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ABSTRACT

METHODS OF META-ANALYZING REGRESSION STUDIES:

APPLICATIONS OF GENERALIZED LEAST SQUARES AND

FACTORED LIKELIHOODS

By

Meng-Jia Wu

Regression is one of the most commonly used quantitative methods for exploring the

relationship between predictor(s) and the outcome of interest. One ofthe challenges

meta-analysts may face when intending to combine results from regression studies is that

the predictors are usually different fi'om study to study, even though the primary

researchers may have been studying the same outcome. In the current study, two methods,

generalized least squares (GLS) and factored likelihoods through the sweep operator

(SWP), for combining results were examined for their ability to reduce the problems

arising from regression models that contain different predictors in the meta-analysis.

Both of the methods utilize the zero-order correlations among the variables in the

regression studies. The GLS method treats the correlations from each study as a subset of

multivariate outcomes, and combines the results with the consideration of the

dependencies of the correlations across studies (Raudenbush, Becker, & Kalaian, 1988;

Becker, 1992). The SWP method in this study applies the concept of missing data to the

regression models that contained different predictors included in the synthesis. An

empirical study was conducted by creating a set of regression studies using a subset of

NELS:88 dataset. The correlations among the created studies were combined. A final

regression model with standardized slopes was calculated for each of the predictors using



each of the two methods. The results from this empirical study showed that SWP

produced less biased estimates of slopes in most situations.

The precision ofthe results from those two methods could be impacted by the

features of studies included in the meta-analysis. Therefore, a Simulation was conducted

to investigate the impacts ofmissing-data pattems, intercorrelations among the predictors

and the outcome, and the sample size. The results indicated that the difference between

the two methods was not large. SWP consistently performed slightly better at estimating

the slope of the predictor that was fully observed in all studies in the synthesis. Generally,

SWP performed well when the sample sizes were equal and small across all studies, and

GLS performed better when the sample sizes were equal and large.
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CHAPTER 1

INTRODUCTION

Meta-analysis is a quantitative procedure that allows researchers to summarize a

myriad of studies focusing on one topic. This technique helps to address the challenges

introduced by the existence of multiple answers to a given research question. The

essential feature of meta-analysis is adopting the same type of effect size across studies,

so the results from different studies are comparable. As Lipsey and Wilson (2001)

summarized:

The various effect size statistics used to code different forms of quantitative study

findings in meta-analysis are based on the concept of standardization. The effect

statistic produces a statistical standardization of the study findings such that the

resulting numerical values are interpretable in a consistent fashion across all the

variables and measures involved. (p.4)

The commonly used effect sizes in meta-analysis fall into one of two families: The d

family and the r family (Rosenthal, 1994). Generally speaking, the d family includes

proportions or mean differences between groups; the r family includes the Pearson

product moment correlation (r), as well as the Fisher’s transformation of r.

1.1 Absence of Methods for Meta-analyzing Regression Results

For more than two decades, methods for synthesizing mean differences and

correlations have been broadly studied and clearly documented in several major

publications (see Cooper, 1998; Cooper & Hedges, 1994; Hunter & Schmidt, 2001;



Lipsey & Wilson, 2001; Sutton, Abrams, Jones, Sheldon, & Song, 2000). Methods for

synthesizing cumulative evidence from studies using regression, however, have not yet

been well studied.

Regression has been widely used by researchers in different fields for predicting and

explaining the variation in outcomes of interest. Regression can also be considered as a

more sophisticated method, compared to correlation, because it involves more statistical

controls when studying relationships among variables. Without appropriate methods to

combine results using regression, a great deal of evidence can not be used. Excluding

regression studies sabotages the thorough understanding of research questions when

conducting a meta-analysis.

1.2 Potential Effect Sizes from Regression Studies

Statistics that can be found in regression studies are the raw regression coefficient or

slope and sometimes its standard error, the t statistic for testing the significance of the

slope, the standardized slope, and the R2, which is the proportion of variance explained

by the model.

A raw regression coefficient (slope) represents the expected increment in the

dependent variable when the focal independent variable increases one unit, while

controlling for other independent variables in the model. The magnitude of the raw

coefficient changes when the scales of the dependent and independent variables change.

This characteristic means the slope cannot be compared directly across models, unless all

the models use the same scales to measure both the dependent and independent variables.

The t statistic associated with the slope is more like a standardized estimate because each



t is the raw regression coefficient scaled by its own standard error. The t statistic itself has

less power to explain the magnitude of the slope, and it depends on the sample size. The

standardized slope is the raw regression coefficient standardized by the standard

deviations of the predictor and the outcome. It is scaled in a standardized unit. Therefore,

it can be compared directly across models. The explained variance (R2) represents the

proportion of the variance in the outcome accounted for by all the predictors combined in

a regression model. Ifwe wish to focus on variance explained by a certain predictor, then

the partial R2 value for that predictor will need to be computed by withdrawing the effects

of other independent variables. Hunter and Schmidt (1990) argued that using R2 to

represent the magnitude of effect loses the direction of the effect. They also stated

“variance-based indices of effect size make [variables that account for small percentages

of the variance which might be] important effects appear much less important than they

actually are, misleading both researchers and consumers of research” (p. 190).

1.3 Potential Problems of Synthesizing Regression Studies

One ofthe major problems arising when synthesizing regression studies is that the

potential eflect sizes discussed above are not comparable if the models included in the

synthesis do not all use the same predictors. That is, the effects of different variables are

partialed out, or held constant, when computing the effect of a focal predictor. Therefore,

the focal slope, no matter whether it is a standardized or a raw slope, has different

meanings across studies. This problem becomes complicated quickly when models

contain many predictors. Unless the extra predictors in some models are absolutely

independent of the focal predictor, which is never true, comparing the slopes or other



effect sizes from unparallel models is comparing apples to oranges. One solution to this

issue might be including only models that contain the same variables. However, it is

unrealistic to expect to find parallel models created for the same research question,

especially in education, where large numbers of variables are typically used to investigate

one phenomenon.

Another problem that arises when meta—analyzing raw slopes from a set of

regression studies is that the magnitude of the raw slope can change when the scales Of

the outcome and the predictors change. This implies that only when all variables are

measured using the same scales, and all models contain the same predictors in the studies

included in the synthesis, can slopes be compared directly.

1.4 Purpose of This Research

Since the solution of including only models that contain the same variables

measured in the same scales (so the raw slopes can be comparable) is impractical, the

current study focused on investigating methods for reducing the impact of unparallel

regression models by synthesizing scale-free correlations among the variables in the

model, which the standardized slopes are based on. Then the synthesized correlations can

be used to create a final regression model with standardized slopes as the synthesis result.

Two methods were examined in this study. One method uses a non-model based

multivariate generalized least squares (GLS) approach; the other method uses model

based factored likelihood estimation. These two methods were first examined empirically

by creating and analyzing four pseudo studies based on samples that were drawn from a

selected sub sample from a large national dataset. Then a Monte Carlo stimulation was



conducted to test the precision and stability of the two methods under different scenarios.



CHAPTER 2

LITERATURE REVIEW

Researchers in several fields have been trying to include regression studies in

their meta-analyses. Most of these syntheses have either oversimplified the situation, or

the methods proposed were limited to other fields and may not be applicable to education.

Among those methods, a more universal technique that was proposed in the early 1970s

to investigating regression coefficients at one time was to create a

hierarchical-linear—model-like model for modeling the variance among the coefiicients

(Hanushek, 1974). However, the method focused on quantifying the variance among the

slopes and required raw data along with some infrequently reported summarized statistics,

which may not be applicable in the meta-analysis context.

2.1 In Psychology

Raju, Fralicx, and Steinhaus (1986) proposed a “regression slope model” to adjust

for the variability of the slopes found among studies that originates fi'om the use of

unreliable measures. The model presented by the authors is

byx = Byx rxx + e

where by. is the observed regression coefficient for predicting y from x, Byx is the

unattenuated and unrestricted population regression coeflicient, rxx is the unrestricted

population reliability of predictor x, and e is the sample error associated with by, (p. 197).

The ultimate goal for assessing validity generalization (VG) is to estimate the mean

and the variance of the regression slope parameter (Byx) using the mean ofox (M3) and



its variance (VB). As Raju et a1. pointed out, regression slope models “should theoretically

be affected by scale differences in either or both of the predictor or criterion instruments

used across the separate validity studies. ....The use of the new models for studying

validity generalization, therefore, required that the scales for the predictor and criterion

variables be comparable across studies” (p. 199). As Raju, Pappas, and \Vrlliams (1989)

also pointed out, “[w]ithout the common metrics for the criterion and predictor variables,

it is almost impossible to interpret credibility intervals of the type used with the

correlation model. The use of the new models for studying VG, therefore, requires that

scales for the predictor and criterion variables be comparable across studies”(p. 903). In

addition to limiting scale comparability, the other requirement that is implied by Raju and

colleagues’ model is that only one predictor is involved in the model. This condition

might easily be achieved when studying validity generalization, yet it is usually not the

case in education studies.

2.2 In Epidemiology

Several reviews have been done that synthesize the slopes from dose-response

models, which are widely used for evaluating the relationship between dose (e.g., of a

drug or other treatment) and response. To create a dose-response model, researchers

assign values for different dose levels and use those values as a predictor to predict a

targeted response which is in the form of an odds ratio. Greenland and Longnecker (1992)

combined the slopes from dose-response models based on 10 published datasets. They

used techniques analogous to the standard inverse—variance weighting techniques that are

used in contingency data to analyze the differences among the slopes. The same approach



was adopted to study the relationship between individual consumption of chlorinated

drinking water and bladder cancer (Villanueva, Fernandez, Malats, Grimalt, & Kogevinas,

2003). In both meta-analyses, the dose levels in different studies were relabeled with new

values according to the same standards, and the outcomes were all odds ratios. Therefore,

the slopes are comparable.

2.3 In Economics

Meta-analyses of regression studies can be found in syntheses of demand studies.

The characteristic of demand studies that facilitates conducting a meta-analysis is that the

demand elasticities from different studies are typically all on the same scale, because a

demand elasticity, which is a regression slope, expresses the relationship between

demand and its determinant as the percentage change in demand caused by a 1% change

in the determinant. Crouch (1995) conducted a meta-analysis to synthesize 80 studies of

international tourism demand. Those studies produced 1,964 observations (i. e.,

regression equations) and 10,078 regression coefficients. The majority of included

demand elasticities concerned income, price, exchange rates, transportation cost, and

marketing expenditures. The author adopted the synthesis method proposed by Raju et al.

(1986), mentioned in the previous section. However, the regression coefficients were

Obtained from international tourism demand models that were not parallel and contained

more than one independent variable, which violated the requirement ofRaju and his

colleagues’ methods. The author was actually aware ofthe violation and stated that “the

value of b, may be affected by the inclusion of other explanatory variables” (p. 109), but

he did not justify his decision to include unparallel models. A series of articles pertinent



to meta-analyzing regression studies focusing on elasticity in economics can be found in

the special issue ofJournal ofEconomic Surveys published in 2005 (Vol. 19, Issue 3).

2.4 In Ecology

A recent review combining regression results is focused on summarizing the

relationship between population density and body size for mammals and birds (Bini,

Coelho, & Diniz-Filho, 2001). The authors used a conventional weighting scheme to

weight the slope by its standard error. It is not clear whether “body size” and “population

density” were measured on the same scales though they could have been. It might be safe

to assume that population density was measured on one scale across studies. However,

body size could be measured in terms of length, weight, body mass, or some other

measure. The authors did not mention how they dealt with the different units for the

predictor. Moreover, it is not clear if all 74 regression models included in this

meta-analysis used “body size” as the only predictor.

2.5 In Political Science

Lau, Sigelrnan, Heldman and Babbitt (1999) tried to combine the results from

both group comparison studies and regression studies that focused on the effect of

negative political advertisements on political campaigns. They found that about

one-quarter oftheir data points “come from ordinary least squares (OLS) or logistic

regression equations, and there is no universally accepted method for handling such data

in a meta-analysis” (p. 855). To avoid losing data, they decided to use I statistics

associated with the regression coefficients from regression studies to represent the



treatment (exposure to negative advertisements) versus control (exposure to no

advertisements or positive advertisements) mean difference effect, and then converted

each I value into d, by using d = 2t/(dj)1/2. They argue that therefore the converted ds can

be combined with other ds from group comparisons. The authors cited Stanley and Jarrell

(1989), who claim the t statistic has no dimensionality therefore can be combined directly

when the units of independent and dependent variables are not the same across studies, to

justify the usage of synthesizing 1‘ statistic for the slopes from regression models in their

synthesis. However, the impact from different independent variables being used in

different models still exists.

2.6 In Education

Hanushek (1989) summarized 187 studies studying the impact of differential

expenditures on school performance in 38 separately published articles or books, using

the “vote-count” method, which simply ignores the magnitudes of efl‘ects, and counts the

numbers of studies with significant positive estimates, significant negative estimates,

nonsignificant positive estimates, or nonsignificant negative estimates. To avoid the poor

statistical properties of the vote-count method (Hedges & Olkin, 1980), Greenwald,

Hedges and Laine (1996) tried to summarize half-standardized slopes in a review of

educational production functions examining the same topic as Hanushek. However,

fundamental problems for synthesizing the results from the production function still exist:

The models usually do not involve the same predictors; different outcomes might be used

in different studies; and the scales of all the variables may not be identical across studies.
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2.7 The Most Recent Study

In a recently article, Peterson and Brown (2005) conducted an empirical study and

derived a formula for converting standardized slopes (ofien denoted as 63 even though

they are sample estimates) reported in regression studies into Pearson’s correlations (rs)

in order to include slopes and analyze them with other correlations using conventional

methods designed for synthesizing correlations. The authors searched 35 journals from

disciplines including psychology, consumer behavior, management, marketing, and

sociology from the period of 1975-2001. They included only studies with both 65 and rs

reported at the individual level. A total of 1,504 corresponding ,Bs and rs were identified

from 143 articles containing 160 data sets and 270 regression models. Given the

relationships shown in the ,Bs and rs they collected, the authors derived an equation r

=.98,8 + .05)», where A is an indicator variable that equals 1 when ,3 is nonnegative and 0

when ,6 is negative.

Peterson and Brown’s research is the first published study that mainly focused on

incorporating the estimates from regression studies with those from correlational studies

in the meta-analysis context. The authors did notice the relationship between 63 and rs

can be impacted by features such as sample size and numbers of predictors in the

regression model. However, they oversimplified the situation and did not really utilize

those features to create their formula for converting [is to rs.
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CHAPTER 3

METHODOLOGIES

As mentioned in the introduction, two major problems for incorporating

regression studies in meta-analysis are that 1) different predictors may be used in

different primary studies studying the same topic, and 2) predictors and the outcome are

often measured in different scales across studies. As presented in the literature review

section, most ofthe meta-analyses that have been done in different fields are either solely

focused on simple regression studies where the same scales for the predictor and the

outcome are comparable across studies, or the meta-analyst simply ignored the fact that

the slopes may have different meanings because different predictors are used across

studies. In order to combine the results from regression models in a general way and to be

more precise in estimating the effect of the predictors by considering the impact from

unparallel models, the currently research focuses on utilizing the zero-order correlation

matrix from each study included in the meta-analysis to calculate summarized

standardized slopes for a final regression model, which is the result of synthesizing

regression studies.

3.1 Focusing on the Zero-order Correlations

Instead of synthesizing slopes directly, the two methods examined in this study both

start by summarizing the zero-order correlations among variables in regression models.

As Hunter and Schmidt (2001) pointed out:

A multiple regression analysis of a primary study is based on the full zero-order
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correlation (or covariance) matrix for the set of predictor variables and the criterion

variable. Similarly, a cumulation of multiple regression analyses must be based on

a cumulative zero-order correlation matrix. (p. 475)

Three major reasons make combining correlations beneficial. First, focusing on the

correlations among the predictors and the outcome across studies, rather than trying to

combine the slopes directly, disposes ofthe problem that slopes have different meaning

when the models contain difierent predictors. This is because correlations among the

variables used in a regression model are “zero-order measures” for the relationships,

which means that the correlations between two variables will not change when other

predictors are added into the model. Other than the advantage of stability, focusing on

correlations also allows us to get by the problem of different scales used in measuring the

same predictors in different models, because correlations are metric free and can be

combined directly (under certain assumptions, which will be discussed later). Moreover,

with the focus on correlations among the variables in the regression model, the results

from correlational studies can be easily combined with the results from regression studies.

This expands the set of studies that can be synthesized, because studies reporting the

relationship between any pairs of variables of interest can be included.

3.2 Constructing the Standardized Regression Model

Once the selected correlations that the regression models are based on are

combined appropriately, the summarized correlations are used to create a final regression

model with standardized slopes, because standardized slopes are firnctions of the

associated correlations. The relative importance of the predictors can then be appraised.
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Also, the variance explained by each predictor (e. g., the partial R2) based on the final

model can also be calculated if it is of interest.

3.3 Proposed Methods

Two methods for summarizing regression results based on the zero-order

correlations that allow unparallel models to be combined were investigated in this

research. One method uses a non-model based multivariate generalized least squares

(GLS) approach (see Becker, 1992; Becker & Schram, 1994; Gleser & Olkin, 1994;

Hedges & Olkin,1985; Raudenbush, Becker, & Kalaian, 1988); the other method uses

model based factored likelihood estimation through the sweep operator (SWP). As

indicated in Becker (2000), the GLS method has been typically used in multivariate

meta-analysis. This method was used in the current research to compare with the SWP

method, a new application to meta-analysis. Details for each method will discussed

separately.

Before the methods are presented, it should be noted that, as with all parametric

statistical methodologies, the methods proposed here require certain assumptions. A

general assumption that is required for each model included in the meta-analysis is that

all the predictors and the outcome are measured appropriately, and they are related to

each other approximately linearly, except for the presence ofdummy variables. Those are

the major assumptions for any regression study. In addition, we have to assume that

multicollinearity is not a problem for each of the regression models. That is, the

predictors are not highly correlated with each other in one model. In the primary studies,

the authors may or may not report checking these assumptions. Yet we have to assume
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the condition of linearity is not violated to work on the correlations in the meta-analysis,

and we have to assume the absence of multicollinearity to build a meaningful final model

and estimate the synthesized standardized slopes based on individual ones. Other specific

assumptions for each method will be discussed in the presentation of each method.

3.3.1 Multivariate Generalized Least Squares

If we think about the zero-order correlations between variables (predictors and

outcomes) from regression models as the effect sizes in a synthesis, the problem of

meta-analyzing those correlations is similar to meta-analyzing multivariate effect sizes

from studies. Each study may contain some similar predictors and some different ones,

that makes the correlations produced in each study a subset ofthe correlations from the

final model, which need to be determined.

Several methods for synthesizing correlations, in terms of the correlation matrices,

have been investigated and discussed (e.g., Becker & Schram, 1994; Furlow & Beretvas,

2005). To combine subsets of multivariate outcomes in order to calculate the standardized

slopes for the predictors in the final model, the method first proposed by Raudenbush,

Becker, and Kalaian (1988) based on generalized least squares (GLS) is adopted in the

current research. To illustrate the application of GLS to synthesize regression results, an

auxiliary example is used. The same example will be used to illustrate the next method as

well.

Suppose four regression studies are to be included in a synthesis. All of them

studied the same outcomes Y“, where k is study number (k = 1 to 4) and 1 represents

subject I in study k. Study 1 contains only predictor X1; Study 2 contains both X1 and X2;

15



Study 3 contains X1, X2, and X3; Study 4 contains X1, X2, X3,and X4. The estimated

regression models with standardized slopes (B s) are as Shown below for the four studies.

Study 1: Y1, = BHX”, for I =1 to n1

Study 2: Y2, = 321X211 +322X221 forl =1 to n2

Study 3: Y3, = B31X311+B32X321 +B33X33, for I =1 to n3

Study 4: IQ, = B41X411+ B42X421+ B43X431+ B44X44, for 1 =1 to n4

where,

XH, is the value of variable X1 for subject I in study k,

Xm is the value of variable X2 for subject I in study k,

XB, is the value of variable X3 for subject I in study k,

Xk4, is the value of variable X4 for subject I in study k, and

nk is the sample size of study k.

Following the example above, the vectors of zero-order correlations of the four

studies (rk, k=1, 2, 3, or 4) with elements rk(variablc 1 variable 2) in the vectors are as follows.

In the following expressions, for simplicity, only the numerical part of the variable label

is used inside Of the parentheses (i.e., 4 indicates ofX4).
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"Kim”

’4(Y2)

_"3(Y1) - r403)

rzm) r3(rz) r404)

_ _ _ r3(Y3) __ 74(12)

r1_|:’l(Y1):|’ r2 — r20,” , r3 - , and r4 —

r202) r302) r403)

r303) '4(14)

_"3(23) _ "4(23)

'4(24)

_"4(34) _

To use the GLS method to summarize multivariate outcomes, we need an identity

matrix, W, to identify which correlation is estimated in each study. The relationships

among the correlation vector, indicator matrix, and the population correlation vector (p)

is shown below.
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The estimated population correlation vector ([1) contains the synthesized

correlations for the full model, if we assume the final model contains the outcome Y and

all the four predictors. It can be computed as:

i1= 0V2“W)"Wfi“r, (2)

where 2‘. is the large variance-covariance matrix containing the variance-covariance
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matrices (53, s) of all the studies included in the meta-analysis on the diagonal, and zeros

in the upper and lower triangles. That is,

'21, 0 0 ol

. t 0

2: O 2 .0 . (3)
o o 2, o

_o o 0 2‘2,_  

The components in E, depend on the intercorrelations of the predictors and the

outcome, as well as the sample size in study k. The variance of each correlation in each

study can be obtained based on second-order and fourth-order moments ofthe samples

based on large sample theory (Pearson & Filon, 1898; Olkin & Siotani, 1976), which can

be simplified to

(1“ rk(ij)2)2
.2 _

O'k (7'9“) —

"k

for k = 1, 2, 3 and 4; i= Y, X1,X2,X3, and X4;j = Y, X1,X2,X3: and X4; i=fij. (4)

The covariance between any two correlations in which there is a common

variable is

6,, (rij, rij') =

1 2 2 2 3

[5(2rkw') " ’kwfimxl ‘ ’kw) " rice") " rum) + rk(jj')]/ "k, (5)

l9



The covariance between any two correlations that do not involve any variables in

common is

6k (ry',r,'y') =

1 2 2 2 2

[‘2‘ rk(l]‘)rk(i'j)(rk(ii) “km + rkU'j)+rk(i'j))+"(ii')rk(11")+rk(ij?rk(ji') “

(6)

(’kunrkco’km +"k(ji>”k(m’k(m +’k(i'i)rk(i'j)rk(i'j1+’k(j'i)"k(j'j)rk(j'o)l/"Iv

Therefore, to fit on a page, the full variance-covariance matrices for the first two

studies stacked to form the large matrix for GLS look like
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Once the population correlations are estimated based on the correlations from all

the studies, the standardized slopes can be calculated for the final model with all four

predictors in it based on the estimated correlations. The value ofthe standardized slope is

a function of the correlation between that predictor and the outcome, as well as the

correlations that exist among the predictors themselves. According to Cooley and Lohnes

(1971) as well as the discussion that is more focused on the synthesis context in Becker

and Schrarn (1994), we can set up the full correlation matrix (R) containing all the pairs

of synthesized correlations in the final model, where there are (p-l) predictors and the pth

variable is the outcome variable. To sirnplely use algebra to calculate the standardized

slopes, the R is partitioned as

  

 

 

(1.0 r12 r13 r1,p-1 rlp

7‘2] 1.0 723 r2, p-l r2p

R = r31 r32 1.0 r3, p-l r3p

041.1 rp-1, 2 rp—I. 3 1-0 rpm

\rpl rp2 rp3 rp, [9-1 1.0

R11 I R12

R21 I 1.0

The standardized slopes vector (B) can be calculated by

B = Rrr'erz.

3.3.2 Factored Likelihoods through Sweep Operators

The second approach examined for synthesizing regression results, based on a
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multivariate normal distribution model, uses likelihood-based estimation. The maximum

likelihood estimation investigated in the current study is based on the factored likelihood,

which was first proposed by Anderson (1957) to deal with missing data.

The usage of factor likelihood allows us to obtain the maximum likelihood

estimates noniteratively, and no imputation will really be needed to fill in the data on the

predictors that are missing from the model. This original idea of factored likelihood can

be understood more easily by illustration using the bivariate case. Suppose two variables

Xand Yhave a bivariate normal distribution. There are n observations on bothXand Y,

and an additional m observations on X. The data may look like:

XI, “'2an ertlrani-m: and

Y1, ..., Y”.

The bivariate normal density for the two variables with mean Pr and u, ,

variances of, and a; , and covariance (I,ry can be denoted as

N(X9Y|I‘1X9HYroi’aO-§UOXY)' (10)

The density function of the data can then be revised as the product of the marginal

density ofXand the conditional density of Y given X, which is

N(X2Ylflxailyaofr,0§uoxy)=N(Xlilx,°'§{)N(Yla+ByxX,Gi.x), (11)
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where a is the regression constant, and I319: is the regression coefficient of Y on X, and

of,“ is the residual variance of Y given X. The relationships among the parameters on the

left-hand side and those on the right-hand side in the density firnction (11) are

or =I1Y ’Byxllx zily‘llxcxr/Gira

Bu=On/Oir,and (12)

2 2 2 2 2 2 2 2 2

The five parameters on the right-hand side in (11) are one-to-one functions of the

five parameters on the left-hand side.

Based on the density function in (11), the likelihood fimction for the dataset with

n cases of Y and (n+m) cases ofXcan be factored into a product of likelihoods

n n+0!

HN(X.-,Y. wmy pinion) H N(X,- In .6?)
i=1 i=n+l

n+m
n

(13)= [ITMXI qu ,oi)][TIN<Y.- la+l31rxXn°ir-X)] -
i=1 i=1

The factoring permits the independent maximization of the two bracketed

expressions in (13), since the parameters in the expressions are distinct. That

is, “X anda} do not occur in both products as they do in the first line of (13). By

maximizing the likelihood in the second line of (13), the maximum likelihood estimates

of those parameters can be obtained and the original parameters can be derived as shown

in (12). In other words, the parameters (i.e., the 11X ,uy ,oipi, and on in (13)) are
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transformed in the way that the likelihood function is factorized into distinct factors (i.e.,

the p X, Oi, Oi, BYX, and “fax in (13)). Therefore, the original estimation problem is

decomposed into a series of smaller estimation problems that can be solved by computing

and manipulating the variance-covariance matrices for selected subsets of observations.

One important assumption of using this method is that the mechanism Ofmissing

predictor(s), which produces blocked missing data, is assumed ignorable. As the first

depicted by Rubin (1976) and later elaborated by Little and Rubin (2002) and many other

researchers studying missing data methods, the missing-data mechanism is ignorable if

the parameter ofmissing data and the parameter of observed data are not functionally

related. In the current application to synthesize regression models, this assumption means

that a predictor that is not included in a model is lefi out randomly and the missingness is

not related to any of the existing predictors. This can easily happen when we include

studies using government released large-scale datasets, in which many variables are

measured and can be used, along with some other studies, in which the data are collected

by individual researchers and fewer variables are measured because ofthe constraints of

time and money.

To illustrate how exactly the factored maximum likelihood method for missing data

can be applied to the issue of combining regression results, the example used to illustrate

the GLS method is used again to facilitate the explanation.

Figure 3.1 portrays how the issue of combining regression results is similar to the

issue of handling missing data. The lefi column in Figure 3.1 contains four regression

models for synthesis, as described earlier. The columns on the right side show the data

structure for each model.
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Y I 2 3 4

YII X111
Stud 1:

‘ y. g Y12 X112 E
Y1, =BHX“, forI=1 to 58 1:. . . g

Ylnl X1 1n] m a,“

7;.

1’21 X211 X221 5'
.

(I: Z

SEMYE- . E Y22 X212 X222 5

N . A

Y2n2 X21112 4X22”2 UH

Study 3: Y31 X311 X321 X331

~ ~ ~ ~ 3 'Y32 X312 X322 X332
1'21 = B31X311 +332X321 + BssX331 42' . , ;

_ u ' '
for I — 1 to 74 1,3"3 X31” X32” X33113

Y41 X411 X421 X431 X441

SPIN}: . . 5: Y42 X412 X422 X432 X442

XII = B41X411+B42X421 + B43X431 a. 3 ' : X. °

+1§,4X44, for 1 =1 to 82 A Y4,“ X41124 X42,,4 43"4 X4444         
Note. 17“: estimated score for person I in study k; X2,-1 : score on variable i for person I in

study k flab-z the estimated standardized slope for variable i in study k; nk : sample size

for study k.

Figure 3.1. The Models for Four Created Studies and the Structure of the Data

Since the ultimate goal ofusing this method is to produced a final regression

model with standardized slopes, it is helpful to think of all the hypotheticale and Y5

presented in Figure 3.1 as standardized scores (2 scores) with a bivariate distribution

(Study 1) or multivariate distributions (Studies 2, 3, and 4). When the original data from

three studies are concatenated in the way shown in the columns on the right side in Figure

3.1, a predictor that is not included in a study-specific model (e.g., X3 in study 2) can be

seen as a missing predictor from the final full model, as described earlier. The final model

in this example is a model with all four predictors in it. The data for the missing
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predictors in studies constitute missing blocks in the multivariate dataset afier combining

studies 1, 2, 3, and 4. Therefore, the factored likelihood method described for the

bivariate cases earlier can be applied to estimate the parameters of interest (which will be

the correlations among Y, X1, X2, and X3) in this multivariate example.

As previous discussion suggested, when a multivariate data set contains blocks of

missing observations, the original estimation problem can be decomposed into smaller

estimation problems by factoring the likelihood of the observed data into a product of

likelihoods whose parameters are distinct. Therefore, the likelihood ofthe estimates of

the parameters in the current example with four studies can be written as
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This method eventually yields ML estimates of the synthesized mean vector ( ii)

and the variance-covariance matrix (E) based on the four studies:

_ 131’ - (31' ar1 5Y2 5Y3 5’Y4

[IX] 612 612 5'13 014

fl= [‘3’2 , é: 5% 5'23 024

[1X3 1232 634

L.‘I1X4_ _ 6-42 ..    

Since the values of the predictors and the outcomes were treated as 2 scores with

means equal to zero and standard deviations equal to one, the mean vector (fr) would be

a vector of zeros; the variances of variables Y, X1, X2, X3, and X4 on the diagonal ofmatrix

E are expected to be ls; the covariance of any two variables on the upper triangle in

Etrix E would be the synthesized correlation between two variables based on four

studies. Once the correlations are combined across studies, they can be used to calculate

the standardized slopes for the final model with all four predictors.

To determine the factored likelihood estimates of E , sweep operators were

adopted to figure out the regression coefficients (the as and [is at the right side of equal

sign in expression (14)) as well as the residual variances (Ci2 s in the same expression).

Then the reverse sweep was used to obtain the estimates ofthe parameters of interest as

shown in (16).

The sweep operator and reverse sweep operator were originally defined by Beaton

(1964) and later redefined by Dempster (1969) in the missing data context. In this

research, the sweep operator from Dempster (1969) was adopted, which is defined as
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follows:

Ap*p matrix M is said to have been swept on row and column c ifM is replaced

by anotherp*p matrix N whose element 11,; is related to the ijth element mi]- ofM as

follows:

”cc: 'I/mcc

"to: mic /mcc

ncj= mcj /mcc

(15)
— *

nij— mij- mic mcj /mcc

for 1' ¢ c andj ;é c. That is, ifM is a 3*3 matrix,

"’11 ”'12 "’13

M = "’12 "’22 "’23 -

”’13 "723 "'33

When we apply the rules above and sweep row and column 1 out ofM to get another

matrix N, the matrix N will look like

—1/m“ ”112/"’11 ”113/"'11

_ 2

N— "In/"’11 ”122”"12 “"11 "’23-’"13m12/m11 -

2

"In/”’11 "’23-’"13mrz/m11 ”'33-’"13 ”"11

For brevity, using the terminology defined in Beaton (1964), the matrix N can be

denoted as N=SWP[c]M. So, the example above can be expressed as
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’l/mn "112/"’11 "’13 “"11

N=SWPIIIM= "In/"’11 "52”"1122/"111 m23—m13mu/m“.

2

Mrs/"’11 m23‘m13mrz/m11 "’33—’"13 lmu

The result of successively applying the operations SWP[c1], SWP[C2],.. . SWP[c,]

to matrix M can be denoted by SWP[c1, 62,.“ c,]. The operations are carried out

successively, and each stage uses the output of only the previous stage.

One ofthe important properties of the sweep operator is that it is very easy to undo

or reverse. Based on algebra, we can reverse sweep by replacing the 17th element 11,; in N

matrix with the ijth element mi,- and obtain the original M matrix as

”tic= ‘nr‘c /ncc

mcj= "ncj /ncc

my: 715- nic ‘an /ncc- (16)

The reverse sweep is denoted as M=RSW[c]N.

‘1/"11 ”’12 “’11 “"13 /"11

2

RSWlll ”112/"11 "22""12 /"11 "23‘"13"12/"11

2

‘"13 /"11 "23 ‘"13"12 ”’11 "33 "’13 /”11

"’11 "'12 "’13

= "’12 ”'22 "'23 =1“-

"’13 "’23 "’33

One important application of the sweep operator is to obtain maximum likelihood
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estimates for regression. That is, if we have a square matrix of intercorrelations ofcertain

variables and choose one variable to sweep out, we are going to adjust all the remaining

variables by removing the regression on that variable, which is identical to regressing the

remaining variables on the swept-out variable.

For example, let matrix R be the correlation matrix ofpredictorXand outcome Y

After the operation of sweeping on X (row and column 1), the element [212 (r12) in

the matrix H below becomes the standardized coefficient of X, and the element I122

(1— 11175 ) is the residual variance.

H=SWP[1]R=|:—1 r” ]:[h” 12,2].

rxy 14,127 "12 h22

The sweep operator can also be used to find the maximum likelihood estimates for

multivariate regression. For example, matrix Q represents the correlation matrix for

predictor variables X1, X2, and the outcome Y.

X1 X2 Y

1 "12 rrr

Q= ’12 1 "2Y -

’iY "2Y 1
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To calculate the standardized slopes for the multivariate linear regression ofX2

and Y on X1, we sweep on the row and column 1.

1 r12 r”, ‘1 ’12 ’ir

SWPIIIQ=SWPUI ’12 1 ’21' = ’12 1‘022 "2Y‘r1r’12

r” r2), 1 ’iY rzr—rw’iz 1‘61;

811 812 813

= 812 822 823 =G-

813 823 833

The elements g12 (r12) and g13 (r1, ) in the matrix G are the multivariate

322 323] .
ISstandardized regression coefi‘icients for regressing X2 and Y each on X1; [

g23 g33

the residual covariance matrix ofX2 and Y.

If we go further and sweep matrix G on row and column 2, and obtain a new

matrix F,

‘1 ’12 "1r

SWP[2]G = SWP[2]SWP[1]Q = SWP[1,2]Q = SWP[2] r12 l—rlz2 r2), -r1,,r12

’ir "2Y "ii/"12 1""12Y

“1"122/(1-622) "12/(1—622) ’ir”12(’2r"ir’12)/(l—r122)

= rum-422) 441-422) (r21 mama—4’2)

"1r "12(r21' -r1Yr12)/(l—r]22) (rzy “’iY’12)/(1—’122) (l’fii)-(rzr “’ir’12)2 /(1""122)

f11 f12 f13

= f12 f22 f23 =F»

f13 f23 f3;
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the elementsfn = (4,, 4.2141 -'1yr12)/(1- 42211414133 = ((4. -r1yr12)/(1-r122)) in

matrix F above are the standardized regression coefficients for Y regressed on X; and X2;

f33 = ((1_"1Ir)"("2r —r1,r12)2 /(1—r122)) is the residual.

Below are the explicit steps showing how the sweep operators and reverse sweep

operator can be applied to find the synthesized correlation matrix of the variables

included in the four studies, and to create the final model as a summary, using the

auxiliary example created in the previous section.

1. Find the maximum likelihood estimates of the correlations between the variables that

are used in a_ll_ studies included in the synthesis. In the example described earlier, Y

and X. are present in all four studies. The correlation between the two variables can

be estimated by calculating the weighted mean correlation

Em) = ("1 X "1(Y1) + "2 X rzm) + "3 X "3(r1) + "4 X "4(Y1)) /("1 + "2 + "3 + "4) 3

1 7.

and the mean correlation is stored in matrix 0 as __ (Y1) .

r.(y1) 1

Find the maximum likelihood estimates of the standardized slopes (82“,, and

132111) and error variance (6'22”) for regressing X2, which is the second-most-used

variable, on Y and X1 based on the samples containing all those variables. To use the

sweep operator to obtain these estimates, we first create a correlation matrix, S234,

with weighted mean correlations among variables Y, X1, andX2, based on studies 2, 3,

and 4. That is,

Em) = ("2 X "2(Y1) + "3 X "3(Y1) + "4 X "4(Y1))/("2 + "3 + "4) ,

7.12 = ("2 X rzrz + "3 X "3Y2 + "4 X ’4r2)/("2 +"3 + "4) ,
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;':(12) = (”2 X r2(12)+ ”3 X ’3(12)+ "4 X r4(12))/(n2 + "3 + "4) 3 and

1 F«(m 7-02)

5234: E0“) 1 2(12) '

F-(YZ) 7-112) 1

To obtain the slopes, we sweep Yand X1 out of S234 as defined in (15).

l 7-(Yl) £012) sweeped sweeped 332“

SWP[Y,1] E(Yl) 1 7:02) 3 sweeped sweeped 3921.17 .

- — * c .2

r-(Y2) ”(12) 1 32H 321.1' 0'2.r1

The “sweeped” in the matrix above indicated the elements, which are were of interest,

were “swept out” the matrix using (15). The last column/row in the matrix show the

estimates of interest, 32m , 3213' , and 6'22”.

3. Sweep Y and X1 out ofmatrix 0 using (15) to obtain a new matrix A

A =SWP[Y,1]O :

—1~(7.(r1)2/1“7.(Y1)2) E<Yl)/1‘F°(Yl)2]_[““ 0‘2]=A
— — 2 — 2 _
r°(Yl) l1- 7:021) —1/(1 - 72(Y1) ) 012 022

and augment matrix A to form a new matrix P, with the estimated standardized slopes

(82,.l and 132”.) and error variance (6'22” ) from the previous step.
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P: 012 “22 3213'

32H 321.1' 02211

The matrix above looks like the matrix we would obtain when sweeping out the

rows and columns 1 and 2 when we have a 3*3 matrix—even though the estimates in

matrix A and the estimates of slopes and the variance were not based on exactly the

same samples. Establishing desired statistics based on different samples allows us to

“borrow” the information from other studies when we reverse the operator at the end

of all calculations.

Find the maximum likelihood estimates of the standardized slopes (133),.12 , B31.” , and

B32’ r1 ) and error variance (532112) for regressing X3, which is the third-most-used

variable, on Y, X1, and X2. Again, to use the sweep operator to obtain these estimates,

we create a correlation matrix, S34, with weighted mean correlations among variables

Y, X1, X2, and X3, based on study 3 and study 4. That is,

7“3(1'1) = ("3 X 601) + "4 X ’4(r1))/("3 + "4) 3

7.02) = ("3 X ’3(Y2) + "4 X "4(72)) /("3 + "4),

7-(Y3) = ("3 X "3(Y3) + "4 X "4(r3)) /("3 + "4) ,

7,02) = ("3 x r302) + 114 x r4(12)) /(n3 + n4) ,

7,03) = (123 x r303) + 124 x r4(13))/(n3 + n4) ,

7{(23) = ("3 x r303) + "4 X "4(23))/("3 + "4) 3 and
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r 1 74m E(Y2) 7-0311

7-111) 1 7412) 7-113)
S34:

7-02) F~02) 1 E123).

  17-03) 3113) 7-123) 1

To obtain the slopes, we sweep Y, X1, and X2 out of S34.

sweeped sweeped sweeped 83,5121

sweeped sweeped sweeped B3112

  

SWP[Y,1,2] S34 = .. .

sweeped sweeped sweeped B32311

_ B3Y.12 B3112 B32.r1 6'32.r12_

The last column/row in the matrix show the estimates of interest, which

A A A A 2

are B3r.12 , B3112 , B3221 3 and 03m -

Sweep X2 out of matrix P to obtain a new matrix B,

bu bl2 513

SWP121P= biz bzz bzs :11,

913 b23 b33

and augment matrix B with the estimated standardized slopes (133,412 , B31.” and

B3211) and error variance (632112) obtained from previous step to for a new matrix

T,

—‘

b1 1 b12 b1 3 337.12

T: bl2 [’22 b23 33112

[’13 [’23 [’33 B3231

_ 3r.12 B31.Y2 B3221 0'33.r12_  W
»
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6. Find the maximum likelihood estimates of the standardized slopes

(38412123 , 1141.st , 1§42.1’13 3 and 1{143312) and CH0? variance (531123) f0? regressing X4

on Y, X1, X2, and X3 based on the studies with all those variables in the model. Since

only the last study uses all five variables, the sweep operator will be applied to the

correlation matrix based on study 4 only. We sweep Y, X1, X2, and X3 out of the

correlation matrix of study 4.

I— —I

1 r4(r1) r402) r403) "4(Y4)

’40'1) 1 r402) ’40 3) X404)

SWP[Y,1,2,3] X402) X402) 1 ’4(23) "4(24)

r403) "4(13) "4(23) 1 r4(34)

  _"4(Y4) r404) ’4(24) r4(34) 1

_ Sweeped Sweeped Sweeped Sweeped B41123 1

Sweeped Sweeped Sweeped Sweeped B41123

= E Sweeped Sweeped Sweeped Sweeped B42113 -

Sweeped Sweeped Sweeped Sweeped 3843.le

  __ B4Y.123 B41323 B42113 343112 02.7123,

The last column/row 1n the matrix show the estimates 84,4123 , 341.),23 , B42),13 , 343.er ,

. 2

and 04.1323 '

Sweep X3 out of matrix T to obtain a new matrix C,
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011

012

SWP[3]T =

613

 £14

012

622

C23

024

613

023

033

614

624

C34

 

and store the new matrix with the results Of step 6 as follows and denote it as U.

6'11 6'12

C12 . 022

013 623

614 024

LB4r.123 341.123 

013

5'23

633

C34

A

B42.Y13 43.Y12

B4Y.123

B41.Y23

B42.Yl3

B43.Y12

 ~2

0'4.r123 3

8. To obtain the maximum likelihood estimates of the correlation matrix of Y, X1, X2, X3,

and X4, we conduct the reverse sweep operation on the matrix U as defined in (16).

The reversed matrix is the summarized matrix with the off diagonal elements equal to

the combined correlations.

The procedure described above can be represented concisely by the expression

SWP[4]

RSW[3,2,1,Y]

 

(-

 

SWP[3]

SWP[Y,1]

r-(YI)

32m

B3Y.12

B4Y.123

39

X1 X2

r-(Yl) 32m

1 321.11

B ‘2
21.x 02.1’1

331.12 33221

341.st B42113

X3

331212 W

331.1’2

332.14

.2

03.er  
. ./

343.er

X4

§4YJZ3

E41123

§42.Y13

B43112

. 2

04.1123) 



Before the resulting mat1ix can then be used to calculate the standardized

coefficients ofthe final model with Y as the outcome and X1, X2, X3, X4 as the predictors,

an adjustment is needed to calculate the coefficients using the summarized matrix. That is,

the diagonal elements in the summarized mat1ix need to be adjusted to 1 if they were not

one after reversing the matrix using the reverse sweep operation. In this example, Y and

X1 are the two variables used in all four samples and in the correlations with themselves

should exactly equal to 1. Once the values on the diagonal in the synthesized correlation

matrix have been adjusted, the expression (8) can again be used to obtain the

standardized regression slopes.

3.4 Data Generation

SAS/IML (SAS Institute, 2002) version 9.1 was used to generate the desired data

to test and compare the results from GLS and SWP. The precision ofthe results from

those two methods could be impacted by the features ofthe models included in the

meta-analysis, such as the number ofpredictors, intercorrelations among the predictors

and the outcome, and the sample size in each model. SAS/IML was programmed

according to the designed parameters, as described below, to generate subject-level data

based on the assumption of normality within each study included in the synthesis. The

Cholesky decomposition was used to obtain data with the desired relationships defined in

the intercorrelation mat1ix assigned to each study in the synthesis. Once the data for four

studies with the desired sample sizes were obtained, the two methods were used to

calculate the summarized correlation matrices. The standardized slopes for the four

predictors and their standard errors were then computed based on the summarized



correlation matrices to compare the precision and stability of the two methods. The

example SAS codes programmed for GLS and SWP can be found in Appendix A and

Appendix B.

3.4.1 Choice of Parameters

The parameters that were varied were the number of predictors in each model (p),

the intercorrelations among the predictors and the outcome (ps), and the sample sizes of

the studies included in a synthesis (NS). The parameters that did not change were the

number ofthe predictors in the final model (four), and the number of studies included in

the synthesis (four).

Number ofpredictors. The numbers of predictors in the models in this simulation

ranged from one (p=l is a simple regression or Pearson’s correlation) to four (p=4 is

multiple regression with four predictors). More than four predictors are often used in

many regression studies. For the purpose of the current research, four predictors are

sufficient to capture the different patterns of missing predictors from the final model. As

shown in Figure 3.2, four sets of regression models (Patterns 1, II, III, and IV), each with

different missing predictor patterns for the four studies included in one meta-analysis,

were synthesized using the proposed methods. The studies in each of the four sets of

regression models were arranged in certain patterns, from the study containing fewer

predictor(s) to the study containing more predictors, to show different numbers of

predictors missing in each of the four included studies. The shaded blocks for each of the

four studies in each pattern indicate the predictors that were included in that study. For

example, in Pattern I, the first study used only predictor X1 to predict the outcome Y,
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while the fourth study used predictors X1, X2, X3, and X4 to predict the outcome Y.

Pattern HI Y

1

2

3

4

 
Figure 3.2. Five Sets of Regression Models with Different Numbers of Predictors

Missing from Studies.

Intercorrelation matrix. The intercorrelation matrix, containing the correlations

among the outcome and predictor(s) in each study, was set to be the same (fixed effects)

or varied (random efi‘ects) across the studies in a synthesis. In each matrix, the

correlations were designed based on one principal: If there was more than one predictor

in the model, the correlation between any pair of predictors was designed to be equal to

or smaller than any correlation between any predictor and the outcome. This is consistent

with the idea that multicollinearity was not a problem in the original studies.

According to Cohen (1988), correlations of .1, .3, and .5 are small, medium, and

large, respectively. In social science, the results from the correlation studies for testing
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validity of a measure can easily go beyond 0.5. Therefore, in the first matrix, the largest

correlation between a predictor and the outcome in the current simulation research was

designed to be .6 to represent a large predictive effect from a variable. The smallest

correlation between a predictor and the outcome was designed to be .25 to capture a

trivial relation but worth keeping in the regression model. The correlation between any

pair of predictors was designed to be .25 or less to represent small but existing

collinearity among the predictors.

Following the rules described above, the first intercorrelation matrix (R1) for the

outcome Y and the four predictors X1, X2, X3, X4, was formed. The corresponding

standardized slopes (6 Is) and the R2 based on the correlations specified in the matrix are

Y X1 X2 X3 X4

’1 .6 .4 .3 .251

.6 1 .25 ,1 .05 fi11=0.5161;fl12=0.2253;,613=0.1886;614:0.1734.

R1: .4 .25 1 .15 .1 RAT-500'

.3 .1 .15 1 .15

_.25 .05 .1 .15 1_  

To test the condition where there was no multicollinearity present, the second

intercorrelation matrix (R2) was designed with correlations identical to those in the first

matrix between the outcome and the predictors, but removing all the correlations among

predictors. The intercorrelation matrix and the corresponding standardized slopes (8 25) as

well as the R2 are
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1 .6 .4 .3 .251

.6 1 0 O O

= 1321:0-6; A 22: 04; [123:0-3; .324: 0.25.
R. .4 0 1 0 0 112:.673.

.3 O 0 1 O

_.25 0 0 0 1_  

To test the scenario that important predictors were being left out in some studies, the third

matrix was designed by reversing the order of correlations between the outcome and the

predictors in R1. The intercorrelations of the Xs were rearranged accordingly. The

intercorrelation matrix and the corresponding standardized slopes ([3 38) as well as the R2

are

25 1 15 -1 ~05 1131:01734;1332=0.1886;1333=0.2253;534:0.5161.

R,= .3 .15 1 .15 .1 R2=.500.

  

Then the correlations among predictors in R3 were removed to form R4 to test the

condition where no multicollinearity was present when the predictor with a stronger

relationship with the outcome tended to be lefi out. The intercorrelation matrix and the

corresponding standardized slopes ([3 45) as well as the R2 are

1 .25 .3 .4 6

.25 1 0 O 0

= ,841:O.25; fl42=0.3; 343:0.4; Bur-0.6.

R. 3 0 1 0 0 R2=.673

.4 O O 1 O

_ .6 0 0 0 1 _  



Combinations ofmatrices conditions. The same correlation matrix will be applied

to all four studies in a meta-analysis (under fixed effects), in Condition 1 to Condition 4

(in Figure 3.3). The two methods were also examined when the matrices were not all the

same across studies. A mixed-effects model for the synthesis that contains the Studies

based on the matrices with and without correlations among predictors was investigated in

Condition 5 to Condition 8.

Sample size sets. According to Cohen and Cohen (1975), at least 124 participants

are needed to maintain 80% power with a single predictor that in the population

correlates with the dependent variable at .30. Therefore, in the current research the

minimal sample size for a study was chosen as 150. Since many studies adopt regression

techniques to analyze data from big datasets, the maximum sample size is designed to be

2000 in this study. Four sets of sample sizes for four studies were investigated:

N1 ={150,150,150,150},

N2 = {2000, 2000, 2000,2000},

N3 = {150, 500, 1000,2000}, and

N4 = {2000, 1000.500, 150}.

The first two sample size sets represented equally small (N1) and large (N2)

samples in a synthesis. The other two sets represented unequal sample sizes across

studies. With different patterns of the sizes of studies in the synthesis, the impact of

difierent missing rates for variables was examined.
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Fixed-effects Mixed-effects

Study 1 2 3 4 5 6 7

1 R1 R2 R3 R4 R1 R2 R3

2 R1 R2 R3 R4 R1 R2 R3

3 R1 R2 R3 R4 R2 R1 R4

4 R1 R2 R3 R4 R2 R1 R4

 

 

    5
"
?
?
?
”

 

Figure 3.3. Eight Combinations of the Four Intercorrelation Matrices for Four Studies.

3.4.2 Missing Rate

With the patterns and sample sizes designed above, the percentage of missingness

for each variable in each scenario was calculated and presented in Table 3.1. The missing

rates for N1 and N2 are always the same within a pattern because those two sample size

sets assumed equal sample sizes across all the four studies included in a synthesis.

3.4.3 Replications in the Simulation

Each of the two methods (2) were tested for five patterns of regression model (5)

with eight different intercorrelation matrices (8) based on four sets of sample sizes (4).

This yielded 320 (2*5’1‘8'1‘4) scenarios for the simulation in this research. In each scenario,

the synthesized correlation matrix for the summarized model was calculated, and it was

used to compute the standardized slopes for X1, X2, X3 and X4. The procedure was

replicated 1000 times and produced 1000 syntheses for each of the 320 conditions. The

means of the summarized slopes, and their standard errors in each condition from the

1000 replications, were used to evaluate the two methods.
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Table 3.1

Percentages of Missingness for Each Pattern with Each Sample Size

 

 

 

 

Missingness

Pattern Sample X1 X2 X3 X4

Size

Pattern I N1 0% 25% 50% 75%

N2 0% 25% 50% 75%

N3 0% 4% 1 8% 45%

N4 0% 55% 82% 96%

Pattern II N1 0% 0% 0% 25%

N2 0% 0% 0% 25%

N3 0% 0% 0% 4%

N4 0% 0% 0% 55%

Pattern 111 N1 0% 75% 75% 75%

N2 0% 75% 75% 75%

N3 0% 45% 45% 45%

N4 0% 96% 96% 96%

Pattern IV N1 0% 0% 0% 75%

N2 0% 0% 0% 75%

N3 0% 0% 0% 45%

N4 0% 0% 0% 96%

Pattern V N1 0% 0% 0% 0%

N2 0% 0% 0% 0%

N3 0% 0% 0% 0%

N4 0% 0% 0% 0%

3.5 Data Analysis

The estimated mean slopes and their standard errors from 1,000 replications were

calculated for each predictor under different patterns of missingness for each sample size

set using GLS and SWP procedures. The mean slopes calculated using the two methods

were compared to the population values that generated the data. Under the fixed-effects

model (Condition 1 through Condition 4), the population SIOpes were calculated based on
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the correlation matrices R1 though R4, and they are presented in the note in the end of

each result table. When studies in a synthesis were based on different matrices (Condition

5 through Condition 8), the weighted mean correlation matrix was first calculated by

weighting the elements that were not missing in the matrix by their sample sizes. Then

the population slopes were calculated based on this weighted mean correlation matrix.

The standard errors from the two methods can be compared to each other to see

which method produced more stable estimates. This was a reasonable comparison under

each specific scenario because the data generated for the two methods were controlled to

be identical using “seed” in SAS in order for the data to be comparable.

The relative percentage bias of each slope was also computed in each scenario to

quantify the difference between the calculated value and the population value. It is

defined as

3(0): e‘exlooo/o 

A

where 0 is the population value of the parameter and 0 is the mean of the estimates of

the parameters across the replications. In this research, the 0 is the population slope and

the0 is the mean slope obtained from averaging the sample slopes from 1000

replications. Good estimation methods should have relative bias less than 5% (Hoogland

& Boomsma, 1998).

To investigate the impacts of patterns, sample sizes, and the correlations among

variables on the estimates of each ofthe predictors based the two methods, a factorial

Analysis of Variance (ANOVA) was conducted on results fiom the fixed-effects model

(Condition 1 though Condition 4) for which the two methods were invented. The
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outcome was the difference between the slopes from GLS and SWP (GLS slope minus

SWP slope). The difference was calculated for each of the 1000 generated data under

each scenario. The factors included in the ANOVA were the five missing-data patterns,

four correlations, and four sample size sets. These factors resulted in 80 exclusive

scenarios. The n2 statistic was computed for each factor and their interactions as the effect

size for representing the proportion of variance explained in the slope differences from

two methods.
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CHAPTER 4

EMPIRICAL EXAMINATION

Before conducting the simulation study, the two methods were examined

empirically. The detailed steps for synthesizing results from regression studies, as

described in Chapter 3, were demonstrated in this chapter using four pseudo studies

created from a large dataset. The studies created for the pseudo meta-analysis were

designed to follow Pattern I, as discussed in the simulation plan, which reflects the

situation that is most likely to happen when synthesizing regression studies, in which

different numbers of variables were used to predict the outcome across studies.

4.1 Sample Creation

The two methods were demonstrated by focusing on the primary regression studies

investigating factors that impact student achievement using one of the major nationwide

datasets, the National Education Longitudinal Studyzl988 (NELS:88. Ingels, Scott,

Taylor, Owings & Quinn, 1998). Nationwide datasets usually contain more information

and larger samples, which attract researchers who plan to use multiple regression.

According to Wu and Becker (2004), 103 different predictors were used in eleven studies

based on NELS:88 data to model student achievement that also included a variety of

teacher qualifications as predictors. Those studies were published before 2002 and used at

least one indicator of teacher qualification as a predictor in the models.

In the current investigation, four studies based on real data were created for

synthesis using a subset of the NELS:88 data. The sub dataset contains 2508 students in
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10th grade in 1990, and has complete data on first follow-up standardized math scores

(F1math), base year standardized math scores (BYmath), social economic status (SES),

whether the student’s teacher has a bachelor degree in math or not (BSdegree), and 10th

grade drop out rate (Drop) ofthe school the student attends. F1math is one of the

outcomes that has been studied the most in previous studies using NELS:88 data.

Therefore, it is adopted as the outcome for the regressions in the current study. The other

four variables are adopted as the predictors to create the regression models. These

predictors represent the effects of characteristics ofthe student (BYmath), and their family

(SES), teacher (BSdegree), and school (Drop). These represent four dimensions that

researchers have studied extensively in models of student achievement in previous

regression studies using the NELS:88 dataset (Wu & Becker, 2004).

Four samples were randomly drawn from the subset of the large dataset to create

four pseudo regression studies. According to Green (1991), the suggested sample size (11)

used to create a regression model, with .8 power, should be n = 50 + 8* , wherep is the

number of predictors in the model. The first study contains BYmath as the only predictor;

a second study contains both BYmath and SES as predictors; the third study contains

BYmath, BSdegree and Drop as predictors; the fourth study uses all the predictors to

explain the variation in the outcomes. Therefore, the sample sizes for four studies in the

current example are 58 (50+8*l for study 1), 66 (50+8*2 for study 2), 74 (50+8*3 for

study 3), and 82 (50+8’1‘4 for study 4) respectively.

The estimated standardized slopes, with F1math as the outcome, for the four

randomly selected samples are shown in Table 4.1. The correlations among the variables

for the total sample and for each ofthe sub samples are shown in Table 4.2.
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Table 4.1

Sample Sizes and Standardized Regression Coefficients for Four Studies

 

 

r1 BYmath SES BSdegree Drop

Study 1 58 0.861

Study 2 66 0.868 0.012

Study 3 74 0.857 0.025 0.055

Study 4 82 0.785 0.187 0.111 0.027

 

Table 4.2

Correlations among Five Variables

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1math BYmath SES BSdegree Drop

.861 (n,=58)

.874 (112-456) .456

F1math 1 .884 (n3=74) .407 .323

.856 (n4=82) .466 .135 -.074

.867 .511

mm“ (N=2508) 1 .433 .308

.370 .046 -.094

SES .441 .418 1 .196

-.064 -.118

BSdegree .180 -.136 .077 1

-.042

Drop -.082 .133 -.176 .018 1       
 

Note. Elements in the upper triangle are correlations based on each ofthe four random selected samples;

elements in the lower triangle are correlations based on the total sample of 2508 students.

52



4.2 Application of Multivariate Generalized Least Squares

As mentioned earlier, synthesizing the zero-order correlations between variables

(predictors and outcomes) from regression models is like synthesizing multivariate data

points from studies. Each study may contain some similar predictors and some different

ones, which makes the correlations produced in each study a subset of the correlations

from the final model, that is determined by the meta-analyst based on the studies included

in the synthesis. In this examination, the final model used to summary the four regression

studies was the model containing all four predictors. That is, the final estimated model for

person I is:

YFlmath_I = BIXBYmath_I ‘1" Bszss_1 '1’ B3XBSdegree_l ‘1' B4XDrop__l r

where ,6 s are the estimated standardized slopes for the predictors.

The vectors of zero-order correlations for each ofthe four studies (r1, l=1, 2, 3, or 4)

with elements r1 (1.1), where i = F1math (Y), BYmath (1), SES (2), BSdegree (3), and Drop

(4); j = F1math (Y), BYmath (I), SES (2), BSdegree (3), and Drop (4); iij , are:

  

’m ".884“

mm .874 :30?) :2:

r1=|:r1m)]=[.861],r2= rm, : .456 ,r3= r31”) : :433 ,and

r202) ‘51 1 2:: .303

-5123). _.196_  
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741“)— ”.856“

r‘m) .466

“1031 .135

’40’4) —.O74

r _ r402) _ .370

‘ r403) ' .046

r404) —.094

4123) —.O64

:1:
_"4(34)_ 7 7

To use the GLS method to summarize multivariate outcomes, the identity matrix W

for this example is
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"Yi "1/2 ”Y3 "Y4 ’iz "13 ’14 ’23 "24 "34

Vim) 1

run)

"2(Y2)

"2(12)

"3(r1)

"3(Y2)

r303)

’3(12)

’3(13)

for r3123)

’4(Y1)

"4(Y2)

r403)
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  ’4(24)  _"4(34) _

Based on the correlations from the four studies reported in Table 4.2 (the elements

above the diagonal), the variance-covariance mat1ix estimated in each study (Ek) was

calculated using the formulas (4), (5), and (6). Then the full variance-covariance

matrix E for all the studies in the meta-analysis was constructed as follows.
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The estimated population correlations, which were the synthesized correlation

based on the four regression studies, were computed using [3 = (W'2"W)'1W'i‘.“r . The

calculated correlations were shown in the matrix form

BYmath SES BSdegree Drop Flmath

1 0.432 0.195 —0.109 0.869‘

0.432 1 0.061 —o.137 0.443

0.195 0.061 1 —0.068 0.225

—o.109 —0.137 -0.068 1 —0.078

_ 0.869 0.443 0.225 —0.078 1

'
5
)

ll

  

The standardized slopes were be calculated based on the correlation matrix above.

The final estimated regression model by GLS method is

A

YFlmath_l : 0'828X8Ymath_l + 0'082XSES_I + 0'09OXBSdcg ree_l + 0'031XDrop_l °

4.3 Application of Factored Likelihood Method through the Sweep Operators

The information needed for obtaining the synthesized correlations through the

sweep Operators were the sample size and correlations among the predictors and the

outcome from each study created for this investigation. Those information were displayed

in Table 4.2.

The first step to adopt the concept of factored likelihood was to find the maximum

likelihood estimate of the correlations between the variables that are used in all four

studies included in the synthesis. In this example, F1math (Y) and BYmath (1) are in all
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four studies. The weighted mean correlation is the estimated maximum likelihood of the

correlation in this example, which was

in: .861 *58+.874*66+.884*74+.856*82)/(58+66+74+82) = .869.

The estimated value was stored in the matrix form and denoted as O.

FImath BYmath

1 .869
o = .

[.869 1 ]

The second step is to find the maximum likelihood estimates of the standardized

slopes (32m and 32m) and error variance (6'22“) for regressing SES (2), which is the

second-most-used variable, on F1math (Y) and BImath (1) based on the studies

containing all those variables. Before finding those estimates, a correlation matrix, 8234,

was created to store the weighted mean correlations among variables F1math (Y),

BYmath (1), and SES (2), based on studies 2, 3, and 4.

F,“ = (.874*66+.884*74+.856*82)/(66+74+82)= .871

in = (.456*66+.407*74+.466*82)/(66+74+82)= .443

7,1, = (.511*66+.433*74+.37*82)/(66+74+82)= .433
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F1math BYmath SES

1 .871 .443

5234’ .871 1 .433.

.443 .433 1

To obtain the standardized slopes and the error variance, F1math (Y) and BYmath (1)

were swept out of S234, as described in Chapter 3. This sweep-out process was recorded

as follow

1 .871 .443 —4.134 3.599 0.275

SWP[Y,1] .871 1 .433 = 3.599 —4.l34 0.194 .

.443 .433 1 0.275 0.194 0.794

The last column/row in the swept-out mat1ix showed the estimates of interest, which are

1},“ =0.275

A

8,,“ =0.794.

Next, F1math (Y) and BYmath (1) were swept out ofmatrix 0 to obtain a new

matrix, denoted as A.

1 .869 —4.075 3.540 all a12

A =SWP[Y,1] = = .

.869 1 3.540 —4.075 a], (122

The matrix A then was augmented with the estimated standardized slopes (192m
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and B2”) and error variance (6,2), ) obtained earlier to form a new matrix P:

—4.075 3.540 0.275

P: 3.540 —4.075 0.194 .

0.275 0.194 0.794

The matrix P is the matrix that could be obtained when sweeping the rows and

columns 1 and 2 when we have a 3*3 matrix.

The next step was to find the maximum likelihood estimates of the standardized

slopes (83x12 , B3”2 , and B3211) and error variance (632112) for regression of BSdegree

(3), which was the third-most-used variable, on F1math (Y), B]math (1), and SES (2).

Again, to use the sweep operator to obtain these estimates, another correlation matrix, S34,

was created with weighted mean correlations among variables F1math (Y), BYmath (1),

SES (2), and BSdegree (4), based on studies 3 and 4. That is,

7,“ = (.884*74+.856*82)/(74+82) =.869,

2,, = (.407*74+.466*82)/(74+82) =.438,

2,, = (.323*74+.135*82)/(74+82) =.224,

7:1,: (.433*74+.37*82)/(74+82) =.400,

a, = (.308*74+.O46*82)/(74+82) =.17o,

7.23 =(.196*74+(-.064)*82)/(74+82) =.059, 3°
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Flmath BYmath SES BSdegree

' 1 .869 .438 .224“

s,,= .869 1 .400 .170

.438 .400 1 .059 '

.224 .170 .059 1
- —  

To obtain the slopes of interest in this step, F1math (Y), BYmath (I), and SES (2) were

swept out of S34.

Flmath BYmath SES BSdegree

_ 1 .869 .438 .2247 "—4.262 3.522 0.459 0.329 _

.869 1 .400 .170 3.522 —4.100 0.097 —0.097

SWP[Y,1,2] = .

.438 .400 l .059 0.459 0.097 --1.240 —0.046

.224 .170 .059 1 _0.329 —0.097 —0.046 0.946_
— -I     

The last column in the matrix shows the estimates, which are

B3,,” =0.329

8,”, =0.097

8,2,], =O.946.

Then SES (2) was swept out of matrix P to obtain a new matrix B,

4075 3.540 0.275 -4.170 3.473 0.346 bll b,, b1,

SWP[2] 3.540 —4.075 0.194 = 3.473 —4.122 0.224 = 1a,, b,, b,, =13,

0.275 0.194 0.794 0.346 0.224 -1.259 17,, b2, b3,

and matrix B was augmented with the estimated standardized slopes (393x12 , 831” and
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B32”) and error variance (cf-32112) and for a new matrix denoted as T.

"—4.170 3.473 0.346 0.329"

T: 3.473 —4.122 0.244 —0.097

0.346 0.244 —1.259 —0.046

_0.329 —0.097 —0.046 0.946_  

Next we find the maximum likelihood estimates of the standardized slopes

A A A A . A2 .

(B4x123 , B4”,23 , B421,l3 , and 34””) and error variance (04.1023) for regressmg Drop (4)

on F1math (Y), B]math (I), SES (2), and BSdegree (3) based on the studies with all those

variables in the models. Since only the last sample uses all five variables, the sweep

operation was applied to the correlation matrix based on study 4 only. The outcome

F1math (Y), BYmath (1), SES (2), and BSdegree (3) were swept out of the correlation

  

matrix of study 4.

Flmath BYmath SES BSdegree Drop

' 1 .856 .466 .135 —.0747

.856 1 .370 .046 —.094

SWP[Y,1,2,3] .466 .370 1 —.064 —.118

.135 .046 -.064 1 —.042

_-.074 —.094 —.118 —.042 1 _

"4.361 —3.415 -O.800 -O.483 0.113"

-3.415 3.839 0.190 0.297 —0.143

= —O.800 0.190 1.314 0.183 -0.121 .

—O.483 0.297 0.183 1.063 —0.058

L0.113 —0.143 —0.121 -0.058 0.978_  
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The last column in the matrix above shows the estimates of interest in this step, which

were

A

B4).123 0.113

B41123 ='0'143

B42113 ='0-121

343.le ‘0-058

63,12, =0.978.

Then, BSdegree (3) was swept out of matrix T to obtain a new matrix C,

”—4.170 3.473 0.346 0.329“ "—4.284 3.507 0.362 0.348'

SWP[3] 3.473 —4.122 0.244 _0.097 _ 3.507 —4.132 0.239 -0.103

0.346 0.244 —1.259 -0.046 7 0.362 0.239 —1.261 —0.048

_0.329 —0.097 —0.046 0.946_ _0.348 —0.103 —0.048 -1.058_   

  

and the matrix C was augmented and the new matrix was denoted as U.
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614

A A A A A2

_fl4Y123 fl41n3 1642113 7643le 0'4.Y123_

 

612

622

623

024

013

023

C33

5'34

014

624

C34

C44

.34Y.123

1341123

1342113

fl43.Y12

 

”—4.284 3.507 0.362

3.507 —4.132 0.239

0.362 0.239 -1.261

0.348 —0.103 —0.048

L0°113 -0.143 —0.121

0.348

—0. 103

—0.048

—1.058

—0.058

0.1131

—0.143

-0.121

—0.058

0.978 _ 

In order to obtain the maximum likelihood estimate of the correlation matrix of

RSW[3,2,1,Y]=

1

0.869

0.443

0.224

F1math

0.869

1

0.432

0.169

_—0.078 —0.107 -0.137 —0.064

 

”-4.284

3.507

0.362

0.348

_ 0.113

0.443

0.432

1

BYmath

3.507

—4.132

0.239

—0.103

—0.143

0.058

operation was applied to the matrix U.

SES

0.224

0.169

0.058

1

0.362

0.239

-1.261

—0.048

-0. 121

BSdegree

-0.078'

-0.107

—0.137 .

—0.064

1

0.348

-0.103

—0.048

—1.058

—0.058

 1

F1math (Y), BYmath (1), SES (2), BSdegree (3), and Drop (4), the reverse sweep

Drop

0.113 ‘

—O.143

-O. 121

—0.058

0.978 _ 

The reversed matrix is the synthesized mat1ix based on the four studies with
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different numbers of predictors involved. The steps described above can be represented

concisely by the expression

  

  

Y 1 2 3 4

r r \ \

1.000 0.869 0.275 0.329 0.113

SWP[YJI
SWP[3] 0.869 1.000 0.194 -0.097 -0.143

SWP[4]
RSW[3,2,1,Y] 0.275 0.194 0.794 -0.046 -0.121

K 0.329 -0.097 -0.046 0.946 J -0.058

\ 0.113 0.143 -0.121 -0.058 0.978

.2

As mentioned earlier, the diagonal elements in the summarized mat1ix need to be

adjusted to 1, before the resulting matrix can then be used to calculate the standardized

regression coefficients ofthe final model. In this investigation, F1math and BYmath were

the two variables used in all four samples, and the correlations of each with itself were

exactly equal to 1. The correlations for SES and BSdegree to themselves in the

summarized mat1ix (0.9997 and 1.0002 respectively) were also 1 after rounding.

Using the synthesized correlation matrix, the final model with the standardized

coefficients is

A

YFlmath_1 = 0'820XBYmath_I + 0'087XSES_I + 0'082XBSdegree_l + 0-027XDrop__1 -

4.4 Results from the Empirical Examination

Table 4.3 shows the coefficients for the final synthesized models based on GLS and

SWP methods, and fi'om the regression model based on the total set of 2508 participants

in the sub sample ofNELS:88.
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Table 4.3 Estimated Standardized Regression Coefficients fi'om both Methods

 

 

n BYmath SES BSdegree Drop

GLS 280 0.828 0.082 0.090 0.031

SWP 280 0.820 0.087 0.082 0.027

Complete 2508 0.822 0.101 0.062 0.046

 

Compared to the estimates from the GLS method, the estimated standardized

slopes based on the SWP methods are closer to the estimates from the complete sample.

The SWP method is especially accurate at estimating the slope for BYmath, which was

the most observed (used frequently) predictor. The GLS method produced an

overestimate of the slope on this fully observed predictor.

The estimated slope of Drop using SWP did not get the chance to be adjusted

because there is only one regression model (sample 4) containing that predictor. That is,

the synthesized slope ofDrop (éDrop =0.027) did not change from the estimated slope

based on study 4 in Table 1. On the other hand, GLS adjusted the slope through the

variance-covariance matrix during the calculation, and the estimate for that predictor is

closer to the estimated slope based on the complete set of cases.
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CHAPTER 5

SIMULATION RESULTS

The simulation results based on the fixed-effects model (Condition 1 through

Condition 4) are presented separately in this chapter. A brief discussion is given of four

other conditions (Condition 5 through Condition 8) that do not represent fixed-effect

cases. More attention was paid to the first four conditions, for which GLS and SWP

methods were originally invented. The mean slopes for each predictor and their standard

errors from the two procedures based on the fixed-effects model were first compared for

different patterns and different correlation matrices. The percentage relative bias values

for slopes for each scenario assuming fixed effects can be found in Appendix C. Similar

estimates were calculated based on the more complex mixed-effects models and a brief

review ofthose results is then presented. The bulk ofthese results as well as the

percentage relative bias for slopes for each scenario can be found in Appendix D.

5.1 Fixed-effects Model (Condition 1 through Condition 4)

The mean estimated slopes (173 s) and their standard errors (SES) based on matrices

R1 though R4 under a fixed-effects model for each study pattern are shown in Table 5.1.1

through Table 5.1.20. For each pattern based on each correlation matrix, the estimated

mean slope for each predictor and its standard error based on GLS and SWP methods are

listed for each sample size set (N1 through N4).

5.1.1 Correlation Matrix R1

Pattern I. When Pattern I is combined with correlation matrix R1, more data were
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missing as the relationships between variables and the outcome became weaker. As

shown in Table 5.1, the mean slopes from SWP for X1, which was fully observed, were

consistently closer to the population slope (611:0.5161) under all different sample sizes.

Most of the time the SWP underestimated the slope for X1 while GLS tended to

overestimate it. When the total sample size was large (3650 from four studies) and the

maximum amount of data were missing for a predictor (96% for X4 in N4), GLS produced

a better estimate for that predictor (E, =0.1744, Bias 5, =0.565%) than SWP ( E4 =0.1767,

Bias 3: =1 .909%). When sample sizes were equal across all studies in a meta-analysis in

this pattern, SWP seemed to perform better with small equal sample sizes (N1) than with

large equal sample sizes (N2). The percentage relative biases were all less than 5% for

slopes from both methods in all scenarios, but the magnitude of the bias was much larger

for GLS slopes than for SWP slopes in most cases. Generally speaking, SWP produced

more stable estimates (smaller SES) than GLS in Pattern 1. However, the SEs for E4 , was

present in only one study and had the smallest correlations with the outcome in this

pattern, showed slightly more stability when estimated via GLS.

Pattern II. The combination of Pattern II with R1 has missing data only on the last

variable X4, which had the weakest relation to the outcome, and was missing in only one

study included in the meta-analysis. As shown in Table 5.2, SWP still estimated the slope

ofX1 better than GLS as in Pattern I. In contrast to the results in Pattern I, when the

sample sizes were small and equal across studies in the synthesis (N1 ), GLS produced

slightly better estimates for X3 (3, =0.1894, Bias 5, =0.445%) and X4 ( 3, =0. 1 73 7,

Bias 8,, =0. 173%) in this pattern. When 55% value were missing on X4 with other
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predictors fiilly observed, SWP produced a mean slope on X4 (0.1735) that was very

close to the population value (0.1734). While the percentage relative bias was larger than

1% for D, in N1 using GLS, all other biases were less than 1%. The differences in SES

between the two methods were very minor for most predictors. The estimates from SWP

were consistently more stable than GLS when sample sizes varied.

Pattern III. For the combination of Pattern III with R1, the predictors that were

weakly related to the outcome (X2, X3, and X4) were present in only the last study in the

synthesis. As shown in Table 5.3, the mean slope for X1, which was fully observed in all

studies, was consistently better estimated through SWP. Both GLS and SWP tended to

result in overestimation ofthe X1 slope when sample sizes varied. SWP also performed

better for estimating the slope ofX2, which was the variable that had the second strongest

relationship with the outcome. SWP tended to perform better overall when sample sizes

were equal and small across studies (N1); with larger equal samples (N2), GLS performed

slightly better at estimating the slope ofX3 (E, =0.1891, Bias 5, =0.249%) and X4

(194 =0.1742, Bias 194 =0.496%), which have weaker relationships with the outcome. SWP

resulted in more precisely estimated slopes when much missingness occurred (N4) in this

pattern. However, in an absolute sense, the differences in the SES produced by the two

methods were trivial. Most ofthe time, GLS produced slightly more stable estimates in

this pattern.

Pattern IV. The combination of Pattern IV with correlation matrix R1 had

predictors X1 to X3 presented in all four studies. Predictor X4, which had the weakest

relation to the outcome, was present only in the last study included in the synthesis. As

shown in Table 5.4, SWP still performed better at estimating the slope ofX1 with the
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percentage relative bias below 0.2% across all sample sizes, and GLS tended to

consistently overestimate it with the percentage relative bias larger than 1% in this pattern.

With small and equal sample sizes (N1 ), SWP produced better estimates of the slopes of

all four variables; with large and equal sample sizes (N2), GLS performed better in

estimating the slopes for X2, X3, and X4. When 96% of values were missing on X4 in N4,

GLS estimated its slope more accurately; when X4 was missing less (45%), SWP

performed better. SWP tended to result in more stable estimates on the fully observed

variables X1, X2, and X3; GLS resulted in more stable estimates of the slope ofX4.

Pattern V. In this pattern, all the studies in the synthesis included all four predictors

and there is no missing data for any predictor. Under this scenario, as shown in Table 5.5,

both SWP and GLS consistently overestimated the slope ofX1. SWP produced mean

slopes ofX1 that were closer to the population value when sample sizes varied. With large

and equal sample sizes (N2), GLS produced mean slopes for X2, X3, andX4 that were

close or identical to the population values. Similar to the results in Pattern H, the

percentage relative bias was larger than 1% for X1 in N1 using GLS, and all other biases

were less than 1%. Generally speaking, SWP produced more stable results for all

predictors under different sample sizes.
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Table 5.1

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix Rt

 

 

 

 

 

Method B, 19, B3 194 SE. SE2 SE3 SE4

0.5161 0.2253 0.1886 0.1734

N1 0% 25% 50% 75%

GLS 0.5218 0.2271 0.1902 0.1688 0.001061 0.001278 0.001367 0.001800

SWP 0.5161a 0.2248 0.1891 0.1731 0.001048 0.001224 0.001357 0.001848

N2 0% 25% 50% 75%

GLS 0.5169 0.2250 0.1884 0.1731 0.000275 0.000324 0.000361 0.000490

SWP 0.5164 0.2248 0.1884 0.1734a 0.000274 0.000323 0.000362 0.000493

N3 0% 4% 18% 45%

GLS 0.5170 0.2255 0.1888 0.1728 0.000364 0.000425 0.000431 0.000485

SWP 0.5160 0.2252 0.1888 0.1734a 0.000362 0.000423 0.000430 0.000487

N4 0% 55% 82% 96%

GLS 0.5167 0.2260 0.1899 0.1744 0.000649 0.000841 0.001043 0.001883

SWP 0.5159 0.2249 0.1881 0.1767 0.000653 0.000843 0.001038 0.001928

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.2

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and Correlation Matrix R1

 

 

 

 

 

Method 1731 E, E3 E, SE1 SE2 SE3 SE4

0.5161 0.2253 0.1886 0.1734

N1 0% 0% 0% 25%

GLS 0.5230 0.2269 0.1894 0.1737 0.000945 0.001050 0.001008 0.001109

SWP 0.5156 0.2247 0.1876 0.1729 0.000887 0.000998 0.000950 0.001064

N2 0% 0% 0% 25%

GLS 0.5171 0.2250 0.1887 0.1733 0.000240 0.000267 0.000266 0.000282

SWP 0.5165 0.2248 0.1885 0.1733 0.000239 0.000266 0.000265 0.000281

N3 0% 0% 0% 4%

GLS 0.5180 0.2252 0.1889 0.1732 0.000359 0.000401 0.000386 0.000369

SWP 0.5167 0.2249 0.1885 0.1733 0.000358 0.000396 0.000382 0.000366

N4 0% 0% 0% 55%

GLS 0.5171 0.2250 0.1889 0.1743 0.000373 0.000427 0.000394 0.000550

SWP 0.5158 0.2246 0.1889 0.1735 0.000369 0.000424 0.000389 0.000542

 

Note. The bolded values are the population SIOpes for predictors.
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Table 5.3

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R1

 

 

 

 

 

Method 31 E, E, E4 SE1 SE2 SE3 SE4

0.5161 0.2253 0.1886 0.1734

N1 0% 75% 75% 75%

GLS 0.5243 0.2237 0.1875 0.1704 0.001248 0.001925 0.001810 0.001795

SWP 0.5170 0.2263 0.1896 0.1723 0.001242 0.001947 0.001826 0.001818

N2 0% 75% 75% 75%

GLS 0.5171 0.2249 0.1891 0.1742 0.000340 0.000519 0.000511 0.000491

SWP 0.5165 0.2251 0.1892 0.1744 0.000340 0.000520 0.000513 0.000492

N3 0% 45% 45% 45%

GLS 0.5169 0.2251 0.1890 0.1729 0.000398 0.000521 0.000506 0.000476

SWP 0.5158 0.2254 0.1893 0.1732 0.000398 0.000523 0.000508 0.000477

N4 0% 96% 96% 96%

GLS 0.5191 0.2243 0.1860 0.1724 0.001099 0.001930 0.001902 0.001786

SWP 0.5173 0.2250 0.1864 0.1728 0.001104 0.001940 0.001907 0.001797

 

Note. The bolded values are the population slopes for predictors.
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Table 5.4

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix Rt

 

 

 

 

 

Method 19, E, E3 E4 SE1 SE2 SE3 SE.

0.5161 0.2253 0.1886 0.1734

N1 0% 0% 0% 75%

GLS 0.5218 0.2283 0.1915 0.1688 0.001009 0.001096 0.001098 0.001799

swr 0.5151 0.2254 0.1882 0.1742 0.000986 0.001067 0.001063 0.001862

N2 0% 0% 0% 75%

GLS 0.5169 0.2247 043368 0.1737 0.000251 0.000277 0.000280 0.000478

SWP 0.5164 0.2245 0.1884 0.1741 0.000251 0.000275 0.000278 0.000479

N3 0% 0% 0% 45%

GLS 0.5173 0.2255 0.1895 0.1724 0.000356 0.000413 0.000401 0.000478

SWP 0516121 0.2251 0.1890 0.1731 0.000356 0.000411 0.000399 0.000480

N4 0% 0% 0% 96%

GLS 0.5171 0.2257 0.1895 0.1742 0.000584 0.000622 0.000633 0.001833

SWP 0.5158 0.2251 043368 0.1763 0.000593 0.000627 0.000638 0.001855

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.5

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation matrix R1

 

 

 

 

 

Method E, E, 193 E4 SEl SE2 SE3 SE4

0.5161 0.2253 0.1886 0.1734

N1 0% 0% 0% 0%

GLS 0.5240 0.2272 0.1892 0.1737 0.000927 0.001030 0.000988 0.000982

SWP 0.5166 0.2247 0.1878 0.1719 0.000879 0.000979 0.000935 0.000931

N2 0% 0% 0% 0%

GLS 0.5170 022538 0.1887 ”-17348 0.000249 0.000269 0.000260 0.000248

SWP 0.5165 0.2251 0.1885 0.1733 0.000248 0.000267 0.000259 0.000248

N3 0% 0% 0% 0%

GLS 0.5179 0.2252 0.1889 0.1736 0.000367 0.000404 0.000374 0.000367

SWP 0.5165 0.2248 0.1885 (“7348 0.000362 0.000397 0.000369 0.000362

N4 0% 0% 0% 0%

GLS 0.5177 0.2252 0.1890 0.1736 0.000366 0.000401 0.000372 0.000366

SWP 0.5166 0.2248 043368 0-1734a 0.000361 0.000397 0.000369 0.000362

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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5.1.2 Correlation Matrix R2

Pattern I. The combination of Pattern I with R2 showed more missing data as the

relationship between the predictor and the outcome became weaker, and there was no

correlation among predictors with R2. As shown in Table 5.6, SWP estimated the slope

for X1 better than GLS under different sample sizes. GLS always overestimated the slope

for X1. Different from the results for this pattern with R1, GLS estimated the slope ofX3

precisely when the sample sizes were small and equal across studies (N1) in the synthesis.

As was true for correlation matrix R1, GLS was superior when much data was missing

(96% in N4 on X4). Compared to the scenario where the correlation was R1, the results

from GLS were more stable with smaller SES than those from SWP, yet the difi‘erences in

SEs between the two methods were small.

Pattern II. The combination of Pattern II with R2 had missingness only on the last

variable X4, the weakest predictor, in one study included in the meta-analysis, and there

was no correlation among the predictors. As shown in Table 5.7, SWP gave better

estimates of the slope for X1 and GLS still overestimated the slope for this variable. GLS

usually did better in estimating slopes for X2 and X3, while SWP did well in estimating

the slopes for X4. SWP produced more stable estimates for the slopes for all variables,

except for X4 with sample size defined by N2, where GLS produced a slightly smaller SE

than SWP.

Pattern III. The combination of Pattern III with R2 had the predictors that were

weakly related to the outcome (X2, X3, and X4) were present in only the last study in the

synthesis and there was no correlation among predictors. As shown in Table 5.8, SWP

still worked better than GLS in estimating the slope for fully observed variable X1, and
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GLS still overestimated the slope for this variable. SWP also performed better in

estimating the slopes for the four variables when the sample sizes were small and equal

across the four studies (N1) in the synthesis. The variables that were less strong related

with the outcome (X3 and X4) were more often missing. GLS started to show better

estimates. Similar to the condition when the correlation was R1, GLS produced slightly

more stable estimates than SWP.

Pattern IV. The combination of Pattern IV with correlation matrix R2 had predictors

X1 to X3 present in all four studies. Predictor X4, which had the weakest relation to the

outcome, was present only in the last study included in the synthesis. As shown in Table

5.9, SWP performed better in estimating the slope for X1, while GLS kept overestimating

the slope for this variable. SWP still worked better than GLS with small equal sample

sizes (N1) in this pattern. When sample sizes were large with much missing data (e.g., X4

with 75% missing in N2 and 96% in N4), GLS tended to work better than SWP. GLS also

produced more stable estimates for B: when sample sizes varied, as well as for all four

variables in N4.

Pattern V. In Pattern V with correlation matrix R2, all the studies in the synthesis

included all four predictors. There was no missing data for any of the predictors and there

was no correlation among those predictors. In this scenario, as shown in Table 5.10, SWP

produced estimates closer to the population values on X1, while GLS continued

overestimating the slope for this variable. However, comparing to the results from the

correlation matrix R1, the mean slopes from GLS were closer to the population values for

most of the predictors than those from GLS, when sample sizes varied. As in the

conditions where the correlation matrix was R1, SWP produced more stable estimates
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than GLS.

Table 5.6

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

 

 

 

Pattern I and Correlation Matrix R2

Method 5, E, E, E, SE. SE2 SE3 SE.

0.6 0.4 03 0.25

N1 0% 25% 50% 75%

a

GLS 0.6041 0.4013 03000 0.2442 0.001040 0.001082 0.001123 0.001419

swr 0.5998 0.3992 0.3003 0.2514 0.001041 0.001079 0.001123 0.001467

N2 0% 25% 50% 75%

GLS 0.6005 0.3997 0.2999 0.2497 0.000277 0.000288 0.000299 0.000378

0.2999 0.2502 0.000279 0.000288 0.000300 0.000384SWP 0.6002 0.3995

18% 45%

a

0-400° 0.2999 0.2492 0.000333 0.000359 0.000354 0.000393GLS 0.6006

0.2501 0.000331 0.000358 0.000354 0.000397

 

N3 0% 4%

 

SWP 0.5999 0.3998 0.3001

N4 0% 55% 82% 96%

GLS 0.6006 0.4010 0.3016 0.2513 0.000753 0.000842 0.000902 0.001411

0.2546 0.000775 0.000850 0.000915 0.001487SWP 0.5996 0.3997 0.3001

Note. The bolded values are the population slopes for predictors.

 a. Mean estimated slope is equal to the population value.
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Table 5.7

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and Correlation Matrix R2

 

A A

Method El 32 E3 194 SE. SE2 SE3 SE.

0.6 0.4 03 0.25

 

N1 0% 0% 0% 25%

GLS 0.6043 0.4015 0.3005 0.2497 0.000823 0.000863 0.000847 0.000890

SWP 0.5991 0.3990 0.2987 0.2499 0.000772 0.000824 0.000799 0.000854

 

N2 0% 0% 0% 25%

8 8

GLS 0.6006 0.3997 03000 03500 0.000211 0.000223 0.000221 0.000230

8

SWP 0.6002 0.3995 0.2999 02500 0.000209 0.000221 0.000220 0.000233

 

N3 0% 0% 0% 4%

GLS 0.6012 0.3998 0.3001 0.2496 0.000312 0.000329 0.000306 0.000306

SWP 0.6003 0.3994 0.2998 0.2499 0.000310 0.000326 0.000305 0.000305

 

N4 0% 0% 0% 55%

GLS 0.6005 0.3999 0.3005 0.2514 0.000335 0.000370 0.000341 0.000436

SWP 0.5996 0.3994 0.3003 0.2504 0.000332 0.000366 0.000337 0.000435

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.8

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R2

 

 

 

 

 

Method 5, B, B, 3, SE. SE2 SE3 SE4

0.6 0.4 0.3 0.25

N1 0% 75% 75% 75%

GLS 0.6067 0.3977 0.2981 0.2472 0.001321 0.001464 0.001446 0.001450

swr 0.6021 0.4014 0.3005 0.2491 0.001328 0.001499 0.001452 0.001464

N2 0% 75% 75% 75%

GLS 0.6006 0.3996 0.3005 0.2506 0.000351 0.000397 0.000401 0.000398

SWP 0.6002 0.3999 0.3006 0.2508 0.000351 0.000402 0.000404 0.000399

N3 0% 45% 45% 45%

GLS 0.6007 0.3997 0.3002 0.2497 0.000375 0.000408 0.000406 0.000394

SWP 05000“ 0.4003 0.3006 035008 0.000375 0.000412 0.000408 0.000394

N4 0% 96% 96% 96%

GLS 0.6023 0.4006 0.2990 0.2507 0.001283 0.001434 0.001498 0.001452

SWP 0.6007 0.4008 0.2992 0.2508 0.001281 0.001464 0.001502 0.001459

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.9

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix R2

 

 

 

 

Method E, E, E, E, SE. SE2 SE3 SE.

0.6 0.4 03 0.25

N1 0% 0% 0% 75%

GLS 0.6034 0.4020 0.3014 0.2440 0.000968 0.000968 0.000977 0.001367

SWP 0.5987 0.3994 0.2993 0.2532 0.000967 0.000965 0.000954 0.001435

N2 0% 0% 0% 75%

GLS 0.6006 0.3995 0.3002 0.2501 0.000244 0.000253 0.000253 0.000371

SWP 0.6002 0.3993 030008 0.2508 0.000246 0.000245 0.000253 0.000376

N3 0% 0% 0% 45%

0.3006 0.2488 0.000318 0.000352 0.000337 0.000389GLS 0.6008 0.4003

0.000320 0.000352 0.000335 0.000393

a

SWP 0-6000 0.3999 0.3003 0.2501

0% 96%

 

N4 0% 0%

0.6013 0.4010 0.3008 0.2526 0.000680 0.000698 0.000669 0.001365GLS

0.3002 0.2550 0.000705 0.000708 0.000675 0.001407SWP 0.6001 0.4003

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.10

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation Matrix R2

 

 

Method 5, E, E, E. SEl SE. SE3 SE.

0.6 0.4 03 0.25

N1 0% 0% 0% 0%

a

GLS 0.6053 0.4017 0.3002 03500 0.000798 0.000825 0.000803 0.000806

SWP 960008 0.3989 0.2987 0.2487 0.000758 0.000790 0.000760 0.000771

0%

0.25003 0.000210 0.000221

0.000220 0.000209 0.000206

0% 0% 0%

0.000210 0.0002070.6006 0.3999 0.3001GLS

0.2999 0.2499 0.000209SWP 0.6002 0.3997

0% 0% 0%

 

 

N3 0%

GLS 0.6011 0.3998 0.3002 0.2502 0.000313 0.000331 0.000302 0.000304

SWP 0.6002 0.3994 0.2998 0.2499 0.000309 0.000326 0.000297 0.000300

N4 0% 0% 0% 0%

GLS 0.6010 0.3999 0.3003 0.2501 0.000311 0.000330 0.000299 0.000303

SWP 0.6002 0.3994 0.2999 0.2499 0.000308 0.000327 0.000298 0.000300

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the pOpulation value.
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5.1.3 Correlation Matrix R3

Pattern I. The combination of Pattern I with R3 had more missing data as the

relationships between predictors and the outcome became stronger. As shown in Table

5.11, GLS outperformed SWP in estimating the slope ofX1 in N4 where a large portion of

data were missing in X2, X3, and X4. Consistent with previous results, GLS tended to

result in slight overestimation of the slope for X. when sample sizes varied in this pattern,

and so did SWP. When the sample sizes were small and equal across studies in the

synthesis (N1), SWP performed better. When the sample sizes were large and equal (N2),

GLS tended to do better. When a large portion of data were missing on X4 (e.g., in N4),

which had a high correlation with the outcome, GLS generally performed better. SWP

tended to be more stable when the sample size was small and equal across studies (N1)

and when missingness occurred less (N3); GLS seemed to be more stable when sample

size was large (N2) or when more data were missing (N4).

Pattern II. The combination of Pattern II with correlation matrix R3 had missing

data only on the last variable X4, which had the strongest relation to the outcome, in only

one study included in the meta-analysis. As shown in Table 5.12, SWP produced mean

slopes for X. that were closer to the population value (B31=0.1734) than the GLS means,

except in N4 where there were more missing values on the last predictor. That was the

same finding as in Pattern I with correlation matrix R3. For all the different sample sizes,

SWP produced better slopes for X4 than did GLS. When the overall sample size was large

and data were more complete (e.g. N2 and N3), SWP precisely reproduced the population

value for the slope for X4. Also, SWP resulted in more stable estimates.

Pattern III. In Pattern III with the correlation matrix R3, the predictors that were
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more strongly related to the outcome (X2, X3, and X4) were present in only the last study

in the synthesis. As shown in Table 5.13, SWP tended to perform better than GLS in

estimating the slope for X. when sample sizes varied, except in N3, where the sole

information on X2, X3, and X. was based on a study with a large sample size. Generally

speaking, GLS and SWP produced very similar mean slopes for several variables under

different sample size sets (e.g., X2 in N2, N3; X4 in N2) in this pattern. GLS and SWP

produced similar SES. Yet GLS was slightly more stable than SWP in most ofthe

conditions.

Pattern IV. The combination of Pattern IV with correlation matrix R3 had predictors

X. to X3 present in all four studies, and X4, which had the strongest relation to the

outcome, was present only in the last study included in the synthesis. As shown in Table

5.14, SWP consistently resulted in better estimates of the slope ofX1 than GLS, which

tended to result in overestimation ofthe slope ofX1 as well as slopes of other variables.

SWP also performed better than GLS in N1, N3, and N4 at estimating the slopes ofX2 and

X3. For X4, GLS tended to perform better than SWP. GLS consistently came up with more

stable estimates for the slopes for X4.

Pattern V. In Pattern V, all the studies in the synthesis included all four predictors

and there was no missing data for any ofthe predictors. Under this scenario, as shown in

Table 5.15, SWP produced better estimate of the X1 slope most ofthe time. In contrast to

previous findings in this pattern, GLS produced a mean slope for X. that was the same as

the population value when the sample size was large and equal across studies (N2). When

the sample size was small and equal across studies (N1), SWP tended to perform better

than GLS at estimating the slopes of all variables. SWP also better estimated the slopes
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for X3 and X4, that were more strongly related to the outcome, in this pattern. Moreover,

SWP produced more stable estimates than GLS for slopes of all variables when sample

sizes varied.

Table 5.11

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix R3

 

A

 

 

 

 

Method 1}, E, E, 3, SE. SE. SE3 SE.

0.1734 0.1886 0.2253 0.5161

N1 0% 25% 50% 75%

GLS 0.1758 0.1914 0.2285 0.5121 0.001387 0.001460 0.001599 0.001640

SWP 0.1736 0.1882 0.2240 0.5184 0.001386 0.001434 0.001584 0.001656

N2 0% 25% 50% 75%

GLS 0.1737 0.1882 0.22533 0.51618 0.000383 0.000391 0.000425 0.000438

SWP 0.1736 0.1880 0.2250 0.5165 0.000383 0.000391 0.000426 0.000444

N3 0% 4% 18% 45%

GLS 0.1736 0.1887 0.2258 0.5157 0.000438 0.000467 0.000472 0.000456

SWP 0.1732 0.1883 0.2254 0.5163 0.000437 0.000465 0.000470 0.000457

N4 0% 55% 82% 96%

GLS 0.1735 0.1892 0.2277 0.5177 0.001146 0.001316 0.001389 0.001637

SWP 0.1731 0.1879 0.2242 0.5226 0.001160 0.001327 0.001396 0.001695

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.12

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and Correlation Matrix R3

 

A

SE2

 

 

 

 

Method E1 E2 E3 E4 SE. SE. SE.

0.1734 0.1886 0.2253 0.5161

N1 0% 0% 0% 25%

GLS 0.1750 0.1901 0.2262 0.5215 0.001052 0.001073 0.001089 0.001031

SWP 0.1729 0.1878 0.2238 0.5164 0.000998 0.001020 0.001024 0.000968

N2 0% 0% 0% 25%

GLS 0.1738 0.1883 0.2254 0.5166 0.000276 0.000282 0.000276 0.000260

SWP 0.1737 0.1881 0.2252 051618 0.000274 0.000280 0.000275 0.000260

N3 0% 0% 0% 4%

GLS 0.1743 0.1885 0.2259 0.5166 0.000394 0.000398 0.000397 0.000348

SWP 0.1739 0.1881 0.2252 051618 0.000393 0.000395 0.000394 0.000344

N4 0% 0% 0% 55%

GLS 0.1733 0.0188 0.2254 0.5188 0.000455 0.000479 0.000472 0.000495

SWP 0.1730 0.1879 0.2256 0.5165 0.000448 0.000473 0.000467 0.000493

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.13

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R3

 

A A

 

 

 

 

Method E, E2 E3 E4 SE. SE. SE. SE.

0.1734 0.1886 0.2253 0.5161

N1 0% 75% 75% 75%

GLS 0.1789 0.1887 0.2269 0.5123 0.001531 0.001930 0.001866 0.001695

SWP 0.1757 0.1891 0.2272 0.5138 0.001521 0.001933 0.001870 0.001706

N2 0% 75% 75% 75%

GLS 0.1741 918358 0.2256 0.5170 0.000408 0.000533 0.000540 0.000457

SWP 0.1739 043363 0.2257 0.5170 0.000408 0.000534 0.000540 0.000459

N3 0% 45% 45% 45%

GLS 0.1735 0.1883 0.2259 0.5159 0.000440 0.000505 0.000521 0.000452

SWP 0.1731 0.1883 0.2260 051618 0.000440 0.000505 0.000521 0.000451

N4 0% 96% 96% 96%

GLS 0.1746 0.1893 0.2221 0.5170 0.001423 0.001923 0.001987 0.001705

SWP 0.1736 0.1894 0.2223 0.5176 0.001424 0.001925 0.001994 0.001728

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.14

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix R3

 

 

 

 

 

Method E1 E, E, E, SE. SE2 SE. SE.

0.1734 0.1886 0.2253 0.5161

N1 0% 0% 0% 75%

GLS 0.1747 0.1920 0.2311 0.5124 0.001381 0.001366 0.001433 0.001623

SWP 0.1723 0.1883 0.2236 0.5205 0.001372 0.001361 0.001423 0.001655

N2 0% 0% 0% 75%

GLS 0.1740 0.1880 0.2257 0.5163 0.000353 0.000361 0.000374 0.000425

SWP 0.1738 0.1878 0.2252 0.5169 0.000345 0.000362 0.000375 0.000429

N3 0% 0% 0% 45%

GLS 0.1738 0.1889 0.2267 0.5150 0.000430 0.000450 0.000448 0.000440

swr 0.1735 0.1885 0.2257 0.5159 0.000430 0.000449 0.000446 0.000442

N4 0% 0% 0% 96%

GLS 0.1741 0.1899 0.2268 0.5180 0.001110 0.001158 0.001202 0.001601

SWP 0.1733 0.1888 0.2240 0.5226 0.001127 0.001169 0.001215 0.001631

 

Note. The bolded values are the population slopes for predictors.
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Table 5.15

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation Matrix R3

 

A

 

 

 

 

Method E1 E, E, E, SE. SE. SE. SE.

0.1734 0.1886 0.2253 0.5161

N1 0% 0% 0% 0%

GLS 0.1760 0.1902 0.2264 0.5219 0.000987 0.001013 0.001014 0.000936

SWP 0.1740 0.1879 0.2246 0.5147 0.000952 0.000961 0.000949 0.000887

N2 0% 0% 0% 0%

GLS 047348 043368 0.2255 0.5166 0.000264 0.000262 0.000268 0.000231

SWP 0.1737 0.1885 022533 0.5160 0.000263 0.000261 0.000268 0.000229

N3 0% 0% 0% 0%

GLS 0.1740 0.1883 0.2258 0.5174 0.000401 0.000400 0.000388 0.000347

SWP 0.1737 0.1880 032533 0.5162 0.000395 0.000393 0.000382 0.000340

N4 0% 0% 0% 0%

GLS 0.1739 0.1884 0.2259 0.5174 0.000399 0.000398 0.000384 0.000343

SW? 0.1737 0.1880 03253“ 0.5162 0.000394 0.000394 0.000382 0.000340

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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5.1.4 Correlation Matrix R4

Pattern I. The combination of Pattern I with correlation matrix R. led to more

missing data occurred as the relationships between the predictor variables and the

outcome became stronger. Also, there was no correlation among the predictors in R4. As

shown in Table 5.16, both GLS and SWP performed well in estimating the slope ofX..

SWP estimated the slope ofX1 precisely when the sample sizes were equal across studies

(N1 and N2). As was true for other patterns and correlations, GLS tended to overestimate

the slope ofX1 all the time. SWP did not estimate the slope well when large amounts of

data were missing on the variable that related strongly to the outcome (e.g., the slope for

X4 in N4). Similar to earlier findings, GLS always produced more stable estimates of the

slope for X4 and resulted in a smaller SE. The differences in SE8 between the two

methods were similar to those found in Pattern I with correlation matrix R2.

Pattern II. The combination of Pattern II with correlation matrix R; had missing

data only on the last variable X4, which had the strongest relation to the outcome and

appeared in only one study included in the meta-analysis. There was no correlation

among predictors. As shown in Table 5.17, SWP produced better estimates of the slope

for X1 most of the time and GLS still tended to overestimate the slope ofX1. GLS

performed better than SWP at estimating the slope ofX2. GLS also produced very precise

estimates of the slope ofX. when there was little missing data (4%) in N3. SWP produced

more stable estimates than GLS most ofthe time, except the SE; values calculated via

GLS in N2 and N4 were smaller than those produced by SWP.

Pattern III. When Pattern III is combined with correlation matrix R4, the predictors

that were more strongly related to the outcome (X2, X3, and X4) were present in only the
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last study in the synthesis and there was no correlation among predictors. As shown in

Table 5.18, SWP gave better estimates of the slope for X1 most ofthe time and GLS

tended to overestimate the slope ofX1. Compared with the results fiom other scenarios,

neither method performed particularly well at estimating the slope ofX1 in N1. When the

sample size was larger and equal across studies (N2), GLS and SWP overestimated the

slopes for all four variables. Both methods produced good estimates for slopes of the

variables when less missing data occurred (N3); when there was more missing data

occurred (N4), SWP produced better estimates for X1, which was the only variable that

was fully observed. Both methods produced equally stable estimates in most situations.

Pattern IV. In the combination of Pattern IV with correlation matrix R4, predictors

X1 to X3 were present in all four studies, whereas X4, which was related to the outcome the

most strongly, was present only in the last study included in the synthesis. As shown in

Table 5.19, SWP estimated the slope ofX1 better across all different sample size patterns,

except in N1 when GLS estimates were less bias. Both methods tended to overestimate

the slope ofX1. SWP gave better estimates of the slope ofX3, which was a variable that

was fully observed and related to the outcome most strongly. When sample sizes were

equal and large across studies (N2), GLS produced precisely estimate of the slope ofX4.

When many values were missing on X4 (96% in N4), GLS also better estimated the slope

ofX4. When the proportion of missingness was smaller (45% in N3), SWP tended to do

better. GLS generally produced more stable estimates than SWP.

Pattern V. In Pattern V with the correlation matrix R4, all the studies in the synthesis

included all four predictors. No missing data occurred for any of the predictors and there

was no correlation among those predictors. As shown in Table 5.10, SWP consistently
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produced estimates of the slope forX1 that were closer to the population value, while

GLS always resulted in overestimation of the slope of this variable when sample sizes

varied. SWP worked well when the sample sizes were small and equal (N l). SWP

produced less stable estimates ofthe slopes for X4. SWP also produced less stable

estimates when variables highly related to the outcome were based on smaller sample

sizes (N4).
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Table 5.16

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix R4

 

 

 

 

 

Method El E, E, E4 SE. SE. SE. SE.

0.25 0.3 0.4 0.6

N1 0% 25% 50% 75%

GLS 0.2522 0.3023 0.4022 0.5954 0.001271 0.001312 0.001370 0.001240

a

SWP 03500 0.2996 0.3998 0.6034 0.001283 0.001308 0.001371 0.001312

N2 0% 25% 50% 75%

GLS 0.2502 0.2997 0.4000 0.5999 0.000356 0.000361 0.000369 0.000330

3

SWP 03500 0.2995 0.3998 0.6004 0.000356 0.000362 0.000370 0.000354

N3 0% 4% 18% 45%

8

GLS 0.2501 0.3001 94000 0.5994 0.000388 0.000406 0.000399 0.000371

8

SWP 0.2498 0.2998 9400" 0.6002 0.000387 0.000405 0.000398 0.000387

N4 0% 55% 82% 96%

GLS 0.2506 0.3015 0.4029 0.6015 0.001145 0.001283 0.001287 0.001130

SWP 0.2497 0.3001 0.4009 0.6066 0.001161 0.001293 0.001298 0.001321

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.

93



Table 5.17

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern H and CorrelationMatrix R4

 

 

 

 

 

Method E1 E, E, E4 SE. SE. SE. SE.

0.25 0.3 0.4 0.6

N1 0% 0% 0% 25%

GLS 0.2509 0.3015 0.4009 0.6027 0.000883 0.000894 0.000897 0.000844

SWP 0.2491 0.2993 0.3980 0.6002 0.000843 0.000852 0.000849 0.000807

N2 0% 0% 0% 25%

GLS 0.2502 0.2998 0.4001 0.6003 0.000234 0.000239 0.000234 0.000216

swr 0.2502 0.2996 0.3999 0.6001 0.000232 0.000238 0.000233 0.000222

N3 0% 0% 0% 4%

GLS 0.2505 0.2999 0.4003 “5000‘ 0.000326 0.000329 0.000320 0.000303

SWP 0.2502 0.2996 0.3998 0.5999 0.000325 0.000327 0.000318 0.000302

N4 0% 0% 0% 55%

GLS 0.2499 0.2999 0.4007 0.6021 0.000399 0.000428 0.000425 0.000374

SWP 0.2495 0.2995 0.4002 0.6004 0.000395 0.000422 0.000421 0.000392

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.18

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R4

 

A A

 

 

 

 

Method E, E, E, E, SE. SE. SE. SE.

0.25 03 0.4 0.6

N1 0% 75% 75% 75%

GLS 0.2545 0.3010 0.4013 0.5976 0.001407 0.001568 0.001519 0.001438

SWP 0.2523 0.3012 0.4017 0.5986 0.001402 0.001572 0.001522 0.001449

N2 0% 75% 75% 75%

GLS 0.2505 0.3001 0.4004 0.6005 0.000369 0.000439 0.000434 0.000390

SWP 0.2503 0.3001 0.4004 0.6006 0.000369 0.000439 0.000434 0.000393

N3 0% 45% 45% 45%

GLS 0.2501 0.2998 0.4006 0.5999 0.000383 0.000413 0.000422 0.000394

SWP 0.2498 0.2999 0.4007 0-6000a 0.000383 0.000413 0.000422 0.000393

N4 0% 96% 96% 96%

GLS 0.2511 0.3021 0.3987 0.6026 0.001375 0.001555 0.001589 0.001463

SWP 0.2502 0.3018 0.3985 0.6026 0.001375 0.001557 0.001591 0.001486

 

Note. The bolded values are the population lepes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.19

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

 

 

 

 

 

Pattern IV and Correlation Matrix R4

Method E, E, E, E4 SE. SE. SE. SE.

0.25 0.3 0.4 0.6

N1 0% 0% 0% 75%

GLS 0.2511 0.3029 0.4037 0.5948 0.001295 0.001275 0.001314 0.001146

SWP 0.2487 0.2999 0.3993 0.6052 0.001305 0.001282 0.001316 0.001272

N2 0% 0% 0% 75%

GLS 0.2505 0.2996 0.4004 960008 0.000333 0.000343 0.000349 0.000304

SWP 0.2503 0.2994 0.4001 0.6007 0.000335 0.000345 0.000351 0.000337

N3 0% 0% 0% 45%

GLS 0.2503 0.3004 0.4008 0.5987 0.000378 0.000397 0.000383 0.000356

SWP 025003 030008 0.4002 0.6001 0.000380 0.000397 0.000382 0.000373

N4 0% 0% 0% 96%

GLS 0.2516 0.3023 0.4020 0.6029 0.001129 0.001183 0.001181 0.001033

SWP 0.2505 0.3010 0.4002 0.6067 0.001145 0.001194 0.001186 0.001215

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.20

Missing Percentage, Estimated Mean S10pes and Standard Errors for Each Predictor for

Pattern V and Correlation Matrix R4

 

A A

 

 

 

 

Method E, E, E, E4 SE. SE. SE. SE.

0.25 03 0.4 0.6

N1 0% 0% 0% 0%

GLS 0.2516 0.3015 0.4008 0.6036 0.000808 0.000825 0.000797 0.000803

SWP 0.2499 0.2993 0.3986 0.5987 0.000784 0.000787 0.000750 0.000763

N2 0% 0% 0% 0%

GLS 0.2502 0.3001 0.4001 0.6003 0.000215 0.000217 0.000218 0.000203

SWP 0.2502 03000“ 0.3999 0.5999 0.000214 0.000216 0.000217 0.000202

N3 0% 0% 0% 0%

GLS 0.2503 0.2998 0.4003 0.6008 0.000329 0.000323 0.000316 0.000305

SWP 925008 0.2995 0.3998 0.5999 0.000324 0.000318 0.000311 0.000299

N4 0% 0% 0% 0%

GLS 0.2502 0.2998 0.4004 0.6007 0.000327 0.000321 0.000313 0.000302

SWP 035003 0.2995 0.3999 0.5999 0.000323 0.000318 0.000311 0.000299

 

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.21 presents the bias ranges for each slope for each method across scenarios.

When important variables tended to be missing from the model (R3 and R4), the estimates

for X1, X2, and X3 from both departed from the population values relatively large. The

ranges ofthe bias for the slope ofX4 were largest among the four predictor slopes for

both methods. Since it was missing the most across studies, it was more difficulty to

estimate it precisely.

Table 5.21

Ranges of Percentage Relative Bias Produced by GLS and SWP

 

 

 

SWP GLS

Largest negative Largest positive Largest negative Largest positive

X1

Value -0.6229 1.3324 -0.06 3.1782

Scenario Pat4N1R3 Pat3N1R3 Pat2N4R4 Pat3N1R3

X2

Value -0.4375 0.6067 -0.71 1.7976

Scenario Pat4N2R3 Pat3N4R4 Pat3N1R1 Pat4N1R3

X3

Value -1.3313 0.8432 -1.4334 1.5561

Scenario Pat3N4R3 Pat3N1R3 Pat3N4R3 Pat4N1R3

X4

Value -0.8479 2.00 -2.6648 1.1121

Scenario Pat5N1R1 Pat4N4R2 Pat4N1R1 Pat5N1R3

 

Note. Eight characters denote a scenario. The first four characters indicate the pattern

(Patl through Pat5); the following two characters indicate the sample size set (N1

through N4); the last two characters indicate the correlation matrix (R. through R4).
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5.2 ANOVA Results

The ANOVA results for each predictor were summarized in Table 5.22 to Table 5.25.

Noted that the scale for the marginal means for pattern IV was different from other

patterns to present the large negative differences between two methods in estimating X4

slope. The small adjusted R squares for modeling the difference between two methods for

each predictor (ranging from .029 for X2 to .088 forX1) indicated that only a small

portion of the differences between two methods was attributable to the missing data

patterns, correlation matrices, sample size sets, and their interactions. Because ofthe

large amount of data that was generated for this research, the significance values were all

less than .0001, which indicates the significance of all factors. The largest n2 estimate (E2)

among the four ANOVAs for four predictors was .06 for sample sizes (N) for the slopes

for X1. Different missing pattems explained less than 0.01% in the variance of the

different estimates between the GLS and the SWP methods for X1. Correlation matrices

(Rs) also explained less than 0.01% variances ofthe different estimates between two

methods for X2. For X4, missing data patterns explained most amount of variance

(E2=.034) of the outcome, while the pattern and sample size interaction also contributed

2.8% of the variance.

The interactions were also significant at the .0001 level. To show the nature of the

interaction, the correlation matrix (R)*sample sizes (N) interactions were plotted for the

five missing data patterns for each of the four predictors in Figure 5.1 to Figure 5.4. In

most ofthe plots for the X1 slope, large discrepancies arose for the four predictors in the

sample size set N1. Across all five patterns, the largest differences between the methods

of estimating the X1 slope were present with the matrix R1. The differences between the
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two methods for estimating the slope ofX2 were smaller. For the predictors X3 and X4

when more data were missing, the two methods were similar at estimating the slope

under N2 and N3. The two methods were different at estimating the slopes for these two

predictors when important correlations tended to be missing more frequently (R3 and R4).

Table 5.22

Analysis of Variance for the Differences in Estimates ofthe Slope ofX1

Dependent Variable: E1 (GLS) — El (8WP)
 

 

       

Type III Sum Mean Partial Eta

Source of Squares df Square F Si' Squared

coma“ .2878 79 .004 99.23 .000 .089
Model

Intercept .177 l .177 4848.50 .000 .057

Pattern .001 4 .000 6.18 .000 .000

R .041 3 .014 370.09 .000 .014

N .186 3 .062 1696.83 .000 .060

Pattern * R .003 12 .000 6.34 .000 .001

Pattern * N .002 12 .000 4.97 .000 .001

R * N .051 9 .006 153.87 .000 .017

Pattern * R * N .003 36 9.44E-005 2.58 .000 .001

Error 2.922 79920 3.66E-005

Total 3.386 80000

Corrected Total 3.208 79999
 

a. R Squared = .089 (Adjusted R Squared = .088)
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Table 5.23

Analysis ofVariance for the Differences in Estimates ofthe Slope ofX2

Dependent Variable: E2 (GLS) - E, (SWP)
 

 

       

Type III Sum Mean Partial Eta

Source of Squares df Square F fig. Squared

Corrected ..

Model .110 79 .001 30.88 .000 .030

Intercept .034 1 .034 750.78 .000 .009

Pattern .032 4 .008 175.87 .000 .009

R .002 3 .001 12.19 .000 .000

N .031 3 .010 230.63 .000 .009

Pattern * R .004 12 .000 6.68 .000 .001

Pattern * N .035 12 .003 64.42 .000 .010

R * N .002 9 .000 5.30 .000 .001

Pattern * R * N .005 36 .000 2.96 .000 .001

Error 3.602 79920 4.51E-005

Total 3.745 80000

Corrected Total 3.712 79999   
a. R Squared = .030 (Adjusted R Squared = .029)

Table 5.24

Analysis of Variance for the Differences in Estimates of the Slope ofX3

Dependent Variable: E3 (GLS) — 19:3 (SWP)

 

 

Type III Sum Mean Partial Eta

Source of Squares df Square F Sig. Squared

corrected .1568 79 .002 43.75 .000 .041
Model

Intercept .046 l .046 1014.26 .000 .013

Pattern .039 4 .010 213.81 .000 .011

R .013 3 .004 93.08 .000 .003

N .033 3 .011 243.15 .000 .009

Pattern * R .009 12 .001 16.07 .000 .002

Pattern * N .044 12 .004 81.41 .000 .012

R * N .012 9 .001 28.90 .000 .003

Pattern * R * N .007 36 .000 4.52 .000 .002

Error 3.604 79920 4.51E-005

Total 3.806 80000

Corrected Total 3.760 79999         
 

a. R Squared = .041 (Adjusted R Squared = .041)
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Table 5.25

Analysis of Variance for the Differences in Estimates of the Slope ofX4

Dependent Variable: E4 (GLS) — E, (SWP)
 

 

       

Type III Sum of Mean Partial Eta

Source Squares df Square F Sig. Squared

Corrected Model .652‘ 79 .008 82.690 .000 .076

Intercept .067 1 .067 669.80 .000 .008

Pattern .278 4 .070 696.66 .000 .034

R .007 3 .002 22.01 .000 .001

N .055 3 .018 182.15 .000 .007

Pattern * R .033 12 .003 27.78 .000 .004

Pattern "‘ N .231 12 .019 193.06 .000 .028

R * N .015 9 .002 16.91 .000 .002

Pattern * R * N .033 36 .001 9.20 .000 .004

Error 7.982 79920 9.99E-005

Total 8.702 80000

Corrected Total 8.635 79999
 

a. R Squared = .076 (Adjusted R Squared = .075)
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Figure 5.1. Interactions of Sample Size Sets and Correlation Matrices for Five Patterns

for Differences in Slopes of X.
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Figure 5.1. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes of X1
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Figure 5.1. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes ofX1
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Figure 5.2. Interactions of Sample Size Sets and Correlation Matrices for Five Patterns

for Differences in Slopes of X2
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Figure 5.2. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes of X2
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Figure 5.2. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes ofX2
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Figure 5.4. (cont’d) Interactions of Sample size Sets and Correlation Matrices in Five

Patterns for Differences in Slopes ofX4

5.3 Mixed-effects Model (Condition 5 through Condition 8)

In this part of simulation, I made the models more complex by choosing different

correlation matrices for the first two and the last two studies. This represents a more

complex fixed effects model, with two groups of studies. The results based on different

matrices (R5 though R3) under mixed-effects model in the syntheses for each ofthe five

missing patterns are shown in Table 5.26 through Table 5.30. Within each pattern, the

mean slope for each predictor and the standard errors based on GLS and SWP methods

were reported for each sample size set (NI thought N4) for each of the four conditions.

Note that the population values for the slopes for the variables were always the same for

N1 and N2. This is because N1 and N2 both had equal sample sizes across the four studies

included in the synthesis, and the summarized correlation matrix used for calculating the
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slopes weighted by sample size as shown in the methods section.

5.3.1 Pattern I

In this pattern, the relative bias between of the estimated slopes was less than 5% ‘

most ofthe time for both methods. However, the relative bias was much greater in some

conditions. SWP generally performed better than GLS, and produced slopes closer to the

population values. The worst estimation from SWP in this pattern was in condition 5

when the sample size set was N4. Here correlations among predictors (X1 and X2) existed

only in one study (study 2) based on a somewhat large sample (the sample size for the

second study was 1000 in N4). The relative bias of the slopes for X2, X3, and X4 were

9.55%, 11.48%, and 12.64% respectively. Both GLS and SWP produced smaller relative

bias when the sample sizes were from N2 and N3. They performed well especially in

condition 8 when the sample size was equal to N3. The relative biases of estimates of all

the slopes produced by both methods were all less than 1% in that condition. The stability

of the estimates of both methods was similar to those based on fixed-effects model.

5.3.2 Pattern II

In this pattern, SWP produced much closer estimates than did the GLS procedure.

Most of the time, SWP resulted in less than 1% relative bias in estimating the slopes. For

GLS, with sample size sets N1 and N2, the relative biases were greater than 5% all the

time for all variables, while SWP produced bias values under 1% most of the time. With

sample size sets N3 and N4, GLS performed only slightly better for a few slopes with the

relative bias less than 5%. The bias for those with relative bias less than 5% by GLS

method ranged from 2.35% (slope for X4 with sample size N3 in condition 6) to 4.98%
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(X3 with sample size N4 in condition 8). SWP did not perform as well as in other

scenarios when the sample size set was N4 in condition 8. The relative biases of slopes

for all four predictors were all above 1%. However, they were still smaller than the values

for estimates from the GLS method. The stability of the estimates of both methods was

similar to those based on the simple fixed-effects model.

5.3.3 Pattern III

The results for the each condition presented in Table 5.28 were identical to those

presented in Table 5.8 (same as Condition 5), Table 5.18 (same as Condition 6), Table 5.3

(same as Condition 7), and Table 5.13 (same as Condition 8). The identity arose because,

in this pattern, the intercorrelations among X2, X3, and X3 were provided by only the last

study in the synthesis, which made it the same as Pattern III under the simple

fixed-effects model. The comparisons between GLS and SWP under each condition for

different sample size sets can be found in the previous sections.

5.3.4 Pattern IV

In this pattern, GLS produced large relative percentage bias values in most

conditions. The largest bias produced by GLS was in estimating the slope ofX1

(bias=18.33%) with the sample size set N4 in Condition 6. SWP also produced the largest

bias in the same scenario (bias=l7.86%). Actually, when the sample size equaled N4 in

this pattern in Condition 5 and Condition 6, where X4 had zero correlation with other

variables, the estimated slopes for all the four variables from both methods had rather

larger relative biases. SWP consistently resulted in large bias, ranging from 8.35% (in N3)
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to 35.95% (in N4), for ,0, in Condition 5. Contrary to the large biases found in those

situations, SWP consistently produced small biases for all four variables across the

sample size sets in Condition 7.

5.3.5 Pattern V

No missing data occurred in this pattern, and the results in this pattern were similar

to those found for Pattern II, where the missingness occurred only in one variable in the

first study. Most of the time, the SWP slopes showed less than 1% relative percentage

bias. In Condition 7 and Condition 8, when sample sizes were equal across studies (N1

and N2), GLS estimated had more than 10% relative bias for the slopes ofX1, X2 and X3.

Large biases in estimating the slopes ofX2, X3 and X4 from GLS could be found in

Condition 5 and Condition 6 when the sample sizes were equal, as well as in Condition 6

with sample size set N3 and in Condition 5 with sample size set N4.
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CHAPTER 6

DISCUSSION

This chapter summarizes the major findings based on the two methods investigated

in this research, and compares the two methods in a more general way. Suggestions for

choosing from the two methods are provided, as well as the limitations and further

investigations of the current study.

This research extends the factored likelihood method through the sweep operator

(SWP), which was originally designed for handling missing data, to the meta-analysis

context. The results from the SWP method were compared to the results from the GLS

method, which is a typical procedure for synthesizing multivariate data in meta-analysis.

The major difference between the two methods is that the SWP utilizes the concept of

maximum likelihood while GLS is not a likelihood-based approach and focuses on

weighting the correlations by their variability. Exploring the SWP method provides

another point of view and possible way to deal with the missing information that often

occurs in meta-analyses.

In the current study, the correlation matrices from regression studies were combined

in order to obtain the synthesized standardized slopes as a summary of the included

regression models in the synthesis. The two methods investigated in this study allow the

information from regression studies to be combined with correlational studies, which can

be considered as simple regression studies. Being able to incorporating regression studies

with correlational studies helps to improve the understanding of the relationship found in

correlational studies, because more variables are held constant in regression studies than
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in correlational studies while exploring the relationship between the outcome and the

predictor.

As the results presented in Chapter 5 show, each of the GLS and SWP methods has

its own strength in synthesizing regression studies with different patterns of missing data,

missing rates, and differences in what was missed (in terms ofthe strength ofthe ‘

correlations remaining in the matrix). The methods were first examined assuming fixed

effects (Condition 1 through Condition 4), when all the four studies included in a

meta-analysis were based on the same population correlation matrix. The major finding

assuming fixed effects across studies was that SWP consistently performed slightly better

than GLS when estimating the slope of the variable that was present in all regression

models (X1), while GLS consistently overestimated it in all the five missing patterns with

different sample sizes. The empirical examination using the pseudo studies in Chapter 4

also confirmed this finding. This result makes SWP a more desirable method especially

when a researcher’s focus is on the relationship between the outcome and one specific

predictor. In that case, the bivariate relationship of interest can be adjusted appropriately

by other variables that were controlled in the regression studies when using SWP. '

The estimated slopes obtained from two methods were very close to the population

values, indicating that both methods produced good estimates of the slopes for the final

model. There were a few tendencies found for the two methods in terms of the impact of

the study patterns, sample sizes, and the strength of correlations that were missing. For

example, SWP tended to perform better in estimating ,8, when the sample size was small

and equal across studies (N1) in all patterns; GLS tended to perform better on

estimating ,62 when the sample size was large and equal across studies (N2). When more
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missing data occurred (N4), SWP tended to produce more precise estimates of the slope

forX3 in all patterns, no matter what correlation matrix the studies were based on; GLS

tended to perform better on the same variable when the sample size was large and equal

across studies (N2). When there were less missing data within studies (N3), SWP tended

to estimate the slope for X4 better, while GLS tended to do better with more data missing

(N4) on this variable.

The percentage relative biases were calculated to quantify the difierences between

estimated slopes and the population slopes. In all the scenarios of simulation, both

methods produced the bias under 5%, which made the two methods good estimation

methods (Hoogland & Boomsma, 1998). Yet the ranges of bias from GLS were

consistently larger than the ranges from SWP which made GLS less desirable.

The largest positive bias values for estimating the slope for X1 produced by both methods

were both under Pattern III with the sample size N1 and correlation matrix R3. This

indicates that when the sample size was small and equal across studies and when

important variables were missing more, comparing to missingness for less important

variables, both methods did not do as well as in other scenarios for estimating the X1

slope. On the other hand, SWP did very well (zero bias) in estimating B1 in this pattern

with the sample size N3 and the correlation matrix R2. That implies when there were

mostly correlational studies but only a few regression studies with big sample sizes

included in the meta-analysis, SWP can estimate the slope for the most observed variable

very well, especially when the predictors that were missing from the correlational studies

were related to each other and the outcome less strongly and when there are no

intercorrelations among the predictors. Another summary and comparison of the results
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from two methods can be found in Appendix E.

In the factorial ANOVAs, relatively little of the variance of the differences between

slopes estimated by the two methods were explained by the patterns, the correlation

matrices, and the sample size sets. In all cases, less than 10 percent ofthe variability is

explained by all the factors. For X1, which is ofthe most of interest, the sample sizes

seemed to be the most important factor for explaining the variation ofthe differences and

patterns seemed to be the least important factor. The implication for this finding is that

when the researcher is making the decision ofthe method to be used, the most important

thing to keep in mind is the sample sizes of the primary studies included in the synthesis.

S Ordinal interactions existed in the current analyses for X1. The interaction plots showed

that, when separating by patterns, GLS and SWP produced more difi‘erent estimates of

the X1 slope in sample size set N1 than in other sample size sets. Combining this result

with the previous finding that SWP consistently produced closer slopes on X1, the SWP

method is especially preferred when the sample sizes are small and equal across studies,

no matter what the correlation matrix is.

The two methods were also examined under mixed-effects models (Condition 5

through Condition 8). By assuming mixed effects, the relationships among variables in

the four studies in the synthesis were not all based on the same population correlation

matrix. Since methods for meta-analyzing multivariate data under this model have not

been well developed (due to the difficulty of estimating between-study variances with

multivariate data appropriately), the population slopes calculated for each scenario were

based on the weighted mean correlations using the existing correlations in the current

research. As a consequence, the estimates from SWP showed lower relative percentage
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bias most of the time, because SWP depends more on the weighted mean correlations at

the beginning ofthe calculations than does the GLS procedure.

When comparing the results for the fully observed predictor X1 under the

mixed-effects model to the results of same scenarios but under a fixed-effects model,

both methods showed the largest negative differences (mixed-effect results minus

fixed-effects results) in Condition 8 with sample size equaled N] and the largest positive

differences in Condition 7 with the sample size defined by N3 in Pattern III. This finding

indicates that when the important variables (e.g., the X4 the correlation matrices R3 and

R4 in this research) were more likely to be missing (e.g., X4 is missing in study 1 to study

3 in pattern 111), the estimate of the slope of the fully observed variable can be very

different (when using either methods) under fixed- and mixed- effects conditions. More

investigations on producing appropriate estimates under non-fixed effect models will be

needed.

As all research has limitations, this study is constrained in several ways. First, using

the factored likelihood estimation through the sweep operator requires the predictors

included in the models in the synthesis to be arranged in a monotone pattern somewhat

like those shown in Figure 3.2. Those patterns help to obtain the maximum likelihood of

the correlations without an iterative process, which made SWP an easy method to use.

The desired pattern sometimes can be achieved by rearranging the order of the predictors

in the models. Or, some variables may have to be excluded from models in order to

obtain the desired pattern. The GLS method, on the contrary, is more flexible in this

matter, and can be used with any correlations that are available in the studies. Other

methods for handling missing data that might be useful for synthesizing regression
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studies in the meta-analysis context, such as multiple irnputations, might be worth while

to investigate, since combining regression studies is somewhat similar to dealing with

missing information from primary studies.

Second, the correlations used in the synthesis from the primary studies were

assumed to be perfectly measured in the current studies. That is, the errors from the

instruments used to measure the variables in the regression models were not taken into

account. I made this simplification because I wanted to focus on eliminating the impact

of the unparallel situations that occurs when regression models do not contain all the

same predictors. Further research should investigate possible solutions, such as utilizing

the concept of structural equation modeling, to incorporate measurement errors in

meta-analysis.

Third, the correlations among the variables in the regression studies are required in

order to use the methods investigated in this research. Unfortunately, it is very likely the

information about the zero-order correlations may not be reported or may be only

partially reported. In this matter, Bayesian perspectives might provide a possible direction

for obtaining the correlations needed for synthesizing regression studies based on other

information, such as slopes reported in the regression study. A possible method is to use

the Gibbs Sampler (Casella & George, 1992; Gelfand & Smith, 1990), that is based on

elementary properties of Markov chains, to generate possible correlations based on the

observed distribution of the slopes of regression models.
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APPENDIX A:

SAS Macro for GLS

Below is the example of SAS macro for generating the data under Pattern I for four

sample sizes and four correlations and calculating the standardized slopes and standard

errors using GLS.

3|!***********************************************************************

N= Sample size set for four studies (N1 through N4);

R= Correlation matrix R1 through R5;

nk=sample size for study k in a synthesis, k=1 to 4;

riia=correlation between variables i, i=y,1,2,3,or 4; #1”.

Libname GLSpl 'C:\';

%Macro GLSpl(N,R,n1,n2,n3,n4,ry1,ry2,ry3,ry4,r12,r13,rl4,r23,r24,r34);

Title GLS PATTERNl &N &R ;

Proc IML;

nseed=125;nrep=1000;

Patl=j(nrep,8,0);

do sim=l to nrep;

sl=j(&n1,2,0);

do i=1 to &n1;

sl[i,1]=rannor(nseed);

sl[i,2]=rannor(nseed);

end;

slr={1 &ryl,&ryl 1};

col=root(slr);

zl=sl*col;

rl=corr(zl);

52=j(&n2,3,0);

do i=1 to &n2;

82[i,1]=rannor(nseed);

52[i,2]=rannor(nseed);

32[i,3]=rannor(nseed);

end;

52r={1 &ry1 &ry2,&ryl 1 &r12,&ry2 &r12 1};

c02=root(82r);

zZ=sZ*coZ;

r2=corr(22);

$3=j(&n3,4,0);

do i=1 to &n3;

53[i,1]=rannor(nseed);

s3[i,2]=rannor(nseed);
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33[i,3]=rannor(nseed);

53[i,4]=rannor(nseed);

end;

33r={1 &ryl &ry2 &ry3,

&ryl 1 &r12 &rl3,

&ry2 &r12 1 &r23,

&ry3 &r13 &r23 1};

c03=root(s3r);

23:53*c03;

r3=corr(z3);

s4=j(&n4,5,0);

do i=1 to &n4;

i,1]=rannor(nseeds4[ ).

s4[i,2]=rannor(nseed);

s4[i,3]=rannor(nseed);

s4[i,4]=rannor(nseed);

s4[i,5]=rannor(nseed);

end;

s4r={1 &ryl &ry2 &ry3 &ry4,

&ryl 1 &r12 &r13 &rl4,

&ry2 &r12 1 &r23 &r24,

&ry3 &r13 &r23 1 &r34,

&ry4 &r14 &r24 &r34 1};

co4=root(s4r);

z4=s4*co4;

r4=corr(z4);

r1_y1=r1[1,2];

r2_yl=r2[1,2];r2_y2=r2[1,3];r2_12=r2[2,3];

r3_y1=r3[1,2];r3_y2=r3[1,3];r3_y3=r3[1,4];r3_12=r3[2,3];r3_l3=r3[2,4];r

3_23=r3[3,4];

r4_yl=r4[1,2];r4_y2=r4[1,3];r4_y3=r4[1,4];r4_y4=r4[1,5];r4_12=r4[2,3];r

4_13=r4[2,4];r4_14=r4[2,5];r4_23=r4[3,4];r4_24=r4[3,5];r4_34=r4[4,5];

*1‘:+**+*****************************************~k*********ir‘kir-kiv-kiri-ir'k'k'kirir

++-++-++*iriuk*ir****~k**~k***+**+*****+*******+;

p1=ncol(rl);

diml=pl*(pl—1)/2;

cov1=j(diml,dim1,0);

mat=j(dim1,2,0);

k=1;

do i=2 to p1;

do j=1 to (i—l);

covl[k,k]=(1—r1[i,j]##2)##2/&nl;

mat[k,1]=i;

matlk.21=j;

k=k+1;

end;

end;

do i=2 to diml;

do j=1 to (i-l);

s=mat[i,1];

t=mat[i,2];

u=mat[j.ll;

v=mat[j.2];

covl[i,j]=(0.5*rl[s,t]*rl[u,v]*(r1[s,u]##2+rl[s,v]##2+r1[t,u]##2+r1
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[t,v]##2)4qil[s,u]*r1[t,v]+rl[s,v]*r1[t,u]-(rl[s,t]*rl[s,u]*rl[s,v]+r1[t

,s]*rl[t,u]*rl[t,v]+rl[u,s]*r1[u,t]*rl[u,v]+r1[v,s]*rl[v,t]*rl[V,U]))/&

n1;

end;

end;

do i=2 to diml;

do j=1 to (i-l);

cov1[j,i]=covl[i,j];

end;

end;

p2=ncol(r2);

dim2=p2*(p2-1)/2;

cov2=j(dim2,dim2,0);

mat=j(dim2,2,0);

k=1;

do i=2 to p2;

do j=1 to (i—l);

cov2[k,k]=(1-r2[i,j]##2)##2/&n2;

mat[k,1]=i;

matlk.2]=j;

k=k+1;

end;

end;

do i=2 to dim2;

do j=1 to (i—l);

s=mat[i,1];

t=mat[i,2];

u=mat[j.1];

v=mat[j.2];

cov2[i,j]=(0.5*r2[s,t]*r2[u,v]*(r2[s,u]##2+r2[s,v]##2+r2[t,u]##2+r2

[t,v]##2)+r2[s,u]*r2[t,v]+r2[s,v]*r2[t,u]-(r2[s,t]*r2[s,u]*r2[s,v]+r2[t

,s]*r2[t,u]*r2[t,v]+r2[u,s]*r2[u,t]*r2[u,v]+r2[v,s]*r2[v,t]*r2[v,u]))/&

n2;

end;

end;

do i=2 to dim2;

do j=1 to (i-l);

cov2[j,i]=cov2[i,j];

end;

end;

p3=ncol(r3);

dim3=p3*(p3-1)/2;

cov3=j(dim3,dim3,0);

mat=j(dim3,2,0);

k=1;

do i=2 to p3;

do j=1 to (i—l);

cov3[k,k]=(1-r3[i,j]##2)##2/&n3;

mat[k,1]=i;

matlk,2]=j;

k=k+1;

end;

end;

do i=2 to dim3;

134



do j=1 to (i-l);

s=mat[i,1];

t=mat[i,2];

u=mat[j.1];

v=mat[j.2];

cov3[i,j]=(0.5*r3[s,t]*r3[u,v]*(r3[s,u]##2+r3[s,v]##2+r3[t,u]##2+r3

[t,v]##2)+r3[s,u]*r3[t,v]+r3[s,v]*r3[t,u]-(r3[s,t]*r3[s,u]*r3[s,v]+r3[t

,s]*r3[t,u]*r3[t,v]+r3[u,s]*r3[u,t]*r3[u,v]+r3[v,s]*r3[v,t]*r3[V,U]))/&

n3;

end;

end;

do i=2 to dim3;

do j=1 to (i-l);

cov3[j,i]=cov3[i,j];

end;

end;

p4=ncol(r4);

dim4=p4*(p4-1)/2;

cov4=j(dim4,dim4,0);

mat=j(dim4,2,0);

k=1;

do i=2 to p4;

do j=1 to (i—l);

cov4[k,k]=(1—r4[i,j]##2)##2/&n4;

mat[k,1]=i;

matlk.2]=j;

k=k+1;

end;

end;

do i=2 to dim4;

do j=1 to (i—l);

s=mat[i,1];

t=mat[i,2];

u=mat[j,1]

v=mat[j.2];

I

cov4[i,j]=(0.5*r4[s,t]*r4[u,v]*(r4[s,u]##2+r4[s,v]##2+r4[t,u]##2+r4

[t,v]##2)+r4[s,u]*r4[t,v]+r4[s,v]*r4[t,u]-(r4[s,t]*r4[s,u]*r4[s,v]+r4[t

,s]*r4[t,u]*r4[t,v]+r4[u,s]*r4[u,t]*r4[u,v]+r4[v,s]*r4[v,t]*r4[v,U]))/&

n4;

end;

end;

do i=2 to dim4;

do j=1 to (i—l);

cov4[j,i]=cov4[i,j];

end;

end;

p=dim1+dim2+dim3+dim4;

bigmtx=j (pl pr 0);

bigmtx[1:diml,1:dim1]=covl;

bigmtx[diml+1:dim1+dim2,diml+1zdiml+dim2]=cov2;

bigmtx[diml+dim2+1:dim1+dim2+dim3,diml+dim2+1:diml+dim2+dim3]=cov3;

bigmtx[dim1+dim2+dim3+1:dim1+dim2+dim3+dim4,diml+dim2+dim3+1:diml+dim2+

dim3+dim4]=cov4;
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rvecl=r1_y1;

Start rvec2;

k=1;

rvec2=j(dim2,1,0);

do i=2 to p2;

do j=1 to (i-l);

rvec2[k]=r2[i,j];

k=k+1;

end;

end;

finish;

run rvecZ;

Start rvec3;

k=1;

rvec3=j(dim3,1,0);

do i=2 to p3;

do j=1 to (i-1);

rvec3[k]=r3[i,j];

k=k+1;

end;

end;

finish;

run rvec3;

Start rvec4;

k=1;

rvec4=j(dim4,1,0);

do i=2 to p4;

do j=1 to (i-l);

rvec4[k]=r4[i,j];

k=k+1;

end;

end;

finish;

run rvec4;

outcome=rvecl//rvec2//rvec3//rvec4;

w=j(p.10.0);

w[1,1]=1;

w[2,1]=1;

w[3,2]=1;

w[4,3]=1;

w[5,1]=1;

w[6,2]=1;

w[7,3]=1;

w[8,4]=1;

w[9,5]=1;

w[10,6]=1;

w[11,1]=1;

w[12,2]=1;

w[13,3]=1;

w[14,4]=1;

w[15,5]=1;
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w)*inv(bigmtx)*w)*t(w)*inv(bigmtx)*outcome;

Start backmtx;

syncor=j(5,5,1);

k=1;

do i=2 to 5;

do j=1 to (i-l);

syncor[i,j]=rho[k];

syncor[j,i]=rho[k];

k=k+l;

end;

end;

finish;

run backmtx;

Rll=syncor[2:5,2:5];

R12=syncor[2:5,1];

SLOPE=inV(Rll)*R12;

Patl[sim,1]=&n1;

Pat1[sim,2]=&n2;

Patl[sim,3]=&n3;

Pat1[sim,4]=&n4;

Pat1[sim,5]=SLOPE[1,l];

Patl[sim,6]=SLOPE[2,1];

Patl[sim,7]=SLOPE[3,1];

Pat1[sim,8]=SLOPE[4,1];

end;

Create GLSp1.GLSPAT1&N&R from Patl [colname={n1 n2 n3 n4 x1 x2 x3 x4 } ]; Append

from Patl;

run;

quit;

%Mend GLSpl;

* 1*

éGiSp1(Nl,Rl,150,150,150,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,0.

igiépl(N2,Rl,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.

:Cgéiiig3,Rl,150,500,1000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,

2C::;1(N4,R1,2000,1000,500,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,

0.15);

/*R2*/

%GLSp1(Nl,R2, 150,150,150,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);

%GLSp1(N2,R2,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0),

%GLSp1(N3,R2,150,500,1000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0);

%GLSp1(N4,R2,2000,1000,500,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);

/*R3*/
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%GLSp1(N1,R3,150,150,150,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1,0.

:Zilfgpl(N2,R3,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.

:C2;3)(N3,R3,150,500,1000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1,

:Ci;2(N4,R3,2000,1000,500,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1,

0.25);

/*R4*/

%GLSp1(Nl,R4,150,150,150,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);

%GLSp1(N2,R4,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0) ,

%GLSp1(N3,R4,150,500,1000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0);

%GLSp1(N4,R4,2000,1000,500,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);

quit;
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APPENDIX B:

SAS Macro for SWP

Below is the example of SAS macro for generating the data under Pattern I for four

sample sizes and four correlations and calculating the standardized slopes and standard

errors using SWP. Among the five patterns studied in this research, Pattern I has the most

complicated codes because ofthe numbers of steps the calculation needed to be carried

OUL

************************************************************************

N= Sample size set for four studies (N1 through N4);

R= Correlation mat1ix R1 through R5;

nk=sample size for study k in a synthesis, k=1 to 4;

riy=correlation between variables i, i=y, l ,2,3,or 4; iaéi’.

************************************************************************

Libname SWPpl 'C:\';

%Macro

patternl(N,R,nl,n2,n3,n4,ry1,ry2,ry3,ry4,r12,r13,r14,r23,r24,r34);

Title PATTERNl &N &R ;

Proc IML;

nseed=125;nrep=1000;

Patl=j(nrep,8,0);

do sim=l to nrep;

sl=j(&n1,2,0);

do i=1 to &nl;

sl[i,1]=rannor(nseed);

sl[i,2]=rannor(nseed);

end;

slr={1 &ry1,&ryl 1};

col=root(slr);

zl=sl*col;

r1=corr(zl);

/*print rl;*/

52=j(&n2,3,0);

do i=1 to &n2;

52[i,1]=rannor(nseed);

52[i,2]=rannor(nseed);

52[i,3]=rannor(nseed);

end;

52r={1 &ryl &ry2,&ry1 1 &r12,&ry2 &r12 1};
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coZ=root(32r);

22=82*C02;

r2=corr(22);

83=j(&n3,4,0);

do i=1 to &n3;

s3[i,1]=rannor(nseed);

s3[i,2]=rannor(nseed);

( )

(

Is3[i,3]=rannor nseed

$3[i,4]=rannor nseed);

end;

33r={1 &ryl &ry2 &ry3,

&ryl 1 &r12 &r13,

&ry2 &r12 1 &r23,

&ry3 &r13 &r23 1};

c03=root(53r);

z3=s3*c03;

r3=corr(23);

s4=j(&n4,5,0);

do i=1 to &n4;

s4[i,1]=rannor(nseed);

s4[i,2]=rannor(nseed);

s4[i,3]=rannor(nseed);

s4[i,4]=rannor(nseed);

s4[i,5]=rannor(nseed);

end;

s4r={1 &ryl &ry2 &ry3 &ry4,

&ryl 1 &r12 &r13 &r14,

&ry2 &r12 1 &r23 &r24,

&ry3 &r13 &r23 1 &r34,

&ry4 &r14 &r24 &r34 1};

co4=root(s4r);

z4=s4*co4;

r4=corr(z4);

r1_y1=rl[1,2];

r2_yl=r2[1,2];r2_y2=r2[1,3];r2_12=r2[2,3];

r3_yl=r3[1,2];r3_y2=r3[1,3];r3_y3=r3[1,4];r3_12=r3[2,3];r3_13=r3[2,4];r

3_23=r3[3,4];

r4_y1=r4[1,2];r4_y2=r4[1,3];r4_y3=r4[1,4];r4_y4=r4[1,5];r4_12=r4[2,3];r

4_13=r4[2,4];r4_14=r4[2,5];r4_23=r4[3,4];r4_24=r4[3,5];r4_34=r4[4,5];

++~irir~kk+1&*********~x***‘k‘k‘k*********+*~k*************‘k***~k******ir'k‘kirir-k'k'k-k*‘k

AVEy1=(rl_y1*&n1+r2_y1*&n2+r3_y1*&n3+r4_yl*&n4)/(&n1+&n2+&n3+&n4);

0:1(2. 2: 1);

O[1,2]=AVEyl;

O[2,1]=AVEy1;

AVEyl=(r2_yl*&n2+r3_y1*&n3+r4_y1*&n4)/(&n2+&n3+&n4);

AVEy2=(r2_y2*&n2+r3_y2*&n3+r4_y2*&n4)/(&n2+&n3+&n4);

AVE12=(r2_12*&n2+r3_12*&n3+r4_12*&n4)/(&n2+&n3+&n4);

8234=j(3,3,1);

8234[1,2]=AVEy1;

8234[2,1]=SZ34[1,2];

8234[1,3]=AVEy2;

5234[3,1]=8234[1,3];

8234[2,3]=AVE12;

8234[3,2]=SZ34[2,3];

R11=8234[1:2,1:2];
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R12=SZ34[1:2,3];

slope234=inv(R11)*R12;

var234=1-t(slope234)*R12;

_=j(212ll);

[1,1]=-1/O[1,1];

[1 2]=O[1,21/011,1];

[2 21=O[2,2]-0[1.2]*Oll.2]/O[1,l];

[2 1]=A_Y[l.2];

(212(1);

.2]=-1/A_Y[2.2];

,2]=A_y[1,2]/A_y[2,2];

,1]=A_Y[1,1]-A_Y[1,2]*A_Y[1,2]/A_Y[2,2];

,1] =A_y[1.2];

(3.3.1);

:2,1:2] =A;

:2,3]=slope234[1:2,1];

1:2]=T(slope234[1:2,1]);

3]=var234[1];

‘

w
r
w
n
w
r
w
r
m
z
m
'
b
r
w
r
>
l
b
l
b
v

I
»

W
U
H
H
L
-
J
-
H
H
H
N
L
-
J
K
K
I
K
Z
"
<
|
<

I

AVEyl=(r3_y1*&n3+r4_yl*&n4)/(&n3+&n4);

AVEy2=(r3_y2*&n3+r4_y2*&n4)/(&n3+&n4);

AVEy3=(r3_y3*&n3+r4_y3*&n4)/(&n3+&n4);

AVE12=(r3_12*&n3+r4_12*&n4)/(&n3+&n4);

AVE13=(r3_l3*&n3+r4_13*&n4)/(&n3+&n4);

AVEZB=(r3_23*&n3+r4_23*&n4)/(&n3+&n4);

Vec=j(6,1,1);

Vec[1,1]=AVEy1;

Vec[2, 1] =AVEy2;

Vec[31]=AVE12;

Vec[4,1]=AVEy3;

Vec[5,1]=AVE13;

Vec[6,1]=AVE23;

Start matrix;

S34=j(4,4,l);

k=1;

do i = 2 to 4;

do j = 1 to (i-l);

SB4[i,j]=Vec[k];

SB4[j,i]=Vec[k];

k=k+1;

end;

end;

Finish matrix;

run matrix ;

/*print S34;*/

Rll=834[1:3,1:3];

R12=834[1:3,4];

slope34=inv(Rll)*R12;

var34=1—t(slope34)*R12;

.(3I3I1);

3]=-1/P[3,3];

3]=P[1,3]/P[3,3];

1]=Blly3li

3]=P[2,3]/P[3,3];

21:31213];
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B[1I1]=P[11]P113]*P[31]/P[3I3];

B[1, 2]=P[1, 2]- P[1, 3]*P[3, 2]/P[3, 3];

B[L 1] =B[1, 2];

B[2,2]=P[2 2]- P[2, 3]*P[3, 2]/P[3,3];

T=j (414,1);

T[1:3,1:3]=B

T[1:3,4]=slope34[1:3,1];

T[4,1:3]=T(slope34[1:3,1])

T[4,4]=var34;

S4=j(5I5I1);

S4[1,2]=r4_y1;

S4[2,1]=S4[1,2];

S4[1,3]=r4_y2;

S4[3,1]=S4[1,3];

S4[1,4]=r4_y3;

S4[4,1]

S4 1,5]

S4 5,1]

S4 2,3]

S4 3,2]

S4[2,4]

S4[4,2]

S4[2,5]

S4[5,2]

”
H
f
—
1
"
“

=S4[1I4l;

=r4_y4;

=S4[115];

=r4_12;

=S4[2I3];

=r4_13;

=S4[2l4];

=r4_14;

=S4[2I5];

S4[3,4]=r4_23;

S4[4,3]=S4[3,4];

S4[3,5]=r4_24;

S4[5,3]=S4[3,5];

S4[4,5]=r4_34;

S4[5,4]=S4[4,5];

R11=S4[1:4,1:4];

R12=S4[1:4,5];

slope4=inv(Rll)*R12;

var4=1-t(slope4)*R12;

C=j(4I4I1);

C[4,4]=-1/T[4,4];

C[1,4]=T[1,4]/T[4, 4];

C[2,4]=T[2,4]/T[4, 4];

C[3, 4] =T[3, 4]/T[4, 4];

C[4 =C[1I 4];

C[4 =C[2I 4];

C[4 C[3I 4];

C[1T[1,1]-T[1,4]

C[2, 2 T[2 2] -T[2, 4]

C[3, 3]=M[3 3] -T[3, 4]

1, 2] =T[1, 2] -T[1, 41*

1, 3] =T[1, 3 -T[1,4]*

= ll/T[4I 4]I

2]/T[4, 4];

3]/T[4I 4];

21/T[4I4]I

4]/T[4, 4];

l]

2]

3]

1] *T[4

]= *T[4,

*T[4,

T[4,

T[3,

2,1]

3,1]

C1

C1

Cl

C[

C[2, 3]

Cl

U
I
H
:
U
1

=C[1,2 '

=C[l,3

l

]I

];

=T[2, 3]-

=C[2I 3];

T[2I4]*T[3I4]/T[4I4];
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U[5,1:4]=T(slope4);

U[5,5]=var4;

it'k‘k‘k‘k'iric*i'ir*7"i"k+***ir'ir*********+*i'iric‘kir

REVERSE Operators matrix U on y l 2 3

*i-n‘r+*ir*i"k***‘ki‘i*+***t***************Io

Uy=j (51511);

UY[111]=-1/U[1rl];

UY[112]=-U[112]/U[111];

UY[113]=-U[113]/U[1I1];

UY[114]=-U[114]/U[lrl];

UY[115]=—U[1I5]/U[1I1];

UY[2I1]=UY[1I2];

UY[311]=UY[113];

UY[4I1]=UY[1I4];

UY[511]=UY[115];

UY[2I2]=U[2I2]‘U[1I2]*U[2I1]/U[1I1];

UY[2I3]=U[2I3]'U[1I2]*U[3I1]/U[1I1]i

UY[2I4]=U[2I4]‘U[1I2]*U[4I1]/U[1I1]i

UY[215]=U[215]-U[112]*U[511]/U[1r1];

UY[312]=UY[213];

UY[4I2]=UY[2I4];

UY[512]=UY[215];

UY[3I3]=U[3I3]‘U[1I3]*U[3I1]/U[1I1]i

UY[3I4]=U[3I4]’U[1I3]*U[4I1]/U[1I1]i

UY[3I5]=U[3I5]‘U[1I3]*U[5I1]/U[1I1];

UY[4I3]=UY[3l4];

UY[5I3]=UY[3I5];

UY[4,4]=U[4,4]‘U[1,4]*U[4,1]/U[1,1];

UY[4I 5]=U[4I 51—U[1I4] *U[511]/U[11 1];

UY[5I4]=UY[4I5];

UY[5I5]=U[5I5]‘U[1I5]*U[5I1]/U[1I1];

Uy1=j (51511);

Uylt1I11=Uy[1,1J-Uy[1,2]*Uyt2I1]/Uy[2,21I;

Uyl [1'2]=-UY[112] /UY[212];

Uyl[1I3]=UY[1I3]-UY[1I2]*UY[2I3]/UY[2I2]i

Uyl[1,41=Uy[1,41-Uy[1,21*Uyt2I41/Uy[2,21;

Uyl[1I5]=UY[1I5]'UY[1I2]*UY[2I5]/UY[2I2]i

Uyl[2I1]=Uyl[1I2];

Uyl[3I1]=Uyl[1I3];

Uy1[411]=Uy1[114];

Uyl[5,1]=Uyl[l,5];

UY1[2I2]=’1/UY[2I2];

UY1[2I3]=‘UY[2I3]/UY[2I2]i

UYl[2I4]=’UY[2I4]/UY[2I2]i

UY1[2I5]='UY[2I5]/UY[2I2];

UY1[3I2]=Uyl[2I3];

Uyl [412]=UY1 [214];

Uy1[512]=uy1[215];

UY1[3I3]=UY[3I3]‘UY[2I3]*UY[3I2]/UY[2I2]i

Uyl[3I4]=UY[3I4]’UY[2I3]*UY[4I2]/UY[2I2]i

Uyl[3I5]=UY[3I5]‘UY[2I3]*UY[5I2]/UY[2I2];

Uyl [413]=Uyl [3:4];

Uyl[5I3]=Uyl[3I5];

Uyl[4I4]=UY[4I4]‘UY[2I4]*UY[4I2]/UY[2I2]i
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Uy1[4I5]=Uy[4I5]-Uy[2I4]*Uy[5I2]/Uy[2I2];

Uyl[5I4]=Uyl[4I5];

Uyl[5,5]=Uy[5,5]-Uy[2,5]*Uy[5,2]/Uy[2I2];

Uy12=j(5I5I1);

Uy12[1I1]=Uyl[1I1]-Uy1[1I3]*Uy1[3I1]/Uy1[3I3];

Uy12[1,2]=Uy1[1,2]-Uy1[1,3]*Uy1[3,2]/Uyl[3,3];

Uy12[1I3]=-Uyl[1I3]/Uy1[3I3];

Uy12[1,4]=Uy1[1,4]-Uyl[1,3]*Uyl[3,4]/Uyl[3,3];

Uy12[1,5]=Uy1[1,5]-Uy1[1,3]*Uyl[3,5]/Uyl[3,3];

Uy12[2,1]=Uy12[1,2];

Uy12[3,1]=Uy12[1,3];

Uy12[4,1]=Uy12[1,4];

Uy12[5,1]=Uy12[1,5];

Uy12[2I2]=Uy1[2I2]-Uyl[2I3]*Uy1[3I2]/Uy1[3I3];

Uy12[2I3]=-Uy1[2I31/Uy1[3I3];

Uy12[2,4]=Uy1[2,4]-Uy1[2,3]*Uyl[3,4]/Uyl[3,3];

Uy12[2,5]=Uy1[2,5]-Uyl[2,3]*Uy1[3,5]/Uy1[3,3];

Uy12[3,2]=Uy12[2,3];

Uy12[4,2]=Uy12[2,4];

Uy12[5,2]=Uy12[2,5];

Uy12[3,3]=-1/Uy1[3I3];

Uy12[3,4]=-Uy1[3,4]/Uy1[3,3];

Uy12[3,5]=-Uy1[3,5]/Uyl[3,3];

Uy12[4,3]=Uy12[3,4];

Uy12[5,3]=Uy12[3,5];

Uy12[4I4]=Uyl[4I4]-Uy1[4I3]*Uyl[3I4]/Uy1[3I3];

Uy12[4I5]=Uyl[4I5]-UY1[4I3]*Uy1[3I5]/Uy1[3I3];

Uy12[5,4]=Uy12[4,5];

Uy12[5,5]=Uy1[5,5]-Uyl[5,3]*Uy1[3,5]/Uy1[3,3];

Uy123=j(5,5,1);

Uy123[1,1]=Uy12[1,1]-Uy12[1,4]*Uy12[4,1]/Uy12[4,4];

Uy123[1,2]=Uy12[1,2]-Uy12[1,4]*Uy12[4,2]/Uy12[4,4];

Uy123[1,3]=Uy12[1,3]-Uy12[1,4]*Uy12[4,3]/Uy12[4,4];

Uy123[1,4]=-Uy12[1,4]/Uy12[4,4];

Uy123[1,5]=Uy12[1,5]-Uy12[1,4]*Uy12[4,5]/Uy12[4,4];

Uy123[2,1]=Uy123[1,2];

Uy123[3,1]=Uy123[1,3];

Uy123[4,1]=Uy123[1,4];

Uy123[5,1]=Uy123[1,5];

Uy123[2,2]=Uy12[2,2]-Uy12[2,4]*Uy12[4,2]/Uy12[4,4];

Uy123[2,3]=Uy12[2,3]-Uy12[2,4]*Uy12[4,3]/Uy12[4,4];

Uy123[2,4]=-Uy12[2,4]/Uy12[4,4];

Uy123[2,5]=Uy12[2,5]-Uy12[2,4]*Uy12[4,5]/Uy12[4,4];

Uy123[3,2]=Uy123[2,3];

Uy123[4,2]=Uy123[2,4];

Uy123[5,2]=Uy123[2,5];

Uy123[3,3]=Uy12[3,3]-Uy12[3,4]*Uy12[4,3]/Uy12[4,4];

Uy123[3,4]=—Uy12[3,4]/Uy12[4,4];

Uy123[3,5]=Uy12[3,5]-Uy12[3,4]*Uy12[4,5]/Uy12[4,4];

Uy123[4,3]=Uy123[3,4];

Uy123[5,3]=Uy123[3,5];

Uy123[4,4]=-1/Uy12[4,4];

Uy123[4,5]=-Uy12[4,5]/Uy12[4,4];

Uy123[5,4]=Uy123[4,5];

Uy123[5,5]=Uy12[5,5]-Uy12[5,4]*Uy12[4,5]/Uy12[4,4];
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do i=1 to 5;

Uy123[i,i]=1;

end;

R11=Uy123[2:5,2:5];

R12=Uy123[2:5,1];

SLOPE=inv(R11)*R12;

Pat1[sim,1]=&nl;

Patl[sim,2]=&n2;

Patl[sim,3]

Pat1[sim,4]

Pat1[sim,5]

Pat1[sim,6]

Pat1[sim,7]

Pat1[sim,8]

=&n3;

=&n4;

=SLOPE[1,1];

=SLOPE[2,1];

=SLOPE[3,1];

=SLOPE[4,1];

end;

Create SWPp1.SWPPATl&N&R from Patl [colname={n1 n2 n3 n4 x1 x2 x3 x4 }] ; Append

from Patl;

run;

quit;

%Mend patternl;

/*Rl*/

%pattern1(Nl,R1,150,150,150,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1

,0.15);

$pattern1(N2,R1,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15

,0.1,0.15);

$pattern1(N3,Rl,150,500,1000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0

.1,0.15);

$pattern1(N4,Rl,2000,1000,500,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0

.1,0.15);

/*R2*/

&pattern1(N1,R2,150,150,150,150,0.

%pattern1(N2,R2,2000,2000,2000,200

3pattern1(N3,R2,150,500,1000,2000,

$pattern1(N4,R2,2000,1000,500,150,

/*R3*/

6

0

0.

0.

,0. 4

,0. 6

6,0.

6 0.
I

$pattern1(N1,R3,150,150,150,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1

,0.25);

%pattern1(N2,R3,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15

,0.1,0.25);

$pattern1(N3,R3,150,500,1000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0

.1,0.25);

%pattern1(N4,R3,2000,1000,500,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0

.1,0.25);

/*R4*/

%pattern1(N1, R4, 150, 150, 150, 150, 0. 25, 0. 3

%pattern1(N2, R4, 2000,2000, 2000, 2000, 0.25,

%patternl(N3, R4, 150, 500, 1000, 2000, 0. 25,0.

%pattern1(N4, R4,2000, 1000,500, 150, 0.25, 0.

quit;
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APPENDIX C

Table C.1 Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R1

 

Percentage Relative Bias
 

A A

 

 

 

 

 

 

 

 

 

 

 

 

31 32 133 B4 SE1 SE2 SE3 SE4

Pattern I

N1

GLS 1.104 0.794 0.843 -2.659 0.001061 0.001278 0.001367 0.001800

SWP -0.017 -0.249 0.292 -0.179 0.001048 0.001224 0.001357 0.001848

N2

GLS 0.143 -0. 169 -0.074 -0.133 0.000275 0.000324 0.000361 0.000490

SWP 0.058 -0.253 -0.122 0.040 0.000274 0.000323 0.000362 0.000493

N3

GLS 0.169 0.058 0.133 -0.329 0.000364 0.000425 0.000431 0.000485

SWP -0.037 -0.058 0.133 -0.006 0.000362 0.000423 0.000430 0.000487

N4

GLS 0.103 0.280 0.673 0.565 0.000649 0.000841 0.001043 0.001883

SWP -0.041 -0.186 -0.260 1.909 0.000653 0.000843 0.00103 8 0.001928

Pattern H

N1

GLS 1.331 0.706 0.445 0.173 0.000945 0.001050 0.001008 0.001109

SWP -0.105 -0.306 -0.530 -0.277 0.000887 0.000998 0.000950 0.001064

N2

GLS 0.178 -0.146 0.037 -0.017 0.000240 0.000267 0.000266 0.000282

SWP 0.074 -0.226 -0.032 -0.040 0.000239 0.000266 0.000265 0.000281

N3

GLS 0.353 -0.049 0.180 -0.081 0.000359 0.000401 0.000386 0.000369

SWP 0.108 -0.217 -0.069 -0.035 0.000358 0.000396 0.0003 82 0.000366

N4

GLS 0.184 -0.146 0.180 0.531 0.000373 0.000427 0.000394 0.000550

SWP -0.062 -0.315 0.154 0.058 0.000369 0.000424 0.000389 0.000542

Pattern IH

N1

GLS 1.581 -0.710 -0.562 -1.736 0.001248 0.001925 0.001810 0.001795

SWP 0.172 0.430 0.530 —0.646 0.001242 0.001947 0.001826 0.001818

N2

GLS 0.178 -0.195 0.249 0.496 0.000340 0.000519 0.000511 0.000491

SWP 0.072 -0.111 0.334 0.577 0.000340 0.000520 0.000513 0.000492

N3

GLS 0.149 -0.129 0.212 0271 0.000398 0.000521 0.000506 0.000476

SWP -0.064 0.031 0.382 -0.110 0.000398 0.000523 0.000508 0.000477

N4

GLS 0.575 -0.466 -1.363 -0.554 0.001099 0.001930 0.001902 0.001786

SWP 0.227 -0.138 -1.156 -0.352 0.001104 0.001940 0.001907 0.001797
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Table C.1 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor

When the Correlation = R1

 

Percentage Relative Bias
 

A A

 

 

 

 

 

 

 

 

B, I}, 3, B4 SE1 SE2 S53 SE.

Pattern IV

N1

GLS 1.089 1.291 1.570 -2.665 0.001009 0.001096 0.001098 0.001799

SWP -0.198 0.022 -0.196 0.502 0.000986 0.001067 0.001063 0.001862

N2

GLS 0.155 -0.266 0.021 0.202 0.000251 0.000277 0.000280 0.000478

SWP 0.056 -0.364 -0.095 0.427 0.000251 0.000275 0.000278 0.000479

N3

GLS 0.217 0.075 0.467 -0.559 0.000356 0.000413 0.000401 0.000478

SWP -0.006 -0.102 0.228 -0. 156 0.0003 56 0.000411 0.000399 0.000480

N4

GLS 0.176 0.169 0.477 0.479 0.000584 0.000622 0.000633 0.001833

SWP -0.070 -0.111 0.000 1.702 0.000593 0.000627 0.000638 0.001855

Pattern V

N1

GLS 1.521 0.839 0.345 0.185 0.000927 0.001030 0.000988 0.000982

SWP 0.079 -0.280 -0.430 -0.848 0.000879 0.000979 0.000935 0.000931

M

GLS 0.174 -0.040 0.053 0.017 0.000249 0.000269 0.000260 0.000248

SWP 0.072 -0.124 -0.037 0052 0.000248 0.000267 0.000259 0.000248

N3

GLS 0.333 -0.084 0.180 0.144 0.000367 0.000404 0.000374 0.000367

SWP 0.077 -0.240 -0.037 0.000 0.000362 0.000397 0.000369 0.000362

N4

GLS 0.308 -0.049 0.239 0.138 0.000366 0.000401 0.000372 0.000366

SWP 0.079 -0.240 -0.016 —0.006 0.000361 0.000397 0.000369 0.000362
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Table C.2 Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R2

 

 

Percentage Relative Bias

A

 

 

 

 

 

 

 

 

 

 

 

 

B, 132 I33 34 SE1 SE2 SE3 SE.

Pattern I

N1

GLS 0.688 0.317 0.000 -2.340 0.001040 0.001082 0.001123 0.001419

SWP -0.037 -0.205 0.097 0.556 0.001041 0.001079 0.001123 0.001467

N2

GLS 0.075 -0.080 -0.037 -0.136 0.000277 0.000288 0.000299 0.000378

SWP 0.027 -0.118 -0.037 0.060 0.000279 0.000288 0.000300 0.000384

N3

GLS 0.103 -0.008 -0.027 -0.3 l 6 0.000333 0.000359 0.000354 0.000393

SWP -0.018 -0.043 0.043 0.056 0.000331 0.000358 0.000354 0.000397

N4

GLS 0.097 0.245 0.517 0.512 0.000753 0.000842 0.000902 0.001411

SWP -0.075 -0.080 0.040 1.828 0.000775 0.000850 0.000915 0.001487

Pattern H

N1

GLS 0.717 0.370 0.167 -0.136 0.000823 0.000863 0.000847 0.000890

SWP -0. 147 -0.245 -0.440 -0.040 0.000772 0.000824 0.000799 0.000854

N2

GLS 0.097 -0.078 0.013 0.004 0.000211 0.000223 0.000221 0.000230

SWP 0.035 -0. 128 -0.030 0.008 0.000209 0.000221 0.000220 0.000233

N3

GLS 0.202 -0.060 0.037 -0.156 0.000312 0.000329 0.000306 0.000306

SWP 0.055 -0. 155 -0.080 -0.024 0.000310 0.000326 0.000305 0.000305

N4

GLS 0.083 -0.015 0.173 0.564 0.000335 0.000370 0.000341 0.000436

SWP —0.067 -0.143 0.083 0.148 0.000332 0.000366 0.000337 0.000435

Pattern III

N1

GLS 1.115 -0.583 -0.647 -l.132 0.001321 0.001464 0.001446 0.001450

SWP 0.353 0.357 0.153 -0.348 0.001328 0.001499 0.001452 0.001464

N2

GLS 0.092 -0.095 0.150 0.248 0.000351 0.000397 0.000401 0.000398

SWP 0.035 -0.030 0.213 0.304 0.000351 0.000402 0.000404 0.000399

N3

GLS 0.112 -0.080 0.070 -0.140 0.000375 0.000408 0.000406 0.000394

SWP 0.000 0.062 0.200 -0.016 0.000375 0.000412 0.000408 0.000394

N4

GLS 0.377 0.157 -0.327 0.276 0.001283 0.001434 0.001498 0.001452

SWP 0.118 0.210 -0.277 0.320 0.001281 0.001464 0.001502 0.001459
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Table C.2 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R2

 

Percentage Relative Bias
 

A

 

 

 

 

 

 

 

 

31 32 33 B4 SE1 SE2 SE3 SE4

Pattern IV

N1

GLS 0.567 0.502 0.480 -2.392 0.000968 0.000968 0.000977 0.001367

SWP -0.223 -0. 140 -0.237 1.264 0.000967 0.000965 0.000954 0.001435

N2

GLS 0.092 -0. 120 0.060 0.052 0.000244 0.000253 0.000253 0.000371

SWP 0.032 -0. 168 0.010 0.308 0.000246 0.000245 0.000253 0.000376

N3

GLS 0.135 0.065 0.193 -0.492 0.000318 0.000352 0.000337 0.000389

SWP 0.003 -0.033 0.097 0.044 0.000320 0.000352 0.000335 0.000393

N4

GLS 0.220 0.240 0.260 1 .044 0.000680 0.000698 0.000669 0.001365

SWP 0.022 0.070 0.053 2.000 0.000705 0.000708 0.000675 0.001407

Pattern V

N1

GLS 0.875 0.432 0.050 -0.016 0.000798 0.000825 0.000803 0.000806

SWP 0.005 -0.285 -0.427 -0.512 0.000758 0.000790 0.000760 0.000771

N2

GLS 0.095 -0.027 0.020 0.016 0.000210 0.000221 0.000210 0.000207

SWP 0.033 -0.078 -0.030 -0.024 0.000209 0.000220 0.000209 0.000206

N3

GLS 0.177 -0.063 0.063 0.060 0.000313 0.000331 0.000302 0.000304

SWP 0.032 -0.155 -0.053 0028 0.000309 0.000326 0.000297 0.000300

N4

GLS 0.162 -0.03 8 0.087 0.044 0.000311 0.000330 0.000299 0.000303

SWP 0.033 -0. 158 -0.047 -0.032 0.000308 0.000327 0.000298 0.000300
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Table C.3 Relative Percentage Bias and Standard Errors for Each Predictor When the Correlation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= R3

Percentage Relative Bias

a, é, é, E, SE. SE. SE. SE.

Pattern I

N1

GLS 1.425 1.501 1.402 -0.775 0.001387 0.001460 0.001599 0.001640

SWP 0.133 -0.217 -0.599 0.434 0.001386 0.001434 0.001584 0.001656

N2

GLS 0.202 -0.196 -0.009 -0.014 0.0003 83 0.000391 0.000425 0.000438

SWP 0.110 -0.323 -0.142 0.062 0.000383 0.000391 0.000426 0.000444

N3

GLS 0.144 0.064 0.186 -0.079 0.000438 0.000467 0.000472 0.000456

SWP -0.092 -0. 143 0.004 0.037 0.000437 0.000465 0.000470 0.000457

N4

GLS 0.075 0.313 1.056 0.310 0.001146 0.001316 0.001389 0.001637

SWP -0.162 -0.376 -0.524 1.242 0.001160 0.001327 0.001396 0.001695

Pattern 11

N1

GLS 0.952 0.795 0.391 1.044 0.001052 0.001073 0.001089 0.001031

SWP -0.277 -0.408 -0.697 0.041 0.000998 0.001020 0.001024 0.000968

N2

GLS 0.271 -0. 175 0.022 0.083 0.000276 0.000282 0.000276 0.000260

SWP 0.202 -0.260 -0.058 0.000 0.000274 0.000280 0.000275 0.000260

N3

GLS 0.508 -0.053 0.249 0.097 0.000394 0.000398 0.000397 0.000348

SWP 0.283 -0.233 -0.044 -0.002 0.000393 0.000395 0.000394 0.000344

N4

GLS -0.023 -0.207 0.022 0.513 0.000455 0.000479 0.000472 0.000495

SWP -0.231 -0.371 0.120 0.066 0.000448 0.000473 0.000467 0.000493

Pattern 111

N1

GLS 3.178 0.085 0.670 -0.742 0.001531 0.001930 0.001866 0.001695

SWP 1.332 0.270 0.843 -0.463 0.001521 0.001933 0.001870 0.001706

N2

GLS 0.415 -0.005 0.129 0.159 0.000408 0.000533 0.000540 0.000457

SWP 0.283 0.011 0.146 0.172 0.000408 0.000534 0.000540 0.000459

N3

GLS 0.092 -0.175 0.249 -0.045 0.000440 0.000505 0.000521 0.000452

SWP -0.162 -0.154 0.271 -0.017 0.000440 0.000505 0.000521 0.000451

N4

GLS 0.721 0.387 -l.433 0.161 0.001423 0.001923 0.001987 0.001705

SWP 0.110 0.451 ~1.331 0.281 0.001424 0.001925 0.001994 0.001728
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Table C.3 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R3

 

Percentage Relative Bias
 

 

 

 

 

 

 

 

 

8, 82 83 84 SE. SE. SE. SE.

PatternIV

N1

GLS 0.756 1.798 2.556 0734 0.001381 0.001366 0.001433 0.001623

SWP -0.623 -0159 -0.759 0.835 0.001372 0.001361 0.001423 0.001655

N2

GLS 0.363 _0.297 0.169 0.027 0.000353 0.000361 0.000374 0.000425

SWP 0.242 -0437 -0.067 0.141 0.000345 0.000362 0.000375 0.000429

N3

GLS 0.219 0.191 0.608 -0.223 0.000430 0.000450 0.000448 0.000440

SWP 0.075 -0.069 0.160 0052 0.000430 0.000449 0.000446 0.000442

N4

GLS 0.404 0.705 0.648 0.358 0.001110 0.001158 0.001202 0.001601

SWP -0.069 0.106 -0.617 1.242 0.001127 0.001169 0.001215 0.001631

PatternV

N1

GLS 1.488 0.864 0.475 1.112 0.000987 0.001013 0.001014 0.000936

SWP 0.335 -0350 -0.342 0281 0.000952 0.000961 0.000949 0.000887

N2

GLS 0.006 0.016 0.053 0.083 0.000264 0.000262 0.000268 0.000231

SWP 0.196 -0.064 -0.036 0021 0.000263 0.000261 0.000268 0.000229

N3

GLS 0.340 -0.133 0.186 0.244 0.000401 0.000400 0.000388 0.000347

SWP 0.185 -0.308 -0.018 0.010 0.000395 0.000393 0.000382 0.000340

N4

GLS 0.311 -0.111 0.226 0.242 0.000399 0.000398 0.000384 0.000343

SWP 0.179 -0.297 -0.004 0.006 0.000394 0.000394 0.000382 0.000340
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Table C.4 Relative percentage bias and standard errors for each predictor when the

correlation = R4

 

Percentage Relative Bias
 

A A

 

 

 

 

 

 

 

 

 

 

 

 

131 E, 83 B4 SE. SE. SE. SE.

Pattern I

N1

GLS 0.864 0.773 0.545 -0.772 0.001271 0.001312 0.001370 0.001240

SWP 0.008 -0. 130 —0.055 0.560 0.001283 0.001308 0.001371 0.001312

N2

GLS 0.068 -0.087 -0.008 -0.018 0.000356 0.000361 0.000369 0.000330

SWP 0.012 -0.153 -0.048 0.058 0.000356 0.000362 0.000370 0.000354

N3

GLS 0.052 0.020 0.005 -0.095 0.0003 88 0.000406 0.000399 0.000371

SWP -0.076 -0.080 0.000 0.040 0.0003 87 0.000405 0.000398 0.000387

N4

GLS 0.236 0.490 0.712 0.253 0.001145 0.001283 0.001287 0.001130

SWP -0.124 0.030 0.220 1.098 0.001161 0.001293 0.001298 0.001321

Pattern II

N1

GLS 0.356 0.487 0.230 0.452 0.000883 0.000894 0.000897 0.000844

SWP -0.360 -0.220 -0.503 0.028 0.000843 0.000852 0.000849 0.000807

N2

GLS 0.092 -0.073 0.022 0.057 0.000234 0.000239 0.000234 0.000216

SWP 0.060 -0. 127 -0.030 0.022 0.000232 0.000238 0.000233 0.000222

N3

GLS 0.192 -0.043 0.080 0.003 0.000326 0.000329 0.000320 0.000303

SWP 0.068 -0.147 -0.058 0012 0.000325 0.000327 0.000318 0.000302

N4

GLS -0.060 -0.033 0.168 0.357 0.000399 0.000428 0.000425 0.000374

SWP -0. 192 -0. 163 0.060 0.058 0.000395 0.000422 0.000421 0.000392

Pattern 111

N1

GLS 1.796 0.320 0.332 -0.402 0.001407 0.001568 0.001519 0.001438

SWP 0.908 0.397 0.415 -0.228 0.001402 0.001572 0.001522 0.001449

N2

GLS 0.180 0.037 0.090 0.087 0.000369 0.000439 0.000434 0.000390

SWP 0.112 0.040 0.095 0.092 0.000369 0.000439 0.000434 0.000393

N3

GLS 0.036 -0.063 0.150 -0.017 0.0003 83 0.000413 0.000422 0.000394

SWP -0.080 -0.047 0.168 0.005 0.0003 83 0.000413 0.000422 0.000393

N4

GLS 0.452 0.690 -O.330 0.430 0.001375 0.001555 0.001589 0.001463

SWP 0.072 0.607 -0.373 0.432 0.001375 0.001557 0.001591 0.001486
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Table C.4 (cont’d) Relative percentage bias and standard errors for each predictor when

the correlation = R4

 

Percentage Relative Bias
 

A A

 

 

 

 

 

 

 

 

31 £2 33 134 SE1 SE2 SE3 SE4

PatternIV

N1

GLS 0.420 0.973 0.922 -0.865 0.001295 0.001275 0.001314 0.001146

SWP -0512 -0027 -0.170 0.863 0.001305 0.001282 0.001316 0.001272

N2

GLS 0.204 -0123 0.105 0.007 0.000333 0.000343 0.000349 0.000304

SWP 0.132 -0.187 0.020 0.122 0.000335 0.000345 0.000351 0.000337
N3 .

GLS 0.116 0.140 0.195 0217 0.000378 0.000397 0.000383 0.000356

SWP -0.016 0.013 0.047 0.010 0.000380 0.000397 0.000382 0.000373

N4

GLS 0.656 0.757 0.492 0.482 0.001129 0.001183 0.001181 0.001033

SWP 0.184 0.333 0.043 1.123 0.001145 0.001194 0.001186 0.001215

PatternV

N1

GLS 0.620 0.497 0.205 0.592 0.000808 0.000825 0.000797 0.000803

SWP -0024 -0227 -0.363 -0225 0.000784 0.000787 0.000750 0.000763

N2

GLS 0.096 0.027 0.025 0.052 0.000215 0.000217 0.000218 0.000203

SWP 0.068 -0.017 -0025 -0010 0.000214 0.000216 0.000217 0.000202

N3

GLS 0.100 -0.080 0.080 0.127 0.000329 0.000323 0.000316 0.000305

SWP 0.012 -0173 -0040 -0010 0.000324 0.000318 0.000311 0.000299

N4

GLS 0.080 -0.063 0.095 0.120 0.000327 0.000321 0.000313 0.000302

SWP 0.012 -0.173 -0033 -0015 0.000323 0.000318 0.000311 0.000299
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APPENDIX D

Table D.1 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern I

 

 

 

 

 

 

Percentage Relative Bias

B1 32 B3 B4 SE1 SE2 SE3 SE.

Condition 5:

RlRleRz

GLS (N1) 3.049 6.101 2.803 0.312 0.001059 0.001117 0.001155 0.001465

SWP(N1) 1.786 4.478 6.760 6.760 0.001080 0.001114 0.001207 0.001566

GLS (N2) 2.380 5.687 2.823 2.580 0.000279 0.000297 0.000308 0.000388

SWP(N2) 1.781 4.441 6.673 6.256 0.000287 0.000303 0.000323 0.00041

GLS (N3) 1.309 2.205 0.907 0.568 0.000337 0.000365 0.000359 0.000398

SWP(N3) 0.733 1.770 3.033 2.832 0.000335 0.000361 0.000368 0.000408

GLS (N4) 3.010 11.792 7.433 7.108 0.000775 0.00088 0.000958 0.001495

SWP(N4) 3.068 9.548 11.480 12.644 0.000846 0.000933 0.001045 0.001658

Condition 6:

R3R3R4R4

GLS (N1) 4.660 3.446 0.835 -0.403 0.001272 0.001312 0.001374 0.001245

SWP(N1) 3.850 2.429 0.432 1.262 0.00129 0.001314 0.001381 0.001326

GLS (N2) 3.862 2.582 0.285 0.360 0.000355 0.000361 0.00037 0.000331

SWP(N2) 3.795 2.370 0.442 0.758 0.000357 0.000364 0.000373 0.000357

GLS (N3) 1.682 1.174 0.165 0.055 0.000389 0.000407 0.000399 0.000372

SWP(N3) 1.514 1.007 0.215 0.342 0.000388 0.000404 0.000399 0.000388

GLS (N4) 7.106 5.154 1.318 1.023 0.001145 0.001282 0.001296 0.001134

SWP(N4) 6.999 4.653 1.078 2.362 0.001174 0.001303 0.001319 0.001338

Condition 7:

RZRZRIRI

GLS (N1) 2.835 3.291 -2.314 -7.347 0.001029 0.001272 0.001297 0.001682

SWP(N1) 0.195 -1.853 0.226 -1.916 0.001007 0.001214 0.001312 0.001781

GLS (N2) 2.078 2.790 -3 .251 -4.935 0.000271 0.000327 0.000341 0.00046

SWP(N2) 0.310 -1.681 -0.248 -1.787 0.000265 0.000311 0.000349 0.000474

GLS (N3) 1.677 2.161 -1.966 -3.073 0.00036 0.000427 0.00042 0.00047

SWP(N3) 0.096 -0.842 0.097 -0.710 0.000357 0.000419 0.000424 0.00048

GLS (N4) 1.372 1.852 -2.439 -5.614 0.000612 0.000822 0.000953 0.00171

SWP(N4) 0.307 -2.570 -0.714 -1.829 0.000613 0.000811 0.000963 0.001791

Condition 8:

R4R4R3R3

GLS (N1) 0.906 0.813 1.750 -1.201 0.001379 0.001458 0.001592 0.001636

SWP(Nl) -0.724 -l.464 -0.076 0.109 0.001378 0.001428 0.001578 0.001651

GLS (N2) -0.285 -0.819 0.345 -0.435 0.0003 83 0.000392 0.000423 0.000437

SWP(N2) -0.703 -1.53 5 0.3 80 -0.274 0.000382 0.0003 89 0.000424 0.000442

GLS (N3) 0.102 -0.120 0.321 -0.279 0.000436 0.000466 0.000471 0.000455

SWP(N3) -0.446 -0.708 0.236 -0.097 0.000436 0.000465 0.00047 0.000457

GLS (N4) -1.353 -1.402 1.840 -0.346 0.001135 0.001311 0.001378 0.001632

SWP(NIL -1.705 -2.662 0.456 0.635 0.001115 0.001323 0.001383 0.001687
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Table D2 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern II

 

Percentage Relative Bias
 

A A A A

 

 

 

 

B1 32 B3 B4 SE1 SE2 SE3 SE4

Condition 5:

R1R1R2R2

GLS (N1) 6.169 11.896 12.659 12.149 0.000894 0.000944 0.00091 0.000986

SWP(NI) 0.042 0.480 ~0.101 4.088 0.000821 0.000897 0.000871 0.000989

GLS (N2) 5.547 11.498 12.697 12.506 0.000231 0.000243 0.000239 0.000254

SWP(N2) 0.247 0.604 0.360 4.262 0.000223 0.000241 0.000242 0.00027

GLS (N3) 2.762 4.425 5.473 4.689 0.000317 0.000342 0.000318 0.000315

SWP(N3) 0.161 0.063 0.065 1.299 0.000316 0.000334 0.000317 0.000322

GLS (N4) 5.046 13 .340 12.590 22.553 0.000391 0.000443 0.000397 0.000572

SWP(N4) -0.038 0.409 0.396 3.103 0.00036 0.000408 0.000374 0.00053

Condition 6:

R3R3R4R4

GLS (N1) 12.651 13 .387 9.360 6.056 0.000945 0.000938 0.000941 0.000916

SWP(N1) 1.469 1.602 0.400 1.031 0.000913 0.000918 0.000901 0.000862

GLS (N2) 12.564 12.865 9.141 5.652 0.00025 0.000251 0.000252 0.000235

SWP(N2) 2.036 1.694 0.884 1.062 0.000251 0.000256 0.000245 0.000236

GLS (N3) 5.334 5.332 4.213 2.348 0.000333 0.000338 0.000334 0.000311

SWP(N3) 0.668 0.345 0.220 0.296 0.000338 0.000338 0.000326 0.0003 1

GLS (N4) 15.003 16.001 10.913 9.137 0.00046 0.000483 0.00047 0.000474

SWP(N4) 1.303 1 .303 0.996 0.845 0.000432 0.000456 0.00044 0.000456

Condition 7:

R2R2R1R1

GLS (N1) 6.170 10.874 12.551 11.002 0.000887 0.000978 0.00934 0.001014

SWP(NI) -0.121 -0.609 -0.610 -2.471 0.000814 0.000904 0.000883 0.000968

GLS (N2) 5.461 10.636 12.555 11.288 0.000226 0.000254 0.000248 0.000272

SWP(N2) 0.03 5 -0.493 -0.147 -2.381 0.000218 0.00024 0.000244 0.000254

GLS (N3) 4.619 11.552 12.387 8.499 0.000367 0.000413 0.000379 0.000378

SWP(N3) 0.097 -0.278 -0.113 -0.278 0.000347 0.000384 0.000373 0.000356

GLS (N4) 2.916 4.298 5.568 9.919 0.000343 0.000384 0.000353 0.000472

SWP(N4) -0.247 -0.811 -0.239 -5.630 0.000329 0.00037 0.000344 0.000454

Condition 8:

R4R4R3R3

GLS (N1) 11.473 12.673 10.415 6.369 0.001001 0.001028 0.001047 0.000963

SWP(Nl) -1 .259 -1.394 -1 .329 -0.477 0.00094 0.000957 0.000949 0.000904

GLS (N2) 11.194 12.244 10.658 5.885 0.000267 0.000274 0.000268 0.000252

SWP(N2) -0.900 -1.218 -0.714 0560 0.000258 0.000262 0.00025 8 0.000245

GLS (N3) 10.280 11.31 1 11.063 3 .903 0.000396 0.0004 0.000401 0.000365

SWP(N3) 0.082 -0.361 -0.181 -0.059 0.000383 0.000386 0.0003 83 0.000335

GLS (N4) 6.03 7 6.578 4.982 5.708 0.000427 0.000453 0.000463 0.000421

SWP(N4) -2.291 -2.332 —1 .076 -1.242 0.000415 0.000436 0.000427 0.000428
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Table D3 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern III

 

Percentage Relative Bias
 

A A

 

 

 

 

B1 B2 B3 B4 SE1 SE2 SE3 SE4

Condition 5:

R1R1R2R2

GLS (N1) 1.115 -0.583 -0.647 -1.132 0.001321 0.001464 0.001446 0.00145

SWP(Nl) 0.353 0.357 0.153 -0.348 0.001328 0.001499 0.001452 0.001464

GLS (N2) 0.092 —0.095 0.150 0.248 0.000351 0.000397 0.000401 0.000398

SWP(N2) 0.035 -0.030 0.213 0.304 0.000351 0.000402 0.000404 0.000399

GLS (N3) 0.112 -0.080 0.070 -0.140 0.000375 0.000408 0.000406 0.000394

SWP(N3) 0.000 0.062 0.200 0016 0.000375 0.000412 0.000408 0.000394

GLS (N4) 0.377 0.157 -0.327 0.276 0.001283 0.001434 0.001498 0.001452

SWP(N4) 0.118 0.210 -0.277 0.320 0.001281 0.001464 0.001502 0.001459

Condition 6:

R3R3R4R4 .

GLS (N1) 1.796 0.320 0.332 0402 0.001407 0.001568 0.001519 0.001438

SWP(N1) 0.908 0.397 0.415 0228 0.001402 0.001572 0.001522 0.001449

GLS (N2) 0.180 0.037 0.090 0.087 0.000369 0.000439 0.000434 0.00039

SWP(N2) 0.112 0.040 0.095 0.092 0.000369 0.000439 0.000434 0.000393

GLS (N3) 0.036 -0.063 0.150 -0.017 0.000383 0.000413 0.000422 0.000394

SWP(N3) -0.080 -0.047 0.168 0.005 0.000383 0.000413 0.000422 0.000393

GLS (N4) 0.452 0.690 -0.330 0.430 0.001375 0.001555 0.001589 0.001463

SWP(N4) 0.072 0.607 -0.373 0.432 0.001375 0.001557 0.001591 0.001486

Condition 7:

R2R2R1R1

GLS (Nl) 1.589 -0.692 -0.573 -l.753 0.001248 0.001925 0.00181 0.001795

SWP(N1) 0.180 0.448 0.520 -0.663 0.001242 0.001947 0.001826 0.001818

GLS (N2) 0.186 -0.l78 0.239 0.479 0.00034 0.000519 0.000511 0.000491

SWP(N2) 0.079 -0.093 0.323 0.559 0.00034 0.00052 0.000513 0.000492

GLS (N3) 0.157 -0.111 0.201 -0.288 0.000398 0.000521 0.000506 0.000476

SWP(N3) -0.056 0.049 0.371 0127 0.000398 0.000523 0.000508 0.000477

GLS (N4) 0.583 -0.448 -1.373 -0.571 0.001099 0.00193 0.001902 0.001786

SWP(N4) 0.234 -0. 120 -1.166 -0.369 0.001104 0.00194 0.001907 0.001797

Condition 8:

R4R4R3R3

GLS (N1) 3.160 0.074 0.688 0734 0.001531 0.00193 0.001866 0.001695

SWP(N1) 1.315 0.260 0.861 -0.455 0.001521 0.001933 0.00187 0.001706

GLS (N2) 0.398 -0.016 0.146 0.167 0.000408 0.000533 0.00054 0.000457

SWP(N2) 0.265 0.000 0.164 0.180 0.000408 0.000253 0.00054 0.000459

GLS (N3) 0.075 -0.186 0.266 -0.037 0.00044 0.000505 0.000521 0.000452

SWP(N3) -0.179 -0.164 0.289 -0.010 0.00044 0.000505 0.000521 0.000451

GLS (N4) 0.704 0.376 -1.416 0.169 0.001423 0.001923 0.001987 0.001705

SWP(N4) 0.092 0.440 -1.314 0.289 0.001424 0.001925 0.001994 0.001728
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Table D4 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern IV

 

Percentage Relative Bias
 

A A A A

 

 

 

 

B1 32 B3 B4 SE1 SE2 SE3 SE4

Condition 5:

R1R1R2R2

GLS (N1) 5.379 11.103 10.815 5.412 0.001017 0.00104 0.001026 0.001474

SWP(N1) 1.692 5.627 4.047 22.992 0.00109 0.001078 0.001071 0.001766

GLS (N2) 4.951 10.531 10.466 7.868 0.00026 0.000271 0.000269 0.000404

SWP(N2) 1.896 5.217 4.006 21.880 0.000274 0.000289 0.000286 0.000463

GLS (N3) 2.350 3.904 4.391 1.520 0.000322 0.00036 0.000341 0.000398

SWP(N3) 0.639 1.540 1 .372 8.352 0.000327 0.000362 0.000346 0.000428

GLS (N4) 4.906 15.519 12.726 20.932 0.000754 0.000796 0.000758 0.0016

SWPgN4) 3.192 11.962 7.867 35.948 0.000925 0.000969 0.000884 0.000193

Condition 6:

R3R3R4R4

GLS (N1) 11.291 11.108 5.832 1.630 0.001303 0.001277 0.001323 0.001161

SWP(Nl) 9.378 9.622 4.384 6.290 0.001355 0.001328 0.001367 0.001352

GLS (M) 11.347 10.066 5.059 2.507 0.000336 0.000345 0.000352 0.000311

SWP(N2) 9.991 9.220 4.471 5.528 0.000347 0.000358 0.000366 0.000357

GLS (N3) 4.166 3.826 2.205 0.543 0.000379 0.000396 0.000384 0.000358

SWP(N3) 3.278 3.177 1.685 1.993 0.000383 0.0004 0.000386 0.000383

GLS (N4) 18.329 17.303 7.468 5.612 0.001149 0.001196 0.001194 0.001045

SWP(N4) 17.860 17.445 7.390 9.930 0.001244 0.001297 0.00128 0.001328

Condition 7 :

R2R2R1R1

GLS (N1) 5.222 8.473 10.666 -13.896 0.000932 0.001009 0.001026 0.001495

SWP(NI) -0.007 -0.829 -0.684 -1.498 0.00908 0.001002 0.001 0.001688

GLS (N2) 4.557 7.543 9.704 -11.158 0.00023 0.000262 0.000262 0.000397

SWP(N2) 0.217 -0.859 -0.3 18 -1.775 0.000231 0.000255 0.00026 0.000435

GLS (N3) 3.513 7.799 8.745 -7.550 0.000355 0.000424 0.000405 0.000444

SWP(N3) 0.084 -0.399 0.040 0712 0.000346 0.000399 0.000391 0.000466

GLS (N4) 2.411 2.596 4.216 -9.186 0.00049 0.000551 0.000556 0.001441

SWP(N4) 0.124 -1.012 -0.461 -2.958 0.000507 0.000575 0.000576 0.001536

Condition 8:

R4R4R3R3

GLS (N1) 2.978 3.545 3.465 -2.628 0.001355 0.001343 0.001422 0.001628

SWP(Nl) -1 .657 -1.416 -2.588 0.170 0.001346 0.001344 0.001409 0.001646

GLS (N2) 2.269 1.472 1.148 -1.754 0.000345 0.000355 0.00037 0.000424

SWP(N2) -0.887 -1.513 -l.820 -0.578 0.000347 0.000355 0.00037 0.000427

GLS (N3) 2.023 1.917 1.824 -1.164 0.000428 0.000454 0.00045 0.000444

SWP(N3) -0.409 -0.445 -0.533 -0.286 0.000428 0.000446 0.000443 0.000442

GLS (N4) 0.019 0.004 -0.789 -1.492 0.001064 0.001123 0.001182 0.001588

SWP(NQ -2.000 -1 .972 -3 .389 0.028 0.001089 0.001146 0.001206 0.001614
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Table D5 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern V

 

Percentage Relative Bias
 

A

 

 

 

 

B1 32 B3 B4 SE1 SE2 SE3 SE4

Condition 5:

R1R1R2R2

GLS (N1) 6.440 12.292 13.767 12.593 0.000862 0.000915 0.000881 0.000887

SWP(N1) 0.048 -0.240 -0.409 -0.702 0.000814 0.000874 0.000852 0.000867

GLS (N2) 5.679 11.930 14.031 12.471 0.000225 0.000244 0.000237 0.000227

SWP(N2) 0.053 -0.1 12 -0.064 -0.054 0.000226 0.000239 0.000236 0.000229

GLS (N3) 2.765 4.514 5.765 5.370 0.000322 0.000346 0.000308 0.00031

SWP(N3) 0.038 -0.154 -0.044 -0.004 0.000316 0.000339 0.000309 0.000317

GLS (N4) 4.738 12.481 13.384 11.472 0.000372 0.000416 0.000372 0.000375

SWP(N4) 0.073 -0.210 0.025 0.000 0.00035 0.000384 0.000357 0.00035

Condition 6:

R3R3R4R4

GLS (N1) 13.109 14.474 12.114 6.236 0.000892 0.000911 0.000911 0.000872

SWP(Nl) 0.182 -0.222 -0.319 -0.297 0.000886 0.000877 0.000848 0.000817

GLS (N2) 12.618 13.975 11.996 5.598 0.000233 0.000234 0.000242 0.000218

SWP(N2) 0.1 13 -0.068 -0.062 -0.018 0.000243 0.000239 0.00024 0.000213

GLS (N3) 5.383 5.601 4.649 2.741 0.000337 0.000334 0.000331 0.000311

SWP(N3) 0.030 -0.183 -0.014 0.000 0.000341 0.000334 0.000319 0.000306

GLS (N4) 11.336 13.153 12.806 4.787 0.0004 0.000401 0.000387 0.000358

SWPQ4) 0.142 -0.212 0.008 0.004 0.000384 0.000382 0.000366 0.000329

Condition 7:

R2R2R1R1

GLS (N1) 6.532 12.164 13.860 12.014 0.000872 0.000934 0.000896 0.000887

SWP(N1) 0.042 -0.391 -0.507 -0.693 0.000802 0.000876 0.000849 0.000853

GLS (N2) 5.655 11.914 13.945 12.529 0.000234 0.00025 0.000229 0.000229

SWP(N2) 0.044 -0.099 -0.038 -0.059 0.000226 0.00024 0.000235 0.000229

GLS (N3) 4.892 12.620 13.532 10.958 0.000373 0.000412 0.000377 0.000376

SWP(N3) 0.088 -0.258 -0.064 -0.586 0.00035 0.000379 0.000358 0.000351

GLS (N4) 2.914 4.563 5.853 5.335 0.000318 0.000343 0.00031 0.00031

SWP(N4) 0.052 -0.196 -0.091 -0.078 0.000315 0.000334 0.000312 0.000316

Condition 8:

R4R4R3R3

GLS (N1) 13.163 14.197 11.841 6.097 0.000897 0.000899 0.000895 0.000875

SWP(Nl) 0.088 -0.392 -0.427 -0.218 0.000867 0.000878 0.000834 0.000809

GLS (N2) 12.633 13.997 12.003 5.614 0.000243 0.000242 0.000244 0.000221

SWP(NZ) 0.108 -0.034 -0.020 -0.026 0.000239 0.000238 0.000241 0.000212

GLS (N3) 11.719 13.310 12.866 4.787 0.000402 0.000394 0.000394 0.000362

SWP(N3) 0.137 -0.295 -0.079 0.019 0.000383 0.00038 0.000368 0.000329

GLS (N4) 5.504 5.666 4.701 2.716 0.000334 0.000332 0.000329 0.000309

SWP(N4) 0.022 -0.248 -0.055 -0.009 0.000338 0.000332 0.000321 0.000305
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