
ESSAYS ON ASYMMETRIC EMPLOYER LEARNING AND THE ECONOMICS OF
EDUCATION

By

Michael David Bates

A DISSERTATION

Submitted to
Michigan State University

in partial ful�llment of the requirements
for the degree of

Economics - Doctor of Philosophy

2015



ABSTRACT

ESSAYS ON ASYMMETRIC EMPLOYER LEARNING AND THE

ECONOMICS OF EDUCATION

By

Michael David Bates

Chapter 1 adapts models of public and private employer learning to the market for

teachers. It then use statewide, micro-level, administrative data from North Carolina to

formulate value-added measures (VAMs) of teacher productivity. It exploits the adoption of

VAMs of teacher performance by two of the largest school districts in the state, a shock to

the available information for some, but not all, employers, to provide an initial direct test of

asymmetric employer learning. Consistent with a shock to public information, for job moves

within the district, this work �nds that the adoption of value-added measures increases the

probability that high-VAM teachers move to higher-performing schools. For moves out of

the district, the impacts of policy are mitigated and even reversed by teachers with lower

value-added measures becoming more likely to move to higher-performing schools. This

adverse selection to plausibly less informed principals is consistent with asymmetric employer

learning. Further, this chapter provides evidence that these moves lead to an increase the

inequality in access to high quality teaching.

Chapter 2 examines worker mobility, and empirically tests whether all �rms learn about

workers' abilities at the same rate (symmetric learning) or whether current employers accu-

mulate and use private information about their workers (asymmetric learning). The employer

learning model allows for both public and private learning, and thus, nests symmetric learn-

ing as a special case. The model predicts that conditional on employees' easily observable

reference groups, workers are adversely selected into job switches and layo�s on the basis



of di�cult to observe characteristics, such as intellectual ability. Inversely, conditional on

ability, the model predicts that as the mean ability of a worker's reference group increases,

the likelihood of job separation increases. Under asymmetric private learning, these e�ects

should become more pronounced over the length of continuous working spells. The same

e�ects should diminish with experience, in the presence of public learning. This study uses

data from the 1979 cohort of the National Longitudinal Survey of Youth to test the model.

I �nd adverse selection on AFQT of workers who become unemployed, and conditional on

AFQT score, workers with higher education from more selective institutions are are positively

selected into job switches and moves from employment to unemployment during recessions.

The evidence largely rejects symmetric learning in favor asymmetric learning.

Chapter 3 discusses estimation of multilevel/hierarchical linear models that include cluster-

level random intercepts and random slopes. The random intercepts and slopes represent the

e�ects of omitted cluster-level covariates that may be correlated with included covariates.

The resulting correlations between random e�ects (intercepts and slopes) and included co-

variates lead to bias when using standard random-e�ects estimators. When applied to mod-

els with random slopes, the standard �xed-e�ects (FE) estimator does not rely on standard

cluster-level exogeneity assumptions, but requires an �uncorrelated variance assumption�

that the variances of unit-level covariates are uncorrelated with their random slopes. This

work proposes a �per-cluster regression� (PC) estimator that is straightforward to implement

in standard software, and shows analytically that it is unbiased for all regression coe�cients

under cluster-level endogeneity and violation of the uncorrelated variance assumption. The

PC, RE, and an augmented FE estimator are applied to a real dataset and evaluated in a

simulation study that demonstrates that the PC estimator performs well in practice.
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Chapter 1

Public and Private Learning in the

Market for Teachers: Evidence from the

Adoption of Value-Added Measures

1.1 Introduction

Gaps in information hinder the e�cient allocation of workers across employers Spence (1973);

Jovanovic (1979); Gibbons and Katz (1991a); Farber and Gibbons (1996); Altonji and Pierret

(2001). While a large literature focuses on informational asymmetries between workers and

employers, a more recent literature focuses on asymmetric information between current and

prospective employers. Empirical work uses these models of asymmetric employer learning to

explain empirical facts, such as wage dynamics with respect to job tenure versus experience,

variability of wages after a job loss, and selection of mobile or promoted workers on easy or

di�cult to observe characteristics Schönberg (2007); Pinkston (2009); DeVaro and Waldman

(2012); Kahn (2013). If the current employer enjoys an informational advantage over other

prospective employers, it becomes a monoposonist of that information, permitting persistent

gaps between workers' wages and their marginal products of labor. Furthermore, workers

may not �ow to the employers at which they would be most productive. Despite these
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important implications and the intuitive appeal of the theory, there is little direct evidence

of asymmetric employer learning. This is in part due to the absence of direct measures of

productivity, and more importantly, due to a lack of exogenous variation in the informational

landscape in which employers operate.

In this paper, I adapt models of public and private employer learning to the market for

middle and elementary school teachers. I then use statewide, micro-level, administrative

data from North Carolina to formulate value-added measures (VAMs) of teacher produc-

tivity. VAMs calculate how much a teachers' students learn in comparison to how much

those students are expected to learn. There are several methods for estimating VAMs. In

econometric terms, I estimate teacher �xed e�ects in the regression of student test scores

on student covariates including past test scores. Lastly, I exploit the adoption of VAMs

of teacher performance by two of the largest school districts in the state, a shock to the

available information for some, but not all, potential employers, to provide an initial direct

test of asymmetric employer learning.

The adoption of VAMs in North Carolina provides a rich context for examining employer

learning. Each of the two large districts that adopted VAMs did so in di�erent ways and

separately from the rest of the state. This provides three di�erent informational landscapes:

one in Guilford County Schools (to be referred to as Guilford), where the teacher, the current

(or retaining) principal, and any hiring principal within the district were given direct access

to the teacher's VAMs; one in Winston Salem/Forsyth Community Schools (to be referred

to as Winston-Salem), in which only teachers and their current principals received value-

added reports; and lastly, in the rest of the state, where the information structure remained

relatively constant. These releases of statistical measures of teacher e�ectiveness by some,

but not all employers, provide unique tests of public and private learning hypotheses.
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This study examines how the relationship between of teacher quality and the proba-

bility of moving schools changes with the adoption of VAMs of teacher e�ectiveness. If

VAMs are informative, they provide teachers with a public signal of their ability. Thus,

the model predicts that VAMs increase the likelihood that e�ective teachers move from one

school to another within the district. If the information spreads easily through the market

there should be no di�erence between the impacts of VAMs for moves within-district and

teacher transitions out of Guilford and Winston-Salem. However, if retaining principals keep

teachers' VAMs private, ine�ective teachers may become more likely to move out-of-district.

Thus, the asymmetric employer learning model predicts adverse selection of teachers out-of-

district. Lastly, I investigate whether private or public learning previously prevailed. Prior

public learning implies smaller e�ects for more experienced teachers about whom employers

already know relatively more. Prior private learning implies that the release of VAMs would

even the balance of information more so for teachers with relatively more years in a given

school, all else being equal.

Using di�erences-in-di�erences analysis, I �nd that by releasing VAMs to teachers and

principals, both districts increase the probability that high-VAM teachers will move within

district to a higher-performing school. I estimate that the release of VAMs increases the

probability that a teacher with a one standard deviation higher VAMmoves within-district to

higher-performing schools by about 10%. I �nd that the selection of mobile teachers becomes

signi�cantly more negative for teachers moving to another school outside of Guilford and

Winston-Salem after they adopt VAMs. The policy leads teachers who are a full standard

deviation below average to become 15% more likely to move from Guilford to a higher-

performing school in the rest of the state. In Winston-Salem, the e�ect of the policy on the

probability that a high-VAM teacher moves to a higher-performing school is 60% smaller for
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teachers moving out-of-district than it is for teachers moving within-district. The fact that

we see positive selection to principals with access to the information and much smaller e�ects

and even negative selection for moves to those without access to the VAMs is consistent with

asymmetric employer learning.

In the primary education context, questions of e�ciency and equity are of particular

importance. Previous research �nds wide variation in the quality of teachers Rivkin et al.

(2005); Chetty et al. (2011, 2014). Yet, at the point of hire, detecting good teachers is

di�cult, since easily observable teacher characteristics, such as educational attainment and

college selectivity, are not highly correlated with teacher e�ectiveness Rivkin et al. (2005);

Staiger and Rocko� (2010). Informational gaps may lead schools and districts to hire rela-

tively ine�ective teachers, while passing on more capable ones. Thus, asymmetric information

can have signi�cant rami�cations for the students they serve Chetty et al. (2011, 2014).

After the date of hire, while principals typically do not observe a direct measure of a

teachers' e�ectiveness, they can observe their teachers in action and inspect student out-

comes. However, the quality of a teacher may remain di�cult for the employing school to

uncover, and harder still for other schools to learn. The amount of uncertainty in the market,

and with whom the uncertainty lies, can di�erentially a�ect not only the initial sorting, but

also the resorting of teachers across schools.

Persistent informational gaps between teachers' true e�ectiveness and employers' percep-

tions of it may lead schools to undervalue e�ective teachers and allow ine�ective teachers

to impede the progress of their pupils. In contrast, complete and public information allows

better teachers more choice over where to teach. When teachers are given VAM reports, the

VAMs provide them a new credible way to signal their ability.

In the teacher labor market, wages are typically set rigidly and are not tied to per-
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formance.1 Thus, the implications of employer learning are felt primarily through teacher

mobility from one school to another. There is a large body of work, which examines teacher

preferences Boyd et al. (2008); Jackson (2009); Boyd et al. (2013). They �nd that teachers in

general prefer to teach in schools that are closer in proximity to their homes, higher perform-

ing, and for white teachers, schools with a lower percentage of black students. Consequently,

while providing good teachers more choice, better information may also exacerbate the di-

vide in access to high quality education. The degree to which information stays exclusively

with current principals theoretically may mitigate these e�ects. This work provides the �rst

examination of whether the release of VAMs leads to further sorting of teachers to schools.

Rising inequity may be an important consequence of the policy that has been previously

overlooked.

The possibility of growing inequity in access to e�ective teaching is particularly impor-

tant given the speed at which states and school districts are adopting VAMs. The entire

state of North Carolina adopted teacher-level VAMs in the 2013 school year. As of May,

2014, 38 states have required teacher evaluations to incorporate teachers' impacts on student

achievement on standardized exams. Even among the remaining states, many large school

districts have already incorporated VAMs into evaluations of their teachers. While these

policies have been controversial, the debate has previously ignored the signaling impact of

VAMs on the distribution of e�ective teachers across schools. By examining changes in the

sorting of teachers, I evaluate the impact of the information on the distribution of teacher

quality across schools. The rising mobility of e�ective teachers to high-performing schools

and the rise in the correlation between teacher VAMs and school-wide student performance

1There are exceptions to this. In Section ??, I discuss two policies (ABC growth and Strategic Sta�ng)
that deviate from this standard wage rigidity. The ABC growth program provides incentives to every teacher
in schools that make their growth targets. Strategic sta�ng policies o�er incentives to teach at hard-to-sta�
schools.
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in Winston-Salem in particular, evidences rising inequity in access to high quality education

as a result of VAM adoption.

1.2 Setting

Shocks to the information available on workers' productivity are rare. Shocks to the infor-

mation of some, but not all, employers in a market are rarer still. The release of teacher

performance measures to principals working within the school district, but not to those in

the rest of the state, o�ers an opportunity to examine whether plausibly valuable personnel

information spreads throughout the market.

Guilford County Schools (Guilford) contracted with SAS (originally called �Statistical

Analysis System�) to receive teacher EVAAS (Education Value-Added Assessment System)

measures of teacher e�ectiveness in 2000. These measures are based on the model devel-

oped by Sanders et al. (1997) under the name �Tennessee Value-Added Assessment System�

(TVAAS). In fact, the adoption of VAMs by Guilford accompanied the transition of TVAAS

to EVAAS, as the system came under the management of SAS, which originated at North

Carolina State University. The district gave teachers, their current principals, and hiring

principals within the district direct access to these teacher value-added measures (VAMs).

Because all hiring principals in Guilford can directly access a teacher's VAM, the introduction

of VAMs provides a shock to the available information to all principals within the district.

The rest of the state of North Carolina adopted EVAAS measures of school e�ectiveness

in 2008, but there was no new teacher-speci�c information provided. Winston-Salem/Forsyth

Community Schools (Winston-Salem) took an additional step, providing SAS with student-

teacher matches necessary to receive the same teacher speci�c measure of e�ectiveness already
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present in Guilford. In Winston-Salem, only the teacher and his principal directly received

the VAM reports. The VAM reports were not given directly to any other principals within

the district or otherwise.

Though the Winston-Salem dispersed the VAMs in a more restricted way, the introduc-

tion of VAMs in Winston-Salem is theoretically also public. As in Grossman (1981) and

Milgrom (1981), each teacher contemplating moving within the district has as incentive to

voluntarily disclose his score. Because all principals in the district know that the VAM exists,

if a teacher chooses not to reveal his score, hiring principals within-district may well assume

that he is as good as the average teacher who chooses not to reveal his score. Thus, all

teachers with scores above that average have an incentive reveal their scores. Consequently,

the average score of those who do not disclose drops until only teachers with scores at the

minimum are indi�erent between revealing and keeping the information private. If teachers

act as predicted, all teachers voluntarily disclose their EVAAS reports, and the VAMs alter

the information available to both current and hiring principals within Winston-Salem, just as

they do in Guilford. This shock to the public information allows teachers with higher VAMs

than their resumés may otherwise suggest to signal their ability to prospective employers.

The setting and incentives teachers face di�er when moving out of the Guilford and

Winston-Salem districts. Perhaps most importantly, it is possible that hiring principals in

the rest of the state are unaware of the existence of an applying teacher's EVAAS report.

In which case, a teacher may withhold his signal and leave the principal's expectation of his

ability unchanged.2 This informational asymmetry may be avoided by principals thoroughly

2In which case, only those whose VAMs are higher than would otherwise be expected would choose to
reveal, and only out-of-district principals hiring those teachers would be aware of their VAMs' presence.
Furthermore, for teachers whose VAM is worse than would be expected by their resumés, moving out of
district may be an attractive choice, leading to more negative selection of teachers moving from districts
that adopt VAMs.
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researching from where their applicants are coming. In which case, the same predictions

as were formulated for within-district moves would apply. However, such acquisition of

information is costly, and principals may forgo it. Thus, the test between symmetric and

asymmetric learning hinges on whether the adoption of VAMs leads the selection of out-of-

district mobile teachers to be signi�cantly more negative than its e�ects on the selection of

within-district movers.

Since principals in both Guilford and Winston-Salem received training about the mea-

sures, VAMs likely served as a more salient signal for principals within the adopting districts

than for those in the rest of the state. Out-of-district principals may have put particularly

low weight on the measures in 2000, when Guilford initially contracted with SAS. At that

point, only two years after the creation of EVAAS, No Child Left Behind was still a year

away from passage, and VAMs were largely absent from education policy discussions. The

salience of the signal was likely less of an issue for teachers moving from Winston-Salem,

considering school-level EVAAS measures were implemented across the entire state the same

year. This may lead the learning results for out-of-district moves to be more pronounced for

Guilford than they are for teachers leaving Winston-Salem.

To summarize the basic intuition of the model in Section 1.4, if VAMs provide meaningful

information to all principals in the district, and teachers in general prefer to teach at better

schools, after districts release VAMs, good teachers will be more likely to move to higher-

performing schools. It is also possible that current principals become less able to keep quiet

which teachers are really good, while passing o� the worse teachers to unwitting employers.

Table A.1 shows exactly this general pattern for moves within Guilford and Winston-Salem.

In both districts, the average VAM of teachers who move within the district increases sharply

after releasing VAMs. For moves out of these districts, the average VAM of moving teachers

8



drops following the adoption of the policy. These means are not conditional on any easily

observable characteristics, and so it is di�cult to say whether the changes in information

are driving these patterns. However, the increases of 0.259 and 0.119 standard deviations

of average VAMs of movers within Guilford and Winston-Salem respectively suggests that

releasing VAMs within the district allows high-VAM teachers to move more easily to other

schools. The 0.290 and 0.143 drop in average VAMs of moving out of Guilford and Winston-

Salem is indicative of low-VAM teachers moving to plausibly less informed principals outside

of the district.

1.3 Employer Learning, VAMs, and Teacher Mobility

This is the �rst study directly testing a general model of public and private learning by

exploiting information shocks to a large, relevant labor market. However, There is a robust

extant literature building models of employer learning and �tting them to stylized empirical

facts.

Farber and Gibbons (1996) provides the seminal model and test for employer learning.

They assume that employers cannot directly observe the ability of potential workers and

must rely on correlates to infer workers' expected value to the �rm. They treat a subset of

worker characteristics as easily observable to all, another as easily observable to the market

(and not to researchers), and yet another subset of potential correlates with productivity

as easily observable to the econometricians (but not the market). This literature typically

uses the percentile from a cognitive ability assessment, the Armed Forces Quali�cation Test

(AFQT) from the National Longitudinal Survey of Youth of 1979 (NLSY79), as this relatively

strong correlate with productivity that is veiled to the the market at the time of hire, but
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is visible to researchers. By assuming a competitive marketplace and that employers all

learn at the same rate, in the Farber and Gibbons (1996) model wages perfectly track

the employers' learning process. Altonji and Pierret (2001) adopt a similar foundation in

their examination of statistical discrimination as does Lange (2007) in his study of the

speed at which employers learn. Each �nds that the correlation between wages and AFQT

score increases with experience, while the correlation between wages and easily observable

characteristics falls over time.

Recent work in the economics of education presents evidence that principals also learn

about teacher quality over time. While Staiger and Rocko� (2010) and Rivkin et al. (2005)

point to the di�culty in identifying e�ective teachers at the point of hire, Jacob and Lefgren

(2008) presents evidence that principals' evaluations are positively correlated with VAMs of

teacher e�ectiveness, but not perfectly. They �nd that principals are better at identifying

the most and least e�ective teacher. The fact that they observe slightly higher correlations

for principals who have known their teachers for longer is further suggestive of a gradual

learning process.3 The strongest evidence of principals learning about teacher quality comes

from Rocko� et al. (2012). They present experimental evidence that teacher VAMs provide

signi�cant information on which principals update their prior beliefs. It is important to

note that in this experiment, only teachers' current principals receive VAM reports, not the

teachers themselves or principals of other schools within the district. Surveys of participating

principals show that those who randomly received more precise VAM reports were more

responsive to the information, than were principals receiving noisier VAM reports.4 These

3Chingos and West (2011) provide further evidence that principals hone in on the e�ectiveness of their
teachers. They �nd that principals classify their teachers on the basis of e�ectiveness, and move them
accordingly. Principals of schools under accountability pressure are more likely to move e�ective teachers
into and less e�ective teachers out of high-stakes teaching assignments.

4Rocko� et al. (2012) also �nds that providing VAMs to principals cause less e�ective teachers to leave
at a higher rate. While the authors do not directly link these results to either learning hypothesis, these
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results are consistent with the Bayesian updating model used in Farber and Gibbons (1996);

Altonji and Pierret (2001), and Lange (2007).

Schönberg (2007); Pinkston (2009); Kahn (2013), and Bates (2015) each relax the sym-

metric learning assumption and allow for private employer learning. Also, each use the

NLSY79 to test their models against empirical features of the data. Their cumulative

evidence regarding asymmetric learning is mixed. Whereas, Schönberg (2007) �nds that

learning is largely symmetric, Pinkston (2009) �nds that learning is largely asymmetric.

Their disagreement hinges on whether information passes through job-to-job transitions, with

Pinkston (2009) �nding that the correlation between wages and ability moves more closely

with respect to continuous working spells than with experience. Both Schönberg (2007) and

Bates (2015) that workers are only adversely selected into mobility in job-to-unemployment

transitions, whereas asymmetric learning also predicts such selection for job-to-job moves

as well. However, Bates (2015) also demonstrates positive selection into mobility on the

basis of education, noting that consistent with asymmetric learning, those who attend more

competitive colleges are more likely to both switch employers and be laid o�. Consistent

with asymmetric employer learning, Kahn (2013) �nds that movers' wages are more volatile

in the immediate aftermath of a transition than are the wages of those who remain in place.5

Only DeVaro and Waldman (2012) depart from the use of the NLSY. They use admin-

istrative personnel �les from a large �rm to examine promotion decisions based on private

and public information. In support of asymmetric employer learning, they �nd that con-

ditional on private performance reviews, those with more education are more likely to be

results in the experimental context are consistent with asymmetric employer learning.
5Kahn (2013) also considers di�erences between workers who enter a position during recessions as opposed

to economic expansions, with the idea that there is less variation in the ability of entrants during recessions.
She also uses variation in the amount of exposure an occupation has outside the �rm, assuming that learning
is more symmetric in more exposed occupations. Also, the e�ects are larger for those who enter a job during
an economic expansion and for those in more insular occupations.
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promoted than are those with less education. They also present evidence that larger wage

increases accompany promotions of less educated workers than accompany promotions of

higher-educated workers. This, they argue, is due to the fact that promotions are a stronger

public signal for those with lower, easily observable characteristics.

A common criticism of much of the earlier literature asks what AFQT scores are really

telling us. There is little evidence that AFQT scores are related to productivity in many jobs

held by the largely low-skilled respondents of the NLSY. Similarly, if employers care greatly

about AFQT scores, they would simply administer the test themselves. By using a more

direct measure of productivity than the assumed correlates, this study avoids such criticism.

More importantly, the stylized empirical facts given as evidence of asymmetric learning are

consistent with the theoretical model, but are susceptible to alternative explanations. For

instance, post-move wage volatility may be explained by di�erences in job match quality,

education may provide more higher level skills leading to faster promotion, and symmet-

ric learning may explain why large wage increases accompany promotions of less-educated

workers. The absence of direct asymmetric information shocks has prevented the previous

literature from examining whether the informational advantages persist and in�uence worker

mobility patterns in equilibrium. This work uses the release of worker-level performance data

to some, but not all, employers as a unique natural experiment, to test the degree to which

the information spreads among employers, whether mobility responds in accordance with

theory, and the type of learning that had previously prevailed.

Furthermore, while there is a large literature examining the mobility patters of higher-

or lower-VAM teachers, none have previously considered the signaling e�ects of VAMs on

teacher mobility and the distribution of teacher quality within the market. Students in poor,

low-achieving schools face teachers who are in general less experienced, less educated, and
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less e�ective than their counterparts in more a�uent and higher achieving schools Lankford

et al. (2002); Clotfelter et al. (2005); Sass et al. (2012).6 Though their is signi�cant churn

within the teacher labor market, Hanushek et al. (2005); Krieg (2006); Goldhaber et al. (2007)

and Boyd et al. (2008) each note that higher VAM teachers tend to stay in the profession

longer than do their less e�ective counterparts, and high-VAM teachers are no more likely

to transfer between schools than their counterparts.7 There is more disagreement about

distributional e�ects of this turnover. Boyd et al. (2008) �nds that, conditional on moving,

high-VAM teachers are more likely to move to high-performing schools than are low-VAM

teachers, whereas Hanushek et al. (2005) and Goldhaber et al. (2007) �nd no evidence of

this resorting of teachers. While, descriptions of where e�ective teachers have traditionally

moved from and to have important implications for education inequity, they have little power

to predict how the adoption of VAMs will alter the allocation of teachers across schools.

Work closely examining teachers' preferences over work environment o�ers insight into

how teacher mobility patterns may change with the introduction of VAMs. Jackson (2009)

and Boyd et al. (2013) analyzes teachers each �nd that on average white teachers prefer not

to teach in schools with a large proportion of black students. Boyd et al. (2013) also �nd

that teachers prefer schools that are closer, are suburban, and have a smaller proportion of

students in poverty.

If VAMs provide new and credible information to principals, this new signal may expand

the number of schools willing to hire high-VAM teachers. Taking the estimated preferences

from Jackson (2009) and Boyd et al. (2013) as given, this expanded choice set may lead

high-VAM teachers to move to schools that have lower proportions of minorities, are more

6Sass et al. (2012) also notes that there is huge variation in teacher quality within high poverty schools.
7Boyd et al. (2008) �nds that ine�ective teachers are more likely to leave the profession only in their �rst

year of teaching.
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a�uent, and are higher achieving. While this earlier literature points at the possibility, it

has not directly examined the question of rising inequality in the allocation of teacher quality

as a result of VAM adoption. Guilford and Winston-Salem's early release of VAMs, allows

this work to explore this previously ignored consequence of the actively debated policy.

1.4 Model

This section develops a model to provide predictions for which workers move, and where they

go�and how each may change in response to an information shock. Please see Appendix E

for proofs of these predictions. The model builds on the model of asymmetric employer

learning presented in Pinkston (2009), which in turn builds upon the canonical models of

symmetric learning presented in Farber and Gibbons (1996) and extended in Altonji and

Pierret (2001).

1.4.1 Model Structure

Teachers receive two job o�ers in the �rst period and take the highest o�er. Each subsequent

period, teachers receive one outside o�er from either a principal within or outside of the

current district with a given probability. Principals face rigid budget constraints, which

translate to a �xed number of positions. Principals with a vacancy who encounter a teacher

present the teacher with an o�er re�ecting their expectations about the e�ectiveness of the

teacher, which is based upon the information available. I itemize the information structure

below:

1. True e�ectiveness is given by, µ = m+ε, wherem is the population mean of productivity
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among a worker's reference group and ε ∼ N(0, σε).8

2. The public signal is given by Rx = µ+ ξx, where ξ ∼ N(0, σξ(x)), and
∂σξ(x)

∂x < 0.

3. Private signal:

(a) For hiring principals (denoted by the superscript h), the private signal is given

byPh = µ+ τh where τh ∼ N(0, στ (0)). στ (0) is �xed over time.

(b) For a retaining principal (denoted by the superscript r), the private signal is given

by P rt = µ+ τrt where τrt ∼ N(0, στ (t)) and ∂στ (t)
∂t < 0.

4. The VAM serve as an additional piece of information that may alter both the mean

and precision of the public or private signal depending on whether it is available to

both bidding principals. It has the form V = µ+ ν, where ν ∼ N(0, σν).

(a) When both principals are informed by VAMs, the public signal becomes Rxν =

σνRx+σξ(x)V

σν+σξ(x)
. The variance of Rxν is denoted as σξ(x V ).

(b) When only the retaining principal is informed by VAMs, her private signal be-

comes P rtν =
σνP

r
t +στ (t)V

σν+στ (t)
. The variance of P rtν is denoted as στ (t V ). The hiring

principal's signal remains unchanged.

5. The noise of each signal is orthogonal to the noise of the other signals.9

It is important to understand the context of this labor market for teachers. In formulating

the model, I will highlight areas in which this market is peculiar and the model structures that

8The normality assumptions are not necessary, but are useful in deriving the comparative statics.
9The orthogonality assumptions are also not necessary to derive the following predictions. However,

relaxing these require a less restrictive, though more complicated set of assumptions, outlining the direction
and magnitude of correlations between the errors of the signals.
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accompany them. However, the information structure is standard, based upon a Bayesian

updating model with the modi�cation that employers receive two signals rather than one. I

assume that teachers know their e�ectiveness (µ), but cannot credibly reveal it. There are

two broad classi�cations of principals: those who are hiring (denoted by the superscript h);

and those who are retaining teachers (denoted by the superscript r). I further distinguish

between within-district hiring principals who can access the incoming VAMs, and out-of-

district hiring principals, whose information does not change. As a teacher begins her career,

all principals begin with the prior belief that she is as good as the average teacher with her

same characteristics (m). The teacher encounters two principals, both of whom are hiring

principals in this �rst period, to whom she may privately signal her ability akin to an

interview, (denoted by Ph0 where 0 indicates no additional private information).

Over time, teachers may draw on their experience to bolster their public signal denoted

by Rx (for examples consider resumés and networks of references). Any information (x)

that is credibly revealed to both prospective employers produces more precise public signals.

Experience serves as a proxy for additional information, as is typical in the literature. If

there is public learning, generally the variance of the public signal (σξ(x)) will shrink with

teacher experience
(
∂σξ(x)

∂x < 0

)
. However any new public information directly produces

this e�ect.

Through interactions, observations, and/or attention to student outcomes, principals may

obtain private information unavailable to rival employers (t). Retaining principals' signals

(P rt ) are composed of information that is unavailable to the other prospective employer.

Years of tenure with the current employer serve as proxy for this accumulated, private

information, as is typical in the literature. If such private learning occurs, while hiring

principals' private signals from interviewing the teacher have a constantly high variance
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(στ (0)), the precision of the current principal's signal (στ (t)) increases the longer a teacher

works in the school. With any accumulation of private information, στ (t) < στ (0) for all

t > 0. In order to nest symmetric learning within the more �exible model, I maintain that

that even in this special case, employers receive a private signal each period, but the variance

of the signal is constant over tenure (στ (t) = στ (0) for all t > 0).

VAMs enter the learning model as an additional piece of information that may enter either

the public or private signal. Whether VAMs in�uence public or private signals depends

on whether VAMs are accessible to both principals (as certainly occurs for moves within

the unrestricted Guilford County school district and theoretically occurs in the restricted

Winston-Salem district) or are accessible to only current principals (as is more likely to occur

when competing principals are from di�erent districts). If VAMs enter retaining principals'

private signal, P rtν =
σνP

r
t +στ (t)V

σν+στ (t)
replaces P rt . If VAMs enter both principals' public signal,

Rxν =
σνRx+σξ(x)V

σν+σξ(x)
replaces Rx. The introduction of VAMs alter these expectations by

changing both the content of the signal and the signal's precision, and thus the weight that

principals ascribe to it.

1.4.2 Bidding

In many public education systems, strict salary schedules determines teachers' pay. In North

Carolina, the state sets a base salary schedule that depends exclusively upon easily observ-

able characteristics, such as education and experience.10 Districts typically supplement this

base amount with a percentage of the base schedule. In general, this means that a given

teacher will earn the same salary regardless of where and what he is teaching within the

10As of 2014, North Carolina will move to paying teachers in part based upon teachers' VAMs.
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district.11 Further, cumbersome dismissal processes result in teachers initiating much of

the mobility. While principals cannot adjust salaries to in�uence whether a teacher stays,

principals may in�uence school sta�ng through non-pecuniary position attributes, such as

planning time, teaching assignments, or additional requirements. Boyd et al. (2008, 2013),

and Jackson (2009) each provide evidence that teachers have strong preferences over non-

wage job attributes.

Initially, teachers take the position that o�ers the highest total compensation (Cisd),

which is comprised of salary (wd) set by district d, characteristics of school s (Ssd), and

characteristics of position i (Jisd). Thus, Cisd = wd + Ssd + Jisd.

For simplicity, I assume that each principal presents a sealed bid for the teacher and

pays the minimum of the two bids. In such sealed-bid, second-price auctions, principals'

optimal strategy is to o�er the their expectation of the teacher's e�ectiveness (assuming

that principals seek to maximize teacher e�ectiveness within their schools).12 13 Principals

formulate these expectations by averaging over their prior belief of quality (m), the public

signal (Rx), and their private signal (Ph0 ). They weight each signal by its precision relative

to the other signals, similar to a standard Bayesian updating model. As public information

becomes more complete, hiring principals give less weight to their prior beliefs and private

noisy signals from interviews, and more weight to the public signal. Thus, letting ZhNV =

11In Section 1.7, I discuss both the ABC growth and strategic sta�ng policies, which deviate from this
general case. The ABC growth program provides incentives to every teacher in schools that make their
growth targets. Strategic sta�ng policies o�er incentives to teach at hard-to-sta� schools. The bonuses
attached to such positions varied formulaically and outside principals' discretion.
12Previous versions modeled open continuous bidding, which permits the adoption of optimal bidding

strategies from Milgrom and Weber (1982). This allows each school to update the optimal bid conditioning
on the rival's bidding behavior. However, both bidding processes result in the same predictions.
13Prior work shows principals care about teacher e�ectiveness, particularly in schools under accountability

pressure. Other work shows that high-VAM teachers also lead to a wide array of better future outcomes
for their students, giving further reason to suggest principals may maximize these short-run measures of
e�ectiveness.
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στ (0)σξ(x) + στ (0)σε + σεσξ(x), if uninformed of a teacher's VAM (subscript NV), a hiring

principal's optimal maximum bid (bh∗isdNV ) is given by equation 1.1.

bh∗isdNV =
στ (0)σξ(x)

ZhNV
m+

στ (0)σε

ZhNV
Rx +

σεσξ(x)

ZhNV
Ph0 . (1.1)

If there is public learning, as experience increases, more public information leads to a more

precise public signal. As σξ(x) declines, hiring principals place less weight on their prior

beliefs and noisy private information, and more weight on the public signal.

A principal seeking to retain her teacher, who is uninformed of his VAM, has an optimal

bid (b∗risdNV ) with very a similar form to that shown is equation 1.1. Equation 1.2 shows her

optimal bid, letting ZrNV = στ (t)σξ(x) + στ (t)σε + σεσξ(x).

br∗isdNV =
στ (t)σξ(x)

ZrNV
m+

στ (t)σε
ZrNV

Rx +
σεσξ(x)

ZrNV
P rt . (1.2)

Retaining principals provide more weight to their private information (P rt ), if they obtain

more useful information than is publicly available. This is re�ected by στ (t) which shrinks

with additional private information as opposed to στ (0) from equation 1.1, which remains

constant for hiring principals.

The introduction of VAMs alters the information available to principals, but the op-

timal bids that incorporate VAMs have similar form to those shown in equations 1 and 2.

Whether the VAMs are public or private are particularly important for determining retaining

principals' expectations of a given teacher in the adopting districts.

If a principal's rival is from outside of the district and uninformed of the measure, the

retaining principal incorporates the VAM into her private signal. The new private signal
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(P rtν) becomes the precision-weighted average of the prior private information and the new

VAM. Thus, the optimal bid of a retaining principal, who has access to her teacher's VAM

and whose rival does not have access to the VAM (denoted by the subscript RV) is shown

in equation 3 where ZrRV = στ (t V )σξ(x) + στ (t V )σε + σεσξ(x).

br∗isdRV =
στ (t V )σξ(x)

ZrRV
m+

στ (t V )σε
ZrRV

Rx +
σεσξ(x)

ZrRV
P rtν . (1.3)

Equation 3 is similar to equation 2 except for the replacement of P rt by P rtν and of στ (t)

by στ (t V ). In expectation, the magnitude of the private signal will not change with the

introduction of VAMs. However, the precision of the cumulative private information must

increase.

Lemma 1: The precision of the private signal increases with the incorporation of VAMs

into the private signal (στ (t V ) < στ (t)).

Proof: Under the orthogonality assumptions, var(Ptν) ≡ στ (t V ) =
σ2
νστ (t)+σνστ (t)2

(σν+στ (t))2
=

σνστ (t)
σν+στ (t)

. στ (t)(σν+στ (t))
σν+στ (t)

− σνστ (t)
σν+στ (t)

=
σ2
τ (t)

σν+στ (t)
, and σ2

τ (t)
σν+στ (t)

> 0, by property of variances.

This decrease in the variance of the private signal decreases the weight retaining principals

place on their prior beliefs and the public information, while increasing the relative weight

they place on their now fuller private information.

Turning back to hiring principals' expectations of teacher quality, if a hiring principal

is uninformed of VAMs (or their existence), her expectation of the teacher's quality would

remain unchanged from those presented in equation 1. Thus, the introduction of VAMs

exacerbate informational asymmetries between prospective employers.
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In contrast, if both bidding principals are informed of a teacher's VAM, as is likely

the case when both principals are from one of the adopting districts after the policy takes

e�ect, the VAM enters the principals' public signal of teacher quality. Letting ZrHV =

στ (t)σξ(x V ) + στ (t)σε + σεσξ(x V ), equation 4 provides the retaining principal's optimal

bid when the hiring principal may also access a teacher's VAM (denoted with the subscript

HV).

br∗isdHV =
στ (t)σξ(x V )

ZrHV
m+

στ (t)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
P rt . (1.4)

Equation 4 is similar to equation 2 with the exception that Rx is replaced by Rxν , as VAMs

enter the public signal. While in expectation the magnitude of the public signal is the same

with or without VAMs, the variance of the public signal must change as a result.

Lemma 2: The precision of the public signal increases with the incorporation of VAMs

into the public signal (σξ(x V ) < σξ(x)).

Proof: Under the orthogonality assumptions, var(Rxν) ≡ σξ(xV ) =
σ2
νσξ(x)+σνσξ(x)2

(σν+σξ(x))2
=

σνσξ(x)

σν+σξ(x)
.
σξ(x)(σν+σξ(x))

σν+σξ(x)
−

σνσξ(x)

σν+σξ(x)
=

σ2
ξ (x)

σν+σξ(x)
.

σ2
ξ (x)

σν+σξ(x)
> 0, by property of variances.

For equation 4, this means that retaining principals will shift weight that they had

previously placed on the private signal onto the new more complete 'publically' available

information.

If access to the VAMs is shared between employers, the VAMs enter the public signal

of hiring principals, just as they enter the public signal of retaining principals. Letting

ZhHV = στ (0)σξ(x V ) + στ (0)σε + σεσξ(x V ), equation 5 provides the hiring principal's
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optimal bid when she may also access a teacher's VAM (subscripted HV).

bh∗isdHV =
στ (0)σξ(x V )

ZrHV
m+

στ (0)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
Ph0 . (1.5)

The di�erence between equations 1 and 5 are in the public signal and its variance. Using

the �nding from lemma 2, that the variance of the public signal drops with the introduction

of VAMs, once hiring principals may access a teacher's VAM, they place less weight upon

their prior beliefs and less weight upon their noisy private information they glean from the

application process, and place more weight on the public information that now includes a

teacher's VAM. For bids in which both principals become informed of a teacher's VAM, the

information between prospective employers becomes more symmetric, and their expectations

converge, as both hiring and retaining principals shift weight onto the information that they

share.

1.4.3 Mobility under Asymmetric Information

The teacher labor market generally moves in the summer between school years. At that

time, teachers may sample two o�ers, an update from their current school and one outside

o�er. Teachers move to the school that o�ers the highest bid.14 Accordingly, the probability

of a move is:

P (M) = P
[
bh∗isd − b

r∗
isd > 0

]
. (1.6)

Such school-to-school transfers are motivated in general by a hiring principal valuing the

teacher more so than does the retaining principal. Letting ψ stand for the composite error

14For simplicity, I model mobility decisions as a spot market. A �xed transition cost or idiosyncratic
teacher preferences over schools may be added without additional assumptions.
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term and substituting in the bids from presented in equations 1 and 2 allows equation 6 to

be written in the form presented in equation 1.7.15

P (M) = P
[
ψ > σξ(x) (στ (0)− στ (t)) (µ−m)

]
. (1.7)

While the VAMs and who has access to them alters the informations on which principals

operate, the general form of equation 1.7 remains the same, making it useful for illustration.

Such transitions may occur due to extreme private signals. However, this may happen even

if both principals receive the same private signal due to di�erences in how each principal

weighs the signals she receives.

For such mobility, it is apparent from equation 1.7 that all else equal, the probability of a

move is inversely related to true e�ectiveness. Intuitively, due to their additional knowledge

of teacher e�ectiveness, the current school should value the true e�ectiveness of the teacher

more than the outside market. Because the outside market has less information about true

e�ectiveness, the outside schools should place more weight on the easily observed correlates

with teacher e�ectiveness than the current school, which inform the prior belief (m).

The primary investigation in this study explores how mobility changes with the adoption

of VAMs. The availability of VAMs to some prospective employers, but not others, provides

a rare test for the model laid out above. As described in Section 1.2, both districts' adoption

of VAMs, theoretically provide a shock to the information of all principals within the district.

There are two primary ways of thinking about the impact of VAMs in the model. The �rst

is more in keeping with the prior employer learning literature. VAMs serve as di�cult-to-

observe measures of teacher quality. Researchers may use VAMs to proxy directly for µ about

15See Subsection E in the Appendix for algebraic transformations.
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which employers are learning. In this framework, the model o�ers predictions of whether

better or worse teachers move as response to adopting these VAMs. Equation 1.8 takes this

broad view.16

∂E
[
bh∗HV − b

r∗
HV − (bh∗NV − b

r∗
NV )|m µ

]
∂µ

=

σε(στ (0)− στ (t))((σξ(x)− σξ(x V ))(στ (t)σεστ (0)σξ(x)σξ(x V )

+ σξ(x V )σ2
εσξ(x)στ (0) + σξ(x V )στ (t)σ2

εσξ(x) + (σξ(x V ) + σξ(x))στ (t)σ2
εστ (0)).

(1.8)

Under the assumption that στ (0) > στ (t), which is fundamental to asymmetric employer

learning and by σξ(x) > σξ(xV ), which was shown in lemma 2,
∂E
[
bh∗HV −b

r∗
HV −(bh∗NV −b

r∗
NV )|mµ

]
∂µ

> 0. Therefore, the model predicts that providing VAMs to both principals, as occurred

within both districts, should raise the probability that good teachers move, all else equal.

Under the second interpretation, EVAAS VAMs enter the two districts directly as new

signals. Accordingly, the model o�ers predictions on the di�erential e�ects of the policy on

the probability of moving for teachers receiving di�erent signals, all else equal. After some

algebra, equation 1.9 takes this more narrow view.17

∂E
[
bh∗HV − b

r∗
HV − (bh∗NV − b

r∗
NV )|m V

]
∂V

=
1

ZhHV Z
r
HV

σξ(x)

σν + σξ(x)
> 0 (1.9)

Therefore, while the interpretations are subtly di�erent, the comparative statics with respect

to VAMs after the policy takes e�ect are the same. Within the districts, where both principals

are aware of the signals once they are implemented, the model predicts teachers who receive

a high-VAM signal become more likely to transfer schools.

16See Appendix E provides the relevant algebraic transformations.
17See Appendix E for the relevant algebraic transformations.
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Recall from Section 1.2, that if principals in other districts know of the existence of

VAMs for teachers from Winston-Salem and Guilford, the policy would theoretically alter

their information as well. The previous prediction would apply to out-of-district moves as

well. However, it is plausible that principals in other districts were uninformed about the

policy. In which case, the adoption of VAMs in Guilford and Winston-Salem would make the

balance of information more asymmetric, in the event that a teacher contemplates moving

to another school outside Winston-Salem or Guilford. If the hiring principal is uninformed

of the VAM, VAMs enter retaining principals' private signals.

The same two interpretations of VAMs' role apply here. Again beginning with the broader

view of VAMs as a measure of µ, equation E demonstrates the model's predictions with

respect to teachers' underlying abilities on the probability of moving to uninformed princi-

pals.18

∂E
[
bh∗RV − b

r∗
RV − (bh∗NV − b

r∗
NV )|m µ

]
∂µ

=

−σξ(x)2σε

ZhRV Z
r
RV Z

h
NV Z

r
NV

(στ (t)− στ (t V ))(στ (0)2σ2
ε + στ (0)2σξ(x)2 + στ (0)2σεσξ(x) + σξ(x)2σ2

ε .

(1.10)

Under lemma 1, στ (t) > στ (t V ), which implies that
∂E
[
bh∗RV −b

r∗
RV −(bh∗NV −b

r∗
NV )|mµ

]
∂µ < 0.

Therefore, the model predicts that after the release of VAMs to retaining principals, the

likelihood of moving out-of-district will decrease with increases in teacher quality, and vice

versa.

Under the more narrow view of VAMs as only pertaining to the signal itself, again the

18See Appendix E for the relevant algebraic transformations.
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predictions remain consistent. Equation 1.11 presents the partial derivative of the expected

di�erence in the di�erences between employers bids with respect to the VAM signal itself.19

∂E
[
bh∗HV − b

r∗
HV − (bh∗NV − b

r∗
NV )|m V

]
∂V

=
−σξ(x)σεστ (t)

ZrRV (σν + στ (t))
< 0 (1.11)

Here the model predicts adverse selection of out-of-district moves on the basis of VAMs, all

else equal. It is important to note that good (or high-VAM) teachers may choose to reveal

their EVAAS report to principals in other districts in an e�ort to move out-of-district. Ac-

cordingly, the furthering of information asymmetries between employers may not universally

apply to out-of-district moves. However, as long as some low-VAM teachers are able to move

out-of-district without being penalized by their EVAAS report (or their unwillingness to re-

veal it), the model predicts more negative (smaller in magnitude or negative) e�ects of VAM

on the probability of moving out-of-district after policy implementation than are produced

for moves within-district. Thus, the test between symmetric and asymmetric learning is

whether e�ects of the policy on the selection of out-of district movers are signi�cantly more

negative than the e�ects of adopting VAMs on the selection of within-district movers.

1.5 Data and Estimation

In this section, I describe both the data and methods used to generate VAMs of teacher

e�ectiveness, and the e�ects of the district policies on the teacher mobility. Subsection 1.5.1

describes the generation of VAMs. Subsection 1.5.2 describes the estimation sample. Sub-

section 1.5.3 describes the di�erence-in-di�erences estimation approach used to identify the

e�ects of the new information on the mobility decisions of teachers and principals.

19See Appendix E for the relevant algebraic transformations.
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1.5.1 Value-Added Measures

While there are other valuable dimensions of teaching, many schools and districts care a

great deal about teachers' abilities to raise their students' performance on standardized

assessments. This study relies on administrative, longitudinal data, which links students to

their teachers and was generously provided by the North Carolina Education Research Data

Center (NCERDC) to estimate teachers' abilities to do just that. Though a robust source of

data, unfortunately, the NCERDC does not contain the exact VAMs issued to each teacher

within the treatment districts, and neither district agreed to release them. Consequently, this

study will measure the student gains on the North Carolina End of Grade exams attributable

to each teacher.

There are two primary ways to go about this. The �rst is to attempt to model the exact

measures that teachers and principals receive. This is primarily useful in explaining the

teachers' and principals' observed behavior. The second is to model teacher e�ectiveness as

accurately as possible. This is primarily useful in evaluating the consequences of the policy.

To illustrate this distinction, suppose that the EVAAS score were totally uninformative. Ob-

serving mobility based on them would clearly illustrate the impact of the additional signal,

but would o�er no insight into the e�ect on educational equity. In contrast, using a mea-

sure of true e�ectiveness provides direct policy implications and is also useful in testing the

learning hypotheses. Accordingly, I prefer this second, broader approach, which is tied more

closely to the employer learning framework, which relies on the error in variables that proxy

for underlying ability. This study follows earlier studies of employer learning in supposing

that the researcher may access information originally unavailable to market participants.20

20Whereas Farber and Gibbons (1996); Altonji and Pierret (2001); Lange (2007); Schönberg (2007), and
Pinkston (2009) use AFQT score as a strong correlate with productivity about which employers must learn,
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In my preferred speci�cation, I model teacher e�ectiveness rather than attempting to repli-

cate the EVAAS measure. An element of feasibility also enters this preference. The EVAAS

system is proprietary, and the exact data and methods used are not disclosed. Furthermore,

SAS uses two di�erent proprietary models, and for large school districts it is unclear which

is used. Of course, in actuality, the resulting measures from either approach are likely be

highly correlated, and in Section 1.7, I check the robustness of my results against other spec-

i�cations.21 In this context, the VAMs need not totally encompass a teacher's e�ectiveness.

Here, VAMs only need to be stronger correlates with teacher e�ectiveness than are other cor-

relates with productivity, such as educational attainment and level of certi�cation.22 While

VAMs likely do not measure all traits that principals may seek in their teachers, they do di-

rectly measure one component of teaching quality that is important to principals and policy

makers.

My preferred measure of VAMs is what Guarino et al. (2012) call the Dynamic OLS

(DOLS) estimator presented in equation 1.12. According to Guarino et al. (2012), this

DOLS estimator is more robust to nonrandom student assignment, a frequent criticism of

the often used Empirical Bayes estimator, which assumes random assignment of students to

teachers.23

I use the VAM described above in this capacity.
21Rose et al. (2012) �nds a .91 correlation between one EVAAS measure and Dynamic OLS.
22The extant literature supports this claim. As Rivkin et al. (2005) show, easily observed teacher char-

acteristics are not highly correlated with teacher e�ectiveness. Experimental evidence from Hinrichs (2013)
suggests that GPA matters little to schools in hiring decisions, and that the strongest determinant of receiv-
ing a positive response from a school is whether the teacher holds an in-state certi�cate. However, Jacob
and Lefgren (2008) �nd large agreement between principal evaluations of teachers and VAMs, at least in the
tails of the distributions of both measures. Furthermore, recent work shows signi�cant correlation between
teachers' VAMs and many important future outcomes for their students, including educational attainment,
earnings, and probability of incarceration Chetty et al. (2011, 2014).
23Given teachers' preferences found in Jackson (2009) and Boyd et al. (2013), it seems unlikely that teacher

e�ects would be uncorrelated with student-level covariates.
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Aijt = tt + Aijt−1β0 + Xitβ1 + V AMj + eit (1.12)

Here, Aijt represents student i's mathematics achievement in teacher j's class in year t.

Including Ait−1 allows for the correlation of previous math and reading test performances

with current performance. Additionally, Xit is a vector including demographic attributes of

individual students, such as grade, race, gender, special needs, and gifted status. It is VAMj,

a vector of teacher indicators, which is of primary interest for this study. Acknowledging

that VAMs can be somewhat unstable in any single year, my preferred estimates use data

from each year a teacher is teaching 4th through 8th grade during my sample period. This

allows me to gain the most precise estimate of teachers' true underlying ability, µ.

1.5.2 Estimation Sample

This study restricts attention to the 5,986,132 elementary and middle school student, year

observations from 1997 through 2011 to construct the VAMs for 134,219 teachers who teach

4th through 8th grade. I link these data to education, licensing, and work history data of

67,062 lead teachers without teaching assistants for whom the records are complete. These

teachers are dispersed across the 2,966 schools in 117 school districts. I further restrict the

sample to only those teachers teaching 4th through 8th grade at the time of observation, since

they are the only elementary and middle-school teachers to receive VAMs. This restriction

pares down my sample from 416,135 teacher-year observations to 236,018. At the teacher

level, the data includes the teachers' race, gender, institution of higher education, degrees

earned, experience, and tenure at a given school. Each of these are easily observable to all

schools and many are likely used to �lter job candidates. I use performance at the school
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in which the teacher currently works as an additional, easily observable, possible correlate

with e�ectiveness. Table A.2 provides summary statistics for my estimation sample.

The districts that adopt VAMs do not di�er substantially from state averages in achieve-

ment or percent of student receiving pro�ciency on the state standardized exams. Given

that both districts include urban centers, they do have a higher proportion of Black students

and teachers than does an average district in the state. While teachers come from colleges

of comparable selectivity, across districts, in Winston-Salem, a larger share of the teaching-

force holds an advanced degree. However, on the basis of VAMs, teaching quality in both

districts is very close to the state average.

1.5.3 Estimation Strategy

The regression based di�erences-in-di�erences approach allows me to isolate mobility based

on underlying e�ectiveness from mobility based on correlates with e�ectiveness. Further-

more, easily observable, lower correlates with e�ectiveness may become less tied to the

probability of moving after the introduction of VAMs. I estimate the following speci�cation:

y∗jdt = Tt + dd + V AMjG1dt + XjdtG2dt + ξjdt, (1.13)

Ghdt =γh1+TreatDistjdγh2+Posttγh3 + TreatDistjd ×Posttγh4, h = 1, 2,

where y∗jdt is the latent probability of a job change for teacher j in district d and in year t.

I only observe the binary outcome of when a move occurs. Tt represents year e�ects, dd
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represents district �xed e�ects, and Xjdt is a vector of teacher and school characteristics

including teacher experience, tenure,24 race, highest degree earned and selectivity of bachelor

degree granting institution, as well as percent of students who are Black and percent of

students testing above pro�ciency at the school level. G1dt and G2dt capture the di�erences

in the e�ects of VAMs on mobility based on whether VAMs were available for teacher j in

district d, at time t. Interactions with treatment district indicators separate permanent

di�erences in the impacts of VAMs and other characteristics from confounding the e�ect of

treatment, while interactions with indicators for post years do the same for statewide changes

in the e�ects at the times the policies take e�ect. Thus, the identifying variation comes from

the di�erences between adopting districts and the rest of the state in the di�erences in the

predictive power of VAMs on the probability of moving schools between pre- and post-policy

years.

Keeping in mind previously estimated teacher preferences and more importantly potential

di�erences in information available, I examine the six types of job changes separately: within

district moves, within district moves to higher-performing schools, within district moves to

lower-performing schools, out-of-district moves, out-of-district moves to higher-performing

schools, and out-of-district moves to lower-performing schools. Given that teachers initiate

most moves, moves to worse schools are likely driven by largely by idiosyncratic teacher

preferences. Due to the indirect mechanism by which hiring principals in Winston-Salem

obtain teachers' VAMs and the potential additional salience of VAM signals to principals

outside the district during Winston-Salem's later adoption, I separate treatment by district.

Given how the districts distributed VAMs, it seems clear that the new information would

24Because tenure is generated and censored for job matches beginning prior to 1995, an indicator of whether
the current match existed in 1995 is included in all regressions.
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be public between two principals in Guilford. Perhaps to a lesser extant the same holds for

Winston-Salem. Accordingly, the model predicts γ14WD > 0 (where γ14WD is the e�ect

of the interaction of VAM with receiving treatment on the probability of moving within-

district). Furthermore, because there would be more information available on more experi-

enced teachers, if there previously been some degree of public learning, the model predicts

the e�ects to diminish with teacher experience. Likewise, if there had previously been private

learning, the learning model predicts the shock to public information to have larger rami�-

cations for teachers with more tenure at a given school all else equal. In later speci�cations,

I interact VAM with experience and the di�erence-in-di�erences, G, interactions.

When comparing the expectations of a retaining principal within one of the treatment

districts to a hiring principal in another district there is some ambiguity as to whether

VAMs provide a more precise expectation for both principals or only the current one. Thus,

the symmetric learning model for out-of-district moves predicts γ14OD = γ14WD (where

γ14OD is the e�ect of the interaction of VAM with receiving treatment on the probability of

moving out-of-district). If current principals can keep information from employers in other

districts, the signal improves the precision of the current principal's signal about the true

quality of the teacher, while the expectation of the out-of-district principal is una�ected. In

which case, the asymmetric learning model would apply predicting γ14WD > γ14OD and

possibly γ14OD < 0 for out-of district moves.

This type of movement may have important implications for the distribution of teacher

quality across schools. If better teachers are more able to signal their true quality, and do

so in general to move to better schools, the divide in teacher quality between the worst

and best schools may widen. Accordingly, I estimate equation 1.13 substituting percent of

students pro�cient in the school taught at the subsequent year, for the binary variable of
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whether teachers move. Again, if VAMs are informative, and teachers do in general prefer

to teach at better schools, γ14SQ > 0 in this regression as well. (γ14SQ is the e�ect of the

interaction of VAM with receiving treatment on the pro�ciency levels of the school where

the teacher works the subsequent year.) Similar to the probability of moving to a better

school, we may expect these e�ects to be somewhat muted for teachers moving later in their

careers, in which case hiring principals may already have more complete information.

There are two distinct issues that complicate the estimation of standard errors in this

study. First, the policy variation occurs at the district level. As a result, the errors may be

correlated for teachers moving from or within the same district. The appropriate response

to this single issue is to cluster the standard errors at the district level. The second, issue

results from the fact that the teacher VAMs are estimated. By simply clustering the standard

errors, the VAMs are treated as though they are known, and thus, they do not account for

the inherent variability due to estimation error. Were this a singular issue, it would be

appropriate to bootstrap the student data to account for this estimation error. It may seem

natural to then cluster-bootstrap at the district level. However, this samples all students

for a every teacher in a sampled district, and as a result, does not actually address the

estimation error. In fact, the standard errors from the cluster bootstrap are smaller than

the non-bootstrap clustered standard errors by about a factor of ten.

Accordingly, I adopt a sampling approach that accounts for both the estimation error

of VAM and the clustered nature of the data. First, I sample districts randomly with re-

placement just as with the standard cluster-bootstrap. I then conduct strati�ed sampling at

the teacher level, such that for every teacher who was originally sampled, I randomly sam-

ple student/year observations with replacement. In so doing, this provides generally more

conservative standard errors across parameters. The standard errors on the e�ects of the
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policy on the relationship between VAMs and the probability of moving schools are com-

parable to the standard bootstrapped standard errors, and the standard errors on all other

estimated coe�cients are comparable to the non-bootstrapped district-clustered standard er-

rors. Table F.7 in the Appendix ?? presents all standard errors for Table A.3 for comparison.

Throughout the remainder of this paper, I present the more conservative district-clustered-

teacher-strati�ed-bootstrap standard errors (CSB SEs).

1.6 Results

1.6.1 Mobility and Sorting

Table A.3 presents the estimated impact of revealing EVAAS reports of teacher e�ectiveness

on the relationship between teachers' VAMs and the probability a teacher moves to another

school. Given the evidence that teachers prefer to teach in schools with higher-performing

students, Table A.3 decomposes e�ects by whether the receiving school has higher or lower-

performing students.25 The test between symmetric and asymmetric employer learning

focuses on how the e�ects of VAMs on the probability of moving within-district di�er from

the e�ects of VAMs on the probability of moving out-of-district after the treatment districts

adopt the measures of teacher quality. Panel A restricts attention to within-district moves,

and Panel B presents evidence from out-of-district moves.

The �rst row presents the the relationship between VAMs and the probability of each

type of move in the rest of the state, regardless of any districts adopting the policy. In

25Primary e�ects of VAMs on di�erent types of moves as well as on future school performance further
supports this distinction. I de�ne a move to a higher performing school as a move in which the school taught
at the following year has a higher percentage of students who achieve pro�ciency than the current school.
Pro�ciency rates are demeaned by year statewide averages, while a move to a lower-performing school is
de�ned in the reverse way.
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general, there is little relationship between VAMs and the probability of moving within or

out of the district. However, when discerning between moves to more and less pro�cient

schools a familiar pattern emerges. From columns 2 and 3 of Panel A, a teacher with a

standard deviation higher VAM is about 0.3 percentage points more likely to move to a

higher-performing school and 0.2 percentage points less likely to move to a lower-performing

school within the district. Panel B exhibits the same pattern regarding moves to schools

outside of the current district. A one standard deviation increase in VAM before the policy

takes e�ect raises the probability of moving to a higher-performing school by about a tenth

of a percentage point and lowers the probability of moving to lower-performing school by

about the same magnitude.

Within both Guilford and Winston-Salem, the release of VAMs intensi�es this pattern.

From the coe�cient on the interactions between policy treatment and VAMs in both districts,

a standard deviation increase in a teacher's VAM leads to about a half of a percentage point

increase in the probability of moving within district after the district released the value-

added information. While the magnitudes of the e�ects are very close between districts,

they are only statistically signi�cant beyond the 95% con�dence level for Guilford. Column

2 illustrates that these results are driven by moves to higher-performing schools, as the model

predicts. From column 2, the estimated coe�cients imply that the adoption of VAMs raises

the probability that a teacher with one standard deviation higher VAM will move to a higher-

performing school by over 14% (p-value .011) in Guilford and nearly 18% (p-value .009) in

Winston-Salem. Column 3 reveals little change in the e�ects of VAMs on the probability of

moving to a lower-performing school within district. The similarity of the point estimates

on the impact of VAMs post-treatment between Guilford and Winston-Salem provides no

evidence that relying upon teachers to voluntarily disclose their VAMs to hiring principals
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mitigates the e�ects.

From Section 1.4, the e�ect of the policy should be no di�erent whether teachers move to

schools within or outside of the district, under the symmetric learning hypothesis. However,

asymmetric employer learning predicts the policy to give principals in Guilford and Winston-

Salem an informational advantage over principals in other districts. This translates into

smaller selection e�ects for teachers moving to other districts than for within-district moves,

and these e�ects may even be negative. The second column of Panel B presents changes in the

e�ect of teacher quality on the probability of moving to a better, out-of-district school after

the adoption of VAMs. Again, these changes in selection of mobile workers are consistent

with the employer learning model.

The change in selection of teachers leaving Guilford provides the strongest evidence of

growing informational asymmetries between employers. In Guilford, a teacher who has a

standard deviation lower VAM, is a full percentage point more likely to move out-of-district.

This same teacher is about a half a percentage point more likely to move to a better school

out-of-district (p-value 0.001). There is also a statistically signi�cant e�ect on the probability

of moving to lower-performing schools out of Guilford. While the model does not predict this

type of movement, it is not surprising. Low VAMs may lead current principals to devalue

some of their teachers, who may respond by moving to lower-performing schools that are

not privy to their value-added scores.

In Winston-Salem, the di�erence between within- and out-of-district moves is less pro-

nounced, though still consistent with private employer learning. While in Winston-Salem,

a teacher with one standard deviation higher VAM is more likely to move to a higher-

performing school out-of-district after the policy takes e�ect, the point estimate is only 38%

of that from moving within-district and is no longer statistically signi�cant. Were outside
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principals informed of the signal, we would expect the same positive e�ects found in the

second column of Panel A to be present in in the second column of Panel B.

The fact that e�ects are more negative in Guilford than Winston-Salem, may be ex-

plained by di�erences in the salience of the signals between teachers moving from Guilford

as opposed to those moving from Winston-Salem. Guilford's adoption of the EVAAS mea-

sures of teacher e�ectiveness occurred in 2000. It is unlikely that at that time principals in

other districts had much understanding of the measures, or their reliability. In contrast, the

rest of the state adopted school-level EVAAS reports simultaneously with Winston-Salem's

adoption of teacher level VAMs. Given this di�erence in contexts, high VAM teachers from

Winston-Salem may have been better able to use their VAMs to obtain positions outside of

Winston-Salem, than would a comparable teacher moving earlier from Guilford. In Winston-

Salem, the increase in high-VAM teachers' ability to signal their e�ectiveness may mitigate

any e�ects from relatively low VAM teachers exploiting the informational asymmetry. The

mitigated e�ects of VAM for those moving out of Winston-Salem in addition to the nega-

tive selection of teachers moving away from Guilford evidences informational asymmetries

between potential employers within as opposed to outside of the district.

Turning to the implications of such mobility for educational equity in general, Table A.4

presents the results of how the sorting of teachers to schools changes with the implementation

of the policy. The coe�cient on VAM describes the relationship between teachers' VAMs

and the pro�ciency level of the school they teach at the subsequent year in the rest of the

state. Across both columns, a one standard deviation increase in a teacher's VAM leads to

about a quarter of a percentage point increase in the percent of students who are pro�cient

in the school in which he teaches the subsequent year. The result that students in better

schools also get better teachers is consistent with �ndings in Boyd et al. (2005) and Boyd

37



et al. (2008).

Column 1 examines the e�ect of the policy on sorting for all teachers in the sample who

remain teaching in North Carolina the following year. Column 2 restricts the sample to

those who remain within their current district. The second column may be more informa-

tive for predicting the e�ects in the rest of the state after the adoption of EVAAS VAMs

becomes statewide. Theoretically, the e�ects may be more pronounced for the state as a

whole, because the costs of moving out of state are in general higher than those of mov-

ing out of a school district. The di�erence in results from Table A.3 between within- and

out-of-district moves imply more positive correlations between teacher VAMs and school

performance among those who remain in district than overall, as a result of the policy. Ta-

ble A.4 re�ects those patterns. Including teachers who move within and out of district, it

seems from column 1 that releasing VAMs of teacher e�ectiveness does little to change the

distribution of teacher quality across schools. However, turning to the sample of teachers

who remain in the same district in column 2, while there is no evidence of sorting in general

rising in Guilford as a result of the policy, in Winston-Salem, on average I �nd a teacher

with one standard deviation higher VAM will be at a school that has 0.2 percentage points

higher pro�ciency rates after the district releases VAMs. In Winston-Salem, this translates

to about a 70% increase in the correlation between teacher quality and student performance

as a result of the policy. This large e�ect for Winston-Salem taken together with the mobility

patterns from Table A.3 evidence rising inequality in the distribution of e�ective teachers as

an unintended consequence of VAM adoption.
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1.6.2 Observables

In addition to predicting mobility dynamics with respect to teacher VAMs, the model pre-

sented in Section 1.4 also o�ers predictions regarding easily observable covariates with teacher

e�ectiveness. In instances where the VAMs shock the available public information, the model

predicts principals would place less emphasis on easily observable covariates with teacher

e�ectiveness, such as degree attainment and college selectivity. In cases where VAMs exac-

erbate informational asymmetries between current and hiring principals, the same covariates

expectedly receive additional emphasis on the probability of a move.

To provide ease of interpretation, I generate an index of easily observable teacher quality

by taking the �tted values from the OLS regression of teacher VAMs on teacher covariates. I

include as components of this index, an indicator for having an advanced degree, a vector of

indicators for Barron's College Competitiveness index, years of experience, years of tenure,

an indicator for whether tenure is censored, race, gender, and a vector of year indicators.26

In general, those with high observable characteristics are more likely to move within

district. That result is driven by moves to higher-performing schools, while those with lower

observable characteristics are more likely to move to lower-performing schools. For moves

out-of district, the positive relationship between the index and the probability of moving to

a better school o�sets the negative relationship between the index and the probability of

moving to a lower-performing school. These relationships are expected given the sorting of

teachers based on observable characteristics as shown in Jackson (2009) among others.

The �rst two columns of Table A.5 do not bear out the predictions for within district

moves. While noisy, the point estimates of the e�ects of the teacher index on the prob-

26The VAMs used in this analysis are the residuals from the projection of my standard VAMs on the
components of the index.
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ability of moving schools within-district after the adoption of VAMs are positive, though

only statistically signi�cantly so for moves to better schools within Guilford. While not

expected, this result may be explained by the additional churn that accompanies the adop-

tion of VAMs particularly for moves to better schools within Guilford. More positions may

become available as a result of high-VAM teachers moving to better schools, and low-VAM

teachers moving out of district. As a result, those with good observables �nd it easier to

move in addition to those with high VAMs. Heterogeneous openness among principals to

VAMs may also contribute.27 In which case, as high-VAM teachers move to principals that

value VAMs those with other favorable attributes move to the principals who value those

characteristics.

The change in the relationship between the index and the probability of moving out-of-

district with the adoptions of VAMs is more supportive of the model. Whereas movers out of

Guilford are adversely selected on the basis of the hard-to-observe VAM, they are positively

selected on the basis of this index of easily observable measures of teacher quality. This is

true across moves to higher or lower performing schools, and provides further evidence that

the moving teachers with a high index, but low VAM were able to keep their VAM private,

while utilizing their otherwise strong resumés to move to uninformed principals. Given that

it is plausible that more teachers moving from Winston-Salem could inform out-of-district

principals of their VAMs, results in either direction may make sense. Accordingly, the results

for moves out of Winston-Salem are not very informative. While the results for moves out of

Guilford are reassuring, cumulatively, the evidence from changes in the relationship between

the index of easily observable teacher characteristics, and the probability of moving schools

27Informal conversations with principals in Winston-Salem and Guilford indicate this may be the case, as
two current lower elementary principals that I spoke with indicated that teachers' VAMs played a limited
role in their hiring decisions.
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is too mixed to draw de�nitive conclusions.28

1.6.3 Di�erential E�ects With Respect to Experience and Tenure

The �nal piece of primary analysis examines the e�ects of the policy on the correlation

between teacher VAMs and the probability of moving with respect to years of experience

and tenure. If teachers are able to draw upon each year of experience to better demonstrate

how good they are through resumés, references, or any other device, the release of VAMs

would not serve as much of a shock for teachers about whom there already exists a great

deal of information. The model predicts that if there is substantial public learning prior

to VAM adoption, the e�ects of the policy should be less dramatic for more experienced

teachers. While Table A.6 exhibits this relationship for teachers moving out of the district,

the same is not true for teachers moving within district. Taking the point estimates literally,

a teacher with 5 more years of experience and one standard deviation higher VAM is twice

as likely to move within Guilford to a better school after the release of VAM, than is a less

experienced, but otherwise similar teacher. In Winston-Salem, the estimates on this triple

interaction are too noisy to draw reliable inference. While the observed pattern of stronger

e�ects for more experienced teachers may seem strange, this pattern may occur if it takes

time to realize that moving is worthwhile or if releasing VAMs allow a built up stock of more

28In unreported regressions, with the exception of out-of-Guilford moves the results shown in Table A.5
are very sensitive to the variable composition of the teacher quality index. Table F.8 in Appendix ??

demonstrates that these results are also sensitive to the covariates included in the index. The regressions in
Table F.8 includes measures of quality in the index of teacher quality, since it is likely that other principals
use sending-school quality as an important signal of the teacher's quality. In which case, percent of students
at current school who are on grade level and who are Black are reasonable to include in the index. In
Table F.8, the coe�cient estimates on each of the interaction terms, which are of primary interest, carry the
predicted sign. However, the coe�cient estimates on the index for the rest of the state have the opposite
sign as predicted. This inconsistency is likely due to current school quality a�ecting the probability both
through teachers' willingness to move as well as principals' willingness to hire them. It remains noteworthy
that teachers in good school with other high observables, are even less likely to move within district after
the district adopts VAMs.
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experienced teachers who could not previously signal their quality to move. From columns

3 and 4, in both districts, each additional year of experience mitigates the negative selection

of inexperienced teachers moving out of the district. For Guilford and Winston-Salem, 5

years of additional experience cuts the e�ect of VAM on the probability of moving to a

better school outside the district by 15% and 20%, respectively. The same general pattern

holds with regard to interactions with tenure, though the standard errors on the coe�cient

estimates for interactions with tenure are larger. Were private learning already prevalent

in the market, the model predicts the e�ects of the policy to be larger for those who have

taught at the same school for longer, all else being equal. This is consistent with the results

in columns 1 and 2. While these results largely suggest prior private learning, the mixed

evidence on public learning makes me hesitant to draw de�nitive conclusions on the prior

learning environment.

1.7 Robustness

In the following section, I examine the robustness of the e�ects of VAM adoption. Sec-

tion 1.7.1 considers changes in e�ects when using only prior years of student data when

constructing VAMs. Section 1.7.2 considers whether other district policies that paid teach-

ers to work in hard-to-sta� schools impact the estimated e�ects. Appendix E includes sevel

additional robustness exercises including consideration of teacher mobility in accordance

with the state ABC growth bonus-pay system; within-district, year-by-year analysis of the

changing e�ects of VAMs on mobility and sorting; and consideration of alternate functional

forms for the mobility analysis, such as normal Maximum Likelihood Estimationas well as

competing risks regression to examine the possibility of correlated errors between types of
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moves. 29

1.7.1 Sensitivity to VAM Construction

The possibility that teachers may have di�erent VAMs after moving to other schools, may

present issues for using VAMs constructed from student data from a teacher's entire ca-

reer. This could result from moves leading to higher match quality between teachers and

schools, as Jackson (2013) �nds. It may also result from transitory adjustment costs, giving

a theoretically ambiguous direction of potential bias.30

Consequently, in Table A.7, I allow teachers VAM scores to vary each year, using only

data from the current and previous years to construct a teacher's VAM in any given year.

The main e�ects hold, though they are in general somewhat exaggerated in Winston-Salem

and smaller in Guilford. Still, the adoption of VAMs raises the probability that good teach-

ers move to better schools. Whereas in Winston-Salem, the e�ect grows to a full percentage

point, in Guilford, a teacher with an one standard deviation higher VAM becomes 0.3 per-

centage points more likely to move to better school post-policy. From the middle column of

Panel B, the negative selection of teachers moving out of Guilford falls to just 30% of the

estimate given in Table A.3. Panel C in Table A.7 corresponds with Table A.4. While the

e�ect on teacher sorting doubles in Winston-Salem, the results become more negative and

statistically insigni�cant in Guilford.

While it is possible subsequent match quality increases for teachers from Guilford and

29Because job mobility is often localized I also restricted analysis to districts which share a border with
Guilford and Winston-Salem. The results from this restriction were noisy and uninformative, and are
unreported here.
30More closely approximating the information that teachers and principals receive is another rationale

for restricting the data used in generating teacher VAMs. In which case using Empirical Bayes estimation
provides what is believed to be a closer approximation to the algorithm used in creating the EVAAS measures.
Table F.10 in Appendix ?? provides results using Empirical Bayes estimation on the restricted sample of
student test scores in calculating teacher VAMs. The results are very similar.
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decreases for teachers in Winston-Salem, I believe measurement error may provide a more

plausible explanation. In Guilford, the e�ect of VAM prior to the their release is identi�ed

o� of just two years of data. As a result, the estimates of teachers VAMs are noisier for this

period as well as in the immediate aftermath of the policy. Measurement error in the primary

variable of interest may attenuate the estimates in Guilford where there is little data prior

to the adoption of the policy, while the e�ects in Winston-Salem become relatively stronger.

One way of getting around this issue is to use a �xed number of years prior to the current

period when constructing VAMs. Unfortunately, the adoption of VAMs by Guilford comes

just three years into the student data sample. Since the construction of VAMs requires

at least one prior year of student data, this gives just two years at which I could �x my

VAM estimate. Not only would this force a noisier estimate of each teacher's VAM for the

entire sample, it also provides merely one year of data prior to the adoption of the policy in

Guilford. To demonstrate the changes of the estimates with varying the number of years of

data used in constructing VAMs, I drop Guilford from the analysis and vary the number of

prior years of data I use to construct the VAMs from 2 to 8. Table A.8 demonstrates that

though the relationship between years used and the e�ect of the interaction of the policy in

Winston-Salem and VAM is not monotonic as the sample used varies, the estimates using

more years of data are clearly the largest. This further suggests correlated measurement

error presents a problem for this approach.

1.7.2 Strategic Sta�ng

A possible complication arises due to alternate teacher compenstion plans. District strategic

sta�ng policies, which aim to attract more capable teachers to teach in and stay at hard-

to-sta� schools may be problematic because they occured in treatment districts during the
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sample period and could potentially alter teacher preferences over schools.31 Charlotte-

Mecklenburg Schools (CMS) and Winston-Salem were by far the earliest adopters of these

initiatives with CMS beginning its Equity Plus program in 1999 andWinston-Salem following

suit in 2000. By 2012 each major district in North Carolina adopted some program to

attract teachers to hard-to-sta� schools. In CMS, teachers received a signing bonus to enter

a targeted school and teachers with a masters degree could receive up to $2,500 per year

to remain in the school. A smaller incentive was o�ered to teachers enrolled in masters

programs, though the district also o�ered tuition reimbursement. Winston-Salem awarded

20% of the district salary supplement ($500-$1,500) to each teacher in targeted schools.

Furthermore the entire state o�ered $1,800 bonuses to math, science, and special education

teachers who taught in high poverty or low achieving schools during the three year period

2002-2004. In 2007, Guilford adopted its own strategic sta�ng program, in which bonuses

ranged from $5,000-$25,500 depending on subject taught, grade level, and VAM. Cumberland

County Schools gave stipends to 30 �master teachers� across their 10 most di�cult school. In

2008, CMS began tailoring their plan more towards targeting better teachers and Winston-

Salem, followed suit in 2012. These programs may reverse which schools are most desirable

to teachers. With large enough incentives, high-VAM teachers may opt to work at low

performing school, which is in fact the intent of the policy.

Table A.9 reports similar information as is provided in Table A.3, with the di�erence that

the binary dependent variable in Table A.9 is equal to one if a move occurs and the receiving

school is not classi�ed as strategic sta�ng. As might be expected, the results are quite

similar to those in Table A.3, as teachers working in strategic sta�ng schools comprise just

31�Strategic Sta�ng� is the o�cial term for later policies with the same objectives. Earlier policies had a
variety of di�erent names; Equity Plus (1 and 2), Focus School, and Mission Possible.

45



4% of the sample. However, the policy has a much larger e�ect on the correlation between

VAMs and the probability of moving within Winston-Salem. Column 2 shows that releasing

VAMs raises the probability that a teacher with one standard deviation higher VAM will

move within Winston-Salem by a full percentage point, which is nearly double the e�ect

found when examining all schools together. Also, the e�ect of the policy on the correlation

between VAMs and the probability of moving out of Winston-Salem drops by 40%, when

restricting analysis to moves to non-strategic sta�ng schools. Both changes serve to widen

the gap in the estimates between moves within and out of Winston-Salem, providing further

evidence of private learning.

Table A.10 presents the impacts of the policy on teacher sorting within-district and

within-district among non-strategic sta�ng schools. Column 1 in Table A.10 is identical to

column 2 in Table A.4. I include it here for ease of comparison. The third columns restrict the

sample further to non-strategic sta�ng schools. Moving from column 1 to 2, in both districts,

the point estimated e�ect of the policy on the degree to which high-VAM teachers sort

into high performing schools becomes more positive. For Guilford, the coe�cient becomes

positive, though neither practically nor statistically signi�cantly so. In Winston-Salem, the

point estimate of the sorting e�ects more than triple. Table A.10 provides no evidence that

strategic sta�ng policies are driving the earlier results. If anything, it seems that these pay

policies may have muted what would otherwise have been much larger impacts of releasing

VAMs.
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1.8 Conclusion

If employers are unable to learn accurate information about their teaching force over time,

their subsequent personnel decisions regarding teachers would be no better at identifying

e�ective teachers than at the point of hire. If learning is entirely asymmetric, that is other

schools are no better able to tell the e�ectiveness of an experienced applicant than of a novice

applicant, e�ective teachers become trapped in schools in which they do not wish to teach,

while principals shu�e their less capable teachers to other schools in what the documentary

Waiting for Superman terms �The Lemon Dance� Guggenheim (2011). The release of value-

added measures of teacher e�ectiveness does seem to provide actionable information to those

who are aware of them. The evidence above suggests that the new information provides

e�ective teachers with more mobility, while �The Lemon Dance� becomes focused on the

uninformed.

Additionally, the evidence from subsequent teacher sorting suggests that the increase

in mobility leads to increased inequity in the distribution of teacher quality across schools.

Despite the fact that 38 states have adopted VAMs of teacher e�ectiveness, and often con-

tentiously, this signaling role of the measures has avoided discussion. The policy implication

of this �nding is not to universally avoid using VAMs. However, it would be useful to pro-

vide policy makers an estimate of the cost of retaining high-VAM teachers in hard-to-sta�

schools. The analysis excluding strategic sta�ng schools implies that the sorting may have

been larger without the incentives to induce teachers to work in lower-performing schools.

As mentioned in Section 1.7.2, several districts in North Carolina are implementing a range

of sta�ng policies designed to induce teachers to work in low-performing schools. Some

incorporate VAMs into the incentive schemes.
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Clotfelter et al. (2011) and Glazerman et al. (2012) have examined the question of at-

tracting teachers to understa�ed schools. Further work is needed to estimate the costs and

e�ectiveness of these policies in retaining e�ective teachers in low-performing schools, which

may cost substantially less. As states and districts continue to adopt teacher VAMs, policy

makers should be aware of the potential consequences of these policies on educational equity,

as well as the costs of o�setting these e�ects.
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Chapter 2

Job Separation Under Asymmetric

Employer Learning

2.1 Introduction

Employers gamble with each new hire, perhaps particularly so as applicants begin their

careers. There is signi�cant uncertainty about how reliable, hard working, and capable new

hires will be. However, after workers have been with a particular �rm for some time, it

makes sense that employers accumulate information about these traits and how to use them.

At the same time, some workers may draw on their acquired experience to bolster their

resumés, while continually looking for other opportunities. Despite the intuitive appeal of

this setting, the question of whether all �rms in the market learn about the workers at the

same rate (symmetric learning) or whether current employers enjoy the bene�ts of private

information about their workers (asymmetric learning) is empirically largely unsettled.

There are several implications stemming from the process by which current and prospec-

tive employers learn. First,information gaps between �rms may permit persistent wage gaps

based on easily observable characteristics, such as race and education, even when workers are

equally productive Schönberg (2007); Pinkston (2009). Secondly, the preservation of infor-

mational advantage may distort promotion decisions DeVaro and Waldman (2012). Lastly,
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the disparate types of learning have di�erent predictions for worker mobility. This study

focuses on these implications.

Under symmetric learning, workers' reference groups should have no bearing on the prob-

ability they experience job separations, since all �rms should place the same importance on

the workers' characteristics that they can easily observe. Likewise, gaps in information

cannot explain worker mobility on the basis of hard to observe characteristics, since each

employer is equally well informed under this framework.

In contrast, under asymmetric learning, information about a worker's true productivity

is more valuable the further that true ability is from the average worker with the same

easily observable characteristics. This heterogeneity in the value of information about a

given worker's productivity leads di�erent workers to have di�erent probabilities of leaving.

Workers who have higher ability than the average of their respective reference groups will be

less likely to be bid away by another �rm or laid o� by the retaining �rm. Inversely, those

with high ability reference groups are more attractive to outside �rms. By examining how

ability and reference groups in�uence the probability of job separations, this study explores

evidence of the presence of asymmetric employer learning.

I extend existing models of asymmetric employer learning to develop predictions regarding

the selection of workers into job switches and layo�s. The predicted selection di�ers depend-

ing on whether worker covariates are easy or di�cult to observe. I then develop predictions

for how this selection will change over experience as opposed to continuous working spells. I

test these predictions using the Armed Forces Quali�cation Test (AFQT) from the National

Longitudinal Survey of Youth of 1979 (NLSY79) as a hard to observe worker characteristic

and race and education as important characteristics that are easy to observe. Finally, I test

the robustness of results under alternate speci�cations and use a control function approach
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to handle possible endogeneity in experience and continuous working spells.

I �nd that in general, consistent with asymmetric employer learning, workers are neg-

atively selected into mobility on the basis of their AFQT score, while they are positively

selected on the basis of their reference groups. This selection on AFQT is driven completely

by job-to-unemployment transitions, whereas asymmetric learning predicts such negative se-

lection through both job-to-job and job-to-unemployment moves. Though the interactions of

AFQT with experience and working spell duration carry the signs predicted by asymmetric

learning, they are statistically insigni�cant. The results regarding education are more consis-

tent with asymmetric employer learning. Workers with higher and more selective education

are more likely to both transition between jobs, as well as for moves from employment to

unemployment during economic recessions. Further, the selection on the basis of education

becomes more positive with respect experience and more negative with respect to working

spell duration, as asymmetric learning predicts.

The rest of the study proceeds as follows. Section 2 situates this work in the existing

literature. Section 3 lays out my extension of Pinkston's [2009] model of asymmetric employer

learning. Section 4 describes the estimation strategies used. Section 5 describes the data,

provides de�nitions of variables, and descriptive statistics. Section 6 provides empirical

results, and Section 7 summaries the evidence.

2.2 Employer Learning Models and Evidence

This work follows a long line of predecessors, such as Farber and Gibbons (1996); Altonji

and Pierret (2001); Lange (2007), Schönberg [2007], and Pinkston (2009), which examines

how employers learn about their employees over time. Starting with Farber and Gibbons
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[1996], these studies presume that worker ability is heterogeneous. Employers cannot directly

observe the ability of potential workers and must rely on correlates to infer workers' expected

value to the �rm. Further, they treat a subset of characteristics as easily observable to all,

another as easily observable to the market (and not to researchers), and yet another subset

of potential correlates with productivity as easily observable to the econometricians (but not

the market). This literature typically uses the percentile from a cognitive ability assessment,

the AFQT, as this relatively strong correlate with productivity that is veiled to the the

market at the time of hire, but is available to researchers throughout the workers' careers.

This study does so as well.

Much of this earlier work assumes that all �rms within the market learn at the same rate.

In which case, all prospective employers learn more about workers' abilities over time and

wages become more strongly linked to previously unobserved, strong correlates with produc-

tivity and less tied to the easily observed characteristics. Farber and Gibbons [1996], Altonji

and Pierret [2001], and Lange [2007] each �nd this pattern regarding wages, education, and

AFQT scores.

However, it seems reasonable that employers may learn more about their employees than

do outside �rms. Indeed, both Gibbons and Katz (1991b) and DeVaro and Waldman (2012)

provide evidence of such informational asymmetries between �rms though neither is couched

in a leaning framework. Schönberg (2007); Pinkston (2009), and Kahn (2013) develop models

of employer learning that allow employers to learn at di�erent rates. They test these models

for the presence of asymmetric learning in the labor market using the NLSY79, and �nd

con�icting evidence.

Schönberg develops an initial model for asymmetric employer learning, and develops tests

for its hypotheses. Her model assumes that the retaining �rm perfectly observes the produc-
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tivity of its workers in the second period under asymmetric learning, but this information

is lost whenever a job match terminates. Perfect learning in the second period implies that

there are no informational bene�ts from additional tenure. This is a testable assertion, and

Lange (2007) presents evidence of continuous learning, �nding that while about half the

learning occurs in the �rst three years, 20 years later the variance of the error continues to

decline. Further, a winner's curse befalls outside �rms as they draw the least productive

workers from their retaining �rms. Allowing di�erences in match quality to motivate more

productive workers to leave attenuates the severity of the winner's curse, and theoretically

leads to volatile wages early in a job match.

In accordance with her model, Schönberg �nds little evidence of asymmetric learning. Her

empirical work focuses only on white male workers, abstracting away from the implications

of employer learning for statistical discrimination. She �nds that only white college educated

job leavers are negatively selected on the basis of AFQT score, and that adverse selection is

driven by job-to-unemployment transitions, which she contends weakens the case for asym-

metric employer learning. Furthermore, Schönberg �nds that the impact of schooling on

wages decreases with experience and remains relatively constant with tenure. Consequently,

she concludes that learning in the market is largely symmetric.

Kahn (2013) extends Schönberg's framework to test whether job movers experience more

volatile wage patterns after a transition than do those who remain in place. Using the NLSY,

she considers di�erences between workers who enter a position during recessions as opposed

to economic expansions, with the idea that there is less variation in the ability of entrants

during recessions. She also uses variation in the amount of exposure an occupation has

outside the �rm, assuming that learning is more symmetric in more exposed occupations.

Kahn �nds that movers' wages are more volatile in the immediate aftermath of a transition
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than are the wages of those who remain in place. Also, the e�ects are larger for those who

enter a job during an economic expansion and for those in more insular occupations. These

features, she argues, are supportive of the asymmetric learning hypothesis. Perhaps more

applicable to this work, Kahn �nds evidence of adverse selection on the basis of AFQT and

years of education of movers in general and �nds these e�ects are stronger for occupations

that communicate less with the outside world. Again, she argues this evidence supports the

asymmetric learning model.

The alternate model Pinkston [2009] develops allows the precision of the signal that cur-

rent employers receive to increase with time, rather than imposing a discreet jump. He also

allows race to in�uence the impact of ability on workers' wage progressions. Furthermore,

Pinkston allows information about workers' productivity to be transmitted from incumbent

employers to new employers during job-to-job transitions. Consequently, he examines wage

dynamics over spells of continuous working as opposed to tenure, which Schönberg uses.

Additionally, Pinkston notes, as has earlier research, that length of working spell and expe-

rience may contain information about the quality of the job match and the productivity of

the worker. To address this issue, he uses the residuals from the regression of working spell

length on workers' career-average spell length, total duration of the current job, and indica-

tors for missing values of duration, as instrumental variables for working spell, and uses the

residuals from the regression of experience on potential experience to instrument for current

experience. Pinkston �nds that AFQT becomes a larger factor in wage determination as

working spell increases while the impact of race and education diminish with working spell.

Both features are suggestive of asymmetric information.

Since Pinkston [2009] considers the implication of asymmetric learning on wage develop-

ment, this study provides a natural extension of his model to examine evidence regarding
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job separation. Whereas Pinkston imposes an exogenous rate of job destruction in his model

for asymmetric learning, this work models and tests the implications of asymmetric learning

on the margin of job switches and layo�s.

Though Schönberg, [2007] also addresses job separation in her study of asymmetric em-

ployer learning, this work pushes past her analysis in a few key areas. Firstly, the model

developed here respects the gradual nature of the learning process, and allows information

to accumulate throughout job-to-job transitions. This �exibility allows me to formulate

theoretical predictions and empirical tests of the dynamics of worker selection on the basis

of easy and di�cult-to-observe characteristics with respect to experience and working spell

length. Secondly, while we both examine the implications of hard to observe characteristics

on mobility, I also develop and test predictions regarding the impact of the workers' reference

groups, conditional on individual AFQT scores, on the probability of job separation. Fur-

thermore, Farber and Gibbons (1996); Altonji and Pierret (2001); Lange (2007), Schönberg,

[2007] and Pinkston (2009) each use years of education to proxy for easily observable infor-

mation. However, there is wide variation quality of those years of education. Which college

an individual attends may provide more information about that person's cognitive ability

than the quantity of education obtained. Consequently, I incorporate college selectivity into

my analysis to construct more robust reference groups. Lastly, I provide a theoretical ra-

tionale for asymmetric information to impact selection in layo�s, and examine whether the

impact of AFQT score and reference group membership on job-to-unemployment transitions

di�ers between di�erent economic conditions.

Table B.1 illustrates this basic story. In general, those in panel B with lower AFQT

scores than the average person with same educational attainment at the same quality of

institution, experience a higher rate of job separation than those in panel A whose AFQT
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scores are higher than their reference groups' averages. This is true across reference groups

and separation types, with the exception of the less educated in job-to-job transitions.

Restricting attention to educational attainment doesn't tell a consistent learning story.

College graduates generally enjoy lower mobility rates than college attendees. Also, those

with high school diplomas and relatively low AFQT scores are more likely to enter unemploy-

ment, than are college attendees with lower AFQT scores than the average college attendee.

However, there are signi�cant di�erences in average AFQT across levels of education that

this table does not take into account.

Despite di�erences in average AFQT between those who attend competitive college as

opposed to noncompetitive schools, di�erences in mobility between these two groups is com-

pletely consistent with asymmetric employer learning. Across all categories, those who attend

competitive colleges are both more likely to switch �rms or move from employment to un-

employment than those who attend less competitive institutions. This surprising result �ts

perfectly in line with asymmetric employer learning. As Section 3 shows in more detail,

under asymmetric employer learning, outside �rms place more emphasis on this public sig-

nal of worker ability than do retaining �rms. This raises the outside o�ers for workers who

attend and graduate from competitive colleges, thus raising the probability that they will

be bid away to an outside �rm. Further, higher outside o�ers drive up the wages of workers

with relatively high public signals making their wages closer to their expected productivities.

Thus, there little room to bu�er against economic downturns, and in the event of recessions,

employers let go of these workers.
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2.3 Model

This section develops a model to demonstrate the implications of employer learning on the

selection of workers into mobility. It builds largely upon the model presented in Pinkston

[2009], which in turn builds upon models presented in Farber and Gibbons (1996) and Altonji

and Pierret (2001). Please see the Appendix for proofs of predictions.

2.3.1 Framework

Employers care about the productivity of their workers, which is composed of the worker's

underlying ability (µ) and the quality of the match between a given �rm and worker (ϕf ).

Each period, employers learn workers' �xed characteristics (m), a public signal (Rx where x

indexes experience), a private signal (Pf where f may stand for either the retaining �rm (r)

or the hiring �rm (h)), and the expected match quality for that period (E(ϕf )).

Before receiving a private signal, all �rms share a prior belief that a worker's expected

ability equals the average ability (m) of other workers with the same easily observable char-

acteristics. The public signal is analogous to a resumé, while the private signal is informed

initially by an interview and later by the daily activities of the employee during work hours.

Thus, the private signal to the outside �rm (Ph) is not subset of the information the retain-

ing �rm observes (Pr), which means that hiring �rms can pro�tably compete for workers

against better informed retaining �rms. With each signal, employers or perspective em-

ployers update their prior beliefs according to the value and precision of the signals they

receive.
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To allow the nesting of symmetric learning, workers and �rms must learn about each

possible match quality component equally, whether or not the worker is currently working

for a given employer. When discussing bidding, I will use E(ϕf ), because ϕf may change

over time within a match according to the economic climate. Firms and workers have an

expectation over ϕf , which is speci�c to the particular match, but after the bidding is settled

and wages set, the surrounding economic conditions are realized, and ϕf adjusts. This timing

is important when modeling layo�s under downward wage rigidity.

When workers �rst enter the market, they receive two o�ers and go to the highest bidder.

Each subsequent period, they continue to receive two o�ers, one from their retaining �rm

and one from an outside �rm. The �rms then bid on the worker as in a standard English

auction. The �rm with the highest bid gets the worker and pays him the highest bid of the

rival. The following assumptions provide more structure to the described model:

1. Unobserved ability of the worker, µ = m+ ε, where ε ∼ N(0, σε).

2. The private signal, Pr = µ+ τ where τ ∼ N(0,στ (t)), and ∂στ (t)
∂t < 0. t indexes tenure

throughout the period of continuous employment. For hiring employers t = 0, and for

current employers t > 0. στ (t) < στ (0) for all t > 0.

3. The public signal, Rx = µ+ ξ, where ξ ∼ N(0, σξ(x)), and
∂σξ(x)

∂x < 0. Here x indexes

experience.

4. Unobserved productivity, ρ = µ+ϕ, where ϕ ∼ N(0, σϕ) is the match quality between

the worker and the �rm. Firms' and workers' expectation of match quality during the

bidding process E(ϕ) ∼ N(ϕ, σEϕ).
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5. Errors are orthogonal to one another.

The optimal bids are precision weighted averages of the signals employers receive and the

expected ability of workers with the same education and of the same race. In this model, the

di�erence between the current and outside employer is that the current employer receives

a more precise signal of their workers' productivity than do outside �rms (στ (t) < στ (0)

for all t > 0). Assuming continuousness in the bidding process, the openness of an English

Auction allows each �rm to learn that the other �rm values the worker at least as much

as it does during the auction. Thus, the private signal receives double weight. Letting

W = σξ(x)στ (0) + στ (0)σε + 2σξ(x)σε and W ′ = σξ(x)στ (t) + στ (t)σε + 2σξ(x)σε, from

Milgrom and Weber (1982), the retaining �rm's optimal bid, (br), and the outside �rm's

optimal bid, (bh), are given below:

br = E[µ|Rx, Pr, Ph = Pr] =
σξ(x)στ (t)

W ′
m+

στ (t)σε
W ′

Rx +
2σξ(x)σε

W ′
Pr + E(ϕr) (2.1)

bh = E[µ|Rx, Pr = Ph, Ph] =
σξ(x)στ (0)

W
m+

στ (0)σε
W

Rx +
2σξ(x)σε

W
Ph + E(ϕh) (2.2)

Notice that if the retaining �rm's signal is more precise than that of the hiring �rm (if

στ (t)<στ (0)), the retaining �rm places relatively less weight on the reference group and

public information and relatively more weight on the private signal. Further, as the public

signals become more precise, the hiring �rm places less emphasis on their private signal in
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favor of the public information. Thus, if both �rms receive the same private signal, the

di�erences in weighting will likely lead to di�erent optimal bids.

It is important to note that because the valuation of the losing �rm is revealed during

the open auction, in the event that the outside �rm wins the auction, it also captures the

retaining �rm's private valuation of the worker. Consequently, information accumulates

throughout job-to-job transitions rather than resetting with each new employment spell. In

this way, the information acts less as speci�c human capital, as in Becker (1962), and is more

analogous to general human capital. However, if the worker is forced to endure a period of

unemployment between spells, the market loses the accumulated private information.

Under symmetric learning, the optimal bids take a very similar form, though in this

special case all signals are public. The optimal bid of the retaining �rm is the weighted

average of the prior belief and the public signal of the worker's ability, plus the expected

quality of the match. Again, employers weigh the signal and prior belief in accordance to

the relative precision of each. Thus, the optimal bids of the retaining �rm (br) and outside

�rm (bh) are respectively shown in equations 2.3 and 2.4:

br = E[µ|Rx] + ϕr =
σξ(x)

σξ(x) + σε
m+

σε
σξ(x) + σε

Rx + E(ϕr) (2.3)

bh = E[µ|Rx] + ϕh =
σξ(x)

σξ(x) + σε
m+

σε
σξ(x) + σε

Rx + E(ϕh) (2.4)

Notice that if employers learn about workers' true ability over time, the variance of the

public signal (σξ(x)) decreases. Thus, employers place less weight on their prior belief and

more weight on the public signal.
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2.3.2 Job Switches

Assuming each �rm plays its optimal strategy, the probability that a worker switches

�rms (P (J)) is equal to the probability that the outside �rm has a higher optimal bid

than the retaining �rm.1 The di�erences between �rms in the precision and weighting of

private information provides clear predictions of selection on the basis of both hard and

easy-to-observe worker characteristics. After some algebra, and allowing ψJ to stand for the

composite error term (including the di�erence in match quality), the di�erence between the

hiring and retaining �rms' optimal bids can be written as:2 3

P (J) = P [bh − br > 0] = P
{
ψJ < σξ(x)[στ (0)− στ (t)](m− µ)

}
(2.5)

Because a current employer has a clearer view of a worker's underlying ability, the retaining

�rm places more emphasis on it than do other �rms. Therefore, even if the current and

prospective employers receive equivalent relatively high private signals, the weighting will

lead the current employer to have a higher optimal bid. Incorporating the normality and

orthogonality assumptions above and allowing σψj to stand for the variance of ψJ , the

derivative of equation 2.5 with respect to ability (µ) provides the following:4

1J references job-to-job transitions.
2ψJ ≡ E(ϕr)−E(ϕh)− 2

WW ′ ((σεστ (t) +σξ(x)στ (t) + 2σεσξ(x))σεσξ(x)τh− (σεστ (0) +σξ(x)στ (0) +

2σεσξ(x))σεσξ(x)τr + σ2
ε σξ(x)(στ (0)− στ (t))ξ).

3Please see Appendix H for algebra.
4σψJ

= var(ψJ ) = 2σEϕ + 4
W2W ′2

(W ′2σ2
ε σξ(x)2στ (0) + W2σ2

ε σξ(x)2στ (t) + σ4
ε σξ(x)2(στ (0) −

στ (t))2σξ(x)), and σEϕ = var(E(ϕr)) = var(E(ϕh)).
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∂P (J)

∂µ
= −φ


2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)](m− µ)


2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)] < 0 (2.6)

φ{.}, being the normal probability density function, is positive, as is each variance. Thus,

as long as the precision of the private signal shrinks the longer a worker is with the retaining

�rm (στ (0) > στ (t)), which is fundamental to asymmetric employer learning, equation 2.6

shows that as ability (µ) increases the probability of a move decreases, all else equal.

This �exible learning model allows for further predictions about the evolution of this

selection over time, speci�cally with regard to increases in length of continuous working spells

as opposed to experience in the market. Intuitively, it makes sense that selection on the basis

of ability would most pronounced when there are the greatest asymmetries in information

between employers. This occurs when a worker has been continuously working for a long

period of time, and information has accumulated with one employer and/or transferred to

another through the bidding process associated with a job-to-job move. More formally, the

cross-partial of
2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)](m− µ) with respect to working spell length

(t) and ability (µ) is negative.5 Inversely, these e�ects are smaller when there are small

asymmetries, such as when a worker has su�cient experience in the market for his ability to

be apparent to all prospective employers. Thus, the cross-partial of
2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)−

στ (t)](m− µ) with respect to experience (x) and ability (µ) is positive.6

While Schönberg (2007) notes the predicted adverse selection on the basis of underlying

ability for job switches, this work introduces an examination of selection into mobility on

5Please see Appendix A for proof. Note that this is not the cross partial of the probability of a job-to-job
move, but is rather the scaled regression coe�cient on the interaction between ability and working spell
length.

6Please see Appendix A for proof.
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the basis of reference group or easy to observe worker characteristics. The derivative of

equation 2.5 with respect to average ability of the reference group is unsurprisingly nearly

identical to equation 2.6, it simply has the opposite sign.

∂P (J)

∂m
= φ


2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)](m− µ)


2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)] > 0 (2.7)

From equation 2.7, conditional on individual ability, as the average of ability among work-

ers in the same reference group (m) increases, the probability of a job-to-job move should

increase. This is due to prospective employers applying more weight to public information

than does the current employer. I will not duplicate the above close examination of the dy-

namics of this selection on the basis of reference group with respect to working spell duration

and experience, due to the closeness of equations 2.6 and 2.7. The inverse of the dynamics

with regard to experience and working spell duration is also true. As working spell length

increases workers with high reference groups become even more likely to switch employers.7

Conversely, with increases in experience, those with high reference groups become less likely

to transfer �rms.8

Under symmetric learning, the probability of a job switch (P (J)) is again the probability

the outside �rm has a higher optimal bid than the retaining �rm. The primary di�erence

here is that there are no private signals. Thus the di�erence in bids shown in equation 2.8

simpli�es to equation 2.9.

P

{
σξ(x)

σξ(x) + σε
m+

σε
σξ(x) + σε

Rx + E(ϕh)−

[
σξ(x)

σξ(x) + σε
m+

σε
σξ(x) + σε

Rx + E(ϕr)

]
> 0

}
(2.8)

7See Appendix A
8See Appendix A for proof.
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P (J) = P [E(ϕh − ϕr) > 0] (2.9)

Notice that both individual ability and the average ability of the reference group are elimi-

nated from the equation, since the market uniformly weights the easy and di�cult-to-observe

information.

In order for selection of job switchers to persist under symmetric learning, change in

match quality must di�er with ability.9 Given the �nding in Kahn (2013) among others, that

job switching leads to large wage gains for young workers, job switching may be a desirable

outcome, at which high ability workers may be more adept. In which case, positive selection

on the basis of ability may be expected in under symmetric employer learning. This same

positive correlation between worker ability and di�erence in match quality would produce

ambiguity in the predictions regarding ability and the probability of job-to-job transitions

under asymmetric employer learning.

2.3.3 Layo�s

Asymmetric employer information may also provide meaningful predictions regarding

the probability of layo�s, as in Gibbons and Katz (1991b). Whereas Gibbons and Katz

(1991b) examine wage penalties of layo�s as opposed to plant closings, this study provides

further rationale for their �ndings by examining the easy and di�cult-to-observe worker

characteristics of those who are laid o�.

A voluntary move from employment to unemployment is very di�erent from the same

9This would be a violation of assumption 5 above.
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move were it unilaterally decided by the employer. There are no immediate predictions

from either employer learning model considering voluntary moves into unemployment, but

there are di�erent implications of asymmetric and symmetric learning regarding layo�s.

Unfortunately for researchers, it is often di�cult to discern quits from layo�s. It is helpful to

decompose the probability of a job-to-unemployment transition, P (JU), into the probability

of a layo�, P (L), and the probability of a quit P (Q). During recessions, Davis et al. (2006)

and Elsby et al. (2009) each show an increased in�ow of workers into unemployment during

recessions, which is driven by an increase in layo�s large enough to dominates a decrease

in the number of quits. Comparing the magnitude of selection e�ects on the probability of

a job-to-unemployment separations between economic recessions and expansions, provides

insight into how selection di�ers for layo�s and quits.

There is also no broadly accepted theoretical justi�cation for layo�s. It seems that

there exists a range of lower wages in which workers would prefer to work until they could

move to another �rm at a higher wage rather than enduring a period of unemployment.

Firms, it seems, should prefer keeping a worker as long as the wage is less than the worker's

productivity. Even with relatively large economic �uctuations it seems there is likely to be

overlap.

However, we observe nominal downward wage rigidity during economic downturns. Camp-

bell and Kamlani (1997) report that human resources personnel most commonly list fear of

the most productive workers leaving as their primary motivation for using layo�s rather than

wage reductions. This begs the question, why would �rms care which workers left, if each

worker is paid their marginal product of labor? Asymmetric information provides one such

rationale.

In the model presented above, the expected marginal pro�t from a given worker is his
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conditional expected productivity, net of his wage. In the case of symmetric learning, this

is the di�erence between the expected match quality at the retaining �rm and the expected

match quality at the �rm with the next highest bid.10

Under asymmetric learning, �rms will not necessarily keep their most productive workers,

but rather their most pro�table workers; those who outperform their observable characteris-

tics. The expected productivity is E[µ|Sx,Sf,vh] whereas the wage is, w = min{E[µ|Rx, Pr,

Ph = Pr], E[µ|Rx, Pr = Ph, Ph]}. Consequently, expected pro�ts on a given worker are given

below.

E[π|Rx, Pr, Ph] =
στ (0)στ (t)σξ(x)

Q
m+

στ (t)σξ(x)σε
Q

Ph +
στ (0)σξ(x)σε

Q
Pr +

στ (t)στ (0)σε
Q

Rx

+ E(ϕr)−
(
στ (0)σξ(x)

Q′ m+
στ (0)σε
Q′ Rx +

2σεσξ(x)

Q′ Ph + E(ϕh)

)
(2.10)

where Q = στ (0)στ (t)σξ(x) + στ (t)σξ(x)σε + στ (0)σξ(x)σε + στ (t)σξ(x)στ (0) and Q′ =

στ (0)σξ(x) + στ (0)σε + 2σεσξ(x). In expectation, the errors are zero leaving the simpler

equation 2.11, with a very similar form to equation 2.5.11

E {E [π|Rx, Pr, Ph]} =
σξ(x)σε

Q′Q

[
σξ(x)στ (0) (στ (0)− στ (t)) (µ−m)

]
. (2.11)

If στ (t) < στ (0) (the basic assumption of asymmetric learning), and µ > m, the �rm will

enjoy positive expected pro�ts on the worker. This surprising result comes from the fact

that retaining �rms act as a monopsonistic consumers of the information they acquire about

10Assuming continuousness in match quality, this di�erence goes to zero, the longer a worker is in the
market.
11See Appendix A
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the productivity of their workers.12 It is important for deriving predictions regarding layo�s

that their workers di�er in their pro�tability, and their pro�tability depends not only on

their productivity, but also upon the observable characteristics.

It is possible that �rms overbid on a worker after receiving overly favorable signals.

Subsequent signals hone in on the true productivity and the expected value is exceeded by

the previous wage. Ordinarily, such overbidding seems rare. However, in the context of

economic �uctuations, it is more understandable for wages to exceed expected productivity.

Allowing the match component (ϕr) of a workers' productivity to depend on the economic

climate provides a mechanism by which economic conditions impact pro�tability, if match

quality is realized after �rms determine wages. The realization of a lower than expected

match may lead wages to exceed productivity during economic downturns. This would be

particularly more likely for workers whose wages were already close to their productivity. In

the presence of downward wage rigidity, the probability that a �rm lays o� a worker is the

probability that the expected pro�ts from the worker (given the signals and revealed current

match quality) are negative. More formally, allowing ψL to be the composite error term, the

probability of a layo� P (L), is given by equation 2.12 below:

P (L) = P

{
ϕr − E(ϕh) + ψL >

σξ(x)σε

Q′Q

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
. (2.12)

Similar to job switches, equation 2.12 depends on the di�erence between ability and reference

group quality, the di�erence in precision of the employers' signals, and is scaled by the

12Theoretically, a �xed cost of dismissing workers may prevent in�nite hiring and dismissal and allow
economic pro�ts to be zero, even if there is heterogeneity in the di�erence between workers' wage and
their marginal product of labor. Adding such a cost complicates algebraic derivations, but does not change
predictions.
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precision of the public signal. Again imposing the normality and orthogonality assumptions

and taking the derivative with respect to ability gives the following:13

∂P (L)

∂µ
=− φ

{
σξ(x)σε

Q′Q√σψLϕ

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
σξ(x)σε

Q′Q√σψLϕ
σξ(x)στ (0) (στ (0)− στ (t)) < 0.

(2.13)

Equation 2.13 illustrates that as ability (µ) increases the probability of layo� should fall.

This is perfectly in line with Gibbons and Katz (1991b). Taking the derivative with respect

to mean reference group ability (m) gives perhaps a more surprising result:14

∂P (L)

∂m
=φ

{
σξ(x)σε

Q′Q√σψLϕ

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
σξ(x)σε

Q′Q√σψLϕ
σξ(x)στ (0) (στ (0)− στ (t)) > 0.

(2.14)

Conditional on individual ability, as workers' reference groups (m) are in general more pro-

ductive, the more likely they are to be laid o�. This is because, high reference group workers'

wages are bid higher by outside �rms, which place signi�cant weight on the reference group.

Again, the learning framework allows for further predictions concerning the evolution of

this selection over experience and working spell length. Just as with job-to-job transitions,

the cross partial of
σξ(x)σε

Q′Q√σψLϕ [σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)] with respect to working

spell length and ability is negative, and is positive with respect to working spell length and

reference group. This implies that with increases in working spell duration, the adverse

selection into unemployment on the basis of ability should become stronger (more negative),

13Please see Appendix A
14Please see Appendix A for proof.
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and the positive selection on the basis of reference group should also become stronger (more

positive). 15 The cross partial of
σξ(x)σε

Q′Q√σψLϕ [σξ(x)στ (0) (στ (0)− στ (t)) (m−µ)] with respect

to experience and ability is positive, and is negative with respect to experience and reference

group. Thus the selection on the basis of both ability and reference group weakens with

increases in experience. 16 The inverse is also true. For workers whose reference groups are

generally more capable than they are, increases in working spell length make it more likely

they will be laid o�. With respect to experience the selection of higher reference groups into

unemployment should become weaker (more negative) with increases in experience.

Given that such broad economic downturns are exogenous to an individual's ability, the

predictions regarding selection into job-to-unemployment separations during recessions may

be more insulated from possible correlation between ability and match quality than is the

case for job-to-job transitions.

2.4 Estimation

Equation 2.5 and equation 2.12 are conveniently structured for normal maximum like-

lihood (probit) estimation. While the model is structured to estimate the probability of

separation, I only observe the binary indicator for whether a separation occurred (s = t),

and whether it was a job-to-job (s = j) or job-to-unemployment separation. I further dis-

tinguish job-to-unemployment separations that occur during economic recessions (s = r) as

opposed to economic expansions (s = e) to explore selection into layo�s as opposed to quits.

Following earlier research, I use age-adjusted, AFQT percentile scores as the hard-to-

15Please see Appendix A for proof.
16Please see Appendix A for proof.
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observe, strong correlate with ability (µ). I model the reference group (m) is two ways. First,

I construct average adjusted AFQT scores by educational attainment,17 college selectivity,18

and race. However, this assumes that each easily observable characteristic in�uences mobility

decisions through the same mechanism and to the same degree. I explore the validity of this

restriction by also allowing each covariate to enter separately. For simplicity, I substitute

AFQT for m for the remainder of this discussion. Allowing y∗s to be the latent probability

of separation (where s indexes the separation type), I estimate the following including ex-

perience (Exp) and working spell duration (WrkSpl), which play a central role in learning

and human capital accumulation:19

y∗s = Φ
{
βs0 + βs1AFQT + βs2AFQT + βs3WrkSpl + βs4Exp

}
. (2.15)

From above, for both job-to-job moves (yj) and job-to-unemployment separations during

recessions (yr), the model predicts β1 < 0 and β2 > 0.

Since the model predicts each to change as spell length and experience increase, I also

estimate each variable with interaction terms with both length of spell and experience in

estimation. Inserting the appropriate AFQT scores for µ and m, leads to the following

equation to be estimated:

ys∗ = Φ {(βs + δsWrkSpl + γsExp)X} , (2.16)

where X is a vector containing AFQT , AFQT , WrkSpl, and Exp; βs is a vector of main

17Educational attainment is grouped by high school graduates with no college, those who have some
college, and those with at least a four year degree.
18I group by Barron's 7 bins of college competitiveness, and add a separate bin as an indicator for if the

institution was not listed on Barron's.
19All regressions also include an indicator for urbanicity of the labor market and a vector of year indicators.
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e�ect coe�cients; δs is a vector of coe�cients on interactions of each variable with working

spell duration; and γs is a vector of coe�cients on interactions of each variable with expe-

rience.20 Referring back to Section 3.2 and 3.3, the model predicts for both job switches

and layo�s all else equal, adverse selection on the basis of AFQT , and that selection should

become more negative with increases in working spell duration (δ1j , δ1r < 0), and should be-

come more positive with increases in experience (γ1j , γ1r < 0). Further, the model predicts

positive selection on the basis of AFQT , which should become stronger with increases in

length of working spell (δ2j , δ2r > 0), and weaker with increases in experience (γ2j , γ2r > 0).

2.5 Data

I use the National Longitudinal Survey of Youth of 1979 (NLSY79), since it contains the

dates of hiring and termination of each job respondents held and more importantly contains

workers' AFQT scores to proxy for the underlying ability of each worker. I end the sample

in 2000 to bring my estimates in line with the existing literature and to reduce issues related

to non-random attrition, which begins to become more problematic in subsequent years.

Women are excluded to minimize instances of job separation due to child rearing. The

remaining sample is composed of observations of 6,403 males over 22 years. Additionally, I

exclude 452 men for whom the NLSY79 contains no AFQT score. I also drop all individuals

for whom there is missing data for more than a quarter of the time periods. Following

Pinkston [2009], I further restrict the analysis to men who obtained at least a high school

degree, dropping 889 men who did not complete their secondary education.21

20Naturally, γs3 and δs4 are redundant and only one is included in estimation.
21This last restriction is signi�cant. The interpretation of the role of the reference group's mean AFQT

score di�ers depending on whether they are included in the sample. However, it seems that employer learning
may have a relatively smaller role in the determination of job separations in this population. It is possible that
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Since all individuals completed the AFQT in 1979, these scores are useful in demonstrat-

ing the composition of the population who choose di�erent levels of education. However,

I should note that the AFQT test was administered when participants were between the

ages of 14 and 22. Consequently, though the AFQT is meant to measure the aptitude of the

individual, scores may also re�ect some di�erences in the amount and quality of participants'

education received prior to the administration of the assessment. In order to correct at least

for developmental in�uences and the quantity of education available, the AFQT scores used

in the analysis are age adjusted following Altonji and Pierret (2001) and Pinkston (2009). I

subtract the average percentile score of all those who were the same age when they took the

test and divide by the standard deviation.

Table B.2 provides the average standardized AFQT percentile scores for workers of each

race with each level of education, which will proxy for the average ability of each worker's

reference group in one speci�cation. First, notice that as education increases so does the

average AFQT. This is as expected since we generally think that education is less cognitively

taxing on those with higher intellectual ability. Were the marginal bene�t to additional edu-

cation equal across people (an unlikely assumption), those for whom the cost was lower would

choose to obtain more. Second, notice that even within levels of educational attainment, the

mean AFQT percentile score di�ers signi�cantly across races. The mean AFQT score for

a Black, high-school graduate is approximately .7 standard deviations lower than that of

White high-school graduates. Among college graduates, the mean AFQT score for Black

men is more than a full standard deviation lower than the mean for White participants.

I construct reference AFQT using the NLSY79. Since the model assumes that workers'

the population who chose not to persist through high school may also choose not to persist in employment
as well.
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abilities, for which the AFQT proxies, is distributed normally around the mean of their

reference group, using the estimated mean provides ease of interpretation. Rather than

guessing the predicted sign of race and education within the analysis the model gives direct

predictions. However, this also imposes the restriction that each dimension of the reference

group a�ects the probability of separation in the same way. Consequently, I also conduct

the analysis using indicators for race and highest grade completed for education.

Race is �xed within the data, while educational attainment varies for many individuals

during the survey period. Since I am attempting to create a measure for the expectation

of employers, an argument can be made for using either a �xed measure of educational

attainment or allowing education to vary over time. I prefer to treat education as �xed.

First, for many individuals their education stays below 12 for several years and then jumps

to 12 when participants are much older. Secondly, the model treats education as a dimension

of a reference group and it seems likely that, employers may draw di�erent information from

a degree obtained later in life. Consequently, education is measured as the highest grade

completed at the age of 25. College competitiveness is measured according to the Barron's

index of degree granting institution or most recent school attended at the age of 25.

As mentioned, the NLSY79 records employment status covering this 22 year period of

observation. Analysis is restricted to periods in which the participants were working at least

30 hours in a week and to jobs initiated after the survey began. After matching employers

across years and NLSY job lines, using employer start and stop dates, this study constructs

measures of experience, tenure, working spell, and job separations.

Experience is measured as the number of quarters an individual reports working up to

the current period. Because employers may infer additional information about the worker

from experience, following Pinkston (2009), I use potential experience instead of actual
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experience for all single-step estimation and as an instrument for actual experience in the

control function estimation. Length of working spell is de�ned as the di�erence between

the current quarter and earliest date of hire over a period in which the respondent worked

without experiencing a job-to-unemployment separation. This avoids a reset each time a

participant reports switching in and out of the same employment spell or with job-to-job

moves. Each of these occur in the weekly arrays. Table B.3 provides summary statistics of

the work histories of those included in the sample.

As mentioned in Bratsberg and Terrell (1998), the tenure variable recorded in the NLSY79

is inconsistent in accounting for the start and stop week of jobs. Consequently, I generate

tenure using the di�erence between the start date and beginning date of each quarter in-

dividual reports working for a particular employer, subtracting periods the worker reports

being temporarily out of work or on active call in the military. Terminal tenure uses the date

the respondent reports leaving the employer. As noted in Light (2005), the young workers

in the NLSY79 are highly mobile. Table B.4 provides a rough distribution of the terminal

tenure length of job spells within the sample measured in quarters. Notice that roughly 55%

of all employment relationships end within the �rst year and 76% end within the �rst two

years. From the third year onward the drop-o� is less dramatic.

Job separations serve as the primary outcome variable, and following Schönberg [2007],

I decompose separations into job-to-job and job-to-unemployment transitions. Because it

seems that asymmetric learning may have di�erent predictions for job-to-unemployment

transitions between di�erent states of the economy, I further separate analysis on moves

to unemployment between economic expansions and contractions. Separations are taken

directly from the quarter in which respondents reported to leave their primary employer.

Separations in which the respondent reported working for a new employer during the same
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or next quarter without reporting to have looked for a job or spent more than a full quarter

out of the labor force, I de�ne as job-to-job moves. Separations during which the respondent

reports having looked for a job, I de�ne as job-to-unemployment transitions. Table B.5

provides this breakdown in job separations. Overall, it seems the quarterly termination

rate is nearly twelve percent with the majority of moves coming from job-to-unemployment

transitions.

Because job separations are public events, employers and workers reveal signi�cant infor-

mation whenever one occurs. Further, there is evidence that the information communicated

di�ers depending on the type of separation that occurs Gibbons and Katz (1991b). Accord-

ingly, I provide a brief examination of wage changes after a worker leaves a �rm. Table B.6

shows the di�erences in workers' average wages over the duration of the two jobs on either

end of a job separation. Ideally, I would want the beginning and ending wage, but the wage

information is recoded yearly for most of the sample and every two years from 1994 to 2000.

Since the separation data is quarterly, there is signi�cant measurement error and the table

should be interpreted accordingly.

The most immediate pattern seems to be that the wage gains in moving jobs seems more

bene�cial if the move does not include a period of unemployment. This is consistent with

the �Layo�s and Lemons� story presented in Gibbons and Katz (1991b). It is also consistent

with asymmetric employer learning. As employers learn about employees it is akin to the

accumulation of human capital. In a job to unemployment move, this information is lost and

workers are accordingly penalized through their wages. Secondly, the gains from mobility

are almost strictly increasing in AFQT conditional on education. The fact that those with

higher than average AFQT scores have higher wage growth is suggestive of employer learning

in general. However, looking at the di�erence in wage changes between job-to-job and job-
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to-unemployment transitions, there is no evidence that the relative bene�ts of job moves are

largest for those who have higher than average AFQT scores, as the asymmetric learning

model suggests to be the case.

2.6 Empirical Analysis

2.6.1 Primary Results

The most basic prediction of asymmetric employer learning is that conditional on reference

group, workers who experience job separations are adversely selected. Symmetric learning

o�ers no rationale for an individual's AFQT to impact the probability of job separations, be-

cause all employers (both current and hiring) equally weigh hard to observe characteristics.

Columns 3 and 4 of Table B.7 provide results from the most simple test of this hypothesis.

Both in explicitly conditioning on reference groups and implicitly doing so through mean

AFQT, I �nd that having one standard deviation higher AFQT score decreases the proba-

bility of job separation in a given quarter by 0.61 to 0.65 percentage points (p-values less

than .001). Given that the base probability of separating is about 12% within sample, this

is about a 5% increase in the probability of terminating an employment match.

Secondly, asymmetric learning predicts that conditional on the individual's AFQT, as the

mean AFQT of the reference group increases, the individual should be more likely to leave.

Similarly, easily observed correlates with productivity should be positively related to the

probability of separation. This is because the outside market places more weight on workers'

easily observed characteristics relative to the current employer. Table B.7 reveals exactly this

relationship. From column 3, the estimated e�ect of the average AFQT of the respondent's

reference group is positive, and statistically signi�cantly so (p-value<0.05). Perhaps more
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importantly, without conditioning on the individual's AFQT in the �rst column, the AFQT

of the reference group is signi�cantly negatively related to the likelihood of separation (p-

value<0.001). This suggests that while in general those with more desirable observable

characteristics enjoy job security, the retaining �rm allows (or encourages) those with lower

AFQT within each group to leave.

As the reference group depends on race, educational attainment, and college selectivity,

it is unsurprising that the inclusion of an individual's AFQT makes the relationship between

each easily observable covariate and the probability of moving more positive.22 From Column

4, the indicator for attending a competitive college increases the probability of separation

by 0.8 percentage points (p-value<0.001), whereas educational attainment is essential un-

related to the probability of job separation. Regarding race, while White respondents have

higher AFQT scores on average than Black respondents at each level of education, Hispanic

respondents have lower AFQT scores in general. However, indicators for White and Hispanic

are both positively correlated with job separations conditional on AFQT. Given that these

results come from estimating equations that do not account for di�erences in job separations,

they are more useful to provide a setting rather than direct evidence.

Table B.8 is split into two panels. Panel A provides estimates of the average partial

e�ects (APEs) of the individual's and the references group's AFQT on the probability of job-

to-job moves and job-to-unemployment separations both during economic expansions and

recessions. Panel B provides APEs for individual AFQT, educational attainment, college

competitiveness, race, length of work spell, and time in the labor market separately for

each type of move. The model provides the most clear predictions for job-to-job transitions

22Hispanic is the only covariate that has its point estimate fall. However, Hispanics have lower AFQT
scores than do Black respondents, meaning that this change is also in accordance with the change in the
point estimate of the summary measure.
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and job-to-unemployment separations during recessions. Accordingly, the majority of the

following discussion will center on these types of transitions.

The third and fourth columns of each panel reveal that the adverse selection on the

basis of an individual's AFQT score is driven by job-to-unemployment transitions, with

the strongest e�ects during recessions. I �nd that a one standard deviation increase in

AFQT conditional on observables is associated with a full percentage point decrease in the

probability of experiencing a move from employment to unemployment during a recession.

During economic expansions, the same increase in an individual's AFQT leads to around a 0.6

percentage point drop in the probability of separation. Each of these results are statistically

signi�cant with p-values less than 0.001, though they are not statistically di�erent from one

another. These results are suggestive of asymmetric learning. As in Gibbons and Katz

(1991b), the rationale here is that �rms layo� their least pro�table workers. During job-to-

job moves, though the the asymmetric learning hypothesis predicts similar adverse selection,

in keeping with Schönberg [2007], I �nd no evidence of negative selection for these types of

moves.

Neither Gibbons and Katz (1991b) nor Schönberg (2007) analyze the selection with regard

to reference group, conditional on individual ability, though asymmetric employer learning

clearly predicts positive selection into job switches and layo�s on the basis of easily observable

covariates. Consistent with the asymmetric learning model, the second and third column of

Panel A indicate positive selection into job-to-job and to a lesser degree job-to-unemployment

transitions during recessions. Being a member of a reference group with a one standard

deviation higher AFQT raises the probability of a job-to-job transition by 0.6 percentage

point or about 9 percent (p-value<0.001). The �nding that those with higher reference

groups are more likely to be bid away conditional on the individual's AFQT suggests that
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the outside market values the reference group more so than does the current employer.

The point estimate for reference group's AFQT is also positive for job-to-unemployment

transitions during recessions though not statistically signi�cantly so. Taken literally, this

positive point estimate indicates that those with better observables are more likely to move

from employment to unemployment during a recession, conditional on individual ability.

This suggests that there is less rent between workers' wages and marginal products, presum-

ably because the outside market bids up their wages on the basis of the reference group.

The resulting small bu�er cannot insulate these high-reference-group workers from general

productivity shocks.

Turning to the components of reference groups, White respondents are conditionally more

likely than Black respondents to experience a separation in each environment with the largest

point estimates coming from job-to-job transitions and job-to-unemployment separations

during recession. These are exactly where the asymmetric learning model predicts them to

be largest. While the estimated e�ect of being White is statistically signi�cant for job-to-job

moves, it is too noisy during recessions to draw meaningful inference. Hispanic respondents

on the other hand are conditionally less likely to be bid away by another �rm than are Black

respondents all else equal, though not signi�cantly so. Given that the average AFQT score for

Hispanic respondents is lower than for Black respondents, this is in accordance with theory.

On the other hand, during recessions, I estimate being Hispanic to lead to a 3 percentage

point higher probability of experiencing unemployment. The magnitude of this unpredicted

result raises questions as to whether asymmetric learning is driving the relationship between

race and job mobility. This more complicated relationship between race and mobility lead

me to prefer the more transparent approach of including each covariate separately for the

remainder of the analysis.
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Selection on the basis of education provides more consistent evidence supporting asym-

metric employer learning. Attending a competitive colleges raises the probability of sepa-

ration, all else equal. These results are driven by job switches and job-to-unemployment

separations during recessions. Attending a competitive, very competitive, highly compet-

itive, or most competitive undergraduate institution increases the probability of switching

jobs by about 0.4 percentage points and the probability of a job-to-unemployment transi-

tion during a recession by 1.4 percentage points. While statistically insigni�cant, the point

estimates indicate education is positively selected in job switches and job-to-unemployment

transitions during recessions, where the asymmetric learning model has the strongest predic-

tions. During economic expansions where the model has weaker predictions, this selection

is reversed. In unreported regressions excluding college selectivity, educational attainment

is statistically signi�cantly positive for both job-to-job and job-to-unemployment transitions

during recessions. These �ndings that more educated workers are more likely to switch jobs

and be laid o� further support the asymmetric learning hypothesis and seem to be a primary

driver of the results regarding reference group.

The time dynamics of the e�ects of AFQT and education provide additional suggestive

evidence of asymmetric learning. As employers learn, they should more accurately identify

and retain the most pro�table workers and layo� the least pro�table. Thus, these e�ects

should grow stronger over time. From the Pinkston's [2009] model, due to the bidding

structure, current employers reveal their accumulated information to outside �rms in the

event of a job-to-job transfer. Accordingly, this extension of the model predicts that as a

continuous working spell lengthens, all else equal, information asymmetries grow between

retaining and hiring �rms, and the e�ect of an individual's AFQT score should become

more powerful. In contrast, information is revealed to all the longer the participant is in
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the market (working or not), and the smaller these asymmetries should become. Thus, the

model predicts the selection to become weaker with increases in potential experience, all

else equal. In Table B.9, I include a full set of interactions with length of working spell and

potential experience to uncover these dynamics.

I �nd that in keeping with the asymmetric learning model's predictions, the e�ects of

AFQT seem to grow more negative with increases in the length of continuous working spells

and more positive with potential experience. Across all columns, the scaled coe�cients (SCs)

on the interactions of AFQT with spell length are negative, strengthening the selection on

AFQT with increases in length of working spell. However, the point estimates are noisy and

far from statistical signi�cance. As predicted, the coe�cients on the interactions between

potential experience and AFQT are positive across all columns, indicating that the selection

weakens, the longer the individual is in the market. Again, these dynamics are not statis-

tically signi�cantly di�erent from zero. Dynamics in the e�ect of AFQT on the probability

of separation regarding both increases in continuous working spell and increases in potential

experience are consistent with asymmetric employer learning, but the results are too noisy

to be very informative.

The dynamics regarding race are mixed, further questioning whether employer learning

is driving the relationship between race and mobility. Regarding education, again the results

are more strongly supportive of asymmetric employer learning. Scaled coe�cient estimates

on the interaction between college competitiveness and length of working spell are statisti-

cally signi�cantly positive in all columns, but for job-to-job moves. The interaction between

years of education and working spell duration is statistically signi�cantly positive across all

columns. These results indicate that the the selection into worker mobility on the basis of

educations is getting more positive the longer the individual is continuously working. These
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results are consistent with idea that outside �rms place more value on these easily observable

covariates than do current employers.

In contrast, the scaled coe�cient estimates on the interaction between college compet-

itiveness and quarters of potential experience are statistically signi�cantly negative in all

columns, except for job-to-job moves, and the interaction between years of education and

potential experience is statistically signi�cantly negative across all columns. These results

indicate that the selection on the basis of education weakens as potential experience increases

and the market learns more about true worker productivity.

2.6.2 Robustness Results

Unlike linear estimation, normal maximum likelihood estimation is inconsistent in the pres-

ence of heteroskedasticity ?. Accordingly, Table B.10 and Table B.11 present the estimated

APEs and scaled coe�cients respectively to compare with those using probit estimation. In

the model laid out above, the composite error term, ψ, depends on τ , ξ, and v. It follows

that var(ψ) is a function of the variance of the incumbent employer's private signal, στ (t),

and the variance of the public signal, σξ(x). Since στ (t) and σξ(x) are in turn functions of

working spell length and experience, the asymmetric employer learning model predicts the

conditional variance of the probability of a job-to-job transition to change with spell length

and experience as well.

Above, I model the error term of the binary model of job separations as a function of the

noise of the signals that each employer receives. Because the noise of the signals decreases

with experience and working spell length, I model the variance of that error term as:

ln (var(ψ)) = θ0 + θ1WrkSpl + θ2Exp. (2.17)
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The assumptions that
∂σξ(x)

∂x < 0, which is basic to employers learning gradually over time,

and that ∂στ (t)
∂t < 0, which is basic to asymmetric employer learning, imply that

∂σψ
∂x < 0

and
∂σψ
∂t < 0.23 In other words, asymmetric employer learning predicts that the conditional

variance of job-to-job transitions should decrease with experience and length of working spell.

I estimate the e�ect of working spell length and experience on the variance implicitly using

heteroskedastic probit estimation. Panel 2 of Table B.10 provides the estimated e�ects of

spell length and potential experience on the conditional variance. The estimated e�ects of

working spell duration and potential experience on the conditional variance large do not bear

out these predictions, though they are statistically signi�cant. Thus, it remains important

to examine the stability of the earlier �ndings under this alternate speci�cation.

Turning to the selection into job separation from Table B.10, the estimated APEs remain

virtually unchanged from those in Table B.8 using standard probit estimation. The main

results and inference hold, with a small change in that years of educational attainment

now reaches the 95% con�dence threshold in statistical signi�cance for job-to-job moves.

From Table B.11, the e�ects again remain largely stable with two key exceptions. First,

the interaction between AFQT and working spell duration becomes statistically signi�cantly

negative for job-to-unemployment separations during recessions, giving additional support

to the asymmetric learning hypothesis. Second, though they do not switch sign, the scaled

coe�cient estimates for the interaction between competitive college attendance and potential

experience become noisier and lose statistical signi�cance for separations in general and job-

to-unemployment during recession. In general, it is reassuring to see the results remain this

constant.

Pinkston [2009] expresses concern about possible endogeneity of experience and work

23Please see Appendix A, A, A, and A for proofs.
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spell duration. Theoretically, each contains information that employers may use to form their

initial expectations, which may bias the estimated e�ects of experience, working spell, and

their interactions. Consequently, he takes an instrumental variables approach akin to that

taken in Altonji and Shakotko (1985). However, since his model incorporates a public signal

it perhaps does not make sense to throw out all of this information. It seems that the bias

in the interaction terms are the main concern. Failing to control for the public information

contained in experience and working spell length may lead to bias in the estimated e�ects

of AFQT scores and reference group membership. Consequently, I use a control function

approach to try to control for the additional public information contained in experience

and spell length, while avoiding bias in the interaction terms. To clarify, I perform �rst

stage regressions of working spell of average working spell in the sample, number of time

observations and current job duration and experience on potential experience. I then interact

those residuals with each variable that is interacted with spell length and experience. To

account for the fact that the residuals are estimated, I bootstrap all standard errors over

500 repetitions. One bene�t of this control function approach is that the residuals account

for endogeneity in the interaction terms and provide an immediate statistical test for the

presence of endogeneity.

Table B.12, Table B.13, and Table B.14, provide the average partial e�ects (APEs), e�ects

on the conditional variance, and scaled coe�cients respectively from heteroskedastic normal

MLE using the control function approach described above. First, the APEs of the residuals

are generally signi�cant under either speci�cation, indicating the presence of endogeneity.

In both panels of Table B.12, the APEs of AFQT remain signi�cantly negative only for

job-to-unemployment transitions during economic expansions, though in no case do the

estimated e�ects change sign. The selection on education is more robust. Rather than college
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competitiveness carrying the predictive power, it shifts to years of education. For both job

switches and moves to unemployment during recessions, years of education is positively and

signi�cantly selected, while college competitiveness only approaches statistical signi�cance

for job-to-job transitions.

As before, Table B.13 reveals that contrary to prediction, the conditional variance largely

increases in both experience and working spell length. It is actually increases in the control

function residuals that cause the conditional variance to shrink.

From Table B.14, the scaled coe�cient estimates of the interaction between AFQT and

working spell length is no longer strictly negative across types of job separations, nor are the

scaled coe�cients of the interaction between AFQT and experience strictly positive moving

across columns. However, none are statistically signi�cant either, leaving the dynamics of

AFQT uninformative regarding working spell duration and experience. The dynamics are

more consistent regarding education. From Table B.14, a similar pattern as was shown in

Table B.9 and Table B.11 persists. Across all columns, as working spell lengthens, educa-

tional attainment becomes more positively selected. Also consistent with theory, educational

attainment becomes less important as experience increases. Regarding college selectivity,

while the coe�cients on the interaction with experience loses statistical signi�cance, the

interactions with working spell length continue to be positive in general and for job-to-

unemployment transitions. The fact that the more educated workers from more selective

school are positively selected into mobility, and that this e�ect strengthens the longer the

worker is continuously employed and weakens with additional experience, suggests that other

�rms value these signals more so than does the current employer. The sensitivity of the APE

of AFQT, as well as the lack of dynamics regarding AFQT indicate that perhaps there are

other aspects of productivity, about which employers are primarily learning.
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2.7 Conclusion

To summarize, I �nd that consistent with asymmetric learning, those with higher levels of

education, conditional on individual ability are more likely to be laid o� or bid away by

another �rm. This selection strengthens as continuous working spells increases and weakens

with experience. These results are robust to alternate speci�cations. To my knowledge

these are novel empirical facts that are di�cult to explain in the absence of private employer

learning.

I only �nd evidence of adverse selection on the basis of AFQT in job-to-unemployment

separations. In keeping with the asymmetric learning hypothesis, the magnitude of this

e�ect is largest during recessions, though in accounting for endogeneity of experience and

working spell duration the magnitude of this e�ect drops and inference becomes tenuous.

The evidence of on these e�ects strengthening with working spell length is sensitive, and the

dynamics with regard to experience are merely suggestive. Taken cumulatively, the evidence

for asymmetric employer learning is strong and consistent regarding workers' education and

merely suggestive from the analysis of AFQT. Perhaps this is indicative that there are more

dimensions of productivity about which employers are learning, and further work is needed

to explore what those might be.
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Chapter 3

Handling Correlations between

Covariates and Random Slopes in

Multilevel Models

3.1 Introduction

We consider linear regression models for clustered data that include cluster-speci�c random

intercepts and slopes. Such models are called multilevel models, mixed models, random-

coe�cient models, or hierarchical linear models. If the models are viewed as �structural

models,� the perspective taken in this paper, the regression coe�cients represent structural

or causal parameters, and the error terms represent the e�ects of omitted covariates. If

there are omitted confounders that are correlated with included covariates, then the error

terms are correlated with the included covariates. These correlations lead to omitted-variable

bias. This paper focuses on estimation methods that avoid bias due to omitted cluster-level

confounders, also referred to as �cluster-level endogeneity.� An alternative view of models,

not taken here, is that regression coe�cients merely represent associations between included

variables, or linear projections in the case of linear models, in which case the error terms are

orthogonal to the covariates by construction (see Spanos (2006) for a discussion of �structural�
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versus �statistical� models).

Research on addressing cluster-level endogeneity in multilevel models has traditionally

been con�ned to correlations between unit-level covariates (i.e., covariates that vary over

units) and random intercepts that vary over clusters in which units are nested. This con-

stitutes a type of �cluster-level� endogeneity as it involves correlation with a cluster-level

random error term. For instance, in estimating the e�ect of Catholic schooling on stu-

dent achievement controlling for student socioeconomic status (SES), one may worry that

school-level omitted variables, such as school resources, may be correlated with SES. Left

unaddressed, this endogenity may lead us to mis-attribute the impacts of these omitted vari-

ables to the e�ect of SES. This bias may in turn spill over to other coe�cients. To address

this type of endogeneity, ? shows that consistent estimators of the coe�cients of unit-level

covariates can be obtained by a �xed-e�ects approach. However, with standard �xed-e�ects

estimators, coe�cients of cluster-level covariates (i.e., covariates that only vary over clus-

ters) cannot be estimated. The Hausman and Taylor (1981) instrumental-variable estimator

resolves this limitation and is consistent for the coe�cients of both unit- and cluster-level

covariates under appropriate assumptions (see Castellano et al., 2014).

Endogeneity in the form of correlations between unit-level covariates and random slopes

varying over clusters may also arise. Referring back to the Catholic schooling example,

when controlling for students' SES, the slope of SES (or SES achievement gradient) may

vary between schools, due to interactions between SES and omitted school-level covariates,

such as school resources. If the omitted variables are negatively correlated with the SES

achievement gradient, then the random slopes will be negatively correlated with SES.

Remarkably, such endogeneity is rarely considered. One exception is Frees (2004) who

extends the Mundlak approach to handle random slopes. Another is Wooldridge (2005)
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who shows under seemingly benign conditions that traditional �xed-e�ects estimation of

random-intercept models is robust against correlations between unit-level covariates and

random slopes. However, neither of these approaches permits estimation of the coe�cients

of cluster-level covariates even if the covariates are exogenous (i.e., not endogenous). This

limitation is overcome by Kim and Frees (2007) who use generalized method of moments

estimation to extend the Hausman-Taylor approach to multilevel models with random slopes.

However, their method is di�cult to implement, making the �xed-e�ects approach more

feasible in practice.

Unfortunately, a key assumption required for the �xed-e�ects approach may be violated

in important applications. Speci�cally, the within-cluster variance of a unit-level covariate

must be uncorrelated with the random slope of that covariate, which we refer to as the

�uncorrelated variance assumption� throughout this paper. Turning back to the Catholic

schooling example, it is possible that more diverse schools (schools with high variance of

SES) may be better equipped to mitigate the e�ects of SES (lower the SES achievement

gradient) than schools that are more homogeneous (schools with low variance of SES). Such

a situation would directly violate the uncorrelated variance assumption.

In this paper, we investigate estimation of the coe�cients of unit-level and cluster-level

covariates in multilevel models in the presence of two sources of endogeneity; (nonzero) cor-

relations between unit-level covariates and both the random intercept and random slopes.

Throughout, we assume that covariates are uncorrelated with the unit-level error term and

that cluster-level covariates are uncorrelated with the random intercepts and random slopes.

We propose a simple �per-cluster regression� (PC) approach that is unbiased and consistent

for coe�cients for both unit-level and cluster-level covariates under both forms of cluster-

level endogeneity and violation of the uncorrelated variance assumption. We contrast its
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performance to the �standard" random-e�ects (RE) estimator and what we call the �aug-

mented �xed-e�ects� (FE+) approach, which extends the �xed-e�ects approach to provide

estimates of the coe�cients of cluster-level covariates. In Section 3.2, we �rst introduce

our motivating empirical example and speci�c model of interest and then present our gen-

eral model. In Section 3.3, we discuss the traditional random- and �xed-e�ects estimators

and their conditions for unbiasedness. In Section 3.4, we introduce new estimators, namely

the augmented �xed-e�ects estimator and the per-cluster estimator, and show under what

assumptions they are unbiased. We provide conditions for consistency for all four estima-

tors in Appendix I. All estimators are applied to a dataset in Section 3.5, and Section 3.6

investigates performance of the estimators using a simulation study.

3.2 Motivation and Multilevel Model

3.2.1 Motivating Example and Speci�c Model

As a motivating example, we consider the e�ect of private schooling on student achievement.

We use the Raudenbush and Bryk (2002) data from the 1982 High School and Beyond

(HSB) Survey because it is familiar in education and it is in the public domain, allowing us

to provide data and commands for all estimators in Appendix I.

This two-level dataset provides us with an estimation sample of 7,185 students (units)

nested in 160 schools (clusters), 70 of which are Catholic (private), and the remaining of

which are public. The number of observations per school ranges from 14 to 67 students

(Mean=45, SD=12). We use a mathematics standardized test score for student i in school j

as our response variable, yij , which has a mean of 12.75 and a standard deviation of 6.88. Our
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primary variables of interest are wj , a binary indicator for whether school j is Catholic, and

xij , a continuous index of students' socioeconomic status, composed of parental education,

parental occupation, and parental income. This index has a mean of zero and a standard

deviation of 0.78.

We write the model using a two-stage formulation, similar to that used in Raudenbush

and Bryk (2002). The �rst stage is the Level-1 model:

yij = η0j + η1jxij + εij . (3.1)

This is a simple regression of the student mathematics test scores yij on their socio-economic

status xij , where the intercept η0j and slope η1j can vary between schools, as indicated by

the j subscript. Each student's test score can deviate from the school-speci�c regression line

by a random error term εij .

The school-speci�c intercepts and slopes become (unobservable) outcomes in the Level-2

models:

η0j = γ0 + γ1wj + u0jη1j = β1 + β2wj + u1j .

The mean intercept and slope of SES, for the population of schools, depend on whether

the schools are Catholic or public (wj). The intercepts γ0 and β1 in these models therefore

represent the population means of the intercepts and slopes of SES for public schools, whereas

the slopes γ1 and β2 represent the di�erences in population means of the intercepts and slopes

between Catholic and private schools, respectively. The Level-2 models have errors u0j and

u1j to allow each school's intercept and slope to vary within the sub-populations of Catholic

and private schools. Assumptions regarding the error terms are discussed in subsequent

sections.
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Substituting the Level-2 models into the Level-1 model, we obtain the reduced form of

the model:

yij = γ0 + γ1wj + β1xij + β2wjxij + u1jxij + u0j + εij . (3.2)

We see that β2 is the coe�cient of a cross-level interaction between the student-level covariate

xij and the school-level covariate wj .

In this setting, it is likely that there are omitted school-level variables that a�ect student

achievement, and hence enter the random intercept u0j , and are correlated with student

SES. If these omitted school-level variables also interact with student SES, then they enter

the random slope u1j , and the slope is then correlated with SES. Ignoring such endogeneity

may lead to bias when estimating the coe�cients of this model.

3.2.2 General Multilevel Model

The general model we consider in this paper is for two-level data, such as the HSB data

described above. In the cross-sectional case, units (Level 1) are typically individuals nested

within clusters (Level 2), such as schools, hospitals, or neighborhoods. In the longitudinal

case, units refer to measurement occasions nested within individuals, who constitute the

�clusters.� Clusters are indexed j, with j = 1, . . . , J , and units are indexed ij, with i =

1, . . . , nj . The general model includes unit-level covariates that vary between units within

clusters (and between clusters), as well as cluster-level covariates that vary between clusters

but are constant within the same cluster. Same-level and cross-level interactions may also be

included, where cross-level interactions are unit-level covariates. Some unit-level covariates

may have random slopes.
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The general model can be written as

yj = Wjγ + Xjβ + Zjuj + εj . (3.3)

Here yj = (y1j , . . . , ynjj)
′ is the vector of responses for cluster j, the nj × (P + 1) matrix

Wj includes all P cluster-level covariates and its �rst column is a vector of ones, 1nj , for the

intercept; the nj×R matrix Xj includes all R unit-level covariates; the nj× (R1 +1) matrix

Zj includes all R1 ≤ R unit-level covariates in Xj that have random slopes and its �rst

column is 1nj for the random intercept. Finally, the uj are random e�ects or cluster-level

error terms (one random intercept and R1 random slopes) and the εj are unit-level error

terms. The uj are assumed to be independent of the εj , and the clusters are independent

in the sense that error terms as well as covariates are independent across clusters. Other

assumptions made regarding uj and εj depend on what estimators are used and are discussed

in Sections 3.3 and 3.4. Sometimes all unit-level covariates have random slopes, so that

R1 = R, but typically R1 < R, so that the slopes of some unit-level covariates do not vary

between clusters, giving rise to the term �mixed-e�ects� (mixed random and ��xed� e�ects)

model.

For the speci�c model for the HSB data in Equation 3.2, P = 1 so that Wj has nj

rows and P + 1 = 2 columns, with each row equal to (1, wj). The corresponding coe�cients

are γ = (γ0, γ1)′. The matrix of R = 2 unit-level covariates is Xj = (xj wjxj), where

xj = (x1j , . . . , xnjj)
′, and β = (β1, β2)′. The �rst unit-level covariate has a random slope,

so R1 = 1, Zj = (1nj xj), and uj = (u0j , u1j)
′. Finally, the unit-level errors are εj =

(ε1j , . . . , εnjj)
′.

The model in Equation 3.3 can be expressed more compactly by combining all covariates
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(i.e., Xj and Wj) into a single matrix Vj and likewise their corresponding coe�cients (β

and γ) into a single vector δ:

yj = Vjδ + Zjuj + εj . (3.4)

It will often be convenient to stack the covariates for all J clusters in the matrix V.

Writing this general model using a two-stage formulation, analogous to Equations 3.1

and 3.2, requires additional notation, so we defer this until Section 3.4.2 where this formu-

lation is useful for explaining the �per cluster regression� (PC) approach.

3.3 Standard Estimators and Conditions for Unbiased-

ness

3.3.1 Exogeneity and Endogeneity

Throughout this paper, we assume unit-level exogeneity or strict exogeneity given the random

e�ects,

E
(
εj |Vj ,uj

)
= 0. (3.5)

It follows that E
(
εj |Vj

)
= 0 and E

(
ε′jVj

)
= 0 and that each element of εj is uncorrelated

with each element of the covariate vectors.

The assumption of cluster-level exogeneity can be expressed as

E
(
uj |Vj

)
= 0. (3.6)

When this assumption is violated, there is cluster-level endogeneity.
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We assume that cluster-level exogeneity holds for the cluster-level covariates

E
(
uj |Wj

)
= 0 (3.7)

and discuss the problem that unit-level covariates may be cluster-level endogenous,

E
(
uj |Xj

)
6= 0.

Cluster-level endogeneity occcurs if, for example, E
(
X′j1nju0j

)
6= 0 or in other words, if the

cluster sums or means of the unit-level covariates are correlated with the random intercepts.

In this paper, we consider random-e�ects, �augmented �xed-e�ects,� and (our proposed)

�per-cluster regression� approaches for estimating the model in Equation 3.2 when Xj is

correlated with both the random intercept u0j and the random slopes urj , r = 1, . . . , R1.

We describe each of these estimators and under which conditions they produce unbiased

estimates of the regression coe�cients δ = (β′,γ′)′ in the following subsections.

3.3.2 Random-e�ects estimators

For random-e�ects (RE) estimators, the random e�ects uj are assumed to have zero means

and covariance matrix Ψ given the covariates. They are uncorrelated across clusters, and

they are also uncorrelated with the unit-level error term εj . The elements εij of εj have zero

means and variance θ given the covariates, and are mutually uncorrelated.

It follows from these assumptions that the mean and covariance structure of yj given Vj

becomes

E(yj |Vj) = Vjδ,
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and

Σj ≡ Var(yj |Vj) = ZjΨZ′j + θInj . (3.8)

Under the exogeneity assumptions in Equations 3.5 and 3.6, unbiased and consistent

estimators for the parameters of the model in Equation 3.4 can be obtained using maximum

likelihood (ML), restricted maximum likelihood (REML), or feasible generalized least squares

(FGLS). The FGLS estimator can be expressed in closed form as

δ̂RE = δ +

J−1
J∑
j=1

V′jΣ̂
−1
j Vj

−1J−1
J∑
j=1

V′jΣ̂
−1
j (Zjuj + εj)

 , (3.9)

where Σ̂j is an estimator of Σj , obtained by substituting estimators of Ψ and θ into Equa-

tion 3.8, and
∑
j V′jΣ̂

−1
j Vj is assumed to be nonsingular with probability 1.

The conditional expectation of the GLS estimator δ̂GLS (assuming Σ is known), given

V, is

E(δ̂GLS|V) = δ +

J−1
J∑
j=1

V′jΣ
−1
j Vj

−1J−1
J∑
j=1

V′jΣ
−1
j [ZjE(uj |V) + E(εj |V)]

 .

Note that E(εj |V) = E(εj |Vj) and E(uj |V) = E(uj |Vj) since clusters are assumed to be

independent. Furthermore, unit-level exogeneity implies that E(εj |Vj) = 0 and cluster-level

exogeneity implies that E(uj |Vj) = 0. Conditional unbiasedness, E(δ̂GLS|V) = δ, hence

follows, and using the law of iterated expectations, δ̂GLS is (unconditionally) unbiased,

E(δ̂GLS) = δ.

Unfortunately, due to the nonlinear nature of the FGLS estimator, this unbiasedness

result does not automatically apply when estimates Σ̂j are plugged in for Σj . Under the
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above assumptions, a su�cient assumption for unbiasedness, E(δ̂FGLS) = δ, is that the

error terms have symmetric distributions Kakwani (1967). This result also applies to ML

and REML, given that these estimators can be expressed as iterative versions of the FGLS

estimator Don and Magnus (1980). Note that for the empirical example and simulation

study, we use REML, following the tradition of its use in the education research literature.

3.3.3 Fixed-e�ects estimators

In econometrics, the term �xed-e�ects (FE) estimator refers to an estimator that does not

rely on cluster-level exogeneity, and we adopt this terminology here. Some of the estimators

can be derived by treating the random e�ects as �xed and others by eliminating the random

e�ects, but in either case the e�ects are typically viewed as random. The traditional FE

approaches have been developed for random-intercept models, with Zj = 1nj and uj = u0j ,

to handle violation of the exogeneity assumption E(u0j |Vj) = 0 ?.

We de�ne the FE estimator in terms of the de-meaning (or group-mean-centering) trans-

formation Qj ≡ Inj − 1nj (1
′
nj

1nj )
−11′nj , where Qj1nj = 0, and de�ne ÿj ≡ Qjyj ,

Ẍj ≡ QjXj , Z̈j ≡ QjZj , and ε̈j ≡ Qjεj . Pre-multiplying Equation 3.3 by Qj , the

de-meaned model becomes

ÿj = Ẍjβ + Z̈juj + ε̈j ,

Note that Ẅjγ = 0nj because the columns of Wj are constant. The �rst column of Z̈j

is 0nj because the �rst column of Zj is 1nj , so that the random part of the model does

not depend on u0j . The FE estimator can be obtained by applying a pooled OLS (POLS)
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estimator (pooling over the Level-2 units) to the de-meaned model, giving

β̂FE = β +

J−1
J∑
j=1

Ẍ′jẌj

−1J−1
J∑
j=1

Ẍ′j(Z̈juj + ε̈j)

 ,

where
∑
j Ẍ′jẌj is assumed to be nonsingular with probability 1.

To derive the conditions for unbiasedness, stack the Ẍj for each cluster j in Ẍ. Consider

the conditional expectation of β̂FE, given Ẍ,

E(β̂FE|Ẍ) = β +

J−1
J∑
j=1

Ẍ′jẌj

−1J−1
J∑
j=1

Ẍ′j [Z̈jE(uj |Ẍ) + E(ε̈j |Ẍ)]

 . (3.10)

Keep in mind that Z̈j is a subset of Ẍj , and note that E(uj |Ẍ) = E(uj |Ẍj) and E(ε̈j |Ẍ) =

E(ε̈j |Ẍj) because clusters are independent. Furthermore, unit-level exogeneity implies that

E(ε̈j |Ẍj) = 0, and cluster-level exogeneity implies that E(uj |Ẍj) = 0, so β̂FE is condition-

ally unbiased, E(β̂FE|Ẍ) = β. Finally, using the law of iterated expectations, it follows that

β̂FE is (unconditionally) unbiased, E(β̂FE) = β.

(Wooldridge, 2005, 2010, Sec.11.7.3) considers FE estimation for a special case of Equa-

tion 3.3 without cluster-level covariates Wj . He derives the conditions required for consis-

tency of the traditional FE estimator, and we brie�y derive the analogous results for the

general model in Equation 3.3 in Appendix I. The condition for consistency, plim β̂FE = β,

is

E(Ẍ′jZ̈juj) = 0. (3.11)

As pointed out by (Wooldridge, 2010, p. 382), this assumption allows uj to be correlated

with the �permanent" components of Xj , but not the �idiosyncratic" components Ẍj . Con-
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dition 3.11 is implied by the more easily interpretable condition for unbiasedness,

E(uj |Ẍj) = 0,

because E(Ẍ′jZ̈juj |Ẍj) = Ẍ′jZ̈jE(uj |Ẍj).

We now look at the assumption in Equation 3.11, which is required for consistency and

unbiasedness, in more detail for our speci�c model for the empirical example in Equation 3.2

to understand how it can be violated. In that model, Ẍj = (ẍj wj ẍj) and Z̈j = (0nj ẍj).

The condition can therefore be written as two non-trivial equations,

E


 ẍ′j

wj ẍ
′
j

 ẍju1j

 = 0.

Concentrating on the �rst equation, we obtain

E(ẍ′j ẍju1j) = E

 nj∑
i=1

ẍ2
ij

u1j

 = (nj − 1)E(s2
ju1j) = 0, (3.12)

where s2
j is the sample variance of xij for cluster j. In other words, the condition is violated

if the within-cluster variance of xij is correlated with the random slope u1j . In our empirical

example, it seems reasonable that more diverse schools (larger s2
j ) may be better suited to

mitigate the e�ects of SES (smaller u1j) than more homogeneous schools. We will therefore

consider the problem of non-zero correlation between the within-cluster variance of xij and its

random slope u1j and will refer to Equation 3.11 as the �uncorrelated variance assumption.�

Note, however, that Equation 3.11 can also be violated in other ways. For instance, in

longitudinal data, the covariate value at the initial time-point, x1j , may be correlated with
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u1j .

3.4 New Estimators and Conditions for Unbiasedness

3.4.1 Augmented �xed-e�ects estimation

The FE approach does not permit estimation of the coe�cients, γ, of any cluster-level

covariates, but it can be �augmented� so that it does. The augmented �xed-e�ects (FE+)

estimator we use is similar to the estimator proposed by Hausman and Taylor (1981) to

estimate e�ects of cluster-level covariates for two-level models with only random intercepts�

and no random slopes. As pointed out by Castellano et al. (2014), the estimator discussed

here has been invented and re-invented several times (e.g., Wiley, 1975; Raudenbush and

Willms, 1995; Ballou et al., 2004). However, the conditions for unbiasedness for random-

coe�cient models have not previously been considered.

Step 1: Estimation of β

In the �rst step, β (coe�cients for all unit-level covariates) is estimated by FE. The estimator

is unbiased under the uncorrelated variance assumption in Equation 3.11 and the unit-level

exogeneity assumption in Equation 3.5.

Step 2: Estimation of γ

In the second step, we obtain quasi-residuals rj ,

rj ≡ yj −Xjβ̂FE,
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and estimate γ (coe�cients for the cluster-level covariates) in the regression of rj on Wj by

POLS. Substituting Equation 3.3 for yj , we obtain

rj = Wjγ + Xj(β − β̂FE) + Zjuj + εj .

The POLS estimator of γ can be expressed as

γ̂ = γ +

J−1
J∑
j=1

W′
jWj

−1J−1
J∑
j=1

W′
j

[
Xj(β − β̂FE) + Zjuj + εj

] , (3.13)

where
∑
j W′

jWj is assumed to be nonsingular with probability 1.

The conditional expectation of the POLS estimator γ̂ given V becomes

E(γ̂|V) =γ +

J−1
J∑
j=1

W′
jWj

−1

J−1
J∑
j=1

W′
j

{
Xj [β − E(β̂FE|V)] + ZjE(uj |V) + E(εj |V)

} .

Conditional unbiasedness, E(γ̂|V) = γ, follows since (i) E(β̂FE|V)] = β under the un-

correlated variance assumption, (ii) E(uj |V) = E(uj |Vj) and E(εj |V) = E(εj |Vj) due to

independence of the clusters, and (iii) E(uj |Vj) = 0 and E(εj |Vj) = 0 under the exogene-

ity assumptions. Using the law of iterated expectations, we �nally obtain (unconditional)

unbiasedness E(γ̂) = γ.

To implement the FE+ approach for the empirical example, the two steps are: (1) esti-

mate β1 and β2 by FE and (2) regress quasi-residuals, rij ≡ yij − β̂1FExij − β̂2FEwjxij , on

wj to obtain estimates of γ0 and γ1.
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3.4.2 Per-cluster regression estimation

In this section, we de�ne our proposed per-cluster regression estimator, or, in shorthand,

the �PC� estimator. This estimator is best understood by using two-stage formulation (see

Section 2.1) of the general model in Equation 3.3, which requires some new notation.

The columns of the matrix Xj of unit-level covariates can be ordered so that the matrix

can be decomposed as Xj = (X1j X2j X3j), where X1j are the R1 unit-level covariates that

have random slopes, so that Zj = (1nj X1j), X2j are R2 cross-level interactions between

unit-level covariates in X1j and cluster-level covariates in Wj , and X3j are the R3 remaining

unit-level covariates (which may include cross-level interactions between covariates in Wj

and other covariates in X3j). Correspondingly, β = (β′1,β
′
2,β
′
3)′ and R = R1 + R2 + R3.

The two-stage model can then be written as

yj = X3jβ3 + Zjηj + εj (3.14)

ηrj = w′rjαr + urj , r = 0, . . . , R1, (3.15)

where ηj are cluster-speci�c coe�cients. Here, Equation 3.14 is referred to as the Level-1 or

unit-level model, and Equations 3.15 for the R1 +1 cluster-speci�c coe�cients of the Level-1

model are referred to as the Level-2 or cluster-level models. When r = 0, Equation 3.15 is

the model for the cluster-speci�c intercept η0j , w′0j is a row of Wj (with Wj = 1nj ⊗w′0j),

and α0 = γ. When r > 0, Equation 3.15 is the model for the cluster-speci�c slope of

the rth column of X1j . The vector, wrj , includes only those cluster-level covariates that

interact with the rth column of X1j . The �rst element of αr is β1r and the other elements

are subsets of β2. Note that we include Level-2 models only for the coe�cients of those
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unit-level covariates that have random slopes.

Equations 3.14 and 3.15 are a generalization of the two-stage formulation of the model

for the HSB example in Equations 3.1 and 3.2. In that model, there are R1 = 1 covariates

X1j = xj with random slopes and β1 = β1. There are also R2 = 1 cross-level interactions

between unit-level covariates in X1j and a cluster-level covariate wj , namely X2j = wjxj

with β2 = β2. There are no remaining columns of Xj , so R3 = 0, and there is no X3j or

β3. Further, ηj = (η0j , η1j)
′ and w0j = w1j = (1, wj)

′, α0 = (γ0, γ1)′, and α1 = (β1, β2)′.

Step 1: Estimation of β3

(Wooldridge, 2005, 2010, Sec.11.7.2) considers the special case of this model without cluster-

level covariates, i.e., with ηj = β1+uj and describes estimation of β3 (coe�cients for all unit-

level covariates without random slopes) by an extension of the de-meaning transformation

used in FE estimation. Instead of pre-multiplying by the de-meaning operator Qj , we pre-

multiply the Level-1 model by the projection matrix

Mj ≡ Inj − Zj(Z
′
jZj)

−1Z′j .

De�ning ẏj = Mjyj , Ẋ3j = MjX3j , and ε̇j = Mjεj , and noting that Żj = MjZj = 0,

gives

ẏj = Ẋ3jβ3 + ε̇j .

The POLS estimator of β3, denoted β̂3CML, can be expressed as

β̂3CML = β3 +

J−1
J∑
j=1

Ẋ′3jẊ3j

−1J−1
J∑
j=1

Ẋ′3j ε̇j

 ,
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where
∑
j Ẋ′3jẊ3j is assumed to be nonsingular with probability 1. If the εij are normally

distributed, this estimator also corresponds to the conditional maximum likelihood estima-

tor (CML), conditioning on the su�cient statistics Z′jyj for the �nuisance parameters" ηj

Verbeke et al. (2001).

The conditional expectation of β̂3CML, given all covariates V, becomes

E(β̂3CML|V) = β3 +

J−1
J∑
j=1

Ẋ′3jẊ3j

−1J−1
J∑
j=1

Ẋ′3jE(ε̇j |V)

 .

Unit-level exogeneity, which implies that E(ε̇j |V) = 0, is a su�cient condition for conditional

unbiasedness E(β̂3CML|V) = β3.

Step 2: Estimation of ηj

Next, form quasi-residuals as

rj ≡ yj −X3jβ̂3CML

and then obtain OLS estimates η̆j for the regressions of rj on Zj for each cluster, j = 1, . . . , J ,

η̆j = (ZjZ
′
j)
−1Z′jrj =

n−1
j

nj∑
i=1

zijz
′
ij

−1n−1
j

nj∑
i=1

zijrij

 , (3.16)

where z′ij is the ith row of Zj , and
∑nj
i=1 zijz

′
ij is nonsingular with probability 1, which

requires that R1+1 ≤ nj . This step gives rise to the name �per-cluster regressions.� Identical

estimates of β3 and ηj are obtained by treating ηj as �xed parameters in Equation 3.14 via

the inclusion of interactions between dummy variables for clusters and the columns of Zj .
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The estimator in Equation 3.16 can alternatively be expressed as

η̆j = ηj + (ZjZ
′
j)
−1Z′j

[
X3j(β3 − β̂3CML) + εj

]
, (3.17)

and the conditional expectation of η̆j , given V, becomes

E(η̆j |V) = ηj + (ZjZ
′
j)
−1Z′j

{
X3j [β3 − E(β̂3CML|V)] + E(εj |V)

}
,

where the ZjZ
′
j are assumed to be nonsingular with probability 1. Because E(β̂3CML|V) =

β3 from Step 1, it follows that X3j [β3 − E(β̂3CML|V)] = 0. It follows from unit-level

exogeneity that E(εj |V) = 0, and therefore the η̆j are conditionally unbiased; E(η̆j |V) = ηj .

Step 3: Estimation of γ, β1, and β2

The remaining regression coe�cients γ (for cluster-level covariates), β1 (for unit-level covari-

ates with random slopes), and β2 (for cross-level interactions involving unit-level covariates

with random slopes) are now estimated. These coe�cients are contained in the vectors αr,

r = 0, . . . , R1, in Equation 3.15. We write each Level-2 equation for all clusters using the

following vector notation. Let η∗r = (ηr1, . . . , ηrJ )′ and u∗r = (ur1, . . . , urJ )′ and let W∗
r

have J rows w′rj , j = 1, . . . , J . The Level-2 equation for each η∗r can then be written as

η∗r = W∗
rαr + u∗r , r = 0, . . . , R1.

Denoting the vector of estimates η̆∗r ≡ (η̆r1, . . . , η̆rJ )′, the model can be written as

η̆∗r = W∗
rαr + u∗r + η̆∗r − η∗r
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We estimate αr by applying OLS to the regression of η̆∗r on W∗
r , giving

α̂r = αr + (W∗′
r W∗

r)
−1W∗′

r (u∗r + η̆∗r − η∗r)

= αr +

J−1
J∑
j=1

wrjw
′
rj

−1J−1
J∑
j=1

wrj(urj + η̆rj − ηrj)

 ,

where, for each r,
∑
j wrjw

′
rj is assumed to be nonsingular with probability 1.

The conditional expectation of α̂r, given V, is

E(α̂r|V) = αr +

J−1
J∑
j=1

wrjw
′
rj

−1J−1
J∑
j=1

wrj
[
E(urj |V) + E(η̆rj |V)− ηrj

] .

It follows from cluster-level exogeneity that E(urj |V) = 0 and from the results for Step 2

that E(η̆rj |V) = ηrj . Hence, E(α̂r|V) = αr, and using the law of iterated expectations,

we see that the estimator is unbiased; E(α̂r) = αr.

For the special case of our model with ηj = β1 + uj , the estimator for β becomes the

sample mean of η̆∗r and that estimator has been proposed by (Wooldridge, 2010, equation

(11.80)). In models in which Xj = (X1j X2j), or R3 = 0, the �rst step can be skipped and

rj = yj . Our empirical illustration is an example of the latter special case. Accordingly, we

�rst estimate η0j and η1j in model (3.2) for each cluster j by regressing yj on xj using OLS,

giving unbiased estimates η̆0j and η̆1j . Identical estimates are obtained by OLS with dummy

variables for clusters and interactions between these dummy variables and xij . Next, η̆0j

and η̆1j are both regressed on wj using OLS. In the regression for η̆0j , the OLS estimator for

the intercept is unbiased for γ0 and the OLS estimator for the coe�cient of wj is unbiased

for γ1. In the regression for η̆1j , the OLS estimator for the intercept is unbiased for β1 and

the OLS estimator for the coe�cient of wj is unbiased for β2. If we did not include the
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cross-level interaction term, xijwj , in our model, there would be no β2, R1 = R and we

would regress η̆1j on just the intercept, i.e., �nd its sample mean, to obtain the unbiased

estimate of β1.

3.5 Empirical Example

To ground comparisons of our estimators of interest, we apply each to the HSB data in-

troduced in Section 3.2.1. Table D.1 provides estimates of the regression coe�cients for

Equation 3.2. All estimates were obtained using standard commands in Stata 13 StataCorp

(2013), such as mixed and xtreg (see Appendix I). Note that the RE estimate of the cor-

relation between the random intercept and slope was 1, a relatively frequent occurrence in

random-coe�cient models Chung et al. (2014).

Castellano et al. (2014) show that positive correlation between a random intercept and

a student-level covariate leads to overestimation of the coe�cient of the covariate. Indeed,

from the HSB data results presented in Table D.1, we see that RE produces the largest

estimate of the coe�cient of SES, 2.958, approximately 6% higher than the closest estimate

(FE+). The indicator variable wj for Catholic schools is positively correlated with SES and

therefore over-estimation of the coe�cient of SES is accompanied by underestimation of the

coe�cient of wj , with RE producing the smallest estimate of γ1, at 2.130.

While the di�erences in the FE+ and RE estimates of γ1 may be practically signi�cant,

they are close in magnitude to the estimated standard errors of the coe�cient estimates. FE+

produces estimates of both β1 and γ1 that lie between the estimates produced by RE and

PC, which is intuitive given that FE+ relies only on the uncorrelated variance assumption,

whereas RE additionally requires exogeneity, and PC requires neither assumption. PC gives
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the smallest estimated e�ect of SES on math achievement scores (β̂1 = 2.772) and the largest

estimated e�ect of Catholic schooling (γ̂1 = 2.253). These estimates di�er by about 6% from

the RE counterparts, enough to give practitioners pause.

The small di�erence between estimates of β1 from FE+ and PC provides evidence that,

in this case, we may be able to ignore the possibility that the within-school variance in SES

is correlated with the random slope. In fact, the within-school standard deviation of SES

has a correlation of only 0.04 with the estimated residuals from the regression of η̆1j on wj

in the �nal step of the PC approach.

3.6 Simulation Study

We now conduct a simulation study to investigate the performance of the RE, FE+, and PC

estimators. In particular, we are interested in the amount of bias for RE and FE+ when the

respective assumptions of cluster-level exogeneity and uncorrelated variance are violated. We

also evaluate all three estimators, RE, FE+, and PC, by their root mean square errors and

consider performance of the estimated standard errors. We use Stata 13 StataCorp (2013)

throughout.

3.6.1 Data Generation Process

We generate the data using our model of interest in Equation 3.2. We �rst draw the school-

level variables for each of J = 100 clusters. The random intercepts u0j and random slopes

u1j are drawn from a bivariate normal distribution with zero means and variance-covariance

matrix de�ned by variances ψ0 = 0.42 and ψ1 = 0.252 and correlation ρ = 0.5, giving the

covariance ψ10 = 0.05. We specify these variances to re�ect those found in our empirical
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example. The exogenous school-level covariate wj is drawn independently from a normal

distribution with mean 1.7 and variance σ2
w = 1.

We then generate the student-level covariate xij as

xij = b0u0j + b1u1j + b2wj + aeij , eij ∼ N(0, σj), (3.18)

where

a =
√

1− ψ0b
2
0 − ψ

2
1b

2
1 − σ2

wb
2
2 − 2b0b1ψ10.

Here, b0 = 1.33, b1 = 2.13, and b2 = 0.20 so that xij is positively correlated with the random

intercept, random slope, and school-level covariate wj . Finally, we generate yij according to

Equation 3.2 with γ0 = 1, γ1 = 3, β1 = 1, and β2 = 2.

The key assumption under which we want to assess the performance of the competing

estimators is that the sample within-cluster variance s2
j of xij is uncorrelated with the

random slope u1j . Thus, the population within-cluster standard deviation, σj , is of particular

importance. Accordingly, the uncorrelated variance assumption factor in this simulation has

2 levels: when it holds, σj = 1, and when it is violated, σj = exp(u1j).

Although our empirical example involves schools, which tend to have large numbers of

students, both RE and FE are commonly used with classrooms serving as clusters. Fur-

thermore, there are numerous relevant applications with longitudinal data where we often

�nd even smaller cluster sizes. Thus, we also vary cluster size, primarily considering clus-

ters sizes of 4 and 20. For simplicity, we set cluster sizes equal across clusters, nj = n.

We fully cross the cluster size and uncorrelated-variance-assumption factors, yielding four

primary simulation conditions de�ned by: (large/small n) × (uncorrelated variance assump-

tion holds/violated). To further determine the e�ect of cluster size when the uncorrelated
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variance assumption is violated, we also consider a range of clusters sizes from 4 to 50:

n = 4, 8, 14, 20, 50.

All conditions are replicated 500 times. Due to occasional lack of variation of xij within

some small clusters, the PC approach fails for some replications. The lowest number of

successful replications is 489, which occurs when the variance of xij is correlated with the

random slopes, and we have only 4 observations in each cluster. For all simulation conditions

with a cluster size of 20, all 500 replications are successful.

3.6.2 Results

We evaluate the performance of each of our three estimators (RE, FE+, and PC) of the

�xed regression coe�cients in our model of interest (Equation 3.2) across our four simulation

conditions. The estimated bias and root mean square error (RMSE) are given in Table D.2.

Appendix G provides supplemental tables for each coe�cient that also include the mean

standard errors, standard deviations of the estimates, and the ratios of these values.

3.6.2.1 Bias

For β1, the coe�cient of the endogenous student-level covariate xij , there are three main

results. First, the PC estimator is unbiased across all conditions even when the uncorrelated

variance assumption is violated. Figure C.1 clearly illustrates this �nding as the empirical

distributions of the errors (i.e., estimate − parameter) of the PC estimator (the solid curves)

are centered on 0 in all four panels, where each panel represents one of the four simulation

conditions.

Second, the RE estimator is biased regardless of whether the uncorrelated variance as-

sumption holds, whereas the FE+ estimator is biased only when this assumption is violated.
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This result for RE is expected given that the RE estimator relies on the assumption of both

unit- and cluster-level exogeneity (see Section 3.2), and cluster-level exogeneity is violated in

all four conditions with the nonzero correlation between xij and both the random intercept

and its random slope. We do note, however, that violation of the uncorrelated variance

assumption exacerbates the magnitude of the RE estimator's bias: for the small cluster size

condition (n = 4), the estimated bias is 1.28 times as large, and for the larger cluster size

(n = 20), the estimated bias more than doubles as shown in the �rst column of results in

Table D.2. In contrast, the FE+ approach only requires unit-level exogeneity assumptions,

and thus produces unbiased estimates under cluster-level endogeneity as long as there is no

correlation between the random slopes and within-cluster variance of xij . This is evident

in Figure C.1 by observing that the curves for FE+ (dashed) are more similar to those for

PC (solid) in the left-hand plots (for uncorrelated variance simulation conditions) and more

similar to the curves for RE (dot-dashed) in the right-hand plots (for correlated variance

simulation conditions).

Thirdly, the estimated bias for β1 is larger than that for the other two regression coe�-

cients, which is not surprising given that xij is the source of the endogeneity. For instance,

as shown in Table D.2, the estimated bias of β̂1RE
ranges from 6.2%-21.3% of the true value.

The next largest estimated bias is −0.053 for γ̂1RE
under the small clusters and uncorrelated

variance condition, which is only 1.8% of the coe�cient's true value (γ1 = 3).

The coe�cient of the interaction term, β2, is the least a�ected by the simulation con-

ditions. We only �nd statistically signi�cant bias (at the 5% level) for β̂2RE
for the small

cluster size condition�both when the uncorrelated variance assumption holds and when it

is violated. Even in these cases, as given in Table D.2, the estimated bias is rather small

relative to the magnitude of the true value (β2 = 2): it is 0.4% of the parameter value when
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the condition holds and 0.6% when it is violated. (Plots of the empirical distributions of the

estimation errors for β2 are given in Figure I.1 in Appendix I.)

The estimated biases of the estimators for the coe�cient γ1 of the exogenous school-level

covariate wj follow similar patterns as for the coe�cient β1 of the endogenous student-level

covariate xij . Just as for β1, the PC estimator is unbiased across all conditions, the FE+

estimator is biased only when the variance of xij is correlated with the random slope u1j

(i.e., uncorrelated variance assumption violated), and the RE estimator is biased regardless

of whether the uncorrelated variance assumption is violated. These �ndings are clearly

illustrated in Figure C.2 by comparing the centers of the empirical distributions of errors for

all estimators across all conditions: the PC curve (solid) is always centered on 0, whereas the

RE curve (dot-dashed) is always centered below 0, and the FE+ curve (dashed) is centered

below 0 only for the correlated variance conditions in the right-hand panels. Just as with

β1, the FE+ estimator's bias for γ1 does not vary with cluster size�it's estimate is about

0.8% of the true parameter value for both n = 4 and n = 20 as seen in Table D.2. Cluster

size a�ects the RE estimator's bias for γ1 as it did for β1: as cluster size increases, the bias

decreases. When the assumption holds, this bias decreases by about 63% going from n = 4

to n = 20, and by about 45% when the assumption is violated (see Table D.2).

Given that β1 was most a�ected by the violation of the uncorrelated variance assumption,

we further investigated the e�ect of cluster size on this regression coe�cient. Figure C.1

gives the estimated bias for each estimator across cluster sizes of 4, 8, 14, 20, and 50.

The PC (solid) curve hugs the y = 0 line. The FE+ and RE curves cross at n = 20:

as cluster size increases, the RE estimator's bias decreases (dot-dashed curve), whereas the

FE+ estimator's bias is not as a�ected by cluster size, shown by its dot-dashed curve staying

relatively constant across the range of cluster sizes. Thus, cluster size has a di�erential e�ect
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on the bias of the estimators.

When using bias to evaluate the estimators, our simulation study provides strong evidence

that our proposed PC estimator outperforms the other estimators.

3.6.2.2 Precision and RMSE

As is often the case, there is a trade-o� between bias and precision, which depends in part on

the size of the clusters. The rank ordering of the estimators by their standard deviation (SD)

is approximately the same for the three regression coe�cients with slight di�erences between

the smaller and larger cluster size conditions. Accordingly, we discuss how the precision of

the estimators depends on cluster size, without distinguishing among the coe�cients.

For the smaller cluster sizes of n = 4, RE produces the estimates with the smallest

variances, followed by FE+, and PC produces the most variable estimates. This is clearly

illustrated by comparing the widths of the empirical distributions of errors in Figure C.1 or

C.2 for each estimator: the RE curves are the narrowest and the PC curves are the widest.

For instance, for n = 4 and when the uncorrelated variance assumption is violated, the SD

of β̂1PC
over 500 replications is about 0.266, whereas for RE, the SD is less than half that

at about 0.114 (see Tables I.1, I.2, and I.3 in Appendix I for all SD values).

For the larger cluster size of n = 20, RE always yields the smallest variances, but the

variances are not much smaller than those for FE+ and PC, which tend to have about equal

variances. For instance, for β1, for the large clusters and uncorrelated variance condition

shown in the lower, left-hand panel of Figure C.1, it is di�cult to discern any di�erences in

the widths of the distributions. Indeed, the SD for RE, in this case, is about 0.078 and the

SDs for both FE+ and PC are 0.080.

With regard to precision, RE consistently outperforms FE+ and PC for all the regression
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coe�cients and across all the simulation conditions. However, given the tradeo� between

bias and precision, it is useful to evaluate the estimators with regard to their RMSEs, which

takes both bias and imprecision into account. Given that the estimates of β1 are the most

a�ected by the simulation conditions and that precision depends on cluster size, we consider

the RMSEs as a function of the extended range of cluster sizes for β1 in Figure C.4. Just

as with bias in Figure C.3 , Figur C.4 shows that the FE+ and RE curves cross with RE

outperforming FE+ as cluster size increases. This �gure also shows that, for the smallest

cluster size of 4, the RMSE for PC is large and similar to that of RE. However, with clusters

of at least 8, the PC estimator outperforms both RE and FE+ with regards to RMSE,

providing strong evidence in favor of the PC estimator.

3.6.2.3 Standard Error Estimation

As a �nal point, we evaluate the estimators in terms of how well their estimated standard

errors (SEs) approximate the sampling SDs. We again focus on the most a�ected regression

coe�cient β1. Figure C.5 displays this ratio of mean SE to SD over the extended range of

cluster sizes�similar to Figures C.3 and C.4. If the SE estimation works well, this ratio

should equal one. We see that both the PC (solid curve) and RE (dot-dashed curve) ap-

proaches provide good SE estimates. In contrast, for the FE+ approach, the SEs are severely

underestimated as the cluster size increases. Although both the FE+ and PC approaches

treat estimated coe�cients from previous steps as known in the subsequent step, it appears

that underestimation of the SE is a larger problem for the FE+ approach. Accordingly, we

recommend using either analytically derived or bootstrap SEs for the FE+ approach. These

could also be used for the PC approach, and may be necessary if Step 1 is required.
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3.7 Conclusion

Given the popularity of multilevel models, studies that investigate potential biases for key

parameters and provide simple solutions are clearly important.

We have shown that commonly used random- and �xed-e�ects estimators are biased in

the presence of correlation between random-e�ects and the within-cluster variance of unit-

level covariates. Further, such bias can spill over to the estimation of coe�cients of other

covariates. We have proposed a new per-cluster regression estimator that avoids such bias,

produces good estimates of SEs, and generally has low RMSE. Consequently, we recommend

broad use of per-cluster regression when working with longitudinal or nested cross-sectional

data when the clusters are su�ciently large. Stata code for applying this method to the

HSB data is provided in Appendix I. In instances where the cluster sizes are small relative

to the number of random e�ects, or where estimates for the random part of the model are

of interest, we recommend using per-cluster regression as part of a sensitivity analysis for

alternative estimators.

Per-cluster methods have been used in the past for linear multilevel models (Burstein

et al., 1978, p. 369) and multilevel structural equation models Chou et al. (2000). Per-

cluster methods can also be used for nonlinear multilevel models, such as probit models with

random intercepts Borjas and Sueyoshi (1994) and logit models with random intercepts and

slopes Korn and Whittemore (1979). However, the purpose of that work was to develop

simple estimators and not to address endogeneity concerns. For our proposed PC estimator

for linear models, it might appear to be ine�cient to use OLS in the �nal step, not taking

into account that the intercepts and slopes are estimated with di�erent precision for di�erent

clusters. However, FGLS approaches, such as those discussed by Berkey et al. (1998), su�er
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from similar biases as RE estimators, as we con�rmed in simulations (not shown).

An alternative approach for handling endogeneity, proposed for random-intercept models

by Allison and Bollen (1997) and Teachman et al. (2001) is to model the unit-level covariates

jointly with the responses using structural equation modeling and allow them to be correlated

with the random intercept. This approach can be generalized to random-coe�cient models

but becomes infeasible for large cluster sizes.

In summary, we have demonstrated that our proposed, simple-to-implement per-cluster

regression approach outperforms standard estimators when estimating regression coe�cients

in multilevel models under violations of both the cluster-level exogeneity and uncorrelated

variance assumptions. We recommend that researchers consider the validity of the uncor-

related variance assumption and add the PC method to their toolbox when investigating

e�ects of covariates in cross-sectional and longitudinal analyses.
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Table A.1: Average VAM of Teachers moving within and out of Winston-Salem and Guilford

Panel A: Within District Movers Panel B: Out of District Movers
1998-1999 2000-2007 2008-2010 1998-1999 2000-2007 2008-2010

Guilford Mean -0.166 0.093 0.246 0.116 -0.174 -0.125
N 101 463 104 48 206 34

Winston-Salem Mean 0.009 -0.088 0.031 -0.528 -0.100 -0.243
N 188 275 63 26 121 21

Rest of State Mean -0.069 0.020 0.052 -0.116 -0.118 -0.109
N 1882 6793 1966 962 4230 833

Note: VAMs are measured in standard deviations. Guilford �rst adopted VAMs in 2000.
Winston-Salem �rst adopted VAMs in 2008.

Table A.2: Sample Summary Statistics

Rest of
Guilford Winston-Salem North Carolina

Mean SD Mean SD Mean SD

Scaled Score 250.38 71.71 249.23 68.86 252.36 70.49
Percent Pro�cient 0.75 0.14 0.74 0.15 0.76 0.13
Share of Black Students 0.42 0.24 0.36 0.24 0.29 0.24
Share of Black Teachers 0.25 0.43 0.21 0.41 0.15 0.36
Share of Hispanic Teachers 0.01 0.09 0.00 0.04 0.00 0.06
Share of Teachers with Advanced Degrees 0.30 0.46 0.36 0.48 0.29 0.45
College Selectivity (Barron's) 3.95 1.43 3.92 1.68 3.93 1.44
Experience 11.59 9.76 13.36 9.71 12.19 9.85
Tenure 3.23 3.05 3.59 3.26 3.68 3.35
Job Moves 0.09 0.28 0.08 0.28 0.08 0.27
Within-District Moves 0.06 0.24 0.06 0.24 0.05 0.22
Out-of-District Moves 0.03 0.16 0.02 0.14 0.03 0.16
Left NCPS 0.06 0.23 0.04 0.20 0.06 0.24
VAM 0.02 1.01 0.01 0.99 0.00 1.00

N 11,239 8,295 216,484

Note: VAM is measured in standard deviations with the mean centered at 0.
Tenure is generated, and is censored for those already working at a given school in 1995.
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Table A.3: Probability of Moving Schools Within and Out of District

Panal A: Within-District Moves Panal B: Out-Of-District Moves
To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing
school school school school

VAM 0.0016 0.0032*** -0.0016** 0.0002 0.0014** -0.0012**

[0.00129] [0.00091] [0.00074] [0.00096] [0.00072] [0.00058]

VAM x Treatment GCS 0.0058** 0.0051** 0.0007 -0.0103*** -0.0054*** -0.0049***

[0.00265] [0.00199] [0.00151] [0.00261] [0.00195] [0.00156]
VAM x Treatment WSF 0.0052* 0.0060*** -0.0008 0.0009 0.0023 -0.0014

[0.00286] [0.00229] [0.00194] [0.00241] [0.00208] [0.00129]

Treatment GCS -0.0040 -0.0050 0.0010 -0.0162*** -0.0232*** 0.0070***

[0.00851] [0.00571] [0.00679] [0.00374] [0.00233] [0.00268]
Treatment WSF 0.0555*** 0.0475*** 0.0080*** -0.0020 0.0147*** -0.0167***

[0.00499] [0.00372] [0.00299] [0.00274] [0.00224] [0.00178]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets. All regressions include teacher level covariates

and interactions with treatment indicators, as well as year and district �xed e�ects. *** p<0.01, ** p<0.05, * p<0.1

Table A.4: E�ects on Sorting

VARIABLES Total Within District

VAM 0.0028*** 0.0024***
[0.00033] [0.00033]

VAM x Treatment GCS -0.0005 -0.0000
[0.00074] [0.0007]

VAM x Treatment WSF 0.0007 0.0017*
[0.00114] [0.00102]

Treatment GCS -0.0195*** -0.0157***
[0.00211] [0.00216]

Treatment WSF 0.0290*** 0.0231***
[0.00172] [0.00168]

Observations 209,424 202,943
CSB standard errors from 500 repetitions appear in brackets.

All regressions use a linear functional form, include
teacher level covariates, and their interactions

with treatment indicators. *** p<0.01, ** p<0.05, * p<0.1
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Table A.5: E�ects of teacher quality index on the probability of moving

Within-District Moves Out-of-District Moves
To a higher To a lower To a higher To a lower

Variables Total performing performing Total performing performing
schools schools schools schools

VAM 0.0018 0.0039*** -0.0021*** -0.0002 0.0014** -0.0016***
[0.00111] [0.00078] [0.00073] [0.00091] [0.00068] [0.00053]

Teacher Quality Index (TQ Index) 0.005** 0.0071*** -0.0021** -0.0005 0.0031*** -0.0035***
[0.00233] [0.00173] [0.00105] [0.00186] [0.00115] [0.00096]

VAM x Treatment GCS 0.0083*** 0.0069*** 0.0014 -0.0109*** -0.0053*** -0.0056***
[0.00237] [0.00177] [0.0014] [0.00249] [0.00189] [0.00145]

VAM x Treatment WSF 0.0063** 0.0062*** 0.0000 0.0001 0.0018 -0.0017
[0.00248] [0.00199] [0.00193] [0.00212] [0.00189] [0.00115]

TQ Index x Treatment GCS 0.0040 0.0043** -0.0003 0.0076*** 0.0061*** 0.0015*
[0.00246] [0.00153] [0.00145] [0.00116] [0.00088] [0.00088]

TQ Index x Treatment WSF 0.0029 0.0027 0.0002 -0.0011 -0.0026*** 0.0015**
[0.00254] [0.00192] [0.00131] [0.00097] [0.00078] [0.00063]

Treatment GCS 0.0142** 0.0253*** -0.0111*** -0.0120*** -0.0132*** 0.0011
[0.00595] [0.00449] [0.00405] [0.00258] [0.00167] [0.00189]

Treatment WSF -0.0015 0.0091*** -0.0106*** 0.0118*** 0.0177*** -0.0059***
[0.00383] [0.00242] [0.00253] [0.00251] (0.00136] [0.00139]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets. All regressions

use a linear functional form, and include teacher level covariates and interactions with treatment indicators.
The VAMs used in this analysis are the residuals from the projection of my standard VAMs

on the components of the index. *** p<0.01, ** p<0.05, * p<0.1
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Table A.6: Di�erential E�ects With Respect to Experience and Tenure

Within District Out of District
VARIABLES Total Higher Total Higher

Performing Performing

VAM -0.0001 0.0028* -0.0001 0.0023
[0.0023] [0.00161] [0.00244] [0.00173]

Experience x VAM -0.0000 0.0000 -0.0000 -0.0000
[0.00011] [0.00008] [0.00011] [0.00008]

Tenure x VAM 0.0020** 0.0006 0.0006 0.0005
[0.0008] [0.00059] [0.00073] [0.00058]

VAM x Treatment GCS 0.0033 0.0050 -0.0181*** -0.0095*
[0.00568] [0.00465] [0.00693] [0.00514]

Experience x VAM x Treatment GCS 0.0016*** 0.0010*** 0.0002 0.0003
[0.00026] [0.0002] [0.00032] [0.00026]

Tenure x VAM x Treatment GCS 0.0056*** 0.0004 0.0008 0.0014
[0.00179] [0.00146] [0.00217] [0.00178]

VAM x Treatment WSF -0.0003 -0.0010 -0.0073 -0.0051
[0.00551] [0.00431] [0.00503] [0.00452]

Experience x VAM x Treatment WSF 0.0003 0.0005 0.0002 0.0002
[0.00043] [0.00036] [0.00029] [0.00025]

Tenure x VAM x Treatment WSF 0.0028*** 0.0009* 0.0004 0.0004
[0.00078] [0.00055] [0.00053] [0.00046]

Observations 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets. All regressions

use a linear functional form, and include teacher level covariates and interactions with
treatment indicators. *** p<0.01, ** p<0.05, * p<0.1
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Table A.7: Probability of moving schools within-district using restricted data VAM

Panel A: Within-District Moves B: Out-Of-District Moves C: School Quality Growth
To a higher To a lower To a higher To a lower Within

VARIABLES Total performing performing Total performing performing Total District
school school school school

VAM 0.0003 0.0011 -0.0008 -0.0013 -0.0006 -0.0007 0.0005 0.0004
[0.00109] [0.00097] [0.00063] [0.00079] [0.00056] [0.00043] [0.00032] [0.00033]

VAM x Treatment GCS 0.0034 0.0030 0.0004 -0.0027 -0.0016 -0.0011 -0.0015 -0.0010
[0.00249] [0.002] [0.00152] [0.00201] [0.00167] [0.00102] [0.00083] [0.00076]

VAM x Treatment WSF 0.0061* 0.0099*** -0.0038* 0.0019 0.0025 -0.0005 0.0025* 0.0037***
[0.00312] [0.00241] [0.00216] [0.00247] [0.00224] [0.00122] [0.00131] [0.00109]

Treatment GCS -0.0034 -0.0042 0.0008 -0.0137*** -0.0220*** 0.0082*** -0.0196*** -0.0156***
[0.00848] [0.00545] [0.00717] [0.00365] [0.00243] [0.00275] [0.0022] [0.00225]

Treatment WSF 0.0555*** 0.0486*** 0.0068** -0.0017 0.0151*** -0.0168*** 0.0299*** 0.0241***
[0.00533] [0.00386] [0.0033] [0.00283] [0.00217] [0.0019] [0.00165] [0.00165]

Observations 236,018 236,018 236,018 236,018 236,018 236,018 209,424 202,943
CSB standard errors from 500 repetitions appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1

Table A.8: E�ect of VAMs constructed using various number of years on the probability of
moving to a "better" school

VARIABLES 2yr VAM 3yr VAM 4yr VAM 5yr VAM 6yr VAM 7yr VAM 8yr VAM

VAM 0.0020*** 0.0023*** 0.0024*** 0.0023*** 0.0025*** 0.0027*** 0.0040***
[0.00054] [0.0005] [0.00051] [0.00073] [0.00076] [0.00072] [0.00083]

VAM x Treatment Winston-Salem 0.0103*** 0.0087*** 0.0076*** 0.0064** 0.0099*** 0.0118*** 0.0150***
[0.00241] [0.00233] [0.00245] [0.00287] [0.00293] [0.003] [0.00323]

Treatment Winston-Salem 0.0555*** 0.0540*** 0.0550*** 0.0480*** 0.0427*** 0.0457*** 0.0407***
[0.00382] [0.00373] [0.00362] [0.00385] [0.00396] [0.00427] [0.00434]

Observations 207,673 189,531 170,598 151,067 131,567 111,786 94,884
CSB standard errors from 500 repetitions appear in brackets. All regressions use a linear functional form,
and include teacher level covariates and interactions with treatment indicators. Observations from GCS

are omitted from the above analysis. *** p<0.01, ** p<0.05, * p<0.1
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Table A.9: Probability of Moving to Non-Strategic-Sta�ng Schools

Panal A: Within-District Moves Panal B: Out-Of-District Moves
To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing
school school school school

VAM 0.0014 0.0031*** -0.0018** 0.0002 0.0013* -0.0011*
[0.00127] [0.00086] [0.00076] [0.00098] [0.00072] [0.00059]

VAM x Treatment GCS 0.0043* 0.0041** 0.0002 -0.0111*** -0.0054*** -0.0057***
[0.00244] [0.00197] [0.00148] [0.00248] [0.00194] [0.0014]

VAM x Treatment WSF 0.0100*** 0.0103*** -0.0004 -0.0007 0.0014 -0.0021**
[0.00233] [0.00176] [0.00148] [0.00208] [0.00196] [0.00113]

Treatment GCS -0.0118 -0.0084 -0.0034 -0.0158*** -0.0238*** 0.0079***
[0.00848] [0.00552] [0.00728] [0.00362] [0.00221] [0.00272]

Treatment WSF 0.0241*** 0.0390*** -0.0149*** -0.0027 0.0114*** -0.0141***
[0.0049] [0.00345] [0.00287] [0.00255] [0.00233] [0.00142]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1

Table A.10: E�ects on Sorting Within District Excluding Strategic-Sta�ng Schools

Within Within
VARIABLES Total all district non-strategic

schools sta�ng schools

VAM 0.0028*** 0.0024*** 0.0026***
[0.00033] [0.00033] [0.00034]

VAM x Treatment GCS -0.0005 -0.0000 0.0009
[0.00074] [0.0007] [0.00072]

VAM x Treatment WSF 0.0007 0.0017* 0.0020*
[0.00114] [0.00102] [0.00114]

Treatment GCS -0.0195*** -0.0157*** 0.0029
[0.00211] [0.00216] [0.00222]

Treatment WSF 0.0290*** 0.0231*** 0.0196***
[0.00172] [0.00168] [0.0018]

Observations 209,424 202,943 197,364
CSB standard errors from 500 repetitions appear in brackets.
All regressions include teacher level covariates and interactions
with treatment indicators. *** p<0.01, ** p<0.05, * p<0.1
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Appendix B

Tables for Chapter 2
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Table B.1: Job separations by type, reference group, and AFQT relative to reference group

Panel A: Above average reference group AFQT score

Separations Job-to-Job Job-to-Unemployment
Full Sample Full Sample Recession Expansion

Highschool Graduate 0.110 0.047 0.106 0.056

Noncompetitive College Attendee 0.112 0.052 0.096 0.053
Competitive College Attendee 0.122 0.056 0.120 0.059

Noncompetitive College Graduate 0.091 0.044 0.100 0.041
Competitive College Graduate 0.102 0.048 0.119 0.046

Total 0.109 0.048 0.107 0.053

Panel B: Below average reference group AFQT score

Separations Job-to-Job Job-to-Unemployment
Full Sample Full Sample Recession Expansion

Highschool Graduate 0.131 0.046 0.134 0.078

Noncompetitive College Attendee 0.119 0.046 0.116 0.067
Competitive College Attendee 0.127 0.053 0.114 0.068

Noncompetitive College Graduate 0.098 0.048 0.098 0.044
Competitive College Graduate 0.108 0.053 0.110 0.048

Total 0.124 0.048 0.126 0.070
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Table B.2: AFQT Percentiles (Standardized by Age) by Race and Education

Count Mean SD
Black High school Graduate 372 -0.349 0.718
Black Uncompetitive College Attendee 122 -0.005 0.773
Black Competitive College Attendee 65 0.454 0.757
Black Uncompetitive College Graduate 15 0.488 0.891
Black Competitive College Graduate 54 0.932 0.754
Hispanic High school Graduate 722 -0.746 0.582
Hispanic Uncompetitive College Attendee 200 -0.345 0.645
Hispanic Competitive College Attendee 89 -0.173 0.784
Hispanic Uncompetitive College Graduate 47 0.032 0.861
Hispanic Competitive College Graduate 82 0.530 0.842
White High school Graduate 1508 0.152 0.804
White Uncompetitive College Attendee 391 0.585 0.799
White Competitive College Attendee 253 0.963 0.696
White Uncompetitive College Graduate 134 1.130 0.708
White Competitive College Graduate 524 1.336 0.607
Total 4578 0.203 0.969

Table B.3: Work History

Mean SD Min Max
Experience 36.652 22.325 0.000 92.385
Potential Experience 45.038 24.262 -4.000 103.000
Tenure 14.027 15.493 0.003 85.134
Working Spell 21.188 20.007 0.003 92.070
Observations 232388
All variables are measured in quarters.
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Table B.4: Terminal Tenure

Year N Share Mean SD Min Max
1 15096 0.556 1.887 0.952 0.003 3.997
2 5538 0.204 5.661 1.143 4 7.999
3 2364 0.087 9.749 1.119 8 11.997
4 1317 0.049 13.852 1.168 12.005 15.996
5 827 0.030 17.832 1.171 16.003 19.997
6 522 0.019 21.899 1.154 20.002 23.986
7 366 0.013 25.791 1.189 24.007 27.989
8 293 0.011 29.885 1.128 28.008 31.993
9 200 0.007 33.793 1.166 32.013 35.997
10 158 0.006 37.941 1.206 36.013 39.986
>10 457 0.017 52.597 10.409 40.014 85.134
Total 27138 1 6.717 9.208 0.003 85.134

Table B.5: Job Separations

Mean SD
Recessions
Job Separation 0.178 0.382
Job-to-Unemployment Move 0.116 0.321
Job-to-Job Transition 0.062 0.240
Observations 29557
Expansions
Job Separation 0.108 0.310
Job-to-Unemployment Move 0.062 0.241
Job-to-Job Transition 0.046 0.210
Observations 202831
Full Sample
Job Separation 0.117 0.321
Job-to-Unemployment Move 0.069 0.253
Job-to-Job Transition 0.048 0.214
Observations 232388

128



Table B.6: Nominal Wage Change with Separation

Job Separations Job-to-Job Job-to-Unemployment % Di�erence in Wage Changes
N Mean SD N Mean SD N Mean SD Between JTJ and JTU Moves

High School Graduates
AFQT − AFQTHSG < −0.75 1855 0.95 3.56 742 1.23 3.70 1113 0.77 3.46 59.6%
−0.75 < AFQT − AFQTHSG < 0.75 9832 0.88 3.64 4087 1.08 3.88 5745 0.73 3.45 47.5%
0.75 < AFQT − AFQTHSG 1975 1.11 4.08 951 1.29 4.38 1024 0.94 3.77 37.4%
Uncompetitive College Attendees
AFQT − AFQTCA < −0.75 601 0.92 4.09 251 1.30 4.32 350 0.65 3.89 101.2%
−0.75 < AFQT − AFQTUCA < 0.75 2056 1.12 4.02 993 1.28 4.36 1063 0.96 3.67 33.8%
0.75 < AFQT − AFQTUCA 445 1.43 4.47 229 1.98 4.93 216 0.85 3.84 132.3%
Competitive College Attendees
AFQT − AFQTCG < −0.75 276 0.99 4.38 123 1.50 4.61 153 0.59 4.15 154.2%
−0.75 < AFQT − AFQTCCG < 0.75 901 1.41 4.14 434 1.67 4.18 467 1.16 4.09 43.8%
0.75 < AFQT − AFQTCCG 209 1.15 4.40 105 1.24 4.76 104 1.06 4.04 16.7%
Uncompetitive College Graduates
AFQT − AFQTUCG < −0.75 204 1.67 4.38 116 1.83 4.36 88 1.46 4.42 25.1%
−0.75 < AFQT − AFQTUCG < 0.75 1050 1.55 4.43 511 2.03 4.73 539 1.10 4.07 84.7%
0.75 < AFQT − AFQTUCG 195 1.44 5.14 95 1.89 6.33 100 1.02 3.66 85.5%
Competitive College Graduates
AFQT − AFQTCCG < −0.75 501 1.70 4.58 268 1.78 4.80 233 1.61 4.31 10.9%
−0.75 < AFQT − AFQTCCG < 0.75 2924 1.79 4.84 1534 1.97 5.09 1390 1.59 4.55 23.3%
0.75 < AFQT − AFQTCCG 441 1.97 4.90 201 1.90 4.67 240 2.03 5.10 -6.6%
Total 23465 1.15 4.05 10640 1.40 4.34 12825 0.94 3.78 49.0%

Table B.7: Changes in the e�ects of easy to observe characteristics on the probability of
moving

VARIABLES (1) (2) (3) (4)

AFQT -0.649*** -0.611***
(0.0921) (0.0910)

Reference AFQT -0.333*** 0.320*
(0.0995) (0.136)

Years of Education -0.217*** -0.0982
(0.0524) (0.0553)

Competitive College 0.621** 0.822***
(0.218) (0.220)

White 0.504** 0.820***
(0.192) (0.197)

Hispanic 1.056*** 0.800***
(0.211) (0.214)

Work Spell -0.227*** -0.225*** -0.225*** -0.223***
(0.00478) (0.00479) (0.00479) (0.00480)

Potential Experience -0.140*** -0.141*** -0.145*** -0.145***
(0.00762) (0.00762) (0.00764) (0.00764)

Observations 232,388 232,388 232,388 232,388
Standard errors are in parentheses. Average Partial E�ects are from Normal
MLE (Probit). Regressions include full set of year indicators and urbanicity.
*** p<0.001, ** p<0.01, * p<0.05
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Table B.8: E�ects of easy and di�cult to observe characteristics on the probability of moving

Panel A: Mean AFQT of reference group summarizing observable characteristics Panel B: Including observable characteristics
Job Separations Job-to-Job Job-to-Unemployment Job Separations Job-to-Job Job-to-Unemployment

Variables Full Sample Full Sample Recession Expansion Variables Full Sample Full Sample Recession Expansion

AFQT -0.644*** 0.0245 -0.940*** -0.638*** AFQT -0.610*** 0.0423 -1.100*** -0.596***
(0.0925) (0.0625) (0.259) (0.0750) (0.0911) (0.0617) (0.255) (0.0738)

Reference AFQT 0.424** 0.621*** 0.321 -0.303** Years of Education -0.0595 0.0704 0.112 -0.219***
(0.137) (0.0921) (0.394) (0.111) (0.0562) (0.0372) (0.165) (0.0464)

Competitive College 0.863*** 0.359* 1.399* 0.337
(0.222) (0.147) (0.642) (0.183)

White 0.878*** 0.436** 1.066 0.349*
(0.198) (0.134) (0.564) (0.159)

Hispanic 0.808*** -0.197 3.018*** 0.653***
(0.216) (0.150) (0.625) (0.170)

Potential Experience -0.147*** -0.0600*** -0.290*** -0.0621*** Potential Experience -0.169*** -0.0630*** -0.334*** -0.0732***
(0.00765) (0.00520) (0.0231) (0.00610) (0.00787) (0.00531) (0.0243) (0.00632)

Working Spell -0.222*** -0.0759*** -0.115*** -0.155*** Working Spell -0.270*** -0.100*** 0.181*** -0.189***
(0.00484) (0.00320) (0.0230) (0.00401) (0.00749) (0.00495) (0.0362) (0.00603)

Observations 232388 232388 29557 202831 Observations 232388 232388 29557 202831
Standard errors are in parentheses. Average Partial E�ects are from Normal MLE (Probit). Regressions include full set of indicators for year, and urbanicity as well as
interactions between each covariate and potential experience and length of work spell. *** p<0.001, ** p<0.01, * p<0.05
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Table B.9: Dynamics with regard to working spell duration and experience

Job Separations Job-to-Job Job-to-Unemployment
Variables Full Sample Full Sample Recession Expansion

AFQT -4.735*** 0.592 -5.970** -7.124***
(0.942) (1.221) (2.193) (1.317)

Years of Education (Education) 4.492*** 4.200*** 2.242 3.058***
(0.600) (0.761) (1.434) (0.843)

Competitive College (Competitive) 7.157** 0.941 5.180 9.812**
(2.368) (3.013) (5.559) (3.337)

White 7.630*** 8.868*** 2.602 4.543
(2.045) (2.668) (4.766) (2.855)

Hispanic 7.262** -3.939 13.76** 9.257**
(2.285) (3.044) (5.276) (3.121)

Potential Experience (Expp) 0.897*** 0.924*** 1.369 0.964***
(0.212) (0.273) (0.819) (0.287)

Working Spell (Spell) -4.110*** -2.646*** -3.426* -4.494***
(0.282) (0.352) (1.414) (0.373)

AFQT x Spell -1.018 -2.034 -20.47 -1.281
(3.383) (4.241) (17.48) (4.433)

AFQT x Expp 4.212 0.399 10.01 5.124
(2.362) (3.085) (9.618) (3.097)

Competitive x Spell 23.54** -0.528 144.0*** 33.46**
(8.601) (10.76) (43.63) (11.34)

Competitive x Expp -15.78** 7.495 -55.71* -29.20***
(5.988) (7.661) (24.58) (8.013)

Education x Spell 18.23*** 9.553*** 46.07*** 19.53***
(2.118) (2.637) (10.84) (2.807)

Education x Expp -20.12*** -13.06*** -32.05*** -19.65***
(1.537) (1.963) (6.248) (2.062)

White x Spell -4.970 7.684 -91.90* -10.09
(7.388) (9.352) (41.27) (9.514)

White x Expp -5.773 -14.72* 63.39** -0.106
(4.963) (6.477) (21.22) (6.518)

Hispanic x Spell 15.15 23.58* 114.7* -0.247
(8.522) (10.92) (45.50) (10.88)

Hispanic x Expp -13.62* -4.387 -40.39 -8.717
(5.350) (7.119) (23.00) (6.902)

Observations 232388 232388 29557 202831
Standard errors are in parentheses. Scaled coe�cients are from Normal MLE (Probit).
Suppressed coe�cient estimates include a full set of year indicators, urbanicity, and square and
interaction terms for potential experience and working spell duration. * p<0.05, ** p<0.01,
*** p<0.001.
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Table B.10: Heteroskedastic probit APEs and e�ects on the conditional variance

Panel A: Heteroskedastic Probit APEs
Job Separations Job-to-Job Job-to-Unemployment

Variables Full Sample Full Sample Recession Expansion

AFQT -0.635*** 0.0414 -1.100*** -0.604***
(0.0906) (0.0616) (0.253) (0.0733)

Years of Education -0.0450 0.0750* 0.0690 -0.216***
(0.0559) (0.0371) (0.164) (0.0462)

Competitive College 0.917*** 0.353* 1.465* 0.363*
(0.221) (0.147) (0.637) (0.182)

White 0.880*** 0.434** 0.941 0.365*
(0.197) (0.134) (0.560) (0.158)

Hispanic 0.853*** -0.203 3.079*** 0.684***
(0.215) (0.150) (0.626) (0.169)

Potential Experience -0.170*** -0.0651*** -0.347*** -0.0768***
(0.00801) (0.00534) (0.0240) (0.00650)

Working Spell -0.168*** -0.0957*** 0.282*** -0.150***
(0.0111) (0.00554) (0.0406) (0.00822)

Panel B: E�ects on the conditional variance
lnsigma2
Working Spell 1.224*** -0.628** 1.244*** 0.819***

(0.0786) (0.228) (0.302) (0.0936)
Potential Experience 1.769*** 0.478* 2.487*** 1.890***

(0.0627) (0.226) (0.242) (0.0752)

Observations 232388 232388 29557 202831
Standard errors are in parentheses. APEs and e�ects on the conditional variance
are from normal heteroskedastic MLE (Probit). Suppressed coe�cient estimates
include a full set of year indicators and urbanicity.
* p<0.05, ** p<0.01, *** p<0.001.
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Table B.11: Heteroskedastic probit scaled coe�cients

Job Separations Job-to-Job Job-to-Unemployment
Variables Full Sample Full Sample Recession Expansion

AFQT -4.923** 0.529 -5.104 -7.705***
(1.541) (1.284) (3.387) (2.235)

Years of Education (Education) 7.545*** 4.557*** -3.347 8.294***
(1.006) (0.865) (2.343) (1.462)

Competitive College (Competitive) 5.571 0.859 -4.319 13.06*
(3.952) (3.170) (8.916) (5.755)

White 4.800 8.750** 7.201 -1.756
(3.345) (2.767) (7.334) (4.877)

Hispanic 5.403 -4.512 12.96 3.601
(3.724) (3.212) (8.068) (5.328)

Potential Experience (Expp) 4.981*** 0.548 2.255 6.054***
(0.534) (0.330) (1.753) (0.773)

Working Spell (Spell) -6.746*** -2.049** -12.07*** -8.317***
(0.963) (0.652) (3.352) (1.212)

AFQT x Spell -22.68 -3.541 -81.05* -16.48
(11.66) (4.539) (40.11) (14.66)

AFQT x Expp 0.618 1.367 9.521 -6.480
(5.929) (3.594) (21.45) (8.076)

Education x Spell 68.80*** 11.56*** 142.7*** 70.67***
(7.463) (3.230) (26.51) (9.426)

Education x Expp -55.53*** -15.33*** -47.07*** -66.83***
(3.949) (2.868) (13.45) (5.588)

Competitive x Spell 123.0*** -4.049 358.3*** 123.8***
(29.59) (11.39) (104.9) (37.12)

Competitive x Expp -29.00 10.23 -59.61 -65.11**
(14.92) (9.115) (52.14) (20.48)

White x Spell -29.32 7.649 -216.4* -28.75
(25.62) (10.01) (92.19) (32.06)

White x Expp 29.40* -14.16 128.6** 39.35*
(12.73) (7.617) (47.44) (17.30)

Hispanic x Spell 84.69** 22.54 271.6* 55.19
(29.79) (12.10) (107.7) (36.76)

Hispanic x Expp -16.63 -3.713 -40.49 11.58
(13.53) (8.439) (51.88) (18.16)

Observations 232388 232388 29557 202831
Standard errors are in parentheses. Scaled coe�cients are from normal heteroskedastic
MLE (Probit). Suppressed coe�cient estimates include a full set of year indicators, urbanicity,
and square and interaction terms for potential experience and working spell duration.
* p<0.05, ** p<0.01, *** p<0.001.
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Table B.12: APEs from heteroskedastic probit control function

Separations Job-to-Job Job-to-Unemployment
VARIABLES Full Sample Full Sample Recessions Expansions
AFQT -0.130 0.0727 -0.162 -0.172*

(0.091) (.061) (.24) (.068)
Years of Education 0.131* 0.122*** 0.384* 0.0200

(0.057) (.038) (.162) (.048)
Competitive College 0.0159 0.266 0.114 -0.255

(0.229) (.137) (.629) (.181)
White 0.202 0.388** -0.137 -0.00288

(0.206) (.132) (.527) (.161)
Hispanic -0.160 -0.215 1.093 -0.0538

(0.207) (.145) (.588) (.167)
Experience -0.162** -0.0552 -1.361*** -0.0661

(0.059) (.043) (.225) (.051)
Working Spell Length -0.629*** -0.131*** 0.151 -0.548***

(0.018) (.008) (.246) (.015)
Experience Residuals 0.114*** 0.0813*** 0.241*** 0.0149

(0.059) (.042) (.226) (.05)
Working Spell Residuals 0.871*** 0.0711*** 0.397*** 0.788***

(0.017) (.007) (.219) (.016)
Observations 232,388 232,388 29,557 202,831
Bootstrapped standard errors in parentheses from 500 repetitions. Suppressed
coe�cient estimates include urbanicity and a full set of year indicators. Results from
heteroskedastic normal MLE control function. *** p<0.001, ** p<0.01, * p<0.05
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Table B.13: Control function e�ects on the conditional variance

Separations Job-to-Job Job-to-Unemployment
VARIABLES Full Sample Full Sample Recessions Expansions
Working Spell 2.740*** -0.466 1.986 2.467***

(0.095) (0.377) (2.426) (0.126)
Experience 1.525*** 1.998*** 2.530** 1.721***

(0.062) (0.246) (0.89) (0.099)
Spell Residuals -3.107*** -0.569 -1.825 -2.687***

(0.098) (0.52) (3.108) (0.121)
Exp. Residuals -0.704*** -0.940*** 0.844 -1.038***

(0.134) (0.186) (0.974) (0.197)
Observations 232,388 232,388 29,557 202,831
Bootstrap standard errors in parentheses from 500 repetitions. Results
from heteroskedastic normal MLE control function.
*** p<0.001, ** p<0.01, * p<0.05.
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Table B.14: Scaled coe�cients from heteroskedastic probit control function

Job Separations Job-to-Job Job-to-Unemployment
VARIABLES Full Sample Full Sample Recessions Expansions
AFQT -3.95 2.015 -9.171 -6.685*

(2.303) (2.157) (7.092) (3.302)
Years of Education (Education) 9.969*** 5.494*** 2.061 7.844***

(1.108) (1.322) (3.04) (1.604)
Competitive College (Competitive) -19.23*** -4.931 -20.61 -12.52

(5.484) (5.196) (17.694) (7.716)
White 3.737 4.770 1.277 -0.516

(5.291) (5.51) (15.722) (7.42)
Hispanic -11.03 -12.19* -5.962 -7.791

(5.761) (5.672) (16.808) (8.277)
Experience (Exp) 2.038* 2.437** -5.471* 1.596

(0.817) (0.879) (2.443) (1.251)
Working Spell (Spell) -0.971 -3.694*** 6.538 -0.991

(1.219) (0.879) (5.158) (1.893)
Experience Residuals (Exp_R) -5.975*** -4.478*** 1.665 -1.988

(1.055) (1.059) (2.389) (1.260)
Work Spell Residuals (Spell_R) 6.853*** 1.007 -0.0566 6.670***

(1.283) (0.978) (0.0424) (1.534)
AFQT x Spell 18.35 -9.439 95.38 31.04

(18.374) (11.542) (99.753) (26.449)
AFQT x Exp 2.666 2.644 -40.95 -0.458

(9.096) (9.076) (54.993) (12.691)
AFQT x Spell_R -22.27 0.371 -54.78 -18.86

(15.543) (10.018) (68.606) (22.342)
AFQT x Exp_R 20.04 4.252 -23.82 17.30

(12.187) (10.658) (38.821) (18.316)
Education x Spell 51.66*** 13.25* 136.5*** 77.48***

(9.409) (6.757) (39.819) (14.437)
Education x Exp -55.57*** -19.68** -91.28*** -69.86***

(6.645) (6.128) (20.108) (10.244)
Education x Spell_R 19.41*** 0.754 20.24 18.49***

(3.679) (3.837) (19.295) (5.552)
Education x Exp_R 7.007 16.72** 1.005 0.899

(6.645) (6.128) (20.108) (10.244)
Competitive x Spell 245.7*** 36.59 254.3 220.3***

(42.404) (30.864) (244.782) (58.798)
Competitive x Exp -38.64 6.609 -62.52 -63.39

(22.983) (22.268) (116.892) (34.428)
Competitive x Spell_R -283.7*** -58.58* -140.6 -227.7***

(34.161) (26.935) (181.335) (45.493)
Competitive x Exp_R 50.71 -32.99 33.03 88.46*

(26.961) (24.693) (77.702) (39.179)
White x Spell -50.54 13.63 -659.7** -85.52

(39.859) (25.061) (260.562) (53.549)
White x Exp 27.57 -4.672 492.2** 49.87

(19.298) (19.672) (136.897) (27.121)
White x Spell_R 68.28* -7.429 -25.74 86.50

(33.516) (22.274) (138.333) (46.274)
White x Exp_R -17.13 -5.039 191.4* -5.884

(28.204) (29.762) (89.196) (42.548)
Hispanic x Spell 103.1* 56.75 86.96 85.99

(44.173) (30.232) (200.865) (61.664)
Hispanic x Exp -22.10 -4.676 75.22 -13.73

(20.745) (23.182) (119.415) (28.386)
Hispanic x Spell_R -39.85 -44.02 -111.0 -25.68

(37.954) (26.084) (156.889) (53.164)
Hispanic x Exp_R -27.63 -15.86 169.8 -22.07

(29.033) (30.752) (96.193) (45.675)
Observations 232,388 232,388 29,557 202,831
Bootstrapped standard errors are in parentheses. Scaled coe�cients are from normal
heteroskedastic MLE (Probit). Suppressed coe�cient estimates include a full set of year
indicators, urbanicity, and square and interaction terms for potential experience, working spell
duration, and control function residuals of each. * p<0.05, ** p<0.01, *** p<0.001.
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Appendix C

Figures for Chapter 3
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Figure C.1: Kernel density plots of estimation errors, β̂1 − β1, for coe�cient of xij across
replications for all methods when the uncorrelated variance assumption holds (left panels)
and when it is violated (right panels). Note. FE+ = Augmented Fixed-E�ects; PC =
Per-Cluster; RE = Random-E�ects.
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Figure C.2: Kernel density plots of estimation errors, γ̂1 − γ1, for coe�cient of wj across
replications for all methods when the uncorrelated variance assumption holds (left panels)
and when it is violated (right panels). Note. FE+ = Augmented Fixed-E�ects; PC =
Per-Cluster; RE = Random-E�ects.
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Figure C.3: Estimated bias for coe�cient β1 of xij versus cluster size. Note. FE+ =
Augmented Fixed-E�ects; PC = Per-Cluster; RE = Random-E�ects.
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Figure C.4: Estimated root mean square error (RMSE) for coe�cient β1 of xij versus cluster
size. Note. FE+ = Augmented Fixed-E�ects; PC = Per-Cluster; RE = Random-E�ects.
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Figure C.5: Ratio of mean standard errors (Mean SE) divided by standard deviations (SD)
of estimates versus cluster size. Note. FE+ = Augmented Fixed-E�ects; PC = Per-Cluster;
RE = Random-E�ects.
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Tables for Chapter 3
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Table D.1: Estimates from di�erent methods using High School and Beyond Data.

Random Augmented Per-Cluster
E�ects Fixed E�ects Regression
(RE) (FE+) (PC)

Est (SE) Est (SE) Est (SE)

γ0 [Constant] 11.752 (0.232) 11.769 (0.205) 11.615 (0.271)
γ1 [Catholic] 2.130 (0.346) 2.186 (0.337) 2.253 (0.406)
β1 [SES] 2.958 (0.143) 2.782 (0.145) 2.772 (0.169)
β2 [SES × Catholic] -1.313 (0.216) -1.349 (0.218) -1.303 (0.234)

Note. All estimates are signi�cantly di�erent from 0 at the 0.05 level.

Table D.2: Comparing methods for estimating the coe�cients.

β1 [xij ] β2 [xij × wj ] γ1 [wj ]
Simulation 100× 100× 100× 100× 100× 100×
Condition Method Bias RMSE Bias RMSE Bias RMSE

Small Clusters RE 16.6* 21.6 0.8 7.0 -4.5* 8.0
& Uncorrelated FE+ 0.6 16.2 0.0 8.2 -0.3 7.4
Variance PC 1.9 25.5 -0.6 13.3 -0.5 12.7
Small Clusters RE 21.3* 24.2 1.2 6.1 -5.3* 8.2
& Correlated FE+ 11.7* 19.1 0.2 7.9 -2.4* 8.2
Variance PC -1.8 26.7 0.7 13.4 0.2 12.2
Large Clusters RE 6.2* 10.0 0.2 3.9 -1.7* 4.9
& Uncorrelated FE+ -0.3 8.0 0.2 4.0 0.2 5.3
Variance PC -0.2 8.0 0.1 4.1 0.0 5.2
Large Clusters RE 12.6* 14.4 -0.1 3.5 -2.9* 5.2
& Correlated FE+ 12.8* 15.2 -0.3 4.2 -2.5* 5.2
Variance PC 0.7 7.7 -0.3 4.0 0.0 5.0
Note. Small Clusters: nj = n = 4, Large Clusters: nj = n = 20;
Uncorrelated Variance: σ2

j = 1, Correlated Variance: σj = exp(u1j).

RMSE=root-mean-square error;

Mean SE=mean of the standard error estimates over the replications;

SD=standard deviation of the coe�cient estimates over the replications;
∗Estimated bias di�ers signi�cantly from 0 at the 0.05 level.
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Comparative Statics

The probability of transferring schools if given by the following equation (equation 6 in text):

P (M) = P [bh∗ − br∗ > 0]

Base Probability of Moving

For simplicity, these �rst derivations adopt the notation of bidding in the absence of VAMs.

Substituting the hiring and retaining principals bids provides the following:

P (M) =

P [
στ (0)σξ(x)

ZhNV
m+

στ (0)σε

ZhNV
Rx +

σεσξ(x)

ZhNV
Ph0 − (

στ (t)σξ(x)

ZrNV
m+

στ (t)σε
ZrNV

Rx +
σεσξ(x)

ZrNV
P rt ) > 0],

(E.1)

where ZhNV = στ (0)σξ(x) + στ (0)σε + σεσξ(x) and ZrNV = στ (t)σξ(x) + στ (t)σε + σεσξ(x)

After some algebra, equation E.1 becomes the following:

=P{
σξ(x)

ZhNV Z
r
NV

[(m− µ)σξ(x)(στ (0)− στ (t)) + (σεστ (t) + σξ(x)στ (t) + σεσξ(x))τh0

− (σεστ (0) + σξ(x)στ (0) + σεσξ(x))τrt + σε(στ (0)− στ (t))ξ] > 0}

Letting ψ ≡ (σεστ (t) + σξ(x)στ (t) + σεσξ(x))τh0 − (σεστ (0) + σξ(x)στ (0) + σεσξ(x))τrt +

σε(σv − στ (t))ξ, be the composite error term, simpli�es the above, to equation 1.7 from
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within text, presented below:

P (M) = P
{
ψ > σξ(x)[στ (0)− στ (t)](µ−m)

}
.

Under the assumptions that τr, τh and ξ are each orthogonal to one another,

σψ ≡ var(ψ) =var[(σεστ (t) + σξ(x)στ (t) + σεσξ(x))τh0

− (σεστ (0) + σξ(x)σv + σεσξ(x))τrt + σε(στ (0)− στ (t))ξ]

= στ (t)(σεστ (0) + σξ(x)στ (0) + σεσξ(x))2

+ στ (0)(σεστ (t) + σξ(x)στ (t) + σεσξ(x))2 + σξ(x)σ2
ε (στ (0)− στ (t))2

(E.2)

Assuming normality of the error terms, the probability of a school-to-school transition

may be written as:

P (M) = Φ

{
−1
√
σψ

[
σξ(x)[στ (0)− στ (t)](µ−m)

]}

= Φ {−βxt(µ−m)} .

(E.3)

Comparative statics for within-district moves with respect to teacher

e�ectiveness (µ)

Assuming the probability of moving schools is monotonically increasing in the di�erence

between bh∗ and br∗, the sign of
∂P [bh∗HV −b

r∗
HV >0|mµ]−P [bh∗NV −b

r∗
NV >0|mµ]

∂µ is implied by
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the sign of
∂E[bh∗HV −b

r∗
HV −(bh∗NV −b

r∗
NV )|mµ]

∂µ . Here, the subscript HV denotes that hiring

principals may access a teacher's VAM, while the subscript NV denotes that there are no

VAMs informing the bidding. The di�erence between hiring and retaining principals' bids

without the presence of VAMs is given by equation E.1 and is given by equation E.4 when

both principals may access the VAMs.

bh∗HV − b
r∗
HV =

στ (0)σξ(x V )

ZrHV
m+

στ (0)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
Ph0

−
(
στ (t)σξ(x V )

ZrHV
m+

στ (t)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
P rt

)
.

(E.4)

The expectation of that di�erence given prior beliefs and the underlying ability in the pres-

ence of VAMs is given by equation E.5:

E[bh∗HV − b
r∗
HV |m µ] =

1

ZhHV Z
r
HV

(m− µ)σξ(x V )2σε(στ (0)− στ (t)). (E.5)

The expectation of di�erence between bids given prior beliefs and the underlying ability

without VAMs is given by equation E.6:

E[bh∗NV − b
r∗
NV |m µ] =

1

ZhHV Z
r
HV

(m− µ)σξ(x)2σε(στ (0)− στ (t)). (E.6)

Let A1 = (m− µ)σξ(x V )2σε(στ (0)− στ (t))

Let A0 = (m− µ)σξ(x)2σε(στ (0)− στ (t))

E[bh∗HV −b
r∗
HV −(bh∗NV −b

r∗
NV )|mµ] =

A1

ZhHV Z
r
HV

− A0

ZhNV Z
r
NV

=
A1Z

h
NV Z

r
NV − A0Z

h
HV Z

r
HV

ZhHV Z
r
HV Z

h
NV Z

r
NV

(E.7)
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Examining the numerator:

A1Z
h
NV Z

r
NV − A0Z

h
HV Z

r
HV =(m− µ)σε(στ (0)− στ (t))(σξ(x V )2

(στ (t)σξ(x)2στ (0) + στ (t)σεστ (0)σξ(x) + σεσξ(x)2στ (0)

+ στ (t)σξ(x)στ (0)σε + στ (t)σ2
εστ (0) + σξ(x)στ (0)σ2

ε

+ στ (t)σξ(x)2σε + στ (t)σ2
εσξ(x) + σ2

εσξ(x)2

− σξ(x)2(στ (t)σξ(x V )στ (0)σξ(x V ) + στ (t)σεστ (0)σξ(x V )

+ σεσξ(x V )στ (0)σξ(x V ) + στ (t)σξ(x V )στ (0)σε

+ στ (t)σεστ (0)σε + σεσξ(x V )στ (0)σε + σεσξ(x V )σεσξ(x V )

+ στ (t)σξ(x V )σεσξ(x V ) + στ (t)σεσεσξ(x V ))

(E.8)

=(m− µ)σε(στ (0)− στ (t))(σξ(x V )2(στ (t)σεστ (0)σξ(x)

+ στ (t)σξ(x)στ (0)σε + στ (t)σεστ (0)σε + σεσξ(x)στ (0)σε + στ (t)σεσεσξ(x))

− σξ(x)2(στ (t)σεστ (0)σξ(x V ) + στ (t)σξ(x V )στ (0)σε + στ (t)σεστ (0)σε

+ σεσξ(x V )στ (0)σε + στ (t)σεσεσξ(x V ))

=(m− µ)σε(στ (0)− στ (t))((σξ(x V )− σξ(x))(στ (t)σεστ (0)σξ(x)σξ(x V )

+ σξ(x V )σ2
εσξ(x)στ (0) + σξ(x V )στ (t)σ2

εσξ(x) + (σξ(x V ) + σξ(x))στ (t)σ2
εστ (0)).
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∂A1Z
h
NV Z

r
NV − A0Z

h
HV Z

r
HV

∂µ
=− σε(στ (0)− στ (t))

((σξ(x V )− σξ(x))(στ (t)σεστ (0)σξ(x)σξ(x V )

+ σξ(x V )σ2
εσξ(x)στ (0) + σξ(x V )στ (t)σ2

εσξ(x)

+ (σξ(x V ) + σξ(x))στ (t)σ2
εστ (0)).

(E.9)

∂E[bh∗HV −b
r∗
HV −(bh∗NV −b

r∗
NV )|mµ]

∂µ is

1

ZhHV Z
r
HV Z

h
NV Z

r
NV

∂A1Z
h
NV Z

r
NV −A0Z

h
HV Z

r
HV

∂µ .

1

ZhHV Z
r
HV Z

h
NV Z

r
NV

is positive, as it is purely a function of variances. As a fundamental

component of asymmetric employer learning, it is assumed that στ (0) − στ (t) > 0. Under

lemma 2, σξ(x V ) − σξ(x) < 0. All other terms are positive variances, which implies that

∂E[bh∗HV −b
r∗
HV −(bh∗NV −b

r∗
NV )|mµ]

∂µ > 0, which in turn implies that the probability of moving

increases with increases in µ.

Comparative statics for within-district moves with respect to VAMs

(V )

In determining the comparative statics with regard to the VAM signal, I seek to sign

∂E[bh∗HV −b
r∗
HV −(bh∗NV −b

r∗
NV )|m V ]

∂V . From equation E.4:

bh∗HV − b
r∗
HV =

στ (0)σξ(x V )

ZrHV
m+

στ (0)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
Ph0

−
(
στ (t)σξ(x V )

ZrHV
m+

στ (t)σε
ZrHV

Rxν +
σεσξ(x V )

ZrHV
P rt

)
=

1

ZhHV Z
r
HV

[σξ(x V )σε(στ (0)− στ (t))(σξ(x V )(m− µ) + σε
σνξ + σξ(x)ν

σν + σξ(x)
)

+ τhZrHV σξ(x V )σε − τrt ZhHV σξ(x V )σε]
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Substituting in the VAM (V ) and prior public signal (Rx) separately provides equation E.10

=
1

ZhHV Z
r
HV

[σξ(x V )σε(στ (0)− στ (t))(σξ(x V )(m− (1 + σε)µ) + σε
σνRx + σξ(x)V

σν + σξ(x)
)

+ τhZrHV σξ(x V )σε − τrt ZhHV σξ(x V )σε]

(E.10)

Turning back to the probability of moving in absence of VAMs,

bh∗NV − b
r∗
NV =

στ (0)σξ(x)

ZhNV
m+

στ (0)σε

ZhNV
Rx +

σεσξ(x)

ZhNV
PH0

−
(
στ (t)σξ(x)

ZrNV
m+

στ (t)σε
ZrNV

Rx +
σεσξ(x)

ZrNV
PRt

)
=

1

ZhNV Z
r
NV

[σξ(x)σε(στ (0)− στ (t))(σξ(x)(m− µ) + σεξ)

+ τhZrNV σξ(x)σε − τrt ZhNV σξ(x)σε]

(E.11)

Combining equation E.10 with equation E.11 and taking the expectation conditional on

prior beliefs and VAMs provides equation E.12:

E[bh∗HV − b
r∗
HV − (bh∗NV − b

r∗
NV )|m V ] =

1

ZhHV Z
r
HV

[σξ(x V )σε(στ (0)− στ (t))(σξ(x V )

(m− (1 + σε)µ) + σε
σνµ+ σξ(x)V

σν + σξ(x)
)]

− 1

ZhNV Z
r
NV

σξ(x)σε(στ (0)− στ (t))(σξ(x)(m− µ)

(E.12)

Taking the derivative with respect to VAMs (V) provides equation 1.9 from the text.

∂E
[
bh∗HV − b

r∗
HV − (bh∗NV − b

r∗
NV )|m V

]
∂V

=
1

ZhHV Z
r
HV

σξ(x)

σν + σξ(x)
> 0
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As 1

ZhHV Z
r
HV

σξ(x)

σν+σξ(x)
is function of variances, it must be positive. Meaning that releas-

ing VAMs raises the probability that high-VAM teachers move schools.

Comparative statics for out-of-district moves with respect to teacher

e�ectiveness (µ)

Assuming the probability of moving schools is monotonically increasing in the di�erence

between bh∗ and br∗, the sign of
∂P [bh∗RV −b

r∗
RV >0|mµ]−P [bh∗NV −b

r∗
NV >0|mµ]

∂µ is implied by the

sign of
∂E[bh∗RV −b

r∗
RV −(bh∗NV −b

r∗
NV )|mµ]

∂µ . Here, the subscript RV denotes that only retaining

principals may access a teacher's VAM, while the subscript NV denotes that there are no

VAMs informing the bidding. The di�erence between hiring and retaining principals' bids

without the presence of VAMs is given by equation E.1, and is given by equation E.13 when

both principals may access the VAMs.

bh∗RV − b
r∗
RV =

στ (0)σξ(x)

ZrRV
m+

στ (0)σε
ZrRV

Rx +
σεσξ(x)

ZrRV
Ph0

−
(
στ (t V )σξ(x)

ZrRV
m+

στ (t V )σε
ZrRV

Rx +
σεσξ(x V )

ZrRV
P rtν

)
.

(E.13)

The expectation of that di�erence given prior beliefs and the underlying ability in the pres-

ence of VAMs is given by equation E.14:

E[bh∗RV − b
r∗
RV |m µ] =

1

ZhRV Z
r
RV

(m− µ)σξ(x)2σε(στ (0)− στ (t V )). (E.14)
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The expectation of di�erence between bids given prior beliefs and the underlying ability

without VAMs is again given by equation E.6:

E[bh∗NV − b
r∗
NV |m µ] =

1

ZhHV Z
r
HV

(m− µ)σξ(x)2σε(στ (0)− στ (t)).

Combining equation E.14 with equation E.6 gives the following:

E[bh∗RV − b
r∗
RV − (bh∗NV − b

r∗
NV )|m µ] =

(m− µ)σξ(x)2σε

ZhRV Z
r
RV Z

h
NV Z

r
NV

[(στ (0)− στ (t V ))

(στ (t)σξ(x)2στ (0) + στ (t)σεστ (0)σξ(x) + σεσξ(x)2στ (0)

+ στ (t)σξ(x)στ (0)σε + στ (t)σ2
εστ (0) + σξ(x)στ (0)σ2

ε

+ στ (t)σξ(x)2σε + στ (t)σ2
εσξ(x) + σ2

εσξ(x)2)

− (στ (0)− στ (t))(στ (t V )σξ(x)στ (0)σξ(x)

+ σεσξ(x)στ (0)σξ(x) + στ (t V )σξ(x)στ (0)σε

+ στ (t V )σεστ (0)σε + σεσξ(x)στ (0)σε

+ στ (t V )σξ(x)σεσξ(x) + στ (t V )σεσεσξ(x)

+ στ (t V )σεστ (0)σξ(x) + σεσξ(x)σεσξ(x))]

=
(m− µ)σξ(x)2σε

ZhRV Z
r
RV Z

h
NV Z

r
NV

(στ (t)− στ (t V ))

(στ (0)2σ2
ε + στ (0)2σξ(x)2 + στ (0)2σεσξ(x) + σξ(x)2σ2

ε )

(E.15)

Taking the derivative of equation E.15 with respect to true e�ectiveness (µ), gives what
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is referred to in text as equation E.

∂E
[
bh∗RV − b

r∗
RV − (bh∗NV − b

r∗
NV )|m µ

]
∂µ

=
−σξ(x)2σε

ZhRV Z
r
RV Z

h
NV Z

r
NV

(στ (t)− στ (t V ))(στ (0)2σ2
ε

+ στ (0)2σξ(x)2 + στ (0)2σεσξ(x) + σξ(x)2σ2
ε ).

Lemma 1 demonstrates that στ (t)− στ (t V ) > 0. All other terms are positive variances,

implying that
∂E[bh∗RV −b

r∗
RV −(bh∗NV −b

r∗
NV )|mµ]

∂µ < 0, which in turn implies that the probability

of out-of-district transitions increases with declines in teacher e�ectiveness (µ).

Comparative statics for out-of-district moves with respect to VAMs

(V )

In determining the comparative statics with regard to the VAM signal, I seek to sign

∂E[bh∗RV −b
r∗
RV −(bh∗NV −b

r∗
NV )|m V ]

∂V . Turning back to the probability of moving in absence of

VAMs, equation E.11 provides:

bh∗NV − b
r∗
NV =

1

ZhNV Z
r
NV

[σξ(x)σε(στ (0)− στ (t))(σξ(x)(m− µ) + σεξ) + τhZrNV σξ(x)σε

− τrt ZhNV σξ(x)σε]

In the case where only retaining principals may access a teacher's VAM, as is plausible for

out-of-district moves, the di�erence between hiring and retaining principals bids is given by
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equation E.16:

bh∗RV − b
r∗
RV =

στ (0)σξ(x)

ZrRV
m+

στ (0)σε
ZrRV

Rx +
σεσξ(x)

ZrRV
Ph0

−
(
στ (t V )σξ(x)

ZrRV
m+

στ (t V )σε
ZrRV

Rx +
σεσξ(x V )

ZrRV
P rtν

)
=

1

ZhRV Z
r
RV

[σξ(x)σε(στ (0)− στ ν(t V ))(σξ(x)(m− µ) + σεξ)

+ τhZrHV σξ(x)σε − σξ(x)σεZ
h
RV

σντ
r
t + στ (t)ν

σν + στ (t)
]

=
1

ZhRV Z
r
RV

[σξ(x)σε(στ (0)− στ ν(t V ))(σξ(x)(m− µ) + σεξ)

+ τhZrRV σξ(x)σε − σξ(x)σεZ
h
RV

σντ
r
t + στ (t)(V − µ)

σν + στ (t)
]

(E.16)

The derivative of equation E.16 with respect to the VAM signal (V ) is referred to in text

as equation 1.11, and is presented below:

∂E
[
bh∗HV − b

r∗
HV − (bh∗NV − b

r∗
NV )|m V

]
∂V

=
−σξ(x)σεστ (t)

ZrRV (σν + στ (t))
< 0

As equation 1.11 is the negative of a function of variances, it is less than zero. Thus after

VAMs are released, as a teacher's VAM decreases, the probability of moving out of district

increases.

Robustness: Year interactions with VAM

The primary threat to validity for di�erence-in-di�erence analysis is di�erential trends. The

tables below provide year interactions with the VAM within both treatment districts as
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well as the rest of the state. While the estimates are too noisy to say anything conclusive,

the pre-policy trends do not seem diverge in a way that would bias up my results. It is

also noteworthy that is both districts there is a spike in the correlation of VAM with the

probability of moving within-district soon after the policy takes e�ect.

Robustness: Mobility based on ABC Growth Policies

In the 1996/1997 school year the state of North Carolina began rewarding teachers who

worked in schools in which the students made substantial growth. The state awarded bonuses

of either $750 or $1,500 based on whether the school achieved growth in student test scores

beyond predetermined tiered thresholds. These bonuses were given to all teachers in quali-

fying schools. For additional detail about the policy please see Vigdor et al. (2008) and Ahn

and Vigdor (2012).

As a result, teaching in high growth schools may be additionally attractive to teachers

since the bonuses depended upon school performance. Table F.4 is comparable to Table A.3

except that the dependent variable here is whether the teacher moves to higher (lower)

growth school as opposed to a higher (lower) performing school within and out of district.

The total within and out-of districts mobility estimates in columns 1 and 4 of Table A.3 are

una�ected, and so they are omitted.

When examining this alternate school attribute on which teachers may sort, the primary

�ndings remain intact. The within district mobility is driven by moves to more favorable

schools for both districts. Though the results are attenuated here as a teacher with a full

standard deviation higher VAM is 0.3 percentage point more likely to move within district
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to a higher ABC growth school for teachers whose VAMs are released, the estimates re-

main statistically signi�cantly positive for both districts. Though these estimates are not

statistically di�erent from the estimated e�ect on the probability of moving to higher per-

forming schools, perhaps they suggest that school performance may be a stronger motivator

for teacher mobility than student growth.

The estimated e�ects for moves outside the district are remarkably close between Ta-

ble A.3 and Table F.4. The adverse selection of movers out of Guilford County Schools holds

for moves to both better and worse schools, while moves from Winston-Salem to better

schools remain unrelated to teachers' VAMs after the policy takes e�ect.

Normal Maximum Likelihood Estimation

The results in Table A.3 are from a linear probability model, which are more straight for-

ward both computationally and in interpretation. Taking the normality and orthogonality

assumptions from Section 1.4 seriously would suggest normal Maximum Likelihood Estima-

tion (probit estimation). As noted in Ai and Norton (2003), the functional form of probit

estimation incorporates an interaction term, even when one is not speci�cally modeled. As

a result, if the researcher is interested in estimating the average partial e�ect (APE) of

an interaction additionally programming is necessary. Table F.5 in Appendix ?? provides

the APEs in accordance with Ai and Norton (2003). Comparison between Table A.3 and

Table F.5 provides very similar results.
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Competing Risks Analysis

By performing separate regressions for each type of school transfer, the above analysis treats

each type of move as independent of the others. However, it is possible that the propensity of

a teacher to move within-district to a higher-performing school is related to the propensity of

moving to a higher-performing school in another district. The same could be said with any

combination of outcomes. To test the sensitivity of my earlier results to these possibilities,

I adopt a competing risks approach, as proposed by Fine and Gray (1999).

Competing risks survival analysis models the subdistribution hazard (λE(t)) of a partic-

ular type of event, such as a move within a school district (E = WD), as a function of an

unspeci�ed baseline hazard (λE0(t)), as well as a vector of time-varying covariates (Z(t)). 1

λWD(t|Z) = λWD0(t)exp{Z(t)β0}, (E.17)

In the context of this study, time at risk (t) is de�ned as the di�erence between the current

year and the year at which the teacher �rst appears matched with the current school.2 Z(t)

is a vector including all covariates used in Table A.3, with the exception of tenure, which

is perfectly correlated with t. I additionally include district averages of all within-district-

varying covariates to control for unobserved, district-wide e�ects, as in Mundlak (1978)3.

Table F.6 reports the coe�cient estimates for each type of transfer between schools.

1Gray (1988) de�nes the subdistribution hazard as, λWD(t) = lim∆t→0
P (t<T≤t+∆t,E=WD|t≤T

⋃
t<T,E 6=WD)

∆t , where T is the timing of the event occurrence of which
there are di�erent types.

2I use teacher to school matches as the basis of this survival analysis. Though this forces me to assume
independence of matches, it allows me to retain the original sample making it easier to compare the results.

3Unreported regression results show little di�erence depending on whether or not district averages are
included
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Accordingly, β × 100 may be interpreted as the percent change in the marginal probability

of a particular type of mobility due to a one unit change in the covariate. Columns 1 and 4,

examine transfers within and out of the district respectively, with the other broad type of

transfer serving as a competing risk. Columns 2, 3, 5, and 6, examine transfers to higher and

lower-performing schools, within and out of the district, with the other types of transfers

serving as competing risks.

In this framework, results remain remarkably consistent. From columns 1 and 2, the

probability of moving within-district for a teacher with a one standard deviation higher

VAM score increases by 9% with the release of teacher VAMs, and for moves within-district

to better school, the probability increases by 13%. Both e�ects are signi�cantly di�erent

from zero and are within a percentage point estimates shown in Table A.3. From columns

4 and 5, a teacher with a one standard deviation lower VAM becomes 33.6% (29.5%) more

likely to move out of Guilford (to a higher-performing school) after the policy takes e�ect.

In Winston-Salem, the results from Table A.3 are muted for total within-district mobility.

Column 1 shows a smaller point estimate than appears in Table A.3, and the the estimate

loses statistical signi�cance. The impact of the policy in Winston-Salem on moves to higher

performing schools within district are more stable. The introduction of VAMs raises the

probability that a teacher with a one standard deviation higher VAM moves to a higher-

performing school by about 11%, though the signi�cance level drops with this speci�cation.

For out-of-district moves to higher-performing schools, the point estimate corresponds with a

15% increase in the probability a high-VAM teacher moves out of Winston-Salem to a higher-

performing school, though this estimate is very noisy and should be interpreted accordingly.

In general, while the public and private learning results are further veri�ed in Guilford with

this competing risks analysis, the same cannot be said for Winston-Salem.
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Appendix F

Supplemental Tables for Chapter 1
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Table F.1: The e�ects of VAM on the probability of moving schools within-district by year.

Total To a more pro�cient school
VARIABLES Rest of NC Guilford Winston-Salem Rest of NC Guilford Winston-Salem

year 1998 x VAM 0.0009 0.0012 0.0043 0.0021*** 0.0006 -0.0003
[0.00077] [0.00269] [0.00513] [0.00061] [0.00236] [0.00267]

year 1999 x VAM 0.0022** 0.0023 -0.0001 0.0044*** 0.0048** 0.0041
[0.00083] [0.00316] [0.00587] [0.00059] [0.00242] [0.00393]

year 2000 x VAM 0.0035*** 0.0205*** -0.0007 0.0023*** 0.0155*** -0.0042*
[0.00079] [0.00252] [0.00311] [0.00065] [0.00156] [0.00253]

year 2001 x VAM 0.0019** 0.0048 -0.0020 0.0035*** 0.0030 0.0012
[0.00079] [0.00332] [0.00298] [0.00058] [0.00262] [0.00211]

year 2002 x VAM 0.0035** -0.0044 0.0024 0.0055*** -0.0011 0.0107***
[0.00096] [0.00268] [0.00535] [0.00073] [0.00205] [0.00378]

year 2003 x VAM 0.0004 -0.0054 0.0041 0.0027*** -0.0013 0.0042
[0.00089] [0.00467] [0.00486] [0.00073] [0.00329] [0.00445]

year 2004 x VAM 0.0010 0.0020 -0.0088** 0.0016*** -0.0073** -0.0043
[0.00106] [0.00446] [0.00403] [0.0008] [0.00296] [0.00358]

year 2005 x VAM 0.0015 0.0128*** -0.0160*** 0.0040*** 0.0190*** -0.0080**
[0.00099] [0.00300] [0.00423] [0.00075] [0.00273] [0.00297]

year 2006 x VAM 0.0047*** 0.0169*** 0.0100*** 0.0055*** 0.0158*** 0.0037*
[0.00087] [0.00563] [0.00308] [0.00061] [0.00521] [0.00193]

year 2007 x VAM 0.0027*** 0.0189*** -0.0133*** 0.0039*** 0.0147*** -0.0078**
[0.00081] [0.00355] [0.00478] [0.00056] [0.00282] [0.00366]

year 2008 x VAM 0.0029*** 0.0057* 0.0005 0.0032*** 0.0114*** 0.0019
[0.00092] [0.00342] [0.00469] [0.00069] [0.00247] [0.00370]

year 2009 x VAM 0.0034*** 0.0036 0.0110* 0.0032*** 0.0046** 0.0173***
[0.00118] [0.00325] [0.00579] [0.00091] [0.00233] [0.00473]

year 2010 x VAM -0.0001 0.0123*** 0.0002 0.0009 0.0121*** 0.0004
[0.00095] [0.00326] [0.00489] [0.00073] [0.00274] [0.00431]

Observations 216,484 11,239 8,295 216,484 11,239 8,295
Standard errors are bootstrapped at the student-year level and appear in brackets.
All regressions include teacher level covariates and interactions with year indicators.

*** p<0.01, ** p<0.05, * p<0.1
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Table F.2: The e�ect of VAM on the probability of moving schools out-of-district by year.

Total To a more pro�cient school
VARIABLES Rest of NC Guilford Winston-Salem Rest of NC Guilford Winston-Salem

year 1998 x VAM 0.0017*** 0.0098*** -0.0079** 0.0023*** 0.0076*** -0.0059***
[0.0005] [0.00212] [0.0032] [0.00039] [0.00178] [0.00187]

year 1999 x VAM -0.0004 0.0065** -0.0026* 0.0011** 0.0064*** -0.0033***
[0.00057] [0.00267] [0.00136] [0.00049] [0.00243] [0.00096]

year 2000 x VAM 0.0006 0.0013 0.0063*** 0.0015*** 0.0033*** 0.0033*
[0.00057] [0.00157] [0.00215] [0.00045] [0.00126] [0.00195]

year 2001 x VAM -0.0022*** 0.0025 -0.0069*** -0.0005 0.0063*** -0.0070***
[0.00057] [0.00152] [0.00202] [0.00044] [0.00112] [0.00163]

year 2002 x VAM -0.0033*** -0.0025 0.0106*** 0.0000 0.0015 0.0146***
[0.00063] [0.00261] [0.00203] [0.00042] [0.00167] [0.00187]

year 2003 x VAM -0.0011 -0.0016 -0.0141*** 0.0017*** -0.0004 -0.0091***
[0.00071] [0.00282] [0.00367] [0.00052] [0.0028] [0.00346]

year 2004 x VAM -0.0037*** 0.0099*** 0.0054 -0.0005 0.0080*** 0.0092***
[0.00073] [0.00206] [0.0034] [0.00056] [0.00172] [0.00281]

year 2005 x VAM -0.0001 -0.0038* -0.0024 0.0011** 0.0033** -0.0005
[0.00064] [0.00197] [0.00212] [0.00047] [0.00164] [0.00176]

year 2006 x VAM -0.0011 -0.0095*** -0.0001 0.0017*** -0.0018 -0.0013
[0.00071] [0.00372] [0.003] [0.00048] [0.00262] [0.00276]

year 2007 x VAM -0.0016** -0.0223*** 0.0011 0.0003 -0.0040*** 0.0063*
[0.00081] [0.00367] [0.00358] [0.00061] [0.00114] [0.00352]

year 2008 x VAM -0.0017** -0.0079*** -0.0054 0.0006 0.0001 -0.0000
[0.00064] [0.00185] [0.00414] [0.00047] [0.00099] [0.0035]

year 2009 x VAM 0.0006 -0.0023 0.0047*** -0.0004 0.0000 0.0047***
[0.00051] [0.00089] [0.00149] [0.00035] [0.00012] [0.00148]

year 2010 x VAM -0.0021*** -0.0058*** -0.0011 -0.0006 -0.0054*** -0.0011
[0.00058] [0.00156] [0.00113] [0.00051] [0.00103] [0.00112]

Observations 216,484 11,239 8,295 216,484 11,239 8,295
Standard errors are bootstrapped at the student-year level and appear in brackets.
All regressions include teacher level covariates and interactions with year indicators.

*** p<0.01, ** p<0.05, * p<0.1
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Table F.3: The e�ect of VAM on teacher sorting within-district by year.

VARIABLES Rest of NC Guilford Winston-Salem

year 1998 x VAM 0.0025*** 0.0045** -0.0014
[0.00021] [0.00071] [0.00146]

year 1999 x VAM 0.0026*** 0.0013 0.0021
[0.00021] [0.00109] [0.00156]

year 2000 x VAM 0.0019*** 0.0041*** 0.0007
[0.0002] [0.00069] [0.00084]

year 2001 x VAM 0.0051*** 0.0038*** 0.0077***
[0.00026] [0.00097] [0.00146]

year 2002 x VAM 0.0046*** 0.0031*** 0.0072***
[0.0002] [0.00072] [0.00164]

year 2003 x VAM 0.0031*** 0.0043*** 0.0052***
[0.00019] [0.00099] [0.001]

year 2004 x VAM 0.0023*** -0.0006 0.0005
[0.00021] [0.00109] [0.00212]

year 2005 x VAM 0.0102*** 0.0109*** 0.0096***
[0.00032] [0.00097] [0.00126]

year 2006 x VAM 0.0047*** 0.0009 -0.0014
[0.00027] [0.00161] [0.00089]

year 2007 x VAM 0.0046*** 0.0049*** 0.0031**
[0.00026] [0.00105] [0.00133]

year 2008 x VAM 0.0016*** 0.0031*** 0.0005
[0.00025] [0.00112] [0.00127]

year 2009 x VAM -0.0003 0.0055*** 0.0053***
[0.00042] [0.00097] [0.00146]

year 2010 x VAM 0.0033*** 0.0050*** 0.0045***
[0.00027] [0.00104] [0.00145]

Observations 185,977 9,616 7,35
Standard errors are bootstrapped at the student-year level
and appear in brackets. All regressions include teacher level

covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1
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Table F.4: Probability of moving to higher or lower growth schools

Panal A: Within-District Moves Panal B: Out-Of-District Moves

To a higher To a lower To a higher To a lower

VARIABLES ABC growth ABC growth ABC growth ABC growth

school school school school

VAM 0.0024*** -0.0006 0.0008 -0.0005
[0.00073] [0.00077] [0.00056] [0.0006]

VAM x Treatment GCS 0.0031** 0.0013 -0.0048*** -0.0052***
[0.00152] [0.00153] [0.00139] [0.002]

VAM x Treatment WSF 0.003** 0.0017 0 0.0014
[0.0015] [0.00155] [0.00131] [0.001]

Treatment GCS 0.0074* -0.0023 0.0057*** -0.0129***
[0.00385] [0.00612] [0.00187] [0.00219]

Treatment WSF 0.0156*** 0.0074** -0.001 -0.0093***
[0.00206] [0.00297] [0.00126] [0.00209]

Observations 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1

Table F.5: Probability of moving schools using normal maximum likelihood estimation.

Panal A: Within-District Moves Panal B: Out-of-District Moves

To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing

school school school school

VAM 0.0022** 0.0030*** -0.0011 -0.0011 0.0005 -0.0018***
[0.00114] [0.00079] [0.00068] [0.00083] [0.0006] [0.0005]

VAM x Treatment GCS 0.0046* 0.0040** 0.0021 -0.0117*** -0.0065*** -0.0053***
[0.0025] [0.00172] [0.00185] [0.00274] [0.00203] [0.0017]

VAM x Treatment WSF 0.0029 0.0038* -0.0010 0.0002 0.0026 -0.0020
[0.00268] [0.00193] [0.00221] [0.00313] [0.00238] [0.00324]

Treatment GCS 0.0110*** 0.0112*** 0.0001 -0.0009 -0.0036** 0.0027***
[0.00268] [0.0019] [0.00177] [0.0019] [0.00161] [0.00101]

Treatment WSF -0.0149*** -0.0103*** -0.0080*** 0.0022 -0.0011 -0.0226***
[0.00441] [0.00369] [0.0031] [0.00493] [0.00342] [0.00679]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1

163



Table F.6: Changes in the marginal probability of each type of transfer between schools

Panal A: Within-District Moves Panal B: Out-Of-District Moves
To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing
school school school school

VAM 0.03 0.09*** -0.07** 0.01 0.08** -0.10**

[0.021] [0.024] [0.030] [0.028] [0.035] [0.042]

VAM x Treatment GCS 0.09** 0.13** 0.10 -0.41*** -0.35*** -0.40**

[0.045] [0.051] [0.076] [0.104] [0.111] [0.164]
VAM x Treatment WSF 0.04 0.11* -0.08 0.02 0.15 -0.21

[0.050] [0.068] [0.095] [0.116] [0.141] [0.238]

Treatment GCS 0.01 0.22** -0.23** 0.24** -0.12 0.49***

[0.116] [0.107] [0.113] [0.122] [0.130] [0.160]
Treatment WSF 0.56*** 0.27* 0.87*** -0.87*** 0.18 -7.22***

[0.118] [0.145] [0.144] [0.167] [0.219] [0.587]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
CSB standard errors from 500 repetitions appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1
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Table F.7: Probability of moving schools using alternate standard errors

Within-District Moves Out-of-District Moves

To higher To lower To higher To lower

Total performing performing Total performing performing

schools schools schools schools

VAM 0.0016 0.0032 -0.0016 0.0002 0.0014 -0.0012

(0.00139) (0.00091) (0.00083) (0.00084) (0.00057) (0.00050)
{0.00056} {0.0004} {0.00036} {0.00039} {0.00031} {0.00022}
[0.00129] [0.00091] [0.00074] [0.00096] [0.00072] [0.00058]

VAM x Treatment GCS 0.0058 0.0051 0.0007 -0.0103 -0.0054 -0.0049

(0.00168) (0.00115) (0.00091) (0.00090) (0.00061) (0.00057)
{0.00262} {0.00204} {0.00153} {0.00192} {0.00164} {0.00106}
[0.00265] [0.00199] [0.00151] [0.00261] [0.00195] [0.00156]

VAM x Treatment WSF 0.0052 0.006 -0.0008 0.0009 0.0023 -0.0014

(0.00147) (0.00094) (0.00125) (0.00084) (0.00068) (0.00051)
{0.00323} {0.00255} {0.00204} {0.00186} {0.00167} {0.00096}
[0.00286] [0.00229] [0.00194] [0.00241] [0.00208] [0.00129]

Treatment GCS -0.004 -0.005 0.001 -0.0162 -0.0232 0.007

(0.00829) (0.00608) (0.00537) (0.00402) (0.00319) (0.00214)
{0.00583} {0.00436} {0.00444} {0.00261} {0.00114} {0.0024}
[0.00851] [0.00571] [0.00679] [0.00374] [0.00233] [0.00268]

Treatment WSF 0.0555 0.0475 0.008 -0.002 0.0147 -0.0167

(0.00579) (0.00417) (0.00311) (0.00258) (0.00199) (0.00184)
{0.00314} {0.00253} {0.00215} {0.0029} {0.0022} {0.00171}
[0.00499] [0.00372] [0.00299] [0.00274] [0.00224] [0.00178]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
Clustered standard errors in parentheses. Bootstrapped standard errors in braces. District-cluster-bootstrapped-teacher-
strati�ed standard errors in brackets.
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Table F.8: Probability of moving including alternate index of teacher quality

Within-District Moves Out-of-District Moves
To a higher To a lower To a higher To a lower

Variables Total performing performing Total performing performing
schools schools schools schools

VAM 0.0017 0.0036*** -0.0020* -0.0003 0.0012 -0.0015**
[0.00172] [0.00116] [0.00102] [0.00110] [0.00076] [0.00062]

Teacher Quality Index (TQ Index) -0.0375** -0.0917*** 0.0542*** -0.0319*** -0.0395*** 0.0076**
[0.01836] [0.01406] [0.00718] [0.00657] [0.00622] [0.00299]

VAM x Treatment GCS 0.0086*** 0.0061*** 0.0025** -0.0113*** -0.0059*** -0.0054***
[0.00205] [0.00138] [0.00113] [0.00114] [0.00080] [0.00069]

VAM x Treatment WSF 0.0051*** 0.0046*** 0.0005 -0.0004 0.0008 -0.0012*
[0.00175] [0.00120] [0.00155] [0.00100] [0.00078] [0.00063]

TQ Index x Treatment GCS -0.0103 -0.0102 -0.0001 0.0181*** 0.0148*** 0.0033
[0.01934] [0.01522] [0.00762] [0.00558] [0.00477] [0.00329]

TQ Index x Treatment WSF -0.0680*** -0.0381*** -0.0300*** -0.0208*** -0.0269*** 0.0061**
[0.00943] [0.00735] [0.00466] [0.00501] [0.00402] [0.00261]

Treatment GCS 0.0178*** 0.0114*** 0.0064*** -0.0029** -0.0031*** 0.0002
[0.00513] [0.00416] [0.00161] [0.00135] [0.00115] [0.00073]

Treatment WSF -0.0096*** -0.0042* -0.0054*** 0.0065*** 0.0075*** -0.0010*
[0.00358] [0.00226] [0.00174] [0.00124] [0.00114] [0.00061]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
Bootstrapped standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table F.9: Probability of moving schools using Empirical Bayes VAM

Panal A: Within-District Moves Panal B: Out-Of-District Moves

To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing

school school school school

VAM 0.0006 0.0028*** -0.0022*** -0.0006** 0.0014*** -0.0020***

[0.00042] [0.00032] [0.00027] [0.0003] [0.00023] [0.00019]

VAM x Treatment GCS 0.0048*** 0.0059*** -0.0011 -0.0130*** -0.0078*** -0.0051***

[0.00206] [0.00162] [0.00121] [0.00148] [0.00111] [0.00097]
VAM x Treatment WSF 0.0066*** 0.0085*** -0.0020 0.0009 0.0023 -0.0013

[0.00276] [0.00216] [0.00166] [0.00166] [0.00143] [0.00084]

Treatment GCS -0.0048 -0.0055*** 0.0007 -0.0174*** -0.0245*** 0.0072***

[0.00408] [0.00109] [0.00409] [0.00121] [0.00098] [0.00064]
Treatment WSF 0.0553*** 0.0471*** 0.0082*** -0.0022 0.0144*** -0.0167***

[0.00232] [0.00173] [0.00162] [0.00194] [0.00193] [0.00028]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
Standard errors are bootstrapped at the student-year level and appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1
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Table F.10: Probability of moving schools using restricted-data, Empirical Bayes VAM

Panal A: Within-District Moves Panal B: Out-Of-District Moves

To a higher To a lower To a higher To a lower

VARIABLES Total performing performing Total performing performing

school school school school

VAM 0.0015** 0.0000 -0.0015*** -0.0021*** -0.0011*** -0.0010***

[0.00063] [0.00053] [0.0004] [0.00046] [0.00038] [0.0003]

VAM x Treatment GCS 0.0035 0.0037 -0.0001 -0.0063*** -0.0041** -0.0023*

[0.00327] [0.00245] [0.00206] [0.00244] [0.00202] [0.00123]
VAM x Treatment WSF 0.0090*** 0.0129*** -0.0039** 0.0020 0.0019 0.0001

[0.00282] [0.00219] [0.00179] [0.00193] [0.00171] [0.00086]

Treatment GCS -0.0032 -0.0040 0.0008 -0.0162 -0.0239*** 0.0077*

[0.00902] [0.00698] [0.00719] [0.00451] [0.00168] [0.00438]
Treatment WSF 0.0555*** 0.0476*** 0.0078*** -0.0021 0.0147*** -0.0167***

[0.00265] [0.00195] [0.00181] [0.00204] [0.00201] [0.00031]

Observations 236,018 236,018 236,018 236,018 236,018 236,018
Standard errors are bootstrapped at the student-year level and appear in brackets.

All regressions include teacher level covariates and interactions with treatment indicators.
*** p<0.01, ** p<0.05, * p<0.1
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Appendix G

Supplemental Figures for Chapter 1
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Figure G.1: The e�ects of VAM on the probability of moving schools within-district by year.
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Figure G.2: The e�ects of VAM on the probability of moving to a a better school within-
district by year.
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Figure G.3: The e�ect of VAM on the probability of moving schools out-of-district by year.
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Figure G.4: The e�ects of VAM on the probability of moving to a better school out-of-district
by year.
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Figure G.5: The e�ect of VAM on teacher sorting within-district by year.
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Appendix H

Additions for Chapter 2

174



Job-to-Job selection with respect to ability and reference

group quality

As stated in Section 3.1 the optimal bids for the current (br) and hiring �rm (bh) are

given by

br = E[µ|Rx, Pr, Ph = Pr] =
σξ(x)στ (t)

W ′
m+

στ (t)σε
W ′

Rx +
2σξ(x)σε

W ′
Pr + E(ϕr),

bh = E[µ|Rx, Pr = Ph, Ph] =
σξ(x)στ (0)

W
m+

στ (0)σε
W

Rx +
2σξ(x)σε

W
Ph + E(ϕh),

where W = σξ(x)στ (0) + στ (0)σε + 2σξ(x)σε and W ′ = σξ(x)στ (t) + στ (t)σε + 2σξ(x)σε.

Thus the probability of a job-to-job transition is the outside �rm's optimal bid exceeds that

of the retaining �rm, as shown below:

P (J) = P [bh − br > 0]

Substituting in the bids and the de�nition of each signal provides the following:

= P [
σξ(x)στ (0)

W
m+

στ (0)σε
W

(µ+ ξ) +
2σξ(x)σε

W
(µ+ τh)

−(
σξ(x)στ (t)

W ′
m+

στ (t)σε
W ′

(µ+ ξ) +
2σξ(x)σε

W ′
(µ+ τr)) > E(ϕr)− E(ϕh)],
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which after some algebra gives:

P{ 2

WW ′
[(m− µ)σξ(x)2σε(στ (0)− στ (t)) +Wτh

−W ′τr + σ2
εσξ(x)(στ (0)− στ (t))ξ] > E(ϕr)− E(ϕh)}.

Letting ψJ ≡ E(ϕh−E(ϕr))+ 2
WW ′ (Wσεσξ(x)τr−W ′σεσξ(x)τh+σ2

εσξ(x)(στ (t)−στ (0))ξ)

be the composite error term, provides the simpli�cation:

P (J) = P

{
2

WW ′
σξ(x)2σε[στ (0)− στ (t)](m− µ) > ψJ

}
.

Imposing the normal and orthogonality assumptions provide:

P (J) = Φ

{
2√

σψJ
WW ′

[
σξ(x)2σε[στ (0)− στ (t)](m− µ)

]}
,

where Φ{.} is the normal CDF, σψ = var(ψ) =2σϕ + 4
W2W ′2

(W ′2σ2
εσξ(x)2στ (0)

+W 2σ2
εσξ(x)2στ (t) + σ4

εσξ(x)2(στ (t)− στ (0))2σξ(x))

and σϕ = var(E(ϕr)) = var(E(ϕh)).

The derivative of the probability of job-to-job transitions with respect to ability (µ) is:

∂P (J)

∂µ
= −φ

{
2σξ(x)σε

WW ′√σψj
σξ(x)[στ (0)− στ (t)](m− µ)

}
2σξ(x)σε

WW ′√σψj
σξ(x)[στ (0)− στ (t)]

φ{.}, being the normal pdf, is positive, as is each variance. Thus, as long as the precision

of the private signal shrinks the longer a worker is with the retaining �rm (στ (0) > στ (t)),

∂P (J)
∂µ < 0.

176



The derivative of the probability of job-to-job transitions with respect to reference group

quality (m) is:

∂P (J)

∂m
= φ

{
2σξ(x)σε

WW ′√σψj
σξ(x)[στ (0)− στ (t)](m− µ)

}
2σξ(x)σε

WW ′√σψj
σξ(x)[στ (0)− στ (t)]

Under the same conditions, ∂P (J)
∂m > 0.

Job-to-Job dynamics with respect to working spell dura-

tion

One of the main indicators of asymmetric employer learning is the evolution of these selection

e�ects as information accumulates the longer a worker is continuously employed. In order to

examine the dynamics of this selection over working spell duration, I focus on the interactions

of individual ability with working spell duration and reference group with working spell

duration respectively. Below, I will �rst �nd the derivative of the probability of a job-to-job

move, P(J), with respect to working spell duration, in order to �nd the predicted sign of the

scaled coe�cients on the interaction terms.

The scaled coe�cient on the interaction of individual ability with working spell duration,

δ1j , is given below:

δ1j = φ {.} ∂
2 {.}
∂t∂µ

= φ {.}

[
∂ [.]

∂µ

(
(−1

2
)σ
−3
2
ψ

∂σψ
∂t

2

WW ′
+
∂ 2
WW ′
∂t

σ
−1
2
ψ

)
+
∂2 [.]

∂t∂µ
σ
−1
2
ψ

2

WW ′

]
,

where φ {.} stands for φ
{

2σξ(x)σε

WW ′√σψjj
σξ(x)[στ (0)− στ (t)](m− µ)

}
, and [.] stands for[

σξ(x)2σε[στ (0)− στ (t)](m− µ)
]
.
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The scaled coe�cient on the interaction of average reference group ability with working

spell duration, δ2j , is given below:

δ2j = φ {.} ∂
2 {.}
∂t∂m

= φ {.}

[
∂ [.]

∂m

(
(−1

2
)σ
−3
2
ψ

∂σψ
∂t

2

WW ′
+
∂ 2
WW ′
∂t

σ
−1
2
ψ

)
+
∂2 [.]

∂t∂m
σ
−1
2
ψ

2

WW ′

]
.

Interaction between working spell duration and ability

I want to show:

δ1j = φ {.} [−σξ(x)2σε[στ (0)−στ (t)](
∂ 2
WW ′
∂t

σ
−1
2
ψ −σ

−3
2
ψ

∂σψ
∂t

1

WW ′
) +

∂2 [.]

∂t∂µ
σ
−1
2
ψ

2

WW ′
] < 0.

Below I take each part of the scaled coe�cient on the interaction between working spell

duration and ability separately before signing the entire expression.

Starting with the �rst term:

−σξ(x)2σε[στ (0)− στ (t)]
∂ 2
WW ′
∂t σ

−1
2
ψ =

2σξ(x)2σε[στ (0)− στ (t)]σ
−1
2
ψ

∂στ (t))
∂t

[
(σξ(x) + σε)W

−1W ′−2
]
.

Since W , W ′ and σψ are each sums of variances, the assumption that ∂στ (t))
∂t < 0, which

is key to asymmetric employer learning, implies that the �rst term is also negative.

Moving to the second term, recall that:
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σψ =

2σϕ + 4
W2W ′2

(W ′2σ2
εσξ(x)2στ (0) +W 2σ2

εσξ(x)2στ (t) + σ4
εσξ(x)2(στ (t)− στ (0))2σξ(x)).

Thus,

−σξ(x)4σ3
ε [στ (0)− στ (t)]σ

−3
2
ψ

∂σψ
∂t

1
WW ′ = σξ(x)2σε(στ (0)− στ (t))

(1)
WW ′σ

−3
2
ψ

∂στ (t))
∂t {

8
W2W ′2

σ2
εσξ(x)(στ (0)− στ (t))( 1

W ′ (σξ(x) + σε)(στ (0)− στ (t)) + 1)

+ 4
W ′3

[
2(σξ(x) + σε)στ (t)−W ′

]
}.

As
σξ(x)2σε(στ (0)−στ (t))

WW ′ σ
−3
2
ψ

∂στ (t))
∂t

4σεσξ(x)

W ′3
, cannot be eliminated here, I will discuss a

su�cient condition under which this source of ambiguity may be eliminated below.

Finally, examine the last term.

∂[.]
∂µ =

2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)], which means that,

∂2[.]
∂t∂µσ

−1
2
ψ

2σξ(x)2σε

WW ′ = σ
−1
2
ψJ

2
WW ′

∂στ (t))
∂t .

Again, the assumption that ∂στ (t))
∂t < 0, which is central to asymmetric learning, implies

that the selection on ability should grow stronger (more negative) with increases in working

spell duration.

Thus, the interaction term between working spell duration and ability is given by the

following:

δ1j = σξ(x)2σεσ
−1
2
ψ

2
WW ′

∂στ (t))
∂t {[στ (0)− στ (t)][(σξ(x) + σε)W

′−1

+σ−1
ψ

4
W2W ′2

σ4
εσξ(x)3(στ (0)− στ (t))( 1

W ′ (σξ(x) + σε)(στ (0)− στ (t)) + 1)

+ 2
W ′2

[
2
W ′ (σξ(x) + σε)σ

2
εσξ(x)2στ (t)− σ2

εσξ(x)2
]
] + 1}

With su�cient variability in match quality, this entire term is negative, meaning that

as working spell duration increases, selection on the basis of ability should become more

179



negative.

Interaction between working spell duration and reference group

I want to show:

δ2j = φ {.} [σξ(x)2σε[στ (0)− στ (t)](
∂ 2
WW ′
∂t

σ
−1
2
ψ − σ

−3
2
ψ

∂σψ
∂t

1

WW ′
) +

∂2 [.]

∂t∂µ
σ
−1
2
ψ

2

WW ′
] > 0.

The algebra is equivalent to the previous subsection, just with the opposite sign. Thus,

the scaled coe�cient of the interaction between working spell duration and experience is

given by following.

δ2j = −σξ(x)2σεσ
−1
2
ψ

2
WW ′

∂στ (t))
∂t {[στ (0)− στ (t)][(σξ(x) + σε)W

′−1

+σ−1
ψ

4
W2W ′2

σ4
εσξ(x)3(στ (0)− στ (t))( 1

W ′ (σξ(x) + σε)(στ (0)− στ (t)) + 1)

+ 4
W ′2

[
1
W ′ (σξ(x) + σε)σ

2
εσξ(x)2στ (t)− σ2

εσξ(x)2
]
] + 1}

Under the same assumptions made previously, this term is positive meaning that as

working spell duration increases, the selection of mobile workers on the basis of their reference

group should become stronger (more positive).

Job-to-Job dynamics with respect to experience

The scaled coe�cient on the interaction of individual ability with experience, γ1j , is given

below:
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γ1j = φ {.} ∂
2 {.}
∂x∂µ

= φ {.}

[
∂ [.]

∂µ

(
(−1

2
)σ
−3
2
ψ

∂σψ
∂x

2

WW ′
+
∂ 2
WW ′
∂x

σ
−1
2
ψ

)
+
∂2 [.]

∂x∂µ
σ
−1
2
ψ

2

WW ′

]
,

where φ {.} stands for φ
{

2σξ(x)σε

WW ′√σψjj
σξ(x)[στ (0)− στ (t)](m− µ)

}
, and [.] stands for[

σξ(x)2σε[στ (0)− στ (t)](m− µ)
]
.

The scaled coe�cient on the interaction of average reference group ability with experience,

γ2j , is given below:

γ2j = φ {.} ∂
2 {.}
∂x∂m

= φ {.}

[
∂ [.]

∂m

(
(−1

2
)σ
−3
2
ψ

∂σψ
∂x

2

WW ′
+
∂ 2
WW ′
∂x

σ
−1
2
ψ

)
+

∂2 [.]

∂x∂m
σ
−1
2
ψ

2

WW ′

]
.

In the following subsections, I take the derivative of P (J) with respect to experience,

and then derive these scaled coe�cients for the interactions with ability and reference group

respectively.

The derivative of P (J) with respect to experience

The derivative of P (J) with respect to experience is:

∂P (J)

∂x
= φ {.}

[
∂ [.]

∂x
σ
−1
2
ψ

2

WW ′
+
∂ 2
WW ′
∂x

σ
−1
2
ψ [.]− 1

2
σ
−3
2
ψ

∂σψ
∂x

2

WW ′
[.]

]
,

where φ {.} stands for φ

{
2σξ(x)σε

WW ′
√
σψj

σξ(x)[στ (0)− στ (t)](m− µ)

}
, and [.] stands for[

σξ(x)2σε[στ (0)− στ (t)](m− µ)
]
. The following takes each component separately and

resolves any con�icting signs.
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∂[.]
∂x σ

−1
2

ψ
2

WW ′ ,

∂ [.]

∂x
σ
−1
2
ψ

2

WW ′
= σ

−1
2
ψ

4

WW ′
∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
.

∂σξ(x)

∂x < 0 and στ (0) > στ (t) by assumptions intrinsic to public and private employer

learning respectively. Therefore, if µ > m, ∂[.]
∂x σ

−1
2
ψ

2
WW ′ > 0, since all other terms are sums

of variances, and positive by de�nition.

∂ 2
WW ′
∂x σ

−1
2

ψ [.]

∂ 2
WW ′
∂x

σ
−1
2
ψ [.] = (−2)σ

−1
2
ψ [σξ(x)2σε(στ (0)− στ (t))(m− µ)]

∂στ (t)

∂x

[
(στ (0) + 2σε)W

−2W ′−1 + (στ (t) + 2σε)W
−1W ′−2

]
.

Under the same learning assumptions, the sign of
∂ 2
WW ′
∂x σ

−1
2
ψ [.], also depends upon the

whether ability (µ) is higher than reference group quality (m), although here it is in the

opposite direction.
∂ 2
WW ′
∂x σ

−1
2
ψ .

∂[.]
∂x σ

−1
2

ψ
2

WW ′ +
∂ 2
WW ′
∂x σ

−1
2

ψ [.],

The con�ict in the sign of the �rst two terms is resolved below.

∂[.]
∂x σ

−1
2
ψ

2
WW ′+

∂ 2
WW ′
∂x σ

−1
2
ψ [.] = σ

−1
2
ψ

4
WW ′

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
−2σ

−1
2
ψ

[σξ(x)2σε(στ (0)−στ (t))(m−µ)]
∂σξ(x)

∂x

[
(στ (0) + 2σε)W

−2W ′−1 + (στ (t) + 2σε)W
−1W ′−2

]

= σ
−1
2
ψ

2
WW ′

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(2− σξ(x)((στ (0) + 2σε)W

−1

+(στ (t) + 2σε)W
′−1)
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= σ
−1
2
ψ

2
W2W ′2

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(2WW ′ − σξ(x)((στ (0) + 2σε)W

′ + (στ (t) + 2σε)W

= σ
−1
2
ψ

2
W2W ′2

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(

2στ (t)σξ(x)2στ (0) + 2στ (t)σεστ (0)σξ(x) + 4σεσξ(x)2στ (0)

+2στ (t)σξ(x)στ (0)σε + 2στ (t)σ2
εστ (0) + 4σξ(x)στ (0)σ2

ε + 4στ (t)σξ(x)2σε

+4στ (t)σ2
εσξ(x) + 8σ2

εσξ(x)2 − σξ(x)(στ (0) + 2σε)(σεστ (t) + σξ(x)στ (t)

+2σεσξ(x))− σξ(x)(στ (t) + 2σε)(σεστ (t) + σξ(x)στ (t) + 2σεσξ(x))

= σ
−1
2
ψ

2
W2W ′2

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(

2στ (t)σξ(x)2στ (0) + 2στ (t)σεστ (0)σξ(x) + 4σεσξ(x)2στ (0)

+2στ (t)σξ(x)στ (0)σε + 2στ (t)σ2
εστ (0) + 4σξ(x)στ (0)σ2

ε + 4στ (t)σξ(x)2σε

+4στ (t)σ2
εσξ(x) + 8σ2

εσξ(x)2 − (σξ(x)στ (0)σεστ (t) + στ (0)σξ(x)2στ (t)

+2σξ(x)2στ (0)σε)− (2σξ(x)σ2
εστ (t) + 2σεσξ(x)2στ (t) + 4σ2

εσξ(x)2)

−(σξ(x)στ (0)σεστ (t) + στ (0)σξ(x)2στ (t) + 2σξ(x)2στ (t)σε)

−(2σξ(x)σ2
εστ (0) + 2σεσξ(x)2στ (0) + 4σ2

εσξ(x)2))

= σ
−1
2
ψ

2
W2W ′2

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(

2στ (t)σεστ (0)σξ(x) + 2στ (t)σ2
εστ (0) + 2σξ(x)στ (0)σ2

ε + 2στ (t)σ2
εσξ(x)) > 0,

if µ > m. Since the negative term is larger in magnitude than the positive term,

∂[.]
∂x σ

−1
2
ψ

2
WW ′ +

∂ 2
WW ′
∂x σ

−1
2
ψ [.] > 0, under the above assumptions.
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Ambiguity of (−1
2)σ

−3
2

ψ
∂σψ
∂x

2
WW ′ [.]

(−1
2)σ
−3
2
ψ

∂σψ
∂x

2
WW ′ [.] = [σξ(x)2σε(στ (0)− στ (t))(m− µ)]

(−1)
WW ′σ

−3
2
ψ

∂σξ(x)

∂x [
(−8)

W2W ′2

[
1
W (στ (0) + 2σε) + 1

W ′ (στ (t) + 2σε)
]

(W ′2σ2
εσξ(x)2στ (0) +W 2(σ2

εσξ(x)2στ (t) + σ4
εσξ(x)3(στ (0)− στ (t))2)

+ 4
W2W ′2

[2W ′(στ (0) + 2σε)σ
2
εσξ(x)2στ (0) + 2W ′2σ2

εσξ(x)στ (0) + 2W (στ (t)

+2σε)σ
2
εσξ(x)2στ (t) + 2W 2σ2

εσξ(x)στ (t) + 3σ4
εσξ(x)2(στ (0)− στ (t))2)]]

= [σξ(x)2σε(στ (0)− στ (t))(m− µ)]
(−1)
WW ′σ

−3
2
ψ

∂σξ(x)

∂x [ 8
W3σ

3
εσξ(x)στ (0)2 + 8

W ′3
σ3
εσξ(x)στ (t)2 + 4

W3W ′3
σ4
εσξ(x)2(στ (0)− στ (t))2

[2στ (0)σξ(x)στ (t)σε + 3στ (0)στ (t)σ2
ε + 2σξ(x)στ (0)σ2

ε + 2σξ(x)στ (t)σ2
ε

−(στ (0) + 2σε)(στ (t) + 2σε)σξ(x)2]]

The ambiguity in the third term is produced by the following, which I will de�ne as A :

A ≡ σ
−3
2
ψ

−1

W 4W ′4

[
σξ(x)2σε[στ (0)− στ (t)](m− µ)

] ∂σξ(x)

∂x

[8σ3
εσξ(x)(W ′3στ (0)2 +W 3στ (t)2) + 4σ5

εσξ(x)2(στ (0)− στ (t))2(

2στ (t)στ (0)σξ(x) + 3στ (t)στ (0)σε + 2στ (t)σεσξ(x) + 2στ (0)σεσξ(x))].
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Resolution of ambiguity in the third term

∂[.]
∂x σ

−1
2
ψ

2
WW ′ +

∂ 2
WW ′
∂x σ

−1
2
ψ [.] + A > 0

From Appendix A,

∂ [.]

∂x
σ
−1
2
ψ

2

WW ′
+
∂ 2
WW ′
∂x

σ
−1
2
ψ [.] = σ

−1
2
ψ

2

W 2W ′2
∂σξ(x)

∂x
[.] (

2στ (t)σεστ (0)σξ(x) + 2στ (t)σ2
εστ (0) + 2σξ(x)στ (0)σ2

ε + 2στ (t)σ2
εσξ(x)).

Adding the negative A to this term gives:

∂[.]
∂x σ

−1
2
ψ

2
WW ′ +

∂ 2
WW ′
∂x σ

−1
2
ψ [.] + A = σ

−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x [.] [

σψW
2W ′2(στ (t)σεστ (0)σξ(x) + στ (t)σ2

εστ (0) + σξ(x)στ (0)σ2
ε + στ (t)σ2

εσξ(x))

−[2σ3
εσξ(x)2(W ′3στ (0)2 +W 3στ (t)2) + σ5

εσξ(x)3(στ (0)− στ (t))2(

2στ (t)στ (0)σξ(x) + 3στ (t)στ (0)σε + 2στ (t)σεσξ(x) + 2στ (0)σεσξ(x))]

= σ
−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(2σϕW

2W ′2+

4(W ′2σ2
εσξ(x)2στ (0) +W 2σ2

εσξ(x)2στ (t) + σ4
εσξ(x)3(στ (0)− στ (t))2)

(2στ (t)σεστ (0)σξ(x) + 2στ (t)σ2
εστ (0) + 2σξ(x)στ (0)σ2

ε + 2στ (t)σ2
εσξ(x))

−[2σ3
εσξ(x)2(W ′3στ (0)2 +W 3στ (t)2) + σ5

εσξ(x)3(στ (0)− στ (t))2(

2στ (t)στ (0)σξ(x) + 3στ (t)στ (0)σε + 2στ (t)σεσξ(x) + 2στ (0)σεσξ(x))]

= σ
−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(2σϕW

2W ′2

+8W ′3σ3
εσξ(x)2στ (0)2 + 8W ′2σ4

εσξ(x)3στ (0)στ (t)

+8W 3σ3
εσξ(x)2στ (t)2 + 8W 2σ4

εσξ(x)3στ (0)στ (t) + 4σ4
εσξ(x)3(στ (0)− στ (t))2)

(2στ (t)σεστ (0)σξ(x) + 2στ (t)σ2
εστ (0) + 2σξ(x)στ (0)σ2

ε + 2στ (t)σ2
εσξ(x))
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−[2σ3
εσξ(x)2(W ′3στ (0)2 +W 3στ (t)2) + σ5

εσξ(x)3(στ (0)− στ (t))2(

2στ (t)στ (0)σξ(x) + 3στ (t)στ (0)σε + 2στ (t)σεσξ(x) + 2στ (0)σεσξ(x))]

= σ
−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)](m− µ)

]
(2σϕW

2W ′2+6W ′3σ3
εσξ(x)2στ (0)2

+8W ′2σ4
εσξ(x)3στ (0)στ (t) + 6W 3σ3

εσξ(x)2στ

(t)2 + 8W 2σ4
εσξ(x)3στ (0)στ (t) + σ4

εσξ(x)3(στ (0)− στ (t))2)(6στ (t)σεστ (0)σξ(x)

+5στ (t)σ2
εστ (0) + 6σξ(x)στ (0)σ2

ε + 6στ (t)σ2
εσξ(x)).

Interaction between experience and ability

I use the derivative of P (J) with respect to experience to sign the scaled coe�cient for the

interaction of experience and ability. Taking the derivative of ∂{.}∂x with respect to µ gives

the following.

γ1j = −φ {.}σ
−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)]

]
(2σϕW

2W ′2 + 6W ′3σ3
εσξ(x)2στ (0)2

+8W ′2σ4
εσξ(x)3στ (0)στ (t) + 6W 3σ3

εσξ(x)2στ

(t)2 + 8W 2σ4
εσξ(x)3στ (0)στ (t) + σ4

εσξ(x)3(στ (0)− στ (t))2)(6στ (t)σεστ (0)σξ(x)

+5στ (t)σ2
εστ (0) + 6σξ(x)στ (0)σ2

ε + 6στ (t)σ2
εσξ(x)).

Under the assumptions that
∂σξ(x)

∂x < 0, which is fundamental to pubic employer learning,

and σt(t) < στ (0), which is fundamental to private employer learning, γ1j > 0. The selection

on the basis of ability weakens (becomes more positive) with increases in experience.

186



Interaction between experience and reference group

I also use the derivative of P (J) with respect to experience to sign the scaled coe�cient for

the interaction of experience and reference group ability. Taking the derivative of ∂{.}∂x with

respect to m gives the following.

γ2j = φ {.}σ
−3
2
ψ

4
W4W ′4

∂σξ(x)

∂x

[
σξ(x)σε[στ (0)− στ (t)]

]
(2σϕW

2W ′2 + 6W ′3σ3
εσξ(x)2στ (0)2

+8W ′2σ4
εσξ(x)3στ (0)στ (t) + 6W 3σ3

εσξ(x)2στ

(t)2 + 8W 2σ4
εσξ(x)3στ (0)στ (t) + σ4

εσξ(x)3(στ (0)− στ (t))2)(6στ (t)σεστ (0)σξ(x)

+5στ (t)σ2
εστ (0) + 6σξ(x)στ (0)σ2

ε + 6στ (t)σ2
εσξ(x)).

Under the same assumptions, γ2j < 0, which means that the selection on the basis of

reference group also weakens, as in this case, the selection e�ects become more negative with

increases in experience.

Expected Pro�ts

E[π|Rx, Pr, Ph] = E[µ|Rx, Pr, Ph]− w.

For workers with the retaining �rm,w = E[µ|Rx, Pr = Ph, Ph] and E[π|Rx, Pr, Ph] =

E[µ|Rx, Pr, Ph]− E[µ|Rx, Pr = Ph, Ph]

E[π|Rx, Pr, Ph] =
στ (0)στ (t)σξ(x)

Q
m+

στ (t)σξ(x)σε

Q
Ph+

στ (0)σξ(x)σε

Q
Pr+

στ (t)στ (0)σε
Q

Rx
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+E(ϕr)−
(
στ (0)σξ(x)

Q′
m+

στ (0)σε
Q′

Rx +
2σεσξ(x)

Q′
Ph + E(ϕh)

)

where Q = στ (0)στ (t)σξ(x) + στ (t)σξ(x)σε + στ (0)σξ(x)σε + στ (t)στ (0)σε

and Q′ = στ (0)σξ(x) + στ (0)σε + 2σεσξ(x). Substituting in the de�nition of each signal

gives the following:

=
στ (0)στ (t)σξ(x)

Q
m+

στ (t)σξ(x)σε

Q
(µ+ v) +

στ (0)σξ(x)σε

Q
(µ+ τ) +

στ (t)στ (0)σε
Q

(µ+ ξ)

+E(ϕr)−
(
στ (0)σξ(x)

Q′
m+

στ (0)σε
Q′

(µ+ ξ) +
2σεσξ(x)

Q′
(µ+ v) + E(ϕh)

)
.

This simpli�es to an expression similar to that shown for the probability of job-to-job

moves.

=
σξ(x)σεστ (0)

Q′Q
[σξ(x) (στ (0)− στ (t)) (µ−m)] +

1

Q′Q

[Q′σε(στ (0)σξ(x)τr + στ (t)σξ(x)τh + στ (t)στ (0)ξ)−Qσε(2σξ(x)τh + στ (0)ξ)] +E(ϕr − ϕh)

Note that in expectation τh = τr = ξ = ϕ = 0, the expression above simpli�es to =

σξ(x)σεστ (0)

Q′Q
[
σξ(x) (στ (0)− στ (t)) (µ−m)

]
> 0
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Layo� selection with respect to ability and reference group

quality

Under nominal wage rigidity, the probability of a layo� is given by:

P (L) = P [E[π|Rx, Pr, Ph, ϕ] < 0]

P (L) = P

{
ψLϕ >

σξ(x)σε

Q′Q

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}

where ψLϕ = 1
Q′Q [(Q′στ (0)τr −Qτh + σεστh(στ (t)− στ (0))ξ] + ϕr − E(ϕh),

Q = στ (0)στ (t)σξ(x) + στ (t)σξ(x)σε + στ (0)σξ(x)σε + στ (t)στ (0)σε,

and Q′ = στ (0)σξ(x) + στ (0)σε + 2σεσξ(x).

Imposing the normal and orthogonality assumptions provide:

P (L) = Φ

{
σξ(x)σε

Q′Q√σψLϕ

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}

where σψLϕ = Q−2Q′−2[Q
′2(στ (0)2στ (t)+Q2στ (0)+σ2

εσ
2
τh

(στ (t)−στ (0))2σξ(x)]+σϕ+

σEϕ

Taking the derivative with respect to ability (µ) gives the following:

∂P (L)

∂µ
= −φ

{
σξ(x)σε

Q′Q√σψLϕ

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
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σξ(x)σε

Q′Q√σψLϕ
σξ(x)στ (0) (στ (0)− στ (t)) < 0.

The equation above illustrates that as ability (µ) increases the probability of layo� should

fall, as long as στ (0) > στ (t). Taking the derivative with respect to reference group quality

(m) provides:

∂P (L)

∂m
= φ

{
σξ(x)σε

Q′Q√σψLϕ

[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}

σξ(x)σε

Q′Q√σψLϕ
σξ(x)στ (0) (στ (0)− στ (t)) > 0.

Under the assumption that στ (0) > στ (t), as mean reference group increases the probability

of layo� increases as well
(
∂P (L)
∂m > 0

)
.

Layo� dynamics with respect to working spell duration

Again, I use interactions of working spell duration and experience with ability and reference

group to explore the evolution of these selection e�ects over time. I �rst take the derivative

of P (L) and then use this to �nd and sign the scaled coe�cient on these interactions.

The derivative of P (L) with respect to working spell length is given by the following:

∂P (L)

∂t
= φ {.}

∂ 1
QQ′

∂t
(σψLϕ

)
−1
2 [.] + (−1

2
)(σψLϕ

)
−3
2
∂σψLϕ
∂t

1

QQ′
[.] +

∂ [.]

∂t
(σψLϕ

)
−1
2

1

QQ′

 ,
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where φ {.} stands for φ

{
σξ(x)σε

Q′Q√σψLϕ
[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
, and [.] stands

for
[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]
. Below, I examine each term separately to make

the algebra more manageable.

First term:

∂ 1
QQ′

∂t
(σψLϕ

)
−1
2 [.] = (−1)(σψLϕ

)
−1
2 [σξ(x)2σεστ (0)(στ (0)− στ (t))(m− µ)]

∂στ (t))

∂t

[
(στ (0)σξ(x) + σξ(x)σε + σξ(x)σε)Q

′−1Q−2
]

Turning to the second term, recall that:

σψLϕ
= Q−2Q′−2(Q′2στ (0)2στ (t) +Q2στ (0) + σ2

εστ (0)2(στ (t)− στ (0))2σξ(x)) + σϕ + σEϕ.

Q = στ (0)στ (t)σξ(x) + στ (t)σξ(x)σε + στ (0)σξ(x)σε + στ (t)στ (0)σε,

Q′ = στ (0)σξ(x) + στ (0)σε + 2σεσξ(x).

Thus,

(−1

2
)(σψLϕ

)
−3
2
∂σψLϕ
∂t

1

QQ′
[.] = (−1

2
)[σξ(x)2σεστ (0)(στ (0)−στ (t))(m−µ)]

1

QQ′
σ
−3
2
ψ

∂στ (t))

∂t

[(−1)Q−3[2(στ (0)σξ(x) + σξ(x)σε + σξ(x)σε)στ (0)2στ (t)−Qστ (0)2]

+
−2σ2

εστ (0)2(στ (t)− στ (0))σξ(x)

Q2Q′2
[Q−1(στ (0)σξ(x) + σξ(x)σε + σξ(x)σε) + (στ (0)− στ (t))]]
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Third term:

∂ [.]

∂t
σ
−1
2
ψLϕ

1

QQ′
= (−1)(σψLϕ

)
−1
2

1

QQ′
∂στ (t))

∂t

[
σξ(x)2σεστ (0)(m− µ)

]
.

Recombining the terms:

∂P (L)

∂t
= −φ{.}σ

−1
2
ψLϕ

σξ(x)2σεστ (0)(m− µ)

QQ′
∂στ (t))

∂t
[1 + (στ (0)− στ (t))

[(στ (0)σξ(x) + σξ(x)σε + στ (0)σε)Q
−1]

+σ−1
ψ [(−1)Q−3[2(στ (0)σξ(x) + στ (0)σε + σξ(x)σε)στ (0)2στ (t)−Qστ (0)2]

+
−2σ2

εστ (0)2(στ (t)− στ (0))σξ(x)

Q2Q′2
[Q−1(στ (0)σξ(x) + στ (0)σε + σξ(x)σε) + (στ (0)− στ (t))]]

Interaction between working spell duration and ability

The scaled coe�cient of the interaction between working spell length and ability (δ1L) on

the probability of layo� is given below.

δ1L = φ{.}σ
−1
2
ψLϕ

σξ(x)2σεστ (0)

QQ′
∂στ (t))

∂t
[1 + (στ (0)− στ (t))

[(στ (0)σξ(x) + στ (0)σε + σξ(x)σε)Q
−1]

+σ−1
ψ [(−1)Q−3[2(στ (0)σξ(x) + στ (0)σε + σξ(x)σε)στ (0)2στ (t)−Qστ (0)2]

+
−2σ2

εστ (0)2(στ (t)− στ (0))σξ(x)

Q2Q′2
[Q−1(στ (0)στ (0) + σξ(x)σε + σξ(x)σε) + (στ (0)− στ (t))]]
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δ1L < 0 follows from the assumption that ∂στ (t))
∂t < 0 with the additional su�cient condi-

tional that στ (0)στ (t)σξ(x) + στ (0)στ (t)σε + στ (t)σξ(x)σε > στ (0)σξ(x)σε

Interaction between working spell duration and reference group

δ2L = −φ{.}σ
−1
2
ψLϕ

σξ(x)2σεστ (0)

QQ′
∂στ (t))

∂t
[1 + (στ (0)− στ (t))

[(στ (0)σξ(x) + στ (0)σε + σξ(x)σε)Q
−1]

+σ−1
ψ [(−1)Q−3[2(στ (0)σξ(x) + στ (0)σε + σξ(x)σε)στ (0)2στ (t)−Qστ (0)2]

+
−2σ2

εστ (0)2(στ (t)− στ (0))σξ(x)

Q2Q′2
[Q−1(στ (0)στ (0) + σξ(x)σε + σξ(x)σε) + (στ (0)− στ (t))]]

δ2L > 0 follows from the same assumptions.

Layo� dynamics with respect to experience

I take the derivative of P (L) with respect to experience in order to �nd the scaled coe�cient

on the interaction between experience and and ability and reference group for the probability

of layo�.

The derivative of P (L) with respect to experience is given by the following:

∂P (L)

∂x
= φ {.}

∂ [.]

∂x
(σψLϕ

)
−1
2

1

QQ′
+
∂ 1
QQ′

∂x
(σψLϕ

)
−1
2 [.] + (−1

2
)(σψLϕ

)
−3
2
∂σψLϕ
∂x

1

QQ′
[.]

 ,

where φ {.} stands for φ

{
σξ(x)σε

Q′Q√σψLϕ
[
σξ(x)στ (0) (στ (0)− στ (t)) (m− µ)

]}
(and is positive
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by de�nition of normal PDF), and [.] stands for
[
σξ(x)2σεστ (0) (στ (0)− στ (t)) (m− µ)

]
(and under the asumption στ (0) > στ (t), is negative if µ > m). The following takes each

component separately and resolves any con�icting signs.

∂[.]
∂x (σψLϕ)

−1
2

1
QQ′

∂ [.]

∂x
(σψLϕ

)
−1
2

1

QQ′
= (σψLϕ

)
−1
2

1

QQ′
∂σξ(x)

∂x

[
2σξ(x)σεστ (0) (στ (0)− στ (t)) (m− µ)

]
∂ 1
QQ′

∂x (σψLϕ)
−1
2 [.]

RecallQ = στ (0)στ (t)σξ(x)+στ (t)σξ(x)σε+στ (0)σξ(x)σε+στ (t)στ (0)σεandQ′ = στ (0)σξ(x)+

στ (0)σε + 2σεσξ(x)

∂ 1
QQ′

∂x
(σψLϕ

)
−1
2 [.] = (−1)

1

QQ′
(σψLϕ

)
−1
2

[.]
∂σξ(x)

∂x

[
Q−1(στ (0)στ (t) + στ (t)σε + στ (0)σε) +Q′−1(στ (0) + 2σε)

]

Resolving con�ict between 8.7.2 and 8.7.1

∂ [.]

∂x
(σψLϕ

)
−1
2

1

QQ′
+
∂ 1
QQ′

∂x
(σψLϕ

)
−1
2 [.] = (σψLϕ

)
−1
2

1

QQ′
∂σξ(x)

∂x
[.]

[
2− σξ(x)

(
Q−1(στ (0)στ (t) + στ (t)σε + στ (0)σε) +Q′−1(στ (0) + 2σε)

)]
= (σψLϕ

)
−1
2 1
QQ′

∂σξ(x)

∂x [.]σξ(x)−1

[Q−1(Q− σξ(x)(στ (0)στ (t) + στ (t)σε + στ (0)σε) +Q′−1(Q′ − σξ(x)((στ (0) + 2σε))]
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= (σψLϕ
)
−1
2 1
QQ′

∂σξ(x)

∂x [.]σξ(x)−1[Q−1στ (t)στ (0)σε +Q′−1στ (0)σε]

(−1
2)(σψLϕ

)
−3
2
∂σψLϕ
∂x

1
QQ′ [.] is ambiguous

Recall

σψLϕ
= Q−2Q′−2(Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3

+σ2
εστ (0)2(σt(t)− στ (0))2σξ(x)) + σϕ + σEϕ, and

Q = στ (0)σt(t)σξ(x)+σt(t)σξ(x)σε+στ (0)σξ(x)σε+σt(t)στ (0)σεand Q′ = στ (0)σξ(x)+

στ (0)σε + 2σεσξ(x)

(−1
2)(σψLϕ

)
−3
2
∂σψLϕ
∂x

1
QQ′ [.] = (−1

2)[σξ(x)2σεστ (0)(σt(0)−σt(t))(m−µ)]
(

1
QQ′

)−3
σ
−3
2
ψ

[2
∂ 1
QQ′
∂x (Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3 + σ2

εστ (0)2(σt(t) −

στ (0))2σξ(x))

+(2Q′(στ (0) + 2σε)στ (0)2σt(t) + 2(σt(t) + 2σε)(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))στ (0)3

+σ2
εστ (0)2(σt(t)− στ (0))2)]

= (−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

[−2
[
Q′(στ (0)σt(t) + σt(t)σε + στ (0)σε) +Q(στ (0) + 2σε)

]
[Q′2στ (0)2σt(t)+(σt(t)σξ(x)+σt(t)σε+2σεσξ(x))2στ (0)3+σ2

εστ (0)2(σt(t)−στ (0))2σξ(x))]

+QQ′(2Q′(στ (0)+2σε)στ (0)2σt(t)+2(σt(t)+2σε)(σt(t)σξ(x)+σt(t)σε+2σεσξ(x))στ (0)3

+σ2
εστ (0)2(σt(t)− στ (0))2)]]

= (−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

[−2
[
Q′3(στ (0)σt(t) + σt(t)σε + στ (0)σε)στ (0)2σt(t)

]

195



−2
[
Q′(στ (0)σt(t) + σt(t)σε + στ (0)σε) +Q(στ (0) + 2σε)

]
[
(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3 + σ2

εστ (0)2(σt(t)− στ (0))2σξ(x))
]

+QQ′(2(σt(t)+2σε)(σt(t)σξ(x)+σt(t)σε+2σεσξ(x))στ (0)3 +σ2
εστ (0)2(σt(t)−στ (0))2)]]

= (−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

[−2
[
Q′3(στ (0)σt(t) + σt(t)σε + στ (0)σε)στ (0)2σt(t)

]
+2στ (0)3(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))

[QQ′(σt(t) + 2σε)−
[
Q′(στ (0)σt(t) + σt(t)σε + στ (0)σε) +Q(στ (0) + 2σε)

]
(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))]

+σ2
εστ (0)2(σt(t)− στ (0))2[QQ′

−2σξ(x)[Q′(στ (0)σt(t) + σt(t)σε + στ (0)σε) +Q(στ (0) + 2σε)]]]

= (−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

[−2
[
Q′3(στ (0)σt(t) + σt(t)σε + στ (0)σε)στ (0)2σt(t)

]
−2στ (0)3(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))

[−σt(t)σ2
ε (στ (0)σξ(x)σt(t) + σεστ (0)σt(t) + 2σεσξ(x)σt(t) + στ (0)2σξ(x) + σεσξ(x)στ (0))

+Q(στ (0) + 2σε)(σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))]

+σ2
εστ (0)2(σt(t)− στ (0))2[στ (0)2σ2

εσt(t)− (Q′στ (0)σε

+στ (0)σξ(x)(στ (0)σt(t) + σt(t)σε + στ (0)σε) + 2σξ(x)Q(στ (0) + 2σε))]]

From Appendix A above, (−1
2)(σψLϕ

)
−3
2
∂σψLϕ
∂x

1
QQ′ [.] ambiguous.

This term producing the ambiguity I de�ne as B.

B ≡ (−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

σ2
εστ (0)2(σt(t)− στ (0))2στ (0)2σ2

εσt(t)
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Resolving ambiguity in 8.7.4

From Appendix A,

∂[.]
∂x (σψLϕ

)
−1
2 1
QQ′ +

∂ 1
QQ′
∂x (σψLϕ

)
−1
2 [.] =

(σψLϕ
)
−1
2 1
QQ′

∂σξ(x)

∂x [.]σξ(x)−1[Q−1σt(t)στ (0)σε +Q′−1στ (0)σε].

Thus, ∂[.]
∂x (σψLϕ

)
−1
2 1
QQ′ +

∂ 1
QQ′
∂x (σψLϕ

)
−1
2 [.] +B =

(σψLϕ
)
−1
2 1
QQ′

∂σξ(x)

∂x [.] {σξ(x)−1[Q−1σt(t)στ (0)σε +Q′−1στ (0)σε]

+(−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x σ2
εστ (0)2(σt(t)− στ (0))2στ (0)2σ2

εσt(t)

= σ
−3
2
ψLϕ

1
QQ′

∂σξ(x)

∂x [.] {σξ(x)−1[Q−1σt(t)στ (0)σε +Q′−1στ (0)σε]

+(−1
2)[σξ(x)2σεστ (0)(σt(0)− σt(t))(m− µ)]

(
1

QQ′
)−4

σ
−3
2
ψ

∂σξ(x)

∂x

σ2
εστ (0)2(σt(t)− στ (0))2στ (0)2σ2

εσt(t)

= (σψLϕ
)
−3
2 1
Q4Q′4

∂σξ(x)

∂x [.] {[2(Q′2στ (0)2σt(t)+(σt(t)σξ(x)+σt(t)σε+2σεσξ(x))2στ (0)3

+σ2
εστ (0)2(σt(t)− στ (0))2σξ(x)) + σϕ + σEϕ)

σ−1
ξ (Q

′
σt(t)στ (0)σε +Qστ (0)σε]−

[
σ2
εστ (0)2(σt(t)− στ (0))2στ (0)2σ2

εσt(t)
]

= (σψLϕ
)
−3
2 1
Q4Q′4

∂σξ(x)

∂x

[
σξ(x)2σεστ (0) (στ (0)− σt(t)) (m− µ)

]
{

[2
(
Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3

)
+ σϕ + σEϕ)

+σ2
εστ (0)2(σt(t)− στ (0))2

[
Q
′
σt(t)στ (0)σε +Qστ (0)σε − στ (0)2σ2

εσt(t)
]

= (σψLϕ
)
−3
2 1
Q4Q′4

∂σξ(x)

∂x

[
σξ(x)2σεστ (0) (στ (0)− σt(t)) (m− µ)

]
{

[2
(
Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3

)
+ σϕ + σEϕ)
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+σ2
εστ (0)2(σt(t)− στ (0))2

[
σt(t)στ (0)σε(στ (0)σξ(x) + 2σεσξ(x)) +Qστ (0)σε

]
}

Interaction between experience and ability

I take the derivative of the ∂{.}
∂x with respect to ability (µ) to �nd the predicted evolution of

selection into mobility with increases in experience. The analytical scaled coe�cient γ1L is

given below.

γ1L = −φ{.}(σψLϕ)
−3
2 1
Q4Q′4

∂σξ(x)

∂x

[
σξ(x)2σεστ (0) (στ (0)− σt(t))

]
{

[2
(
Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3

)
+ σϕ + σEϕ)

+σ2
εστ (0)2(σt(t)− στ (0))2

[
σt(t)στ (0)σε(στ (0)σξ(x) + 2σεσξ(x)) +Qστ (0)σε

]
}

Under the assumptions that
∂σξ(x)

∂x < 0 and στ (t) < στ (0), γ1L > 0. This means that

the negative selection on the basis of ability of mobile workers decreases with increases in

experience.

Interaction between experience and reference group

I take the derivative of the ∂{.}∂x with respect to reference group (m) to �nd the predicted evo-

lution of selection into mobility with increases in experience. The analytical scaled coe�cient

γ2L is given below.

γL = φ{.}(σψLϕ)
−3
2 1
Q4Q′4

∂σξ(x)

∂x

[
σξ(x)2σεστ (0) (στ (0)− σt(t))

]
{

[2
(
Q′2στ (0)2σt(t) + (σt(t)σξ(x) + σt(t)σε + 2σεσξ(x))2στ (0)3

)
+ σϕ + σEϕ)

+σ2
εστ (0)2(σt(t)− στ (0))2

[
σt(t)στ (0)σε(στ (0)σξ(x) + 2σεσξ(x)) +Qστ (0)σε

]
}

Under the same assumptions as above, γ2L < 0. This means that the positive selection

on the basis of ability of mobile workers becomes more negative with increases in experience.
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Appendix I

Additions for Chapter 3
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Consistency of Estimators

A.1 Random-e�ects estimator

Assume that plim Σ̂j = Ωj , where Ωj is of full rank. A law of large numbers gives (see

Equation 10), plim δ̂RE = δ + A−1
j E[V

′
jΩ
−1
j (Zjuj + εj)], where Aj ≡ E(V

′
jΩ
−1
j Vj) is

assumed to be of full rank. Consistency therefore requires that E[V
′
jΩ
−1
j (Zjuj + εj)] =

0. Under exogeneity, E[V
′
jΩ
−1
j (Zjuj + εj)|Vj ] = V

′
jΩ
−1
j [ZjE(uj |Vj) + E(εj |Vj)] = 0,

because E(uj |Vj) = 0 and E(εj |Vj) = 0 from Equations 7 and 6, respectively. Since

E[V
′
jΩ
−1
j (Zjuj + εj)|Vj ] = 0 for all Vj , it follows that E[V

′
jΩ
−1
j (Zjuj + εj)] = 0, so

plim δ̂RE = δ.

The consistency result also holds for ML and REML because for both, the estimates of the

regression coe�cients can be obtained by substituting the corresponding covariance matrix

estimate into the FGLS estimator. Consistency of δ̂RE does not require that Ωj = Σj , so

the estimator is consistent even if the covariance structure is misspeci�ed.

A.2 Fixed-e�ects estimator

From Equation 11 and a law of large numbers, plim β̂FE = β + A−1
j E[Ẍ′j(Z̈juj + ε̈j)],

where Aj ≡ E(Ẍ
′
jẌj) is assumed to be of full rank. The requirement for consistency is

that E[Ẍ′j(Z̈juj + ε̈j)] = 0. From unit-level exogeneity (Equation 6), E(Ẍ′j ε̈j) = 0, so the

remaining requirement is E(Ẍ′jZ̈juj) = 0.
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Augmented �xed-e�ects estimator

From Equation 14 and a law of large numbers, plim γ̂ = γ+A−1
j E[W′

j(Zjuj +εj)], because

plim β̂FE = β under the uncorrelated variance assumption in Equation 12. Here Aj ≡

E
(
W
′
jWj

)
is assumed to be of full rank so that the required exogeneity assumption for

plim γ̂ = γ becomes E[W′
j(Zjuj+εj)] = 0. It follows from unit-level exogeneity (Equation 6)

that E(W′
jεj) = 0, so the remaining requirement is that E(W′

jZjuj) = 0. A su�cient

condition for this remaining requirement is that E(uj |Wj) = 0, the assumption that cluster-

level covariates are cluster-level exogenous that is stated in Equation 8.

Per-cluster regression estimation

For Step 1, plim β̂3CML = β3 Verbeke et al. (2001). For Step 2, from Equation 18 and a law

of large numbers, plim η̆j = ηj + A−1
j E

{
zij [x

′
3ij(β3 − β̂3CML) + z′ijηj + εij ]

}
. Assume

that Aj ≡ E(zijz
′
ij) is of full rank. E[zijx

′
3ij(β3− β̂3CML)] = 0 since plim β̂3CML = β3 and

E(zijεij) = 0 under unit-level exogeneity. The remaining requirement for consistency is that

E(zijz
′
ijηj) = 0. For Step 3, plim α̂r = αr+A−1

j E
[
wrj(urj + η̆rj − ηrj)

]
, from Equation 19

and a law of large numbers. Assume that Aj ≡ E
(
wrjw

′
rj

)
is of full rank. It follows from

cluster-level exogeneity of the cluster-level covariates (Equation 8) that E[wrjurj ] = 0.

Moreover, E(wrj(η̆rj − ηrj)) = 0 if the estimation errors are uncorrelated with wrj or if

nj →∞.
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Stata Code for HSB Example

Below we provide the Stata 13 StataCorp (2013) code we used to produce the results reported

in Table D.1 for the High School and Beyond (HSB) dataset, distributed with the HLM

software Raudenbush et al. (2011). The dataset, hsb.dta, can also be downloaded from the

website for Rabe-Hesketh and Skrondal (2012):

http://www.stata-press.com/data/mlmus3.html.

********************************************************************************

* Initial Data Setup *

********************************************************************************

use http://www.stata-press.com/data/mlmus3/hsb, clear

keep schoolid mathach sector ses

describe

/* The variables of interest are:

sector (wj) = cluster-level indicator for whether school is Catholic

ses (xij) = unit-level covariate that indexes students' socioeconomic status

mathach (yij) = outcome, students' performance on a math test

schoolid = cluster (school) identifier */

*Define cluster identifier

xtset schoolid

*Generate cross-level interaction term between ses and sector (xij*wj)

generate sesXsector = ses*sector
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********************************************************************************

* Random Effects (REML) *

********************************************************************************

/* Estimation is done in one step using covariates that are unit-level,

cluster-level, and interactions between the two. Note: ses is the covariate

with a random slope */

mixed mathach ses sector sesXsector || schoolid: ses, ///

covariance(unstructured) reml

********************************************************************************

* Augmented Fixed Effects (FE+) *

********************************************************************************

***STEP 1 - FE

**Estimate coefficients of unit-level covariates using standard fixed effects

xtreg mathach ses sesXsector, fe

****STEP 2 - Regress quasi-residuals on cluster-level covariate

**Generate "newy" as residuals from the first stage regression

generate ynew = mathach - _b[ses]*ses - _b[sesXsector]*sesXsector

**Regress the residuals on the cluster-level covariate, with cluster-robust SEs
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regress ynew sector, vce(cluster schoolid)

********************************************************************************

* Per-Cluster Regression (PC) *

********************************************************************************

***Step 1

**Not needed because there are no unit-level covariates that do not have

**random slopes (R3=0)

***Step 2

**For each cluster, regress outcome on unit-level covariate using OLS, saving

**estimates of the intercepts (a1) and coefficients (a2) in statsby_HSB.dta

statsby a1=_b[_cons] a2=_b[ses] , by(schoolid) saving(statsby_HSB, replace): ///

regress mathach ses

**Merge estimates into dataset (after sorting data according to schoolid)

sort schoolid

merge m:1 schoolid using statsby_HSB

***Step 3

/* Part a: Regress intercept estimates (a1) on cluster-level covariate,

using 1 observation per cluster - OLS with robust SEs */

**Create indicator for 1 observation per cluster (it doesn't matter which one)
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egen pickone = tag(schoolid)

**OLS for 1 observation per cluster, with robust SEs

regress a1 sector if pickone==1, vce(robust)

*=>estimated intercept (_cons) = estimated intercept of model (gamma0)

*=>estimated coefficient of sector = estimate coefficient of sector (gamma1)

/* Part b: Regress coefficient estimates (a2) on the cluster-level covariates,

using 1 observation per cluster - OLS with robust SEs */

regress a2 sector if pickone==1, vce(robust)

*=>estimated intercept (_cons) = estimated coefficient of ses (beta1)

*=>estimated coefficient of sector = estimated interaction parameter (beta2)

205



Supplemental Tables and Figures

Table I.1: Comparing methods for estimating the coe�cient β1 of xij (β1 = 1).

Simulation 100× 100× 100× 100× Mean SE
Condition Method Bias RMSE Mean SE SD SD

Small Clusters RE 16.6* 21.6 12.9 13.8 0.93
& Uncorrelated FE+ 0.6 16.2 14.9 16.2 0.92
Variance PC 1.9 25.5 24.7 25.5 0.97
Small Clusters & RE 21.3* 24.2 12.1 11.4 1.06
& Correlated FE+ 11.7* 19.1 14.1 15.2 0.93
Variance PC -1.8 26.7 26.1 26.6 0.98
Large Clusters & RE 6.2* 10.0 7.5 7.8 0.96
& Uncorrelated FE+ -0.3 8.0 6.0 8.0 0.74
Variance PC -0.2 8.0 7.9 8.0 0.99
Large Clusters & RE 12.6* 14.4 7.0 7.0 1.00
& Correlated FE+ 12.8* 15.2 5.5 8.2 0.67
Variance PC 0.7 7.7 8.1 7.7 1.05
Note. Small Clusters: nj = n = 4, Large Clusters: nj = n = 20;
Uncorrelated Variance: σ2

j = 1, Correlated Variance: σj = exp(u1j).

RMSE=root-mean-square error;

Mean SE=mean of the standard error estimates over the replications;

Mean SE=mean of the standard error estimates over the replications;

SD=standard deviation of the coe�cient estimates over the replications;
∗Estimated bias di�ers signi�cantly from 0 at the 0.05 level.
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Table I.2: Comparing methods for estimating the coe�cient β2 of xij × wj (β2 = 2)

Simulation 100× 100× 100× 100× Mean SE
Condition Method Bias RMSE Mean SE SD SD

Small Clusters RE 0.8* 7.0 6.5 7.0 0.94
& Uncorrelated FE+ 0.0 8.2 7.6 8.2 0.93
Variance PC -0.6 13.3 12.6 13.3 0.95
Small Clusters RE 1.2* 6.1 6.1 5.9 1.03
& Correlated FE+ 0.2 7.9 7.2 7.9 0.91
Variance PC 0.7 13.4 13.3 13.4 0.99
Large Clusters RE 0.2 3.9 3.8 3.9 0.97
& Uncorrelated FE+ 0.2 4.0 3.0 4.0 0.75
Variance PC 0.1 4.1 4.0 4.1 0.99
Large Clusters RE -0.1 3.5 3.6 3.5 1.01
& Correlated FE+ -0.3 4.2 2.8 4.2 0.68
Variance PC -0.3 4.0 4.1 4.0 1.04
Note. Small Clusters: nj = n = 4, Large Clusters: nj = n = 20;
Uncorrelated Variance: σ2

j = 1, Correlated Variance: σj = exp(u1j).

RMSE=root-mean-square error;

Mean SE=mean of the standard error estimates over the replications;

SD=standard deviation of the coe�cient estimates over the replications;
∗Estimated bias di�ers signi�cantly from 0 at the 0.05 level.
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Table I.3: Comparing methods for estimating the coe�cient γ1 of wj (γ1 = 3)

Simulation 100× 100× 100× 100× Mean SE
Condition Method Bias RMSE Mean SE SD SD

Small Clusters RE -4.5* 8.0 6.6 6.6 1.01
& Uncorrelated FE+ -0.3 7.4 7.1 7.4 0.97
Variance PC -0.5 12.7 11.7 12.7 0.92
Small Clusters RE -5.3* 8.2 6.5 6.2 1.04
& Correlated FE+ -2.4* 7.3 6.8 6.9 0.98
Variance PC 0.2 12.2 11.2 12.2 0.92
Large Clusters RE -1.7* 4.9 4.5 4.6 0.99
& Uncorrelated FE+ 0.2 5.3 5.4 5.3 1.03
Variance PC 0.0 5.2 5.2 5.2 0.99
Large Clusters RE -2.9* 5.2 4.3 4.3 1.00
& Correlated FE+ -2.5* 5.2 4.9 4.6 1.05
Variance PC 0.0 5.0 5.0 5.0 1.00
Note. Small Clusters: nj = n = 4, Large Clusters: nj = n = 20;
Uncorrelated Variance: σ2

j = 1, Correlated Variance: σj = exp(u1j).

RMSE=root-mean-square error;

Mean SE=mean of the standard error estimates over the replications;

SD=standard deviation of the coe�cient estimates over the replications;
∗Estimated bias di�ers signi�cantly from 0 at the 0.05 level.
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Figure I.1: Kernel density plots of estimation errors, β̂2 − β2, for coe�cient of xij × wj
across replications for all methods when the uncorrelated variance assumption holds (left
panels) and when it is violated (right panels). Note. FE+ = Augmented Fixed-E�ects; PC
= Per-Cluster; RE = Random-E�ects.

209



BIBLIOGRAPHY

210



BIBLIOGRAPHY

Thomas Ahn and Jacob Vigdor. How salient are performance incentives in education?
evidence from north carolina. Technical report, Working paper, Univ. Kentucky
and Duke Univ, 2012.

Chunrong Ai and Edward C Norton. Interaction terms in logit and probit models.
Economics letters, 80(1):123�129, 2003.

P. D. Allison and K. A. Bollen. Change score, �xed e�ects, and random component
models: A structural equation approach. Paper presented at the Annual Meeting
of the American Sociological Association., 1997.

Joseph G. Altonji and Charles R. Pierret. Employer learning and statistical
discrimination. The Quarterly Journal of Economics, 116(1):313�350, Febru-
ary 2001. ISSN 0033-5533, 1531-4650. doi: 10.1162/003355301556329. URL
http://qje.oxfordjournals.org/content/116/1/313.

Joseph G. Altonji and Robert A. Shakotko. Do wages rise with job seniority?
Working Paper 1616, National Bureau of Economic Research, May 1985. URL
http://www.nber.org/papers/w1616.

D. Ballou, W. Sanders, and P. Wright. Controlling for student background variables
in value-added assessment of teachers. Journal of Educational and Behavioral
Statistics, 29:37�65, 2004.

Michael David Bates. Job seperation under asymmetric employer learning.
Working paper, University of California at Riverside, July 2015. URL
http://www.nber.org/papers/w5605.

Gary S. Becker. Investment in human capital: A theoretical analysis. Journal of
Political Economy, 70, 1962.

C. S. Berkey, D. C. Hoaglin, A. Antczak-Bouckoms, F. Mosteller, and G. A. Golditz.
Meta-analysis of multiple outcomes by regression with random e�ects. Statistics
in Medicine, 17:2537�2550, 1998.

G. J. Borjas and G. T. Sueyoshi. A two-stage estimator for probit models with
structural group e�ects. Journal of Econometrics, 64:165�182, 1994.

Donald Boyd, Hamilton Lankford, Susanna Loeb, and James Wycko�. Explaining the
short careers of high-achieving teachers in schools with low-performing students.
The American Economic Review, 95(2):166�171, May 2005. ISSN 0002-8282. doi:
10.2307/4132810. URL http://www.jstor.org/stable/4132810.

211



Donald Boyd, Pam Grossman, Hamilton Lankford, Susanna Loeb, and James
Wycko�. Who leaves? teacher attrition and student achievement. Work-
ing Paper 14022, National Bureau of Economic Research, May 2008. URL
http://www.nber.org/papers/w14022.

Donald Boyd, Hamilton Lankford, Loeb, and James Wycko�. Analyzing the de-
terminants of the matching of public school teachers to jobs: Disentangling
the preferences of teachers and employers. Journal of Labor Economics, 31
(1):83�117, January 2013. ISSN 0734-306X. doi: 10.1086/666725. URL
http://www.jstor.org/stable/10.1086/666725. ArticleType: research-article
/ Full publication date: January 2013 / Copyright Â c© 2013 The University of
Chicago.

Bernt Bratsberg and Dek Terrell. Experience, tenure, and wage growth of young black
and white men. The Journal of Human Resources, 33(3):658�682, July 1998. ISSN
0022-166X. doi: 10.2307/146337. URL http://www.jstor.org/stable/146337.
ArticleType: research-article / Full publication date: Summer, 1998 / Copyright
Â c© 1998 The Board of Regents of the University of Wisconsin System.

L. Burstein, R. L. Linn, and F. J. Capell. Analyzing multilevel data in the presence
of heterogeneous within-class regressions. Journal of Educational Statistics, 3:
347�383, 1978.

Carl M. Campbell and Kunal S. Kamlani. The reasons for wage rigidity: Evidence
from a survey of �rms. The Quarterly Journal of Economics, 112(3):759�789,
August 1997. ISSN 0033-5533, 1531-4650. doi: 10.1162/003355397555343. URL
http://qje.oxfordjournals.org/content/112/3/759.

K. E. Castellano, S. Rabe-Hesketh, and A. Skrondal. Composition, context, and
endogeneity in school and teacher comparisons. Journal of Educational and Be-
havioral Statistics, in press, 2014.

Raj Chetty, John N. Friedman, Nathaniel Hilger, Emmanuel Saez, Di-
ane Whitmore Schanzenbach, and Danny Yagan. How does your
kindergarten classroom a�ect your earnings? evidence from project
star. The Quarterly Journal of Economics, 126(4):1593�1660, Novem-
ber 2011. ISSN 0033-5533, 1531-4650. doi: 10.1093/qje/qjr041. URL
http://qje.oxfordjournals.org/content/126/4/1593.

Raj Chetty, John N. Friedman, and Jonah E. Rocko�. Measuring the impacts of
teachers ii: Teacher value-added and student outcomes in adulthood. American
Economic Review, 104(9):2633�2679, September 2014. ISSN 0002-8282.

Matthew M. Chingos and Martin R. West. Promotion and reassignment in
public school districts: How do schools respond to di�erences in teacher
e�ectiveness? Economics of Education Review, 30(3):419�433, June
2011. ISSN 0272-7757. doi: 10.1016/j.econedurev.2010.12.011. URL
http://www.sciencedirect.com/science/article/pii/S0272775710001767.

212



C.-P. Chou, P. M. Bentler, and M. A. Pentz. Two-stage approach to multilevel
structural equation models: Application to longitudinal data. In T. D. Little,
K. U. Schnabel, and J. Baumert, editors, Modeling Longitudinal and Multilevel
Data: Practical Issues, Applied Approaches, and Speci�c Examples, pages 33�49.
Erlbaum, Mahwah, NJ, 2000.

Y. Chung, A. Gelman, S. Rabe-Hesketh, J. Liu, and V. Dorie. Weakly informative
prior for point estimation of covariance matrices in hierarchical linear models.
Journal of Educational and Behavioral Statistics, conditionally accepted, 2014.

Charles T. Clotfelter, Helen F. Ladd, and Jacob Vigdor. Who teaches whom? race
and the distribution of novice teachers. Economics of Education Review, 24(4):377�
392, August 2005. ISSN 0272-7757. doi: 10.1016/j.econedurev.2004.06.008. URL
http://www.sciencedirect.com/science/article/pii/S0272775704001153.

Charles T Clotfelter, Helen F Ladd, and Jacob L Vigdor. Teacher mobility, school
segregation, and pay-based policies to level the playing �eld. Education, 6(3):
399�438, 2011.

Steven J. Davis, R. Jason Faberman, and John Haltiwanger. The �ow ap-
proach to labor markets: New data sources and micro-macro links. Work-
ing Paper 12167, National Bureau of Economic Research, April 2006. URL
http://www.nber.org/papers/w12167.

Jed DeVaro and Michael Waldman. The signaling role of promotions: Fur-
ther theory and empirical evidence. Journal of Labor Economics, 30(1):
91�147, January 2012. ISSN 0734-306X. doi: 10.1086/662072. URL
http://www.jstor.org/stable/10.1086/662072. ArticleType: research-article
/ Full publication date: January 2012 / Copyright Â c© 2012 The University of
Chicago.

F.J.H. Don and J.R. Magnus. On the unbiasedness of iterated GLS estimators.
Communications in Statistics � Theory and Methods, 9:519�527, 1980.

Michael W. L. Elsby, Ryan Michaels, and Gary Solon. The ins and outs of cycli-
cal unemployment. American Economic Journal: Macroeconomics, 1(1):84�110,
January 2009. doi: 10.1257/mac.1.1.84.

Henry S. Farber and Robert Gibbons. Learning and wage dynam-
ics. The Quarterly Journal of Economics, 111(4):1007�1047, Novem-
ber 1996. ISSN 0033-5533, 1531-4650. doi: 10.2307/2946706. URL
http://qje.oxfordjournals.org/content/111/4/1007.

Jason P. Fine and Robert J. Gray. A proportional hazards model for the subdistribu-
tion of a competing risk. Journal of the American Statistical Association, 94(446):
496�509, June 1999. ISSN 0162-1459. doi: 10.1080/01621459.1999.10474144. URL
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1999.10474144.

213



E. W. Frees. Longitudinal and Panel Data: Analysis and Applications for the Social
Sciences. Cambridge University Press, Cambridge, 2004.

Robert Gibbons and Lawrence Katz. Layo�s and lemons. Working Pa-
per 2968, National Bureau of Economic Research, December 1991a. URL
http://www.nber.org/papers/w2968.

Robert Gibbons and Lawrence Katz. Layo�s and lemons. Journal of Labor Eco-
nomics, 9(4):351�380, 1991b.

Steven Glazerman, Ali Protik, Bing-ru Teh, Julie Bruch, and Neil Seftor. Moving
high-performing teachers: Implementation of transfer incentives in seven districts.
Technical report, Mathematica Policy Research, 2012.

Dan Goldhaber, Betheny Gross, and Daniel Player. Are Public Schools Really Losing
Their Best? Assessing the Career Transitions of Teachers and Their Implications
for the Quality of the Teacher Workforce. Working Paper 12. National Center for
Analysis of Longitudinal Data in Education Research, October 2007.

Robert J. Gray. A class of k-sample tests for comparing the cumulative incidence
of a competing risk. The Annals of Statistics, 16(3):1141�1154, September 1988.
ISSN 0090-5364. URL http://www.jstor.org/stable/2241622.

Sanford J. Grossman. The informational role of warranties and private disclosure
about product quality. Journal of Law and Economics, 24(3):461�483, December
1981. URL http://www.jstor.org/stable/725273.

Cassandra Guarino, Mark D. Reckase, and Je�rey M. Wooldridge. Can value-
added measures of teacher performance be trusted? Technical Report 6602,
Discussion Paper series, Forschungsinstitut zur Zukunft der Arbeit, 2012. URL
http://www.econstor.eu/handle/10419/62407.

Davis Guggenheim. Waiting for Superman. Paramount Home Entertainment, Hol-
lywood, CA, 2011.

Eric A. Hanushek, John F. Kain, Daniel M. O'Brien, and Steven G. Rivkin. The
market for teacher quality. Working Paper 11154, National Bureau of Economic
Research, February 2005. URL http://www.nber.org/papers/w11154.

J. A. Hausman and W. E. Taylor. Panel data and unobservable individual e�ects.
Econometrica, 49:1377�1398, 1981.

Peter L. Hinrichs. What kind of teachers are schools looking for? evidence from a
randomized �eld experiment. Work in Progress, May 2013.

C. Kirabo Jackson. Match quality, worker productivity, and worker mobility: Direct
evidence from teachers. Review of Economics and Statistics, 2013.

214



Clement (Kirabo) Jackson. Student demographics, teacher sorting, and teacher qual-
ity: Evidence from the end of school desegregation. The Journal of Labor Eco-
nomics, 27(2):213�256, 2009.

Brian A. Jacob and Lars Lefgren. Can principals identify e�ective teachers? evidence
on subjective performance evaluation in education. Journal of Labor Economics,
26(1):101�136, January 2008. ISSN 0734-306X, 1537-5307.

Boyan Jovanovic. Job matching and the theory of turnover. Journal of Political
Economy, 87(5):972�990, October 1979. ISSN 0022-3808. doi: 10.2307/1833078.
URL http://www.jstor.org/stable/1833078. ArticleType: research-article /
Issue Title: Part 1 / Full publication date: Oct., 1979 / Copyright Â c© 1979 The
University of Chicago Press.

Lisa B Kahn. Asymmetric information between employers. American Economic
Journal: Applied Economics, 5(4):165�205, October 2013. ISSN 1945-7782, 1945-
7790.

N. C. Kakwani. The unbiasedness of Zellner's seemingly unrelated regression equa-
tions estimators. Journal of the American Statistical Association, 62:141�142,
1967.

J. S. Kim and E. W. Frees. Multilevel modeling with correlated e�ects. Psychome-
trika, 72:505�533, 2007.

E. L. Korn and A. S. Whittemore. Methods for analyzing panel studies of acute
health e�ects of air pollution. Biometrics, 35:795�802, 1979.

John M. Krieg. Teacher quality and attrition. Economics
of Education Review, 25(1):13�27, February 2006. ISSN
0272-7757. doi: 10.1016/j.econedurev.2004.09.004. URL
http://www.sciencedirect.com/science/article/pii/S0272775704001281.

Fabian Lange. The speed of employer learning. Journal of Labor Economics,
25(1):1�35, January 2007. ISSN 0734-306X. doi: 10.1086/508730. URL
http://www.jstor.org/stable/10.1086/508730. ArticleType: research-article
/ Full publication date: January 2007 / Copyright Â c© 2007 The University of
Chicago.

Hamilton Lankford, Susanna Loeb, and James Wycko�. Teacher sorting and the
plight of urban schools: A descriptive analysis. Educational Evaluation and
Policy Analysis, 24(1):37�62, March 2002. ISSN 0162-3737, 1935-1062. doi:
10.3102/01623737024001037. URL http://epa.sagepub.com/content/24/1/37.

Audrey Light. Job mobility and wage growth: Evidence from the NLSY79. Monthly
Labor Review, 128:33, 2005.

215



Paul R. Milgrom. Good news and bad news: Representation theorems and ap-
plications. The Bell Journal of Economics, 12(2):380�391, October 1981. doi:
10.2307/3003562. URL http://www.jstor.org/stable/3003562.

Paul R. Milgrom and Robert J. Weber. A theory of auctions and competitive bid-
ding. Econometrica, 50(5):1089�1122, September 1982. ISSN 0012-9682. doi:
10.2307/1911865. URL http://www.jstor.org/stable/1911865. ArticleType:
research-article / Full publication date: Sep., 1982 / Copyright Â c© 1982 The
Econometric Society.

Y. Mundlak. On the pooling of time series and cross-sectional data. Econometrica,
46:69�86, 1978.

Joshua C. Pinkston. A model of asymmetric employer learning with testable implica-
tions. The Review of Economic Studies, 76(1):367�394, 2009. doi: 10.1111/j.1467-
937X.2008.00507.x.

S. Rabe-Hesketh and A. Skrondal. Multilevel and Longitudinal Modeling using Stata
(Third Edition), Volume I: Continuous Responses. Stata Press, College Station,
TX, 2012.

S. W. Raudenbush and A. S. Bryk. Hierarchical Linear Models: Applications and
Data Analysis Methods. Sage, Thousand Oaks, CA, 2nd edition, 2002.

S. W. Raudenbush and J. D. Willms. The estimation of school e�ects. Journal of
Educational and Behavioral Statistics, 20:307�335, 1995.

S. W. Raudenbush, A. S. Bryk, Y. F. Cheong, R. Congdon, and M. du Toit. HLM 7:
Hierarchical Linear and Nonlinear Modeling. Scienti�c Software International,
Lincolnwood, IL, 2011.

Steven G. Rivkin, Eric A. Hanushek, and John F. Kain. Teachers, schools, and
academic achievement. Econometrica, 73(2):417�458, 2005. ISSN 1468-0262.

Jonah E. Rocko�, Douglas O. Staiger, Thomas J. Kane, and Eric S. Taylor. Informa-
tion and employee evaluation: Evidence from a randomized intervention in public
schools. The American Economic Review, 102(7):3184�3213, December 2012. doi:
10.1257/aer.102.7.3184.

Roderick A. Rose, Gary T. Henry, and Douglas L. Lauen. Comparing value-added
models for estimating individual teacher e�ects on a statewide basis simulations
and empirical analyses. Technical report, Consortium for Educational Research
and Evaluation, North Carolina, August 2012.

William L Sanders, Arnold M Saxton, and Sandra P Horn. The tennessee value-
added assessment system: A quantitative outcomes-based approach to educational
assessment. Grading teachers, grading schools: Is student achievement a valid
evaluational measure, pages 137�162, 1997.

216



Tim R. Sass, Jane Hannaway, Zeyu Xu, David N. Figlio, and Li Feng. Value added
of teachers in high-poverty schools and lower poverty schools. Journal of Urban
Economics, 72(2-3):104�122, September 2012. ISSN 0094-1190.

Uta Schönberg. Testing for asymmetric employer learning. Journal of La-
bor Economics, 25(4):651�691, October 2007. ISSN 0734-306X. URL
http://www.jstor.org/stable/10.1086/522905.

A. Spanos. Where do statistical models come from? Revisiting the problem of
speci�cation. IMS Lecture Notes � Monograph Series 2nd Lehmann Symposium �
Optimality, 49:98�119, 2006.

Michael Spence. Job market signaling. The Quarterly Journal of Economics,
87(3):355�374, August 1973. ISSN 0033-5533. doi: 10.2307/1882010. URL
http://www.jstor.org/stable/1882010. ArticleType: research-article / Full
publication date: Aug., 1973 / Copyright Â c© 1973 Oxford University Press.

Douglas O. Staiger and Jonah E. Rocko�. Searching for e�ective teachers with
imperfect information. The Journal of Economic Perspectives, 24(3):97�117, July
2010. doi: 10.1257/jep.24.3.97.

StataCorp. Stata: Statistics/Data Analysis [computer software]. College Station,
TX, 2013.

J. Teachman, G. J. Duncan, W. J. Yeung, and D. Levy. Covariance structure models
for �xed and random e�ects. Sociological Methods & Research, 30:271�288, 2001.

G. Verbeke, B. Spiessens, and E. Lesa�re. Conditional linear mixed models. American
Statistician, 55:25�34, 2001.

Jacob L Vigdor et al. Teacher salary bonuses in north carolina. In Conference paper,
National Center on Performance Incentives.-0.026, 2008.

D. E. Wiley. Another hour, another day: Quantity for schooling, a potent path
for policy. In R. M. Hauser, W. H. Sewell, and D. Alwin, editors, Schooling and
Achievement in American Society, pages 225�265. Academic Press, New York,
1975.

J. M. Wooldridge. Fixed-e�ects and related estimators for correlated random-
coe�cient and treatment-e�ect panel data models. Review of Economics and
Statistics, 51:385�390, 2005.

J. M. Wooldridge. Econometric Analysis of Cross-Section and Panel Data. The MIT
Press, Cambridge, MA, 2010.

217


