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ABSTRACT

IMPROVED MODE MATCHING METHOD FOR

SCATTERING FROM LARGE CAVITIES

By

Weiwei Zhang

The accurate calculations of electromagnetic fields play a crucial role in aircraft

design and antenna design. The methods proposed in the literature for the EM fields

calculation of scattering from large cavities are not be fast, accurate and easily

implemented enough.

In this dissertation, the calculations of EM fields for 2D large open cavities are

considered first. By defining two extension operators, the exact solution and the mode

matching solution may be formulated under the same framework, which makes it

possible to analyze the difference. Using an asymptotic technique, we present a new

(improved) mode matching method. In particular, the explicit solution and the error

estimate are given. Numerical examples, including EM fields calculations and RCS

calculations, are presented. The second part of the dissertation is about the calculations

of EM fields for 3D cavities. Following the similar idea, mode matching method and

improved mode matching method are presented. Numerical examples are showed to

demonstrate the efficiency of the method.
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Introduction

0.1 Background and Motivation

A two dimensional open cavity recessed in an infinite ground plan can serve as a

model of duct structures such as jet engine intakes of an aircraft or antenna windows

embedded in complicated structures. The phenomena are governed by the Helmholtz

equation in an infinite domain along with the radiation condition and Perfect Electric

Conductor boundary conditions.

The prediction and reduction of Radar Cross Section (or echo area) of this struc-

ture are very important and require the information of the fields across a broad range

of frequencies. For instance, a short wavelength radar (e. g. missile seekers) and a long

wavelength radar (e.g. early warning radar) may both exist at the same time. Thus

the accurate calculation of electromagnetic fields is of great importance. When the

cavity parameters are small or the frequency is relatively low, a large body of work

such as finite element methods, integral equations or hybrid methods have been done

[8], [12], [13]. For a large cavity or at high frequencies, the calculation of the fields

becomes difficult. I. Babuska pointed out that, for a model problem, the Galerkin

solution differs significantly from the best approximation with increasing the wave

number. A. K. Aziz showed that “k2h is small” is the sufficient condition to guar-

antee that the error of the Galerkin solution has the same magnitude as the error of

the best. approximation, where k is the. wave number and h is the mesh size.
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Another major difficulty of the problem is that the mathematical formulations of

cavity problems always involve nonlocal boundary conditions and singular integrals

[8], [3]. Physically, large cavities involve a large amount of internal reflections.

In the engineering literature, modal methods have been adopted to calculate elec-

tromagnetic fields at high frequencies or for large cavities because of their efficiency

and accuracy [9], [11]. To the best of knowledge, in these methods, the boundary

condition at infinity is approximated from some physical intuitions or assumptions

and confirmed by numerical experiments in some cases. However, without rigorous

error estimates, there is no guarantee that the numerical simulations are correct.

In this work, the time harmonic plane wave incidence is considered. The ground

plane and the walls of the open cavity are perfect electric conductors and the cavity

is filled with magnetic or nonmagnetic layered medium. A bounded domain prob—

lem is set up by using Fourier transform, the radiation condition and the continuity

condition. The mode matching solution v(:1:,y) and the exact solution u(:r, y) are

formulated under the same framework by applying zero extension E0 and periodic

extension Ep on the transparent operator T, i.e.

M+ 9(17) = T(E0('U(17, O»):

T+ 9(1)) = T(Ep(v(1:v 0»)

In the case of simple geometries, the mode matching method is easily implemented.

By analyzing the error between it and v, and applying some asymptotic techniques,

an improved mode matching method is obtained. The new method provides an ex-

plicit solution which converges to the exact one at the rate of O(1/ fl), where w is

the width of the cavity. Due to the error control, the method is expected to be ex-

tremely useful for large dimensions or high wavenumber cavity problems. Numerical

experiments of the electromagnetic fields in the aperture and different Radar Cross

Section calculations have been studied.



The existence and uniqueness of the partial differential equation were proved by

Ammari, Bao and Wood in [3] for the case when 8'6 > 0. In this dissertation, a TM

case result for 8‘6 < —1/k(2) is given.

In three dimensional case, the governing equations are Maxwell’s equations. The

application includes metallic cavities RCS study, and electromagnetic penetration

and transmission properties of objects consisting of these substructures. It has great

importance in industries, including telecommunication, engine and antenna manufac-

turing. Besides the same difficulties from two dimensional large open cavity prob—

lems, the computational time and memory requirements are sometimes intolerably

large. Therefore, the three dimensional cavity problem has been regarded as a grand

challenging problem for decades. In the literature, eddy elements, discrete Galerkin

methods, integral equations and modal methods were applied to calculate Radar

Cross Section [8] But none of them are fast, accurate and easily implemented at the

same time.

In this dissertation, the continuity conditions, Silver-Mueller Radiation condition

and Fourier transform are used to derive the exact PDE model in a bounded region.

Numerical experiments are studied.

This work could be easily generalized to other applications, such as scattering

and transmission through the slot in a conducting plane. Following the idea, Open

cavity problem with a canonical shape could be solve similarly using different field

expansions. For example, the spherical harmonics.

0.2 Organization

In Chapter 1, the two dimensional cavity problem is mainly discussed. The math-

ematical formulation, including the Helmholtz equation, boundary conditions, weak

formulation are introduced in section 1. The well-posedness of the variational problem



is further established for the TM case, when 8(6) < —1/k8 in section 2. In section

3, the mode matching method is introduced by using a periodic extension operator.

The idea and fulfillment of improved mode matching method are discussed in sec-

tion 4. And the convergence analysis is given in this section as well. The numerical

experiments are displayed in section 5.

Chapter 2 is focused on 3d open cavity problem. The continuity conditions and

Maxwell’s equations are introduced in section 1. In section 2, the field representation

based on sine or cosine functions are given. The fulfillment of the mode matching

method is given in section 3. Some numerical examples using the mode matching

method are shown as well. In section 4, the improved mode matching method is

proposed following the idea in 2d case. In section 5, the benchmarks in the literature

are studied.

Appendix displays some results about the integral involving sin(w;r) /:1:. When the

considered function is relatively smooth, the numerical simulations of the integrals

are studied in term of a Dirac Delta function.



CHAPTER 1

TWO DIMENSIONAL CAVITY

PROBLEM

1. 1 Preliminaries

Consider an open cavity recessed in an infinite ground plane ( see Figure 1.1 ). The

ground plane and cavity walls are perfect electric conductors (PEC) and the cav-

ity is invariant along Z direction. The time harmonic electromagnetic fields (time

dependence e—Wt) satisfy the Maxwell’s equations

V x E - iwuH = 0,

V x H + 2'ch = 0,

where E and H are the electric and magnetic fields, respectively. Assume the media

inside the cavity are not perfect dielectrics and have finite conductivity.

In this case the continuity conditions on the Open aperture F are

2x(E0—E1)=0

2x(H0-—H1)=0

expo—01):“,-

é-(BO—Bl)=Js

5



(E,, H.)

Ereh Href)   

Figure 1.1. Three dimensional open cavity.

where p5, J5 are the surface charge density and surface current density, D and B are

the electric and magnetic flux [16]. Here subscript 0 denotes the quantities above the

cavity and subscript 1 denotes the quantities inside the cavity.

In the case of the TM polarization, the electric field is parallel to the z-axis.

Therefore the electric field has the following form,

E E0 = (0,0, 110) in W,

E1 = (0,0,u) in (I.

Let ui, ur, us be the 2 component of the incident field, reflective field and scattering

field in U+, respectively. Let k,- = k0,/€.i/12' (i = 0,1) be the wave numbers above



and below the ground plane, respectively. Then

  

2 2

a no +6 no +k2u0=0 in U+,

fl+§l+k¥u=0 in n, (11)
8:122 By?

u = 0 0n PEC,

along with the upward propagating radiation condition [15], that is, the scattering

field satisfies

 

- ' 2_ 2 . .

way): ’ [:62ka 5 yaaezé‘rda. (1.2)
v27r

where (Ml?) = “Dig/=0

EinCaHincy f ( )

(607/10) U+

  

PEC PEC X

   
PEC

Figure 1.2. Two dimensional open cavity

It is clear that 11.0 = u" + “7‘ + us above the ground. By assuming a plane

wave incidence with the incident angle 0, (with respect to the y axis), the continuity

conditions then read

21.S(.r,0) = u(.r,0) .l‘ 6 [0,11'],

Bus (911, ‘

ill-Wham — [1.053(.r,0) — g(.r) .r E [0.11.], (1.3)

7



where g(;2:) = —2z’p1k0 cos die—”€03: sin 61' and w is the width of the cavity.

Obviously, above is a problem in an unbounded domain U+ U S). Next, the

continuity condition is used to derive an equivalent form in the bounded domain 9.

For convenience, the transparent operator T is defined [12] and the zero extension

operator E0 as

M) = «af: we — emaeiéws, (1.4)

:1: :1: 0,10,

1300493)) = ”U H 1 (1.5)
0 otherwise,

 

Here '0 is the Fourier transform of 2).

Taking the Fourier transform with respect to :c of the Helmholtz equation in (1.1)

and solving an ODE for y, a transparent boundary condition is easily derived [12] as

 

6u3(:r,0)

—,,— = T<Eo<u5<x,o>>). (1.6)
3/

Using the continuity conditions (1.3), the exact solution of (1.1) and (1.2) satisfies

2 2

(Luimkguzo me,
8:122 0y2

u = 0 on PEC walls , (1-7)

Bu 17,0

#0 (6y ) +g(:z:) = p1T(E0(u(.r,0))) on F.

The weak formulation of the problem is : Find 21. E V (a suitable subspace of

H1(Q) [12]) such that

a(u,v) = (g,v),Vv E V (1.8)

where the bilinear form is defined by

a.(u,v) : [VU'W—/k¥uf’—/T(E0(IL(.E,O))D

Q D F

and the well-posedness of the scattering problem was established in [3] and stated as

the following Lemma:



Lemma 1.1.1. If6 E LOO(Q), 32(6) 2 61 > 0 and 8(6) _>_ 0, the scattering problem

(1.8) attains a unique solution in H6 (Q).

In the case of the TE polarization, the magnetic field is parallel to z-axis. Assume

the 2 component of the magnetic field in the cavity is u. It satisfies

1

V - (5%) + kg. = o in n,

1

@ = on PEC walls, (1'9)

377.

u = S(E0(g%)) + 2eik0$ sin Oi on P

where

r(eeif‘rds
1 00 1

3(f ) == —- /—
i\/27r /—00 k2 _ 62

Here the cavity is considered non magnetic. The variational form of (1.9) is to find

u E V (a suitable subspace of H1(Q) [12]) such that such that,

b(u,v) = [@01qu E V (1.10)

P

where

b(u, v) = iVu - V’Udatdy - fez/u ~17drdy — fig—US(EO(22))d;r

61 Q 61012 ()n

0

and the well-posedness of the TE case was stated as follow [3]:

Lemma 1.1.2. U6 6 LOO(Q), §R(€) _>_ 61 > 0, (3(6) 2 0 and €(lT) is smooth enough

(satisfies assumption (A) in [3]), the scattering problem {2.5) attains a unique solution

in Hlm).

1.2 TM Case

Following the fractional Sobolev space notation as in [18], (adopt a wave number

dependent. norm, equivalent to the usual norm), the norm || - [I H3 is defined by

. 0

Hull? = [(1% + 62mm

9



In this case, it can be proved that To E0 is a bounded operator from H1/2 to H_1/2

and satisfies

[[T 0 E0“ S 1.

Theorem 1.2.1. Let 61 = fre + ieim. Then the variational problem {1.7) has a

unique solution in V if Cz‘m 6 (—oo, —1/k(2)) U [0, 00).

Proof. When Eim Z 0, the uniqueness of the problem was proved in [3]. Therefore

the only one needed to prove is the case when 6- S -—1 1:2. From the definition,
2m 0

Im a(u,u) = -— k26- u dedy — k2 — €2IE (U)‘ 26140 2m 0 0

Q [€]<k0

By Im a(u,u) = 0,

_ / kg.,m|..l2d.dy = / ,hg - sQIEOro‘Pd: s l|T(Eo(u)||lIull2 3 Hull2

0 |{|<k0

Therefore when 6,2,7, < —1/kg, ||u|]2 = 0 is derived.

The existence follows from the Fredholm alternative. C]

Notice that T is not a Hermitian operator, the uniqueness is not trivial for E2 76 0.

Different bases, for example, piecewise polynomials, could be adopted to solve this

model. In this dissertation, only the trigonometric bases are considered.

By the PEC condition, the exact solutions u consistent with (1.7) may be expanded

m I

u(.r,y) = Z ansin(3g5)sinh(7n(y + (1)), (2.11)

n=1

where d is the depth of the cavity, w is the width of the cavity and

 

7n : VOW/l")? _ Ali/"1‘1

10



It is easy to derive the coefficients of the sine series of g(:r). It is given by

 

  

. _ ' ' . 2mr cos(6.-)

= 2k 1— —1 "e zk0ws”‘(‘9z) ‘ . 2.12972. 0i i ) ](n7r)2 _ (kow sin(6,~))2 ( )

A direct Fourier transform calculation yields

, nrr A 1 —n7r 1 - (_1)ne—iw§
E . _, =

.
( Obm( w l) (6) \/2_7l‘- w £2 _ (my (213)

'IU

Hee are) = 9% / nae—“fies.

1.3 Mode Matching Method

For large cavities, because of the large number of internal reflections, the exact so-

lution is highly oscillatory. In order to calculate the solution more efficiency, an

approximate model of (1.7) is considered first by using the periodic extension Ep.

Define

v 1: .1: 0,u* ,

Ep<v<e>> = ( ) E l I
v(.r — (n. — 1)u..') .1: E [(n — 1)w, nw]

The approximate model satisfies

2,, a? .

2+; k¥u=0 inQ,

01:2 8y2

'0 = 0 on PEC walls , (3'14)

(9'r.'(.'1:,0)
 11.0 (9y +g(.1:) = ulT(Ep(u(.r,0))) on F.

In this model (3.14), only the periodic extension is involved.

Similar as (2.11), the approximate solution u may be expanded as

 

 

00 .

t'(.r, y) = Z b"5111(72‘7?”Sinhhnw + d). (3.15)

7121 I

and it is easily seen that

, 72.71" A in .- mr - n7r

(E[)Sm(_‘)) (E) = (0(€+—)—0(€——)). (3.16)
w \/27r u? ‘ w



where 6() is the Dirac delta function. Hence

T o Ep(sin(:zfl)) = — sin(£££)un,

w

where

 

11., = i\/k8 — (n7r/w)2. (3.17)

Then the solution satisfies (3.14) may be given by (3.15) with

2ik0

b = _

n [ill/n SlnhWnd) + #0771 COSh(’Ynd

 

)gn- (3.18)

It is clear to see that bn decreases exponentially as 11 increases. This is the so called

mode matching solution.

Remark 1.3.1. In [10], Morgan expanded the field in the local region above the aper-

ture using upward propagating waveguide modes bounded by vertical walls and obtained

the same formula. Here, the same mode matching formula is derived by an alternative

approach based on the use of the periodic extension operator Ep.

Next is focused on the convergence rate of the above series.

Lemma 1.3.1. Let C]: be the Fourier coefficients of f(.1:). Then 2k cite-2m < 00 if

and only iff 6 H17)".

Theorem 1.3.1. Let v(.1:, y) be the mode matching solution of (3.14), then 1*(.r.,0) E

H6([0,w]). Moreover,

00

2 (bn, Sillll(’)’-n,(l))2 = 0(i), (3.19)

n=[w/rr]

[-u,1/7r]—1

Z (n—Wb71,Slllll("fnd))2 1" 0(1). (3.20)

”:1 w w

12



Proof. For simplicity, let’s consider the case of empty cavity with incident angle

6,- = 0. Notice that

 

 

lim sinh(rc) _ 1

“fit—'0 :1:(sinh(:1:) + cosh(;1:)) —

11.1.1200 S‘nhm = lim i
r(sinh(a:) + cosh(;r)) III—100 2:1:

From (2.12) and (3.18),

 

 

1

bn sinh(*md) = O( .

nrrn

Therefore (3.19) and (3.20) are true.

For more general cases, if nrr >> w

. w

bn smh('yn,d) = O( 2 ).

nrr)

and if nrr << w

bn sinh('ynd) = GUI—g).
u}

The same estimates could be still derived. From Lemma 1.3.1, it is clear to see that

v(;r,0) E H6+5([0,w]), for some 6 > 0. E]

For a two-layered medium cavity problem, define the permittivity inside the cavity

611 y E [—d190]!

fr(1.’(.17)) =

62, y E [—(l, —(ll].

Expand the field inside the cavity by

00

 

111(1', y) = Z [671. sinh(,l3n(y + (1.)) + den cosh(,l3n(y + d))] sum?) y E [—d1,0],

n=1 I

00 nrrr

112(.r,y) = Z bnsin( 'w‘ )sinh(‘m(y + (1')), y E [—11, —d1].

r121

13



where

 

fin = \/(n7r/w)2 ‘ k8fl1€1e

7n = \/(nrr/w)2 — kgugeg,

 

111 and u2 are the upper and lower fields inside the cavity, respectively. Using the

continuity conditions on the interface,

en, [[10 cosh(,6nd),[3n — #1 sinh(/3nd)1/n]

+dn[/10 Sinhfflndlfin — #1 COShffindll/n] = ”971, (3-21)

on sinhwndz) + dn cosh([3nd2) — bn sinh(7nd2) = 0, (3.22)

on 112 cosh(,l3nd2)13n + (1.an sinli(,8-n112)fin — bnul cosh(7nd2)ryn = 0. (3.23)

Here the permeability u is assumed a constant everywhere. By solving the above

system, a mode matching solution for the two-layered medium cavity problem is

easily derived. The same idea could be applied to a general multi-layered medium

problem. If consider the TE cases or the medium is vertical layered, c0412?) should

. I. . . n7? . .

be used in the field expansmns rather than s1n(—). The mode matclnng solution
w

is again easily derived.

1.4 Improved Mode Matching Method

In order to find the difference between the exact solution and the mode matching

solution, the difference between two operators acting on one single mode is analyzed

14



first, i.e.,

 

T o E0(sin(¥))— T o Ep(sin(n—:)$))

- [co 1 1
= 22? —k0 812:6 k2- {2 5(1_(_1)n cos(w§))(€ + 171137: _ _ %) dé

 

' 460 1 1 1

+ 52%00+]: e“:6 13-12 —<1-(—1”) eeecwox +....— m.) «it

  

5 7.7 ‘ .7;
. n 7r

+ i 1223135 k2 _{22131110145 Zn?» _ 381110145 — 7;»

2—7r -OO 2 €+ __ 2 g _ _

w

—irr6(£ + —) + i7r6(£ —-)]d{

g 11+I2+I3+I4 (4.24)

Before proving the main theorem, let us define Si(.1: ) and Ci(.r ) be the sine integral and

cosine integral respectively. They have the following definitions and the asymptotic

 

   

 
  

expansions,

(I: t 00 t

Si(.r) = / 51” 111=:—/ S—in—dt (4.25)
0 t 2 :r t

1' , t—l 00 t

01(1) = 7+ln:1:+ /0 9—57—111:— / $111 (4.26)

.1:

S" _ 7r cosa: 00 (——1)"(2n)! sina: 00 (—1)"’(2n+1)! 427

[(1‘) _ E— x _ 1.211 — $2 _ $211 ( )

n—0 n—0

. oo
_ smx (—1)"(2n)! cos:1: (—1)n(2n+1)!

cm) _ :1: 2 I2” — $2 $2” . (4.28)

1120 r1..=0

The graphs of them are shown in Figure 1.3.

Lemma 1.4.1. For sine integral and cosine integral, the following estimates hold,

2 2

ISM-r ) - 7r/2| S -, lCifl‘H S - (429)
a: .1:

Proof. The estimates could be derived by integration by parts. 1:]

15



 

 
 

 

 

    
Figure 1.3. Sine integral and cosine integral.

The well known Riemann-Lebesgue Lemma says if f E L1(R), then

lim sin(.r/6)f(;1:)d;1: = 0,

6—40

6lino]cos(;r/6)f(:1:)d;1: = 0.

The smoother the function f (r) is, the faster the limit converges. But the inte-

grands in 12 and 13 are not in L1, it makes the analysis more challenging. N. Bleis-

tein and ect. focused on log-like functions and established a generalized version of

Riemann-Lebesgue Lemma [19]. Here in this work, an asymptotic expansion and

anti-derivatives are used to prove the convergence. Again for the above limits, if f (r)

has singularity at .r, = 0,

lim sin(.1:/6) = 7rd(.r)

6—+0

should be used.

16
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Figure 1.4. Graph of r(x).

Lemma 1.4.2.

Ha

1 sin( )

/ ' V1 —.'r2d.r = 71' + 0(6).

_la:

"
b

l

 

Proof. Define f(.1:) = V 1 — 1:2, .1: 6 [—1,1]. Because f’(0) = 0, therefore

r(x) = 1(0) + fire).

ft?) - f(0)
Here r .1: = —. It can be seen that r, .1: has sin ularity at .r = 1. Notice

1.2
8 .

17



that

 

_ .r

1 sm(-E—)

]0 a: f(:1:)d.1: (4.30)

1

= f(0)Si(%)— [O sin(§);rr(a:)da: (4.31)

1 d
= f(0)Si(%) — CCOS%T(1)— 6/0 cos(§)a;(a:r(:r))dx (4.32)

1 d
= g + 0(6) — 6/0 cos(§)fi(xr(a:))dr (4.33)

Use the Riemann-Lebesgue Theorem in finite domain [a,b] and notice that r(l) = -1

and :rr(;r) is a decreasing function on [ 1,.1]Therefore

[01 l—(I7“($))ld$—— —/ldd—(:1:r(:1:))d.1: = —:1:r(:c)|(1)= 1.

Hence

1 ‘5

lim cos(;€-)d(.rr(r)) = 0

6—10 0

and

 

1 sin(£)

/ 6 f(.1:)d.1: = 71' + 0(6).

_1.r

Remark 1.4.1. The above lemma in fact states that lim€_,0 sin(:1:/6) = 716(.1:).

Remark 1.4.2. For Riemann-Lebesgue Theorem, it could be further proved that if

[(2) is Lipschitz continuous on [a,b] , then

b

/ sin(.1:/6)f(.1:)d.1: = 0(6),

(1.

b

/ cos(r/6)f(r)d.r = 0(6)

11.

(See Appendia) But .1:r(.r) E L (,[0 1]),)directly using Riemann-Lebesgue Theorem in.

(4. 31) could Just guarantee lim€_,0 fol sin(f).171(;r)dr 2 0. The first order convergent

result could not be obtained. Also notice —(.1:r(.r)) has singularity at .r =,1 the

dc

change of variable could not be used twice in {4.32) to get 6“ term.
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Lemma 1.4.3. If FI— < 1, then for any a E [0, w], the following is true.

w

sin( w(_1; — —)) sin(w(.1: ‘1' 71—71:»

/11 Bias,/1_ w d1:
nrrw 717T

:r—— 23+—

w w

7171'0, 7171’

= (Si(w - n71) + Si(w -l- n.n))sin(—TU—) l — (—w ) + 0(1/w).

  

Proof. Define

 

 

 

sin(a:1:) - 5111(m)
l

71(31‘1) = r171 11
x — _—

w

1— :c —)2

w

f1(‘.13,(1.) — 7171’

x — _—

w

sin(a:1:) + Sim-TEE)

r2(.1:,a) = 1171 w

.r + —

f2(¢13.0-)= 11—7—1

w
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Then using the odd and even properties of the integrand,

__2_i/_lli(133m sin(uI-—))_sm(w( :F—l) d:1:
  

  

 

 

.1:+—

w7r w

sin(w( :1: — —)) sin(w(I + E»

= /()1(Sin(GI)V1— — n.7rw dI

I—— I+—

w w

1171

1 mm sin(w(I—- _)) 1171'
f ' 2

=_- [sin(w) (1:—Tim 1—(—w—) d:1:

w

1 nn /1
2

— — d+/0r1 sin( (.1: w )) _n(_w) I

+/1<:$11 (1 "new/1 f '(1 "fix "hes — sn1 —— r sme—— I—— :1:0 111(11 112: w :1: 0 11 w w

1 (1+ ml))sin( 11 —

+/(sin( mrw 1—(fl)2dI

0 r+_ 'IU

w

1

—/ r2sin((u'(I+n—7r)) l—(L—lfl)2d.1:

0 w w

1 .

+/1 sin(n—w7m )f28111(u(w;17+—))dI—/ 7‘2f28111(w(.1?+E))($+fl)d£

0 0 w w

Similarly as in Lemma 1, the following facts could be proved:

  

 

First,

1171 . 1171'

1 sin(w(.1: — —)) SlIl(”tL'(.‘lT + —))

w 11' .

/ nrr + 111 d":

0 I — -— I + ---
w w

w—nrr sin I w+mr “in I

= f ( )dI + / b—LdI

—n.7r ~73 nrr .1:

= Si(w — nrr) + Si(w + n7r)

Second,

1 4 1

/ flsin(w(.1: - 7—U—r))d.1:/0+(f2 sin(u'(.1: + H))d.r

0 w 11'

121— 132*“)2)

= —l .f' '..' 1.:( )n /0 1:2 _ (EH)? s1n(111)11 



For convenience the following definition is made: F1(I) =

(7171

2111—12—9)
(U)

 

. ‘. . 1 .
$2 _ (1,11? It IS a decreasing functlon and f0 |F1(I)|dI IS

w

finite. Therefore the above integral is 0(1 /w).

Third,

I 1 mr

/0 r1 sin(w(I — n—J))dI —/0 r2 sin(w(I + -w—))dI

n 1 2(sin(aI)%T — Is;n(L;a))

(—1) f0 717T

- (—)2

sin(wI)dI 

For simplicity, consider the case when a = w. The major contribution of the above

integral is

2777f

 

 

1 (sin(wI)

/0 2_ "7,15 (1.1:

117 -(w)

1 , 1

= :1- [log(t — n71) — log(t + mr) — C1(2t— 2n7r) + C1(2t + 2n7r)]8} = 0(5)

Similar, the fourth conclusion is derived

1 nw na 1 ma nw

/ Tlfl sin(w(I -— —))(I — —)dImm/O— r2f2 sin(w(I —))(I + —)(II

0 lb w w 111

1 (sin(aI) - sin())(\/1 — I2 (n_7_r )2) 1

= (_1)n/ sin(wI) rm (Tl (1.1: = O(—’)

0 we - —> w
u)

00

sin

Define qn = / (31:1,)dy wheie n _>_ 1. From (4.25), using the integration by

3!"

1/6

parts, it could be easily proved that

 

1 . 1

qn, = 6” [cos — + m s1n - — 11(11 +1)e2

c e

1 1

cos 2 — 11(11 +1)(n+ 2)€3 sin —]

c

+71(n + 1)(n + 2)(n + 3)qn+4, (4.34)
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and further more, an+4| = O(en+3).

Lemma 1.4.4. Assume a = 0(62), then

Proof. Define g(:1:) = ‘/l — i2, then g(I) = f(l) from the definition in Lemma

:1: :1:

1.4.2. Use Taylor’s expansion and (4.34),

23

()0 sin(—)

2 fol/$2 —1dI

1

)(x—2 + $14)\/ I2 —1dI + O(€2)

 

8

 

Lemma 1.4.5. For any a E [0, w),

71 7? TNT

 
 

00 ——1 .- {—— sin(111(I — —)) sin(w(i~ + _))

./ +/ e'a-E I2 - 1 727?“, — mrw d": = 00/1“)-

1 —OO 15 — — I + —
’11) u)

/ 1 1

Proof. Define g(I) = —2 — 1, then g(I) = f(—) from the definition in Lemma
1: .

tE

22



1.4.2. Use Taylor’s expansion,

7171' 71’”

  

 

[loo [:33 Fatima-E1) sin(ww(a:+—u7))

-1 TM " n7r d:1:

= — sin aI T__sin(wI) V1131132— 13
Onw/loo ( )3; (_)2 1d

— CE 00 '( )'( )(i+(-Ei)v 2-1d +0((1/ )2)
_ 1 sm aI sm MI: 32 x4 33 113 w

00 sin an: in wI

= (13/1 ( l: ( )mo1—§r1111dx+0<ww121

= C%(Ci(w — a) — 021w + a1) + 0((1/w)2 )

= 0&3)

Remark 1.4.3. If (15(I) E C80(R) is an even function, then

(L'

if” ’S——in(‘)¢(11
1

”_m :L‘

= [00 6(I)¢(I)dI + (3 c081]00 6(I)¢(2)(I)d1 + 0&4)-
—oo 6 —00

In fact it provide us a way to correct the well known convergent result,

sin(wI)
 = 7rd(I), to an arbitrary convergent rate in the sense of distribu-

1

0, —

tion (See Appendix ). But in this work, since V l — .1:2 E C 2(R), the convergence

11m

111—>00 a:

rate degenerates to 0(6).

From the above le111mas,

{[4 + Vn, [31(111— nn);Si(11-' + WT) — I] sin(ml} = 0(3)
 

where V", is defined in (3.17).
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For the second integral and the third integral in (4.24),

 

 

 

 

00 -217:

12 + 13 = 2W—1 — {2(1— 1(_)n cos wéko) 2 7% 2 cos(I€k0)d{

1 C *5?)

0

oo nvr

2' 1 1 n ‘27,,—

— _ — — _ - - rm 0

_ 27f /(§ 215 +O(€3))(1 ( 1) coswfiko) £2_(—)2 cos(I£k )d5

1 wko

oo n7r

i '2‘—
: E /§(1—(—1)ncosw€k0) 2 7",)” 2 cos(.1:£k0)d€+ 0(1/w)

1 5 — (mi—(1

if I 71$ 0. Now calculate

1

/€(1 —- (_1)n cos wéko) £2 —- (EV cos(I€kO)d§

ka

Notice that the Lebesgue dominated convergence theorem could not be used due to

the singularity of the kernel. When n is an even number, the anti derivative is,

  

 

 

 

— k 1 k —1 k.
AN('JI) = :( 1) Si(x(u€ 0+( ) mr))sin(mmj)

2 w w

k=1

+ 22: 1C (I(111€k0+ (—1)I‘n7r)) (TUTTI)

5 l w COS —w—
k=1

2 (_1)m+1 k w£k0+(—l)mn7r ( 1)k1:+u1

+ Z 31((—1) 1+1“) )sin( 7 )

4
H) w

m,k=l

2 , 1-_ , k _1 m, , .

+ Z _10,((_1)1 1: 11M 0H ) mr)cos( 7r 1) Hi“)
4 w u!

m,k'=1

From Lemma 1.4.1,

12 + 13 = 151010.011-1 011/111) = 0133).
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A similar result could be derived for n which is an odd number. For the first integral,

k0 _211—7:

— 0‘/k(2) — (2(1 — (_1)n coswé) E2——(T%)_§ cos(I§)d€

2n7r

ikO — E n7r
= 1._( __ —— ., d 0 —.WOO/OH c)osw€) £2 - (7:77,)2 cos(r£) £ + ( w )

Evaluating the above definite integral,

7T1?

[11 — '11—an12:mall-$1] = 0131+ R<x1cos<Lw 1

where

-wk0) (I + w)(nrr — ka)

w

  

11.111 = [2(—11"+152:$(m( 1

_s1(<w- :ch — wA0))+(—11"+15((” +$)(;”+“'k0)1

I(n7r .1: ka)) + (—1)nSi((w - IXZJI + 111/<0)

)+ S'i(

 
 

+2511 1 . (4.35) 
 

n71 ,

and R(I) is a O(———) functlon. As a result,
w

77..” 7171'1'

[To E0(s1n(w ))— ToEp(sin(-——w ))+0(:l—7r)

S1(w — mr) + Si(w + n7r)

27r

7771'1'7r 1k .

:lsin(%)—4——0-—fn(.l‘I)sin(—£)—) 

= —l/n [1 —

By comparing (1.7) with (3.14) and using the above estimate, the improved mode

matching solution is derived

[w/fl1—1 717111?

17122.11): 2 ansin(——-w )smhmwm» (4.36)

n=l

where (in. could be obtained from

- l/' , it

an [7n coth('ynd) — —2n— — -—0f11(-l')

= 571(7)) COtll("/n,(l) — V"). (437)

The main result of this work is:
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Theorem 1.4.1. Denote u as the mad solution of (1.7). Then 11 E H6+6([0,w]).

Let 11 be defined as {4.36). Then

Hume) — a(x.o1112 = 01—117,).

Proof. From the lemmas, the coefficients on of the exact solution satisfies

an ’Yn COtthnd) — — _ 7fn($) + 0(3)

= bnf‘l’n C0th(7nd) — Vn)-

Because Si(I) is bounded, therefore

 

")"n COth(’)’nd) — ll”

11 : Vn zko = 00)’

“m C0th(’7nd) — ‘5' — EMU?)

Because on = 0(bn), from Theorem 1.3.1,

[w/n]——1

Hull; = 2: (an sinhmd»? + 015-1
n=1

For 1171 < 111,

~ 7171

(1n = (In, + O(—)bn

w

Use Theorem 1.3.1 again,

- 1

llu— 141% = 01—1
u!

C]

Remark 1.4.4. Consider the following two Helmholtz equations,

(92 (92' y

_1‘. + _” + 1%.. = 0. [(1,111] x {—11.0},

0I2 (9y2

0211 (9211 o .
__ + _. +1-11. = 0, (1,111 x —(1,(1. (4.38)
3.132 0y2 2 [ l [ ]
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Using the change of variables, (4.38) could be rewritten as

3211 32u 2 £72 2

— +ku =0, 0,—w X ——d,0.
01:2 33/2 1“ l k1 l l l

Obviously, solving a problem with fiIed dimensions at the extremely high frequency is

equivalent to solve a problem with the fixed frequency and large d and w. Above the

improved mode matching method is derived for large w, which could be viewed as the

electrical width of the cavity, i.e., we = wp/wavelength. Notice the convergence is not

related with depth d. The method should be extremely useful for deep cavity as well.

For a two-layered medium (parallel layer), the modified upper field 111 and the

modified lower field 112 are given by

’13

{11(17, y) = on sinh (1377((y + d)) + dn cosh(,1377(y + d))] sin(%),

(Tl—1.1))

112(7. y) = b77 sin( s)inh(777, (y + d)),

5;.

where b177, E77,, (177 are solved from the following system,

 

0 A B 1377—1177, R

—C D E 571, —C-n = O

—F G H J7. -— 11,, o 
Here

A = cosh(,1’377 (1)1377 — sinh(,1’3n,d)(I/n + f"). E = COSMBnW - d1 )1

R = 6n 511111111711) f7, + (1n, cosh(,1377d)f77, D = Silll'l(/3n((l — 111)),

B = sinh(.[377d)1’377 — cosh(,1’377d)(n1177 + fn), C = sinh(7n(d — 611)).

G = ,877, cosh(1377(d — (11)), H = 137lsi11h(1377(d — d1))

F = 777,cosl1(,1377(d — d1)).

where 1377,, 7-77 and Vn. are defined in (3.21), (3.21) and (3.17) respectively. The co-

efficients of the mode matching solution bn. can, (177, are defined in (3.21), (3.22) and

(3.23). The above main theorem is also true for the two-layered cavity case.
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If the medium is vertical layered, the error estimate could be obtained by analyzing

/—\/11_—£250(

1.5 Numerical Experiments

cos(fl)Adé .

w

Here some numerical results for large cavities are presented. It should be noticed

that the usual numerical simulations are done for open ended parallel plate waveg-

uide, which has different geometry and different applications. Figure 1.5 displays the

magnitude of the aperture field at a high frequency. In this case, k0 = 21r, w = 16,

d = 4, 6,- = 0. Here the parameters are already rescaled by the wavelength. Figure

1.6 shows the magnitude of the field of a very wide and shallow cavity. In this case,

k0 = 27r, w = 1000/2/1r, d = 0.01/2/7r, 6,; = 0. Physically, when w >> d, it becomes

a total reflection problem, thus |u| z 2sin(k0d). The phenomenon may be observed

from Figure 1.6. In Figure 1.5 and Figure 1.6, the cavity is empty, i.e., 67 = 1.

Figure 1.7 shows the magnitudes of the fields of a cavity with layered mediums.

In this case,

k0 = 2n, w = 50/7r, 0.,- = 0,

1) ye {—S/Waoli

Er“) =

62, y E [——10/7r,—5/7r].

The connected line is for 62 = 1, the dashed line is for 62 = 3 + 3i.

Figure 1.8 again shows the magnitudes of the fields of a filled cavity. Here k0 = 271,

w = 8,

61, y E [—2.4,0],

(r(iL‘) =

62, y E [-4.8, —2.4].

The continuous line is for 62 = l, the dashed line is for 62 = 4 + i.

Another important quantity in the EM field calculation is radar cross section (or

echo area). It is the most common scattering measurement in antenna design. It
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Figure 1.5. Magnitude of the aperture field for a moderately wide cavity.
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Figure 1.8. Magnitude of the aperture field for a two-layered filled cavity.
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measures the ”size” of an object as seen at a particular wavelength and polarization

and defined by

- 2 Din
rl—l>moo 47rr —Ds

where Din and D3 are incident power density and scattering power density, respec-

tively. The prediction and reduction of Radar Cross section plays an very important

role in aircraft design and antenna design.

Mathematically, for the 2—dimensional open cavity, the echo width (Radar Cross

Section) is given as [8]

0(cb) = élgcosfib)feio’xE(:1:)d:c|2 (5.39)

F

Figure 1.9 displays TM case monostatic RCS of a empty cavity with w = 1,

d = 0.25. RCS computed using the FEM (continuous line) and IMM (dashed line)

agree well. The unit of RC8 is dB/m.

Figure 1.10 shows the monostatic RCS of a filled cavity (62 = 4 + i). It follows

the same dimension as the previous example. Because of the different choice of time

harmonic, the result is compared with the example in [8] for 62 = 4 —— i. IMM result

(continuous line) and FEM result are showed in one graph and they agree well with

each other.

Figure 1.11 show the RC8 of a large cavity. In this case, w = 10.2, d = 5.1, e = 4

and f = 300MHz. The continuous line is for backseattered RCS, the dashed line is

for specular RCS.
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CHAPTER 2

THREE DIMENSIONAL CAVITY

PROBLEM

2. 1 Formulation

Consider the problem of scattering by a cavity embedded in an infinite ground plane

(see Fig 1.1). Assume the ground plane and the cavity walls are perfect electric con—

ductors (PEC). As discussed in Chapter 1, the governing equations are the Maxwell’s

equations

VXE—iwuH=0

VXH+iweE=0

where E and H are the electric and magnetic fields, respectively. Assume

k0 is the wave number and i‘ = (.1:,y,z). Let a plane wave E2. =

Z0" zkllq'l' illuminate on the structure. Here 13 = cosa(sin ¢,—cos¢,0)T +

sin a(cosqbcos 6,sind>cos 0,sin 0)T is the polarization vector, where a is the polar-

T
ization angle. (7 = (coscbsin 6,5inqbsin 6, — cos 6) is the wave propagation direction

34



(E, ”.1

ref! Hm)   

and Z0 z 1207r is the intrinsic impedance of free space. Then

. - :1:

Er = _Z0p*elk0q :1:

Hr = _s£*eik0q*z

where

p-q=0 q* = (q11q2,—q3)

s =p x q s** = (—sl,—32,s3)

Because this is a unbounded scattering problem and can be regarded as a perturbation

of total reflection problem, the scattering fields are set as E3 = Et - El — ET and

Hs = Ht — Hi — HT, where Et and Ht are the total field. In this case the scattering
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fields satisfy the Silver-Muller radiation condition

lim rES = lim rHS =0

r—ioo r—voo

- s__ s =
rlmooNE ZOH xr} 0

Further assume the permittivity £7 and permeability pr inside the cavity are invariant

along a: and y directions, but piecewise constants along 2 direction, the boundary

conditions are

nx(E1—E2)=0 z=0

nX(H1—H2)=O 2:0

n-(Dl—DQ)=pS z=0

n-(Hl—H2)=J5 2:0

where p3 and J3 are the surface change density and surface current density.

Notice the cavity walls are PECs, therefore the fields satisfy the following bound-

ary conditions inside the cavity

n x E2 = 0 on the cavity walls

n - H2 = 0 on the cavity walls

The well-posedness of the variational formulation was discussed in [3] using the Hodge

decomposition and the Unique continuation.
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2.2 Field Representations

Use PEC conditions, the B field inside the cavity is expanded as

12y)SIH[/\mn(z + d)],(2.1)
 Ex: 2: [amnsin(m)+amncos(fl)]sin(

w1 w1
m,n=0

  

oo
, mm: ~ , mir m7r ,

Ey = 2 sm(—) [bmn sm( w2y) + b77777, cos( 10231)] sm[)\mn(z + d)],(2.2)

 

m,n=0 wl

00 7171']: m7r

E2 = 2 sin(?) sin( u y) {Cmn sin Amn<2 + d) + Cmn COS[A7n,n(Z + 60]} (2.3)

1 ’2
m,n=0

 

where A7777; = \/k(2)plel — (nir/wl)2 —(m1r/w2)2.

Note that V - CE = 0 and the medium is piecewise constant,

3E3: aEy 8E3
 

 

  

 

0 = —— + +
at 8y dz

00 7171' 13 7771"? 7771' may

= Z [émn cos(—E4) ‘ amn Si11(—uj'.—)] 'w_ sin( w ' )Silllbmnlz + dll

m,n=0 1 '1 1 12

00 Tl‘fl'I‘ ~ may TIT/Ty 77177

+ Z SIIl(—) [bmn COS( ' ) — b77171, Slll( ):| — Slll[/\Tnn(2 + (1)]

1.1/'1 102 1132 11.12

m,n=0

00 nnr mm;

+ :sin(—) SlIl( ' ){Cnnz COS /\7nn (Z + d) — CNN), sin[/\77777(z “l" d)]}/\7nn.

”(El 102

m,n=0

therefore

2 077111718111“1'771n(3 + d) = 0,

n

E b77777ms1n 7mn(3 + d) = 07

m

Cmnfi'mn = 0

Since the coefficient matrix involving (”177777 is nonsingular, (177777 = 0, b77777 = 0, 577777 =

0 for 777-777 # 0 and

7171' 77171"

0771.71. + -—f)]nn + ATNTIC'ITUZ : 0 (2'4)

“)1 “1'2
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From the Maxwell’s equations, the H field inside the cavity is

00

 

 

 

 

 

 

1 . . ..

H]: = Z .—- {mcmn sin(-TE) cos(mfly) cos[)\mn(z + d)] (2.5)

iwu wz w1 w2

m,n=0

—/\mnbmn sin(m) cos(mfiy) cos[/\mn(z + d)]} ,

w w2

00 1 nvrx may

Hy = Z 17/; {Amnamn cos(fi) sin( u2 )cos[/\mn(z + d)] (2.6)

m,n=0

_ Ecmn cos(?) sin(TZJZy) cos[)\m77(z + d)]} ,

00 1 mr mr mm:

Hz = Z _— {—'-b77m cos(—y) cos( ' )sin[)\mn(z + d)] (2.7)

ltd/J. w1 w1 wg

m,n=0

_ Mam.” cos(m) cos(mfiy) sin[)\m77,(z + d)]} .

1132 ml 1.1/'2

Next, the field representations in the region of upper half plan are established .

Above the ground, 60 and 110 are constants everywhere. Thus from the Maxwell‘s

equations,

new + kng = 0 when 2 > 0

Bay = 0 when 2 = 0.

and the scattering components Egg satisfy the I\Iaxwell’s equations and the Silver

Muller radiation condition. Further more,

Egg/(.12, y, 0) = Ex,y(l', y, 0).

Take the Fourier transform with respect to :1: and y of the Maxwell’s equations and

solve an ODE for z [2]. In this case, the x y scattering components of the B field

above the ground is derived as

- .2_ 2_ 2

E‘1s.z>=E'-*<eo>ezv"0 ‘1 5‘2 (2.8)

. ,- / .2_ 2_ 2 , . .

('anvz) = i‘/‘:>O (E0 OEF.y)A(£10)P2 A0 £1 £2 QEI€IE+I€2yd€ (29)

2n ~00
Ely
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Note that give E§(:c, y, 0) # Ez(;r, y, 0), a similar result could not be derived for Ez.

For Ez,

. ,/72_

15‘3(€1.£2,Z)=[130(E3(€162.0))1661€2Z

Hence,

*1/12—

6~E§(él,12.z)=i\/18-5 —12 [5301153311113 0))1e 5132"

Therefore

1,/12— . 1

[30(1‘3346162100l6 £1€2Z= 3253(€1,€2,Z)

1118-61—63

 

 

it implies

 

€311,132): E3(,£1 €212) 

2V1?)—l

Taking the derivative of E}? with respect to z and using V - CE = 0 [2], [22],

1

- .2 2 2
z\/"0“€1‘52

 

1533({10 = l-(0.rE3)‘(€, 3) - (311531“, 2)]  

E301, y, z)

1 g. . 1 ’. '

= — 21—16151) (m) — (01153) (5,211 6’31““?ch
271’ R “/1118—

for z 2 0. From the radiation condition [E] = 0(1/r), (0,332)‘ = 1111333.. Thus the

 
 

total B field above the ground is

E_17‘y(.l',y,2) (2.10)

= Z11111,2€i(k“‘r+kyyh-eikzz + 6"7"”)

1 OO
1.

+ '2— (530013117111 0)V 0’515‘21174.42.17, (2.11)
7r —oo "
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where g =

Ez(:c,y,z) (2-12)

 
 

20])3ei(ky$+kyy)(elkzz+e—ZkzZ)
(2.13)

1 .

{—1—1E2111z1—12E5e 21e151$+l€2yd5
2 2

W R \[051 52

(61162)-

From the Maxwell’s equations, the x-y components of the magnetic field above

the ground are

+

W—[2201(1~yp3 + kzp2)e (2.15)

1Wi€28i51:+i—€::

 

 

27f R2[_€1< EO
OELL')(€1

0)_ {2(E0
0Ey)(

(NW/1—

,i/,,,,13,/1 —£1—£§ EooEy)(€0)l€1$+l£2yd€}

 

Hy(.r, y. 0) (2.16)

—{QZ()2'(——1.pl — 1;,3713)e’7(k~1‘1+kyy) (2.17)
imp

1
lglelélfi‘l’ngy

 

[51 (E0051)(5.0) -€2(EooEy)( 3115 
27r R2

0)l\/k8_

7/321/10—{1—£2(E00E)(1.1>)1:7
€1x+’52yd£}£1

 

From the continuity conditions and application of (2.1) to the above equations, two

equations involving an,b77,,c77, are derived. Combining with (2.4), the electromagnetic

fields could be solved.
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2.3 Mode Matching Method

Replacing the zero extension E0 in (2.14), (2.16) by the periodic extension Ep,

H$(2:, y, 0) (318)

= fi { 2Zoi(kyp3 + 1zp2)ei(kfl+kyy) (3.19)

i€2€i€1x+i€2y

1/12 - £2 - 62

711; [112412-1212 (Ep 0 Ey>‘(:,0>e"€1”+i52ydé}

 

 
+2.17; l121—11031, 0 5111101121131, 0 51,111,011

 

 

 

 

Hy(x, y,0) (3.20)

= m{2Zm(—kzp1—k1:p3)€i(k$x+kyy)
(3.21)

1 i£1$+i152y

~27 21-61 EpoEI)(€10)“{2(Ep°Ey 01“” 2 d1

R onflo £1 “52

1152/2 2'1/18— ~53 (.EpoE11130181151111.1211}

It is easy to derive

 

(Epcosflf-n‘m = 12—71(6(1+1’1>1«5(1—:—T>>,

mt * 1 , 1 - (_1)7‘1e—;’w€

(E cos(— 1) (1) = —(—1a) ,.1 ,
0 w 2n (£22_(_)2 )

where (5(-) is the Dirac delta function.

Lemma 2.3.1. For the periodic extension. Ep, the following statements are hold:

 

 

 

 

 

  

1 . ., .- .

-2— R22[Ep(sinP-f—Tcoswm7ryM]\/A {(225.1(1614ry52l11g

71'

= /\7nnSln'7m—TCOSm17ry

“’1 “'2

1 mm: , "my 2 r) i(r£ + g )

— E( — 1 —-,»1E21271 R2[ 11(cos Sin 1112)]A12M/ -61 £26 (6

: Am” cos mm: sin mm;

“(1'2
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Lemma 2.3.2. For the periodic extension Ep, the following statements are hold:

   
 

 

 

  

 

 

  
 

 

 

 
 

 

nn 2

1 mm: may”626z($€1+y€2) (‘11:) mar may

/ [Ep(cos— sinu d6 = cos— sin

27r R2 w1]0\/k_€% __ £3 Amn w1 102

i( ) nmir2

1 x£1+y£2 . 1

[EMSin——n7r2: 0081.251528 2d = wlwg cosm sin miry

2—71' R2 U11 )]\/k0— Amn 1.01 7.02

mir

1 nmcC Sm_7r_y)]A €2€:(I€11+y:2) (112—2) mm: miry

R[Ep(sin— = 2 sin— cos

( ) mmr2

. ’i $€1+y€2 . ,

1_./ [Ep(cos—mm: sin _miry “ €1€2€ d = _w1w2 sinm cos mny

27f R2 111 11.12 \/kg _ 6% _ 6% Anzn 1111 102

Using the continuity conditions

112.1(1. 110+) + H2111. 1.0+) + H2111. 11, 0+) = Hx,y(171 1,, 0‘)

a system equations is derived

 

1 mn'

171.111{—Cmn COS()\7nn(l) /\mnbmn 003(Amnd)] (322)

1 , m-mr2 , , 77127r2 ,

= ——[S.,1,m — amni Sinhnmd) — bmni SlIl(";‘m,n(l) (3.23)

110 w1 102 /\m n 102 Amn

"anbmn SinO‘mndH

 

1 7171

Ilhmnamn COS(/\mnd) — U—I‘Cmn COSO‘mndll (3-24)

1 . 12271'2 1 , 17171712 ,

= —l372nn ‘1' “777.71" 5111(7’11211‘1) + bmnl— 811107127111) (3-25)

l1 wl mn w1102 mn

+‘13/\mn(lnm Sin(/\m 71(1)]
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Here

 

 

 

4 w

Srlnn = _ 02/11)] eik$$+l€yy sin(—3:) COS(-¥—y)d:rdy

“)le
U11 [U2

4

= B k A k

w1w2 ”(wl’ 5”) m<w21 y)

w w .

wlwz
1111 1112

4

= —B k A k

w1w2 m(w2, y) "(wb :13)

where

wi m = O and k = 0,

mn .

ik( ”mam—1 maéO and kyéo
k2 _ (M)2

’

w

and

01 m = 0,

w
m

‘ _

Bm(w,k) : m7r(11:72:12, ), 771-74 0 and k. _ 0,

m_,_7r(— 1) __1 . ..

w k2 ("LS2 * m *0 and l t 0

Solving (3.22), (3.24) and (2.4), the approximation of the electromagnetic field on

the aperture is obtained. Analogous to the two dimensional case, it is called mode

matching method.

2.4 Numerical Experiments

For convenience of the later use, here the far zone scattering and radar cross section

(RCS) are discussed first.

From (2.9), the field representation above the ground is

00

if (EooE)(E 01"“1’dé
21? —oo

E'S(r,6,d)) =
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where k - r 2 fig — £1? — {grcosd +§1rsin6cos¢ + i£2rsin65in¢ and r, 6 and (f)

are the variables in spherical coordinates. Solving

6k-r_0 ak-r_

3&1 ’ 352

the stationary phase point is derived as [22]

  

0,

(1 2 k0 cosqbsin 6,

£2 = k0 sinqbsinfi.

Therefore the far zone scattered field can be computed by

 

ikor

E5(r,9,¢) z (E0 0 E)“(k0 cosqbsin 6,130 sin¢sin6,0)ie 7‘ k0 cos 0,

In [8], 3d RC8 is defined by

11380.6»)?
 

inc inc _ - 2
0(6,¢,6 ,qfi ) — TanéO47rr

lEincwinc’ ¢incn2

where 9, d5 are the observed angles and ginc, 115”“? are the incident angles. When

incident angles and observed angles are same, a is monostatic or backseatter radar

cross section. Otherwise, it is called bistatic radar cross section.

To incorporate the polarization information, the radar cross section can also be

 

 

 

definedas

.‘ . ES 7.90345 2

opq(0,q§,9mc,quc) = lim 47TT2 .l p(.- ll

r—>oo lElln'C(97'n'Ca(51%“?

or people sometimes use

IESl2
o = lim 47r7‘2 (9

HH r—roo lEincl2

Q)

ESIQ

_ - ,2 l a
”HE-THEM“ I Eincl‘Z

(I)

. 2 1151312

GEE : rlil’éo4m' 1'71c2
IE9 |

215312
”EH: li1n 47rr

 

1‘—>oo lEéncl2
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With the far field patter derived above, the RC8 is given by

RCS = rlim 47r'r2-l——

k8cos29 w] 2112 'k S. 6(' (15+ . Q5) 2

= I\/O‘ / E(l‘,y,0)€2 0 m .ECOS ysm dl'dyl

0
7r

Let

072:0,sz

8$=0,8y=0,33 =0;

on=0,m;£0

, , "NT

8;]; = (1171,71 8111(A77271d)(-2)E X P1Q2,

8y =3 0,83 = 0;

on740,1n=0

, 7171'

8y = bynn SlIl(/\n1n,d)(—l);; X PZQI,

81:20,.9320;

o 71750,":750

3.1? = (177m Si11(/\mrnd)(—'i)k0 sinBcos 0m X Q1Q2,
11:2

- . , . , mr

3y = bmnSll'l()‘772.7rd)(—3)k0 5111081110; X Q1622,

(amn T7}? + 577mg) n7r m7r

Sz : — cos()‘mn‘DEEleQQ-

A771."
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where

eiko sin 9 COS 45w] _ 1

(k0 sin 6 cos (b)

 if (k0 sin6cos d)) # 0

zwl if (k0 sin 6 cos (1)) = 0

eiko sin 6 sin ¢w2 _ 1

P2 = { (k0 sin 6 sin ¢)

 if (k0 sin6sin 45) # 0

i102 if (k0 sin6sin d)) = 0

eiko sin6cos $1111 (_1)n _1

 if k sin6cos 2 mr w 2

(k0 Sin6cos ¢)2 .. ("W/W1? ( 0 45) # ( / 1)

LU? if (k sin6cos ¢)2 = (Tm/w )2

27m 0 1

eiko sin6sin ¢w2(_1)m ._ 1

 if (A~.osiné'sin¢>2 aé (ma/w»?

Q2
(k0 sin 6 sin ¢)22— (m1r/w2)2

iw
2 if (k0 sin 6 sin d))2 = (m.7r/'wg)2
 

21mr

Figure 2.1 and 2.2 show the RC8 for a long and narrow cavity (wl = 2.5, 102 =

0.25, d = 0.25). The unit of RC8 is dB/m2. Figure 2.1 presents the back scattering

RCS for 6 = 900. The upper curve is for H polarization and the lower cure is for E

polarization. Figure 2.2 presents the back scattering RCS for 6 = 00. The continuous

curve is for H polarization and the dashed curve is for E polarization. They agrees

well with the results in [21].
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Figure 2.2. Mode matching method (ozrr/Q).

47

 



2.5 Improved Mode Matching Method

From (2.14), (2.16) and after some simple manipulations,

1 - .

rageflxjéz: d6

\/k0 - <1 - 62

(E0 0 Ey)‘<5,0)ei€1$+i€2yd£ }

 

 +21”— [R21-51% 0 Ems, 0) — 52(E0 o Ey)*<r,011

1 z'kO— €12-1-53
 

 

 

—2—7r 2

R \/kg‘ 62

Hy(r y 0) (5.28)

= — 22 1' -kzp - kmp eiwxfikyy) 5.29)w 0( 1 3

1W2€18i61::—:€::

[--€1(5001322) (6,0) -€2(E00Ey)( 26.  
2—7r R2

OHM/k—

+1 1k” {12' é:3(E0o131,116,())ei'flfi‘tmda}
+27r R2 \/k0—
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Lemma 2.5.1. For the zero extension E0, the following statements are hold

 
 

  
 

 
 

   

 

 

 

  
 

 
 

, 2ei($€1+y€2)

/2[E0(cosm81117:%€1€%d§

R 1111 y)]O\/k_

3111:1116 )2
= (£1)2‘/RZ[EO(cos—mrxlsin may)]\/e(2)_1 2

1 k

[12%+11:21)

2 [E0(s1n "—7”: cos
]‘W

1 2

1111)]()\/k_

_ nm7r2/ E (cosmsin m7ry . :1($£1+y€2)

12 1 w. 13—11—51
2611$€1+y€2l

[E0(sin—mrzc 8111—wa A 52 {gdé

R2 1111]3_\fic

(m_71')2/R2 [E( inn—m: cos m7ry)] g(12i(5"':12'l”y€2) €

1112 1111111)2]\/k0 _{1 _ £2

11162+116 )

[2[E0((Cosflsir
u—17n71yAZ£1€26

1 22d

1111 1112 \/k(2)—

31161+22y€2)
   

 

___ nrr17r2/ [E0(sin17r—£cosu2"ml/)1

1111112 122 w V13-

Similar results could be derived if replace the kernel by

W8 '151‘€2

, while the second kernel is the conjugate of the first one. There-

 

 

1

1/18-
fore from Lemma 2.5.1, (5.26) and (5.28) become

 
 
 

Hx(:r,y,0) = @{220111113+1~1p2)“NH?” 15-30)

12

_1271 R21 (”18-

2(50 0 Ey)‘(g. 0)e"'€11+"1521/dg } + 112 
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1 _ ,1 .

Hy($»y,0) = m { 2Zol(—kzpl - krcP3)€L(k$x+k3/y) 15-31)

2
1 . k0

+— 2 (E0 0 Ex)‘({,0)e’751$+1529d§ } + R2
271 R2

1/k3 - El - <3

 

 

 

 

2 2 2 2 2

Here R2 takes one of the following forms: 0(mmr ), 0(:7%) and 061%). It is

second order term and maybe different in different situation.

From (2.4) and ignoring the second order terms, the approximate field above the

ground is derived as

 

1 , mm: mn'

H]; = E __— {—/\mnbmn SlIl(——) COS(—y') COS[Am,n(Z + d)]} , (5.32)

(all. IUI 102

m,n—0

00 1 mm: mny

Hy = E '_—' {Amnam,1),COS(-+)Sln( 1 )COS[/\1nn(2 + d)]} . (5.33)

m ":0 to) WI ”(L2

The next is focused on the integrals in (5.30) and (5.31). The new method is based

on matching (5.30) with (5.32) and (5.31) with (5.33).

l
 In three dimensional case, the kernel involves Even though it is

. 1 1 o. .. . . 2 2 _
1n L , 1t 18 less smooth at £1 + {2 — 1.

Lemma 2.5.2.

 

 

 

   

-1 :1: 1—1:

Proof.

1—6Slll(£) 1

f 6 (1.1:

0 ‘13 \/1—.'I:2

, :1:

1—6 1281n(—)

1_<_ / (1— r ) 6 dr

0 .1:

_ 2 _ _ 1 .1 _5= S'i(1 6)—€—-(—sin(1 6)+(1 6)cos(u(1 )))

e e e

= g-l-Ok)
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On the other hand,

 

_ I"

[1 8111(2) 1

(la:

1-5 '13 v1 — x2

|
/
\ [1 1_1__d1,

1-5xv1_$2

1 \/1—(1—6)2

' _1n(1—6_ 1—6 )

= 0N3)

 

 

if assume 6 = 0(62). Therefore the conclusion is correct. Cl

Lemma 2.5.3. If E < 1, then for any a E [0,10], the following is true.

11)

  

   

1 . 1 sin(w(rz: — E» sin(w(I + E»
/ ezax nww _ mrw (11‘

-1 V1 — $2 :1: —— —F x + —

w w

= (Si(w — mr) + Si(w + n7r)) 3114?). /1 — (g)2 + 0(1/w).

1 ,- 1 sin(w(a: — 721)) sin(w(I + E))

/ ezar nrrw + mrw dz

—1 V 1 — 132 CL‘ — —’L—U_ l' + TU—

: (S'i(w — mr) + Si(w + n7r)) cos(n—IE) 1- (3g)? + 0(1/w),

q

   

l'. 717? . 717T

[008m 1 swim—3)) sm<u-<r+—>)

1

   

  

\/—_§
mr - 7mm : 00/2")!

1 — :r x —- — x + —
.. w w ..

oo ,- ‘ 1 Psin(w(.r -— 72)) sin(u,r(.1: + 121))1

610$ mrw + mrw = 00/11,).

1 v1 — 1:2 :1: — — .2: + —

- w w a

Proof. The latter two are easily seen from Riemann-Lebesgue theorem. The first two

could be similarly proved as Lemma (1.4.3) Cl

Note that

 
 

00 go
1

1

/ f

2 (1.111;; < 00

1 1 \/.I:2 + 3/2 _ 1 l? y
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when 51 and {2 are large enough, the Lebesgue dominant convergence theorem could

be used to (5.31) with (5.33). Another fact used below is that

(x) 1
' _ TNT

[a flu— cos u'€)snl(y€)d§ — 0(3)

("w”)

for a > 1. This could be seen from Lebesgue dominant convergence theorem and

[00 1 ' ( )dé——sm yé

a 62 - (21177:)2

= i“— { [Sid/(Jim’w—“h + say-(131%)] cos(?)
27m

_ MM)+wafl“(mg
w w w

. 'UJ . . . . . .

Even though there IS a factor of 2_— 1n the anti-derivative, the following estimate

mr

could still be derived

m
1

.

TNT

/. mmlww‘i)
by the usual taylor’s expansion.

Lemma 2.5.4.

 

 

 

 

 

  

 

 

 

 

 

  

, mm: may .

[E0(sm—cos .

f2 wl ”’2 €2(.L‘£1+y€2)d€

R .2 2 2 '

\/"0 ‘ 51 ‘ ‘52

Si w —n7r +527 11) +n7r 2 1 1

-- ( (1 )2 ( 1 l) _ +,__ may)
7r Amn 4"”

2' i , mm mm; mr

— . ~ A? k . -— ‘ —+ 4mrfn(’€.yl+ 8k07rf"( 0,17)9m.( (Lt/l] 91“ "’1 005 “,2 +0( w)

where K. 2 A78 —- (EP and

wl

[E0(cos ”—73 sin may A _

“’1 “'2 €1(.r{1+y{2)d

R2 2 2 2 g

\/""0 ‘ 51 ‘ ‘52

Si 11' — 77277 + Si. w + 171% 2 1
= [( ( 2 ) ( 2 )) _ + 7.9111(591.)

27r /\nm 4h7r

i i 7277.1: , may n7r

——T—f7,,,(n, .1?) + T'T—fmUVOa y)gm(k0. 1:) ]cos sin I + O(—)

4h7f 8L07r “'1 112 w



 

where K 2 \/k3 — (Ki-7:)?

n.7r

Proof. Let h.n(1:,w)= (1—(—1)ne-'iw~”C)/(1-2 — (3)2), then

[E0(sinm cos may ‘)1
f “’1 ”"12 ei($€1+y€2)dg =

R2 #8 —<¥ -63

= zTam/62Whm(€2,w2)) +8(hm(£2 w2)))lezyf2dé2

:flmhnffivwlll+3(hn(€11w1))l l ewfldél
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é RmRn + anIn + ImRn + 1min

Among these integrals, using Lemma (2.5.3)

1mIn 2 (Si(w — mr) + Si(w + n7r))2 _1 sin PE COS my7r

27" /\mn “'1 “’2

  
y+R1

Here R1 takes one of the following forms: O(l)and O(n—7r.) It is first order term

“’2 w1

and maybe different in different situation.

 

 

  

 

 

 

 

   

l mu: m7r

R771171.“— T9771“ y) sin— C05 3/ + R83
4% ml 102

where

_ y mr — urn _ + w 7171' — um

9771(K,y) = —2Sl(——(—————)') +Sl((y )(w ))

“‘5“ (w - y)(n7r — um)) _ Si( (10 + y)(n7r + 1115))

w w

, mr + um , m — mr + 1m»:

+251(y£—-'-—)-)+Sz(( may ))].

n ;

and RsS(-L‘) are terms involving sin3 sin mm; .Thev are not essential parts in the

wl 2112

sense of L2.

° n7rL‘ may

R7117" = 4—_z_.-f-n(K y) sin—cos + RCC

u1 1112

n I: y I

and RCC(.’L)1s the teln1 involving cos ——7—r— cos "ml. fn. is defined in Chapter 1 (4.35).

111 1112

, rm(7 may

Bran—— 07Tfn<k0l .L')g7n(f{0. y) S111 111 (OS “2 + Rcc + Ruse



C]

Using the boundary conditions, field representations and the above lemmas, two

equations are obtained by matching (5.30) with (5.32) and (5.31) with (5.33). To-

gether with (2.4)

7271' 7171'

—an '1' ‘—0n + AnCn 1‘ 0

ml ”(1)2

Therefore an, bn and on are solvable. #1 and #2 are the permeabilities above the

ground and below the ground plane, respectively.

2.6 Numerical Experiments

The first example is the calculation of the back scattering RCS for a long and narrow

cavity (wl = 2.5, 1112 = 0.25, d = 0.25). Figure 2.3 presents the RC8 for 6 = 900.

The upper curve is for the H polarization and the lower cure is for the E polarization.

Figure 2.4 shows the RC8 for 0 = 0 in the case of the H polarization. The results are

compared with the example in [21] and they agree well.

The second example is for a material-filled cavity with wl = 1, 1112 = 0.25, d =

0.25, er = 7 + 1.52’ and hr = 1.8 + 0.12’. Figure 2.5 shows the RC8 for (15 = 900. The

continuous curve is for the H polarization and the dashed cure is for the E polarization.

Figure 2.6 shows the RC8 for (13 = 0 in the case of the H polarization. These curves

agree well with the results in [21]. Figure 2.6 presents the back scattering RCS for the

E polarization. The dashed line is for d) = 0 and the continuous line is for g?) = 7r/ 2.

They agree well with the results in [21], [23].

The third example is for a relatively deep cavity with 1111 = 0.7, 1112 = 0.1 and

= 1.73. In this case. 0 = 400. The continuous line in Figure 2.7 is the plot of OEH.

The dashed line is the plot of aHE' They agree well with the results in [21], [23].

Finally, it should be pointed out that numerical studies are currently in progress,
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especially in the co polarization RCS.
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Appendix

Theorem 1 Suppose (15(3) E C8°(R) and (15(13) is an even function, then

I

oo sin( ) oo

/ 6 ¢(.1:)d;r=/ 6(x)¢>(;r)dx+0(e3).

—oo 33 —oo

 

Proof Assume supp(q’)) = [—1,1].

1

sin(f) _ in (2n)
1/00 E ¢(;L‘)dl‘ = /(‘)€ §_y_ [¢(0) + Z ¢(2n)('0)€2ny2n dy

n=l '

 

2_OOJI y

Collect the similar terms of 6i,

  

 

  

 

   

60 : gb(0)-72I = é/f; 6(I)qb(r)d.r

1 , °° ¢<2n><01 °° «pm-N0)
ecos(;). «1(0) — ”a (2n)! = 1;) (2n)! = —¢(1)

0° (2”)
(.2 sin(é) : -<f>(0) + 2: 9b (2n)('0)(2n — 1)

n=1 '

0° WW0) °° ¢<2n>< > ,
= 12:0 (2”), +71; (2n _1), = —¢(1)+¢ (1)

0° (2”)

63 cos(%) : 296(0) + 2: lb (2n)('0)(2n - 1)(2n — 2)

71:2 '

_ :2 (2n - 2)! "21(211 — 1)! ":0 (271)!

I I ll

Since supp(¢) E [—1,l],

 

00 sin(—)
00

f 6 mm = / 6(“)¢(Ild$ + <25”(0)e3cos(-:-) + 0(64).
—oo .r -00

Theorem. 2 Suppose ¢(.l') satisfies the following assumptions,

(8) 95(1) 6 000W);

(1)) (16(1"): 0 for .1: E [—l, 1];
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(c) a>cc=<> 1x123:Otn—l—fiforlxm

 

 

Then

00 5111(5)

/ 5 qfi(:r)d:1: = 0(6).

—00 a:

Proof

. a:

1 (X) Sln(—)

§/—oo $6 ¢($)da:=e/_OO sinyZtn(————yl)d2n

6

oo
1 1 1 1

= etO cos(—))+ e Z tn [cosé— + 2716 sin — — 211(2n + 1)62 cos —

e 6

n=1

—2n(2n + 1)(2n + 2)::3 sin -:1] + O(64)

= f(1)ecos(1)+2f(11)6251n(:)—e3 cos(:)”([4f+(1)6f’(1)]+0(e4)

I

Here f(x) E Co0 and f(.1:) = -.-—-nOO__.0tn:rn Further, if f(1)= f (1): f (1) = 0,

then

 

59



BIBLIOGRAPHY

60



BIBLIOGRAPHY

[1] A. Altintas, P. H. Pathak and M. Liang, A selective Modal Scheme for the

Analysis of EM Coupling Into or Radiation from Large Open-Ended Waveguides,

IEEE Trans. Antennas Propagat, Vol. 36, No.1, Jan. 1988, pp. 84-96.

[2] H. Ammari G. Bao and A. Wood, A cavity problem for Maxwell’s equations,

Meth. Appl. Anal. 9, 2002, 249-260.

[3] H. Ammari, G. Bao and A.W. Wood, Analysis of the Electromagnetic Scattering

from a Cavity, Japan J. Indust. Appl. Math, 19, 2002, pp. 301-310.

[4] G. Bao and J . Liu, Accurate Computation of the Electromagnetic Scattering from

a Cavity, Proceedings of 3rd International WorkshOp on Scientific Computing

and Applications, ed. by Y. Lu, W. Sun, and T. Tang, Sci. Press, Beijing, 45-54,

2004.

[5] G. Bao and W. Sun, A Fast Algorithm for the Electromagnetic Scattering from

a Cavity, submitted.

[6] R.J. Burkholder and T. Lundin, Forward-Backward Iterative Physics Optical Al-

gorithm for Computing the RC8 of Open-ended Cavities, IEEE Trans. Antennas

Propagat, Vol. 53 , 2 , Feb. 2005 pp. 793-799.

[7] R. F. Harrington, Time-Harmonic Electromagnetic Fields, Mcgraw-Hill College.

[8] J. Jin, The Finite Element Method in Electromagnetics, New York, Wiley, 1993.

[9] H. Liang, S. Lee and R. Chou, High-Frequency RCS of Open Cavities with

Rectangular and Circular Cross Sections, IEEE Trans. Antennas Propagat, Vol.

37, No.5, may. 1989, pp. 648—654.

[10] M. A. Morgan, Mode Expansion Solution for Scattering by a Material Filled

Rectangular Groove, Progress In Electromagnetics Research, Pier 18, 1998, pp.

1-17.

61



[11] H.H. Park and H.J. Eom, Electromagnetic Penetration into 2-D Multiple Slotted

Rectangular Cavity: TM-wave Antennas and Propagation, IEEE Trans. Anten-

nas Propagat, Vol. 48 , 2 , Feb. 2000 pp. 331-333.

[12] T. Van and A. W. Wood, Finite Element Analysis of Electromagnetic Scattering

From a Cavity, IEEE Trans. Antennas Propagat, Vol. 51, No.1, Jan. 2003, pp.

130-137.

[13] B. Wei and D. Ge, Scattering by a Two-dimensional Cavity Filled with an

Anisotropic Medium, Waves in Random Media, 13, 2003, pp. 223-240.

[14] Z. Xiang and T. Chia, IEEE Trans. Antennas Propagat, Vol. 49, No.2, Feb. 2001,

pp. 165—173.

[15] S. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by infinite

rough surfaces, SIAM J. Appl. Math, Vol. 58, No. 6, pp. 1774-1790, 1998.

[16] C. R. Paul, K. W. whites, S. A. Nasar, Introduction to electromagnetic fields,

third edition.

[17] L. C. Evans, Partial Differential Equations, AMS, Providence, Rhode Island

[18] S. N. Chandler-Wilde and P. Monk, Existence, uniqueness and variational meth-

ods for scattering by unbounded rough surfaces, SIAM J. Math. Anal., Vol. 37,

No. 2, pp. 598-618, 2005

[19] N. Bleistein, R. A. Handelsman and J. S. Lew, Functions whose fourier trans-

forms decay at infinity: An Extensiton of the Riemann-Lebesgue Lemma, SIAM

J. Math. Anal., Vol. 3, No. 3, pp. 485-495, 1972

[20] C. Gasquet and P. Witomski, T1anslated by R. Ryan, Fourier Analysis and

Applications, Springer, 1998

[21] Electromagnetic Scattering Analysis of a three-dimensional-cavity-Backed Aper-

ture in an infinite ground plane using a combined finite element method/method

of moments approach, C. J. Reddy, M. D. Deshpande, C. R. Cockrell and F. B.

Beck, NASA Technical Paper 3544, 1995

[22] Antenna Theory, Part 1, R. E. Collin and F. J. Zucker, l\»chraw—Hill Book

Company, 1969

62



[23] K. Barkeshli and J. L. Volakis, Electromagnetic scattering from an aperture

formed by a rectangular cavity recessed in a ground plane, J. Elec. Wave. Appl.,

V01. 5, No. 7, 715-734, 1991

63


