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ABSTRACT

COUPLED-CLUSTER AND EQUATION-OF-MOTION
COUPLED-CLUSTER THEORIES: APPLICATIONS TO

PHOTOCHEMISTRY AND CATALYSIS AND ALGORITHMIC ADVANCES

By

Jared A. Hansen

Understanding electronic excitation, photoelectron, and multiphoton ionization spectra,

particularly those involving dark and strongly correlated states, or transition metals, as

well as catalytic, structural, and electronic properties of gold nanoparticles pose significant

challenges for theory and experiment. The existing experimental techniques may not be suf-

ficiently powerful to provide definitive information on their own, whereas an accurate treat-

ment of the relevant many-electron correlation effects required in theoretical analyses may be

far from obvious. In this dissertation, we describe several high-level ab initio computational

studies employing the completely renormalized (CR) and active-space coupled-cluster (CC)

and equation-of-motion CC (EOMCC) approaches and the extensions of the EOMCC theory

to open-shell systems around closed shells defining the electron-attached (EA) and ionized

(IP) EOMCC frameworks, which demonstrate the transformative role these novel electronic

structure methods developed in our group have played in understanding the previously unex-

plained experiments and phenomena. They include (i) challenging electronic spectra of the

CNC, C2N, N3, and NCO molecules and the photoelectron spectrum of Au−3 nanoparticle

examined with the EA- and IP-EOMCC approaches, especially those invented in our group,

(ii) the discovery of the doubly excited state of azulene below the ionization threshold, which

mediates the 1 + 2′ multiphoton ionization experiments resulting in clear Rydberg finger-



print spectra, where the CR-EOMCC formalism developed in our group played a crucial role,

(iii) the detailed investigation of the mechanism and energetics of the aerobic oxidation of

methanol on Au−8 particle, which benefited from the application of the ground-state CR-CC

methodology, developed by our group as well, and (iv) definitive CR-CC and active-space

CC studies showing that the ground state of 1,2,3,4-cyclobutanetetraone, which is character-

ized by densely spaced low-lying states, is a triplet, in agreement with the recently recorded

photodetachment spectrum. These cutting-edge computational studies are accompanied by

advances in CC/EOMCC algorithms and methodologies, including the development of par-

allel numerical energy gradients and second derivatives for fast geometry optimizations and

harmonic vibrational frequency calculations at any CC/EOMCC level, allowing us to estab-

lish the geometries and relative energies of the low-energy isomers of the controversial Au8

particle, and the implementation of the unrestricted Hartree-Fock-based (UHF-based) CR-

CC(2,3) approach, allowing us to show that unlike the popular CCSD(T) approach, which

is very sensitive to the type of the reference determinant employed in the calculations, fail-

ing in bond-breaking situations when the restricted Hartree-Fock (RHF) reference is used

and displaying poor behavior at intermediate nuclear separations with UHF references, its

CR-CC(2,3) counterpart provides a robust description regardless of the reference type (RHF

or UHF), with the spin-adapted RHF-based CR-CC(2,3) results being most accurate in the

examined bond dissociation cases.
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Chapter 1

Introduction

Coupled-cluster (CC) theory [1–6], which is known to offer the best compromise between

computational cost and accuracy and which results in approximations that lead to a rapid

convergence to the exact, full configuration interaction (CI) limit, has become the de facto

standard for high-accuracy molecular electronic structure calculations for ground and excited

states and properties other than energy (see Refs. [7–11] for reviews). However, in order for

the ground-state CC methods and their various excited-state extensions to be successful,

by providing chemical of near-spectroscopic accuracies, one needs to find computationally

efficient and robust treatments of higher-than-double excitations, such as triply or triply

and quadruply excited clusters. Indeed, the basic CC method with singles and doubles

(CCSD) [12–15], which has relatively inexpensive CPU steps that scale as n2
on

4
u or N 6 (no and

nu are, respectively, the numbers of occupied and unoccupied orbitals used in the correlated

calculations and N is a measure of the system size), although generally more accurate than its

CI (i.e., CISD) counterpart, especially in larger systems, where the lack of size-extensivity of

CISD becomes a major problem, is insufficient in obtaining accurate ground-state properties,

especially energetics (reaction energies, activation barriers, chemical reaction profiles, etc.).

At the same time, the extension of CCSD to excited states via the equation-of-motion CCSD

(EOMCCSD) approach [16–18] and its symmetry-adapted-cluster (SAC) CI [19–22] and

1



linear-response CC [23–28] counterparts, although useful in a qualitative characterization

of excited states dominated by one-electron transitions, is generally not accurate enough to

obtain a quantitative description of such states, especially when larger polyatomic species are

examined (cf., e.g., Refs. [29–32]; for a thorough evaluation of a number of EOMCC methods,

including EOMCCSD, illustrating the same, see Refs. [33–39]). EOMCCSD and its SAC-CI

and linear-response counterparts also fail when the electronically excited states of interest are

characterized by significant two-electron or higher many-electron transitions [39–54]. When

the connected triple excitations are explicitly included in the CC and EOMCC considerations

via the CCSDT approach [55, 56] and its excited-state EOMCCSDT extension [42, 43, 57],

the description of the ground-state energetics and properties and excited states significantly

improves, yielding often the virtually exact results (see, e.g., Refs. [40–43,54–61]). However,

it is also accompanied by a steep increase in the iterative CPU time scaling and excitation

amplitude storage requirements characterizing the CCSDT/EOMCCSDT approximation,

from n2
on

4
u (N 6) and n2

on
2
u (N 4) in the CCSD/EOMCCSD case to n3

on
5
u (N 8) and n3

on
3
u

(N 6), respectively, in the case of CCSDT/EOMCCSDT, limiting its applicability to systems

with up to a dozen or so correlated electrons and smaller basis sets. Thus, if one is to make use

of the CC/EOMCC methodologies in accurate molecular electronic structure calculations,

the CC/EOMCC schemes that can account for the effects of triples in an approximate, cost

effective, and yet reliable manner need to be employed.

One way the effects of triple and other higher-than-double excitations can be included

in the CC/EOMCC approaches without having to deal with the prohibitive computational

costs of the full CCSDT/EOMCCSDT methods is through the use of active orbitals, as done

2



in the ground-state CCSDt [62–67] and excited state EOMCCSDt [42–44] approaches (cf.

Refs. [54, 68] for reviews). While this allows for full CCSDT/EOMCCSDT-quality results

at the cost of CCSD/EOMCCSD times a prefactor proportional to the numbers of active

occupied and active unoccupied orbitals used to select the triples, the approach is no longer,

strictly speaking, a pure computational black box as one has to select the active orbitals

involved in identifying the dominant triples. The same applies to higher-order methods in

this category, such as CCSDtq [54, 63–66,69].

One can also contemplate approaches for identifying the most important triples (and

higher) contributions through the many-body perturbation theory (MBPT) analysis, as is

commonly done when developing approximate quasi-perturbative CC/EOMCC approxima-

tions, best represented by the oldest methods in this category, such as CCSD[T] [70, 71],

CCSD(T) [72], and CCSDT-1 [71, 73]. Methods of this type are computational black boxes

and reduce computer costs of their parent full approximations by orders of magnitude, while

providing an accurate description of molecules near the equilibrium geometries. This is best

symbolized by the success of the CCSD(T) approach, which replaces the iterative n3
on

5
u CPU

steps of CCSDT by the iterative n2
on

4
u CPU steps of CCSD and the noniterative n3

on
4
u steps

associated with the determination of the triples correction to the CCSD energy, while offering

the CCSDT level of accuracy in the ground-state calculations as long as one does not signifi-

cantly stretch or break chemical bonds. Problems emerge, however, when one wants to apply

methods of the CCSD(T) type to bond breaking or biradicals, or consider excited states, espe-

cially those having the more substantial contributions from two-electron transitions (cf., e.g.,

Refs. [39–44, 54, 66–68]). In response to these challenges, several alternatives or extensions
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of CCSD(T) that improve the CCSD(T) results in bond breaking and other multireference

situations and that improve EOMCCSD results for excited states without significantly in-

creasing costs and ease of use of CCSD(T) calculations have been formulated over the years.

Some examples of these alternatives to CCSD(T) of robust extensions of CCSD(T)-like ap-

proaches to excited states include the noniterative triples or triples and quadruples methods

for the ground-state computations defined the CCSD(2) or CC(2)PT(2) and CCSD(2)T

approaches [74–77] (see Refs. [78–80] for related ideas), and their excited-state analogs

in the form of the EOMCC(2)PT(2) method [76] and its size-intensive EOMCCSD(2)T

modification [45], the linear-response CCSDR(3) scheme [81, 82], and its iterative, still

rather inexpensive CC3 parent [81–84], the EOMCCSD(T) [85], EOMCCSD(T̃) [86], and

EOMCCSD(T′) [86] hierarchy obtained from the perturbative analysis of the EOMCCSDT

equations, and a wide variety of noniterative corrections to CCSD or EOMCCSD energies

resulting from the method of moments of CC (MMCC) equations [40,41,46–52,87–95], such

as CR-CC(2,3) [51, 93–95], CR-EOMCC(2,3) [51, 52], and the recently implemented δ-CR-

EOMCC(2,3) scheme [31]. The MMCC approaches, such as CR-CC(2,3), CR-EOMCC(2,3),

and δ-CR-EOMCC(2,3) are particularly promising, since they retain the black-box nature

of the popular ground-state CCSD(T) approximation and reduce the large costs of the full

CCSDT/EOMCCSDT calculations to the more manageable iterative n2
on

4
u (N 6) and non-

iterative n3
on

4
u (N 7) computational steps, while providing a highly accurate description of

chemical reaction pathways involving single bond breaking, biradicals, and excited states

dominated by one- and two-electron transitions [39, 44, 46–51, 51–53, 93, 94, 96–99].The CR-

CC(2,3) and related approaches are capable of producing highly accurate results for a vast
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array of molecular systems with up to about 100 correlated electrons, when the canonical for-

mulation is employed, or hundreds or even thousands of electrons, when the local correlation

ideas are implemented [99–103].

While the CR-CC and CR-EOMCC approaches have demonstrated considerable success

(cf., e.g., Refs. [29–31,40,41,48,49,51,51–53,88,89,93,94,96–99,104–149]), they are not free

from all the problems. There are, for example, cases of biradical reaction mechanisms, where

they do not work as well as desired, resulting in the underestimation of electronic energies of

singlet biradicals, due to significant coupling of singles, doubles, and connected triples in such

situations, which the CR-CC(2,3) and other noniterative corrections to CCSD neglect. This

issue can be addressed by combining the aforementioned active-space CC/EOMCC (e.g.,

CCSDt) and CR-CC/CR-EOMCC (e.g., CR-CC(2,3)) ideas in the form of the so-called

CC(P ; Q) methodology [68, 150, 151]. The resulting CC(t,3) approach combining CCSDt

iterations with noniterative corrections due to certain categories of triples missing in CCSDt

provides spectacular results in describing bond breaking, biradical reaction mechanisms, and

singlet-triplet gaps in biradicals [68, 150, 151]. There is, however, another problem, which

none of the above methods addresses in a satisfactory manner, namely the issue of proper

spin adaptation, which is difficult to achieve in conventional CC theory when applied to open-

shell states. For example, the usual open-shell implementations of the CR-CC(2,3) and CR-

EOMCC(2,3) and other CC/EOMCC schemes, which utilize a spin-integrated spin-orbital

formalism in derivations and computer implementations and which make use of either the

unrestricted or restricted open-shell Hartree-Fock (UHF or ROHF, respectively) reference

determinants, do not properly account for the spin symmetry when electronic states of
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interest are not singlets, and, as a result, may suffer from the spin-contamination problem

(cf., e.g., Ref. [152]) or other issues, such as the non-analytic behavior and substantial loss

of accuracy in the region of Hartree-Fock instabilities [153].

Issues related to spin-adaption of CC/EOMCC calculations for open-shell systems, such

as radicals and biradicals, can be addressed by turning to the alternative hierarchy of

EOMCC approaches, termed the electron-attached (EA) [154–162] and ionized (IP) [157–169]

EOMCC theories as well as their analogous doubly attached (DEA) and doubly ionized

(DIP) approaches [170–178]. In particular, the EA- and IP-EOMCC methods enable one

to perform orthogonally spin-adapted calculations for the ground and excited states of the

(N±1)-electron open-shell systems around N-electron closed shells by applying the linear

electron-attaching or ionizing operator, R
(N±1)
µ , to the correlated ground state of the ref-

erence N-electron closed-shell core obtained with the single-reference CC approach. Be-

cause these methods use a closed-shell reference determinant and because one obtains tar-

get (N±1)-electron states by diagonalizing the similarity transformed Hamiltonian obtained

in the closed-shell CC calculations for the underlying N -electron system, which commutes

with S2 and Sz, they provide a convenient formalism for performing orthogonally spin-

and symmetry-adapted calculations for radicals and ions of closed-shell species, eliminating

the issues associated with spin-contamination and making the interpretation of the cal-

culated electronic states much more transparent than in the traditional ROHF or UHF

based CC/EOMCC calculations. In analogy to our earlier discussed CCSD/EOMCCSD or

CCSDT/EOMCCSDT, the basic low-order EA- and IP-EOMCC approximations including

up to 2-particle-1-hole (2p-1h) and 2-hole-1-particle (2h-1p) excitations, here referred to as
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EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p), although useful in calculations of the

electron affinities and ionization potentials of closed-shell molecules, respectively, are insuf-

ficient to provide an accurate description for the ground and, especially, excited states of

radicals and similar open-shell systems [154, 157–160, 179]. The inclusion of higher-order

components of R
(N±1)
µ , such as 3-particle-2-hole (3p-2h) and 3-hole-2-particle (3h-2p), ex-

citations, greatly improves the results, but also significantly increases the computational

costs, limiting the use of the resulting EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p)

approaches and their EA- and IP-EOMCCSDT analogs [156, 167, 168] to small molecu-

lar systems. To remedy this problem, the aforementioned active-space CC and EOMCC

methodologies [42–44,54,62–69] methodologies have been extended to the EA-EOMCC and

IP-EOMCC approaches [157–161]. The active-space EA- and IP-EOMCC schemes use only

a small subset of all higher than 2p-1h and higher than 2h-1p excitations, respectively, which

are chosen through a suitably defined set of active orbitals. In analogy to particle-conserving

active-space CC/EOMCC methods, such as CCSDt or EOMCCSDt, this significantly re-

duces the computational costs associated with inclusion of all higher-order excitations in

the EA- and IP-EOMCC approaches, but since the most important higher-order contribu-

tions are still accounted for, the active-space EA- and IP-EOMCC methods are capable

of producing highly accurate results of the same quality as their parent approximations.

The EA-EOMCC and IP-EOMCC approaches with an active-space treatment of 3p-2h and

3h-2p excitations [157–159], designated here and elsewhere in this document as the EA-

EOMCCSDt{Nu} and IP-EOMCCSDt{No} methods, where No and Nu are the number of

active occupied and active unoccupied orbitals, respectively, have demonstrated their reliabil-
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ity in reproducing the results for the ground and excited states of radicals obtained with their

more expensive parent approximations, EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p),

respectively, and other high-level ab initio approaches at a small fraction of the computer

cost [157–160,180]. Similar remarks apply to the recently developed DEA- and DIP-EOMCC

methods with an active-space treatment of 4p-2h and 4h-2p excitations, which are particu-

larly useful in examining the electronic spectra of biradical species [177, 178].

In this dissertation, we have used the EA- and IP-EOMCC approaches with full and

active-space treatments of 3p-2h and 3h-2p excitations to investigate several challenging

situations involving small and yet complicated open-shell molecular species, such as the

adiabatic excitation spectra of the CNC, C2N, N3, and NCO molecules [180] and the pho-

toelectron spectra of Au−n particles, demonstrating the robustness and utility of these ap-

proaches in such challenging cases. In addition to the electronic structure of these systems,

we have used parallel numerical derivatives for the EA- and IP-EOMCC methods, developed

in this PhD research, to examine the ability of the EA/IP-EOMCC methods with up to

3p-2h/3h-2p excitations to provide accurate nuclear configuration information, including ex-

cited states. For several other closed- and open-shell species, we have used the CR-CC(2,3)

and δ-CR-EOMCC(2,3) approaches and parallel numerical derivatives based on the CR-

CC(2,3) and CR-EOMCC(2,3) levels, developed in this thesis work too, to solve important

chemical and spectroscopic problems, providing definitive confirmation of the existence of

the highly-correlated doubly excited state of azulene below the ionization threshold, which

drives the 1 + 2′ multiphoton ionization experiments that lead to a clear Rydberg finger-

print [142], examining the details of the mechanism and energetics of the aerobic oxidation
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of methanol on Au−8 nanoparticle [181], and obtaining a highly accurate description of the

low-lying states of the deceptively simple 1,2,3,4-cyclobutanetetraone [182] confirming pre-

cise photodetachment experiments performed recently. As already alluded to above, as part

of these investigations we have developed and implemented parallel numerical derivative

routines which can be used with any molecular electronic structure method (including and

CC/EOMCC approach) in conjunction with optimization algorithm routines to help speed

up the evaluation of geometries and harmonic vibrational frequencies. This has allowed

us to provide definitive information about the geometries and relative energies of the low-

energy isomers of the controversial Au8 particle at the high CCSD(T) level [183]. Finally,

returning to the issue of UHF vs RHF (restricted Hartree-Fock) reference determinant in

CC calculations, we have examined the effects of using spin-symmetry broken UHF rather

than spin-adapted RHF reference wave function on the CR-CC(2,3) results in describing

bond-breaking on singlet potential energy surfaces, showing that the spin-adapted closed-

shell CR-CC(2,3) codes based on RHF references provide the best overall and most accurate

results. In summary, the focus of this dissertation has been the application of novel high-level

CC/EOMCC approaches developed in our group to challenging and experimentally relevant

chemical situations, considered to be highly complex for conventional quantum chemistry,

and the development of new codes and algorithms for high-level geometry optimizations and

frequency calculations and use of unrestricted references in CR-CC computations.
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Chapter 2

Project objectives

The main objectives of this work are:

A. Application of the full and active-space EA- and IP-EOMCC methods to the energies

and geometries of the ground and excited states of CNC, C2N, NCO, and N3. Inter-

pretation of the photoelectron spectrum of Au−3 using the IP-EOMCC methodologies.

B. Application of the CR-CC(2,3) and δ-CR-EOMCC(2,3) approaches to highly-correlated

systems, including the doubly excited state of azulene below the ionization threshold

mediating the 1+2′ multiphoton ionization, the aerobic oxidation of methanol to formic

acid on Au−8 , and the low-lying electronic states of 1,2,3,4-cyclobutanetetraone.

C. Development and testing of parallel numerical gradients and second derivatives for ge-

ometry optimizations and vibrational harmonic frequencies using various CC/EOMCC

approximations, including CCSD(T), CR-CC(2,3), and CR-EOMCC(2,3), and the

EA/IP-EOMCC methods with up to 3p-2h and 3h-2p excitations treated fully or via

active orbitals. Examining alternative algorithms for accelerating the convergence of

the geometry optimization methods using numerically determined energy derivatives.

D. Implementation and benchmarking of unrestricted CR-CC(2,3).
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Chapter 3

Applications of full and active-space

electron attached and ionized

equation-of-motion coupled-cluster

methods

In this chapter, we discuss the application of the EA- and IP-EOMCC approaches with up

to 3p-2h and 3h-2p excitations, treated fully or with active orbitals, to challenging open-

shell problems. Section 3.1 provides the theoretical background of the relevant EA- and

IP-EOMCC methodologies. Section 3.2 discusses their application to a series of challeng-

ing triatomic radicals, CNC, C2N, N3, and NCO, including geometry optimizations and

adiabatic excitation energies, based on the results reported in Ref. [180]. Finally, in Sec-

tion 3.3, we demonstrate the utility of the IP-EOMCC approaches in providing an accurate

interpretation of not only peak positions, but also peak widths and intensities, for the pre-

viously unexplained photoelectron spectrum of Au−3 , relying on our calculations reported in

Ref. [184].
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3.1 Theory

In the EA/IP-EOMCC theories, one obtains the ground (µ = 0) and excited (µ > 0) states

|Ψ(N±1)
µ 〉 of an (N ± 1)-electron system by applying a linear electron-attaching or ionizing

operator R
(N±1)
µ to the CC ground state

|Ψ(N)
0 〉 = eT |Φ〉 (3.1)

of the related closed-shell N -electron system, so that

|Ψ(N±1)
µ 〉 = R

(N±1)
µ |Ψ(N)

0 〉 ≡ R
(N±1)
µ eT |Φ〉. (3.2)

Here,

T =
N
∑

n=1

Tn, (3.3)

where

Tn =
∑

i1<···<in,a1<···<an

t
i1...in
a1...an aa1 · · ·aanain · · ·ai1

, (3.4)

is the cluster operator of the ground-state CC theory obtained by solving the CC equations

for the N -electron reference system, with t
i1...in
a1...an , representing the corresponding cluster

amplitudes, |Φ〉 is the N -electron reference determinant (typically, the RHF configuration),

and the R
(N±1)
µ operators entering Eq. (3.2) are defined as

R
(N+1)
µ =

N
∑

n=0

Rµ,(n+1)p-nh, (3.5)
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where

Rµ,(n+1)p-nh =
∑

i1<···<in,a<a1<···<an

r
i1...in

aa1...anaaaa1 . . . aanain . . . ai1
(3.6)

in the EA case, and

R
(N−1)
µ =

N
∑

n=0

Rµ,(n+1)h-np, (3.7)

where

Rµ,(n+1)h-np =
∑

i1<···<in<i,a1<···<an

r
ii1...in
a1...anaa1 . . . aanain . . . ai1

ai (3.8)

in the IP case. Here and elsewhere in this dissertation, i, j, . . . (a, b, . . .) are the spin-orbitals

occupied (unoccupied) in the reference determinant |Φ〉 and ap (ap) are the usual creation

(annihilation) operators associated with the spin-orbitals {|p〉}.

Once the ground-state CC equations are solved for the cluster amplitudes t
i1...in
a1...an and the

ground-state CC energy E
(N)
0 of the N -electron reference system is determined, one obtains

the 1p amplitudes ra, the 2p-1h amplitudes r
j
ab, the 3p-2h amplitudes r

jk
abc, etc. of the

EA-EOMCC theory entering Eq. (3.5) or their IP-EOMCC 1h, 2h-1p, 3h-2p, etc. analogs

entering Eq. (3.7), and the corresponding electron-attachment or ionization energies

ω
(N±1)
µ = E

(N±1)
µ − E

(N)
0 , (3.9)

where E
(N+1)
µ and E

(N−1)
µ are the energies of ground and excited states of the target (N +

1)- and (N − 1)-electron systems, respectively, by diagonalizing the similarity-transformed

Hamiltonian, written here in the normal-ordered form relative to the Fermi vacuum |Φ〉,

H̄N,open = (HNeT )C,open = e−T HNeT − (HNeT )C,closed (3.10)
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where the subscripts “open”, “closed”, and C refer to the open (i.e., having external lines),

closed (i.e., having no external lines), and connected parts of a given operator expression,

in the appropriate subspace of the (N ± 1)-electron Hilbert-space spanned by the deter-

minants corresponding to the many-body components included in R
(N±1)
µ . Thus, in the

EA-EOMCCSD(3p-2h) method, which interests us in this work and in which

T = T1 + T2 (3.11)

is obtained in the ground-state CCSD calculations for the N -electron reference system and

R
(N+1)
µ = Rµ,1p + Rµ,2p-1h + Rµ,3p-2h, (3.12)

we diagonalize the similarity-transformed Hamiltonian of CCSD,

H̄
(CCSD)
N,open = (HNeT1+T2)C,open, (3.13)

in the subspace of the (N + 1)-electron Hilbert-space spanned by the |Φa〉 = aa|Φ〉, |Φab
j 〉 =

aaabaj |Φ〉, and |Φabc
jk 〉 = aaabacakaj |Φ〉 determinants. In the IP-EOMCCSD(3h-2p) ap-

proach, which interests us in this study as well, where T is again obtained in the CCSD

calculations and

R
(N−1)
µ = Rµ,1h + Rµ,2h-1p + Rµ,3h-2p, (3.14)

we diagonalize H̄
(CCSD)
N,open in the subspace of the (N − 1)-electron Hilbert-space spanned by

the |Φi〉 = ai|Φ〉, |Φ b
ij 〉 = abajai|Φ〉, and |Φ bc

ijk〉 = abacakajai|Φ〉 determinants. In the basic
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EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p) approaches used in our calculations too,

we neglect the 3p-2h component Rµ,3p-2h in Eq. (3.12) and the 3h-2p component Rµ,3h-2p

in Eq. (3.14), and diagonalize H̄
(CCSD)
N,open in the smaller subspaces spanned by the |Φa〉 and

|Φab
j 〉 determinants in the EA case and |Φi〉 and |Φ b

ij 〉 determinants in the IP case.

It has been well established (largely by out group [157–160]) that inclusion of higher-

order terms in the R
(N±1)
µ operators, especially the Rµ,3p-2h component in R

(N+1)
µ and the

Rµ,3h-2p component in R
(N−1)
µ , is necessary to obtain a quantitative description of the elec-

tronic excitations in radical species. The EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p)

methods, abbreviated sometimes as EA-EOMCCSD and IP-EOMCCSD, work well for the

lowest electron attachment and ionization energies, but they usually fail otherwise, espe-

cially when electronic spectra of radicals need to be examined. The results of the basic

EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p) calculations become particularly poor

when the 2p-1h and 2h-1p contributions relative to the N -electron reference |Φ〉 or the

two-electron (2p-2h) transitions relative to the ground state of the radical of interest be-

come significant. Unfortunately, the full inclusion of the Rµ,3p-2h and Rµ,3h-2p terms in the

EA- and IP-EOMCC calculations comes at a high price, increasing the N 5-like non
4
u and

n2
on

3
u operations defining the iterative diagonalization steps of EA-EOMCCSD(2p-1h) and

IP-EOMCCSD(2h-1p) to the N 7-like n2
on

5
u and n3

on
4
u steps. One way to retain the accuracy

of the higher-order EA- and IP-EOMCC schemes with the 3p-2h and 3h-2p excitations, while

avoiding this steep computer cost increase, is to use the active-space variants of the EA/IP-

EOMCC methods developed in the Piecuch research group, described in Refs. [54, 157–160]

and summarized below.

15



In the active-space EA/IP-EOMCC approaches, one defines a suitable set of active or-

bitals, which are used to a priori select a small number of the most important higher-than-

2p-1h contributions to R
(N+1)
µ and higher-than-2h-1p contributions to R

(N−1)
µ . This is based

on the observation that in many cases one can envision the formation of a radical by either

attaching an electron to one of the lowest-energy unoccupied orbitals or by removing an elec-

tron from one of the highest-energy occupied orbitals of the related closed-shell system. (see

Fig. 3.1 for an illustration of the formation of the CH and OH radicals from the underlying

closed-shell systems, CH+ and OH−, respectively. It is, therefore, reasonable, in a manner

similar to that of multireference approaches, to use these orbitals as active orbitals in the EA-

and IP-EOMCC calculations. Thus, we divide the available spin-orbitals of a closed-shell

N -electron system into four disjoint groups of core or inactive occupied spin-orbitals, labeled

by lower-case bold letters i, j, . . . , active spin-orbitals occupied in the reference determinant

|Φ〉, labeled by upper-case bold letters I, J, . . . , active spin-orbitals unoccupied in |Φ〉, la-

beled by upper-case bold letters A, B, . . . , and virtual or inactive unoccupied spin-orbitals,

labeled by lower-case bold letters a, b, . . . . We continue to designate the occupied and

unoccupied spin-orbitals in |Φ〉 by the italic characters i, j, . . . and a, b, . . . , respectively,

if the active/inactive character of the spin-orbitals is not specified. Once the above orbital

classification scheme is established, we use it to define the electron attaching and electron

removing operators R
(N±1)
µ of the active-space EA- and IP-EOMCC and SAC-CI methods,

following the general recipe introduced in Refs. [157–162] (see also, Ref. [54]). In particular,

the active-space EA-EOMCCSD(3p-2h){Nu} approach using Nu active unoccupied orbitals

is obtained by replacing the 3p-2h component Rµ,3p-2h of the electron attaching operator
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R
(N+1)
µ , Eq. (3.12), by [54, 157–160]

rµ,3p-2h =
∑

j>k,A<b<c

r
jk

Abc aAabacakaj . (3.15)

The relatively small set of the unknown amplitudes r
jk

Abc defining rµ,3p-2h, Eq. (3.15), in

which at least one of the three unoccupied spin-orbital indices is active, and the remaining 1p

and 2p-1h amplitudes, ra and r
j

ab, respectively, that enter the (N +1)-electron wave functions

of the active-space EA-EOMCCSD(3p-2h){Nu} approach are obtained by diagonalizing the

similarity-transformed Hamiltonian of CCSD, Eq. (3.13), in the subspace of the (N + 1)-

electron Hilbert space spanned by the |Φa〉, |Φab
j〉, and |ΦAbc

jk〉 determinants.

This reduces the iterative n2
on

5
u steps of the parent EA-EOMCCSD(3p-2h) approach

to the Nun2
on

4
u steps, which typically are a small prefactor Nu (≪ nu) times the cost of

the CCSD calculations, enabling one to perform the EA-EOMCCSD(3p-2h)-level calcula-

tions for much larger systems and basis sets than the full EA-EOMCCSD(3p-2h) approach

using all 3p-2h r
jk

abc amplitudes would normally allow. Similarly, the active-space IP-

EOMCCSD(3h-2p){No} approach using No active occupied orbitals is obtained by replacing

the 3h-2p component Rµ,3h-2p of the ionizing operator R
(N−1)
µ , Eq. (3.14), by [54,157–160]

rµ,3h-2p =
∑

I>j>k,b<c

r
Ijk
bc abacakajaI, (3.16)

where the relatively small set of the unknown amplitudes r
Ijk
bc defining rµ,3h-2p, Eq. (3.16),

in which at least one of the three occupied spin-orbital indices is active, and the remaining 1h

and 2h-1p amplitudes, ri and r
ij
b, respectively, that define the (N−1)-electron wave functions

17



Figure 3.1: Orbital levels of the CH+ and OH− ions and a schematic representation of the
electron attachment and ionization processes that lead to the formation of the CH and OH
radicals from the CH+ and OH− reference closed-shell systems. Valence shells of CH+ and
OH− that play a dominant role in the relevant electron attachment and ionization processes
and that are used in the active-space EA- and IP-EOMCC calculations are emphasized with
the help of dotted frames.

of the active-space IP-EOMCCSD(3h-2p){No} approach are obtained by diagonalizing the

similarity-transformed Hamiltonian of CCSD, Eq. (3.13), in the subspace of the (N − 1)-

electron Hilbert space spanned by the |Φi〉, |Φ b
ij 〉, and |Φ bc

Ijk〉 determinants. This reduces

the iterative n3
on

4
u steps of the parent IP-EOMCCSD(3h-2p) approach to the Non

2
on

4
u steps,

which are a small prefactor No (< no) times the cost of the CCSD calculations, enabling

one to perform the IP-EOMCCSD(3h-2p)-level calculations for larger systems and basis sets

than the full IP-EOMCCSD(3h-2p) scheme would allow.
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3.2 Geometries and adiabatic excitation energies of the

low-lying valence states of CNC, C2N, N3, and NCO

3.2.1 Computational details

To examine the performance of the full and active-space EA- and IP-EOMCC approaches

with up to 3p-2h/3h-2p excitations in the calculations of the ground and low-lying excited

states of the CNC, C2N, NCO, and N3 molecules and to answer the questions about the

role of the method and basis set employed in determining the relevant nuclear geometries

and adiabatic excitation energies, we performed the EA-EOMCCSD(2p-1h), active-space

EA-EOMCCSD(3p-2h){4}, and full EA-EOMCCSD(3p-2h) calculations for the CNC and

C2N molecules using the CCSD ground states of the CNC+ and C2N+ closed-shell cations

to provide the reference wave functions and the IP-EOMCCSD(2h-1p), active-space IP-

EOMCCSD(3h-2p){2}, and full IP-EOMCCSD(3h-2p) calculations for the NCO and N3

molecules using the CCSD ground states of the NCO− and N3
− closed-shell anions to pro-

vide the reference wave functions. In addition to the previously employed [52, 179] DZP

basis [185], we used the cc-pVDZ (all six methods), cc-pVTZ (all six methods), and cc-

pVQZ (the EA-EOMCCSD(2p-1h), EA-EOMCCSD(3p-2h){4}, IP-EOMCCSD(2h-1p), and

IP-EOMCCSD(3h-2p){2} approaches) basis sets [186]. The full EA-EOMCCSD(3p-2h) and

IP-EOMCCSD(3h-2p) calculations using the largest cc-pVQZ basis set could not be per-

formed due to the large computer costs of the relevant numerical geometry optimizations (the

analytic gradients of the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) approaches are

not yet available). The active orbital spaces for the EA-EOMCCSD(3p-2h){4} calculations
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for CNC and C2N consisted of the two lowest-energy pairs of unoccupied π molecular or-

bitals of CNC+ and C2N+, respectively. The active orbital spaces for the IP-EOMCCSD(3h-

2p){2} calculations for NCO and N3 consisted of the highest-energy pair of occupied orbitals

of NCO− and N3
−, respectively.

Unlike in the earlier work [52, 179], where the nuclear geometries of the ground and

excited states of the CNC, C2N, NCO and N3 species were optimized using only one method

(SAC-CI-SDT-R/PS [187–189]) and one small basis set (DZP), in each molecular case and

for each electronic state and basis set considered in the present work, the nuclear geometries

were optimized at the same level of the EA/IP-EOMCC theory and with the same basis

set as those used to evaluate the corresponding total and adiabatic excitation energies. The

geometry optimizations using the cc-pVxZ (x = D, T, Q) basis sets were constrained to

linear geometries, since the analogous unconstrained optimizations using the DZP basis set

and bent initial structures showed that the optimum geometries of all of the calculated

states of CNC, C2N, NCO and N3 are linear. The unconstrained optimizations with the

DZP basis set demonstrated that we can assume the D∞h (in practice, D2h) symmetry for

each of the calculated states of CNC and N3, and that we can use the C∞v (in practice,

C2v) symmetry in the geometry optimizations for C2N and NCO. In all post-RHF (CCSD

and EA/IP-EOMCC) calculations, the lowest-energy core orbitals correlating with the 1s

orbitals of the C and N atoms were kept frozen and the spherical components of the d,

f , and g functions were employed throughout. All EA/IP-EOMCC calculations reported

in this study were performed using the EA-EOMCCSD(2p-1h), IP-EOMCCSD(2h-1p), and

full and active-space EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) routines described
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in Ref. [159] and incorporated by the Piecuch group in the GAMESS package [190, 191],

which were interfaced with the numerical derivative GAMESS codes by Dr. Michael W.

Schmidt.

In addition to the results of the finite basis set calculations using the cc-pVxZ (x =

D, T, Q) basis sets, we extrapolated the total and excitation energies obtained in the EA-

and IP-EOMCC calculations for the CNC, C2N, NCO and N3 molecules to the complete ba-

sis set (CBS) limit. We had to limit our CBS extrapolations to the EA-EOMCCSD(2p-1h),

IP-EOMCCSD(2h-1p), active-space EA-EOMCCSD(3p-2h){4}, and active space IP-

EOMCCSD(3h-2p){2} calculations, since we were unable to carry out the full EA-

EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) computations including geometry optimiza-

tions using the cc-pVQZ basis set. In all of the remaining cases, we had access to the

complete data sets corresponding to the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, en-

abling the reasonably meaningful CBS extrapolations. In analogy to the earlier study of

the low-lying states of methylene [192] and to verify the numerical stability of our CBS

extrapolations, two different extrapolation schemes, referred to as the CBS-A and CBS-B

approaches, were utilized in this work.

In the CBS-A scheme, we first determined the CBS limit of the ground-state CCSD corre-

lation energy of the closed-shell N -electron reference system relevant to the EA/IP-EOMCC

calculations for the (N ± 1)-electron target species using the well-known extrapolation for-

mula [193]

∆E(x) = ∆E∞ + Ax−3, (3.17)

and the cc-pVTZ and cc-pVQZ data. Here, ∆E(x) is the CCSD correlation energy obtained
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with the cc-pVxZ basis, where x represents the cardinal number of the basis set (x = 3 for

cc-pVTZ and x = 4 for cc-pVQZ), and ∆E∞ is the CCSD correlation energy in the CBS

limit. The resulting extrapolated correlation energy ∆E∞ was then added to the RHF/cc-

pV6Z energy of the N -electron reference system, computed at the optimized geometry of the

state of interest resulting from the appropriate EA- or IP-EOMCC/cc-pVQZ calculations. In

doing so, we used the well-known fact that the RHF energies converge exponentially with the

basis set and it is usually better to determine the CBS limit of the RHF energy by performing

the calculations with the very large correlation consistent basis set, such as cc-pV6Z, if such

calculations are affordable (we verified the level of basis-set convergence of the RHF/cc-

pV6Z calculations by comparing the RHF/cc-pV5Z and RHF/cc-pV6Z data, obtaining the

differences of about 0.2 millihartree in all of the examined cases). Once the CBS values of the

RHF and CCSD energies of the N -electron reference system were determined, we computed

the desired CBS limits of the ground- and excited-state energies of the (N±1)-electron target

species corresponding to the EA- or IP-EOMCC calculations of interest using the formula

E
EA/IP-EOMCC
µ,∞ (N ± 1) = ERHF

6Z (N) + ∆ECCSD
0,∞ (N)

+ E
EA/IP-EOMCC
µ,QZ (N ± 1) − ECCSD

0,QZ (N),

(3.18)

where E
EA/IP-EOMCC
µ,∞ (N ±1) is the final extrapolated energy of the (N ±1)-electron excited

state |Ψ(N±1)
µ 〉, ERHF

6Z (N) is the ground-state RHF energy of the closed-shell N -electron

reference system obtained with the cc-pV6Z basis set, ∆ECCSD
0,∞ (N) is the extrapolated

CCSD correlation energy of the N -electron reference system obtained using Eq. (3.17),

E
EA/IP-EOMCC
µ,QZ (N ± 1) is the total EA/IP-EOMCC energy of the (N ± 1)-electron excited
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state |Ψ(N±1)
µ 〉 obtained with the cc-pVQZ basis set, and ECCSD

0,QZ (N) is the total CCSD

energy of the N -electron reference system obtained using the cc-pVQZ basis set (note that

the difference of the last two energies in Eq. (3.18) is the electron-attached or ionized energy

ω
(N±1)
µ , Eq. (3.9), resulting from the relevant EA/IP-EOMCC diagonalization of H̄

(CCSD)
N,open ,

obtained with the cc-pVQZ basis). This method of estimating the CBS values of the total

electronic energies of the ground and excited states of the CNC, C2N, NCO and N3 radicals

is based on the assumption that the electron-attachment or ionization energies ω
(N±1)
µ , Eq.

(3.9), obtained with the cc-pVQZ basis set are essentially converged with respect to the

basis set, so all one has to do is obtain the CBS limit of the CCSD ground-state energy

of the N -electron reference system and add the cc-pVQZ values of the electron-attachment

or ionization energies to estimate the CBS energies of the ground and excited states of the

corresponding (N ± 1)-electron target species. The validity of this assumption is discussed

in what follows.

In the second basis set extrapolation method, referred to as the CBS-B approach, the

total CBS energy of each (N ± 1)-electron target state of interest was directly extrapolated

using the formula [194]

E(x) = E∞ + Be−(x−1) + Ce−(x−1)2 (3.19)

and the cc-pVDZ, cc-pVTZ, and cc-pVQZ data. As in Eq. (3.17), the x variable number

entering Eq. (3.19) is the cardinal number of the cc-pVxZ basis set (x = 2 for cc-pVDZ, x = 3

for cc-pVTZ, and x = 4 for cc-pVQZ), E(x) is the total EA/IP-EOMCC energy computed

with the cc-pVxZ basis set, and E∞ is the desired CBS limit of the total EA/IP-EOMCC
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energy for a given electronic state of the (N±1)-electron species. The difference between the

CBS-A and CBS-B extrapolation schemes lies in the fact that the latter scheme extrapolates

the total EA- or IP-EOMCC energy of each electronic state of the (N ± 1)-electron target

species separately, using Eq. (3.19), whereas the former approach extrapolates the ground-

state energy of the N -electron reference system only using Eq. (3.17), while making an

assumption that the electron-attachment and ionization energies resulting from the EA-

and IP-EOMCC calculations converge faster with the basis set than the total energies of the

(N±1)-electron target species, as reflected in Eq. (3.18). A comparison of both extrapolation

schemes will tell us how accurate this assumption is.

3.2.2 Results

The results of our EA- and IP-EOMCC calculations, along with the available experimental

data [195–197], are reported in Tables 3.1–3.6. The EA-EOMCCSD(2p-1h), EA-EOMCCSD

(3p-2h){4}, and full EA-EOMCCSD(3p-2h) results for the CNC and C2N molecules are

reported in Tables 3.1 and 3.2 for the total and adiabatic excitation energies, and 3.3

for the geometries. The IP-EOMCCSD(2h-1p), IP-EOMCCSD(3h-2p){2}, and full IP-

EOMCCSD(3h-2p) results for the NCO and N3 molecules are reported in Tables 3.4 and 3.5

for the total and adiabatic excitation energies, and 3.6 for the geometries. Our discussion is

divided into two subsections. Subsection 3.2.2.1 examines the EA-EOMCC results for CNC

and C2N. The IP-EOMCC calculations for NCO and N3 are discussed in Subsection 3.2.2.2.
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3.2.2.1 EA-EOMCC results for CNC and C2N

Let us begin our discussion with the EA-EOMCC calculations with the CNC molecule (see

Tables 3.1 and 3.3). For CNC, the EA-EOMCC optimizations employing the DZP basis

set produced results that deviate from the previously reported [179] SAC-CI-SDT-R/PS

optimized geometries and previously calculated [52, 179] EA-EOMCC adiabatic excitation

energies using the SAC-CI-SDT-R/PS geometries, all obtained with the same DZP basis, by

0.001-0.009 Å and 0.002-0.003 eV, respectively, for all states and all methods considered in

this work. Seeing that our present EA-EOMCC optimizations employing the DZP basis set

reproduced the analogous results of the SAC-CI-SDT-R/PS geometry optimizations and the

EA-EOMCC excitation energies at the SAC-CI-SDT-R/PS geometries reported in Ref. [179],

we proceeded to study the effect of the use of the correlation-consistent basis sets of the cc-

pVxZ quality on the calculated excitation energies and geometries. As mentioned in the

previous section, in all of the EA-EOMCC calculations for CNC using the cc-pVxZ basis

sets, reported in this study, we used the D2h Abelian symmetry. Thus, the ground X 2Πg

state of CNC was calculated as the lowest-energy 2B2g state, although we could also use the

lowest-energy 2B3g state to represent the doubly (if we ignore spin) degenerate X 2Πg state,

obtaining exactly the same results. The A 2∆u state was calculated as the lowest-energy

2Au state, although we could obtain the equivalent energies and geometries of this doubly

(again, ignoring spin) degenerate state by considering the lowest-energy 2B1u state (which

was useful to avoid confusion with the spatially non-degenerate B 2Σ+
u state). The B 2Σ+

u

state was calculated as the second 2B1u state. Unless otherwise specified, the discussion

below focuses on the EA-EOMCC calculations using the cc-pVxZ (x = D, T, Q) basis sets.
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Table 3.1: Total and adiabatic excitation energies for the ground and low-lying excited states of CNC, as obtained with
the different EA-EOMCC approaches using the DZP [4s2p1d] and cc-pVxZ (x = D, T, Q) basis sets and extrapolating
to the CBS limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Πg A 2∆u B 2Σ+
u A 2∆u -X 2Πg B 2Σ+

u -X 2Πg

EA-EOMCCSD(2p-1h) DZP -130.406718 -130.141822 -130.125873 7.208 7.642

x=D -130.402813 -130.136443 -130.120048 7.248 7.694

x=T -130.502669 -130.220645 -130.204320 7.674 8.118

x=Q -130.534268 -130.248264 -130.232033 7.783 8.224

CBS-A -130.551020 -130.264878 -130.248586 7.786 8.230

CBS-B -130.552172 -130.264020 -130.247849 7.841 8.281

EA-EOMCCSD(3p-2h) DZP -130.411686 -130.260720 -130.238177 4.108 4.721

x=D -130.408191 -130.257611 -130.234329 4.097 4.731

x=T -130.510334 -130.358548 -130.335201 4.130 4.766

EA-EOMCCSD(3p-2h){4} DZP -130.409784 -130.259560 -130.236779 4.088 4.708

x=D -130.406511 -130.256819 -130.233332 4.073 4.712

x=T -130.507154 -130.356797 -130.333074 4.091 4.737

x=Q -130.538435 -130.388104 -130.364472 4.091 4.734

CBS-A -130.554997 -130.404664 -130.380953 4.091 4.736

CBS-B -130.556095 -130.405806 -130.382242 4.090 4.731

Experimenta 3.761 4.315

a Taken from Refs. [195, 196].



The ground X 2Πg state of CNC is dominated by 1p excitations out of the ground state

of the closed-shell reference CNC+ ion, which helps the low-order EA-EOMCC calculations

for this state. However, the A 2∆u and B 2Σ+
u excited states of CNC exhibit a significant

two-electron excitation character relative to the X 2Πg state, resulting in the large 2p-1h

contributions in the corresponding wave functions relative to the ground state of CNC+

which reflect on the more complex multireference nature of these two states. As a result and

as shown in Table 3.1, the basic EA-EOMCCSD(2p-1h) optimizations produced adiabatic

excitation energies that deviate from the experimental values by 3.379-4.022 eV for the

A 2∆u and B 2Σ+
u states, demonstrating the same characteristically large errors compared

to experiment that we typically see when the EA-EOMCCSD(2p-1h) approach is applied

to the excited states of radicals dominated by two-electron transitions [157–160]. The full

EA-EOMCCSD(3p-2h) method improves these poor results, reducing the deviations from

experiment to about 0.336-0.451 eV for both the A 2∆u and B 2Σ+
u states, when the cc-

pVDZ and cc-pVTZ basis sets are employed. The reason for this considerable improvement

in the data over the EA-EOMCCSD(2p-1h) method is the explicit inclusion of the 3p-2h

terms in the R
(N+1)
µ operator in the EA-EOMCCSD(3p-2h) calculations.

As explained in the previous section, the inclusion of all 3p-2h components in the R
(N+1)
µ

operator is computationally demanding, particularly when one has to perform numerical

gradient optimizations, such as those reported in this work. Thus, it is of great significance

to note that the active-space EA-EOMCCSD(3p-2h){4} optimizations using the cc-pVDZ

and cc-pVTZ basis sets, with only four unoccupied orbitals in the active space, which are

only a few times more expensive than the corresponding ground-state CCSD calculations
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and which require a small fraction of the CPU time, disk, and memory when compared to

the parent EA-EOMCCSD(3p-2h) calculations, reproduce the full EA-EOMCCSD(3p-2h)

optimization results to within 0.019-0.039 eV for the adiabatic excitation energies and 0.8-

3.2 millihartree for the total energies of the ground and excited states of CNC examined

in this study (see Table 3.1). The deviations of the EA-EOMCCSD(3p-2h){4} results from

experiment are 0.312-0.422 eV for all three correlation consistent basis sets used in the EA-

EOMCCSD(3p-2h){4} optimizations. It is interesting and somewhat surprising to note the

deviations from experiment increase slightly with the size of the cc-pVxZ basis set for all

three EA-EOMCC methods exploited in this work. To help understand this behavior, we

extrapolated our EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} results to the CBS

limit.

Examining the total energies of the ground and excited states of CNC shown in Table 3.1,

it is clear that they are converging with the basis set in a systematic manner. The CBS-A

extrapolation scheme is based on the simplifying assumption that the electron-attachment

(or, in the IP case, ionization) energies are reasonably well converged with the basis set,

when the cc-pVQZ basis set is employed. The data in Table 3.1 show that this is indeed a

valid assumption, as the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} excitation

energies do not significantly change when moving from the cc-pVTZ to cc-pVQZ basis, the

largest change being 0.109 eV for the less accurate EA-EOMCCSD(2p-1h) and only 0.003 eV

for the active-space EA-EOMCCSD(3p-2h){4} approach. Moreover, the CBS extrapolations

resulting from the CBS-A and CBS-B schemes produce results that are in good agreement,

especially for the higher-order EA-EOMCCSD(3p-2h){4} method, where the differences in
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total energies do not exceed 1.3 millihartree, regardless of the electronic state of CNC consid-

ered (we recall that the CBS-B scheme extrapolates the total energy of each state separately,

without any simplifying assumptions). The CBS limits of the excitation energies resulting

from the CBS-A and CBS-B extrapolations obtained with the EA-EOMCCSD(3p-2h){4} ap-

proach are essentially identical, deviating by 0.001 eV and 0.005 eV for the A 2∆u and B 2Σ+
u

states, respectively. Thus, we can safely conclude that the CBS EA-EOMCCSD(3p-2h){4}

results are stable to approximately 1 millihartree for the total energies and 0.005 eV for the

adiabatic excitation energies, and can be regarded as converged with the basis set.

The CBS-A and CBS-B excitation energies obtained with the EA-EOMCCSD(3p-2h){4}

approach deviate from the available experimental values by no more than 0.330 eV for the

A 2∆u state and no more than 0.421 eV for the B 2Σ+
u state. In Ref. [198], the adiabatic

excitation energies of CNC were calculated using the CASPT2 approach and the CASSCF-

based MRCI (multireference CI) calculations. The CASPT2 results reported in Ref. [198]

deviate from experiment by 0.297 eV for the A 2∆u state and 0.009 eV for the B 2Σ+
u state.

The latter value must be a result of the fortuitous cancellation of errors, since the CASSCF-

based MRCI calculations reported in the same work give the deviations from experiment

which are 0.253 eV for the A 2∆u state and 0.328 eV for the B 2Σ+
u state. We can see that

our computationally much less demanding and much easier to use, largely single-reference,

active-space EA-EOMCCSD(3p-2h) calculations can account for the multireference charac-

ter of the excited states of open-shell species, such as the A 2∆u and B 2Σ+
u states of CNC,

without having to sacrifice the accuracies of genuine high-level multireference calculations.

Our converged EA-EOMCCSD(3p-2h){4} data and their EA-EOMCCSD(3p-2h)/cc-pVTZ
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analogs indicate one of the following two things: (i) the higher-order (e.g. 4p-3h) excita-

tions are needed in the EA-EOMCC calculations to close the gap between the experimental

and theoretical data or (ii) the experiments that we use here to assess the quality of our

calculations have some unaccounted errors that may have to be reexamined.

For the C2N molecule (Tables 3.2 and 3.3), the EA-EOMCC optimizations employing the

DZP basis carried out in this study produced results that are very similar to the previously

reported [52,179] EA-EOMCC adiabatic excitation energies calculated at the SAC-CI-SDT-

R/PS optimized geometries, all obtained with the same DZP basis as that used here. For

example, the deviations between the adiabatic excitation energies obtained using the present

EA-EOMCC/DZP optimizations and the analogous excitation energies reported in Refs.

[52, 179], which used the SAC-CI-SDT-R/PS geometries, are 0.087-0.155 eV for the EA-

EOMCCSD(2p-1h) case and 0.000-0.003 eV for the full EA-EOMCCSD(3p-2h) and active-

space EA-EOMCCSD(3p-2h){4} cases, for all three excited states of C2N examined in this

study. Again, seeing that our present EA-EOMCC optimizations employing the DZP basis

set reproduced the analogous results calculated at the geometries obtained with the SAC-

CI-SDT-R/PS approach, reported in Refs. [52, 179], we proceeded to study the effect of

the use of the correlation-consistent basis sets of the cc-pVxZ quality on the calculated

excitation energies and geometries. As mentioned in Section 3.2.1, in all of the EA-EOMCC

calculations for C2N using the cc-pVxZ basis sets, discussed in the present paper, we used

the C2v Abelian symmetry. Thus, the ground X 2Π state of C2N was calculated as the

lowest-energy 2B1 state, although we could also use the lowest-energy 2B2 state, obtaining

identical results. The doubly (ignoring spin) degenerate A 2∆ state was calculated as the
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lowest-energy 2A1 or 2A2 state (we carried out both calculations to verify the correctness

of our results and to avoid confusion with the spatially non-degenerate B 2Σ− state), the

B 2Σ− state was calculated as the second 2A2 state, and the C 2Σ+ state was obtained as

the second 2A1 state. As in the CNC case, our discussion of the results obtained for C2N

focuses on the EA-EOMCC calculations using the cc-pVxZ (x = D, T, Q) basis sets.

In analogy to CNC, the ground X 2Π state of C2N is dominated by 1p excitations

out of the ground state of the closed-shell reference C2N+ ion, but the low-lying A 2∆,

B 2Σ−, and C 2Σ+ excited states have significant 2p-1h contributions demonstrating the

rather complex multireference nature of their corresponding wave functions. The B 2Σ−

state also has non-negligible 3p-2h contributions, which make this state extremely difficult

to describe. All of this causes major problems in the EA-EOMCCSD(2p-1h) calculations.

As shown in Table 3.2, even with a large cc-pVQZ basis set, the EA-EOMCCSD(2p-1h)

method incorrectly orders the excited states of C2N, describing the C 2Σ+ state as being

lower in energy than the B 2Σ− state. The errors in the EA-EOMCCSD(2p-1h) results

for the adiabatic excitation energies of C2N relative to experiment are huge. Indeed, our

geometry optimizations using the EA-EOMCCSD(2p-1h) approach produce errors in the

calculated adiabatic excitation energies of C2N relative to experiment of 3.507-3.969 eV for

the A 2∆ state, 4.956-5.511 eV for the B 2Σ− state, and 3.422-3.836 eV for the C 2Σ+ state.

As with CNC, the full inclusion of the 3p-2h components in the electron attaching operator

R
(N+1)
µ significantly improves the adiabatic excitation energies relative to the disastrous

EA-EOMCCSD(2p-1h) results, reducing the errors relative to experiment to at most 0.418

eV for the A 2∆ state, at most 0.915 eV for the B 2Σ− state, and at most 0.524 eV for
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the C 2Σ+ state when the cc-pVDZ and cc-pVTZ basis sets are employed, but the full EA-

EOMCCSD(3p-2h) are computationally demanding, particularly when larger basis sets have

to be examined. Thus, it is important to examine how well the considerably less expensive

active-space EA-EOMCCSD(3p-2h) approach works for the low-lying excited states of C2N,

when the cc-pVxZ basis sets are employed.
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Table 3.2: Total and adiabatic excitation energies for the ground and low-lying excited states of C2N obtained with the
various EA-EOMCC approaches using the DZP [4s2p1d] and cc-pVxZ (x = D, T, Q) basis sets and extrapolating to the
CBS limit.

Adiabatic Excitation
Total Energy (hartree)

Energy (eV)

Method Basis X 2Π A 2∆ B 2Σ− C 2Σ+ A 2∆- B 2Σ−- C 2Σ+-

X 2Π X 2Π X 2Π

EA-EOMCCSD(2p-1h) DZP -130.400501 -130.176452 -130.117500 -130.156651 6.097 7.701 6.635

x=D -130.400086 -130.174345 -130.115824 -130.152828 6.143 7.735 6.728

x=T -130.499176 -130.259914 -130.198940 -130.240134 6.511 8.170 7.049

x=Q -130.530280 -130.287558 -130.225643 -130.267832 6.605 8.290 7.142

CBS-A -130.546521 -130.303831 -130.241794 -130.283903 6.604 8.292 7.146

CBS-B -130.548409 -130.303738 -130.241271 -130.284090 6.658 8.358 7.193

EA-EOMCCSD(3p-2h) DZP -130.405260 -130.292989 -130.270231 -130.265181 3.055 3.674 3.812

x=D -130.404842 -130.292610 -130.270337 -130.264086 3.054 3.660 3.830

x=T -130.506456 -130.394642 -130.370688 -130.366299 3.043 3.694 3.814

EA-EOMCCSD(3p-2h){4} DZP -130.403651 -130.292385 -130.269696 -130.264361 3.028 3.645 3.791

x=D -130.403260 -130.292089 -130.269870 -130.263371 3.025 3.630 3.807

x=T -130.503555 -130.393547 -130.369756 -130.364858 2.993 3.641 3.774

x=Q -130.533052 -130.423692 -130.399922 -130.394864 2.976 3.623 3.760

CBS-A -130.543559 -130.433071 -130.408605 -130.404035 3.007 3.672 3.797

CBS-B -130.549517 -130.440555 -130.416854 -130.411633 2.965 3.610 3.752

Experimenta 2.636 2.779 3.306

a Taken from Refs. [195, 197].



As shown in Table 3.2, the results of the active-space EA-EOMCCSD(3p-2h){4} cal-

culations are almost identical to those obtained with the parent EA-EOMCCSD(3p-2h)

approach. The adiabatic excitation energies obtained with the full and active space EA-

EOMCCSD(3p-2h) methods, where the latter approach uses only four unoccupied orbitals

in the active space, calculated using the cc-pVDZ and cc-pVTZ basis sets, differ by 0.023-

0.053 eV for all states of C2N examined in this work. The total energies obtained in the full

EA-EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} calculations employing

the cc-pVDZ and cc-pVTZ basis sets differ by 1.6-2.9 millihartree for the X 2Π state, 0.5-1.1

millihartree for the A 2∆ state, 0.5-0.9 millihartree for the B 2Σ− state, and 0.7-1.4 milli-

hartree for the C 2Σ+ state. We would like to emphasize once again that the active-space

EA-EOMCCSD(3p-2h){4} calculations provide results with comparable accuracy to its more

expensive EA-EOMCCSD(3p-2h) parent method at a small fraction of the computational

cost and with an effort which is on the same order as that characterizing the standard CCSD

calculations. Comparing the EA-EOMCCSD(3p-2h){4} results with experiment, we see that

the adiabatic excitation energies resulting from the EA-EOMCCSD(3p-2h){4} calculations

using the cc-pVQZ basis set differ from the available experimental data by 0.340 eV, 0.844

eV, and 0.454 eV for the A 2∆, B 2Σ−, and C 2Σ+ states, respectively, which is a huge

error reduction when compared to the corresponding EA-EOMCCSD(2p-1h)/cc-pVQZ cal-

culations that give the 3.969 eV, 5.511 eV, and 3.836 eV errors for the same three states,

in addition to wrong state ordering. The full EA-EOMCCSD(3p-2h) and active-space EA-

EOMCCSD(3p-2h){4} calculations produce the correct state ordering and relatively small

errors for the A 2∆ and C 2Σ+ states, but the discrepancy between the full and active-space
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EA-EOMCCSD(3p-2h) results on the one hand and experiment on the other hand for the

B 2Σ− state, on the order of 0.9 eV independent of the basis set, is a problem that needs to

be addressed.

The larger deviations with experiment observed in the full EA-EOMCCSD(3p-2h) and

active-space EA-EOMCCSD(3p-2h){4} calculations for the B 2Σ− state, which do not seem

to be decreasing with the basis set and careful geometry optimizations performed in this work,

must be related to the presence of the non-negligible 3p-2h contributions in the B 2Σ− wave

function, which indicate a highly multireference character of this state that the EA-EOMCC

methods used in the present study cannot capture without incorporating higher-than-3p-2h

contributions in the EA-EOMCC considerations. As explained in Ref. [160], the presence

of significant 3p-2h contributions in the wave function requires an explicit consideration

of the 4p-3h and, perhaps, higher-than-4p-3h components of the R
(N+1)
µ operator in the

EA-EOMCC calculations, neglected at the EA-EOMCCSD(3p-2h) level. The highly mul-

tireference character of the B 2Σ− state becomes clear when we examine the CASPT2

and CASSCF-based MRCI calculations reported in Ref. [198]. These calculations are in

reasonable agreement with the results of our full and active-space EA-EOMCCSD(3p-2h)

calculations for the A 2∆ and C 2Σ+ states, producing the 0.238 eV error for the A 2∆ state

and 0.219 eV error for the C 2Σ+ state when the CASPT2 approach is employed, but the

CASPT2 and MRCI results obtained in Ref. [198] for the B 2Σ− state are considerably more

accurate than those obtained here with the full and active-space EA-EOMCCSD(3p-2h) the-

ory levels. Indeed, the CASPT2 and MRCI calculations for the B 2Σ− state reported in

Ref. [198] give the 0.225 eV and 0.250 eV errors, respectively, relative to experiment, as
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opposed to ∼ 0.9 eV obtained with the full EA-EOMCCSD(3p-2h) and active-space EA-

EOMCCSD(3p-2h){4} methods. Interestingly, the MRCI approach improves the CASPT2

results for the A 2∆ and C 2Σ+ states as well, reducing the 0.238 eV and 0.219 eV errors

obtained in the CASPT2 calculations to 0.060 eV and 0.058 eV, respectively [198], which

suggests that the incorporation of the 4p-3h and, perhaps, some other higher-order excita-

tions in the EA-EOMCC calculations may be necessary to further improve the description

of all three excited states of C2N examined in this work. Since the calculations reported in

the present paper exclude the possibility that the basis set or geometry optimizations may

help the EA-EOMCCSD(3p-2h) results, the next logical step would be to examine the role

of 4p-3h excitations in the EA-EOMCC calculations. One may also have to examine if the

use of the full CCSDT or active-space CCSDt approaches rather than the CCSD method

in providing the ground-state wave function for the reference C2N+ ion plays a role here.

These will be the topics of future work.

In distinct juxtaposition to the CNC case, as larger basis sets are employed, the EA-

EOMCCSD(3p-2h) and EA-EOMCCSD(3p-2h){4} adiabatic excitation energies for all three

states of C2N investigated in the present study become slightly smaller and slightly closer to

the experimental values or do not change, although, as already pointed out, the significant

errors remain even when the larger basis sets of the cc-pVTZ or cc-pVQZ quality are em-

ployed. Interestingly, the EA-EOMCCSD(2p-1h) results have deviations from experiment

that seem to grow with the size of the basis set. It is, therefore, worthwhile to examine the

CBS limits of our EA-EOMCC results for the C2N system.

As shown in Table 3.2, the adiabatic excitation energies resulting from the EA-EOMCCSD
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(2p-1h) and EA-EOMCCSD(3p-2h){4} calculations with the cc-pVQZ basis set are reason-

ably well converged with the basis and, although the total energies of the individual electronic

states of C2N are not converged when the cc-pVQZ basis set is employed, they behave in a

systematic manner as we go from the cc-pVDZ to cc-pVQZ basis sets, facilitating the CBS

extrapolations. Indeed, when going from the cc-pVTZ to the cc-pVQZ basis sets, the changes

in the EA-EOMCCSD(3p-2h){4} excitation energies are very small, at most 0.018 eV. The

analogous changes in the EA-EOMCCSD(2p-1h) excitation energies are somewhat larger (at

most 0.120 eV), but we can still view them as reasonably stable considering the complicated

nature of the C2N excited states that the EA-EOMCCSD(2p-1h) approach has significant

problems with. Overall, the simplifying assumption of the CBS-A extrapolation scheme that

one can treat the electron-attachment energies resulting from the EA-EOMCC calculations

with the cc-pVQZ basis set as essentially converged values remains valid for C2N, so we

expect the CBS-A scheme to provide meaningful results. This can be verified by comparing

the CBS-A and CBS-B extrapolations. Comparing the EA-EOMCCSD(2p1h) CBS-A and

CBS-B values, the total energies differ by 1.9 millihartree for the X 2Π state, 0.1 millihartree

for the A 2∆ state, 0.5 millihartree for the B 2Σ− state, and 0.2 millihartree for the C 2Σ+

state. The adiabatic excitation energies resulting from the CBS-A and CBS-B extrapolations

of the EA-EOMCCSD(2p1h) data differ by 0.054 eV for the A 2∆ state, 0.066 eV for the

B 2Σ− state, and 0.047 eV for the C 2Σ+ state. The CBS-A and CBS-B results for the

EA-EOMCCSD(3p-2h){4} total energies differ by 6.0 millihartree for the X 2Π state, 7.5

millihartree for the A 2∆ state, 8.2 millihartree for the B 2Σ− state, and 7.6 millihartree for

the C 2Σ+ state. The differences in the adiabatic excitation energies obtained with the two
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CBS extrapolation schemes, as applied to the EA-EOMCCSD(3p-2h){4} data, are 0.042 eV,

0.062 eV, and 0.045 eV for the A 2∆, B 2Σ− and C 2Σ+ states, respectively. We can con-

clude that our CBS EA-EOMCC results for the C2N molecule are generally stable to within

about 8 millihartree for the total energies and 0.060 eV for the adiabatic excitation energies.

The deviations of the CBS-A extrapolated EA-EOMCCSD(3p-2h){4} results from experi-

ment are 0.371 eV for the A 2∆ state, 0.893 eV for the B 2Σ− state, and 0.491 eV for the

C 2Σ+ state. The analogous CBS-B calculations employing the EA-EOMCCSD(3p-2h){4}

data give the 0.329 eV, 0.831 eV, and 0.446 eV errors, respectively. These results indicate

once again that higher-than-3p-2h excitations and, perhaps, methods better than CCSD for

the description of the ground state of the reference C2N+ ion may have to be included in

the EA-EOMCC calculations for the low-lying states of the C2N molecule, particularly in

the case of the B 2Σ− state.
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Table 3.3: Comparison of the optimized equilibrium geometries for the low-lying states of CNC and C2N, as obtained
with the EA-EOMCC and SAC-CI-SDT-R/PS approaches using the DZP[4s2p1d] and cc-pVxZ (x = D, T, Q) basis sets.

CNCa C2N
b

Method Basis X 2Πg A 2∆u B 2Σ+
u X 2Π A 2∆ B 2Σ− C 2Σ+

SAC-CI-SDT-R/PS DZP 1.253 1.256 1.259 (1.400, 1.185) (1.315, 1.207) (1.302, 1.223) (1.311, 1.214)

EA-EOMCCSD(2p-1h) DZP 1.259 1.258 1.260 (1.412, 1.196) (1.372, 1.186) (1.372, 1.190) (1.365, 1.192)

x=D 1.260 1.258 1.260 (1.412, 1.193) (1.376, 1.182) (1.376, 1.186) (1.375, 1.188)

x=T 1.242 1.245 1.247 (1.389, 1.178) (1.363, 1.166) (1.361, 1.170) (1.356, 1.171)

x=Q 1.239 1.241 1.243 (1.385, 1.174) (1.362, 1.162) (1.360, 1.166) (1.356, 1.167)

EA-EOMCCSD(3p-2h) DZP 1.261 1.262 1.264 (1.410, 1.198) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224)

x=D 1.262 1.261 1.263 (1.409, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220)

x=T 1.246 1.246 1.248 (1.388, 1.180) (1.316, 1.196) (1.297, 1.215) (1.308, 1.203)

EA-EOMCCSD(3p-2h){4} DZP 1.262 1.262 1.264 (1.411, 1.197) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224)

x=D 1.262 1.261 1.264 (1.408, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220)

x=T 1.246 1.246 1.249 (1.389, 1.180) (1.316, 1.196) (1.297, 1.216) (1.308, 1.203)

x=Q 1.242 1.243 1.245 (1.387, 1.175) (1.315, 1.190) (1.295, 1.210) (1.307, 1.197)

Experimentc 1.245 1.249 1.259

a The RC-N bond lengths in Å. The D2h symmetry was employed.
b The numbers in parentheses report the RC-C and RC-N bond lengths, respectively, in Å. The C2v symmetry was employed.
c Taken from [195–197].



Having demonstrated the significance of higher than 2p-1h contributions for an accurate

description of the excitation energies in the CNC and C2N molecules and having estab-

lished the ability of the active-space EA-EOMCCSD(3p-2h) approach to capture the most

significant 3p-2h contributions with only a few active orbitals, independent of the basis set,

we turn now to the effectiveness of the EA-EOMCC schemes in describing the equilibrium

geometries of the ground and excited states of CNC and C2N. As seen in Table 3.3, the EA-

EOMCCSD(2p-1h) level of theory gives the C–N bond lengths in CNC, designated as RC-N,

which deviate from the corresponding experimental values by 0.003-0.015 Å for the X 2Πg

state, 0.004-0.009 Å for the A 2∆u state, and 0.001-0.016 Å for the B 2Σ+
u state, when the

cc-pVxZ basis sets with x = D, T, and Q are employed. The full EA-EOMCCSD(3p-2h)

approach employing the cc-pVDZ and cc-pVTZ basis sets produces the RC-N values that

deviate from experiment by 0.001-0.017 Å, 0.003-0.012 Å, and 0.004-0.011 Å for the X 2Πg,

A 2∆u, and B 2Σ+
u states, respectively, i.e., the results that are of equally high quality and

not much different than the low-order EA-EOMCCSD(2p-1h) data. The analogous active-

space EA-EOMCCSD(3p-2h){4} calculations give the RC-N bond lengths that differ from

experiment by 0.001-0.017 Å in the case of the X 2Πg state, 0.003-0.012 Å in the case of the

A 2∆u state, and 0.005-0.014 Å when the B 2Σ+
u state is examined. All of this shows that

not only is the EA-EOMCCSD(3p-2h){4} approach able to reproduce the more computa-

tionally demanding EA-EOMCCSD(3p-2h) results for the nuclear geometries of the low-lying

states of CNC, but that the differences between the high-level EA-EOMCCSD(3p-2h) val-

ues of RC-N and those obtained with the the inexpensive EA-EOMCCSD(2p-1h) method

differ only by 0.002-0.004 Å for the X 2Πg state and 0.001-0.003 Å for the A 2∆u and
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B 2Σ+
u states, at least when the cc-pVDZ and cc-pVTZ basis sets are employed. The

active-space EA-EOMCCSD(3p-2h){4} approach and the EA-EOMCCSD(2p-1h) method

give the RC-N values that differ by at most 0.004 Å for all states of CNC and all basis

sets examined in this work, confirming the observation that it is sufficient to use the low-

level EA-EOMCCSD(2p-1h) approach to obtain an accurate description of the equilibrium

geometries of the low-lying states of CNC.

Similar, but not entirely identical, remarks apply to the C2N molecule. As shown

in Table 3.3, the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} approaches em-

ploying the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets give the C–C and C–N bond

lengths, RC-C and RC-N, respectively, that differ by at most 0.065 Å when we compare

the EA-EOMCCSD(2p-1h) and the corresponding EA-EOMCCSD(3p-2h){4} data for all

electronic states of C2N examined in this work, mostly because of the inability of the EA-

EOMCCSD(2p-1h) approach to provide a highly accurate description of the excited-state ge-

ometries [the differences between the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4}

geometries of the C2N’s ground state are less than 0.004 Å]. On the other hand, the differ-

ences between the active-space EA-EOMCCSD(3p-2h){4} and full EA-EOMCCSD(3p-2h)

values of RC-C and RC-N obtained with the cc-pVDZ and cc-pVTZ basis sets do not

exceed 0.001 Å, confirming our earlier remarks about the ability of the active-space EA-

EOMCCSD(3p-2h) approach to capture essentially all correlation effects that are included

in the full EA-EOMCCSD(3p-2h) calculations. We could not find any experimental data

for the geometries of the ground and excited states of C2N, so we cannot comment on the

accuracy of our RC-C and RC-N values resulting from the EA-EOMCC calculations in any
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definitive manner, but, judging by the high quality of the EA-EOMCC results for the geome-

tries of the low-lying states of CNC, we can conclude that the geometries resulting from the

full EA-EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} calculations using

the cc-pVTZ or cc-pVQZ basis sets are of the similarly high quality. The low-level EA-

EOMCCSD(2p-1h) calculations seem less accurate than in the CNC case, particularly when

the excited states of C2N are examined, but they are still in reasonable agreement with the

high-level full and active-space EA-EOMCCSD(3p-2h) results.

The above discussion provides us with an important insight about the performance of the

EA-EOMCC methods. The EA-EOMCCSD(2p-1h) approach, while generally inadequate for

an accurate description of the excitation energies in open-shell systems, such as the CNC and

C2N molecules examined in this work, is capable of providing reasonably accurate equilib-

rium geometries, even for excited states that have a significant multireference character. On

the other hand, it seems to be generally safer to use the active-space EA-EOMCCSD(3p-2h)

approach in geometry optimizations, particularly that it provides the results that are virtu-

ally identical to the corresponding full EA-EOMCCSD(3p-2h) data, both for the excitation

energies and nuclear geometries.

3.2.2.2 IP-EOMCC results for NCO and N3

We now turn to the IP-EOMCC calculations for the NCO and N3 molecules, which are

summarized in Tables 3.4–3.6. For both molecules, the IP-EOMCC optimizations employing

the DZP basis set, carried out in the present work, produced results that are very similar

to the previously reported [52, 179] IP-EOMCC adiabatic excitation energies calculated at

the SAC-CI-SDT-R/PS optimized geometries, all obtained with the same DZP basis as that
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used here. For example, the deviations between the adiabatic excitation energies of NCO

and N3 obtained in the present IP-EOMCC/DZP optimizations and the analogous excitation

energies reported in Refs. [52, 179], which used the geometries obtained with the SAC-CI-

SDT-R/PS approach, are 0.001-0.078 eV for all states and all methods considered in this

study. As in the case of the EA-EOMCC calculations discussed in Section 3.2.2.1, after

seeing that our present IP-EOMCC optimizations for the ground and excited states of NCO

and N3 employing the DZP basis set were able to reproduce the analogous results calculated

at the geometries obtained in the SAC-CI-SDT-R/PS calculations, reported in Refs. [52,179],

we moved to the examination of the effect of the use of the correlation-consistent basis sets

of the cc-pVxZ quality on the calculated excitation energies and geometries. As explained

in Section 3.2.1, we exploited the C2v symmetry in the calculations for NCO and the D2h

symmetry in the calculations for N3. The X 2Π and B 2Π states of NCO were calculated

as the two lowest-energy 2B1 states, although we could also use the two lowest-energy 2B2

states, obtaining the same results. The A 2Σ+ state of NCO was obtained as the lowest-

energy 2A1 state. The X 2Πg state of N3 was calculated as the lowest-energy 2B2g state (we

could use the lowest-energy 2B3g state instead and obtain identical results) and the B 2Σ+
u

of N3 was calculated as the lowest-energy 2B1u state. The discussion provided below focuses

on the IP-EOMCC calculations using the cc-pVxZ (x = D, T, Q) basis sets.
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Table 3.4: Total and adiabatic excitation energies for the ground and low-lying excited states of NCO, as obtained with
the different IP-EOMCC approaches using the DZP [4s2p1d] and cc-pVxZ (x=D,T,Q) basis sets and extrapolating to the
CBS limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Π A 2Σ+ B 2Π A 2Σ+-X 2Π B 2Π-X 2Π

IP-EOMCCSD(2h-1p) DZP -167.581951 -167.475380 -167.427707 2.900 4.197

x=D -167.576116 -167.468912 -167.419125 2.919 4.273

x=T -167.718401 -167.613444 -167.560443 2.856 4.298

x=Q -167.763112 -167.659168 -167.604432 2.828 4.318

CBS-A -167.786913 -167.683604 -167.626529 2.811 4.364

CBS-B -167.788412 -167.685072 -167.629275 2.812 4.330

IP-EOMCCSD(3h-2p) DZP -167.591701 -167.486508 -167.448441 2.862 3.898

x=D -167.587630 -167.481331 -167.441319 2.893 3.981

x=T -167.732789 -167.628442 -167.584981 2.839 4.022

IP-EOMCCSD(3h-2p){2} DZP -167.589579 -167.476255 -167.446490 3.081 3.891

x=D -167.585489 -167.470340 -167.438481 3.133 4.000

x=T -167.730109 -167.617771 -167.581463 3.057 4.045

x=Q -167.775958 -167.664698 -167.626155 3.028 4.076

CBS-A -167.799482 -167.687223 -167.648439 3.055 4.110

CBS-B -167.801944 -167.691316 -167.651415 3.010 4.096

Experimenta 2.821 3.937

a Taken from [195].



Unlike the CNC and C2N molecules, which are characterized by the presence of the low-

lying excited states with a significant multireference character in their respective electronic

spectra, the low-lying states of NCO and N3 have a predominantly 1h excitation character

relative to the corresponding NCO− and N−
3 reference ions, with only small contributions

from higher-than-1h excitations. As a result, it is much easier to describe the low-lying states

of NCO and N3 by the IP-EOMCC methods and already the basic IP-EOMCCSD(2h-1p)

approach performs quite well. For example, as shown in Table 3.4, the deviations from

experiment for the adiabatic excitations in NCO resulting from the IP-EOMCCSD(2h-1p)

calculations are only 0.007-0.098 eV for the A 2Σ+ state and 0.336-0.381 eV for the B 2Π

state when the cc-pVxZ basis sets with x = D, T, and Q are employed. Inclusion of

higher-order (3h-2p) correlation effects through the full IP-EOMCCSD(3h-2p) method offers

additional improvements, reducing the overall deviations from experiment to 0.018-0.072 eV

in the A 2Σ+ case and 0.044-0.085 eV in the B 2Π case, when the cc-pVDZ and cc-pVTZ

basis sets are employed.

The inexpensive active-space variant of IP-EOMCCSD(3h-2p) using only two active oc-

cupied orbitals, IP-EOMCCSD(3h-2p){2}, yields similar excitation energy values as its more

expensive parent scheme, with somewhat larger deviations from experiment of 0.207-0.312 eV

for the A 2Σ+ state and very small 0.063-0.139 eV deviations for the B 2Π state, confirming

that one can essentially use any IP-EOMCC approach and obtain a reasonable description

of the low-lying states of NCO, but the deviations between the results of the full and active-

space IP-EOMCCSD(3h-2p) calculations for NCO are somewhat larger than those observed

in the EA-EOMCCSD(3p-2h) computations for CNC and C2N. This is particularly true
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for the A 2Σ+ state, where they are 0.240 eV for the adiabatic excitation energy and 11.0

millihartree for the total energy when the cc-pVDZ basis set is employed and 0.218 eV and

10.7 millihartree when the cc-pVTZ basis set is used. As pointed out in previous work [179],

these larger differences between the full and active-space IP-EOMCCSD(3h-2p) results for

the A 2Σ+ state of NCO are likely due to the relatively small active space used in the latter

calculations, which consists of only one pair of highest-energy occupied π orbitals of NCO−,

and/or from changes in the character of molecular orbitals when going from the NCO− ref-

erence ion to the NCO target species. On the other hand, the overall agreement between the

full and active-space IP-EOMCCSD(3h-2p) results for NCO is rather good. For example, the

differences between the full and active-space IP-EOMCCSD(3h-2p) results for the adiabatic

excitation energies corresponding to the B 2Π state are only 0.019 eV when the cc-pVDZ

basis set is employed and 0.023 eV when the cc-pVTZ basis set is used. The differences

between the total energies obtained in the full IP-EOMCCSD(3h-2p) and active-space IP-

EOMCCSD(3h-2p){2} calculations for the X 2Π and B 2Π states range between 2.1 and

3.5 millihartree when the cc-pVDZ and cc-pVTZ basis set are used, which is an excellent

agreement.

Many of the above observations remain valid when the IP-EOMCC methods are applied

to N3. As shown in Table 3.5, the adiabatic excitation energies corresponding to the B 2Σ+
u

state obtained with the IP-EOMCCSD(2h-1p) optimizations employing the cc-pVxZ basis

sets with x = D, T, and Q differ from the corresponding experimental value by 0.056-0.110

eV. Again, as in the NCO case, the full IP-EOMCCSD(3h-2p) approach reduces the already

small errors in the IP-EOMCCSD(2h-1p) results for the B 2Σ+
u state of N3 to the even smaller
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0.023-0.049 eV range. The much less expensive active-space IP-EOMCCSD(3h-2p){2} cal-

culations using the cc-pVxZ basis sets with x = D, T, and Q produce the 0.174-0.200 eV

errors, which are larger than those obtained with full IP-EOMCCSD(3h-2p), but the gen-

eral agreement between the full and active-space IP-EOMCCSD(3h-2p) data is reasonable.

Indeed, the total energies resulting from the full IP-EOMCCSD(3h-2p) and active space IP-

EOMCCSD(3h-2p){2} calculations differ by only 1.4-1.7 millihartree in the X 2Πg case and

6.9-7.3 millihartree in the case of the B 2Σ+
u state. The adiabatic excitation energies cor-

responding to the B 2Σ+
u state obtained in the full and active-space IP-EOMCCSD(3h-2p)

calculations with the cc-pVDZ and cc-pVTZ basis sets differ by 0.151 eV, which is a reason-

able agreement. Again, the somewhat larger differences between the full and active-space

IP-EOMCCSD(3h-2p) data for the B 2Σ+
u state compared to the analogous EA-EOMCC

calculations for CNC and C2N are likely due to the reasons cited above for the NCO molecule.
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Table 3.5: Total and adiabatic excitation energies for the ground and low-lying excited states of N3, as obtained with
the different IP-EOMCC approaches using the DZP [4s2p1d] and cc-pVxZ (x=D,T,Q) basis sets and extrapolating to the
CBS limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Πg B 2Σ+
u B 2Σ+

u -X 2Πg

IP-EOMCCSD(2h-1p) DZP -163.716374 -163.545829 4.641

x=D -163.712083 -163.542627 4.611

x=T -163.848768 -163.677460 4.662

x=Q -163.891293 -163.719861 4.665

CBS-A -163.923747 -163.752426 4.662

CBS-B -163.915306 -163.743856 4.665

IP-EOMCCSD(3h-2p) DZP -163.729782 -163.560803 4.598

x=D -163.726673 -163.558437 4.578

x=T -163.865416 -163.696218 4.604

IP-EOMCCSD(3h-2p){2} DZP -163.728362 -163.554434 4.733

x=D -163.725315 -163.551533 4.729

x=T -163.863766 -163.689041 4.755

x=Q -163.907325 -163.732710 4.752

CBS-A -163.939566 -163.764109 4.747

CBS-B -163.931977 -163.757469 4.749

Experimenta 4.555

a Taken from [195].



We now turn our attention to the numerical stability of our IP-EOMCC results for the

NCO and N3 molecules in the CBS limit. As in the EA-EOMCC calculations for CNC

and C2N, the IP-EOMCC total energies of each state of NCO and N3 shown in Tables 3.4

and 3.5 behave in a systematic manner, as we go from the cc-pVDZ to cc-pVQZ basis sets,

showing the initial signs of convergence, and the excitation energies obtained in the IP-

EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} calculations with the cc-pVQZ basis set

can be regarded as reasonably well converged, which helps the validity of the CBS-A extrapo-

lations. Indeed, the differences between the adiabatic excitation energies calculated with the

cc-pVTZ and cc-pVQZ basis sets at the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2}

levels of theory are 0.028-0.029 eV for the A 2Σ+ state of NCO, 0.020-0.031 eV for the B 2Π

state of NCO, and 0.003 eV for the B 2Σ+
u state of N3. It is, therefore, not surprising that

the CBS-A and CBS-B extrapolations for the ground and excited states of the NCO and N3

molecules summarized in Tables 3.4 and 3.5 are in good agreement. Indeed, the CBS-A and

CBS-B total energies obtained with the IP-EOMCCSD(2h-1p) data for NCO differ by only

1.5 millihartree for the X 2Π and A 2Σ+ states and 2.7 millihartree for the B 2Π state. The

corresponding excitation energies resulting from both CBS extrapolations differ by 0.001

eV for the A 2Σ+ state and 0.034 eV for the B 2Π state. In consequence, the CBS-A- and

CBS-B-extrapolated IP-EOMCCSD(2h-1p) excitation energies obtained for NCO differ from

the corresponding experimental values by 0.009-0.010 eV in the A 2Σ+ case and 0.393-0.427

eV in the case of the B 2Π state. Similar remarks apply to the IP-EOMCCSD(3h-2p){2}

approach, where the corresponding CBS-A- and CBS-B-extrapolated total energies differ

by 2.5, 4.1, and 3.0 millihartree for the X 2Π, A 2Σ+, and B 2Π states, respectively, so
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that the differences in the resulting CBS-A and CBS-B IP-EOMCCSD(3h-2p){2} excita-

tion energies are 0.045 eV for the A 2Σ+ state and 0.014 eV for the B 2Π state. As a

consequence, the CBS-A- and CBS-B-extrapolated IP-EOMCCSD(3h-2p){2} adiabatic ex-

citation energies for NCO differ from experiment by 0.189-0.234 eV for the A 2Σ+ state

and 0.159-0.173 eV for the B 2Π state. Much of the above analysis applied to N3. Indeed,

although the CBS-A and CBS-B extrapolations applied to the IP-EOMCCSD(2h-1p) and

IP-EOMCCSD(3h-2p){2} total energies produce somewhat larger differences than in the case

of NCO (7.6-8.4 millihartree in the case of the X 2Πg state and 6.6-8.6 millihartree in the

case of the B 2Σ+
u state), the adiabatic excitation energies resulting from both CBS extrapo-

lations are very stable, to within 0.003 eV for the IP-EOMCCSD(2h-1p) approach and 0.002

eV for the IP-EOMCCSD(3h-2p){2} method. The CBS-A- and CBS-B-extrapolated IP-

EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} adiabatic excitation energies correspond-

ing to the B 2Σ+
u state of N3 are within 0.107-0.194 eV from experiment.

To conclude our discussion, we look at the performance of the IP-EOMCC methods in

describing the equilibrium geometries of the ground and low-lying excited states of the NCO

and N3 species examined in this work. The results of our geometry optimizations for NCO

and N3 are summarized in Table 3.6. In the case of the X 2Π state of the NCO molecule,

the basic IP-EOMCCSD(2h-1p) approach produces results that deviate from experiment

by 0.016-0.031 Å for the N–C bond length (designated as RN-C) and 0.018-0.033 Å for

the C–O bond length (designated as RC-O) when the cc-pVxZ basis sets with x = D, T,

and Q are employed. The same approach applied to the A 2Σ+ state of NCO gives the

0.014-0.031 Å errors for RN-C and 0.018-0.031 Å for RC-O. The IP-EOMCCSD(3h-2p)
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results exhibit very similar trends and accuracies, confirming the small role of higher-order

contributions neglected in IP-EOMCCSD(2h-1p) and present in IP-EOMCCSD(3h-2p). The

differences between the IP-EOMCCSD(3h-2p) and experimental values of RN-C are 0.024-

0.038 Å for the X 2Π state and 0.021-0.035 Å for the A 2Σ+ state. The analogous differences

for RC-O are 0.015-0.025 Å for the X 2Π state and 0.012-0.022 Å for the A 2Σ+ state.

Although it may very well be that higher-than-3h-2p contributions neglected in the IP-

EOMCCSD(3h-2p) calculations and high angular momentum functions that are not present

in the cc-pVTZ (or cc-pVQZ) basis sets are the sources of the above errors, it is also possible

that the experimental geometries of the X 2Π and A 2Σ+ states of NCO reported in Ref.

[195] might be in some error too, since none of the states of NCO examined here is as

challenging as some of the states of CNC and C2N discussed in Section 3.2.2.1. While there

are unexplained differences between the experimentally determined N–C and C–O bond

lengths in the X 2Π and A 2Σ+ states of NCO and our theoretical predictions, it is of

great interest to note that the differences between the results of the geometry optimizations

using the full and active-space IP-EOMCCSD(3h-2p) approaches are virtually none. Indeed,

there is no difference (to within 0.001 Å) between the full IP-EOMCCSD(3h-2p) and active-

space IP-EOMCCSD(3h-2p){2} results for the N–C bond length in the X 2Π state and

the corresponding C–O bond lengths differ by 0.002 Å only, when the cc-pVDZ and cc-

pVTZ are employed. In the case of the A 2Σ+ state, the differences between the full IP-

EOMCCSD(3h-2p) and active-space IP-EOMCCSD(3h-2p){2} values of RN-C and RC-O are

0.004 Å and 0.001-0.002 Å, respectively. In the case of the B 2Π state, these differences are

0.003 Å for RN-C and 0.006-0.008 Å for RC-O. The active-space IP-EOMCCSD(3h-2p){2}
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calculations are clearly capable of reproducing the parent IP-EOMCCSD(3h-2p) data for the

N–C and C–O bond lengths in the ground and excited states of NCO to very high accuracy.
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Table 3.6: Comparison of the optimized equilibrium geometries for the low-lying states of N3 and NCO, as obtained with
the IP-EOMCC and SAC-CI-SDT-R/PS approaches using the DZP [4s2p1d] and cc-pVxZ (x=D,T,Q) basis sets.

N a
3 NCOb

Method Basis X 2Πg B 2Σ+
u X 2Π A 2Σ+ B 2Π

SAC-CI-SDT-R/PS DZP 1.188 1.185 (1.230, 1.193) (1.191, 1.190) (1.220, 1.309)

IP-EOMCCSD(2p-1h) DZP 1.195 1.191 (1.232, 1.196) (1.197, 1.192) (1.225, 1.318)

x=D 1.185 1.181 (1.231, 1.188) (1.196, 1.184) (1.223, 1.313)

x=T 1.171 1.169 (1.219, 1.177) (1.182, 1.175) (1.206, 1.306)

x=Q 1.168 1.165 (1.216, 1.173) (1.179, 1.171) (1.202, 1.304)

IP-EOMCCSD(3p-2h) DZP 1.200 1.196 (1.240, 1.198) (1.200, 1.198) (1.235, 1.328)

x=D 1.190 1.187 (1.238, 1.191) (1.200, 1.190) (1.233, 1.322)

x=T 1.175 1.173 (1.224, 1.181) (1.186, 1.180) (1.216, 1.312)

IP-EOMCCSD(3p-2h){2} DZP 1.200 1.194 (1.240, 1.196) (1.196, 1.196) (1.239, 1.319)

x=D 1.190 1.184 (1.238, 1.189) (1.196, 1.189) (1.236, 1.314)

x=T 1.175 1.171 (1.224, 1.179) (1.182, 1.178) (1.219, 1.306)

x=Q 1.172 1.168 (1.222, 1.174) (1.179, 1.174) (1.214, 1.303)

Experimentc 1.188 1.180 (1.200, 1.206) (1.165, 1.202)

a The RN-N bond lengths in Å. The D2h symmetry was employed.
b The numbers in parentheses report the RN-C and RC-O bond lengths, respectively, in Å. The C2v symmetry was employed.
c Taken from [195].



Much of the above discussion applies to N3. The nearest-neighbor N–N bond lengths,

designated as RN-N, resulting from the IP-EOMCCSD(2h-1p) calculations with the cc-pVxZ

basis sets with x = D, T, and Q, differ from the corresponding experimental data by 0.003-

0.020 Å for the X 2Πg state and 0.001-0.015 Å for the B 2Σ+
u state. The higher-order IP-

EOMCCSD(3h-2p) optimizations with the cc-pVDZ and cc-pVTZ basis set produce similar

results, the 0.002-0.013 Å errors for the X 2Πg state and 0.007 Å for the B 2Σ+
u state. The

active-space IP-EOMCCSD(3h-2p){2} approach, for which we could also afford the calcula-

tions with the cc-pVQZ basis set, produces the RN-N values that deviate from experiment by

0.002-0.016 Å for the X 2Πg state and 0.004-0.012 Å for the B 2Σ+
u state. Again, there is a

virtually perfect agreement between the expensive full IP-EOMCCSD(3h-2p) and relatively

inexpensive active-space IP-EOMCCSD(3h-2p){2} calculations, where there is no difference

(to within 0.001 Å) between the two sets of data in the case of he X 2Πg state and a very

small, 0.002-0.003 Å, difference between the full IP-EOMCCSD(3h-2p) and active-space IP-

EOMCCSD(3h-2p){2} values of RN-N in the case of the B 2Σ+
u state. As in the case of the

NCO molecule, the origin of the deviations between the IP-EOMCC calculations employing

basis sets as large as cc-pVQZ, which seem numerically quite stable, and experimental RN-N

values could lie in the higher-than-3h-2p correlations that we do not consider in this work

or in the significance of the high angular momentum functions absent in the cc-pVTZ and

cc-pVQZ bases, but one cannot exclude the possibility that the experimental data reported

in Ref. [195] may need to be revisited. As in the EA-EOMCC calculations for the CNC and

C2N discussed in Section 3.2.2.1, it seems to us that the basic IP-EOMCCSD(2h-1p) method

is capable of producing the optimized geometries of the ground- and excited-state NCO and
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N3 molecules that are comparable to those obtained with the computationally more demand-

ing IP-EOMCCSD(3h-2p) methods, which is a useful observation from the point of view of

other applications of such methods to geometry optimizations in other open-shell species.

3.3 Coupled-cluster interpretation of the photoelectron

spectrum of Au−
3

3.3.1 Introductory remarks

In the previous section we showed that the EA- and IP-EOMCC methodologies can accu-

rately describe the electronic states of challenging open-shell molecules consisting of second-

row atoms. There also are many challenging open-shell transition metal species, whose

various properties, including optical and photoelectron spectra, still await a satisfactory ex-

perimental and/or theoretical explanation. As part of this thesis, we undertook the study

of the photoelectron spectrum of the small Au−3 nanocluster, providing a comprehensive

interpretation of this small, but very challenging molecule.

Since the pioneering works of Hutchings [199] and Haruta and coworkers [200] demon-

strating the catalytic behavior of nanometer-sized gold particles, interest in and the study

of their structural and electronic properties has steadily increased by both experimentalists

and theorists [201–207]. While density functional theory (DFT) has been the workhorse for

the majority of computations in this area (cf., e.g., Refs. [204–207]), the analogous investi-

gations using high-level ab initio wave function approaches, particularly those based on CC

theory remain rare due, in part, to prohibitive computational costs involved. There have
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been a few investigations using the CCSD(T) approach, which examined the ground-state

properties of the cation [208, 209], neutral [208, 210–212], and anion [208, 209, 211] Au3 iso-

mers, with the latter two species being relevant to this work. Varganov et al. studied the

absorption and activation of O2 [211] and H2 [213] on small Aun and Au−n (n = 2, 3) clusters

using DFT, second-order Møller-Plesset perturbation theory (MP2), and CCSD(T). This

has been followed by a number of CCSD(T) calculations for the low-lying isomers of Au6,

Au8, and Au10, as well as Au−7 comparing the results with MP2 and DFT [183,209,214–218].

Most recently, as discussed in Section 4.3, we studied the aerobic oxidation of methanol to

formic acid on Au−8 , comparing DFT computations with the CR-CC(2,3) approach [181].

The excitation spectra for the closed-shell Aun clusters (n = 4, 6, 8) were examined [219]

using the EOMCCSD approach, obtaining an accurate description of one-electron transitions

compared to experiment [220]. Much less is known, however, about the performance of the

EOMCC theory when describing excited states of open-shell gold clusters.

As part of this dissertation, we undertook a thorough ab initio study of the photo-

electron spectrum of the gold trimer anion [221–223], Au−3 , by examining the ground and

excited states states of the corresponding neutral particle, Au3, employing the scalar rela-

tivistic IP-EOMCC approximations (for the representative earlier ab initio calculations for

Au3 and Au−3 , see Refs. [208–212, 224–228]). We investigated [184] the effects of the basis

set size, number of correlated electrons, level of applied theory, and geometry relaxation.

As explained in Section 3.1, the IP-EOMCC family of methods used in our examination

of the photoelectron spectrum of Au−3 allow one to properly account for spin symmetry

of open-shell species that the conventional CC/EOMCC approaches have difficulties with,
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determining the electronic spectrum of the (N − 1)-electron system (in our case, Au3) by

applying the linear ionizing operator, R
(N−1)
µ , to the ground state of the corresponding N -

electron closed-shell core (in our case, Au−3 ) obtained with a single-reference CC approach.

Our IP-EOMCC calculations for Au3 utilized two truncation schemes, namely, the basic IP-

EOMCCSD(2h-1p) approximation and its higher-order IP-EOMCCSD(3h-2p) counterpart.

Since the IP-EOMCCSD(3h-2p) calculations for the Au3 system using larger basis sets can

be prohibitively expensive, especially if one decides to correlate semi-core electrons, in addi-

tion to the valence ones (as is the case in our study), we adopted a simple IP-EOMCC-based

extrapolation scheme that captures the important higher-order 3h-2p electron correlation

contributions to the energy in an approximate, but computationally efficient manner. This

extrapolation scheme is discussed first.

3.3.2 IP-EOMCC extrapolation scheme

To evaluate the effects of various factors entering IP-EOMCC computations, including the

role of 3h-2p excitations, basis set, and the number of correlated electrons, and determine

their importance for providing accurate excitation and ionization energies of small open-shell

gold clusters, such as Au3 and Au−3 , we performed extensive calculations on Au− and Au,

varying the basis set, number of correlated electrons, and level of IP-EOMCC theory used to

compute the ionization energies (IEs). The singlet ground state of the Au− anion, which was

used as the underlying closed-shell system out of which the open-shell ground and low-lying

excited states of the Au atom were generated, was treated at the CCSD level of theory,

with the corresponding orbitals of Au− used to describe the electronic states of Au. We
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first investigated the role of basis set size and level of IP-EOMCC theory in determining the

ground and excited states of Au using the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p)

approaches in conjunction with the aug-cc-pVxZ-PP (x = D, T, Q, 5) bases optimized for

gold [229], correlating the 5d106s1 valence electrons and an extra electron due to the charge in

the CCSD calculation for Au−. We then explored the effect of correlating the 5s25p6 semi-

core or core-valence (CV) electrons by carrying out IP-EOMCCSD(2h-1p)/aug-cc-pVxZ-

PP+CV and IP-EOMCCSD(3h-2p)/aug-cc-pVxZ-PP+CV (x = D, T, Q, 5) calculations for

the Au− ion. We employed the scalar relativistic effective-core potential (ECP) created for

use with the correlation-consistent basis sets, as originally developed in Ref. [230] and later

modified to include the effects of the h functions in the pseudopotential in Ref. [231] to

represent the effects of the core electrons of Au. For computations using the aug-cc-pVQZ-

PP and aug-cc-pV5Z-PP basis sets the h and i functions were removed as GAMESS was

not able to compute integrals involving functions with ℓ ≥ 5 at the time. We extrapolated

these results to the CBS limit again using the previously exploited formula given by Eq.

(3.19), where this time x = 3, 4, 5 in Eq. (3.19) is the cardinal number corresponding to the

aug-cc-pVTZ-PP, aug-cc-pVQZ-PP, and aug-cc-pV5Z-PP basis sets, respectively, E(x) is the

total CCSD energy of Au− or the IP-EOMCC energy of the Au state of interest, computed

with the aug-cc-pVxZ-PP basis, and E∞ is the total energy of the electronic state of Au−

or Au in the CBS limit. The results of these computations are presented in Table 3.7.
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Table 3.7: Scalar relativistic ionization energies (in eV) of Au from Au− computed using the IP-EOMCC approaches;
comparison with experiment and experimentally derived estimates.

2h-1p 3h-2p
2S+1L x 5d6s 5s5p5d6s 5d6s 5s5p5d6s 1a 2b 2S+1LJ B.E.c Exp. Est.d Scalar Exp. Est.e

2S

D 2.147 2.183 1.956 2.025 1.993 1.993

2S1/2

2.20fT 2.204 2.244 1.980 2.032 2.020 2.054

Qg 2.222 2.264 1.992 2.039 2.034 2.073

2.355g 2.228 2.272 1.996 2.042 2.040 2.082

CBSh 2.231 2.277 1.998 2.044 2.043 2.086

2.309 2.309

2D

D 4.271 3.896 3.833 3.528 3.458 3.458
2D5/2 3.45T 4.397 4.079 3.848 3.546 3.529 3.641

Qg 4.428 4.128 3.856 3.540 3.556 3.690

3.444

5g 4.438 4.144 3.859 3.537 3.565 3.706

CBSh 4.444 4.153 3.860 3.535 3.570 3.715

2D3/2 4.95 4.966

4.053

2Pi

D 7.986 8.281 6.951 6.999 7.246 7.246
2P1/2 6.941T 8.140 8.461 6.976 7.039 7.297 7.426

Qg 8.167 8.493 6.993 7.058 7.319 7.458
2P3/2 7.4145g 8.174 8.504 6.999 7.069 7.329 7.469

CBSh 8.177 8.510 7.002 7.075 7.335 7.475

7.256

a Extrapolated values obtained when BS1 = BS2, using Eq. (3.19).
b Extrapolated values obtained when BS1 = aug-cc-pVDZ-PP and BS2 = aug-cc-pVxZ-PP, in Eq. (3.19).
c Experimental binding energies taken from Ref. [223].
d Experimental estimates calculated as the sum of the electron affinity [232] and the excitation energies of the states [233].
e Estimated scalar relativistic peak values determined from the theoretically derived experimental values using the formula
∑

J (2J + 1) ∗2S+1 LJ/
∑

J (2J + 1), where 2S+1LJ is the energy of the relativistic term in a J coupled scheme.
f There is a shoulder in the 2.35 eV peak at 2.20 eV, which could also be contamination from other species, such as the (Au—Au)2− dimer.
g Basis functions with ℓ ≥ 5 were removed from the basis set due to restrictions in the GAMESS program.
h Complete basis set (CBS) limit values determined using Eq. (3.19) with x = 3, 4, 5.
i This state lies outside the experimental range of 6.424 eV in Ref. [223].



While the augmented correlation-consistent basis sets are somewhat larger than their cc-

pVxZ-PP counterparts and therefore increase the costs of the CC/EOMCC computations,

we found that it was necessary to use the aug-cc-pVxZ-PP bases, particularly in the x = D

and T cases, to obtain reasonable answers. As shown in Table 3.7, the aug-cc-pVDZ-PP

basis is not capable of providing results of the quality needed to accurately describe the

photoelectron spectra of Au containing species, with errors as large as ∼ 0.3 eV compared

to the corresponding CBS data. When the x = T basis set is employed, there is a dramatic

improvement in the results, with errors relative to the CBS values dropping to less than

0.08 eV, with the larger (x = Q, 5) aug-cc-pVxZ-PP bases reducing the errors even further,

though their improvements relative to the aug-cc-pVTZ-PP calculations are not nearly as

large. Thus, by incorporating basis sets of the aug-cc-pVTZ-PP quality in IP-EOMCC

calculations, we can safely assume the data are reasonably converged in terms of the basis

set size.

While the IP-EOMCCSD(2h-1p) approach is capable of providing an accurate descrip-

tion of states dominated by 1h contributions, it cannot accurately account for states with

significant higher-order correlations (2h-1p, 3h-2p, etc.), which are quite common in tran-

sition metal clusters. This point is amply demonstrated by examining the IEs correspond-

ing to the 2P state of Au in Table 3.7. Comparing the IP-EOMCCSD(2h-1p) and IP-

EOMCCSD(3h-2p) results for the 2P state of Au, which has substantial 2h-1p contributions

to its wave function, we can see that the effect of 3h-2p components of R
(N−1)
µ is on the

order of 1.5 eV, independent of the basis set employed. For the 2S and 2D states the ef-

fects of 3h-2p correlations are smaller (about 0.2 eV for the 2S state and about 0.6 eV for
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the 2D state), but they are still considerably larger than the changes due to the basis set

size. Interestingly, however, by examining the IP-EOMCCSD(3h-2p)/aug-cc-pVDZ-PP and

IP-EOMCCSD(3h-2p)/aug-cc-pVTZ-PP results, we can see that the contributions due to

higher-order 3h-2p correlations are accurately characterized with the smaller aug-cc-pVDZ-

PP basis set. All of this is telling us that we need the aug-cc-pVTZ-PP basis set to capture

the basic correlation effects included at the IP-EOMCCSD(2h-1p) level, but it is at the same

time sufficient to employ the smaller aug-cc-pVDZ-PP basis to determine the effect of 3h-2p

correlations.

The role of correlating the CV electrons can also have a non-negligible effect on the IEs

of Au. For the 2S state of Au, the calculated IEs change by less than 0.07 eV when CV

correlations are included. On the other hand, for the 2D and 2P states they change by as

much as 0.38 eV. Thus, while both the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p) IEs

are affected by inclusion of CV correlations, the magnitude of the change in IEs is relatively

stable, and equal for both approaches, once basis sets of at least the aug-cc-pVTZ-PP quality

are employed in the IP-EOMCC calculations. This will allow us to estimate the contributions

of the CV effects for larger systems, such as Au3, using the lower-level IP-EOMCCSD(2h-1p)

approach.

Taking the above discussion into consideration we conclude that to obtain an accurate de-

scription of IEs or excitation energies in gold clusters and to capture the most important cor-

relation and basis set effects, it is sufficient to perform the lower-level IP-EOMCCSD(2h-1p)

calculations using the aug-cc-pVTZ-PP basis set, correlating the valence and semi-core elec-

trons, while estimating the role of 3h-2p correlations using the IP-EOMCCSD(3h-2p) calcula-
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tions with a smaller aug-cc-pVDZ-PP basis, which correlate valence electrons only. Thus, we

can propose the following composite approach to provide an accurate and computationally

efficient IP-EOMCC scheme for examining the photoelectron spectra of gold nanoparticles:

IEk = [IEk(3h-2p) − IEk(2h-1p)]/BS1 + IEk(2h-1p)/[BS2 + CV], (3.20)

where the first term on the right-hand side, [IEk(3h-2p) − IEk(2h-1p)]/BS1, is the 3h-2p

contribution for the IE of the k-th electronic state, of the (N −1)-electron cluster, computed

as the difference between the IP-EOMCCSD(3h-2p) and IP-EOMCCSD(2h-1p) IEs using the

smaller BS1 basis set of the aug-cc-pVDZ-PP or higher quality, which is subsequently added

to the IP-EOMCCSD(2h-1p)/[BS2+CV] IE value correlating valence and semi-core electrons

and using a basis set BS2 of equal or greater size than BS1 if BS1 equals aug-cc-pVxZ-PP

with x ≥ 3 or larger than BS1 if BS1 = aug-cc-pVDZ-PP.

To test the above composite approach, we first set BS2 = BS1 for BS1 = aug-cc-pVxZ-PP

(x = D, T, Q, 5), labeled as extrapolation scheme 1 in Table 3.7, and compare our results to

the true IP-EOMCCSD(3h-2p)/[BS2+CV] results. As shown in Table 3.7 we can see that

the extrapolated IEs agree reasonably well with the true IP-EOMCCSD(3h-2p)/[BS2+CV]

computations, differing by 0.2–0.3 eV at most, though typically the extrapolated results fare

even more favorably when compared to their true values.

We then tested how well the above extrapolation scheme performs when BS1 = aug-cc-

pVDZ-PP and BS2 = aug-cc-pVxZ-PP (x = D, T, Q, 5), which we call in Table 3.7 the

extrapolation scheme 2. For the 2S state of Au, which is largely a 1h state relative to Au−, the

extrapolation scheme 2 reproduces the results of the full IP-EOMCCSD(3h-2p)/[BS2+CV]
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calculations to within 0.04 eV. For the challenging 2D and 2P states, which have important

CV contributions and more significant 2h-1p character, the agreement is not as good, but

we are still able to reproduce the results of the true IP-EOMCCSD(3h-2p)/[BS2+CV] cal-

culation to within 0.2–0.4 eV in a computationally feasible manner, obtaining a reasonably

accurate description. Most notably, much of the accuracy of the IP-EOMCCSD(3h-2p)/aug-

cc-pVxZ-PP+CV approach with x ≥ 3 can be captured when BS1 and BS2 in Eq. (3.20) are

aug-cc-pVDZ-PP and aug-cc-pVTZ-PP, respectively. We can, thus, expect that a composite

IP-EOMCC scheme based on Eq. (3.20), where BS1 = aug-cc-pVDZ-PP and BS2 = aug-

cc-pVTZ-PP, should provide an accurate representation of high-level IP-EOMCCSD(3h-2p)

results obtained with larger basis sets of aug-cc-pVTZ-PP or higher quality, correlating va-

lence as well as semi-core electrons.

While we were not able to account for higher-order relativistic effects, such as spin-

orbit coupling, directly, i.e., using IP-EOMCC, the scalar relativistic effects were accurately

accounted for in the carefully optimized ECP, which was derived from numerical all-electron

multiconfiguration Dirac-Hartree-Fock [234] calculations [230,231]. Thus, while we were not

able to account for the splitting of degenerate energy levels (e.g., 2D into the 2D5/2 and

2D3/2), the estimated experimental scalar relativistic results obtained through suitable term

averaging (see footnote e in Table 3.7) are in good agreement with our calculated results,

further suggesting that our composite IP-EOMCC method should work well for the larger

Au−n clusters with odd n values, such as Au−3 . Our IP-EOMCC results for the photoelectron

spectrum of Au−3 are discussed next.
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3.3.3 Results

We started [184] by optimizing the geometry of the singlet ground state of Au−3 using the

coarse-grain finite-difference model available in the CIOpt program suite [235], described in

further details in Section 5.1, at the scalar relativistic CCSD level employing the aug-cc-

pVDZ-PP basis set, correlating the 5d106s1 valence electrons of each gold atom and an extra

electron due to the charge. As in the case of the Au−/Au system examined in the previous

section, the aug-cc-pVxZ-PP (x = D, T) bases employed in our study were combined with the

scalar relativistic ECP designed for use with the correlation-consistent basis sets, taken from

Refs. [230,231]. Our CCSD-optimized structure of Au−3 has a linear, D∞h symmetry, where

the distance between nearest-neighbor gold atoms, rAu-Au, is 2.593 Å, agreeing well with pre-

vious CC [208,209], other ab initio [208,209,211,224–226], and DFT [209,211,223] geometries.

Using this Au−3 equilibrium geometry, we computed the ground and several excited states

of Au3. Following the lessons learned from the IP-EOMCC calculations for the Au atom

discussed in Section 3.3.2, we applied the scalar relativistic IP-EOMCCSD(2h-1p) approach,

exploiting the aug-cc-pVxZ-PP (x = D, T) bases and the accompanying ECP and to investi-

gate the role of the CV correlation effects, the more extensive IP-EOMCCSD(2h-1p)/aug-cc-

pVxZ-PP+CV calculations correlating the 5s25p6 semi-core and 5d106s1 valence electrons

of each gold atom plus the extra electron due to the charge. As already pointed out, while

the IP-EOMCCSD(2h-1p) method can reasonably describe the (N − 1)-electron states dom-

inated by 1h excitations relative to the N -electron closed-shell core, it cannot accurately

account for states with significant higher-order correlations (2h-1p, 3h-2p, etc.). Owing to

the fact that some low-lying states of Au3 are characterized by significant higher-than-1h
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components, we also performed higher-order IP-EOMCCSD(3h-2p) calculations correlating

the 5d106s1 valence electrons and employing the smaller aug-cc-pVDZ-PP basis set, since,

as shown in Section 3.3.2, it is sufficient to use the aug-cc-pVDZ-PP basis to estimate the

effects of 3h-2p correlations. The resulting vertical IEs are shown in Table 3.8 and Fig.

3.2(a)-(c).
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Table 3.8: Verticala (V) and adiabaticb (Ad) IEs (in eV) of Au−3 with respect to its ground state computed using the scalar relativistic

IP-EOMCCSD(2h-1p)/aug-cc-pVxZ-PP(+CV) (x = D, T) and IP-EOMCCSD(3h-2p)/aug-cc-pVDZ-PP approaches.

Ionization
Energy

Geometry 2h-1p 2h-1p 3h-2p

State of Au3 rAu-Au(Å) θ(degree) 5d6sc 5s5p5d6sd 5d6sc 5s5p5d6sd 5d6sc Extrapolatede Experimentf

x = D x = T x = D

V 2Σ+
u (D

∞h) 2.593 180 3.621 3.683 3.670 3.735 3.427 3.541 A:3.89(0.08)

Ad X0
2B1(C2v) 2.725 67 3.539 3.578 3.571 3.604 3.341 3.406

Ad X1
2B1(C2v) 2.575 142 3.562 3.598 3.614 3.645 3.371 3.454

V 2Σ+
g (D

∞h) 2.593 180 4.781 4.546 4.857 4.709 4.520 4.448 B:4.38(0.15)

Ad 2Σ+
g (D

∞h) 2.500 180 4.710 4.408 4.781 4.538 4.440 4.268

V 2Πg(D∞h) 2.593 180 4.949 4.597 5.079 4.787 4.613 4.451 C:4.62(0.10)

Ad 2Πg(D∞h) 2.479 180 4.812 4.413 4.895 4.562 4.509 4.259

V 2Σ+
g (D

∞h) 2.593 180 4.883 4.853 4.982 4.932 4.577 4.626 D:4.73(0.07)

Ad 2Σ+
g (D

∞h) 2.582 180 4.878 4.860 4.969 4.938 4.583 4.643

V 2∆g(D∞h) 2.593 180 5.758 5.409 5.895 5.608 5.373 5.223 E:5.28(0.07)

V 2∆u(D
∞h) 2.593 180 6.001 5.658 6.140 5.856 5.551 5.406

F:5.36(0.07)
V 2Πu(D

∞h) 2.593 180 6.209 5.889 6.326 6.061 5.696 5.548

V 2Σ+
u (D

∞h) 2.593 180 6.257 5.930 6.365 6.091 5.767 5.601
G:5.53(0.05)

V 2∆g(D∞h) 2.593 180 6.194 5.866 6.329 6.060 5.784 5.650

V 2Πg(D∞h) 2.593 180 7.114 6.828 7.227 6.995 6.602 6.483 H:5.90(0.05)

a Vertical IEs determined using the scalar relativistic CCSD/aug-cc-pVDZ-PP optimized Au−

3
geometry, resulting in a D

∞h structure with rAu-Au = 2.593 Å.

b Adiabatic IEs are the differences between the ground- and excited-state energies of Au3 determined using the corresponding scalar relativistic IP-

EOMCCSD(2h-1p)/aug-cc-pVDZ-PP optimized geometries and the ground-state energy of Au−

3
determined as in footnote a.

c The 5d106s1 valence electrons of each gold atom and an additional electron due to the charge were correlated.

d The 5s25p6 semi-core and 5d106s1 valence electrons of each gold atom and an additional electron due to the charge were correlated.

e Extrapolated using Eq. (3.21).

f The labels, positions, and, in parentheses, widths of the peaks in the photoelectron spectrum of Au−

3
from Ref. [222]. Except for C and E, which are shoulders of D

and F, respectively, all peak positions correspond to the maxima in the spectrum. The width is the full width at half maximum (see Ref. [222] for details).



While all reported states are doublets, we did consider quartet states. However, the

lowest-energy quartet, which was determined by experiment to lie in the energy range

from 6.42–8.08 eV [236] and from the previously computed modified coupled pair functional

(MCPF) ionization energies, which were artificially scaled, to be 7.06 eV [237], was found by

our composite IP-EOMCC calculations to lie at 7.13 eV, i.e., in very good agreement with

the previous experimental and theoretical studies and outside the range of the experimental

photoelectron spectra [221–223]. All CC and IP-EOMCC calculations reported in this work

were performed with the Piecuch group codes [159, 238] in GAMESS.

The IP-EOMCCSD(2h-1p)/aug-cc-pVDZ-PP calculations for the first vertical IE of Au−3

(peak A) are in good agreement with the experimental [222] value of 3.89 eV due to the fact

that the ground state of Au3 is dominated by a 1h excitation out of the Au−3 HOMO (unlike

in the early ab initio work [224–226], including high-level MRCI and MCPF computations,

no empirical scaling had to be employed in our IP-EOMCC calculations to obtain such

an agreement). The only other state of Au3 accurately described by this level of theory

is the 2Σ+
g state assigned to peak D, which is characterized by a leading 1h excitation

out of the HOMO − 1 orbital of Au−3 , with all other excitations being much smaller. The

remaining states have significant 2h-1p contributions, resulting in errors of 0.27–1.21 eV

relative to experiment at the IP-EOMCCSD(2h-1p)/aug-cc-pVDZ-PP level. Looking at the

IP-EOMCCSD(2h-1p)/aug-cc-pVTZ-PP results, without and with CV contributions, all IEs

rise on average by 0.11 and 0.16 eV, respectively, with the states assigned to peaks A and D

changing the least. It is clear, comparing the IP-EOMCCSD(2h-1p)/aug-cc-pVxZ-PP (x =

D, T) and the corresponding IP-EOMCCSD(2h-1p)/aug-cc-pVxZ-PP+CV IEs, that the CV
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1
Figure 3.2: Vertical IEs of Au−3 (red bars) superimposed on the photoelectron spectrum
from Fig. 1(c) in Ref. [222]: (a) IP-EOMCCSD(2h-1p)/aug-cc-pVDZ-PP calculations; (b)
IP-EOMCCSD(2h-1p)/aug-cc-pVTZ-PP+CV calculations; (c) IP-EOMCCSD(3h-2p)/aug-
cc-pVDZ-PP calculations; (d) extrapolated IEs determined using Eq. (3.21). For the actual
symmetries and energies of the calculated states of Au3, see Table 3.8.
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correlations have a larger effect than the basis set employed, as they lower the calculated IEs

by 0.23 eV on average, again having little effect on the states contributing to peaks A and D.

The inclusion of 3h-2p correlations within the IP-EOMCC framework has a significant effect

on the majority of the calculated IEs, with an average lowering of ∼ 0.4 eV compared to the

corresponding IP-EOMCCSD(2h-1p)/aug-cc-pVDZ-PP calculations. Again, only the states

assigned to peaks A and D, dominated by 1h excitations, have smaller 3h-2p correlations.

While the CV correlations and higher-order, 3h-2p, excitations tend to lower the calcu-

lated IEs, the larger aug-cc-pVTZ-PP basis set raises them, thus demonstrating the need for

a carefully balanced description of electron correlation and basis set effects when examining

the electronic states of Au3. Such a description would be obtained using the high-level IP-

EOMCCSD(3h-2p)/aug-cc-pVTZ-PP+CV approach, but calculations of this kind are too

expensive in the Au−3 case examined here. To circumvent this issue, we adopted the simple

extrapolation scheme suggested in Section 3.3.2 which, as demonstrated in that section, can

account for the CV as well as 3h-2p correlations and the effect of going from the aug-cc-

pVDZ-PP to the aug-cc-pVTZ-PP basis set in a computationally affordable manner by using

Eq. (3.20) where BS1 is the aug-cc-pVDZ-PP basis set and BS2 the aug-cc-pVTZ-PP basis,

defining the IE corresponding to the k-th electronic state of Au3, IEk, as

IEk =[IEk(3h-2p) − IEk(2h-1p)]/aug-cc-pVDZ-PP

+IEk(2h-1p)/aug-cc-pVTZ-PP+CV.

(3.21)

Similar to the explanation in Section 3.3.2, the first term on the right-hand side is the

3h-2p contribution computed as the difference between the IP-EOMCCSD(3h-2p) and IP-
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EOMCCSD(2h-1p) IEs using the aug-cc-pVDZ-PP basis, which is subsequently added to

the IP-EOMCCSD(2h-1p)/aug-cc-pVTZ-PP+CV IE accounting for the effects of the larger

basis set and correlation of the semi-core electrons.

The vertical photoelectron spectrum obtained with Eq. (3.21)is shown in Fig. 3.2(d).

With the exception of the ground state and our highest calculated excited state of Au3, the

extrapolated IEs are in excellent agreement with their experimental counterparts, deviating

at most by 0.17 eV. Examining the ground state of Au3, we can see that, while the inclusion

of 3h-2p excitations lowers the corresponding IE of Au−3 , the larger aug-cc-pVTZ-PP basis set

along with the CV correlations counteract this effect, resulting in a difference with experiment

of 0.35 eV. Since the ground-state of Au3 is dominated by 1h excitations relative to Au−3 ,

one may have to use basis sets larger than aug-cc-pVTZ-PP in this case to further improve

this result. The highest calculated excited state of Au3, assigned to peak H, emphasizes the

need to consider the various correlation effects together, as without all of them taken into

account using Eq. (3.21) we obtain energies which are too high and which have not been

accessed by the photodetachment experiments to date [221–223] (see Table 3.8).

In addition to an improved description of the IEs, our IP-EOMCC-based composite

scheme defined by Eq. (3.21) allows one to accurately assign the underlying states of Au3

to peaks and regions of the photoelectron spectra of Au−3 reported in Refs. [221–223], which

would otherwise be a difficult thing to do (for the earlier attempts to examine excited states

of Au3 at ab initio levels, see Refs. [227, 228]). Indeed, we computed three electronic states

in the 4−5 eV region, all in good agreement with the experimental photodetachment spectra

[222, 223]. The lowest two 2Σ+
g states correspond to peaks B and D, while the lowest 2Πg
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state can be assigned to the shoulder of peak D, labeled as peak C. For peaks E, F, and G

our results indicate that there are five excited states of Au3 behind these spectral features.

The lowest-energy 2∆g state, which our extrapolation scheme based on Eq. (3.21) places

at 5.223 eV, is clearly separated from the next 2∆u state by 0.18 eV, and we assign it

to the lowest-energy shoulder in this region, i.e., peak E. Of the remaining states in the

same region, the two doubly degenerate 2∆u and 2Πu states, which our IP-EOMCC-based

extrapolation scheme places at 5.406 and 5.548 eV, respectively, correspond to peak F, while

the non-degenerate 2Σ+
u and doubly degenerate 2∆g states are assigned by us to peak G.

This assignment is based on the relative intensities of the peaks observed in experiment,

not the energies alone. Indeed, peak F has the largest intensity and, therefore, should be

composed of more underlying electronic states than the other two peaks. Shoulder E, on the

other hand, should originate from the least number of states, since it is the smallest peak in

this region. Finally, the intensity of peak G lies between that of peaks E and F. Thus, there

should be a, roughly, 2:4:3 ratio of the intensities between peaks E, F, and G, respectively,

which is indeed the case if we use the above assignment and account for state degeneracies.

It should be mentioned that this type of assignment for the intensities of the peaks, would

be greatly enhanced if one computed the cross sections for each photodetached state, which

would bring a more quantitative nature to the above elementary explanation of the peak

heights.

In Ref. [222], the authors propose that in the higher-energy region above 5 eV Au3

possesses an s-derived 2Σ+
g state, meaning that the electron ejected from Au−3 originates

from an orbital with a dominant s character. They use empirical arguments deduced from
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the photoelectron spectra of group IB elements (Cu, Ag, Au) and assign the s-derived 2Σ+
g

state to peak F. Examining our IP-EOMCC wave functions, we can see that the photoelectron

spectrum of Au−3 indeed contains an s-derived 2Σ+
g state. However, our IP-EOMCC-based

extrapolation scheme using Eq. (3.21) places such a state at 4.626 eV, if vertical IEs are

examined, and so we assign it to peak D. The 2Σ+
u ground state of Au3 is the only other

s-derived state, with the remaining states being d-derived, in agreement with the discussion

in Ref. [222]. In the presence of spin-orbit coupling, ignored in this work, the manifold of the

d-derived states would further split into the d5/2- and d3/2-derived bands [222], but based

on the earlier computations [227] we do not expect this to alter the physical origin of the

peaks and shoulders in the experimental photoelectron spectrum suggested by our scalar

relativistic IP-EOMCC calculations.

While our extrapolated vertical IEs of Au3 are in generally good agreement with ex-

periment, using them alone is not sufficient to explain the varying peak widths observed

in the photoelectron spectrum, especially in the lower-energy region, 3−5 eV. It is possi-

ble, and has been observed in other clusters [222, 223, 239, 240], that ejection of an electron

can be a slow enough process to allow for the geometry of the cluster to relax, contribut-

ing to the experimental peak widths. For this reason, we investigated the role of geometry

relaxation on the ground and lower-energy (<5 eV) excited states of Au3, using the IP-

EOMCCSD(2h-1p)/aug-cc-pVDZ-PP level of theory and finite-difference approach to opti-

mize their geometries. All of the geometries were optimized using Cs symmetry employing as

the starting geometry a bent structure with one of the Au–Au bond lengths longer than the

other Au–Au distance. We again employed our extrapolation scheme based on Eq. (3.21) to
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determine the final energetics.

For the ground state of Au3, two low-lying isomers (X0 and X1 in Table 3.8) were found.

They are consistent with previous theoretical [208,210–212,224,227] and experimental [241]

work. The lowest-energy isomer (X0) is an isosceles, nearly D3h symmetric, Jahn-Teller

distorted triangle (the spin-orbit effects, ignored in this work, would suppress this distortion

[210, 212]). Transition from the linear geometry of Au−3 to the triangular X0 geometry of

Au3 requires significant lengthening of the Au–Au bonds and a large change of the Au–

Au–Au angle, θ, i.e., isomer X0 may be hard to access in photoelectron experiments. The

X1 isomer (also found in Ref. [210]), which is characterized by the nearest-neighbor Au–Au

distance similar to that in Au−3 and the Au–Au–Au angle θ = 142◦, seems easier to access

from the equilibrium geometry of Au−3 . The 0.087 eV difference between the extrapolated

adiabatic IE for isomer X1 and the corresponding vertical IE agrees to within 0.01 eV with

the experimentally reported full width at half maximum (FWHM) characterizing peak A.

Peak B is nearly twice as broad as peak A in experiment, agreeing with our computed peak

widths for A and B of 0.087 and 0.180 eV, respectively. Since peaks C and D are not resolved

in the experiment where their FWHM was measured [222] (cf. Ref. [223] where peak C and

D are resolved in the experimental spectrum, though their peak positions and FWHMs are

not determined there) and the total width of their combined feature is nearly the same as the

difference between our calculated vertical and adiabatic IEs for the lowest 2Πg and second-

lowest 2Σ+
g states, their analysis is not as straightforward. Nevertheless, the difference

between the vertical and adiabatic IEs obtained using our IP-EOMCC extrapolation for the

lowest-energy 2Πg state assigned to shoulder C is larger than that characterizing the second
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2Σ+
g state assigned to peak D, in qualitative agreement with the experimental peak widths.

As for the higher-lying states above 5 eV, the difference between vertical IEs characterizing

the 2∆u and 2Πu states, assigned to peak F, and 2Σ+
u and 2∆g states, assigned to peak G, are

comparable to the corresponding experimental peak widths, strengthening our interpretation

that each of these two spectral features originates from multiple electronic states. The high

density of states in this region made the geometry optimizations uncertain, so we do not

discuss the corresponding adiabatic IEs.

In summary, we investigated the photoelectron spectrum of Au−3 using the scalar rel-

ativistic IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p) approaches. We examined the

effects of basis set, number of correlated electrons, higher-order correlation contributions,

and geometry relaxation, obtaining an accurate assignment of peaks and shoulders observed

in the experimental photoelectron spectrum. The final energetics were obtained with an

IP-EOMCC-based composite scheme capable of capturing the basis set, core-valence, and

higher- order valence correlation effects in a computationally feasible manner, producing the

results that on average agree with the experimental peaks to within ∼ 0.1 eV. Our calcula-

tions suggest that changes in geometry during electron ejection from Au−3 may contribute

to the peak widths, in addition to multiple electronic states behind a given spectral feature.

In future studies, we would like to determine the effects of higher-order relativistic con-

tributions, such as spin-orbit interactions, on our results as well as test the reliability of

the IP-EOMCC approaches with 3h-2p and 4h-3p excitations, treated fully or with active

orbitals [160] and extrapolation schemes of the type of Eqs. (3.20) and (3.21). It would also

be interesting to include scattering cross-sections in our future analysis.
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Chapter 4

Applications of completely

renormalized coupled-cluster and

equation-of-motion coupled-cluster

approaches

In this chapter, the completely renormalized (CR) CC ground-state and CR-EOMCC excited-

state methods are used to investigate several challenging chemical problems, from the photo-

chemistry of organic molecules to the catalytic reaction pathways involving gold nanoparti-

cles. Each of our examples demonstrates the utility of novel single-reference CC and EOMCC

approaches developed in our group in providing accurate information and predictive power.

4.1 Theory

In the basic particle-conserving CCSD and EOMCCSD approaches, the cluster operator T

and the linear excitation operator Rµ defining the corresponding ground-sate and excited-

state wave functions, |Ψ0〉 = eT |Φ〉 and |Ψµ〉 = Rµ|Ψ0〉 = RµeT |Φ〉, respectively, are trun-
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cated at two-body terms, such that (cf. Eq. (3.11)) T ≈ T (CCSD) = T1 + T2 where

T1 =
∑

i,a

tiaa
aai (4.1)

and

T2 =
∑

i<j,a<b

t
ij
aba

aabajai, (4.2)

and Rµ ≈ R
(CCSD)
µ = Rµ,0 + Rµ,1 + Rµ,2, where

Rµ,0 = rµ,01 (4.3)

with 1 representing the unit operator, and

Rµ,1 =
∑

i,a

ri
aa

aai (4.4)

and

Rµ,2 =
∑

i<j,a<b

r
ij
aba

aabajai. (4.5)

As before, we adopt the conventional notation in which i, j, . . . (a, b, . . .) designate the occu-

pied (unoccupied) spin-orbitals in the reference determinant |Φ〉 and ap (ap) represent the

usual creation (annihilation) operators associated with the spin-orbital basis set {|p〉}.

The singly and doubly excited cluster amplitudes, tia and t
ij
ab, defining T1 and T2, re-

spectively, are obtained by solving the system of nonlinear equations obtained by projecting

the electronic Schrödinger equation with the CCSD wave function in it onto the singly and
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doubly excited determinants, |Φa
i 〉 = aaai|Φ〉 and |Φab

ij 〉 = aaabajai|Φ〉, namely,

〈Φa
i |H̄(CCSD)|Φ〉 = 〈Φa

i |H̄
(CCSD)
N,open |Φ〉 = 0 (4.6)

and

〈Φab
ij |H̄(CCSD)|Φ〉 = 〈Φab

ij |H̄
(CCSD)
N,open |Φ〉 = 0, (4.7)

where (cf. Eqs. (3.10) and (3.13))

H̄(CCSD) = e−T1−T2HeT1+T2 = H̄
(CCSD)
N,open + E

(CCSD)
0 (4.8)

is the similarity transformed Hamiltonian of CCSD. The ground-state CCSD energy, E
(CCSD)
0 ,

is obtained by projecting the Schrödinger equation onto the reference determinant |Φ〉,

E
(CCSD)
0 = 〈Φ|H̄(CCSD)|Φ〉 = 〈Φ|H|Φ〉 + H̄

(CCSD)
N,closed. (4.9)

In the EOMCCSD case, the one- and two-body excitation amplitudes, ri
a and r

ij
ab, defining

Rµ,1 and Rµ,2, respectively, and the corresponding vertical excitation energies,

ω
(CCSD)
µ = E

(CCSD)
µ − E

(CCSD)
0 , (4.10)

are obtained by diagonalizing the similarity transformed Hamiltonian H̄(CCSD) (or H̄
(CCSD)
N,open )

in the space spanned by the singly and doubly excited determinants, |Φa
i 〉 and |Φab

ij 〉, respec-
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tively,

〈Φa
i |(H̄

(CCSD)
open R

(CCSD)
µ,open )

C
|Φ〉 = ω

(CCSD)
µ ri

a (4.11)

and

〈Φab
ij |(H̄

(CCSD)
open R

(CCSD)
µ,open )

C
|Φ〉 = ω

(CCSD)
µ r

ij
ab, (4.12)

combined with

rµ,0 = 〈Φ|(H̄(CCSD)
open R

(CCSD)
µ,open )

C
|Φ〉/ω(CCSD)

µ (4.13)

for the zero-body component or Rµ, which is computed a posteriori.

Since the left (bra) and right (ket) eigenstates of the non-Hermitian similarity trans-

formed Hamiltonian H̄(CCSD) form a biorthogonal many-electron basis, they must both be

determined for evaluation of properties other than energies or if one is interested in the

subsequent CR-CC and CR-EOMCC computations. The proper ansatz for the bra wave

functions of the CC/EOMCC theory is 〈Ψ̃µ| = 〈Φ|Lµe−T , where µ = 0 indicates the ground

state and µ > 0 labels excited states, which in the CCSD/EOMCCSD case are generated by

the deexcitation operators Lµ ≈ L
(CCSD)
µ = Lµ,0 + Lµ,1 + Lµ,2, where

Lµ,0 = δµ,01, (4.14)

Lµ,1 =
∑

i,a

lai aiaa, (4.15)

and

Lµ,2 =
∑

i<j,a<b

lab
ij aiajabaa, (4.16)
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whose many-body ranks match those of T (CCSD) and R
(CCSD)
µ .

The noniterative triples corrections to the CCSD and EOMCCSD energies defining the

CR-CC(2,3) and CR-EOMCC(2,3) approaches result from the more general theoretical

framework, abbreviated as MMCC [46–52, 87–95] (cf. Ref. [40, 41, 68] for selected reviews).

Thus, they are based on one of the several possible expressions [40, 41, 46–52, 68, 87–95] for

the differences between the exact, full CI energies Eµ and the corresponding CC/EOMCC

energies E
(CC)
µ obtained with truncated forms of T and Rµ,

δµ = Eµ − E
(CC)
µ , (4.17)

written in terms of the generalized moments of the CC/EOMCC equations corresponding

to a posteriori projections of these equations on the excited determinants disregarded in

the CC/EOMCC calculations. In the specific case of CR-CC(2,3) and CR-EOMCC(2,3)

considerations, we write the corresponding energies Eµ(2, 3) as follows:

Eµ(2, 3) = E
(CCSD)
µ + δµ(2, 3), (4.18)

where the triples corrections δµ(2, 3) to the CCSD (µ = 0) and EOMCCSD (µ > 0) energies

E
(CCSD)
µ are calculated as

δµ(2, 3) =
∑

i<j<k, a<b<c

ℓabc
µ,ijk M

ijk
µ,abc. (4.19)

The generalized moments of the CCSD and EOMCCSD equations M
ijk
µ,abc entering Eq. (4.19)

79



are obtained by projecting the CCSD and EOMCCSD equations on the triply excited deter-

minants |Φabc
ijk〉,

M
ijk
µ,abc = 〈Φabc

ijk |H̄(CCSD)R
(CCSD)
µ |Φ〉, (4.20)

where R
(CCSD)
µ = 1 when µ = 0, the CCSD ground-state case is considered. The corre-

sponding amplitudes ℓabc
µ,ijk that multiply moments M

ijk
µ,abc to produce the δµ(2, 3) correction

are calculated using

ℓabc
µ,ijk = 〈Φ|(Lµ,0 + Lµ,1 + Lµ,2) H̄(CCSD)|Φabc

ijk〉/Dabc
µ,ijk, (4.21)

where Dabc
µ,ijk is a suitable quasi-perturbative denominator derived by considering the left

eigenvalue problem involving H̄(CCSD) in a subspace spanned by up to triple excitations.

Different forms of Dabc
µ,ijk lead to different variants of the CR-CC(2,3) and CR-EOMCC(2,3)

approaches labeled by an additional letter A–D. In particular, in the most complete variant D

resulting in the CR-CC(2,3),D and CR-EOMCC(2,3),D methods, Dabc
µ,ijk entering Eq. (4.21)

is calculated using the Epstein-Nesbet-like expression,

Dabc
µ,ijk = ω

(CCSD)
µ −

3
∑

n=1

〈Φabc
ijk |H̄

(CCSD)
n |Φabc

ijk〉, (4.22)

where H̄
(CCSD)
n is the n-body component of H̄(CCSD). On the other hand, in the simplest

A version of CR-CC(2,3) and CR-EOMCC(2,3) which leads to the CR-CC(2,3),A and CR-

EOMCC(2,3),A approaches, we replace the Epstein-Nesbet form of Dabc
µ,ijk, Eq. (4.22), by
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the Møller-Plesset-style expression

Dabc
µ,ijk = ω

(CCSD)
µ − (εa + εb + εc − εi − εj − εk), (4.23)

where ε’s are the Hartree-Fock spin-orbital energies (diagonal elements of the Fock matrix).

As explained in Refs. [93–95], the ground-state CR-CC(2,3),A scheme is equivalent to the

CCSD(2)T approach of Ref. [77]. Similarly, the CR-EOMCC(2,3),A method is equivalent to

the EOM-CC(2)PT(2) approach of Ref. [76].

One of the key features of the CC and EOMCC theories is size extensivity of the CC

results in the ground state and size intensivity of the EOMCC results in describing excitation

energies. The ground-state CR-CC(2,3) approach is size extensive, so there is no concern

here. Unfortunately, the CR-EOMCC(2,3) triples corrections to the EOMCCSD excited-

state energies (just like their EOM-CC(2)PT(2) counterpart) introduce small size-intensivity

errors (the EOMCCSD approach is size intensive). In order to address this issue, we have

to turn to the δ-CR-EOMCC(2,3) methodology developed in Ref. [31] as a consequence of

the analysis presented in Refs. [45] and [52].

The δ-CR-EOMCC(2,3) method proposed in Ref. [31], which is a rigorously size-intensive

version of the CR-EOMCC(2,3) methodology of Refs. [51, 52], relies on the same general

expression for the triples corrections δµ(2, 3), but differs in the explicit equations for M
ijk
µ,abc

and in the fact that the EOMCCSD excitation energies ω
(CCSD)
µ rather than the total energies

E
(CCSD)
µ are corrected for the missing triples contributions,

ωµ(2, 3) = ω
(CCSD)
µ + δµ(2, 3), (4.24)
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where µ > 0. As shown in Refs. [31, 52], the enforcement of strict size intensivity of the

δµ(2, 3) triples corrections to the EOMCCSD excitation energies (ω
(CCSD)
µ is size inten-

sive [28, 242]) requires that we replace the complete moment M
ijk
µ,abc, Eq. (4.20), in Eq.

(4.19) for δµ(2, 3) by its truncated analog ignoring the ground-state rµ,0〈Φabc
ijk |H̄(CCSD)|Φ〉

contribution, i.e.,

M
ijk
µ,abc = 〈Φabc

ijk|H̄(CCSD)(Rµ,1 + Rµ,2)|Φ〉. (4.25)

We continue using Eq. (4.21) for the deexcitation amplitudes ℓabc
µ,ijk, which in the case of

excited states targeted by δ-CR-EOMCC(2,3) are calculated as (cf. Eq. (4.14))

ℓabc
µ,ijk = 〈Φ|(Lµ,1 + Lµ,2) H̄(CCSD)|Φabc

ijk〉/Dabc
µ,ijk. (4.26)

Again, if the Dabc
µ,ijk denominator entering Eq. (4.26) is given by the Epstein-Nesbet-type

expression, Eq. (4.22), we obtain the more complete variant D of δ-CR-EOMCC(2,3), ab-

breviated as δ-CR-EOMCC(2,3),D. If we replace Eq. (4.22) for Dabc
µ,ijk in Eq. (4.26) by

the Møller-Plesset-type expression given by Eq. (4.23), we obtain the simplified A variant,

abbreviated as δ-CR-EOMCC(2,3),A, which is, as explained in Ref. [31] (cf., also, Ref. [52]),

equivalent to the EOMCCSD(2)T approach of Ref. [45] and, if we limit ourselves to vertical

excitation energies, to the EOMCCSD(T̃) method of Ref. [86]. Typically, we use the δ-CR-

EOMCC(2,3) approach to calculate excitation energies. If we are, however, interested in

total δ-CR-EOMCC(2,3) energies, we simply add ωµ(2, 3), Eq. (4.24), to the ground-state

CR-CC(2,3) energy. As a result, the δ-CR-EOMCC(2,3) method is extensive in the ground

state (using the CR-CC(2,3) expressions for the ground-state energy) and size intensive in
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describing excitation energies, satisfying the key desiderata of the CC/EOMCC theories.

4.2 Discovery of the doubly excited state that mediates

the photoionization of azulene

4.2.1 Background information and performed calculations

Typically, when talking about molecular electronic spectroscopy, the focus is on dipole-

allowed transitions to states with predominant one-electron excitation character, which make

up the majority of photoabsorption spectra. It is well known, though, that molecular systems

can possess strongly correlated excited states dominated by two-electron transitions. Such

states, while being spectroscopically dark when populated from the ground states, can be

useful tools for probing wider ranges of vibrational energies and novel types of photoinduced

chemical dynamics. As a part of this thesis work, we examined the electronic spectrum

of azulene combining high-level ab initio quantum chemistry with experiment to prove the

existence of a doubly excited state below the ionization threshold which can drive the in-

triguing multiphoton ionization dynamics examined in Ref. [243], resulting in clear Rydberg

fingerprint spectra.

The electronic structure of azulene, whose molecular configuration is shown in Fig. 4.1,

is noteworthy due to its atypical fluorescence, which occurs from the second-excited S2 state,

instead of the lower-energy S1 state. As such, azulene is a textbook exception to Kasha’s

rule [244], which, although originally formulated for condensed phase matter, applies to

many gas phase molecules as well, says that “the emitting level of a given multiplicity is
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Figure 4.1: The C2v-symmetric structure of azulene and its bond lengths. The large black
spheres represent carbon atoms, whereas the small gray spheres represent hydrogens.
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the lowest excited level of that multiplicity.” Due to this unusual behavior, there have been

many studies, both experimental and theoretical, on the photochemistry of azulene, including

several experimental studies dealing with the spectroscopy and dynamics involving the S1

and S2 states [245–248]. The early two-photon ionization experiments via the Sn, n = 2−4,

states of azulene [249] should be mentioned here, too. Much less is known, however, about

higher valence states of azulene [250–253], other than their utility in preparing highly excited

molecules for observation of photoinduced unimolecular dynamics [254–256].

Recently, Blanchet and coworkers carried out an extensive experimental study of the

photoionization of azulene [243]. The photoelectron spectra of azulene recorded in their

two-color, three-photon, 1 + 2′ time-resolved photoelectron imaging experiments are shown

in Fig. 4.2, which combines the photoelectron spectra from Ref. [243], where the pump

wavelengths were varied from 268 to 335 nm and probe pulses were fixed at 400nm, with

the analogous spectrum corresponding to the 201 nm pump obtained in Ref. [142] (see

Ref. [257] for a related study). They noticed that the 1 + 2′ time-resolved photoelectron

spectra are invariant (apart from the intensity) with respect to the pump-probe delay time

and wavelength of the pump pulse (cf. Fig. 4.2), which led them to suggest that the 1 + 2′

photoionization is driven by an unstable doubly excited electronic state located below the

ionization threshold [243]. In the study carried out in Ref [243] Blanchet and coworkers stated

“...we hope our observations might inspire theorists to take up the challenge to calculate the

geometry and electronic configuration of the doubly excited states on polyaromatic systems,

such as azulene”, as they had no direct way to prove experimentally that such a state existed.

An important note about the postulated doubly excited state in the middle of the Rydberg
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part of azulene’s electronic spectrum, is that it should be distinguished from “superexcited”

resonance states above the ionization threshold that the normal, basis-set-based, real space

ab initio quantum chemistry approaches for electronically bound states, including those

employed in this dissertation, cannot describe. As depicted in Fig. 4.3, the postulated

doubly excited state, marked by ∗∗, is proposed to be populated by a probe transition from

the S2 state, which itself is populated by the initial pump photon or by fast relaxation from

the Sn states with n > 2 reached by the pump energies. Once populated, the doubly excited

state is proposed to rapidly relax into the vibrationally highly excited Rydberg states, from

which azulene can be photoionized after absorbing the second probe photon to produce a

Rydberg fingerprint.
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The available experimental information suggests that the postulated doubly excited state

is located not only below the ionization threshold of 7.41 eV, but it must, in fact, appear

below 6.81 eV (a combination of the lowest-energy pump photon at 335 nm and a 400 nm

probe photon). It should also be located above the second Rydberg state at 5.19 eV, marked

in Fig. 4.2 as RB (cf. Table 4.2), since the fingerprint of this state is clearly seen in the lower-

energy parts of all the photoelectron spectra shown in Fig. 4.2, independent of the pump

wavelength. Furthermore, to rationalize the optically induced anisotropy associated with

the pump excitation [257], the postulated doubly excited state should represent a totally

symmetric singlet excitation accessible from S2. Deleuze carried an exhaustive investiga-

tion using algebraic-diagrammatic construction calculations at the ADC(3) level of theory

for azulene and other polycyclic aromatic hydrocarbons and their ionization spectra [258].

He showed that the first shake-up ion state of the azulene cation, which lies at very low

energy, consists of a dominant orbital configuration of . . .(3b1)2(2a2)0(4b1)0(3a2)1 with re-

spect to the neutral ground-state electron configuration, . . .(3b1)2(2a2)2(4b1)0(3a2)0. Since

the postulated doubly excited state lies nears the ionization level and the Rydberg states

are assumed to converge to this cation state, the postulated doubly excited state should

have a similar electron configuration dominated by the (HOMO)2 → (LUMO + 1)2 and

(HOMO − 1)2 → (LUMO)2 transitions [243]. It should be mentioned that the multiphoton

ionization of azulene from S2 via unstable superexcited valence states relaxing to the Ryd-

berg states prior to the final photoionization event has also been discussed in Ref. [259], but

without determining a precise makeup of the hypothetical superexcited states. Moreover,

superexcited states are located above the ionization threshold, whereas the doubly excited
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Figure 4.2: The photoelectron spectrum of azulene using a probe pulse centered at 400 nm,
recorded for four pump excitation energies (the corresponding vibrational energies in S2
given in parentheses), namely, 201 nm (2.61 eV; Ref. [142]), 268 nm (1.07 eV; Ref. [243]),
283 nm (0.82 eV; Ref. [243]), and 335 nm (0.14 eV; Ref. [243]), and a pump-probe delay
time of 500 fs (for other pump-probe delay times, which yield similar spectra, see Ref. [243]).
The unstructured direct ionization (65 % of photoionization events) has been subtracted.
Each spectral profile represents a fingerprint of the Rydberg states from which azulene is
photoionized after absorbing the second probe photon. The electronic energies of these
Rydberg states are marked by RA, RB, etc. Two horizontal axes near the top show the
vibrational energies in Rydberg states for the pump wavelengths of 201 and 335 nm.
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Figure 4.3: The proposed schematics of the 1 + 2′ photoionization experiment [243]. The
Rydberg states, from which azulene is photoionized, are populated by the electronic relax-
ation from the postulated doubly excited state located below the ionization threshold D0,
marked by ∗∗. Excitation of the doubly excited state from S2, relaxation into the Rydberg
states, and photoionization take place within the probe pulse duration (100 fs).
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state postulated in Ref. [243] and sought in this thesis research is expected to lie below the

ionization threshold. We note that doubly excited states at energies as low as 4.95 eV have

been detected by the magnetic circular dichroism experiments on azulene derivatives [260].

To determine if the proposed doubly excited state indeed exists, we carried out a large

number of δ-CR-EOMCC(2,3) calculations, including low-lying valence states and several

states in the higher-energy region near the ionization threshold [142]. As explained in Section

4.1, the δ-CR-EOMCC(2,3) approach is the rigorously size-intensive modification of the CR-

EOMCC(2,3) method which is, in turn, the extension of the CR-CC(2,3) approach excited

electronic states. Just like CR-EOMCC(2,3) and its predecessors [48, 49], or methods men-

tioned in Section 4.1, such as EOMCCSD(T̃) and EOMCCSD(2)T, the δ-CR-EOMCC(2,3)

approach corrects the vertical excitation energies obtained with the EOMCCSD scheme

for the effects of triple excitations that are necessary to accurately describe excited states

dominated by two-electron transitions within the EOMCC framework. As mentioned in

the Introduction, EOMCCSD describes the energetics of excited states dominated by two-

electron transitions poorly, pushing them to much higher energies (cf., e.g., Refs. [18,40–43,

46–52,54, 85, 86]). Methods, such as EOMCCSD(T̃), EOMCCSD(2)T, and especially δ-CR-

EOMCC(2,3) provide the necessary energy lowering. The δ-CR-EOMCC(2,3) approach has

a few variants, discussed, in particular, in Section 4.1, including the more complete variant

D and the simplified variant A equivalent to EOMCCSD(2)T and EOMCCSD(T̃), but we

only show variant D calculations, since the results obtained with variant A are rather similar

and do not alter our main conclusions.

Our δ-CR-EOMCC(2,3) calculations for azulene were performed using the 6-31G(d) and
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cc-pVDZ basis sets, which were the largest we could reasonably accommodate when calcu-

lating so many excited states of azulene at such a high EOMCC level. The initial δ-CR-

EOMCC(2,3)/6-31G(d) calculations were performed at the ground-state geometry optimized

at the MP2/6-31G(d) level with GAMESS, where the δ-CR-EOMCC(2,3) and other EOMCC

routines developed by the Piecuch group [31, 48, 49, 51, 52, 145] are incorporated. The final

δ-CR-EOMCC(2,3)/cc-pVDZ calculations were performed at the improved ground-state ge-

ometry obtained using the numerical CR-CC(2,3)/cc-pVDZ gradients in GAMESS, consis-

tent with the δ-CR-EOMCC(2,3)/cc-pVDZ description of excited states, which we verified

with our parallel numerical derivatives discussed in Section 5.1 All calculations used the RHF

reference and the 10 lowest-energy core orbitals corresponding to the 1s shells of the carbon

atoms were frozen in the post-SCF considerations. Although basis sets used here cannot de-

scribe the Rydberg states, they are acceptable for representing one- and two-electron valence

transitions, including the doubly excited state we have attempted to find, as long as one uses

a higher-level EOMCC methodology with a robust treatment of triple excitations, such as

δ-CR-EOMCC(2,3) (in the Franck-Condon region of the pump and probe transitions, the in-

teraction with the Rydberg states is not expected to strongly perturb the vertical excitation

energy of the doubly excited valence state).

4.2.2 Results

The results of our MP2/6-31G(d) and CR-CC(2,3)/cc-pVDZ geometry optimizations per-

formed prior to the final δ-CR-EOMCC(2,3) work, are shown in Table 4.1 along with the

available experimental and previously obtained theoretical data. Our equilibrium geome-
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tries are in good agreement with the other theoretical [261–264] and experimentally deter-

mined [265–268] results. Table 4.2 shows the ten lowest excited states we found along with

the available multireference complete active-space self consistent field (CASSCF) [269,270],

CASSCF based second-order perturbation theory (CASPT2) [271, 272], and experimental

vertical excitation energies [243]. The number of electronic states we had to converge had

to be much larger than in the case of the earlier CASSCF and CASPT2 calculations of the

low-lying excitations in azulene dominated by one-electron transitions [262], which shows

the advantage of using our single-reference EOMCC ideas over the multireference CASSCF-

based thinking, since choosing an adequate active-space to encompass all of the singlet

excited states of azulene and considered in this work would be problematic and prohibitively

expensive. Additional information about the dominant excitation amplitudes defining the

EOMCCSD wave functions for the calculated excited states is given in Table 4.3. The

EOMCCSD values of the dipole oscillator strengths characterizing the calculated electronic

transitions, along with the available experimental [273] and CASSCF [262] data, can be

found in Table 4.4.

As shown in Table 4.2, our δ-CR-EOMCC(2,3) results for the low-lying valence excited

states in azulene are in very good agreement with the available CASPT2(10,10) [262] and

experimental [250,251] data. In most cases, our δ-CR-EOMCC(2,3) excitation energies cor-

responding to the low-lying valence states show a slightly better agreement with experiment

than those obtained with CASPT2. The vertical excitation energies in Table 4.2 are accom-

panied by the reduced excitation level (REL) diagnostic introduced in Ref. [49], resulting
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from EOMCCSD calculations, which is defined as (cf. Eq. (26) in Ref. [49])

REL =

2
∑

n=0
n〈φ|(Rµ,n)†Rµ,n|φ〉

2
∑

n=0
〈φ|(Rµ,n)†Rµ,n|φ〉

=

∑

i,a
(ri

a)2 + 2
∑

i<j,a<b
(r

ij
ab)

2

(r0)2 +
∑

i,a
(ri

a)2 +
∑

i<j,a<b
(r

ij
ab)

2
, (4.27)

where, as explained in Section 4.1, r0, ri
a, and r

ij
ab are the coefficients at the reference and

the single and double excitation amplitudes, respectively, defining the one- and two-body

components Rµ,1 and Rµ,2, respectively, obtained in the EOMCCSD calculations, such that

REL ≈ 1 implies a one-electron transition and REL close to 2 indicates a doubly excited

state. As seen from their REL values in Table 4.2 being close to one, the four low-lying

valence states of azulene, S1–S4, are all predominantly one-electron transitions.

Our computations clearly show a doubly excited state with REL ≈ 1.9, labeled in Tables

4.2–4.4 as state S9, which satisfies all of the conditions set on it in Ref. [243]. Indeed, accord-

ing to our δ-CR-EOMCC(2,3) calculations, augmented with the EOMCCSD wave function

information, S9 is a doubly excited 1A1 state dominated by the (HOMO)2 → (LUMO + 1)2

[(2a2)2 → (3a2)2] and (HOMO − 1)2 → (LUMO)2 [(3b2)2 → (4b2)2] transitions, and, as

predicted from the experimental data summarized in Fig. 4.2, its vertical excitation energy

of ∼ 6.6 eV lies between 5.19 and 6.81 eV (larger basis sets might lower the energy of S9

somewhat, but this would only strengthen our conclusions). Furthermore, as shown in Table

4.4, the oscillator strength of the S2 → S9 probe transition (0.004–0.005) is comparable to

that characterizing the S0 → S2 pump transition (0.003), i.e., the calculated doubly excited

state is accessible from S2, as desired (with the S2 → S9 transition dipole oriented along

the main rotational axis of the C2v-symmetric azulene). All of this suggests that the doubly

93



excited state of azulene below the ionization threshold that supports the 1 + 2′ photoion-

ization experiment [243] indeed exists. We need to emphasize that this high-lying state, in

the middle of the Rydberg part of the spectrum, would not be found if we did not correct

EOMCCSD, which is incapable of describing the energetics of doubly excited states in an

accurate manner, for triple excitations to determine the electronic energy levels (using EOM-

CCSDT would be even better, but such calculations for azulene are prohibitively expensive).

On the other hand, EOMCCSD can provide useful information about dominant electronic

configurations by examining the EOM excitation amplitudes, as in Table 4.3.
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Table 4.1: Bond lengths (in Å) defining the calculated and experimental geometries of azulene in its ground electronic
state S0 (X 1A1) (for the meaning of various distances, see Fig. 4.1).

Bond MP2a MP2b CCSDb CR-CC(2,3)a CAS(10,10)c B3LYPd B3LYPe X-rayf EDg µ-wave8

6-31G(d) 6-311G(d,p) 6-31G(d,p) cc-pVDZ 6-31G(d) 6-31G(d) cc-pVTZ

r1 1.405 1.408 1.404 1.419 1.405 1.404 1.400 1.392 1.399 1.405
r2 1.405 1.407 1.405 1.418 1.404 1.405 1.401 1.400 1.418 1.412
r3 1.392 1.393 1.393 1.405 1.392 1.392 1.386 1.391 1.383 1.375
r4 1.400 1.401 1.398 1.411 1.400 1.398 1.396 1.398 1.406 1.405
r5 1.400 1.401 1.398 1.412 1.400 1.398 1.392 1.394 1.403 1.396
rc 1.503 1.505 1.499 1.509 1.497 1.500 1.496 1.498 1.501 1.482
rh1 1.087 1.096 1.085 1.080 1.090 1.079
rh2 1.086 1.095 1.084 1.079 1.086 1.078
rh3 1.092 1.101 1.090 1.086 1.080 1.080
rh4 1.089 1.099 1.088 1.083 1.086 1.082
rh5 1.090 1.100 1.089 1.084 1.087 1.081

a This work.
b Taken from Ref. [261].
c Taken from Ref. [262].
d Taken from Ref. [263].
e Taken from Ref. [264].
f X-ray diffraction data taken from Ref. [265].
g Gas-phase electron diffraction data taken from Ref. [266]. The vibrationally corrected C–H bond lengths taken from Ref. [267].
h Determined from the microwave spectra of azulene isotopomers taken from Ref. [268].
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Table 4.2: Vertical excitation energies (in eV) and REL values for excited states of azulene found in this work.

State Basis set REL EOMCCSD δ-CR-EOMCC(2,3) CASSCF(10,10)a CASPT2(10,10)a Experimentb

S1(B1) 6-31G(d) 1.105 2.290 1.691 1.97 1.96 1.77

cc-pVDZ 1.105 2.224 1.618

S2(A1) 6-31G(d) 1.089 4.192 3.570 4.45 3.81 3.56

cc-pVDZ 1.090 4.037 3.414

S3(B1) 6-31G(d) 1.109 4.897 4.220 4.62 4.15 4.23

cc-pVDZ 1.110 4.760 4.083

S4(A1) 6-31G(d) 1.097 5.567 4.954 5.50 4.94 4.40

cc-pVDZ 1.097 5.387 4.770

S5(B1) 6-31G(d) 1.107 6.424 5.792 4.72

cc-pVDZ 1.107 6.237 5.607

S6(A1) 6-31G(d) 1.146 6.671 5.824 5.19

cc-pVDZ 1.143 6.509 5.674

S7(B2) 6-31G(d) 1.093 6.543 6.010 6.15

cc-pVDZ 1.095 6.421 5.888

S8(A1) 6-31G(d) 1.140 7.378 6.473 6.33

cc-pVDZ 1.138 7.187 6.298

S9(A1) 6-31G(d) 1.879 10.708 6.787

cc-pVDZ 1.893 10.652 6.578

S10(A2) 6-31G(d) 1.092 7.348 6.810

cc-pVDZ 1.094 7.186 6.648

aFrom Ref. [262].
bFrom Table 1 in Ref. [243]. Experiment points to the existence of the Rydberg states at 4.72 (RA), 5.19 (RB), 5.64 (RC), 5.92 (RD), 6.15

(RE), and 6.33 (RF) eV. Based on the orbital character of the leading excitation amplitudes, states RA, RB, RE, and RF from Table 1 in

Ref. [243] can be assigned to the EOMCC roots S5, S6, S7, and S8, respectively. States RC and RD which have 3d and 3d/4s character,

respectively [243], and which might, therefore, be sensitive to the molecular geometry [259] that was not optimized for excited states, could

not be found among the calculated EOMCC roots, likely due to the inadequacy of the basis sets employed.
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Table 4.3: The absolute values of the reference (rµ,0) and leading singly excited (ri
a) and doubly excited (r

ij
ab) amplitudes,

along with the corresponding orbital information, defining the EOMCCSD wave functions of various excited states of
azulene obtained using the 6-31G(d) and cc-pVDZ basis sets.

State Basis set rµ,0 Leading ri
a and rij

ab
amplitudesa

S1(B1) 6-31G(d) 0.00 2a2 → 4b2(0.64) 3b2 → 3a2 0.18)

cc-pVDZ 0.00 2a2 → 4b2(0.64) 3b2 → 3a2(0.17)

S2(A1) 6-31G(d) 0.02 3b2 → 4b2(0.45) 2a2 → 3a2(0.49)

cc-pVDZ 0.03 3b2 → 4b2(0.45) 2a2 → 3a2(0.49)

S3(B1) 6-31G(d) 0.00 1a2 → 4b2(0.30) 2a2 → 4b2(0.15) 3b2 → 3a2(0.56)

cc-pVDZ 0.00 1a2 → 4b2(0.30) 2a2 → 4b2(0.14) 3b2 → 3a2(0.56)

S4(A1) 6-31G(d) 0.04 3b2 → 4b2(0.47) 1a2 → 3a2(0.13) 2a2 → 3a2(0.43)

cc-pVDZ 0.04 3b2 → 4b2(0.47) 1a2 → 3a2(0.13) 2a2 → 3a2(0.43)

S5(B1) 6-31G(d) 0.00 1a2 → 4b2(0.53) 2b2 → 3a2(0.18) 3b2 → 3a2(0.24) 2a2 → 5b2(0.20)

cc-pVDZ 0.00 1a2 → 4b2(0.53) 2b2 → 3a2(0.18) 3b2 → 3a2(0.24) 2a2 → 5b2(0.21)

S6(A1) 6-31G(d) 0.03 2b2 → 4b2(0.51) 1a2 → 3a2(0.36) 3b2 → 5b2(0.11) 3b2
2
→ 4b2

2
(0.12) 2a2

2
→ 3a2

2
(0.12)

cc-pVDZ 0.03 2b2 → 4b2(0.51) 1a2 → 3a2(0.37) 3b2 → 5b2(0.11) 3b2
2
→ 4b2

2
(0.12) 2a2

2
→ 3a2

2
(0.12)

S7(B2) 6-31G(d) 0.00 17a1 → 4b2(0.66)

cc-pVDZ 0.00 17a1 → 4b2(0.66)

S8(A1) 6-31G(d) 0.04 2b2 → 4b2(0.34) 1a2 → 3a2(0.49) 2a2 → 3a2(0.12) 3b2 → 5b2(0.11) 2a2 → 4a2(0.14) 2a2
2
→ 3a2

2
(0.13)

cc-pVDZ 0.04 2b2 → 4b2(0.34) 1a2 → 3a2(0.49) 2a2 → 3a2(0.12) 3b2 → 5b2(0.11) 2a2 → 4a2(0.14) 2a2
2
→ 3a2

2
(0.12)

S9(A1) 6-31G(d) 0.15 3b2 → 6b2(0.10) 1a22a2 → 3a2
2
(0.12) 3b2

2
→ 4b2

2
(0.41) 3b22a2 → 4b23a2(0.23) 3b22a2 → 3a24b2(0.28) 2a2

2
→ 4b2

2
(0.11) 2a2

2
→ 3a2

2
(0.42)

cc-pVDZ 0.15 1a22a2 → 3a2
2
(0.12) 3b2

2
→ 4b2

2
(0.41) 3b22a2 → 4b23a2(0.23) 3b22a2 → 3a24b2(0.28) 2a2

2
→ 4b2

2
(0.11) 2a2

2
→ 3a2

2
(0.42)

S10(A2) 6-31G(d) 0.00 12b1 → 4b2(0.65)

cc-pVDZ 0.00 12b1 → 4b2(0.65)

aOnly the amplitudes whose absolute values are greater than 0.1 are shown.
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Table 4.4: Oscillator strengths for the various transitions in azulene obtained from the EOMCCSD calculations using
the 6-31G(d) and cc-pVDZ basis sets and the available CASSCF(10,10)/6-31G(d) [262] and experimental [273] results.

State Basis S0(A1) S1(B1) S2(A1) S3(B1) S4(A1) S5(B1) S6(A1) S7(B2) S8(A1) S9(A1)

S1(B1) 6-31G(d) 0.007

cc-pVDZ 0.007

CASSCF(10.10) 0.003

Experiment 0.009

S2(A1) 6-31G(d) 0.003 0.000

cc-pVDZ 0.003 0.000

CASSCF(10.10) 0.002

Experiment 0.08

S3(B1) 6-31G(d) 0.064 0.022 0.001

cc-pVDZ 0.062 0.022 0.001

CASSCF(10.10) 0.014

S4(A1) 6-31G(d) 1.309 0.008 0.001 0.000

cc-pVDZ 1.307 0.008 0.001 0.000

CASSCF(10.10) 0.067

Experiment 1.10

S5(B1) 6-31G(d) 0.235 0.038 0.020 0.007 0.000

cc-pVDZ 0.226 0.038 0.020 0.006 0.000

Experiment 0.38

S6(A1) 6-31G(d) 0.019 0.036 0.119 0.000 0.015 0.000

cc-pVDZ 0.018 0.036 0.125 0.000 0.014 0.000

S7(B2) 6-31G(d) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cc-pVDZ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

S8(A1) 6-31G(d) 0.228 0.023 0.000 0.017 0.039 0.003 0.000 0.000

cc-pVDZ 0.229 0.025 0.000 0.017 0.041 0.003 0.000 0.000

Experiment 0.65

S9(A1) 6-31G(d) 0.001 0.043 0.005 0.052 0.190 0.014 0.002 0.000 0.034

cc-pVDZ 0.000 0.043 0.004 0.038 0.212 0.015 0.003 0.000 0.023

S10(A2) 6-31G(d) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

cc-pVDZ 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



Our discovery of the doubly excited state of azulene below the ionization threshold,

which can mediate multiphoton ionization may have substantial implications for the rapidly

developing field of Rydberg fingerprint spectroscopy (RFS) [259,274–278], since similar states

may be present and be equally easily accessible in other molecular systems. The doubly

excited states are dark, when one tries to populate them from the ground state, but, as shown

in Ref. [243] and this study [142], they can be populated via transitions from low-lying bright

states, allowing one to prepare molecules in their respective Rydberg levels via fast internal

conversion, prior to ionization, which is the basis of RFS. One of the advantages of RFS,

related to the fact that ionization from a Rydberg state is essentially purely electronic and

uncoupled from vibrational transitions, is its remarkable sensitivity to structural changes,

enabling one to investigate the time-resolved conformational dynamics in vibrationally hot

floppy molecules, a very difficult task to achieve with other experimental techniques (cf.,

e.g., Refs. [279, 280]). Using doubly excited states below the ionization threshold, such as

that found here, as a way to prepare molecules in their respective Rydberg levels may open

up new avenues in this important direction.
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4.3 Aerobic oxidation of methanol to formic acid on

Au−
8 : Benchmark analysis based on completely renor-

malized coupled-cluster and density functional the-

ory calculations

4.3.1 Background information and scope of the work

The pioneering work of Haruta and coworkers [200] and Hutchings and coworkers [199],

investigating the low-temperature oxidation of CO and the hydrochlorination of ethyne to

vinyl chloride, respectively, has led to an increased interest in the catalytic properties of

small gold nanoparticles from both theory and experiment [201–207,281–284]. Many useful

reactions have been developed using various types of gold catalysts, such as anchored gold

nanoparticles on metal oxides and dispersions of colloidal gold in liquid media. Among the

various reactions, aerobic oxidations have received much attention due to their high yields

even when carried out under ambient conditions, yielding the desired products in a highly

selective manner.

As already mentioned in Section 3.3.1, the chemistry of gold has been extensively stud-

ied by various groups, using a variety of computational approaches (cf. Refs. [204–207] for

representative reviews). In particular, a great deal of attention has been dedicated to the

electronic structure, geometries, and catalytic activity of gold clusters, most of which have

been primarily studied using methods based on DFT. As also pointed out in Section 3.3.1,

the application of reliable ab initio wave function approaches, in particular, the size-extensive
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methods based on CC theory, such as CCSD(T), CCSD(2)T, or CR-CC(2,3), where ener-

gies obtained with the basic CCSD approach are corrected for the dominant effects due to

connected triple excitations to obtain the desired high accuracies, have been very limited

to date, due in large part to the high computational costs for systems involving polyatomic

gold particles. The low energy structures of Au6 and Au8 were studied by Olson et al. [214]

at the CCSD(T) level, using the CCSD(T) routines in GAMESS developed by the Piecuch

group, comparing their CCSD(T) results with those obtained using the DFT and MP2 ap-

proaches. Diefenbach and Kim [215], Han [216], Olson and Gordon [217], and most recently,

our group [183] examined the effect of the basis set, core correlations, and geometry relax-

ation in Au8 using CCSD(T) (see Section 5.1.3). Varganov et al. investigated the adsorption

of O2 (Ref. [211]) and H2 (Ref. [213]) and their activation on small Aun and Au−n (n = 2, 3)

clusters employing the DFT, MP2, and CCSD(T) methods. However, very little is known

about the performance of the high-level methods based on CC theory in applications involv-

ing more complex reactions catalyzed by gold particles. Our work reported in this section

and Ref. [181] address this concern.

In the case of larger gold clusters, the various DFT results are generally consistent with

experiment [285], but the overall situation, particularly when reactive processes catalyzed by

gold clusters are considered, is far from ideal. The underlying reaction mechanisms continue

to be debated [286–289], since neither DFT, where the results often depend (in many cases

strongly) on the applied functional, nor experiments, which give useful but only partial

insights, can provide definitive information. For this reason, calculations comparing DFT

methods, which are applicable to large molecular systems, with the robust wave function
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approaches that can provide accurate benchmark data are in growing demand. In this thesis

project, reported in Ref. [181], we undertook the study of the complex problem of aerobic

oxidation of methanol to formic acid catalyzed by Au−8 at the high ab initio CCSD(2)T

and CR-CC(2,3) levels, for the first time ever. As already alluded to above (cf., e.g., the

introduction in Chapter 1) these methods improve the performance of the popular CCSD(T)

approach in multireference situations, where CCSD(T) fails, including bond breaking [51,68,

77,93–95,99,290,291] (cf. also, Section 5.2), chemical reaction pathways involving biradicals

[98, 105, 292], open-shell species [95, 291], and larger transition-metal containing species [99,

105]. By having access to the high-level CCSD(2)T and CR-CC(2,3) data, we can assess the

performance of the representative DFT methods.

In general, in aerobic oxidation reactions on gold nanoparticles, the activation of molec-

ular oxygen is a critical step [293, 294] with the electronic charge transfer from the gold

particles to the adsorbed oxygen molecules playing a crucial role [295]. However, other fac-

tors may contribute too. For example, Okumura and coworkers examined the significance of

the heterojunction effect between the polymerlike poly(vinyl-2-pyrrolidone) (PVP) system

used in the experimental work on gold-catalyzed aerobic oxidation reactions and Au clus-

ters [287, 296]. Lyalin and Taketsuga reported that cooperative effects might be important

as well [297,298]. The electronic structure aspects of aerobic oxidation on gold particles and

the usefulness of the CC and DFT methods in examining some of these aspects are focuses

of this thesis project.

Recently, Ehara and coworkers investigated the aerobic oxidation of methanol to formic

acid on gold particles supported by PVP (Au:PVP) using DFT [299,300] exploiting the M06
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functional [301]. Two reaction pathways with relatively low activation barriers have been

suggested. To design suitable theoretical models of the catalytic site, Ehara and coworkers

adopted the negatively charged Au−8 (Ref. [300]) and Au−20 (Ref. [299]) clusters, taking into

account the electron-donating nature of the PVP medium, the dependence of the electron

affinity (EA) of the Aun clusters on n, which exhibits minima at n = 8 and 20 (Ref. [221]),

and the fact that clusters with low EAs activate the oxidative reactions most effectively

[302]. The smooth exothermic reaction pathways were obtained and the stationary points

defining these pathways were determined via full geometry optimizations (including all gold

nanoparticle and reactant degrees of freedom) using the M06 functional. They showed that

the reactivity of the smaller planar Au−8 cluster is not as high as in the case of the larger

non-planar Au−20 species, in agreement with the experimentally observed enhancement of

reactivity when the gold particles in the Au:PVP system catalyzing the aerobic oxidation of

methanol to formic acid in the ∼ 1 nm range [202] and consistent with surface roughening

arguments mentioned later in Section 5.1.3.

As one can see, the aerobic oxidation of methanol to formic acid on the Au:PVP sys-

tem has already been theoretically analyzed, suggesting the plausible reaction mechanisms,

but this is all based on uncertain DFT data obtained with a single functional and rather

small basis sets. In order to extend such studies to other aerobic oxidation processes cat-

alyzed by gold and other metallic particles, it is essential to verify whether the previously

reported M06 calculations [299,300] are trustworthy. There are numerous aerobic oxidation

reactions using monometallic, bimetallic [303], or even trimetallic [304] nanoparticles whose

mechanisms await understanding. For example, recently the unique coupling reaction for
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Cl–Cl bond activation with Au/Pd alloy nanoparticles was reported, where the reaction on

pure Au or Pd nanoparticles does not proceed at all, but the Au/Pd alloy system displays

catalytic activity [305]. Clearly, findings of this kind may depend on the employed DFT

functional. It is, therefore, important to determine how accurate various DFT approaches

are in similar applications by testing them against robust ab initio theories than can offer

a reliable description of chemical reaction pathways, which is the focus of this part of the

dissertation.

In this thesis project, we examine the energetics of methanol oxidation to formic acid

on Au−8 using, as the highest theory level for benchmarking DFT, the CR-CC(2,3) ap-

proach, which provides an accurate description of the dynamical and nondynamical corre-

lation effects relevant to single bond breaking, including singlet [51, 68, 93, 94, 99, 290] (cf.

Section 5.2), and nonsinglet [95, 291] potential energy surfaces, reaction pathways involving

biradicals [98, 105, 292], and transition-metal-containing species relevant to catalytic activ-

ity [99, 105], with the ease of a single-reference black-box calculation. We also use the

CCSD(2)T approach, which, as explained in Refs. [93–95] and Section 4.1, is one of the

variants of CR-CC(2,3) and which eliminates, in analogy to CR-CC(2,3), the failures of

CCSD(T) in bond-breaking situations. We focus on the most probable reaction mechanism,

labeled in the previous studies [299, 300] as pathway I, in which formic acid is produced by

oxidation of the methoxy species (CH3O−) on Au−8 . The resulting CR-CC(2,3) pathway is

used to benchmark the representative DFT approaches, which in addition to the previously

employed [299,300] M06 hybrid functional include its pure generalized gradient approxima-

tion (GGA)-type M06-L analog [301], two other pure GGAs, namely, BP86 [306, 307] and
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TPSS [308], the dispersion-corrected counterpart of BP86 represented by the B97-D func-

tional [309], and the popular B3LYP hybrid scheme [310]. Additionally, in this dissertation,

we include the unpublished results obtained using the dispersion corrected hybrid functional

ω-B97X-D [311] for comparison with our results published in Ref. [181].

4.3.2 Molecular model

We want to be able to describe the mechanism of the oxidation of methanol to formic acid on

the gold clusters, which are the most essential part of the real Au:PVP system, using high-

level CC methods, such as CR-CC(2,3), and a few representative DFT approaches, and thus,

to come up with the appropriate molecular model amenable to quantum chemistry computa-

tion, we need to take into consideration the known properties of small gold nanoparticles and

other experimentally determined facts concerning the Au:PVP-catalyzed aerobic oxidation

of alcohols. Due to the electron-donating property of PVP in the Au:PVP systems [287], we

will use negatively charged (Au−n ) rather than neutral (Aun) species. Of the various gold

clusters, at least those with up to 58 Au atoms, the best candidates for activating molecular

oxygen adsorbed on the Au:PVP system are the negatively charged Au−8 and Au−20 species,

whose corresponding neutral clusters show the strongest drop in their corresponding EA

values [221]. This is in agreement with the study by Salisbury et al. [302], where they indi-

cated that the Au−8 and Au−20 particles are the most effective electron donors in the process

of activating O2 among the nanoclusters in the ∼ 1 nm range, which yields the optimum

aerobic oxidation of alcohols [312]. It would obviously be useful to examine both the Au−8

and Au−20 species in the aerobic oxidation reaction considered in this dissertation, but the
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CR-CC(2,3) calculations involving Au−20 are prohibitively expensive for us at this time if we

do not use the local formulation of CR-CC(2,3). Thus, our investigation of the oxidation of

methanol to formic acid on gold nanoparticles carried out as part of this thesis research with

high-level CC methods, such as CR-CC(2,3), we will focus on the smaller model involving

the Au−8 cluster.

In the previous DFT/M06 studies of methanol oxidation to formic acid on Au−8 (Ref.

[300]), two reaction pathways were considered. The first of the two, called pathway I, which

we believe is the most likely one and which is schematically shown in Fig. 4.4, all of the oxi-

dation steps on the Au−8 cluster occur sequentially. In this case, the reaction begins by coad-

sorption of the oxygen molecule and the methoxy species, which is generated from methanol

in the basic environment used in the experiments, on the Au−8 particle to form structure A1.

The hydrogen of the methoxy species is subsequently transferred to the molecular oxygen

via transition state TS A1 to form structure B1 containing formaldehyde. In the following

step, intrasystem OH transfer via transition state TS B1 occurs, forming the hemiacetal

intermediate C1, and in the final stages of the reaction, intrasystem hydrogen transfer in C1

via the transition state TS C1 leads to the release of the products, namely, formic acid and

the (Au8OH)2− species E1, via the intermediate complex D1. The (Au8OH)2− adduct de-

composes into its corresponding pieces, Au−8 , which returns to the catalytic cycle, and OH−,

which returns to the basic solution. The second pathway considered in Refs. [299,300], which

we believe is less likely, involves detachment of the formaldehyde after the B1 intermediate

is formed, followed by generation of the hemiacetal on the Au cluster. In this dissertation,

as mentioned above, we focus on the more probable pathway I shown in Fig. 4.4.

106



Figure 4.4: Schematic representation of the reaction pathway I for the methanol oxidation
to formic acid on the Au−8 cluster proposed in Ref. [300].
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4.3.3 Electronic structure methods

In order to assess the performance of the selected DFT approaches with reliable ab initio

benchmark data, we carried out single-point CR-CC(2,3) calculations using the geometries

of the isolated reactants (CH3O−, O2, and Au−8 ), products (HCOOH and (Au8OH)2−),

and the remaining stationary points A1, TS A1, B1, TS B1, C1, TS C1, and D1 defining

pathway I obtained in the earlier DFT/M06 study [300]. As explained earlier, the CR-

CC(2,3) approach represents a rigorously size-extensive method that can provide an accurate

description of single-bond breaking, biradicals, and reaction pathways involving transition-

metal systems with an effort similar to conventional CCSD(T) calculations, while eliminating

the failures of CCSD(T) when bonds are stretched or broken (cf. Section 5.2 below). In this

thesis project, we focused on the most complete and typically most accurate CR-CC(2,3),D

variant, which uses the Epstein-Nesbet-like form of the perturbative denominator defining the

triples correction of CR-CC(2,3), Eq. (4.22), and the CR-CC(2,3),A approximation, which

uses the Møller-Plesset form of this denominator, Eq. (4.23), and which is equivalent to the

CCSD(2)T approach when the canonical Hartree-Fock (HF) orbitals are used. Since both

of these CR-CC(2,3) approaches rely on the singly and doubly excited clusters obtained

in the CCSD calculations, the CCSD results are reported as well. The CCSD energies

obtained with two different basis sets, including the smaller basis set of polarized double-ζ

quality employed in the earlier M06 work [300] and its larger triple-ζ counterpart, combined

with the CR-CC(2,3) calculations using the basis employed in Ref. [300], are also needed to

extrapolate the larger basis set CR-CC(2,3) data, as described below. The most complete

variant of CR-CC(2,3), namely, CR-CC(2,3),D, is treated as the method providing reference
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energies against which the other CC and DFT approaches examined in this dissertation are

benchmarked.

In the earlier DFT/M06 work [299, 300], it was shown that all of the stationary points

defining pathway I are doublet states. Therefore, all of the CC calculations reported in

this section of this dissertation were performed using the doublet ROHF references. We

confirmed, through suitable HF stability analysis, that the doublet ROHF solutions used in

this work are, in fact, the lowest-energy HF solutions maintaining the spin symmetry. It is

well-known that there are several methods of obtaining canonical ROHF orbitals that differ

in the way the diagonal doubly occupied, singly occupied, and unoccupied blocks of the

Fock matrix are constructed (see, e.g., Refs. [313, 314]). While iterative CC methods, such

as CCSD, are invariant with respect to the canonicalization of the ROHF orbitals, they are

not invariant with respect to orbital rotations among the occupied orbitals and unoccupied

orbitals when one freezes core orbitals, which is the case in the calculations carried out in

this study. Furthermore, the ROHF-based CR-CC(2,3) triples corrections, as implemented

in the GAMESS package by the Piecuch group, may show a small dependence on the way

the ROHF orbitals are generated [95]. We, thus, considered two ways to generate the ROHF

references for use in our CC calculations, namely, Roothaan’s scheme [313], which is the

default in GAMESS, and the equally popular Guest-Saunders approach [314], though, based

on the results of Ref. [95] we did not anticipate this to be a major issue here.

As mentioned above, the energetics resulting from our CR-CC(2,3),D calculations charac-

terizing pathway I were used to benchmark a few representative DFT approaches, including

the previously employed [299,300] M06 hybrid functional, the pure GGA-type analog of M06
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abbreviated as M06-L [301], the BP86 [306,307] and TPSS [308] pure GGAs, the dispersion-

corrected B97-D scheme [309], the popular B3LYP hybrid approach [310], and the long-range

corrected hybrid ω-B97X-D [311] functional. In analogy to the CC calculations, all of the

DFT computations reported in this portion of this dissertation were single-point calculations

at the M06 geometries obtained in the previous study [300] and performed with GAMESS. As

usual, the DFT results reported in this work were obtained by the unrestricted Kohn-Sham

computations.

In order to demonstrate that the main conclusions of this study, carried out as part of

this thesis research, are not affected by the choice of the one-electron basis set, two different

basis sets, designated as BS1 and BS2, were employed in our calculations. In the most

complete set of computations, including all of the above DFT functionals and the CCSD, CR-

CC(2,3),A ≡ CCSD(2)T, and CR-CC(2,3),D methods, we adopted the same smaller basis

set used in the previous work [300], abbreviated as BS1, which combines the LANL2DZ [315]

description of the gold atoms with the 6-31++G(d,p) basis set [316–318] for the remaining

hydrogen, carbon, and oxygen atoms. We recall that the LANL2DZ description of the gold

atom represents the inner shells corresponding to the (1s2s2p3s3p3d4s4p4d4f) core by the

scalar relativistic ECP, while the remaining 19 electrons of the outer 5s, 5p, 5d, and 6s shells,

which in the SCF (DFT and ROHF here) calculations are treated explicitly, are described by

the double-ζ ([3s3p2d]) basis. As is usually done and to keep the computational costs at a

manageable level, in the post-SCF stages of the CC calculations the 1s orbitals of the carbon

and oxygen atoms and the 5s and 5p orbitals of the gold atoms outside the relativistic core

were frozen. Thus, in our final CC calculations, we correlated the 58 α and 57 β electrons
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corresponding to the valence 5d and 6s shells of the Au atoms, the 2s and 2p shells of the

C and O atoms, the 1s shells of the H atoms, and two extra electrons due to the negative

charges of the Au−8 and methoxy species.

Because the post-SCF wave function approaches, such as those based on CC theory,

do not converge with the one-electron basis set as rapidly as the Kohn-Sham DFT (and

other SCF-type) methods and since the LANL2DZ basis set may be somewhat too small

to guarantee an accurate description of smaller gold particles (see, e.g., Refs. [183,209,215–

217]), in addition to BS1 we also employed the considerably larger BS2 basis, in which

the LANL2TZ(f) ECP and basis set developed for gold [319] are combined with the 6-

311++G(d,p) basis set for the hydrogen, carbon, and oxygen atoms [318,320]. As explained

in Ref. [319], in the LANL2TZ(f) description of the gold atom, the inner shells corresponding

to the (1s2s2p3s3p3d4s4p4d4f) core continue to be treated by the relativistic ECP (the same

one as used in the LANL2DZ case), but the remaining 19 electrons of the outer 5s, 5p, 5d,

and 6s shells, which are treated explicitly, are described by the triple-ζ-quality [5s5p3d] basis

augmented by a single primitive f function as determined in Ref. [321].

When the smaller BS1 basis set was employed in the calculations, the CH3O−+ O2+ Au−8

reactive system investigated as part of this work became (after removal of the relativistic

cores of the gold atoms and the use of spherical components of the d functions) a 187-

electron problem described by 266 basis functions, which, after freezing the 1s orbitals of the

carbon and oxygen atoms and the 5s and 5p orbitals of the gold atoms, was manageable at

all CC levels considered here, including the highest-level CR-CC(2,3),A and CR-CC(2,3),D

approaches. Unfortunately, when describing the CH3O−+ O2+ Au−8 system at the CR-
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CC(2,3),A and CR-CC(2,3),D levels of theory, in which 115 electrons must be explicitly

correlated, using the considerably larger BS2 basis set consisting after elimination of the

relativistic core of each gold atom and the use of spherical d and f orbitals) of 445 functions,

turned out to be prohibitively expensive for us at this time. Thus, in order to estimate the

desired CR-CC(2,3),X/BS2 (X = A, D) energies, we combined the results of the larger-basis-

set ROHF-based CCSD/BS2 calculations, which we could perform in parallel by exploiting

the NWChem package [322] (utilizing 28 cores for every stationary point along pathway

I), with the corresponding smaller-basis-set CR-CC(2,3),X/BS1 (X = A, D) information,

generated with GAMESS, as follows:

CR-CC(2, 3),X/BS2 = CCSD/BS2 + [CR-CC(2, 3),X/BS1 − CCSD/BS1]. (4.28)

In other words, in estimating the highest-level CR-CC(2,3),A/BS2 and CR-CC(2,3),D/BS2

energetics, we corrected the CCSD/BS2 energies by the contributions due to connected

triple excitations resulting from the corresponding CR-CC(2,3) calculations in the smaller

BS1 basis set. In particular, the highest-level CR-CC(2,3),D/BS2 energies reported in this

thesis work, which were used to benchmark various DFT approaches, were extrapolated

using Eq. (4.28).

Since larger-basis-set CCSD calculations for catalytic systems with multiple transition-

metal atoms may not always be possible, we also examined the possibility of estimating

the larger-basis-set CCSD/BS2, CR-CC(2,3),A/BS2, and CR-CC(2,3),D/BS2 energies using

information about the effect of going from the BS1 basis to its larger BS2 counterpart

extracted from relatively inexpensive unrestricted MP2 (UMP2) calculations employing these
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two basis sets (the results published in Ref. [181]) and the still inexpensive unrestricted third-

order Møller-Plesset (UMP3) computations (the unpublished data). In both of these cases,

the desired CC/BS2 energies were extrapolated using the formula

CC/BS2 = CC/BS1 + [UMPn/BS2 − UMPn/BS1], (4.29)

where CC stands for CCSD, CR-CC(2,3),A, or CR-CC(2,3),D and UMPn stands for UMP2,

when n = 2, and UMP3, when n = 3. A similar approach in the context of CR-CC(2,3),D

calculations for various bond-breaking reactions proceeding on nonsinglet potential energy

surfaces relevant to the gas-phase chemistry in silicon carbide chemical vapor deposition has

previously been tested, obtaining in each case as accurate representation of the large-basis-

set CR-CC(2,3),D data [291], but the effectiveness of Eq. (4.29) had not been examined

before the work carried out as a part of this dissertation in applications of CR-CC(2,3)

relevant to catalysis. Since we have access to the true CCSD/BS2 information, we also

have an opportunity to examine whether the extrapolated (using Eq. (4.29)) and calculated

CCSD/BS2 energies characterizing pathway I shown in Fig. 4.4 agree. If they do agree,

it may reasonably be assumed that a similar approach applies to the CR-CC(2,3) energies,

that is that we may use Eq. (4.29) to extrapolate the larger-basis-set CR-CC(2,3)/BS2 in-

formation from the smaller-basis-set CR-CC(2,3)/BS1 data and the UMP2/UMP3 energies

obtained with the BS1 and BS2 basis sets, which are much easier to determine than the

corresponding CCSD/BS2 energies that enter the more sophisticated extrapolation formula

given by Eq. (4.28). In analogy to the earlier investigation of bond dissociation curves [291],

in applying Eq. (4.29) to extrapolate the CR-CC(2,3)/BS2 reaction pathways, the implicit
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assumption is made that the CR-CC(2,3)/BS1 approach is capable of describing the relevant

nondynamical correlation effects, which do not change much with the basis set, and the lead-

ing dynamical correlations, which can be captured by CR-CC(2,3)/BS1 computations, and

that the difference between the UMP2/BS2 and UMP2/BS1 or UMP3/BS2 and UMP3/BS1

energies provides reasonably accurate information about changes in the dynamical correla-

tion effects when going from BS1 to BS2 (the contributions due to nondynamical correlation

effects, which UMP2 and UMP3 may describe poorly, but which are almost independent

of the basis set, should approximately cancel out when the UMP2/BS2 − UMP2/BS1 or

UMP3/BS2 − UMP3/BS1 difference is computed). While the main method used for extrap-

olating the desired high-level CR-CC(2,3)/BS2 energetics is based on Eq. (4.28), which uses

the CCSD/BS1, CCSD/BS2, and CR-CC(2,3)/BS1 data, it is also worth examining whether

the considerably less expensive extrapolation approaches based on Eq. (4.29), which are a

lot easier to exploit in practice, particularly when larger multiple transition-metal atom sys-

tems are to be considered, is similarly effective in the context of examining the mechanism

of methanol oxidation to formic acid catalyzed by the Au−8 nanoparticle.

4.3.4 Results and discussion

The results of our calculations for pathway I of the CH3O−+ O2+ Au−8 reactive system are

presented in Tables 4.5–4.8 and Fig. 4.5. The most essential tables are Tables 4.5 and 4.6,

which compare the energy differences for the various species along pathway I resulting from

the unrestricted M06, M06-L, BP86, TPSS, B97-D, B3LYP, and ω-B97X-D DFT calculations

and their restricted CCSD, CR-CC(2,3),A ≡ CCSD(2)T, and CR-CC(2,3),D counterparts
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obtained with the ROHF canonicalization schemes of Guest and Saunders. Table 4.5 focuses

on the results obtained with the smaller BS1 basis set, whereas Table 4.6 compares the

various CC and DFT energies corresponding to the larger BS2 basis. As implied by the

remarks above, the CCSD and DFT energies corresponding to the BS2 basis set represent

the results of the true calculations with that basis, whereas the CR-CC(2,3),A/BS2 and CR-

CC(2,3),D/BS2 energies shown in Table 4.6 are the results of the extrapolations based on

Eq. (4.28), in which the larger-basis-set CCSD/BS2 energies have been corrected using the

triples contributions extracted from the CR-CC(2,3) calculations using the smaller BS1 basis.

Figure 4.5, which accompanies Tables 4.5 and 4.6, shows the reference CR-CC(2,3),D/BS1

and CR-CC(2,3),D/BS2 energetics obtained using the Guest-Saunders ROHF approach, the

corresponding M06, B3LYP, and ω-B97X-D data, and the molecular structures defining the

stationary points along pathway I resulting from the M06 geometry optimizations carried

out in Ref. [300]. In addition to the individual energy differences characterizing the various

species along pathway I, we show in Tables 4.5 and 4.6 the mean unsigned error (MUE) and

nonparallelity error (NPE) values relative to CR-CC(2,3),D calculated using the energies

of structures A1, TS A1, B1, TS B1, C1, TS C1, and D1 relative to the reactants. The

MUE and NPE values relative to CR-CC(2,3),D determined on the basis of the (TS A1

− A1), (TS B1 − B1), and (TS C1 − C1) energy differences, which represent the three

activation energies that are key to understanding the energetics of pathway I and which

are less sensitive to the basis set than the differences relative to the isolated reactants, are

given in parenthesis in Tables 4.5 and 4.6. The energies of the various species relative to the

CH3O−, O2, and Au−8 reactants may also be affected by basis set superposition error (BSSE),
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which one cannot determine in a rigorous manner due to the significant rearrangements in

the molecular geometries when going from the noninteracting reactants to the stationary

points along pathway I. Although the BSSE effects are not expected to be significant when

the BS2 basis set is employed, it is useful to base at least part of our error analysis on the

(TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences, which are not affected

by BSSE, which vary relatively little when one changes the basis set from BS1 to BS2, and

which are physically the most important for understanding the catalytic reaction mechanism

represented by pathway I.
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Figure 4.5: Energy diagram for reaction pathway I characterizing the oxidation of methanol
to formic acid on the Au−8 particle resulting from CR-CC(2,3),D (green bold font), M06
(red italic font), B3LYP (black roman font), and ω-B97X-D (blue roman font) calculations
using the BS2 and, in parentheses, BS1 basis sets. The CR-CC(2,3),D/BS1 energies and
all of the DFT energies represent truly computed data. The CR-CC(2,3),D/BS2 energies
were obtained by extrapolation based on Eq. (4.28), in which the difference between the
CCSD energies obtained with the BS2 and BS1 basis sets is added to the CR-CC(2,3),D/BS1
energy. The energies shown for the A1, B1, C1, and D1 intermediates are relative to the
CH3O−+ O2+ Au−8 reactants. The energies shown for the products are relative to the D1
intermediate. The energies shown for the transition states TS A1, TS B1, and TS C1 are the
corresponding (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) barrier heights. All energies
are in kcal/mol. Also shown are the molecular structures defining the stationary points along
pathway I resulting from the M06 geometry optimizations carried out in Ref. [300].
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Table 4.5: Energy differences (in kcal/mol) for the various species along pathway I computed using selected CC and DFT
approaches and the BS1 basis set.a

CCSD CR(2,3),Ab CR(2,3),Db M06c M06-L B3LYP BP86 B97-D TPSS ω-B97X-D

A1 − reactants -23.3 -24.7 -22.0 -15.8 -18.9 -12.9 -19.6 -19.2 -20.7 -24.6

TS A1 − reactants 21.3 14.1 16.1 16.0 7.7 22.2 2.8 12.1 4.7 20.0

TS A1 − A1 44.6 38.8 38.2 31.8 26.6 35.1 22.4 31.2 25.4 44.6

B1 − reactants -36.1 -38.7 -36.2 -34.0 -29.9 -24.8 -29.7 -29.3 -28.0 -30.7

TS B1 − reactants -2.3 -9.9 -7.7 -5.0 -9.6 5.6 -9.9 -3.6 -9.1 3.6

TS B1 − B1 33.9 28.8 28.5 29.0 20.3 30.5 19.8 25.7 18.9 34.3

C1 − reactants -54.3 -57.1 -54.7 -47.6 -46.5 -35.5 -42.3 -37.5 -44.5 -44.9

TS C1 − reactants -34.9 -40.4 -38.4 -36.1 -38.0 -24.9 -38.1 -33.5 -36.1 -32.2

TS C1 − C1 19.4 16.8 16.3 11.5 8.4 10.7 4.2 4.0 8.5 12.7

D1 − reactants -117.1 -119.8 -117.0 -117.9 -109.8 -102.5 -105.5 -108.3 -100.9 -113.8

products − reactants -98.1 -99.8 -98.9 -99.9 -97.8 -89.0 -92.1 -85.9 -86.3 -93.6

products − D1 19.0 20.0 18.1 18.0 18.0 13.5 13.4 22.4 14.6 20.2

MUEd 2.1(5.0) 2.2(0.5) 0.0(0.0) 2.8(3.9) 5.3(9.2) 12.1(3.6) 6.9(12.2) 7.7(7.4) 7.9(10.1) 6.0(5.3)

NPEe 6.7(3.3) 1.9(0.3) 0.0(0.0) 8.1(6.9) 16.6(3.7) 13.1(7.6) 25.7(7.1) 21.2(9.5) 27.5(5.0) 13.9(10.0)

aFor the definitions of the various species along pathway I, see Figs. 4.4 and 4.5. The CC results correspond to the Guest-Saunders

canonicalization scheme for ROHF orbitals [314].
bCR(2,3),A = CR-CC(2,3),A is equivalent to the CCSD(2)T approach of Ref. [77]. CR(2,3),D = CR-CC(2,3),D.
cData taken from Ref. [300].
dMean unsigned error relative to CR-CC(2,3),D calculated using the energies of A1, TS A1, B1, TS B1, C1, TS C1, D1, and products relative

to the reactants and, in parentheses, using the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences.
eNonparallelity error relative to CR-CC(2,3),D calculated using the energies of A1, TS A1, B1, TS B1, C1, TS C1, D1, and products relative

to the reactants and, in parentheses, using the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences.
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Table 4.6: Energy differences (in kcal/mol) for the various species along pathway I computed using selected CC and DFT
approaches and the BS2 basis set.a

CCSD CR(2,3),Ab CR(2,3),Db M06c M06-L B3LYP BP86 B97-D TPSS ω-B97X-D

A1 − reactants -16.6 -18.0 -15.3 -18.7 -21.9 -14.9 -21.3 -20.4 -22.0 -26.6

TS A1 − reactants 28.5 21.3 23.3 13.6 5.4 20.9 1.9 11.3 3.5 18.6

TS A1 − A1 45.0 39.3 38.6 32.3 27.3 35.8 23.2 31.7 25.5 45.2

B1 − reactants -32.2 -34.7 -32.2 -35.9 -31.8 -26.3 -31.0 -30.1 -29.4 -32.1

TS B1 − reactants 6.2 -1.4 0.8 -8.2 -11.3 4.9 -11.0 -4.0 -10.3 2.9

TS B1 − B1 38.4 33.3 33.0 27.2 20.5 31.2 19.9 26.1 19.1 35.0

C1 − reactants -47.4 -50.3 -47.8 -52.0 -51.0 -39.5 -47.1 -41.6 -49.0 -48.6

TS C1 − reactants -29.1 -34.6 -32.6 -39.7 -40.8 -27.3 -41.0 -35.7 -39.0 -34.5

TS C1 − C1 18.3 15.7 15.2 12.3 10.2 12.2 6.1 5.8 10.1 14.1

D1 − reactants -114.8 -117.4 -114.6 -121.5 -112.2 -105.1 -108.2 -110.4 -103.6 -116.2

products − reactants -97.9 -99.6 -98.6 -103.4 -94.2 -92.5 -95.8 -89.2 -90.0 -96.7

products − D1 16.9 17.9 16.0 18.2 18.0 12.6 12.4 21.2 13.6 19.5

MUEd 2.1(5.0) 2.2(0.5) 0.0(0.0) 6.1(4.9) 6.9(9.6) 5.2(2.6) 7.4(12.5) 5.9(7.7) 8.5(10.7) 3.1(3.2)

NPEe 6.7(3.3) 1.9(0.3) 0.0(0.0) 6.3(3.4) 22.3(7.4) 11.9(1.2) 27.8(6.3) 21.4(2.4) 30.8(8.8) 13.5(7.7)

aFor the definitions of the various species along pathway I, see Figs. 4.4 and 4.5. The CC results correspond to the Guest-Saunders

canonicalization scheme for ROHF orbitals [314].
bCR(2,3),A = CR-CC(2,3),A is equivalent to the CCSD(2)T approach of Ref. [77]. CR(2,3),D = CR-CC(2,3),D. Extrapolated using Eq.

(4.28).
cData taken from Ref. [300].
dMean unsigned error relative to CR-CC(2,3),D calculated using the energies of A1, TS A1, B1, TS B1, C1, TS C1, D1, and products relative

to the reactants and, in parentheses, using the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences.
eNonparallelity error relative to CR-CC(2,3),D calculated using the energies of A1, TS A1, B1, TS B1, C1, TS C1, D1, and products relative

to the reactants and, in parentheses, using the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences.



Table 4.7 compares the CCSD/BS1, CR-CC(2,3),A/BS1, and CR-CC(2,3),D/BS1 results

obtained with the two types of canonical ROHF orbitals considered in this study. Examining

Table 4.7 it is immediately obvious that for each CC method analyzed in this work, the im-

pact of the different ROHF canonicalization schemes on the resulting energetics is negligible,

as the differences between the CCSD, CR-CC(2,3),A, and CR-CC(2,3),D energies obtained

with the Roothaan and Guest-Saunders approaches do not exceed 0.1, 0.2, and 0.3 kcal/mol,

respectively. Thus, in the rest of the discussion in this section, the CC results based on the

frequently exploited Guest-Saunders canonicalization approach, summarized in Tables 4.5

and 4.6, will be used.

Table 4.8 compares the energy differences for the various species along pathway I resulting

from the two different ways of extrapolating the larger-basis-set CC/BS2 energetics discussed

in Section 4.3.3 and represented by Eqs. (4.28) and (4.29). Although much of the discus-

sion below focuses on the more accurate procedure for extrapolating the CR-CC(2,3)/BS2

energetics based on Eq. (4.28), in which the bulk of the electron correlation energy captured

by CCSD is determined using the target BS2 basis, reducing the use of BS1 to the triples

corrections only, it is interesting to observe that one can obtain similar results by replacing

CCSD in the basis set extrapolation scheme by the much less expensive UMP2 or UMP3

approach, eliminating the need to carry out the larger-basis-set CC calculations altogether.

As shown in Table 4.8, the energy differences for the various species along pathway I re-

sulting from the true CCSD/BS2 calculations and their extrapolated counterparts using Eq.

(4.29) agree to within ∼ 3 kcal/mol in the UMP2 case and ∼ 2 kcal/mol when the UMP3

energies are used, though there are several cases where the true CCSD/BS2 results and the
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Table 4.7: Energy differences (in kcal/mol) for the various species along pathway I computed
at the CCSD and CR-CC(2,3) levels using the BS1 basis set and two different schemes for
obtaining the canonical ROHF orbitals.

CCSD CR-CC(2,3),Aa CR-CC(2,3),D

Rb GSc Rb GSc Rb GSc

A1 − reactants -23.3 -23.3 -24.4 -24.7 -21.9 -22.0

TS A1 − reactants 21.3 21.3 14.3 14.1 16.4 16.1

TS A1 − A1 44.6 44.6 38.7 38.8 38.3 38.2

B1 − reactants -36.1 -36.1 -38.6 -38.7 -36.1 -36.2

TS B1 − reactants -2.2 -2.3 -9.8 -9.9 -7.7 -7.7

TS B1 − B1 33.9 33.9 28.8 28.8 28.4 28.5

C1 − reactants -54.3 -54.3 -57.0 -57.1 -54.5 -54.7

TS C1 − reactants -34.9 -34.9 -40.2 -40.4 -38.3 -38.4

TS C1 − C1 19.4 19.4 16.7 16.8 16.2 16.3

D1 − reactants -117.1-117.1 -119.7 -119.8 -117.1 -117.0

products − reactants -98.1 -98.1 -99.7 -99.8 -98.7 -98.9

products − D1 19.0 19.0 20.0 20.0 18.3 18.1

aEquivalent to the CCSD(2)T approach of Ref. [77].
bResults obtained using the Roothaan canonicalization scheme for ROHF orbitals [313].
cResults obtained using the Guest-Saunders canonicalization scheme for ROHF orbitals [314].
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UMP3-extrapolated energetics agree to within less than 0.5 kcal/mol. In most cases, includ-

ing, for example, the rate-determining (TS A1 − A1) barrier, which measures the amount

of energy needed to go from the O2 and methoxy molecules coadsorbed on the Au−8 particle

to the initial transition state TS A1, and the overall reaction energy, the agreement is even

better, with the differences between the true and UMPn-based extrapolated CCSD/BS2

data oscillating around 1–2 kcal/mol or less. Since we currently have no access to the true

CR-CC(2,3)/BS2 data, we cannot make analogous comparisons, but, in view of the fact

that the connected triply excited clusters account for a small fraction of the correlation ef-

fects relative to the CCSD contributions, it is rather safe to assume that similar levels of

accuracy apply to the CR-CC(2,3)/BS2 energies extrapolated using Eq. (4.29), which are

presented in Table 4.8 as well. The relatively small differences between the true CCSD/BS2

energies and their UMPn-based extrapolated counterparts obtained using Eq. (4.29) auto-

matically guarantee that the same small differences must be observed when comparing the

CR-CC(2,3),A/BS2 and CR-CC(2,3),D/BS2 energetics extrapolated using Eq. (4.29)with

their counterparts determined using the extrapolation scheme defined by Eq. (4.28).
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Table 4.8: Comparisons of energy differences (in kcal/mol) for the various species along pathway I obtained using two
different ways of extrapolating the CC/BS2 energetics,a represented by Eqs. (4.28) and (4.29).

CCSD CR-CC(2,3),Ab CR-CC(2,3),D

CCSDc UMP2d UMP3d CCSDe UMP2d UMP3d CCSDe UMP2d UMP3d

A1 − reactants -16.6 -13.6 -16.9 -18.0 -15.0 -18.3 -15.3 -12.3 -15.7

TS A1 − reactants 28.5 31.7 30.5 21.3 24.5 23.3 23.3 26.5 25.3

TS A1 − A1 45.0 45.3 47.4 39.3 39.5 41.6 38.6 38.8 41.0

B1 − reactants -32.2 -32.6 -30.8 -34.7 -35.1 -33.3 -32.2 -32.6 -30.8

TS B1 − reactants 6.2 4.1 7.6 -1.4 -3.5 0.0 0.8 -1.3 2.2

TS B1 − B1 38.4 36.7 38.4 33.3 31.7 33.3 33.0 31.3 33.0

C1 − reactants -47.4 -51.6 -45.4 -50.3 -54.5 -48.2 -47.8 -52.1 -45.8

TS C1 − reactants -29.1 -31.0 -27.1 -34.6 -36.5 -32.5 -32.6 -34.5 -30.6

TS C1 − C1 18.3 20.6 18.3 15.7 18.0 15.7 15.2 17.5 15.2

D1 − reactants -114.8 -117.1 -112.8 -117.4 -119.7 -115.5 -114.6 -116.9 -112.7

products − reactants -97.9 -98.9 -97.0 -99.6 -100.6 -98.7 -98.6 -99.7 -97.8

products − D1 16.9 18.1 15.8 17.9 19.1 16.7 16.0 17.3 14.9‘
aAll of the CC energies used in the basis set extrapolations correspond to the Guest-Saunders canonicalization scheme for ROHF orbitals [314].
bEquivalent to the CCSD(2)T approach of Ref. [77].
cResults of the true CCSD/BS2 calculations.
dExtrapolated by adding the difference between the UMPn (n = 2, 3) energies obtained with the BS2 and BS1 basis sets to the appropriate

CC/BS1 energy, as in Eq. (4.29).
eExtrapolated by adding the difference between the CCSD energies obtained with the BS2 and BS1 basis sets to the appropriate CR-

CC(2,3)/BS1 energy, as in Eq. (4.28).



Clearly, if the larger-basis-set CCSD computations are affordable, as is the case in this

study, where the aerobic oxidation of methanol catalyzed by the Au−8 nanocluster is ex-

amined, the extrapolation of the CR-CC(2,3)/BS2 results that combines the CCSD/BS1,

CCSD/BS2, and CR-CC(2,3)/BS1 data (Eq. (4.28)) is the recommended approach. How-

ever, one may encounter difficulties with performing larger-basis-set CCSD calculations for

the analogous reactions catalyzed by larger Au−n particles, such as Au−20, which was in-

vestigated using DFT in Ref. [299]. Using the MPn-based (n = 2, 3) extrapolation, as in

Eq. (4.29), to obtain the larger-basis-set CR-CC(2,3) information, where the effects of the

one-electron basis on the CR-CC(2,3) energies are extracted from the relatively inexpensive

UMP2 or UMP3 calculations, may offer a good alternative to the procedure based on Eq.

(4.28). Since we have access to the more accurate CR-CC(2,3)/BS2-level data extrapolated

using the more accurate Eq. (4.28), we rely on this equation in the remaining discussion,

though, one should keep in mind that the CR-CC(2,3)/BS2-level information obtained using

the less demanding Eq. (4.29) is not much different.

4.3.4.1 Coupled-cluster calculations

According to the CCSD, CR-CC(2,3),A, and CR-CC(2,3),D methods and in agreement with

the experimental [202] and previously obtained theoretical [299, 300] data, the reaction ex-

amined here is exothermic and the conversion from the methoxy species to formaldehyde via

transition state TS A1 is the rate determining step, independent of the basis set employed

in the calculations. As shown in Table 4.6, our best CR-CC(2,3),D/BS2 estimates, obtained

using Eq. (4.28), place the initial transition state TS A1, corresponding to the hydrogen

transfer from the methoxy species to the molecular oxygen to form intermediate B1, at
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23.3 kcal/mol above the isolated reactants (38.6 kcal/mol above structure A1 representing

O2 and CH3O− coadsorbed on Au−8 ) and considerably above the remaining two transition

states characterizing pathway I, namely, 22.5 kcal/mol above TS B1 and 55.9 kcal/mol above

TS C1. As shown in Table 4.5, the use of the smaller BS1 basis lowers the initial barrier

relative to the isolated reactants to 16.1 kcal/mol, most likely because of the larger BSSE,

but the (TS A1 − TS B1), and (TS A1 − TS C1) differences of 23.8 and 54.5 kcal/mol,

respectively, resulting from the CR-CC(2,3),D/BS1 calculations, which are not affected by

BSSE, are almost the same as in the BS2-based computations. We can, thus, conclude, with

great deal of confidence, that after passing the initial barrier defined by TS A1, the oxidation

of methanol to formic acid catalyzed by the Au−8 particle is energetically an overall “down-

hill” process that proceeds via two additional barriers located considerably below TS A1,

resulting in the products being located almost 100 kcal/mol below the reactants. All three

CC theories used for this study provide the same picture in this regard.

While the energies of the various species defining pathway I relative to the reactants

obtained with the CC approaches are somewhat sensitive to the basis set, with differences

between the estimated BS2 and calculated BS1 data ranging from less than 1 kcal/mol for

the products to ∼ 8 kcal/mol for the TS B1 transition state (mostly due to the BSSE effects,

which affect the energies of the isolated CH3O−, O2, and Au−8 reactants, particularly in the

calculations employing the smaller BS1 basis), the key activation barriers, defined as the

(TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) energy differences, especially (TS A1 −

A1), and the overall reaction energy depend relatively little on the basis set. For example,

the CR-CC(2,3),D/BS2 estimates of the (TS A1 − A1), (TS B1 − B1), and (TS C1 −
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C1) barrier heights and the overall reaction energy based on Eq. (4.28) are 38.6, 33.0,

15.2, and -98.6 kcal/mol, respectively. These should be compared to the results of the CR-

CC(2,3),D/BS1 calculations, which give 38.2, 28.5, 16.3, and -98.9 kcal/mol, respectively,

for the same quantities, in overall good agreement with the CR-CC(2,3),D/BS2 estimates.

Even the more primitive estimates of the CR-CC(2,3),D/BS2 energetics relying on the basis

set dependence extracted from the UMP2/BS1 and UMP2/BS2 or the UMP3/BS1 and

UMP3/BS2 calculations, Eq. (4.29), give similar values of the (TS A1 − A1), (TS B1 −

B1), and (TS C1 − C1) energy differences and the reaction energy (38.8, 31.3, 17.5, and -

99.7 kcal/mol, respectively, in the UMP2-based case and 41.0, 33.0, 15.2, and -97.8 kcal/mol,

respectively, when using information from the UMP3 calculations; see Table 4.8).

All of this implies that the CR-CC(2,3),D values of the (TS A1 − A1), (TS B1 − B1),

and (TS C1 − C1) barriers, which are not affected by BSSE and which do not change

much when we switch from the smaller BS1 basis set to the larger BS2 basis, especially in

the (TS A1 − A1) and (TS C1 − C1) cases, and the corresponding reaction energy, which

displays a weak basis set dependence as well, are particularly useful for judging the various

DFT functionals considered in this study. Some other energy differences along pathway I

listed in Tables 4.5 and 4.6 may be somewhat less robust because of their stronger basis set

dependence, but the sophisticated ab initio level of theory represented in this work by the

CR-CC(2,3),D/BS2 approach, where we use a rather large basis set in the underlying CCSD

calculations and the advanced CR-CC(2,3) treatment of the high-order correlation effects

beyond CCSD, is certainly high enough in the present case to benchmark DFT, where the

variation in the results obtained with various functionals is much greater than that obtained
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in the CR-CC(2,3) considerations. As pointed out above and as shown in numerous earlier

applications and benchmark studies, such as those reported in Refs. [51,93–95,98,99,105,290–

292,323,324], the CR-CC(2,3) methodology, particularly its variant D, is capable of providing

results in the chemical accuracy (∼ 1–2 kcal/mol) range for activation, reaction, and binding

energies when basis sets of triple-ζ quality with polarization and diffuse functions, such as

BS2, are employed. Obviously the CR-CC(2,3) results employing the smaller BS1 basis are

not as accurate and may carry larger errors, but they can still be useful in assessing trends

in DFT. Indeed, in agreement with the earlier test applications involving CR-CC(2,3), such

as those presented in Refs. [98, 99, 323, 324], the average unsigned difference between the

triple-ζ-level CR-CC(2,3)/BS2 and double-ζ-level CR-CC(2,3)/BS1 data (which in our case

is the same as the average unsigned difference between the CCSD/BS2 and CCSD/BS1

results because of the use of Eq. (4.28)) obtained using the energies of A1, TS A1, B1,

TS B1, C1, TS C1, D1, and products relative to the reactants is about 5 kcal/mol. The

analogous difference between the CR-CC(2,3)/BS2 and CR-CC(2,3)/BS1 results based on

the most important (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) barriers is only 2

kcal/mol. This means that even the CR-CC(2,3)/BS1 calculations, which are certainly not

converged with respect to the one-electron basis set, but still offer a well-balanced treatment

of dynamical and nondynamical correlation effects that the lower-order methods based on

DFT do not always describe, may be quite valuable. Tables 4.5 and 4.6 indeed show that

this is the case, with most of the DFT functionals producing errors in the relative energies

and variations in the results for almost every structure along pathway I that exceed by a

wide margin the 2–5 kcal/mol average basis set errors characterizing the CR-CC(2,3)/BS1
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data. However, in examining the DFT data, we will rely on our best CR-CC(2,3),D/BS2

energetics, which uses a larger basis set and carriers smaller errors, to ensure our conclusions

are more definitive.

As can be seen in Table 4.5, the MUE values characterizing the CCSD and CR-CC(2,3),A

calculations relative to CR-CC(2,3),D, which are on the order of 2 kcal/mol, are similar,

supporting our earlier assertion that the CR-CC(2,3),D results can be regarded as reasonably

well converged with the many-electron correlation effects in a given basis set. However,

as is generally the case, the CCSD approach alone is not sufficiently accurate to provide

a reliable description of the activation barriers. Indeed, the differences between the CR-

CC(2,3),D/BS1 and CCSD/BS1 activation energies characterizing pathway I range from

about 3 to 6 kcal/mol, with the largest difference being obtained for TS A1 and TS B1 (∼

5−6 kcal/mol). Furthermore, as observed in other applications, the CCSD approach, which

neglects connected triple excitations, overestimates the activation energies. It is sufficient to

use CCSD to obtain an accurate description of the A1, B1, and C1 intermediates and the

overall reaction energy (the differences between CR-CC(2,3),D and CCSD are in this case

on the order of 1 kcal/mol or smaller), but one needs to incorporate connected triples in the

CC calculations to obtain a consistently accurate description of the entire reaction pathway.

This is seen by comparing the CR-CC(2,3),A and CR-CC(2,3),D data calculated with the

BS1 basis set, summarized in Table 4.5. Although the MUE values characterizing the CCSD

and CR-CC(2,3),A computations relative to CR-CC(2,3),D are similar, there is a great deal

of consistency between the individual CR-CC(2,3),A and CR-CC(2,3),D energies, differing

by about 1–2 kcal/mol at all stationary points. When we replace CR-CC(2,3),A by CCSD,
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comparing with CR-CC(2,3),D, this is no longer the case and, as already mentioned, the

agreement is no longer as good.

4.3.4.2 Benchmarking DFT against the reference CR-CC(2,3),D data

We now turn to the comparison of our best CR-CC(2,3),D results with those obtained from

the various DFT functionals, focusing on the results obtained with the larger BS2 basis set,

as summarized in Table 4.6 and Fig. 4.5. In our published work [181], we concluded that

among the several representative DFT methods considered in Ref. [181], the M06 approach

used in the earlier calculations for the same reaction pathway [300] and the highly popular

hybrid B3LYP functional are generally most accurate. Indeed, the overall MUE and NPE

values relative to CR-CC(2,3),D/BS2 using all stationary points along pathway I are 6.1

and 6.3 kcal/mol, respectively, in the M06 case and 5.2 and 11.9 kcal/mol, respectively, for

B3LYP which is a better performance compared to all other DFT calculations included in

Ref. [181] (i.e., all listed in Tables 4.5 and 4.6 other than ω-B97X-D). With the additional and

previously unpublished ω-B97X-D results included in this dissertation, the situation seems

to be changing, since the MUE and NPE relative to CR-CC(2,3),D/BS2 characterizing ω-

B97X-D of 3.1 and 13.5 kcal/mol, respectively, look competitive, when compared to M06

and B3LYP, but this is only the initial impression. While the MUE for the ω-B97X-D results

appears to be better than those for the M06 and B3LYP approaches, with an NPE larger than

NPEs characterizing M06 and B3LYP and close to 14 kcal/mol, it is hard to make the claim

that ω-B97X-D performs better. Obviously, none of the DFT methods look good compared

with, for example, the CCSD MUE value of 2.1 kcal/mol, but the M06 and, especially,

B3LYP functionals perform substantially better than those characterizing the remaining
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DFT calculations presented in Table 4.6. Indeed, both hybrid functionals, M06 and B3LYP,

particularly the latter, perform well in describing the key (TS A1 − A1), (TS B1 − B1), and

(TS C1 − C1) barrier heights, which are 35.8, 31.2, and 12.2 kcal/mol, respectively, when

the B3LYP/BS2 approach is used, and 32.3, 27.7, and 12.3 kcal/mol, respectively, when

the M06/BS2 method is employed, in reasonably a nice agreement with the corresponding

CR-CC(2,3),D/BS2 benchmark data, which are 38.6, 33.0, and 15.2 kcal/mol, respectively,

for the same three barrier heights. This is reflected in the considerable improvements in

the MUE and NPE values relative to CR-CC(2,3),D/BS2 resulting from the corresponding

B3LYP and M06 calculations, which are reduced to 2.6 and 1.2 kcal/mol, respectively, in

the former case, and 4.9 and 3.4 kcal/mol, respectively, in the latter case when we limit

ourselves to the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) activation energies. The

B3LYP description of these three barriers, which is better than that provided by CCSD, is

especially encouraging, placing the initial (TS A1 − A1) barrier at 35.8 kcal/mol, that is

only 2.8 kcal/mol apart from our best CR-CC(2,3),D/BS2 estimate; the CCSD approach

overestimates the same barrier by about 6 kcal/mol and M06 underestimates it by more

or less the same amount. The previously unpublished ω-B97X-D/BS2 results for the three

barrier heights, (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1), are 45.2, 35.0, and

14.1 kcal/mol, respectively, i.e., they are not nearly as good as those obtained with B3LYP.

As such, we do not include this functional in the rest of this discussion and focus on the

functionals included in our published study [181].

There is also good agreement between the B3LYP/BS2 and CR-CC(2,3),D/BS2 energies

of transition states TS A1, TS B1, and TS C1 relative to the isolated reactants, which are
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20.9, 4.9, and −27.3 kcal/mol, respectively, in the former case and 23.3, 0.8, and −32.6

kcal/mol, respectively, in the case of the latter approach, indicating that the B3LYP func-

tional is capable of providing a reliable description of the bond rearrangements involved in

catalytic reactions on metallic nanoparticles of the type represented by the oxidation pro-

cess catalyzed by gold clusters examined in this study. It looks as though the energy of the

TS B1 transition state relative to the reactants resulting from the B3LYP/BS2 calculations

is in larger error, but we must keep in mind that B3LYP is the only functional in Table 4.6,

other than ω-B97X-D not included in the our published study [181], and which incapable of

properly characterizing the key (TS A1 − A1) barrier that produces a small positive barrier

in this case, with the CR-CC(2,3),D/BS2 approach doing the same. M06 does not seem to

work well in this case, but we should not read too much into it, since the M06/BS2 result

for the physically more significant (TS B1 − B1) energy difference (27.7 kcal/mol) is still in

reasonable agreement with the CR-CC(2,3),D/BS2 result (33.0 kcal/mol). Of all function-

als tested here, the only one that can improve the overall pathway I description by M06 is

B3LYP.

Interestingly, our finding that the B3LYP and M06 functionals provide the best descrip-

tion of the key activation barriers represented by the (TS A1 − A1), (TS B1 − B1), and

(TS C1 − C1) energy differences remains true when we compare the DFT and CR-CC(2,3),D

results obtained with the smaller BS1 basis set, shown in Table 4.5. This is a consequence

of (1) the well-established fact that DFT converges fast with respect to the basis set and

(2) the previously discussed observation that the CC values of these three energy differences

are essentially free from BSSE and largely insensitive to the size of the basis employed in
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the CC calculations. As pointed out above and shown in Table 4.8, one can successfully

correct the results of the small-basis-set CR-CC(2,3) calculations by carrying out additional

UMP2 or UMP3 calculations with a larger basis set and by extrapolating the larger-basis-set

CR-CC(2,3)-level data using Eq. (4.29) without the need to perform any larger-basis-set CC

computations. These remarks may be useful in future work on catalytic systems larger than

the one examined here, where larger-basis-set CC calculations may no longer be feasible,

but a combination of smaller-basis-set CR-CC(2,3) and larger-basis-set UMPn (n = 2, 3)

computations, run, for example, on multiple cores, may still be manageable, allowing one to

test various DFT approaches in a very meaningful manner.

Considering the generally good agreement between the CR-CC(2,3),D, B3LYP, and M06

energetics characterizing pathway I, we can certainly conclude that the previously reported

M06 calculations on the mechanism of methanol oxidation to formic acid on the Au−8 and

Au−20 particles [299, 300] can be regarded as quite reliable, although it would be desirable

to repeat the calculations for the larger catalytic system involving Au−20 using the B3LYP

approach, which has here been shown to improve the results for the activation barriers

characterizing the analogous Au−8 -containing system. Unfortunately, none of the other DFT

functionals examined in the present study offer satisfactory performance. For example,

although the pure GGA-type analog of M06, denoted as M06-L, is characterized by an

overall MUE value relative to CR-CC(2,3),D of 6.9 kcal/mol, which is only slightly worse

than that obtained with M06 when the BS2 basis is employed, it lowers the activation energies

relative to M06 by 6 kcal/mol when the (TS A1 − A1) energy difference is considered and 7.2

kcal/mol in the (TS B1 − B1) case. As a result, the MUE value relative to CR-CC(2,3),D
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characterizing the M06-L calculations for the (TS A1 − A1), (TS B1 − B1), and (TS C1

− C1) barriers increase by factors of 2 relative to M06 when the BS2 basis set is employed

and more than 2 in the case of the BS1 basis. The overall NPE value relative to CR-

CC(2,3),D based on all of the stationary points involved in pathway I characterizing the

M06-L calculations with the BS2 basis set, of 22.3 kcal/mol, represents an increase by a

factor of 3.5 relative to M06 and 2 relative to B3LYP. Similar remarks, as discussed above,

apply to the long-range corrected hybrid ω-B97X-D results, whose MUE is smaller than that

for both B3LYP and M06 when the BS2 basis set is used, but its NPE values are substantially

larger than those characterizing M06 and B3LYP, especially when we focus on the (TS A1

− A1), (TS B1 − B1), and (TS C1 − C1) activation barriers.

Similar behavior is observed when other pure functionals are considered. The overall

MUE values relative to CR-CC(2,3),D/BS2 characterizing the BP86/BS2 and TPSS/BS2

calculations, of 7.4 and 8.5 kcal/mol, respectively, do not appear to be much higher than the

M06 result (6.1 kcal/mol), but this is misleading, since the corresponding NPE values based

on all stationary points along pathway I are 27.8 and 30.8 kcal/mol, respectively, indicating

a very inaccurate representation of pathway I by the BP86 and TPSS functionals. This

again particularly true when we look at the (TS A1 − A1), (TS B1 − B1), and (TS C1

− C1) barriers resulting from the BP86 and TPSS calculations, which are underestimated

by ∼ 13–15 kcal/mol in the case of the (TS A1 − A1) and (TS B1 − B1) differences and

about 5 kcal/mol (TPSS) or 9 kcal/mol (BP86) when the (TS C1 − C1) energy difference is

examined. As a result, the MUE values relative to CR-CC(2,3),D characterizing the BP86

and TPSS calculations for the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) activation
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barriers increase to 12.5 and 10.7 kcal/mol, respectively, when the BS2 basis is employed

(12.2 and 10.1 kcal/mol, respectively, when one uses BS1). Similar trends are observed when

we look at the energies of the transition states TS A1, TS B1, and TS C1 relative to the

isolated reactants, which are much too low as well. For example, the activation barriers

relative to the reactants corresponding to the transition state TS A1, which defines the rate-

determining step involving the conversion of the methoxy species to formaldehyde, are 1.9

and 3.5 kcal/mol for the BP86 and TPSS calculations, respectively, when the BS2 basis set

is employed. These should be compared with the values of 23.3 kcal/mol obtained in the

CR-CC(2,3),D/BS2 calculations and 20.9 kcal/mol obtained with B3LYP/BS2.

One can improve the above results obtained with pure GGAs through the use of the

popular Grimme’s empirical dispersion corrections, as in the B97-D case, where the (TS A1

− reactants) and (TS A1 − A1) energy differences increase from 1.9 and 23.2 kcal/mol when

the BP86/BS2 method is used to 11.3 and 31.7 kcal/mol, respectively, when the B97-D/BS2

approach is exploited, bringing the results close to the M06 level, but the overall description

of pathway I by B97-D is not as good as that provided by the hybrid M06 and B3LYP

functionals. For example, while improving the (TS A1 − A1) and (TS B1 − B1) barriers

resulting from the BP86 calculations, the B97-D functional is incapable of changing the

poor BP86 results for the (TS C1 − C1) energy difference. B97-D also worsens the overall

reaction energy obtained with BP86, which is −95.8 kcal/mol according to the BP86/BS2

calculations and −89.2 kcal/mol according to the corresponding B97-D computations, where

the CR-CC(2,3),D approach gives −98.6 kcal/mol when the BS2 basis set is employed. The

overall NPE value relative to CR-CC(2,3),D/BS2 characterizing the B97-D/BS2 calculations,
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of 21.4 kcal/mol, is almost as bad as that obtained with the M06-L scheme, although one

observes an improvement compared to the pure BP86 functional, whose corresponding NPE

is 27.8 kcal/mol. The same holds true when we compare the MUE values characterizing the

B97-D description of the (TS A1 − A1), (TS B1 − B1), and (TS C1 − C1) barriers with

the BS1 and BS2 basis sets, which are better than those provided by BP86, but not as good

as the results of the M06 and B3LYP calculations.

In summary, we have shown that our highest-level CR-CC(2,3) calculations confirmed the

earlier proposals [299, 300] that the oxidation of methanol to formic acid on Au−8 proceeds

exothermically and that the rate determining step for the reaction is the initial conversion

of the methoxy species to formaldehyde. The initial rate-determining transition state, which

corresponds to hydrogen transfer from the methoxy species to the molecular oxygen, is

placed about 20 kcal/mol above the reactants, less than 40 kcal/mol above the O2 and

CH3O− species coadsorbed on Au−8 , and considerably above the remaining two transition

states along the reaction pathway. The previously exploited [299,300] M06 hybrid functional

shows reasonable agreement with CR-CC(2,3), but B3LYP improves the description of the

activation barriers compared with the M06 approach, bringing the MUE and NPE values

relative to our best CR-CC(2,3),D/BS2 estimates characterizing the key activation barriers

from 4.9 and 3.4 kcal/mol, respectively, when the M06 method is employed to 2.6 and 1.2

kcal/mol, respectively, when one uses B3LYP. Clearly, examining methanol oxidation to

formic acid on Au−20 using CR-CC(2,3) by the approach in which the larger-basis-set CR-

CC(2,3) data are extrapolated by combining the smaller-basis-set CR-CC(2,3) results with

the larger-basis-set CCSD, UMP2, or UMP3 information, as has been done here, or by taking
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advantage of the recently developed multilevel local correlation CR-CC(2,3) methodology

[101], which is applicable to larger reactive systems containing transition-metal atoms [99],

would be helpful too. We hope the information provided herein will be useful for future

theoretical studies of reactive processes catalyzed by transition-metal nanoparticles.

4.4 Coupled-Cluster and Multireference Configuration

Interaction Studies of the Low-Lying Electronic

States of 1,2,3,4-Cyclobutanetetraone

4.4.1 Background information and scope of the work

1,2,3,4-cyclobutanetetraone (C4O4) is a small, but surprisingly complex molecule that poses

several challenges for theory and experiment. The early theoretical suggestion that this

D4h-symmetric species has a triplet ground state of the B2u symmetry, with a closed-shell

singlet of the A1g symmetry located only a few kcal/mol higher [325–328], has recently been

strengthened through photodetachment experiments [329, 330]. There have, however, been

serious problems in obtaining this result computationally, since even the most sophisticated

electronic structure treatments encounter significant difficulties with determining whether

the ground state of C4O4 is a triplet with nine π electrons or a singlet with eight or ten π

electrons [325–327, 331] (cf. Fig. 4.6 for the configurations defining the four lowest-energy

electronic states of C4O4).

Molecules with small gaps between the lowest singlet and triplet states have historically
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been a challenge for both experimental and theoretical methods. For example, the methylene

biradical, which is one of the most celebrated cases in this area, caused much controversy,

especially in the 1960s and 1970s, due not only to the smallness of its singlet-triplet gap,

but also because of the direct challenge by various theoretical approaches [332–334] to the

initial Herzberg’s experimental findings [335] suggesting that the triplet ground state had a

linear geometry (cf. Refs. [177, 178,192,271,272,336–353] for selected examples of ab initio

calculations of the ground and excited states of methylene, which is certainly not complete

nor exhaustive; see, also, Refs. [354, 355] for personal accounts by Schaefer and Harrison,

who made pioneering contributions to computational studies of methylene). Thus, even

for tiny molecules, such as CH2, determining the ordering of close- and low-lying electronic

states can be a challenge for single- and multireference quantum chemical approaches. C4O4,

which has many more electrons and eight non-hydrogen atoms and which is related to other

similarly challenging larger organic molecules, such as tetrakis-annelated cyclooctatetraene

that has been predicted to have a small gap between the lowest singlet and triplet electronic

states [356], has a tiny singlet-triplet gap smaller than that in methylene, while having near-

degenerate HOMO and LUMO, resulting in two additional singlet states which are also very

close in energy. Thus, there are four low-lying nearly degenerate electronic states in 1,2,3,4-

cyclobutanetetraone that one has to deal with, which is a major challenge for quantum

chemistry. Following the previous studies [325–328], these states are denoted as 8π(1A1g), a

closed-shell singlet arising from the sigma-type b1g HOMO being doubly occupied, having

eight π electrons in its electron configuration, 10π(1A1g), another closed-shell singlet where

the π-type a2u LUMO of the 8π(1A1g) reference is doubly occupied and the sigma-type b1g
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HOMO is empty, having ten π electrons in its dominant electron configuration, 9π(3B2u), the

triplet state originating from the singly occupied HOMO and LUMO, having nine π electrons

in its leading electron configuration, and 9π(1B2u), an open-shell singlet counterpart of the

9π(3B2u) state, having nine π electrons in its dominant electron configuration (see Fig. 4.6).

Determining the singlet-triplet gap in C4O4 along with the ordering of the four lowest-

energy electronic states has proven to be very difficult for the various theoretical and ex-

perimental studies [325–331,357,358]. The initial DFT, CASSCF, CASPT2, and CCSD(T)-

type calculations gave strongly varied results depending on the geometry employed and

the method and basis set that were used [327, 328]. Given the challenge represented by

the low-lying electronic states of C4O4, which require a robust and well-balanced descrip-

tion of dynamical and nondynamical correlation effects, this is not surprising. The DFT

methodology, as implemented in the popular quantum chemistry codes, is known to have

problems with electronic near degeneracies, CASSCF does not capture dynamical correla-

tions, CASPT2 over-stabilizes singlet states with a strong biradical character relative to the

corresponding single-reference closed-shell singlet and high-spin triplet states, and CCSD(T),

which provides an accurate description of dynamical electron correlation effects for nonde-

generate ground states of molecules near the equilibrium geometries, fails when applied to

biradicals and other cases of electronic near degeneracies, where nondynamical correlation

effects become more significant. The subsequent negative ion photoelectron (NIPE) spec-

troscopy [329] experiment determined the ground state to be the 9π(3B2u) state, being about

6.27 ± 0.5 kJ/mol lower in energy than the lowest singlet state, in agreement with some of

the theoretical results, but none of the experimental energy differences and even best theo-
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Figure 4.6: Electron distributions among the nearly degenerate HOMO and LUMO making
up the four lowest-energy electronic states of C4O4.
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retical predictions were in quantitative agreement. Furthermore, the original experimental

interpretation [329] assigned a series of peaks seen in the NIPE spectrum of C4O4 to the

open-shell singlet 9π(1B2u) state [329], while in a follow-up paper, which included a detailed

Franck-Condon analysis [330], the peaks were reassigned as a vibrational progression in the

lowest-energy 1A1g state, namely 8π(1A1g), showing that even the experimental interpreta-

tion may be uncertain in some aspects.

More recently, to try to give a more definitive result for the singlet-triplet gap in C4O4, the

high-level DEA- and DIP-EOMCC approaches, in which the EOM operators attaching two

electrons to or removing two electrons from the corresponding closed-shell cores are truncated

at 3p-1h and 3h-2p components, respectively, were applied to the 8π(1A1g) and 9π(3B2u)

states in C4O4 [331]. The authors of Ref. [331] found that even the DEA-EOMCC(3p-1h)

and DIP-EOMCC(3h-1p) approximations were not sufficient to provide reliable results, with

the 8π(1A1g) being predicted to be the ground state in some cases. This is not entirely

surprising, though. For the DEA- and DIP-EOMCC methods to provide stable results,

especially in situations as oomplex as that created by C4O4, one needs to include some

form of 4p-2h and 4h-2p correlations, respectively, as has been shown for other challenging

systems with low-lying nearly degenerate electronic states [177, 178]. This would explain

difficulties in stabilizing the results of the DEA- and DIP-EOMCC calculations reported

in Ref. [331], which did not include 4p-2h and 4h-2p excitations, but we would have to

prove this via direct computations using, for example, the active-space DEA-EOMCC(4p-2h)

and DIP-EOMCC(4h-2p) approaches developed in our group [177, 178]. Our present DEA-

EOMCC(4p-2h) and DIP-EOMCC(4h-2p) codes have a pilot character and, as such, are
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hard to apply to the larger-basis set calculations for C4O4, but this may be an interesting

direction to pursue in future work.

All of this shows that C4O4 is a remarkably challenging molecule for both theory and

experiment. As far as theory is concerned, one family of CC methods, which has been

shown to provide a balanced description of dynamical and nondynamical correlation effects,

particularly in the case of biradicals and near-degenerate electronic states, is the previously

discussed CR-CC hierarchy, including methods such as CR-CC(2,3), which we used in the

earlier sections of this dissertation. It is relevant to mention in this context that the CR-

CC(2,3) approach has already been used to determine the singlet-triplet gap [95] and, more

recently, using its CR-EOMCC(2,3) extension, four lowest-energy states of methylene [192],

achieving great success. Thus, as part of this dissertation, we examined the four lowest-

energy states of C4O4, namely, 8π(1A1g), 9π(3B2u), 9π(1B2u), and 10π(1A1g), investigating

the role of both basis set and nuclear geometry to determine their ordering, by employing the

CR-CC(2,3),A and CR-CC(2,3),D approaches that seek to minimize the difference between

the exact, full CI, and CCSD energies by adding robust noniterative corrections due to triply

excited clusters to the CCSD energy exploiting moments of CCSD equations discussed in

Section 4.1. We then compare the CR-CC(2,3) results with multireference CI calculations

using the popular MRCI(Q) method [359,360], the active-space CCSDt approach [62–67,361],

which is known to precisely reproduce relative energies of its parent full CCSDT calculations,

and the available experimental data [329].

We have already discussed the CR-CC(2,3) methodology in Section 4.1, but we have not

said much about CCSDt. We do this now. The CCSDt method is based on the more general
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active-space CC ideas developed in Refs. [62–64, 66, 69] for the ground state and [42–44]

for excited states (for reviews of the active-space CC/EOMCC theories and their EA/IP,

DEA/DIP, etc. extensions, and additional references, see Refs. [54, 157–159, 177, 178]).

CCSDt allows one to obtain molecular electronic states that overall are of the full CCSDT

quality at a small fraction of the computational cost involved in the CCSDT calculations.

In the active-space CC/EOMCC methods, the spin-orbitals are divided into four disjoint

groups, namely, (i) core or inactive occupied spin-orbitals, labeled by bold lower-case letters

i, j, . . . , (ii) active occupied spin-orbitals, labeled by upper-case bold letters I, J, . . . ,

(iii) active unoccupied spin-orbitals, labeled by upper-case bold letters A, B, . . . , and (iv)

virtual or inactive unoccupied spin-orbitals, labeled by bold lower-case letters a, b, . . . (see

Fig. 4.7). We continue to designate the occupied and unoccupied orbitals in the reference

determinant |Φ〉 by the italic lower-case characters i, j, . . . and a, b, . . . , respectively, if the

active/inactive character of the spin-orbitals is not specified. We then use the above de-

composition of spin-orbitals into active and inactive subsets to capture the most important

higher-than-double excitations, such as triples (CCSDt) or triples and quadruples (CCS-

Dtq), reducing the overall cost of high-level CC computations with those excitations, such

as CCSDT or CCSDTQ. In the specific case of CCSDt, which is an approximation to full

CCSDT, the one- and two-body cluster operators, T1 and T2, are defined through exactly

the same set of amplitudes as used in the standard CCSD calculations, discussed in Section

4.1, with their labels running over all spin-orbitals. In other words, T1 and T2 are treated

fully. A different approach, however, is adopted when it comes to T3 clusters (triples), which

in CCSDt are replaced by their t3 (“little t”) counterparts defined through a small subset
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of all triply excited cluster amplitudes that carry at least one active occupied and at least

one active unoccupied spin-orbital indices, to obtain the following definition of the cluster

operator T :

T (CCSDt) = T1+T2+t3 =
∑

i,a

tia aaai+
∑

i>j,a>b

t
ij
ab aaabajai+

∑

I>j>k,a>b>C

t
Ijk
abC aaabaCakajaI,

(4.30)

where ap (ap) are the same creation (annihilation) operators as defined previously associated

with the spin-orbital basis set {|p〉}. The ground-state wave function is then written as

|Ψ(CCSDt)
0 〉 = eT (CCSDt) |Φ〉 and we solve a set of nonlinear equations similar to CCSD,

namely, 〈Φa
i |H̄(CCSDt)|Φ〉 = 0, 〈Φab

ij |H̄(CCSDt)|Φ〉 = 0, and 〈ΦabC
Ijk |H̄(CCSDt)|Φ〉 = 0, where

H̄(CCSDt) is the similarity transformed Hamiltonian of CC theory written for the cluster

operator T (CCSDt) and |Φa
i 〉, |Φab

ij 〉, and |ΦabC
Ijk 〉 are the singly, doubly, and triply excited

determinants, respectively, corresponding to the cluster amplitudes defining T (CCSDt). As

one can see, the CCSDt equations form a subset of the full CCSDT equations and become

equivalent to the latter equations when all spin orbitals are chosen as active.

The key idea of the CCSDt calculations is that one does not have to use the entire set

of triply excited amplitudes t
ijk
abc and determinants |Φabc

ijk〉 to obtain the results of the full

CCSDT quality, which the definition of t3 operator shown in Eq. (4.30) guarantees (as

shown in numerous applications). Because of the considerable reduction in the number of

triples used by CCSDt, the most expensive steps of CCSDt scale as NoNun2
on

4
u, where no

(No) and nu (Nu) are the numbers of all (active) occupied and unoccupied spin-orbitals

used in the post-SCF calculations. Since one typically has that No < no and Nu ≪ nu,

the CPU costs of CCSDt calculations are the costs of CCSD times a small prefactor, which
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Figure 4.7: Orbital classification used in the active-space CC approaches, such as CCSDt.
Full circles represent core and active electrons of the reference determinant |Φ〉, which is the
formal reference defining the Fermi vacuum for the active-space CC calculations.

is a lot less than the n3
on

5
u steps of CCSDT. At the same time, by using a small subset of

triples, the CCSDt calculations reduce the n3
on

3
u storage requirements of CCSDT to a much

smaller ∼ NoNun2
on

2
u level. In the rest of our discussion of the CCSDt results, the CCSDt

calculations using No active occupied and Nu active unoccupied orbitals are designated as

CCSDt(No, Nu). Clearly, CCSDt(No, Nu) becomes CCSDT if No = no and Nu = nu.
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4.4.2 Computational details

Our goal was to determine the adiabatic excitation energies and ordering of the four low-

lying electronic states of C4O4, including 8π(1A1g), 9π(3B2u), 9π(1B2u), and 10π(1A1g),

using high-level ab initio methods based on CC theory, expecially CR-CC(2,3) and CCSDt,

augmented by CASSCF-based MRCI(Q) calculations, and examining the role of the basis set

and methods exploited in geometry optimizations. The 8π(1A1g), 9π(3B2u), and 10π(1A1g)

states were calculated with the ground-state CR-CC(2,3) and CCSDt methods, since it was

easy to determine suitable reference determinants for each of these three states. Thus, in

the case of the 8π(1A1g) state, we used the RHF reference determinant corresponding to

the orbital occupancy shown in the left-most configuration of Fig. 4.6. In the case of the

9π(3B2u) state, we used the ROHF orbitals corresponding to the high-spin triplet configu-

ration, shown in Fig. 4.6 as well. For the 10π(1A1g) state dominated by the determinant

shown in Fig. 4.6 as the right-most configuration, we used the RHF reference corresponding

to the orbital occupancy defining this right-most configuration, obtained by interchanging

the HOMO and LUMO in the 8π(1A1g) reference. The above choices of reference determi-

nants for the CR-CC(2,3) and CCSDt calculations (and their CCSD counterparts) for the

8π(1A1g) and 10π(1A1g) states, where each determinant is optimized for the electronic state

it approximates, are justified by the earliy observation [327] that the closed-shell electron

configurations dominating the 8π(1A1g) and 10π(1A1g) states do not mix. In the case of

the 9π(3B2u) state, we rely on its obviously single-reference character, where the high-spin

ROHF determinant is the optimum spin- and symmetry-adapted reference.

The only state that required a different approach was the open-shell singlet 9π(1B2u)
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state. One could, of course, try the unrestricted CC (UCC) calculations using one of the

two leading determinants in the 9π(1B2u) wave function, such as that shown in the third

configuration from the left in Fig. 4.6, as a UHF reference. Unfortunately, the resulting

UCC solutions would lead to complete symmetry breakdown and significant spin contami-

nation that would be hard to remove, raising several questions about the meaning of such

results. Another approach that one can take, which avoids problems associated with symme-

try breaking and spin contamination, is to treat the 9π(1B2u) state as an excited state out of

the closed-shell 8π(1A1g) state. A state like this can be obtained by diagonalizing the simi-

larity transformed Hamiltonian obtained in the closed-shell CC calculations for the 8π(1A1g)

state, as in the EOMCC considerations. The 9π(1B2u) state is an excited state relative to

the 8π(1A1g) state dominated by a one-electron transition from the b1g HOMO to the a2u

LUMO. The basic EOMCCSD approach usually provides a reasonable description of excited

states dominated by one-electron transitions. Thus, we decided to determine the 9π(1B2u)

state as an excitation from the closed-shell 8π(1A1g) state obtained using EOMCCSD. This

has allowed us to treat the 9π(1B2u) state in a proper spin- and symmetry-adapted manner,

i.e., without worries about symmetry breaking and spin contamination and without ad hoc, at

best qualitative, arguments based on examining the CCSD(T) results and exchange integrals

presented in Ref. [327]. In analogy to the remaining three states, we should, at least in prin-

ciple, correct the EOMCCSD results for the 8π(1A1g) → 9π(1B2u) excitation for the effects

due to triples, either through the (δ-)CR-EOMCC(2,3), EOMCCSD(T̃ ), EOMCCSD(2)T,

and similar noniterative corrections or by running the iterative EOMCCSDt calculations,

but out preliminary tests have demonstrated a large variation among the results in this
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case, beyond acceptable levels, and unexpected difficulties in running EOMCCSDt with the

software we used, so we will return to this issue in a future work. The 9π(1B2u) state is

an almost pure one-electron transition of the same spin symmetry as the 8π(1A1g) state, so

we do not expect the effects due to triples to significantly alter our main conclusions based

on the EOMCCSD calculations for the 8π(1A1g) → 9π(1B2u) excitation (in fact, as shown

below, they agree quite well with MRCI(Q)), but additional EOMCC studies regarding this

excitation may be needed in the future.

Once we decided on the appropriate ways of treating the 8π(1A1g), 9π(3B2u), 9π(1B2u),

and 10π(1A1g) states of C4O4, including reference determinants employed in the CC calcula-

tions, we moved to a series of single-point energy calculations at the UB3LYP, CASSCF(2,2),

and CASSCF(16,16) optimized geometries, obtained with the 6-31G(d) basis set, taken from

Ref. [327], using the CCSD (EOMCCSD for the 9π(1B2u) state), CR-CC(2,3),A, and CR-

CC(2,3),D methods with the 6-31G(d) and aug-cc-pVxZ (x = D, T) bases [186, 362], the

active-space CCSDt(8,8) and CCSDt(16,16) approaches employing the 6-31G(d) and aug-cc-

pVDZ basis sets, and the state-averaged CASSCF(16,16) and MRCI(Q)(14,13)//CASSCF(16,16)

methods using the aug-cc-pVDZ basis, where the equal state-averaging of the 8π(1A1g) and

10π(1A1g) states was employed (see below for discussion of the active spaces chosen). The

CCSDt and MRCI(Q) calculations employing the aug-cc-pVTZ basis set were not performed

due to their prohibitive computational costs, when an adequate active space to capture the

relevant excitations is used (even if run in parallel). All of the calculated energies of the

8π(1A1g) state and the adiabatic excitation energies for the remaining three low-lying elec-

tronic states of C4O4 are presented in Table 4.9.
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Table 4.9: Energies of the four lowest-energy electronic states of C4O4 at the UB3LYP/6-31G(d), CASSCF(2,2)/6-31G(d),
and CASSCF(16,16)/6-31G(d) geometries obtained in Ref. [327].a

UB3LYP/6-31G(d) geometry CASSCF(2,2)/6-31G(d) geometry CASSCF(16,16)/6-31G(d) geometry

Method Basis set 8π(1A1g) 9π(3B2u) 9π(1B2u) 10π(1A1g) 8π(1A1g) 9π(3B2u) 9π(1B2u) 10π(1A1g) 8π(1A1g) 9π(3B2u) 9π(1B2u) 10π(1A1g)

CCSDb 6-31G(d) 1.9968814 30.093 35.648 116.803 1.9888584 33.276 41.368 121.106 1.9966172 40.155 47.928 124.482

aug-cc-pVDZ 2.1488333 17.222 21.588 94.604 2.1412594 16.780 23.202 93.794 2.1484649 22.166 27.931 99.343

aug-cc-pVTZ 2.4915799 21.185 23.760 100.740 2.4893788 19.594 24.446 99.209 2.4919414 20.265 25.106 97.480

CR-CC(2,3),A 6-31G(d) 2.0410444 4.130 - 51.413 2.0306655 10.010 - 63.325 2.0404453 18.563 - 66.881

aug-cc-pVDZ 2.2008911 -8.725 - 31.261 2.1907084 -6.356 - 37.774 2.2001588 0.975 - 43.969

aug-cc-pVTZ 2.5638980 -6.752 - 33.767 2.5587924 -5.354 - 39.918 2.5638591 -2.368 - 39.068

CR-CC(2,3),D 6-31G(d) 2.0459569 0.870 - 43.125 2.0353747 6.866 - 55.431 2.0453289 15.612 - 59.049

aug-cc-pVDZ 2.2054282 -12.158 - 23.845 2.1948632 -10.091 - 30.558 2.2045827 -2.303 - 36.955

aug-cc-pVTZ 2.5678525 -10.633 - 27.502 2.5628428 -8.301 - 34.628 2.5678184 -5.895 - 33.220

CCSDt(8,8) 6-31G(d) 2.0328825 2.923 - 49.895 2.0222028 8.755 - 60.630 2.0322461 17.272 - 65.323

aug-cc-pVDZ 2.1735390 -11.417 - 25.207 2.1612823 -14.305 - 24.090 2.1728430 -0.619 - 36.764

CCSDt(16,16) 6-31G(d) 2.0414828 2.073 - 46.564 2.0308715 8.194 - 58.165 2.0408498 16.906 - 62.183

aug-cc-pVDZ 2.1771695 -9.486 - 25.173 2.1677944 -6.124 - 32.558 2.1766114 0.932 - 37.181

CASSCF(16,16)c aug-cc-pVDZ 1.0605689 59.132 91.116 141.514 1.0602076 59.790 92.456 149.577 1.0613717 60.195 93.782 141.161

MRCI(Q)(14,13)c,d aug-cc-pVDZ 1.1876699 -7.808 29.853 43.446 1.1893300 0.358 37.573 62.983 1.1888253 -2.252 36.927 46.627

aThe 8π(1A1g) total electronic energies (in hartree) are reported as (−450−E), while the energies of the remaining three states are adiabatic

excitation energies, in kJ/mol, relative to the 8π(1A1g) state.
bThe 9π(1B2u) adiabatic excitation energies were calculated as the differences between the 9π(1B2u) EOMCCSD and 8π(1A1g) CCSD

energies.
cState averaging of the 8π(1A1g) and 10π(1A1g) states was used.
dMRCI(Q) single-point energies obtained using CASSCF(16,16)/aug-cc-pVDZ optimized orbitals (see text for details).



Let us briefly comment on the active spaces used in the CCSDt, CASSCF, and MRCI(Q)

calculations. The CCSDt(8,8) active space was chosen such that it consisted of the same

types of active orbitals as those used in the CASSCF(16,16) computations reported in

Ref. [327], i.e., the 8 highest-energy occupied orbitals and the 8 lowest-energy unoccupied

orbitals of each of the three states of C4O4 determined with CCSDt (the only difference

between the CCSDt and CASSCF-based calculations was that CCSDt used RHF orbitals,

not the multiconfigurational ones). This was also the smallest meaningful active space one

could use to obtain reliable results for the low-lying electronic states of C4O4 (we tested

this by considering smaller active spaces). To determine the effect of the size of the ac-

tive space on the convergence of our CCSDt results toward the full CCSDT solutions, we

also performed the considerably large CCSDt(16,16) calculations, employing the 16 highest-

energy occupied orbitals and the 16 lowest-energy unoccupied orbitals in the active space,

which would correspond to multireference calculations based on CASSCF(32,32) references,

i.e., the calculations that are not feasible at this time due to the factorial scaling of the di-

mensionality of CASSCF wave functions with the numbers of active orbitals and correlated

active electrons (this illustrates one of the key advantages of the active-space CC methods

over the CASSCF-based multireference approaches; the active-space CC methods have a

low-order polynomial scaling of the CPU operational count and dimensionalities of wave

function spaces used to set them up with the numbers of active occupied and unoccupied

orbitals). The active space for the MRCI(Q)(14,13) calculations was constructed from the 7

highest-energy occupied orbitals and 6 lowest-energy unoccupied orbitals of each of the four

electronic states of interest in this study. We chose the somewhat smaller (14,13) active space
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in this case, and not the (16,16) one used in the preceding CASSCF orbital optimizations,

due to this being the largest computationally feasible active space that we could afford at

the MRCI(Q) level that did not fall across degenerate orbital pairs for all four electronic

states of interest. The orbital composition of the active space for each electronic state can

be found in Table 4.10.

After performing the above single-point CC and MRCI calculations using UB3LYP and

CASSCF geometries, we performed a series of geometry optimizations for the four low-

lying electronic states of C4O4 employing the CCSD, CR-CC(2,3),A, and CR-CC(2,3),D ap-

proaches for the 8π(1A1g), 9π(3B2u), and 10π(1A1g) states and EOMCCSD for the 9π(1B2u)

state, using the 6-31G(d) and aug-cc-pVDZ basis sets. These high-level ab initio optimiza-

tions were carried out using the parallel coarse-grain finite-difference model available in the

CIOpt program suite [235,363], which we interfaced with our relevant CC/EOMCC routines

available in the GAMESS package. The CC-level optimized geometries for the four states

of C4O4 examined in this work are summarized in Table 4.11, along with the geometries

optimized in the previous study [327] shown for comparison.
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Table 4.10: Orbital structure of CASSCF(16,16) and MRCI(Q)(14,13) active spaces.

Method Active Orbitals and Occupancy in the Leading Determinants

CASSCF(16,16)

8π(1A1g) (1a2
2u)(1a2

2g)(1e
2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b2

1g) (2a0
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)(3e
0
g)(4e

0
g)

9π(3B2u) (1a2
2u)(1e2

g)(2e
2
g)(1b

2
1u)(1a2

2g)(11e
2
u)(12e2

u)(2b1
1g) (2a1

2u)(3e0
g)(4e

0
g)(6a

0
1g)(13e

0
u)(14e0

u)(3a0
2u)(5b0

2g)

9π(1B2u) (1a2
2u)(1a2

2g)(1e
2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b1

1g) (2a1
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)(3e
0
g)(4e

0
g)

10π(1A1g) (1a2
2u)(1a2

2g)(1e
2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b0

1g) (2a2
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)(3e
0
g)(4e

0
g)

MRCI(Q)(14,13)

8π(1A1g) (1a2
2g)(1e

2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b2

1g) (2a0
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)

9π(3B2u) (1e2
g)(2e

2
g)(1b

2
1u)(1a2

2g)(11e
2
u)(12e2

u)(2b1
1g) (2a1

2u)(3e0
g)(4e

0
g)(6a

0
1g)(13e

0
u)(14e0

u)

9π(1B2u) (1a2
2g)(1e

2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b1

1g) (2a1
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)

10π(1A1g) (1a2
2g)(1e

2
g)(2e

2
g)(11e

2
u)(12e2

u)(1b2
1u)(2b0

1g) (2a2
2u)(6a0

1g)(13e
0
u)(14e0

u)(3a0
2u)(5b0

2g)



Table 4.11: Bond lengths of optimized C4O4 D4h geometries (in Å).a

Method Basis 8π(1A1g) 9π(3B2u) 9π(1B2u) 10π(1A1g)

UB3LYPb 6-31G(d) (1.567,1.200) (1.553,1.196) (1.552,1.196) (1.546,1.190)

CASSCF(2,2)b 6-31G(d) (1.551,1.173) (1.562,1.160) (1.562,1.160) (1.571,1.151)

CASSCF(16,16)b 6-31G(d) (1.562,1.197) (1.576,1.172) (1.581,1.172) (1.583,1.166)

CCSDc 6-31G(d) (1.560,1.206) (1.556,1.196) (1.556,1.198) (1.554,1.187)

aug-cc-pVDZ (1.574,1.203) (1.571,1.192) (1.570,1.194) (1.568,1.184)

CR-CC(2,3),A 6-31G(d) (1.565,1.212) (1.558,1.203) - (1.551,1.198)

aug-cc-pVDZ (1.578,1.209) (1.574,1.200) - (1.566,1.195)

CR-CC(2,3),D 6-31G(d) (1.565,1.212) (1.558,1.204) - (1.551,1.198)

aug-cc-pVDZ (1.579,1.210) (1.573,1.201) - (1.565,1.196)

aGeometries are reported as (RC-C,RC-O) pairs.
bTaken from Ref. [327].
cGeometry of the 9π(1B2u) state was optimized at the EOMCCSD level of theory.

After performing the above geometry optimizations at the CCSD/EOMCCSD and CR-

CC(2,3),X (X = A, D) levels, we moved to the final round of single-point CC/aug-cc-pVTZ

energy calculations using the corresponding CC/aug-cc-pVDZ equilibrium geometries. This

was done to assess the stability of our CCSD/EOMCCSD and CR-CC(2,3) optimized results

using the aug-cc-pVDZ basis with respect to the basis set. We also computed approximate

zero-point vibrational energy (ZPE) corrections at the UB3LYP/aug-cc-pVTZ level to see if

there was an appreciable effect on the state orderings from vibrations [364]. The resulting

adiabatic excitation energies for the 9π(3B2u), 9π(1B2u), and 10π(1A1g) states, with respect

to the 8π(1A1g) state, from our various CC/aug-cc-pVDZ nuclear geometry optimizations

and subsequent single-point CC/aug-cc-pVTZ energy calculations are presented in Table

4.12.

All CCSD, EOMCCSD, CR-CC(2,3) and UB3LYP calculations were carried out using
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the GAMESS package, where our CC/EOMCC codes reside. The CCSDt computations were

performed with the NWChem [322] suite. The CASSCF and MRCI(Q) results were obtained

using the Molpro [365] program. In all of the post-SCF calculations, the core electrons were

not correlated and for all calculations performed in this work the spherical components of d

and f basis functions were employed throughout.

4.4.3 Results and discussion

The results of our initial single-point CC energy calculations, using the UB3LYP, CASSCF(2,2),

and CASSCF(16,16) optimized geometries employing the 6-31G(d) basis set, are shown in

Table 4.9. When we look at our best CR-CC(2,3), CCSDt, and MRCI(Q) calculations, it is

clear that one needs to use a basis set of at least the aug-cc-pVDZ or aug-cc-pVTZ quality

to obtain a reasonably converged and correct description of state ordering. Indeed, if we use

the small 6-31G(d) basis set in the CR-CC(2,3), CCSDt, and MRCI(Q) calculations, the

8π(1A1g) state becomes the ground state, independent of the method used to optimize the

geometries, contradicting the experimental findings [329, 330]. The situation changes when

we use the larger aug-cc-pVDZ and aug-cc-pVTZ basis sets in the CR-CC(2,3), CCSDt,

and MRCI(Q) calculations, which clearly favor the 9π(3B2u) state as the ground state,

placing it about 6 − 11 kJ/mol below the 8π(1A1g) state in the majority of our best CR-

CC(2,3),D/aug-cc-pVTZ calculations (the CR-CC(2,3),A/aug-cc-pVTZ calculations give a

2−7 kJ/mol range below the 8π(1A1g) state), 6−9 kJ/mol below the 8π(1A1g) state in the

two of the three single-point CCSDt(16,16)/aug-cc-pVDZ results, and 2−8 kJ/mol below the

8π(1A1g) state in the two of the three MRCI(Q)(14,13)/aug-cc-pVDZ calculations. There
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are a couple of cases, such as the CCSDt(16,16)/aug-cc-pVDZ//CASSCF(16,16)/6-31G(d)

and MRCI(Q)(13,14)/aug-cc-pVDZ//CASSCF(2,2)/6-31G(d) results, where the 8π(1A1g)

and 9π(3B2u) state become virtually degenerate, with the latter state being slightly higher

in energy, but we must keep in mind that these are single-point calculations at the geometries

obtained with the unrelated methods. Even with these few exceptions, based on the results

in Table 4.9, it is reasonable to conclude that the 9π(3B2u) state is the ground state, with

the 8π(1A1g) state being the first excited state. We must, however, rely on the higher-level

methods, such as CR-CC(2,3), CCSDt, or MRCI(Q), and basis sets of the aug-cc-pVDZ or,

preferably, aug-cc-pVTZ quality to obtain a correct description. The smaller basis sets, such

as 6-31G(d), and lower-order CC methods, such as CCSD, which favor the 8π(1A1g) ground

state, are clearly inadequate in this regard.

There are other useful observations based on the results collected in Table 4.9. In the vast

majority of calculations reported in Table 4.9, the change of the active space from (No, Nu) =

(8, 8) to (No, Nu) = (16, 16) has no effect on the results of the CCSDt calculations, which

typically vary by 1 − 2 kJ/mol, when the 9π(3B2u) − 8π(1A1g) and 10π(1A1g) − 8π(1A1g)

energy differences are considered, showing that our best active-space CCSDt(16,16)/aug-cc-

pVDZ calculations are likely to be converged to within 1 − 2 kJ/mol for these two energy

differences (i.e., being very close to the corresponding CCSDT results, which we could not

obtain due to prohibitive costs of full CCSDT calculations for C4O4). This is a very valuable

piece of information, since there is an equally high degree of consistency between the high-

level CCSDt(16,16)/aug-cc-pVDZ and CR-CC(2,3),X/aug-cc-pVDZ or CR-CC(2,3),X/aug-

cc-pVTZ (X = A, D) results for the 9π(3B2u)− 8π(1A1g) and 10π(1A1g)− 8π(1A1g) energy
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differences, allowing us to further increase our trust in the CR-CC(2,3) results obtained with

the aug-cc-pVDZ and aug-cc-pVTZ basis sets.

Given the overall picture that emerges from Table 4.9, the 9π(3B2u) state is expected to

be the ground state, the 8π(1A1g) state is the first excited state, and the 10π(1A1g) state

is the highest in energy among the four states of C4O4 examined in this work. All of the

highest-level methods considered in this study, i.e., CR-CC(2,3), CCSDt, and MRCI(Q),

place the 10π(1A1g) state at about 30 − 40 kJ/mol above the 8π(1A1g) state when the

aug-cc-pVDZ and aug-cc-pVTZ basis sets are employed. The only state in Table 4.9, which

is treated differently than the remaining 8π(1A1g), 9π(3B2u), and 10π(1A1g) states, is the

open-shell singlet 9π(1B2u) state. To avoid problems with spin-symmetry breaking, which

the UCC computations (including CR-CC(2,3) and CCSDt levels) would cause, we treated

it as an excitation from 8π(1A1g) described by EOMCCSD. Although clearly not definitive

due to the neglect of triples in this case, the EOMCCSD results for the 9π(1B2u) state

obtained with the aug-cc-pVDZ and aug-cc-pVTZ basis sets shown in Table 4.9 agree quite

well with the high-level (also, spin- and symmetry-adapted) MRCI(Q)(14,13)/aug-cc-pVDZ

calculations, placing it about 20 − 30 kJ/mol above the 8π(1A1g) state, always above the

9π(3B2u) and below the 10π(1A1g) states. Thus, we can treat an EOMCCSD description

of the 9π(1B2u) − 8π(1A1g) energy difference as quite trustworthy, when the aug-cc-pVDZ

and aug-cc-pVTZ basis sets are employed. Based on the above discussion, we can, at least

tentatively at this point, conclude that the ordering of the four low-lying electronic states of

C4O4 is 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g).

The discrepancies between the UB3LYP, CASSCF(2,2), and CASSCF(16,16) geometries
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Table 4.12: Energies of the low-lying electronic states of C4O4 at the geometries obtained
with CC methods.a

Method Basis 8π(1A1g) 9π(3B2u) 9π(1B2u) 10π(1A1g)

CCSDb 6-31G(d) -451.9971417 30.741 36.214 117.085

aug-cc-pVDZ -452.1489716 16.193 20.613 92.583

aug-cc-pVTZc -452.4909723 18.858 22.410 97.235

ZPE correctedd 18.804 24.399 96.619

MRCI(Q)(14,13)e aug-cc-pVDZ -451.1860936 -7.883 30.590 45.452

CR-CC(2,3),A 6-31G(d) -452.0419014 5.350 - 52.420

aug-cc-pVDZ -452.2017392 -11.929 - 31.071

aug-cc-pVTZc -452.5628388 -7.488 - 33.486

ZPE correctedd -7.542 - 32.870

MRCI(Q)(14,13)e aug-cc-pVDZ -451.1833388 -8.000 - 43.374

CR-CC(2,3),D 6-31G(d) -452.0469052 2.190 - 44.143

aug-cc-pVDZ -452.2064023 -11.931 - 23.840

aug-cc-pVTZc -452.5668383 -11.087 - 27.359

ZPE correctedd -11.141 - 26.743

MRCI(Q)(14,13)e aug-cc-pVDZ -451.1829964 -9.202 - 42.583

Experimentf -6.27±0.5 7.24±0.5g -

aThe 8π(1A1g) total energies are in hartree, while the energies of the remaining three states are adiabatic

excitation energies, in kJ/mol, relative to the 8π(1A1g) state.
bThe 9π(1B2u) adiabatic excitation energies are the differences between the 9π(1B2u) EOMCCSD and

8π(1A1g) CCSD energies.
cSingle-point energies at the corresponding CC/aug-cc-pVDZ optimized geometries.
dZPE corrections were computed at the UB3LYP/aug-cc-pVTZ level.
eSingle-point energies using CASSCF(16,16)/aug-cc-pVDZ optimized orbitals computed at the correspond-

ing CC/aug-cc-pVDZ optimized geometries. The equally weighted state averaging of the 8π(1A1g) and

10π(1A1g) states was employed.
f Taken from Ref. [329].
gOriginally assigned as the 8π(1A1g) and 9π(1B2u) energy difference in Ref. [329]. Later, in Ref. [330], it

was shown to be due to a vibrational progression of the 8π(1A1g) state.
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shown in Table 4.11 and the variation among the results of the single-point CR-CC(2,3),

CCSDt, and MRCI(Q) calculations at the UB3LYP, CASSCF(2,2), and CASSCF(16,16)

geometries, reported in Table 4.9, demonstrate that geometry relaxation may have a non-

negligible effect on the calculated energy differences between the low-lying electronic states

of C4O4 examined in this study. Thus, to be able to be more definitive about our re-

marks concerning the relative order of the three lowest-energy singlet states of C4O4 and

the gap between the triplet 9π(3B2u) and singlet 8π(1A1g) states, we carried out the addi-

tional geometry optimizations at the CCSD, CR-CC(2,3),A, and CR-CC(2,3),D levels for the

8π(1A1g), 9π(3B2u), and 10π(1A1g) states and the EOMCCSD level for the 9π(1B2u) state

using the 6-31G(d) and aug-cc-pVDZ basis sets. Given the excellent agreement between the

CR-CC(2,3) and CCSDt results for the 8π(1A1g), 9π(3B2u), and 10π(1A1g) states, where

the latter results are expected to be close to their full CCSDT counterparts, and the overall

good agreement between the EOMCCSD and MRCI(Q) calculations for the 9π(1B2u) state,

the CR-CC(2,3) and EOMCCSD optimizations performed in this work should provide us

with useful additional insights regarding the relative ordering of the 8π(1A1g), 9π(3B2u),

9π(1B2u), and 10π(1A1g) states of C4O4. The results of the above CC-level geometry op-

timizations, along with the UB3LYP, CASSCF(2,2), and CASSCF(16,16) geometries from

the previous study [327], are shown in Table 4.11.

As demonstrated in Table 4.11, our best CR-CC(2,3)/aug-cc-pVDZ geometries differ from

the previous reported UB3LYP/6-31G(d) and CASSCF/6-31G(d) results rather significantly,

demonstrating the need for an accurate and balanced description of dynamical and non-

dynamical correlation effects in highly-quasi-degenerate situations created by the four low-
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lying electronic states of C4O4. The UB3LYP approach cannot be regarded as a high-level

treatment of dynamical correlations, while having potential problems with the non-dynamical

ones. CASSCF neglects the non-dynamical correlations altogether. Based on our prior

experience with biradical situations, is expected that CR-CC(2,3),A and, especially, CR-

CC(2,3),D provide a more robust, balanced, and accurate treatment of the dynamical and

non-dynamical correlations characterizing the 8π(1A1g), 9π(3B2u), and 10π(1A1g) states of

C4O4. At the same time, as already alluded to above, we can expect that the EOMCCSD

treatment of the open-shell singlet 9π(1B2u) state is reasonably accurate too. As shown in

Table 4.11, the differences between the CR-CC(2,3),A and CR-CC(2,3),D geometries, on

the one hand, and the UB3LYP and CASSCF geometries, on the other hand, which are

reaching a 0.03− 0.05 Å level for the RC−O distance in the 9π(3B2u) and 10π(1A1g) states,

are substantial. They are larger than the effect of the basis set on the CCSD, EOMCCSD,

and CR-CC(2,3) optimizations and much larger than the differences among the various CC

results shown in Table 4.11. The CR-CC(2,3),A and CR-CC(2,3),D geometries are virtually

identical (to within 0.001 Å), independent of the basis set, and, interestingly, not much

different than those obtained with the lower-level CCSD approximation (differences on the

order of 0.01 Å or smaller if we use the same basis set). This supports one of our conclusions

from a different study [180], discussed in Section 3.2, that low-level CC theories are capable of

providing reasonable equilibrium geometries compared to their more expensive counterparts

with triples, such as CR-CC(2,3). Although for a more reliable description one should use

higher-level CC approaches, especially in cases like C4O4, where these small differences in

geometries can have a significant impact on the final results, it is encouraging to see that
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the CCSD geometries are not much different than their CR-CC(2,3) counterparts.

Based on the results in Tables 4.9 and 4.11, we have established that in order to obtain

a reliable description of the relative energetics of the 8π(1A1g), 9π(3B2u), 9π(1B2u), and

10π(1A1g) states of C4O4, we need to use basis sets of the aug-cc-pVDZ or better quality

and that one has to rely on methods of the CR-CC(2,3) type, i.e., CC methods with a

robust treatment of triple excitations, at least for the 8π(1A1g), 9π(3B2u), and 10π(1A1g)

states, or methods such as CCSDt and MRCI(Q) with large active orbital spaces. The only

state that can be treated at a lower EOMCCSD level is the 9π(1B2u) state, regarded as an

excitation from the 8π(1A1g) state, although even in this case it will at some point become

important to examine the role of triples. We have established that it may be reasonable to

use the CCSD optimized geometries as long as the basis set used in the calculations is of the

aug-cc-pVDZ (or higher) quality, but it is generally ill-advised to perform single-point CC

calculations at the geometries obtained with the low-level non-CC methods, such as UB3LYP

or CASSCF, without further analysis at the CC levels, since the CC and lower-level non-CC

geometry optimizations produce rather different bond lengths that may effect the resulting

energetics. It is generally safest to use the geometries optimized at the same CC theory level

as that employed in determining the correct relative energetics, since the variation among

the results of the single-point calculations is too large if different geometries are employed,

especially when one takes into account the small energy spacings among the low-lying states

of C4O4. Thus, we are now left with a task of examining the final set of questions, namely,

what are the adiabatic energy spacings between the 9π(3B2u), 8π(1A1g), 9π(1B2u), and

10π(1A1g) states of C4O4 if we use the high-level CR-CC(2,3) methods with the basis sets of
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the aug-cc-pVDZ or better quality and compute the adiabatic energy spacings using the cor-

responding CR-CC(2,3) geometries and how do our best CR-CC(2,3),X/aug-cc-pVTZ//CR-

CC(2,3),X/aug-cc-pVDZ (X = A, D) results for the adiabatic gaps involving the 9π(3B2u),

8π(1A1g), 9π(1B2u), and 10π(1A1g) states compare to the high-level MRCI(Q)(14,13) en-

ergetics using CASSCF(16,16)/aug-cc-pVDZ orbitals and reliable CC/aug-cc-pVDZ (rather

than unreliable CASSCF(16,16)/6-31G(d)) geometries. Last, but not least, we would like to

know how our best CR-CC(2,3),X/aug-cc-pVTZ//CR-CC(2,3),X/aug-cc-pVDZ (X = A, D)

results for the adiabatic 8π(1A1g) − 9π(3B2u) gap compare to the experimentally derived

results reported in Refs. [329] and [330].

All of this is examined in Table 4.12. It is clear from this table that our best CR-

CC(2,3),X/aug-cc-pVTZ//CR-CC(2,3),X/aug-cc-pVDZ (X = A, D) calculations, augmented

with the EOMCCSD/aug-cc-pVTZ//EOMCCSD/aug-cc-pVDZ calculations for the open-

shell singlet 9π(1B2u) state support the state ordering extrapolated from the preliminary re-

sults in Table 4.9, namely, 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g). In fact, the same

ordering is obtained if we use the aug-cc-pVDZ basis set in the energy calculations and geome-

try optimizations. It is only when we switch to the smaller 6-31G(d) basis set or calculate the

9π(3B2u) and 8π(1A1g) states using CCSD rather than CR-CC(2,3), when the 8π(1A1g) state

becomes the ground state. The MRCI(Q)(14,13)/aug-cc-pVDZ results using CASSCF(16,16)

references at the CCSD/aug-cc-pVDZ or CR-CC(2,3)/aug-cc-pVDZ geometries are remark-

ably consistent with our best CR-CC(2,3),X/aug-cc-pVTZ//CR-CC(2,3),X/aug-cc-pVDZ

(X = A, D) energetics, altering the CR-CC(2,3),X/aug-cc-pVDZ or CR-CC(2,3),X/aug-

cc-pVTZ energy spacings at the CR-CC(2,3),X/aug-cc-pVDZ geometries by less than 1
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kcal/mol when the 8π(1A1g) − 9π(3B2u) gap is examined. The agreement between the

MRCI(Q)(14,13)/aug-cc-pVDZ and the corresponding EOMCCSD/aug-cc-pVDZ or EOMCCSD/aug-

cc-pVTZ results at the EOMCCSD/aug-cc-pVDZ geometry for the 9π(1B2u) state and

the agreement between the MRCI(Q)(14,13)/aug-cc-pVDZ and the CR-CC(2,3),X/aug-cc-

pVDZ or CR-CC(2,3),X/aug-cc-pVTZ data at the CR-CC(2,3),X/aug-cc-pVDZ geometries

(X = A, D) for the 10π(1A1g) state is not as good as in the case of the 8π(1A1g)−9π(3B2u)

gap, but we can rather safely conclude that the 9π(1B2u) state is ∼ 20 − 30 kJ/mol above

the 8π(1A1g) state and that the 10π(1A1g) state is highest among the four states of C4O4

considered here, at about 30− 40 kJ/mol above the 8π(1A1g) state. It is quite possible that

the MRCI(Q) results would come even closer to our best CC results for the 9π(1B2u) and

10π(1A1g) states if we could use larger active spaces than (14,13) in designing the MRCI

wave functions. It is clear from Table 4.12 that none of the above results are affected by

ZPEs, which change the electronic energy spacings by tiny fractions of kJ/mol.

The results in Table 4.12 clearly indicate that the 9π(3B2u) state is located 7−11 kJ/mol

below the 8π(1A1g) state, in agreement with the experimentally derived values of about

6 − 7 kJ/mol reported in Refs. [329] and [330]. It is true that the formally somewhat less

complete CR-CC(2,3)-type approach, abbreviated as CR-CC(2,3),A, predicts a 8π(1A1g) −

9π(3B2u) gap of ∼ 7.5 kJ/mol, in better agreement with experiment than the ∼ 11.0 kJ/mol

obtained with the formally better CR-CC(2,3),D scheme, but we must keep in mind that

the difference between both CR-CC(2,3) methods is less than 1 kcal/mol, i.e., it is within

the accuracy these methods can offer. Although we do not want to claim that the CR-

CC(2,3),D estimate of the singlet-triplet gap in C4O4 is necessarily more accurate than the
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CR-CC(2,3),A, MRCI(Q)(14,13), or experimental data, it might be worthwhile to clarify

the observed remaining small discrepancies between theory and experiment by carrying out

additional NIPE experiments performed on the C4O4 system, using tricks such as measuring

spectra with the laser beams being parallel and perpendicularly polarized, so as to provide

more information about the origin of the ejected electrons and a more definitive interpretation

of the NIPE spectra, since it has already been demonstrated that issues, such as vibrational

progressions and Franck-Condon analyses, may complicate the process of extracting the

accurate 8π(1A1g) − 9π(3B2u) gap value [329, 330].

In summary, we carried out a thorough investigation of the relative ordering of the

four lowest-energy densely spaced states of the challenging C4O4 molecule, abbreviated as

9π(3B2u), 8π(1A1g), 9π(1B2u), and 10π(1A1g), examining the role of the basis set, nuclear

geometry relaxation, and level of ab initio molecular electronic structure theory employed

in the calculations, focusing on the higher-level CC methods and their MRCI-type counter-

part. We carried out CCSD, EOMCCSD, CR-CC(2,3),A, CR-CC(2,3),D, CCSDt(8,8), and

CCSDt(16,16) single-point energy calculations employing the UB3LYP/6-31G(d), CASSCF(2,2)/6-

31G(d), and CASSCF(16,16)/6-31G(d) geometries [327] using the 6-31G(d) and aug-cc-

pVxZ (x = D, T) basis sets, showing that the CR-CC(2,3) calculations are capable of ac-

curately reproducing the high-level CCSDt(16,16) results that are expected to be within

1−2 kJ/mol from their converged full CCSDT counterparts. We also demonstrated that the

geometry relaxation effects and basis set play a significant role in determining the state or-

dering and the corresponding energy spacings. We thus performed geometry optimizations

for all four states of C4O4 examined here at the CCSD/EOMCCSD, CR-CC(2,3),A, and
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CR-CC(2,3),D levels employing the 6-31G(d) and aug-cc-pVDZ basis sets. These geome-

tries were subsequently used to perform various single-point energy calculations using the

multireference MRCI(Q)(14,13)/aug-cc-pVDZ level of theory and the CCSD/EOMCCSD,

CR-CC(2,3),A, and CR-CC(2,3),D methods employing the larger aug-cc-pVTZ basis set. For

the CC/aug-cc-pVTZ//CC/aug-cc-pVDZ results, we computed an approximate vibrational

ZPE correction at the UB3LYP/aug-cc-pVTZ level of theory in order to make comparisons

with the available experimental data [329]. We demonstrated that one cannot rely on small

valence basis sets, such as 6-31G(d), and that basis sets of the aug-cc-pVDZ or better, e.g.,

aug-cc-pVTZ, quality must be employed to obtain a reasonable description. We also showed

that it is not safe to use low-level non-CC geometries, such as those resulting from DFT

and CASSCF calculations, in determining the adiabatic energy gaps between the calculated

states of C4O4. Our best CR-CC(2,3),X/aug-cc-pVTZ//CR-CC(2,3),X/aug-cc-pVDZ (X =

A, D) results, supported by the CCSDt/aug-cc-pVDZ and state-averaged MRCI(Q)/aug-cc-

pVDZ//CC/aug-cc-pVDZ calculations with large active spaces and the EOMCCSD/aug-cc-

pVTZ//EOMCCSD/aug-cc-pVDZ data for the open-shell singlet 9π(1B2u) state, show the

ground state of C4O4 to be the 9π(3B2u) triplet, in agreement with some of the previous

theoretical results [325–328, 331] and experiment [329, 330], with the 8π(1A1g) − 9π(3B2u)

singlet-triplet gap being about 7 − 11 kJ/mol. The latter result is in good agreement with

the experimental gap estimate of 6.27 ± 0.5 kJ/mol [329], especially if we take into account

the challenge of having to deal with a very small energy gap and difficult to balance strong

dynamical and nondynamical correlation effects. The state ordering of the four lowest-energy

states of C4O4 is, according to our best CR-CC(2,3), CCSDt, and MRCI(Q) calculations,
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9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g), though further theoretical work may need

to determine the more precise location of the 9π(1B2u) state. The EOMCCSDt, DEA-

EOMCC(4p-2h), and DIP-EOMCC(4h-2p) approaches developed by our group or the newer

and very promising CC(P ; Q) methodology [68, 150, 151] combining the active-space and

CR-CC/CR-EOMCC approaches, developed by our group as well, might be good candidates

for this purpose and will be part of future investigations.
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Chapter 5

Algorithmic advances

In this chapter, the development and application of different algorithms for general use

(numerical derivatives) and specific use with the CC/EOMCC routines are discussed. We

also discuss the unrestricted implementation of the CR-CC(2,3) methodology, along with

the relevant benchmarks.

5.1 Parallel numerical derivatives

As shown in the previous chapters, modern advances in ab initio electronic structure meth-

ods, particularly those based on the CC and EOMCC theories, allow for an accurate treat-

ment and characterization of complex chemical situations, including highly-correlated elec-

tronic states, photochemistry, and catalysis. However, one often only uses the high-level

CC/EOMCC approaches to verify or benchmark the energetics using the geometries and

other molecular properties determined using lower-level approaches, such as DFT, MP2, or

CASSCF, as done in some earlier sections. This is not always sufficient, especially when

faced with more challenging molecular problems, such as the four lowest-energy states of

C4O4 examined in Section 4.4, where determining the energetic ordering of the states re-

quired optimizing the geometries using higher-level CC approaches, such as CR-CC(2,3).

While analytic gradients and higher-order derivatives would be desirable for the various CC
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methods [80, 366–373], such as CR-CC(2,3), and other high-level EOMCC approximations

including those in the electron excitation, IP-EOMCC, and EA-EOMCC hierarchies. Their

development is often accompanied by its own challenges, especially if one would like to use

them in applications to larger chemical species. For example, to determine the analytic

gradient of CCSD(T), one has to first compute the T1 and T2 clusters at the current un-

perturbed geometry and, once those have been determined, calculate the energy gradient

of CCSD(T), requiring the wall time of approximately two single-point CCSD(T) calcula-

tions [369, 370]. These two sequential steps cannot be decoupled and as such are a limiting

step in the use of CC/EOMCC analytic gradients. This becomes even more complex in the

case of higher-order CC/EOMCC derivatives (cf., e.g., Ref. [374] and references therein for

more details). Parallelization of CC/EOMCC analytic derivative codes would help, but this

is a lot more involved than in the case of single-point calculations [375].

One way to circumvent some of these issues is through the use of numerical differentiation

at the CC/EOMCC levels of theory. Original implementations of numerical gradients for use

with high-level CC methods was plagued by having to run the calculations in serial, severely

limiting their use and application [376, 377]. With the advent of modern massively-parallel

computer architectures this is less of a problem, particularly, since the algorithms to com-

pute numerical derivatives are trivially parallelizable. Yet, in spite of these advances, many

of the available quantum chemistry packages still only perform numerical differentiations

sequentially making their use costly. For example, to compute a single numerical gradient

for a molecular system containing M atoms one needs 6M +1 single-point energy evaluations
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when central finite difference, namely,

∂f(x1, . . . , xi, . . . , xn)

∂xi
=

f(x1, . . . , xi + 1
2hxi , . . . , xn) − f(x1, . . . , xi − 1

2hxi , . . . , xn)

hxi

,

(5.1)

where hxi is the spacing around the variable xi and f(x1, . . . , xn) is the function to be differ-

entiated (energy in our case) is employed. For numerical second and higher-order derivatives

the situation is even worse, since in the former case 18M2 + 1 single-point calculations are

needed (assuming the symmetry of the Hessian has been exploited) as in the expressions

below

∂2f(x1, . . . , xi, . . . , xj , . . . , xn)

∂xj∂xi
=

f(x1, . . . , xi + 1
2hxi , . . . , xj + 1

2hxj , . . . , xn)

hxjhxi

−

f(x1, . . . , xi + 1
2hxi , . . . , xj − 1

2hxj , . . . , xn)

hxjhxi

−

f(x1, . . . , xi − 1
2hxi , . . . , xj + 1

2hxj , . . . , xn)

hxjhxi

+

f(x1, . . . , xi − 1
2hxi , . . . , xj − 1

2hxj , . . . , xn)

hxjhxi

, (i 6= j),

(5.2)

and

∂2f(x1, . . . , xi, . . . , xn)

∂x2
i

=
f(x1, . . . , xi + hxi , . . . , xn)

h2
xi

−

2f(x1, . . . , xi, . . . , xn)

h2
xi

+

f(x1, . . . , xi − hxi , . . . , xn)

h2
xi

, (i = j).

(5.3)

Elementary observations that each of the single-point energy calculations are independent
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of one another and that modern computer architectures allow for large-scale paralleliza-

tion across many nodes with multiple cores implies that even for complex chemical systems

numerical gradients and higher-order derivatives can be computed in the wall time of one

single-point energy calculation. There clearly is a need for generally applicable numerical

derivative routines, which can be used to determine nuclear geometries and other molecular

properties at any level of theory, especially for high-level approaches for which even gradi-

ents, let alone second- and higher-order derivatives, are very hard to develop and implement.

One such program that can do just this is the CIOpt suite [235,378], originally developed by

Professors Benjamin G. Levine and Todd J. Martinez to search for minimum-energy cross-

ings without having to compute the derivative couplings, which has been expanded in recent

years to evaluate other molecular properties numerically and in parallel, benefitting from the

multinode, multicore architectures, where one can run each energy point needed to determine

the derivative on a different node, using some or all cores in the node to run this energy cal-

culation in parallel. Our goal has been to interface the CIOpt code to various CC/EOMCC

methods, especially those developed by our group, and to extend the CIOpt parallel gradi-

ents to second energy derivatives, so that we can determine harmonic vibrational frequencies

through parallel numerical differentiation.

5.1.1 Gradients for geometry optimizations

Using the embarrassingly parallel nature of numerical derivative algorithms as implemented

in CIOpt, we optimized the geometries of a variety of molecules that had originally been op-

timized using serial numerical gradients available in GAMESS with the CCSD, CR-CC(2,3),
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EOMCCSD, EA-EOMCC, and IP-EOMCC approaches as discussed in previous sections of

this thesis, using several different architectures to test the scalability of these routines. The

results and timings of these calculations along with the larger scale optimizations discussed

in Section 5.1.3 below are shown in Table 5.1 and Table 5.3 in Section 5.1.3. As can be seen

from these tables, the numerical gradient routines as implemented in CIOpt show almost

perfect scalability, at least for problems up to the same size as those we were able to test.

For example, when azulene, which has 18 degrees of freedom when the C2v symmetry is em-

ployed, was optimized using 37 nodes (the total number of single points needed to compute

one gradient is 2∗18 + 1 = 37) a speedup of ∼ 35 was observed. While this is not quite

a perfect speedup, where the factor would be exactly 37, this is very encouraging showing

very little loss in efficiency as larger numbers of cores are employed to compute a numerical

gradient. In all of the optimizations reported in previous sections of this thesis, we used the

BFGS algorithm [379] as included in the GAMESS and CIOpt programs, with the latter

implementation discussed below.
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Table 5.1: Wall time (hours) comparison of parallel and serial numerical geometry optimizations of several molecules.

Molecular Cores/ Time/Gradient

System Symmetry Method Basis Degrees of FreedomNodes Node Parallel Serial Speedup

C2N
a C2v EA-EOMCCSDt{4} cc-pVQZ 2 1 5 1.49 5.68 3.81

C2N
a C2v EA-EOMCCSD(3p-2h) cc-pVTZ 2 1 5 8.47 42.37 5.00

Azulenea C2v CR-CC(2,3),A cc-pVDZ 18 37 1 55.27 1916.53 34.7

Au8
b S1 D2h CCSD(T) SBKJC(1f) 4 9 8 9.57 - -

Au8
b S1 D4h CCSD(T) SBKJC(1f) 2 5 8 9.57 - -

Au8
b S3 Td CCSD(T) SBKJC(1f) 4 9 8 10.39 - -

Au8
a S4 Cs CCSD(T) SBKJC(1f) 7 2 24, 16c 12.84g - -

Au8
a S6 D2d CCSD(T) SBKJC(1f) 4 2 24, 16c 13.20 - -

Au8
a S1 D4h CCSD(T) cc-pVDZ-PP 2 2 27,18d 17.55 - -

Au8
a S3 Td CCSD(T) cc-pVDZ-PP 4 2 30,24e 26.82 - -

Au8
a S4 Cs CCSD(T) cc-pVDZ-PP 7 2 32,28f 41.90 - -

Au8
a S6 D2d CCSD(T) cc-pVDZ-PP 4 2 30,24e 28.90 - -

aThis calculation was run on nodes consisting of four eight-core Intel Xeon X7560s at 2.26 GHz with 256 GB of RAM.
bThis calculation was run on nodes consisting of two four-core Intel Xeon E5620s (Westmere family) at 2.4 GHz with 24 GB of RAM at

Michigan State University’s High Performance Computing Center. These nodes were about 30-50% faster than the other nodes used to run

computations.
cEach single-point CCSD(T) calculation was run using 8 cores.
dEach single-point CCSD(T) calculation was run using 9 cores.
eEach single-point CCSD(T) calculation was run using 6 cores.
f Each single-point CCSD(T) calculation was run using 4 cores.
gEach gradient was computed in three groups of five single-point CCSD(T) calculations. The time shown is the average time is took to run

each of the three groups to compute a gradient, for all optimization cycles.



As mentioned above, numerical gradients, or first derivatives, can be used for determining

molecular properties, such as equilibrium geometries. Pulay was the first to demonstrate

their efficient use in applications to chemical systems [380] and since then much work has

been done to progress the field. There are several approaches which seek to avoid the

explicit computation of the Hessian [381] (and in some cases even the gradient) in the

optimization of a function (energy in our considerations in this thesis) including the conjugate

gradient approach [382], Nelder-Mead or downhill simplex method [383], or Quasi-Newton

approximations. In the latter approach, the explicit computation of the Hessian is replaced

by recurring at each optimization cycle an approximate Hessian, allowing the curvature of

the problem to be exploited implicitly.

Among the various Quasi-Newton algorithms which have been developed one of the more

popular is the BFGS method [384–388], named for its discoverers Profs. C.G. Broyden, R.

Fletcher, D. Goldfarb, and D.F Shanno. The BFGS algorithm employing numerical gradients

is outlined as follows:

1. Given the starting point, or geometry in our case, x0, convergence tolerance ǫ > 0,

and an approximate inverse Hessian H0 compute the the gradient ▽fk of the function

being minimized f , where k is the number of the current optimization cycle.

2. If || ▽ fk|| > ǫ compute the search direction dk = −Hk ▽ fk and the new set of

parameters xk+1 = xk + αkdk where αk is a suitably chosen parameter with either a

fixed or variable value, depending on the implementation and can be determined from,

for example, a line-search or trust-region calculation as the minimizer of f(xk +αkdk).

3. Update the approximate inverse Hessian, Hk using the following, or one of its other
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equivalent variations

Hk+1 = (1 − ρkskyT
k )Hk(1 − ρkyksT

k ) + ρsksT
k (5.4)

where sk = xk+1 − xk, yk = ▽fk+1 −▽fk and ρ = (yT
k sk)−1.

4. Iterate until || ▽ fk|| < ǫ.

One of the reasons for its popularity is that it preserves the symmetric and (semi) positive

definite properties of Hk (e.g., xT Hkx > 0, ∀x ∈ ℜn, since Hk is symmetric), such that its

eigenvalues remain positive and real throughout the optimization process. The symmetry

and positive definiteness are preserved through the use of a rank-two update, Eq. (5.4).

A simpler rank-one matrix update to Hk, which maintains its symmetry though not

necessarily its positive definiteness, was proposed in Ref. [389–391] called the symmetric rank-

one (SR1) approach. It has been shown that in many cases this version of the SR1 algorithm

outperforms the BFGS method [389–392] and that, unlike with BFGS, the sequence of

matrices generated by the SR1 process Hk converge to the true Hessian H∗ under certain

conditions [391]. In spite of the many examples showing that the SR1 algorithm rarely

violates the positive definiteness of the Hessian with its update, it has failed to garner

as much use or attention as the BFGS approach. In geometry optimizations of chemical

systems there has appeared one study, in which the SR1 approach was employed [393] using

the Hartree-Fock level of theory. Particularly for the molecules with a larger number of

degrees of freedom, it was shown that the SR1 method can drastically reduce the number

of optimization cycles required to locate a stationary point corresponding to a minimum on
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the potential energy surface of the molecule. There has been no followup by the author of

Ref. [393] and no one else has pursued this topic in terms of geometry optimizations for

chemical species and systems.

While the originally proposed SR1 algorithm [389–391] that interests us in this thesis

work does not preserve the positive definite nature of Hk it has been shown that deviations

from positive definiteness in the approximate update to Hk are related to the condition

number of the matrix and positive definiteness can therefore be restored using an optimal

scaling factor [394,395]. Using this idea, the authors of Ref. [396] proposed what they called

a scaled “memoryless” SR1 method, though it is actually a limited-memory (LM) algorithm

as shown below, in which the positive definite nature of Hk is preserved throughout the

optimization. In order to make their SR1 approach a LM method they used the simple trick

of replacing the inverse Hessian Hk by the identity matrix 1 multiplied by an appropriate

scaling factor γk, which results in the original update

Hk+1 = Hk +
(sk − Hkyk)(sk − Hkyk)T

yT
k (sk − Hkyk)

(5.5)

simplifying to

Hk+1 = γk1 +
(sk − γkyk)(sk − γkyk)T

yT
k (sk − γkyk)

(5.6)

where

γk =
sT
k sk

sT
k yk

−





(

sT
k sk

sT
k yk

)2

− sT
k sk

yT
k yk





1/2

(5.7)

and instead of having to store the inverse Hessian matrix of size n
(n+1)

2 one only need store
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Table 5.2: Comparison of the LM-SR1 and BFGS quasi-Newton algorithms for CR-
CC(2,3),D/TZVP geometry optimizations.a

Optimization Cycles

Molecule (symmetry) DoFb LM-SR1 BFGS

Benzene (D6h) 2 9 7

Cyclopentadiene (C2v) 7 10 12

Acetone (C2v) 9 7 14

Formamide (Cs) 12 3 15

E-Butadiene (C2h) 10 12 24

all-E-Hexatriene (C2h) 14 20 50 <

Pyridine (C2v) 11 8 41

Thymine (Cs) 29 6 28

aAs many cores as single-point energies needed to compute the numerical gradient were used (2 DoF + 1).
bNumber of degrees of freedom (DoF) optimized

the several vectors each of size n. The step direction dk = −Hk▽fk = −Hkgk then becomes

dk = −γk−1gk + γk−1

(

sT
k−1gk − γk−1y

T
k−1gk

yT
k−1sk−1 − γk−1y

T
k−1yk−1

)

yk−1

−
(

sT
k−1gk − γk−1y

T
k−1gk

yT
k−1sk−1 − γk−1y

T
k−1yk−1

)

sk−1.

(5.8)

Using the same general outline as for the BFGS algorithm above with the Hk and dk updates

being replaced by those in Eqs. (5.6) and (5.8) the authors of Ref. [396] were able to show

that their LM-SR1 algorithm was able to perform at least as well, if not better, than the

standard BFGS and LM-BFGS [397] methods.

Encouraged by the previous study [393] and these improvements [396] to the SR1 al-

gorithm, the LM-SR1 and a version of the LM-BFGS approaches were implemented in the

CIOpt program. The LM-SR1 and BFGS algorithm from Ref. [379] were used in conjunc-
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tion with the parallel numerical gradient routine also available in CIOpt and interfaced

with GAMESS to optimize the geometry of 8 molecules of varying size, namely, benzene,

cyclopentadiene, acetone, formamide, E-butadiene, all-E-hexatriene, pyridine, and the nucle-

obase thymine at the CR-CC(2,3),D level of theory using the TZVP basis [398]. The results

of these equilibrium geometry optimizations are shown in Table 5.2. The gradients were

converged to 10−4 and the difference in energy for the SR1 and BFGS optimized structures

were less than 10−5 in all cases. For benzene where we employed the D6h spatial symme-

try and only two degrees of freedom (DoF) were optimized the BFGS approach reaches the

minimum in fewer optimization cycles than the LM-SR1 method. When the number of DoF

becomes larger, as in the case of thymine, we see a more pronounced difference between

the two algorithms. Probably the more impressive case is that of all-E-hexatriene where the

LM-SR1 approach takes 20 optimization cycles to reach a minimum, while the BFGS method

took more than 50 for the same system. The nucleobase thymine, which has a large number

of DoF (29), particularly when optimizing the geometry with such high-level approaches

as CR-CC(2,3), where our LM-SR1 algorithm performs quite well, reaching the minimum

energy nuclear configuration in just six cycles whereas the equivalent BFGS optimization

took 28 cycles. Clearly more studies need to be carried out, but these initial results are quite

encouraging. The LM-SR1 algorithm has also been used on a couple of test cases, namely

ammonia and ethylene, using the δ-CR-EOMCC(2,3),D and CASSCF approaches, respec-

tively, to evaluate its performance in locating minimum energy crossings between different

electronic states of a given molecule with encouraging results, which will be followed up in

future studies.
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5.1.2 Hessians for harmonic vibrational analyses

As mentioned above, higher-order numerical derivatives beyond gradients can become very

expensive, especially when run in serial. On the other hand, as seen by the lack of an-

alytic Hessians and higher-order analytic derivatives for high-level ab initio CC/EOMCC

approaches, efficient parallel numerical second and higher derivatives for use with any level

of theory has the potential to open new avenues for predicting and interpreting various

experimental results. As part of the work done for this dissertation, an efficient parallel

numerical second derivative routine for computing harmonic vibrational frequencies was de-

veloped and implemented in the CIOpt package. In implementing the numerical second

derivative algorithm we made use of the fact that the Hessian is a symmetric matrix whose

entries are

Hij =

(

∂E

∂xi∂xj

)

=

(

∂E

∂xj∂xi

)

, (5.9)

where E is the energy and xi and xj represent the degrees of freedom. By using this

symmetry we need only compute M
(M+1)

2 entries rather than the full M2 Hessian H (note:

we are using H to represent the Hessian whereas in the previous section we used it to denote

the inverse Hessian; in Section 5.1 this is done in keeping with the standard notation used

in numerical analysis where the Hessian itself is represented by B. In this section we do

not use B for the Hessian, but rather H so as to avoid confusion with Wilson’s B-matrix

discussed below). To parallelize this portion of the algorithm it was decided that flattening

the two-dimensional Hessian to one dimension would be the most efficient as it would allow

for use of the MPI routines already available in CIOpt with minimal modification. To flatten

the entire H matrix, which is an M ×M matrix, one uses the trivial formula where the two-
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index element Hij is mapped to one index with k = j − 1 + (i − 1)M , where i denotes the

row and j the column of H , where Hij resides. However, where we are only interested in

those elements along and above/below the diagonal the mapping formula has to be slightly

modified for i > 1 such that

k = j + (i − 1)M − i
(i + 1)

2
, (5.10)

where the last term on the right-hand side accounts for the fact that we are subtracting

the lower-diagonal indices of an i × i sub-matrix. Using this same idea, the higher-order

derivatives, such as the third and fourth derivatives, can be more easily parallelized as well.

For example, the three indices of the third derivative i, j, and k can be flattened into a unique

index via

ℓ = k + (j − 1)M − j
(j − 1)

2
+

1

2

i
∑

α=2

[M(M − 2α + 3) + (α − 1)(α − 2)], (5.11)

and for fourth derivatives we have

m = ℓ + (k − 1)M + (j − 1)M2 + (i − 1)M3 −
M
∑

β=M−i+2

i
∑

α=1

(α − 1)β
(β + 1)

2
. (5.12)

These will be useful for future work as the third and fourth derivatives are needed to compute

various spectroscopic properties beyond the Harmonic approximation.

For each of the diagonal elements of H we need to compute two unique single-point
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energies

∂2E(x1, . . . , xi, . . . , xn)

∂x2
i

=
E(x1, . . . , xi + hxi , . . . , xn)

h2
xi

−

2E(x1, . . . , xi, . . . , xn)

h2
xi

+

E(x1, . . . , xi − hxi , . . . , xn)

h2
xi

, (i = j)

(5.13)

as well as the energy at the unperturbed/equilibrium geometry. For each of the off-diagonal

elements we need four unique single-point energies

∂2E(x1, . . . , xi, . . . , xj , . . . , xn)

∂xj∂xi
=

E(x1, . . . , xi + 1
2hxi , . . . , xj + 1

2hxj , . . . , xn)

hxjhxi

−

E(x1, . . . , xi + 1
2hxi , . . . , xj − 1

2hxj , . . . , xn)

hxj
hxi

−

E(x1, . . . , xi − 1
2hxi , . . . , xj + 1

2hxj , . . . , xn)

hxjhxi

+

E(x1, . . . , xi − 1
2hxi , . . . , xj − 1

2hxj , . . . , xn)

hxjhxi

, (i 6= j).

(5.14)

Thus there are a total of 2M + 4M
(M−1)

2 + 1 = 2M2 + 1 single-points needed to evaluate

the Hessian H numerically. When discussing the numerical derivatives, particularly second

and higher, it must be remembered that these are meant to be run in parallel and not

sequentially, since, for example, if we consider a triatomic system, which has 9 degrees of

freedom in the three dimensional Cartesian space, then a total of 162 single-point energies

need to be computed. It is well known that for nonlinear (linear) molecules there are only
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M − 6 (M − 5) degrees of freedom that need to be considered for harmonic vibrational

frequency analysis, we can see that this translates into, for the case of a triatomic molecule,

only 18 (32) single-point energy computations. There are several approaches for reducing

the DoF of a molecular system to the minimal number [399–406], all of which make use

of a variant of Wilson’s B-matrix [407]. Implementing a routine that generates a form of

Wilson’s B-matrix for efficient parallel numerical second derivatives has been started and

will be finished as part of future work.

To evaluate the harmonic vibrational frequencies once the numerical Hessian has been

computed, following Ref. [407], the Hessian is mass weighted by multiplying each element

Hij by 1/(mimj)1/2 where mi is the mass of atom i. The mass-weighted Hessian is then

diagonalized producing the set of normal modes Qα and mass-weighted force-constants

κα (α = 1, . . . , M), where the latter are used to compute the harmonic vibrational fre-

quencies using

να =
1

2π

√
κα. (5.15)

An algorithm to determine the Abelian symmetry of the vibrational frequencies was im-

plemented, where the irreducible representation to which the normal mode belonged was

determined using [408]

PqQα =
ℓq
h

∑

R

χq(R)PRQα, (5.16)

where Pq are the projection operators of the point group representation, ℓq is the dimension

of the irreducible representation of the group, h is the dimension of the point group, χq(R)

are the characters for a given irreducible representation q of the group, R are the opera-

tions of the point group, and PR are the operators/matrix representations corresponding
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to R. If the above sum is non-zero then the Qα normal mode belongs to that irreducible

representation. This formula as written only applies to Abelian point groups. For non-

Abelian groups the situation becomes much more complicated whereas one can compute the

harmonic vibrational frequencies using an Abelian symmetry group and then using correla-

tion tables determine the symmetry of the normal mode frequencies in the higher-symmetry

non-Abelian group.

The above algorithms have been implemented in the CIOpt program package and have

been tested on a small number of test cases showing promising results, though more studies

need to be carried out with more examples demonstrating their utility.

5.1.3 Application to the low-energy isomers of Au8

The discovery that small (2nm ≤ diameter ≤ 4nm) gold particles Aun can selectively cat-

alyze chemical reactions, as already discussed in Sections 3.3 and 4.3, such as the epoxi-

dation of propene [409], has inspired a lot of activity among experimentalists and theorists

toward understanding the origins of this catalytic behavior. Several factors, including surface

roughening, may play an important role in the catalytic activity of Aun clusters, since non-

planarity of the clusters localizes the electron density and promotes reactivity [410]. Because

of the importance of surface roughening in the catalytic activity of gold clusters, it is essential

to determine the number of gold atoms in the Aun particle for which the planar–to–non-

planar turnover occurs and the non-planar isomers begin to dominate as the lowest-energy

species. In the earlier study by Olsen et al. [214], calculations using the CCSD(T) approach

suggested that the most stable structures of Aun were planar for n = 6 and non-planar for
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Figure 5.1: The S1, S3, S4, and S6 isomers of Au8 examined in this study, along with the
selected geometrical parameters included in Table 5.4.

n = 8, in contrast with DFT calculations, which typically predict Au8 to favor the planar

configuration (cf., e.g., Refs. [204–207], and references therein; see, also, the introduction to

Ref. [214] for additional remarks).

When the initial CCSD(T) calculations for Au8 were reported [214], issues, such as

the use of larger basis sets, geometry relaxation, and the numbers of correlated electrons

used in CC calculations could not be addressed due to prohibitive computational costs.

Since then several other CC, MP2, and DFT calculations have appeared in the literature

[215–217, 411–414], usually in disagreement with the findings in Ref. [214], including the

CCSD(T) calculations with larger basis sets and some core correlations that lean toward the

conclusion that the lowest-energy Au8 isomer should indeed be planar [215–217].

However, the topic still remains open, since all CC calculations for Au8 to date rely

on low-order methods, such as MP2 or DFT, which do not necessarily provide the correct

energetics, to determine nuclear geometries. There also are indications that clusters with 7 or

more gold atoms may be non-planar [415]. In view of all this and as part of this thesis work we
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performed new CCSD(T) calculations for Au8 employing larger basis sets than those used in

the initial calculations [214] and examining the role of core-valence (CV) correlations, as has

been done in Refs. [215–217], and addressing the issue of geometry relaxation at the same

time by reoptimizing the low-energy structures of the Au8 particle using CCSD(T) [183].

Clearly, the issue of geometry relaxation is a challenging one at the CC theory level due to

high computational costs, but, as demonstrated in this dissertation, we can take advantage

of the efficient parallel numerical gradients for geometry optimizations, which can work with

any CC method, including the parallel implementation of CCSD(T) utilized in this study.

As part of the work for the completion of this dissertation, we undertook a systematic

investigation of the role of geometry optimization, basis set, and semi-core (i.e., CV) electron

correlations in the CCSD(T) calculations of the relative energetics of a few lowest-energy

Au8 isomers in the hope of providing a more definitive answer as to whether or not the most

stable structure of Au8 might be non-planar. We focus on the four lowest-energy isomers

of Au8, shown in Fig. 5.1, as predicted in Ref. [214] by the small basis set MP2 geometry

optimizations and CCSD(T) single-point calculations, reexamined later in Ref. [217]. For

each of the four structures, two sets of geometry optimizations, correlating in each case the

5d106s1 valence electrons, were carried out. In the first set, further elaborated on below, we

used the parallel analytic gradients of MP2, available in the GAMESS package [190, 191].

In the second set of geometry optimizations, further discussed below as well, we used the

dual-level parallelism applied to the numerical CCSD(T) derivatives, in which the coarse-

grain finite-difference model available in the CIOpt program suite [235, 378], utilizing as

many nodes as the number of energies needed to determine the gradient, was combined with

182



the fine-grain single-point CCSD(T) calculations on each node. In running the required

single-point CCSD(T) computations, we used the highly scalable parallel CCSD(T) codes,

available in GAMESS and developed in Refs. [416, 417], which are based on the CCSD(T)

algorithm from Ref. [238]. By combining the embarrassingly parallel finite-difference model

with the highly scalable CCSD(T) approach, as describe above, we were able to determine a

single energy gradient when employing the CCSD(T)/SBKJC(f) approach in about 9 hours

when running on nine nodes each with 8 cores (cf. Table 5.3), while at the CCSD(T)/cc-

pVDZ-PP level in ∼ 41 hrs, when 4 cores per node were used, or ∼ 18 hrs, when 9 cores

were utilized in each of the required single-point calculations. The difference in timings

between the two bases reflects on the difference in their size and quality with the larger

cc-pVDZ-PP being the better of the two, as shown in the results below. The numbers of

the single-point calculations needed to determine a single energy gradient were 5 for the

D4h-symmetric S1 structure (9 when run as a D2h configuration), 9 for the Td-symmetric

S3 and D2d-symmetric S6 isomers, and 15 for the Cs-symmetric S4 configuration. By using

the previously converged MP2 geometries, we typically needed 5–10 CCSD(T) optimization

cycles to converge the gradient to 10−4.

We started our examination of the MP2 and CCSD(T) energetics using the MP2-optimized

geometries. The small basis set MP2 geometry optimizations using the standard SBKJC ba-

sis and the associated scalar relativistic ECP, which was optimized for gold [418], augmented

by a single set of f functions (exponent = 0.89), referred to as SBKJC(1f), were carried out

in Ref. [214]. The resulting CCSD(T)/SBKJC(1f)//MP2/SBKJC(1f) energies have led to

the aforementioned conflicting findings about the ordering of the various structures of Au8.
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Table 5.3: Details of the wall times (hours) characterizing the CCSD(T)/SBKJC(1f) parallel
numerical optimization of the Au8 S1 isomer employing the D2h symmetry (4 degrees of
freedom), performed using nine 8-core nodesa .

Node Number

Optimization Cycle 0 1 2 3 4 5 6 7 8 Average

1 9.67 9.60 9.50 9.52 9.80 9.82 9.82 9.52 9.48 9.64
2 9.43 9.53 9.42 9.30 9.42 9.58 9.85 9.43 9.90 9.54
3 9.80 9.63 9.53 9.60 9.80 9.62 10.02 9.80 9.57 9.71
4 9.87 9.77 9.67 9.72 9.70 9.65 10.10 9.67 9.58 9.75
5 9.42 9.48 9.48 9.48 9.42 9.58 9.83 9.48 9.43 9.51
6 9.37 9.63 9.37 9.35 9.37 9.38 9.68 9.42 9.40 9.44
7 9.35 9.40 9.37 9.37 9.37 9.40 9.70 9.40 9.35 9.41
8 9.40 9.72 9.45 9.43 9.43 9.50 10.00 9.62 9.35 9.54

Average 9.54 9.60 9.47 9.47 9.54 9.57 9.88 9.54 9.51 9.57
aThis calculation was run on nodes consisting of two four-core Intel Xeon E5620s (Westmere family) at 2.4

GHz with 24 GB of RAM at Michigan State University’s High Performance Computing Center.

Thus, in order to examine the role of the basis set used to determine the MP2 geometries,

we reoptimized all four Au8 structures shown in Fig. 5.1 using the MP2 method and the

cc-pVDZ-PP basis [229] combined with the scalar relativistic ECP created for use with the

correlation-consistent basis sets, which was originally developed in Ref. [230] and later mod-

ified to include the effects of the h functions in the pseudopotential in Ref. [231]. Using

these improved MP2/cc-pVDZ-PP geometries, single-point CCSD(T) calculations were car-

ried out exploiting the cc-pVxZ-PP (x = D,T) basis sets, combined once again with the

ECP of Refs. [230, 231], correlating the same number of electrons corresponding to the 5d

and 6s shells of the gold atoms as in the geometry optimizations. To investigate the role

of the CV correlation effects, the more extensive CCSD(T)/cc-pVxZ-PP+CV (x = D,T)

calculations correlating the 5s25p6 semi-core and 5d106s1 valence electrons were performed

as well. Throughout this section and as done in other portions of this dissertation, we use

the notation in which the cc-pVxZ-PP acronym refers to the calculations combining the
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cc-pVxZ-PP basis set [229] and the ECP of Refs. [230, 231]. If the 5s25p6 electrons are

correlated in addition to the valence 5d106s1 electrons, the corresponding computation is

abbreviated (following Ref. [217]) as cc-pVxZ-PP+CV.

Having examined the role of the basis set on the MP2 geometries, we went to the next

step in which we performed the CCSD(T) geometry optimizations employing the SBKJC(1f)

and cc-pVDZ-PP bases, and the accompanying ECPs. In this way, we could examine the

significance of higher-order correlation effects on the calculated geometries and the effect of

the basis set on the geometry optimizations at the CCSD(T) level of theory. Single-point

CCSD(T)/cc-pVxZ-PP and CCSD(T)/cc-pVxZ-PP+CV (x = D,T) calculations, using, once

again, the relativistic ECPs from Refs. [230,231], were then carried out to determine the final

relative energetics of the four Au8 structures shown in Fig. 5.1. We have not considered

the effects of relativity on the calculated geometries and energies beyond those captured by

ECPs, such as spin-orbit coupling, since it is well established that the spin-orbit coupling

does not alter the relative stability of Aun clusters with n ≤ 20, while having negligible effect

on their geometries [419] (see, also, Refs. [215, 411,412]).
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Table 5.4: Bond lengths (in Å) of the S1, S3, S4, and S6 isomers of Au8 obtained from geometry optimizations using
MP2, CCSD(T), and some representative DFT approaches (see Fig. 5.1 for the meaning of the geometrical parameters).

S1 S3 S4 S6

Method Basis r1 r2 r1 r2 r1 r2 r3 r4 r5 r1 r2 r3 r4

MP2a SBKJC(1f) 2.697 2.592 2.804 2.672 2.704 2.654 2.686 2.758 2.612 2.655 2.703 2.762 2.779

CCSD(T)a SBKJC(1f) 2.771 2.643 2.865 2.743 2.766 2.711 2.755 2.832 2.674 2.714 2.772 2.819 2.908

MP2a cc-pVDZ-PP 2.707 2.588 2.885 2.677 2.704 2.672 2.693 2.766 2.612 2.664 2.713 2.778 2.810

CCSD(T)a cc-pVDZ-PP 2.782 2.643 2.896 2.751 2.768 2.723 2.766 2.850 2.676 2.728 2.783 2.829 2.964

LC-ωPBEb cc-pVDZ-PP 2.759 2.626

ωB97Xb cc-pVDZ-PP 2.817 2.663

TPSSb cc-pVDZ-PP 2.758 2.633

CAM-B3LYPb cc-pVDZ-PP 2.806 2.648

B3LYPb cc-pVDZ-PP 2.830 2.672

aThis work. Although the MP2/SBKJC(1f) geometries were originally obtained in Ref. [214], they were recalculated in Ref. [183] as part of

the work done for this dissertation.
bTaken from Ref. [219].



The MP2 and CCSD(T) geometries optimized in this study, along with selected DFT

results for the S1 isomer taken from Ref. [219], are presented in Table 5.4. For the MP2

results, the size of the basis has usually a slight effect on the calculated geometries, with

the majority of the differences between the MP2/SBKJC(1f) and MP2/cc-pVDZ-PP opti-

mizations falling into the ∼ 0.01 Å range, and with the largest differences being 0.031 and

0.081 Å. Similar remarks apply to the CCSD(T) geometries obtained using the two different

basis sets exploited here, with the average and maximum differences being 0.014 and 0.056

Å, respectively. Comparing the MP2 and CCSD(T) geometries within a given basis, we see

that for the SBKJC(1f) results, the differences range from 0.051 to 0.129 Å, for 0.069 Å on

average, while for the cc-pVDZ-PP basis they are as large as 0.154 Å, again 0.069 Å on aver-

age. Generally, the CCSD(T) calculations make the Au–Au bonds in Au8 longer. This might

be a consequence of MP2 overbinding the Au8 cluster, which has some characteristics of the

weakly bound systems, including the potentially important role of non-additive dispersion

forces [205, 420–422]. Indeed, the binding energy per gold atom obtained in the MP2/cc-

pVTZ-PP+CV//MP2/cc-pVDZ-PP calculations, averaged over the four structures of Au8

examined in this work, is 57.43 kcal/mol, as opposed to 45.26 kcal/mol obtained in the cor-

responding CCSD(T)/cc-pVTZ-PP+CV//MP2/cc-pVDZ-PP computations (45.16 kcal/mol

when the CCSD(T)/cc-pVDZ-PP geometries are used). However, as shown below, these dif-

ferences between the MP2 and CCSD(T) geometries, although significant in some cases, are

not sufficiently large to affect the final conclusions regarding the planarity vs non-planarity

of the Au8 particle. What seems to be more important is the electron correlation treatment

applied to the relative energies of the various structures.
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The relative energetics, shown in Table 5.5, demonstrate that even when the geometries

are optimized with a larger cc-pVDZ-PP basis set and the CV correlations are included

in the calculations, the MP2 results are completely unreliable. The use of the cc-pVTZ-

PP basis set, with or without CV correlations, in MP2 calculations does not help either.

The MP2 calculations arrange the S6 and S1 isomers as the lowest and highest in energy,

respectively, while strongly favoring the non-planar Au8 structures over the planar S1 isomer.

This immediately implies that one needs to account for the higher-order correlation effects

to obtain reliable energetics of the various Au8 structures.

The CCSD(T)/cc-pVxZ-PP and CCSD(T)/cc-pVxZ-PP+CV (x = D,T) single-point cal-

culations, using the MP2/cc-pVDZ-PP geometries, lower the energy differences of the S3,

S4, and S6 structures, relative to S1, by approximately 1–2 kcal/mol compared to their coun-

terparts using the MP2/SBKJC(1f) geometries reported in Ref. [217], but they do not alter

the main conclusions of Ref. [217] (or Refs. [215] and [216]) that S1 is a global minimum.

According to our best CCSD(T)/cc-pVTZ-PP+CV calculations employing the geometries

optimized at the CCSD(T)/cc-pVDZ-PP level, the energy ordering of the lowest four isomers

of Au8 is S1 < S3 ≈ S4 < S6, in agreement with the findings of Ref. [217]. However, it is

important to emphasize that the use of the smaller cc-pVDZ-PP basis set in the CCSD(T)

calculations, although reasonable in geometry optimizations, is not sufficient to provide a

reliable description of the relative energies of the various Au8 structures.

Indeed, as shown in Table 5.5, the use of the cc-pVDZ-PP basis set in the CCSD(T)

calculations instead of cc-pVTZ-PP lowers the energies of the S3, S4, and S6 structures rela-

tive to S1 by 4–5 kcal/mol, even when the CCSD(T)/cc-pVDZ-PP geometries are employed,
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bringing S3, S4, and S6 close to S1 when the CV effects are ignored, and placing S3, S4,

and S6 below S1 when the CV effects are accounted for. One has to use the basis set of

the cc-pVTZ quality in the CCSD(T) calculations to stabilize S1 as a global minimum. The

CV effects play some role, lowering the energies of S3, S4, and S6 relative to S1 by about

1–2 kcal/mol at the CCSD(T)/cc-pVTZ-PP level, but they do not alter the relative energies

when the cc-pVTZ-PP basis set is used in the CCSD(T) calculations (note that they do

alter them when the smaller cc-pVDZ-PP basis set is employed). This is very different from

the our study of the Au−3 photoelectron spectrum [184] where the CV correlations had a

significant effect on the final results, which demonstrates the need to carefully consider the

system one wishes to study as to how it needs to be treated in order to obtain an accurate

description of such. Similar applies to the role of geometry optimization. The use of the

better CCSD(T)/cc-pVDZ-PP geometries instead of the MP2/SBKJC(1f) geometries em-

ployed in Ref. [217] lowers the energies of the S3, S4, and S6 structures relative to S1 by

1–2 kcal/mol, but this is not sufficient to change the overall energy ordering, as long as the

cc-pVTZ-PP basis set is used in the final single-point CCSD(T) calculations.

In summary, we performed geometry optimizations at the MP2/cc-pVDZ-PP, CCSD(T)/

SBKJC(1f), and CCSD(T)/cc-pVDZ-PP levels of theory employing relativistic ECPs for the

four Au8 lowest-energy isomers considered in the earlier CC studies [214–217]. We then used

the resulting geometries to carry out the single-point MP2/cc-pVDZ-PP, MP2/cc-pVTZ-

PP, CCSD(T)/cc-pVDZ-PP, and CCSD(T)/cc-pVTZ-PP energy calculations, adopting the

same ECPs as used in the geometry optimizations and correlating the 5d106s1 valence and

5s25p65d106s1 semi-core and valence electrons. According to our best CCSD(T) calcula-
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Table 5.5: Relative energies (in kcal/mol) of the S1, S3, S4, and S6 isomers of Au8, with
respect to the S1 isomer, obtained in the MP2 and CCSD(T) calculations.

Method/Basis Isomer Energy

Geometry Optimization Single-point Calculation S1 S3 S4 S6

MP2/SBKJC(1f) MP2/SBKJC(1f)a,b 0.0 -25.1 -23.4 -30.8

MP2/cc-pVDZ-PPb 0.0 -16.9 -15.8 -22.3

MP2/cc-pVDZ-PP+CVb 0.0 -19.9 -19.2 -25.5

MP2/cc-pVTZ-PPb 0.0 -15.4 -16.3 -21.8

MP2/cc-pVTZ-PP+CVb 0.0 -16.5 -17.8 -23.3

CCSD(T)/SBKJC(1f)a,b 0.0 -4.7 -2.5 -3.2

CCSD(T)/cc-pVDZ-PPb 0.0 3.6 5.2 5.6

CCSD(T)/cc-pVDZ-PP+CVb 0.0 0.1 1.3 1.8

CCSD(T)/cc-pVTZ-PPb 0.0 7.5 7.5 9.1

CCSD(T)/cc-pVTZ-PP+CVb 0.0 6.0 5.7 7.2

CCSD(T)/SBKJC(1f)c CCSD(T)/SBKJC(1f) 0.0 -6.29 -4.04 -5.08

CCSD(T)/cc-pVDZ-PP 0.0 0.37 1.99 1.98

CCSD(T)/cc-pVDZ-PP+CV 0.0 -3.05 -1.72 -1.74

CCSD(T)/cc-pVTZ-PP 0.0 5.19 5.41 6.49

CCSD(T)/cc-pVTZ-PP+CV 0.0 3.93 3.85 4.86

MP2/cc-pVDZ-PPc MP2/cc-pVDZ-PP 0.0 -17.32 -16.37 -22.52

MP2/cc-pVDZ-PP+CV 0.0 -19.81 -19.31 -25.24

MP2/cc-pVTZ-PP 0.0 -14.39 -15.25 -20.95

MP2/cc-pVTZ-PP+CV 0.0 -15.04 -16.33 -21.92

CCSD(T)/cc-pVDZ-PP 0.0 1.47 3.04 3.41

CCSD(T)/cc-pVDZ-PP+CV 0.0 -1.81 -0.56 -0.11

CCSD(T)/cc-pVTZ-PP 0.0 6.52 6.54 7.83

CCSD(T)/cc-pVTZ-PP+CV 0.0 5.33 5.00 6.28

CCSD(T)/cc-pVDZ-PPc CCSD(T)/cc-pVDZ-PP 0.0 0.16 1.72 1.79

CCSD(T)/cc-pVDZ-PP+CV 0.0 -3.08 -1.74 -1.72

CCSD(T)/cc-pVTZ-PP 0.0 5.63 5.72 6.91

CCSD(T)/cc-pVTZ-PP+CV 0.0 4.60 4.39 5.57

aFrom Ref. [214].
cFrom Ref. [217].
cFrom Ref. [183] done as part of the work for this dissertation.
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tions with the cc-pVTZ-PP basis set, accounting for the CV correlations, and using the

CCSD(T)/cc-pVDZ-PP optimized geometries, the lowest-energy structure of Au8 is the pla-

nar S1 isomer shown in Fig. 5.1. This is in agreement with an experimental study [423]

published after our initial study was published in which they showed, using Far-IR spec-

troscopy, that the lowest energy isomer of Au8 is indeed the planar S1 structure. The next

two isomers, S3 and S4, are nearly degenerate and lie about 4–5 kcal/mol above S1, and the

fourth structure studied in this work, designated as S6, is about 6 kcal/mol above S1. Geom-

etry relaxation plays a rather small role on the calculated energies, lowering the S3, S4, and

S6 structures relative to S1 by 1–2 kcal/mol, but does not alter the main conclusions about

the planarity of the lowest-energy isomer of Au8, as long as one uses the CCSD(T) approach

and the larger basis set of the triple-zeta quality, such as the cc-pVTZ-PP basis employed in

this dissertation. At the same time, use of the MP2 method provides completely incorrect

energetic results, even when the larger basis sets and the CV correlations are included, in

agreement with the findings of Ref. [217]. Thus, one needs to use high-level methods, such

as CCSD(T), capable of accounting for higher-order correlation effects, to obtain a reliable

description at the ab initio wave function theory level. This may be related to the fact that

gold particles are characterized by substantial non-additive dispersion effects, which cannot

be captured by MP2.

5.2 Unrestricted implementation of CR-CC(2,3)

The success of CC theory is typically associated with the popular single reference (SR)

CCSD(T) approach, which provides an accurate description of dynamical electron correla-
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tion effects for nondegenerate ground states of molecules near the equilibrium geometries (cf.

Section 5.1.3). It is well known that the RHF-based CCSD(T), RCCSD(T), approximation

fails when applied to biradicals and bond breaking situations where nondynamical correlation

effects become more significant. It is also well known that one can remedy the unphysical

characterization manifest in the potential energy surface (PES) along bond breaking coor-

dinates of single bond breaking situations in the RCCSD(T) computations by switching to

the UHF-based CCSD(T), UCCSD(T), approach. While the overall energetics of the PES

along bond breaking coordinates are improved it is done at the sacrifice of introducing other

unphysical characteristics, such as spin contamination and non-analytic behavior of the PES.

The CR-CC methods, such as the original CR-CCSD(T) [40, 41, 87–89] and newer rig-

orously size-extensive left eigenvalue approaches, CR-CC(2,3), as well as their higher-order

extensions [40, 41, 87–89, 93, 94, 424], have been shown to improve the poor RCCSD(T) re-

sults, particularly in regions of the PES involving single bond breaking even when a RHF

determinant is used as the reference wave function (see Ref. [68] and references therein for

further details). The CR-CCSD(T) and CR-CC(2,3) approaches are of particular interest as

they retain the same black-box ease of use and iterative N 6 and noniterative N 7 CPU scaling

costs as CCSD(T). While the performance of the CR-CCSD(T) and CR-CC(2,3) approxi-

mations employing an RHF wave function, RCR-CCSD(T) and RCR-CC(2,3), respectively,

has been extensively examined, it is not well known if using an UHF reference determinant

will offer some improvement of the already quite good CR-CC PESs along bond breaking co-

ordinates for closed-shell singlet molecular systems. Recently the UHF-based CR-CCSD(T),

UCR-CCSD(T), approach was used to examine single bond breaking on a singlet PES [425],
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concluding that, while UCR-CCSD(T) computations give qualitative correct results, the re-

sults at stretched intermediate bond lengths over estimate the relative energies, the same as

seen with UCCSD(T) calculations. This behavior is a known feature of spin contaminated

UHF-based CC results [426].

As part of this thesis, we examined whether employing an UHF reference wave function in

the CR-CC calculations of single bond breaking into open-shell fragments on singlet PESs will

offer any improvements over the already accurate RHF-based CR-CC results by examining

bond breaking in the two model diatomic systems used for benchmarking, namely, HF and

F2 as well as two polyatomic systems, which serve as models for larger molecules where

important O–O and C–C single bond breaking events can play crucial roles, the H2O2, and

C2H6 molecular systems, comparing them with the exact, full configuration interaction (CI),

and full CCSDT results. We also compare our UHF-based CR-CC results with their RHF-

based counterparts showing that the spin-adapted RHF-based CR-CC(2,3) results provide

the most accurate description at all points along the PESs.

5.2.1 Algorithm

In order to compute the UHF-based CR-CC(2,3) results we needed to transform the integrals

in the atomic orbital (AO) basis to the molecular orbital (MO) basis. This is done using two-

and four-index integral transformations, with the latter being the more expensive step. The

four-index integral transformation of the two-body integrals can be represented algebraically

as

(pq|rs) =
∑

µ,ν,ρ,σ

CpµCqνCrρCsσ(µν|ρσ), (5.17)
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where (pq|rs) and (µν|ρσ) are the two-electron integrals in the MO and AO bases, respec-

tively, and the C coefficients are the standard expansion coefficients obtained from diagonal-

izing the Fock matrix. We only considered the α-α, β-β, and α-β blocks of the two-electron

integrals as other combinations are zero. If implemented naively, looping over all p, q, r,

s, µ, ν, ρ, and σ using nested loops this would be an O(N8) algorithm and would not be

very useful. In developing our own routine we made use of the fact that modern Fortran

allows for the use of up to 8-dimensional arrays, storing the two-body matrix elements in a

4-dimensional array. We would then take a slice of the four dimensional array and perform

the appropriate matrix-matrix multiplication using calls to the BLAS DGEMM routine. We

also made use of the threading capabilities of the Intel MKL library, allowing for a level

of parallelism in our routine. The algorithm is trivially parallelizable in the way that it

is written and will be pursued in future studies. One criticism of this type of approach

is that, depending on the order of calls, it might result in a large number of cache misses

as compared to a routine where the 4-dimensional array is flattened to two or one dimen-

sions, which for large problems would result in a drop in performance. Even for a properly

optimized program making use of the 4-dimensional array there might still be a loss in ef-

ficiency compared to one that flattens the array due to the contiguous nature of current

CPU memory, particularly when run in serial. However, as mentioned above, it is written

such that it is an “embarrassingly parallel” algorithm making it easy to parallelize. Once

the one- and two-body integrals were transformed to the MO basis they were read into our

group’s in-house CC program package, called CC PACKAGE, which we used to compute

the UHF-based CR-CC(2,3) results discussed in the next section.
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5.2.2 Numerical examples

We used the NWChem suite to carry out the UHF-based CR-CCSD(T) calculations and

the GAMESS package for the RHF-based CCSD(T), CR-CCSD(T), and CR-CC(2,3) com-

putations, which spin-adapted routines were implemented by our group. The RHF- and

UHF-based CCSDT calculations reported here were done using in-house spin-integrated CC

codes. To perform the UHF-based CR-CC(2,3) calculations we used a modified version of

GAMESS to obtain the proper one- and two-body integrals and coefficients, which were then

transformed with our own four-index integral transformation routine, as discussed above, and

finally carried out the UHF-based CR-CC(2,3) computations using our in-house CC routines,

which work for any SR wave function. The specific details of basis sets and number of frozen

core orbitals are discussed below with the results of each example.

5.2.2.1 The HF molecule

Following previous CC studies [87, 88, 90, 93] we computed the PES of the HF molecule

as described by the DZ basis set [185] and correlating all electrons, for which the full CI

energies [361] are available for comparison. The results of our RHF- and UHF-based CC and

CR-CC calculations for HF are presented in Tables 5.6 and 5.7 and graphically in Figs. 5.2(a)

and 5.3(a). As mentioned above and as is well known the UHF-based CCSD(T) results are a

dramatic improvement over their RHF-based counterparts, reducing the mean signed error

(MSE) from around -20.0 millihartree to 0.5–0.7 millihartree when compared to RCCSDT

and UCCSDT, respectively, with the same degree of improvement compared to full CI. The

mean unsigned error (MUE) for the RHF and UHF-based CCSD(T) calculations reduces
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from ∼ 7 to 0.5–0.7 millihartree compared to RCCSDT and UCCSDT, respectively. The

nonparallelity error (NPE) shows a massive decrees when the UHF reference determinant is

employed in the CCSD(T) computations, dropping from about 50 millihartree to around 1

millihartree compared to their respective parent CCSDT approaches and full CI.

Examining the CR-CC results, the already reasonable MSE, MUE and NPE values for

the RHF-based approaches are improved upon slightly when the UHF reference determinant

is employed. Our least accurate CR-CC approach, which still provides very good results,

CR-CCSD(T) provides reasonable MSE and MUE values on the order of 1 (1.5) millihartree

compared to CCSDT (full CI) when the RHF wave function is used as a reference and an

NPE of about 1.4 (1.6) millihartree compared to full CCSDT (full CI). Switching to the UHF

wave function as a reference the MSE and MUE values improve by about 0.01 (0.4) milli-

hartree compared to UCCSDT (full CI). In this case, though, we see a slight increase in the

NPE going from 1.43 (1.60) to 1.85 (2.58) millihartree compared to RCCSDT and UCCSDT

(full CI), respectively. This is a manifestation of the well known spin-contamination problem

in the CC calculations [426] and, as we will show in this letter, is present in all of the approx-

imate triples CC approaches examined in this work when the UHF reference wave function is

employed. The CR-CC(2,3),A [CCSD(2)T] approach shows slightly better performance with

the RHF-based CR-CC(2,3),A MSE and MUE values being ∼ 0.9 (1.3) millihartree com-

pared to RCCSDT (full CI) and NPE on the order of 1.5 (2.0) millihartree. The UHF-based

CR-CC(2,3),A show a similar behavior as with its UHF-based counterpart CR-CCSD(T),

lowering the MSE and MUE by 0.01 millihartree and the NPE increasing from around 1.5

(2.0) to 1.7 (2.4) compared to RCCSDT and UCCSDT (full CI), respectively. Our best, CR-
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CC(2,3),D, computations provide the best overall agreement when compared to their parent

CCSDT results and the exact, full CI, values. The RHF-based CR-CC(2,3),D MSE and MUE

-0.89 (-0.29) and 0.37 (0.27) millihartree are in very good agreement with the RHF-based

CCSDT (full CI) with the UHF-based CR-CC(2,3),D offer some improvement, particularly

for the MSE, changing its value to -0.04 (0.18) millihartree with respect to UCCSDT (full

CI). The increase in the NPE when using the RHF vs UHF reference determinant is not

as severe as in the CR-CCSD(T) and CR-CC(2,3),A cases due in part to the more robust

treatment using the full expression of the denominator for the CR-CC(2,3),D calculations.

5.2.2.2 The F2 molecule

The very challenging F2 molecule, long known to have a large degree of nondynamical cor-

relation effects and to be unbound when described at the UHF level of theory, is ideal for

testing approximate triples CC approaches as it requires a proper balance of the dynamical

and nondynamical correlation effects for an accurate description of its PES. It is also well

known that CCSDT can accurately describe single bond breaking situations, as the inclusion

of the effects due to triply excited clusters are required to properly account for the important

correlations in single bond breaking. Thus F2 has long provided a way to test the reliability

and robustness of approximate triples CC methodologies and their ability to balance dy-

namical and nondynamical correlations. In the calculations reported here on F2 we used the

spherical components of d basis functions of the cc-pVDZ basis set [186], freezing the core

1s orbitals of each F atom. The results at a few F–F distances and the statistics for all the

F2 results shown in Tables 5.8 and 5.9, and Figs. 5.2(b) (compared to full CI) and 5.3(b)

(compared to CCSDT).
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Table 5.6: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD
and various triples-corrected CC approximations with the corresponding full CI dataa for
the equilibrium and four displaced geometries (Re = 1.7328 bohr) of the HF molecule, as
described by the spherical Dunning DZ basis.

Method Re
a 2Re

a 3Re
a 5Re

a MSEb MUEc NPEd

CCSD
RHF 1.63 6.05 11.60 12.29 7.89 7.89 10.66

UHF 1.63 5.89 2.47 1.23 2.80 2.80 4.66

CC(T)e
RHF 0.33 0.04 -24.48 -53.18 -19.32 7.27 53.51

UHF 0.33 1.26 1.22 0.04 0.71 0.71 1.22

CR(T)e
RHF 0.50 2.03 2.10 1.65 1.57 1.57 1.60

UHF 0.50 2.74 1.34 0.15 1.18 1.18 2.58

CR(2,3),Ae,f RHF 0.23 1.45 2.18 1.44 1.32 1.32 1.95

UHF 0.23 2.40 1.18 -0.01 0.95 0.95 2.41

CR(2,3),De RHF -0.12 0.06 -0.10 -1.00 -0.29 0.27 1.07

UHF -0.12 0.36 0.83 -0.34 0.18 0.41 1.17

Te RHF 0.17 0.86 0.96 0.43 0.60 0.60 0.78

UHF 0.17 0.63 0.18 -0.10 0.22 0.27 0.73

Full CIg -100.160300 -100.021733 -99.985281 -99.983293
aFull CI results were taken from Ref. [361].
bMean signed error relative to full CI.
cMean unsigned error relative to full CI.
dNonparallelity error relative to full CI.
eFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors

relative to full CI. CC(T) ≡ CCSD(T); CR(T) ≡ CR-CCSD(T); CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡
CR-CC(2,3),D; T ≡ CCSDT.
f Equivalent to CCSD(2)T approach of Ref. [77].
gThe total full CI energies in hartree.
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Table 5.7: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD and
various triples-corrected CC approximations with their parent CCSDT approach data for
the equilibrium and four displaced geometries (Re = 1.7328 bohr) of the HF molecule, as
described by the spherical Dunning DZ basis.

Method Re
a 2Re

a 3Re
a 5Re

a MSEa MUEb NPEc

CCSD
RHF 1.46 5.19 10.64 11.86 7.29 7.29 10.40

UHF 1.46 5.26 2.29 1.33 2.59 2.59 3.93

CC(T)d
RHF 0.15 -0.82 -25.44 -53.61 -19.93 7.29 53.77

UHF 0.15 0.63 1.04 0.14 0.49 0.49 0.90

CR(T)d
RHF 0.33 1.18 1.14 1.22 0.97 0.97 0.89

UHF 0.33 2.11 1.17 0.26 0.96 0.96 1.85

CR(2,3),Ad ,e RHF 0.06 0.59 1.22 1.01 0.72 0.72 1.16

UHF 0.06 1.77 1.00 0.09 0.73 0.73 1.71

CR(2,3),Dd RHF -0.29 -0.79 -1.05 -1.44 -0.89 0.37 0.76

UHF -0.29 -0.27 0.65 -0.24 -0.04 0.36 0.94

Td ,f RHF -100.160127 -100.020878 -99.984324 -99.982862

UHF -100.160127 -100.021105 -99.985103 -99.983395
aMean signed error relative to CCSDT.
bMean unsigned error relative to CCSDT.
cNonparallelity error relative to CCSDT.
dFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors

relative to the respective RHF- and UHF-based full CCSDT. CC(T) ≡ CCSD(T); CR(T) ≡ CR-CCSD(T);

CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡ CR-CC(2,3),D; T ≡ CCSDT.
eEquivalent to CCSD(2)T approach of Ref. [77].

f The total CCSDT energies in hartree.
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Examining the RHF- and UHF-based CCSD(T) results we see the well known behavior,

with the RHF-based CCSD(T) calculations providing unphysical results at larger internu-

clear distances, resulting in an MSE of about -7 (-5) millihartree, MUE of ∼ 7 (∼ 7) milli-

hartree, and a very large NPE value of 40 (41) millihartree with respect to the RHF-based

CCSDT (full CI) approach. The CCSD(T) results using the UHF determinant as a refer-

ence wave function improve the RHF-based CCSD(T) computations, changing the MSE and

MUE both to about 3 (4) millihartree, with the most dramatic change in the NPE to the

value of approximately 10 (11) millihartree compared to the parent full UCCSDT (full CI)

method, demonstrating once again the strong dependence of the CCSD(T) results on the

reference determinant employed.

Again, we can see the quality of the CR-CC results are not plagued by this reliance on the

type of determinant used as reference, with the CR-CCSD(T) and CR-CC(2,3),A approaches

providing very similar results, with the CR-CC(2,3),A variant improving the CR-CCSD(T)

calculations by about 1 millihartree as measured by the MSE, MUE, and NPE values when

the RHF wave function is used and by about 0.6 millihartree for the UHF-based results,

compared to both CCSDT and the full CI energies. If we compare their RHF- and UHF-

based computations we again see a slight improvement in their MSE and MUE values of

less than 1 millihartree. Examining the NPE values for the RHF-based and CR-CCSD(T)

and CR-CC(2,3),A approaches, which are on the order of about 7 millihartree, we see that

switching to their UHF-based counterparts, the NPEs increase by 4–5 millihartree due to

spin contamination of the results at the intermediate internuclear bond distances. Examining

our best CR-CC(2,3),D results, we see excellent agreement of our RHF-based results with
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CCSDT (full CI), providing MSE of about 0.6 (2.3), MUE of approximately 0.9 (2.3), and

NPE of ∼ 2.1 (4.0) millihartree. When we employ the UHF determinant the overall statistics

of our CR-CC(2,3),D, while improving on the UCCSD(T) results, are slightly worse than

the RHF-based CR-CC(2,3),D calculations, with MSE and MUE of about 2 (3) millihartree

with respect to CCSDT (full CI) and again a much larger NPE of ∼ 9 (∼ 10) millihartree,

which is still an improvement of the UCCSD(T) calculations.

As shown in Fig. 5.3(b) all of the UHF-based approximate triples approaches have large

errors from their parent CCSDT method with the CR-CC(2,3),D variant giving the smallest

error of 8.5 millihartree (5.4 kcal/mol) in this intermediate stretched bond length region. In

this same region the RHF-based CR-CC(2,3),D approach provides errors of about 1 milli-

hartree (< 1 kcal/mol). While the UHF-based CR-CC and CCSD(T) computations approach

the full CCSDT results in the asymptotic region the large errors similar in size to some bar-

riers for chemical reactions make their use problematic. The RHF-based CR-CC(2,3),D, on

the other hand, provides a reasonable description of the PES at all internuclear distances

with the errors in the asymptotic region being ∼ 1 kcal/mol, typically called chemical ac-

curacy. Another important feature of the robust RHF-based CR-CC(2,3),D approach, as

demonstrated in Fig. 5.2(b), which shows the errors relative to full CI, is that at all points

along the PES its computed energies follow very closely the full CCSDT values, being shifted

by an approximately equal amount, demonstrating the systematically improvable nature and

robustness of this approach.
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Table 5.8: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD and various triples-corrected CC
approximations with the corresponding full CI data for the equilibrium and displaced geometries of the F2 molecule, as
described by the spherical cc-pVDZ basis set.

Method 1.14 1.20 1.30 1.36 Re
a 1.50 1.60 1.80 2.00 2.20 2.40 2.80 8.00 MSEb MUEc NPEd

CCSD
RHF 5.81 6.61 8.37 9.58 10.74 13.14 16.27 23.56 30.76 37.10 41.97 46.92 50.62 23.19 23.19 44.81

UHF 5.81 6.61 8.37 9.98 11.96 15.72 19.54 20.87 14.15 7.98 4.73 2.42 2.07 10.02 10.02 18.80

CC(T)e
RHF 0.88 1.03 1.40 1.59 1.72 2.04 2.27 1.89 -0.71 -5.18 -10.66 -21.21 -38.71 -4.90 6.87 40.98

UHF 0.88 1.03 1.40 2.00 2.79 4.12 6.15 11.78 10.23 5.67 2.81 0.63 0.30 3.83 3.83 11.48

CR(T)e
RHF 1.58 1.84 2.48 2.88 3.24 4.07 5.12 7.41 9.10 10.29 10.91 10.42 7.18 5.89 5.89 9.33

UHF 1.58 1.84 2.48 3.48 4.91 7.39 10.06 13.68 10.79 5.96 3.04 0.84 0.50 5.12 5.12 13.17

CR(2,3),Ae,f RHF 1.32 1.56 2.16 2.53 2.85 3.62 4.58 6.60 7.95 8.76 9.06 8.18 4.78 4.92 4.92 7.74

UHF 1.32 1.56 2.16 2.79 3.69 5.68 8.38 13.05 10.59 5.80 2.89 0.70 0.37 4.54 4.54 12.68

CR(2,3),De RHF 0.42 0.53 0.87 1.06 1.20 1.67 2.22 3.36 3.96 4.30 4.37 3.61 2.62 2.32 2.32 3.95

UHF 0.43 0.53 0.86 1.27 1.83 3.15 5.19 10.52 9.69 5.45 2.67 0.46 -0.07 3.23 3.24 10.59

Te RHF 0.75 0.86 1.19 1.34 1.45 1.79 2.08 2.59 2.52 2.42 2.38 1.74 1.02 1.70 1.70 1.84

UHF 0.75 0.86 1.19 1.40 1.57 1.89 2.06 1.97 1.37 1.04 0.99 0.36 0.15 1.20 1.20 1.91

Full CIg 7.18 48.11 85.10 95.17 99.20 99.81 95.10 80.90 68.82 61.65 58.23 55.77 55.45

aExperimental equilibrium F–F internuclear bond length Re = 1.41193 Å taken from Ref. [427].
bMean signed error relative to full CI.
cMean unsigned error relative to full CI.
dNonparallelity error relative to full CI.
eFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors relative to full CI. CC(T) ≡ CCSD(T);

CR(T) ≡ CR-CCSD(T); CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡ CR-CC(2,3),D; T ≡ CCSDT.
f Equivalent to CCSD(2)T approach of Ref. [77].
gThe total CEEIS full CI energies E, reported as -(199 + mE), are in hartree, taken from Ref. [428].
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Table 5.9: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD and various triples-corrected CC
approximations with their parent CCSDT approach for the equilibrium and displaced geometries of the F2 molecule, as
described by the spherical cc-pVDZ basis set.

Method 1.14 1.20 1.30 1.36 Re
a 1.50 1.60 1.80 2.00 2.20 2.40 2.80 8.00 MSEb MUEc NPEd

CCSD
RHF 5.06 5.74 7.18 8.24 9.29 11.37 14.19 20.97 28.24 34.68 39.59 45.18 49.61 21.49 21.49 44.54

UHF 5.06 5.74 7.18 8.59 10.39 13.83 17.48 18.91 12.78 6.94 3.74 2.07 1.92 8.82 8.82 16.84

CC(T)e
RHF 0.13 0.16 0.22 0.25 0.27 0.28 0.18 -0.70 -3.23 -7.61 -13.05 -22.95 -39.72 -6.60 6.68 40.00

UHF 0.13 0.16 0.22 0.60 1.22 2.23 4.10 9.82 8.87 4.63 1.82 0.28 0.16 2.63 2.63 9.68

CR(T)e
RHF 0.84 0.98 1.30 1.54 1.79 2.31 3.04 4.82 6.59 7.87 8.53 8.68 6.17 4.19 4.19 7.85

UHF 0.84 0.98 1.30 2.09 3.34 5.50 8.01 11.71 9.42 4.91 2.05 0.48 0.36 3.92 3.92 11.36

CR(2,3),Ae,f RHF 0.58 0.70 0.97 1.19 1.41 1.86 2.49 4.01 5.43 6.33 6.67 6.44 3.76 3.22 3.22 6.10

UHF 0.58 0.70 0.97 1.40 2.12 3.79 6.33 11.08 9.22 4.76 1.90 0.34 0.22 3.34 3.34 10.86

CR(2,3),De RHF -0.32 -0.33 -0.32 -0.28 -0.25 -0.10 0.13 0.77 1.45 1.87 1.99 1.87 1.61 0.62 0.87 2.08

UHF -0.31 -0.33 -0.32 -0.13 0.26 1.26 3.13 8.55 8.32 4.41 1.69 0.10 -0.22 2.03 2.23 8.88

Tg RHF 6.44 47.25 83.91 93.83 97.75 98.05 93.02 78.31 66.30 59.23 55.85 54.03 54.43

UHF 6.44 47.25 83.91 93.77 97.63 97.92 93.05 78.93 67.45 60.61 57.24 55.41 55.30

aExperimental equilibrium F–F internuclear bond length Re = 1.41193 Å taken from Ref. [427].
bMean signed error relative to CCSDT.
cMean unsigned error relative to CCSDT.
dNonparallelity error relative to CCSDT.
eFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors relative to the respective RHF- and

UHF-based full CCSDT. CC(T) ≡ CCSD(T); CR(T) ≡ CR-CCSD(T); CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡ CR-CC(2,3),D; T ≡ CCSDT.
f Equivalent to CCSD(2)T approach of Ref. [77].
gThe total CCSDT energies E, reported as -(199 + mE), are in hartree.
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Figure 5.2: Energy differences of the various RHF- and UHF-based coupled-cluster approaches with some form of triples
with respect to the full CI results for (a) the HF molecule and (b) the F2 diatomic species at various bond lengths.



5.2.2.3 The H2O2 molecule

As mentioned above, the H2O2 molecule serves as a representative model for O–O single

bond breaking, as it is small enough that high-level CCSDT calculations can be performed

for assessment of the performance of the various approximate triples CC approaches. As

the CR-CC(2,3) and CCSD(T) methods are strictly size extensive these results can be used

to extrapolate their performance in larger molecules involving O–O bond cleavage, where

CCSDT calculations would be computationally prohibitive. We should also mention that,

while the CR-CCSD(T) approach is not strictly size extensive, its violation of this property

is small and thus, the conclusions drawn here, and as already shown in Ref. [425], will also

be applicable when examining larger molecules. We use the cc-pVDZ basis set, freezing the

core orbitals, and employing spherical d functions, keeping the rest of the geometry fixed as

we stretch the O–O bond length, following the same procedure as in Ref. [425]. The results

at a few O–O distances and the statistics for all of our calculations are presented in Table

5.10 and at a larger number of O–O bond lengths in the Supplementary Material and in Fig.

5.3(c).

While the RHF-based CCSD(T) results exhibit the same unphysical behavior it is well

known for in bond breaking situations, it is a bit surprising to see that the UHF-based

CCSD(T) results do little to improve their overall quality. Compared to their parent CCSDT

calculations, the RHF-based and UHF-based CCSD(T) computations provide MSEs of -4.4

and 3.5 millihartree, respectively, and MUE values of 4.6 and 3.5 millihartree, respectively.

In the previous cases, HF and F2, the largest improvement was especially evident in the NPE

results for the RHF- and UHF-based CCSD(T) calculations. For H2O2, however, we see there
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is almost no overall improvement when the UHF reference determinant is used, resulting in

NPEs of 19.6 and 17.4 millihartree, respectively. This is a good example of where even

resorting to the spin contaminated UHF reference wave function will do little to improve the

poor RHF-based CCSD(T) results for PESs along single bond breaking coordinates.

The CR-CCSD(T) and CR-CC(2,3),A approaches provide very similar results, with the

CR-CC(2,3),A variant improving the CR-CCSD(T) calculations by about 2–3 millihartree as

measured by the MSE, MUE, and NPE values when the RHF wave function is used and by

about 1 millihartree for the UHF-based results, compared to their parent CCSDT energies.

Comparing their RHF- and UHF-based results, we see the MSE and MUE lowering by ∼ 1

and increasing by 0.03 millihartree for the CR-CCSD(T) and CR-CC(2,3),A approaches,

respectively. In both cases there is a significant increase in NPE when the UHF determinant

is employed, by 10.6 millihartree in the CR-CCSD(T) case and 12.0 millihartree for CR-

CC(2,3),A, resulting in NPE values on the same order as for the CCSD(T) calculations

(∼ 20 millihartree). The RHF-based CR-CC(2,3),D results, on the other hand, provide

results on the order of 1 millihartree for the MSE and MUE with its NPE value remaining

around 2.5 millihartree compared to its parent full CCSDT approach. Again, the effects

of spin contamination for the recoupling of two doublet OH radicals into a singlet when

using the UHF reference wave function is manifest in the slightly larger, though improved

compared to UCCSD(T), MSE and MUE values of about 3 millihartree. The NPE for the

UHF-based CR-CC(2,3),D computations is slightly less than that for UCCSD(T), but still

quite large, being approximately 17 millihartree.
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Table 5.10: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD and various triples-corrected CC
approximations with their parent CCSDT approach for the equilibrium and displaced geometries of the H2O2 molecule,a

as described by the spherical cc-pVDZ basis.

Method 1.10 1.20 1.30 1.40 Re
a 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 MSEb MUEc NPEd

CCSD
RHF 6.54 7.01 7.76 8.78 9.01 10.10 11.76 13.79 16.22 18.99 22.02 25.18 28.33 31.34 34.13 36.64 38.84 40.74 42.36 43.72 44.87 23.72 23.72 38.33

UHF 6.54 7.01 7.76 8.78 9.01 10.10 12.91 16.17 18.86 29.59 18.80 16.29 13.31 10.55 8.30 6.61 5.45 4.71 4.29 4.07 3.96 10.62 10.62 25.64

CC(T)e
RHF 0.21 0.21 0.23 0.26 0.27 0.30 0.33 0.34 0.28 0.08 -0.34 -1.07 -2.18 -3.68 -5.54 -7.69 -10.03 -12.45 -14.84 -17.13 -19.27 -4.37 4.61 19.60

UHF 0.21 0.21 0.23 0.26 0.27 0.30 1.65 3.19 5.32 17.58 9.45 9.28 7.84 5.97 4.20 2.78 1.76 1.11 0.74 0.55 0.47 3.49 3.49 17.37

CR(T)e
RHF 1.23 1.33 1.50 1.76 1.82 2.10 2.56 3.16 3.89 4.75 5.68 6.63 7.53 8.32 8.99 9.52 9.92 10.20 10.39 10.51 10.57 5.83 5.83 9.24

UHF 1.23 1.33 1.50 1.76 1.82 2.10 4.48 6.96 9.23 20.67 11.47 10.56 8.73 6.65 4.78 3.30 2.25 1.59 1.20 1.01 0.92 4.93 4.93 19.75

CR(2,3),Ae,f RHF 0.78 0.86 0.99 1.18 1.22 1.44 1.79 2.26 2.84 3.52 4.26 4.99 5.66 6.23 6.67 6.98 7.18 7.29 7.33 7.32 7.28 4.19 4.19 6.50

UHF 0.78 0.86 0.99 1.18 1.22 1.44 2.70 4.65 7.11 19.16 10.56 10.01 8.34 6.33 4.49 3.04 2.00 1.34 0.96 0.77 0.68 4.22 4.22 18.47

CR(2,3),De RHF -0.22 -0.24 -0.28 -0.28 -0.27 -0.18 -0.12 -0.03 0.19 0.48 0.82 1.18 1.48 1.74 1.95 2.09 2.18 2.23 2.27 2.28 2.28 0.93 1.08 2.52

UHF -0.22 -0.24 -0.28 -0.28 -0.27 -0.18 0.71 2.26 4.48 16.71 8.68 8.68 7.37 5.58 3.85 2.47 1.49 0.86 0.50 0.32 0.22 2.99 3.13 16.96

aThe equilibrium geometry, with Re = RO-O = 1.419952Å optimized at the M06-2X/MG3S level in Ref. [425]. The other geometries represent

a stretching of the O–O bond without changing the other geometric parameters, and are taken from the Supporting Information to Ref. [425].
bMean signed error relative to CCSDT.
cMean unsigned error relative to CCSDT.
dNonparallelity error relative to CCSDT.
eFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors relative to the respective RHF- and

UHF-based full CCSDT. CC(T) ≡ CCSD(T); CR(T) ≡ CR-CCSD(T); CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡ CR-CC(2,3),D; T ≡ CCSDT.
f Equivalent to CCSD(2)T approach of Ref. [77].



The differences with respect to their parent CCSDT approach are shown in Fig. 5.3(c),

with all UHF-based approximate triples approaches showing even larger differences with the

UCCSDT calculations, ranging from 16–20 millihartree (10–13 kcal/mol), in the intermediate

O–O bond length region. Thus, it seems that any improvements gained by turning to the

UHF-based CC approaches with an approximate treatment of triples, particularly in the

asymptotic region of the PES along single bond breaking coordinates, are far outweighed

by the inaccuracies introduced due to spin contamination at the intermediate internuclear

distances. While one cannot use the RHF-based CCSD(T) approach for these problems

either, the RHF-based CR-CC(2,3),D method does provide very good agreement with the

full CCSDT results near equilibrium, at the intermediate bond lengths, and in the asymptotic

region, where the largest errors do not exceed 2.3 millihartree (1.5 kcal/mol).

5.2.2.4 The C2H6 molecule

In analogy to H2O2, the C2H6 molecule is a reasonable model for C–C single bond breaking,

which is small enough to be able to afford the full CCSDT calculations for gauging the

reliability of the various noniterative approximate triples CC methods, which can be used

to extrapolate their performance in larger molecular systems where CCSDT computations

are not routinely affordable. We again follow the procedure of Ref. [425], freezing the core

orbitals in all CC calculations, employing the cc-pVDZ basis set and spherical d functions,

and not allowing the geometry to relax as we stretch the internuclear C–C bond. The results

at a few C–C internuclear distances and the statistics for all of our computations for C2H6

are presented in Table 5.11 and Fig. 5.3(d).

The CCSD(T) results again show some improvement when the UHF determinant is used
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over the RHF reference wave function, with the MSE changing from -1.0 to 2.3 millihartree

in the RHF- and UHF-based CCSD(T) computations, respectively. Much like in the case

of H2O2 though, the MUE shows no change being about 2.3 millihartree in both cases.

Where there is a large improvement is in their NPE values, which change from around 22

to 7 millihartree employing the RHF and UHF determinants, respectively, in the CCSD(T)

calculations.

The CR-CC methods are interesting in this case in that only the CR-CCSD(T) com-

putations show an overall improvement in the MSE and MUE values when the UHF de-

terminant is used as a reference wave function and this improvement is only minor (∼ 0.3

millihartree). In the CR-CC(2,3),A results the MSE and MUE increase by an even smaller

amount (about 0.08 millihartree) and the CR-CC(2,3),D MSE and MUE increasing by 0.7

millihartree when the UHF wave function is employed. In spite of this increase when switch-

ing to the UHF reference function our CR-CC(2,3),D results still manage to improve the

UCCSD(T) calculations, with our CR-CC(2,3),A and CR-CCSD(T) approaches giving com-

parable results to UCCSD(T). The NPEs for all UHF-based CC approaches examined in the

this work, which include some form of approximate triple excitations, range from 6.6 to 8.5

millihartree, with our best UCR-CC(2,3),D approach providing the smallest NPE value, im-

proving the UCCSD(T) approximations description of the C–C single bond breaking PES in

C2H6. While the UCR-CC(2,3),D method improves the UCCSD(T) results, the RHF-based

CR-CC(2,3),D variant provides the best overall description, with all errors not exceeding 2.2

millihartree and in some cases being significantly lower.
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Table 5.11: Comparison of the energies (in millihartree) of RHF- and UHF-based CCSD and various triples-corrected
CC approximations with their parent CCSDT approach for the equilibrium and displaced geometries of the CH3CH3
molecule,a as described by the spherical cc-pVDZ basis.

Method 1.101.201.301.401.50Re
a 1.601.701.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.80 3.00 3.20 3.50 4.00 5.00 MSEb MUEc NPEd

CCSD
RHF8.548.488.528.638.81 8.86 9.069.389.7810.2610.8511.5512.3813.3514.4715.7417.1620.3523.8227.2231.68 36.67 40.58 15.92 15.92 32.10

UHF8.548.488.528.638.81 8.86 9.069.389.7810.2610.8511.5613.1014.7516.3217.5518.1617.0713.9110.71 7.71 6.41 6.28 11.07 11.07 11.88

CC(T)e
RHF0.540.560.570.590.62 0.63 0.650.680.73 0.77 0.83 0.89 0.96 1.02 1.08 1.12 1.12 0.90 0.19 -1.16 -4.35 -11.07 -20.94 -1.00 2.26 22.06

UHF0.540.560.570.590.62 0.63 0.650.680.73 0.77 0.83 0.90 1.83 2.85 3.99 5.28 6.58 7.98 6.84 4.60 2.08 0.94 0.86 2.26 2.26 7.43

CR(T)e
RHF1.991.992.022.072.13 2.15 2.222.332.46 2.62 2.82 3.07 3.36 3.71 4.12 4.59 5.12 6.29 7.51 8.59 9.75 10.46 10.05 4.41 4.41 8.47

UHF1.991.992.022.072.13 2.15 2.222.332.46 2.62 2.82 3.08 4.68 6.20 7.59 8.80 9.70 9.99 8.16 5.64 3.00 1.83 1.73 4.14 4.14 8.26

CR(2,3),Ae,f RHF1.321.331.341.371.41 1.42 1.461.531.61 1.72 1.85 2.02 2.23 2.48 2.79 3.14 3.53 4.41 5.31 6.07 6.80 7.04 6.38 2.98 2.98 5.71

UHF1.321.331.341.371.41 1.42 1.461.531.61 1.72 1.85 2.03 2.82 3.82 5.03 6.37 7.63 8.79 7.43 5.08 2.50 1.35 1.25 3.06 3.06 7.46

CR(2,3),De RHF0.080.080.090.100.10 0.10 0.120.140.17 0.21 0.26 0.30 0.35 0.43 0.53 0.66 0.84 1.18 1.59 1.95 2.27 2.38 2.30 0.71 0.71 2.20

UHF0.080.080.090.100.10 0.10 0.120.140.17 0.21 0.26 0.31 0.81 1.51 2.45 3.60 4.86 6.72 6.06 4.05 1.62 0.43 0.03 1.47 1.47 6.64

aThe equilibrium geometry with Re = RC-C = 1.5227Å is taken from Ref. [429]. The other geometries represent a stretching of the C–C

bond without changing the other geometric parameters were taken from Ref. [425].
bMean signed error relative to CCSDT.
cMean unsigned error relative to CCSDT.
dNonparallelity error relative to CCSDT.
eFor the CC methods with up to triple excitations, the reported energy values, in kcal/mol, are errors relative to the respective RHF- and

UHF-based full CCSDT. CC(T) ≡ CCSD(T); CR(T) ≡ CR-CCSD(T); CR(2,3),A ≡ CR-CC(2,3),A; CR(2,3),D ≡ CR-CC(2,3),D; T ≡ CCSDT.
f Equivalent to CCSD(2)T approach of Ref. [77].



Examining the energy differences of the various RHF- and UHF-based CC approaches

compared to their parent CCSDT method, as shown in Fig. 5.3(d), we can again see that,

while all UHF-based CC methods with an approximate form of triples provide results which

approach the full CCSDT energies asymptotically, at the intermediate stretched C–C bond

distances they again produce errors on the order of 7 to 10 millihartree (4–6 kcal/mol).

Again, it is only the RHF-based CR-CC(2,3),D approach which is able to provide an accurate

description of the PES along the C–C single bond breaking coordinate at all internuclear

separations, with the largest errors not exceeding 2.4 millihartree (1.5 kcal/mol), producing

results of the chemical accuracy (∼ 1 kcal/mol) often touted as the standard by which to

measure the performance of ab initio electronic structure methods.
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Figure 5.3: Energy differences of the various RHF- and UHF-based approximate triples coupled-cluster methods with
respect to their parent CCSDT results for (a) the HF molecule, (b) the F2 diatomic species, (c) the H2O2 species, and
(d) the C2H6 polyatomic molecule at various bond lengths.



As part of the work done for this dissertation we have examined the performance of the

UHF-based CR-CC approaches with approximate triples corrections, namely, CR-CCSD(T),

CR-CC(2,3),A, and CR-CC(2,3),D, for describing potential energy surfaces along single bond

breaking coordinates for closed-shell singlet molecules dissociating into open-shell doublet

species, for the HF, F2, H2O2, and C2H6 molecular species, comparing the CR-CC com-

putations with the full CI and the parent CCSDT data as well as with their RHF-based

counterparts.

Unlike the popular CCSD(T) approach, which fails to accurate describe PESs along bond

breaking coordinates when the RHF determinant is used as a reference wave function and

which generally is considered to be rescued by turning to the UHF reference determinant,

introducing other unphysical effects, such as spin contamination and nonanalytic behavior of

the PES, our CR-CC methods are not very sensitive to the reference determinant employed

(RHF vs UHF). Our best RHF-based CR-CC(2,3),D results improve dramatically the RHF-

based CCSD(T) calculations and the UHF-based CR-CC(2,3),D approach, while not as

marked as in the RHF case there is still an improvement over the UHF-based CCSD(T)

results for the computed PESs particularly in the region of intermediate stretched bond

lengths where the spin contamination begins to render the results useless, providing errors

on the order of about 10 kcal/mol, or more in some challenging cases, for all UHF-based

approximate triples approaches.

From our results in this work we cannot recommend the UHF-based CC approaches with

approximate triples for an accurate description of PESs along bond breaking coordinates due

to the unphysical effects, which in challenging cases can be quite large, of spin contamination
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providing errors on the order of some chemical reaction barriers. This effect from using UHF-

based approximate triples CC methods destroys one of the important hallmark attributes

that has led to their being used for challenging chemical situations, specifically that of being

able to provide quantitatively correct results compared to their much more expensive parent

CCSDT approaches. While one cannot use the RHF-based CCSD(T) approximation for

an accurate description of PESs along bond breaking coordinates our robust RHF-based

CR-CC(2,3),D variant can provide an excellent quantitative description, compared to both

its parent CCSDT and the exact full CI results, of single bond breaking on a singlet PES,

while avoiding the problematic behavior of the RHF- and UHF-based CCSD(T) method. In

the future we would like to examine the performance of the UHF-based CR-CC approaches

compared to their ROHF-based analogs for bond-breaking in open-shell species.
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Chapter 6

Conclusions and future outlook

In this dissertation, we have described several high-level ab initio computational studies em-

ploying the CR-CC/CR-EOMCC and active-space CC approaches and the extensions of the

EOMCC theory to open-shell systems around closed shells defining the EA-EOMCC and

IP-EOMCC frameworks, demonstrating the transformative role these novel electronic struc-

ture methods, developed in our group, have played in understanding previously unexplained

experiments and phenomena. Using the EA- and IP-EOMCC approaches, especially the

higher-order 3p-2h and 3h-2p approaches invented in the Piecuch research group, we have

computed the challenging electronic spectra of the CNC, C2N, N3, and NCO molecules and

the photoelectron spectrum of Au−3 , providing for the first time an accurate interpretation

of the spectrum of the latter. The CR-EOMCC formalism developed in our group played

a crucial role in the discovery of the doubly excited state of azulene below the ionization

threshold, which mediates the 1 + 2′ multiphoton ionization experiments resulting in clear

Rydberg fingerprint spectra. Employing the CR-CC(2,3) methodology, developed in our

group as well, we carried out a detailed investigation of the mechanism and energetics of

the aerobic oxidation of methanol on Au−8 particle confirming the earlier DFT-based pro-

posals that the reaction proceeds exothermically and that the rate-determining step for the

reaction is the initial conversion of the methoxy species to formaldehyde. We also carried
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out definitive CR-CC and active-space CC studies showing that the ground state of 1,2,3,4-

cyclobutanetetraone, which is characterized by densely spaced low-lying states, is a triplet,

in agreement with the recently recorded photodetachment spectrum. In addition to these

applications to challenging and chemically relevant problems we discussed the development

of parallel numerical energy gradients and second derivatives for fast geometry optimizations

and harmonic vibrational frequency calculations at any CC/EOMCC level, allowing us to

establish the geometries and relative energies of the low-energy isomers of the controversial

Au8 particle. We also discussed the implementation of the unrestricted Hartree-Fock-based

(UHF-based) CR-CC(2,3) approach. We show that unlike the popular CCSD(T) approach,

which is very sensitive to the type of the reference determinant employed in the calculations,

failing in bond-breaking situations when the restricted Hartree-Fock (RHF) reference is used

and displaying poor behavior at intermediate nuclear separations with UHF references, its

CR-CC(2,3) counterpart provides a robust description regardless of the reference type (RHF

or UHF). We also showed that the spin-adapted RHF-based CR-CC(2,3) results provide the

most accurate description of the single potential energy surface for single bond breaking

coordinates than all UHF-based approximate triples CC approaches in the examined cases.

In future studies, we would like to study catalytic reactions employing larger gold nanopar-

ticles, like the non-planar Au20 cluster, bimetallic catalysts, such as Pd:Au systems, as well

as silver containing catalytic particles. In studying these types of systems we will likely

need to make use of local correlation approaches [99–103] and/or extrapolation techniques,

such as those explored as part of this dissertation. Further exploration of photochemical

problems involving multiphoton processes and determining reaction pathways on the ground
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and excited states, which involve locating and characterizing minimum energy crossings and

seams of conical intersections, using the CIOpt package, which is able to perform these for

any level of theory, should be investigated. This will present its own set of challenges and

problems as the EOMCC wave function ansatz results in a non-Hermitian eigenvalue problem

and which is known to have issues describing the topology and location of these minimum

energy crossing points [430–433]. The development of string-based approaches to search for

transition states on the ground and excited state potential energy surfaces as well as their

use to locate conical intersections and to explore their seams will also be pursued in future

work building on what has already been done as a part of this dissertation.

The development of MMCC corrections for the non-particle conserving EA-, IP-, DEA-,

DIP-EOMCC approaches should also be pursued as it was originally proposed as part of this

dissertation for the EA- and IP-EOMCC methodologies, though more than working out the

relevant equations has not been done. This is also a step in the direction of extending the

CC(P;Q) type approaches to the active-space EA-, IP-, DEA-, and DIP-EOMCC methods.

This will hopefully allow for the extremely high-level study of challenging open-shell molec-

ular systems, where accurate methodologies greatly help in the prediction and interpretation

of their various properties.

The pursuit of higher-order parallel numerical derivative algorithms will also be under-

taken in future studies along with the completion of a B-matrix routine for reducing the

number of degrees of freedom to the minimum required for accurately describing molecular

species. Just as this dissertation has been carried out and facilitated through the help and

support of more than just the author of this dissertation so will the future studies and de-
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velopments be carried out as a continued collaborative effort with the many fine scientists I

have met and will yet meet and work with.
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