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ABSTRACT
METHODS OF META-ANALYZING REGRESSION STUDIES:
APPLICATIONS OF GENERALIZED LEAST SQUARES AND
FACTORED LIKELIHOODS
By

Meng-Jia Wu

Regression is one of the most commonly used quantitative methods for exploring the
relationship between predictor(s) and the outcome of interest. One of the challenges
meta-analysts may face when intending to combine results from regression studies is that
the predictors are usually different from study to study, even though the primary
researchers may have been studying the same outcome. In the current study, two methods,
generalized least squares (GLS) and factored likelihoods through the sweep operator
(SWP), for combining results were examined for their ability to reduce the problems
arising from regression models that contain different predictors in the meta-analysis.

Both of the methods utilize the zero-order correlations among the variables in the
regression studies. The GLS method treats the correlations from each study as a subset of
multivariate outcomes, and combines the results with the consideration of the
dependencies of the correlations across studies (Raudenbush, Becker, & Kalaian, 1988;
Becker, 1992). The SWP method in this study applies the concept of missing data to the
regression models that contained different predictors included in the synthesis. An
empirical study was conducted by creating a set of regression studies using a subset of
NELS:88 dataset. The correlations among the created studies were combined. A final

regression model with standardized slopes was calculated for each of the predictors using



each of the two methods. The results from this empirical study showed that SWP
produced less biased estimates of slopes in most situations.

The precision of the results from those two methods could be impacted by the
features of studies included in the meta-analysis. Therefore, a simulation was conducted
to investigate the impacts of missing-data patterns, intercorrelations among the predictors
and the outcome, and the sample size. The results indicated that the difference between
the two methods was not large. SWP consistently performed slightly better at estimating
the slope of the predictor that was fully observed in all studies in the synthesis. Generally,
SWP performed well when the sample sizes were equal and small across all studies, and

GLS performed better when the sample sizes were equal and large.
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CHAPTER1

INTRODUCTION

Meta-analysis is a quantitative procedure that allows researchers to summarize a
myriad of studies focusing on one topic. This technique helps to address the challenges
introduced by the existence of multiple answers to a given research question. The
essential feature of meta-analysis is adopting the same type of effect size across studies,
so the results from different studies are comparable. As Lipsey and Wilson (2001)
summarized:

The various effect size statistics used to code different forms of quantitative study

findings in meta-analysis are based on the concept of standardization. The effect

statistic produces a statistical standardization of the study findings such that the
resulting numerical values are interpretable in a consistent fashion across all the

variables and measures involved. (p.4)

The commonly used effect sizes in meta-analysis fall into one of two families: The d
family and the » family (Rosenthal, 1994). Generally speaking, the d family includes
proportions or mean differences between groups; the r family includes the Pearson

product moment correlation (r), as well as the Fisher’s transformation of r.

1.1 Absence of Methods for Meta-analyzing Regression Results
For more than two decades, methods for synthesizing mean differences and
correlations have been broadly studied and clearly documented in several major

publications (see Cooper, 1998; Cooper & Hedges, 1994; Hunter & Schmidt, 2001;



Lipsey & Wilson, 2001; Sutton, Abrams, Jones, Sheldon, & Song, 2000). Methods for
synthesizing cumulative evidence from studies using regression, however, have not yet
been well studied.

Regression has been widely used by researchers in different fields for predicting and
explaining the variation in outcomes of interest. Regression can also be considered as a
more sophisticated method, compared to correlation, because it involves more statistical
controls when studying relationships among variables. Without appropriate methods to
combine results using regression, a great deal of evidence can not be used. Excluding
regression studies sabotages the thorough understanding of research questions when

conducting a meta-analysis.

1.2 Potential Effect Sizes from Regression Studies

Statistics that can be found in regression studies are the raw regression coefficient or
slope and sometimes its standard error, the ¢ statistic for testing the significance of the
slope, the standardized slope, and the R?, which is the proportion of variance explained
by the model.

A raw regression coefficient (slope) represents the expected increment in the
dependent variable when the focal independent variable increases one unit, while
controlling for other independent variables in the model. The magnitude of the raw
coefficient changes when the scales of the dependent and independent variables change.
This characteristic means the slope cannot be compared directly across models, unless all
the models use the same scales to measure both the dependent and independent variables.

The ¢ statistic associated with the slope is more like a standardized estimate because each



t is the raw regression coefficient scaled by its own standard error. The ¢ statistic itself has
less power to explain the magnitude of the slope, and it depends on the sample size. The
standardized slope is the raw regression coefficient standardized by the standard
deviations of the predictor and the outcome. It is scaled in a standardized unit. Therefore,
it can be compared directly across models. The explained variance (R?) represents the
proportion of the variance in the outcome accounted for by all the predictors combined in
a regression model. If we wish to focus on variance explained by a certain predictor, then
the partial R value for that predictor will need to be computed by withdrawing the effects
of other independent variables. Hunter and Schmidt (1990) argued that using R? to
represent the magnitude of effect loses the direction of the effect. They also stated
“variance-based indices of effect size make [variables that account for small percentages
of the variance which might be] important effects appear much less important than they

actually are, misleading both researchers and consumers of research” (p. 190).

1.3 Potential Problems of Synthesizing Regression Studies

One of the major problems arising when synthesizing regression studies is that the
potential effect sizes discussed above are not comparable if the models included in the
synthesis do not all use the same predictors. That is, the effects of different variables are
partialed out, or held constant, when computing the effect of a focal predictor. Therefore,
the focal slope, no matter whether it is a standardized or a raw slope, has different
meanings across studies. This problem becomes complicated quickly when models
contain many predictors. Unless the extra predictors in some models are absolutely

independent of the focal predictor, which is never true, comparing the slopes or other



effect sizes from unparallel models is comparing apples to oranges. One solution to this
issue might be including only models that contain the same variables. However, it is
unrealistic to expect to find parallel models created for the same research question,
especially in education, where large numbers of variables are typically used to investigate
one phenomenon.

Another problem that arises when meta-analyzing raw slopes from a set of
regression studies is that the magnitude of the raw slope can change when the scales of
the outcome and the predictors change. This implies that only when all variables are
measured using the same scales, and all models contain the same predictors in the studies

included in the synthesis, can slopes be compared directly.

1.4 Purpose of This Research

Since the solution of including only models that contain the same variables
measured in the same scales (so the raw slopes can be comparable) is impractical, the
current study focused on investigating methods for reducing the impact of unparallel
regression models by synthesizing scale-free correlations among the variables in the
model, which the standardized slopes are based on. Then the synthesized correlations can
be used to create a final regression model with standardized slopes as the synthesis result.

Two methods were examined in this study. One method uses a non-model based
multivariate generalized least squares (GLS) approach; the other method uses model
based factored likelihood estimation. These two methods were first examined empirically
by creating and analyzing four pseudo studies based on samples that were drawn from a

selected sub sample from a large national dataset. Then a Monte Carlo stimulation was



conducted to test the precision and stability of the two methods under different scenarios.



CHAPTER 2

LITERATURE REVIEW

Researchers in several fields have been trying to include regression studies in
their meta-analyses. Most of these syntheses have either oversimplified the situation, or
the methods proposed were limited to other fields and may not be applicable to education.
Among those methods, a more universal technique that was proposed in the early 1970s
to investigating regression coefficients at one time was to create a
hierarchical-linear-model-like model for modeling the variance among the coefficients
(Hanushek, 1974). However, the method focused on quantifying the variance among the
slopes and required raw data along with some infrequently reported summarized statistics,

which may not be applicable in the meta-analysis context.

2.1 In Psychology
Raju, Fralicx, and Steinhaus (1986) proposed a “regression slope model” to adjust
for the variability of the slopes found among studies that originates from the use of

unreliable measures. The model presented by the authors is

byx=Byxrxt+e€
where b, is the observed regression coefficient for predicting y from x, B, is the
unattenuated and unrestricted population regression coefficient, ., is the unrestricted

population reliability of predictor x, and e is the sample error associated with b, (p. 197).
The ultimate goal for assessing validity generalization (VG) is to estimate the mean

and the variance of the regression slope parameter (B),) using the mean of B, (M3) and



its variance (V). As Raju et al. pointed out, regression slope models “should theoretically
be affected by scale differences in either or both of the predictor or criterion instruments
used across the separate validity studies.....The use of the new models for studying
validity generalization, therefore, required that the scales for the predictor and criterion
variables be comparable across studies” (p. 199). As Raju, Pappas, and Williams (1989)
also pointed out, “[w]ithout the common metrics for the criterion and predictor variables,
it is almost impossible to interpret credibility intervals of the type used with the
correlation model. The use of the new models for studying VG, therefore, requires that
scales for the predictor and criterion variables be comparable across studies”(p. 903). In
addition to limiting scale comparability, the other requirement that is implied by Raju and
colleagues’ model is that only one predictor is involved in the model. This condition
might easily be achieved when studying validity generalization, yet it is usually not the

case in education studies.

2.2 In Epidemiology

Several reviews have been done that synthesize the slopes from dose-response
models, which are widely used for evaluating the relationship between dose (e.g., of a
drug or other treatment) and response. To create a dose-response model, researchers
assign values for different dose levels and use those values as a predictor to predict a
targeted response which is in the form of an odds ratio. Greenland and Longnecker (1992)
combined the slopes from dose-response models based on 10 published datasets. They
used techniques analogous to the standard inverse-variance weighting techniques that are

used in contingency data to analyze the differences among the slopes. The same approach



was adopted to study the relationship between individual consumption of chlorinated
drinking water and bladder cancer (Villanueva, Fernandez, Malats, Grimalt, & Kogevinas,
2003). In both meta-analyses, the dose levels in different studies were relabeled with new
values according to the same standards, and the outcomes were all odds ratios. Therefore,

the slopes are comparable.

2.3 In Economics

Meta-analyses of regression studies can be found in syntheses of demand studies.
The characteristic of demand studies that facilitates conducting a meta-analysis is that the
demand elasticities from different studies are typically all on the same scale, because a
demand elasticity, which is a regression slope, expresses the relationship between
demand and its determinant as the percentage change in demand caused by a 1% change
in the determinant. Crouch (1995) conducted a meta-analysis to synthesize 80 studies of
international tourism demand. Those studies produced 1,964 observations (i. e.,
regression equations) and 10,078 regression coefficients. The majority of included
demand elasticities concerned income, price, exchange rates, transportation cost, and
marketing expenditures. The author adopted the synthesis method proposed by Raju et al.
(1986), mentioned in the previous section. However, the regression coefficients were
obtained from international tourism demand models that were not parallel and contained
more than one independent variable, which violated the requirement of Raju and his
colleagues’ methods. The author was actually aware of the violation and stated that “the
value of b; may be affected by the inclusion of other explanatory variables” (p. 109), but

he did not justify his decision to include unparallel models. A series of articles pertinent



to meta-analyzing regression studies focusing on elasticity in economics can be found in

the special issue of Journal of Economic Surveys published in 2005 (Vol. 19, Issue 3).

2.4 In Ecology

A recent review combining regression results is focused on summarizing the
relationship between population density and body size for mammals and birds (Bini,
Coelho, & Diniz-Filho, 2001). The authors used a conventional weighting scheme to
weight the slope by its standard error. It is not clear whether “body size” and “population
density” were measured on the same scales though they could have been. It might be safe
to assume that population density was measured on one scale across studies. However,
body size could be measured in terms of length, weight, body mass, or some other
measure. The authors did not mention how they dealt with the different units for the
predictor. Moreover, it is not clear if all 74 regression models included in this

meta-analysis used “body size” as the only predictor.

2.5 In Political Science

Lau, Sigelman, Heldman and Babbitt (1999) tried to combine the results from
both group comparison studies and regression studies that focused on the effect of
negative political advertisements on political campaigns. They found that about
one-quarter of their data points “come from ordinary least squares (OLS) or logistic
regression equations, and there is no universally accepted method for handling such data
in a meta-analysis” (p. 855). To avoid losing data, they decided to use  statistics

associated with the regression coefficients from regression studies to represent the



treatment (exposure to negative advertisements) versus control (exposure to no
advertisements or positive advertisements) mean difference effect, and then converted
each ¢ value into d, by using d = 2¢/(df)"2. They argue that therefore the converted ds can
be combined with other ds from group comparisons. The authors cited Stanley and Jarrell
(1989), who claim the ¢ statistic has no dimensionality therefore can be combined directly
when the units of independent and dependent variables are not the same across studies, to
justify the usage of synthesizing ¢ statistic for the slopes from regression models in their
synthesis. However, the impact from different independent variables being used in

different models still exists.

2.6 In Education

Hanushek (1989) summarized 187 studies studying the impact of differential
expenditures on school performance in 38 separately published articles or books, using
the “vote-count” method, which simply ignores the magnitudes of effects, and counts the
numbers of studies with significant positive estimates, significant negative estimates,
nonsignificant positive estimates, or nonsignificant negative estimates. To avoid the poor
statistical properties of the vote-count method (Hedges & Olkin, 1980), Greenwald,
Hedges and Laine (1996) tried to summarize half-standardized slopes in a review of
educational production functions examining the same topic as Hanushek. However,
fundamental problems for synthesizing the results from the production function still exist:
The models usually do not involve the same predictors; different outcomes might be used

in different studies; and the scales of all the variables may not be identical across studies.

10



2.7 The Most Recent Study

In a recently article, Peterson and Brown (2005) conducted an empirical study and
derived a formula for converting standardized slopes (often denoted as fs even though
they are sample estimates) reported in regression studies into Pearson’s correlations (rs)
in order to include slopes and analyze them with other correlations using conventional
methods designed for synthesizing correlations. The authors searched 35 journals from
disciplines including psychology, consumer behavior, management, marketing, and
sociology from the period of 1975-2001. They included only studies with both fs and rs
reported at the individual level. A total of 1,504 corresponding Ss and rs were identified
from 143 articles containing 160 data sets and 270 regression models. Given the
relationships shown in the Ss and rs they collected, the authors derived an equation
=984 + .05\, where A is an indicator variable that equals 1 when £ is nonnegative and 0
when f is negative.

Peterson and Brown’s research is the first published study that mainly focused on
incorporating the estimates from regression studies with those from correlational studies
in the meta-analysis context. The authors did notice the relationship between fs and rs
can be impacted by features such as sample size and numbers of predictors in the
regression model. However, they oversimplified the situation and did not really utilize

those features to create their formula for converting fs to rs.

11



CHAPTER 3

METHODOLOGIES

As mentioned in the introduction, two major problems for incorporating
regression studies in meta-analysis are that 1) different predictors may be used in
different primary studies studying the same topic, and 2) predictors and the outcome are
often measured in different scales across studies. As presented in the literature review
section, most of the meta-analyses that have been done in different fields are either solely
focused on simple regression studies where the same scales for the predictor and the
outcome are comparable across studies, or the meta-analyst simply ignored the fact that
the slopes may have different meanings because different predictors are used across
studies. In order to combine the results from regression models in a general way and to be
more precise in estimating the effect of the predictors by considering the impact from
unparallel models, the currently research focuses on utilizing the zero-order correlation
matrix from each study included in the meta-analysis to calculate summarized
standardized slopes for a final regression model, which is the result of synthesizing

regression studies.

3.1 Focusing on the Zero-order Correlations
Instead of synthesizing slopes directly, the two methods examined in this study both
start by summarizing the zero-order correlations among variables in regression models.

As Hunter and Schmidt (2001) pointed out:

A multiple regression analysis of a primary study is based on the full zero-order

12



correlation (or covariance) matrix for the set of predictor variables and the criterion

variable. Similarly, a cumulation of multiple regression analyses must be based on

a cumulative zero-order correlation matrix. (p. 475)

Three major reasons make combining correlations beneficial. First, focusing on the
correlations among the predictors and the outcome across studies, rather than trying to
combine the slopes directly, disposes of the problem that slopes have different meaning
when the models contain different predictors. This is because correlations among the
variables used in a regression model are “zero-order measures” for the relationships,
which means that the correlations between two variables will not change when other
predictors are added into the model. Other than the advantage of stability, focusing on
correlations also allows us to get by the problem of different scales used in measuring the
same predictors in different models, because correlations are metric free and can be
combined directly (under certain assumptions, which will be discussed later). Moreover,
with the focus on correlations among the variables in the regression model, the results
from correlational studies can be easily combined with the results from regression studies.
This expands the set of studies that can be synthesized, because studies reporting the

relationship between any pairs of variables of interest can be included.

3.2 Constructing the Standardized Regression Model

Once the selected correlations that the regression models are based on are
combined appropriately, the summarized correlations are used to create a final regression
model with standardized slopes, because standardized slopes are functions of the

associated correlations. The relative importance of the predictors can then be appraised.
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Also, the variance explained by each predictor (e.g., the partial R?) based on the final

model can also be calculated if it is of interest.

3.3 Proposed Methods

Two methods for summarizing regression results based on the zero-order
correlations that allow unparallel models to be combined were investigated in this
research. One method uses a non-model based multivariate generalized least squares
(GLS) approach (see Becker, 1992; Becker & Schram, 1994; Gleser & Olkin, 1994;
Hedges & Olkin,1985; Raudenbush, Becker, & Kalaian, 1988); the oﬂler method uses
model based factored likelihood estimation through the sweep operator (SWP). As
indicated in Becker (2000), the GLS method has been typically used in multivariate
meta-analysis. This method was used in the current research to compare with the SWP
method, a new application to meta-analysis. Details for each method will discussed
separately.

Before the methods are presented, it should be noted that, as with all parametric
statistical methodologies, the methods proposed here require certain assumptions. A
general assumption that is required for each model included in the meta-analysis is that
all the predictors and the outcome are measured appropriately, and they are related to
each other approximately linearly, except for the presence of dummy variables. Those are
the major assumptions for any regression study. In addition, we have to assume that
multicollinearity is not a problem for each of the regression models. That is, the
predictors are not highly correlated with each other in one model. In the primary studies,

the authors may or may not report checking these assumptions. Yet we have to assume
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the condition of linearity is not violated to work on the correlations in the meta-analysis,
and we have to assume the absence of multicollinearity to build a meaningful final model
and estimate the synthesized standardized slopes based on individual ones. Other specific

assumptions for each method will be discussed in the presentation of each method.

3.3.1 Multivariate Generalized Least Squares

If we think about the zero-order correlations between variables (predictors and
outcomes) from regression models as the effect sizes in a synthesis, the problem of
meta-analyzing those correlations is similar to meta-analyzing multivariate effect sizes
from studies. Each study may contain some similar predictors and some different ones,
that makes the correlations produced in each study a subset of the correlations from the
final model, which need to be determined.

Several methods for synthesizing correlations, in terms of the correlation matrices,
have been investigated and discussed (e.g., Becker & Schram, 1994; Furlow & Beretvas,
2005). To combine subsets of multivariate outcomes in order to calculate the standardized
slopes for the predictors in the final model, the method first proposed by Raudenbush,
Becker, and Kalaian (1988) based on generalized least squares (GLS) is adopted in the
current research. To illustrate the application of GLS to synthesize regression results, an
auxiliary example is used. The same example will be used to illustrate the next method as
well.

Suppose four regression studies are to be included in a synthesis. All of them
studied the same outcomes Yy, where £ is study number (k=1 to 4) and / represents

subject / in study k. Study 1 contains only predictor X;; Study 2 contains both X; and X5;
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Study 3 contains X}, X3, and X3; Study 4 contains X, X3, X3,and X3. The estimated

regression models with standardized slopes (l§ s) are as shown below for the four studies.

Study 1: Y, =B, X, forl=1ton,

Study 2: Y,, = B, X,,, + B,y X,,, forl=1ton,

Study 3: Y;, = B;; X5, + B3y X35, + By X3y, forl=1tom

Study 4: Y, = By Xy + BpX g + By Xyy + By X4y forl=1ton,
where,

Xy 1s the value of variable X for subject / in study &,
X4, 1s the value of variable X; for subject / in study &,
X3, 1s the value of variable Xj for subject / in study &,
X 4,15 the value of variable X, for subject / in study £, and

ny, is the sample size of study .

Following the example above, the vectors of zero-order correlations of the four
studies (rx, k=1, 2, 3, or 4) with elements 7 (variable 1 variabie 2) in the vectors are as follows.
In the following expressions, for simplicity, only the numerical part of the variable label

is used inside of the parentheses (i.e., 4 indicates of X3).
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~"4(}'1) ]
Tay2)
By | Tay3)
Ta(ry) B s
- - _| By _| a2
n ‘[’1()’1)],"2‘ Iyy2y [ F3= ,and rg=
n202) B s
T33) Ta14)
| 13(23) | T423)
T4(24)
| Ta34) |

To use the GLS method to summarize multivariate outcomes, we need an identity
matrix, W, to identify which correlation is estimated in each study. The relationships
among the correlation vector, indicator matrix, and the population correlation vector (p)

is shown below.
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r = W X p + e (D

—"I(Yl) —el(Yl)
Bey| [1 00 00000 0 O] 1)
Fayn| [1 000000000 exr2)
Faimy | [0 1 00000000 exin
" 1 000000000 |2
P01 190 10000000 of P00 |
"0 1o 0100000 0 of [Puv| |%oy
Bay | 10 00 01 000 0 of |[Pen| |Ga2
"333) 000 0O0OT1O0UO0O0 O] |Pra| |&ay
Bex |_[000 000001 00)Pa| ey
Ty | |10 0 0 0 0 0 0 0 Of [pg3 | |ewry
| |01 0000000 0| |p| e
Fary | |0 01 0000000, o,
"o | 100 0010000 of ] |
") 15 00001 00 0 of LPenl |G
"aan |1 1o 000001000 €aq3)
Tsan | 100 0 00O O 1 00 €4014)
Ta(23) 0 00 0O0OO0OO0OO0OT1TDO €4(23)
Tasy| |0 0 0 0 0 0 0 0 0 1] €a(24)
| Ta3) | | €a(34) |

The estimated population correlation vector (p ) contains the synthesized

correlations for the full model, if we assume the final model contains the outcome Y and

all the four predictors. It can be computed as:

p=(WE'W)'WE'r, )

where X is the large variance-covariance matrix containing the variance-covariance
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matrices (£ , §) of all the studies included in the meta-analysis on the diagonal, and zeros

in the upper and lower triangles. That is,

(£, 0 0 0]
. |0 £ 0 0
L= : . , 3)
0 0 £ 0
(0 0 0 E,]

The components in fl, depend on the intercorrelations of the predictors and the

outcome, as well as the sample size in study k. The variance of each correlation in each
study can be obtained based on second-order and fourth-order moments of the samples

based on large sample theory (Pearson & Filon, 1898; Olkin & Siotani, 1976), which can

be simplified to

a- rk(ij)2 )2

) _
6y (ry) =
n

fork= 1, 2, 3 and 4; i= Y, X],XZ,X;;, andX4;j= Y,Xl,Xz_X3, andX4; i?éj. (4)

The covariance between any two correlations in which there is a common

variable is

Gy (ririy) =

1 2 2 2 3
[5 @iy = Tran ki M= T ~Thay k) * T ) e )
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The covariance between any two correlations that do not involve any variables in

common is

o (rypriy) =
1 2 2 2 2
[E TeainTeait 7y Ty + Teay T 7y e ) oty + ey ~

©

ey + TeGinTkGinTe iy T TG ea ka5 + TG oTeG i)V Mie

Therefore, to fit on a page, the full variance-covariance matrices for the first two

studies stacked to form the large matrix for GLS look like

20



03]

(01401
¢

v

0
0
0
0
0

0
949
Pl

0

0 AN»\;\L.N*NA&N.@

0
0

0

0
(XXoZo

AN»\C\L. _NN\Cva AN\NN\F* Cnu\rvub

0

0

0

AN\/\;\.&. N*Nvava AN>\~\<C. ;\N\Cvm.@

(X%i)Zo

0

0 0
0 0
o =
AN*Nb._NNbvN.@ 0
("o 0
0 ("r%)lo
(2 0 o
0 %3 0 (=%
0 o 'z

21



Once the population correlations are estimated based on the correlations from all
the studies, the standardized slopes can be calculated for the final model with all four
predictors in it based on the estimated correlations. The value of the standardized slope is
a function of the correlation between that predictor and the outcome, as well as the
correlations that exist among the predictors themselves. According to Cooley and Lohnes
(1971) as well as the discussion that is more focused on the synthesis context in Becker
and Schram (1994), we can set up the full correlation matrix (R) containing all the pairs
of synthesized correlations in the final model, where there are (p-1) predictors and the pth
variable is the outcome variable. To simplely use algebra to calculate the standardized

slopes, the R is partitioned as

/1-0 T2 ris Fi,p-1 | T1p N
1 10 r3 ees r2’ p-1 rz,,
R= 731 r3 1.0 r3p1 | T3p
'p1,1 Tp1,2 Tp1,30 e 1.0 Fo1p
Krpl Yp2 Tp3 "5, p-1 1.0 )
Ry | Ry,
Ry ‘ 1.0 (8)

The standardized slopes vector (B) can be calculated by

B= Rn-lRu. (9)

3.3.2 Factored Likelihoods through Sweep Operators
The second approach examined for synthesizing regression results, based on a
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multivariate normal distribution model, uses likelihood-based estimation. The maximum
likelihood estimation investigated in the current study is based on the factored likelihood,
which was first proposed by Anderson (1957) to deal with missing data.

The usage of factor likelihood allows us to obtain the maximum likelihood
estimates noniteratively, and no imputation will really be needed to fill in the data on the
predictors that are missing from the model. This original idea of factored likelihood can
be understood more easily by illustration using the bivariate case. Suppose two variables
X and Y have a bivariate normal distribution. There are n observations on both X and Y,

and an additional m observations on X. The data may look like:

Xl, ceey Xn, X"+1,...X"+m, and

Y, ..., Yo

The bivariate normal density for the two variables with meanp, andp,,

variancescy and o}, and covariance G, can be denoted as

N(X,Y | Ky, ly,0%,02,C 7). (10)

The density function of the data can then be revised as the product of the marginal

density of X and the conditional density of Y given X, which is

N(X,Y |ky,Hy,0%.07,0x7) = N(X |py, 05 )N(Y |a+ By X,0%4), (11)
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where a is the regression constant, and B, is the regression coefficient of ¥ on X, and

o2 4 is the residual variance of ¥ given X. The relationships among the parameters on the

left-hand side and those on the right-hand side in the density function (11) are

@ =py —Byxhx =My ~HyOxy /Oy,

Byy =Oyy /0%, and (12)

2 2 2 2 2 2 2 2 2

The five parameters on the right-hand side in (11) are one-to-one functions of the
five parameters on the left-hand side.
Based on the density function in (11), the likelihood function for the dataset with

n cases of Y and (n+m) cases of X can be factored into a product of likelihoods

n n+m
TIN(X:.Y; |1 x 1y -0%-05,0xy) [T N(X; |nx,03)
i=1 i=n+1

n+m n (13)
= [HN(X;' |1 x ,G})][HN(}'} la+BnX,-,c§,_X)J .

i=1 i=1

The factoring permits the independent maximization of the two bracketed

expressions in (13), since the parameters in the expressions are distinct. That
is,p y and ci, do not occur in both products as they do in the first line of (13). By

maximizing the likelihood in the second line of (13), the maximum likelihood estimates
of those parameters can be obtained and the original parameters can be derived as shown
in (12). In other words, the parameters (i.c., thep 4 ,py ,0%,0%, and G, in (13)) are
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transformed in the way that the likelihood function is factorized into distinct factors (i.e.,
the u, 0%, Byy,and o3, in (13)). Therefore, the original estimation problem is
decomposed into a series of smaller estimation problems that can be solved by computing
and manipulating the variance-covariance matrices for selected subsets of observations.

One important assumption of using this method is that the mechanism of missing
predictor(s), which produces blocked missing data, is assumed ignorable. As the first
depicted by Rubin (1976) and later elaborated by Little and Rubin (2002) and many other
researchers studying missing data methods, the missing-data mechanism is ignorable if
the parameter of missing data and the parameter of observed data are not functionally
related. In the current application to synthesize regression models, this assumption means
that a predictor that is not included in a model is left out randomly and the missingness is
not related to any of the existing predictors. This can easily happen when we include
studies using government released large-scale datasets, in which many variables are
measured and can be used, along with some other studies, in which the data are collected
by individual researchers and fewer variables are measured because of the constraints of
time and money.

To illustrate how exactly the factored maximum likelihood method for missing data
can be applied to the issue of combining regression results, the example used to illustrate
the GLS method is used again to facilitate the explanation.

Figure 3.1 portrays how the issue of combining regression results is similar to the
issue of handling missing data. The left column in Figure 3.1 contains four regression
models for synthesis, as described earlier. The columns on the right side show the data

structure for each model.
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Y 1 2 3 4
Yn | X
Study 1:
. 2| ¥y | X | S
Y, =B, X, forl=1t058 & . . &
': . . 5 =
B | Xiim o 7
9 2]
Yo | Xon | X0 | 2
. a3 Z
Study 2: . § Yo | X212 | Xopp Z
~N ° =
Y2»2 X21n2 X22"2 o=
Study 3: 2 Ya | Xsu| Xap ';331
A A .- A 'Y | X 332
Y = By Xay + By Xy + B33 X3y e . A2 Xz .
— w . : .
for/=1to 74 Yo X31m, X, X33,
Ya Xan X4 Xa31 Xaa
Study 4: ) ) % Yo | Xaz | Xe | X902 | Xan
Yo = By Xqy + BpXgy +BpXyy & : : : X
+ByX,, forl=1to082 s | Yang | Xaing Xaon, 43ng | Xaan,

Note. ¥,;: estimated score for person / in study k; Xy : score on variable i for person / in
study k ; By;: the estimated standardized slope for variable i in study k; ny : sample size
for study k.

Figure 3.1. The Models for Four Created Studies and the Structure of the Data

Since the ultimate goal of using this method is to produced a final regression
model with standardized slopes, it is helpful to think of all the hypothetical Xs and Ys
presented in Figure 3.1 as standardized scores (z scores) with a bivariate distribution
(Study 1) or multivariate distributions (Studies 2, 3, and 4). When the original data from
three studies are concatenated in the way shown in the columns on the right side in Figure
3.1, a predictor that is not included in a study-specific model (e.g., X3 in study 2) can be
seen as a missing predictor from the final full model, as described earlier. The final model

in this example is a model with all four predictors in it. The data for the missing
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predictors in studies constitute missing blocks in the multivariate dataset after combining
studies 1, 2, 3, and 4. Therefore, the factored likelihood method described for the
bivariate cases earlier can be applied to estimate the parameters of interest (which will be
the correlations among Y, X}, X3, and X3) in this multivariate example.

As previous discussion suggested, when a multivariate data set contains blocks of
missing observations, the original estimation problem can be decomposed into smaller
estimation problems by factoring the likelihood of the observed data into a product of
likelihoods whose parameters are distinct. Therefore, the likelihood of the estimates of

the parameters in the current example with four studies can be written as
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This method eventually yields ML estimates of the synthesized mean vector (ji)

and the variance-covariance matrix (é) based on the four studies:

[ Ay | 6% 6y1 6y2 Oy3 Oya
Ax 6 612 63 G
h=|Ax, |, B= Gy Oy Oy
A xs 62 Gy

| Axy 62

Since the values of the predictors and the outcomes were treated as z scores with
means equal to zero and standard deviations equal to one, the mean vector (ji) would be
a vector of zeros; the variances of variables Y, X}, X3, X3, and X; on the diagonal of matrix

£ are expected to be 1s; the covariance of any two variables on the upper triangle in
matrix = would be the synthesized correlation between two variables based on four
studies. Once the correlations are combined across studies, they can be used to calculate
the standardized slopes for the final model with all four predictors.
To determine the factored likelihood estimates of =, sweep operators were
adopted to figure out the regression coefficients (the as and Bs at the right side of equal
sign in expression (14)) as well as the residual variances (&’ s in the same expression).

Then the reverse sweep was used to obtain the estimates of the parameters of interest as

shown in (16).
The sweep operator and reverse sweep operator were originally defined by Beaton

(1964) and later redefined by Dempster (1969) in the missing data context. In this

research, the sweep operator from Dempster (1969) was adopted, which is defined as
29



follows:
A p*p matrix M is said to have been swept on row and column c if M is replaced

by another p*p matrix N whose element #;; is related to the ijth element m;; of M as

follows:
Nee= -1/ mec
Ric= Mjc /i Mee

(15)

Ne= Mg /M.
= *
ni= mj - mic *m; /me.

for i # c and j # c. That is, if M is a 3*3 matrix,

my, m; my;
M=|m, my, my|.
my3 My My

When we apply the rules above and sweep row and column 1 out of M to get another

matrix N, the matrix N will look like

-1/m, my, [ my, myy/my,
_ 2
N={my/imy  my—my"Imy  my—myzmy, /my |
2

mylmy My —mymy Imy o myy —myy” g

For brevity, using the terminology defined in Beaton (1964), the matrix N can be

denoted as N=SWP[c]M. So, the example above can be expressed as
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=1/ my, myy [ my, my3 [ my,
N=SWP(IIM=|my,/my my—myImy  my—mymy, [ my, |.

myy/my my—myymyy [my ma “’"132 I my,

The result of successively applying the operations SWP[c;], SWP[c;],... SWP[c,]
to matrix M can be denoted by SWP[c;, c;,... ¢,]. The operations are carried out
successively, and each stage uses the output of only the previous stage.

One of the important properties of the sweep operator is that it is very easy to undo
or reverse. Based on algebra, we can reverse sweep by replacing the ijth element n; in N

matrix with the jjth element m;; and obtain the original M matrix as

me=-1/n.

m;c.= -njc /ncc

me= -ng; M.

mii= nj;- njc *ng /nec. (16)

The reverse sweep is denoted as M=RSW/[c]N.
~1/ny, —nyy /myy —m3/ny
2
RSW(1]| —mpy /'y mpp—mp* Iy my3—my3myy /I myy
2
—m3/ny myy—mgmy/my my3—ms” gy

my mp g

I
2

=My my; My

my3 my3 Ms3

One important application of the sweep operator is to obtain maximum likelihood
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estimates for regression. That is, if we have a square matrix of intercorrelations of certain
variables and choose one variable to sweep out, we are going to adjust all the remaining
variables by removing the regression on that variable, which is identical to regressing the
remaining variables on the swept-out variable.

For example, let matrix R be the correlation matrix of predictor X and outcome Y

After the operation of sweeping on X (row and column 1), the element A;; (r),) in

the matrix H below becomes the standardized coefficient of X, and the element k2,

(1-72) is the residual variance.

H=SWP[1]R=I: r’ﬁ}["“ h”].
rxy l—rxy hu hzz

The sweep operator can also be used to find the maximum likelihood estimates for
multivariate regression. For example, matrix Q represents the correlation matrix for

predictor variables Xj, X3, and the outcome Y.

Xl X2 Y

1 ny ny
Q={ny 1 ny|

ny ny 1
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To calculate the standardized slopes for the multivariate linear regression of X,

and Y on Xj, we sweep on the row and column 1.

1 n, ny -1 N2 Ny
SWP[1]Q=SWP[1]|r, 1 ny|=|n, 1"122 Iy ~hyha
iy ny 1 hy hy ~hrha 1""127
& 812 i3
=182 8&» 8&xn|™C.
&3 823 83

The elements g, (7, ) and g13 (7, ) in the matrix G are the multivariate

standardized regression coefficients for regressing X and Y each on X;; [gn g”] is
8xn 8xn

the residual covariance matrix of X; and Y.
If we go further and sweep matrix G on row and column 2, and obtain a new

matrix F,

-1 ha hy
SWP[2]G =SWP[2]SWP[1]Q =SWP[1,2]Q =SWP[2]| r, 1- r,22 Iy —hiyha

hy Ny ~hrh2 1"1%’
B 2 2 2 2
—1-n3/(1-n3) np [(1-13) Ny ~Tia(ray —hiyi2) /(1 -12)
= ha M(1-13) ~1/(1-r3) (ryy —1iyh2) [(1-13)

| Ny —na(ry “’iy’iz)/(l—’lzz) (ry "1Y"12)/(1"122) (1"’12)')'("2}' "'ly"lz)z /(1"’122)

Mh S s
=|fiz fo fs|=F
fs o S

-
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the elements fis = (riy ~1iz (rar ~iy%i2) (1= 1i2) ) and fo3 = ((r —1iyi2) (1= 13)) in

matrix F above are the standardized regression coefficients for Y regressed on X; and X>;

Fis = ((1=rp)=(ray = iyna) [(1=13) ) is the residual.

Below are the explicit steps showing how the sweep operators and reverse sweep

operator can be applied to find the synthesized correlation matrix of the variables

included in the four studies, and to create the final model as a summary, using the

auxiliary example created in the previous section.

1.

Find the maximum likelihood estimates of the correlations between the variables that
are used in all studies included in the synthesis. In the example described earlier, Y
and X are present in all four studies. The correlation between the two variables can

be estimated by calculating the weighted mean correlation

r_;(n) = (nl X rl(”) + ny X rz(yn + n3 X r3(y1) + Ny X r«Yl))/(nl + ny + ny + n4) ’

1 7
and the mean correlation is stored in matrix O as | _ D .
oy 1

Find the maximum likelihood estimates of the standardized slopes ( B,y y; and
éZl.Yl) and error variance (a"%_y,) for regressing X, which is the second-most-used

variable, on Y and X, based on the samples containing all those variables. To use the

sweep operator to obtain these estimates, we first create a correlation matrix, Sy34,

with weighted mean correlations among variables Y, X7, and X>, based on studies 2, 3,

and 4. That is,

Tyny = (my Xrycyry + M3 X rygyyy + ng X rgqyyy) ((my + 3 +my)

Tyz = (M Xny) +nyXryy +ny Xray)) [(ny + 03+ ng),
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Taz) = (M X ryqgy + 1y X1y + 1y X Fyq5)) [(my + 5 + my) , and

I R E)
S = ’_‘.(n) 1 7‘:(12) .

ray Tay 1
To obtain the slopes, we sweep Y and X out of S»34 as defined in (15).

1 Ty Tr2) sweeped sweeped 3?2“
SWP[Y,I] F'(Yl) 1 '_;(12) = Sweeped Sweeped BZI.Y .

- - A ~ 2
T2 Tay 1 By By Gin

The “sweeped” in the matrix above indicated the elements, which are were of interest,

were “swept out” the matrix using (15). The last column/row in the matrix show the
estimates of interest, B,, ,, B,,,,and &2,,.

3. Sweep Y and X; out of matrix O using (15) to obtain a new matrix A

A =SWP[Y,1]0 =

~1- (o’ 11-Tgmy?) '_;(Yl)/l_E(Yl)z]=[all al2:|=A

— - 2 = 2

and augment matrix A to form a new matrix P, with the estimated standardized slopes

(1.’3’2,,‘l and B, ,) and error variance (62,,) from the previous step.
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P=| aq, ay By

Byy1 Buy Onn

The matrix above looks like the matrix we would obtain when sweeping out the
rows and columns 1 and 2 when we have a 3*3 matrix—even though the estimates in
matrix A and the estimates of slopes and the variance were not based on exactly the
same samples. Establishing desired statistics based on different samples allows us to
“borrow” the information from other studies when we reverse the operator at the end

of all calculations.

. Find the maximum likelihood estimates of the standardized slopes ( Bsy ,,, By, 4, 2nd

By, ;1) and error variance ( 62 ,,, ) for regressing X3, which is the third-most-used

variable, on Y, X}, and X>. Again, to use the sweep operator to obtain these estimates,
we create a correlation matrix, S34 with weighted mean correlations among variables

Y, Xi, X5, and X3, based on study 3 and study 4. That is,

vy = (3 X ryyyy + g X rayy) ) (m3 +ng),
Ty2) = (n3 X ryy2) +ng Xryy2)) (3 + ng),
T3 = (nyx ryy3) +ng % Tav3)) I(n3+ny),
Taz) = (ny x Baz) +ng % r4(12))/(n3 +ny),
7,(13) =(n3 x ra3) +na % r4(13))/(n3 +ny),

T23) = (M3 X 1323y + ny X Ty23)) (N3 + ny) and
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I Fyy Ty Fay
oy 1 Tay Ty
S34= - - - .
nry a1 T

Ty Tayn Rey 1

To obtain the slopes, we sweep Y, X}, and X out of S34.

—sweeped sweeped sweeped 1§3“2

sweeped sweeped sweeped §31 ¥2

SWP[Y,1,2]S,, = o
sweeped sweeped sweeped B,y
By 12 By, v, Byn  Gima _

The last column/row in the matrix show the estimates of interest, which

R R R s
are Byy 13, B3, y2, By, y1,and Giyp-

. Sweep X; out of matrix P to obtain a new matrix B,

by by b3
SWP2IP=(b, by by |=B,
b3 by by

and augment matrix B with the estimated standardized slopes ( B3y 15,85, y, and

1}32.“ ) and error variance (&32_ y12) obtained from previous step to for a new matrix

T,
by by by By
T= blz b22 b23 B31.Y2

by by by Byy

| Bsy12 Baiya Bayi Gy |
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6.

Find the maximum likelihood estimates of the standardized slopes
(Bay.123:Bary2s» Bazy13» and Byy y,) and error variance (67 )23 for regressing Xa

on Y, Xi, X5, and X; based on the studies with all those variables in the model. Since
only the last study uses all five variables, the sweep operator will be applied to the
correlation matrix based on study 4 only. We sweep Y, X}, X2, and X; out of the

correlation matrix of study 4.

1 Tacryy Tar2) Ta3s) Tara) |
£76%)) 1 412) Taa3)  7aq4)
SWP[Y,1,2,3] (ryy2)y naa2y 1 ra@s) T

ay3) Taq3) Ta23) 1 n3(34)

Tara) Taqa) Taay Tagay
[ Sweeped Sweeped Sweeped Sweeped §4y_123—
Sweeped Sweeped Sweeped Sweeped By y,;
= éSweeped Sweeped Sweeped Sweeped 342_”3 .
Sweeped Sweeped Sweeped Sweeped §43_y12

| Bayizzs  Bsiy2zzs  Bayis  Bayna 0'3.1'123_

The last column/row in the matrix show the estimates B,y 53, B,; y23> Bia y13 » Basyiz »

-2
and Gjyy;-

Sweep X3 out of matrix T to obtain a new matrix C,
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SWP[3IT =|

(4})
€2
€23

C24

3
(%X
C33

Ci4
€24
C4

and store the new matrix with the results of step 6 as follows and denote it as U.

ST <12 a3 Cl4 Byy 123

G2 Cn €23 C24 éu.ns

a3 €23 C33 C3q4 é42.y13 =U.

Ci4 Co4 C34 Cas é43.Y12
_1§4Y.123 Bu.na 1}42.1'13 é43.nz 6'3.)'123 ]

8. To obtain the maximum likelihood estimates of the correlation matrix of Y, X;, X3, X3,

and X4, we conduct the reverse sweep operation on the matrix U as defined in (16).

The reversed matrix is the summarized matrix with the off diagonal elements equal to

the combined correlations.

The procedure described above can be represented concisely by the expression

RSW[3,2,1,Y]

SWP[4]

r

SWP[3]

SWP[Y,1]

Y X X

1 Ty | By,
Ty 1 Byy
32}'.1 é2l.y &22.)’1
§3Y.]2 3\31.}'2 é32.Yl

Byy12s Baiys Bans
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Before the resulting matrix can then be used to calculate the standardized
coefficients of the final model with Y as the outcome and X}, X>, X3, X4 as the predictors,
an adjustment is needed to calculate the coefficients using the summarized matrix. That is,
the diagonal elements in the summarized matrix need to be adjusted to 1 if they were not
one after reversing the matrix using the reverse sweep operation. In this example, Y and
X, are the two variables used in all four samples and in the correlations with themselves
should exactly equal to 1. Once the values on the diagonal in the synthesized correlation
matrix have been adjusted, the expression (8) can again be used to obtain the

standardized regression slopes.

3.4 Data Generation

SAS/IML (SAS Institute, 2002) version 9.1 was used to generate the desired data
to test and compare the results from GLS and SWP. The precision of the results from
those two methods could be impacted by the features of the models included in the
meta-analysis, such as the number of predictors, intercorrelations among the predictors
and the outcome, and the sample size in each model. SAS/IML was programmed
according to the designed parameters, as described below, to generate subject-level data
based on the assumption of normality within each study included in the synthesis. The
Cholesky decomposition was used to obtain data with the desired relationships defined in
the intercorrelation matrix assigned to each study in the synthesis. Once the data for four
studies with the desired sample sizes were obtained, the two methods were used to
calculate the summarized correlation matrices. The standardized slopes for the four

predictors and their standard errors were then computed based on the summarized



correlation matrices to compare the precision and stability of the two methods. The
example SAS codes programmed for GLS and SWP can be found in Appendix A and

Appendix B.

3.4.1 Choice of Parameters

The parameters that were varied were the number of predictors in each model (p),
the intercorrelations among the predictors and the outcome (ps), and the sample sizes of
the studies included in a synthesis (Ns). The parameters that did not change were the
number of the predictors in the final model (four), and the number of studies included in
the synthesis (four).

Number of predictors. The numbers of predictors in the models in this simulation
ranged from one (p=1 is a simple regression or Pearson’s correlation) to four (p=4 is
multiple regression with four predictors). More than four predictors are often used in
many regression studies. For the purpose of the current research, four predictors are
sufficient to capture the different patterns of missing predictors from the final model. As
shown in Figure 3.2, four sets of regression models (Patterns I, II, III, and IV), each with
different missing predictor patterns for the four studies included in one meta-analysis,
were synthesized using the proposed methods. The studies in each of the four sets of
regression models were arranged in certain patterns, from the study containing fewer
predictor(s) to the study containing more predictors, to show different numbers of
predictors missing in each of the four included studies. The shaded blocks for each of the
four studies in each pattern indicate the predictors that were included in that study. For

example, in Pattern I, the first study used only predictor X, to predict the outcome Y,
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while the fourth study used predictors X, X3, X3, and X4 to predict the outcome Y.

Figure 3.2. Five Sets of Regression Models with Different Numbers of Predictors

Missing from Studies.

Intercorrelation matrix. The intercorrelation matrix, containing the correlations
among the outcome and predictor(s) in each study, was set to be the same (fixed effects)
or varied (random effects) across the studies in a synthesis. In each matrix, the
correlations were designed based on one principal: If there was more than one predictor
in the model, the correlation between any pair of predictors was designed to be equal to

or smaller than any correlation t any predictor and the This is

with the idea that multicollinearity was not a problem in the original studies.
According to Cohen (1988), correlations of .1, .3, and .5 are small, medium, and

large, respectively. In social science, the results from the correlation studies for testing

42



validity of a measure can easily go beyond 0.5. Therefore, in the first matrix, the largest
correlation between a predictor and the outcome in the current simulation research was
designed to be .6 to represent a large predictive effect from a variable. The smallest
correlation between a predictor and the outcome was designed to be .25 to capture a
trivial relation but worth keeping in the regression model. The correlation between any
pair of predictors was designed to be .25 or less to represent small but existing
collinearity among the predictors.

Following the rules described above, the first intercorrelation matrix (R;) for the
outcome Y and the four predictors X}, X5, X3, X4, was formed. The corresponding

standardized slopes (8 s) and the R’ based on the correlations specified in the matrix are

Y X, X, X, X,
(1 6 4 3 .25
6 1 25 1 05| Bu=0.5161;p1,=0.2253; B13=0.1886; f14=0.1734.
R=|4 25 1 .15 . R=500.

3 .1 15 1 .15
25 05 .1 .15 1

To test the condition where there was no multicollinearity present, the second
intercorrelation matrix (R;) was designed with correlations identical to those in the first
matrix between the outcome and the predictors, but removing all the correlations among
predictors. The intercorrelation matrix and the corresponding standardized slopes (8 2s) as

well as the R? are
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1 6 4 3 25
6 1 0 0 O
= B21=0.6; B 2= 0.4; 23=0.3; B24= 0.25.
R.=|4 010 0 s
3 0 0 1 O
(25 0 0 0 1|

To test the scenario that important predictors were being left out in some studies, the third
matrix was designed by reversing the order of correlations between the outcome and the
predictors in R;. The intercorrelations of the Xs were rearranged accordingly. The
intercorrelation matrix and the corresponding standardized slopes (8 3s) as well as the R?

are

25 1 15 .1 .05) 5. —0.1734; £3,=0.1886; B33=0.2253; B3=0.5161.
R,=|3 .15 1 .15 .1| R*=500.

Then the correlations among predictors in R3 were removed to form R4 to test the
condition where no multicollinearity was present when the predictor with a stronger
relationship with the outcome tended to be left out. The intercorrelation matrix and the

corresponding standardized slopes (5 4s) as well as the R? are

1 25 3 4 6
25 1 0 0 O P 5
— ﬂ41=0.25;ﬂ42=0.3; 43=0.4; 44=0.6.
R.=|/3 0 1 0 0 R 673
4 0 0 1 O
(6 0 0 0 1]




Combinations of matrices conditions. The same correlation matrix will be applied
to all four studies in a meta-analysis (under fixed effects), in Condition 1 to Condition 4
(in Figure 3.3). The two methods were also examined when the matrices were not all the
same across studies. A mixed-effects model for the synthesis that contains the studies
based on the matrices with and without correlations among predictors was investigated in
Condition 5 to Condition 8.

Sample size sets. According to Cohen and Cohen (1975), at least 124 participants
are needed to maintain 80% power with a single predictor that in the population
correlates with the dependent variable at .30. Therefore, in the current research the
minimal sample size for a study was chosen as 150. Since many studies adopt regression
techniques to analyze data from big datasets, the maximum sample size is designed to be

2000 in this study. Four sets of sample sizes for four studies were investigated:

N1 = {150, 150, 150, 150},
N2 = {2000, 2000, 2000, 2000},
N3 = {150, 500, 1000, 2000}, and

N4 = {2000, 1000, 500, 150}.

The first two sample size sets represented equally small (V1) and large (N2)
samples in a synthesis. The other two sets represented unequal sample sizes across
studies. With different patterns of the sizes of studies in the synthesis, the impact of

different missing rates for variables was examined.
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Fixed-effects Mixed-effects
Study 1 2 3 4 5 6 7

1 R; R, R3 R4 R, R; R3
2 R, R, R3 Ry R, R; R3
3 R; R, R; R4 R, R, R4
4 R R, R; Ry R, R, R4

PREL|o

Figure 3.3. Eight Combinations of the Four Intercorrelation Matrices for Four Studies.

3.4.2 Missing Rate

With the patterns and sample sizes designed above, the percentage of missingness
for each variable in each scenario was calculated and presented in Table 3.1. The missing
rates for N1 and N2 are always the same within a pattern because those two sample size

sets assumed equal sample sizes across all the four studies included in a synthesis.

3.4.3 Replications in the Simulation

Each of the two methods (2) were tested for five patterns of regression model (5)
with eight different intercorrelation matrices (8) based on four sets of sample sizes (4).
This yielded 320 (2*5*8*4) scenarios for the simulation in this research. In each scenario,
the synthesized correlation matrix for the summarized model was calculated, and it was
used to compute the standardized slopes for X;, X, X5 and Xy. The procedure was
replicated 1000 times and produced 1000 syntheses for each of the 320 conditions. The
means of the summarized slopes, and their standard errors in each condition from the

1000 replications, were used to evaluate the two methods.
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Table 3.1

Percentages of Missingness for Each Pattern with Each Sample Size

Missingness
Pattern Sample X X3 X3 X
Size
Pattern I N1 0% 25% 50% 75%
N2 0% 25% 50% 75%
N3 0% 4% 18% 45%
N4 0% 55% 82% 96%
Pattern II N1 0% 0% 0% 25%
N2 0% 0% 0% 25%
N3 0% 0% 0% 4%
N4 0% 0% 0% 55%
Pattern III N1 0% 75% 75% 75%
N2 0% 75% 75% 75%
N3 0% 45% 45% 45%
N4 0% 96% 96% 96%
Pattern IV N1 0% 0% 0% 75%
N2 0% 0% 0% 75%
N3 0% 0% 0% 45%
N4 0% 0% 0% 96%
Pattern V N1 0% 0% 0% 0%
N2 0% 0% 0% 0%
N3 0% 0% 0% 0%
N4 0% 0% 0% 0%
3.5 Data Analysis

The estimated mean slopes and their standard errors from 1,000 replications were
calculated for each predictor under different patterns of missingness for each sample size
set using GLS and SWP procedures. The mean slopes calculated using the two methods
were compared to the population values that generated the data. Under the fixed-effects

model (Condition 1 through Condition 4), the population slopes were calculated based on
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the correlation matrices R; though Ry, and they are presented in the note in the end of
each result table. When studies in a synthesis were based on different matrices (Condition
5 through Condition 8), the weighted mean correlation matrix was first calculated by
weighting the elements that were not missing in the matrix by their sample sizes. Then
the population slopes were calculated based on this weighted mean correlation matrix.

The standard errors from the two methods can be compared to each other to see
which method produced more stable estimates. This was a reasonable comparison under
each specific scenario because the data generated for the two methods were controlled to
be identical using “seed” in SAS in order for the data to be comparable.

The relative percentage bias of each slope was also computed in each scenario to
quantify the difference between the calculated value and the population value. It is

defined as

B(®) = -0 . 100%

~

where 0 is the population value of the parameter and 6 is the mean of the estimates of

the parameters across the replications. In this research, the 0 is the population slope and

thea is the mean slope obtained from averaging the sample slopes from 1000
replications. Good estimation methods should have relative bias less than 5% (Hoogland
& Boomsma, 1998).

To investigate the impacts of patterns, sample sizes, and the correlations among
variables on the estimates of each of the predictors based the two methods, a factorial
Analysis of Variance (ANOVA) was conducted on results from the fixed-effects model

(Condition 1 though Condition 4) for which the two methods were invented. The
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outcome was the difference between the slopes from GLS and SWP (GLS slope minus
SWP slope). The difference was calculated for each of the 1000 generated data under
each scenario. The factors included in the ANOVA were the five missing-data patterns,
four correlations, and four sample size sets. These factors resulted in 80 exclusive
scenarios. The n? statistic was computed for each factor and their interactions as the effect
size for representing the proportion of variance explained in the slope differences from

two methods.
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CHAPTER 4

EMPIRICAL EXAMINATION

Before conducting the simulation study, the two methods were examined
empirically. The detailed steps for synthesizing results from regression studies, as
described in Chapter 3, were demonstrated in this chapter using four pseudo studies
created from a large dataset. The studies created for the pseudo meta-analysis were
designed to follow Pattern I, as discussed in the simulation plan, which reflects the
situation that is most likely to happen when synthesizing regression studies, in which

different numbers of variables were used to predict the outcome across studies.

4.1 Sample Creation

The two methods were demonstrated by focusing on the primary regression studies
investigating factors that impact student achievement using one of the major nationwide
datasets, the National Education Longitudinal Study:1988 (NELS:88. Ingels, Scott,
Taylor, Owings & Quinn, 1998). Nationwide datasets usually contain more information
and larger samples, which attract researchers who plan to use multiple regression.
According to Wu and Becker (2004), 103 different predictors were used in eleven studies
based on NELS:88 data to model student achievement that also included a variety of
teacher qualifications as predictors. Those studies were published before 2002 and used at
least one indicator of teacher qualification as a predictor in the models.

In the current investigation, four studies based on real data were created for

synthesis using a subset of the NELS:88 data. The sub dataset contains 2508 students in
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10" grade in 1990, and has complete data on first follow-up standardized math scores
(FImath), base year standardized math scores (BYmath), social economic status (SES),
whether the student’s teacher has a bachelor degree in math or not (BSdegree), and 10™
grade drop out rate (Drop) of the school the student attends. FImath is one of the
outcomes that has been studied the most in previous studies using NELS:88 data.
Therefore, it is adopted as the outcome for the regressions in the current study. The other
four variables are adopted as the predictors to create the regression models. These
predictors represent the effects of characteristics of the student (BYmath), and their family
(SES), teacher (BSdegree), and school (Drop). These represent four dimensions that
researchers have studied extensively in models of student achievement in previous
regression studies using the NELS:88 dataset (Wu & Becker, 2004).

Four samples were randomly drawn from the subset of the large dataset to create
four pseudo regression studies. According to Green (1991), the suggested sample size (n)
used to create a regression model, with .8 power, should be n = 50 + 8*p, where p is the
number of predictors in the model. The first study contains BYmath as the only predictor;
a second study contains both BYmath and SES as predictors; the third study contains
BYmath, BSdegree and Drop as predictors; the fourth study uses all the predictors to
explain the variation in the outcomes. Therefore, the sample sizes for four studies in the
current example are 58 (50+8*1 for study 1), 66 (50+8*2 for study 2), 74 (50+8*3 for
study 3), and 82 (50+8*4 for study 4) respectively.

The estimated standardized slopes, with F/math as the outcome, for the four
randomly selected samples are shown in Table 4.1. The correlations among the variables

for the total sample and for each of the sub samples are shown in Table 4.2.
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Table 4.1

Sample Sizes and Standardized Regression Coefficients for Four Studies

n BYmath SES BSdegree Drop
Study 1 58 0.861
Study 2 66 0.868 0.012
Study 3 74 0.857 0.025 0.055
Study 4 82 0.785 0.187 0.111 0.027

Table 4.2

Correlations among Five Variables

Flmath BYmath SES BSdegree Drop
861 (n,=58)
874 (n,=66) | 456
Flmath 1 884 (n=74) | 407 323
856 (n,~82) | 466 135 _074
867 311
BYmath | 9508) ! 433 308
370 046 ~.094
SES 441 418 1 e
_064 _118
BSdegree | 180 -.136 077 1
Z042
Drop -.082 133 -176 018 1

Note. Elements in the upper triangle are correlations based on each of the four random selected samples;

elements in the lower triangle are correlations based on the total sample of 2508 students.
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4.2 Application of Multivariate Generalized Least Squares

As mentioned earlier, synthesizing the zero-order correlations between variables
(predictors and outcomes) from regression models is like synthesizing multivariate data
points from studies. Each study may contain some similar predictors and some different
ones, which makes the correlations produced in each study a subset of the correlations
from the final model, that is determined by the meta-analyst based on the studies included
in the synthesis. In this examination, the final model used to summary the four regression
studies was the model containing all four predictors. That is, the final estimated model for

person / is:
Yerman 1 = BiX gyman 1+ BaXses 1 +BsXpsaegree 1+ BaXprop 19

where B s are the estimated standardized slopes for the predictors.

The vectors of zero-order correlations for each of the four studies (ry, /=1, 2, 3, or 4)
with elements 14 (; ), where i = Fimath (Y), BYmath (1), SES (2), BSdegree (3), and Drop

(4);j = Flmath (Y), BYmath (1), SES (2), BSdegree (3), and Drop (4); i#j , are:

oy | [.884]
B2 | |.407
610%)) 874 , 323
3(Y3) .
rnz["lm)]=[-861],l'z= Fyyy |=| 456 |, r3= Fn =| 433 , and
na2) Sl R 308
ey | L1196
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K [ 856
v || 466
Tars) | | 135
Tara) -.074
L | T | _| 370
Y ry || 046
Faey | |09
raasy | | 064
o | |18
EDT )

To use the GLS method to summarize multivariate outcomes, the identity matrix W

for this example is

54



Tv1 Ty2 Ty3 Tya N2 7i3 Tia 723 T24 T34

-rl(Yl) |
6104))

(r2)

nHa2)

By

13(r2)

3(y3)

13312)

13(13)

for ne3)
Ta(r)
Ta(y2)
Ta(v3)
Taya)
T312)
T413)
Ta14)

T4(23)

oS o0 o0 o000 O —~~0 00O Q00O -0 O = —
o oo oo oo o ~~00 00O~ 0O OO = OO
SO0 o000 oOO~000C00O=0O0CO0O O OO
OO 0O 00O ~0O000o0O0O0O0 o0 o0 o o oo
o0 0O O =000 00CO0 =000~ 0O o O
o oo o =000 000 =000 0O OC O oo
= — T — B — I — I — I — I — I — I — I = R = i = I = A = 2 — I — I
oo~ 0 0000 OoO0OO0~0 0000 0 0 o o o0
© = O 0O 0O 0O 0O 00000000 o0 o o o oo
'—‘OOOOOOOOOOOOOOOOOOS

T424)

| 74(34) |

Based on the correlations from the four studies reported in Table 4.2 (the elements
above the diagonal), the variance-covariance matrix estimated in each study (£ &) was
calculated using the formulas (4), (5), and (6). Then the full variance-covariance

matrix £ for all the studies in the meta-analysis was constructed as follows.
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The estimated population correlations, which were the synthesized correlation
based on the four regression studies, were computed using p = (WE'W)'WZ'r . The

calculated correlations were shown in the matrix form

BYmath SES BSdegree Drop  Flmath

1 0.432 0.195 -0.109 0.869 ]
0.432 1 0.061 —0.137 0.443
p=| 0.195 0.061 1 -0.068 0.225
-0.109 -0.137 -0.068 1 -0.078
| 0.869 0.443 0.225 -0.078 1

The standardized slopes were be calculated based on the correlation matrix above.
The final estimated regression model by GLS method is

A

Yeimam 1= 0828 X gy 1 +0.082X g5 +0.090X g 4eq e ;+0.031X ), 4.

4.3 Application of Factored Likelihood Method through the Sweep Operators

The information needed for obtaining the synthesized correlations through the
sweep operators were the sample size and correlations among the predictors and the
outcome from each study created for this investigation. Those information were displayed
in Table 4.2.

The first step to adopt the concept of factored likelihood was to find the maximum
likelihood estimate of the correlations between the variables that are used in all four

studies included in the synthesis. In this example, F/math (Y) and BYmath (1) are in all
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four studies. The weighted mean correlation is the estimated maximum likelihood of the

correlation in this example, which was

.y = .861*58+.874*66+.884*74+.856*82)/(58+66+74+82) = .869.

The estimated value was stored in the matrix form and denoted as O.

Flmath  BYmath

1 .869
0= .
869 1

The second step is to find the maximum likelihood estimates of the standardized
slopes (1§2 yy; and 3214 ;1) and error variance (67,,) for regressing SES (2), which is the

second-most-used variable, on FImath (Y) and Blmath (1) based on the studies
containing all those variables. Before finding those estimates, a correlation matrix, S;34,
was created to store the weighted mean correlations among variables F/math (Y),

BYmath (1), and SES (2), based on studies 2, 3, and 4.

7.y1= (.874*66+.884*74+.856*82)/(66+74+82)= .871
Fyy = (456%66+.407T474+466*82)/(66+74+82)= 443

r= (.511*%66+.433*74+.37*82)/(66+74+82)= .433
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Flmath BYmath SES

1 .871 .443
S24= | g1 1 433
443 433 1

To obtain the standardized slopes and the error variance, FI/math (Y) and BYmath (1)
were swept out of Sy34, as described in Chapter 3. This sweep-out process was recorded

as follow

1 .871 .443 —4.134  3.599 0.275
SWP[Y,1]| 871 1 .433|=| 3.599 —4.134 0.194|.
443 433 1 0.275 0.194 0.794

The last column/row in the swept-out matrix showed the estimates of interest, which are

B,, ,=0.275
B,, ,=0.194
63,,=0.794.

Next, Flmath (Y) and BYmath (1) were swept out of matrix O to obtain a new

matrix, denoted as A.

1 .869] [4.075 35407 [a, a,
A =SWP[Y,1] = = .
869 1 3540 —4.075| |a, ay,

The matrix A then was augmented with the estimated standardized slopes (32“
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and I§21Ay) and error variance (&5, ) obtained earlier to form a new matrix P:

-4.075 3.540 0.275
P=| 3.540 -4.075 0.194|.
0.275 0.194 0.794

The matrix P is the matrix that could be obtained when sweeping the rows and
columns 1 and 2 when we have a 3*3 matrix.

The next step was to find the maximum likelihood estimates of the standardized

slopes (1§3y,12 , 13‘31_,,2 , and 332‘,,1 ) and error variance ( 62 y,, ) for regression of BSdegree

(3), which was the third-most-used variable, on F1math (Y), BImath (1), and SES (2).
Again, to use the sweep operator to obtain these estimates, another correlation matrix, S,
was created with weighted mean correlations among variables FImath (Y), BYmath (1),

SES (2), and BSdegree (4), based on studies 3 and 4. That is,

7y = (.884*74+.856*82)/(74+82) =.869,
Fyy = (407*74+.466*82)/(74+82) =.438,
Ty3= (.323*74+.135%82)/(74+82) =.224,
7o = (:433*74+.37*82)/(74+82) =.400,

713 = (:308*74+.046*82)/(74+82) =.170,

Fizs =(:196*74+(-.064)*82)/(74+82) =.059, so
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Flmath BYmath SES  BSdegree

1 .869 438 224
Syy=|.869 1 400 .170
438 400 1 .059]

224 170 059 1

To obtain the slopes of interest in this step, F/math (Y), BYmath (1), and SES (2) were

swept out of S3a.

Flmath BYmath SES  BSdegree
1 869 .438 .224 -4.262 3522 0.459 0.329
869 1 .400 .170 3522 —4.100 0.097 -0.097
SWPI[Y,1,2] = .
438 400 1 .059 0.459 0.097 -1.240 -0.046

224 170 .059 1 0.329 -0.097 -0.046 0.946

The last column in the matrix shows the estimates, which are

Gy, =0.946.

Then SES (2) was swept out of matrix P to obtain a new matrix B,

—4.075 3.540 0275] [—4.170 3473 03467 [b, b,

SWP[2]| 3.540 —4.075 0.194 [=| 3473 —4.122 0224 |=|b, b,
0275 0.194 0794 | 0346 0224 -1259| |b, b,

w

K=K~ I~
w
Il
=

w

and matrix B was augmented with the estimated standardized slopes (53“ 25 Bm,z and

61



B;, y,) and error variance (67y,,) and for a new matrix denoted as T.

-4.170 3473 0346 0.329
3473 -4.122 0.244 -0.097
0.346 0244 -1.259 -0.046|
0.329 -0.097 -0.046 0.946

Next we find the maximum likelihood estimates of the standardized slopes

. R R A ] s )
(Byy 1235 B41 y23> Baay13 » and  Bys 41, ) and error variance ( 0 y53 ) for regressing Drop (4)

on Flmath (Y), Blmath (1), SES (2), and BSdegree (3) based on the studies with all those
variables in the models. Since only the last sample uses all five variables, the sweep
operation was applied to the correlation matrix based on study 4 only. The outcome
Flmath (Y), BYmath (1), SES (2), and BSdegree (3) were swept out of the correlation

matrix of study 4.

Flmath BYmath SES  BSdegree Drop

1 856 466 135 -.074]
.856 1 370  .046 -.094
SWP[Y,1,2,3] | .466 .370 1 -.064 -.118
135 046 -.064 1 -.042
| —.074 -.094 -.118 -.042 1

[ 4361 -3.415 -0.800 -0.483 0.113 ]
-3.415 3.839 0.190 0.297 -0.143
=|-0.800 0.190 1314 0.183 -0.121]|.
-0.483 0.297 0.183 1.063 -0.058
| 0.113  -0.143 -0.121 -0.058 0.978
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The last column in the matrix above shows the estimates of interest in this step, which

were

A

By yy =-0.143

Byy;y =-0.121

A

Giyay =0.978.

Then, BSdegree (3) was swept out of matrix T to obtain a new matrix C,

—4.170 3473 0346 0.329 -4.284 3.507 0362 0.348
3473 —4.122 0.244 -0.097 3.507 —4.132 0.239 -0.103
0346 0244 -1259 -0.046| | 0362 0239 -1261 -0.048
0.329 -0.097 -0.046 0.946 0.348 -0.103 -0.048 -1.058

SWP[3]

and the matrix C was augmented and the new matrix was denoted as U.
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0362 0.348 0.113 ]
0239 -0.103 -0.143
-1.261 -0.048 —-0.121|=U.
-0.048 -1.058 -0.058
-0.121 -0.058 0.978 |

In order to obtain the maximum likelihood estimate of the correlation matrix of

Flmath (Y), BYmath (1), SES (2), BSdegree (3), and Drop (4), the reverse sweep

operation was applied to the matrix U.

Flmath  BYmath  SES BSdegree Drop
[—4.284 3.507 0362 0.348 0.113 ]
3.507 —4.132 0239 -0.103 -0.143
RSW[3,2,1,Y}=| 0.362 0.239 -1.261 -0.048 -0.121
0.348 -0.103 -0.048 -1.058 -0.058
| 0.113 -0.143 -0.121 -0.058 0.978 ]
[ 1 0.869 0.443 0224 -0.078]
0.869 1 0432 0.169 -0.107
=| 0.443 0432 1 0.058 -0.137|.
0224 0.169 0.058 1 -0.064
| -0.078 -0.107 -0.137 -0.064 1 J

The reversed matrix is the synthesized matrix based on the four studies with
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different numbers of predictors involved. The steps described above can be represented

concisely by the expression

Y 1 2 3 4
—~ N
1.000 0.869 | 0275 | 0329 | 0.113
SWP[Y,1]

SWP(3] 0.869 1.000 | 0.194 | -0.097 | -0.143

SWP[4]
RSW([3,2,1,Y] 0275 0.194 0.794) -0.046 | -0.121
0329 -0.097 -0.046 0.946_) -0.058

_ 0.113 0.143 -0.121 -0.058 0.978
S

As mentioned earlier, the diagonal elements in the summarized matrix need to be
adjusted to 1, before the resulting matrix can then be used to calculate the standardized
regression coefficients of the final model. In this investigation, F'/math and BYmath were
the two variables used in all four samples, and the correlations of each with itself were
exactly equal to 1. The correlations for SES and BSdegree to themselves in the
summarized matrix (0.9997 and 1.0002 respectively) were also 1 after rounding.

Using the synthesized correlation matrix, the final model with the standardized

coefficients is

A

Yeimam 1 =0.820X gy, | +0.087 X g5 | +0.082X pgyeg,ee ;+0.027X),,, ;-

4.4 Results from the Empirical Examination
Table 4.3 shows the coefficients for the final synthesized models based on GLS and
SWP methods, and from the regression model based on the total set of 2508 participants

in the sub sample of NELS:88.
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Table 4.3 Estimated Standardized Regression Coefficients from both Methods

n BYmath SES BSdegree Drop
GLS 280 0.828 0.082 0.090 0.031
SWP 280 0.820 0.087 0.082 0.027
Complete 2508 0.822 0.101 0.062 0.046

Compared to the estimates from the GLS method, the estimated standardized
slopes based on the SWP methods are closer to the estimates from the complete sample.
The SWP method is especially accurate at estimating the slope for BYmath, which was
the most observed (used frequently) predictor. The GLS method produced an
overestimate of the slope on this fully observed predictor.

The estimated slope of Drop using SWP did not get the chance to be adjusted

because there is only one regression model (sample 4) containing that predictor. That is,
the synthesized slope of Drop (éD,op =0.027) did not change from the estimated slope

based on study 4 in Table 1. On the other hand, GLS adjusted the slope through the
variance-covariance matrix during the calculation, and the estimate for that predictor is

closer to the estimated slope based on the complete set of cases.
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CHAPTER §

SIMULATION RESULTS

The simulation results based on the fixed-effects model (Condition 1 through
Condition 4) are presented separately in this chapter. A brief discussion is given of four
other conditions (Condition 5 through Condition 8) that do not represent fixed-effect
cases. More attention was paid to the first four conditions, for which GLS and SWP
methods were originally invented. The mean slopes for each predictor and their standard
errors from the two procedures based on the fixed-effects model were first compared for
different patterns and different correlation matrices. The percentage relative bias values
for slopes for each scenario assuming fixed effects can be found in Appendix C. Similar
estimates were calculated based on the more complex mixed-effects models and a brief
review of those results is then presented. The bulk of these results as well as the

percentage relative bias for slopes for each scenario can be found in Appendix D.

5.1 Fixed-effects Model (Condition 1 through Condition 4)

The mean estimated slopes (E s) and their standard errors (SEs) based on matrices
R, though R4 under a fixed-effects model for each study pattern are shown in Table 5.1.1
through Table 5.1.20. For each pattern based on each correlation matrix, the estimated
mean slope for each predictor and its standard error based on GLS and SWP methods are

listed for each sample size set (N1 through N4).

5.1.1 Correlation Matrix R,

Pattern I. When Pattern I is combined with correlation matrix R;, more data were
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missing as the relationships between variables and the outcome became weaker. As
shown in Table 5.1, the mean slopes from SWP for Xj, which was fully observed, were
consistently closer to the population slope (81,=0.5161) under all different sample sizes.
Most of the time the SWP underestimated the slope for X; while GLS tended to
overestimate it. When the total sample size was large (3650 from four studies) and the

maximum amount of data were missing for a predictor (96% for X; in N4), GLS produced

a better estimate for that predictor ( B, =0.1744, Bias B, =0.565%) than SWP ( B, =0.1767,

Bias 54 =1.909%). When sample sizes were equal across all studies in a meta-analysis in

this pattern, SWP seemed to perform better with small equal sample sizes (N1) than with
large equal sample sizes (N2). The percentage relative biases were all less than 5% for
slopes from both methods in all scenarios, but the magnitude of the bias was much larger

for GLS slopes than for SWP slopes in most cases. Generally speaking, SWP produced

more stable estimates (smaller SEs) than GLS in Pattern I. However, the SEs for §4 , was

present in only one study and had the smallest correlations with the outcome in this
pattern, showed slightly more stability when estimated via GLS.

Pattern II. The combination of Pattern II with R; has missing data only on the last
variable X3, which had the weakest relation to the outcome, and was missing in only one
study included in the meta-analysis. As shown in Table 5.2, SWP still estimated the slope
of X, better than GLS as in Pattern L. In contrast to the results in Pattern I, when the

sample sizes were small and equal across studies in the synthesis (N1), GLS produced

slightly better estimates for X; ( B, =0.1894, Bias B, =0.445%) and X; ( B, =0.1737,

Bias 54 =0.173%) in this pattern. When 55% value were missing on .Xj with other
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predictors fully observed, SWP produced a mean slope on X4 (0.1735) that was very

close to the population value (0.1734). While the percentage relative bias was larger than

1% for E, in N1 using GLS, all other biases were less than 1%. The differences in SEs

between the two methods were very minor for most predictors. The estimates from SWP
were consistently more stable than GLS when sample sizes varied.

Pattern I11. For the combination of Pattern III with R;, the predictors that were
weakly related to the outcome (X3, X3, and X;) were present in only the last study in the
synthesis. As shown in Table 5.3, the mean slope for X;, which was fully observed in all
studies, was consistently better estimated through SWP. Both GLS and SWP tended to
result in overestimation of the X; slope when sample sizes varied. SWP also performed
better for estimating the slope of X;, which was the variable that had the second strongest
relationship with the outcome. SWP tended to perform better overall when sample sizes

were equal and small across studies (N1); with larger equal samples (N2), GLS performed

slightly better at estimating the slope of X ( B, =0.1891, Bias B, =0.249%) and X,

(54 =(0.1742, Bias Bi =0.496%), which have weaker relationships with the outcome. SWP

resulted in more precisely estimated slopes when much missingness occurred (N4) in this
pattern. However, in an absolute sense, the differences in the SEs produced by the two
methods were trivial. Most of the time, GLS produced slightly more stable estimates in
this pattern.

Pattern IV. The combination of Pattern IV with correlation matrix R, had
predictors X; to X; presented in all four studies. Predictor X3, which had the weakest
relation to the outcome, was present only in the last study included in the synthesis. As

shown in Table 5.4, SWP still performed better at estimating the slope of X with the
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percentage relative bias below 0.2% across all sample sizes, and GLS tended to
consistently overestimate it with the percentage relative bias larger than 1% in this pattern.
With small and equal sample sizes (N1), SWP produced better estimates of the slopes of
all four variables; with large and equal sample sizes (N2), GLS performed better in
estimating the slopes for X3, X3, and Xy5. When 96% of values were missing on X3 in N4,
GLS estimated its slope more accurately; when X4 was missing less (45%), SWP
performed better. SWP tended to result in more stable estimates on the fully observed
variables Xj, X», and X3; GLS resulted in more stable estimates of the slope of Xj.

Pattern V. In this pattern, all the studies in the synthesis included all four predictors
and there is no missing data for any predictor. Under this scenario, as shown in Table 5.5,
both SWP and GLS consistently overestimated the slope of X;. SWP produced mean
slopes of X, that were closer to the population value when sample sizes varied. With large
and equal sample sizes (N2), GLS produced mean slopes for X;, X3, and X; that were
close or identical to the population values. Similar to the results in Pattern II, the
percentage relative bias was larger than 1% for X; in N1 using GLS, and all other biases
were less than 1%. Generally speaking, SWP produced more stable results for all

predictors under different sample sizes.
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Table 5.1

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix R,

Metod B, B, B, B, SE, SE; SE; SE.
0.5161 02253 0.1886 0.1734

N 0%  25%  50%  75%

GLS 05218 02271 0.1902 0.1688 0.00106] 0.001278 0.001367 0.001800

SWP 05161 02248 0.1891 0.1731 0.001048 0.001224 0.001357 0.001848

N2 0%  25%  50%  715%

GLS 05169 02250 0.1884 0.1731 0.000275 0.000324 0.000361 0.000490

SWP 05164 02248 0.1884 0.1734" 0000274 0.000323 0.000362 0.000493

N3 0% 4%  18% 4%

GLS 05170 02255 0.1888 0.1728 0.000364 0.000425 0.000431 0.000485

SWP 05160 02252 0.1888 0.1734" 0000362 0.000423 0.000430 0.000487

N4 0% 5%  82%  96%

GLS 05167 02260 0.1899 0.1744 0.000649 0.000841 0.001043 0.001883

SWP 05159 02249 01881 0.1767 0.000653 0.000843 0.001038 0.001928

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.2

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and Correlation Matrix R;

Method B, B, B, B, SE; SE; SE; SE,
0.5161 02253 0.1886 0.1734

N % 0% 0%  25%

GLS 05230 02269 0.1894 0.1737 0.000945 0.001050 0.001008 0.001109

SWP  0.5156 02247 0.1876 0.1729 0.000887 0.000998 0.000950 0.001064

N2 0% 0% 0%  25%

GLS 05171 02250 0.1887 0.1733 0.000240 0.000267 0.000266 0.000282

SWP  0.5165 02248 0.1885 0.1733 0000239 0.000266 0.000265 0.000281

N3 % 0% 0% 4%

GLS 05180 02252 0.1889 0732 0.000359 0.000401 0.000386 0.000369

SWP 05167 0.2249 0.1885 0.1733 0.000358 0.000396 0.000382 0.000366

N4 0% 0% 0% 5%

GLS 05171 02250 0.1889 0.1743 0.000373 0.000427 0.000394 0.000550

SWP 05158 02246 0.1889 0.1735 0.000369 0.000424 0.000389 0.000542

Note. The bolded values are the population slopes for predictors.
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Table 5.3

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R;

Metod B, B, B, B, SE, SE, SE; SE,
05161 02253 0.1886 0.1734

M % 5% 5% 15%

GLS 05243 02237 0.1875 0.1704 0001248 0.001925 0.001810 0.001795

SWP 05170 02263 0.1896 0.1723 0.001242 0.001947 0.001826 0.001818

) 0% 5% 1% 1%

GLS 05171 02249 0.1891 0.742 0.000340 0.000519 0.000511 0.000491

SWP 05165 02251 0.1892 0.1744 0.000340 0.000520 0.000513 0.000492

N3 0% 4%  45%  45%

GLS 05169 02251 0.1890 0.1729 0.000398 0.000521 0.000506 0.000476

SWP 05158 02254 0.1893 0.1732 0.000398 0.000523 0.000508 0.000477

Na 0%  96% 9% 9%

GLS 05191 02243 0.1860 0.1724 0.001099 0.001930 0.001902 0.001786

SWP 05173 02250 0.1864 0.1728 0.001104 0.001940 0.001907 0.001797

Note. The bolded values are the population slopes for predictors.
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Table 5.4

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix R,

Mettod B, B, B, B,  SE SE,  SE SEq
0.5161 02253 0.1886 0.1734

Nl 0% 0% 0%  715%

GLS 05218 02283 0.1915 0.1688 0.001009 0.001096 0.001098 0.001799

SWP 05151 02254 0.1882 0.1742 0.000986 0.001067 0.001063 0.001862

N2 0% 0% 0%  75%

GLS 05169 02247 1886 01737 0000251 0000277 0.000280 0.000478

SWP 05164 02245 0.1884 0.1741 0.000251 0.000275 0.000278 0.000479

N3 0% 0% 0% 4%

GLS 05173 02255 0.1895 0.1724 0.000356 0.000413 0.000401 0.000478

SWP  05161° 2551 01890 0.1731 0.000356 0.000411 0.000399 0.000480

N4 0% 0% 0%  96%

GLS 05171 02257 0.1895 0.1742 0.000584 0.000622 0.000633 0.001833

SWP 05158 02251 01886 (1763 0.000593 0.000627 0.000638 0.001855

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.5

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation matrix R,

Iy

Method B B, B, B, SE, SE; SE; SE,
0.5161 0.2253 0.1886 0.1734

Nl 0% 0% 0% 0%

GLS 05240 02272 0.1892 0.1737 0.000927 0.001030 0.000988 0.000982

SWP 05166 02247 0.1878 0.1719 0.000879 0.000979 0.000935 0.000931

) 0% 0% 0% 0%

GLS gs5170 02253 (1887 O1734" (000249 0.000269 0.000260 0.000248

SWP 05165 02251 0.1885 0.1733 0.000248 0.000267 0.000259 0.000248

N3 0% 0% 0% 0%

GLS 05179 02252 0.1889 0.1736 0.000367 0.000404 0.000374 0.000367

SWP  os165 02248 0.885 1734° 0000362 0.000397 0.000369 0.000362

N4 0% 0% 0% 0%

GLS 05177 02252 0.1890 0.1736 0.000366 0.000401 0.000372 0.000366

SWP 05166 02248 01886° 0.1734" (000361 0000397 0.000369 0.000362

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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5.1.2 Correlation Matrix R,

Pattern I. The combination of Pattern I with R; showed more missing data as the
relationship between the predictor and the outcome became weaker, and there was no
correlation among predictors with R,. As shown in Table 5.6, SWP estimated the slope
for X; better than GLS under different sample sizes. GLS always overestimated the slope
for X;. Different from the results for this pattern with R;, GLS estimated the slope of X3
precisely when the sample sizes were small and equal across studies (V1) in the synthesis.
As was true for correlation matrix R;, GLS was superior when much data was missing
(96% in N4 on X;). Compared to the scenario where the correlation was R, the results
from GLS were more stable with smaller SEs than those from SWP, yet the differences in
SEs between the two methods were small.

Pattern II. The combination of Pattern II with R; had missingness only on the last
variable X, the weakest predictor, in one study included in the meta-analysis, and there
was no correlation among the predictors. As shown in Table 5.7, SWP gave better
estimates of the slope for X; and GLS still overestimated the slope for this variable. GLS
usually did better in estimating slopes for X, and X3, while SWP did well in estimating
the slopes for X4. SWP produced more stable estimates for the slopes for all variables,
except for X; with sample size defined by N2, where GLS produced a slightly smaller SE
than SWP.

Pattern III. The combination of Pattern III with R; had the predictors that were
weakly related to the outcome (X3, X3, and X3) were present in only the last study in the
synthesis and there was no correlation among predictors. As shown in Table 5.8, SWP

still worked better than GLS in estimating the slope for fully observed variable X}, and
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GLS still overestimated the slope for this variable. SWP also performed better in
estimating the slopes for the four variables when the sample sizes were small and equal
across the four studies (V1) in the synthesis. The variables that were less strong related
with the outcome (X3 and X3) were more often missing. GLS started to show better
estimates. Similar to the condition when the correlation was R;, GLS produced slightly
more stable estimates than SWP.

Pattern IV. The combination of Pattern IV with correlation matrix R; had predictors
X to X; present in all four studies. Predictor X, which had the weakest relation to the
outcome, was present only in the last study included in the synthesis. As shown in Table
5.9, SWP performed better in estimating the slope for X;, while GLS kept overestimating
the slope for this variable. SWP still worked better than GLS with small equal sample
sizes (N1) in this pattern. When sample sizes were large with much missing data (e.g., X4

with 75% missing in N2 and 96% in N4), GLS tended to work better than SWP. GLS also

produced more stable estimates for 1734 when sample sizes varied, as well as for all four

variables in NV4.

Pattern V. In Pattern V with correlation matrix Rj, all the studies in the synthesis
included all four predictors. There was no missing data for any of the predictors and there
was no correlation among those predictors. In this scenario, as shown in Table 5.10, SWP
produced estimates closer to the population values on X}, while GLS continued
overestimating the slope for this variable. However, comparing to the results from the
correlation matrix R, the mean slopes from GLS were closer to the population values for
most of the predictors than those from GLS, when sample sizes varied. As in the

conditions where the correlation matrix was R;, SWP produced more stable estimates
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than GLS.

Table 5.6

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix R,

A

Method B, B, B B SE SE, SEs SE4
0.6 0.4 03 025

N 0%  25%  50%  75%

GLS 06041 04013 03000° (05447 0001040 0001082 0.001123 0.001419

SWP 05998 03992 03003 02514 0.001041 0.001079 0.001123 0.001467

N2 0%  25% 0%  75%

GLS  0.6005 03997 02999 02497 0.000277 0.000288 0.000299 0.000378

SWP 06002 03995 02999 02502 0.000279 0.000288 0.000300 0.000384

N3 0% 4% 18%  45%

GLS 06006 04000° (07099 02492 0.000333 0.000359 0.000354 0.000393

SWP 05999 03998 03001 02501 0.00331 0.000358 0.000354 0.000397

N4 0%  55%  82%  96%

GLS 06006 04010 03016 02513 0.000753 0.000842 0.000902 0.001411

SWP 05996 03997 03001 02546 0.000775 0.000850 0.000915 0.001487

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.7
Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and Correlation Matrix R,
Metod B B, B, B,  SE SE, SEs SE4
0.6 04 03 0.25
N1 0% 0% 0%  25%

0.2497 0.000823 0.000863 0.000847 0.000890

GLS  0.6043 0.4015 0.3005

0.3990 0.2987 0.2499 0.000772 0.000824 0.000799 0.000854

SWP  0.5991
N2 0% 0% 0%  25%
GLS 06006 03997 03000° 02500" (000211 0000223 0.000221 0.000230
SWP 06002 03995 02999 02500° 0000200 0.000221 0.000220 0.000233
N3 0% 0% 0% 4%
GLS 06012 03998 03001 0.2496 0.000312 0.000329 0.000306 0.000306
SWP  0.6003 03994 02998 02499 0.000310 0.000326 0.000305 0.000305
N4 0% 0% 0%  55%
GLS  0.6005 0.3999 0.3005 02514 0.000335 0.000370 0.000341 0.000436
SWP  0.5996 03994 03003 02504 0.000332 0.000366 0.000337 0.000435

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.8

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern ITI and Correlation Matrix R,

Yy

A

Method B, B, B B, SE, SE; SE, SE,
0.6 04 03 025

N 0% 5%  15%  15%

GLS  0.6067 03977 02981 02472 0.001321 0.001464 0.001446 0.001450

SWP 06021 04014 03005 02491 0.001328 0.001499 0.001452 0.001464

7 0% 5%  15%  15%

GLS  0.6006 0.3996 03005 02506 0.000351 0.000397 0.000401 0.000398

SWP 06002 03999 03006 0.2508 0.000351 0.000402 0.000404 0.000399

N3 0%  45%  45%  45%

GLS  0.6007 03997 03002 02497 0.000375 0.000408 0.000406 0.000394

SWP  0.6000° 04003 03006 02500° (000375 0.000412 0.000408 0.000394

N4 0% 9% 9%  96%

GLS  0.6023 04006 02990 02507 0.001283 0.001434 0.001498 0.001452

SWP  0.6007 0.4008 02992 02508 0.001281 0.001464 0.001502 0.001459

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.9
Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix R,
B SE, SE, SE; SE,

A

Method E, B, B, B,
0.6 0.4 0.3 0.25
0% 0% 0% 75%
0.4020 0.3014 0.2440 0.000968 0.000968 0.000977 0.001367

Nl

GLS 0.6034
0.3994 0.2993 0.2532 0.000967 0.000965 0.000954 0.001435

SWP 0.5987
0% 75%

N2 0% 0%
0.000244 0.000253 0.000253 0.000371

GLS

0.6006 0.3995 03002 0.2501

a
0.6002 03993 03000 (2508 0.000246 0.000245 0.000253 0.000376

SwWP
N3 0% 0% 0% 45%
0.3006 0.2488 0.000318 0.000352 0.000337 0.000389

0.6008 0.4003

GLS
0.000320 0.000352 0.000335 0.000393

a
SWP  0.6000° (3999 03003 0.2501

N4 0% 0% 0% 96%
0.6013 0.4010 0.3008 0.2526 0.000680 0.000698 0.000669 0.001365

GLS
SWP 0.6001 0.4003 0.3002 0.2550 0.000705 0.000708 0.000675 0.001407

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.10

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for
Pattern V and Correlation Matrix R,

Mettod B, B, B, B, SE, SE; SEs SE.
06 04 03 025
M % 0% 0% 0%
GLS

a
0.6053 0.4017 03002 0-2500

0.000798 0.000825 0.000803 0.000806
SWP  0.6000"

0.3989 0.2987  0.2487

0.000758 0.000790 0.000760 0.000771
N2 0% 0%

0% 0%

GLS 0.6006 0.3999 0.3001 0.2500° 0.000210 0.000221

0.000210 0.000207
SwWPp 0.6002 0.3997

0.2999 0.2499 0.000209 0.000220 0.000209 0.000206
N3 0% 0% 0% 0%

GLS 0.6011 0.3998 0.3002 0.2502 0.000313 0.000331

0.000302 0.000304

0.2499 0.000309 0.000326 0.000297 0.000300
0%

SWP 0.6002 0.3994 0.2998

N4 0% 0% 0%

GLS 0.6010 0.3999

0.3003 0.2501 0.000311

0.000330 0.000299 0.000303

SWP 0.6002 0.3994 0.2999 0.2499 0.000308 0.000327 0.000298 0.000300

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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5.1.3 Correlation Matrix R;

Pattern I. The combination of Pattern I with R3; had more missing data as the
relationships between predictors and the outcome became stronger. As shown in Table
5.11, GLS outperformed SWP in estimating the slope of X; in N4 where a large portion of
data were missing in X5, X3, and X,. Consistent with previous results, GLS tended to
result in slight overestimation of the slope for X; when sample sizes varied in this pattern,
and so did SWP. When the sample sizes were small and equal across studies in the
synthesis (N1), SWP performed better. When the sample sizes were large and equal (N2),
GLS tended to do better. When a large portion of data were missing on X4 (e.g., in N4),
which had a high correlation with the outcome, GLS generally performed better. SWP
tended to be more stable when the sample size was small and equal across studies (V1)
and when missingness occurred less (NV3); GLS seemed to be more stable when sample
size was large (NV2) or when more data were missing (N4).

Pattern II. The combination of Pattern II with correlation matrix R; had missing
data only on the last variable X;, which had the strongest relation to the outcome, in only
one study included in the meta-analysis. As shown in Table 5.12, SWP produced mean
slopes for X) that were closer to the population value (#3,=0.1734) than the GLS means,
except in N4 where there were more missing values on the last predictor. That was the
same finding as in Pattern I with correlation matrix Rs. For all the different sample sizes,
SWP produced better slopes for X; than did GLS. When the overall sample size was large
and data were more complete (e.g. N2 and N3), SWP precisely reproduced the population
value for the slope for X;. Also, SWP resulted in more stable estimates.

Pattern III. In Pattern III with the correlation matrix R3, the predictors that were
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more strongly related to the outcome (X5, X3, and X3) were present in only the last study
in the synthesis. As shown in Table 5.13, SWP tended to perform better than GLS in
estimating the slope for X; when sample sizes varied, except in N3, where the sole
information on X, X3 and X, was based on a study with a large sample size. Generally
speaking, GLS and SWP produced very similar mean slopes for several variables under
different sample size sets (e.g., Xz in N2, N3; X, in N2) in this pattern. GLS and SWP
produced similar SEs. Yet GLS was slightly more stable than SWP in most of the
conditions.

Pattern IV. The combination of Pattern IV with correlation matrix R3 had predictors
X, to X; present in all four studies, and X4, which had the strongest relation to the
outcome, was present only in the last study included in the synthesis. As shown in Table
5.14, SWP consistently resulted in better estimates of the slope of X; than GLS, which
tended to result in overestimation of the slope of X as well as slopes of other variables.
SWP also performed better than GLS in N1, N3, and N4 at estimating the slopes of X; and
X;. For X3, GLS tended to perform better than SWP. GLS consistently came up with more
stable estimates for the slopes for Xj,.

Pattern V. In Pattern V, all the studies in the synthesis included all four predictors
and there was no missing data for any of the predictors. Under this scenario, as shown in
Table 5.15, SWP produced better estimate of the X, slope most of the time. In contrast to
previous findings in this pattern, GLS produced a mean slope for X; that was the same as
the population value when the sample size was large and equal across studies (¥2). When
the sample size was small and equal across studies (N1), SWP tended to perform better

than GLS at estimating the slopes of all variables. SWP also better estimated the slopes
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for X3 and X4, that were more strongly related to the outcome, in this pattern. Moreover,

SWP produced more stable estimates than GLS for slopes of all variables when sample

sizes varied.

Table 5.11

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix Rj

Method B, B, B, B, SE, SE; SE; SE,
0.1734 0.1886 0.2253 0.5161

N1 0%  25%  50%  15%

GLS 01758 0.1914 02285 0.5121 0.001387 0.001460 0.001599 0.001640

SWP 01736 0.1882 02240 0.5184 0.001386 0.001434 0.001584 0.001656

N2 0%  25%  50%  75%

GLS 01737 01882 02253* 0-5161° 0000383 0000391 0.000425 0.000438

SWP  0.1736 0.1880 02250 0.5165 0.000383 0.000391 0.000426 0.000444

N3 0% 4%  18%  45%

GLS 01736 0.1887 02258 0.5157 0.000438 0.000467 0.000472 0.000456

SWP  0.1732 0.1883 02254 0.5163 0.000437 0.000465 0.000470 0.000457

N4 0% 5%  82%  96%

GLS  0.1735 0.1892 02277 05177 0.001146 0.001316 0.001389 0.001637

SWP  0.1731 0.1879 02242 0.5226 0.001160 0.001327 0.001396 0.001695

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.12

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IT and Correlation Matrix Rj

Metod B B, B B, SE SE, SE, SEq
0.1734 01886 0.2253 0.5161

Nl 0% 0% 0%  25%

GLS  0.1750 0.1901 02262 0.5215 0.001052 0.001073 0.001089 0.001031

SWP 01729 01878 02238 0.5164 0.000998 0.001020 0.001024 0.000968

N2 0% 0% 0%  25%

GLS  0.1738 0.1883 02254 0.5166 0.000276 0.000282 0.000276 0.000260

SWP 01737 01881 02252 9-5161° 0000274 0.000280 0.000275 0.000260

N3 0% 0% 0% 4%

GLS 01743 0.1885 02259 0.5166 0.000394 0.000398 0.000397 0.000348

SWP 01739 01881 02252 O5161° (000393 0.000395 0.000394 0.000344

N4 0% 0% 0%  55%

GLS 01733 00188 0.2254 0.5188 0.000455 0.000479 0.000472 0.000495

SWP 01730 0.1879 0.2256 0.5165 0.000448 0.000473 0.000467 0.000493

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.13

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern III and Correlation Matrix R;

A

Method B, B, B, B, SE, SE, SE; SEq
0.1734 0.1886 02253 0.5161

Nl 0%  15%  15%  15%

GLS  0.1789 0.1887 02269 0.5123 0.001531 0.001930 0.001866 0.001695

SWP  0.1757 0.1891 02272 05138 0.001521 0.001933 0.001870 0.001706

N2 0%  15%  15% 1%

GLS 01741 01886" (2356 05170 0.000408 0.000533 0.000540 0.000457

SWP 1739 01886 (03357 05170 0.000408 0.000534 0.000540 0.000459

N3 0%  45% 4%  45%

GLS 01735 0.1883 02259 0.5159 0.000440 0.000505 0.000521 0.000452

SWP 01731 0.1883 02260 ©5161° 0000440 0.000505 0.000521 0.000451

N4 0%  96%  96%  96%

GLS  0.1746 0.1893 02221 0.5170 0.001423 0.001923 0.001987 0.001705

SWP  0.1736 0.1894 02223 05176 0.001424 0.001925 0.001994 0.001728

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.14

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix R;

Metod 3 B, B, B, SE, SE; SE; SE,
0.1734 0.1886 02253 0.5161

N % 0% 0%  715%

GLS 01747 0.1920 02311 05124 0.001381 0.001366 0.001433 0.001623

SWP 01723 0.1883 02236 0.5205 0.001372 0.001361 0.001423 0.001655

M2 % % 0% 15%

GLS  0.1740 0.1880 02257 0.5163 0.000353 0.000361 0.000374 0.000425

SWP 01738 01878 02252 05169 0.000345 0000362 0.000375 0.000429

N3 0% 0% 0% 4%

GLS  0.738 0.1889 02267 0.5150 0.000430 0.000450 0.000448 0.000440

SWP  0.1735 0.1885 02257 05159 0.000430 0.000449 0.000446 0.000442

N4 % % 0% 9%

GLS 01741 0.1899 02268 0.5180 0.001110 0.001158 0.001202 0.001601

SWP 01733 0.1888 02240 0.5226 0001127 0.001169 0.001215 0.001631

Note. The bolded values are the population slopes for predictors.
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Table 5.15

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation Matrix R3

A

Metod B B, B, B,  SE SE; SE, SE,
0.1734 0.1886 02253 0.5161

Nl 0% 0% 0% 0%

GLS 01760 0.1902 02264 0.5219 0.000987 0.001013 0.001014 0.000936

SWP  0.1740 01879 02246 05147 0.000952 0.000961 0.000949 0.000887

N2 0% 0% 0% 0%

GLS  0.1734" 0.1886° (2055 05166 0.000264 0.000262 0.000268 0.000231

SWP 01737 01885 02253° (05160 0.000263 0.000261 0.000268 0.000229

N3 0% 0% 0% 0%

GLS 01740 0.1883 0.2258 0.5174 0.000401 0.000400 0.000388 0.000347

SWP 01737 01880 02253° (05162 0.000395 0.000393 0.000382 0.000340

N4 0% 0% 0% 0%

GLS  0.1739 0.1884 02259 0.5174 0.000399 0.000398 0.000384 0.000343

SWP 01737 01880 02253 05162 0000394 0.000394 0.000382 0.000340

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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5.1.4 Correlation Matrix Ry

Pattern 1. The combination of Pattern I with correlation matrix R4 led to more
missing data occurred as the relationships between the predictor variables and the
outcome became stronger. Also, there was no correlation among the predictors in R4. As
shown in Table 5.16, both GLS and SWP performed well in estimating the slope of X;.
SWP estimated the slope of X) precisely when the sample sizes were equal across studies
(N1 and N2). As was true for other patterns and correlations, GLS tended to overestimate
the slope of X; all the time. SWP did not estimate the slope well when large amounts of
data were missing on the variable that related strongly to the outcome (e.g., the slope for
X4 in N4). Similar to earlier findings, GLS always produced more stable estimates of the
slope for X3 and resulted in a smaller SE. The differences in SEs between the two
methods were similar to those found in Pattern I with correlation matrix R,.

Pattern I1. The combination of Pattern II with correlation matrix R4 had missing
data only on the last variable X3, which had the strongest relation to the outcome and
appeared in only one study included in the meta-analysis. There was no correlation
among predictors. As shown in Table 5.17, SWP produced better estimates of the slope
for X; most of the time and GLS still tended to overestimate the slope of X;. GLS
performed better than SWP at estimating the slope of X>. GLS also produced very precise
estimates of the slope of X; when there was little missing data (4%) in N3. SWP produced
more stable estimates than GLS most of the time, except the SE4 values calculated via
GLS in N2 and N4 were smaller than those produced by SWP.

Pattern III. When Pattern III is combined with correlation matrix Ry, the predictors

that were more strongly related to the outcome (X, X3, and X;) were present in only the
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last study in the synthesis and there was no correlation among predictors. As shown in
Table 5.18, SWP gave better estimates of the slope for X; most of the time and GLS
tended to overestimate the slope of X,. Compared with the results from other scenarios,
neither method performed particularly well at estimating the slope of X; in N1. When the
sample size was larger and equal across studies (N2), GLS and SWP overestimated the
slopes for all four variables. Both methods produced good estimates for slopes of the
variables when less missing data occurred (N3); when there was more missing data
occurred (N4), SWP produced better estimates for X;, which was the only variable that
was fully observed. Both methods produced equally stable estimates in most situations.

Pattern IV. In the combination of Pattern IV with correlation matrix R4, predictors
X\ to X3 were present in all four studies, whereas X3, which was related to the outcome the
most strongly, was present only in the last study included in the synthesis. As shown in
Table 5.19, SWP estimated the slope of X better across all different sample size patterns,
except in N1 when GLS estimates were less bias. Both methods tended to overestimate
the slope of X;. SWP gave better estimates of the slope of X3, which was a variable that
was fully observed and related to the outcome most strongly. When sample sizes were
equal and large across studies (N2), GLS produced precisely estimate of the slope of Xa.
When many values were missing on X3 (96% in N4), GLS also better estimated the slope
of X4. When the proportion of missingness was smaller (45% in N3), SWP tended to do
better. GLS generally produced more stable estimates than SWP.

Pattern V. In Pattern V with the correlation matrix Ry, all the studies in the synthesis
included all four predictors. No missing data occurred for any of the predictors and there

was no correlation among those predictors. As shown in Table 5.10, SWP consistently
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produced estimates of the slope for X; that were closer to the population value, while
GLS always resulted in overestimation of the slope of this variable when sample sizes
varied. SWP worked well when the sample sizes were small and equal (N1). SWP
produced less stable estimates of the slopes for Xs. SWP also produced less stable
estimates when variables highly related to the outcome were based on smaller sample

sizes (N4).
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Table 5.16

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern I and Correlation Matrix R4

Method B, B, B, B, SE SE; SE; SE4
0.25 03 0.4 0.6
NI 0% 25%  50%  75%
GLS 02522 03023 04022 0.5954 0.001271 0.001312 0.001370 0.001240
a
SWP 025000 (2996 0.3998 0.6034 0.001283 0.001308 0.001371 0.001312
N2 0% 25%  S50%  715%
GLS 02502 02997 0.4000 0.5999 0.000356 0.000361 0.000369 0.000330
a
SWP  02500° (2995 03998 0.6004 0.000356 0.000362 0.000370 0.000354
N3 0% 4% 18%  45%
a
GLS 02501 03001 04000° (5994 0.000388 0.000406 0.000399 0.000371
a
SWP 02498 02998 04000 06002 0.000387 0.000405 0.000398 0.000387
N4 0% 55%  82%  96%
GLS 02506 03015 04029 0.6015 0.001145 0.001283 0.001287 0.001130
SWP 02497 03001 0.4009 0.6066 0.001161 0.001293 0.001298 0.001321

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.17

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern II and CorrelationMatrix R4

Method B, B, B, B, SE, SE, SE; SEq
025 03 0.4 0.6

N 0% 0% 0%  25%

GLS 02509 03015 04009 0.6027 0.000883 0.000894 0.000897 0.000844

SWP 02491 02993 0.3980 0.6002 0.000843 0.000852 0.000849 0.000807

) 0% 0% 0%  25%

GLS 02502 02998 0.4001 0.6003 0.000234 0.000239 0.000234 0.000216

SWP 02502 02996 0.3999 0.6001 0.000232 0.000238 0.000233 0.000222

N3 0% 0% 0% 4%

GLS 02505 02999 04003 06000° 0000326 0000329 0.000320 0.000303

SWP 02502 02996 03998 0.5999 0.000325 0.000327 0.000318 0.000302

N4 0% 0% 0%  55%

GLS 02499 02999 04007 0.6021 0.000399 0.000428 0.000425 0.000374

SWP 02495 02995 04002 0.6004 0.000395 0.000422 0.000421 0.000392

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.

94



Table 5.18

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern ITI and Correlation Matrix Ry

A

Y

Method B, B, B B,  SE SE,  SE SE4
025 03 04 0.6

N 0%  75%  15% 1%

GLS 02545 03010 04013 0.5976 0.001407 0.001568 0.001519 0.001438

SWP 02523 03012 04017 0.5986 0.001402 0.001572 0.001522 0.001449

17 0%  75%  15%  715%

GLS 02505 03001 04004 0.6005 0.000369 0.000439 0.000434 0.000390

SWP 02503 03001 0.4004 0.6006 0.000369 0.000439 0.000434 0.000393

N3 0%  45%  45%  45%

GLS 02501 02998 0.4006 0.5999 0.000383 0.000413 0.000422 0.000394

SWP 02498 02999 04007 06900" 0000383 0.000413 0.000422 0.000393

N4 0%  96%  96%  96%

GLS 02511 03021 03987 0.6026 0.001375 0.001555 0.001589 0.001463

SWP 02502 03018 0.3985 0.6026 0.001375 0.001557 0.001591 0.001486

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.19
Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern IV and Correlation Matrix Ry

A A

Method B, B, B, B, SE, SE; SE; SE.
025 03 04 06

M 0% 0% 0% 75%
GLS 0.2511 0.3029 0.4037 0.5948 0.001295 0.001275 0.001314 0.001146

SWP 0.2487 0.2999 0.3993 0.6052 0.001305 0.001282 0.001316 0.001272

N2 0% 0% 0% 75%

a
GLS 02505 02996 04004 06000° (000333 0.000343 0.000349 0.000304

SWP 0.2503 0.2994 0.4001 0.6007 0.000335 0.000345 0.000351 0.000337

N3 0% 0% 0% 45%

GLS 0.2503 0.3004 0.4008 0.5987 0.000378 0.000397 0.000383 0.000356

a a
SWP  02500° 03000 4002 0.6001 0.000380 0.000397 0.000382 0.000373

N4 0% 0% 0% 96%
GLS 0.2516 0.3023 0.4020 0.6029 0.001129 0.001183 0.001181 0.001033

SWP 0.2505 0.3010 0.4002 0.6067 0.001145 0.001194 0.001186 0.001215

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.20

Missing Percentage, Estimated Mean Slopes and Standard Errors for Each Predictor for

Pattern V and Correlation Matrix Ry

A

A

Metod B, B, B, B,  SE SE SE; SE,
025 03 0.4 0.6

N1 0% 0% 0% 0%

GLS 02516 03015 04008 0.6036 0.000808 0.000825 0.000797 0.000803

SWP 02499 02993 0.3986 0.5987 0.000784 0.000787 0.000750 0.000763

N2 0% 0% 0% 0%

GLS 02502 03001 0.4001 0.6003 0.000215 0.000217 0.000218 0.000203

SWP (2502 03000° (3909 05999 0.000214 0.000216 0.000217 0.000202

N3 0% 0% 0% 0%

GLS 02503 02998 0.4003 0.6008 0.000329 0.000323 0.000316 0.000305

SWP  0.2500° (3995 03998 0.5999 0.000324 0.000318 0.000311 0.000299

N4 0% 0% 0% 0%

GLS 02502 02998 0.4004 0.6007 0.000327 0.000321 0.000313 0.000302

SWP  0.2500° (3095 03999 05999 0.000323 0.000318 0.000311 0.000299

Note. The bolded values are the population slopes for predictors.

a. Mean estimated slope is equal to the population value.
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Table 5.21 presents the bias ranges for each slope for each method across scenarios.
When important variables tended to be missing from the model (R; and Ry), the estimates
for Xj, X3, and X3 from both departed from the population values relatively large. The
ranges of the bias for the slope of X3 were largest among the four predictor slopes for
both methods. Since it was missing the most across studies, it was more difficulty to

estimate it precisely.

Table 5.21

Ranges of Percentage Relative Bias Produced by GLS and SWP

SWP GLS
Largest negative = Largest positive ~ Largest negative = Largest positive
X

Value -0.6229 1.3324 -0.06 3.1782
Scenario Pat4N;R; Pat3N|R;3 Pat2NsR4 Pat3N;R;
X,

Value -0.4375 0.6067 -0.71 1.7976
Scenario Pat4N;R3 Pat3N4R4 Pat3N;R; Pat4NR3
X3

Value -1.3313 0.8432 -1.4334 1.5561
Scenario Pat3N4R3 Pat3N;R; Pat3N4R; Pat4N|R;
Xs

Value -0.8479 2.00 -2.6648 1.1121
Scenario Pat5N;R; Pat4N4R; Pat4NR, Pat5N;R3

Note. Eight characters denote a scenario. The first four characters indicate the pattern
(Patl through Pat5); the following two characters indicate the sample size set (V1

through N4); the last two characters indicate the correlation matrix (R; through Ry).
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5.2 ANOVA Results

The ANOVA results for each predictor were summarized in Table 5.22 to Table 5.25.
Noted that the scale for the marginal means for pattern IV was different from other
patterns to present the large negative differences between two methods in estimating X4
slope. The small adjusted R squares for modeling the difference between two methods for
each predictor (ranging from .029 for X; to .088 for X;) indicated that only a small
portion of the differences between two methods was attributable to the missing data
patterns, correlation matrices, sample size sets, and their interactions. Because of the
large amount of data that was generated for this research, the significance values were all
less than .0001, which indicates the significance of all factors. The largest n’ estimate (E2)
among the four ANOVAS for four predictors was .06 for sample sizes (N) for the slopes
for X;. Different missing patterns explained less than 0.01% in the variance of the
different estimates between the GLS and the SWP methods for X;. Correlation matrices
(Rs) also explained less than 0.01% variances of the different estimates between two
methods for X. For X4, missing data patterns explained most amount of variance
(E?=.034) of the outcome, while the pattern and sample size interaction also contributed
2.8% of the variance.

The interactions were also significant at the .0001 level. To show the nature of the
interaction, the correlation matrix (R)*sample sizes (/) interactions were plotted for the
five missing data patterns for each of the four predictors in Figure 5.1 to Figure 5.4. In
most of the plots for the X; slope, large discrepancies arose for the four predictors in the
sample size set N1. Across all five patterns, the largest differences between the methods

of estimating the X slope were present with the matrix R;. The differences between the
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two methods for estimating the slope of X, were smaller. For the predictors X3 and X4

when more data were missing, the two methods were similar at estimating the slope

under N2 and N3. The two methods were different at estimating the slopes for these two

predictors when important correlations tended to be missing more frequently (R3 and Ry).

Table 5.22

Analysis of Variance for the Differences in Estimates of the Slope of X,

Dependent Variable: B,(GLS) - B,(SWP)

Type III Sum Mean Partial Eta
Source of Squares df Square F Sig. | Squared
Corrected 287° 79 004|  9923| .000 089
Model
Intercept 177 1 177 4848.50 | .000 .057
Pattern .001 4 .000 6.18 | .000 .000
R .041 3 014 370.09 | .000 014
N .186 3 .062 1696.83 | .000 .060
Pattern * R .003 12 .000 6.34 | .000 .001
Pattern * N .002 12 .000 497 .000 .001
R*N .051 9 .006 153.87 | .000 .017
Pattern * R * N .003 36 | 9.44E-005 2.58 | .000 .001
Error 2.922 | 79920 | 3.66E-005
Total 3.386 | 80000
Corrected Total 3.208| 79999

a. R Squared = .089 (Adjusted R Squared = .088)
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Table 5.23

Analysis of Variance for the Differences in Estimates of the Slope of X3

Dependent Variable: B,(GLS) - B,(SWP)

Type III Sum Mean Partial Eta

Source of Squares df Square F Sig. | Squared
Corrected 100 79 001|  30.88| .000 030
Model
Intercept .034 1 .034 750.78 | .000 .009
Pattern .032 4 .008 175.87 | .000 .009
R .002 3 .001 12.19| .000 .000
N .031 3 .010 230.63 | .000 .009
Pattern * R .004 12 .000 6.68 | .000 .001
Pattern * N .035 12 .003 64.42| .000 .010
R*N .002 9 .000 5.30( .000 .001
Patten * R * N .005 36 .000 2.96 | .000 .001
Error 3.602| 79920 | 4.51E-005
Total 3.745| 80000
Corrected Total 3.712| 79999

a. R Squared = .030 (Adjusted R Squared = .029)

Table 5.24

Analysis of Variance for the Differences in Estimates of the Slope of X3

Dependent Variable: l§3 (GLS) - 1§3 (SWP)

Type III Sum Mean Partial Eta

Source of Squares df Square F Sig. | Squared
Corrected 156 79 .002 43.75| .000 041
Model
Intercept .046 1 046 | 1014.26 | .000 .013
Pattern .039 4 .010 213.81 | .000 011
R .013 3 .004 93.08 | .000 .003
N .033 3 .011 243.15| .000 .009
Pattern * R .009 12 .001 16.07 | .000 .002
Pattern * N .044 12 .004 81.41| .000 012
R*N 012 9 .001 28.90 | .000 .003
Pattem * R * N .007 36 .000 4.52| .000 .002
Error 3.604 | 79920 | 4.51E-005
Total 3.806 | 80000
Corrected Total 3.760 | 79999

a. R Squared = .041 (Adjusted R Squared = .041)
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Table 5.25

Analysis of Variance for the Differences in Estimates of the Slope of X3

Dependent Variable: Bi (GLS)- 154 (SWP)

Type III Sum of Mean Partial Eta
Source Squares df Square F Sig. | Squared
Corrected Model .652* 79 .008 82.690 | .000 .076
Intercept .067 1 .067 669.80 | .000 .008
Pattern 278 4 .070 696.66 | .000 034
R .007 3 .002 22.01| .000 .001
N .055 3 .018 182.15| .000 .007
Pattern * R .033 12 .003 27.78 | .000 .004
Pattern * N 231 12 .019 193.06 | .000 .028
R*N 015 9 .002 16.91 | .000 .002
Pattern * R * N 033 36 001 9.20| .000 004
Error 7982 79920 | 9.99E-005
Total 8.702 | 80000
Corrected Total 8.635| 79999

a. R Squared = .076 (Adjusted R Squared = .075)
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for Differences in Slopes of X,
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Figure 5.1. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes of X;
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Patterns for Differences in Slopes of X
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Figure 5.2. (cont’d) Interactions of Sample Size Sets and Correlation Matrices for Five

Patterns for Differences in Slopes of X,

Estimated Marginal Means of Difference: X3

at Pattern |

0.01 R
0.008 - —R1
0.006 —-R2
0.004 -

§ o

0,002 -
0.004 -
-0.006
-0.008

Estimated Marginal

N1 N2 N3 N4

Figure 5.3. Interactions of Sample size Sets and Correlation Matrices in Five Patterns for

Differences in Slopes of X3
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Figure 5.3. (cont’d) Interactions of Sample size Sets and Correlation Matrices in Five

Patterns for Differences in Slopes of X;
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Figure 5.3. (cont’d) Interactions of Sample size Sets and Correlation Matrices in Five

Patterns for Differences in Slopes of X3
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Figure 5.4. (cont’d) Interactions of Sample size Sets and Correlation Matrices in Five

Patterns for Differences in Slopes of X4

5.3 Mixed-effects Model (Condition 5 through Condition 8)

In this part of simulation, I made the models more complex by choosing different
correlation matrices for the first two and the last two studies. This represents a more
complex fixed effects model, with two groups of studies. The results based on different
matrices (Rs though Rg) under mixed-effects model in the syntheses for each of the five
missing patterns are shown in Table 5.26 through Table 5.30. Within each pattern, the
mean slope for each predictor and the standard errors based on GLS and SWP methods
were reported for each sample size set (N1 thought N4) for each of the four conditions.
Note that the population values for the slopes for the variables were always the same for
N1 and N2. This is because N1 and N2 both had equal sample sizes across the four studies

included in the synthesis, and the summarized correlation matrix used for calculating the
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slopes weighted by sample size as shown in the methods section.

5.3.1 Pattern I

In this pattern, the relative bias between of the estimated slopes was less than 5% °
most of the time for both methods. However, the relative bias was much greater in some
conditions. SWP generally performed better than GLS, and produced slopes closer to the
population values. The worst estimation from SWP in this pattern was in condition 5
when the sample size set was N4. Here correlations among predictors (X; and X3) existed
only in one study (study 2) based on a somewhat large sample (the sample size for the
second study was 1000 in N4). The relative bias of the slopes for X, X3, and X; were
9.55%, 11.48%, and 12.64% respectively. Both GLS and SWP produced smaller relative
bias when the sample sizes were from N2 and N3. They performed well especially in
condition 8 when the sample size was equal to N3. The relative biases of estimates of all
the slopes produced by both methods were all less than 1% in that condition. The stability

of the estimates of both methods was similar to those based on fixed-effects model.

5.3.2 Pattern 11

In this pattern, SWP produced much closer estimates than did the GLS procedure.
Most of the time, SWP resulted in less than 1% relative bias in estimating the slopes. For
GLS, with sample size sets N1 and N2, the relative biases were greater than 5% all the
time for all variables, while SWP produced bias values under 1% most of the time. With
sample size sets N3 and N4, GLS performed only slightly better for a few slopes with the
relative bias less than 5%. The bias for those with relative bias less than 5% by GLS

method ranged from 2.35% (slope for X, with sample size N3 in condition 6) to 4.98%
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(X5 with sample size N4 in condition 8). SWP did not perform as well as in other
scenarios when the sample size set was N4 in condition 8. The relative biases of slopes
for all four predictors were all above 1%. However, they were still smaller than the values
for estimates from the GLS method. The stability of the estimates of both methods was

similar to those based on the simple fixed-effects model.

5.3.3 Pattern III

The results for the each condition presented in Table 5.28 were identical to those
presented in Table 5.8 (same as Condition 5), Table 5.18 (same as Condition 6), Table 5.3
(same as Condition 7), and Table 5.13 (same as Condition 8). The identity arose because,
in this pattern, the intercorrelations among X>, X3, and X3 were provided by only the last
study in the synthesis, which made it the same as Pattern III under the simple
fixed-effects model. The comparisons between GLS and SWP under each condition for

different sample size sets can be found in the previous sections.

5.3.4 Pattern IV

In this pattern, GLS produced large relative percentage bias values in most
conditions. The largest bias produced by GLS was in estimating the slope of X;
(bias=18.33%) with the sample size set N4 in Condition 6. SWP also produced the largest
bias in the same scenario (bias=17.86%). Actually, when the sample size equaled N4 in
this pattern in Condition 5 and Condition 6, where X, had zero correlation with other
variables, the estimated slopes for all the four variables from both methods had rather

larger relative biases. SWP consistently resulted in large bias, ranging from 8.35% (in N3)
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to 35.95% (in N4), for 54 in Condition 5. Contrary to the large biases found in those

situations, SWP consistently produced small biases for all four variables across the

sample size sets in Condition 7.

5.3.5 Pattern V

No missing data occurred in this pattern, and the results in this pattern were similar
to those found for Pattern II, where the missingness occurred only in one variable in the
first study. Most of the time, the SWP slopes showed less than 1% relative percentage
bias. In Condition 7 and Condition 8, when sample sizes were equal across studies (N1
and M2), GLS estimated had more than 10% relative bias for the slopes of X}, X3 and X3.
Large biases in estimating the slopes of X3, X3 and X4 from GLS could be found in
Condition 5 and Condition 6 when the sample sizes were equal, as well as in Condition 6

with sample size set N3 and in Condition 5 with sample size set N4.
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CHAPTER 6

DISCUSSION

This chapter summarizes the major findings based on the two methods investigated
in this research, and compares the two methods in a more general way. Suggestions for
choosing from the two methods are provided, as well as the limitations and further
investigations of the current study.

This research extends the factored likelihood method through the sweep operator
(SWP), which was originally designed for handling missing data, to the meta-analysis
context. The results from the SWP method were compared to the results from the GLS
method, which is a typical procedure for synthesizing multivariate data in meta-analysis.
The major difference between the two methods is that the SWP utilizes the concept of
maximum likelihood while GLS is not a likelihood-based approach and focuses on
weighting the correlations by their variability. Exploring the SWP method provides
another point of view and possible way to deal with the missing information that often
occurs in meta-analyses.

In the current study, the correlation matrices from regression studies were combined
in order to obtain the synthesized standardized slopes as a summary of the included
regression models in the synthesis. The two methods investigated in this study allow the
information from regression studies to be combined with correlational studies, which can
be considered as simple regression studies. Being able to incorporating regression studies
with correlational studies helps to improve the understanding of the relationship found in

correlational studies, because more variables are held constant in regression studies than
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in correlational studies while exploring the relationship between the outcome and the
predictor.

As the results presented in Chapter 5 show, each of the GLS and SWP methods has
its own strength in synthesizing regression studies with different patterns of missing data,
missing rates, and differences in what was missed (in terms of the strength of the |
correlations remaining in the matrix). The methods were first examined assuming fixed
effects (Condition 1 through Condition 4), when all the four studies included in a
meta-analysis were based on the same population correlation matrix. The major finding
assuming fixed effects across studies was that SWP consistently performed slightly better
than GLS when estimating the slope of the variable that was present in all regression
models (X)), while GLS consistently overestimated it in all the five missing patterns with
different sample sizes. The empirical examination using the pseudo studies in Chapter 4
also confirmed this finding. This result makes SWP a more desirable method especially
when a researcher’s focus is on the relationship between the outcome and one specific
predictor. In that case, the bivariate relationship of interest can be adjusted appropriately
by other variables that were controlled in the regression studies when using SWP.

The estimated slopes obtained from two methods were very close to the population
values, indicating that both methods produced good estimates of the slopes for the final
model. There were a few tendencies found for the two methods in terms of the impact of
the study patterns, sample sizes, and the strength of correlations that were missing. For

example, SWP tended to perform better in estimating £, when the sample size was small

and equal across studies (V1) in all patterns; GLS tended to perform better on

estimating 3, when the sample size was large and equal across studies (N2). When more
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missing data occurred (N4), SWP tended to produce more precise estimates of the slope
for X; in all patterns, no matter what correlation matrix the studies were based on; GLS
tended to perform better on the same variable when the sample size was large and equal
across studies (N2). When there were less missing data within studies (N3), SWP tended
to estimate the slope for X; better, while GLS tended to do better with more data missing
(N4) on this variable.

The percentage relative biases were calculated to quantify the differences between
estimated slopes and the population slopes. In all the scenarios of simulation, both
methods produced the bias under 5%, which made the two methods good estimation
methods (Hoogland & Boomsma, 1998). Yet the ranges of bias from GLS were
consistently larger than the ranges from SWP which made GLS less desirable.

The largest positive bias values for estimating the slope for X; produced by both methods
were both under Pattern III with the sample size N1 and correlation matrix R3. This
indicates that when the sample size was small and equal across studies and when
important variables were missing more, comparing to missingness for less important
variables, both methods did not do as well as in other scenarios for estimating the X,

slope. On the other hand, SWP did very well (zero bias) in estimating B, in this pattern

with the sample size N3 and the correlation matrix R;. That implies when there were
mostly correlational studies but only a few regression studies with big sample sizes
included in the meta-analysis, SWP can estimate the slope for the most observed variable
very well, especially when the predictors that were missing from the correlational studies
were related to each other and the outcome less strongly and when there are no

intercorrelations among the predictors. Another summary and comparison of the results
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from two methods can be found in Appendix E.

In the factorial ANOVAs, relatively little of the variance of the differences between
slopes estimated by the two methods were explained by the patterns, the correlation
matrices, and the sample size sets. In all cases, less than 10 percent of the variability is
explained by all the factors. For X, which is of the most of interest, the sample sizes
seemed to be the most important factor for explaining the variation of the differences and
patterns seemed to be the least important factor. The implication for this finding is that
when the researcher is making the decision of the method to be used, the most important
thing to keep in mind is the sample sizes of the primary studies included in the synthesis.
S Ordinal interactions existed in the current analyses for X;. The interaction plots showed
that, when separating by patterns, GLS and SWP produced more different estimates of
the X; slope in sample size set N1 than in other sample size sets. Combining this result
with the previous finding that SWP consistently produced closer slopes on X;, the SWP
method is especially preferred when the sample sizes are small and equal across studies,
no matter what the correlation matrix is.

The two methods were also examined under mixed-effects models (Condition 5
through Condition 8). By assuming mixed effects, the relationships among variables in
the four studies in the synthesis were not all based on the same population correlation
matrix. Since methods for meta-analyzing multivariate data under this model have not
been well developed (due to the difficulty of estimating between-study variances with
multivariate data appropriately), the population slopes calculated for each scenario were
based on the weighted mean correlations using the existing correlations in the current

research. As a consequence, the estimates from SWP showed lower relative percentage
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bias most of the time, because SWP depends more on the weighted mean correlations at
the beginning of the calculations than does the GLS procedure.

When comparing the results for the fully observed predictor X; under the
mixed-effects model to the results of same scenarios but under a fixed-effects model,
both methods showed the largest negative differences (mixed-effect results minus
fixed-effects results) in Condition 8 with sample size equaled N1 and the largest positive
differences in Condition 7 with the sample size defined by N3 in Pattern III. This finding
indicates that when the important variables (e.g., the X the correlation matrices R; and
R, in this research) were more likely to be missing (e.g., X4 is missing in study 1 to study
3 in pattern III), the estimate of the slope of the fully observed variable can be very
different (when using either methods) under fixed- and mixed- effects conditions. More
investigations on producing appropriate estimates under non-fixed effect models will be
needed.

As all research has limitations, this study is constrained in several ways. First, using
the factored likelihood estimation through the sweep operator requires the predictors
included in the models in the synthesis to be arranged in a monotone pattern somewhat
like those shown in Figure 3.2. Those patterns help to obtain the maximum likelihood of
the correlations without an iterative process, which made SWP an easy method to use.
The desired pattern sometimes can be achieved by rearranging the order of the predictors
in the models. Or, some variables may have to be excluded from models in order to
obtain the desired pattern. The GLS method, on the contrary, is more flexible in this
matter, and can be used with any correlations that are available in the studies. Other

methods for handling missing data that might be useful for synthesizing regression
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studies in the meta-analysis context, such as multiple imputations, might be worth while
to investigate, since combining regression studies is somewhat similar to dealing with
missing information from primary studies.

Second, the correlations used in the synthesis from the primary studies were
assumed to be perfectly measured in the current studies. That is, the errors from the
instruments used to measure the variables in the regression models were not taken into
account. I made this simplification because I wanted to focus on eliminating the impact
of the unparallel situations that occurs when regression models do not contain all the
same predictors. Further research should investigate possible solutions, such as utilizing
the concept of structural equation modeling, to incorporate measurement errors in
meta-analysis.

Third, the correlations among the variables in the regression studies are required in
order to use the methods investigated in this research. Unfortunately, it is very likely the
information about the zero-order correlations may not be reported or may be only
partially reported. In this matter, Bayesian perspectives might provide a possible direction
for obtaining the correlations needed for synthesizing regression studies based on other
information, such as slopes reported in the regression study. A possible method is to use
the Gibbs Sampler (Casella & George, 1992; Gelfand & Smith, 1990), that is based on
elementary properties of Markov chains, to generate possible correlations based on the

observed distribution of the slopes of regression models.
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APPENDIX A:

SAS Macro for GLS

Below is the example of SAS macro for generating the data under Pattern I for four
sample sizes and four correlations and calculating the standardized slopes and standard

errors using GLS.

%k 3k 3 3¢ 3k 3k 3k ok ok sk e 3k 3k 3k o ok ok 3k 3k ok ok ok ok 3k ok 3k 3k ok ok e 3 ok o 2k ke ok o 2k ok ok ok o ok 3k 3K ok ok ok ok ok 3k ok ok ok a3k 3k ok ok ok ok ok ok ok o ok 3k %k ok ok kK

N= Sample size set for four studies (N1 through N4);
R= Correlation matrix R; through Rs;
nx=sample size for study k in a synthesis, k=1 to 4;

ri;=correlation between variables i, i=y,1,2,3,0r 4; i#i’.

Libname GLSpl 'C:\';
$Macro GLSpl(N,R,nl,n2,n3,n4d,ryl,ry2,ry3,ry4,rl2,r13,rl4,r23,r24,r34);
Title GLS PATTERN1l &N &R ;
Proc IML;
nseed=125;nrep=1000;
Patl=j (nrep,8,0);
do sim=1 to nrep;
sl=j(&nl,2,0);
do i=1 to &nl;
sl[i,l]=rannor (nseed);
sl(i,2])=rannor (nseed);
end;
slr={1 &ryl,&ryl 1};
col=root (slr);
zl=sl*col;
rl=corr(zl);

s2=j(&n2,3,0);
do i=1 to &n2;
s2[i,l]=rannor (nseed);
s2[i,2)=rannor (nseed);
s2[i,3])=rannor (nseed);
end;
s2r={1 &ryl &ry2,&ryl 1 &rl2,&ry2 &rl2 1};
co2=root (s2r);
z2=s2*Cco02;
r2=corr(z2);

s3=j (&n3,4,0);
do i=1 to &n3;
s3[i,l]l=rannor(nseed);
s3[i,2])=rannor (nseed);
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s3(i,3]=rannor (nseed);
s3[i,4])=rannor (nseed);
end;
s3r={1 &ryl &ry2 &ry3,
&ryl 1 &rl2 &rl3,
&ry2 &rl2 1 &r23,
&ry3 &rl3 &r23 1};
co3=root (s3r) ;
z3=s3*co3;
r3=corr(z3);

s4=j(&n4,5,0);
do i=1 to &n4;
s4(i,1l]=rannor (nseed);
s4[i,2])=rannor (nseed);
s4(i,3)=rannor (nseed);
s4[i,4])=rannor (nseed);
s4[i,5)=rannor (nseed);
end;
s4r={1 &ryl &ry2 &ry3 &ryi4,
&ryl 1 &rl2 &rl3 &rl4,
&ry2 &rl2 1 &r23 &r24,
&ry3 &rl3 &r23 1 &r34,
&ry4 &rl4 &r24 &r34 1};
cod=root (s4r);
z4=s4*co4;
r4=corr(z4);

rl yl=rl1[1,2];

r2_yl=r2(1,2]);r2_y2=r2(1,3]);r2_12=r2(2,3];
r3_yl=r3(1,2];r3_y2=r3(1,3];r3_y3=r3(1,4];r3_12=r3(2,3];r3_13=r3(2,4];r
3 23=r3(3,4];

r4 yl=rd(1,2]);rd4_y2=rd4(1,3];r4 y3=r4(1,4);r4_yd4=r4(1,5]);rd4 12=r4(2,3];r
4 13=r4(2,4);r4 14=1r4(2,5);r4 23=r4(3,4);r4_24=r4(3,5);r4_34=r4[4,5);
ok W k¥ ek hdkkow ok ok wk ok kk ok ko k ok kYek ko k k% k kW ko bk ok ke ko k ok k de sk k hok ok ek ok dok ko ok ko k

R AR RS EEEEE SR EERE R EREEEEREEEEEREEEEESEEEESEEE I
’

pl=ncol(rl);
diml=pl* (pl-1)/2;
covl=j(diml,diml,0);
mat=j (diml,2,0);
k=1;
do i=2 to pl;
do j=1 to (i-1);
covl(k,k]l=(1-rl(i,j)##2)##2/&nl;
mat(k,1]=i;
mat[k,2]=];
k=k+1;
end;
end;
do i=2 to diml;
do j=1 to (i-1);
s=mat(i,1];
t=mat[i,2];
u=mat [j,1];
v=mat(j,2];

covl([i,j)=(0.5*rl(s,t]*rl(u,v]*(rl(s,ul##2+rl(s,v])##2+rl[t,ul #42+rl
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[t,v]##2)+rl[s,ul*rl(t,v]+rl(s,v]*ri(t,u]l-(rl[s,t]l*rl(s,ul*rl(s,v]+rl[t
,s1*rl{t,ul*rl(t,v]+rl(u,s]*rl(u,t]l*rlu,v]+rl[v,s]*rl{v,tl*rl[v,ul))/s&
nl;
end;
end;
do i=2 to diml;
do j=1 to (i-1);
covl([j,il=covl(i,]];
end;
end;

p2=ncol (r2);
dim2=p2* (p2-1)/2;
cov2=j (dim2,dim2,0);
mat=3j(dim2,2,0);
k=1;
do i=2 to p2;
do j=1 to (i-1);
cov2 [k, k]=(1-r2([1i,]l##2)##2/&n2;
mat[k,1]1=1i;
mat (k,2]=3;
k=k+1;
end;
end;
do i=2 to dim2;
do j=1 to (i-1);
s=mat[i,1];
t=mat[i,2];
u=mat(j,1];
v=mat([j,2];

cov2(i,j)=(0.5*r2(s,tl*r2[u,v]*(r2(s,ul ##2+r2(s,v]##2+r2(t,u) ##2+r2
[t,v]##2)+r2[s,ul*r2(t,v]+r2(s,v]*r2(t,ul-(r2(s,t)*r2[s,ul*r2(s,v]+r2[t
,s81*r2(t,ul*r2(t,v]+r2(u,s]l*r2{u,tl*r2[u,v]+r2(v,sl*r2(v,t]*r2[v,ul))/s&
n2;
end;
end;
do i=2 to dim2;
do j=1 to (i-1);
cov2(j,i]l=cov2([i,]];
end;
end;

p3=ncol (r3);
dim3=p3* (p3-1)/2;
cov3=j(dim3,dim3,0);
mat=j (dim3,2,0);
k=1;
do i=2 to p3;
do j=1 to (i-1);
cov3(k,k]=(1-r3[i,j]##42)##2/&n3;
mat[k,1]=i;
mat [k,2]=3;
k=k+1;
end;
end;
do i=2 to dim3;

134



do j=1 to (i-1);
s=mat[i,1];
t=mat (i, 2];
u=mat{j,1];
V=mat[j12];

cov3[i,j}=(0.5*r3([s,t]l*r3[u,v]*(r3(s,ul ##2+r3(s,v]##2+r3[t,u] ##2+r3
(t,v]##2)+xr3(s,u)*r3[t,v]+r3(s,v]*r3[(t,u]-(r3(s,t]*r3[s,ul*r3(s,v]+r3(t
,s1*r3(t,ul*r3(t,v]+r3[u,s]*r3(u,t]*r3(u,v]+r3(v,s]*r3(v,t]*r3(v,ul))/&
n3;
end;
end;
do i=2 to dim3;
do j=1 to (i-1);
cov3[j,i)=cov3[i,j];
end;
end;

pd=ncol (r4);
dim4=pd* (pd4-1)/2;
covd=j (dim4,dim4,0);
mat=j(dim4,2,0);
k=1;
do i=2 to p4;
do j=1 to (i-1);
covd [k, k]l=(1-rd[i,j)#42)4##2/&n4;
mat([k,1]=1i;
mat (k,2]=3;
k=k+1;
end;
end;
do i=2 to dim4;
do j=1 to (i-1);
s=mat (i, 1];
t=mat(i,2];
u=mat (j,1];
v=mat [],2];

covd[i,j]=(0.5*r4([s,t]*rd4[u,v]*(rd[s,ul##2+rd(s,v]##2+rd[t,ul ##2+r4
[t,v]#4#2)+xrd4[s,u]*rd4(t,v]+rd(s,v]*rd4[t,ul-(rd(s,t]*rd[(s,u]l*rd(s,v]+rd [t
,sl*rd4[t,ul*rd4(t,v])+rd{u,s]*rd(u,t)*rd[u,v]+rd(v,sl*rd(v,t]*rd(v,ul))/&
nd;
end;
end;
do i=2 to dim4;
do j=1 to (i-1);
covd[j,i)=covd[i,F];
end;
end;

p=diml+dim2+dim3+dim4;

bigmtx=j (p,p,0);

bigmtx[1l:diml,1l:diml])=covl;
bigmtx[{diml+1l:diml+dim2,diml+1:diml+dim2]=cov2;
bigmtx[diml+dim2+1:diml+dim2+dim3,diml+dim2+1:diml+dim2+dim3]=cov3;
bigmtx [diml+dim2+dim3+1:diml+dim2+dim3+dim4,diml+dim2+dim3+1:diml+dim2+
dim3+dimd4]=cov4;
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rvecl=rl yl;

Start rvec2;
k=1;
rvec2=j(dim2,1,0);
do i=2 to p2;
do j=1 to (i-1);
rvec2(k]=r2(i,jl;
k=k+1;
end;
end;
finish;
run rvec2;

Start rvec3;
k=1;
rvec3=j(dim3,1,0);
do i=2 to p3;
do j=1 to (i-1);
rvec3(k]=r3(i,j];
k=k+1;
end;
end;
finish;
run rvec3;

Start rvec4;
k=1;
rvec4=j(dim4,1,0);
do i=2 to p4;
do j=1 to (i-1);
rvecd [k]=r4[i,]j];:
k=k+1;
end;
end;
finish;
run rvecé;

outcome=rvecl//rvec2//rvec3//rvecd;

w=j(p,10,0);
w(l,1]=1;
w(2,1]=1;
w(3,2]1=1;
w(4,3]1=1;
w(5,1]=1;
w(6,2]=1;
w(7,3]1=1;
w(B,4]1=1;
w(9,5]=1;
w[1l0,6]=1;
w(ll,1]=1;
w(l2,2]=1;
w(l3,3]=1;
w(ld4,4)=1;
w[l5,5]=1;
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w(l6,6]=1;
w(l7,7]=1;
w(l8,8]=1;
w([1l9,9]=1;
w(20,10]=1;
rho=inv(t (w)*inv (bigmtx) *w) *t (w) *inv (bigmtx) *outcome;

Start backmtx;

syncor=3j(5,5,1);

k=1;

do i=2 to 5;
do j=1 to (i-1);
syncor[i,j]l=rho(k];
syncor [j,i]=rho[k];
k=k+1;
end;

end;

finish;

run backmtx;

Rll=syncor([2:5,2:5];
Rl2=syncor[2:5,1];
SLOPE=inv (R11)*R12;

Patl[sim,1]=4&nl;
Patl(sim,2]=&n2;
Patl(sim, 3]=&n3;
Patl{sim,4]=4&n4;
Patl([sim,5]=SLOPE[1,1];
Patl(sim, 6]=SLOPE([2,1];
Patl([sim,7])=SLOPE[3,1];
Patl([sim,8]=SLOPE([4,1];
end;

Create GLSpl.GLSPAT1&N&R from Patl [colname={nl n2 n3 n4 x1 x2 x3 x4}]; Append
from Patl;

run;

quit;

$Mend GLSpl;

xR *
gG;ép;(Nl,Rl,150,150,150,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,0.
;ZL;pl(N2,Rl,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.
;&ié;i1§3,Rl,150,500,1000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,
géi:;;(N4,R1,2000,1000,500,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1,
0.15);

/*R2*/
$GLSp1(N1,R2,150,150,150,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$GLSpl1(N2,R2,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$GLSpl1(N3,R2,150,500,1000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$GLSpl(N4,R2,2000,1000,500,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);

/*R3*/
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$GLSpl1(N1,R3,150,150,150,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1, 0.
:2;;p1(N2,R3,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.
iéié§i1§3,R3,150,500,1000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1,
Zéig;;(N4,R3,2000,1000,500,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1,
0.25);

/*R4AY/
$GLSp1(N1,R4,150,150,150,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
%GLSpl1(N2,R4,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
$GLSpl1(N3,R4,150,500,1000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
$GLSpl(N4,R4,2000,1000,500,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);

quit;

138



APPENDIX B:

SAS Macro for SWP

Below is the example of SAS macro for generating the data under Pattern I for four
sample sizes and four correlations and calculating the standardized slopes and standard
errors using SWP. Among the five patterns studied in this research, Pattern I has the most
complicated codes because of the numbers of steps the calculation needed to be carried

out.

ok ok kK koK okokokdkkokkkokokakokokokokoakakkokkokokkkokkkokkkkokkokokkkokkkokkkkkkokkkkkkokkkkkkkkkkk

N= Sample size set for four studies (N1 through N4);
R= Correlation matrix R, through Rs;
n,=sample size for study k in a synthesis, k=1 to 4;

riy=correlation between variables i, i=y,1,2,3,or 4; i#i’.

KokkkokokokkokokkokokkkkokokkkkkkkokkkkkokkkkkkkkRkkkkkkrkkkokkkkkkkkkkkkkkkkkkhkkkkkx

Libname SWPpl 'C:\';
$Macro
patternl (N,R,nl,n2,n3,n4,ryl,ry2,ry3,ry4,r12,r13,r14,r23,r24,r34);
Title PATTERN1l &N &R ;
Proc IML;
nseed=125;nrep=1000;
Patl=j (nrep,8,0);
do sim=1 to nrep;
sl=j(&nl,2,0);
do i=1 to &nl;
sl[i,l]=rannor (nseed);
sl[i,2]=rannor (nseed);
end;
slr={1 &ryl, &ryl 1};
col=root (slr);
zl=sl*col;
rl=corr(zl);
/*print rl;*/
s2=j(&n2,3,0);
do i=1 to &n2;
s2[i,l]l=rannor (nseed);
s2(i,2)=rannor (nseed);
s2(i,3)=rannor (nseed);
end;
s2r={1 &ryl &ry2,&ryl 1 &rl2,&ry2 &rl2 1};
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co2=root (s2r);
22=s2*co2;
r2=corr(z2);
s3=j(&n3,4,0);
do i=1 to &n3;
s3[i,1l]=rannor (nseed) ;
s3([i,2)=rannor (nseed);
s3([i,3]=rannor (nseed) ;
s3(i,4]=rannor (nseed);
end;
s3r={1 &ryl &ry2 &ry3,
&ryl 1 &rl2 &rl3,
&ry2 &rl2 1 &r23,
&ry3 &rl3 &r23 1};
co3=root (s3r);
z3=s3*co3;
r3=corr(z3);
s4=j(&n4,5,0);
do i=1 to &n4;
s4 (i, l]=rannor (nseed) ;
s4[i,2]=rannor (nseed) ;
s4[i,3]=rannor (nseed) ;
s4[i,4])=rannor (nseed);
s4[i,5]=rannor (nseed) ;
end;
sd4r={1 &ryl &ry2 &ry3 &ryd4,
&ryl 1 &rl2 &rl3 &rl4,
&ry2 &rl2 1 &r23 &r24,
&ry3 &rl3 &r23 1 &r34,
&ryd4 &rl4 &r24 &r34 1};
cod=root (sdr);
z4=s4*co4;
r4=corr(z4);

rl yl=rl(1,2];

r2_yl=r2(1,2);xr2_y2=r2(1,3];r2 12=r2(2,3];
r3_yl=r3[1,2];r3_y2=r3[1,3];r3_y3=r3[1,4];r3_12=r3[2,3];r3_13=r3[2,4};r
3 23=r3(3,4];
r4_yl=rd([1,2];r4_y2=r4(1,3);rd4_y3=r4[1,4];rd_y4=r4(1,5]);r4 12=r4(2,3);r
4 13=r4(2,4):;r4_14=r4(2,5]);r4_23=r4(3,4);r4 24=r4([3,5]);r4 34=r4(4,5]);

A RS AN E AR EREE AR S SRS EEE R R E R R R R ER R R R R R R R R R R R R I R R

AVEyl=(rl_yl*&nl+r2 yl*s&n2+r3_yl*&n3+r4_yl*&nd)/(&nl+&n2+&n3+&nd);
0=j(2, 2, 1);

0(1,2]=AVEyl;

0[2,1])=AVEyl;
AVEyl=(r2_yl*&n2+r3_yl*&n3+rd4_yl*&nd)/(&n2+&n3+&n4);
AVEy2=(r2_y2*&n2+r3_y2*&n3+r4_y2*&nd)/(&n2+&n3+&nd);
AVE12=(r2_12*&n2+r3_12*&n3+r4 12*&nd)/(&n2+&n3+&nd);
S234=3(3,3,1);

S234(1,2]=AVEyl;

S234(2,1]1=S234[1,2];

S234(1,3)=AVEy2;

S234[3,1]1=S234[1,3];

S234([2,3]=AVE12;

S234(3,2])=S8234(2,3];

R11=S234([1:2,1:2];
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R12=5234(1:2,3];
slope234=inv(R11)*R12;
var234=1-t (slope234)*R12;

A_y=j(21211);

A y[1,1]=-1/0[1,1];

A y[1,2]=0(1,2]/0(1,1];
A y[2,2]=0(2,2]-0[1,2]*0[1,2]/0([1,1]);

A y[2,1]=A yI[1,2];

A=3(2,2,1);

A[2,2]=-1/A y(2,2];

A(l,2]=A yl[1,2]/A_y[2,2];

A[1,1]=A y(1,1]-A_y[1,2]*A_y([1,2])/A_yI[2,2];
A[2,1]=A yI[1,2]);

P=j(3,3,1);

P[1:2,1:2]=A;

P[1:2,3)=slope234[1:2,1];
P[(3,1:2]=T(slope234([1:2,1]);
P[3,3]=var234[1});

AVEyl=(r3_yl*&n3+r4_yl*&nd)/(&n3+&nd);
AVEy2=(r3_y2*s&n3+rd4_y2*&n4)/(&n3+&n4);
AVEy3=(r3_y3*&n3+rd4_y3*&n4)/ (&n3+&nd);
AVE12=(r3_12*&n3+r4_12+*&n4)/(&n3+&nd);
AVE13=(r3_13*&n3+r4 13*&nd)/(&n3+&nd);
AVE23=(r3_23*&n3+rd4 23*&nd)/(&n3+&nd);
Vec=j (6,1,1);
Vec[1l,1]=AVEyl;
Vec([2,1]=AVEy2;
Vec[3,1])=AVE1l2;
Vec([4,1]=AVEy3;
Vec[5,1]=AVE1l3;
Vec[6,1]=AVE23;
Start matrix;
S34=3(4,4,1);
k=1;
do i =2 to 4;
do j =1 to (i-1);
S34(i,j]=Vec[k];
S34([j,i1=Vec(k]:
k=k+1;
end;
end;
Finish matrix;
run matrix ;
/*print S34;*/
R11=S834(1:3,1:3];
R12=S34[1:3,4];
slope34=inv(R11) *R12;
var34=1-t (slope34)*R12;

B=j(3l3ll);
B[(3,3]=-1/P[3,3];
B(1,3)=P(1,3]/P[3,3];
B[3,1]=B[1,3];
B[(2,3]=P[2,3]/P[3,3];
B(3,2]=B[2,3];
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B[{1,1]=P(1,1]-P[1,3)*P[3,1]/P[3,3);
B(1,2]=P[1,2]- [1 31*P(3,2]/P[3,3];
B(2,1]=B[1,2];
B(2,2]=P[2,2]

| ~e

P(2,3]*P[3,2]/P[3,3];

T=3(4,4,1);
T(1:3,1:3]=B;
T[1:3,4]=slope34(1:3,1];
T[(4,1:3]=T(slope34(1:3,1]);
T(4,4])=var34;
S4=3(5,5,1);
S4[1,2]=r4_yl;
S4(2,11=S4(1,2];
S4(1,3]=r4_y2;
S4(3,1]1=S4(1,3];
S4(1,4)=r4 _y3;
S4[4,1)=S4(1,4];
S4[1,5]=rd_y4;
S4(5,1]1=84[1,5];
S4(2,3)=r4 _12;
S4(3,2]=S4(2,3];
S4(2,4]=r4_13;
S4(4,2)=S4(2,4);
S4(2,5]=r4_14;
S4(5,2]1=84(2,5];
S4(3,4]=r4_23;
S4[4,3)=S4(3,4];
S4(3,5]=r4_24;
S4(5,3]=54(3,5];
S4(4,5]=r4_34;
S4(5,4]1=54(4,5);
R11=S4(1:4,1:4);
R12=S4(1:4,5];
sloped=inv(R11)*R12;
var4=1-t (sloped) *R12;

C=j(4,4,1);
C(4,4]=-1/T[4,4];
C[1,4)=T(1,4])/T[4,4]:
Cl[2,4]=T(2,4]/T(4,4]);
C[3,4]=T(3,4]/T[4,4];
Cl(4,1]=C[1,4);
C[4,2]=C[2,4];
Cl(4,3]=C(3,4];
C(1,1]=T(1,1]
C[2,2]=T(2,2]-
C[3,3]=T(3,3]
C[1,2]=T[1,2]
]
1:
]
]
]

-T[1,4]*T[4,1]/T[4,4];
T[2,4)*T[4,2)/T[4,4];
-T(3,4)*T[4,3)/T[4,4];
-T[1, 4]*T[4 21/T([4,4);
C[1,3]=T(1,3])-T(1,4])*T(3,4]/T[4,4);
C[2,1]=CI[1,2]);
C[3,1]=C[1,3];
C[2,3]=T[2,3]-T[2,4]*T[3,4])/T(4,4);
C(3,2]=C[2,3]);

U=j (Sr 51 1);
U(1:4,1:4]=C;
U[1l:4,5]=sloped;
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U[5,1:4]=T (sloped);
U[(5,5]=var4;

Ak > hhkFrhkhkFkhkhkrbhhkrhhkrhborhkhkrhddrkhhkdhkhkdkihsd

REVERSE Operators matrix U on y 1 2 3

LR AR R E R RN EEEEE SRR R REEEERREREREEEESE I
’

Uy=j(51511);
Uy(1,1]=-1/U[1,1];
Uy(1,2]=-0U[1,2]/0U[1,1]
UY[113]=-U[113]/U[111]
Uy(1,4]=-0U[1,4]/0U[1,1]
Uy(1,5]=-0[1,5]/0[1,1]
Uy(2,1]=U0y[1,2];
Uy(3,1]=0y([1,3]:
Uy(4,1]1=0Uy([1,4];
Uy[(5,1]=Uy([1,5];
uy(2,2]=U(2,2]-U[1,2]*U([2,1]/U([1,1]);
uy(2,3]=U0(2,3]-0[1,2]*U(3,1]/U[1,1];
Uy(2,4]=U(2,4]-U(1,2]*U(4,1]/0([1,1];
uy(2,5]=U(2,5]-U[1,2]*U(5,1]/0(1,1];
Uy(3,2]=Uy[2,3];

Uy(4,2]=Uy(2,4];

Uy(5,2]=U0Uy(2,5];
UY[313]=U[313]-U[113]*0[311]/U[lrll;
Uy[3,4]=0(3,4]-0(1,3]*U[4,1]/0(1,1];
uy(3,5]=0(3,5]-0[1,3]*U(5,1]/0[1,1];
Uy(4,3]=Uy(3,4];

Uy[5,3]1=0y(3,5];
Uy(4,4]=U[4,4]-U[1,4]*U[4,1]/U([1,1];
Uy(4,5]=0[4,5]-U([1,4]*0([5,1]/0([1,1]);
UY[514]=UY[415];
uy[5,5]1=0(5,5]-U[1,5]*U[5,1])/U([1,1];

.
’
.
’
.
’
.
’

Uyl:j(slsll);
Uyl(1,1)}=Uy(1,1]-Uy(1,2]*Uy(2,1]/Uy(2,2];;
Uyl(1,2]=-0Uy(1,2]/Uy[2,2];
Uyl(1,3]=Uy(1,3]-Uy(1,2]*Uy(2,3]/Uy([2,2];
Uyl(1,4)=Uy[1,4]-Uy[1,2]*Uy[2,4]/Uy(2,2];
Uyl(1,5)=Uy[1,5])-Uy([1,2]*Uy[2,5]/Uy[2,2]);
Uyl(2,1]=Uyl(1,2];

Uyl(3,1]=Uyl(1,3];

Uy1[411]=Uy1[114];

Uyl(5,1}=Uyl1(1,5];

Uyl([2,2]=-1/Uy[2,2];
Uyl(2,3]=-Uy[2,3]/Uy([2,2];
Uyl(2,4])=-Uy(2,4]/Uy[2,2];
Uyl(2,5)=-Uy[2,5]/0y([2,2];
Uyl(3,2]=Uyl([2,3];

Uyl(4,2]=Uyl(2,4];

Uyl([5,2]=Uyl(2,5];
Uyl(3,3]=Uy[3,3]-Uy(2,3]*Uy([3,2]/Uy[2,2];
Uyl(3,4]=Uy[3,4]-Uy[2,3]*Uy[4,2]/Uy([2,2];
Uyl(3,5]=Uy[3,5]-Uy[2,3]*Uy(5,2]/Uy[2,2];
Uyl(4,3]=Uyl(3,4];

Uyl(5,3]=Uy1(3,5];
Uyl(4,4]=Uy[4,4]-Uy[2,4]*Uy[4,2]/Uy(2,2];
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Uyl(4,5]=Uy(4,5]-0Uy[2,4]*Uy(5,2]/Uy(2,2];
Uyl[5,4]=Uyl[4,5]);
Uyl(5,5]1=Uy[5,5]-Uy(2,5]*Uy[5,2]/Uy[2,2];

Uyl2=j(5,5,1);
Uyl2[1,1)=Uy1(1,1]-Uyl1l[1,3]*Uy1(3,1]/0y1(3,3];
Uyl2[1,2])=Uyl([1,2]-Uyl([1,3]*0Uy1(3,2]/0y1([3,3];
Uyl2[1,3)=-Uyl([1,3]/0y1l([3,3];
Uyl2(1,4]=Uy1([1,4]-Uy1([1,3])*0Uy1(3,4]/0y1[3,3];
Uyl2(1,5)=Uy1l([1,5]-0Uyl(1,3]*0y1(3,5]/0Uy1l[3,3];
Uyl2(2,1]=0y12(1,2];

Uyl2(3,1]=0y12(1,3];

Uyl2(4,1]1=0y12([1,4];

Uyl2(5,1)=Uyl12[1,5];
Uyl2(2,2]=Uyl1l([2,2]-Uyl[2,3]*0Uy1([3,2]/Uyl(3,3];
Uyl2(2,3]=-Uyl[2,3]/Uyl1(3,3];
Uyl2({2,4)=Uyl(2,4]-Uyl[2,3]*0Uy1[3,4]/0y1l(3,3];
Uyl2[2,5]=Uyl1([2,5]-Uyl[2,3]1*0Uy1(3,5]/Uyl1l[3,3]);
Uyl2(3,2]=0y12(2,3];

Uyl2([4,2]=0Uy12(2,4];

Uyl2(5,2])=0y12(2,5];

Uyl2([3,3]=-1/Uy1([3,3];
Uyl2([3,4])=-Uy1(3,4]1/Uy1([3,3]);
Uyl2(3,5]=-0Uyl(3,5]/0yl1l[3,3];
Uyl2[4,3]=Uyl12(3,4];

Uyl2(5,3]=0Uy12(3,5];
Uyl2(4,4]=Uy1(4,4]-Uyl(4,3)*Uyl([3,4]/0y1[3,3];
Uyl2([4,5]=Uyl(4,5]-Uyl[4,3]*Uyl1(3,5]/Uyl1l[3,3];
Uyl2([5,4]1=0y12(4,5];
Uyl2(5,5]=0y1([5,5]-Uyl1(5,3]*Uyl1(3,5]/Uy1(3,3];

Uy123=3(5,5,1);
Uyl123[1,1]=Uy12(1,1]-Uyl2(1,4]*Uyl2(4,1]/Uyl2(4,4];
Uyl23(1,2]=Uyl12(1,2]-Uyl2(1,4]*Uyl2(4,2]/Uyl2(4,4];
Uyl23[1,3]=Uyl2(1,3]-Uyl2(1,4]*Uyl2(4,3]/Uyl2(4,4];
Uyl23[1,4]=-Uyl12[1,4)/Uyl2(4,4];
Uy123(1,5)=Uy12[1,5)-Uyl12(1,4)*Uyl2(4,5]/Uyl2(4,4];
Uyl23[2,1]=Uy123[1,2];

Uyl23(3,1]=Uy123[1,3];

Uyl23(4,1]=Uy123(1,4];

Uyl123(5,1]=Uy123[1,5];
Uyl23(2,2]=Uyl2(2,2]-Uyl2(2,4]*Uyl2(4,2]/Uyl2[4,4];
Uyl23(2,3]=Uyl12(2,3]-Uyl2[2,4]*Uyl2(4,3])/Uyl2([4,4];
Uyl23([2,4]1=-Uy12(2,4])/Uy12(4,4];
Uyl23([2,5]=Uyl2(2,5]-Uyl2(2,4]*Uyl2(4,5]/Uyl2[4,4];
Uyl23(3,2]=Uy123(2,3];

Uyl23[4,2]=Uy123[2,4];

Uyl23(5,2]=Uy123[2,5];
Uy123(3,3]=Uyl2(3,3)-Uy12(3,4]*Uyl2(4,3)/Uyl2(4,4];
Uyl123(3,4]=-Uyl2(3,4)/Uy12(4,4];
Uy123(3,5]=Uyl2(3,5)-Uyl2(3,4)*Uy12(4,5]/Uyl2(4,4];
Uyl123(4,3]=Uy123(3,4);

Uyl23(5,3]=Uy123(3,5);

Uyl23([4,4]=-1/Uy12(4,4];
Uyl23([4,5]=-Uyl2(4,5])/Uyl2[4,4];
Uy123(5,4]=Uy123(4,5];
Uyl23(5,5)=Uy12(5,5])-Uy12(5,4]*Uyl2(4,5]/Uyl2(4,4];
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do i=1 to 5;
Uyl23[i,i]=1;
end;
R11=0y123[2:5,2:5];
R12=Uy123(2:5,1];
SLOPE=inv(R11)*R12;

Patl([sim,1]=&nl;
Patl([sim,2]=&n2;
Patl(sim, 3]=&n3;
Patl([sim,4]=&n4;
Patl([sim,5]=SLOPE[1,1];
Patl[sim, 6]=SLOPE[2,1];
Patl[sim,7)=SLOPE[3,1];
Patl(sim,8]=SLOPE[4,1];
end;

Create SWPpl.SWPPAT1&N&R from Patl [colname={nl n2 n3 n4 x1 x2 x3 x4}]; Append
from Patl;

run;

quit;

$Mend patternl;

/*¥R1*/
tpatternl(N1l,R1,150,150,150,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0.1
,0.15);
$patternl(N2,R1,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15
,0.1,0.15);
$patternl(N3,R1,150,500,1000,2000,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0
.1,0.15);
$patternl(N4,R1,2000,1000,500,150,0.6,0.4,0.3,0.25,0.25,0.1,0.05,0.15,0
.1,0.15);

/*R2*/
$patternl(N1,R2,150,150,150,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$patternl (N2, R2,2000,2000,2000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$patternl(N3,R2,150,500,1000,2000,0.6,0.4,0.3,0.25,0,0,0,0,0,0);
$patternl(N4,R2,2000,1000,500,150,0.6,0.4,0.3,0.25,0,0,0,0,0,0);

“R3*
;piit;rnl(Nl,R3,150,150,150,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0.1
%g;iilinl(NZ,R3,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15
é;;t;z;ii1§3,R3,150,500,1000,2000,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0
é;;zéii;;(N4,R3,2000,1000,500,150,0.25,0.3,0.4,0.6,0.15,0.1,0.05,0.15,0
.1,0.25);

/*RA*/
$patternl(N1,R4,150,150,150,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
$patternl (N2, R4,2000,2000,2000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
$patternl(N3,R4,150,500,1000,2000,0.25,0.3,0.4,0.6,0,0,0,0,0,0);
$patternl(N4,6R4,2000,1000,500,150,0.25,0.3,0.4,0.6,0,0,0,0,0,0);

quit;
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APPENDIX C

Table C.1 Relative Percentage Bias and Standard Errors for Each Predictor When the
Correlation = R,

Percentage Relative Bias

A ~

B, B, B, B, SE, SE, SE; SE,

Pattern I
N1
GLS 1.104 0.794 0.843 -2.659 0.001061 0.001278 0.001367 0.001800
SWP -0.017 -0.249 0.292 -0.179 0.001048 0.001224 0.001357 0.001848

N2
GLS 0.143 -0.169 -0.074 -0.133 0.000275 0.000324 0.000361 0.000490
SWP 0.058 -0.253 -0.122 0.040 0.000274 0.000323 0.000362 0.000493

N3
GLS 0.169 0.058 0.133 -0.329 0.000364 0.000425 0.000431 0.000485
SWP -0.037 -0.058 0.133 -0.006 0.000362 0.000423 0.000430 0.000487

N4
GLS 0.103 0.280 0.673 0.565 0.000649 0.000841 0.001043 0.001883
SWP_  -0.041 -0.186 -0.260 1.909 0.000653 0.000843 0.001038 0.001928

Pattern 11
N1
GLS 1.331 0.706 0.445 0.173 0.000945 0.001050 0.001008 0.001109
SWP -0.105 -0.306 -0.530 -0.277 0.000887 0.000998 0.000950 0.001064

N2
GLS 0.178 -0.146 0.037 -0.017 0.000240 0.000267 0.000266 0.000282
SWP  0.074 -0.226 -0.032 -0.040 0.000239 0.000266 0.000265 0.000281

N3
GLS 0353 -0.049 0.180 -0.081 0.000359 0.000401 0.000386 0.000369
SWP  0.108 -0.217 -0.069 -0.035 0.000358 0.000396 0.000382 0.000366

N4
GLS 0.184 -0.146 0.180 0.531 0.000373 0.000427 0.000394 0.000550
SWP  -0.062 -0315 0.154 0.058 0.000369 0.000424 0.000389 0.000542

Pattern III
N1
GLS 1.581 -0.710 -0.562 -1.736 0.001248 0.001925 0.001810 0.001795
SWP 0.172 0430 0.530 -0.646 0.001242 0.001947 0.001826 0.001818

N2
GLS 0.178 -0.195 0.249 0.496 0.000340 0.000519 0.000511  0.000491
SWP  0.072 -0.111 0.334 0.577 0.000340 0.000520 0.000513  0.000492

N3
GLS 0.149 -0.129 0.212 -0.271 0.000398 0.000521 0.000506 0.000476
SWP -0.064 0.031 0382 -0.110 0.000398 0.000523 0.000508 0.000477

N4
GLS 0.575 -0.466 -1.363 -0.554 0.001099 0.001930 0.001902 0.001786
SWP 0227 -0.138 -1.156 -0.352 0.001104 0.001940 0.001907 0.001797
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Table C.1 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor
When the Correlation = R,

Percentage Relative Bias

A

A

B, B, B, B, SE SE, SE; SE4
Pattern IV
N1
GLS 1.089 1291 1.570 -2.665 0.001009 0.001096 0.001098 0.001799
SWP  -0.198 0.022 -0.196 0.502 0.000986 0.001067 0.001063 0.001862
N2
GLS  0.155 -0266 0.021 0.202 0.000251 0.000277 0.000280 0.000478
SWP  0.056 -0.364 -0.095 0.427 0.000251 0.000275 0.000278 0.000479
N3
GLS 0217 0.075 0.467 -0.559 0.000356 0.000413 0.000401 0.000478
SWP  -0.006 -0.102 0.228 -0.156 0.000356 0.000411 0.000399 0.000480
N4
GLS 0.176 0.169 0.477 0.479 0.000584 0.000622 0.000633 0.001833
SWP  -0.070 -0.111 0.000 1.702 0.000593 0.000627 0.000638 0.001855
Pattern V

N1
GLS 1.521 0.839 0.345 0.185 0.000927 0.001030 0.000988 0.000982
SWP  0.079 -0.280 -0.430 -0.848 0.000879 0.000979 0.000935 0.000931
N2
GLS 0.174 -0.040 0.053 0.017 0.000249 0.000269 0.000260 0.000248
SWP  0.072 -0.124 -0.037 -0.052 0.000248 0.000267 0.000259 0.000248
N3
GLS 0333 -0.084 0.180 0.144 0.000367 0.000404 0.000374 0.000367
SWP  0.077 -0.240 -0.037 0.000 0.000362 0.000397 0.000369 0.000362
N4
GLS 0308 -0.049 0239 0.138 0.000366 0.000401 0.000372 0.000366
SWP  0.079 -0.240 -0.016 -0.006 0.000361 0.000397 0.000369 0.000362
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Table C.2 Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R,

Percentage Relative Bias

A

A

B, B, B, B, SE, SE, SE; SE,
Pattern I
N1
GLS 0688 0.317 0.000 -2.340 0.001040 0.001082 0.001123 0.001419
SWP -0.037 -0.205 0.097 0.556 0.001041 0.001079 0.001123 0.001467
N2
GLS 0.075 -0.080 -0.037 -0.136 0.000277 0.000288 0.000299 0.000378
SWP 0.027 -0.118 -0.037 0.060 0.000279 0.000288 0.000300 0.000384
N3
GLS 0.103 -0.008 -0.027 -0.316 0.000333 0.000359 0.000354 0.000393
SWP -0.018 -0.043 0.043 0.056 0.000331 0.000358 0.000354 0.000397
N4
GLS 0.097 0.245 0.517 0.512 0.000753 0.000842 0.000902 0.001411
SWP -0.075 -0.080 0.040 1.828 0.000775 0.000850 0.000915 0.001487
Pattern 11
M
GLS 0.717 0370 0.167 -0.136 0.000823 0.000863 0.000847 0.000890
SWP -0.147 -0.245 -0.440 -0.040 0.000772 0.000824 0.000799 0.000854
N2
GLS 0.097 -0.078 0.013 0.004 0.000211 0.000223 0.000221 0.000230
SWP 0.035 -0.128 -0.030 0.008 0.000209 0.000221 0.000220 0.000233
N3
GLS 0202 -0.060 0.037 -0.156 0.000312 0.000329 0.000306 0.000306
SWP 0.055 -0.155 -0.080 -0.024 0.000310 0.000326 0.000305 0.000305
N4
GLS 0.083 -0.015 0.173 0.564 0.000335 0.000370 0.000341 0.000436
SWP -0.067 -0.143 0.083 0.148 0.000332 0.000366 0.000337 0.000435
Pattern III
N1
GLS 1.115 -0.583 -0.647 -1.132 0.001321 0.001464 0.001446 0.001450
SWP 0.353 0357 0.153 -0.348 0.001328 0.001499 0.001452 0.001464
N2
GLS 0.092 -0.095 0.150 0.248 0.000351 0.000397 0.000401 0.000398
SWP 0.035 -0.030 0.213 0.304 0.000351 0.000402 0.000404 0.000399
N3
GLS 0.112 -0.080 0.070 -0.140 0.000375 0.000408 0.000406 0.000394
SWP 0.000 0.062 0.200 -0.016 0.000375 0.000412 0.000408 0.000394
N4
GLS 0377 0.157 -0327 0.276 0.001283 0.001434 0.001498 0.001452
SWP 0.118 0.210 -0.277 0.320 0.001281 0.001464 0.001502 0.001459
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Table C.2 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R,
Percentage Relative Bias
B, B, B, B, SE, SE, SE; SE,
Pattern IV
Nl
GLS 0.567 0.502 0480 -2.392 0.000968 0.000968 0.000977 0.001367
SWP -0.223 -0.140 -0.237 1.264 0.000967 0.000965 0.000954 0.001435
N2
GLS 0.092 -0.120 0.060 0.052 0.000244 0.000253 0.000253 0.000371
SWP 0.032 -0.168 0.010 0.308 0.000246 0.000245 0.000253 0.000376
N3
GLS 0.135 0.065 0.193 -0.492 0.000318 0.000352 0.000337 0.000389
SWP 0.003 -0.033 0.097 0.044 0.000320 0.000352 0.000335 0.000393
N4
GLS 0220 0240 0260 1.044 0.000680 0.000698 0.000669 0.001365
SWP 0.022 0.070 0.053 2.000 0.000705 0.000708 0.000675 0.001407
Pattern V
N1
GLS 0.875 0.432 0.050 -0.016 0.000798 0.000825 0.000803 0.000806
SWP 0.005 -0.285 -0.427 -0.512 0.000758 0.000790 0.000760 0.000771
N2
GLS 0.095 -0.027 0.020 0.016 0.000210 0.000221 0.000210 0.000207
SWP 0.033 -0.078 -0.030 -0.024 0.000209 0.000220 0.000209 0.000206
N3
GLS 0.177 -0.063 0.063 0.060 0.000313 0.000331 0.000302 0.000304
SWP 0.032 -0.155 -0.053 -0.028 0.000309 0.000326 0.000297 0.000300
N4
GLS 0.162 -0.038 0.087 0.044 0.000311 0.000330 0.000299 0.000303
SWP 0.033 -0.158 -0.047 -0.032 0.000308 0.000327 0.000298 0.000300
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Table C.3 Relative Percentage Bias and Standard Errors for Each Predictor When the Correlation

=R,
Percentage Relative Bias
B, B, B B SE, SE, SE; SE4
Pattern I
Nl
GLS 1.425 1.501 1.402 -0.775 0.001387 0.001460 0.001599 0.001640
SWP 0.133 -0.217 -0.599 0.434 0.001386 0.001434 0.001584 0.001656
N2
GLS 0202 -0.196 -0.009 -0.014 0.000383 0.000391 0.000425 0.000438
SWP 0.110 -0.323 -0.142 0.062 0.000383 0.000391 0.000426 0.000444
N3
GLS 0.144 0.064 0.186 -0.079 0.000438 0.000467 0.000472 0.000456
SWP -0.092 -0.143 0.004 0.037 0.000437 0.000465 0.000470 0.000457
N4
GLS 0.075 0313 1.056 0310 0.001146 0.001316 0.001389 0.001637
SWP .0.162 -0376 -0.524 1.242 0.001160 0.001327 0.001396 0.001695
Pattern 11
N1
GLS 0952 0.795 0.391 1.044 0.001052 0.001073 0.001089 0.001031
SWP -0.277 -0.408 -0.697 0.041 0.000998 0.001020 0.001024 0.000968
N2
GLS 0271 -0.175 0.022 0.083 0.000276 0.000282 0.000276 0.000260
SWP 0202 -0260 -0.058 0.000 0.000274 0.000280 0.000275 0.000260
N3
GLS 0.508 -0.053 0249 0.097 0.000394 0.000398 0.000397 0.000348
SWP 0283 -0.233 -0.044 -0.002 0.000393 0.000395 0.000394 0.000344
N4
GLS -0.023 -0.207 0.022 0.513 0.000455 0.000479 0.000472 0.000495
SWP -0.231 -0.371 0.120 0.066 0.000448 0.000473 0.000467 0.000493
Pattern I1II
N1
GLS 3.178 0.085 0.670 -0.742 0.001531 0.001930 0.001866 0.001695
SWP 1332 0270 0.843 -0.463 0.001521 0.001933 0.001870 0.001706
N2
GLS 0415 -0.005 0.129 0.159 0.000408 0.000533 0.000540 0.000457
SWP 0.283 0.011 0.146 0.172 0.000408 0.000534 0.000540 0.000459
N3
GLS 0.092 -0.175 0.249 -0.045 0.000440 0.000505 0.000521 0.000452
SWP -0.162 -0.154 0.271 -0.017 0.000440 0.000505 0.000521 0.000451
N4
GLS 0.721 0387 -1.433 0.161 0.001423 0.001923 0.001987 0.001705
SWP 0.110 0451 -1.331 0.281 0.001424 0.001925 0.001994 0.001728
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Table C.3 (cont’d) Relative Percentage Bias and Standard Errors for Each Predictor When the

Correlation = R;

Percentage Relative Bias

B, B, B, B, SE, SE, SE; SE,
Pattern IV

N1

GLS 0.756 1.798 2.556 -0.734 0.001381 0.001366 0.001433 0.001623

SWP -0.623 -0.159 -0.759 0.835 0.001372 0.001361 0.001423 0.001655
N2

GLS 0.363 -0.297 0.169 0.027 0.000353 0.000361 0.000374 0.000425

SWP 0.242 -0.437 -0.067 0.141 0.000345 0.000362 0.000375 0.000429
N3

GLS 0.219 0.191 0.608 -0.223 0.000430 0.000450 0.000448 0.000440

SWP 0.075 -0.069 0.160 -0.052 0.000430 0.000449 0.000446 0.000442
N4

GLS 0.404 0.705 0.648 0.358 0.001110 0.001158 0.001202 0.001601

SWP -0.069 0.106 -0.617 1.242 0.001127 0.001169 0.001215 0.001631

Pattern V

N1

GLS 1.488 0.864 0.475 1.112 0.000987 0.001013 0.001014 0.000936

SWP 0.335 -0.350 -0.342 -0.281 0.000952 0.000961 0.000949 0.000887
N2

GLS 0.006 0.016 0.053 0.083 0.000264 0.000262 0.000268 0.000231

SWP 0.196 -0.064 -0.036 -0.021 0.000263 0.000261 0.000268 0.000229
N3

GLS 0.340 -0.133 0.186 0.244 0.000401 0.000400 0.000388 0.000347

SWP 0.185 -0.308 -0.018 0.010 0.000395 0.000393 0.000382 0.000340
N4

GLS 0311 -0.111 0.226 0.242 0.000399 0.000398 0.000384 0.000343

SWP 0.179 -0.297 -0.004 0.006 0.000394 0.000394 0.000382 0.000340
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Table C.4 Relative percentage bias and standard errors for each predictor when the

correlation = Ry

Percentage Relative Bias

B, B, B, B, SE, SE, SE; SE,
Pattern I
Nl
GLS 0.864 0.773 0.545 -0.772 0.001271 0.001312 0.001370 0.001240
SWP 0.008 -0.130 -0.055 0.560 0.001283 0.001308 0.001371 0.001312
N2
GLS 0.068 -0.087 -0.008 -0.018 0.000356 0.000361 0.000369 0.000330
SWP 0.012 -0.153 -0.048 0.058 0.000356 0.000362 0.000370 0.000354
N3
GLS 0052 0.020 0.005 -0.095 0.000388 0.000406 0.000399 0.000371
SWP -0.076 -0.080 0.000 0.040 0.000387 0.000405 0.000398 0.000387
N4
GLS 0236 0490 0.712 0.253 0.001145 0.001283 0.001287 0.001130
SWP -0.124 0.030 0220 1.098 0.001161 0.001293 0.001298 0.001321
Pattern II
N1
GLS 0356 0.487 0.230 0.452 0.000883 0.000894 0.000897 0.000844
SWP -0360 -0.220 -0.503 0.028 0.000843 0.000852 0.000849 0.000807
N2
GLS 0.092 -0.073 0.022 0.057 0.000234 0.000239 0.000234 0.000216
SWP 0.060 -0.127 -0.030 0.022 0.000232 0.000238 0.000233 0.000222
N3
GLS 0.192 -0.043 0.080 0.003 0.000326 0.000329 0.000320 0.000303
SWP 0.068 -0.147 -0.058 -0.012 0.000325 0.000327 0.000318 0.000302
N4
GLS -0.060 -0.033 0.168 0.357 0.000399 0.000428 0.000425 0.000374
SWP -0.192 -0.163 0.060 0.058 0.000395 0.000422 0.000421 0.000392
Pattern II1
N1
GLS 1.796 0320 0332 -0.402 0.001407 0.001568 0.001519 0.001438
SWP 0908 0397 0415 -0.228 0.001402 0.001572 0.001522 0.001449
N2
GLS 0.180 0.037 0.090 0.087 0.000369 0.000439 0.000434 0.000390
SWP 0.112 0.040 0.095 0.092 0.000369 0.000439 0.000434 0.000393
N3
GLS 0.036 -0.063 0.150 -0.017 0.000383 0.000413 0.000422 0.000394
SWP -0.080 -0.047 0.168 0.005 0.000383 0.000413 0.000422 0.000393
N4
GLS 0452 0690 -0.330 0.430 0.001375 0.001555 0.001589 0.001463
SWP 0.072 0.607 -0.373 0.432 0.001375 0.001557 0.001591 0.001486
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Table C.4 (cont’d) Relative percentage bias and standard errors for each predictor when

the correlation = Ry

Percentage Relative Bias

A

A

B, B, B, B, SE, SE, SE; SE,
Pattern IV

Nl

GLS 0420 0973 0922 -0.865 0.001295 0.001275 0.001314 0.001146

SWP -0.512 -0.027 -0.170 0.863 0.001305 0.001282 0.001316 0.001272
N2

GLS 0204 -0.123 0.105 0.007 0.000333 0.000343 0.000349 0.000304

SWP 0.132 -0.187 0.020 0.122 0.000335 0.000345 0.000351 0.000337
3 k

GLS 0.116 0.140 0.195 -0.217 0.000378 0.000397 0.000383 0.000356

SWP -0.016 0.013 0.047 0.010 0.000380 0.000397 0.000382 0.000373
N4

GLS 0656 0.757 0.492 0.482 0.001129 0.001183 0.001181 0.001033

SWP 0.184 0.333 0.043 1.123 0.001145 0.001194 0.001186 0.001215

Pattern V

Nl

GLS 0620 0497 0205 0.592 0.000808 0.000825 0.000797 0.000803

SWP -0.024 -0.227 -0.363 -0.225 0.000784 0.000787 0.000750 0.000763
N2

GLS 0.096 0.027 0.025 0.052 0.000215 0.000217 0.000218 0.000203

SWP 0.068 -0.017 -0.025 -0.010 0.000214 0.000216 0.000217 0.000202
N3

GLS 0.100 -0.080 0.080 0.127 0.000329 0.000323 0.000316 0.000305

SWP 0.012 -0.173 -0.040 -0.010 0.000324 0.000318 0.000311 0.000299
N4

GLS 0.080 -0.063 0.095 0.120 0.000327 0.000321 0.000313 0.000302

SWP 0.012 -0.173 -0.033 -0.015 0.000323 0.000318 0.000311 0.000299
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APPENDIX D

Table D.1 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern I

Percentage Relative Bias
B, B, B, B, SE, SE, SE; SE,

Condition 5:

RiR;R;R;
GLS(N1) 3.049 6.101 2.803 0.312 0.001059 0.001117 0.001155 0.001465
SWP(N1) 1.786 4478 6.760 6.760 0.001080 0.001114 0.001207 0.001566
GLS(M2) 2380 5.687 2.823 2.580 0.000279 0.000297 0.000308 0.000388
SWP(N2) 1.781 4441 6.673 6.256 0.000287 0.000303 0.000323 0.00041
GLS(NVN3) 1309 2205 0907 0.568 0.000337 0.000365 0.000359 0.000398
SWP(N3) 0.733 1.770  3.033 2.832 0.000335 0.000361 0.000368 0.000408
GLS (~4) 3.010 11.792 7.433 7.108 0.000775 0.00088 0.000958 0.001495
SWP(N4) 3.068 9.548 11.480 12.644 0.000846 0.000933 0.001045 0.001658

Condition 6:

R3R3R4R4
GLS(N1) 4.660 3.446 0.835 -0.403 0.001272 0.001312 0.001374 0.001245
SWP(N1) 3.850 2429 0432 1.262 0.00129 0.001314 0.001381 0.001326
GLS(MV2) 3862 2582 0285 0360 0.000355 0.000361 0.00037 0.000331
SWP(N2) 3.795 2370 0.442 0.758 0.000357 0.000364 0.000373 0.000357
GLS(WV3) 1682 1.174 0.165 0.055 0.000389 0.000407 0.000399 0.000372
SWP(N3) 1.514 1.007 0215 0342 0.000388 0.000404 0.000399 0.000388
GLS(N4) 7.106 5.154 1318 1.023 0.001145 0.001282 0.001296 0.001134
SWP(N4) 6.999 4.653 1.078 2.362 0.001174 0.001303 0.001319 0.001338

Condition 7:

R;R,R1R;
GLS(N1) 2.835 3.291 -2314 -7.347 0.001029 0.001272 0.001297 0.001682
SWP(N1) 0.195 -1.853 0.226 -1.916 0.001007 0.001214 0.001312 0.001781
GLS(NV2) 2078 2.790 -3.251 -4.935 0.000271 0.000327 0.000341 0.00046
SWP(N2) 0310 -1.681 -0.248 -1.787 0.000265 0.000311 0.000349 0.000474
GLS (V3) 1.677 2.161 -1966 -3.073 0.00036 0.000427 0.00042 0.00047
SWP(N3) 0.096 -0.842 0.097 -0.710 0.000357 0.000419 0.000424 0.00048
GLS(M4) 1372 1.852 -2439 -5.614 0.000612 0.000822 0.000953 0.00171
SWP(N4) 0.307 -2.570 -0.714 -1.829 0.000613 0.000811 0.000963 0.001791

Condition 8:

R4R4R3R3
GLS(N1) 0906 0.813 1.750 -1.201 0.001379 0.001458 0.001592 0.001636
SWP(N1) -0.724 -1.464 -0.076 0.109 0.001378 0.001428 0.001578 0.001651
GLS (N2) -0.285 -0.819 0.345 -0.435 0.000383 0.000392 0.000423 0.000437
SWP(N2) -0.703 -1.535 0.380 -0.274 0.000382 0.000389 0.000424 0.000442
GLS(¥3) 0.102 -0.120 0.321 -0.279 0.000436 0.000466 0.000471 0.000455
SWP(N3) -0.446 -0.708 0.236 -0.097 0.000436 0.000465 0.00047 0.000457
GLS (N4) -1.353 -1.402 1.840 -0.346 0.001135 0.001311 0.001378 0.001632
SWP(N4) -1.705 -2.662 0.456 0.635 0.001115 0.001323 0.001383 0.001687
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Table D.2 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern II

Percentage Relative Bias

A

A

B, B, B, B, SE, SE, SE; SE,

Condition §:

RiR|R.R;
GLS(N1) 6.169 11.896 12.659 12.149 0.000894 0.000944 0.00091 0.000986
SWP(N1) 0.042 0.480 -0.101 4.088 0.000821 0.000897 0.000871 0.000989
GLS (M2) 5.547 11.498 12.697 12.506 0.000231 0.000243 0.000239 0.000254
SWP(N2) 0.247 0.604 0.360 4262 0.000223 0.000241 0.000242 0.00027
GLS (V3) 2.762 4425 5473 4.689 0.000317 0.000342 0.000318 0.000315
SWP(N3) 0.161 0.063 0.065 1.299 0.000316 0.000334 0.000317 0.000322
GLS (NM4) 5.046 13.340 12.590 22.553 0.000391 0.000443 0.000397 0.000572
SWP(N4) -0.038 0.409 0.396 3.103 0.00036 0.000408 0.000374 0.00053

Condition 6:

R;3R3R4Ry
GLS (M1) 12.651 13.387 9.360 6.056 0.000945 0.000938 0.000941 0.000916
SWP(N1) 1469 1.602 0.400 1.031 0.000913 0.000918 0.000901 0.000862
GLS (M2) 12.564 12.865 9.141 5.652 0.00025 0.000251 0.000252 0.000235
SWP(N2) 2.036 1.694 0.884 1.062 0.000251 0.000256 0.000245 0.000236
GLS(N3) 5334 5332 4213 2.348 0.000333 0.000338 0.000334 0.000311
SWP(N3) 0.668 0345 0.220 0.296 0.000338 0.000338 0.000326 0.00031
GLS (M4) 15.003 16.001 10913 9.137 0.00046 0.000483 0.00047 0.000474
SWP(N4) 1303 1303 0.996 0.845 0.000432 0.000456 0.00044 0.000456

Condition 7:

R,R2R 1R,
GLS (V1) 6.170 10.874 12.551 11.002 0.000887 0.000978 0.00934 0.001014
SWP(N1) -0.121 -0.609 -0.610 -2.471 0.000814 0.000904 0.000883 0.000968
GLS (M2) 5.461 10.636 12.555 11.288 0.000226 0.000254 0.000248 0.000272
SWP(M2) 0.035 -0.493 -0.147 -2.381 0.000218 0.00024 0.000244 0.000254
GLS(NV3) 4.619 11.552 12387 8.499 0.000367 0.000413 0.000379 0.000378
SWP(N3) 0.097 -0.278 -0.113 -0.278 0.000347 0.000384 0.000373 0.000356
GLS(NV4) 2916 4.298 5.568 9.919 0.000343 0.000384 0.000353 0.000472
SWP(N4) -0.247 -0.811 -0.239 -5.630 0.000329 0.00037 0.000344 0.000454

Condition 8:

R4R4R3R3
GLS(N1) 11473 12673 10415 6.369 0.001001 0.001028 0.001047 0.000963
SWP(N1) -1.259 -1.394 -1.329 -0.477 0.00094 0.000957 0.000949 0.000904
GLS (NM2) 11.194 12.244 10.658 5.885 0.000267 0.000274 0.000268 0.000252
SWP(N2) -0.900 -1.218 -0.714 -0.560 0.000258 0.000262 0.000258 0.000245
GLS (¥3) 10.280 11.311 11.063 3.903 0.000396 0.0004 0.000401 0.000365
SWP(N3) 0.082 -0361 -0.181 -0.059 0.000383 0.000386 0.000383 0.000335
GLS(V4) 6.037 6.578 4982 5.708 0.000427 0.000453 0.000463 0.000421
SWP(N4) -2.291 -2332 -1.076 -1.242 0.000415 0.000436 0.000427 0.000428
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Table D.3 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern III

Percentage Relative Bias

A

B, B, B, B, SE, SE, SE; SE,

Condition 5:

R1R1R2R2
GLS(N1) 1.115 -0.583 -0.647 -1.132 0.001321 0.001464 0.001446 0.00145
SWP(N1) 0353 0357 0.153 -0.348 0.001328 0.001499 0.001452 0.001464
GLS (M2) 0.092 -0.095 0.150 0.248 0.000351 0.000397 0.000401 0.000398
SWP(N2) 0.035 -0.030 0.213 0304 0.000351 0.000402 0.000404 0.000399
GLS (¥3) 0.112 -0.080 0.070 -0.140 0.000375 0.000408 0.000406 0.000394
SWP(N3) 0.000 0.062 0.200 -0.016 0.000375 0.000412 0.000408 0.000394
GLS (M4) 0377 0.157 -0.327 0276 0.001283 0.001434 0.001498 0.001452
SWP(N§4) 0.118 0.210 -0.277 0.320 0.001281 0.001464 0.001502 0.001459

Condition 6:

R3R3R4R4 :
GLS (V1) 1.796 0320 0332 -0.402 0.001407 0.001568 0.001519 0.001438
SWP(N1) 0908 0397 0415 -0.228 0.001402 0.001572 0.001522 0.001449
GLS(M2) 0.180 0.037 0.090 0.087 0.000369 0.000439 0.000434 0.00039
SWP(M2) 0.112 0.040 0.095 0.092 0.000369 0.000439 0.000434 0.000393
GLS (M3) 0.036 -0.063 0.150 -0.017 0.000383 0.000413 0.000422 0.000394
SWP(N3) -0.080 -0.047 0.168 0.005 0.000383 0.000413 0.000422 0.000393
GLS (MV4) 0452 0.690 -0.330 0.430 0.001375 0.001555 0.001589 0.001463
SWP(N4) 0.072 0.607 -0.373 0.432 0.001375 0.001557 0.001591 0.001486

Condition 7:

RZRZRIRI
GLS (N1) 1.589 -0.692 -0.573 -1.753 0.001248 0.001925 0.00181 0.001795
SWP(N1) 0.180 0448 0.520 -0.663 0.001242 0.001947 0.001826 0.001818
GLS (M) 0.186 -0.178 0.239 0.479 0.00034 0.000519 0.000511 0.000491
SWP(M2) 0.079 -0.093 0.323  0.559 0.00034 0.00052 0.000513 0.000492
GLS (¥3) 0.157 -0.111 0.201 -0.288 0.000398 0.000521 0.000506 0.000476
SWP(N3) -0.056 0.049 0371 -0.127 0.000398 0.000523 0.000508 0.000477
GLS(V4) 0.583 -0.448 -1.373 -0.571 0.001099 0.00193 0.001902 0.001786
SWP(N4) 0.234 -0.120 -1.166 -0.369 0.001104 0.00194 0.001907 0.001797

Condition 8:

R4sR4R3R;
GLS (N1) 3.160 0.074 0.688 -0.734 0.001531 0.00193 0.001866 0.001695
SWP(N1) 1.315 0260 0.861 -0.455 0.001521 0.001933 0.00187 0.001706
GLS (M2) 0.398 -0.016 0.146 0.167 0.000408 0.000533 0.00054 0.000457
SWP(N2) 0.265 0.000 0.164 0.180 0.000408 0.000253 0.00054 0.000459
GLS (N3) 0.07S -0.186 0266 -0.037 0.00044 0.000505 0.000521 0.000452
SWP(N3) -0.179 -0.164 0289 -0.010 0.00044 0.000505 0.000521 0.000451
GLS (N4) 0.704 0376 -1.416 0.169 0.001423 0.001923 0.001987 0.001705
SWP(N4) 0.092 0440 -1.314 0.289 0.001424 0.001925 0.001994 0.001728
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Table D.4 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern IV

Percentage Relative Bias

A

A

A

A

B, B, B, B, SE, SE; SE, SE,

Condition 5:

R]RleRz
GLS(N1) 5.379 11.103 10.815 5.412 0.001017 0.00104 0.001026 0.001474
SWP(N1) 1.692 5.627 4.047 22992 0.00109 0.001078 0.001071 0.001766
GLS (M2) 4951 10.531 10.466 7.868 0.00026 0.000271 0.000269 0.000404
SWP(M2) 1.896 5217 4.006 21.880 0.000274 0.000289 0.000286 0.000463
GLS(N3) 2350 3904 4.391 1.520 0.000322 0.00036 0.000341 0.000398
SWP(N3) 0.639 1540 1372 8.352 0.000327 0.000362 0.000346 0.000428
GLS(NV4) 4906 15519 12.726 20.932 0.000754 0.000796 0.000758 0.0016
SWP(N4) 3.192 11.962 7.867 35.948 0.000925 0.000969 0.000884 0.000193

Condition 6:

R3R3R4R4
GLS(N1) 11.291 11.108 5.832 1.630 0.001303 0.001277 0.001323 0.001161
SWP(N1) 9.378 9.622 4.384 6.290 0.001355 0.001328 0.001367 0.001352
GLS (N2) 11.347 10.066 5.059 2.507 0.000336 0.000345 0.000352 0.000311
SWP(N2) 9.991 9220 4471 5.528 0.000347 0.000358 0.000366 0.000357
GLS(N3) 4.166 3.826 2.205 0.543 0.000379 0.000396 0.000384 0.000358
SWP(N3) 3.278 3.177 1.685 1.993 0.000383 0.0004 0.000386 0.000383
GLS(NV4) 18.329 17303 7.468 5612 0.001149 0.001196 0.001194 0.001045
SWP(N4) 17.860 17.445 7.390 9930 0.001244 0.001297 0.00128 0.001328

Condition 7:

RoR,R 1R,
GLS(N1) 5.222 8473 10.666 -13.896 0.000932 0.001009 0.001026 0.001495
SWP(N1) -0.007 -0.829 -0.684 -1.498 0.00908 0.001002 0.001 0.001688
GLS(N2) 4.557 7.543 9704 -11.158 0.00023 0.000262 0.000262 0.000397
SWP(N2) 0.217 -0.859 -0.318 -1.775 0.000231 0.000255 0.00026 0.000435
GLS(N3) 3.513  7.799 8.745 -7.550 0.000355 0.000424 0.000405 0.000444
SWP(N3) 0.084 -0.399 0.040 -0.712 0.000346 0.000399 0.000391 0.000466
GLS(NV4) 2411 2596 4.216 -9.186 0.00049 0.000551 0.000556 0.001441
SWP(N4) 0.124 -1.012 -0.461 -2.958 0.000507 0.000575 0.000576 0.001536

Condition 8:

R4R4R3R;
GLS(N1) 2978 3.545 3.465 -2.628 0.001355 0.001343 0.001422 0.001628
SWP(N1) -1.657 -1.416 -2.588 0.170 0.001346 0.001344 0.001409 0.001646
GLS(N2) 2269 1472 1.148 -1.754 0.000345 0.000355 0.00037 0.000424
SWP(N2) -0.887 -1.513 -1.820 -0.578 0.000347 0.000355 0.00037 0.000427
GLS(N3) 2.023 1917 1.824 -1.164 0.000428 0.000454 0.00045 0.000444
SWP(N3) -0.409 -0.445 -0.533 -0.286 0.000428 0.000446 0.000443 0.000442
GLS (N4) 0.019 0.004 -0.789 -1.492 0.001064 0.001123 0.001182 0.001588
SWP(N4) -2.000 -1.972 -3.389 0.028 0.001089 0.001146 0.001206 0.001614
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Table D.5 Relative Percentage Bias and Standard Errors for Each Predictor in Pattern V

Percentage Relative Bias

A

A

A

B, B, B, B, SE, SE, SE; SE,

Condition 5:

RiRiR;R;
GLS (N1) 6.440 12.292 13.767 12.593 0.000862 0.000915 0.000881 0.000887
SWP(N1) 0.048 -0.240 -0.409 -0.702 0.000814 0.000874 0.000852 0.000867
GLS (N2) 5.679 11930 14.031 12.471 0.000225 0.000244 0.000237 0.000227
SWP(AN2) 0.053 -0.112 -0.064 -0.054 0.000226 0.000239 0.000236 0.000229
GLS(N3) 2.765 4514 5765 5370 0.000322 0.000346 0.000308 0.00031
SWP(N3) 0.038 -0.154 -0.044 -0.004 0.000316 0.000339 0.000309 0.000317
GLS (NVN4) 4.738 12.481 13.384 11.472 0.000372 0.000416 0.000372 0.000375
SWP(N4) 0.073 -0.210 0.025 0.000 0.00035 0.000384 0.000357 0.00035

Condition 6:

R3R3R4Ry
GLS (N1) 13.109 14474 12.114 6.236 0.000892 0.000911 0.000911 0.000872
SWP(N1) 0.182 -0.222 -0319 -0.297 0.000886 0.000877 0.000848 0.000817
GLS (M2) 12618 13975 11996 5.598 0.000233 0.000234 0.000242 0.000218
SWP(AN2) 0.113 -0.068 -0.062 -0.018 0.000243 0.000239 0.00024 0.000213
GLS (V3) 5.383 5.601 4649 2.741 0.000337 0.000334 0.000331 0.000311
SWP(N3) 0.030 -0.183 -0.014 0.000 0.000341 0.000334 0.000319 0.000306
GLS (N4) 11336 13.153 12.806 4.787 0.0004 0.000401 0.000387 0.000358
SWP(N4) 0.142 -0.212 0.008 0.004 0.000384 0.000382 0.000366 0.000329

Condition 7:

R,R,RiR;
GLS (N1) 6.532 12.164 13.860 12.014 0.000872 0.000934 0.000896 0.000887
SWP(N1) 0.042 -0.391 -0.507 -0.693 0.000802 0.000876 0.000849 0.000853
GLS (N2) 5.655 11914 13.945 12.529 0.000234 0.00025 0.000229 0.000229
SWP(N2) 0.044 -0.099 -0.038 -0.059 0.000226 0.00024 0.000235 0.000229
GLS (N3) 4.892 12.620 13.532 10958 0.000373 0.000412 0.000377 0.000376
SWP(N3) 0.088 -0.258 -0.064 -0.586 0.00035 0.000379 0.000358 0.000351
GLS (N4) 2914 4.563 5.853 5.335 0.000318 0.000343 0.00031 0.00031
SWP(N4) 0.052 -0.196 -0.091 -0.078 0.000315 0.000334 0.000312 0.000316

Condition 8:

R4R4R;3R3
GLS (V1) 13.163 14.197 11.841 6.097 0.000897 0.000899 0.000895 0.000875
SWP(N1) 0.088 -0.392 -0.427 -0.218 0.000867 0.000878 0.000834 0.000809
GLS (M2) 12.633 13997 12.003 5.614 0.000243 0.000242 0.000244 0.000221
SWP(AN2) 0.108 -0.034 -0.020 -0.026 0.000239 0.000238 0.000241 0.000212
GLS (M3) 11.719 13310 12.866 4.787 0.000402 0.000394 0.000394 0.000362
SWP(N3) 0.137 -0.295 -0.079 0.019 0.000383 0.00038 0.000368 0.000329
GLS (M4) 5.504 5.666 4.701 2.716 0.000334 0.000332 0.000329 0.000309
SWP(N4) 0.022 -0.248 -0.055 -0.009 0.000338 0.000332 0.000321 0.000305

158




S S S S | +b 48[ +0+S = S D[+ -S [W
S S S S |8 =| 4 -S S D|+D +s |N
S S S S ‘S 0| +DS = | § D|+D 5 |W
S S S S S +D| -§ D | 4O S|+ -8 |IWN Iuepeg
5) S O O | + +| +O S| + -S|+ -S [
) S S S D 0S| +D+S = |+DS = |+ -8 |eN
D D S S -0 +S| -S -D s D+ +s |Ww
D S S S D -S| +b 48| +H s |+ -8 |IN Juwepeg
YIS °tdS ‘@S 'As| "™ x| ®x sx | Ry iy [ Wy iy |- BT

"PoPI03I SBM SIBUINSI d]qe)s a1ow paonpoid §.= poYyIaW 3y} ‘SUWM|[0O

HS 9Y} U] ‘0LBUSIS 18y} UT S[qBLIEA JET)} J0f adors uonendod ay3 0) Teonuapt s1 jey adofs uesw € paonpoid poyjow dY} SIjEdIpUl
Nn°.S,, 10 D),, SMO[[O] ..0,, J] "POYIUW YOBS JO UONBUINSIIPUN JO UOHBUINSIIIAC ) PIMOYS I 0} IX3U My oY) pue [[20 JXaU oY) pue
oLreusds Jey ur J03o1paid Jey) 10§ Seumsa [enba paonpoid spoyiawr 0m) Sy} SAJBOIPUT 1 Sy UL ST =,, J] "PAPIOIAI ST POYIOW JOLISJUT
a3 Uy umn(oo oy uf *(+) 31 payeunsa1aA0 Jo adofs uonemdod ay) () parewmsazopun poyISW Y} JOYIAYM SMOYS JBY} USIS oY) Pm
Suore “dy yo adojs ayp Sunewmss ur ouadns s1 (JMS=S ‘STD=D) POYISUW YOIYm S3)BOIPUI UOHLI0U 3Y) (f 03 | stoporpald sjuasardar d

a1o4Mm) S9y uwmjod A} U] "SPOYIAW JM S PUe SO Y} WOy S)nsal oy sreduros pue szureurums 0} Aem Jayjoue sapraoid xipuadde sy,

d XIANdddV

159



D D D S +S +D -S D +S +O | +D +S | N

= D D = D 0S +D +S -D +S +D 0S [N

D D D = +S +D +D +S -D -S +D +S | N

D D D D -D -S -S +D -D +S +D +S | IN IIT widped
S S S S +H 4+ +D +S -S -D +D S | N

S S S S -D -S -S +D -S -D +D +S | N

D S S S 0 = -S 0O -S -D +D +S |WN

S S S S D =S -S +D +D -S +D S [|IN IIWRened
D D D D +S +D +D +S +D -S +D S | WN

D = S S -D +S | -D+S = -S 0O | +D S (&N

D D = D -D +S | -D-S = -S +D | +D +S | N

D = S D -D +S +S 0O +D +S +D S | IN W)

Y4S  fAS WIS '3aSs " "X tx stx tx Ty | "' I 0|
S S S S +D 0S +D 0S -S -D +D +S | N

S S S S +D 0S +D -S -S D +D +S | N

= S S S -S 0| +O-S = -S D +D +S | N

S S S S -S +D -S +D +D -S +D +S | IN A uwRygd

D D D D +S +D +D = +D -S +D +S | N

D S S = +D -S +D +S +D-S = +D = tN

D S S = +S +D -S 0D -S -D +D +S |WN

D S S S -D +S +D -S +D 0S +D S |IN Al wnR)jeqd
D D D D =D -S D -S -D -S +D S [N

D D D = D -S +S +D -0 +S | +D S [N

D D D = +S  +D +S +D -D -S +D +S | N

D D D S =D -S -D +S -D +S +D +S | IN  III Wwidned
vm—m nm—w uﬁw _m—m _vk uv\/\ _my\ nm.ﬂx _Nxﬂ nnk __\/\ n-k _M—

160



D D D D +S +D +D -S +D +S | +D S |WN

D S S = D -S +D +S +D -S +D  +S | N

D D D S +$ +O | +D -S -S D[ +D +§ (W

D = S S +S -D +D -S +D -S +D S |IN  AlWed

D D D D +S +D -D =S +S +D | +D +S | N

S = = = D S | +D+S = -D-S = ) +D | &N

D = D = +S  +D | +D+S = 0 = +D +S (W

D D D S D =S +S +D +S +O | D  +S |IN Il wRheqd

S S S S +D +S +S 0O =S D -S 0D | N

S S S S +D 0S +D -S -S D +O +S | &N

= S S S +D  0S -S 0O -S D | +H S |W

S S S S +O +S -S +D +D -S +D S | IN 1T uRied

D D D D +S 4D +D =S =S +D -S +D [N

D S S S D 4§ +D 0S -S +D | +D S | N

D D = = +S D =S 0D +S D | +H +S |W

D S S S D +S +D -S +D -S +D +S |IN Junyed
'S S WS Aas | "x %X x sy tx T | 'y Iy R |

S S S S +DS = +D =S =S D | D +S |WN

S S S S +O-§ = | +D-S = -S D | +D +S |N

S S S S -S 0D | +O-S = -S D | +H S |W

S S S S -S 0D -S +D +D -S +D  0S |IN Aunped

D D D D +S +D| +D +S +D +S | +D +S |WN

D S = D D +S +D +S +D =S +O 0SS |&N

D = S D +S +D| +D 0S -S D | +O +§ |W

D S S S D +S +S D +D -S +D S | IN Al uRied
vmmw nmmm nm—m —m—m _vy\ avvm _nx mnV\ _Nk .NV\ _—\/\ ZX Nﬁ—

161



D D D D[ + +H] + +S | O +S [+ S [wW
D S S S -D 4§ 0 = S 4| S +O|WN
D D O = +$ -D| -8 09 -S D |+ 0S |W
D D S O | D +S| +O -S +D S| +D 0S |IN Auwnned
D D D D +S +D +D +S +D +S +D +S | PN
'S} S = O | D +8| +o +S | 4O 0S| +DO 0S |N
D D O O | + 0| 4+ +S -S D |+ +S |W
D D O O |0+ =| 4D -S +H S| S +D|IN Alunpeg
D D O = + = -S -D | 4D  +S | 4D +S [WN
S = = = -D 0S| +S | D 48| S +O|WN
D = = = | +D +8 + = | +D+S = | 4D 4SS |W
D D O S -D -S| +S +O | +§ +D | +D +S |IN IIIwRpsq
D S S S +D  +S| O  +S -S D S DIW
S S S S S 00| +9 -S -S D | +D +S |N
D S S S +D 48| 4D = -S D |+ +S |W
S S S S +H +S| -S +D | 40 S |[+DS = |IN ITwaneg
D D D DO | +§ +O| +O +S | +b +S | +O S |[w
D S S S D 4§ 0 = S 4+ S +|WN
D D b = + D - 09 -S D |+ 0SS |W
'S} D S DO -D 48| 4D S +H S | +D 0S |IN IuwnRpeg
Y4 TS WS WS | "x x| ®tx sy | Ry %y | Ty iy ™
S S S s |+ os| +o 0S +S D | +O +S [N
S S S S | 5 o0s| +O 0S -S D | +D +S |N
S = S S | 9 -S| 40§ = S 0|+ 0 |Ww
S S S S | +b -S| +D -S D S | 4D +S |IN Awneg
YBS TS @S WS | "x x| x sty | Wy Ty | Wy Gy BT

162



REFERENCES

Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal
distribution when some observations are missing. Journal of the American
Statistical Association, 52, 200-203.

Beaton, A. E. (1964). The use of special matrix operators in statistical calculus.
Unpublished doctoral dissertation, Harvard University.

Becker, B. J. (1992). Using results from replicated studies to estimate linear models.
Journal of Educational Statistics. 17,(341-362).

Becker, B. J. (2000). Multivariate meta-analysis. In H. E. Tinsley and S. D. Brown (Eds.),
Handbook of Applied Multivariate Statistics and Mathematical Modeling. San Diego,
CA: Academic Press, Inc.

Becker, B. J., & Schram, C. M. (1994). Examining explanatory models through research
synthesis. In H. M. Cooper & L. V. Hedges (Eds.), The handbook of research
synthesis. New York: Russell Sage Foundation.

Bini, L. M., Coelho, A. S. G., & Diniz-Filho, J. A. F. (2001). Is the relationship between
population density and body size consistent across independent studies? A
meta-analytical approach. Revista Brasileira de Biologia, 61(1), 1-6.

Casella, G. and George, E. I. (1992). Explaining the Gibbs Sampler. American Statistical
Association, 46(3), 167-174.

Cobhen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Lawrence Erlbaum.

Cohen, J., & Cohen, P. (1975). Applied multiple regression/correlation analysis for the
behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.

Cooley, W. W., & Lohnes, P. R. (1971). Multivariate data analysis. New York: John
Wiley & Sons.

Cooper, H. (1998). Synthesizing research (3rd ed.). Thousand Oaks, CA: Sage.

Cooper, H., & Hedges, L. V. (1994). The handbook of research synthesis. New York, NY:
Russell Sage Foundation.

Crouch, G. I. (1995). A meta-analysis of tourism demand. Annals of Tourism Research,
22(1), 103-118.

Crouch, G. I. (1996). Demand elasticities in international marketing: A meta-analytical
application to tourism. Journal of Business Research, 36, 117-136.

163



Dempster, A. P. (1969). Elements of continuous multivariate analysis. San Francisco:
Addison-Wesley.

Furlow, C. F., & Beretvas, S. N. Meta-Analytic Methods of Pooling Correlation Matrices
for Structural Equation Modeling Under Different Patterns of Missing Data.
Psychological Methods, 10(2), 227-254.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85(410),
398-409.

Gleser, L. J. and Olkin, I. (1994). Stochastically dependent effect sizes. In H. M. Cooper
and L. V. Hedges (Eds.). The handbook of research synthesis. New York: Russell
Sage. 339-355.

Green, S. B. (1991). How many subjects does it take to do regression analysis?
Multivariate Behavioral Research, 26 (3), 499-510.

Greenland, S., & Longnecker, M. P. (1992). Methods for trend estimation from
summarized dose-response data, with applications to meta-analysis. American
Journal of Epidemiology, 135(1), 1301-1309.

Greenwald, R., Hedges, L. V., & Laine, R. D. (1996). The effect of school resources on
student-achievement. Review of Educational Research, 66(3), 361-396.

Hanushek, E. A. (1974). Efficient estimators for regressing regression coefficients. The
American Statistician, 28(2), 66-67.

Hanushek, E. A. (1989). The impact of differential expenditures on school performance.
Educational Researcher, 18(4),45-51.

Hays, W. L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt College.

Hedges, L. V., & Olkin, 1. (1980). Vote-counting methods in research synthesis.
Psychological Bulletin, 93, 563-573.

Hedges, L. V. and I. Olkin (1985). Statistical methods for meta-analysis. Orlando, FL:
Academic Press.

Hoogland, J. J. and Boomsma, A. (1998). Robustness studies in covariance structure
modeling: An overview and a meta-analysis. Sociological Methods and Research,
26, 329-367.

Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and
bias in research findings (2nd ed.). Newbury Park, CA: Sage.

164




T—




Ingels, S.J., Scott, L.A., Taylor, J.R., Owings, J., & Quinn, P. (1998). National Education
Longitudinal Study of 1988 (NELS:88) Base Year through Second Follow-Up: Final
Methodology Report. Working Paper No. 98-06. U.S. Department of Education
Office of Educational Research and Improvement: Washington DC.

Lau, R. R., Sigelman, L., Heldman, C., & Babbitt, P. (1999). The effect of negative
political advertisements: A meta-analytic assessment. The American Political
Science Review, 93(4), 851-875.

Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis (Vol. 49). Thousand
Oaks, CA: Sage.

Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.).
Hoboken, NJ: Wiley.

OIkin, I., & Siotani, M. (1976). Asymptotic distribution of functions of a correlation
matrix. In S. Ikeda (Ed.), Essays in probability and statistics (pp. 235-251). Tokyo:
Shinko Tsusho.

Peterson, R. A. and Brown, S. P. (2005). On the use of beta coefficients in meta-analysis.
Journal of Applied Psychology, 90(1), 175-181.

Pearson, K., & Filon, L. N. G. (1898). On the probable errors of frequency constants and
on the influence of random selection on variation and correlation. Philosophical
Transactions of the Royal Society of London, 191(Series A), 229-311.

Raju, N. S., Fralicx, R., & Steinhaus, S. D. (1986). Covariance and regression slope
models for studying validity generalization. Applied Psychological Measurement,
10(2), 195-211.

Raju, N. S., Pappas, S., & Williams, C. P. (1989). An empirical Monte Carlo test of the
accuracy of the correlation, covariance, and regression slope models for assessing
validity generalization. Journal of Applied Psychology, 74(6), 901-911.

Raudenbush, S. W., Becker, B. J., & Kalaian, K. (1988). Modeling multivariate effect
sizes. Psychological Bulletin, 103(1), 111-120.

Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges
(Eds.), The handbook of research synthesis (pp. 231-244). New York: Russell Sage
Foundation.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.

Stanley, T. D., & Jarrell, S. B. (1989). Meta-regression analysis: A quantitative method
of literature surveys. Journal of Economic Surveys, 3(2), 161-170.

165



Sutton, A. J., Abrams, K. R., Jones, D. R, Sheldon, T. A., & Song, F. (2000). Methods
for meta-analysis in medical research. London: Wiley.

Villanueva, C. M., Fernandez, F., Malats, N., Grimalt, J. O., & Kogevinas, M. (2003).
Meta-analysis of studies on individual consumption of chlorinated drinking water
and bladder cancer. Journal of Epidemiology Community Health, 57, 166-173.

Wu, M., & Becker, B. J. (2004). Synthesizing results from regression studies: What can
we learn from combining results from studies using large data sets? Paper presented
at the Annual meeting of the American Educational Research Association, San
Diego, CA.

166



STATE UNIVERSITY L

woan ] pry—
| [T
”‘Hw |x | l\ H\ LUl

1293 02845 3862

Il
3




