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ABSTRACT

IMPROVED MODE MATCHING METHOD FOR
SCATTERING FROM LARGE CAVITIES

By

Weiwei Zhang

The accurate calculations of electromagnetic fields play a crucial role in aircraft
design and antenna design. The methods proposed in the literature for the EM fields
calculation of scattering from large cavities are not be fast, accurate and easily
implemented enough.

In this dissertation, the calculations of EM fields for 2D large open cavities are
considered first. By defining two extension operators, the exact solution and the mode
matching solution may be formulated under the same framework, which makes it
possible to analyze the difference. Using an asymptotic technique, we present a new
(improved) mode matching method. In particular, the explicit solution and the error
estimate are given. Numerical examples, including EM fields calculations and RCS
calculations, are presented. The second part of the dissertation is about the calculations
of EM fields for 3D cavities. Following the similar idea, mode matching method and
improved mode matching method are presented. Numerical examples are showed to

demonstrate the efficiency of the method.
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Introduction

0.1 Background and Motivation

A two dimensional open cavity recessed in an infinite ground plan can serve as a
model of duct structures such as jet engine intakes of an aircraft or antenna windows
embedded in complicated structures. The phenomena are governed by the Helmholtz
equation in an infinite domain along with the radiation condition and Perfect Electric
Conductor boundary conditions.

The prediction and reduction of Radar Cross Section (or echo area) of this struc-
ture are very important and require the information of the fields across a broad range
of frequencies. For instance, a short wavelength radar (e.g. missile seekers) and a long
wavelength radar (e.g. early warning radar) may both exist at the same time. Thus
the accurate calculation of electromagnetic fields is of great importance. When the
cavity parameters are small or the frequency is relatively low, a large body of work
such as finite element methods, integral equations or hybrid methods have been done
(8], [12], [13]. For a large cavity or at high frequencies, the calculation of the fields
becomes difficult. 1. Babuska pointed out that, for a model problem, the Galerkin
solution differs significantly from the best approximation with increasing the wave
number. A. K. Aziz showed that “k2h is small” is the sufficient condition to guar-
antee that the error of the Galerkin solution has the same magnitude as the error of

the best approximation, where k is the wave number and h is the mesh size.
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Another major difficulty of the problem is that the mathematical formulations of
cavity problems always involve nonlocal boundary conditions and singular integrals
(8], [3]. Physically, large cavities involve a large amount of internal reflections.

In the engineering literature, modal methods have been adopted to calculate elec-
tromagnetic fields at high frequencies or for large cavities because of their efficiency
and accuracy [9], [11]. To the best of knowledge, in these methods, the boundary
condition at infinity is approximated from some physical intuitions or assumptions
and confirmed by numerical experiments in some cases. However, without rigorous
error estimates, there is no guarantee that the numerical simulations are correct.

In this work, the time harmonic plane wave incidence is considered. The ground
plane and the walls of the open cavity are perfect electric conductors and the cavity
is filled with magnetic or nonmagnetic layered medium. A bounded domain prob-
lem is set up by using Fourier transform, the radiation condition and the continuity
condition. The mode matching solution v(z,y) and the exact solution u(z,y) are
formulated under the same framework by applying zero extension E(y and periodic

extension Ep on the transparent operator T, i.e.

0u(z.0) | o (2) = T(Ey(ulz, 0))),

+ g(x) = T(Ep(v(x,0))).

In the case of simple geometries, the mode matching method is easily implemented.
By analyzing the error between u and v, and applying some asymptotic techniques,
an improved mode matching method is obtained. The new method provides an ex-
plicit solution which converges to the exact one at the rate of O(1/y/w), where w is
the width of the cavity. Due to the error control, the method is expected to be ex-
tremely useful for large dimensions or high wavenumber cavity problems. Numerical
experiments of the electromagnetic fields in the aperture and different Radar Cross

Section calculations have been studied.



The existence and uniqueness of the partial differential equation were proved by
Ammari, Bao and Wood in (3] for the case when e > 0. In this dissertation, a TM
case result for Je < —1/ kg is given.

In three dimensional case, the governing equations are Maxwell’s equations. The
application includes metallic cavities RCS study, and electromagnetic penetration
and transmission properties of objects consisting of these substructures. It has great
importance in industries, including telecommunication, engine and antenna manufac-
turing. Besides the same difficulties from two dimensional large open cavity prob-
lems, the computational time and memory requirements are sometimes intolerably
large. Therefore, the three dimensional cavity problem has been regarded as a grand
challenging problem for decades. In the literature, eddy elements, discrete Galerkin
methods, integral equations and modal methods were applied to calculate Radar
Cross Section(8]. But none of them are fast, accurate and easily implemented at the
same time.

In this dissertation, the continuity conditions, Silver-Mueller Radiation condition
and Fourier transform are used to derive the exact PDE model in a bounded region.
Numerical experiments are studied.

This work could be easily generalized to other applications, such as scattering
and transmission through the slot in a conducting plane. Following the idea, open
cavity problem with a canonical shape could be solve similarly using different field

expansions. For example, the spherical harmonics.

0.2 Organization

In Chapter 1, the two dimensional cavity problem is mainly discussed. The math-
ematical formulation, including the Helmholtz equation, boundary conditions, weak

formulation are introduced in section 1. The well-posedness of the variational problem



is further established for the TM case, when S(e) < -1/ kg in section 2. In section
3, the mode matching method is introduced by using a periodic extension operator.
The idea and fulfillment of improved mode matching method are discussed in sec-
tion 4. And the convergence analysis is given in this section as well. The numerical
experiments are displayed in section 5.

Chapter 2 is focused on 3d open cavity problem. The continuity conditions and
Maxwell’s equations are introduced in section 1. In section 2, the field representation
based on sine or cosine functions are given. The fulfillment of the mode matching
method is given in section 3. Some numerical examples using the mode matching
method are shown as well. In section 4, the improved mode matching method is
proposed following the idea in 2d case. In section 5, the benchmarks in the literature
are studied.

Appendix displays some results about the integral involving sin(wx)/z. When the
considered function is relatively smooth, the numerical simulations of the integrals

are studied in term of a Dirac Delta function.



CHAPTER 1

TWO DIMENSIONAL CAVITY
PROBLEM

1.1 Preliminaries

Consider an open cavity recessed in an infinite ground plane ( see Figure 1.1 ). The
ground plane and cavity walls are perfect electric conductors (PEC) and the cav-
ity is invariant along Z direction. The time harmonic electromagnetic fields (time
dependence e—i‘*’t) satisfy the Maxwell’s equations

V x FE—iwuH =0,

V x H +iweE = 0,
where E and H are the electric and magnetic fields, respectively. Assume the media
inside the cavity are not perfect dielectrics and have finite conductivity.

In this case the continuity conditions on the open aperture I' are
:x(Ey—FEp)=0

3% (Hy— Hy) =0

T

(Dy— Dy) = ps

(Bo - By) = Js

[ 9

5



Figure 1.1. Three dimensional open cavity.

where pg, Js are the surface charge density and surface current density, D and B are
the electric and magnetic flux [16]. Here subscript 0 denotes the quantities above the
cavity and subscript 1 denotes the quantities inside the cavity.

In the case of the TM polarization, the electric field is parallel to the z-axis.

Therefore the electric field has the following form,

By =(0,0,ug) in UT,
Ep; =(0,0,u) in €.

E=

Let ul, u”, u® be the z component of the incident field, reflective field and scattering

field in U, respectively. Let k; = ko\/%; (i = 0,1) be the wave numbers above



and below the ground plane, respectively. Then

(o2 2

0%ug  O%wg 2 o i o+

) +—6y—2-+k0u0—0 in UT,

2 2
\ Q+a—“+kfu=0 in Q, (11)
oz 8y2

‘u=0 on PEC ,

along with the upward propagating radiation condition [15], that is, the scattering

field satisfies

. . 2_¢2, . )
W) = = /_ Ze’vko V560 ae, (1.2)

where ¢(z) = uO'y-—-O'

EinCsHinc
y /iQ ( )

(601”0) U+

PEC PEC X

PEC

Figure 1.2. Two dimensional open cavity

It is clear that ug = u' + u” + uS above the ground. By assuming a plane
wave incidence with the incident angle 8; (with respect to the y axis), the continuity
conditions then read

u¥(r,0) = u(r,0) z€[0,u].

ou’

Ju
;tla(.r.()) - ;10(7);(.17,0) = g(r) x € [0.u], (1.3)

7



where g(z) = —2ipk( cos Gie_ikox sinb; and w is the width of the cavity.
Obviously, above is a problem in an unbounded domain U T UQ. Next, the

continuity condition is used to derive an equivalent form in the bounded domain (2.

For convenience, the transparent operator T is defined [12] and the zero extension

operator Ej as

10 == [ - ieetas (14

) x € |0,w|,
Eglo@) = Z” ;[ i (15)
otherwise,

Here ¢ is the Fourier transform of v.
Taking the Fourier transform with respect to z of the Helmholtz equation in (1.1)

and solving an ODE for y, a transparent boundary condition is easily derived [12] as

ous(x,0
QLD _ gy e, 0)). (16)
y
Using the continuity conditions (1.3), the exact solution of (1.1) and (1.2) satisfies
[ 52 2
Q;..,.Q_’zi.,,k%u:o in Q,
ox Jy
{ u=0 on PEC walls , (1.7)
ou(zx,0
ho 5 + 9la) = i T(Eq(u(z,0) on T.
\

The weak formulation of the problem is : Find u € V (a suitable subspace of

HY(Q) [12]) such that
a(u,v) = (g,v),Yv eV (1.8)

where the bilinear form is defined by

a(u,v) = /VU-W—/k%uﬁ——/T(Eo(u(.r,()))i'
Q Q r

and the well-posedness of the scattering problem was established in [3] and stated as

the following Lemma:



Lemma 1.1.1. If e € L°°(Q), R(e) > €1 > 0 and J(e) > 0, the scattering problem

(1.8) attains a unique solution in H6 (Q).

In the case of the TE polarization, the magnetic field is parallel to z-axis. Assume

the z component of the magnetic field in the cavity is u. It satisfies

( 1 2 .
v. (E—Vu) + kgu =10 in Q,
1
\ Z—Z =0 on PEC walls, (1.9)
u= S(Eo(g—Z)) + 2¢tkozsind; o 1
\

where

00
1 1 s
S0 == [ f()e
AV
o [k2 — ‘52
Here the cavity is considered non magnetic. The variational form of (1.9) is to find

u € V (a suitable subspace of H1(Q) [12]) such that such that,

b(u,v) = /qt‘)d:r,\/v eV (1.10)
r
where

_ 1 = 2 _ 1 Ju u,, .

b(u,v) = /un-Vvdxdy k /u tdxrdy /51 OnS(EO(On))dI
Q Q r

and the well-posedness of the TE case was stated as follow [3]:

Lemma 1.1.2. If e € L°(Q), R(c) > €1 > 0, S(e) > 0 and €(x) is smooth enough
(satisfies assumption (A) in [3]), the scattering problem (2.5) attains a unique solution
in H 1(Q).

1.2 TM Case

Following the fractional Sobolev space notation as in [18], (adopt a wave number

dependent norm, equivalent to the usual norm), the norm || - || 7s is defined by
.2
i = [0+ €2)%1ai2de

9



In this case, it can be proved that T o Ej) is a bounded operator from H 1/2 4o g=1/2

and satisfies
|70 Epl| < 1.

Theorem 1.2.1. Let €] = €re + i€;,,. Then the variational problem (1.7) has a

unique solution in V if €;,, € (—o0, —l/kg) U [0, 00).

Proof. When ¢;,, > 0, the uniqueness of the problem was proved in [3]. Therefore

the only one needed to prove is the case when ¢;,, < -1/ kO From the definition,
Im a(u,u) = /koezm|u|2dzdy— / \/k2 §2|E0 (u) |2d{
€l <kg

By Im a(u,u) = 0,
/ BeimlulPdzdy = [ /i~ €21Bo(w e < IT(Eo(wllull < [l
€l <ko
Therefore when ¢;,, < -1/ k%, |lullg = 0 is derived.

The existence follows from the Fredholm alternative. a

Notice that T is not a Hermitian operator, the uniqueness is not trivial for eg # 0.
Different bases, for example, piecewise polynomials, could be adopted to solve this
model. In this dissertation, only the trigonometric bases are considered.

By the PEC condition, the exact solutions u consistent with (1.7) may be expanded

w ”
u(x,y) = Z an sin(zg{)sinh(*m(y + d)), (2.11)
n=1

where d is the depth of the cavity, w is the width of the cavity and

= \/(mr/u\') - 1\6/1161.

10



It is easy to derive the coefficients of the sine series of g(z). It is given by

. s ) 2 .
gn = ikgll — (~1)"e~tkowsin(9)) 5 "”Cos(e?) 5 (212)
(nm)e — (kgwsin(6;))
A direct Fourier transform calculation yields
onm 1 —nm 1—(—1)"(3_“”£
(Epsin(—~))(§) = Jor w 2 ()2 (2.13)
w

Here S(116) = <= [ )"

1.3 Mode Matching Method

For large cavities, because of the large number of internal reflections, the exact so-
lution is highly oscillatory. In order to calculate the solution more efficiency, an
approximate model of (1.7) is considered first by using the periodic extension Ejp.

Define
v(x) T € [0,uw],

v(z—(n—-1Nw) xé€|(n-1wnu

The approximate model satisfies

(22, A2
Q——;—+?——;-+k%v=0 in Q,
ox dy
Y v=0 on PEC walls , (3.14)
ov(x.0
) E)y ) + g(x) = p1T(Ep(v(x,0))) on T.
\

In this model (3.14), only the periodic extension is involved.

Similar as (2.11), the approximate solution v may be expanded as

00
. N, . .
v(r,y) = Z bn sin( ” )sinh(yn(y + d). (3.15)
n=1
and it is easily seen that
L NN T, nm. . N
(Epsin(—))(¢) = E(O(S —)=(E=—)) (3.16)



where §(-) is the Dirac delta function. Hence

To Ep(sin("wﬂ)) _ sin(ﬁgf)un,

where

vp = i\/kg — (nm/w)2. (3.17)

Then the solution satisfies (3.14) may be given by (3.15) with

2ikg

bp = :
"~ pvnsinh(ynd) + pgyn cosh(vnd)

It is clear to see that by decreases exponentially as n increases. This is the so called

mode matching solution.

Remark 1.3.1. In [10], Morgan expanded the field in the local region above the aper-
ture using upward propagating waveguide modes bounded by vertical walls and obtained
the same formula. Here, the same mode matching formula is derived by an alternative

approach based on the use of the periodic extension operator Ep.
Next is focused on the convergence rate of the above series.

Lemma 1.3.1. Let ¢}, be the Fourier coefficients of f(x). Then ). c%k2m < oo if
and only if f € Hy'.

Theorem 1.3.1. Let v(z,y) be the mode matching solution of (3.14), then v(x,0) €
H&([O,w]). Moreover,

oo

Z (bn sinh(ynd))2 = O(%), (3.19)
n={w/r]
[w/7]—-1 .

3 (%bnsinh(md))Q=()( ). (3.20)
n=1

w

12



Proof. For simplicity, let’s consider the case of empty cavity with incident angle

6, = 0. Notice that

lim sinh(z) _
20 Z(sinh(z) + cosh(z))
sinh(z) ) 1

limz— = lim —
Hz—00 z(sinh(z) + cosh(z)) z500 2z

From (2.12) and (3.18),

. 1
b sinh(ynd) = O( — ).
Therefore (3.19) and (3.20) are true.
For more general cases, if nm >> w
by sinh(ynd) = O(——s)
n M (n7r)2 .
and if nm << w
bn sinh(ynd) = O(B%)
uV

The same estimates could be still derived. From Lemma 1.3.1, it is clear to see that

v(x,0) € H1+6( 0,w]), for some § > 0. a
0

For a two-layered medium cavity problem, define the permittivity inside the cavity

€1, Y € [—dl,O],
er(v(r)) = 1
€, Y (S [—d, —dI]
Expand the field inside the cavity by

o0

uy(ry) = Z [en sinh(Bn(y + d)) + dn cosh(Bn(y + d))) sin(F;r—;E). y € [-d.0],
n=1 '
i nm.r
uo(r,y) = Z bn sin( u; )sinh(yn(y + d)), y € [-d,—dy].
n=1

13



where

Bn = \/(n7r/w)2 — kp1er,

m =/ (nm/w)? — KZpger,

u] and ug are the upper and lower fields inside the cavity, respectively. Using the

continuity conditions on the interface,

cnlpg cosh(Bnd)Bn — p1 sinh(Bpd)vn]
+dn[pg sinh(Bnd)Bn — pq cosh(Bnd)vn] = —gn, (3.21)
cn sinh(Bpdy) + dn cosh(Bndg) — bn sinh(ypds) =0, (3.22)

cntg cosh(Bndo)8n + dppug sinh(8ndy)Bn — bppy cosh(yndg)yn = 0. (3.23)

Here the permeability p is assumed a constant everywhere. By solving the above
system, a mode matching solution for the two-layered medium cavity problem is
easily derived. The same idea could be applied to a general multi-layered medium
problem. If consider the TE cases or the medium is vertical layered, cos(%f) should
be used in the field expansions rather than sin(m). The mode matching solution

w
is again easily derived.

1.4 Improved Mode Matching Method

In order to find the difference between the exact solution and the mode matching

solution, the difference between two operators acting on one single mode is analyzed

14



first, i.e.,

To Eo(sin(?)) To Ep(sm(n:}x))
i ko
- X k23 k2 €2 l( —(=1)" cos(wé))( L1 )| €
2m J kg £+ % §— %
: —-ko 1 1 1
T / €70\ kG ~ €2 | (1= (=1)" cos(uE))( —rr ~ —r )| ¢
£+ §
; it ; sin(w(é + E)) i sin(w(§ — 1:‘:[))
t oo —00 0 -¢ 2 £+ 7;)—“ 2 §— %
_ind(€ + %) + imd(€ — %) | d¢
_é_ h+Iy+1I3+ 1y (4.24)

Before proving the main theorem, let us define Si(x) and Ci(r) be the sine integral and

cosine integral respectively. They have the following definitions and the asymptotic

expansions,
Tgint 0 sint
Si(z) = / Mg =I_ / M2 (4.25)
o ¢ 2 z t
T cost —1 X sint
Ci(x) = vy+Inz+ / O Cdt=-— / ALY (4.26)
0 t z t
00 .00
; _m  cosz (=D)"(2n)!  sinz (=)™ (2n + 1)!
Si(z) = 2z z_: n ) — z2n (4.27)
n=0 n=0
00 00
sinz (- 1"277 _coszx (=D)™(2n + 1)!
Ci(r) = . > 5 > o . (4.28)
2 T
n=0 n=0

The graphs of them are shown in Figure 1.3.

Lemma 1.4.1. For sine integral and cosine integral, the following estimates hold,

(4.29)

Proof. The estimates could be derived by integration by parts. O

15



Figure 1.3. Sine integral and cosine integral.

The well known Riemann-Lebesgue Lemma says if f € Ll(R), then

Eliﬁlo/sin(x/e)f(z)d;r =0,
€lin()/cos(ur/e)f(z)d;r =0.

The smoother the function f(r) is, the faster the limit converges. But the inte-
grands in Iy and I3 are not in Ll, it makes the analysis more challenging. N. Bleis-
tein and ect. focused on log-like functions and established a generalized version of
Riemann-Lebesgue Lemma [19]. Here in this work, an asymptotic expansion and
anti-derivatives are used to prove the convergence. Again for the above limits, if f(r)
has singularity at z = 0,

lim sin(x/e) = nd(x)

e—0

should be used.

16
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Figure 1.4. Graph of r(z).

Lemma 1.4.2.

/1 sin( ) m(u, =7+ O(e).

1 =z
Proof. Define f(r) = V1 - 12,z € [-1, 1). Because f’(0) = 0, therefore
f(x) = f(0) + 1'27‘(.r).
f(x) = f(0)

Here r(x) = — It can be seen that r/(x) has singularity at z = 1. Notice
x
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that

1sin(=)
/0 < f(a)da (4.30)
1
- f(O)Si(—l—) _ /0 sin()or(z)dz (4.31)
1 d

= f(O)Si(%) — €cos %r(l) - 6/0 cos(%)a;(a:r(x))dx (4.32)

1 d
= %+O(e) . /0 cos(-f)%(zr('x))dx (4.33)
Use the Riemann-Lebesgue Theorem in finite domain [a,b] and notice that r(1) = —1

and zr(z) is a decreasing function on [-1,1).Therefore

1 1
) g ter@idz = - [ Lter(ands = —ar(a)l = 1

Hence
1 T
lim cos(=)d(zxr =0
Jim [ cos(Z)d(er(z)

and

1 sin(f)
/ € f(z)dr = 7 + o(e).

-1 =z

Remark 1.4.1. The above lemma in fact states that lim,_,sin(z/e) = wd(x).

Remark 1.4.2. For Riemann-Lebesgue Theorem, it could be further proved that if

f(x) is Lipschitz continuous on [a,b] , then

b
/a sin(z/€) f(x)dx = O(e),

b
/ cos(z/e) f(r)dr = O(e)

a

(See Appendiz). But xr(x) € L([0,1]), directly using Riemann-Lebesque Theorem in
(4.31) could just guarantee lim,_,() fol sin(%);rr(;r)d.r = 0. The first order convergent
result could not be obtained. Also notice —(xr(r)) has singularity at x = 1, the

dr
change of variable could not be used twice in (4.32) to get €2 term.

18



Lemma 1.4.3. If %T < 1, then for any a € |0, w], the following is true.

/ oz \/— l:sm(w z- —)) sin(u(z :,,%’Z))} .

r—— T+ —
w w
= (Si(w - n7) + Si(w + m))sin("—y), /1- (—)2 +O(1/w).
Proof. Define
sin(az) — sm(m
r1(z,a) = e
x — —
w
Vi-22 - [1-(25)2
fi(z,a) = nnw
I — —
w
sin(ar) +sin(m)
ro(r.a) = T
T+ —
w
1- 12 7::)2
fo(z,a) = nmw
T+ —
w

19



Then using the odd and even properties of the integrand,

/ zaxr sin(w(z — —)) ~ sin(w(x :F%)) "

r- = T+ —

w

w

r- = T+ —
w w

- /01 sin(":)“)Sin(Z(f ;_W%))‘/l - (—)de

w

-{-'/01 1 sin(w(zr — %))‘ [1- (—)2dx
1 nm nm

1 ma nmw
+ [ sin("Z) fysintue = Tz + [ fysinute = ) - T )da

1 sin(w(z + n7r))
v —
+/ Sin(nﬂ'a nﬂ'w 1- (ﬁz)2d‘r
w r+— w
w

1
—/0 ro sin(w(r + %)) 1- (%{)2d.r

1 1 .
+/0 sm(n ) fo sin(w (J:+—))dr—/0 r2f25in(u;(.r+%r-))(x+%)d.r

Similarly as in Lemma 1, the following facts could be proved:

First,
: nw i nm
1 sin(w(z — —)) sin(w(x + —))
w w
/ nr + nr dr
0 I —— T+ —
w w
W=NT gin(r WHNT gin(r
= / ( )dx + / —er
—-nm I nmw -z
= Si(w—nn)+ Si(w + nn)
Second,

1 nm 1 nmw
sin(w(r — —))dx sin(w(c + —))dr
/0 f1sin(w(zx ” ))dx +/0 fosin(w(c + ” ))dx

1 2e(V1 - 22 - 1—(7)2)
(—1)"’/0 5 (717T)2 sin(wa)de
¢ —(—




For convenience, the following definition is made: Fi(x) =

2
2z(V1-
x( r2 u))

It is a decreasing function and f01|F1(x)|d:c is

finite. Therefore the above integral is O(1/w).
Third,

1 nm 1 nm
/0 1 sin(w(z — E))d:r - /0 ro sin(w(z + ?))da:

- 2(sin(ax)n—7r - :rsin(w))
), 2P

sin(wz)dz

For simplicity, consider the case when a = w. The major contribution of the above

integral is

1 (sm(wx)Qn7r
/—E’_dr
0 2 (252
w

= % [log(t — nm) — log(t + nm) — Ci(2t — 2n7) + Ci(2t + 2n1r)]8) = O(

Similar, the fourth conclusion is derived

™ n

/1 fsin(u(z = =5))(z = =)d: /1 fasin(u(z — =2))(x + )de
0 r1 f1 sin(w(x w) x 0 rafesin(w(z — —))(x ydx

(sin(ax) — sin( \/1 —z2 \/ (mr)g) 1

1
= (-1)" [ sin(wr) — Y dr=0(-)
/0 (I — _uT) w

00
Define ¢, = / Mdy where n > 1. From (4.25), using the integration by
y'

1/¢

parts, it could be easily proved that

1 1 1 1
qn = €"'[cos=+ nesin- —n(n+ l)e2 cos - — n(n+ 1)(n + 2)e3sin -]
€ € €
+n(n+1)(n +2)(n + 3)qy, 44, (14.34)
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and further more, |g,, 4 4] = O(ent3).

Lemma 1.4.4. Assume a = 0(62), then

. X
/loo Sm(;) V 22— 1dr = O(e).

x2—a

Proof. Define g(r) = ‘/l - 12, then g(z) = f(l) from the definition in Lemma
z

x
1.4.2. Use Taylor’s expansion and (4.34),

T

o0 sin(—)
€ 2 _ 14
/1 2 -a\/x ldz
oo 1
_ / sin(Z)(=5 + )/ 22 - 1dz + O(e2)
1 € T T

sin(—)
= [T =00 - 5+ o

T 1‘2

Lemma 1.4.5. For any a € [0, w),

0o -1 . — | sin(w(z — ﬂ)) sin(w(z + ﬂ))
/ +/ e1T\/22 ~ 1 e — i dr = O(1/w).
1 — 00 r— — r+ —
w w

1 1
Proof. Define g(r) = ,/—2 — 1, then g(xr) = f(=) from the definition in Lemma
T

£
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1.4.2. Use Taylor’s expansion,

/ / \/—— sin(w(z — —)) B sin(w(z :ﬂ%r)) "

:c—— T+ —
w w

= C— /loo sin(a.t)% z2 — 1dz
nm [0 L ()7
R )22~ 1z + O((1/w))
_ C% 100 sin(am);in(wx)(f(o) _ x%r(%))dl’-i- O((l/w)2)
= CZX(Ci(w - a) - Ci(w + ) + O((1/w)?)

= 0(=)

Remark 1.4.3. If ¢(x) € C'(C)’O(R) is an even function, then

T

1 /OO Sill(;)
- o(x)dx

T J—00 T

00 o0
= / 6(I)¢(x)d‘t+53c051/ 6(x)¢(2)(r,)d.r+()(e4).

—00 € /-
In fact it provide us a way to correct the well known convergent result,

lim sin(ur)

= md(z), to an arbitrary convergent rate in the sense of distribu-
w—00 x

1
0, =
tion ( See Appendiz ). But in this work, since V' 1 — 2 € C ' 2(R), the convergence

rate degenerates to O(e).

From the above lemmas,

{14 o [Si(u: —nm) + Si(w +nm) 1] sin(m)} _ O(ﬂ)

27

where vy is defined in (3.17).
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For the second integral and the third integral in (4.24),

. o0 _on7
Ip+1I3 = %/ 1 — €2(1—(=1)" cos wekg) 2—,%2 cos(x€kq)dE
t &=k
0
T 1 (22
- L / (€ = 3¢ + Olg) (1~(-1)" cosutkp) {2_—;;_,,7 cos(zEkp)dé
1 wkq
00 nmw \
= 1—(=1)" k y k o(1
= 5 [ eosuth) | by | costatholas +O(1/u)
1 wk /
if £ # 0. Now calculate
1
/6(1 — (—l)n COS’U}&ICO) {T_—(@ COS(I&kO)d{
ka

Notice that the Lebesgue dominated convergence theorem could not be used due to

the singularity of the kernel. When n is an even number, the anti derivative is,

k

1k \ _nk
AN(z) = Z( 21) Si(r(u,{ko-f-w( 1) nﬂ))sin(n;r)m)
k=1
2 rlweka + (1)K
+ Z%Ci(x(u.éko—kw( 1) nﬂ))cos(n;r]r)
k=1
2 (_pym+l Sl 4 (_1)M _nk ,
+ 3 1):1 51((-1)’“x+w)“5"'0+fv DT ) Gin(ur S 2 1);”)
m,k=1
2 _ Ll 4 (1) _1k ,
+ Z TlCi((—l)k.c+w)u£k0+fu 1)mrm)cos(mr———( l)u;v-i-u)
m,k=1

From Lemma 1.4.1,

Iy + 13 = i—l.HEC'i(kO.r) + O(1/w) = O(—).
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A similar result could be derived for n which is an odd number. For the first integral,

_2_
/\/kg £2(1 - (=1)™ cos wé) (£ u 2) cos(z€)dE

-5

I

-2— nm
= zko /(1 — (=1)" cos w€) (——W) cos(z§)d€ + O(;)

- (= ”
Evaluating the above definite integral,
[11 - ——fn(x) sm(?ﬂ)] 0(™%) + R(z) cos(25),
w w
where
fn(z) = [2(—1)“*1&'(———’("’” — ko)) 4 {2 dnm — who)

—Si((w - :r)(r;n - wko)) 4 (—l)"'*'lSi((w + :c)(r;:r + wko))

+2Si( (4.35)

x(nm 4+ wkp) . (w =) (nm + wkp)
TR0 + (-1 & )] '

and R(r) is a O(%) function. As a result,

nmxr

[ToEO(sin(m)) T o Ep(sin(——)) + (—”)

Si (w —nm) + Si(w + nw)
= ~m|l- 2

nmwr

[ sin(222) - 50 o) sin 25

By comparing (1.7) with (3.14) and using the above estimate, the improved mode

matching solution is derived

[w/7]-1
u(x,y) = Z an sm(n;r)t) sinh(yn (y + d)), (4.36)
n=1

where @, could be obtained from

- v ik
an [’)’n (‘.Oth(’)’nd) - % - ’—Ofn( )]
= bn(yn coth(ynd) — vn). (4.37)

The main result of this work is:
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Theorem 1.4.1. Denote u as the ezact solution of (1.7). Then u € H&'HS([O, w)).
Let u be defined as (4.36). Then

||u(;t,0) - {"(1:)0)”2 = O('—lﬁ)

Proof. From the lemmas, the coefficients ap, of the exact solution satisfies
an [‘m coth(ynd) — — — — fn(z) + O(—)
T w
= bn(yn coth(ynd) — vn).

Because Si(r) is bounded, therefore

840} COth(’)‘nd) - VUn

n = : = 0(1).
vn 'Lko
n coth(ynd) 5 ym fn(x)
Because an = O(bp), from Theorem 1.3.1,
[w/m]-1
2 . 2 1
[lull5 = E (an sinh(ynd))* + O(E)
n=1

For nm < w,
- nm
an = an + O(-UJ—)bn

Use Theorem 1.3.1 again,

. 1
llu = @ll5 = O(=)
w
a
Remark 1.4.4. Consider the following two Helmholtz equations,
?u 8% 9
— +——F +AhTu=0, [0,w] x[-d.0].
0.r2 0y2 1 [ ] [ ]
0%u  9%u 9 .
— + ——= +A5u=0, [0,uw] x[-d,0]. 4.38)
0.E2 0y2 2 [ ] [ ] (
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Using the change of variables, (4.38) could be rewritten as

-22712‘+g§—;‘+k2 [0 ]x[—-—fdo]

Obuviously, solving a problem with fired dimensions at the extremely high frequency is
equivalent to solve a problem with the fized frequency and large d and w. Above the
improved mode matching method is derived for large w, which could be viewed as the

electrical width of the cavity, i.e., we = wp/wavelength. Notice the convergence is not

related with depth d. The method should be extremely useful for deep cavity as well.

For a two-layered medium (parallel layer), the modified upper field 4y and the

modified lower field u9 are given by

0.
ij(z,y) = Y [énsinh(Bn(y +d)) + dn cosh(Bn(y + d))] sin(%),
n=1

00
uo(r,y) = Zl; sin —)smh(’yn(y+d))

where bp, ¢n, dn are solved from the following system,

0 A B bn — bn, R
-C D F n —Cn = 0
-F G H dn — dn 0

Here

A = cosh(08nd)Bn — sinh(Bnd)(vn + fn), E = cosh(8n(d — dy)).

R = cp sinh(3pd) fn + dn cosh(8nd) fn, D = sinh(3y,(d — dy)),

B = sinh(8y,d)3n — cosh(Bpd)(nun + fn). C = sinh(yn(d —dy)).

G = Bn cosh(dyp(d — dy)), H = 3y sinh(8n(d — dy))

F = v cosh(3p(d - dy)).
where On, yn and vn are defined in (3.21), (3.21) and (3.17) respectively. The co-
efficients of the mode matching solution byn. cn, dn are defined in (3.21), (3.22) and

(3.23). The above main theorem is also true for the two-layered cavity case.
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If the medium is vertical layered, the error estimate could be obtained by analyzing

J =

1.5 Numerical Experiments

Eo(cos("—frdg.

Here some numerical results for large cavities are presented. It should be noticed
that the usual numerical simulations are done for open ended parallel plate waveg-
uide, which has different geometry and different applications. Figure 1.5 displays the
magnitude of the aperture field at a high frequency. In this case, kg = 2m, w = 16,
d = 4, 6, = 0. Here the parameters are already rescaled by the wavelength. Figure
1.6 shows the magnitude of the field of a very wide and shallow cavity. In this case,
kg = 2m, w = 1000/2/m, d = 0.01/2/7, 6, = 0. Physically, when w >> d, it becomes
a total reflection problem, thus |u| = 2sin(kpd). The phenomenon may be observed
from Figure 1.6. In Figure 1.5 and Figure 1.6, the cavity is empty, i.e., e = 1.

Figure 1.7 shows the magnitudes of the fields of a cavity with layered mediums.
In this case,

ko = 271’, w = 50/7‘(‘. oz' = 0,

17 y € [_5/7.(’0]?
€, y € [-10/m,-5/x].

er(r) =

The connected line is for €9 = 1, the dashed line is for eg = 3 + 3:.
Figure 1.8 again shows the magnitudes of the ficlds of a filled cavity. Here kjy = 27,

w =8,

€1, Y€ [-24,0],
er(r) =
€0, yE[-48,-24]
The continuous line is for ¢9 = 1, the dashed line is for g = 4 + 7.

Another important quantity in the EM field calculation is radar cross section (or

echo area). It is the most common scattering measurement in antenna design. It
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Figure 1.5. Magnitude of the aperture field for a moderately wide cavity.
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Figure 1.6. Magnitude of the aperture field for a very wide cavity.
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Figure 1.7. Magnitude of the aperture field for a two-layered filled cavity.
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Figure 1.8. Magnitude of the aperture field for a two-layered filled cavity.
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measures the "size” of an object as seen at a particular wavelength and polarization

and defined by

lim 41rr2%
T—00

Ds

where D;,, and Dg are incident power density and scattering power density, respec-
tively. The prediction and reduction of Radar Cross section plays an very important
role in aircraft design and antenna design.

Mathematically, for the 2-dimensional open cavity, the echo width (Radar Cross

Section) is given as [8]

o(¢) = %lgcos(g{)) / %% B(1)dz|? (5.39)
r

Figure 1.9 displays TM case monostatic RCS of a empty cavity with w = 1,
d = 0.25. RCS computed using the FEM (continuous line) and IMM (dashed line)
agree well. The unit of RCS is dB/m.

Figure 1.10 shows the monostatic RCS of a filled cavity (e9 = 4 + ). It follows
the same dimension as the previous example. Because of the different choice of time
harmonic, the result is compared with the example in [8] for e9 =4 — 7. IMM result
(continuous line) and FEM result are showed in one graph and they agree well with
each other.

Figure 1.11 show the RCS of a large cavity. In this case, w = 10.2,d = 5.1, ¢ = 4
and f = 300M Hz. The continuous line is for backscattered RCS, the dashed line is

for specular RCS.
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CHAPTER 2

THREE DIMENSIONAL CAVITY
PROBLEM

2.1 Formulation

Consider the problem of scattering by a cavity embedded in an infinite ground plane
(see Fig 1.1). Assume the ground plane and the cavity walls are perfect electric con-
ductors (PEC). As discussed in Chapter 1, the governing equations are the Maxwell’s

equations

VxFE—-iwuH =0

Vx H+iweE =0

where E and H are the electric and magnetic fields, respectively.  Assume
kg is the wave number and & = (z,y,2). Let a plane wave E' =
Zoﬁeikoq'l' illuminate on the structure. Here p = cosa(sing, —cos¢,0)] +

sin a(cos ¢ cos 0, sin ¢ cos 6, sin 9)T is the polarization vector, where « is the polar-

ization angle. ¢ = (cos¢sin8,sin ¢sin @, — cos 0)T is the wave propagation direction
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(Eg, Hg)

Erer Hrer)

and Z( ~ 1207 is the intrinsic impedance of free space. Then

- *
} 0.t —Zop*e'k()q z
H = geikoar
HT = _si*eikoq*z

where

Pqa=0 ¢"=(q.92,~q3)

s=pxq s =(-s1,-s9,53)

Because this is a unbounded scattering problem and can be regarded as a perturbation
of total reflection problem, the scattering fields are set as ES = Et - F' — E" and

HS = Ht - H' - H", where Et and H! are the total field. In this case the scattering
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fields satisfy the Silver-Muller radiation condition

lim rES= lim rH’ =0
T—00 T—00

- s _ s _
r-l-l—>ncl>or{E ZoH® xr} =0

Further assume the permittivity e; and permeability pr inside the cavity are invariant
along r and y directions, but piecewise constants along z direction, the boundary

conditions are

nx(Ej—E9)=0 z=0
nx(Hy—Hp)=0 z2=0
n-(Dy—-Dg)=ps 2=0

n-(H —Hy)=Js z2=0

where ps and Jg are the surface change density and surface current density.
Notice the cavity walls are PECs, therefore the fields satisfy the following bound-

ary conditions inside the cavity

n x E9g =0 on the cavity walls

n-Hg =0 on the cavity walls

The well-posedness of the variational formulation was discussed in [3] using the Hodge

decomposition and the Unique continuation.
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2.2 Field Representations

Use PEC conditions, the E field inside the cavity is expanded as

00
Er = m,;:() [amn sm(T:U—l) + amn cos(—%)] sin ( )Sln[/\mn(z +d)],(2.1)
Ey= § sin(m) [5 sin(w) +b cos(mny)] sin[Amn(z + d)],(2.2)
y o wy mn wo mn " mn (2.

Z sm(— )si n( v {Cmn sin Amn(z + d) + cmn cos[Amn(z + d)]} (2.3)

mn—

where Amn = \/k(%l‘lfl - (7l7l’/w1)2 - (m7r/w2)2.

Note that V - ¢E' = 0 and the medium is piecewise constant,

0Fz 4 OEy + OE;
ox dy 0z
00

= Z [flmn cos( TI.ﬂ'.L‘) — amn sm(n7r r)] T sm( sin[/\mn(z + d)]
el w) wy Jwp o wy

o0

+ Z sin(%) [i)mn C()S(T:'Z;y) — bmn sin( m7ry m blll[/\rnn + d))

0 =

mnO

+ E sm s n

m,n=0

2+ (1) —-mn bln[/\nln(a. + d ]}/\TIHl

therefore

zamnn sinymn(z +d) =0,
n

Z bmnmsinymn(z + d) =0,
m

cmnymn =0

Since the coefficient matrix involving amn is nonsingular, amn = 0, byyn = 0. ¢mn =

0 for Jymn ?é 0 and

nm mm
ﬁﬂmn + —21)mn + Amnemn =0 (2.4)
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From the Maxwell’s equations, the H field inside the cavity is

o0

1 [mm . NTT. ommy.
Hy = Z o {Tgcmn sm(-q)cos( o ) cos[Amn(z + d)] (2.5)
m,n=0
~Amnbmn sin() cos(2) cos[Amn (= + d)]} ;
w wy
e 1 nwr, . ,mmy ‘
Hy = z ZJZ Amnamn COS(UI—) sm( ’UJ2 )COS[/\m-n(Z + d)] (26)
m,n=0
nm nrr, . ,mmy
T nre d
o cmn cos( ” ) sin( = ) cos[Amn(z + )]} ,
H; = § 1 LY cos(m) cos(mwx)sin[)\ (z + d)] (2.7)
z- iwp | wy mn w] wo mn ’
m,n=0
_ _"lzamn Cos(m) COS( mﬂ-y) Sin[A"},n(z + d)]} .
w9 w A

Next, the field representations in the region of upper half plan are established .
Above the ground, €( and () are constants everywhere. Thus from the Maxwell's

equations,
AEry+k3Ery =0 when z >0
Exy=0 when 2z = 0.

and the scattering components Eﬁ_y satisfy the Maxwell’s equations and the Silver

Muller radiation condition. Further more,
Egyy(x,y,O) = Er y(r.y.0).

Take the Fourier transform with respect to x and y of the Maxwell's equations and
solve an ODE for 2 [2]. In this case, the x y scattering components of the E field

above the ground is derived as

122 (2
ES(6,2) = E5(6,0) VIO TET742 2 (2.8)

1 00 ) ; L'Q—EQ— ?Z . :
Erylry.2)= o / (Ego Ery)(6.0) V0T 2 Satyrtitouae (29)
—0o0
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Note that give E3(z,y,0) # Ez(z,y,0), a similar result could not be derived for E.
For Ez,

. . k2— 2_¢2
ES(€1.€9,2) = [Eg(ES(£1,€5,0) € V"0 §{-¢52
Hence,

. i Jk2—g2_¢2
0:E3(61,€,2) = iz /K2 — €2 — € [Bo(ES(€y, €9, 0)) 'V 0617422

Therefore

1222 A )
(Eo(ES(€1, €0, 00’ V017827 _ 9 E3(6) 69, 2)
i/~ €1 - 63

it implies
1
i/ - 61 - &

Taking the derivative of ES with respect to z and using V - ¢E = 0 2], [22],

E§(£17§25 Z) = aZEg(fl’EQ’ Z)

1

(€)= [0 E)'(6,2) = (0 ) (6.2)]- JZ-&-a

E3(z,y,z2)

3

1 1
= o [ OB (6 2) - (OyEf) (€, )
5= Jrol-(OrEs ST R -a-a

for z > 0. From the radiation condition |E| = O(1/7), (0¢E}) = i{lﬁ'ﬁ. Thus the

1§17 +182Y ge

total E field above the ground is

Ery(zr.y. 2) (2.10)
_ Zopl’2€‘i(l'.t£.r+kyy)(_eikzz+e—ik;z)
00 i Jh2_g2_ _2:: . :
+ -21;- (Ego Ery)(€.0)c VO 8 dbra+iboyge (2.11)
—00
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E;(z,y,z) (2.12)
_ 201)3ei(k4’:x+kyy)(eikzz+e*ikzz) (213)
1

1617 +182y g¢
Vig =61 -6

A “ )
v o /R J-E1ES(6,2) — ©E}(E,2)]

where § = (£1,€9).
From the Maxwell’s equations, the x-y components of the magnetic field above

the ground are

HI(Iv Y, 0) (214)
1 : (ke .
= o {2Z0i(kyps + kzpg)e! Fem+hyy) (2.15)

2 R2[_£1(E0 0 Ex)ﬂ(fy 0) - 62(E0 o Ey)k(ﬁ, 0)] \/m 6

1 ) L
N 57?/32 i\/m (Eg o Ey) (£, 0017 +182¥ g )

Hy(z,y.0) (2.16)
1 : i(krx+kyy)

- i(—kopy — & R, yy .
" {220i(=kzpy - kepge (2.17)

77 2l ~€1(F0 © Ex) (6,0) = &(Ep o Ey) (6,0 \/mdg

1 . o
* oo Rzi\/mwoo&) (€,0)/ 61562y 4¢ }

From the continuity conditions and application of (2.1) to the above equations, two

equations involving an,bn.cn are derived. Combining with (2.4), the electromagnetic

fields could be solved.
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2.3 Mode Matching Method

Replacing the zero extension E in (2.14), (2.16) by the periodic extension Ep,

Halo:0) (3.18)
- ﬁ { 2Z0i(kyp3 + kzpg)et Kz T+kyy) (3.19)
e 1612+1€9y
L
N
T om /R2 i\/m (Epo Ey) (¢, 0)et617+1£2Y ge

517? /32[‘51(510 o Ex)"(£,0) — &2(Ep © Ey)"(£,0)]

Hy(z,y,0) (3.20)
- 5{2201( ~kzpy - kgpg)e' FzTHhy) (3.21)
L
1 i€ 1617 +1€2y

- [=€1(Epo Ex)'(&,0) = &(Ep o Ey)*(€,0)] de
2
+2L7r /RQ ’\/m (Epo E.r)h(f.())ei€11+':§2yd£ }

It is easy to derive

(Epeos(7-)) (6) = —=(b(Er—1o(e-),
VLLIN BN S G D
(EOC S( w )) (f) - \/Q/;( f) ( {2 _ (%)2 ) y

where §(-) is the Dirac delta function.

Lemma 2.3.1. For the periodic extension Ep, the following statements are hold:

1 o [Ep ,mff_rcog mny ] - €3 20i(2€1+y82) g¢
2m JR2 un
= )\]nn Slﬂ"nn—r('Ob mry
'U,’l u'2
1 nwr mm/ 2 2 i(x€1+yo)
'2'; R [Ep (‘OS—EQIII ] —_ El — fzc ( 17Ys2 ([{

nmwr ., mmny
= /\77”1 COS — SIn
w’ u'2
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Lemma 2.3.2. For the periodic extension Ep, the following statements are hold:

1
o

1 . nmx m7ry
—W/RQ[Ep(sm o co

1
o2

1
o

2 [Ep(cos sin ]

/ [Ep(sin n7rz mﬂ'y

2 [Ep(cos

62 z(:z£1+y€2) (_)2 nwr . mmy
cos sin

/k(2) E]_ {2 /\mn wq w9

nmm?
£160e (x£1+y£2) _ wlwg nTr . mmy

)] > cos ——sin —
NCEY -52 1 2
nmr mmy

52 z(x€1+y£2) (—) ‘
sin cos

wy )] \/m w1y w9

2

nnr . m7ry

mnm

. §189¢ i(z€1+162) wjwy . AT mmy

d§ = sin cos
/k2 52 52 Amn wq w9

nrz mm/

Using the continuity conditions

H (2.y,0%) + HE y(2.y,01) + H] (2.4,0%) = Hz y(2.4,07)

a system equations is derived

1 mnm

H[—cmn cos(Amnd) — Amnbmn cos(Amnd)) (3.22)
2 2.2
. mnnm . . mene
_[Srlnn - amni —————— Slll(')’lnnd) - bnm‘l Slll(",mvnd) (323)
I wijwoAmn wiAmn
—iAmnbmn sin(Amnd)]
1 nm
;’I[/\mn(lmn cos(Amnd) — u—l'cm n CO*(/\mnd)] (3.24)
1 n2n2 mnw2

2 : .
_[Smn + amnt bl“(“/'mnd) + bmnt

H wy Amn

sin(ymnd) (3.2
11!11L‘2/\",n Slll("‘nnn() (3 5)

+idmnamn sin(Apnd))
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Here

w
Srlnn - oo 2/ ehzathyy sm(—-x)cos(——y)da:dy
4
= k
wiwy Bn(wy, kz)Am (wg, ky)
wo W .
4
= ——B  ky)An(wy, k
wywy m (w2, ky) An (w1, kz)
where
¢
w, m=0 and k=0,
ik ’ m=0 and k ?5 0,
Am(w, k) = < lsin(m'/r), m#0 and k=0,
mm )
z’k( 1)Metkw _ g m£0 and k0
k2 — (ﬂ)? !
¥ w
and
)
01 m = O,
w
— (1= (=)™ #0 k=0,
Bm(w, k) = { m7r( m( ikl)u ), m#0 and 0,
mm (—1) -1 ‘
w k2_(m7r)2 , m#0 and k#0
\

Solving (3.22), (3.24) and (2.4), the approximation of the electromagnetic field on

the aperture is obtained. Analogous to the two dimensional case, it is called mode

matching method.

2.4 Numerical Experiments

For convenience of the later use, here the far zone scattering and radar cross section

(RCS) are discussed first.

From (2.9), the field representation above the ground is

oo
B (r6.0)= o [ (Epo BV (.0)'kTd

21 )
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where k- r = \/k‘g - {% - §%rcoso + § rsinfcos¢ + ifgrsinfsing and r, § and ¢
are the variables in spherical coordinates. Solving

ak-r_o Bk-r_
73 ’ 09

the stationary phase point is derived as [22]

0,

€1 = kg cos ¢sinb,
€9 = kpsin ¢sin6.

Therefore the far zone scattered field can be computed by

ikor
ES(r,0,¢) ~ (Eg o E)"(kg cos sin, kg sin ¢ sin 8, 0)i= — ko cos),
In [8], 3d RCS is defined by
|ES(r,6,9)|2

mnc ancy _ : 2
0'(9,¢,9 »¢’ ) - rl_‘i%o‘l” IEinc(o’mc’(PinC)p

where 6, ¢ are the observed angles and 61C, $!"'C are the incident angles. When
incident angles and observed angles are same, o is monostatic or backscatter radar
cross section. Otherwise, it is called bistatic radar cross section.

To incorporate the polarization information, the radar cross section can also be
defined as

y N ~ Es T, 9~¢ 2
apq(0,9, 6" ¢ $MC) = lim drr? I p(‘- )|
r—00 IE(zln.cwm,c, ¢HlC)|2

or people sometimes use

‘ 5 1E5I2
UHH=7~1_T$O47” |Einc|2
¢
E8l2
o2 1By
UHE—TI—"»?)O‘M,‘ IEincI‘Z
¢
ES‘I?
B
OFpE = l_1£11 dmrt——"m
r—o00 'EguIQ
» JESF
opg = lim dmr®——"-5
7r—00 |Eé,"(|2
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With the far field patter derived above, the RCS is given by

sc|2
RCS = lim 471'7"2JE.—l
r—00 |E2n|2

k2cos2 [w w9y 1 e pr .
_ M0 E I/O 1/0 E(x’y’0)621.,0sm()(xcosqb+ysm¢)dxdyl2

Let
RCS = (Z sz, Z Sy, Z 82),
mn mn mn

applying the field representation (2.1), then

en=0m=0

Sx=0,8y=0,3;; =0;

oen=0m#0

. .mm
Sr =amn Sll](/\rnn(l)(—l)u—Q' X P1Q2,

Sy = O,Sz = 0;

en#0m=0

nm

Sy = brnn Sill(/\rnnd)(—i)a X PZQI.

S,[=0,S,3=0;
oen#0,m#0

s¢ = amnsin(Amnd)(—i)kgsinf cos c)m x Q1Q9,
wo

sy = bmn Sill(/\mnd)(—i)k()SiIIGSi'lé% x Q1Q2,

nm mm
(amn w + bmn Wy ) nmTmm

Sz = - cos(Apnd)—— x Q1Q9.

/\'nm U'l 11,‘2
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where

ethpsinfcospwy _

£ (kns
P = 4 (kOSinﬂcosqs) if (kgsin@cos¢) #0

iwg if (kgsinfcos¢) =0
ctkosinfsingwy _ 4

s
P, = {  (kpsinBsing) if (kpsindsing) # 0

iwg if (kpsinf@sing) =0
etk sin0cos¢w1(_1)n -1
(kg sin @ cos ¢)22— (n1r/w1)2

i}

if (kg sin f cos ¢)2 # (nﬂ/w])2

Q1

AN

. ¥ 2 _ 2
\ Yo if (kgsinfcos¢)* = (nm/wy)

eiko sin 6 sin d>w2(_1)m -1

S if (kgsin@sing)2 # (mm/wg)?
ko sin 8sin ¢)2 — 2!
(kg sin fsin ¢) A (mm/wo)

O
&S
Il

. NP N 12
\ Y if (kgsinésing) (mm/w9)
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