of

fish sampled per lake was held constant, we used the mean number of fish sampled per

age class from our surveys (97 = 10). Thirty lakes sampled per year were used as a realistic

number of lakes that could be sampled per year by a management agency when the

number of lakes sampled per year was held constant (K. Wehrly, Michigan Department

ofNatural Resources Fisheries Division, Institute of Fisheries Research, Pers. Comm).

Lakes were sampled without replacement within a year, but all lakes were available for

selection each year. Data were analyzed for different sampling durations from 5 up to 25

years and analyzed for the presence of a trend. The model specified in equation 1 was

used to test the null hypothesis that 21 = O for each dataset and the test statistic was

calculated and compared to a critical value ( or = 0.05). Because the data generated depict

a Situation in which we know the null hypothesis is false (i.e., a trend ofknown

magnitude was incorporated into the data), power was estimated as the percentage of

trials (out of 1,000) that rejected the null hypothesis.

We investigated the extent to which the following factors affected the ability to

detect a trend (1) increasing trend magnitude (/1 ranged from -0.5 — 2.0 mm-yr"), (2)

increasing number of fish sampled per lake (ranging from 5 — 30 fish per lake), (3)
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increasing the number of lakes sampled per year (ranging from 10 — 40 lakes per year),

(4) decreasing lake effect variance, and (5) sampling from a population of 50 or 1,000

lakes. We address factor 1 to provide information on the effects of trend magnitude on

power. We address factors 2 and 3 because the number of fish and lakes sampled is an

important consideration for sampling designs with respect to allocating personnel and

fiscal time and money resources. We address factor 4 to understand how power would

increase if lake-to-lake variance was reduced, for example, by using a lake classification

scheme. To this end, we reduced lake-to-lake variance by 50% and then reduced it to

zero. Finally, we examined factor 5 to examine how the proportion of lakes sampled each

year influences statistical power. For simulations for which sampling from a population

of 50 or 1,000 lakes did not change the general patterns observed, we report only those

results for sampling from a 50 lake population, unless otherwise stated.

Results

Temporal trend

Not all datasets contained enough information to fit model 1. Of42 datasets

examined (7 species X 3 ages X 2 states), we were able to examine temporal trends for

only 26 datasets (Table 2). Ofthe 26 analyses, only four demonstrated significant

temporal trends. The slope estimate for age 4 largemouth bass from Wisconsin lakes was

significant, with an increase of about 0.7 mm°year’l in mean length at age. Ages 2, 3, and

4 walleye from Wisconsin lakes showed a negative trend, decreasing between 0.5 and 0.9

mm°year'l in mean length at age (Table 2). For all other analyses, estimates of the slope

for the fixed regional trend had absolute values of 0.43 or less, which were not

Significantly different from zero (P > 0.05).
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Variance components

We could not estimate the lakex year interaction effect for 20 of 26 of the datasets

used in trend estimation. For the datasets where estimation was possible, the structure of

variation differed substantially among datasets (Figure 1). Mean residual variation (6'3)

was 54%, and ranged from 18.1 — 75.7% of the total variation. Mean ephemeral temporal

variation (0‘02) was 17.2% and ranged from 4.9 — 30.6% of the total variation. The mean

percent of total variation attributed to coherent temporal variation (ébz) was 3.5% and

ranged from 0.5% to 8.7%. The mean percent of total variation attributed to lake-to-lake

differences (otaz) was 25.4% and ranged from 5.5 — 50.5%. The mean percent of the total

variation due to trend variation (6,2) was small (mean = 0.1%), ranging from 0.01% to

0.24%.

Power analysis

We investigated the effects of variance structures on statistical power by contrasting

two carefully chosen datasets, which had strikingly different variance structures, namely

age 4 walleye sampled in Michigan and Wisconsin (Figure 1). Because the slope

estimates for the Significant analyses of temporal trends ranged from -0.5 to -0.9, we used

,1 = -1.0 mm°year'1 for Simulations in which 2 was held constant. Trends less than this

would likely not be considered biologically “significant” in the Short-term.

The power to detect trends in mean length at age increased, as expected, with

increasing trend magnitude (Figure 2). For example, after 15 years of sampling, the

power to detect a trend increased from 0.2 — 1.0 as ,1 decreased from -0.5 — -2.0 mm-year'

I for age 4 walleye sampled from Michigan lakes. For age 4 walleye sampled from
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Wisconsin lakes, power also increased with trend magnitude, but power at a given

number of years and trend magnitude was markedly lower in Wisconsin as compared to

Michigan, demonstrating the influence of states’ different variance structure.

In an effort to visualize the trade-offs between sampling more fish per lake versus

sampling more lakes per year, we plotted power curves for both Michigan and Wisconsin

walleye across 10 and 25 year sampling periods (Figure 3). For walleye sampled in

Michigan, the greatest increase in power at 10 years of sampling was gained by

increasing the number of lakes sampled each year, with only a slight gain in power

achieved by increasing the number of fish sampled in each lake. For example, if 30 lakes

were sampled per year, increasing the number of fish sampled fi'0m 5 — 30 increased

power by only 0.05. In contrast, assuming 10 fish were sampled from each lake,

increasing the number of lakes sampled from 10 — 40 increased power by 0.3. A similar

pattern was observed at 25 years; however, relatively high power (ranging from 0.85 —

1.0) was obtained regardless of the number of lakes or fish sampled (Figure 3).

A different pattern was observed for walleye sampled from Wisconsin (Figure 3). At

a 10 and 25 years of sampling, although increasing the number of lakes sampled each

year from 10 — 20 increased power, power leveled off and remained relatively low even

as the number of lakes increased from 20 — 40. Increasing the number of fish sampled

from each lake did increase power; however, this increase was quite small.

Decreasing lake-to-lake variance did not have a noticeable effect on power for either

walleye sampled in Michigan or Wisconsin when 60% of the total population of lakes

was sampled each year (sampling 30 out of 50 lakes each year). Rather, power remained

Similar at all sampling durations (Figure 4), but was consistently higher for Michigan
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compared to Wisconsin lakes. Under the scenario in which 3% of the lakes were sampled

each year (sampling 30 out of 1,000 lakes each year), decreasing lake-to-lake variance

resulted in an increase in power for walleye sampled in Michigan where lake-to-lake

variance comprised 51% of the total variance; however, this pattern of increasing power

with decreasing lake-to-lake variance was not observed with the walleye sampled in

Wisconsin lakes, where lake-to-lake variance was smaller, comprising 15% of the total

variance (Figure 4). Furthermore, when sampling a small percentage (e.g., 3%) of the

population of lakes, some models were not estimable over short sampling durations (< 10

yrs) because there were not sufficient data on individual lakes sampled repeatedly over

time. Thus, power estimates reported for sampling from the 1,000 lake scenario are only

for models that were estimable (i.e., the number of trials was < 1,000).

Discussion

Temporal trend

We detected four significant regional trends out of the 26 datasets analyzed, all of

which were from inland lakes sampled in Wisconsin. Of these, one was positive (age 4

largemouth bass) and three were negative (ages 2, 3, and 4 walleye). The magnitude of

the trends ranged from 0.5 — 0.9 mm-year". No significant regional trends in mean length

at age were detected from Michigan inland lakes. Although we detected four significant

regional trends, any inference regarding causation is difficult (Stow et al. 1998);

however, potential mechanisms can be hypothesized. For instance, potential causal

factors of increasing trends in mean length at age could be due to effective regional

harvest regulations or increases in regional temperatures resulting in increased growth

rates. However, if increases in regional temperature were responsible for the observed
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increasing trend, then we would expect that more of our datasets would demonstrate such

a trend. Thus, temperature alone is likely not responsible for the observed trend.

Decreases in mean length at age for walleye could be due to effects of anglers or stocking

programs. For example, if stocking rates increased over time or if fish numbers increased

for some other reason, then increasing competition for resources could lead to reduced

growth rates. This mechanism was also proposed by Li et al. (1996) to explain reduced

mean weights of walleye in stocked lakes in Minnesota. However, the observed trends

could be due to interactions of changing biotic and abiotic conditions over time, which

make it difficult to attribute causality to any single source.

Components of variance

Variance structures (i.e., the proportion of total variance attributed to each

component) varied considerably among the Six datasets we examined. Across all Six

datasets, residual variation (variation due to sampling error) comprised the largest

proportion (37 = 54%) of the total variance, while lake-to-lake and ephemeral temporal

averaged 25% and 17% of the total variation, respectively. In contrast, coherent temporal

variation and trend variation averaged only 3% and 0.1%, respectively. Furthermore,

coherent temporal variation was only significantly different fiom zero in three out of six

analyses, while Slope variation was only Significant in two analyses. However, our

variance estimates are within the percentages reported by Osenberg et al. (1988).

Osenberg et al. (1988) partitioned variance in growth rates of bluegill and pumpkinseed

sunfish into four components, residual error, lake, year, lakeX year. On average, residual

error variance comprised 69% of the total variance, whereas, lake-to-lake variability and

lakeX year variation comprised an average of 20% of the total variance. They found that

122



year effects (coherent variation) did not explain any of the variance. For our analyses, the

relatively high residual variation is likely due to measurement error (e.g., errors made

during the reading of scales for age determination), errors in data processing, crew

effects, and collection protocol sampling errors that may have occurred over the time

period we examined.

Examining variance structures of monitoring indices has been performed for several

lake indicators, primarily using data obtained from the United States Environmental

Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) in the

northeastern U.S.A. The EMAP collected data on a wide range of chemical and

biological data, including water chemistry measures of conservative and nonconservative

ions and biological measures such as fish and zooplankton species richness (Stemberger

et al. 2001; Kincaid et al. 2004). The variance structures in our analysis of fish mean

length at age were within the ranges for zooplankton abundance indicators from the

EMAP described by Stemberger et a1. (2001), although these authors did not estimate

slope variation in their study. For zooplankton abundance indicators, percent lake-to-lake

variation ranged from 0 — 69%, coherent temporal variation was “small or negligible”,

ephemeral temporal ranged from 0 — 16%, and residual variation ranged from 14 — 43%

(Stemberger et al. 2001).

For some biological indicators, such as fish mean length at age in our study and

zooplankton abundances and species richness estimated for the EMAP data, the

proportion of residual variance is much higher compared to conservative chemical

indicators, such as calcium and magnesium (Kincaid et al. 2004). For conservative

chemical indicators, lake-to-lake variation comprises a majority of the total variation and
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there is relatively low residual variance (Kincaid et al. 2004). The high spatial variation

among lakes and low residual variation for conservative ions likely reflects the relative

stability of these indicators within lakes over time and space compared to nutrients and

biological measurements that are controlled more by within-lake processes and which are

more prone to sampling biases (e.g., have higher within-lake spatial and temporal

variation). These differences between conservative chemical indicators and biological

indicators need to be acknowledged and incorporated into the expectations of monitoring

programs. For example, detecting a pre-specified trend for a biological indicator with a

large residual variance component will require a longer sampling period compared to

indicators with lower residual variances to detect the same trend, all else being equal.

Furthermore, agencies should take steps to reduce sampling errors associated with

biological indicators in order to improve trend detection. All other sources of variation,

with the exception of coherent temporal variation, can also be reduced by manipulating

certain aspects of the sampling design (see Larsen et al. 2001 and Urquhart et al. 1998 for

details).

Trend detection

We observed the expected increase in power with increasing trend magnitude and

sample duration for both the Michigan and Wisconsin analyses. This pattern was also

demonstrated using the EMAP data (Urquhart et al. 1998). A striking difference between

the Michigan and Wisconsin power analyses, however, was the overall low power

observed for the Wisconsin data. Although, we expected power to be lower for the

Wisconsin analyses due to the higher proportional and absolute value of the estimated

coherent temporal and residual variation compared to the Michigan analyses (see below),
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we were not certain as to the relative affects of each component (coherent temporal or

residual) was on power. Furthermore, because Urquhart et al. (1998) demonstrated the

importance of coherent temporal variance in reducing trend detection, we wanted to

examine its relative affect compared to the much greater proportion of variance attributed

to sampling error. To examine this in more detail, we performed a sensitivity analysis

using the Wisconsin data. Again, because the Wisconsin variance components that

differed most from the Michigan dataset were the residual variance (comprising 76% if

the total variation for WI (6'82 = 4936) versus 18% for M1 (63,2 = 550) and coherent

temporal variance (comprising 4% of the total variation for WI (ribz = 261) versus

nonsignificant for M1), we concentrated our sensitivity analysis on these two

components. We set the residual and coherent temporal variance to 50 and 25% of the

estimated values while holding all other variance components at their estimated values.

We then reduced them simultaneously while holding all other variances at their estimated

values and calculated the mean percent increase in power compared to the “baseline”

Situation when only estimated values were used. We report the mean percent power

increase representing the average percent increase in power over the sampling period (5 —

25 years) compared to a Situation using the estimated variance components. The mean

percent change was calculated as

25

((power _ reduced - — power _ full - ) /(power _ full - ) x 100
l l l

 

21

Where power_reduced,~ is the power to detect a -l .0 mm'year'1 trend under the scenario of

reduced residual or coherent temporal variation (or both) in year i and powerfull,- is the
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power to detect the same trend under the scenario using the estimated variance

components from equation 2 in year i.

The sensitivity analysis revealed that the coherent temporal variation had a large

effect on the power to detect trends (Table 4). Reducing the coherent temporal variation

to 50 and 25% of the estimated value led to an average percent increase in power of 35

and 95%, respectively. Conversely, setting the residual variance to 50 and 25% of

estimated values led to only 3 and 5% increases in power, respectively. Thus, even

though coherent temporal variation comprised only 4% of the total variation for

Wisconsin and residual variation comprised 75% of Wisconsin’s the total variation;

coherent temporal variation had a disproportionately large influence on the power to

detect trends. However, once the coherent temporal variance was set to 25% of estimated

value, setting the residual variance to 25% of estimated value did lead to a slightly larger

increase in power, a further 8% increase over the baseline estimates when compared to

just setting coherent temporal variance to 25% of estimated value. The strong effect of

temporal coherent variation to reduce trend detection capabilities was also demonstrated

by Urquhart et a1. (1998). Because this source of temporal variation cannot be reduced by

changing the design of a monitoring program, only an increased sampling duration will

lead to an increase in statistical power (Urquhart et al. 1998; Kincaid et al. 2004). This

example illustrates the importance of examining variance components of potential

monitoring indices, because even a small (as estimated as percent of the total variation)

coherent temporal variation component can reduce trend detection capabilities over the

short-terrn.

126



Although coherent temporal variation can greatly reduce power, the power to detect

trends can also be affected by the allocation of resources to either sample more lakes per

year or sample more fish per lake. The effect of increasing the number of lakes sampled

each year versus increasing the number of fish sampled from each lake on the power to

detect trends is important from a management perspective because this issue represents a

trade-offbetween resource allocations. Should resources be allocated towards sampling

more fish from each lake (e. g., obtaining a more precise estimate of each lake’s status) or

on sampling more lakes within the region? In our analysis of the age 4 walleye Michigan

data, obtaining a more precise estimate of a lake’s status did not improve trend detection

as much as increasing the number of lakes sampled each year. For the age 4 walleye

Wisconsin data, again relatively high coherent temporal variation resulted in relatively

low power regardless of the sampling design used.

High lake-to-lake (spatial) variance has been Shown to reduce the power to detect

trends (e.g., Urquhart et al. 1988). However as we Show here, the relative importance of

lake-to-lake variance is dependent on the proportion of lakes sampled from the

population of lakes each year. For example, in our analysis of the age 4 walleye Michigan

data, we were able to obtain a better estimate of lake-to-lake variance when we sampled

60% of the lakes each year compared to sampling 3% of the lakes each year.

Consequently a reduction in lake-to-lake variance did not have an appreciable effect on

power under the 60% sampling scenario. However, when sampling only 3% of the

population of lakes each year, lake-to-lake variation became more important and

reductions in this source of variation led to an increase in power. Thus, in Situations with

a large lake-to-lake variance component, it may be advisable to sample some lakes
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repeatedly (e.g., sample fixed sites) in order to obtain a better estimate of lake-to-lake

variance to increase power. However, as illustrated with the Wisconsin analysis, if

coherent temporal variation is present, even a large reduction in other sources of variance

may not lead to an improvement in power.

Furthermore, the statistical model used to estimate trends Should be considered

during the design stage of a monitoring program. In our analyses, some models were not

estimable over a short sampling duration when only 3% of the population of lakes were

sampled each year. This illustrates how the sampling design (e. g., a simple random

sample in our analyses) can affect what kind of statistical model can be used for trend

detection. If detecting trends over a Short time period is of interest, then having fixed sites

in addition to randomly selected sites iS desirable. The use of fixed sites will ensure that

some lakes are sampled repeatedly over time and thus allow some models to be

estimable. Although it was not within the scope of this paper to explore the many

alternative sampling designs, the type of sampling design employed, such as the use of

fixed Sites in combination with a random selection of lakes each year, can affect power to

detect trends (Urquhart et al. 1988). With information on the components of variance for

desired monitoring indices, management agencies can explore alternate designs in an

effort to maximize power.

Conclusions

The use of historical data from state and federal agencies provides one source of data

that can be used to investigate the presence of trends in fisheries data for multiple

populations (e.g., this study, Reckahn 1986; Beard and Kampa 1999). Much of the

historical data, however, were not collected following probability sampling methods, in
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which every sampling unit has a known probability of being sampled (Olsen et al. 1999).

Rather, waterbodies were often sampled based on expert choice (i.e., judgment sampling;

Olsen et al. 1999), selected by convenience, or in response to local or regional political

concerns (e.g., convenience sampling; Olsen et al. 1999). Although it must be

acknowledged that the non-probability based sampling associated with the historical data

we used has implications when making statistical inference to the population of lakes or

streams as a whole, these data provide a unique opportunity to examine regional trends.

Furthermore, because the implementation of probabilistic sampling designs is only now

becoming more prevalent, historical data often represent the only source of information

that can be used to inform the development of monitoring programs designed to describe

the status and to detect trends of aquatic indices.

Although the statistical power to detect trends is important to consider when

developing a monitoring program, there are other components of a monitoring program

that should also be considered. For example, the costs and benefits of implementing a

monitoring design Should be considered along with the uncertainties associated with

alternative designs (MacGregor et al. 2002). Thus, power analysis represents one source

of information to be used in the processes of designing an ecological monitoring

program. Examining variance components of desired indices, power analysis, and other

quantitative analyses that take into account uncertainties and expected benefits of

monitoring programs, represents powerful tools that will help guide fisheries

management agencies develop effective monitoring programs.
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Table 1. Fish species, age, sample size (N, number of observations used in the analyses),

gear type used to collect fish, and sampling years used in the trend analysis for Michigan

and Wisconsin inland lakes. M1 = Michigan, WI = Wisconsin, BLG = bluegill, PSF =

pumpkinseed sunfish, LMB = largemouth bass, SMB = smallmouth bass, YEP = yellow

perch, NOP = northern pike, WAE = walleye, EF = electrofishing, TN = trap net, FN =

 

 

 

fyke net.

N Gear type Sampling years

Species (age) MI WI Ml WI MI WI

BLG (2) 261 162 EF EF 1961-2002 1959-2003

BLG (3) 265 216 EF EF 1962-2002 1958-2003

BLG (4) 261 245 EF EF 1963-2002 1958-2003

PSF (2) 51 66 TN EF 1960-2002 1959-2003

PSF (3) 120 132 TN EF 1960-2003 1959-1992

PSF (4) 143 146 TN EF 1958-2003 1959-1992

LMB (2) 277 227 EF EF 1961-2002 1958-2003

LMB (3) 275 285 EF EF 1963-2002 1959-2003

LMB (4) 243 273 EF EF 1963-2002 1959-2002

SMB (2) 93 52 EF EF 1963-2001 1957-2003

SMB (3) 74 47 EF EF 1963-2001 1957-2003

SMB (4) 61 44 EF EF 1963-1999 1956-2003

YEP (2) 266 167 EF EF 1961-2002 1958-2003

YEP (3) 229 203 EF EF 1961-2002 1958-2003

YEP (4) 185 187 EF EF 1961-2002 1958-2003
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Nora)

NOP (3)

NOP (4)

WAEQ)

WAEB)

WAE (4)

157

161

151

236

210

176

166

176

183

303

401

434

FN

FN

FN

EF

EF

EF

FN

FN

FN

FN

FN

1960-2002

1957-2002

1957-2002

1967-2002

1967-2002

1967-2002

1947-2002

1947-2002

1947-2002

1 946-200 1

1 946-2001

1 946-2001
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Table 2. Parameter estimates for the fixed effect of sampling year (fixed regional trend

(mm-year"),/IA) followed by standard error (s.e.) in parentheses, F-value, and P-value for

mean length at age of seven warm and coolwater fish Species in Michigan and Wisconsin

inland lakes. Significant regional trends are Shown in bold (or =0.05). M1 = Michigan, WI

= Wisconsin, BLG = bluegill, PSF = pumpkinseed sunfish, LMB = largemouth bass,

SMB = smallmouth bass, YEP = yellow perch, NOP = northern pike, WAE = walleye,

n.e. = not estimable.

 

 

 

j (s.e.) F-value P-value

Species MI WI MI WI MI WI

(386)

BLG (2) -0.176 n.e. 1.20 n.e. 0.282 n.e.

(0.160)

BLG (3) -0.012 -0.425 0.01 4.73 0.944 0.118

(0.173) (0.195)

BLG (4) 0.004 -0.413 0.00 4.43 0.983 0.059

(0.198) (0.196)

PSF (2) n.e. n.e. n.e. n.e. n.e. n.e.

PSF (3) -0.046 n.e. 0.03 n.e. 0.873 n.e.

(0.262)

PSF (4) 0.066 -0.381 0.08 2.48 0.788 0.176

(0.237) (0.242)

LMB (2) -0.221 n.e. 0.69 n.e. 0.412 n.e.

(0.265)
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LMB (3)

LMB (4)

SMB (2)

SMB (3)

SMB (4)

YEP (2)

YEP (3)

YEP (4)

NOP (2)

NOP (3)

NOP (4)

WAE (2)

WAE (3)

-0390

(0.267)

-0292

(0.285)

-0.202

(0.425)

-0392

(0.743)

n.e.

-0077

(0.176)

-0.271

(0.210)

0.165

(0.260)

-0430

(0.753)

11.6.

11.6.

0.096

(0.448)

0.074

0.306

(0.314)

0.672

(0.313)

n.e.

11.6.

11.6.

11.6.

n.e.

11.6.

11.6.

11.6.

-0.036

(0.435) ‘

-0.917

(0.283)

-0.530

2.13

1.05

0.23

0.28

11.6.

0.19

1.69

0.40

0.33

11.6.

11.6.

0.05

0.01

0.95

4.59

11.6.

11.6.

11.6.

11.6.

n.e.

11.6.

11.6.

11.6.

0.01

10.52

4.26

0.157

0.326

0.655

0.626

11.6.

0.665

0.213

0.545

0.577

11.6.

11.6.

0.831

0.936

0.338

0.045

11.6.

11.6.

11.6.

11.6.

11.6.

11.6.

11.6.

11.6.

0.947

0.002

0.042
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(0.918) (0.257)

WAE(4) 0.138 -0.676 0.03 8.13 0.867 0.005

(0.816) (0.237)
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Table 3. Estimated variance components followed by standard error in parentheses from

a weighted mixed mode] examining mean length at age over time for Michigan and

Wisconsin inland lakes. Variance components significantly different from zero are shown

in bold (a =0.05). YEP = yellow perch, LMB = largemouth bass, WAE = walleye.

 

 

Species Lake-lake Coherent Ephemeral Trend Residual

(age) (6'02) temporal temporal variation error

(4 2) (6.2) (42) (6 2)

Michigan

YEP (2) 59.1 31.6 227.1 0.4 765.9

(91.4) (23.5) (100.4) (0.43) (200.4)

LMB (3) 240.9 32.8 455.4 1.4 1145.0

(108.8) (40.1) (121.4) (1.1) (261.0)

WAE (3) 1526.4 95.5 533.7 8.2 1238.8

(368.8) (101.6) (168.8) (4.7) (315.4)

WAE (4) 1531.8 16.1 928.4 4.9 549.9

(402.0) (88.4) (268.2) (4.2) (216.1)

Wisconsin

WAE (3) 833.5 313.2 225.6 0.4 2230.9

(139.9) (179.1) (63.9) (0.4) (504.9)

WAE (4) 1001.8 260.7 319.3 0.8 4936.2

(167.6) (155.6) (87.9) (0.5) (1063.9)
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Table 4. Mean percent increase in statistical power due to setting the estimated residual

and coherent yearly variance to 50 and 25% of estimated values. The power estimates

correspond to a temporal trend of -1 .0 mm-year'I in mean length at age for age 4 walleye

sampled in Wisconsin inland lakes. The mean percent increase reported is the average

percent increase in power over the sampling period (5 — 25 years) compared to a situation

using the estimated variance components from historical data (see Table 3 for variance

estimates; population of lakes = 50, 30 lakes sampled each year for 25 years, 10 fish

 

 

sampled per lake).

50% of 25% of 50% of 25% of 25% of coherent

residual residual coherent coherent temporal and

variance variance temporal temporal residual variance

variance variance

Mean percent 3 5 35 95 103

increase
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