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ABSTRACT

TRAVELING PULSES FOR THE NONLOCAL AND LATTICE
KLEIN-GORDON EQUATIONS

By

Chunlei Zhang

The thesis includes two parts. In the first part, we study a nonlinear nonlocal
Klein-Gordon equation on the whole real line. We first prove the existence of traveling
pulses and then study the spatial asymptotic properties of these pulses and their
instability. In the second part, we study a nonlinear lattice Klein-Gordon equation,
which is actually a system of infinitely many ordinary differential equations. We show
the existence and determine the spatial asymptotic properties of the traveling pulses
using a similar method to that in the first part and then study the instability by
numerical simulations. For both the nonlinear nonlocal and nonlinear lattice Klein-
Gordon equations we illustrate that they share some similar properties with the limit

equation, the classical Klein-Gordon equation, as a parameter £ approaches 0.
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CHAPTER 1

Introduction

Crystals are solids in which the constituent atoms are arranged regularly in a space
lattice with specific geometrical symmetry elements. However, a perfect crystal, with
every atom of the same type in the correct position, does not exist in nature. Actually,
all crystals have defects. Crystal defects are very important in materials science and
engineering because they govern many physical properties, such as color, conductivity,
transparency, hardness, etc.. There is also much work on the mathematical model
studying crystal defects (see [22] for instance).

Kresse and Truskinovsky [23] studied a lattice wave equation with nearest neighbor
interaction to study the motion of lattice defects (see [34] for an analysis with longer
range interaction). They consider a chain of particles attached at equal distance ¢
to a rigid background by bistable springs with energy density w(u,) where u, is the
vertical displacement of the particle with index n (Figure 1.1), then ew(u,) gives
the on site potential energy for particle with index n. Assume that the neighboring
particles interact through standard harmonic forces, characterized by the modulus of
elasticity £ (Young’ modulus) of the spring, then the total potential energy of the

chain is in the form



— & — & ————>
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Figure 1.1. vertical displacement

1 Upy] — Un
V= Z 585(;16—)2 + ew(uy).

For simplicity assuming the spring has unit mass density, then the total kinetic energy
is
K= Z 16112.
— 2

Then the Euler-Lagrange equation gives

£

g — -6—2[un+1 — 2up + Upy] + W' (u,) = 0.

The authors consider traveling waves, and so let £ = en, write u,(t) = u(z,t) and

seek a solution of the form u(z,t) = u(n) = u(z — ct) satisfying the equation

c232—7;: - —:—;[u(n +¢€)—2u(n) +u(n—-¢)] +w'(u) =0. (1.1)

In [23] and [34], heteroclinic solutions were studied for a piecewise linear w', in which

case solutions can be found explicitly.



We consider a general lattice equation

Ll
U, — EE Z QplUp_k + f('u,,) =0, ne€z, (12)

k=-o00

where 0 < €, Yok = 0, ap < 0, ax = a_, and a certain ellipticity condition
holds. Note that we allow infinite range and not just nearest neighbor or finite length
interaction, although those are included as special cases. We want to study homoclinic
waves for supersonic speeds c and rather general smooth nonlinearity. We assume that

f is a C? function, satisfying f(0) = 0, and

Co =inf{¢ >0: F(¢) =0}
exists, where
PO = [ f1as,
and f({) > 0. A typical example is the quadratic function f(u) = u(u — a) with

a > 0. Under such assumption the ODE
u" + f(u) =0

has a unique even, positive homoclinic solution (see [8]).
Equation (1.2) can be derived through the Hamiltonian. For instance, one could
take the Hamiltonian on 2 x ¢2 defined by

H(p,u) = Y (57 + 725 3 Gnem(n = tm)? + Flun)) (1.3)

n

Here, p = (p,) € € represents the momentum and u = (u,) € €2, the position of
particles relative to lattice sites. The pairwise interaction term, ay_m(tn —um)?, could
be thought of as each pair of particles being connected by a linear spring. However,
we will not require that these all produce restoring forces, i.e., some of the ajs could
be negative. Such is the case with the Lennard-Jones potential, for instance.

Since the term with n = m vanishes, we may take ay = — Zk#, a,. We will also

assume interactions are symmetric, so that a_; = ay.

3



The on-site potential F' is fairly general but has a local maximum or semi-
maximum at 0 and a local minimum at some positive value, 1 say. Examples include
F(u) = (1 — u?)? or u?(u — 1), which cases have been well studied numerically, and
analytically in the continuum differential equation setting.

The equations of motion produced by (1.3) are

dun _ (OHY\ _

@ ~\Bp n—pm

dp, OH 1

dat (E) = 5 2om On-mlUm = f(un),

where f = F’. This system is equivalent to (1.2).
Note that if we rescale 7 in (1.1) such that z = 5/e, the equation for u(z) = u(en)

becomes
c23271: — E[u(z +1) = 2u(z) + u(z = 1)] + e2w'(u) =0

and many authors have studied such lattice Klein-Gordon equations (see [9, 14, 16,
17, 30], and the references therein). Some computational studies on heteroclinic
traveling waves for a cubic bistable w’ have been reported in [9], and the existence
of homoclinic traveling wave solutions for fixed ¢ > 0 and sufficiently small £ has
been proved in [20] by center manifold reduction (see also [14]). The existence of
other solitary solutions, for example, breathers, was studied in [24, 31]. However, for
equation (1.1), when w' is nonlinear, ¢ is small, and £ is of moderate size, little is
known about the existence of traveling waves or pulses. A major difficulty arises as

one must deal with a nonlinear differential equation with significant advanced and

retarded terms. That case is considered here.

Many other nonlinear infinite dimensional lattice systems have been studied during

the last couple of decades. For example, the famous FPU lattice,

'&n = V,(un+l - un) - V,(un - un—l)



has received considerable attention, in particular having been studied by numerical
simulations [13] (see also [12, 15]). More recently there have also appeared some
rigorous results concerning traveling waves using a variety of methods. For instance,
there are variational approaches used in [19, 26, 33]. In [18], Friesecke and Pego
studied the qualitative properties of traveling pulses in FPU lattices from another
point of view: they regard the traveling pulse as a perturbation of the solitary solution
of a KdV equation. Their method is to look for the fixed point of an operator defined
in terms of Fourier multipliers, but which is a reformulation of the problem at hand.
The Fourier transform has also been used by other authors to study solitary waves
(see [1, 12] etc, for both numerical and theoretical treatments). In this work, we will
prove our main result following the idea of [18].

There is also some literature considering traveling waves for the damped discrete
sine-Gordon equation with periodic boundary conditions (so it is a finite-dimensional
system rather than an infinite-dimensional one), which models many physical systems
such as circular arrays of Josephson junctions. The existence of traveling waves was
proved in [21] by a fixed-point argument. At present, our methods do not apply to

such systems, however.

Note that in (1.2) we can regard the term

[ )
1
Ncu, = 2 E Qi Un_k

k=-00
as a discrete Laplacian with possibly infinite range interaction. Similar long range
interactions have been introduced in a DNA model with long-range dipole-dipole

interactions. The typical Hamiltonian is of the form

1

N N
H = 2(51‘?* + V(u,) + Z JmnlUntm)

n=1 m=1

and traveling breathers were numerically studied in [2, 3, 11].



While we do not intend for the foregoing to be a complete survey of previous
results on lattice equations and traveling waves, we hope that it provides a context
for our results.

We also consider the nonlocal wave equation for u(z,t):
1
un—e—z—(je*u-u)+f(u)=0, for t>0 and =z €R, (1.5)

where ¢ is a positive parameter and the kernel j. of the convolution is defined by

where j(-) is an even function with unit integral.
We can regard equation (1.5) (or (1.2) ) as the wave analog of the nonlocal

parabolic equation studied in [4], (or [5] for the lattice version)

Uy — 61—2(j€*u—u)+f(u) ~o, (1.6)

(see also [6, 7, 10]). Equation (1.6) was introduced as an L? gradient flow for the

energy functional

1 .
B = 7 [ [ e~ 0)(ulx) - u)dzdy + [ Flu)ds,
Similarly, when we apply Newton’s second law
uy = —grad E(u),

a nonlocal wave equation, (1.5), is derived.
1
Note that, ase — 0, E_2(j€ * U — u) = du,,, formally and in some weak sense
described in [4], where d is a constant determined by j. So we can also regard (1.5)

as a nonlocal version of the classical nonlinear Klein-Grodon equation

U — Uzr + f(lt) = 0 (17)



Figure 1.2. f(u)

Clearly, a traveling wave solution u(n) = u(zr — ct) satisfies the ordinary differential
equation

(@ =1u"+ f(u) =0

which has homoclinic solutions for speed ¢ > 1 and suitable nonlinear function f.
For example, with f = u3 — u (Figure 1.2), the phase portrait is shown in Figure 1.3
and the solution is a single pulse (Figure 1.4). Actually, the ODE is integrable and

the solution is given by a sech function

u(n) = V2sech (\/C:’Tl) .

Figure 1.5 shows how the pulse travels when the speed c is positive.

In this work we will study homoclinic traveling wave solutions (traveling pusles)
of (1.5) (and of (1.2)), i.e., solutions of the form u(z,t) = u(z — ct) (or u,(t) =
u(en — ct))which decay to zero at infinity.

It will become apparent that for both the lattice and continuum equations, our
method does not seem to apply to the subsonic case ¢?> < d. Also, the Lorentz

invariance, which produces, for stationary solutions, subsonic traveling waves for the



Figure 1.3. phase portrait

Figure 1.4. single pulse



Figure 1.5. traveling pulse

usual nonlinear wave equation, does not hold for the nonlocal version. Since the
corresponding limit ODEs have heteroclinic solutions for bistable nonlinearity f, one
may conjecture that there exist heteroclinic traveling waves for our models, at least
when € > 0 is small. On the other hand, even though the limit equation does not
have homoclinic solutions, since the convolution operator is bounded, we suspect that
our models still possess traveling pulse solutions with subsonic speed provided € is
sufficiently large.

The dissertation is organized as follows: In chapter 2 we study the traveling
pulses for the nonlocal Klein-Gordon equation (1.5). We first show the existence and
spatial asymptotic properties of the traveling pulses, then we prove that the traveling
pulses are unstable. In chapter 3 we study the lattice Klein-Gordon equation (1.2).
We show the existence of pulses, and determine their spatial asymptotic properties
using similar methods to those in Chapter 2, then illustrate the instability thorough

numerical simulations.



CHAPTER 2

Traveling pulses for the nonlocal

Klein-Gordon equation

2.1 Existence of traveling pulses

In this section we study the existence of traveling pulses for the nonlocal Klein-Gordon
equation (1.5).

Throughout this dissertation we assume the following conditions:

(A1) f e C?*R),f(0)=0,f'(0)=-a<0; f({)>0, where

¢
Co=inf{¢ >0: F(¢) =0} and F(¢) = /(; f(s)ds,

and
(A2) j(z) € L'(R) is even, has unit integral,

- 7.2
lim =5 and Jj(z) > 1-d,z%,

where 0 < d < d, are constants and the Fourier transform is given by j(z) =

/oo e *%j(z)dz.

-0

Remark A typical example for f is the quadratic function f(u) = u(u — a) with

10



a > 0. The assumption (A1) guarantees that the ODE
u" + f(u) =0

has a unique even, positive homoclinic solution ([8]).
(o o]

Remark Ifj € C? then d = %/ j(z)z®dz. It is easy to see that -;-e‘l” ,

—00

1 2 1 . . . 1 1 .
ﬁe " and YT satisfy (A2), with d(= d,) given by 1, 1 and 3 respectively.

The idea is to change to traveling wave coordinates, formally take the Fourier
transform, and reformulate the problem of existence of a traveling pulse as a fixed
point problem for an operator defined in terms of the nonlinearity and a certain

Fourier multiplier.

In (1.5), let u(z,t) = u(z — ct) = u(n), so that u(n) should satisfy the equation

1 .
cu” - é_—2(_7€ *u—u) = —g(u) + au, (2.1)

where g(u) = f(u) + au. Applying the Fourier transform, equation (2.1) becomes

1 ~ —

—c2€% — E;(je -1 — 1) = —g(u) + at

or

—

(€ +1.(€) + o) = g(u),

1 ~
where [, = ?(je —1). Thus, an equivalent formulation is

—

i = pc(€)g(u),

where
(©) = 2 (22)
Pels) = 2+ 1. (&) +a ’
The inverse Fourier transform gives
u = p. * g(u), (2.3)

11



where p, is the inverse transform of p,.

Define the operator
Pe(u) = pe * g(u),

and write (2.3) as
u = P (u). (2.4)

Note that, due to (A2),

7€) -1

2 g2
e 7%

L) = 50u6) - 1) =

1
as e — 0, so pe = m for € small. Thus, when ¢ — 0, (2.4) formally
becomes
u = Py(u), (2.5)
where Py(u) = po * g(u) and
1
po(§) = @-d&+a

Clearly, (2.5) is equivalent to
u = ((d -3 +a)7 (g(u)),
that is,
(¢ - d)u" = au — g(u),
or
(2 —d)u" + f(u) = 0. (2.6)

By the results of Berestycki and Lions in [8], under the assumption (A1), (2.6) has
a unique even, positive homoclinic solution for each ¢ > d, which we denote by u,.

Thus, uy is a fixed point of operator P,. We can write equation (2.5) in the form

u = Py(u) + (P. — Py)(u),

12



and look for a fixed point near uy. The basic idea to solve this is to consider & = u—wuy.

Since 4 satisfies

we want to solve the equation
i = (I — DPy(uo)) ™ (P.(@ + uo) — Po(ug) — DPo(uo)@). (2.7)

The operator on the right hand side turns out to be a contraction map on a small
ball about 0 when £ > 0 is sufficiently small. Under these conditions the operators

F = Py and F = P, — P, satisfy the assumptions in the following lemma from [18] :

Lemma 2.1.1 Suppose F and F are C' maps from a ball in a Banach space E into
E. Suppose F has a fized point ¢y and that A = I — DF(¢y) is invertible with

|A~Y|| < Co < co. Suppose that there ezist positive constants Cy,C,,0, and & such

that
(1)
IDF(¢) ~ DF(¢o)l S C1 < Cg' and [|DF(g)]| < C;
whenever ||¢ — ¢o||g < §, where || - || represents the operator norm ;
(1)
Co(Ci+C) <0<,
(iii)

1 F(¢0)lle < (1 — 8)/Co.

Then the equation ¢ = F(¢) + F(¢) has a unique solution satisfying ||¢ — ¢ol|lg < 9.

This will be used to prove our main theorem:

13



Theorem 2.1.2 Under the assumptions (A1) and (A2), for any speed c satisfying
c? > d, there ezits an €9 > 0 such that for any ¢ € (0, &), equation (1.5) has a unique

nonzero solution u, in the set
{ue H'(R) : u is even, ||lu — uollg < 6},

where ug is the even, positive homoclinic solution of (2.6) and § > 0 depends on j, f

and ¢, and satisfies § < ||uol|y1.

Remark The condition § < ||ug|| s excludes the trivial solution u = 0.

2.2 Proof of the Theorem

Note that ug is the fixed point of Py,. To prove the theorem we apply Lemma 2.1.1
with the operators

F=P.-P, and F=P,
First, we show F and F are C! maps in E = H! = {u € H'(R) : u is even}.
Step 1 P. is an operator from H! to H! .

Denote ||-|| = || - ||z and || - |loo = || - ||z=- We also use || - || for the operator norm,
where the range and domain spaces are understood. For any u € H!, by Plancherel’s

theorem,

IPe(u)ll = llpe * g(u)|l

1 —
= —=||peg(u)|l
Var (2.8)

< |lpelloollg (@)l

< |Pelloollg (w) /ulloc]lul,

14



where g(u)/u € L* because ¢'(0) = 0 and u € L*™.

We also have,

NPl = [Ipe * (¢'(w)u)|
= —[lp (@)
vm (2.9)
< |IPelloollg’ (w)u|
< IPelloollg" ()l o l[w'|l-
Thus, P, is an operator from H! to H'.

Step 2 P. maps even functions to even functions.

Let u be even, then g(u) is even and it is easy to check that the convolution of

two even functions is even.
Step 3 For u € H!, the linearized operator DP.(u) : H! — H! is bounded.

For any v € H!,

Thus,
IDP(u)()l| = [|pe * (¢'(w)v)]|

< IPelloollg’ () llool Il
and

[(DP:(u) (@)l = [I(Pe * (¢'(w)v))'ll
< [[Pelloo] (9" ()0l

< [1Pelloo (119" (w)lloollw' ] vlloo + 119" (w)llooll¥’1)

< Cllvlla,
where we used the embedding inequality, ||v||[L» < C||v||g:. Therefore, DP;(u) is
bounded.

15



Step 4 The operator DP.(u) is continuous with respect to u.

For any u,u, € H!,

IDPe(u)(v) = DPe(u)(v)ll = lIpe * [(¢'(w) — ¢'(w))2]|
< llpelloollg’ (w) = ' (un)lloo |01l

< [1pelloollglloollu = ualloollvll,

and
(DPe(u)(v) = DPe(w)(v))l
= |IPe * [(¢'(u) — g’ (wr))o)'|
= [Ipe * [(¢"(w)v' — g"(w)ui + g"(w)u} — g"(w1)ui)v] + Pe * [(¢'(w) — ¢'(w1))V']|
< IPelloollg” (w)lloo 1w = will[[0]loo + lIPelloollg” (1) = g" (w1)lloo Ui ool vl

HIpelloollg’ () — ' (wr)lloo ']l

Hence
”DPE(U) - DPE(UI)” —0
as ||u — uy ||y = 0. Therefore DP. is continuous and P, is C'. Similarly, P, is a C!

map from F to E.

We will finish the proof using the following lemmas.
Lemma 2.2.1 The operator T = DF(u,) : H'(R) — H'(R) is compact.

Proof: Note that

DF(uo)v = po * (g'(uo)v)

1
(¢ =d)?+a

1 _al ,
= me P « (9’ (uo)v),

= ( ) * (g (uo)v)

16



where 3 = ‘/22—9—71. Since uo decays at 0o , we can prove that DF(ug) is compact

using the Fréchet-Kolmogorov Theorem (see [35]):
A subset K in L? (1 < p < 00) is precompact if and only if it satisfies
1. sup ||ul|, < o0
ueK
2. |lu(- + h) — u(-)|]l, = O uniformly in u € K as h — 0;
3. lim |u(z)|Pdz = 0 uniformly in u € K.
a—00 |z|>o
First we show T : L? — L? is compact. Let A be a bounded subset in L? and let

K =TA. We need to show K is precompact in L2.
(1) As in (2.8) we have

ITv|l2 < C(up)llv]]2  for v e A.

(2) For v € A,

/00 |Tv(z + h) — Tv(z)|*dzx

= [1(Bo(- + R) — Po(*)) * (¢' (wo)v)II3
< NBo(- + h)J = po() Iz Nl (o) 3 lIvlIZ — 0

uniformly in v € A as h = 0 because

|Bo(- + R)JTE) — Po(€)] = |e™po(€) — Po(§)]
= | — 1|po(§) — 0
uniformly in € as h — 0, since po(&) — 0 as || — oo.
3) Since uy decays at +oo, for any v > 0, there exists M > 0 such that

l9'(wo(y)| < ¥ for ly| > M.

17



o0
Choose a > M such that 2Me23M/ e ?’*dzr < ~. Then

a

/°°|/_°° Po(z — y)g' (uo(y))v(y)dy|*dx
/ / / / )bo(z — y)g'(uo(y))v(y)dy|*dx

<c / " / e g ay))o(u)dy P+
o) oo 00 -M
1oy / ( /M lpo(z — 3)v(y)|dy)%dz + 272 / ( / [Pz — y)v(y)\dy)?dz

<c / T | ) e-ﬂ“-wg'(uo(y))v(y)dy|2dx+4v/ ( / [Polz — y)v(y)ldy)*dz
<c / ~292 4y / B4/ (uo (y) ) (y)dy[? + 47IIpo * [v]]3

<c / €297 e M | (o () |2, (2M) [0]3 + 4 Ipoll2 1012

< Cllg' o IV + 492 1pollZ o3

Thus, this integral converges to 0 uniformly for v € A asa — oo, and so T : L? — L?

is compact.

Next we show T : H! — H! is compact. Let u, be a bounded sequence in H!.
We want to show Tu, has a convergent subsequence in H!. Since T is compact in

L?, there exists a subsequence, still denoted by u,, and u,v € L? such that
Tu, = u,

and

Tu,, = v, as n — oo.
Define S : L2 — L? by
Su = po * (9" (wo)ugu).

18



Then S : L?2 — L? is compact by the same discussion above because we only need
19" (wo)]loo < 00 and g"(uo)uo(z) — 0 as £ — +oo. So there exists a subsequence,

still denoted by u,, and w € L? such that

Su, - w in L2, as n — oo.

Therefore for ¢ € C§°,

/ ugd'dz = lim / Tu,¢'dz
n—o00

=— lim [ (Tu,) ¢dz

= - Jim [ (o + (9'(ue)un)' 6
= —{tim, [0 (¢ o))z + [ (o + (5" (wo)un) ]

=—lim <Tu,,¢ > — lim < Su,,¢ >

n—0o0 n—0o0

=-<v4+w,¢>

= - /(v + w)¢dz,

sou =v+w € L? and (Tu,) — v’ in L2. Thus, Tu, — u in H!. The claim is

proved. O

Lemma 2.2.2 The operator A =1 — T 1is invertible in E.

Proof: We only need to show that the equation u — Tu = 0 has no nonzero

solutions in E. Note that equation u — T'u = 0 is equivalent to

u = po * (¢ (uo)u),

19



that is

—(c® = d)u" + au = g'(uo)u, (2.10)

to which ug is a solution. We find the general solution by reduction of order: let

u = ugy, then y satisfies

. n

2ugy’ + ugy” = 0;

let y' = z, then

SO

and
y=Ci+C / (u)%(s)ds.
1

Thus we get the general solution

u = uy(Cy + C; /lz(u{,)‘z(s)ds).

where C; and C, are arbitrary constants. Since
T
- [ wras 1
. ’ 1\ - o 1 — . -
Al up / (o) "ds = lim = = — Jim
which is infinite and we are considering solutions in H'!, C; has to be zero and any
H! solution of (2.10) must be of the form u = Cu}), which is odd. Therefore (2.10)

has no nonzero solution in E. By the Fredholm alternative, A = I — T is invertible

and A~! is bounded. a

20



Proof of Theorem 2.2

Fix 0 < 6 < 1 and let Cy be positive such that |A~!|| < Cy < co. Since F € C!

0
we can choose § > 0 small such that for a constant C; > 0 satisfying C, < 20
0

|IDF(u) — DF(u)|| < C}, for ||u — up||m < 6.
Since
|DF (u)v]lm = ||(Be — Bo) * (¢'(@)v) |l < ClIPe — Polloollvll st

where C depends on ||u||., we have

IDF(u)|| < Cllpe = polloo-

Note that, because of (A2) (which implies that (j(z) — 1)/z? is bounded) and

3(55)—1 2
| —dg? - 1 (¢) o g
[+ L@ + all@ - DE + ] = (@ = d)E + a[(@ — DE + a]’

Ipe —Po| =

we have |p. — po| — 0 uniformly in £ as € — 0. Thus there exists a positive €y, which

depends on 4, such that for any £ < ¢y one has
|DF(u)|| < C., for ||lu — uol||m <6,

where C; < % Similar to the discussion in Step 1, F : H! — H! maps bounded
0

sets into bounded sets and

IF (o)l < llps ~ pouoo(||g$:°’ oo + 119" (u0)llo).

Hence we can choose small ¢y again, such that
||ﬁ‘(u0)|| <6(1-8)/Co for € < eo.

By Lemma 2.1.1, u = F(u) + F(u) has a unique solution in the set

{u € E : ||u— u||y < 8}. This completes the proof.
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2.3 Asymptotic behavior of traveling pulses

Here we provide an example and show that in this case the traveling pulse decays
exponentially at infinity, something that is not obvious for this class of equations and

may not be true in general (see [6] section 5).

Consider the case j(z) = %e"". Since j(£) = %52’ then

1

Pe (E) = 62 ’

2¢2
¢ 1+¢€262 Ta
and
1
Po(§) = @-Dé+a

Note that (A2) holds withd =d; = 1.

We have the following estimate for the Fourier multipliers:

Lemma 2.3.1 Let p;(§) = p. — po, then P, decays exponentially and there erist

positive constants C. and vy, where C, — 0 as € — 0 such that

1] < Cee™ .
Proof:
1 1
J 41 (6) = 2 -
£ (c2-1)€%+a
et = 1+ €22 +a
A+ ay)(?+a) ¢2-1 (2-1)&+a”
where

_ m*y/n? — dac?e?

and =c?—-1+act
2c2¢? h

Since ¢ > 1 we have that ay > 0. Note that for a > 0

, A3
—(Il | . ~
(e™""'sgnz) = 24 2’



and so

—if 1

1
c— -Jazlz| )
(7o, = 2 Vaz SER &
1 1
Notice that = o(1) and = O(1) when € — 0, and therefore
vV Ooy Va-

P =

Cle~vaillsgnz + |e=valelsgnz — (e~vaTlsgnz) » (/21 e*«/_"_:z.—.lrl)],

where C! — 0 as € — 0. Therefore, there exists v > 0 and C, — 0 such that

|ﬁl | S Cee_ﬂzl-

Using Lemma 2.3.1 we conclude

Theorem 2.3.2 When j(z) = %e"", the solution u, obtained in Theorem 2.1.2

decays ezponentially at +oo .

Proof: From Lemma 2.3.1, since p. = p; + po,
pe < Cle1,
where C; > 0 and 7' = min{y, ,/z%}. Also, since g'(0) = 0 we have

tim 90 _ 90 _ g
z—+to0 ue(:l,') s—0 8 .

Note that for any z € R

()] = [+ gu@) < € [ e LD (),

and so we draw the conclusion using Lemma 5.3 in [18]:
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Lemma Suppose that h and k are bounded non-negative functions defined on R

with lim k(z) = 0. Let 8 > 0 and suppose that

|z|—=00

h(z) < / " ek (y)h(y)dy

for all real z. Then e®'lh € L™ whenever a < 3. Moreover, if K;, K, and M are

constants such that ||kl < K, ||k]l < K>3, and k(z) < min{B8/4, (e™® — e7?)/2)}

for |z| > M, then

le®!h]l < Cla, B, K1, K2, M).

2.4  Instability of traveling pulses

In this section we study the instability of those traveling pulses for the nonlocal

Klein-Gordon equation discussed earlier. Recall that the equation has the form

Uu—el—2(je*““u)+f(u)=0? for t>0 and ze€R, (2.11)

where the kernel j. of the convolution is defined by
: T
Je(z) = ~3(2),

but for simplicity, throughout this section we only consider a particular j(-) = ie"".
We also restrict our attention to the case f(u) = u3 — u. The traveling pulse ¢(§) =

#(z — ct) satisfies the second order integro-differential equation

o~ ic 6= 9)+ 1(9) = 0. (2.12)
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Since the traveling pulse ¢(z — ct) is just one mumber of a continuum of traveling
pulses obtained by translation, the question of stability or asymptotic stability is
broader than it would be for an isolated stationary state. It will be shown that there
are solutions with initial data arbitrarily close to ¢ in L? which not only leave an L?
neighborhood of ¢(- — ct) for ¢ sufficiently large, but also leave an L? neighborhood of
any fixed translate. That is, there exists £, > 0, cuch that for all §, > 0 and k € R,
there exists initial data (ug, u;) € L% x L? with ||lug — ¢||z2 < 8, and ||u; +c¢'||.2 < 41,
while

llu(t,z) — ¢(x — ct — k)||2 > &1 for arbitarily large ¢ > 0,

where u(t, z) is the solution to (2.11) with initial values
u(0, ) = uo(z), (0, 2) = uy (). (2.13)

As we point out in Section 2.1, equation (2.11) can be compared with the classical

nonlinear Klein-Gordon equation
up — Uz + f(u) =0, for t>0 and ze€R, (2.14)

and for (2.14) many authors have studied the stability and instability of standing
waves, see for example (25, 29, 33].

To show the instability of our traveling pulses for (2.11) we first study the conti-
nuity of traveling pulses with respect to the wave speed. To indicate the dependence

of P, on ¢, we use the notation P. ..
Lemma 2.4.1 u, is continuous with respect to wave speed c.

Proof: Let c),c; satisfy ¢Z > 1,c2 > 1, and let u,,, u., be the traveling pulses
for (2.11) derived from Theorem 2.1.2, with wave speeds ¢, and c,, respectively. Then

they are fixed points of operators P, ., and P, ,, respectively. Denote

ﬁl = uc; - uo,cla 17'2 = ucz - uO,CQY

25



where ug . is the positive, even, homoclinic solution to (2.6), then by (2.7), @, and i,

are the fixed points of the contraction map
R.(@) = (I — DPyc(uo,c)) ™" (Pro(@ + uoc) — Poc(uoc) — DPoc(uoc)),  (2.15)
for ¢ = ¢, ¢, respectively, in the set
{u€ H'(R) : uis even, ||ul|; < 6}.
Then, the contraction property of R., implies that
lue, = ue,llar = ||te, = Uo,e; — Uey + Uorc, + Uo,e, — Uoyc, || i1
<l = Goll gy + [|uo,e, — oy, || a1
= ||Re, (%) — Re, (@) || + |0, — to,coll e
< N|Rey (1) = Re, (@2) ||l + || Re, (82) — Rey (2) || + |[u0,c, = Uo,c, || a1

< 0|y — ol + || Re, (@2) — Rey(@2)|| + lto,e, — to,collan,

where 6 < 1. Therefore,

1

lue, = te,lln - < 7=5 (1 Rey (82) = Rey (@)l + (1 + 6)lluo,e, — woeyll ).

Note that up. = Y( z) where 9 is the positive nondegenerate homoclinic

1
Vet -1

solution of u” + f(u) = 0, thus

1 1
lwo,e, — Vo cllen = ||!/)(—;21_—11?) - w(?x)”m

-0

as Cp — ().

To show || R, (@2) — Re,(@2)||gr — 0 as c; — ¢, we need the following results:
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1) ”Ps,cl(ﬁ2) - Ps,cz(ﬁQ)”H‘ — 0 as Ccr — ().

This is true because

| Pecy (12) = Pecy(@i2)ll2 = ||Pesc, * ﬂg — Pecr * ﬁg”lﬂ
= “pe,cl _1’6.02”L"’”1—‘%“L2

-0

as ¢, — ¢;, and a similar calculation for the H; norm.
2) For any v € H', || DPo,¢, (to,c,)v — DPoc,(w0,6,)v|l e — 0 as e = c1.

Notice that DPy(ugc)v = o * (¢'(uo)v), we can first see in the L2 norm

|DPo,c, (t0,e,)v = DPocy(wo,e,)vllLz = [[Poc, * (9'(w0,e1)V) — Posc, * (9 (to,c.)v)ll12
< lPo.c, * (9'(w0,e1)v) = Po,e, * (9'(¢0,c2) V)| L2
+|Po,c, * (9'(¢0,62)v) — Do, * (9" (wo,e2)v) 2
< |1Po.er * [(9'(w0,e,) — 9" (w0,c2)]0) |l 2
+ I (Poey — Poez) * (9'(wo,c,)v) |12

-0

as ¢; — ¢, and similarly we can show the convergence in H'.
3) Ac= (I — DP,(up.))™"! is continuous with respect to c.

To show this, denote T, = DP; (uo ). Then

(I_ Tcl)_l - (I ""TC'z)_l = (I - Tcl)_l - (I - TCl +Tcn - Tc'z).—l

=(I-T,)" = [ =TI + (I = Te,) " (Te, = Te,))| ™!
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and B = —(I - T,,) (T, — T.,) satisfies || B]| = 0 as ¢; = ¢; . Thus for ¢, close to

Cy,

(I - Tm)*l - (I - Tc'z)*l = (I - TCx)—l - (I - B)_l(l - Tcl)_l
=I-T,)'-(I+B+B*+---)(I-T,) !,
=-B(I-B)'(I-T.,) ' >0

as ¢c; — (.

By den°ting Sc(ﬁ) = Pe.c(ﬁ + Uo,c) - PO,c("O,c) - DPO,c("O.c)ﬁ, we get
”R«:1(ﬁ2) - RCz(ﬁ2)”H‘ = “Aqsm (1—‘2) - Amsm(ﬁi')”fl‘
= ”ACI Scl(ﬁ2) - Ac,ch ('a2) + Aclscz(ﬂ'?) - Achcg (7-‘2)”11‘

< 1Ay (Sey = Se;) (@)l + [(Aey = Acy)Sea (@2) |1

—0
as c; — ¢; because both operator R, and function ug . are continuous with respect to
c and ||S,,(@2)|| i is bounded as c; — ¢;.

Therefore

1 _ _
”um - UCz”H‘ < 1__"5(”RC1 (@2) - RCz(u2)”H‘ +(1+ 0)||Uo'c, - uO,Cz”H‘)

-0

as ¢; — ¢;, which proves the lemma.

Theorem 2.4.2 The traveling pulse of (2.11) derived in Theorem 2.1.2 is unstable.
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Proof: Let ¢ = u,, be a traveling pulse corresponding to wave speed c;. Then for
1
€ = Z||uc,||Lz, and any 6, > 0, by Lemma 2.4.1, there exist a speed ¢, which is close

to ¢; and a traveling pulse u., for (2.11) such that
llue, = ue,llmr <6 and |leyuy, — coug, |l < 6.

Without loss of generality, we can assume c; > ¢; > 0. Therefore, u.,(z — ct) is a
solution of (2.11) and it is initially close to the traveling pulse u.,. However, for any

fixed k, there exist My > M; > 0 such that

M, .
{/; (ucl (.Z‘ - ":))de)E > ?”ucxlllﬂ = \/5517

M)\
and
—M; l
(/ (e, (z — k))2dz)} < €1,
thus
lue, ( — e1t — k) — ug,(z — cat)||22
= / (e, (z = 1t — k) — ue, (T — cot))%dx
My+cit
> / (e, (z = 1t — k) — ue,(z — cot))*dx
~My+ct
Mi+cit M+t
> / (e, (z — 1t — k))%dz — / (e, (7 — c2t))%dz
—Mj+cyt M+t
M, Mi+cit—cat
> [ (ale - by [ (tty (2))?d
-M; —Mi4cit—cat
—M,
> 262 - / (U, ())2dz
> 2t — el =¢€},
which shows the instability. O
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CHAPTER 3

Traveling pulses for the lattice

Klein-Gordon equation

3.1 Existence of traveling pulses

In this section we study the homoclinic traveling pulse solutions of the lattice system

1 oo
Uy — = Z o tn_ + f(u,) =0, nez (3.1)

k=-o00

where € > 0 and o4 satisfies

(A3) Zak=0, o <0, ar=a_, Zakk2=d>0

k=-00 k>1
and Z lax|k? = d < oo.
k>1

With the ansatz u,(t) = u(en — ct) = u(n), we get the following differential equation

with infinitely many advanced and delayed terms:

,d?u 1

o k;w axu(n — ke) + f(u) = 0. (3.2)
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We proceed as before, taking Fourier transforms and reformulating as a fixed point

problem.

Applying the Fourier transform, equation (3.2) becomes

(>

_262*_72 t£k£u+f )

Using (A3) we may write

62 Z aketskfu _ 62 Zak tekf 2+e tek()

k=-o00 k>1

= ——= E ay sin’(

k>1

Therefore, we may write our equation as

[(c® - Zakk:’smc ) £ +ali = /(Z),

k>1
where sinc(z) = %
Let
1
2(§) =
(c2 - Zakk2s1nc (-——))52 +a
k>1
then we can write the equation in the form
u = Qc(u),

where Q. is the operator defined by Q.(u) = g * g(u). Since

sincz(%) =1- 15262 + o(e%¢Y),
2 8
g: (&) has the limit

1

(@ —d)+a

po(é) =
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as € — 0. Therefore, formally when € — 0, we have the limit equation
u = Py(u),
where, as before, Py(u) = pp * g(u); and the integral equation is equivalent to
(c® — d)u" = —f(u), (3.3)

which has the nondegenerate homoclinic solution, ug, discussed previously. By a
method similar to that used to study the nonlocal wave equation with a continuous
convolution operator, we can again prove the existence of a traveling pulse u. near
up for ¢2 > D,, where
D, = sup Z axk?sinc?(kz)
2 >

satisfies D; > d.

Theorem 3.1.1 If conditions (A1) and (A3) are satisfied, then for any speed c
satisfying ¢ > D, there erists an €9 > 0 such that for any € € (0,¢,) , equation (3.3)

has a unique solution u. in the set
{ue H'(R) : u is even, |Ju— uo|lm < 8},

where ug s the even, positive homoclinic solution of (3.3), and § > 0 depends on f,

¢, and the coefficients ay, and can be chosen so that § < ||ug||y-

Proof: Notice that when ¢ > D,, both ¢, and p, are well defined. Therefore,
similar to the proof of Theorem 2.2, we only need to show that for a given positive
p, there exists a small 9 > 0 such that ||g. — po|lc < p for € < &4. Since

Z akk2sinc2(£§£)§2 — de?

k>1

2(§) —po(§) = ke :
[(c? - Z aklc""’sinc"’(T))E2 + a]((c? - d)€% + q]
k21

, €k
and sinc? (676) < 1, there exits & > 0 such that for |£| > & we have
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(D1 + d)fz
c2 — D1)& + a)((c? — d)§? + a)

lge — po| < T < p.

Notice that for |£| < &,
E akaSinC2(§—k£) —-d= E akk2[sinc2(-6£§) -1]-0
2 2
k>1 k>1

uniformly as ¢ — 0 because Z |ak|k? < co. Therefore, g — po uniformly as ¢ — 0,

k>1
allowing us to draw the desired conclusion. m]

3.2 Asymptotic behavior of traveling pulses

For a lattice with finite range interactions, we give an estimate for the tails of the

traveling pulse:

Theorem 3.2.1 Suppose that a = 0 for |k| > ko and suppose ¢ > d. There ezists
€1 > 0 such that for € < €, the solution u.(z) obtained in Theorem 3.1.1 decays to

zero ezponentially as z — oo .

Proof: As in Section 2.3, we first show that ¢, decays exponentially at +oo.
To estimate the inverse Fourier transform of g., we need to estimate g, (§) for complex

E=x+yr.
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Notice that

la + €22 = |a+ c2(z? — y?) + 232zyi)?
= a? + 2ac*(z? — y?) + (2% — y?)? + 4ctz?y?
= a? + 2ac?(z? — y?) + c*(2? + y?)?

3 1
Za2 + ac’r? — 3ac’y® + [Za2 +ac’(z? + y?) + (2 + v?)}

3
a
> ("2' + 02|§|2)2
' 32 o 22 : _a ' _
if we choose y such that 2% 3ac’y® > 0, ie, |y| <y = el A direct calculation
shows that
k k
Ism:,(ﬁ)l = l[6_"‘!' + eV — 2] + sin?(Fer).
2 4 2
Thus,
. o,EkT
Isinc"’(%” = L|sin"’(£k€)| _ e~k 4 etky _ 9 4 sin (_2_-)
27 Rl 27 k322 +y?) k(22 +y?)
Since

e—eky + eeky ) e—eky(eeky _ 1)2
£2k2y? = £2k2y?

uniformly for |y| < v and |k| < ko as € — 0, there exists a positive £, such that for

-1

£ € (0,&]
e~k pechy — 2 emchy petky 9 g2 I -d, y?
= - < (14— .
e2k%(z? + y?) e2kty? 22442 ( 2d ):r2 +y?
Also, it is easily seen that
. 9,Ekz . 9,Ekzx
4sin (—2— _ 4sin (—2—) 2 Py 72 |
e2k2(z2 + y?) £2k212 22+ y? = 22+ o2
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Therefore we have for |y| < v, |k| < ko, and € € (0,¢]

—-d. ¢ z? 2-d
—) + — < —.
2d "2+ y? 1?2+ y? 2d

<+

P02
Sinc

So, from the definition of g, for |y| < v and ¢ € (0,¢]

1
lgel = f
Zakk2s1nc ))E% + a|
k>1
S : eké
2¢2 _ 20t 205\ ¢2
|c2€2 + a| IZakk sinc®( 5 )E?|
k>1
1
<
T a ct-d
5 I = D lawlk® (1 + ——)lel?
k>1
_ 1
S+l -di+ —)I£I2
_ 2
e+ (2 -d)gP

Thus ¢.(€) is analytic on the strip Im £ < v. Therefoe, for z > 0,

77 = | f €577, (2)dz|
.y /C €% g, (€ + i)de|

where Cj = {z — 7i : —o00 < 2z < 0}, and by Cauchy’s integral theorem, we have

le*g.| = |/ *20e(z + 71)dz]

</ 2 dz
= Jow a4+ (c2 = d)|z + 7|2

</oo 2 dz
= Jow a+ (2 = d)|z|?

=C < oo.
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Thus,

|G| < Ce7.

The proof of the theorem is completed using the same idea as that in section 2.3. O

Remark For both the lattice and continuum equations, the subsonic case when
c? < d is still an open problem. Since the corresponding limit ODEs have heteroclinic
solutions for bistable nonlinearity f, one may conjecture that there exist heteroclinic
traveling waves for our models, at least when £ > 0 is small. On the other hand, even
though the limit equation does not have homoclinic solutions, since the convolution
operator is bounded, we suspect that our models still possess traveling pulse solu-
tions with subsonic speed provided ¢ is sufficiently large. Our analysis breaks down,
however, for ¢ < d; (or D in the lattice case) due to singularities in the transformed

kernel p, (or g., respectively).

3.3 Instability of traveling pulses

In this section we consider the lattice Klein-Gordon equations

1

Uy — ?(un-’-l — 2Up + Up_y) — Up +ud =0, ned (3.4)

for which the existence of the traveling pulse was proved in section 3.1. To illustrate
the instability we use 4th order Runge-Kutta method solve the Cauchy problem for

system (3.4) with the initial data

un(0) = do(en), u,,(0) = —cgo(en), (3.5)

T

Ve -1

(A =1u"—u+u*=0.

where ¢o(z) = v/2 sech(

) is the solution of the ODE
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Since we proved that the traveling pulse of (3.4) is in a small neighborhood of ¢ when
¢ is small, we can regard ¢, as a perturbation of the traveling pulse. The numerical
simulations show that even though the solution of (3.4) and (3.5) is close to the the
traveling pulse initially, it becomes significantly different rapidly. Figures 3.1-3.8
show the solution u,(t) of (3.4) at time t = 1,5,6,7,8,10,15, and t = 20. Figures
3.9-3.16 show the difference between u,(t) and ¢o(en — ct) at time t = 1,5, 8,10, 15,

and t = 20. We use the following choice of parameters in our simulation: N = 1001,
-N+1 N-1

€ 53 ], e =0.1, ¢ = 1.1,and At = 0.05. For the boundary conditions,
we choose
_ “12+1
Upy2
on the left boundary where | = =2=! and
2
u
Up = m—1
Um-2
: _ N+l
on the right boundary where m = &=,
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1.5

0.5f

Figure 3.1. u,(t),t =1

Figure 3.2. u,(t),t =5
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1.5¢

05}

Figure 3.3. u,(t),t =6

SN

Figure 3.4. u,(t),t =7
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Figure 3.5. u,(t),t =8

1.5}

05fF

Figure 3.6. u,(t),t =10
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Figure 3.7. u,(t),t =15

1.5t

0.5f

Figure 3.8. u,(t),t =20
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-1}

-1.51

Figure 3.9. u,(t) — ¢o(en —ct),t =1

1.5¢

05t

-0.51

-1}

-1.5}

Figure 3.10. u,(t) — do(en —ct),t =5
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1.5F

05}

Figure 3.11. u,(t) — ¢o(en — ct),t =6

05}

Figure 3.12. u,(t) — ¢o(en —ct),t =7
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15

0.5}

Figure 3.13. u,(t) — ¢o(en — ct),t =8

1.5F

05¢f

Figure 3.14. u,(t) — ¢o(en — ct),t = 10
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Figure 3.15. uy(t) — ¢o(en — ct),t =15

1.5}

05

Figure 3.16. u,(t) — ¢o(en —ct),t = 20
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