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ABSTRACT

SPIN INTERACTION IN SEMICONDUCTORS
MEDIATED BY ITINERANT EXCITATIONS

By

Guillermo Federico Quinteiro Rosen

Circumscribed to the field of condensed matter, this thesis aims to enhance our
understanding of optically-induced indirect spin interactions in semiconductor struc-
tures, as well as to contribute to the development of solid state proposals for the
emerging science of Quantum Information.

The theoretical formalism that is used throughout this thesis is discussed. This
mathematical framework describes excitations of the semiconductor, light fields and
localized spin states. It is shown how the Hamiltonian is derived from a microscopic
model. This resulting Hamiltonian includes the: i) Interaction between laser light and
excitations of the semiconductor; i7) Kinetic energies of excitations; iii) interaction
of photons and excitons that yield exciton polaritons; iv) Spin interaction between
localized centers and optical excitations in the semiconductor (excitons and/or exciton
polaritons).

The formalism is first employed to analyze the spin indirect interaction mediated
by excitons in semicor;ductors and extend the results of previous works in this subject.
In contrast to previous works, a full analytical solution valid to all orders in the
strength of the interaction between excitations and localized spins is found. New
features arise from the non-perturbative solution. One important finding is that both
ferromagnetic and anti-ferromagnetic indirect coupling can be achieved.

The indirect interaction for semiconductors embedded in a planar micro-cavity

is then considered. This theory follows naturally as an extension of the one for bare



semiconductors. The focus is now on different features that are predicted using per-
turbation theory in the coupling between polaritons and localized spins. It is shown
that the indirect interaction presents two distinct regimes, depending on the sepa-
ration between the localized spins. In each regime, the dominant interaction is of a
different type: Ising or Heisenberg. Moreover, the range of the interaction for a semi-
conductor in a micro-cavity is found to be of longer range when compared to that of
a bare semiconductor.

The knowledge gained through the aforementioned investigations opens new pos-
sibilities for applications to quantum information. First, a detailed analysis of optical
quantum control in a system consisting of quantum dots grown on top of a quantum
well is presented. It is shown how this system is a possible candidate for quantum
computers. Then a discussion follows, describing how the findings on bare semicon-
ductor and micro-cavity indirect interactions are a rich ground for implementations
of quantum computing and other quantum information technologies.

This dissertation ends with comments on the future developments of the research

presented here.
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Introduction

Solid State Physics has experienced tremendous changes in the last century, and is
currently one of the most active research fields. It gives us basic insight into our
physical world, and enables us to control and modify the environment to improve
our lives. Among its various areas of research, semiconductor physics and magnetism
have had a central role. The research in semiconductors has made possible impressive
technological developments, e.g. digital computers. Moreover, the past few decades
have witnessed important technological advances that made possible the fabrication of
semiconductor systems with novel properties. Research on materials that have both
semiconductor and magnetic properties has also attracted much attention. These
concurrent new investigations promise further technological developments in classical
information technology as well as the new emerging field of quantum information.
Semiconductor engineered structures exhibit very interesting new features. [1] Per-
haps, the best examples of novel systems are quantum dots(QD) (2, 3] and planar
micro-cavities [4]. The former are usually regarded as artificial atoms. Although a
QD can be a hundred times larger than its natural counterpart, they share some
important characteristics. For instance, particles trapped in a QD are confined in all
directions — like in a real atom; for this reason it is considered a zero dimensional
structure. A planar micro-cavity consists of a very thin semiconductor structure —
a quantum well (QW)! - enclosed by mirrors on both sides. When light is trapped

between the mirrors, it couples to electronic excitations of the QW, giving rise to a

'Width of the order of tens of an atom size.



new quasi-particle named a polariton (5].

Magnetism has been the focus of extensive experimental and theoretical study. It
is well accepted that this phenomenon is due to collective mechanisms where elec-
tron correlations play a crucial role. Other possible sources of magnetism, with no
electronic correlation, do not account for experiments, and simple estimations show
that they vanish at high temperatures; for example, the magnetic dipole-dipole inter-
action energy is about 104 eV, which is approximately 1 Kelvin. Strong electronic
correlations, that can persist at room temperatures, are the result of the Pauli exclu-
sion principle and the Coulomb interaction, and are generally referred to as exchange
interactions. This encompasses itinerant-ezchange, direct-exchange, super-erchange,
etc.

Semiconductors that exhibit magnetic properties can be obtained by doping or
the implantation of impurities. [18,49] These embedded particles are then responsible
for the magnetic features of the whole system. As explained above, various exchange
mechanisms may account for the magnetic interaction. Depending on the system
and conditions, the coupling among foreign particles may be assisted by excitations
on the host material which, for example, may be produced coherently by optical
excitation. [6-8] Thus we talk of indirect-interaction processes [9,10] that link localized
states. The light-induced spin-spin interaction is a convenient way for a fast quantum
control of spins. [6-8,11]

The concept of quantum computing (QC) was originally proposed by Richard
Feynman and others [12,13]. They suggested that a new type of computer based
entirely on the principles of quantum mechanics may outperform any conceivable
classical computer. [14] A substantial effort is deployed now in the exploration of
physical systems that may implement a QC. Within solid state physics, magnetic
semiconductor nano-structures are very promising systems. The logical units (qubits)
are realized by impurity spin states or electrons in quantum dots, and the logical

operation performed using a variety of methods: electrical, optical, etc. [15-17]



In conclusion, engineered magnetic semiconductor systems exhibit new features
that are worth studying from a fundamental perspective, and can have applications to
QC or other branches derived from Feynman'’s original idea: quantum cryptography,
gquantum teleportation, etc.

The research in systems using the aforementioned principles has led to important
results. A mechanism of indirect interaction between distant spins mediated by virtual
excitons in semiconductors has been studied [6]. In addition, QC schemes using the
indirect interaction were proposed, e.g. QD’s inside a zero-dimensional cavity [15] and
donors embedded in a 2D electron gas [78].

The work presented in this thesis is a theoretical contribution to the physics of
the exchange interaction between spins assisted by excitations in semiconductor struc-
tures — a problem of a complex nature encompassing all fields mentioned above. The
main results can be summarized as follow: i) In the case of bulk semiconductors, we
find a non-perturbative solution to the spin-spin interaction. This allows us to predict
that the corresponding coupling constant is either ferromagnetic or anti-ferromagnetic
depending on the frequency of the optical excitation. iz) We study for the first time the
spin-spin interaction in a planar micro-cavity mediated by polaritons. New features
arise: The range of the coupling constant is dramatically increased and the interaction
becomes anisotropic. iii) We analyze the optical quantum control and role of spon-
taneous emission on a model for QC. We demonstrate that this system, made out of
excitons in QD’s and impurity-qubits, is fault-tolerant and thus is a good candidate
for QC.

Chapter 1 starts with an overview of the semiconductor physics necessary to build
our theory. Next, I introduce the mathematical formalism that will be employed, with
modifications and additions, throughout the whole dissertation.

Chapter 2 provides a theory of laser-induced interaction between spins localized
by impurity centers in a semiconductor host. We solve non-perturbatively the problem

of two localized spins interacting with one itinerant exciton, and we find an analytical



expression for the induced spin-spin interaction as a function of the spin separation,
laser energy, and intensity. This non-perturbative approach is one of our main contri-
butions to the existing theories on optically mediated spin coupling. The application
of this theory to shallow neutral donors (Si) and deep rare-earth magnetic impurities
(Yb) in III-V semiconductors yields the following main result not predicted in the
previous perturbative treatments. When the photon energy approaches a resonance
related to excitons bound to the impurities, the coupling between the localized spins
increases, and may change from ferromagnetic to anti-ferromagnetic.

In chapter 3 we study the optically-induced spin interaction between two shallow
donors mediated by polaritons in a planar micro-cavity. The spin coupling mediated
by polaritons in a planar micro-cavity has been addressed for the first time in this
thesis. Our findings are: i) The vacuum Rabi splitting makes the spin interaction
anisotropic. ii) The spin interaction presents two distinct regimes, as a function of
the inter-spin separation. iiz) The existence of the cavity — or polaritons — extends
the range of the spin interaction by several orders of magnitude compared to the case
of a bare semiconductor.

I study thekpossible applications of the preceding theory in chapter 4. First, I
show how the use of semiconductor excitation - localized state interaction can help
tackling intractable and/or very difficult problems in QC. In particular, we analyze
in detail the optical quantum control of impurity spins in the proximity of a quantum
dot. A laser pulse creates an exciton in the dot and controls the spins by an indirect
coupling. We show how to determine the control parameters to achieve maximal spin
entanglement, the most important ingredient in quantum information. We consider
errors in the quantum control due to the exciton radiative recombination. The control
errors in the adiabatic and nonadiabatic case are compared to the threshold needed for
scalable quantum computing. We find that the scheme we propose is fault-tolerant.
Finally, I analyze the possible applications of the theories presented in chapter 2

and chapter 3 to quantum computing in semiconductors. The errors in the spin-



qubit operations due to the finite lifetime of the mediating particle represents one of
the most important limitations in all the optically-induced indirect spin interaction
schemes. The novel result we found for the quantum control - i.e. that by properly
choosing the parameters the errors are below the correction threshold — suggests that
this limitation can also be overcome in the systems of chapter 2 and chapter 3.

This thesis ends with comments on future directions of research that may expand

the investigation exposed here.

(2]



Chapter 1

The core mathematical model

Throughout this thesis, three physical systems will be analyzed. Though each one
sheds light onto different questions and possible applications, they all share important
features. These similarities stem from a common building block or core Hamiltonian,
out of which the specific dynamics for each system is constructed. The following
sections give a brief introduction to semiconductor physics, and show how the core
Hamiltonian can be derived from first principles. We also discuss the approximations

and their limitations.

1.1 Basic concepts in Semiconductor physics

Electron dynamics is of main importance to understand the transport and optical
properties of metals and semiconductors. (5,18, 20] Electrons in solids are subjected
to the Coulomb potential due to lattice ions and other electrons. The theoretical
study can be carried out in series of successive approximations. The first aproximation
assumes that all sources of potential energy form an average single particle potentiall
that has the periodicity of the lattice. Therefore, Bloch’s theorem applies. Bloch’s

theorem states that a possible description of the spatial wave function of particles in

'A common procedure to obtain such potential is through self consistent calculations.



a periodic potential is the product

vi(r) = eKFu(r)

of a plane wave with wavevector k (crystal momentum? p = kk) times an envelope
function u(r) with the periodicity of the potential. Alternatively, this can be expressed
as

1kR

Yi(r + R) = e yy(r),

where R is a lattice vector. A description of electrons in these so-called Bloch states
can be given in terms of the momentum k restricted to the 1st Brillouin zone (BZ)3
and a band index n.

Though rough, the use of average potentials proves useful, for the dynamics of
the many electron system simplifies to the solution of a single-particle Schrédinger
equation. Tight binding or nearly-free electron models can then be employed. The
latter describes the loosely bound electrons in the outer orbitals. The starting point
is the assumption of an unperturbed Bloch function with u(r) = 1 that leads to a
quadratic dispersion law. Degenerate states at the boundary of the BZ are solved by
applying perturbation theory, and gaps between bands result. More accurate states
and energy bands are determined with the use of self consistent theories with spin
degrees of freedom, such as the original Hartree. Further refinements, e.g. Hartree-
Fock [18,19], introduce Pauli exclusion principle, symmetrization and spin dependent
interactions as well. Metals, insulators and semiconductors, are studied within the
formalism described above. The latter are binary compounds forming, in general,
covalent bonds. They can be regarded as insulators with a smaller energy gap (Eq <

5 eV) between the valence and conduction bands. A simplified band structure diagram

2This is not the lincar momentum of the particle. for the problem does not have complete trans-
lational invariance.
3The Wigner-Seitz primitive cell in the reciprocal k space is known as Brillouin zone.
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Figure 1.1: Band structure of direct band gap 11I-V semiconductors showing valence
bands and the lowest conduction band close to the I' point, with energy gap Ey. Spin-
orbit. coupling breaks the degeneracy of the p-like valence band, leaving the energy
of the split-off J =1/2 band lower than the heavy hole and light hole J = 3/2 bands.
of a direct band gap? semiconductor of the III-V® type is shown in Figure 1.1. The
valence and conduction bands arise from p and s atomic-like states, respectively.
Together with the spin degree of freedom, the total angular momentum is either J =
1/2 for the conduction band or J = 3/2,1/2 for the valence band. This is completely
degenerate at the I' point (k = 0). Spin-orbit coupling lifts partially this degeneracy,
leaving the energy of the split-off J = 1/2 band lower than the heavy hole and
light hole J = 3/2 bands®. Other interactions, such as quantum confinement, lattice
strain, etc. further break the degeneracy between heavy hole m; = +3/2 and light
hole mj = +1/2. The ground state of a semiconductor consists of electrons filling
completely the valence band; excited states are only occupied via the promotion of an
electron from the valence to the conduction band. As the band gap energy is typically
of the order of electron-Volts, optical excitations are possible: a photon with energy

larger than Eg4 is absorbed and an electron changes state to one in the conduction

band, leaving a hole in the valence band.

4Valence maximum and conduction minimum occur at the same wavevector k.

5Chemical composition: the semiconductor is formed with an element of the I and V groups of
the periodic table.

Sthe splitting is of the order of magnitude of hundreds of meV .



1.1.1 Excitons

So far, the effect of electron-electron interaction on the optical excitation has not been
described. In insulators and semiconductors, a well known consequence of Coulomb
interactions is the occurrence of new states with energy lower than the band gap
E,4". A photo-excited electron in the conduction band binds to the hole left behind in
the valence band in a state called ezciton. [22] This particle is important to describe
optical properties of bulk semiconductor and engineered structures, specially at low
temperature.

The study of excitons was pioneered by Frenkel [24] and Wannier [23] in the
1930s. Consequently, this quasi-particle is nowadays classified according to whether
the electron and hole are strongly (Frenkel exciton) or weakly (Wannier exciton)
bound. The former occurs for example in ionic crystals, like NaCl [25]. The latter
is found in semiconductors that exhibit large dielectric constant (weaker screened
Coulomb interaction), such as GaAs.

As already anticipated, the electron-electron interaction complicates the mathe-
matical treatment, since a single-particle picture is no longer applicable [26]. The zero-
order ground state of the crystal can be represented by an antisymmetrized product
(Slater determinant) of atomic-like® single-particle wave functions of electrons each

in its ground state ag and centered at R;
@y = Aay(r1 — Ry)ag(rz — Rp)ag(rg — Ry) ...
Nevertheless, a similar representation:

(I)I(Rh,,B) iA(lU(rl - Rl)---al("z' - Re) s

"The difference in encrgy between this new state and the bottom of the conduction band is of
the few milielectron-Volts.
8 Alternatively. Bloch wave functions can be used.




for the excited crystal state with one electron promoted from a single-particle state
ag at Ry, to an single-particle excited state a; at Re (3 = Re — Ry,) proves inadequate,
for the energy of the functions ®(Ry,3)’s for different R}, are degenerate. However,

a linear superposition of {®1(Ry,3)} written as
gy - L KR
o1(K,3) = —=) ehRhd (R, 8)
vN Ry,

partially diagonalizes the full Hamiltonian. With the use of these ezcitation waves,
originally introduced by Frenkel, and an equivalent representation Wannier showed
that the full Hamiltonian can be resolved in two terms. One accounts for transitions
with either electron or hole kept in its original site; this is a one-particle energy. The
other term is related to the Coulomb attraction between the electron and hole. From

this and the use of a new representation:
Uy (K) =Y Un(3)21(K.A),
3

Wannier found that the equations for the coeflicients Uy (/3), written in the form
Uy(3) = eia’K?3F,,(/’3), lead to an hydrogen-like equation for F,(8) in a medium of
dielectric constant €, with o/ = m}/(m} + mj). Thus, the problem resembles that
of atomic systems with atomic energy spectrum and free center of mass motion.
Notice that, in Frenkel's representation, the excitation is “free” to move with mo-
mentum K, but lacks relative motion; Wannier took into account the superposition
of states with different separation 3 between electron and hole. In the language of
creation/annihilation operators for electrons (af/a) and holes (3t/3), the Wannier

exciton creation operator is represented by
bl g = L7323y (k- K/2) al gl | (1.1)
k

where ¢ is the Fourier transform of the electron-hole relative motion hydrogen-like

10



wave function »9, and L is the linear size of the 3D system. Being a composite particle
made up of two fermions, we can expect it to follow Bose statistics. Calculation of

the commutator
By0:810) = L33 ()21 - afay - 8T B_1)
k

shows that excitons are approximately bosons, and their deviation is proportional to
the density of electrons in the conduction and holes in the valence bands. [5]

In this thesis, we will consider an effective Hamiltonian for an electron and hole
in a medium with dielectric constant e that leads to Wannier excitons in the bosonic

limit. Furthermore, we restrict the relative motion to the lowest v = 1s state. [30]

1.1.2 Localized electrons in impurity centers and

quantum dots

Doping or implantation of impurities in semiconductors has been a common method
to alter both transport and optical properties of the host lattice. Nowadays, quantum
dots also allow us to modify those properties in engineered systems, such as quantum
wells.

The classification of impurities distinguishes two categories. These substitutional
atoms may be shallow or deep impurities, and donors, acceptors or iso-electronics. The
first division accounts for the effect introduced in the host lattice and the extension
to which the hydrogen-like model for impurities can be used. The second distinction
responds to the fact that impurities can donate to or accept from the lattice an
electron.

Quantum dots embedded in quantum wells can be charged in a controlled way. An
electron remains well localized within this structure and its dynamic follows closely

that of a trapped particle in a parabolic potential, thus presenting discrete levels.

YIn the language of Wannier: F,(3).

11



In analogy to our treatment of excitons, we assume that neither the electron in the
impurity nor that in the quantum dot changes its orbital state, and remains always
in the ground state. This is a sensible approximation, for — in the case of donors —
the binding energy is around tens of meV, and thus much smaller than the energy of
excitation of the laser field!0. Ionization is also suppressed, for the dipole moment is
very small for a transition connecting a localized state in the donor to a high energy
state in the conduction band. Therefore, we focus on the spin degree of freedom of

the electron in the impurity or quantum dot.

1.2 The core Hamiltonian

All three systems that are the subject of the following chapters share important phys-
ical properties that can be described using a unified formalism. The prototype system
representing them, for which the core Hamiltonian is built, is a direct band gap semi-
conductor with valence and conduction bands arising from p and s atomic orbitals,
respectively. Moreover, the valence band is split due to spin-orbit coupling and other
particular effects (described in each chapter); thus, only heavy-hole valence and con-
duction bands are taken into account. As a result, excitons are linear combination of
states belonging to these two bands. The optical excitation of the system is always
achieved by monochromatic light with energy slightly below the excitonic absorp-
tion line. This ensures that only virtual transverse excitons appear. Moreover, their
density is controlled by the detuning and the intensity of the light field. Localized
electrons are included in the model; they come either from impurities or quantum
dots. They interact via Coulomb forces with the electron or hole belonging to the ex-
citon. Exchange is usually the dominant interaction and the most interesting effect.
In almost all cases the hole spin interacts weakly with the electron spin, and therefore

it remains in its state through the evolution of the system.

"The laser is tuned slightly off-resonance with the exciton line. that lies hundreds of meV to eV
above the bottom of the valence band.
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For Wannier excitons in the effective mass approximation, the resulting effective

core Hamiltonian in first quantization form reads

H = Hy+Hp+H;j
H, =—Zh—2V2+ZV(T)
0 - 2m; ! 7 !
HL — ZE("e)dc e—-i(kre—wt)
e
2

H =Y —%— | (1.2)

ol €lre — 'rl|

where subindexes {e,l,i} refer to the electron in the exciton, the electron localized in
the impurity/QD, and the exciton center-of-mass, respectively; d the dipole moment.
The first term is the kinetic energy of excitons plus the energy of localized electrons
in impurities/QDs. The second term is the coupling of the electron in the exciton to
the laser light. The last term is the Coulomb potential energy between the electron in
the exciton and the electron in the impurity /QD in a medium of dielectric constant e.
Terms that give rise to energy shift, such as exciton-ion interaction, are not considered.

The binding of the exciton to the impurity/QD will be addressed in Chapter 2.

1.2.1 Kinetic energy

The exciton spatial wave functions is the product of relative and center of mass
motion wave functions. The former is of the 1s type, while the latter is a plane wave.
As such, when transforming to creation/annihilation operators in 2nd. quantization
form, the matrix element of the Laplacian gives a quadratic dispersion law. The energy
of different projections of spin are degenerate and symbolized by greek subindexes.

Therefore.

R2K2\ .4 .
HO = E?\ + Z (60 + ﬂ—) blabka y
ka

13



where the constant ¢ is the energy of the k = 0 exciton. {b',b} are the creation and
annihilation operators for excitons with momentum k and spin projection a. The

energy eg of the localized states is degenerate.

1.2.2 Light - exciton interaction

The Hamiltonian for the interaction between light and matter is obtained with the

use of the canonical momentum [27,28], and reads

h = L n- eA(r.t)]2 +eo , (1.3)

2m

where A and ¢ are the vector and scalar potentials, respectively; and the particle has
mass m and charge e. In the Coulomb gauge [A.p] = 0 holds, since V - A = 0. Thus,

expanding the square in Eq. 1.3 we obtain

2

o
I O £ 42
h_2m+('¢ m? A+2mA ! (14)

where A accounts for a plane electromagnetic wave. and ¢ may represent a confining
potential for the particle. In the case of an atom, all terms that contain the vector
potential result in a small perturbation to the rest of the interaction; in addition, a
numerical estimate for the rate of the linear to the quadratic term in A gives 104,
This allows us to retain only the term e/m(p - A), which is a good approximation
if the photon density is low. An important additional simplification, possible in the
atomic case, is also good for excitations of semiconductors: Consider a monochromatic
plane wave, with A = Aoei(kr““’t) + c.c. in the visible region of the spectrum, A ~
600 nm, in resonance with the 1s exciton state. Assuming a very large, though realistic,
value for the spatial extension of the exciton wave function ay ~ 10nm, there is no
appreciable variation of A in this scale. Therefore, in the evaluation of matrix elements

for the optical transition one can take e!(Kf) ~ 1. procedure known as dipole-moment
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approximation. In the following we restrict to the case of a semiconductor, where
the light couples to electrons and the aforementioned approximations are valid. The
Hamiltonian is

2

_ P _ e _. —iwt *_iwt
h= o tE9— P (Age + Ape) . (1.5)

We first focus on the dynamics of one electron with momentum p in the presence
of the total average potential ¢. This unperturbed part, which we call kg, leads to
electrons, holes, bands, excitons!!, etc. as explained before, and is a function of p2

and its r operator. The operator p can be written as
m
= —i—|[r, hg]-
p = —isp[r ho]

We would like to keep a classical description of the light while using a creation /
annihilation operator language for electrons and holes. The optical transition is cal-
culated by evaluating the matrix elements between initial and final states. Due to the
symmetry of the wave functions and the operator r, the only non-vanishing matrix
elements are those connecting states of different parity, such as the valence (p-like)

and conducting (s-like) bands,
(cl [ryhol lv) = —=(Eg — A){c|r|v) = —hwx (c|r|v) , (1.6)

where the Coulomb binding energy A for the electron and the hole lowers the energy
of the exciton state with respect to a free electron-hole pair. Thus, the perturbation

becomes

Hp = —iwx(Age ™t + Afe™t)(c|er [v)al gl +

iwy (Age™ ™t + Afe™t) (vl er|c)as . (1.7)

1o introduce excitons we need to include the electron-clectron interaction. However, this new
cnergy termn does not affect the analysis that follows, since still p = —im/h [r, ).



The terms containing e®* and e~ ™! represent emission and absorption of a pho-
ton, respectively. We apply the rotating wave approrimation and consider only terms
that create a photon when annihilating an exciton, and vice versa. Taking into account

all possible direct transitions with wavevector k 12 we obtain

i

Hp - Z iwy Age ™ (c| er Iv)alﬁf_k + Z inABei“’t(vl er|c)apB_j
k

k
-Y Egduce ™talgl, +he. (1.8)
k

where the dipole moment dyc is the matrix element of er, the vector potential is
related to the electric field by Ay = —iEy/w, and we have matched wy = w giving
wy/w = 1 13; the quantities dyc and Ej are k dependent. The next step consists
of writing Hy, in terms of exciton operators. This is accomplished using the inverse
of Eq. 1.1: L~3/2 S w,,(q)*b:',. K= a}{ /2 +qﬂ}( 2—q- The wavevector K represents the
momentum of the light that contributes to the center-of-mass motion of the electron-
hole system; this contribution can be safely neglected, for the photon momentum at
energies close to Eg is much smaller than the typical exciton momentum. In addition,
the spin of the photon introduces optical selection rules. Circular polarizations o+ and
o— correspond to spin projections of light equal to s; = —1 and s, = 1 respectively!4.
The sum of total angular momentum of the electron plus the hole must equal o; we

include both polarizations and the spin index to the exciton operators. Then,

Hp = -L72S hpguu(k)*e ™t | +he.

ov.k

where we have defined the Rabi Energy hp = Egdyc. The sum on v is eliminated, for

we restrict to 1s exciton states ¥y — ¥, (with ¢ real). An extra simplification is

12The frequency wy depends on k.

13In the off-resonance case. where wy # w, the deviation of wy /w from one is usually smaller than
1% and can be neglected.

4The z-axis is normal to the QW, and coincides with the propagation direction of the light.
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possible thanks to Y ; v;4(k),

> wigh)
k

)
)3/dk/dr b5(r)e kT
)3/dr <z§13(r)/dke_“‘r

<2£)3 [ o1 1n50) = 2140

Il
AN TN TN

where ¥ 5 and ¢, are conjugate functions for the Fourier transform. Finally, we arrive

at the expression that will be used hereafter,

Hy = L3?5 hopeor(0)e ™l 4 he. . 1.9
L 1 0.0
a

1.2.3 Exciton - localized spin interaction

The interaction of excitons with localized electrons can be described using a basis set
of delocalized functions for excitons and atomic-like wave functions for the localized
states, with the inclusion of the spin degrees of freedom. It is not necessary to specify
the form of the basis used, which depends on the particular system (quantum well,
bulk, quantum dot, etc.). We only need to know that the wave function has a spatial
(v or ¢) and spin (x for electrons or n for holes) components. The complete wave
function for the system is composed by products of the itinerant y;.nx and localized
px wave functions. This product must be anti-symmetrized with respect to the two
electrons, one belonging to the exciton (e) and the other to the localized state (1).

The total wave function is then written as

Vi =—7=- |+ Urlre.mp)o(r)x(se)x(s)) F ¥p(re.th)e(r)) x(s1) x(se)

Si=

+ Y (rporp)elre)x(se)x(s) — vi(rporp)e(re)x(s)x(se) |, (1.10)
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where the F and + signs comes from the anti-symmetrization either of the spatial or
the spin part.

This function can also be written in an equivalent form that stresses its permu-
tation symmetries and facilitates the derivation of the Heisenberg Hamiltonian. I
make use of the coupled representation and separate the spin triplet and singlet wave

functions,

S§= 7[9” re.T)P(r) + Yp(ry rp)v(re)] x \/—[U(Sc)d(sl) = u(sp)d(sc)]
Ty = E[’r’"k(reﬂ'h)v@”l Ui (ri-rh)e(re)] X T[U(Sr d(sp) + u(sy)d(sc)]
Ty = ZSWk(re o) = il ) ore)] x u(sehulsr)

T_ \/_[l,l w(resrp)e(ry) = vr(rp rp)e(re)] x d(se)d(sy) (1.11)

where u(r) and d(r) stands for spin up and down of particle = respectively; the com-
plete basis is resolved into singlet S and triplet T; states. The spin-orbital of the
decoupled representation Eq. 1.10 are linear combinations of Eq. 1.11.

The next step is to evaluate matrix elements of the Hamiltonian Eq. 1.2 between
complete wave functions, either of the form Eq. 1.10 or Eq. 1.11. First the coupled

representation is used to illustrate the procedure. Eq. 1.10 has the following structure,

s = —\;’—i[A+B]x

T = 7n_2—[A—B]x

where A = vy (re.rp)e(r) and B = yy.(r),rp)e(re) are the spatial part of the wave
function. The spin part is given in matrix form. Every term in the Hamiltonian

operates only on the spatial part of the state.
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The direct and exchange Coulomb integrals read,

VAA = VBB =/A2 Hl Ak’ dredrhdrl

vAB

/A;:, Hj By dredrpdry .

The dependence of V on (k,’) is implicit and omitted to simplify the notation. A
detailed evaluation of the integrals V is found in Appendix A.
h2
Hp o = 7{(VAA +VBB)1, — 2Re [V B4 M} I , (1.12)

where [, is the identity matrix in the subspace of the i-particle and,

-1 000
0 100 5\ 2

M = =<E) 1 (1.13)
0 010
0 00 1

and 3 = §¢ + §.
Alternatively, in the decoupled spin basis (Eq. 1.10), the Hamiltonian can be
expressed in terms of s = 1/2 spin operators as

h2 8se: .
Hy o =5 {(VAA +VEBB) 5,5, — 2 Re[V B4 (% +25- s,> } S - (1.14)

This representation makes clear the Heisenberg form of the Hamiltonian, and
shows that it is linked to the exchange integral VAB. The first term is unimportant,
for it only leads to a shift or renormalization of the energy. Hereafter, we focus on
the spin dependent part.

The many body interaction hamiltonian for excitons and N localized spins follows
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from Eq. 1.14 using 2nd. quantization, and reads

Hy=L36,, i S e KR g 3l (1.15)
1=1kK
where the sum over the wave-vector extends over the entire band of excitons with
creation (l}{,) and annihilation (Bk,) operators, and the index [ identifies a particular
localized spin. We have resolved the factor —2 Re[VBA] into a phase exp(—i(k — k’)R),
the normalization L3 and the remaining J. The operator 3 must be understood as
acting on the particular set of bins {k,k’}: it transforms the spin of an exciton that
undergoes scattering from states k&’ to k. We find that a more intuitive and suitable
representation of the many body problem is to write the spin part of the interaction
in matrix form. Thus, we replace EL and 8k’ by separate bosonic operators for each
projections of the electronic spin in the exciton (remember the spin of the hole is
fixed), and we replace the operator s¢ by a tensor 5/, which in matrix form reads
L (1.16)
E+ig %

This takes into account the selection rules for transitions between different exciton
states, represented by different operators 5};0/5"70’ with a being 1 =1 (up) or 2 =|

(down): for instance, s12 = s7. The final form of the Hamiltonian is

N
H =173, 3 % Jpe (k_k')'Rlsaa' -3 i’I\-ai’k'a’ . (1.17)
=1 kK
aad



1.2.4 The complete core Hamiltonian

The preceding sections have shown the different parts of the Hamiltonian, their deriva-

tion and approximations. The final form of the complete core Hamiltonian is

2,2
_ .0 k2 ot ;
H = ;/\+z<e0+ 2m) b} o bry +

ka

N

=33 —i(k-K)R . it g

L (Shhl Jk.k’e l( ) ISOGI'SI bkabklo,+
=1 kx

aa’

L3/2 Z h ﬂ‘)a(bls(o) e_ithbZ).O-h}:U + h.c. , (118)
[og

and describes Wannier excitons in the 1s state with electron spin a, hole spin 8 and
wavevector k generated by monochromatic light of frequency wy, of circular polar-
ization o. In addition, there are N localized spins with degenerate energy 59\ in the

lattice that interact through exchange with the photo-generated excitons.

1.3 The effective spin - spin interaction

For each particular system, the results and conclusions will be drawn using an ef-
fective Hamiltonian that describes the dynamics of two localized spins without the
explicit inclusion of excitons nor light. To achieve this, a transformation to a rotat-
ing frame!® with frequency wy, is performed so as to apply time-independent second
order perturbation theory in the light - exciton interaction (Sec. 1.2.2). The resulting

expression is then used to solve for the exciton - localized spin interaction (Sec. 1.2.3)

'%The transition to a rotating framec is implemented with the unitary transformation U =
crp(—ivtR), which maps, respectively, the state and Hamiltonian to l¥) — Uly) and H —
(UHUY — vR), in such a way that the Schrédinger equation holds and part of the time depen-
dency is eliminated from the Hamiltonian. The simplest case that resembles our problem clarifies
this procedure: Consider a system made of three levels { ]a). |b). |¢)}, and H = Hy + Hy, + H;.
Ho = E. [c){c| + Ey |b)(b] is diagonal, H;, = gexp(ivt)|a)(b] + h.c. and H; = A S|c)(b| + h.c.. where
S is an operator commuting with all others. It can be shown that. for U = exp[—ivt(|c){c| + |b)(b] )].
UHLU' — g |a){b| +h.c. and H, is invariant; in addition. there appears a new term v( |c) (c| + |b)(b] )
contributing a shift to the cnergy.
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in the framework of single particle Green'’s functions, with the final elimination of the
exciton degree of freedom.

Perturbation theory may be developed using projection operator techniques [29].
The light - exciton interaction couples states belonging to subspaces of different num-
ber of excitons. We single out the zero-exciton subspace 3 using the projector oper-
ator P and the remaining part of the Hilbert space with the operator Q@ =1 - P. The

resolvent G(z) = (z — H)~! in the subspace of interest is

P

PGP = z- P(Hy+ H))P- PRP’

which shows that the level-shift operator R can be regarded as a Hamiltonian in the
Qg subspace that corrects the unperturbed energy (Hy + Hy). The expansion of PRP
reads

PRP = PH P + PH[Q QH[P+....

1
z—(Hy+ Hy)
The first term vanishes, since Hj is non-diagonal in the subspace of fixed number
of photons. By defining |A\) as any of four vectors {|11), [T1), L1}, [1{)} of Jp, the

Hamiltonian is transformed to its effective form!6

1
Hoppan = MHLQ— QHLIX) .

(Ho + Hj)

with no explicit exciton dependencel”. H [ transforms a vector |A) in g to one of
same localized spin state and one exciton of wavevector k£ = 0 and angular momentum

o, named |A\0c). This vector belongs to the complement of Jg; therefore, in the last

1With no light and restricting to the subspace of zero exciton, the unperturbed Hamiltonian is
trivial and uninteresting with all four states degenerate.

"This expression accounts for completely coherent processes of stimulated absorption and emis-
sion.



expression, the operator @ is redundant and can be omitted,

352 2 2 /
Heppax = LA za:lgaal [¢15%(A00] "y |A"00)

1
(z — Hp) -
L3h2Z|Pa|2l¢ls|20)‘,\’Oa ’

o

where Hjy was grouped with z to show that (z — Hy)~! can be regarded as the bare
Green'’s function, and the whole operator as the full resolvent of the system. The value
of z can be approximated by the value of the unperturbed energy sg of the state |))
in Qp. G is

1
(GOwp))7t -

8y \10p 1t

00,y — AN Ok
Gk(“JL) - hor — ( + h2k2) .
L=\0%t )t

GyxogwL) = (Ao 7 [N o0o)

k)

where eg is finally chosen to be equal to zero, without lost of generality. Note that,
while G depends on spin, GY does not. We remark that we work in the off-resonance
regime for which w; < €y, thus making the real part of GO always negative.

This will be the starting point for Chapters 2 and 3, where it will be solved either

exactly or expanding in power series of Hj.



Chapter 2

A non-perturbative solution
for the indirect interaction

mediated by excitons

It was pointed out by Piermarocchi et al. [6] that itinerant excitons, i.e. optical
excitations free to move in the host material that embeds the localized spins, can
induce an effective spin-spin interaction between localized spins. This mechanism
has been dubbed Optical RKKY (ORKKY), in analogy to the mechanism in the
theory of magnetism [32], where electrons are involved. In the coherent optical case
virtual excitons are created, and the ORKKY coupling is obtained from a second
order perturbation theory in the exchange coupling between the itinerant exciton
and the localized spin. The ORKKY result predicts that the coupling between the
localized spins is always ferromagnetic, independently of the sign of the coupling with
the excitons. In this chapter we show that higher order terms in the exciton-impurity
coupling can modify the strength and sign of the interaction, and affect its dependence
as a function of the spin separation. The calculation of the spin-spin interaction can be
reduced to a spin dependent scattering problem that can be solved including exactly

all the multiple scattering terms between the two localized spins. We follow here an
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approach similar to that used to calculate multiple scattering effects of 7+ mesons
by deuterons [31]. The higher order terms in the exciton-impurity coupling describe
bound states which affect strongly the optically induced spin-spin interaction. In
particular, a controlled anti-ferromagnetic (AF) coupling can be realized when the
laser energy is tuned in the bonding-antibonding gap for the exciton localized by two
impurities. This laser controlled switching of sign of the spin-spin interaction opens
new directions in the investigation of competing interactions in spin systems.

The exchange between nuclear spins through excited electronic states has been
discussed in the past in the case of molecules [33] and insulators [34]. In particular,
Bloembergen and Rowland predicted in Ref. [34] an exponential decay of the spin-
spin interaction with a characteristic length x = k/,/2mEg. This length depends on
the energy gap Ey of the insulator and on the mass of the virtual electron hole pairs

across the gap. In the optically induced RKKY, the energy gap is effectively reduced

Light
X
/, ‘\\s
L7 ‘~\\ sB
///—§\\\SA ,/’ //§ \\\
/ %’ / \
] e ] \
\ | \ |
\ / \\ //
\\\‘__/// \\~__//
GaAs:Si

Figure 2.1: Scheme of the light induced spin-spin interaction in the case of two shallow
donors.
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by the laser field which increases the effective length to x = k/\/2m(Eg — hwp), with
hwp being the energy of the laser. Also, the density of electrons in the occupied
bands in the insulator is replaced in the optical case by the density of photons in
the field. The innovative strength of the optically induced case resides in the control
potentialities since both the intensity and the frequency of the laser can be controlled
in an experiment. Going beyond second order perturbation theory presents intrinsic
difficulties in the case of metals [35]. These difficulties are not present in the optical
coherent case since there is no Fermi sea of electrons. The presence of a Fermi sea
simultaneously with the laser would produce light-induced Kondo effects [51], which
we do not consider here.

The chapter is organized as follows: In section 2.1 we recall the expression for the
effective Hamiltonian of two localized spins in the presence of a light field, relating
it to the spin-dependent T matrix operator of a two-center scattering problem. We
study first in Sec. 2.2 the scattering of one exciton with one center. By generalizing a
result from scattering theory [36] to the spin dependent case, we show in section 2.3
how the T matrix operator for the exciton scattering on two centers can be expressed
in terms of the T operator for the one center scattering. We also study in this section
the effects of the polarization of the light and we show that a circularly polarized field
will induce an additional term representing a magnetic field. The theory is applied in
section 2.4 to two systems: shallow donors, and deep rare earth magnetic impurities.
We discuss implications for quantum computing implementations and for the optical

control of macroscopic magnetic properties in Chapter 4, Sec.4.3.

2.1 The effective Hamiltonian for localized
spins coupled by the light

A scheme showing the realization of a light induced spin-coupling in the case of two

shallow donors is given in Figure 2.1. We are not interested in calculating the optical

26



properties of the whole system, but we want to consider the effect of a coherent
field on the dynamics of the two initially non-interacting localized spins s4 and s5.
The light creates virtual/real excitons in the semiconductor host and couples the
localized spins. We want to study the behavior of the two localized spins in the
coherent optical regime. This implies that the laser is always off resonance with respect
to the free exciton band to avoid strong energy absorption. We therefore consider
only single exciton processes in the presence of a monochromatic laser field. The
system of two localized spins coupled to one itinerant exciton is described by the
sum of two Hamiltonian terms. Hy describes a free exciton of mass m with dispersion

€ = €9+ h2k2/2m,

He — h2 1\.2 E,T R
0 = o+ Z 2m ko bk"
ko

H = ‘1/ S Tl s + o—i(k'=k)R (B Sula) blfa',abkuﬂ (2.1)
kklaa 3

and H describes the spin dynamics, where the two localized spins 1/2 are described
by s and sB. V is the volume, and s is the electronic spin of the itinerant exciton.
bl_a ;3 Creates an exciton with center of mass momentum k, electron spin a, and hole
spin B. R is the separation between the two impurities. J; ;s is the exciton-spin ex-
change interaction. The strength and the sign of this term depend strongly on the
nature of the localized spin. The sign, for instance, is determined by the competi-
tion between the ferromagnetic potential exchange and the anti-ferromagnetic kinetic
exchange which is due to the hybridization of the itinerant exciton state with the
localized state [37]. We will keep for the moment a general approach independent of
the nature of the J; ;s , and we will discuss two specific examples in section 2.4. A
spin-independent term corresponding to a direct Coulomb interaction between the
exciton and the impurity is also present. This term is small for shallow impurities,
where kinetic exchange effects dominate, but becomes important for deep impurities.

We will include this term in the case of rare earth impurities discussed in Sec. 2.4.2,
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and we disregard it in the general discussion since it only introduces spin-independent
energy shifts. We assume that the 1s excitons dominate the light induced effect, as
discussed in Ref. [6]. Moreover, we focus on systems where the localized states interact
only with the electron in the exciton: the full Hamiltonian in Eq. (2.1) is diagonal in
the hole spin index 8. This is a good approximation for electrons in neutral donors,
since it is equivalent to neglecting the electron-hole exchange interaction which in
most semiconductors is much smaller than the electron-electron exchange. Concern-
ing the second example we will consider, i.e. the case of the Yb3t ions in III-V, it
is known that these ions act as strong isoelectronic traps for electrons and the s-f
exchange in the conduction band dominates.

The interaction of the excitons with an external time dependent optical field pro-
vides the mechanism for the control of the two localized spins and is described by the

Hamiltonian

H; = \/VZ pgeiwllt¢lsbk=0,0+ﬂ=a + h.c. , (2.2)
o

where py! is the Rabi energy of the interband optical transition and hwj is the
energy of the laser, o is the polarization of the light. We have used the rotating wave
approximation in Eq. (2.2). ¢1, is the envelope function of the electron hole pair
taken at p = re — rp = 0. In the case of a cw laser field, the time dependence can be
eliminated by moving to the rotating frame with frequency wy, thus replacing ¢; by
€ — hwy in Hy.

We are deriving an effective Hamiltonian for the two localized spins in the presence

of the laser field, as shown in Chapter 1.

Hoppax =V 190 21615 12 Grggr00(wL) (2.3)
(o4

where
1

!
(GO(wp))~t - Hy xoo) (24)

G/\OO,/\,OG(WL) = (/\OO'I

In Chapter 1 the Rabi energy is designated by .
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is the Green'’s function for the system composed by the exciton and two spins, with

LIY,
0 _ kk
G'(w) = — STe N (2.5)
hwp — (€9 + T57) +1n

Since we are dealing with only single-exciton processes, the Lippman-Schwinger equa-
tion for G can be rewritten in terms of an equation for the T-matrix defined by the
relation G = Gy + GoTG(. We solve the problem in two steps: (i) the TA and TB op-
erators representing the scattering of the exciton with only one impurity (identified
by the index A or B) is solved. (ii) The T-matrix for the exciton interacting with two

impurities is explicitly rewritten in terms of T4 and TB using (36]

1

A 0~+B
T=— " TAN+G'T®|+(A=18 2.6
1 - TAGITBGY [ I+ ) (2:6)

where (A = B) stands for repeating the previous term with interchange of superscripts
A and B. Eq. (2.6) takes into account exactly all the multiple scattering processes
between the exciton and the two localized spins. We will focus in the next section on
the interaction of the exciton with a single localized spin. Multiple scattering effects

in the two spins case are addressed in section 2.3.

2.2 Exciton - single impurity scattering

This section focuses on the solution of the T-matrix equation for one scattering center
(named A). Due to the short range nature of the exchange interaction, the exchange
integral J; ;s in Hj is often reduced to a constant, corresponding to a delta-like
interaction in space. Here we consider a more realistic form of the interaction using
the separable potential approximation (38, 39] where J;. ;s = Jugvps, with v, being a
dimensionless form factor that depends only on k = |k . v; describes the effect of
the finite size of the non-local exchange interaction (see Appendix E). The separable

form of J; ;» will allow us to obtain analytical expressions for the T-matrix, and
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provide a flexible theoretical framework with parameters that can be taken from the
experiments. On the other hand, this potential can support at most one s-like bound
state. The integral equation for the T-matrix, T = H; + H;GoT, can then be written
explicitly as

J J
Ti.qk/aal = V'Uk'UkISA * SO(X, + ‘_/‘ Z kakIIsA . SQGI,G?’”T’:}’L'/C(”OI (27)
kllall

We can write the T-matrix as a sum of a scalar and vector part

VL VL
T ol = — Todoqr + Ty s ] (2.8)
and, using the identity
A
A 22 i _8T-s
(s7-s8)° = 16 3 (2.9)
we rewrite Eq. (2.7) in the form of two coupled equations
T, = J+JFy(Ty-11/2) (2.10a)
T, = I—SGJFOTl (2.10b)
where
1
Fow) = 3 D vinGiu (2.11)

kll
The reduction of the integral equation to two algebraic equations is a consequence of

the form of the interaction and the fact that the all spins follow SU(2) algebra2. The

?In the general case of spin s > 1/2 the integral equation requires the inclusion of other powers
of the spin operators.
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two coupled equations in Eq. (2.10) are solved and give

T, = 3 TFo (2.12a)

16 2
161, JFa _ 30U
T = J (2.12b)

14 2Fa 3(.1;:1222

This analytical solution allows us to investigate the strong coupling regime in which

the quantity JFy is not small. The most interesting feature of the strong coupling
regime is the formation of bound states of the exciton with the impurities, identified by
the poles in the T-matrix. Varying the frequency of the laser wy,, which will modify the
Fy. we can scan the spectrum to obtain the energies of those bound states. We remark
that under the condition w; < ¢y, and assuming that the potential v(k) is an analytic
function of k. no singularities or branch cuts exist for the function Fy. Therefore, the
only source of poles is given by the zeros of the function 1+ 1;-0 - Q(Jl%u)j, appearing

in 77 and Tjy. Considering separately the singlet and triplet channels we find

_ , 3/4J ,
TS = (S|T|S) = ————1+3//4JF0 (2.13a)
. J/4
T = (1T |T) = m . (2.13b)

Where |S) =1/v2(|11) — |I1)) and |T) is any of the triplet states. In the singlet and
triplet channels only one of the two poles in Eq. (2.12) is present. Due to the fact that
Fy(wp) is negative for all allowed values of wy, we also remark that, as expected, the
exciton binds in a singlet spin state if J > 0 (antiferromagnetic coupling), while the

bound state is a triplet if the exciton-electron exchange is ferromagnetic (i.e. J < 0).

2.3 Exciton - two impurities scattering

Starting from the results obtained in the previous sections, we construct in this section

the solution for the exciton-two impurities T-matrix and the corresponding H,, if for
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the localized spins. Eq. (2.6) can be expanded in terms of T operators as
T =74 + TAGOTB 4+ TAGOTBGOTA + ... (2.14)

The matrix for T8 can be obtained from a simple phase shift: if T,:}c, is the T-matrix
for a scattering center with potential V(r) then e‘i(k"k)'RTﬁJ is the corresponding
one for a potential V(r—R), i.e. TkB;c ; [36]. We can take the matrix elements of Eq. (2.14)
in the k representation. To illustrate how this series can be summed let us consider

as an example the third term in Eq. (2.14)

1 (M _ Ty
(k| TAGOTBGOTA | 1y = 73 3 oot AGY e ET KD Ry
kll.’klll
xTBGO,, v mvp 1A (2.15)

where we have defined

TAB) =15+ 1ys4B) s (2.16)

Reordering factors and defining the function

1 1.
Frlw) = S eFRlah (2.17)
k
this term takes the form,
SO p2 ()T ATBTA (2.18)

Following the same procedure, the full series can be summed to

UL Uk//V

R

Thp =

The T-matrix is now expressed as an operator in a 8-dimensional space generated
by three spins 1/2: one electron in the exciton and two localized electron states. By

direct inversion and products of 8 by 8 matrices, Eq. (2.19) can be rewritten in terms
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of a combination of spin products (see Appendix B), and using G = Gy + GoTG we

obtain the spin dependent effective Hamiltonian
Hcff=Beff-(SA+sB)+JeffsA-sB . (2.20)

Byt represents an effective magnetic field acting on both spins and J ¢ ¢ is an effective
isotropic Heisenberg exchange. The effective magnetic field and exchange constant can

be written as

oo+l ~lpa=2 16153 I(-JFR) 5
Bjf = > B R z (2.21)
5 (1= JF{)1 - JFE(3JFf - 2)]2
and
[ [ 615203 J2FR/2(1 - JFR) 2.22)
eff 52 (1- JFR)1 - JFE(3JFg = 2)|[1 - JFR (3JFf - 2)]
where we have defined
1 13
Flop) = g7 (1% ek By 2al . (2.23)
k

% identifies the direction of propagation of the light, § = ¢y — hwy, is the optical
detuning, and gp,+ correspond to the contributions to the Rabi energy from the two
circularly polarized components of the light. From Eq. (2.19) a spin-independent term
is also derived which is not shown in Eq. (2.20) since it is irrelevant for our purposes.
If we want to include the effect of the degenerate light hole band the two expressions
in Egs. (2.21) and (2.22) should be multiplied by 2/3 and 4/3, respectively. By keeping
the lowest order in J in Egs. (2.21) and (2.22) we obtain

_ lpo+? = lpo-|

2 R
Begy 6152305 +0(J%) | (2.24)

e 62
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and

2 2
+ lpg—
Jes = 9o+ 62|pa | (615|202 T2 FR/2 + O(J3) (2.25)

which recovers the Optical RKKY result of Ref. [6]. The magnetic field induced by
virtual excitons has recently been analyzed using a more fundamental approach in
the case of a single impurity by Combescot and Betbeder-Matibet in Ref. [40]. In this

reference the spin independent term that provides a correction to the optical Stark

shift is also discussed.

2.4 'The spin - spin coupling

In this section we apply the results obtained above to (i) excitons mediating the
interaction between two electronic spins localized in shallow donors (e.g. GaAs:Si)
and (ii) excitons mediating the interaction between two magnetic ions with spin 1/2
(two rare earth ion Yb3* in InP). Yb in InP is one of the most investigated rare earth
doped III-V material. In principle Yb3* in GaAs could be used but it is technically
more challenging to obtain samples where only substitutional Yb is present. [41] We
will focus on the effect of the binding of excitons on the spin-spin coupling. The
parameters J and the range of the potential vy can be fixed in such a way that the
single-spin exciton T-matrix reproduces the binding energy and the spin configuration

of the bound exciton obtained from the experiment.

2.4.1 Shallow donors

For a scheme of the system we can refer again to Figure 2.1. For excitons interacting
with a shallow neutral donor the effective mass approximation can be used. The prob-
lem of excitons bound to neutral donors and acceptors has been heavily investigated
both experimentally and theoretically [42]. In the case of GaAs it is known that the

exciton binds to a neutral donor with a binding energy of about 1 meV. It is also
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clear from the magnetic field dependence of the bound exciton resonance that the
two electrons are paired in a singlet around the donor ion and the hole is bound by
Coulomb interaction. The picture is very similar to the one of a positive charge bound
to an H™ ion. As in the H™ ion case, the dominant term responsible for the binding of
the two electrons is a kinetic exchange term and we can therefore disregard the effect
of a spin independent term in the Hamiltonian. The range of the kinetic exchange is
determined by the hybridization between the localized electron state in the neutral
donor and the electron state in the free exciton. We therefore assume that the v is

of the form
1

2 _
v =

where the parameter A determines the range of the potential. In the following we will
use the excitonic atomic units, see Appendix C. We can calculate the functions F

and Fg in Eq. (2.11) and Eq. (2.17) as

1 1

oo 2.27

0 ArA (AVov +v) (2.27)
~R/A _ ,~RVTv

Fp = -—°¢ € , (2.28)

47R A25 — v

where v = u/m is the reduced total mass ratio of the excitonic system which is about

1/5 in GaAs taking me = 0.08 and my, = 0.17. Notice that Fp can be rewritten as

Fr = By Ave = e RV (2.29)
k=70 R(AVov — v) '

and has no poles for positive detuning é; for R > A, Fr has a Yukawa form with
a detuning-related decay length a’;\/v/5 as found in Ref. [6], while at short R the
finite range of the potential regularizes the 1/R divergence. In v; we take A =0.25.
Using the fact that the exciton binds to the donor only in the singlet channel, we
can determine the value of J in the T5 in Eq. (2.13a) in such a way to have a pole

at the experimental binding energy. The J is positive, as expected from the fact that



the kinetic exchange is antiferromagnetic, and we take its value to be J =1 I-Zy"‘(a}‘s,)3
which gives a binding energy for the singlet of 0.23 Ry*, in accordance with the
experimental value of 1 meV. The triplet is unbound.

We plot in Figure 2.2 the coupling constant J,¢s obtained from Eq. (2.22) as
a function of the energy of the laser measured from the bottom of the free exciton
band, § = ¢y — hw; . A small imaginary contribution to the energy, n = 0.0001 Ry*, has
been added in all the plots. The Rabi energy is p,4+ =0.05 meV. The 6— component
of the Rabi energy is zero. The separation between the two neutral donors R is 2
ap- In the region of large detuning we have a ferromagnetic coupling in agreement
with the results obtained in the ORKKY limit. When we approach the energy cor-
responding to the binding of the exciton to the impurity, at § = 0.23, we observe
that the interaction is strongly enhanced and there is a region with an antiferromag-
netic (AF) coupling. Multiple scattering between the two impurities results in the
formation of bonding-antibonding states for the exciton. When the light has a fre-
quency in the bonding-antibonding gap the effective interaction changes sign. This is
analogous to the antiferromagnetic coupling generated by superexchange in magnetic
materials. [37] When the laser is tuned above the resonances we recover again the fer-
romagnetic coupling. In the same plot we also show the effective coupling that would
result by keeping the lowest order in J (ORKKY). In this case no resonances due to
the binding of the excitons are present and, in order to obtain a sizeable coupling,
the laser has to be tuned close the bottom of the excitonic band. In Figure 2.3 we
show a contour plot of the effective spin-spin coupling as a function of the detuning
and impurity separation. Dark gray corresponds to either strong negative or strong
positive coupling depending on the region, the light gray tone in the upper-right cor-
ner corresponds to zero. At large R the coupling is mostly ferromagnetic and there is
only a small region close to the exciton binding energy where the coupling can be AF.
When the distance between the two impurities decreases, the bonding-antibonding

gap and the region corresponding to the antiferromagnetic coupling is wider. The
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Figure 2.2: Coupling constant J, ff between the two electronic spins localized in a
shallow neutral donor embedded in GaAs as a function of the laser energy, measured
from the bottom of the free exciton band. The intensity of the laser corresponds to a
Rabi energy of pg4+ = 0.05 meV. The dashed line gives the result predicted with the
sanie parameters using second order perturbation theory in the coupling constant J.
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Figure 2.3: J, s as a function of the donors separation R and detuning 4 . The contour
plot identifies the regions where the coupling is Ferromagnetic (FM) or antiferromag-
netic (AF). The thick dashed lines indicate a change of sign of Jegs- The intensity
of the laser corresponds to a Rabi energy of @ = 0.1 meV. The intensity of gray
represents the value of J, ff

thick dashed line indicates a change of sign of J,ss. Notice also the different decay
of the interaction as a function of R for different values of the detuning. At § =0.4
the maximum strength is at R = 0.8 and decays quickly within a quarter of aj; to the
minimum value in the plot. At § =0.1 the same minimum is reached within a much
larger interval of about 2 a7;. This is consistent with the fact that at a small detuning

there is a contribution from the free exciton band which can give a longer range for

the effective interaction.



2.4.2 Rare earth impurities

The magnetic properties of the Yb3+ ion in III-V [43] arise from its partially filled
4f shell, possessing 13 electrons. In III-V materials, for a substitutional impurity, the
crystal fields split the ground manifold of the ion into two doublets (spin=%), I'g and
I'7, and a quadruplet (spin=%), I's. The lowest lying state is the Kramers doublet
I', which behaves like a spin % with an effective isotropic g = 24/7. [44] Yb in InP
replaces Indium and acts as an isoelectronic trap. From electrical [45] and optical [46]
measurements it is known that the exciton binds to this isoelectronic impurity with
a binding energy of 30 meV. The binding is due to a short range potential that
arises from the difference in the core pseudopotential between the impurity and the
host ion it replaces. [47] It is reasonable to assume that this short range potential
is spin-independent and we take it into account by adding to the exciton-impurity
Hamiltonian of Eq. (2.1) the term

Hy = % S AL+ e"'(k'—k)’*)bl_,mjbkaﬂ : (2.30)

kK

We use the separable potential approximation also for the spin-independent short-
range potential and we parametrize it in the form Ap ;. = Avgvy, ie. it has the
same k dependence of Ji k- A more general analytical result can be obtained using
a separable form for A+ with different coefficients, but we expect the range of the
s-f exchange and that of the impurity potential to be very similar. The value of A
is determined by imposing that the exciton-single impurity T-matrix has a pole for
both singlet and triplet channels at 30 meV. Following the same procedure used in

Sec. 2.2 we obtain for the T operators in the singlet and triplet channels

S -3/4J + A 5
T 1+3/4JFy - AR, (2.31a)
T - J/4+A (2.31b)

1-1/4JFy - AFy
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The expressions for the J, ¢ and B, ;s modified by the presence of A can be obtained
by plugging the Egs. (2.31) in the general expressions of Egs. (B.5) in Appendix B.
The quantity J is the s-f exchange interaction between the impurity and the electron
in the exciton. In typical rare earth ferromagnetic semiconductors the s-f exchange is
ferromagnetic and is of the order of few eV A3 [48], comparable to the s-d exchange
in Mn based diluted magnetic semiconductors. [49] We are using J = -10~4 in our
units which corresponds to a conservative estimate of 0.7 eV A3 in InP. In InP the
value of the Ry* is about the same as that of GaAs (5 meV), while the Bohr radius
is about 120 A. For A in v we take A = 0.01 which is of the order of the ionic radius
of Yb3+.

We show in Figure 2.4 the contour plot of J, ffasa function of the laser detuning
6 = ¢g — hwy, and of the separation between the impurities R. At large distances we
observe two resonances related to the binding of the exciton in the singlet and triplet
channels. Figure 2.5 (a) shows in detail the J, ¢ for a distance R = 1 a}. The two
peaks in Figure 2.5 (a) correspond to the exciton bound to the impurity in the triplet
and singlet channel. The peak at larger detuning corresponds to the triplet since the
s-f exchange is ferromagnetic. For shorter distances we see from Figure 2.4 that each
of the two peaks starts to split. The singlet (at smaller detuning) follows a behavior
similar to the one of the shallow donors described above: the bonding and antibondig
states identify a region where the coupling becomes antiferromagnetic. The triplet
state splits in many different peaks as can be seen from Figure 2.5 (b). The sign of
the interaction can change many times as a function of the detuning in this short
distance region. This is indicated by the sign of J,¢¢ plotted in the lower part of
Figure 2.5 (b). Overall the antiferromagnetic coupling dominates at short distances

while the interaction is ferromagnetic at large R.
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Figure 2.4: Coupling constant J, 1 between two magnetic Yb3+ localized in InP as a
function of the laser detuning é = ¢ — hwy, and separation between the ions. The thick
dashed lines indicate Jefy=0 and a change form ferromagnetic to antiferromagnetic
coupling. The intensity of the laser corresponds to a Rabi energy of © = 0.1 meV.
The intensity of gray represents the value of Jy .
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Figure 2.5: Coupling constant J, if between two Ybt3 jons in InP as a function of
the detuning 6. (a) Large distance. The coupling is ferromagnetic and the resonances
in the interaction are close to the energy of the exciton bound to the Yb. (b) Short
distance. The triplet channel splits in many different peaks producing many changes
of the spin-spin coupling sign. The lower curve shows the sign of the coupling constant.
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2.5 Discussion

In conclusion, we have studied the problem of two 1/2 spins localized by impurities in
semiconductor in the presence of an intense light field. The light induces a frequency
dependent spin-spin coupling and a magnetic field that can be controlled by the
polarization of the light. The effects are enhanced by the presence of impurity bound
excitons which may split into bonding and antibonding states in the case of two
impurities. The sign of the spin-spin coupling is generally ferromagnetic, but it can
switch to antiferromagnetic when the laser is tuned to the bonding-antibondig gap.
We have developed a flexible theoretical approach based on scattering theory where
the parameters from the experiment can be used to estimate the size of the effect. We
have discussed explicitly the case of two neutral donors in GaAs and two rare earth

magnetic ions (Yb3t) in InP.
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Chapter 3

Indirect interaction in

micro-cavities

Planar micro-cavities are semiconductor devices that confine the electromagnetic field
by means of two parallel semiconductor mirrors. When a quantum well is placed in-
side a micro-cavity the optical excitations (excitons) in the well couple to the electro-
magnetic modes of the dielectric structure. In the so-called strong-coupling regime,
excitons and cavity photons give rise to new states, ezciton polaritons [5], which
appear in two branches separated by a vacuum Rabi splitting. Due to their hybrid
light-matter nature, cavity polaritons have an effective mass that can be four to five
orders of magnitude smaller than the exciton mass, and this is known to affect their
interaction with phonons {52] and with interface disorder [53,54]. In this chapter, we
show that the small polariton mass also has a strong effect on the optically induced
spin coupling between localized spins.

The physical system that we consider is a set of shallow donors embedded in a
Quantum Well (QW) enclosed in a planar micro-cavity. A possible candidate is Si in
a GaAs QW. However, the same idea can be applied to other spin-based implementa-
tions, e.g. charged quantum dots. Under strong coupling conditions, optically active

excitons and cavity photons combine into polaritons, while dark excitons remain un-
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affected. If the system is excited by an extra-cavity cw light source with a frequency
below the polariton resonance, virtual polaritons appear in the system. These vir-
tual particles mediate an indirect interaction between pairs of impurities. We seek to
understand the indirect interaction of two spins when polaritons and dark excitons
mediate the interaction, and the consequence this has on the optically-induced para-
magnetic to ferromagnetic transition of an array of such impurities. The form of the
effective Hamiltonian that contains only spin operators for the impurities is derived
using perturbation theory to second order, similar to the optical indirect interaction
ORKKY [6,7]. For the sake of clarity, when solving for numerical data we will assume

our system consists of Si donors in GaAs micro-cavity QW.

3.1 Polaritons

A simplified picture of a planar micro-cavity is that of a Fabry-Pérot interferometer,
where light incident normal to the surface only propagates for discrete frequencies.
If a semiconductor QW is placed within the mirrors!, excitons are generated by
the interaction with light (see Figure 3.1). If the combined decay rates for cavity
photons and excitons is smaller than the strength of the interaction? between these
two particles a strong coupling develops. In this regime, the stationary states of the
system are no longer the excitons and/or photons, but an admixture of them, the
polaritons. An intuitive picture of the process is that of a photon that creates an
exciton, which in turn by coupling to the cavity mode, produces a photon, and the
process continues back and forth. The study of polaritons is done in the context of

either classical or quantum electrodynamics. [5,54,55,57] We employ the latter.

Instcad of metallic mirrors, a series of semiconductor layers, the Distributed Bragg reflectors, arc
used.

2This is strictly truc when the encrgy of the exciton equals that of the cavity photons at k = 0,
that is in resonance condition.
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Figure 3.1: Micro-cavity with DBR mirrors (not to scale). Typical values for the size
of the system are: width of each DBR period )\/4, cavity width A/2, QW width 1004,
with A the wavelength of the light.

The Hamiltonian describing cavity photons and excitons is

H = h Z wx k b;bk + hzwph,k c{,ck + ﬁZwX’k bltbk
dark o.a.

—ithk CLbk +hec., (3.1)

where b/b! and c/ct are operators for excitons and cavity photons®; o.a. and dark

stand for optical active and dark excitons. Photons only couple to o.a. states. In

3Following thc quasimode approximation, we treat the clectromagnetic ficld inside (cavity pho-
tons) and outside (extra-cavity photons) the micro-cavity as different entitics. [54] This in addition
to the fact that we deal with the off-resonance case, allows us to apply perturbation theory to the
Hamiltonian that describes the extra-cavity or laser field Hy.
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Figure 3.2: Polariton dispersion law for a QW (solid line) and dark exciton band
(dashed line), for resonant conditions A = 0.

wL-h-

Equation 3.1

hk?
WXk = ot
C
Wphk = ;l-\/k2+q2

hgp = L7V 2deyey(0)y /2mhawp .

where k is the in-plane momentum, q is the momentum in the growth direction
(2-axis), c¢/n is the speed of light in the medium of index of refraction n, and L
is the quantization length of the electromagnetic field in the growth direction.4 A
complete quantum mechanical treatment is possible using the Hopfield transformation
that brings the photon and exciton operators to polariton ones, and diagonalizes the
Hamiltonian. These polariton operators p;, i = 1,2 represent the so-called upper and

lower polariton branches respectively, as shown in figure 3.2. The transformation reads

Pik = uikbp+vigéy, (3.2)

‘In Chapter 1 the quantity €, is an cnergy, in contrast here it is taken as a frequency.
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| [A<o][A>0]

Lower: Qo | wy Wph
u9 1 0
() 0 —1

Upper: @ | wyp wy
uy 0 1
"1 i 0

Table 3.1: Limits of the energy dispersion law and Hopfield’s coefficients for coupling
g— 0, where A =wy( — Wpho = €0 — %(1 (k=0).

where,

v = Qi k — Wphk
ik 29,  — Wphk — WXk
Qo —w
s = i ik Xk (3.3)
28 — Wphk ~ WXk
1 1 ‘
Qi = gluxk+twpnr) + 5\/(ka — wpnk)? + 492 . (3.4)

In the last equations, — and + correspond to lower (i = 2) and upper (i = 1) branches

respectively. The Hamiltonian 3.1 is thus replaced by

H = By wxabloe+hS Quplpik - (3.5)
dark k.1

Table 3.1 shows that in limit ¢ — 0 the excitonic or photonic physics is recovered

on one or the other branch depending on the sign of exciton-cavity detuning A =

wxo = wWpho = €0 — 59 (k = 0).

3.2 The Hamiltonian of the system

As starting point, we use the total Hamiltonian for the system, as described in Chap-
ter 1, and the cavity Hamiltonian 3.5. In addition, the interaction between holes and
localized spins will be included, since it is important in the case of deep impurities.

The light-exciton interaction H; and the localized spin-exciton interaction Hy must
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be rewritten in terms of the new polariton operators. The calculation can be simplified
by restricting the analysis to the lower polariton branch. In a digression at the end of
Section 3.3, with more tools at hand, we show why this approximation is meaningful.

An important feature that we would like to capture is the difference between the
indirect interaction mediated by excitons and the one mediated by polaritons. For this
reason we want to be able to take the limit g — 0 to recover the only-exciton scenario.
From now on, we will restrict to the lower polariton branch, with the requirement
A < 0, which ensures the correct limit for g — 0 — the branch index i will be dropped.
At low intensity and high detuning, only processes involving one virtual particle are
present. We further restrict the discussion to circular polarization o4. Hereafter, we
refer to the particle type, either polariton or dark exciton, as the channel. Therefore,
the system consists of two localized spins plus one virtual excitation, either polariton
or dark exciton.

The extra-cavity light generates virtual optical active excitons and thus polaritons.
The interaction H connects different channels, since a flip of the electronic spin will
cause (o.a. & dark). The terms Hj and Hj are obtained by inverting the Hopfield
coefficients {u,v}: by = ri.p; (Eq. 3.2), and replacing in the 2D versions of Eq. 1.9 and
Eq. 1.17. They read

HL = h\//_l Z ngTORith(ﬁlspk:O.a_*_ﬁ:a + h.c.
a

hJ —i(K'=k)R; j j j j ‘
H; = ”a Z e Jvkvk’(HPX+HXP+HPP+HXX) , (3.6)
jkk'ad'3

where for the case of an arbitrary impurity j located at R;

H},P = r;, Tk S};P pI‘,a,pka
J - V|
Hyx = Sxx Opoka (3.7)

*
./

. T
H},X =r} s},x Py Oka

) ot
HzYP =Tk S;(p bklalpka :
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and the exciton-impurity exchange interaction is chosen separable (see Appendix E)
Ju(k)v(K’) with v(k) = [1+ (Ak)2]~1 [38]; indexes {X, P} refer to the particle type or
channel: either dark exciton or polariton. The time dependency in Hj, is eliminated by
transforming to the rotating frame at frequency wy. S contains the spin part, which as
stated before, has the interaction electron - localized state, and hole - localized state.
The former consists of an Heisenberg interaction. The latter is of the Ising form, for
the existence of transverse spin operators acting on the hole would cause its spin to

undergo transitions to states of s, = +1/2 which belong to the light hole band?®:

A A _ A
Sxx = Spp =5z (s1/2: +(53/2:)

SPX = SXPZ581(51/2++31/2_)+Zsy(sl/2+_81/2—) ’

where s and s; /2 are spin operators for the localized spin and for the electron in
the polariton/exciton respectively.® We also include a constant ¢ to account for the
difference in strength between these two contributions to Hy. [49] The interaction that
connects an initial state of polaritons with a final state of dark excitons (or vice versa)
must be one that flips the spin of the state; this is accomplished with operators s_
and s4. No spin flip occurs for the case of the interaction that conserves the particle
type (either polariton or dark exciton)?.

The new physics we would like to describe is indeed evident already in second
order in J, the coupling between localized states and excitons®; thus, we restrict to
this order to keep the mathematical treatment simple and easy to grasp. Again, an

effective Hamiltonian for the interaction between two localized states will be derived

5We remind that the quantum confinement splits the heavy-hole and light-hole bands, and thus,
transitions to the light-hole arc suppressed. In other words, quantum confinement [36] forces the
hole to lie in the z-direction, thus contributing an Ising interaction.

Note that HY , = Hpx.

"H, as described in this chapter is the expanded version of S,/,, given in matrix form in Chapter 1,
with the addition of the hole intcraction. For cxample, Spp is cither Syp or Siz, and Sx p is cither
S)12 or Sa;.

8Notice also, that the hole can not flip between the states |S, = 3/2) and |S. = —3/2). because
this will imply the usc of three operators s3;24 /-, which is third order in J.



for the off-resonance excitation of polaritons.

3.3 The effective Hamiltonian

Using the formalism of effective Hamiltonian described in Section 1.3, modifying
Eq. 3.1 and Eq. 3.6 according to a rotating frame with frequency w; and defining the

Green’s function we write

Hopr = KAl lool*lo15° 0ol Glwr)lpo) »

where pg is a polariton with an in-plane wavevector & = 0 generated with circular
polarization o+ such that (a + 8) = o+.
The problem is better analyzed if the state space S of one quasi-particle (polariton

or dark-exciton) is resolved into subspaces that are invariant under the action of GO:

S‘IX : {lk, 0,0,0)}

S1p : {l0,k,0,a)},

leaving the bare Green’s function G° completely diagonal, depending only on channel

and wavevector. The bare polariton/dark exciton Green'’s function reads

)
(k,0,0,0[ G |k',0,a’,0) = K%’ 1

L) 1
% = (0,k0,0/G%l0,k',0,a") = Kk ad
b h wL_wX,k

0
Gpk

Ghxr = (0.k0,0/Gk’,0,a’,0) =0

Gkpr = (k.0,0,00G%(0,k",0,a") =0.

However, the Green's function G depends on wavevector, spin and channel, and has

non-zero off-diagonal matrix elements in all these indexes.
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The expansion of G reads
G = G°+G%H;G0 + GOH;GOH,G? + 0(J3) . (3.8)

The zero order term contributes a shift to the energy. The first order term is an
effective magnetic field. The second order term is the lowest contribution to the
indirect interaction, and contains cross terms formed out of H belonging to different
sites, as well as single site terms. Our concern is with two site scattering and so, we
focus on the cross terms. Moreover, we consider only two localized states? A and B

at positions r = 0 and r = R, respectively. In matrix representation

('py| G |Tpg)

Gp oo+ (T'pol Hf GO P HP [Tpo)Gih,
2
1 1 ' A0 i¢p B
= = (——) @
h2 (WL_Qk) ( P0|H1 G"e H[ ITpo) »
plus a term with site indexes interchanged. The phase ¢ is related to the separation
between impurities, see Eq. 3.6. We are studying the coherent stimulation of the
system, so |I'pg) = |I') ® |0,k =0,0,0+), where |I') stands for the spin degrees of

freedom of the two localized states. In matrix representation

A HA 0 i B B
HAG o gB — (Hxx Hyp Gx O &9 Hyx Hxp
o Ay & e e AB
px Hpp P px “pp

(- .

\ ~ HpyG%e®HEp + HAppGYe?HE,

where, in the final matrix, we focus only in the element that is relevant for us. ﬁfw N=
1) .

(RI/A) Xkt aal 3 e iK—k)R; vkvp H}, y Where the dependence on the other quantum

numbers is omitted for clarity. The apparent asymmetry of the result is a consequence

of analyzing the coherent process that has the same initial and final (polariton) state.

9G" does not depend in this new quantum number.



From the definition 3.7, it is clear that the element Hy x does not enter the process
because bb|p) = 0. The resulting second order term is

2
1ol G2 N R S
(I'pol G**7 [Tpg) hg (wL—Qk) x

As an example, the first term - intermediate scattering of a dark exciton — for arbitrary

initial and final states of polaritons (without projecting the spins) is

7A ~0 égB _ 0 i(k"-K)RgB
[AfxCe pr]kk, = Z Hp oG o™ IV REY g

/
(hJ)2 —ik-R E ik"-R 0
= A — Ui 'Uk/rk rk/SPXSXP A 'Uk”e GX.k” .
k”

For both terms, the intermediate scattering mediated either by a polariton or a dark

exciton gives rise, respectively, to the series

k”
k
1 1%
FRP = Z sz,,lTk/ﬂ?elk RGOPk” , (310)
K"

both depending on R and wj,, as well as other parameters.
A similar analysis of other terms in the expansion of G in Eq. 3.8 shows that the

expansion is in powers of JF. In the spinless case it reads

(U'po| G |Tpy) = GO{1+(GO AJ) [1+JF+(JF)2+...]},

where F is any of the functions defined in Eq. 3.10.

Our interest is in the second order term. After some algebra on Eq. 3.9, evaluating



it at k = k' = 0, and choosing the functions {r,p4,#;s} real, we obtain

2
hJ vyro?
Heff — 2< lfL’"O_g;‘f’“) (Fre S} 55 + Frp SppSpp+ A= B| |

where the only operators that appear are the ones for the spin of localized states A

and B. The spin dependent term reads

h?
SppSPp = 85D (510, + Cs3/9,)% = sfls? [j + 62 (s3/9,)% +2¢ 31/2z33/2z]

SpxSRp = %[Sﬁ(sl/2+ +81/9-) = isf}(s1/94 — $1/2-)] X
(57 (31 /24 +51/2-) = i (51 /24 — $1/2-)]

= ilﬁﬁsfvg(sun + 31/2_)2 - isfsf(sl/2+ +51/2-)(81/04 — S1/2-) -
isys7 (51724 = $1/2-)(51 /24 + $172-) =

31‘;18'3[/3(81/2+ —51/2_)2] . (311)

For the circular polarization o+ considered here, the polariton generated in the cavity
has electron spin s; = —1/2 and hole spin s, = 3/2. Projecting expressions 3.11 onto

this state we obtain

Il

h2 h2 1\2
(PO|S;';1pS£> 1Po) T (1 —-6¢+9¢ ) SAb..B =7 —9 (( - §) sf}s?
,2
(ol S-S lpo) = lsds +sifsf +i(syfsZ - sl

HY = ¢ Coly)

1
Fpp9 (c - 5) s3sB + Fpp(sfsB + sis! )] (3.12)

2
with C; = (hugJ p+ ¢15)2 and Ca(gg) = (r02/5) , with detuning § = wy — Q.10

Eq. 3.12 presents some important features. The coupling between light and matter

10We make explicit the dependence on gy of C; since this paramcter controls the transition from
the exciton to the polariton picture, and is of crucial important for this work. Likewise, we prefer to
talk about § instead of wy, because that is the parameter that makes possible to compare both cases.
cxcitons and polaritons. As a conscquence of the change in gy the bands drift and, if not corrected,
this contributes to a change in detuning 6 = w;, — Q.



breaks the degeneracy of dark and optical active excitons, making the indirect inter-
action mediated by a polariton and a dark exciton different in strength and form;
the interaction is anisotropic. In addition, the different nature of electron and hole

interactions introduces an extra source of anisotropy.

3.4 The neglect of the upper branch polaritons

The following considerations support the neglect of the upper branch polaritons.
i) Consider the transformation that links the exciton operators with the polariton
operators for both branches: by = rppg .+t py k- Figure 3.3 presents the numerical
evaluation of the coefficients as a function of wave-vector for different coupling gg.
Note that, for the sign of A chosen, the limit of the coefficients for g9 — 0 are 1 and
0 for lower and upper branches respectively. Moreover, t; is smaller than r; for all

k. i) The extra-cavity light frequency is tuned below the lower branch. To second

T« 0.01 0.03 0.05

k
0.95

0.85]

0.75

Figure 3.3: Transformation coefficients as a function of wave-vector for different cou-
pling: gy = 0.4 solid, gg = 0.08 dotted and gy = 0.03 dashed lines.

order, the probability of exciting a state is inversely proportional to the difference
between the laser energy and the state energy, power 4th. Then, it is much more
likely to excite lower than upper branch polaritons, since the detuning of the former
is much smaller than that of the latter. Therefore, the only process considered must
be one that has the same initial and final states, namely a lower branch polariton with

wavevector k = 0 and spin (a+ 8 = 0+): [['pgy4). iii) Given the last argument, we are

[$3)
[}



in a position to understand that a scattering process with spin flip and intermediate
upper branch polariton is forbidden to second order in J: We must start with an initial
state |I'pog4), if scattered with spin flip, the result is necessarily a dark state (there
is no such thing as a dark polariton), so the resulting state must belong to the dark
exciton band; given that we only consider second order in J the next scattering of this
dark state must lead inevitably to the channel that is coupled to the extra-cavity. Said
in a different way, the second scattering process must return the state to |I'pgs4). If
the second scattering led to an upper branch polariton, a third interaction would be
required to comply with our stimulated emission process; the whole scattering would
be 3rd order. We still need to rule out the scattering that has no spin flip: iv) Assume
that upper branch polaritons are included in the model. New operators Hé > that
account for the interaction between them and the other channels I (any of U, X, P)
will appear in Expression 3.7. As already explained, we know that H(jju = H(j} x =

Hg(U =0. A new term in H;GYH; will appear, of the form HPchrHUP leading to

1 .
FRU = Z Z Uz/,ltklll2€1k RG(})k/l
1%

1 2 2 ik"R__ 1
= szk”ltk”l € m H

clearly, Fp, << Fg, for all k (the actual interval of k for which the integral is
meaningful is finite and “small”; this effective cut-off restricts the integrals to k such
that there is no overlap of lower and upper polariton branches.). The reason is twofold:
ty < ri and wy, —Qy > wy, — N p. Therefore, the scattering from lower to upper branch
polaritons gives a negligible contribution to the effective Hamiltonian, and can be

eliminated.



3.5 Results

Due to the quasi-continuum character of the bands, we can replace sums by integrals in
the expressions for the functions Fg X and Fp P The former can be solved analytically

to

k dk do

1 00 eikRcos(9)

X <27r)2h/o [1+ (Ak)?]2(wp, - wa)
2

m (2RhK0—2AR\/—T2hm z Ko+ & (h—2m61A2) Kl)

= 3 , (3.13)
2m AR (h—2mdzA2)

=
|

where the K’s are modified Bessel functions. For large R, behaves as Yukawa 2D

potential:

1

m3\ 1
“\ o e—V2m 6z R
FRX = 3 2 \/ﬁ s (314)
24 /7 (1 - 2m 65 A2)
with é; = wy — wz. For Fp, we have,
1 oo 27w r2 oikRcos(6) (
F = / / k dkdg , 3.15
kp @m)2hJo Jo 14 (AK)22(w - Qp) )
for which no analytical expression can be obtained.
3.5.1 A diagrammatic representation of the interaction
The relevant diagrams associated to the effective interaction for ¢ =0
H S = ¢ Cy(g) [FRpsfs§ + Fro(sfsB + s{AsB )] (3.16)

are depicted in figure 3.4. They describe processes by which the laser excites a k =0
lower polariton that, after exchange interaction with one impurity becomes either a

dark exciton or a lower polariton with momentum k. After a second exchange in-

-~
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teraction with another impurity the quasiparticle becomes a k = 0 lower polariton
that closes the diagram. Interestingly, the spin properties of the intermediate states
are very different. If spin exchange occurs, the intermediate particle is a dark exciton
whereas spin conserving exchange yields a lower polariton as an intermediate particle.
The different dispersion of dark excitons and lower polaritons results in anisotropic
interactions with different dependence on the inter-spin separation, R. The diagram

OJS+ 0J5+
0,4 k,T 0,

N

T 4l s oV
Dark
0,0- . (),o- . exciton
0,¢ k,»L 0,~L === Polariton

TA TA TB TB

Figure 3.4: Diagrams for the dark-exciton mediated (upper) and lower polariton me-
diated (lower) interactions between local spins A and B. Zig-zag lines represent the
external laser, with 0 in-plane momentum.

with dark excitons as intermediate particles yields a transverse coupling whose inten-
sity Fp, (R) is very similar to Optical RKKY interaction [6]. The polariton mediated
coupling Fp P(R) is spin conserving or Ising. Its strength differs from ORKKY due to

the different dispersion and form factor for small momenta.

3.5.2 The enhancement of the cavity

The effective Hamiltonian Eq. 3.12 can be rewritten in a way that makes clear the
enhancement of the interaction due to the cavity.

We see in figure 3.5 that we can assign to the functions r and £p two characteristic
wave vectors kr and kg, and use kc = Mazl[kr, kq| to separate the integral in two

regions. For k > ke both integrands of Fg,, and Fg, coincide because r =1 and the



2
effective mass of the polariton, h(%zf)“l, is the same of that of the exciton. The

k < k. part represents the deviation of Fprp from Fp,. Thus, we write

kc 2w
Frp =~ Fp, +/0 dk k/o do(Ip - Ix) = Fg, +Dp, , (3.17)

where I; is the integrand of either Fg, or Fp,:

o 1 2 kR
Pk, R) (2m)2R [1+ (Ak)2]2(wp, — Qp)
) kR
Ix(k,R) = (3.18)

(27)2h (1 + (AR)?)2(wf, —wr)

where Dpy represents the scattering that has no exciton nature (only-polariton ef-
fect), while all the excitonic effects (dark-excitons plus polaritons at large k) are
gathered in Fp X Related to k. there is a crossover length R: that depends on the
detuning &, Rabi frequency e and is inversely proportional to k.. This decomposition
allows us to make clear the transition from exciton to polariton effective Hamiltoni-
ans.!1 For the value of parameters and their range of variation in Si : GaAs we have,
kq > kr. Therefore, kc is determined by k. The determination of the analytical de-
pendency of this function on the parameters (A, ¢, gg) is hindered by the complexity
of the function Q. Nevertheless, it is possible to describe qualitatively some relevant
features. The only parameter that substantially affects Q is gy, the others (A, ¢) only
produce a small effect; we point out that gy depends on the dipole moment and the
exciton relative motion wave function at k = 0, hgy = L™1/2dy¢14(0)v/27h (g — B).
Taking this into account, it is possible to get a numerical solution for kc(gg), and it
turns out to be a positive monotonic function. As k; — 0, we have Dpxy — 0, and so it
can be seen how the effective Hamiltonian tends to the one representing the problem

of excitons alone.

"1 Alternatively, a simplified analysis in terms of two regions with different masses is possible.
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Figure 3.5: k dependence of the two functions r (solid) and 2 (dashed) in the integrand
of Fprp. The cut-off k. = 0.037 was chosen at 10~2 the asymptotic value of r = 1; for
ko = 0.27 the cut-off is at 1072 the deviation of the polariton mass from the exciton
mass.

With the decomposition Eq. 3.17 the effective Hamiltonian reads

HT = ¢, Cy90) x (3.19)

2 2
1 1
{FRI [9 (C - ﬁ) sfs? + sﬁsf + sﬁs{f] + Dpz 9 (( - 5) s?szB} .

Notice that 9 (( - :1;)2 > 0, and thus, there is no change in sign no matter the value
of ¢. In addition, FRx < 0; however, for certain values of the parameters Dpy may
change sign. Therefore, the interaction may be either ferro- or anti-ferromagnetic.
Although both the first and second terms in Eq. 3.19 have contributions from the
two diagrams of Fig. 3.4, their physical interpretation is clear: the first term is the
standard optical exchange interaction and the second term represents the enhance-

ment of the optical exchange interaction due to the presence of the cavity.

3.6 Shallow donors

In what follows, the case of shallow donors is analyzed, for which the electron-hole

interaction can be neglected (¢ = 0). For the sake of clarity, a particular system (Si
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in GaAs QW) will be used to extract numerical results. The calculation can be easily
extended to other donors, and with some modifications, to the case of deep impurities
in which the hole interaction must be taken into account. The truncation of the series
of G to second order is justified by the numerical data used, where (JF) < 1 for
R > 2a};. This only imposes a limitation to the distance between impurity, that is not
relevant for our results.

The form of the effective Hamiltonian
HfT = €, Cy(g) (FRXSA B +Dpyx s;‘szB) (3.20)

makes evident the transition from a regime where excitons and photons are indepen-
Z)px / F Rx
1.75
1.25

0.75

0.25

R [ag*
10 11 12 3t el

Figure 3.6: Transition from weak to strong coupling regime. The relative weight of
only-polariton to exciton contributions is shown as a function of the separation be-
tween impurities: gg = 0.4 (triangle), go = 0.3 (pentagon), gy = 0.2 (square).

dent entities to the strong-coupling of polaritons: As the coupling is turned on (gg
increases) the value of Dpy increases, as shown in Figure 3.6 12. The analytic and
numerical values for Fg, , Fp, and Dpx are presented in Figure 3.7. The striking
feature is the existence of two distinct regions separated by the crossover distance

R¢. For R < R¢, the dominant interaction is of the isotropic Heisenberg form, while

2The calculation leading to Figures 3.6/3.7/3.8 is taken for fixed 6, achicved by adjusting the
laser frequency wy .
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it changes to an Ising like interaction for R > R.. The former is mediated by exciton-

R [um] x 107!
125 14 15 1.6 1.75

g - - 1
X LSNPSR TR
;2 ~0.02 _,f’_ oY 236 g
5 -0.03 '.fo.-'° 15.7 &=
~0.04 /¢’ 11.8

10 11 12 13 14
R [ap]

Figure 3.7: The existence of two regimes separated by the crossover length Re ~ 12 q;
(6 = —0.15Ry™*, p = 0.16Ry*) is evident from the crossing of the eflective coupling
constants J, ;¢ = C1CoDpy (triangle) and J, ¢ = C1CoF Ry (square). For complete-
ness, the plot shows the function Josr = C1C2FpR, (pentagon). The two regimes
are: isotropic Heisenberg and Ising Hamiltonians, typical for excitons and polaritons
respectively.

like particles and the second by polariton. This validates intuition: due to their small
mass, polaritons are well delocalized compared to excitons.!3 Fig. 3.8 shows that, in
the scale of few a3, the interaction decays exponentially for excitons while it is clearly
of longer range for polaritons. For sufficiently large R, both Fpy and Fp p can be fit-
ted to a Yukawa law: Jo(R) ~ R=1/2¢=R/Roa where a = P or X and Ry, is the range
of the corresponding interaction. As expected from fig. 3.8, Rgp >> Ryx. In both
cases the range of the interactions is related to the effective mass and the detuning of
the corresponding quasiparticle, Ry, 0} = /2Madq. In the polaritonic case the fitting is
consistent with §p = § and Mp equal to the lower polariton effective mass, defined as

2
the value that fits the lower polariton dispersion for small k to Q,’: ~ Q&P + 2—1"7}—). For

!13This can also be understood noticing that for large R, the integrand of the function Fg, oscillates
and the integral of it in the interval [k., 00) tends to zero, which is what we expect to get a Yukawa
potential. On the other hand, the integrand of Dpx behaves as a monotonic function for small R
and devclops only few oscillations that arc strongly damped for R close to its maximum value. so
the intcgral is almost constant in the interval [0. k.].
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Figure 3.8: Logarithmic plot of FRy (triangle) and Frp (circle), that shows the
exponential decay and non-exponential behavior respectively (§ = —0.2Ry* and p =
0.11Ry*)

the values of figure 3.8 we have Mp = 1075my), where my is the free electron mass. On
the other side, for the excitonic case it can be analytically shown that M,_x = My
and d x = d+gg, which is the detuning of the dark exciton and the laser. Therefore, the
long-range interaction of the cavity-enhanced optical exchange interaction is related

to the low effective mass of the lower polariton.

3.6.1 The critical temperature of an array of spins

As demostrated by Fernandez-Rossier et al. [58], an array of localized spins can un-
dergo a ferromagnetic phase transition induced by light. This ordering is mediated
by photo-generated excitations of the host material. In this section, the Curie or crit-
ical temperature of an array of impurities in the presence of polaritons is determined
and compared to the case where only excitons exist. We assume the array in thermal
equilibrium and use the standard mean field approximation (MFA) - See Appendix D
for an overview of the procedure.

As seen in the previous section, there is a characteristic distance between impu-
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rities Rc that separates the exciton and polariton regimes. Let us assume that the
array of impurities form a square lattice with lattice constant d, embedded in a host
lattice (e.g. GaAs) of unit cell area a and N sites per unit cell; the concentration x of
impurities is related to those quantities by d? = a/(N¥).

For d > R; (low impurity concentration) the largest term in Equation 3.20 is the
polariton Ising interaction with coupling Dpy. In this limit it is valid to neglect the

Heisenberg term and write for the critical temperature

h2 .
kTe = 70102(90) Z'Dpr(RJ) 5

J

The presence of the cavity prevents the T, to decrease rapidly, as it will happen
at this concentration in a bare semiconductor. To obtain the 7., we notice that

| d- ’D;Il dDpr/dR | < 1; thus, we can transform the sum into an integral, as
j 1 00 2 1 d 9
ZDP-T(R ) — 25 d RDp;r(R) — d—2 d RDPI(R) .

The calculation is carried out by adding and subtracting the integral in (0,d) and
using expression 3.18, for inverting in the first term the integration in R and % yields

a §(k) and thus an analytical result:

1 o0 1 0
35/0 d’RDpz(R) = Z d2R/d2k(Ip—IX)
1

- ﬁf()wdzR/d%eik'R[IP(k,O)—Ix(k,o)l
- 5 / 2k ( /0 > d2Reik'R) [p(k,0) - Ix (k,0)]

= % f d2k (k)T p(k,0) — Ix(k,0)]

2
1 11 r2 1
= —[Ip(0,0) — Ix(0,0)] = — - )
d2[ p(0.0) = Ix (0,0) d? (2m)2h (“’L -Qy wp - e)

where the integration in k is over a disc of radius kc. Due to the long range nature

of Dpx, the numerical evaluation of the integral of Dpy in (0,d) is easier than an
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integral in (0, 00). The final expression for the critical temperature is

2 2
_afr A S S S L
kT, = d2(6) [(27r)2h(6_6+90—e +/0dR’DpI(R) . (3.21)

The numerical result is shown in Figure 3.9.

T[K]
0.2

0.15

00102030405 0.6 JolRY]

Figure 3.9: Critical temperature as a function of the coupling gg for d > R.. Parame-
ters: Re >~ 12a;, § = —0.15Ry*, p = 0.16 Ry* and d = 30a};.

For d < R¢ (high impurity concentration) the leading term in the Hamiltonian
Equation 3.20 is the Heisenberg interaction with constant FRy - Therefore, any di-
rection of magnetization is equivalent, in contrast to the previous case where only
magnetization in the z-axis leads to ordering. We assume that a direction has been
singled out. The condition | d - FEI}dFRp/dR |« 1 is also satisfied, and a procedure
similar to that used for the case d > R, is used. Here, a complete analytical solution

is attainable:
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Figure 3.10: Critical temperature as a function of the coupling g for d < R.. Param-
eters: Re ~ 124, § = —0.15Ry*, p = 0.16Ry* and d = 30a%.
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Figure 3.10 shows that coupling photons to excitons actually reduces T¢, for constant

4. Notice that the increase of g leads to an increase of é;.

We can compare our approach to the one by Ferndndez-Rossier et. al. [58] for the
critical temperature mediated by excitons, noting that both models are derived in
quite a different way. In ref. [58], the critical temperature reads

|v15(0)[202

kgTe « (Je — Jp)2 cprn i

(3.23)

where J; is the coupling between electrons or holes with the localized Mn whose
concentration is cpy,; 4 is the detuning; Q is the Rabi energy; and v is the exciton

wave function for relative motion. Comparing Eq. 3.23 with Eq. 3.21 and Eq. 3.22 we
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observe a complete analogy.

In conclusion, we have shown that the existence of the crossover length R, intro-
duces a strong dependence of the critical temperature on the impurity concentration.
In addition, the direction of preferred magnetization changes from isotropic in-plane
to an easy-axis in the z-direction.

If the case of deep impurities were treated, another source of anisotropy would be

found, arising from the Ising interaction that holes introduce.
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Chapter 4

Applications

The preceding chapters presented our theoretical formalism together with the study
of two particular systems: excitons in bulk and polaritons in micro-cavities. The goal
was to gain a better understanding of the physics of indirect interaction. Nevertheless,
the technological implications of our findings has not yet been discussed. This is the
subject of the current chapter. As anticipated in the Introduction we are particularly
interested in applications to quantum information; in Section 4.1 we give a very short
introduction of quantum computing (QC). In Section 4.2 we undertake the study of
a system where the indirect interaction is controlled with a light pulse that creates
excitons in a quantum dot. We demonstrate that it is possible to prepare an arbitrary
two-qubit state of the localized impurities near the QD. This is the building block
of QC algorithms. Furthermore, we show that the system is robust with respect to
errors. Section 4.3 and Section 4.4 give an account of the applications that may result
from our findings in the study of excitons in bulk semiconductor (Chapter 2) and

polaritons in micro-cavities (Chapter 3), respectively.
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4.1 Quantum computing

Quantum information brings together the main fields of physics, computer science,
and mathematics. [60] It encompasses quantum cryptography, quantum teleporta-
tion, and quantum computing (QC); the latter being possibly the most promising for
applications, and at the same time the most difficult to implement. As its name sug-
gests, quantum information relies on some peculiar features of quantum mechanics.
The most important one became clear after the EPR paradox: the entanglement. In
QC, the use of operations using entanglement and interference can lead to algorithms
that outperform by far those of classical computers (CC). So far, the number of al-
gorithms of this kind found is rather small. In spite of this, it shows that some hard
problems (computational complexity) for CC are tractable with a QC, for example
the factorization problem.

A quantum computer should include the following: i) qubits which are the logical
units for storing and performing operations; qubits are realized using two level sys-
tems, such as nuclear or electronic spin 1/2, atomic levels, etc. The two possible states
are designated by |0), |1). ii) A procedure to prepare the set of qubits to a given initial
state, e.g. |0000....). iz7) Control on the dynamics, using unitary transformations, of
both individual and groups of qubits. This control works as logical operations or gates
that are part of algorithms. iv) A procedure to measure the state of a set of qubits
after the set of operations — reading the output. It can be shown that only four gates
are required to construct any possible operation; this set of universal gates consists of

three one-qubit and one two-qubit operations. A possible set of universal operations
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are the Hadamard, oz, R;(w/4) and CNOT. These are
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We are concerned with the physical realization of two-qubit operations in semi-
conductors. It is instructive to see how a CNOT gate can be implemented [59]:

b
g )Ufza) (a)(ﬂ-/2), where the super in-

cNOT = B (=n/2) RO (=/2) R\ (= /2)eim /40
deces a, b stand for two distinct qubit. Therefore, we see that besides rotations of single
qubits, an operation involving two qubits is necessary. This operation is governed by
an Ising interaction. It is worth noting that there are other schemes that make use of
the Heisenberg interaction between two spins to realize two-qubit operations. This is
the connection between the previous chapters and QC.

The prescription given above does not acknowledge the existence of decoher-
ence, which affects any real system. Decoherence causes the system to evolve non-
unitarily !, away from the evolution of the desired operation. In QC, the errors in-
troduced by decoherence destroy the operations. Fortunately, error correction codes
(ECC) has been developed, much alike those in CC. They allow to reconstruct the
state of the system in each step of the operation, making feasible the realization

of QC. Therefore, any realistic scheme should take into account the errors and the

possibility of correcting them via ECC. We deal with this issue in Section 4.2.

Decoherence can be seen as the enviromment performing measurements on the system. Measure-
ments project the state of the system, and are represented by operators of the form |a){a|, which
arc not unitary.
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4.2 Entanglement and errors in the control
of spins by optical coupling

Impurity spins embedded in semiconductors are currently under investigation for
quantum computing implementations. Recently, optical techniques have been pro-
posed to control the spin-spin coupling and realize two-qubit quantum gates. [6,7,
61-65] The optical method suggests the possibility of an ultrafast control of the
qubits. The flexibility in the control that can be obtained by pulse shaping [66] and
the absence of noisy contacts represent additional advantages. On the experimental
side, ensemble optical measurements have demonstrated the production of spin en-
tanglement for impurities embedded in a semiconductor host. [67] More recently, the
measurement of the quantum state of a single impurity spin obtained by coupling
it to a single exciton in a QD has been experimentally carried out. [68] Here we
study theoretically the control of impurity spin states when the interaction among
them is controlled by optically-generated excitons in a QD. We analyze the control
errors due to the radiative recombination of the exciton that mediates the interac-
tion between the spins. Moreover, we illustrate how the control parameters can be
obtained directly from simple analytical expressions. The method is applied to design

the control parameters in the production of maximal spin entanglement.

4.2.1 The system

The physical system consists of two impurity spins placed close or inside a QD in
such a way that there is not a direct interaction between them. A schematic picture
is given in Figure 4.1. By coding the qubit in more than one spin efficient schemes
for fault-tolerant [69] and exchange-only [70] quantum computation can be naturally
applied to this setup. Dots of different size provide the frequency selectivity to address
specific spin pairs and realize two-qubit readouts. The model we use contains few

parameters describing the exciton-light and exciton-impurity coupling and can be
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Figure 4.1: Scheme of the system: localized spins located near self assembled QDs are
coupled by an exciton created by a laser pulse. Dots of different size provide selective
control and readout.

applied to different physical systems. For instance, it can be used for excitons localized
by monolayer fluctuation in III-V and II-VI quantum wells and interacting with a
finite number of localized impurities as in Ref. [67]. III-V or Si/Ge self-assembled
QDs can also be used as shown in Figure 4.1. For typical semiconductor systems we
can restrict the analysis to heavy-hole excitons due to the splitting between heavy-
hole and light-hole bands in the dot. The heavy-hole exciton spans a four dimensional
space consisting of two optically-active and two dark states. We treat the interaction
between the electromagnetic field and the excitons semiclassically, and we consider
spin states that interact only with the photoexcited electron in the dot. This is the case
for instance of donor impurity spins in typical semiconductors because the electron-
hole exchange is much smaller than the electron-electron exchange. Notice that by
using circularly polarized light the exciton induces, besides the spin-spin coupling,
also a local effective magnetic field on the spins as found in Chapter 2. [71] This
effective magnetic field can be controlled by the laser polarization and disappears for
linearly polarized light. We will consider below the case of circularly polarized light.

The exciton-spin part of the Hamiltonian (h =1) is

2
Hy=¢3 bhba =2V S (500 - sm)bhby « (41)
-

n=1qa’
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where ¢ is the energy of a single exciton in the dot, and b4 is the creation operator of
an exciton with electron spin a. The spin-spin interaction of the impurity n with the
exciton is given by s s -sp. a =| represents an optically active exciton with electron
spin —1/2 and hole spin +3/2, while a =7 is a dark state exciton with electron spin
+1/2 and hole spin +3/2 (due to splitting of the degenerate valence band, we are able
to restrict our analysis to the heavy hole band with s, = +3/2 [1]). For each impurity,
the operator sy represents its spin degree of freedom. V is the exchange interaction
between the impurity spins and the photoexcited electron in the dot. The strength
and the sign of V depend on the system. For instance, this coupling is expected to be
ferromagnetic for electrons in the dot interacting with localized rare-earth magnetic
impuritites, while it is antiferromagnetic for a dot mediating the interaction between
shallow donors, see Chapter 2 and Ref. [63]. Without loss of generality, we will assume
V > 0 below. Note that, since the exciton is well localized inside the QD, there is no
phase ezp(—ikR) arising from the position of the impurity. Alternatively, this can be
understood recalling that the exciton in a QD is an 0D excitation with no center-of-
mass motion, and so k = 0. This fact allows us to use the formalism of Schwinger
bosons [76] to diagonalize the Hamiltonian Expression 4.1 in a basis of coupled angular

momentum, as follows. The transformation

1 f
N = bTbT+b1bl
1ot t
Ly = 5(b1b1+b1bl)
it t

1.1 t
L: = 5(bjby —biby)

maps a set of two decoupled harmonic oscillators (in our case the optically active b !
and dark b; excitons) onto a rotator with angular momentum L. The Hamiltonian
can be rewritten as

Hy=eN-2V(J2-52-1?%), (4.2)
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where S is the total spin of the two impurities. The total angular momentum
Ji=L; +S;.

The coupling of the excitons in the QD and the external laser field is given by

Hp = @e-iwbl +he., (4.3)

where Q(t) is the time-dependent Rabi energy associated with the optical pulses, and
w is the energy of the laser. We consider only anti-clockwise polarization (¢4) which
generates excitons with electron and hole spin states —1/2 and +3/2, respectively.
Excitons with hole spin —3/2 are not included in the model since they are not excited
by o+ light and the impurity spins can only flip the spin of the photoexcited electron.

A scheme of the relevant energy levels is given in Figure 4.2. In the ground state
n = 0 (where n is the quantum number associated with the operator N) we have the
singlet and the triplet states corresponding to the two non-interacting impurities. In
the excited state n = 1, the electron in the dot splits the triplet states in a quadruplet
J = 3/2 and a doublet J = 1/2. The total Hilbert space is thus spanned by a total
of 12 states. The arrows in the scheme identify the selection rules for o4 optical
transitions. The transitions have different oscillator strengths, which are calculated
using the Clebsch-Gordan coefficients. Notice that the light does not connect directly
states with different spin S. The structure of the energy levels provides a natural
readout scheme for the coded logical qubit 07 ), |1 ) in the exchange-only scheme. [70]
An optical setup similar to the one for single spin readout [68] could be used: a single
peak at e corresponds to |0;) while two peaks separated by 6V correspond to the

logical state |1} ).

4.2.2 Quantum control

In order to illustrate how to design the optical control we consider the production

of maximal spin entanglement. We choose the initial state | 1|) ® |0) as the tensor
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Figure 4.2: Energy level diagram and optical selection rules for o polarized light. In
n =1, the total splitting is j = 6V".

product of a linear superposition of impurity states {|S),|Ty)}, and the exciton |0)
representing an empty QD. We consider separately the case of infinite and finite y~1,
i.e. spontaneous radiative recombination lifetime for the exciton in the dot. Other
decoherence processes, such as pure dephasing due to elastic scattering with phonons,
are suppress in large QDs as experimentally shown by Bonadeo et. al. [72]. In the
first case we determine analitically the control parameters that provide maximal spin
entanglement. In the second case, we solve numerically the master equation for the
full system in Figure 4.2. This will allow us to analyze errors due both to the radiative
recombination and to the finite probability of remaining with an exciton in the dot
at the end of a pulse. The latter is an error similar to a double occupancy error in
the case of spins controlled by gate voltages [73]. Ideally, the QD must be empty at

the end of each optical pulse, and this can be achieved by an adiabatic evolution, or

by a nonadiabatic evolution plus additional conditions in the pulse area [74].



Infinite radiative lifetime

In the following, we make extensive use of the concept of adiabatic evolution of the
system. We clarify this in the context of our model, which can be analyzed, in the
simplest situations, in terms of decoupled two or three level systems. Let us take the
situation, where only the singlet is excited. In the rotating frame (the perturbation still
retains the time dependency of the pulse envelope function), the energy of the levels is
renormalized by the frequency of the laser, giving rise to the detuning. If the perturba-
tion evolves slowly enough with respect to the energy difference between unperturbed
states (the detuning), i.e. dH/dt << 82, the state will evolve adiabatically. This means
that if the initial state is an instantaneous eigenvector of the unperturbed H - say
un — the evolution will only introduce a phase: ¥(x,t) = up(z,t) exp(—i fg Endt’).

We first study the ideal case of a nonadiabatic evolution at v = 0. We call nona-
diabatic the evolution that follows from a laser resonant with at least one transition
between the n = 0 and n = 1 subspaces in Figure 4.2. This implies that there is a sub-
stantial exchange of energy between the electromagnetic field and the dot, which in
turn results in a significant population inversion during the pulse. Using a numerical
simulation we illustrate in Figure 4.3 the evolution of the |S) and |Tj) populations

under a Gaussian pulse giving a Rabi energy of the form,

Q(t) = % UL (4.4)

The pulse is resonant with the bare exciton energy, which in the scheme of Figure 4.2
corresponds to a resonant transition for the singlet state. In order to have no exci-
tonic population at the end of the pulse, we need the pulse area for the resonant
excitation to be multiple of 27, therefore  and r are chosen so that the pulse area

is Q7 = 87.2 Notice that the population of the ground state singlet |S) is completely

2This is readily scen in the case of a two level system {[0). |1)} with a square shape pulse
Hamiltonian connccting both states: Hy = Q(¢)9 with @ = (|0)(1] + |1){0]). As [H(t1), H;(t2)] =0
the evolution operator is U = erp(—i f(; Hi(t')dt') = erp(—idrd) = cos(§27) + Isin(27). If the

76



depleted during the pulse but at the end comes back to the original population (0.5).
In contrast, the triplet (|Tp)) population follows an adiabatic evolution due to the ex-
change interaction affecting the optical resonance. In Figure 4.3 (inset) we show the
real and imaginary part of the coherence (S|p|Tp). In order to create the maximally
entangled state we need a +7/2 phase in this matrix element and the chosen optical
pulse achieves this goal. This relative phase transforms, for example, the state | 1])
into 27 1/2(|S) + i|Ty)) o« | 11) + i] 11). For a given value of the exchange coupling V
and pulse width 7, the maximum intensity of the field Q in Eq. (4.4) is found from
the roots of the equation

or(Q.V,1)£7/2=0, (4.5)

where ¢ = [22 A%(t) dt is the dynamic phase that the state |Ty) picks up following
the adiabatic evolution. Notice that since the pulse is a multiple of 27 the singlet will
only pick up a trivial phase (+1). A is the eigenvalue satisfying A9 7(£o0) = 0 for a

3-level Hamiltonian representing the triplet states,

o Raw i

Jaaw 26-3% o |- (4.6)
Jiaw o 2s+ds
The optical detuning § = e—w, and j = 6V is the splitting in the excited state between

= 3/2 and J = 1/2 states. If we assume that the three eigenvalues of the matrix

in Eq. 4.6 do not cross during the pulse evolution, the expression for ,\%(t) can be

written as
A 7(t) = + 6 + % cos (()(t)) , (4.7
where
(t)
6(t) = 2km + arccos (qr3(t)) (4.8)

initial state is |0), then the only choice for the final state to return to |0) is Q7 = 27xn. This also
can be shown to apply for pulses of arbitrary shape.
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Figure 4.3: Nonadiabatic control, ¥ = 0. Evolution of the |S) (solid line) and |Tj)
(dotted line) populations under a Gaussian pulse of area 8z. The temporal width of
the pulse 7 is 7.02 ps and the ratio Q/V is 0.6697. (Inset) Real (dotted line) and
imaginary (solid line) part of the coherence (S|p|Tp).

with

V/2832 + 1276 + 3662 + 2702(t)

o

—~
o~

~
I

r(t) = 4(4j — 36)(55 + 36)(j + 66) — 81(2j + 36)Q2(¢) .

If the exciton impurity coupling is ferromagnetic (j > 0), we have to take in Eq. (4.8)
k=1foré>j/3, k=2for -25/3 <6< j/3, and k = 3 for § < —2;/3. In contrast, for
J <0, we have to take in Eq. (4.8) k =1 for é > —25/3, k =2 for 1/3j < § < —2;/3, and
k = 3 for 6 < j/3. The analytical expression in Eq. (4.7) allows us to determine exactly
the control parameters from the roots of Eq. (4.5) . In the v = 0 adiabatic regime the
laser pulse is tuned away from the optical resonances between the n =0 and n = 1
levels. An example of a simulation of an adiabatic control is shown in Figure 4.4. The
laser is tuned 2 meV below the bare excitonic energy and 1 meV below the triplet
resonances corresponding to J = 3/2 in Figure 4.2. We plot in Figure 4.4 the same
quantities of Figure 4.3. Notice that in this case the pulse area can be arbitrary,
provided the adiabaticity is preserved. The change of phase in the coherence (S|p|T)

is now obtained with a smooth transition. The control parameters in this adiabatic
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Figure 4.4: Adiabatic control, ¥ = 0. The laser is tuned in 2 meV below the bare
excitonic energy. Evolution of the |S) (solid line) and |T) (dotted line) populations
under a Gaussian pulse. The temporal width of the pulse 7 is 10.2 ps and the ratio
Q/V is 1.24. (Inset) Real (dotted line) and imaginary (solid line) part of the coherence
(SlplTy).

case are determined by the roots of
or(QV,7) —95(Q,V,7) 2 7/2=0. (4.9)

In contrast to the case of Figure 4.3, the singlet now picks up a nontrivial dynamic

phase ¢g = [°3 ,\g(t) dt where /\g is the eigenvalue of the singlet Hamiltonian

Hg(t) = < 0 f (4.10)

2l qe) 26

with the property /\%(:toc) = 0. As for Hp this has a simple analytical form /\g.(t) =
g:t %\/(52 +Q2(t) , (+ for 6 <0 and — for § > 0 ) which can be used to determine the
control parameters from the roots of Eq. (4.9).

Finite radiative lifetime

In order to determine how this control scheme is affected by the finite lifetime of the

exciton in the dot we introduce a finite value for «, and solve the master equation
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p = —i[H, p] + L[p] using the values of the control parameters corresponding to the
evolution of Figs. 4.3 and 4.4. £[p] is the Liouvillian superoperator that can be written
as L[p] = LipL+ %{LTL, p} where Lt = VI by 3 accounts for the spontaneous radiative
recombination of the exciton in the dot. Once p is obtained, a 4 x 4 reduced density
matrix for the impurity spins pg is computed by tracing out the exciton degrees
of freedom. The entanglement in the Bell state is mostly sensitive to decoherence
processes and its analysis provides a good test for the scheme. We quantify the error
on the reduced density matrix pg using two different methods, the Purity and the
Peres criterion of separability. [75] According to the Peres criterion a state is entangled
iff E,nin < 0, where E,,;,, is the minimum eigenvalue of a matrix constructed by
transposing the non-diagonal 2 x 2 blocks of pg. A maximally entangled state has
a E,pin = —1/2. The deviation from that value gives a measure of the effect of the
radiative recombination on the entanglement and we quantify the entanglement error
as AE = E,,;, + 1/2. The purity of pg is a different parameter that characterizes
the error in the spins states due to their entanglement with the exciton in the dot.
We quantify this error as AP = Trp?g — 1. In principle there are errors that can
disentangle the spin states without a change in the purity, for instance by affecting
the phase picked up in Eq. (4.9). Therefore, in principle the errors induced by ~
affect independently AE and AP. Next, we study the dependence of the errors in the
Entanglement AE (upper) and in the Purity AP on v alone. We remind that both
and v depend on the dipole moment of the exciton in the dot. Therefore, a change in
v at constant  may be realized by compensating with a change in the intensity of
the external laser field. This allows us to study how v affects the errors with all the
other parameters kept constant. Figure 4.5 shows the results for the adiabatic and
nonadiabatic evolution. Both errors increase linearly at small v. However, the errors

in the adiabatic case are always smaller than in the nonadiabatic case in the range of

3There are two harmonic oscillators for the excitation in the QD, i.c. by and by, but only the
latter can couple to the continuum of electromagnetic radiation. Also, the assumption is that the
temperature cquals zero.
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Figure 4.5: Log-Log plot of the deviation from maximal entanglement (upper panel)
and maximal purity (lower panel) as a function of the radiative recombination v (in
meV). Solid line: adiabatic evolution. Dashed line: nonadiabatic evolution.
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parameters we have investigated. We remark that, due to the incommensurability of
the eigenvalues of Hg and Hr, there are not special conditions that would give perfect
entanglement with square pulses as in the case of a direct spin-spin coupling. [74]
An important figure of merit for the application of this quantum control technique
to quantum computation is provided by the error per gate parameter. This has to
be below a threshold value in order to make scalable quantum computing possible.
The estimate for such a threshold depends on assumptions on the error model and
device capabilities but the 10~4 value [80] is usually used as a benchmark in typical
experimental implementations. The error in the entanglement production gives an
estimation of the error per gate since the quantum operation done corresponds to a
VSWAP modulo some single qubit operations. We see in Figure 4.5 that the 10~4
threshold can be achieved for v smaller than 1ueV. Self assembled QDs have typically
a ground state exciton lifetime of the order of one or more nanoseconds and would

reasonably be in this region of parameters.

4.2.3 Conclusions

We have analyzed the entanglement production between two spin-impurities induced
by an exciton in a neighboring quantum dot. In the case of v = 0, the parameters for
the quantum control can be analytically determined from the roots of simple integral
equations. We showed that the finite lifetime v~1 of the exciton in the dot can affect
the purity of the spin states and introduces errors in the entanglement production.
In addition we found that such errors increase linearly with 4 and can be kept below
the 10~4 threshold for error correction if parameters typical of self assembled QDs

are used in the simulation.
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4.3 The indirect interaction mediated
by excitons

The optical control of the spin of electrons localized in quantum dots or impurities has
several advantages with respect to approaches where electrodes are needed. Ultrafast
lasers are available, promising the realization of quantum gates in time scales that are
hard to achieve with an electrical control. Lasers are also very flexible for quantum
control since pulse shaping can be used to increase accuracy and speed. [50] Finally,
metallic electrodes necessarily add a source of noise for the quantum system, and
they are not needed in an optical scheme. The possibility of changing the sign of the
spin-spin interaction can add flexibility to many control schemes for the qubits, like
e.g. in the exchange-only scheme. [77) We have seen that resonances in the spin-spin
coupling induced by the binding of the excitons can increase the magnitude of the
interaction for distances that are reasonable from a nano-fabrication point of view.
This will imply that lasers with lower intensities can be employed in the control. The
polarization of the light represents an additional control parameter that can be used
to selectively address qubits with an optically induced magnetic field. This is also
an advantage from a practical point of view since it could simplify the experimental
setup by eliminating the need of an external magnetic field.

Although the feasibility of single impurity spectroscopy in semiconductors has
been proven [86,87], little attention has been paid to optical properties of impurity-
bound excitons for information storage and processing. Impurities deserve at least the
same attention as quantum dots for such applications. Their homogeneous character
and the variety of properties that one can obtain combining different hosts and ions are
indeed special advantages. An exciton bound to an impurity has optical properties
very similar to an exciton trapped in a shallow quantum dot. Most of the ideas
involving excitons in quantum dots as a main ingredient for quantum information

and communication can be reformulated for excitons bound to impurities. We have
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provided only two examples here, but our phenomenological theory, being based on
inputs from the experiments, is very flexible and many other combinations of host and
ions can be used to explore a large range of confinement energy and different optical
properties. We also have seen that the spin-spin coupling has a resonant behavior at
frequencies depending on the separation between the impurities. By organizing the
impurities in chains with different separation this can be used to selectively address
a single pair of impurities and it allows for scalability.

A very special case is represented by impurities in silicon. This material has ob-
vious technological advantages and many proposals for using impurities in Si for
quantum computing have been suggested. [88-90] In particular, the optical control
of electronic spins localized by deep donors in Si using a control impurity has been
proposed. [61] In the scheme we are suggesting here, the exciton bound to the impu-
rity plays the role of the control impurity and it takes advantage of the host material
for mediating the interaction. Even if Si is an indirect gap material, there is a finite
optical coupling to the exciton bound to the impurity due to symmetry breaking. Ad-
ditional complications in the use of excitons bound to donors for mediating spin-spin
coupling arise from the valley degeneracy in Si. [91]

Excitons bound to rare earth magnetic ions can be controlled very rapidly and effi-
ciently due to their strong dipole moment. Their dipole moment is mainly determined
by the optical properties of the host material, since it involves the creation of electron
hole pairs across the semiconductor gap. At the same time, they interact with the
internal degrees of freedom in the core f states. Schemes involving excitons bound to
rare earth impurities in III-V materials bring in the advantages of the optical prop-
erties of the host and the stability of the internal degrees of freedom of the f orbitals
in the rare earth ion where the qubit is stored. This hybrid system is thus extremely
powerful, providing both reliable storage and fast processing of information.

Finally, the light controlled spin-spin coupling in a semiconductor matrix is also

appealing for the coherent control of macroscopic properties of materials. This was the
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idea behind the coherently induced ferromagnetism in Ref. [92]. There, a finite crit-
ical temperature for a paramagnetic to ferromagnetic transition in diluted magnetic
semiconductors was found when the material is coupled to a strong laser field. The
results presented here suggest that the presence of bound states could enhance the
effect. Also, the same idea could be used in other systems where the light can induce
antiferromagnetic or glassy phases starting from a paramagnetic system. This repre-
sents a unique opportunity to study phase transitions in a solid where the coupling
is controlled by an external field and may lead to a new class of controlled materials

to be investigated.

4.4 The indirect interaction mediated
by polaritons

Proposals for quantum computers based on spin degrees of freedom require that in-
dividual qubits are placed close enough so to have a significant exchange interaction
between them. This exchange interaction can be direct (i.e. induced by a controlled
overlap of the wavefunctions) or indirect when mediated by spin excitations in a 2D
electron gas (78] or by optical excitation across the semiconductor bandgap (6,7,79].
In the indirect schemes, the range of the spin coupling is related to the mass of the
mediating particles, and the coupling decreases exponentially as a function of the
distance between the spins. Here, we showed that the small polariton mass gives an
extremely long range for the spin coupling and introduces a non-exponential behavior.
This implies that spin-qubits can be located several hundreds of nanometers apart
while still retaining control on pair interaction through the use of polaritons. The
long range nature of the polariton-mediated interaction presents important techno-
logical advantages for quantum information implementations. Using our parameters
(see Fig. 2.2), we predict that the strength of the interaction is |J, | ~ 0.005 Ry* for

impurities separated by distances of the order of Rc = 124 ~ 150nm. An estimate



for the time needed for an operation can be given as T = 7/(2|J, 7f) =~ 40ps, which
is much smaller than the typical dephasing time for impurity spin qubits. Recent
measurements have reported a spin relaxation time of the order of us for donors in
GaAs [81]. To our knowledge, the spin decoherence time (T3) of a single donor in
GaAs has not been measured, but is also expected to be in the us range. The decay
time for polaritons is reported to be in the range of nanoseconds [82]. Moreover, notice
that the time needed for a quantum operation does not change considerably when
we further increase the qubit separation. Even with an inter-qubit separation of 1
micron the time needed for one operation increases only by one order of magnitude to
about 400 ps, and is still reasonably smaller than the decoherence time. With such a
long range interaction, the realization of electric gates to control one-qubit operations
and the use of localized magnetic field becomes feasible. The Ising-like interaction at
long separation is not a limitation for quantum gate implementations. The polariton
mediated coupling could be also used to control the nuclear spin of the donor in a
scheme similar to the one in Ref. [78]. In contrast to other cavity QED-based quan-
tum computing implementations [15], the scheme discussed here does not require 0D
confined electromagnetic modes, which is much harder to achieve experimentally. In
a planar cavity the lateral dimension is not limited by the optical wavelength, which

provides a fully scalable geometry for the qubit.
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Conclusions

I would like to start these concluding remarks by recalling what we have proposed and
done through this dissertation. Our main aim was to achieve a better understanding
of the optically-induced spin indirect interaction in semiconductor structures under
different conditions. Before turning to the actual physical systems, we developed a
formalism that enables us to address a variety of problems in this topic. In Chapter 2
we put this formalism to the test, and learned more about spin indirect interactions
of impurities in a bulk semiconductor. Next, in Chapter 3, we sought to determine
the effect on the indirect interaction of a micro-cavity. Finally, Chapter 4 presented
some possible applications of the theory previously developed.

Outlined in Chapter 1, the formalism we derived is meant to address problems in
optically excited semiconductors. More precisely, we found a suitable tool to describe
a system of optically generated quasi-particles obeying boson statistics that interact
with spins localized in the host lattice. The goal was to derive an expression for
the interaction between two localized spins, where the degrees of freedom of the
quasi-particle responsible for the indirect interaction are traced out. The formalism
is applicable to many situations: bulk semiconductors, quantum wells, quantum dots,
micro-cavities, etc. The quasi-particle may be an exciton, polariton, and possibly
others. We used the model to study some of them.

In Chapter 2 we employed our model to study the case of a doped bulk semicon-
ductor. We derived an analytical solution to all orders in the interaction between

excitons and localized spins. As a consequence, we found that the quasi-particle
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binds to pairs of impurities; moreover, the indirect interaction can be made ferro-
or antiferro-magnetic. The results are useful to describe doped systems containing
impurities with spin 1/2. A question that remains open is if it is possible to generalize
the non-perturbative analysis to systems with spin angular momentum S # 1/2.

In Chapter 3 we focused on the indirect interaction that polaritons mediate be-
tween impurities localized in a micro-cavity quantum well. The interesting findings
are the existence of two different regimes, and the long-range nature of the polari-
ton interaction. The first one shows that the spin-dependent interaction changes form
when the separation between impurities is larger than a certain value. One of the con-
sequences of it is that the critical temperature of a large number of impurities may
be made larger than with the use of excitons. Also, the ordering of impurity spins in
the ferromagnetic case is different in each regime. The long-range nature of the po-
lariton mediated indirect interaction now opens possibilities for quantum computing
two-qubit operations. There are many interesting future lines of investigation. A spin
coupling can also be obtained by a real polariton population in a scheme analogue to
the RKKY [9] spin coupling mechanism. The spin interaction induced by a 0D cavity
and excitons in quantum dots has been recently investigated [83], and also in this 0D
case the presence of a strong coupling generates anisotropies in the spin interaction.
The use of real carriers is not appealing for quantum computing implementation since
it adds decoherence to the spin-qubit. However, it would be interesting to explore the
dynamics of spin in the presence of a dense polaritons population that condense in
a phase coherent state, as observed recently in II-VI microcavities [84]. High-quality
micro-cavities embedding Mn-doped magnetic quantum wells in the strong coupling
regime have recently been realized (85]. The polariton mediated spin coupling could
be explored in these systems as a method for the ultrafast control of the quantum
well magnetization.

Chapter 4 dealt with a more detailed analysis of the applicability of our ideas. We

started by modeling a system of impurities and QDs embedded in a QW. The indirect
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interaction is here mediated by excitons in the QD. We studied the feasibility of two-
qubit operations using this system, including two important realistic assumptions not
explicitly considered in Chapters 2-3, namely: i) The optical excitation is achieved
by a laser pulse, and ii) there is decoherence in the form of spontaneous radiation
recombination of the exciton. This chapter also discusses some possible applications
of the results obtained in Chapters 2-3.

To date, we are not aware of experiments that test our findings. We hope that
this work will motivate experimental groups interested in fundamental questions as
well as applications to quantum computing to perform experiments following the lines

presented here.
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Appendix A

Exchange integrals

In this appendix, we show how to calculate an exchange integral in 2D, which appears

in the Hamiltonian for the interaction between localized spin and exciton:

e2

% (rp,h)o(re) (A.1)

V = [ drydredr; (e, L
[ dendredey oo, )t

with the functions

1 _ik 3 21 _jp _ A
belreumy) = —emkteres i) [2 4 ooleeonil
1

o(r) = e—Ir—Rl/ag
e
for the exciton and localized state respectively, with 8; = m;/(me + my). Replacing

the functions above

vV = C/dl‘hdl'edrz etk (Jcre+3prh) g=Ire—rph|/A e—|rl“R|/“Bﬁ x
e — I}

e~ (Ber)+0prn) o —lri—rp|/A o ~Ire—R|/ap
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with C = 2¢€2/ (7r2A,\2a%co). Next we transform to relative coordinates s = re —rj, and

t = r; — ry, with Jacobian equal to 1. Our new set of coordinate is {re,s,t}. Then,

V — C/dl'edet elk [‘3el'e+,3h(l‘e—s)] —S//\ I(t S+l’e Rl/aB x

|S -t
e~k [Bc(t—s+re)+By(re—s)] ,~t/A ,~|re—R|/ag

= C / dre ds dt ¢’k (Te=313) ¢=/A g=|(t—s+re -Rl/azs»| e
S.—

e—zk-(re—8+3et) e—t//\ e—lre—Rl/aB ,

where we have used that 3¢ + 8;, = 1. Now we replace exponentials by Gaussians, a

common procedure in quantum chemistry: [19]

e—|(t-s+re)-Rl/ap _,  [¥ ,—aj[(t-s+re)-RJ?
™

e—lre-Rl/ag  _,  [%l —aj(re-R)?
T

« —va 12
c—t/z\ @2 e ast

s

— a9 2
e s/A X2 —ags
T

with the constants a; chosen so as to fit the exponentials. The integral reads

v 1“2 i(k' —k)- rce—z;i'hk's —ik:(Fet—s)_ >

It-SI

=025 e—oq[(t—s)+(re—R)]2 =02 t2 e—al(re—R)2 ,

and multiplying by erp[i(k’ —k)R] and c.c., collecting factors of (re—R) and completing

squares,

vV = Camz i(k'~k) R/dr dsdt e—i3nK''s g—ik-(Fet—s) _1
2 |t—5|

e— 28 e—2al[u+ re—R)] e201 u? e~ Q2 t2
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with u = 1/2[(t — s) — i(k’ = k)/(2a1)], and the integration in re can be performed,

defining v =re + (R + u)

d -2alv
[avemer? < [T

and so
3/2
vV = “102 / k' k)R/dete i3pk'-s e~k (Jet—s) _ 1
201 |t—s|
-—023 LGQ_IL i (K =k)(t-s) al|t s|2/2 —02t2
2
3/2 -k
L Lo Y L“ﬂ_lL/dsdt c (3K +k)s —idckt 1
2 \2q [t —s|

e-i(k'—k)(t—s)enl|t—312/2 om0 (t2+s2)

We define new variablesx =t +sandz=t—-s

3/2 K k|2
v o= oo (2L) / (i(K'~k)}R,~Baj /dXdz i (nk'+k)((x~2)/2] o
T a)

e— i3k ((x+2)/2] L ~i (K ~k)z,-a[2/2 ;~az [(x*+2)/2)
2]

We can complete squares in x and follow the same procedure as before, to obtain

Voo cfiee (5“_)3/2 (2_“)3/ 2 K=K R~ K —K2/(8ay) o3k +(1-Fe)k2/(83) .
aq

w2 a9

/ dz ei(,@,,k'+k)-z/2e—iack-z/2ILI =i (K'-k)-z—(a1+a2)lz|2/2
z

The use of 8, =1 — 3, yields

V = Cr(ajag)~1/? (iK' —K)R — K ~k[?/(8a1) ,—B4lk'+k|2/(8ag) |

/ dz i (BrK/+K)2/2,—i/ ek-z/2|_1_l_ o—i (K'=k)z,~ (a1 +ap)[z/2 ,
z
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and using the definition: K =1/2(k’ + k) and ¢ =k’ — k

/ dz ei(ﬁhx—q)’ﬁ e~(a1+az)lz2/2
z

Evaluating the expression in polar coordinates, we arrive at

5 |8K-q? 0
_2&2_6 4(10:]4—(125 o 18K - q|
val + a2 4 (a1 + a9)
22 3 2 2
= elq-R C(OIOZ)-1/2T_:02— e~ 4d /(8ay) e—ﬁhK /(2ag)
|3, K—q|? 0
8_4(“l+"2 Ilo 'ﬁhK_(ﬂ
"4 (a1 +ag) )’

where I is the modified Bessel function.
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Appendix B

Matrix Representation

of the T operator

Using the basis set |s4, 5B s.) we obtain for the spin products s

the matrices
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10 0000 o000
1 1

0 -3 5 00 0 o0 0
1 1

0 4 -1 00 0 0 0

00 0 o0 o0 00

B.s= 1 (B.2a)
00 0 013 0o o o
1 1
o0 0 00 -5 % o0
1 1

o0 0o 00 5 -%o

00 0 00 0 0 %

g ]

o0 0 o 0 0 00
1

0 o o 0o o0 00
1 1

o0 -3 0o 1 o 00

00 o0 -3 0o § 0o

s4.sB = 1 2 (B.3a)

1 1

00 4 o -1 o 00

o0 o0 5 o0 -1oo

00 0 0 0 o0 }o

00 0 0 0 0 0}

By substituting these expressions in T4 and T8 and then in Eq. (2.19), we obtain

after matrix inversions and multiplications an expression for

T =(1-FATAYB) 1741+ FpYBl+ (4= B) .



The traceless part of this matrix is

[, h
dt2a 9 9 0 0 0 0 0
—2a
o 8P ¢ o g 0o 0o 0
o ¢ -2 0 2 0o o o0
8 3
o 0o 0 - 8 0
1 3
| ,, , (B4)
o ¢ & o -8 0 o o
0 5 0 -4 ¢ o
o o o § o § 2P o
o 0 o0 0 0 o £t

where a and 3 can be conveniently expressed as a function of the single impurity T7

and TS operators in Eqgs. (2.13) or Egs. (2.31) as

2ATT — 15\ 1TFg +1)

(TTFp - 1)[FR(TS =TT + 2FgTTTS) - 2]
@T -15)Fg

(FR(TT =TS 4+ 2FpTTTS) - 2)’

B = -«

where we have dropped the {A,B} index since we are considering two identical centers.

Notice that the matrix in Eq. (B.4) can be rewritten as

A

a(sB+sB) s+ psh.sB . (B.6)
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Appendix C

Units and Physical constants

C.1 (Exciton) Rydberg units

In analogy to the Atomic Rydberg system of units, 1s state of a Wannier exciton units
are sought. The starting point consists in choosing h = 2m = €2/2 = 1 The energy
and wave function of the 1s state follows that of the hydrogen atom, with the proper

reduced mass and re-scaled by the dielectric constant ¢ of the medium.

4
ey
Ry* = ——
v 2¢2p2
,, eh?
a = —5,
B P e2

where p is the reduced mass of the electron hole system (not to be confused with
the mass m = (me + my,)/2 related to the center of mass motion appearing in the
dispersion law for excitons in Chapters 1, 2, 3). Any other unit may be obtained from

the previous relationships. As examples, we show the units of time and speed

ty = h

0 Ry*

2
x ok e_;
B/t 2eh
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from here, we obtain the speed of light in a medium of index of refraction n,
* *y) (‘Sl
C[aB/tol = EQ[EQE .

C.1.1 Mn in CdTe

We use the values of the binding energy and Bohr radius of an exciton in bulk CdTe,

*
Ry* = 11meV .
Constant ] [ Value ]
Plank constant h 1
Electric Charge e 1
Mass of exciton m 0.36 me
Impurity separation R | (0.48) a}
Strength of hole interaction ¢ -5
Exciton k = 0 energy he 300 Ry*
Exciton-impurity exchange interaction range | hA 0.01 a'i;
Exchange coupling exciton-impurity J | 1074 Ry*a*B;)

Table C.1: Approximate values for the physical constants in excitonic Rydberg units
for NMn deep impurities in CdTe QW.

C.1.2 Si in GaAs

We use the values of the binding energy and Bohr radius of an exciton in bulk GaAs,

. .
ay = 1254

Ry* = 4.4meV .
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Constant ] |  Value |

Plank constant h 1
Boltzmann constant k 0.02 Ry*/K
Electric Charge e 1
Speed of light he/n 1300 Ry*a};
Index of refraction n 3
Mass of exciton m 0.28 me
Coupling exciton-cavity at k =0 hgo 0.4 Ry*
Impurity separation R > O.5a}*3
Strength of hole interaction ¢ 0
Exciton-cavity detunning hA -0.1 Ry*
Exciton k = 0 energy he 300 Ry*
Extracavity energy hwy, —Ry*
Exciton-impurity exchange interaction range hA 0.25 o
Polariton-Extracavity detunning hé=wp —Q | -03 Ry*
Rabi energy ho —Ry*
Exchange coupling exciton-impurity J 21Ry"‘a23,2

Table C.2: Approximate values for the physical constants in excitonic Rydberg units.

To calculate the factors that appear in the expressions for J, ff We use,

vyg = 1

¢ls = —-—>~08.
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Appendix D

Mean field approximation

First it is worth mentioning that it should always be a mechanism that singles out a
direction along which the spins aligns prior to the ordering. This could be the linear
term in J that contributes an effective magnetic field (as shown in Chapter 2) or an
external magnetic field, etc. For example, the spins become aligned at T > T, by this
“external” agent, the temperature is then lowered below Tg; if the system is irradiated
by the laser field, and the external agent is eliminated, the spins will remain aligned
as a consequence of ferromagnetic interactions.

To illustrate the procedure, suppose the dynamics is governed by a spin Hamil-
tonian that contains only one type of interaction, say Heisenberg: Azjk ijsj . sk,
As said before, there is a preferred direction; take this in the z-axis. Single out an
impurity k, and assume that its neighbors have mean magnetization (spin) m. The

projected Hamiltonian for one impurity k reads

J J
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The thermodynamics follows from the partition function

k
Z = Trle”%%]

a =03Am Zij ,
J

using eigenstates of {s,s;} and the fact that the localized states are s =1/2,

Z = 2cosh (%(1) .

The magnetization is given by

1 . K
m = =Trlshe %)

Z

7]
= —5-(nZ)

Q

h . ha
= —Esmh(—2—> .

For the case a < 0 1, and defining a positive constant v = h/2 3 A| Zj ijl, a tran-
scendental equation for m is found

m = gtanh('ym).

When this equation has more than the trivial m = 0 solution, there is ordering in
the system (macroscopic magnetization). The temperature for which these nonzero
solutions appear is the Curie T, temperature; this occurs when the tanh has slope

equal to 2/k at the origin: 1 = hy/2sech?(0) = hy/2,

Ah?
ke = = Zij
J

"The range of physical parameters used for Fj,, arc such that this functions is negative for all
values of its argument. Fg,, > 0 always.
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Appendix E

Separable potentials

Following Mott [36] consider the case of the scattering of two identical particles, one

localized and restricted to one orbital ¢ and the other an unbound state M
1
‘I’(rl, ru) = 7@[0(7‘1)]\]("1[) + ¢(ru)A‘I(rl)] . (E.l)

The complete time independent schrodinger equation can be reduced to an equa-
tion for the wave function M(r,) describing the unbound state. Applying the total
Hamiltonian for the system to the wave function Eq. E.1, multiplying by ¢(r;) and

integrating in r,, reduces the equation to
(72 + K5)M(ry) = U(r) M(ry) + / K(ry,r))M(r))dr (E.2)

K(ru,m) = (ru)¢* (m) (K2 + X2 + U(r, )]

where A2 and k? are the energies of the localized and unbound state respectively;
U(z.y) and U(z) are the complete and integrated Coulomb interactions, respectively.

We are only interested in the exchange part of the interaction, thus we consider the
second term on the r.h.s. of Eq. E.2. It is important to notice that this term enters the

equation in the form of a non-local potential. Moreover, because it is formed by the
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product of well localized state functions ¢’s it is short-range. This last fact allows us
to replace K (ry, ;) by a separable kernel.! On the other hand, the integral of K (ry,7;)
weighted with the product M*(ry)M(r;) is an exchange integral, say L(k,k’). This is
in complete analogy with our case of excitons and localized states, where the role
of M is played by the exciton wave functions and the exchange integral J(k, k') is
calculated exactly as L(k,k’). Therefore, if K(ry,r;) is separable in (k, k), so is the
corresponding exchange integral.

Following the preceding arguments, we assume that the exchange integral J; ;s
can be well approximated by a separable potential, i.e. J; ;s = Jugvps, where v(k) is
a function only on k = |k|, and J is a constant.

Finally, we note that a non-local separable potential can support a finite number
of bound states. We are particularly interested in the case of a rank I potential. In

this situation, the schrodinger equation reads,
—VQ‘(/)(.E) - v(.r)/d3x' v( (') = ey(z) .
After some algebra, we arrive to the following condition that ¢ must satisfy,

1 3 |v(q)l?
1= d .
(2m)3 / qq2 —€

Given that the r.h.s. is a monotonic function of ¢, and that bounds states occur only

for negative energies, it is clear that only one bound state can occur. [93]

"When the potential is rotationally invariant, it can be written in terms of partial waves.
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