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ABSTRACT

The Application of B-Spline Smoothing: Confidence Bands and

Additive Modelling

By

Jing Wang

Asymptotically exact and conservative confidence bands are obtained for nonpara-

metric regression function, based on constant and linear polynomial spline estimation,

respectively. Compared to the pointwise nonparametric confidence interval of Huang

(2003), the confidence bands are inflated only by a factor of {log (11)}1/2, similar to

the Nadarayar-Watson confidence bands of Hardle (1989), and the local polynomial

bands of Xia (1998) and Claeskens and Van Keilegom (2003). Simulation experiments

have provided strong evidence that corroborates with the asymptotic theory.

A great deal of effort has been devoted to the inference of additive model in the

last decade. Among the many existing procedures, the kernel type are too costly to

implement for large number of variables or for large sample sizes, while the spline type

provide no asymptotic distribution or any measure of uniform accuracy. We propose a

synthetic estimator of the component function in an additive regression model, using

a one-step backfitting, with spline smoothing in the first stage and kernel smoothing

in the second stage. Under very mild conditions, the proposed SBK estimator of the

component function is asymptotically equivalent to an ordinary univariate Nadaraya-



Watson estimator, hence the dimension is effectively reduced to one at any point. This

dimension reduction holds uniformly over an interval under stronger assumptions

of normal errors, and asymptotic simultaneous confidence bands are provided for

the component functions. Monte Carlo evidence supports the asymptotic results for

dimensions ranging from low to very high, and sample sizes ranging from moderate to

large. The proposed simultaneous confidence bands are applied to the Boston housing

data for linearity diagnosis.

Phenological information reflecting seasonal changes in vegetation is an important

input variable in climate models such as the Regional Atmospheric Modeling System

(RAMS). It varies not only among different vegetation types but also with geographic

locations (latitude and longitude). In the current version of RAMS, phenologies are

treated as a simple sine function that is solely related to the day of year and latitude,

in spite of major seasonal variability in precipitation and temperature. In short,

the sine curves of phenolog are far different from the observed. Via linear spline

smoothing we developed more realistic phenological functions of all land covers in

the East Africa to improve RAMS model based on remote sensing observations. In

addition, we quantify the differences between the RAMS’s default phenological curves

and those linear spline estimates derived from remote sensing observations.
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CHAPTER 1

Introduction

1.1 Introduction

For the past three decades, nonparametric regression has been widely used in many

statistical applications, from biostatistics to econometrics, from engineering to geog-

raphy. This is due to its flexibility in modelling complex relationships among variables

by “letting the data speak, for themselves”. To fix the idea, we begin with the uni-

variate regression models. Assume that observations {(Xg, Yi)}?=1 and unobserved

errors {5;};1 are i.i.d. copies of (X, Y, a) satisfying the regression model

Y=m(X)+o(X)6,. (1.1)

The unknown mean and standard deviation functions m (1:) and 0‘ (2:), defined on a

compact interval [a, b], need not to be of any specific form.

Two popular nonparametric smoothing techniques are local polynomial/kernel and

polynomial spline. The kernel type estimators are “local”, treated comprehensively



in Fan and Gijbels (1996) and Hardle (1990). The polynomial spline estimators, on

the other hand, are global, see Stone (1985, 1994) and Huang (2003).

The fidelity of a nonparametric regressor is measured in terms of its rate of con-

vergence to the unknown regression function. The type of convergence rates can

be pointwise, or uniform. For kernel type estimators, rates of convergence of all

three types have been established by Mack and Silverman (1982), Fan and Gijbels

(1996).For kernel smoothing of univariate regression fimction, Hall and Titterington

(1988), Hardle (1989), and Xia (1998) made significant contributions on the con-

fidence bands. All of these are based on strong approximation of some empirical

processes by the 2-dimensional Brownian bridge, as in Tusnady (1977), which is the

same idea used in Bickel and Rosenblatt (1973) for confidence band of probability

density function. More recently, Claeskens and Van Keilegom (2003) improved upon

Xia (1998) by using smoothed bootstrap, and by extending the confidence band to

derivatives of the regression function. Hardle, Huet, Mammen and Sperlich (2004)

introduced the bootstrap bands with corrected bias.

For polynomial splines, least squares rates of convergence have been obtained by

Stone (1985, 1994), while pointwise convergence rates and asymptotic distribution

have been recently established in Huang (2003). Confidence band for polynomial

spline regression, however, remains unavailable except under the strong restriction of

homoscedastic normal errors, see Zhou, Shen and Wolfe (1998). Since the confidence

bands is one of the most important ways to do the model diagnosis, in another

words testing the validity of the parametric model, the confidence bands for the

heteroscedastic model is in great demand because of its generality.



1.2 Confidence Bands

An asymptotic exact (conservative) 100 (1 - a) % confidence band for the unknown

m (3:) over interval [a, b] consists of an estimator Th (2:) of m (2:), lower and upper

confidence limit fit (1:) — In (3:), Th (1:) + In (2:) at every n: E [a, b] such that

“lingoP {m (as) 6 1h(:1:) :1: In (2:) ,Va: 6 [a, b]} = 1— or, exact,

lilrn’icng {m (1:) 6 fit (1:) :l: In (2:) ,Va: 6 [a, b]} 2 1 — a, conservative.

Confidence band of kernel type estimators are computationally intensive since a

least squares estimation has to be done at every point. In contrast, it is enough to solve

only one least square problem to get the polynomial spline estimator. The greatest

advantages of polynomial spline estimation are its simplicity of implementation and

fast computation. But so far the asymptotics property of the spline smoothing is not

complete as the kernel type.

To introduce the spline functions, divide the finite interval [a, b] into (N + 1)

subintervals Jj = [tj,tj+1) ,j = 0,....,N -— 1,JN = [tN,b]. A sequence of equally-

spaced points {tj};.v=1, called interior knots, are given as

t0=a<t1< < tN <b=tN+1,tj =a+jh, j =0,I,...,N+1,

in which h = (b — a) / (N + 1) is the distance between neighboring knots. We denote

by G(”-2) = C(94) [a, b] the space of functions that are polynomials of degree p -— 1

on each Jj with continuous (p -— 2)th derivative on [a, b]. For example, 0(4) denotes

the space of functions that are constant on each Jj, and 0(0) denotes the space of

functions that are linear on each Jj and continuous on [a, b].



Our first objective is get the following polynomial spline estimator based on data

{(Xi,Y,-)}?=1 drawn from model (1.1)

n

A _ . . _ . 2 _

"117(3) _ argImngeGQ—mlmb] E; {K .9 (X1)} :17 " 1: 2: (1'2)

and then construct the error bound function In (2:) around this spline estimator.

We now state our main results in the next two theorems.

Theorem 1.2.1. Under Assumptions (A01)-(AC4) on Page 16, ifp = 1 (constant),

then an asymptotic 100 (1 — a) % exact confidence band for m (2:) over interval [a, b]

is

m. (x) i a... (as) {210g (N + 1)}1/2 an.

in which 0,1,1 (2:) is the pointwise variance function of ml (:12), and can be replaced by

a (2:) {f (2:)nh}-1/2, d" is defined in (2.2.13) with limit 1 as n —+ co .

Theorem 1.2.2. Under Assumptions (ACI)-(AC4) on page 16, if p = 2 (linear),

then an asymptotic 100 (1 — a) % conservative confidence band for m (1:) over interval

[a, b] is

m (3:) :l: 0,1,2 (1:) {210g (N + l) — 210g a}1/2 ,

in which 0,1,2 (3:) is the pointwise variance function of m2 (at), is defined in (2.2.11).

The construction in Theorem 1.2.1 is similar to the connected error bar of Hall and

Titterington (1988). Ours is superior in two aspects: first, we treat not only equally-

spaced designs, but random designs; second, by applying the strong approximation of

Tusnady (1977), our confidence band is asymptotically exact rather than conservative.

The error bars of Hall and Titterington (1988) are based on a kernel estimator while



ours is based on a regressogram. The upcrossing results used in the proof of Theorem

1.2.2 is also different from that used in Bickel and Rosenblatt (1973), Rosenblatt

(1976) and Hardle (1989). The theorem on linear confidence band, however, bears no

similarity to the local polynomial bands in Xia (1998), Claeskens and Van Keilegom

(2003). It is instructive to point out that the asymptotic variance function on; (2:) of

m2 (2:) is a special unconditional version of equation (6.2), in [Huang (2003), Remark

6.1, page 1624]. Thus, as we have mentioned in the abstract, the linear confidence

band localized at any given point x, is only a factor of (log n)”2 wider than the

pointwise normal confidence interval of Huang (2003).

1.3 Additive Component Eastimation

While in practice we have to deal with the high dimensional data in most times.

Much effort has been devoted to addressing the issue of the “curse of dimensionality”.

One popular choice for such purpose is the additive model popularized by the book

of Hastie and Tibshirani (1990). Stone (1985) proposed estimators for component

functions and their derivatives, and established optimal rates of convergence. These

were later called polynomial spline estimators in the extended context of functional

ANOVA model in Stone (1994), Huang (1998). Huang and Yang (2004) further

extended these estimators to weakly dependent data and developed consistent BIC

model selection procedure based on such estimation.

Hastie and Tibshirani (1990) proposed backfitting estimators for components func-

tions without theoretical justifications, while Opsomer and Ruppert (1997) offered



partial asymptotic results for the case of d = 2 under some strong assumptions. Op-

somer (2000) extended the theoretical results to a general case with more than 2

covariates. Mammen, Linton and Nielsen (1999) proposed a projection based modi-

fication of the backfitting algorithm and established its theoretical properties, which

was implemented in Nielsen and Sperlich (2005) and called smooth backfitting esti-

mator. Another viable alternative is the so—called marginal integration method, as

first proposed in Tj¢stheim and Auestad (1994), Linton and Nielsen (1995), Linton

and Hairdle (1996), and further developed in various contexts by Fan, Hardle and

Mammen (1998), Yang, Hairdle and Nielsen (1999), Sperlich, Tjostheim and Yang

(2002), Yang, Sperlich and Hardle (2003), Xue and Yang (2006). Using the wavelet

transformation, Hardle, Sperlich and Spokoiny (2001) developed the additivity and

the polynomial structural tests. Series estimator in Andrews and Whang (1990) cir-

cumvented the curse of dimensionality when interactions are present in the model.

Let {IQ,X?}:=1 = {I/i,X,-1,...,X,'d}?=l be an i.i.d. sample following the additive

model

d

Y = m(X) + a (X) e,X = (X1, ...,Xd) ,m(x) = 0+ 2 ma (ma) , (1.3)

a=l

where the noise satisfies E (EIX) = 0, var (EIX) = 1 and the component functions

satisfy the identification conditions Ema (Xa) 5 0,0: = 1, ...,d. In addition, one

assumes that each predictor X0 is distributed on a compact interval [am ba] .

If the last d — 1 of the component ftmctions were known by “oracle” , then one

could define a new variable Y1 = Y - c - 23:21:17.0 (X0) = m1(X1-) + 0(X)5

which one can use to regress on the numerical variable X1 to estimate the only



unknown function m1 (x1), without the “curse of dimensionality”. The basic idea

of Linton (1997) was to obtain an approximation to the variable Y1 by substituting

ma (Xa) ,a = 2, ..., d with the marginal integration pilot estimates (kernel-based)

and establishing that the error caused by this “cheating” is negligible for estimating

function m1 (2:1). The two-step idea for nonparametric regression also later appeared

in Fan and Chen (1999) for local quasi-likelihood estimation. It is well known that the

kernel estimation in high dimension would be extremely computationally intensive.

Kim, Linton and Hengartner (1999) provided an computationally efficient two-step

estimator, a reduction in computation of order n compared with marginal integration.

The spline method, on the other hand, is very fast, but the rate of convergence is only

established in mean squares sense, and there is no pointwise confidence interval or

even consistency in additive models. In particular, Hardle, Marron and Yang (1997)

demonstrated that the adaptive spline method could lack uniform consistency.

We propose to pre—estimate the functions {ma ($Q)}g=1 by an under smoothed

constant spline procedure. These function estimates are then used as if they were

the true functions for constructing the “oracle” estimator. The greatest advantage

of our approach over that of Linton (1997) is that ours is much faster, and can be

applied to cases of extremely high dimension data (e.g., the number of predictors, d,

can be as large as 50 or 100). One may wonder how one could have all these good

features in one method. The success of our method is due to the well-known “reducing

bias by undersmoothing” and “averaging out the variance” principles, both goals are

accomplished with the joint asymptoties of kernel and spline functions, which is the

new feature of our proofs.



In addition to those features, uniform confidence bands are provided for all func—

tion estimates under mild conditions. For additive regression model, however, it seems

that this present work is the one of the few to offer the measure of uniform accuracy

with theoretical justifications. The good news is that the confidence band we provide

for ma (ma) with any a = 1, ..., d, is asymptotically the same confidence band that

Héirdle (1989) established for univariate regression with kernel smoother, regardless

how many regressors there are and what other functions mo, (:50) , a = 1, ..., d are.

Hence neither the dimension of nor other function components play any role in forming

the band for ma (ma), at least according to the asymptotic theory. In this sense, our

estimator of mo, (30,) possesses what we would like to call “uniform oracle efficiency” ,

which is much stronger than the “pointwise oracle efficiency” of Linton (1997).

Without loss of generality, we take all intervals [amba] = [0,1] ,0: = 1, ...,d.

Define for any a = 1, ...,d, the indicator function IJ,a ($0,) of the (N +1) equally-

spaced subintervals of the finite interval [0, 1], that is

1 JHgasa<(J+1)H,
H = Hn .—. (Nn+ 1)‘1,J =0,1,...,N.

0 otherwise,

IJ,a (55a) = {

(1.4)

Define the (1 + dN)-dimensional space G of additive spline functions as the lin-

ear space spanned by {1,Ij’a (ma) ,0: =1,...,d,J = 1, ...,N}. The spline estimator

of additive function m (x) is the unique element 152 (x) = mu (x) from the space

C so that the vector {m (X1) , ...,m (Xn)}T best approximates the response vector

Y = (Y1, ..., Yn)T. To be precise, we define

d .N

m (x) = So + Z 2 Sign. (ma). . (1.5)

a=1J=1



where the coefficients A0, £1.11 ..., 51Mel are the least square solution given by

T d N 2

{A0,A1,1.--ANd} -”argmianNH 2 {Vi A0 - Z Z AJHaIJa (Xia)}-

=1 a=1J=l

(1.6)

The pilot estimators of each component function and the constant are defined as

N n .N

The, (3170:) = Z AJ,a:IJ,a, (517a) “ "-1:z )‘J,aIJ,a (Xia),

i=lJ=l

d n .N

m. i0+n122215))IJ,a(X,a). (1.7)

These pilot estimators are then usedtto define a set of new pseudo-responses 17,1

which are estimated versions of the unobservable “oracle” responses Y“,

d

Ya=n—e—Zma(xa),n1=Y.-—c-ija(X.-a)i=1=n“‘ZY.~

a=2 a=2

(18)

The proposed splinebackfitted kernel (SBK) estimator of m1 (1:1) as in” (1:1) based

on {17“, X51 }n 1, which is an attempt to mirnick the would-be Nadaraya-Watson
1,:

estimator 1713,] (1:1) of ml (31) based on (Ya, Xil}?=1: had the unobservable “oracle”

responses {Yil}?=1 been available.

. 2L1 Kh (Xil— $1)Yi1 - Z?=1Kh(Xi1 - $1)Yi1
m (I: = — :1: = —

3:“ 1) 2.1;. K. (X51 — x1) "‘8‘:( 1) 29:11am - x.)
  (1.9)

where f’fl and Y“ are defined above. Similar constructions can be based on local

linear instead of Nadaraya—Watson estimator, which is called spline-backfitted local

linear estimator (SBLL).

The asymptotic property of the kernel smoother 171,) (2:1) is well—developed ac-

cording to Theorem 4.2.1 of Hardle (1990), one has

~ D

Yn'h'{m.,1 (x1) — m1(2=1) — be.) ha} —. N (0.122 (mo) .

9



where

bffvl) = #2(K){m'1'($1)f1($1)/2+m'1 (I1)f{ (5131)}f1'1 (171).

v2 (31) = "KllgEl02($1:X2:~--:Xd)}fl-l($1):

In contrast, the bias coefficient of the SBLL estimator would simply be b(:1:1) =

(1.10)

112 (K) m’l’ (2:1) /2, without the additional term of the SBK estimator, while the vari-

ance coefficients of SBLL and SBK are the same.

Hardle (1989)provide the uniform asymptotics for kernel smoother. For any a E

(0, 1), an asymptotic 100 (1 — oz) % confidence band for m1 (1:1) over interval [0, 1] is

nli.rr(;of’{m1(:r:1)6 ms,1(z1)iln(1:1),‘v’xl 6 [0,1]} = 1 — a

where In (an) is defined in (3.2.9).

Theorem 1.3.1. Under Assumptions (A51) to (A56) on page 57, for any x1 6 [0, 1],

the SBK/SBLL estimator msn (1:1) given in (1.9) satisfies

Is... (an) - an (anal = 0. (124/5)

Theorem 1.3.2. Under Assumptions (A51) to (A56) and (A52’) on page 57, the

SBK/SBLL estimator mm (11:1) given in (1.9) satisfies

SUP If?!“ ($1) - 1713,1 (131)] = 0p ("'2/5) -

x1€[0,1]

The two theorems state that the asymptotic magnitude of difference between

as) (1:1) and firm (2:1) is dominated by the asymptotic size of in” (1:1) — m1 (1:1).

Hence mm (x1) will have the same asymptotic distribution as in“ (2:1), pointwise

and uniformly. Higher order local polynomials can also be used, with obvious mod-

ifications. For more on the properties of local linear estimators, in particular, its

minimax efficiency, see Fan and Gijbels (1996).

10



1.4 Application to Seasonality Analysis

Many studies demonstrate the influence of land use and land cover change on lo-

cal and regional climate. The Climate and Land use Interaction Project, or CLIP

(http://clip.msu.edu) attempts to understand the nature and magnitude of the inter-

actions of climate and land use/cover change across East Africa.

Phenological information reflecting the seasonal variability of vegetation is an

important input variable in regional climate models such as Regional Atmosphere

Simulation System (RAMS). It varies not only among different vegetation types but

also with geographic locations (latitude and longitude). I

Many climate models use simple functions for vegetation parameters since, to first

order, the planet is warmer and wetter as you approach the equator. However, east

Africa is unique in having semiarid grasslands along the equator, and drastically dif-

ferent surface conditions govern the radiationbudget in this region. Climate models

are dependent on an accurate representation of the surface radiation budget to repli-

cate atmospheric development. Thus, modeling climate for a unique area like east

Africa requires a different treatment of vegetation characteristics.

RAMS version 4.4 (Cotton et a1. 2003), a state-of-the-art three dimensional at-

mospheric model, includes a representation of vegetation called the Land-Ecosystem-

Atmosphere Feedback, version 2 (LEAF-2) (Walko et a1. 2000). For a. given land

cover class, LEAF-2 provides functions for several vegetation characteristics includ-

ing LAI, fractional cover, roughness length, and displacement height. Although these

characteristics are interrelated, we will consider only LAI here.

11



Based on the observations of LAI of MODIS data, the polynomial spline regres-

sion is employed to fit the function of each land type in East Africa. We develop

the function first temporally and then further investigate the spatial influence. In

other words, the estimate function of LAI will rely on the time and the spatial index

(latitude and longitude). Four major land cover types are chosen to display the trend

of the LAI.

Let Z =LAI, :1: = latitude, y = longitude, t =Julian day. For each LC type we

develop the LAI function as follows,

11

Z (2:,y, t) = 610 (x,y) + Zdj (1:, y) - (t — tj)+ + 612(1c,y)t, (1.11)

j=l

The coefficients cij (2:, y) for j = 0,1, ..., 12, are estimated based on the MODIS

data at each individual grid. Different LC type will have different coefficients set, see

Tables 4.5 - 4.8.

Figure 4.11 and 4.12 illustrates two examples of the seasonal variation in LAI for

common classes in the study area, ”Rainfed Herbaceous Crop” and ”Open to Very

Open Trees” . The observed LAI and resultant splines are distinctly different from the

RAMS/LEAF-2 default parameterization, with the LEAF-2 parameterization com-

pletely failing to capture the seasonality at the equator (solid) or in the regions +/-

5 (dashed/dotted) away. The spline parameterizations accurately capture bimodal

greening events at the equator, unimodal features away from the equator, and the

very low LAI for maize regions following harvest.

Figures 4.17 shows LAI values at 8 May 2000 for three combinations of land

cover and LAI phenology, along with a MODIS image for comparison. The profound
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difference in LAI from 4.17 (a) to (d) at the Equator shows that the LEAF-2 function

is essentially treating the semidesert of eastern Kenya as having high LAI with no

variation. These successive improvements have helped to give a more precise surface

parameterization while keeping the flexibility needed to accommodate projected land

use change.

The hypotheses for each land type is

H0 : LAI trend curve follows the RAMS Curve

Ha : Not follow the RAMS Curve.

The test illustrates that the RAMS curves overestimate the LAI, with the difference

being significantly large indicated from the small p-value< 0.001, see Figures 4.13 to

4.16.

The dissertation is organized as follows. In Chapter 2, we develop the exact

confidence bands via constant spline regression and the conservative ones via linear

spline regression. Chapter 3 the spline-backfitted kernel estimator is proposed to

estimate the component function in an additive model under mild conditions. We

applied the linear spline estimator and its uniform asymptoties to estimate and test

the Leaf Area Index trend for CLIP (Climate Land Interaction Project) in Chapter

4.

I3



CHAPTER 2

Spline Confidence Bands

2.1 Introduction

In this chapter, we present confidence bands of univariate regression function based

on polynomial spline smoothing. We assume that observations {(Xi, Y5)}?._.1 and

unobserved errors {5i}?=1 are i.i.d. c0pies of (X, Y, e) satisfying the regression model

Y=m(X)+a(X)e, , (2.1.1)

where the joint distribution of (X, 5) satisfies Assumption (AC4) in Section 2.2. The

unknown mean and standard deviation functions m (2:) and a (2:), defined on interval

[a, b], need not to be of any specific form. If the data actually follows a polynomial

regression model, m (2:) would be a polynomial and a (2:), a constant.

We organize this chapter as follows. In Section 2.2 we state our main results on

confidence bands constructed from (piecewise) constant/linear splines. In Section 2.3

we provide further insights into the error structure of spline estimators. Section 2.4

14



describes the actual steps to implement the confidence bands. Section 2.5 reports

findings in an extensive simulation study and the application to the testing of poly-

nomial trend hypothesis for the well-known motorcycle data. Section 2.6 concludes.

All technical proofs are contained in Section 2.7.

2.2 Main Results

To introduce the spline functions, divide the finite interval [a, b] into (N + 1) subin-

tervals Jj = [tj,tj+1) ,j = 0, ....,N — 1,JN = [tN,b]. A sequence of equally-spaced

points {tj iii-1’ called interior knots, are given as

to =a<t1 < <tN <b=tN+1,tj =a+jh, j =0,1,...,N+1,

in which h = (b -— a) / (N + 1) is the distance between neighboring knots. We denote

by C(P’Z) = C(94) [a, b] the space of functions that are polynomials of degree p - 1

on each Jj and has continuous (p — 2)th derivative. For example, G('1) denotes

the space of functions that are constant on each Jj, and Gm) denotes the space of

functions that are linear on each Jj and continuous on [a, b].

In what follows, IHI00 denotes the supremum norm of a function r on [a, b], i.e.

||r||00 = sup Ir (2:)I, and the moduli of continuity of a continuous function r on [a, b]

2:6 a,b

is denoted as w(r,h) = Ir (2:) —r(1’)|. One has ’linzwfi, h) = 0max

z,2:’€[a,b],|2:—2:’|Sh

by the uniform continuity of r on a compact interval [a, b].

Our approach is to get the following polynomial spline estimator based on data

15



{(Xi,1/,-)}?=1 drawn from model (2.1.1)

71

A _ . . _ ’ 2 _

mp (17) _ argmlng€G(P—2)[a’b] ; {K 9 (X1)} 3p - 1: 2: (2'21)

and then construct the error bound function In (2:) around this spline estimator. The

technical assumptions we need are as follows:

(A01) The regression function m () E C(p) [a, b] , p = 1,2.

(AC2) The density function f (2:) of X is continuous and positive an interval [a, b] .The

standard deviation function a (2:) E C [a,b] has bounded variation and positive

lower bound on [a, b].

(AC3) The subinterval length h ~ n-l/(2p+1). I.e., the number of interior knots N ~

n1/(2p+1)_

(AC4) The joint distribution F (2:, e) of random variables (X, 5) satisfies the following:

(a) The error is a white noise: E(e|X = 2:) = 0, E (52 IX = 2:) = 1.

b There exists a positive value 61 p and finite positive M such that E e 2 ' 6 <
6

M6 and

S“P2:6[a,b] E (HMS IX = 13) < M5-

Assumptions (AC1)-(ACB) are the same as in Huang (2003), while Assumption

(AC4) is the same as (C2) (a) of Mack and Silverman (1982). All are typical assump—

tions for nonparametric regression, with (AC1), (AC2) and (AC4) weaker than the

corresponding assumptions in Hardle (1989).
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To properly define the confidence bands, we introduce some additional notations.

For any 2: E [a, b], define its location and relative position indices j (2:) ,6 (2:) as

j (2:) = jn (2:) = min { [fig] ,N} ,6(2:) = “57:19? (2.2.2)

It is clear that tjn(x) S :c < tjn($)+1' 0 _<_ 6(2) < 1,V2: 6 [a,b), and 6(b) = 1. De-

note by ||¢||2 the theoretical L2 norm of a function 4) on [a, b], "dug = E {(152 (X)} =

f: (b2 (2:) f (2:) d2:,and the empirical L2 norm as “95113,. = n-1 "_1¢2 (Xi). Corre-

sponding inner products are defined by

<¢.<.o>>=fnew nx>dx=Ew<X>so<X>1 (¢,<p)n=-Z¢(Xi)<p(Xz-)-
i=1

for any L2-integrab1e functions (I), (,0 on [a, b]. Clearly E (43, (,0)n = (d, (p).

Although the truncated power basis is used in implementation (see Section 2.4),

it is more convenient to work with the B-spline basis for theoretical analysis. The B-

spline basis of 0(4), the space of piecewise constant splines, are indicator functions

of intervals Jj, bj1(2:) = I- (2:) = IJJ. (2:) ,j = 0, 1, ..., N. The B-spline basis of 0(0),

the space of piecewise linear splines, are {bj2 (2:)}j__1

 

$-t'1 .

bj’2(2:) = K( hJ+ ),J = —1,0,...,N, for K(u) = (1 - |u|)+.

Define next their theoretical norms

b

c ..=nb-,1||§= / Ij(x)f(a:)d:c.dj,n=llbj,2||§= f. K2(“,:’+—-—1-)f()2.-

(2.2.3)

We introduce the rescaled B-spline basis {83-1 (2:)}N.__0 and {B ,2 (2:)}N for
j=—1
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C(‘ll and 0(0)

3331(1) 5 bj,1 (I) {Cj,n}—l/21j=01~-:N1

-1 2 .

13,32 (2:) s (1,3 (2:) {d,-,,} / ,3 = —1,...,N. (2.2.4)

It is straightforward to see that

2 . . .

“133,"2 =1,] = 0,1,... ,N, (3,,1,Bj,,,> =5 0,] 7,1 1', (2.2.5)

The inner product matrix V of the B-spline basis {3,32 (2:)};V=_l is denoted as

V N B B N 2 2 6

- (”flame—1 .- (< 1",?” J’2>)j,j’=—1’ ( ' ' )

whose inverse 5 and 2 x 2 diagonal submatrices of 5 are expressed as

N ._ ._ ._ .

S = (3.1) , ., = V‘1,Sj = 31 1’3 1 33 ‘17 ,j = 0,...,N. (2.2.7)

J J N =“ 3231—1 32.2

Next define matrices 2, A (2:) and Ej as

  

N

N

2 = (0j“)j,j,=—l = {/02 (v) ng (’0) 812 (U) f (U) dv} . -I 1 . (2.28)

.71] ="

ACT) = (cj(x)-1{1'5($)}),Cj={ \f2- J:="'1,N ,

Cj(3)6 (It) 1 J = 0, ..., N —I

E,- = ( (“1'3“ (“n+2 ) ,j = 0,1,...,N, (2.2.9)

lj+2,j+1 lj+2,j+2 .

with terms film [i - kl S 1 defined through the following matrix inversion

( 1 fi/4 o \

fi/4 1 1/4

1/4 1 . —1
M = = (11:) 1N+2 1/4 ' (N+2)x(N+2)

1/4 1 \/2/4

A 0 fi/‘I 1 (N+2)x(N+2)

(2.2.10)

18



and computed via (2.4.14), (2.4.17), and (2.4.18).

 

We define now

I I- (1002 (wow 1 N
0,2,,1 (2:) = sz‘) ”62 , 031,2 (2:) = fi 2 Bj’,2 (3)3113 (:12) sjjrsulafl,

2(3).n j,j’,l,l’=-—1

(2.2.11)

with j (2:) defined in (2.2.2), ej,n in (2.2.3), 31-12(2) in (2.2.4), and s“: and 0,1 in

(2.2.7), (2.2.8). These 0,2,”, (2:) are shown in Lemmas 2.7.4, 2.7.4 to be the pointwise

variance functions of 1:1,, (2:) , p = 1, 2.

We now state our main results in the next two theorems.

Theorem 1. Under Assumptions (A01)-(AC'4), if p = 1, then an asymptotic

100 (1 — a) % exact confidence band for m (2:) over interval [a, b] is

m, (2:) d: Un’l (2:) {2 log (N + m”2 d”, (2.2.12)

in which an,1(2:) is given in (2.2.11) and can be replaced by a(2:) {f (2:) nh}"1/2,

according to (2.7.7) in Lemma 2.7.4, and

(in = 1 — {2 log (N + l)}_1 [log{—%log(1 - (1)} + % {loglog (N +1)+log41r}] .

(2.2.13)

Theorem 2. Under Assumptions (AC1)-(AC’4), if p = 2, then an asymptotic

100 (1 — a) % conservative confidence band for m (2) over interval [a, b] is

1112(2) :1: an; (2:) {2 log (N + 1) — 2 log 01]”2 , (2.2.14)

in which on; (2:) is given in (2.2.11) and can be replaced by

a(2:) {2f(2:)nh/3}-1/2AT(2:)Sj(x)A(2:), according to Lemma 2.7.4, and by

a (2:) {2f (2:) nh/3}'1/2 AT (2:) Ej(x)A (2:) according to Lemma 2.7.3.
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The construction in Theorem 1 is similar to the connected error bar of Hall and

Titterington (1988). Ours is superior in two aspects: first, we treat not only equally-

spaced designs, but random designs; second, by applying the strong approximation

theorem of Tusnady (1977), our confidence band is asymptotically exact rather than

conservative. The error bars of Hall and Titterington (1988) are based on a kernel

estimator while ours regressogram. The upcrossing results (Theorem 2.3.4) used in

the proof of Theorem 1 is also different from that used in Bickel and Rosenblatt

(1973), Rosenblatt (1976) and Hardle (1989). Theorem 2 on linear confidence band,

however, bears no similarity to the local polynomial bands in Xia (1998), Claeskens

and Van Keilegom (2003), except the width of the band being of the same order

n’l/‘r’ (log n)1/2. The asymptotic variance function 0,2,3 (2:) of m2 (2:) in (2.2.11) is a

special unconditional version of equation (6.2), in Huang (2003), Remark 6.1, page

1624. Thus, the linear band localized at any given point 2:, is only a factor of (log n)”2

wider than the pointwise confidence interval of Huang (2003).

2.3 Error Decomposition

In this section, we break the estimation error 111,, (2:) — m (2:) into a bias term and

a noise term. To understand this decomposition, we begin by discussing the spline

space C(P’Z) and the representation of the spline estimator 111,, (2:) in (2.2.1).

The first fact to note is that the empirical inner products of the B-spline basis

{By-,1 (2:)};1;0 and {B 32 (2:)};lr:_l defined in (2.2.4) approximate the theoretical inner

 

products uniformly at the rate of \/n"1h“l log (n), according to the following lemma.
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.N
Lemma 2.3.1. As n —+ co, the B-spline basis {Bj,1 (15)};io and {Bj,2 (3)}j=_1

defined in (2.2.4) satisfy

An,1 = SUP “[3331”:n - 1| = 012(W) 1 (2.3-11

OSJ'SN

 

    

’4”,2 : 811p (91192)n — (913.92)
llgll2,n _ 1 2 0p ( log n/ (nh)) .

91192640) ||91||2 ||92||2 960(0) ||9||2

(2.3.2)

N
To express the estimator rap (2:) in {Bi}? (2:)} we introduce the following

i=1-p’

vectors in R" for p = 1,2

T T .
Y = (Y1, ...,Yn) 1Bj,p (X) = {Bjm (X1) , '°'1Bj,p (Xn)} ,] = I - p, ..., N.

The definition of 171,, (2:) in (2.2.1) entails that #1,, (2:) E Zj'il-p AijJ-‘p (2:) where

. . T

the coefficients {Al—pp, ..., /\N41} are solutions of the following least squares prob—

lem

n N' 2

{A1_p,p,..., AN,p}T = argminz {K - Z ALPHA? 0(5)} . (2.3.3)

i=1 j=1—p

We write Y as the sum of a signal vector m and a noise vector E

Y = m + E,m = {m (x1) , ...,m (Xn)}T,E = {0(X1)81, ...,a (xn)e,,}T.

Projecting this relationship into the linear space spanned by (Lap-2) -—-

{Bjm (X) };:l—p’ a subspace of R”, one gets

. . A T . . .

mp = {mp (X1) , ...,mp (Xn)} = PI‘OJ (p_2)Y =Pr03 (p_2)m + PI'OJ (p_2)E.

an 0,, 0,,

It entails that in the space GAP-2) of spline functions

12,, (2:) = 171,, (2:) + 5p (2:) , (2.3.4)
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where

N N

mph): 2 1,,p3,,p(x),gp(x)= Z enema). (2.3.5)

j=l-P j=1—p

.. .. T

The vectors {A1_p,p, ..., AMP} and {&1_p,p, ...,dN,p}T are solutions to (2.3.3) with

Y,- replaced by m (Xi) and o (Xi) s,- respectively.

We cite next two important results. The first one from de Boor (2001), page 149,

the second one from Theorem 5.1 of Huang (2003).

Theorem 2.3.1. There is an absolute constant 0,, > 0,p _>_ 1 such that for every

m E 00’) [a, b], there exists a function g e GfP-Z) [a, b] such that

"g - ...... s a, 1» (mt—1’:h)ll..r" .<. a. "mm”. ,,
Theorem 2.3.2. V There is an absolute constant C1, > 0,p Z 1 such that for any

m 6 0(9) [a, b] and the function 711,, (2:) defined in (2.3.5),

limp (x) — mm”... s 0p inf ug — mu... = 0p (hp). (236)
g€G(p-2)

According to (2.3.4), the estimation error 111,, (2:) —- m (2:) = {171, (2:) — m (2‘)} +

5p (2:) where according to Theorem 2.3.2, the bias term «71,, (2:) -— m (2:) is of order

0,, (hp). Hence the main hurdle of proving Theorems 1 and 2 is the noise term Ep (2:).

This is handled by the next two propositions.

Proposition 2.3.1. With ring (2:) given in (2.2.11), the process 0,1,1 (2:)"1 51 (2:) ,2: E

[a, b] is almost surely uniformly approximated by a Gaussian process U (2:) , 2: 6 [a, b]

with covariance structure

N

EU (I)U(y) = EL] (11:) ' Ij (y) : j(2:),j(y):vxry 6 [a,b]:

j=0

where 53'! is the Kronecker symbol, i. e., (SJ-,1 = 1 if j = l and 0 otherwise.
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Proposition 2.3.2. For a given 0 < a < Land on; (2:) as given in (2.2.11)

0‘; (2)52 (2:) g {2 log (N + 1) — 2loga}1/2 2 1 — a. (2.3.7)
"1 

lim inf P sup

13"200 €[a,b]

We state next the strong approximation theorem of Tusnady (1977), which will be

used later in the proof of Lemmas 2.7.6 and 2.7.6, key steps in proving Proposition

2.3.1 and Proposition 2.3.2.

Theorem 2.3.3. Let U1, ...,Un be i.i.d. r.v. ’s on the 2 -dimensional unit square

with

P(U,- <t) =)\(t),0 gt S 1,

where t = (t1,t2) and 1 = (1,1) are 2-dimensional vectors, A(t) = t1t2. The

empirical distribution function F,‘,‘(t) based on sample (U1,...,Un) is F,",‘(t) =

n-1 ELI I{Hi<t} for 0 S t S l. The 2-dimensional Brownian bridge B (t) is de-

fined by B (t) = W (t) — A(t) W (1) for 0 S t S 1, where W (t) is a 2-dimensional

Wiener process. Then there is a version of 13;? (t) and B (t) such that

P[ sup I’ll/2 {F1}: (0 “ Aftll " B“) > ”—1/2(Clogn + 2:) logn < Ke‘M7

OStSI

(2.3.8)

holds for all 2:, where C, K, A are positive constants.

For the rest of the paper, we denote the well-known Rosenblatt quantile transfor-

mation as

(x',.-') = M (X. s) = {Fx (x) . Felx (52)}. (2.3.9)

which produces random variables X’ and 6’ with independent and identical uniform

distribution on the interval [0,1]. This transformation had been used in, for instance,
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Bickel and Rosenblatt (1973), Hirdle (1989). Substituting the vector t = (tLtg) in

Theorem 2.3.3 with (X’ ,e’), and the stochastic process nl/2 {F}: (t) — A (t)} with

2,,{M-1 ($22)} = 2., (2,5) = v; {Fn (53,5) — F (2,5)), (2.3.10)

where Fn (:r, 5) denotes the empirical distribution of (X, s), then (2.3.8) implies that

there exists a version of 2-dimensional Brownian bridge B such that

sup IZn (2:,6) — B {M (2:,e)}| = 0 (n"1/2log2 n) ,w.p.1. (2.3.11)

2:,6

The next result on upcrossing probability is from Leadbetter, Lindgren and

Rootzén (1983), Theorem 1.5.3, page 14. In our proof of Theorem 1, it plays the

role of Theorem A1 in Bickel and Rosenblatt (1973) or Theorem C in Rosenblatt

(1976).

Theorem 2.3.4. If {1,...,én are i.i.d. standard normal r.v.’s, then for Mn =

max{{1,...,§n} ,7' E R, as n —» 00

P {an (Mn — bn) S T} -+ 8XP(-€-T),P{1Mnl _<. r/an + bn} -> exn (46-7),

where an: Zlogn 1/2,bn= Zlogn 1/2— 1 2logn ‘1/2 loglogn+log47r .
2

2.4 Implementation

In this section, we describe the procedures to implement the confidence bands in

Theorems 1 and 2. We have written our codes in XploRe due to the convenience of

using certain kernel type estimators. Information on XploRe is in Ha'rdle, Hlavka and

Klinke (2000).
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Given any sample {(Xi,Y,-)}?=l from model (2.1.1), we use min(X1,...,Xn)

and max (X1, ...,Xn) respectively as the endpoints of interval [a, b]. Minor adjust-

ments could be made for outliers. The number of interior knots is taken to be

N = [clnl/(2p+1)] + c2, where C] and c2 are positive integers. Since explicit for-

mula of coverage probability does not exist for the bands, there is no optimal method

to select (c1, c2). In simulation, the simple choice of 5 for CI and l for c2 seems to

work well, so these are set as default values

The least squares problem in (2.2.1) can be solved via the truncated power basis

1,x,...,:1:p‘1,

(a: — t1):- ,j = 1, ..., N. In other words

p—l N 1

m, (2:) = Z rm" + 23,-, (a: - t1)”; , (2.4.1)

k=0 j=1

where the coefficients {’70, ..., "yp_1, ’71,,” ..., "yN,p}T are solutions of the following least

squares problem

2
n p—l N

{5’02 '°')&p—19’?l,p)”’);l’N,p}T : 31‘ng K _ 2:7ka + Z7j,p (Xi — tj):_l

i=1 k=0 j=l .

When constructing the confidence bands, one needs to evaluate the functions

0,2”, (x) in (2.2.11). This is done differently for the exact and conservative bands,

and the description is separated into two subsections. For both constant and linear

bands, according to Lemmas 2.7.4, 2.7.4, one needs the unknown functions f (2:)

and a2 (as). Let R (u) = 15 (1 — u2)21{|u| S l} /16 be the quartic kernel, 3,; =the

sample standard deviation of (Xi)?=1 and

. _ " _ ~ )Q._ _

f (11):" 12%}th (Kt—ix) ’hrow: (4w)'/‘°(140/3)1/5n ”53.. (2.4.2)
i=1 ’
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where hrot,f is the rule-of-thumb bandwidth of Silverman (1986). Define next matri-

ces z, = {2122: ..,Zn,p}T,p = 1,2 with 2,3,, = (Y, - 131,, (X,-)}2 and

X=X(x)=(X1-x xn-x)T,W=W(x)=diag{1?(’,f:of)} .

i=1

 

where hm“, =the rule-of-thumb bandwidth of Fan and Gijbels (1996) based on data

Xi, Z,- l: . Then one defines the following estimators of 02 (x)
g? 1—1

«2 T ’1 T
0,, (x) = (X WX) X WZp,p = 1,2. (2.4.3)

Bickel and Rosenblatt (1973), Fan and Gijbels (1996) provide the following uniform

consistency results

max sup '5? (2:) — a (2')] + sup

P=1,2 1:6 [a,b] zEla,b]
 

m) — f (2:)l = 0,, (1). (2.4.4)

2.4.1 Implementing Exact Bands

The function 0a,] (as) is approximated by either one of the following, with f (1:) and

61 (11:) defined in (2.4.2) and (2.4.3), j (2:) defined in (2.2.2)

671,1 (23,1) = (3’1 (5(3)) f—l/2 (tj(a:)) fl—l/2h-1/2, (2.4.5)

«3... (x, 2) = &1($)f‘1/2(x)n'1/2h‘1/2. (2.46)

where the additional parameter value 1 or 2 indicating the estimation at each value a:

or at the nearest left knot. Since sup 3 h —’ 0, as n —> oo,(2.4.4) entails

2:6 [a,b]
  3‘9o)

that both of the bands below are asymptotically exact with 1711 (2:) given in (2.4.1)

and d" in (2.2.13)

fill (:13) :i: 5n,1 (x, opt) {2 log (N + 1)}1/2 dn, opt = 1, 2. (2.4.7)
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2.4.2 Implementing Conservative Bands

According to Lemma 2.7.3, for 0 S j S N, the matrix Ej approximates matrix

S, uniformly. Hence both of the bands below are asymptotically conservative, with

7712(3) given in (2.4.1)

1712(3) d: 6mg (2:, opt) {2 log (N + 1) - 2 log a}1/2 ,opt = 1, 2, (2.4.8)

where the function on,2(:1:) in (2.2.11) for the linear band is estimated consistently

by either one of the next two formulae

{AT (I) 5311915 (56))”2 \/3/—252 (tj(:c)) f_1/2 (9m) "—1/2’424???)

an,2(x.2) = {AT($)5j(x)A($)}1/2 Meow-V2(on-”2’2“”, (2.4.10)

611,2 (x) 1)

with A (12) and Ej defined in (2.2.9), 3' (:5) defined in (2.2.2), and f(:c) and 62 (2:)

defined in (2.4.2) and (2.4.3).

In order to calculate the matrix MR1? which is needed for (2.2.9), we introduce

two theorems from matrix theory.

Theorem 2.4.1. [Gantmacher and Krein (1960), page 95, equation (43)] For a sym-

metric Jacobi matriz J given as follows

a1 ()1 0

b . .

J: 1 ,

bN+l

0 bN+1 “N” (N+2)x(N+2)

its inverse matrix J‘1 = (lik)(N+2)x(N+2) satisfies

li,k = #2ka S [Value = 1/JkXiJc S 1', (2.4.11)
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where

(—1)'.det (J(1,,,,,,-_1)) bibi+l ° ° ° bN+1 (‘1)k det(J(k+1,...,'N+2))

' =
r X = ’‘ det (J) k bkbk+l ' ' 'bN+1

  

(2.4.12)

and J(1.---,i-1) is defined as the upper left (i — 1) x (i — 1) submatn'x of J, det (J)

is the determinant of matrix J, while J(k+1,”N+2) is the corresponding lower right

(N + 2 — k) x (N + 2 - k) submatrix.

Theorem 2.4.2. [Zhang (1999), page 101, Theorem 4.5] For a tridiagonal matrix

givenas

a b 0

TN: C a " ,N_>_1, (2.4.13)

b

0 c a

if a2 75 4bc, then the determinant of TN is

0”“ -—flN+1 _ a+\/a2—4bc a-Va2—4bc

,a .

a-fl 2

(1813 TN = 2J3:
   

To apply Theorem 2.4.1 and Theorem 2.4.2, we let

 

_. 2

z, = 2+4fi,22 = affix) = :3 = (2— J5) = 7—4\/§. (2.4.14)

1

For any N Z 1, Theorem 2.4.2 entails that det (TN) = (Z{V+l — 221V“) /(zl — 22),

if one takes a = 1,b = c =1/4 in (2.4.13). Next, denote for any N Z 1

~ TN TT

MN+1 = ( N
TN 1 ,TN = (0,...,0,\/§/4)

) lxN

(N+1)x(N+l)

with the convention that M1 E 1. By the expansion of determinant of matrix M,-

along the last row and then the last column, Vi = 1, ..., N + 1

...,—I {21 (1— 6*) - (1— 01-1)}
8(21 - 22) '

 det (A4,) = det (TF1) - 8—1det(T*_2) =
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The determinant of matrix MN+2 can be expanded along the first row and then

the first colurrm:

det (MN+2) = det (MA/+1) — 8—1det(117!N)

= 4"“ {64.2% (1 — 9N+1)— 1621 (1 — a”) + (1 — 6N-1)}/{64(21 — 22)}.

Applying (2.4.12) to matrix MN+2 yields

4 (—1)(1/4)”“(fi/4)2/det<M~+2). i=1, (2415)

‘ (-1)‘ (1/4)"““ («i/4) det (Ni--1) /det <M~+21 . 2 s .- s N. '

_ 2 -1 ~

x. _ <-1){(1/4)" WM} det(M~+1). k=1. (2.4.16)
—l ..

(—1)"{(1/4)N+1"‘(\/§/4)} det (M(N+2)_,,), 2 g k g N.

Next, we apply (2.4.11) from Theorem 2.4.1 together with (2.4.15) and (2.4.16),

for all i, k = 1, ..., N + 2. Then the principle diagonal entries are

det MN“) /det (MA/+2), k = 1, N + 2

"”‘ 2 { det EM(N+2)—k) det (MM) /det(MN+2), k = 2,N + 1

which, after some algebra, becomes

82% (1 — 0N+1)— zl (1 — 0N)

1“ : WWW” = 821,?(1— 0N+1) — 221 (1 - 6N) + 8 (1 - 9N-1)’

= {821 (1 -— (WW-k) — (1 - 9N+1-’°)} {821 (1 — 9H) — (1 — 9k-2) }

lk,k (21 _ 22) {6422 (1 __ 9N+1)_1521(1- 0N) + 64 (1 - 6N-1)}

(2.4.17)

 

where 2 g k S N + 1. Similarly, the upper diagonal entries are

11' 1+1 = 11+1 1‘ = { (_fiM) det .(MN) Met (MNf2)’ i: 1’N +1

’ ’ (—1/4) det (M(N+1H) det (M,_1) /det (MA/+2), 1 = 2,N

which, by applying again (2.4.11), (2.4.15) and (2.4.16), becomes

(-2\/2) 21 (1 — 0N) — (1 — 0"”)
l :l =

‘2 NH'N” 82$ (1 —9N+1) —221 (1 -0N) +8(1 —9N-1)’
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{8.21 (1 — HIM“) — (1 — o"-*)} {321 (1 — 6H) — (1 — 0i-2)}

(“”1 z (-4) (21 - zz) {642i (1 - 9N“)- 1611 (1 - 9N) + 64 (1 - 9N'1)} ’

(2.4.18)

 

in which 2 S i S N. By the symmetry of matrix MN+21 the lower diagonal entries

are li+1,i = li,i+11 for all i = 1, ..., N + I.

2.5 Simulation and Examples

2.5.1 Simulation

To illustrate the finite-sample behavior of our confidence bands, we present some

simulation results. The data set is generated from model (2.1.1), with

100 - exp (x)

100 + exp(x)’X N U l-'51 '5115 N N (0, 1) (2.5.1)m (x) = sin (21rx) ,0 (x) = 00

The noise level 00 = 0.2, 0.5 while sample size n = 100, 200, 500,10000. Confidence

level 1 — a = 0.99, 0.95. Tables 4.1 and 4.2 contain the coverage probabilities as the

percentage of coverage of the true curve at all data points by the confidence bands in

(2.4.7) and (2.4.8), over 500 replications of sample size n. We have also computed the

coverage probabilities of the confidence bands in (2.2.12) by plugging in the true value

of density function f (x) = Il-1/211/2] (x) and the variance function a (x) in (2.5.1).

These bands are called “oracle bands” as they use quantities that are unknown but

for “oracles”; whereas the bands in (2.4.7) are called “estimated bands”.

In Table 4.1 the surprising outcome is that all four bands have the same coverage

with noise level 0.5. At noise level 0.2, the performance of all four bands becomes

much closer with sample sizes increasing, whereas for small sample sizes the oracle
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bands are slightly better. In Table 4.2, the coverage percentages show very positive

confirmation of Theorem 2. At sample size 200, regardless of noise level, both of the

two candidate bands in (2.4.8) achieve at least 95.6% and 90% for confidence level

1 - a = 0.99, 0.95 respectively.

Fiom both tables, it is obvious that larger sample size guarantees improved cov-

erage, with reasonable coverage achieved at moderate sample sizes. Under the same

circumstances, the linear band performs much better than the constant band, which

corroborates with the theory. The noise level has more influence to the constant

bands than the linear ones.

For the linear bands, we have also carried out simulation for sample size n = 10000

and opt = 1. Regardless of the noise level, the coverage is always 99.4% for a = 0.01

and 97.6% for a = 0.05, both higher than the nominal coverage of 99% and 95%,

consistent with their conservative definitions. Remarkably, it takes merely 88 minutes

to run 500 simulations with sample size as large as 10000 on a Pentium 4 PC. This is

extremely fast considering that nonparametric regression is done without WARPing

[Hardle Hlavka and Klinke (2000)].

The graphs in Figure 2.4.8 are created based on two samples of size 100 and 500

respectively, each with four types of symbols: points (data), center thin solid line

(true curve), center dashed line (the estimated curve), upper and lower. thick solid

line (confidence bands). In all figures, the confidence bands of n = 500 are thinner

and fits better than those of n = 100.
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2.5.2 Fossil Example

The fossil data reflect global climate millions of years ago through ratios of strontium

isotopes found in fossil shell, it was studied by Chaudhuri and Marron (1999) to

detect the structure via kernel smoothing. Ruppert, Wand and Carroll (2003) provide

penalized spline smoothing fits to the data. In this section we test the polynomial form

of the fossil data regression curve. The null hypothesis is H0 : m (x) = Ezzl akxk,

with polynomial degree d = 2, 3, 5, 6. The response Y is the strontium isotopes ratio

after linear transformation, Y = 0.70715+ratio*10’5, since all the value are very

close to 0.707, while the predictor X is the fossil shell age in million years.

In Figure 4.5, the center dotted line is the linear spline fit. The upper/lower thin

lines represent linear bands based on Theorem 2, implemented according to (2.4.8).

The solid line is the least square polynomial fit with degrees 2, 3, 5, 6. Clearly, the

oversmoothed quadratic null curve (d = 2) is rejected at significance level 0.01 since

it is far away from being totally covered by the confidence bands with confidence

0.99. Though when d = 3,5 the null solid curves can capture the big dip at the

range of 110 —- 115 million years old, it is not a good fit even visually. Thus both

null parametric models Ho are rejected at the level 0.01. While in the case d = 6,

all significant features are shown in the null polynomial curve, the relative high ratio

before 105 million years old, the substantial dip around 115 million years old, the

relative flat stage between 95 and 105. Given a 80% confidence bands the entire null

curve falls between the upper and lower limits even though the bands are narrower

than the those with confidence 90%, in other words for the testing we obtain a p—value
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greater than 0.20. The shape of the polynomial curve with d = 6 is consistent with

the nonparametric structure given in , Chaudhuri and Marron (1999) and Ruppert,

Wand and Carroll (2003).

2.6 Conclusions

We provide exact forms of two confidence bands constructed from polynomial spline

regression. Asymptotic properties have been established for equally spaced, nonadap-

tive selection of knots. Extension to adaptive design is infeasible, as Hardle, Marron

and Yang (1997) had shown that adaptive knots selection could lead to inconsistency

in L00 norm.

It is possible, however, to extend the constant spline band in Theorem 1 to un-

equally spaced deterministic knots subject to mesh constraints as in Huang (2003).

The linear band in Theorem 2 does not allow such direct extension. This is one of

the two reasons that the constant band remains viable despite the fact that the linear

band has much better theoretical property and practical performance. The constant

band is kept also for its simplicity. When implemented according to (2.4.7) with es-

timation on equally-spaced knots, the confidence limits at point x is the exact same

as those at the nearest knot 9(3), so the constant band is in fact (N + l) indepen-

dently inflated confidence intervals. In contrast, the piecewise linear band has to be

calibrated at each new point x. That is, the confidence limits at x and the ones at

tJ-(x) are different.

Extension to multivariate regression is difficult for lack of sharp approximation of
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the kind in (2.3.8). This limitation is also in Xia (1998), Claeskens and Van Keilegom

(2003). The main hurdle of generalizing our method to higher order splines is the

inversion of the inner product matrix of B-spline basis, for which close form solutions

exist in the case of linear spline with the aid of (2.4.11) and (2.4.12). The inner

product matrices of the two basis in (2.2.4) are diagonal and tridiagonal respectively,

while for higher order splines it becomes multi-diagonal.

2.7 Proof of Theorems

2.7.1 Preliminaries for Theorem 1

Throughout Appendices A and B, we denote by the same letters c, C', any posi-

tive constants, without distinction in each case. The detailed proof is given at

http://www.msu.edu/'yangli/bandfull.pdf.

Lemma 2.7.1. Under Assumptions (AC3) and (AC4), there exists a sequence

{Du} = {naO} for some do > 0, such that the following conditions are fulfilled

00

2 012+“) < oo, (nh)—l/2 logann, «wt/1011+"), 0,:‘511-1/2 —+ 0. (2.7.1)

n=l

And for any sequence {Du} that satisfies the above four conditions, we have

P{w|3N(w), 9 [a,-I g Dmi = 1,...,n,n > N(w)} = 1.

Lemma 2.7.2. As n -—> 00, for ij and dim defined in (2.2.3)

61",, = f (tj) h (1 + Tj’n’l) 1 (bj,libj’,l> E Oaj ¢ j, (2.7.2)

1 + rmg j = o, ...,N — 1,
, (2.7.3)

1/2 + Tj,n,2 J : “LN:

2

din = §f(tj+1)h{
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1 1+f° 2 IJ"-J'|=1,
b- ,b. )=— t- h 1”“ 2.7.4< ,2 6m“) {0 “._jlfl, < )

where

ogixN lrj’ml + —1’2?§N “13"!” + 4313.134 Ifjml S Cw (f. h). (2.7.5)

In particular,

1
2

5f (9+1) h {1 — Cw (f,h)} s d," _<. 5f (t,,.,) h {1 + Cw (f, 11)}. (2.7.6)

PROOF OF LEMMA 2.3.1. For brevity, we give only the proof of (2.3.1) for An,l-

Take any j = 0, 1, ...,N

n

2

_—

lllB-.1||2,.. -1| = IZele = {B§,,(X,)—1}n 1
i=1

With E51 = 0 and for any It 2 2, Minkowski’s inequality implies that

_ k _ 2 "
Elgilk =n kElBJzil (Xi) — II S (2/n)k2 1E [312,]; (Xi)+ I] S{1—IE} Coll,

while (2.7.2) entails that E53 2 n’2E [1331, (X,) — 1] 2 {2/ (1111)}? cm.

It is then clear that one can find a constant c > 0 such that for all k > 2,

E léilk _<_ (cn‘lh-1)k_2 klE |€,~|2. Applying Bernstein’s inequality to 2?:1 6,, for

any large enough 6 > 0

n

P { 2 6i

i=1

=> 2 P sup “IBM“2 n -1| 2 6\/(nh) log (n) < oo

 

  

2 a,/(rim-1 log (n)} g 211-3

 

for such 6 > 0, then (2.3.1) follows. U
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2.7.2 Proof of Theorem 1

In this section, we will investigate the asymptotic behavior of 51 (x) defined in (2.3.5).

Since

(Ber (X) ,3“ (X)>n = 0 unless j = j', 51 (x) can be written as

N

—2

51 (1‘) = 25531.1 (5'3) ”3 '.1||2,n

i=0

in which

1 n

6'} = (E13131 (70),, = 5 ZB',1(X1)0(X1)€1'~

i=1

Lemma 2.7.3. Let 5‘1 (x) = Ell/=0 a; 131 (x) ,x E [a, b] then

.. .. —l A

|€1(1‘)- 61($)| S «411,1 (1 - 411,1) |€1(1‘)|1$ E [0151,

where A,” is defined in (2.3.1).

The asymptotic behavior of SUPxe[a,b]l§1(-T)l therefore is the same as that of

supx€[a,b] lél (“TN '

Lemma 2.7.4. The pointwise variance of (31 (x) is the function 03,1 (x) defined in

(2.2.11) which satisfies

E{é1(a:)}20121,$1()= (mgx)h{1+rn,1f(x)},x6[a,b] (2.7.7)

with supxelaM Irml (x)| -—> 0.

PROOF. The term E {£1 (x)}2 has the expression for 03,1 (x) in (2.2.11). By (2.7.5)

and the continuity of functions 02 (x) and f (x), 03,1 (x) can be expressed as

0’2 ($)f($)
h+ fjflx) {a2 (v)f(‘U) __ 0.2 ($)f(x)}

d1) 2_(L)

"{f (tj($)) h+r
j,,(x)n1}2

:nf_(_x)h
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with supxelafi] {771,1 (x)| -') 0, establishing (2.7.7). [3

Lemma 2.7.5. Let the sequence {Du} satisfy (2. 7.1) and define forx 6 [a,b]

N N

631,1 (95) = 011,1 (10—1 : 331 (513)53f = 011,1 (ml-'1 23m (x) (8; - 55;) 1

J=0 J=0

N

63,21 (1:) = 0n11($)—IZ Bjtl (x) (6; - E635) [{IEKDR} (2.7.8)

j=0

then with probability 1

”an, (1:) — 4,2, (1:)“00 = o (19,:(“5’1/1711) = 0(1).

PROOF. Notice that E8; = EH; 2&1 BjJ (X,)o (X,) 6,} = 0 since E(6,-|X,-) = 0,

then

6,” (x) = {on1 (x) fog-(3)71}//Ij(z) (v) a (v) EdZn (v, 6)

according to the definition of Zn (v, 6) in (2.3.10). The process 6“",1 (x) is separated

into two parts 6“",1 (x) = €21 (x) + {6",1 (x) — €21 (x)} . The truncated part 621 (x)

is defined in (2.7.8). The tail part 6“,“ (x) — 6,131 (x) is bounded uniformly over [a, b]

  

  

 

by

-1

$215] {011,1 (I) x/T—lcj(x),n} // 11(1) (1110(1)) 51{|6IZDn}dZfl (11,5)

5.2151] {011(1)Mn}:211(4)“) “lama-lava} (“-9)

+ :1;pr {0&1 (x) Cj(x),nf/Iflx) (v)a(v)6I{lEIZDn})dF(v,6)(2.7.10)

By Lemma 2.7.1, the term in (2.7.9) is 0 almost surely. The term in (2.7.10) is
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bounded by

sup 0,,1 (x)c61(3)“}l/Ijm (u)a(v)f(v) [/|6| [{16120n1dF(6 |v)] dv

xehfl

-1 \/nh

S su o x / I - v v v dv— _C'<——..4151. ..1( )ccm.)} ,(.1( > < m > 13,—; D1,,

The lemma follows immediately by the third condition in (2.7.1). E]

Lemma 2.7.6. Define forx 6 [a,b]

(0)(x) {0n1(x) "CJ(:1:)n}—lI//j(:1:) (”)0(”)51{|6|<Dn}dB {M (1115)}

(2.7.11)

then with probability 1

sup

xehfl
 

6531(1) — 4,13, (11)] = o (114/211-1013, log2 n) = 0(1).

 

PROOF. First, supera,b] 6:01 (x) — 6,131 (x)| can be written as

sup

xehfl   

—l

(”n.1(rlx/50j(x),n} //1j(x) (v) 0 (v) €1{(.:|<Dn}d [Zn (015) - B {M (016)}1 ,

which the double integration becomes the following via integration by parts

sup

xEMab   
// 1211(1) 4) B{M(vs>}14{(.) (v)a(v)eI{...<h..1}

S SUP

xehfl

x f/IZn (v,6) — B {M (v, 6)}| d {EIUEKDnl} d {Ij(x) (v) o (v)}.

Next, by Lemma 2.7.4, the bounded variation of the function a (x) in Assumption

(AC2), the strong approximation result (2.3.11) and the first condition in (2.7.1), the

above term is bounded as

0 {(nh)”2 n-l/zh-l (n"1/210g2 n) Du} = 0(n—l/2h—1/2Dnlog2n) = 0(1) w. p. 1,
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thus completing the proof of the lemma. CI

The next lemma finds a process 6"1((x) defined in terms of the 2-dimensional

Brownian motion to approximate 6(0)1'(x)1n (2.7. 11).

Lemma 2.7.7. Define for x 6 [a,b]

6(1)(x)= {Un1($)\/7—;Cj.-(x)n}[[13(1) (0)00(v)61((e|<on}dW{M(v 5)}

then with probability 1

”8(1) (513) _ 551%”)“00 = 0(hl/2D—(H-dl) : 0(1) .

PROOF. Based on the Rosenblatt transformation M (x,6) defined in (2.3.9), and

(19%;) = f(x,6), then the term “eff; (x)— 6(0)loo(11)" is bounded by

 
2111pr {011,1 (xlfcj,}(x)nf/Ij(x) (10(1)) l5lI{|6|<Dn}dM (v €)W(1 1)

—1

s sup 41,1(4Wc,(.,,..} / 11111 (41014111021441
x€[a,b]

x {/ (satisfieselvwe) WI. 111

\/_h -
_ C(TZ—h)hMTD” |W(1, 1)|= 0(111/20, (“H”) =o(1) w. p. 1

The last step is obtained by applying the third condition in (2.7.1). C]

The next lemma expresses the distribution of 6,:((x) in terms of 1-dimensional

Brownian motion.

Lemma 2. 7. 8. The process 6(13(x) has the some probability structure as the process

1:53,} (x)={a..1(x)f,-(.,,.}[9410112) («44.11412 (v)dW(v>soda 121
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where

3?, (11) = / 621{|€]<Dn}felv(6|v)d6. (2.7.12)

PROOF. By applying Itoos Isometry Theorem, it is obtained that var{6n(1] (x)] and

var 6(2)1(x)} are exactly the same for any x E [a, b]. Hence, the two Gaussian

processes 6”“) (x) and 65,2l (x) have the same probability structural]

Lemma 2.7.9. Define for any x E [a, b]

ef(3)1(--_—g;) {0,1,1 (IE) fi6j(3),n}—l [11(3) (1)) 0’ (v) f% (v) (lW (U)

then

  

n2]—(x) 6(3)100=(x)]] 0(D‘+\/h)(:0(1) w. p. l.

PROOF. By the fourth condition in (2.7.1) , supxelaflén2](x) - 6(3] (x)] is almost
 

surely bounded by

 
:11pr 13.111) — 1| :11pr 0;} (1>c;(;,,,n‘1/2 [1.1.1 (1)0 (11) it (v) 11W (11)

= 0(1),:511-1/2) = 0(1)

  

3

"1

Lemma 2.7.10. The process 6 ] (x) is a Gaussian process with mean 0, variance 1,

and covariance

CO‘U{€S:)1W1511(31(y)} = 6j(x),j(y)ivxiy 6 [a,b]

PROOF. The variance and covariance are given by Ité’s Isometry Theorem

111(553 (1)} = {0.11 (1:) «61:11.14 / 111.1) (1)112 (1011111111 =
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according to (2.7.7). Likewise the covariance cov {6(3) (x) ,6513] (y)} is
n,l

—1

{011,1 (:5) 011,1 (11) ncj(x),ncj(y),n}

xE {/

11(2)

—1

= {and (37) 0n,l (y) ”Cj(x),ncj(yl,"} / 02 (v) f (U) ‘11) = 61($)J(yl

Ji(x)”’1(y)

«(uni <v>dW(v) [J

J'(y)

11(1) ii (aw/(12)]

which completes the proof. Cl

PROOF OF PROPOSITION 2.3.1. The proof follows immediately from Lemmas

2.7.3, 2.7.5, 2.7.6, 2.7.7, 2.7.8, 2.7.9 and 2.7.10. Cl

PROOF OF THEOREM 1. It is clear from Proposition 2.3.1 that the Gaussian

process U (x) consists of (N + 1) i.i.d. standard normal variables U (to) , ...,U (tN),

hence Theorem 2.3.4 implies that as n —1 00

P sup IU(x)IST/aN+1+bN+1 —+exp(—2e”).
x€[a,b]

By letting T = — log {“é’ log (1 — 01)}, and using the definition of aN+1 and bN+1,

we obtain

“III P 811p |U(x)| S — log (ml-log (1 — 11)] {2 log (N + 1)}‘1/2

n—ioo x6[a,b] 2

 

+ {2 log (N + 1)}1/2 — % {2log (N + 1)}"1/2 {loglog (N + 1) + log4r}] =1- (1.

Replacing U (x) with a,” (x)—16”1 (x) (Proposition 2.3.1), and the definition of dn

in (2.2.13) entail that

lim P sup

3n—+oo 6 [a,b]
 

an,1(x)'16'1 (x) S {2 log (N + 1)}1/2 dn] =1— 0.
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According to (2.3.6), it implies that (nh)-1/2 1/log (N + 1) ”Th1 (x) - m (x)]]00 =

01) (1) . Thus according to (2.3.4)

nleréoP rm (x) E 1111(1) :l: a,“ (x) {210g (N + 1)}1/2 dn,Vx E [a, b]]

= 11111 P {2 log (N + my”2 11,-;1 sup 0;} (x) (1:5, (x) + 171, (x) — m (x)l s 1]

"—400 x6 [a,b

 n—roo x6 [a,b

: lim P {210g(N+1)}'1/2d,-,1 sup 0;} (x) ]61 (x)] S I] =1—a. Cl

In

2.7.1 Preliminaries for Theorem 2

In this subsection we examine some matrices used in the construction of confidence

band in (2.2.14) and in the proof of Theorem 2.

The next lemma corresponds to (2.2.5) for piecewise constant basis. In what

follows, we use IT] to denote the maximal absolute value of any matrix T, and MN+2

is the tridiagonal matrix as defined in (2.2.10).

Lemma 2.7.1. The inner product matrix V of the B-spline basis {ng (x)};.v=_1

defined in (2. 2. 6) has the following decomposition

v = MN” + (17,107,” = MN+2 + 17 (2.7.1)
.71] - 1

where 111.1]. E 0 if ]j —j’] 21, and

]17] g Cw (f, h). (2.7.2)

PROOF. By (2.7.3), (2.7.4) and (2.7.5), the inner product of (bj/2,bj,2> can be

replaced by ,1, f (1,11) h 11 ]j’ — j] = 1, and :1, f (1,11) h or .3,f (1,“) h when 3" = j,

plus some uniformly infinitesimal differences dominated by 11.1 (f, h) . Then based on

the definition of Bj’g (x), the lemma follows immediately. Cl
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The next lemma shows that multiplication by MN+2 behaves similarly to multi-

plication by a constant.

N

Lemma 2.7.2. Given matrix Q = MN+2 + F, in which I‘ = (73.14)
. 4:—

satisfies

71.34 E 0 if (j — j’l _>_ 1 and [PI -p+ 0. Then there exist constants c,C > 0 independent

of n and I‘, such that in probability

Clél s l9€| s Cl€|,C'1|£| s Ifl'lél s c‘1|€|,V€ e RN”. (2.7.3)

PROOF. Since each row of MN+2 has diagonal element equal to l, and one or two

nonzero off-diagonal terms whose total absolute values do not exceed 2J2/4 = 1/J2,

hence

(1 -1/\/§ - 3 IN) lél s Iflél 5 3(1 +|1‘|)|§|,

which entails the left inequality of (2.7.3), and the right one follows by switching the

roles of E and GE. D

As an application of Lemma 2.7.2, consider the matrix S = V‘1 defined in (2.2.7).

- N

Let {34 = {sgn (SJ-11)} , 1, then there exists a positive C's such that

J:-

 

N

Z lst-ll s (851.4 g C's £14] = Cs,Vj' = —1,0, ...,.N (2.7.4)

j=—1

The matrix S appears in the construction of the confidence band, but it can not

be computed exactly as it involves the unknown density f (x). We approximate .S'

with the inverse of MN+2: with a simpler, distribution-free form in (2.2.10). This

approximation is uniform for Sj in (2.2.7) and Ej (2.2.9) as well.

Lemma 2.7.3. As n —* oo,|M1§i2 — .5" —+ O and OinaéxN |EJ~ - Sjl —’ O.

_J_
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PROOF. By definition,

MN+2M1QLZ = 1 = vs = (MA/+2 + V) s.

Denote by e,- the unit vector with i-th element 1, then applying Lemma 2.7.2 with

Q = MN+2, one derives

_ N 2

clMNl2 -S'=cm§x(

 
MN+2 5) e,

N+2 ~ _. _

s melM~+z<M~12-S)eils|V|(|M~12-SI+IM~12I)

Since (2.7.2) makes '9' S Cw (f, h), as n —’ oo

Cw(f,h)

c—Cw(f,h)

 lMfiiz—Sl g |M;,12|=0{w(f,h)}—»o.

Now by definition of submatrices Si and:j, axIEj- Sj_<_| IMN1+2 —,S| the

0_<_j<N

lemma follows. C]

2.7.2 Variance Calculation

We now examine the asymptotic behavior of ProjG(0)E, which is

n

N

52 (x) Proj0(0)E: Z ajBj2(x), x E [a, b] (2.7.5)

j=—l

where the spline coefficient vector 5 = ((1-1, ...,ELN)T are solutions to the normal

equations

N

((3132, Bj,’2>n):‘vj’=—l 5 = (% i 3332 (Xi) 0 (xi) 6;)

’ i=1 j=—1



In other words

N

= (V + B) —l ('3; Zn: 3:32 (X2) 0 (Xi) 5i) , (2.7.6)

i=1
J'=-1

9
3
!

II

“N

 

where '3' _<_ A"; 2 0p (Ju‘Ih’Tlog (n)) by (2.3.2).

.. —1

Now define aj’s by replacing (V + B) with V"1 = S in above formula, i.e.

J=—-1 i=1A

“N

51.1 N 1 n

a -_—. g = Z 314,; 2 13¢ (X,) o (x,) 5,- (2.7.7)

j’=—l,..,N

and define for x E [a, b]

N N n

. Z .. 1

£2 (2:) = aijg (51:) = E 81—11.; E 31'; (Xi) 0 (Xi) EiBj”2 (:12) . (2.7.8)

j=—l J'J":..1 i=1

In order to calculate the variance of 52 (x), we express the matrix 2 defined in

(2.2.8) as

2 = enven + (5,033, = seven + 2, 9,. = diag{o(to) .. . ..a<t~+1)} ,

(2.7.9)

where

a”. :—-0 'f '- " 1, 6- <0 w ,h +w 02,}; . 2.7.10
]l I I] 3' j’supll fl| { (f ) (f )} ( )

The next lemma is a special case of the unconditional version of equation (6.2) in

Huang (2003).

Lemma 2.7.4. The pointwise variance of E2 (x) is the function 03,; (x) defined in

(2.2.11), which satisfies

02 x

E {£2 (x)} E 3,2 (x) = WAT(x) Sj(x)A (x) {1 + ng (x)} (2.7.11)
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with sque[a,b] Ir"; (2:)] -—> 0, j (x) is as defined in (2.2.2), A (x) as defined in (2.2.9)

and matrix Sj in (2.2.7). Consequently, there exist positive constants co and Ca such

that for large enough n

ca (nh)_l/2 S on; (x) 5 Ca (nh)'1/2 ,Vx 6 [a,b]. (2.7.12)

PROOF. See Wang and Yang (2005). C]

2.7.3 Proof of Theorem 2

Several lemmas will be given below for the proof of Proposition 2.3.2.

Lemma 2.7.5. Define for x 6 [a,b]

N

571,2 (33) = 0;}2 (33) 52 (33) = 01;; (35) 2 61-13143 (1?) :

j’=-1

N

522 (x) = 0;; (x) 2 61,433.“, (x) Ill€l<Dn}' (2.7.13)

j'—-1

where Dn satisfies (2.7.1). Then with probability 1

. .D _ 1/2 1/2 -(1+5) _
5mg (x) - 571,2 (x) 00 — O n h Dn — 0(1).

PROOF. Since obviously Eén’g (x) = 0, Vx E [a, b] ,

é 2(x)=o-l (x)n-1/2 lg?) B- (x) i s. [[3 (v)o(v)edZ (v e)
"1 n,2 J’,2 3’] 1,2 n a

j'=j(x)—1 j=-1

where Zn (x,e) is defined in (2.3.10). The technical proof is very similar to Lemma

-/. The same order is also2.7.5, except that we employ (2.7.4) to deal with Eff—"1 3.7 J.

achieved. D
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Lemma 2.7.6. Let M be the Rosenblatt transformation given in (2.3.9) and define

for x E [a, b]

5“”2(1): {fan2(z)}" Z 8M20”,.B//fl (v)0‘ (v)eI{l€l<Dn}dB{M(v,)e)}.

j’j=-l

Then with probability 1

 

sup eff]; (x) — en2 (x)]: 0(n_1/2h—1/20n log2 n) = 0(1).

x€[a,b] .

PROOF. See Lemma 2.7.6. [3

Lemma 2.7.7. 2.7.7Define forx E [a, b]

__n__0(1') N
é(1)($) —2 EB42 (1:) Sj’j f/ng (’U)0‘ ('U) EI{|5]<Dn}dW {M (v,e)} ,

J’j=-l

then with probability 1

sup

x6 [a,b]
 

eff], (x)— 5(0)(2—(x)]— 0,:(h1/ZD(1+2) = 0(1).

Lemma 2. 7. 8. The process énlgm) x E [a, b] has the same probability structure as

efl(x)=—T—a”Z B/2(x)sj7j// Bj2(v)oo(v)sn(v)f2(v)dW(v), xE[a, b]

j’j=-1

where .93, (v) is as defined in (2.7.12).

PROOF. Use It6’s Isometry Theorem again. D

Lemma 2.7.9. Define for any x E [a, b]

N

(3)“: L2" 2 3,.2(e)s[Bj,2(v)o<v)fi(v)dW(v)

J’J=-l

then var{é£z; (x)} E 1,Vx E [a, b], and with probability 1

“52(2)2m: _ 63(3)20CW” _—O (h—l/ZD-5)_— 0(1)
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PROOF. Using (2.7. 1) in the last step, the term squda1,15

 
3o) —43’222(2)]

bounded by

sup ll — 33, (x) sup J: Bj’2 (x) lsJ-zj] [8332 (v)o(v) f2 (v)dW (v)

x6[a,b] x€[a,b] j'j=-1

 
S M5D;6hl/2C /o(v) f2fi(v) dW (v) =

 

0(h_l/2D;6) = 0(1) w. p. 1.

Meanwhile, for any x E [a, b]

3 ,2($z) N 1 2
var {egg (x)} = E{0\/r—in 2 BJ--/2 (x) erJ [8ng (v)o (v) f7 (v) dW (11)}

j’j=-1

 

0;3($) 2
= —-— 2N: Br2(w)Bzr2(xSunni/322(1)312(1)) (v)f(v)dv =1

n 1.2"I1':-

directly from (2.2.8) and 1(2.2.11). C]

Now define for any 3" = —l, ..., N and x 6 [a,b], the functions

<2 (2:) = 2.4/22;; (x) 82,2 (x) .612) = ((222.1 (x) .9222 (x))T

and the random vector A = (A_1, A0, . . . ,AN)T where

22. £2.23/]2,22 .2222222222
j=-1

Then A ~ N (0, $25) as EAJ.’ = 0,Vj’ = —1, .., N, and the covariance is EAJ-IAII =

Z%__1Jsjajlsuh for any j,’l’= .,N, and aj, is definedin (2.2.8). Notice that

é(3)2=(17)_2 Cj’ (1;)Aj,—._ C($)TAJ-W =(A_1, Aj)T ,j = 0,...,N

J'=j(37)-1J($)

and since Lemma 2.7.9 states that the term €53 (x) always has variance 1, it means

that

é(3)(x)2 C($)T Aj(x)

\/<(2)T {cov(A2(.2)}<(x)
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Lemma 2.7.10. For any given 0 < a < 1, one has

limian ( sup lén,2 (2:)] g [2 {log (N + l) — log {1}]1/2) 2 1 - 0:. (2.7.15)

n-—+oo x€[a,b

PROOF. Define for anyj = 0, ..., N

-l

QJ- = A}? {cov (Aj)} Aj.

Result 4.7 (a), page 140 of Johnson and Wichern (1992) ensures that QJ- is distributed

as x3 for any j = O, ..,N, hence v

C! .

P [Qj > 2{log(N+ 1) — loga}] = TVTT’VO g j g N.

Then (2.7.14) and the Maximization Lemma of Johnson and Wichern (1992), page

66 ensure that for any :1: E [a, b]

2

“(3) 2 _ l5(x)TAj($) < AT A. —1A. _ .
{5,1,2 (17)} - f(:c)T {cov (Aj(:r))} 5(1‘) — j(x) {C°v( 1(2))} 1(3) ‘ QJ(I)'

 
 

2

553 (ill S maxOSjSN {Q1} and
 

One has therefore Spr€[a,b]

 

 

  

' 2

P sup €53 (2:)l _<_ 2 {log (N + 1) — log 0:}

_x€[a,b] ’

F

2 P 92.23%, {Qj} > 2 {log (N + 1) — loga}] Z 1— 01.

Now (2.7.15) follows from Lemmas 2.7.5, 2.7.6 2.7.7, 2.7.8, 2.7.9. [3

Lemma 2.7.11.

su 52(23) _ 82 (2:) = Op (133:1 ___ 0p(1)-

x6[a,b] 071,203) xe[a,b] “n,2 (1‘) M      
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PROOF. Recall the definition for 5 = (514,60, ...,ZzN)T and a = (&_1,&0,. . .,€1N)T

in (2.7.6) and (2.7.7), one has (V + B) 5 = Va. Based on Lemma 2.7.2 and (2.3.2),

there exists a constant c such that

- A

cIé-él s IV(é-5)l = [Bil s An,2(l5—5I+l5|) => Ié-él s fail-Ia._ n,

(2.7.16)

Horn the definitions of 52 (:13) in (2.7.5) and £2 (3:) in (2.7.8), plus (2.7.12), (2.7.16)

and (2.7.6), as n -—1 OO

  

  
  

. .. N

52 (:6) 52(17) —1 A - 1/2 14112 ..
— g sup 0' (:1: Ia—aB-gx $011 —’—a.

zEIa,b] 071,2 (1‘) 0n,2(=v) z€[a,b] 1;, "’2 ) I 3’ ( ) c—Amzl I

(2.7.17)

Use (2.7.6) again, it implies that as n —> OO

   

 

.. (— N (—

£2 (2:) 2 nh sup 2 éijg (:12) = nh sup 5B; (2:)l Z Cfilal

xe[a,b] 071,2 (:3) Ca z€[a,b] j=_1 Co z6[a,b] ,
  

  

(2.7.18)

where 132 (1) = {3—1,2($),---,BN,2($)}T,112(55) = {b—1,2($),---:bN,2($)}T-

Then the desired result follows from (2.7.17) and (2.7.18), i.e.

=0? («19%) = 0,,(1).

PROOF OF PROPOSITION 2.3.2. It follows from Lemma 2.7.10 and Lemma

52 (I)

”n,2 (it)

D  

sup 52(1‘) _ 52(2) S A";

xE[a,b] 071,2 (2:) 071,2 (2:) C-Afl3 x€[a,b]   

2.7.11 automatically. Cl

PROOF OF THEOREM 2. Now (2.3.6) implies that “1712 (:c) — m (2:)“0O = 0,, (112),

and hence

(nh)_1/2 y/log (N + 1) ”1712(2) —— m(:1:)||00 = 0,,{(nh)-1/2 y/log (N +1)h2} = 0,, (1).
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Applying (2.3.7) in Proposition 2.3.2

lim inf P

n—mo

= lim inf P

n—+oo

= limian

71—100

;m (x) 6 m2 (2:) i: on; (x) {2 log (N + 1) — 2loga}1/2 ,Va: 6 [a, b]]

sup 03(1):) (gm) + 1712(2) — m(:1:)| g {210g (N + 1) - 210g a}l/2

L36 [0- ,b]

sup

 _xe [a,b]  

52 (1‘)

011,2 (1:)

 

S {210g(N+1)—210ga}1/2] Z l—oz.l:l
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CHAPTER 3

Spline-Backfitted Kernel

Regression

3.1 Introduction

One popular choice to addressing the issue of the “curse of dimensionality” is the

additive model popularized by the book of Hastie and Tibshirani (1990)

(I

Y = m(X) + 0(X)5,X = (X1, ...,xd) ,m (x) = 6+ 2 ma (21:0), (3.1.1)

a=l

where the noise satisfies E (elX) = 0,var (EIX) = 1 and the component functions

satisfy the identification conditions Ema (Xa) E 0,0 = 1, ...,d, In addition, we as-

sume that the predictor Xa is distributed on a compact interval [am he] ,a = 1, ..., d.

The goal is the efficient and fast estimation Of the (1 unknown component functions

{ma(:ca)}g=1 based on an i.i.d. sample {n,xf}; = {13, Xil, ...,Xid}?=1 follow-

ing model (3.1.1).
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If the last d— 1 of the component functions were known by “oracle”, then one could

define a new variable Y1 = Y -— c— 23:2 ma (X0) = m1 (X1) +0 (X) 5 which one can

use to regress on the numerical variable X1 to estimate the only unknown function

m1 (1:1), without the “curse of dimensionality”. The basic idea of Linton (1997) was

to obtain an approximation to the variable Y1 by substituting ma (X0) , a = 2, ..., d

with the marginal integration pilot estimates (kernel-based) and establishing that the

error caused by this “cheating” is negligible for estimating function m1 (11:1).

In this chapter we propose to pre-estimate the functions {ma($a)}g=1 by an

under smoothed constant spline procedure. These function estimates are then used

as as if they were the true functions for constructing the “oracle” estimator. The

greatest advantage of our approach over that of Linton (1997) is that ours is much

faster, and can be applied to cases of extremely high dimension data (e.g., the num-

ber of predictors, d, can be as large as 50 or 100). We believe that our approach is

the first example Of marrying the traditionally parallel spline smoothing and kernel

smoothing techniques, leading to an estimator with asymptotically normal distribu-

tion like a typical kernel estimator, without the formidable computational burden

of high dimensional kernel smoothing. Figuratively speaking, spline smoothing can

be compared to a Sledgehammer capable of breaking any huge chunk of material

(i.e., a regression problem from data of very high dimension and very large sample

size), in one slam (i.e., solving only one linear least squares problem), but does not

guarantee the fine shapes of the broken pieces (i.e., the estimates are not guaranteed

to converge at any point or uniformly over an interval, only in the L2 sense). In

contrast, kernel smoothing works like a sharp knife that cuts anything into pieces of
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precise shapes (i.e., confidence intervals are available at any point based on asymp-

totic normal distribution, and confidence bands are available over compact intervals),

but is too tedious to use for a large chunk of material (i.e., the computation cost is

intolerable when dimension is high and/or sample size is large). Our proposed new

tool can be described as a hammer-knife capable of first slamming any huge clump

into many much smaller pieces (i.e., univariate regression problems) in one hit (the

spline backfitting step), and then cutting all the smaller pieces into the exact desired

shapes (one dimensional kernel smoothing of backfitted pseudo data). In this sense,

the method we propose combines the best features of both spline and kernel methods.

Smoothing experts may wonder how one could have all these good features in

one method. The success Of our method is due to the well-known “reducing bias by

undersmoothing” and “averaging out the variance” principles, see Propositions 3.3. 1,

3.3.2 and 3.3.3. Both goals are accomplished with the joint asymptotics of kernel

and spline functions, which is the new feature of our proofs. For more details, see

Lemmas 3.6.3, 3.6.4 and 3.6.5.

In addition to the above features, uniform confidence bands are provided for all

function estimates under mild conditions. Literature on nonparametric confidence

bands has been scarce, and as far as we know, is lacking in multivariate regression

setting. For additive regression model, however, it seems that the present work is the

one of the few to Offer the measure of uniform accuracy with theoretical justifications.

The good news is that the confidence band we provide for ma (1:0) with any a =

1, ..., d, is asymptotically the same confidence band that Hardle (1989) established for

univariate regression with kernel smoother, regardless how many regressors there are
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and what other functions ma (2:0) ,0 = 1, ...,d are. Hence neither the dimension (1

nor other function components play any role in forming the band for ma (2:0,), at least

according to the asymptotic theory. In this sense, our estimator of ma (ma) possesses

what we would like to call “uniform oracle efficiency” , which is much stronger than the

“pointwise oracle efficiency” of Linton (1997). Furthermore, components in directions

not of interests are only required to be Lipschitz continuous (see Remark 3 at the end

of Section 3.2). Compared to all existing methods, this feature makes admissible the

broadest class of additive model.

The rest of the chpater is organized as follows. In Section 3.2 we introduce the

spline—backfitted kernel estimator, and state their asymptotic “oracle efficiency” under

appropriate assumptions, both pointwise and uniform. In Section 3.3 we provide

some insights into the ideas behind our proofs of the main theoretical results, by

decomposing the estimator’s “cheating” error into a bias and a noise part, which will

be shown separately to be of negligible order. In Section 3.4, we present extensive

Monte Carlo results to demonstrate that the proposed estimator does indeed possess

the claimed asymptotic properties. The simulated examples cover a wide range of

sample sizes with correlated structure and some very high dimensions, which would

have been either infeasible to handle with kernel smoothing methods, or lacking any

measure of confidence, pointwise or global, by spline method. The proposed estimator

are applied to the Boston Housing data in Section 3.4.2. Section 3.5 concludes, and

all technical proofs are contained in the 3.6.
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3.2 SBK and SBLL Estimators

In this section, we describe the spline-backfitted kernel estimation procedure. Let

{n,xg’}; = {IQ,X,-1,...,X,-d}?=l be an i.i.d. sample following model (3.1.1). In

what follows, we write all responses as Y = (Y1, ..., Yn)T, and denote by X the design

matrix (X1, ..., Xn)T. Without loss of generality, we take all intervals [am b0] =

[0, 1] ,a = 1, ..., d. We pre select an integer Nn ~ 112/5 log (71), see Assumption (AS6)

below. Next, we define for any a = 1, ...,d, the indicator function 1,1,0 ($0,) of the

(N + 1) equally-spaced subintervals of the finite interval [0, 1], that is

1 JHSxa<(J+l)H,
H = Hn = (Nn+ 1)‘1,J =0,1,...,N.

0 otherwise,

IJ,a ($a) = {

(3.2.1)

Define next the (1 + dN)-dimensional space G of additive spline functions as the

linear space spanned by {1, [La (ma) ,a = 1, ...,d, J = 1, ..., N}, while denote by 0,,

the subspace Of R" spanned by {{1}?=1 , {11,0 (Xia)}?=1 ,a = 1, ..., d, J = 1, ..., N}.

As n -—2 00, the dimension of Ga becomes 1 +‘dN with probability approaching one.

The spline estimator of additive function 117. (x) is the unique element 1h (x) =

771,; (x) from the space Gso that the vector {fit (X1) , ..., 1h (Xn)}T best approximates

the response vector Y = (Y1, ..., Yn)T. To be precise, we define

d N

m (x) = i0 + Z 2 $1,011,, ($0,), (3.2.2)

021 J=1

where the coefficients X0, 31,1, ..., XMd are the solution of the following least squares
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problem

2
.. . .. T n d N

()0, Am, Alva} = argmianN+12{Yi - /\o - Z Z )‘J,aIJ,a 0%)} ~

i=1 a=l J=l

(3.2.3)

The pilot estimators of each component function and the constant are defined as

N n N

The! (515a) = Z AJ,aIJ,a ($0) ‘ "-12 Z AJ,aIJ,a (Xia) :

J=1 i=1 J=1

d n N

The = 3‘0 + 1110:Z 21)],aIJa (Xia). (3.2.4)

Hz]:1

These pilot estimators are then used to define a set of new pseudo-responses 17,-]

which are estimated versions of the unobservable “oracle” responses 1’21, to be specific,

d

f[1'1=Yi-é-E1_47l"lar(Xio:)aYil= 1“i‘c-2:2"1cnz()(z'c1z) 1:1 zen-1:”,

0:2 (1:2

(3.2.5)

where by Central Limit Theorem 6 is a fi-consistent estimator of 0. Next, we

define the spline-backfitted kernel (SBK) estimator of m1 (1:1) as 7713,1(221) based

on {IQ-1, X51}'.l 1, which is an attempt to mimick the would-be Nadaraya-Watson
z:

estimator 7718.1 (:51) Of m1 (2:1) based on {121,Xi1}?=1, had the unobservable “oracle”

responses {Ella—.1 been available.

732 1a,) = 2521191091 mYu .. (,1): Bilge (X11 —rc1)Y11

8’ 221:1 Kh (Xil - 551) ms’ 2L1 Kh (X11 — x1)

  , (3.2.6)

where 17,-] and Y“ are defined in (3.2.5).

Throughout this paper, on any fixed interval [a, b], we denote the space Of sec-

ond order smooth functions as 0(2) [a,b] = {m|m” E 0 [a,b]}, and the class of

Lipschitz continuous functions for any fixed constant C > 0 as Lip ([a, b] ,C') =

{ml |m(:r) —m(:r’)| S CIx—x'l ,Vzc,:1:' 6 [a,b]}.
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Before presenting the main theoretical results, we state the following assumptions.

(A81) The component function m1 6 0(2) [0, 1] , while there is a constant 0 < Coo < 00

(A32)

(A8?)

(A33)

(AS4)

(A85)

(AS6)

such that m5 6 Lip ([0, 1] ,C'oo) , Vfl = 1, ...,d.

The noise 5,- given X,- are i. i. d. with mean 0 and variance 1, for i = 1, ...,n,

while the conditional standard deviation function a (x) is continuous on [0, 1]“.

Denote Co = maxxe[0,1]d o (x).

The conditional distribution of noise 5 = (51, ...,en) given X = (X1, ...,Xn)T is

n-dimensional standard normal.

The density function f (x) of X is continuous and

O < of S inf {f(x)} S sup {f(x)} 5 Cf < OO.

XEIOJI“ x€[0,1]d

The marginal densities fa ($0,) of X0, have continuous derivatives on [0,1].

The kernel density function K 6 Lip ([-1, 1] ,CK) for some constant CK > 0,

and is bounded, nonnegative, symmetric, and supported on [—1, 1]

The bandwidth h of the kernel K is assumed to be of order 71-1/5, i.e.,

chn"1/5 S h S C'hn"1/5 for some positive constants ch, 0),.

The number of interior knots Nn ~ 112/5 log (n), i.e., an2/5 log (n) 3 Na S

(7an5 log (n) for some positive constants CMCN, and the interval width H =

(Nn + 1)“.
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The asymptotic property of the kernel smoother in“ (2:1) is well-developed. Un-

der Assumptions (ASH—(ASS), according to Theorem 4.2.1 of Hardle ( 1990), one has

«I»?{m (an) — m1(x1>— b<x1)h2}—’3 N (0.v2 (2:1)),

where

b(1151) = 1£12(K){m'1'(2=1)f1(171)/2+m'1($1)f{($1)}f1—1 (1‘1), (327)

112(1‘1) = ||K||§15'7{02 ($1.X2.~-,Xd)}ff1 ($1)-

Hardle (1989)provide the uniform asymptotics for kernel smoother. For any oz 6

(0, 1), an asymptotic 100 (1 - a) % confidence band for m1 (271) over interval [0, 1] is

n1_i_n&P{m1 (11:1) 6 171,1 (x1) 2H,, (1:1) ,Vxl 6 [0, 1]} = 1 — a

 

where

ln(:1:1) = ”5%) [dn — {log (h'z) }-1/2 log {~—--;- log (1 - a)}] (3.2.8)

  

_ 1/2 1 f K’2 (u) du.

d" {log (h 2)} [1 + 2 {log (h‘2)} log {4n2 f K2 (u) du }](3'2'9)

The next two theorems state that the asymptotic magnitude Of difference between

m3,1 (2:1) and 7713,] (2:1) is of order 0,, (”-2/5) , which is dominated by the asymptotic

size of ms) (2:1)—m1 (271). Hence m3,1 (x1) will have the same asymptotic distribution

88 7713,1651)-

Theorem 3.2.1. Under Assumptions (A51) to (A86), for any 1:1 6 [0,1], the SBK

estimator 171,) (2:1) given in (3. 2. 6) satisfies

. .. _ .. .. P

Ims,1($1) - ms,l (31)] = 0p (n 2/5) 01‘ 712/5 ("13,1 ($1) - ms,1 (171)} —* 0-

Hence with Han) and v2 (1:1) as defined in (3.2. 7)

m{fils,1($1)— m1(1171) - b($131)“) 2* N (on? ($1))-
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Theorem 3.2.2. Under Assumptions (A51) to (A36) and (AS2’), the SBK estimator

138,1 (3:1) given in (3.2. 6) satisfies

sup ImsJ (331) _ ThsJ (31)] = 011(n-2/5) '

$1€[0,1]

Hence for any 2

{108(h—2)}1/2 ( 3‘1 fl lmsa (171) - m1(931)l - dn) < 2]

316(5),” 1) ($1)

 

lim P

"#00

= exp (“-2 exp (-z)},

For any a 6 (0,1), an asymptotic 100 (1 — a)% confidence band for m1(3:1) over

interval [0, 1] is

613,1 (3:1) :l: v(x1)(\/1—ih)—l [dn - {log (h'z) }—1/2 log {—% log (1 — a)}] .

(3.2.10)

in which (1,, equals to

{log (my/2+; {1... (r2) )"1/2 [log {[132 (3.1} - 10g {4.2/K2 (302)] .

Remark 1. Similar estimators mm (270,) can be constructed for any oz = 2, ..., d

with same oracle properties. Also, similar constructions can be based on local

linear instead of Nadaraya-Watson estimator in (3.2.6). In contrast, the bias co—

efficient of the spline-backfitted local linear (SBLL) estimator would. simply be

b (2:1) = W (K) m’l’ (2:1) /2, without the additional term Of the SBK estimator, while

the variance coefficients of SBLL and SBK are the same. Higher order local poly-

nomials can also be used, with obvious modifications. For more on the properties

of local linear estimators, in particular, its minimax efficiency, see Fan and Gijbels

(1996).
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Remark 2. The proofs Of Theorems 3.2.1 and 3.2.2 will make it clear that the

number of knots can be of the more general form N" ~ n2/5N,’,, where the sequence

N,’, satisfies Ni, —» oo, n‘aNf, —+ 0 for any 6 > 0. There is no optimal way to choose

N,’,, however, at least to us at this time. The fact that N;1 = o (n'2/5) ensures

that the bias in the spline pilot estimators is negligible compared tO the bias of h2 in

the kernel/local linear smoothing stage. On the other hand, one does not allow Nn

to be too large for practical reasons: the number Of terms in (3.2.3), 1 + dNn has to

be small relative to n. Hence we select Nn to be of barely larger order than n2/5.

Remark 3. Assumption A1 requires only the Lipschitz continuity for the com-

ponents except for the component Of interest. Obviously all ma are required to be

second order smooth if one needs to estimate all components.

3.3 Decomposition

In this section, we introduce some additional notations in order to shed some

light on the ideas behind the proofs of Theorems 3.2.1 and 3.2.2. Denote by

||¢||2 the theoretical L2 norm of a function o5 on [0,1]“, “(tug = E{¢2 (X)} =

f[0,l]d (#2 (x) f (x) dx, and the empirical L2 norm as ”ding,“ = n‘1 2&1 ¢2 (Xi). For

any Lg-integrable functions 45, (p on [0,1]d , the corresponding inner products are de-

fined by

(¢,¢)2 =/ d¢(X)<.0(X)f(X)dx=E{¢(X)<p(X)}.
[0.1]

(¢,<P)2,n = n-IZ¢(Xi)‘P(Xi)- (3-3-1)

i=1
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A function (b on [0,1]“ is called theoretically (empirically) centered if (l,<,o)2 = O

((1,1p)2,n = 0). Define the following theoretically centered spline basis

b (:1: )=I ( — llI““"""2I v =1 31:1 N 332J,a a J+1,a 13a) W- J,a (13a): 0 ,..., , ,..., 1 ( - - )

,a 2

where the functions IJ’a (ways as defined in (3.2.1) are indicators on the subintervals

[JH, (J + 1) H). The standardized one is given for any a = 1,...,d,

bJ,a (170!)

"(Ma “2

The additive function space G defined earlier can also be spanned by the lin-

BLa ($0,) = ,w = 1, N. (3.3.3)

early independent basis {1, BJ’a (2:0,) , J = 1, ..., N,a = 1, ...,d}, although these new

basis involve unknown quantities and therefore can not be computed from the

data, they are more convenient for mathematical analysis than the truncated

power basis in (3.2.1). Similarly Gn can be spanned linearly by the basis

{1, {BM (2%)}?=1 ,a = 1, ...,d, J = 1, ...,.N}

For better understanding, we use the projection idea to elaborate the constant

spline estimators. The evaluation of constant spline estimator m (x) at the n Obser-

vations results in an n-dimensional vector, in (X) = {:3 (X1) , ..., m (Xn)}T, which

can be considered as the projection of Y on the space G" with respect to the em-

pirical inner product (o, )2," defined in (3.3.1). In general, for any n-dimensional

vector V 2 {V1, ..., Vn}T, we define PnV (x) as the spline function constructed from
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the projection of V on the inner product space (Gn, (~, )1")

d N

PnV (X) = i)0 + Z E: 17.13330. (2.-a),

a=1J=1

2
n d .N

{00, 01,1, ...,ON’d}T = argmianN+1 2 Vi ‘ ”0 " Z Z vJ,aBJ,a (Xia)} 1

i=1 (1:1 J=1

which is similar to (3.2.2) and (3.2.3) except the basis. Next, the multivari-

ate function PnV (x) is decomposed into empirically centered additive components

PmaV (2:0,) ,0: = 1, ..., d and the constant component Pmcv

fl

Pn,aV(:1:a) = PROV (ma) — 71-12meV (X,,,) (3.3.4)

i=1

.N

P311" (Iva) = 01,0131.) (20.), (3-3-5)

J=1

d n

Pch = 30 + nil ZZPaav (Xm), (3.3.6)

a=li=l

in which the centering procedure is the same as (3.2.4).

With these new notations, we can rewrite the constant spline estimators

iii (x) ,ma (2:0),7716 defined in (3.2.2) and (3.2.4) as

Th (X) : PnY (X) ,ma ($a) = Pn,aY ($0) ,filc = Pn,cY.

Based on the relation Y =m (i) + (1()-{)8 = m (i) + E, with noise vector

E = {0 (X1) 5i}?___1, similarly define the noiseless spline smoothers

m (x) = P. {m (3)} (x) , m. (x...) = P... {m (3)} (x3) ,3. = P... {m (3)},

and the noise spline components

5 (x) = PnE (x) ,é’a (ma) = PmaE (2:0) ,éc = PmcE. (3.3.7)
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Due to the linearity of operators Pn,Pn,a,Pn,c,a = 1, ...,d, one has the following

decomposition, which is crucial to prove Theorems 3.2.1 and 3.2.2

Th (X) = 771(X) + 5(X) ,fila ($0) = fila ($0) + Ea (ma) ,mc = mg + 56,0! =1, ..., d.

(3.3.8)

As closer examination is needed later for 5 (x) and 50 (ma), one define that

2
n d N

.. .. - .. T .

a : {00101,11 "'1 aN,d} : argmmZ 0’ (X051. — 0.0 - Z Z aJ,aBJ,a (Xia) )

i=1 a=l J=1

(3.3.9)

--1

then 5 (x) in (3.3.7) can be rewritten as 5TB (x) , where a = (BTB) BTE is the

solution of equation (3.3.9), and matrices B (x) and B are defined as

T

B (x) = {1, 31,1 (1:1) , ..., BN,d (Id)} ,3 = {B (X1) , ..., B (Xn)}T . (3.3.10)

TO be specific, the least square solution Of the noise is

-1

5 ___ 1 0 ( "-1 Z?=10(X1)61 ) .

0 (3110’ BJ’,o/>2 11 1300/31, "-1 2?:1 BJ,a (Xia) 0 (xi) 5i ISJSN,

, 1_<_J,J’SN . ISOSd

(3.3.11)

Our main objective is to study the difference between smoothed backfitted esti-

mator 111.84 (2:1) and the smoothed “oracle” estimator {133,1 (1:1), both given in (3.2.6).

From now on, we assume without loss of generality that d = 2 for notational brevity.

. . . _ ON+1
Denote the projection matrix P0N I — , we define another aux-

+l’ N IN

iliary entity

_1 T N

.3; (x2) = P321132) = {(BTB) BTE} PoN,,,1N (B (x))T = 2 6112812 (23).

J=l
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which, in particular, entails that

-1 T T N

52 (X12) = {(BTB) BTE} P0N+1,IN (61TH) = Z a.I,2BJ,2 (X12),

J=l (3.3.12)

in which e,- is the n—dimensional unit vector with i-th element 1 and else 0 and hence

the i-th row of matrix B, QTB = B (X,) , is the basis functions corresponding to the

i-th Observation Xi. Definitions (3.3.5) and (3.3.6) imply that 52 (3:2) is simply the

empirical centering of g?! (11:2), i.e.

n N n N

52 ($2) 5 52 ($2)-"—1 :52 (X12) = Z 5J,2BJ,2 (Km-n.1 2: 51,2312 (X12) -

,-=1 1:1 i=1 J=l

(3.3.13)

Making use Of the signal noise decomposition (3.3.8), the difference my, (3:1) -

613,1 (11:1) + 6 — c can be treated as the sum of two terms

  

"_IZ?=1Kh(Xi1- $1) {m2 (X12) - m2 (X12)} = I($1) + 11 ($1)

"-1 Z?=1Kh(X11 -$1) "'12?=1Kh(X11 —$1)’

(3.3.14)

where

1 ($1) = "—1 Z Kh (X11 - $1) '52 (X12), (3-3-15)

i=1

11 ($1) = "-1 2K); (X11 '- $1) ' {7712 (X12) - m2 (X12)}- (3-3-15)

i=1

The term I ($1) is related to the noise terms 52 (X12), while II (2:1) is induced by the

bias terms in; (X52)-—m2 (X12) . Propositions 3.3. 1 and 3.3.2 below show respectively

that the term I ($1) is of order 0,, (n'2/5), either at a given point or over an interval.

This is the most challenging part to be proved, mostly done in Subsection 3.6.1. On

the other hand, Proposition 3.3.3 below shows that the bias term II (3:1) is uniformly
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of order 0,, (n'2/5) for 2:1 6 [0,1], to be proved in Subsection 3.6.2. Standard

theory of kernel density estimation ensures that the denominator term in (3.3.14),

11‘1 Z?=1Kh(X,~1 -- x1), has a positive lower bound for 2:1 6 [0, l]. The additional

nuisance term é—c is of clearly order 0 (n‘l/z) and thus 0,, (n‘2/5) , which needs no

further arguments for the proofs. Hence both Theorems 3.2.1 and 3.2.2 follow from

Propositions 3.3.1, 3.3.2 and 3.3.3. Section 3.6, therefore, is devoted'exclusively

to the proofs Of these three propositions, rather than of the main theoretical results,

Theorems 3.2.1 and 3.2.2 themselves.

The next three propositions follow respectively from Lemmas 3.6.10 and 3.6. 11,

Lemmas 3.6.11 and 3.6.12, Lemmas 3.6.1 and 3.6.2.

Proposition 3.3.1. Under Assumptions (A51) to (A56), for any 93] 6 [0,1]

(1 ($1)) = 0,, (71-1/2) = a, (71-2/5) .

Proposition 3.3.2. Under Assumptions (A51) to (A56) and (A52’)

sup Ia: =0 n"1/2lon1/2 =0 n'2/5.xlelmlul): p( {g} ) ,( )

Proposition 3.3.3. Under Assumptions (A51), and (A53) to (A56)

..i‘ié’i'“<xl>'=01(‘m=0p)(""2”)-
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3.4 Simulation and Examples

3.4.1 Simulation

In this section, we present simulated results to illustrate the finite-sample behavior

of the spline backfitted kernel estimators in”, (2:0,) for any a = 1, ...d.

The data set is generated from the regression model Y = 23:1 ma (Xa)+a (X)-e.

The additive elements are assumed to be

ma (ma) = sin (21er) ,Va = 1, ...,d.

Similar to Nielsen and Sperlich (2005), the predictors Xa are obtained through the

transformation X0 = 2.5 * {<I> (Za) — 0.5}, where (I) is the standard normal distri-

bution function and the variable Za ~ N (0,1) ,0: = 1, ...,d with thecorrelation

coefficients pug = p, a 74 ,6 for any pair of Z’3. Now the correlation between X’s is

not p any more, it will depend on p. In order to validate the assumption that the

density is bounded below from 0, we will focus on the estimation inside [—1, 1]d.

Meanwhile, the error term 5 follows standard normal distribution and is indepen-

dent of X. The conditional standard deviation function is defined by

_ a 100-exp{2§=1 IxaI/d}

“ 7' 100 + exp {221:1 Ixal /d}°

By this choice of a (x), we ensure that our design is heteroscedastic, and the variance

 

0 (X)

is roughly proportional to dimension d. This proportionality is intended to mimic the

case when independent copies of the same kind of univariate regression problems are

simply added together.
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We now describe how the SBLL estimator are implemented. The first step is to

obtain the spline estimator of Egg ma (X0), using the truncated power B-spline

basis as in (3.2.3). The selection of knots will uniquely define the basis. The knots

number N" will be determined by the sample size and two tuning constants, to be

specific

Nn : min ([Cln2/510gn] + 02, [(n/4 -1)d—1]):

in which [c] denotes the integer part of c. In our simulation study, we have used

c1 = 1 = c2. The choice of these constants c1 and c2 makes little difference for a

large sample. But for small sample size, it does affect the performance to a degree.

The additional constraint that N S (n/4 — 1) d‘1 ensures that the number of terms

in the linear least squares problem (3.2.3), 1 + dNn, is no greater than n/4, which is

necessary when the sample size n is moderate and dimension d is high.

The oracle smoother m3,1 (:01) for comparison is obtained by local linear regression

of the unobservable m1 (X1 )+0 (X) e on X1 directly, while the oracle SBLL estimators

ms) (2:1) are obtained by local linear regression of {121, Xil }:=l° To save space, we

only implement the local linear version of mm (2:1), i.e., the SBLL estimator, using

the XploRe quantlet “lpregxest”. For information on XploRe, see Hardle, 'Hlavka and

Klinke (2000) or visit http://www.xplore-stat.de.

We have run 5 = 500 replications for sample sizes n = 100, 200, 500 and 1000 with

correlation coefficient p = 0, 0.3 respectively. The dimensions are taken at d = 4, 10.

The major objective of this section is to compare the relative efficiency of in”, with

68



respect to mm

 

%2?=1 {film (XiaJ) ‘ "‘0 (Xia'l) }2 [{lxia l '31}a
a =

l n .
2 , 1,...,d,l = 1,...S

3 25:1 {ms,a (X1111) _ ma (Xia.l)} [{IXiaIISI}

effaJ =

S

1

effa "—" §§8fi0’[,a=l,u.,d,

in which {X,-1,,,...,X,-d,,};‘=1 is the l-th sample, 1 = 1,...,5. Theorems 3.2.1 and

3.2.2 indicate that the efliciency should be close to 1. In particular, when we have

an efficiency value bigger than 1, fits“, (2:0) is a better estimator in the sense of mean

square distance.

The corresponding mean and the standard error (in the parenthesis) of the rel-

ative efficiencies for first and third dimension ((1 = 1, 3) is given in Table 4.3. For

the case of p = 0, almost of all the mean values are around 1 without noticeable

influence from the sample size and the correlation. The trend of standard errors

confirm the comparability of SBLL Thad to the oracle estimator fits“), with faster

convergence for a larger sample. At p = 0 and all the random selected directions, the

SBLL performs better than the oracle local linear estimator in most cases because

the independent components can be well—estimated at the first stage, then univariate

local linear smoothing at the second stage will treat less noise than the case of direct

oracle estimator, the local linear estimator.

In the cases of p = 0.3, the trend to relative efficiency 1 is very clear regardless

of the dimension d. All the means are becoming larger accordingly and approaching

to 1 steadily when the sample size becomes bigger. Typically, the relative efficiencies

are greater than 0.97 for d = 4 with sample size 200, and for d = 10 with sample size
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500 respectively. We believe that in high dimensional cases the convergence rate is

slower than in lower dimensional cases when the predictors are strongly correlated.

The standard errors in the parenthesis follow the same trend that less variation is

with larger sample size, though it shows slower convergence compared to the case of

p = 0, which is not unexpected.

In addition, several figures display the features of the relative efficiencies in details.

In Figuras 4.6 and 4.7 four types of line characteristics which correspond to the four

sample sizes, the solid line (100), the dotted line (200), the thin line (500) and the thick

line (1000). The vertical line at efficiency 1 is the standard line for the comparison

of mm (:51) and {7'sz (x1) . More efficiency values distributed around the vertical line

would be confirmative to the conclusions of Theorems 3.2.1 and 3.2.2.

All the curves in Figures 4.6 and 4.7 are the density estimates of relative efficiency

distributions for specific sample size n, correlation coefficient p and dimension d. With

increasing sample sizes, we found that the relative efficiency are becoming closer to

the vertical standard line, with narrower spread out. In addition, the curve with

p = 0 shows a faster convergence to the vertical line than those with p = 0.3 in all

cases. An interesting point is that almost of all the peak points of the thick line (with

the largest sample size) fall very close to the vertical lines. All above confirms the

theorem that SBLL behaves similarly like the oracle local linear estimator.

We have done some more simulation with d = 50, and S = 100 replications

for p = 0,03, and n = 500, 1000, 1500,2000, the results of which are graphically

represented in Figures 4.8 and 4.9. The basic graphic pattern is similar to that for

the lower dimensions (1 = 4, 10, though with slower convergence rate and relatively
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lower efficiency. The corresponding statistics are listed in Table 4.4.

3.4.2 Boston Housing Example

In this section we apply our method to the Boston Housing Data. The data files

bostonh.dat is available in the software of Xplore. The data set contains 506 different

houses from a variety of locations in Boston Standard Metropolitan Statistical Area

in 1970. The median value and 13 sociodemographic statistics values of the Boston

housas were first studied by Harrison and Rubinfeld (1978) to estimate the housing

price index model. Breiman and fiiedman (1985) did further analysis to deal with

the multi-collinearity among the independent variables. By using a stepwise method,

they proposed the alternating conditional expectation method to select a subset of the

variablas in order to maximize the correlation between the fitted value and the selected

covariates. Four variables were selected by penalizing for overfitting. Opsomer and

Ruppert (1998) illustrated their automated bandwidth selection for fitting additive

models based on the selected four variables. We will use the same four covariates for

our model fitting and current analysis. The response and explanatory variables of

interest are:

MEDV: Median value of owner-occupied homes in $1000’s

RM: average number of rooms per dwelling

TAX: full-value property-tax rate per $10, 000

PTRATIO: pupil-teacher ratio by town school district

LSTAT: proportion of population that is of ”lower status” in %
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One major concern is the big gap in the domain of variables TAX and LSTAT,

which will cause severe trouble at the first stage of spline estimation. So logarithmic

transformation is done for these two variables before fitting the model. We will fit an

additive model as follows:

MEDV = p + m1 (RM) + m2 (log (TAX)) + m3 (PTRATIO) + m4 (log (LSTAT)) + 5.

Although the transformation has shrunk the gap in the domain, some compromise

will be necessary to astimate the components since we select the same knots number

for each direction. In this case we choose a large number of knots, N = 5. In the

smoothing step, we use the SBLL estimator to get the final function estimate of each

input variable.

In Figure 4.10, the univariate function estimates and corresponding confidence

bands are displayed together with the “pseudo data points” with pseudo response

as the backfitted response after subtracting the sum function of the remaining three

covariatas as in (3.2.5). All the function estimates are represented by the dotted lines,

“data poin ” by circles, and confidence hands by upper and lower thin lines. The

kernel used in SBLL astimator is Quartic kernel, K (n) = g: (l - 112)2 for —-1 < u < 1.

Besides the estimation of the component functions, we also use our proposed

confidence bands to test the linearity of the components. In Figure 4.10 the straight

solid lines are the regression lines with the least square coefficients. The first figure

shows that the linearity null hypothesis H0 : m1 (RM) = a1 + ()1 - RM, will be

rejected since the confidence bands with 0.99 confidence couldn’t totally cover the

straight regression line, i.e the p-value is less than 0.01. Similarly the linearity of
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the component functions for log (TAX) and log (LSTAT) are not accepted at the

significance level 0.01. While the least square straight line of variable PTRATIO

in the upper right figure totally falls between the upper and lower 95% confidence

bands, thus the linearity null hypothesis H0 : m3 (PTRATIO) = a3 + b3 -_ PTRATIO

is accepted at the significance level 0.05.

In addition we add up all the SBLL estimates of component functions and the

mean response as a estimate for the response (MEDV). The correlation between

the estimate and the raw value of MEDV is as high as 0.80112, implying rather

satisfactory fit.

3.5 Conclusions

In this paper we have proposed SBK and SBLL estimators for the component

functions in an additive regression model. These estimators behave asymptotically

like the standard Nadaraya—Watson and local linear estimators in one dimension, thus

breaking the problem of d—dimensional additive regression to d univariate regression

problems. This is achieved by approximating the unobservable sample {IQ-1, Xill?=1

with the spline estimated sample {IQ-1, Xil}:;l. Although much mathematics is

devoted to proving that this approximation works, the implementation is very easy.

To give some idea of how fast the procedure is, to run 100 replications for sample

sizes 11. = 500, 100,1500, 2000 and dimension as high as d = 50 takes about 40 minutes

on a Dell notebook. In other words, within this time span, a total of 100 x 4 =

400 SBLL estimators Then (1:0,) and the same number of oracle smoothers 1713,] (:51)
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are computed. In addition, the SBK and SBLL estimators inherit the asymptotic

confidence bands (3.2.10) of univariate Nadaraya—Watson and local linear estimators.

The combination of speed and global accuracy for very high dimension regression is

very appealing.

3.6 Proof of Theorems

3.6. 1 Variance Reduction

In this subsection we prove Propositions 3.3.1 and 3.3.2. The magnitude of the

variance term I (2:1) in (3.3.15) can be measured by its conditional second moment

given X1,...,Xn. Based on (3.3.13) and (3.3.15), the conditional second moment

. 2 ..

E {1(m1)IX} of I(:rl) given X = {X1,...,Xn} is

n n n 2

E [{n“ 23m. (le — x1)e‘§(xz2)— n‘l 2K}. (Xh — x1) . n“ 25; (292)}

(=1 (=1 ' 1  

It is clear that

15‘{I<an>l5'<}2 = E{If(x1)|f<} —E{I%(x1)|5<},

where for brevity, we write

11(21) = "_IZKh(Xn-Il)€§(xzz) (3.6.1)

(=1

12(171) = "—IZKMXH—$1)'n-1255(Xi2)- ‘ (3-5-2)

(=1 i=1

If further one denotes

€109,131) = Kh (X11 — $1) 31,2 (X12), (3-5-3)
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then

n N n N

I1(351) = "‘1 Z Kh (X11 - 171) Z 5J,2BJ,2 (X12) = "-1 Z Z 5J,2€J (Khan)-

z=1 J=l (=1 J=1

(3.6.4)

In order to obtain the order of the conditional second moment of I1 (:51), we

first find the supremum magnitudes of E§J(Xz,x1), {J (Xbxl) -— E51 (X(,:z:1) and

the size of 2y=1|a1,2|, in Lemma 3.6.3, 3.6.4 and 3.6.7. Consequently, Lemma

3.6.10 shows that SUlee[0,1] E {112 (2:1)] X} = 0,, (n’l). In Lemma 3.6.11 we have

5‘1le6[0,1] IIg (2:1)] = Op(Nn'1\/l3g—r—L) .Based on the selection of N ~ 112/5 log n,

Proposition 3.3.1 is thus proved.

There is one more Assumption (ASZ’) in addition to Assumptions (AS1) to

(A86) in Lemma 3.6.12. The order of 11(31) under the new restrictions is ob-

tained uniformly over [0,1] inflated only by a factor of {log (n)}1/2 compared

with the pointwise case, one has SUlee[O,1]lIl (2:1)] = 0,, (W). Now

again, due to the selection of the interval width H m (n2/5 log n)-1 , the order

Op (Nn'lm) of 3‘1le6[0,1] |12 (2:1)] in Lemma 3.6.11 is negligible compared

with order of supzl€[0,1]|11(xl)|. So under the Assumptions (A31) to (A36) and

(ASZ’), we have established the uniform bound over [0, 1] of Proposition 3.3.2.

3.6.2 Bias Reduction

Now we prove Proposition 3.3.3 by bounding the bias term II (2:1) in (3.3.16). We

first cite one important result from page 149 of de Boor (2001).

Theorem 3.6.1. Under Assumption (A1) ma 6 Lip([0, 1] ,C’oo), then there exists a
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function ya 6 G [0, 1] such that Va = 1, ...,d

“.90 _ mango S CooH- (3.6.5)

Lemma 3.6.1. Under Assumptions (A51), (A33) and (A56), for the spline function

92 satisfying (3.6.5), one has

 

  

I! . _ . _ .
sup 2:1 Kh (len 1'1) {92 (X12) 1712002)} 5 Geoff, (3.6.6)

2:16[0,1] Zi=1Kh(Xi1 - $1)

and for a = 1,2

n

laymen = n-1 29am.) = 0,.(12-1/2 + H). (3.6.7)
i=1  

PROOF. The first inequality (3.6.6) follows trivially from (3.6.5). To prove the second

inequality, define a function g (x) = c+ 2351 ga (1:0), then ||g — mlloo S 2CooH and

hence Ilg - m|]2,n 3 20001-1. The definition of projection in Hilbert space then implies

that

um - mum. 5 Mg - m||2,n < 20001:!

where m is the projection of m to the space G with respect to (~, )2" , the triangular

inequality implies that

Ila—9112,. .<. 40001;. (3.6.8)

Now (3.6.5) leads to lEnga (Xa) — Enma (Xa)| 3 COOH, while Ema (X0) = 0 leads

to Enma (X0) = 0,, (n‘l/Z). Putting these together, one has

lEnga (Xa)l S. “31:90 (X0) - Enma (Kan + lEnma 0(0)] 3 COOH + 017(n-1/2) ,

(3.6.9)

which establishes (3.6.7). CI
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In order to show that the bias term II (2:1) defined in (3.3.16) is uniformly

op (n‘2/5), the following lemma suflices.

Lemma 3.6.2. Under Assumptions (A31) to (A56), as n —-* oo

Z?=l Kh (Xil - 1‘1) {7712 (X12) - 92 (Xe?) + Eng2 (X2)}

221:1 Kh (Xil - $1)

 sup

$16[O,I]   

= Op(n—1/2 + H).

(3.6.10)

PROOF. Using the same notations as in the proof of Lemma 3.6.1, (3.6.8) and (3.6.9)

now give

um — g + Em (X1) + Enge (X2)|l2,n s scooH + 0,.(n-1/2) .

and Lemma 3.6.8 would then entail that

um — g + Engl (x1) + £2.92 (mug = 0,, (W2 + H) . (3.6.11)

To complete the proof of the lemma, we write

2 .N

(in — g) (x) + 12.91 (X1) + Engz (X2) = a + Z Z amBza (we).

a=lJ=1

where the empirically centered spline basis are

71

Bio, (1'0) = BJ,a (370:) " EnBJ,a (X0) = BJ,a (55a) - "—1 Z BJ,a (Xia) ,

i=1

foranylSJSN,l_<_a$2. Thenfora=1,2,

.N

7710 (55a) — 9a (330:) + Enga (Xa) = Z aJ,aB3,a (170) .

J=1

and according to (3.6.19) one has

um — g + Engl (x1) + Enge (mug

2 N 2 2 N

2 co {0+ZZGJ’aEnBJ’a(Xa)} +2201! . (3.6.12)

a=lJ=l a=1J=1
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Now

n’1 2 Kn (Xil - $1) {1712 (Xiz) — 92 (X12) + Engz 0(2)}

i=1

n N

_ n‘1 2 K), (Xu - $1) 2 (”233,2 (Xi2)»

i=1 J=l

which is bounded by

  

N

E 1 El K( — B X

l
< E - E K X: — B X'_ J=1]0J,2|<{l_<_s.‘II;N n i=1 h( 21 331) J,2( :2)

  

+

n

"-1 2K1; (Xil - $1)

i=1  

sup IEnBJ,2 (X2)|}
ingN

which can be rewritten as the following according to the definitions of Q (X;, 1:1) in

}
Minkowski inequality, Lemma 3.6.5, (3.6.29) and standard properties of kernel den-

(3.6.3) and of Afm in (3.6.28)

N

Z laJ,2]{ Slip

lngNn
J=l

+An,1 n123101091 ’31)

i=1

11:61] (thl)

I:l    

sity estimator now imply that

Seals” nlZ:Kh(Xz1-.’L‘1){mz(X22).<12(X12)+1‘77192(X2)}

31 i=1

,lNéag’ZU{(opf'H)+0,,)(WN

  

 

|
/
\

= 0,, (HI/2,|NZaJ2)=—0p((l;=laJ,2)
=1

N
2 2 N 1/2

= Op {6 + Z Z &J,aEnBJ,a (X0)} + Z Z 03:0 ’

a=1J=1 “=11=1
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which according to (3.6.11) and (3.6.12) is

=0(||*- +E (X) E X) =0 '1/2+Hp m 9 n91 1 + n92( 2 "2) p n 1

thus proving (3.6. 10). [3

Now combining Lemmas 3.6.1 and 3.6.2, one immediately gets

SUP “-1 Z Kh (Xil - a71) {T712 (Xiz) - m2 (Xi2)}

$16]0,l] i=1  

= 0,, (n—l/2 + H) = 0,, (n'Z/S) ,

which establishes Pmposition 3.3.3.

3.6.3 Technical Lemmas

In this subsection we have collected all the auxiliary results used in Subsections 3.6.1

and 3.6.2.

Lemma 3.6.3. Under Assumptions (A53) to (A56), one has

sup sup IE£J (Xia): = 0(H1/2) .
21€]0,l] ISJSN

PROOF. Define for a = 1,2,J = 1, ...,N + 1

2

01,0 = “IJ,a"2 = [Lia (1:0)}?! ($0)d33av

then bJ’a (3:0,) in (3.3.2) can be written as (2,1,0, (2:0) = 11+“; (30) —

CJ+1,o:IJ,a ($0) /CJ,a and

"IMO“: = chm (1 + cJ+1,a/eJ,a),Va = 1,2, J = 1, ...,N.

In Assumption (A33) the two positive constants cf,C'f are the upper and lower

bounds of all the marginal densitiae fa (ma) , then for all J = l, ..., N + 1, a = 1, 2

CfH _<_ cJ,a S CfH. (3.6.13)
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Then for all a = 1,2, J = 1, ..., N, ”5.19“: m H, or specifically

2

Cf (1+Cf/Cf)H_<_ ”bJ,a“2 SCf (1+Cf/Cf) H. - (3.6.14)

The absolute expected value of {J (Xbxl) is

|E€J (Xz,131)| = IE {Kn (X11 - $1) BJ,2 (X12)}|

S f/KMM*1‘1)IBJ,2(U2)]f(U1,U2)dU1dU2

= f/K(vl)|—_—b’w“2)lf(hv1+x1,tt2)dv1d02

Ile.2||2

(lle.)2“2//K(v1){IJ+1,2(U2)+ (53%)1/203 (112)}

xf(hv1 + $1,112) dvld‘U2

(lle,2II2)_l {f/K(v1)1J+1,2(U2)f(hvl +$i,u2)dvlduz

1/2

+ (SJ-iii) //K(v1)IJ,2(U2)f(’WI +$I.U2)dvldu2}-
CJ,2

The boundedness of the joint density f and the Lipschitz continuity of the kernel

K will then imply that

SUP SUP f/K(v1)IJ,2(U2)f(hv1+x1,uz)dvldu2SCKC'fH,

$1€[0,l] ISJSN

the proof of the lemma is then completed. D

Lemma 3.6.4. Denote by 0,; a set of endpoints in [0, 1] , with cardinality Mn = anl

of order n6, i.e. there exist constants 0 < cD < CD such that ch6 S Mn S CDnS,

=0,,( 13;"). (3.6.15)

then under Assumptions (A33) to (A36)

11

SUP SUP 71-1 2 {SJ (thl) - E€J (Xz,x1)}
xleDnngSN (=1
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PROOF. For simplicity, denote £3 (X), :51) = {J (X), 2:1) — E€J (X1, 2:1) . First we will

compute the moments of the theoretical centered random variable 6} (X1, 2:1) for later

use in Bernstein’s inequality

E {6} (19,151)}2 = E53 (Xbl‘l) - {E€J(X1:$1)}2:

in which the first term

E53 (Xi’an) = E {101001 - $1)BJ,2(X12)}2

 

K2 CJ 12

= //——-§(vl){IJ+1,2(u2)+ + ’ IJ,2(“2) f(hvl +$1,u2)dv1duz.

h lle.2"2 C” '

so there exist constants c’,C’ > 0, such that c’h’l S E53 (Xbxl) S C’h’l. Then

E53 (Xbxl) >> {EEJ (X),:rl)}2 where an > bn means limn—em bn/an = 0. Hence

a: 2 _.

E {51 (Xz,$1)} = E53 (XL-1‘1) - {EEJ (39,331)}2 2 3h 1,

for positive constant c" < c'.

When k 2 3, the k-th moment E |{J (X),:cl)|k is

{”bJ,2"2}-k//Kif(u1-$1){1J+1,2(U2)+ (CJ+1’2)kIJ,2(u2)}f("1,u2)du1dU2,
 

61,2

and it can be bounded as follows

I: k

c(h(1"’°)H(1-"/2) {1 + (2.—i) } s E|§J(x,,e1)|’° g c;h(1-*)H(1-k/2) {1 + (2;) }.

Lemma 3.6.3 implies |E§J (X),:r1)|k S CHIC/2, then E IEJ (X;.,:1:1)|'c >>

IEéJ (Xl,a:1)|k. E '6} (X¢,x1)]k can be expressed as

E |€J (Kb-Tl) - E€J (X1,I1)lk S 2’” (E |€J (Xbxlflk + |E€J(Xt,x1)|k)

0 ’° C (k-2)

< C12k‘1h(1-k)H(
1“k/2) (_I.) kl ___. Cl {Zh—lH—1/2 (4)}

k!(h_1)

_ Cf
Cf

k...

g {ngh‘lH‘l/2}( 2) ME IE} (Xz,$1)l2,
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then there exists such a constant c = C'g2h’1H"1/2 such that

k _ 2

E IE} (Xz.x1)| _<. c’c 2km“ [6} (xz.:c1)| ,

that means the sequence of random variables {G (X), $1)}?=1 satisfies the Cramér’s

condition, hence by the Bernstein’s inequality we have

logn —62 logn
P > 6 — < 2 ,

{ — (nh) } - exp {c* + 2026H"1/2‘/logn/ (nh) }

there exists large enough value 6 > 0 such that

—62/ {a + 2026H-1/2,/legn/(nh)} g —10, then

"‘1 :63 (XI: 31)

(=1

 

”-1 263(X1: 31)

(=1   

oo

2P sup sup

 

 

logn

2" 675}
00 00

S 2 Z: NMnn"lo 3 200 Z n-3 < 00.

12:1 n=1

Borel—Cantelli Lemma impliae (3.6.15). C]

Lemma 3.6.5. Under Assumptions (A33) to (A36)

sup sup

x1€[0,1]1.<.JSN  

”—1 2009,1131)

[=1  

PROOF. Denote for :1: 6 [0,1] , A (1:) = SUPlstN In’1 2L1 {I (X), 2:)]. If we choose

the subset Dn as in Lemma 3.6.4 to consist of equally spaced endpoints in [0,1] ,

specifically

Dn ={$1,k,0 _<_ k S Mn;0=$1’0 < 131,1 < <$1’Mn = 1},

then the consecutive endpoints make a total of Mn subintervals with length M;1.

Employing the discretization method, we have

sup IA (2:1)] = sup IA ($1,k)| + sup sup ]A(:cl) - A ($1,k)l-

x1e[0,1] osksMn 19chn x1€[“1,k—1’$l,k

(3.6.16)
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We only need to bound the second term, as Lemmas 3.6.3 and 3.6.4, and the fact

III/2 >> Vlogn/ (nh) yield

sup IA ($1,k)l = sup sup = 0p(H1/2). (3.6.17)

OSkSMn $1601; ISJSN   

”—1 Zg.’ (x1131)

(=1

Employing Lipschitz continuity of kernel K, one has

 

  

  

Slip sup IKh (X11 -— $1) - Kh (X11 - $1,k)|

193M" $1€le,k-l’$1,k

X — x X - 113

S sup sup CK (1’12 1 - ll h2 I”: S CKMgthESJS)

lSkSM" $l€I$1,k—1'$l,k]

Hence we have

sup sup IA (x1) — A ($1,k)I

ISkSMn xlele,k—I'x1,k

n n

g sup sup sup n-1 26; (XI, x1) - n-l : {J (Xbxuc)

lSkSMn$1€[xl’k_l,xl,k] ISJS'N (=1 [=1

S SUP SUP IKh (X11 - $1) - Kn (X11 - $1,k)I

193M" $16I31,k—1v$1,k

"-

‘1 B XXlssblgNn g] J,2( 12)|

_. = —1-2 —1/2 = —1
__ CKMnhz $2856,1]1$S.1112N|BJ’2(2:2)| 0(Mn h H ) 0(n ),

since ch6 3 Mn 5 C'Dn6 in Lemma 3.6.4. The lemma follows instantly from

(3.6.16), (3.6.17) and the above result. D

Lemma 3.6.6. Under Assumptions (A33) and (A36), there exist constants Co >

CO > 0 such that

2

2

60 0(2) + 203,0 5 a0 + ZaJfiBJfi 3 00 a0 + 203,0 , (3.6.19)

Ja J,a 2 J,a

for any a = (a0,a1,1, ...,aN,1,a1,2, ...,aN,2)T E R2N+l.
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PROOF. According to Lemma 1 in Stone (1985), there exists a constant co > 0 such

that

2 2

N

2
00 + Z aJ,aBJ,a 2 00 a0 + Z aJ,1BJ,1

J,a 2 J=1 2

2
N

+ Z aJ,2BJ,2 ,

J=1 2

If it can be proved that there exist constants 06 > c6 > 0 such that for oi = 1, 2

2

N N N

c6 2 (13,0 5 Z a1,0,8La 5 06 Z aid, (3.6.20)

then (3.6.19) follows. To prove (3.6.20), the original B-Spline basis is employed.

Without loss of generality we only provide the proof for a = 1. We pick the constant

basis {IJ,1 (x1)}IJv:l1 and represent the term zyfl aJJBJ,1 (x1) as follows

N N+1

Z aJ,13J,1(-’1«‘1) = Z dJ,IIJ,1($1)- (3-6-21)

J=1 J=1

Theorem 5.4.2 in Devore & Lorentz (1993) says that there is an equivalent relationship

between the LP (p > 0) norm of a B-spline function and the sequence of B-spline

coefficients. To be specific, in our case

N+1 2 N+1 2 N+1 I

z dJ,IIJ,1 = j Z dJ,IIJ,1(-'51) (1171 = 2 (13,117-

As in Assumption (A33) the joint density bounded between cf and Cf, we have

N+1 2 N+1 2 N+1 2

CI 2 dJ.11J.1 S 2 dJ,11J.1 S Of 2 «mm

J=1 L2 J=1 2 J=1 L2

The equality (3.6.21) and (3.6.14) leads to

 

Elf EN: “31 {(CJ+11)2 1}

J,1 = ’ —' +

J=1 J=1 |le.1||§ C“

N N+1 N

=> cd 2 ailH‘1 3 2: (13,1 3 Cd 2 ailH—l,

J=1 J=1 J=1
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for positive constants Cd and Cd. Therefore,

2 2

        

N N N+1 N

€de 2 “-21.1 S 2: aJ,1BJ,1 = Z d.I,1IJ,1 S (7de 2: “3,1:

J=1 J=1 2 J=1 2 J=1

i.e. (3.6.20) holds given of, = cfcd, 6'6 = Cde. [:1

Lemma 3.6.7. Under Assumptions (A31) to (A56), the least square solution 5 de-

fined in (3. 3. 9) satisfies

N N
"T5 = 63 + Z 2: (ii, = 0,, (—) . (3.6.22)

‘ -l

PROOF. According to (3.3.9), 5 = (BT13) BTE, then

-1

5TBTB5 = (5TBTB) (BT13) BTE = 5T (BTE) .

Replacing BTB with matrix of the inner products (BJ,a, BJ/ a’>2 , as the matrix
2 ’n

B is given in (3.3.10), one has

1

“1351);, = 5T <3 B > 5 = 57‘ (n-IBTE) . (3.6.23)

J’a, J’,OI 2 71

Based on (3.6.19), the left hand side of (3.6.23) is bounded below by

2

(1 " An) "Béllg : (1 " An) 5'0 + Z &J,aBJ,a

J,a   

_>_co(1—An)(&3+2&3,a ,

J,a

(3.6.24)

2

where An is of order op ( 1) in Lemma 3.6.8. While the last step in (3.6.24) is obtained

from (3.6.19). Meanwhile by the Cauchy-Schwartz inequality and the expression of a

in (3.3.11), the right hand side of (3.6.23) is bounded from above by

1/2 n 2 n 2 1/2

(53 + 253,0.) [{"_l :0 (xi)5i} + Z {n—1 2 BJ,a (Xia) 0 (Xi)5i} ] -

J,a i=1 J,a 'i=1

(3.6.25)
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Now (3.6.23), (3.6.24) and (3.6.25) will lead implies that a?) + 2),, a?” is less

than

n 2

ca2 (1 — Aer2 [{n“ Za- (X.)e.-} +Z{"‘1 EB]. (X1000 (xhe} ] .

i=1 i=1

Note next that it is trivial to verify that

E[{n’lio(xi)ei}2 +Z{nIZBJQ(X,-O)U(X)e,}2]=0(n‘1N).

i=1 i=1

Therefore (3.6.22) holds. [3

Lemma 3.6.8. Under Assumptions (A33) and (A54), the uniform supremum of the

rescaled difference between (91, ”)2," and (91,92); is

  

|(91,92)2 —(91,92>2|
An = sup ’" = ,, log" =op(1). (3.6.26)

91 926d“-1) ||91||2||92|l2 ”H

PROOF. Let

N 2

91(X11X2) = “0+2 ZaJ,aBJ,a(Xa)1

J=la=1

N 2

92(X1,X2) = 06+ 2 Z “’JI,QIBJ',a’ (X01),

J’=lo/=1

in which for any J, J' = 1, ...,N,a,a' = 1,2, a1), and affla, are real constants.

The difference between the empirical and theoretical inner products of 91 and 92

is

(91.92)”. — (91,92)2| =

 

<ao+ZZIGJHaBJatao+NZ Z““,JIa’BJ’,a’>2

10:1 J’=10’=_l 2,"

—<ao + Z Z aJ,aBJ,mao + Z Z “11,,20131'a'>

J=la=1J’=1a’1
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Now since

(91.92)”. — (91,92lzl S {(CA,1 + 02,1) A711 + CA,2A;,2} ll91ll2 ll92ll2,

if we can show that

A);2 = 0,, («log n/ (nH)) , (3.6.30)

plus the fact that \/log n/ (nH) >> \/ log n/n, based on the selection of H‘1 ~

n2/5 log n, then there exists a constant CA > 0

|(gl:92>2,n — (glag2l2l I * * *

. * S (CA,1 + 0,4,1) An,1 + CA.2An,2 S CAAn.2I
ll91||2 |l92||2

 

the order 0,,(W) of An will be established as in the statement (3.6.26).

The proof of (3.6.30) will be provided case by case with vari-

ous a, 01’, J and J’ , via Bernstein’s inequality. For brevity, we set

1;,- = n-1 [31,0 (Xia) 811,0; (2%,) — E {BJ,,, (Xia) B”a, (XE/fl] , then

A3; = SUPnggN,a=1,2 l2i1=1ml -

We will consider a = a’ = l in the CASE 1.1 to CASE 1.3.

CASE 1.1 when IJ - J'l > 1. The definition of BJ,1 in (3.3.3) will guarantee that

in probability 31,1 (Xi1)BJ/,1(X,°1) = o if |J — J’| > 1.

CASE 1.2 when J = J’. The variable 1),- and its second moment can be simplified

as follows

m = "—1 (33,1001) - 1} IE??? = 3133(33,1(Xt1)-1}2 = $ {E311 (X21) - 1}.

in which E83’1(X,-1) = “bu”;4 (014.13 + C3+l.l/63.1) . The selection of H will

make EB“),l (X271) the major term of {E33,I (Xfl) - 1}, then there exist constants
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60,2 and 0:13 > 0 such that

cyan—2H"1 S Er],-2 S Cg’2n_2H_l.

In terms of the Minkowski’s inequality, the k-th absolute moment has the following

upperbound

k —k 2 k —k k-l 2k
E|17,~| =n ElBJ’1(X,-1)—1| $1. 2 {EBJ,1(X,'1)+1}.

-2k _ .

where EBgf‘l (Xil) = lleJllz (”4,1,1 +03’fH’1/c3f’1 1). Hence there exist con-

stants C82 and C32 such that

_ k 1-

c’ngl k g 133%, (xfl) S 03211 k,

then the term E83,“l (Xill will be the dominant one compared with 1. Hence there

exists a constant C03 > 0 such that

E Int-I" g 05,2n-k2k-1H1-k.

Next step is to verify the Cramér’s condition

E lfltlk S 03,2n-k2k—1H1-k = 05,2”—(k-2)2k—lH-(k-2)n—2H—l

2

2077.2 2011.2

Cn,2 ”H

 

(k4) k—2

> awn-2H4 _<_ {0,7,2} k!E17,-2,

in which 0,12 = (20,7,2n’1H‘1) max (1, 203,297,” . For a large value 6 > 0, we have

n

P { 2771'

[=1

3 2epr:

 

 

—62 log n/ (nH)

6\/lo n nH 2e

2 g /( )} S xp [4 Z?=1E’li2+ 203,26‘Mog n/ (nH)]

—62 log n/ (nH) :l

4n {03,211‘211’1} + 203,26t/log n/ (nH)
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If the large enough value 6 is taken such that —62/ {40,93 + 20;,2dt/log n/ (nH)} S

 

—3,then

logn _3_

P N

t? {13%Q»l“; . >2. <°°  

Applying Bore] -Cantelli lemma, when J = J’, a = a’ = 1 we have

Zn:

CASE 1.3 when |J — J’ I = 1. Without loss of generality we only prOve the case

An = sup

’ 1_<_J<N   

_MW).

that J’ = J + 1. Now 7h' = n‘lBJ’l (Xi1)BJ+1,1(Xi1) has the second moment

— 2

En? = n 2 [E83,1(X.-1)B§.1,1(Xa)— (5:3,, (Xe) 81.1,. can} ] ,

 

 

 

where

{331,1 (Xil) BJ+1,1 091)}2

= lleJllz-zllb.l+1,1ll;2[/{IJ+1,1(II31)--C311’ IJ,1($1)}

2

x {11.21 ($1)-:J+211J+11 ($1)}f1($1)d$1]
J+1,l

2
_ —2 —2 _ J+2,1

— lleJllz lle+l.1ll2 { CJ+1,1/IJ+1’1($1)f1 ($1)d$1}

-2 -2

= 63+2,1llb1.1ll2 lle+1.1ll2 .

and

E33,. (X11)B.21+1,1 (Xu)

2

lle,1ll§2||bJ+1,1ll§2 / {IJ+1,1(2=1)- gleam} 

 

2
cJ+21

x{IJ+2,1(=II1) CJ+111J+1,1(331)} f1($1)d$1

’1
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_ _ C 2

lle,1||22||bJ+1.1||22{( +21) /IJ+1,1($1)f1($1)d$1}
CJ+1,1

(C3+2,1 lleJll2-2 lle+1,1ll;2) /CJ+1,1,

According to (3.6.13), cfH S CJ+1,1 S CfH, so E77,-2 will be with the same order as

the major term n’zEB},l (Xi1)83+1’1 (X11) , i.e. there exist constants cmg, 0:13 > 0

such that

6,7,311.—2H—1 3 E17? _<_ Cg’3n_2H-l.

The k-th moment is given by

- k

Elmlk = n kElBJ,l(Xil)BJ+l,l(Xil)“EBJ,1(X1'1)BJ+1,1(X1'1)|

|
/
\

n'ka'l [E IBJ,1 (X11) BJ+1,1 (X11)|k + IEBJ,1 (X11) BJ+1,1 (X11)Ik] .

where

IEBJ,1 (X11) BJ+1,1 (X11)|k = 85”,, “51,1":c lle+1,1“2-’c "’ 1

EIBJ,1(Xi1)BJ+1,1(Xil)lk = (0134,21 “in”? lle+1,1ll2—k) #5111 ~ Hl-k-

Hence there exists a constant 0,7,3 > 0 such that

E milk 3 05,3n*’°2k—1H1-k.

Similar as in Case 1.2, the conclusion follows by using Bernstein’s inequality

11

Zn;-

i=1

A;2= sup

’ ngsN   
=OP(W).

CASE 2 when a = a’ = 2, all the above discussion appliw without extra modifi-

cations.

CASE 3 when a # a’. Without of loss generality, suppose a = 1, a’ = 2.
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First we still need to calculate the order of second moment E173,

E7)? = "‘2 I153{I3J,1(X11)BJI,2(X12)}2 - {331,1 (XillBJI,2 (X12)}2I -

The boundedness of the density function f ($1,152) implies the order 0 (H) of the

absolute mean

IEBJ’I (Xi1)BJI,2 (Xi2)I S. E Inil

|
/
\

_ —1

IIbJ,lIl21II,2IbJ’ II2f/IbJJ(filleI2($1'2)If($11$2)d$1d$2

Cf{IIbJ,1“2 [le,1($i1)Id$1}{IIbJ12 I21,/I5J12($12)Id$2}

041+ i3,—i’—‘}{ubnn; H}{‘+ 37.;§12}{||1,,,I| ”#0811”,

for some constant 03,1 > 0, where the last step is derived from the equations (3.6.13)

l
/
\

 

|
/
\

k

and (3.6.14). As aconsequence, IE {BJ’I (Xil) 3.1/,2 (X;2)}I g C§,1Hk' Meanwhile

the uniform order of the mean square 0 (1) will be obtained by Assumption (A83),

and (3.6.13) and (3.6.14),

E{BJ1,(X11)BM(X12)}2

I,le1H22,2“le II22]]le($11)b112($1'2)f($11172)d331d$2

.. —2

Cf {IIbJJllz2 [bJ,1 (mil) £1121} {I bJI’2I 2 ij’,2 (mfg) (1:32}

cf{1+ C3+1,1/C3’1} {lle11ll2-2H} {1 + 03,+1’2/c3,’2} {IIbJ,’2II;2,H} _>_ 03,2.

I
V

  

Hence there exist constants 6’71 0;, > 0 such that

can—2 3 Eng-9' S Can—2.
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First we still need to calculate the order of second moment E173,

En? = n-2 [E{BJ,1 (X11)BJJ,2(X12)}2 — {EBJ,1(X11)BJJ,2(X12)}2I .

The boundedness of the density function f (221,2:2) implies the order 0 (H) of the

absolute mean

IEBJ,1(X1‘1)BJI,2(X2’2)I S E |771°|

_1 -1

“bJJllz IIbJ’,2II2 f] IbJ,1($1'1)bJI,2(-’CJ'2)

_ -1

C;{lle,1||21/le,1(221-1)ldz1}{IIbJI,2II2 / IbJ',2(x:'2)IdI2}-

CJ 1,1 CJ’ 1,2

Cf {1 + 6:1 }{lle,l"2l H}{1+CJ+"7}{III’JA2II2—l H}S 03,111.

for some constant 03,1 > 0, where the last step is derived from the equations (3.6.13)

l
/
\

 
f($11$2)d$1d32

l
/
\

|
/
\

 

k

and (3.6.14). As aconsequence, IE {37,1 (X11) BJI’2 (X52)}I S C§,1Hk' Meanwhile

the uniform order of the mean square 0 (1) will be obtained by Assumption (A83),

and (3.6.13) and (3.6.14),

2

E {BJJ (X11) BJI,2 092)}

_ —2

“bJ,1"22IIbJ’,2II2 [[1711($105313($12)f($1112)d$1d$2

_ —2

Cf{IIbJ,1|l22/b,21,1(~731'1ldi171}{HIM/,2”2 [b31,2($i2)d$2}

cf {1 + €3+111/C311}{"b111“;2 H} {I + 631+1,2/63,,2} {IIbJ,’2II;2-H} 2 63,2.

I
V

Hence there exist constants 617,08 > 0 such that

cnn”2 5 En,-2 S Gan-2.
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For any k > 2, the k-th moment of |17,-| is given by

11:

Elm!" = n*’°E|BJ,1 (x11)BJJ,2(X12)—EBJ,1 (X11)BJJ,2 (X11)
 

k

g n‘kzk’l IEIBJ,1(X1'1)BJI,2(X1'2)I +IEBJ,1(X11)BJI,2I(X12)
 '“l

where there exists a constant CB’ > 0 such that

k

E IBJ,1 (X11) BJ’2 (X12)

1:

"bJ,1II2 IIbJ’g II;k/f IbJ,1 (1311le:2 ($12)I “$1.32) d15161-722

CfIIIbJ,1II;k / IbJ,1 ($11)Ikd1=1}{IIbJI,2II2k / IbJI,2($12) kdxz}

ck

s042%{12%}{1211211121}
ck H“

g C,{1+ $111} {1+%‘-"—2}{cf (1+cf/C,)}"°H2-’°$051124“.

J’,2

 

l
/
\

|
/
\

 

 

Thus there is a constant C" > 0 such that

Elflilk S n’ka‘l [Cg/H24“ + CngkI S (C3’,,)"n""2’€‘1H2-’c

k~2

203 -2 20 202

—l,,(2cn-lH-1)k 0211-2 g {——"- max (_1 1)} 11113173.

0n "H 6n

Employing the Bernstein’s inequality and the fact that En,2 ~ 11‘2, for any

|
/
\

1SJ1J’SN1a7éa'1

" 31,0, (Xi0)BJ’a’ (X111!) -E {31.12 (Xia) 3er (Xia’)} ( logn

‘ p
sup 2: ’ n ’ -O

1ngN i=1

  

71

Hence for any 1 S J, J’ g N, a, a’ = 1,2, the proof of (3.6.30) is completed. B

-l

The next lemma on the positive definiteness of matrix (n‘lBTB) is a sufficient

step to achieve Lemma 3.6. 10.
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Lemma 3.6.9. Under Assumptions (A33) and (A54), for the matrix S =

dN+l 1 T —1 , ,

(32.2.1), ,2 1 = (n’ B B) , there exist constants Cs > 63 > 0 such that wzth

.71.? =

probability approaching to 1, one has

CSI2N+1 S 5‘1 S CSIZN-H- (3-5-31)

PROOF. Take a real vector c = (no, 111,1, ...,uN,1,u1,2, ...,uN,2)T E RZNH, one has

2 1 O

2 = (T C = (TS—1C: (3'6'32)

T
B”C * ,n

O (BLQ, BJ’,a'>2
n  

where we denote B... = {1, 81,1 (X1) , ..., BNQ (X2)}T. Meanwhile, the definition of

An in (3.6.26) entails in particular that

2 2 2

HM 2M»“2811.212: .u—An»    

while (3.6.19) means that there exist constants CS > cs > 0 such that

2

2
2 2 T 2 2 2

Cs “0 + 2 :qu Z IIC 3* 2 = “0+ 231120812, (3a) 2 CS "0 + Zu-LO 1
21,0 J,O 2 J10

  

hence

J,a

  

2
2 2

2," _>_cS “0+Z"J,a (1 —An).

J 0

(3.6.33)

Putting together (3.6.32), (3.6.33), one concludes that with probability approach-

ing 1

CSCTC = (73 113 + 211320, 2 (TS-lg 2 cs 11(2) + 21132,, = CgCTC,

J,a J,a

which gives (3.6.31). 1:]
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Lemma 3.6.10. Under Assumptions (AS!) to (A86), for any 1:1 6 [0,1] and 11 (2:1)

defined in (3. 6.2), one has

22186131] E { 112 ($1)| i} = 0,, (n‘l) . (3.6.34)

-1

PROOF. It is known that 5 = (BTB) BTE, then the conditional mean square of

5'; (X12) given )2 is E [{6‘3 (Xl2)}2| )2]

~ T T ~ T ..

= E ({aTPONHJN (CITE) } {aTPONHJN (€53) }|X)

_ T T '1 T T - T ‘1
.. e,BP0N+1,,N (B B) B E(EE lX)-B(B B)

Based on Assumption (A82), we have E{(E-ET)|X1,...,Xn} S 031" in the

matrix sense, then applying these two matrices to a quadratic form with vector

-l ..

{B (BTB) P0N+1JNBTCI’}’ one has E [{g (X,2)}2| x]

-—l T

s a: - {cram} - (3%) {w(423)}
I

= "‘10: ° {0N+1: 31,2 (X12) ..., BN,2 (X12)} 5 {0N+1. 31,2 (erg) ..., BN,2 (le2)}

= "—103 ' 2 3J3 (X12)SJ+N+1,J’+N+IBJ’,2 (Xl’2) ,

lsJ,J’_<_N .

where the 3J+N+1,J’+N+1’S are elements of S in Lemma 3.6.9. Plugging in the

above term, and employing (3.6.4), the term E { I? (2:1)] X}

03 "

s g 2 Kh (X11 — n) K}. (x,,, — x1)

l,l’=l

2 BJ.2 (X12) 3J+N+1,J’+N+IBJ’,2 (Xl’2)

lsJ,J’5N

02
n 2

-1

s 2% z z { 2Kh<Xn—z1>BJ.2<xm}
lsJ,J’5N lngN (=1

|
/
\

C2 " 2
7:103 Z {n-IZKMXH—-’1=1)BJ,2(X12)} ,

ISJSN (=1
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where 05 is the same as in (3.6.31). Now using Lemma 3.6.5, one has with probability

approaching to 1

)

.. C2

sup E{112(a:1)|X} 3 ——‘-’-CS 2: H = E:

3163”] n 1<JsN n

which implies (3.6.34). E]

Lemma 3.6.11. Under Assumptions (A31) to (A56), for 12 (51:1) as defined in

(3.6.2), one has

n n

SUP |12($1)|= SUP ”_IZKMXH-$1)°n-IZ§§(X1°2)

  Mm)-$1€[0,1] $163M] (=1 i=1

PROOF. Based on (3.3.12), n‘1 21:15; (X52) can be expressed as

n N N n

"-1 Z Z aJ,2BJ,2 (X22) = Z ("n,2 {71-1 2 BJ,2 0(a)} -

i=1 J=1 J=1 i=1

Lemma 3.6.7 helps to get

N N 2 1/2 T 1/2 12

£51,2S{N";_1&J,2} 5{N-5 5} =Op(Nn‘/).

Now it is clear from (3.6.28) and (3.6.29) that

  

sup

ISJSN   

_<_ ARI = 0,, (‘/n‘1 logn) ,

fl

"—1 2 31,2 (Xiz)

i=1

hence

n N N

n'1 :5; (X22) S E (1L2 = 0p (:V log n) .

i=1 J=1

(3.6.35)

- sup

ISJSN    

fl

"-1 Z BJ,2 (Xiz)

i=1

By Assumption (A84) on the kernel fimction K, standard theory on kernel density

estimation entails that supzle[0,1] ln‘1 2L1 Kh (X11 — $1)] = 0,, (1). Thus with

(3.6.35) the lemma follows immediately. Cl
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Lemma 3.6.12. Under Assumptions (A51) to (A56) and (ASZ’), and with 11 (:61)

defined in (3.6.2), one has

n

SUP |11(1?1)| = SUP ”—1 2191(le *11) ' 55 (X12)
x1€[0,1] x1E[O,l] [=1

=0p(W).

(3.6.36)

 

PROOF. The discretization idea will be employed again in this lemma, by dividing

the interval [0, 1] into Mn equally spaced intervals with disjoint endpoints O = 1:1,0 <

11:1,1 < < $1.Mn =1. As in (3.6.16), we start with

sup l11(x1)l= sup |11(x1,k)|+ sup sup |11(x1)-11(x1,k)|.
x1€[0,1] ogkgMn lgIchn x1e [x1 [FIJI k

(3.6.37)

Note that for any 2:1 6 [0, 1], (3.3.12) and (3.6.2) imply that

N
—1

55 (X12) = Z iiJ,‘.2BJ,2 (X12) = (erTB) P0N+1JN (BT13) ETE-

J=1

fl

11 (2:1) = n“ E K}. <le — x1) 5; (X12)

(=1

17.

-l

= 71-1} :19, (X,1 — 1:1) (4B) PON+1sz (BTB) BTE.

(=1

Since 11 (1:1) is a linear combination of the noise terms in E, its conditional distribu-

tion given )1 is normal with mean 0, under Assumption (ASZ’). Let

R()~{,$1,k) = (var {11 ($1,k)| X})_1/2 11 (131,16) ,

then the conditional distribution of R (Xal’k) given )1 is standard normal. In what

follows, we use the well-known tail property of the normal distribution, i.e. 1—<I> (1:) 3

¢ (:l:) /:1:, for a: Z 0, hence there exists some c > 0, such that l -- <I> (3:) 3 Cd) (1:) for
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large 3:, where <I> (2:) and 43 (x) are the cumulative distribution function andthe density

function of the standard normal. Take tn 2 ‘/16 log n, then there exists a constant c

such that for large enough n

:P{ sup |R(X,x1k)| >tnX

0<k<Mn  

=21}, SUP lzlztn

fl— 0<k<Mn

t2

< 2M. P{|Z|>tn}<cZMn ex..{_3}1<.::M..n-8 <00,

n=1 n=l

where Z ~ N (0, 1) . Consequently for a large value 6 > 0, we have

0<k<Mn

;P{ sup IR (X,x1,k)| Z (ix/log—n} < 00,

the Borel-Cantelli Lemma will then imply that SUPOSkgMn IR (i,xl,k)| =

0,, (Vlogn) . The conditional variance of 11 (751$) given X is defined as follows:

var {11 (331,.“ x} = E [(1, (61,.) — E11(x1,k)}2|X] = E {1,2 (2.-1,9] x}.

Now Lemma 3.6.10 implies that SUPOSkgMn var {11 ($1,k)| X} = 0,, (n-l). Hence

 

sup [11(xl,k)lg sup |R(X’$l’k)l sup \/var{11(xl,k)|(i§.38)

OSkSMn OSkSMn OSkSMn

= 0,, ( 10g") . (3.6.39)
11

 

Next, with (3.3.12) and (3.6.18), we note that

sup suP I11(331) — 11 ($1.01

193M" $l€[xl,k—lv11,k

= sup sup

n

"—1 Z{Kh(X11-' $1) - Kh (X11 - 931,0} '55 (X12)

193M" $1€[xl,k—1:$l,k] '
l=1 
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|
/
\

SUP SUP IKh (X11 - $1) - Kh (X11 - $1,k)|

ISkSM"31€[$1,k—1:x1,k

N

X SUP ZaJ,ZBJ,2(X12)

N N 1/2

S CMglh-2H-l/2 Z IaJ,2| S CM;1h_2H—l/2N1/2(Z ,2) ,

J=1 J=1

which, when combined with (3.6.22), leads to

sup sup [[1 (x1) —- I1 ($1,k)| (3.6.40)

lSkSMn 2:16 [x1,k—1!xl,k

= o, (Mglh-ZN . N1/2n-1/2) = a, (n—l) . (3.6.41)

due to the choice of CDn6 3 Mn 5 C'Dn6 in Lemma 3.6.4.

Now (3.6.37), (3.6.39) and (3.6.41) establish the lemma. Cl
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CHAPTER 4

Application to Seasonality Analysis

4. 1 Introduction

Many studies demonstrate the influence of land use and land cover change on 10—

cal and regional climate. The Climate and Land use Interaction Project, or CLIP

(http://clip.msu.edu) attempts to understand the nature and magnitude of the inter-

actions of climate and land use/cover change across East Africa.

Phenological information reflecting the seasonal variability of vegetation is an

important input variable in regional climate models such as Regional Atmosphere

Simulation System (RAMS). It varies not only among different vegetation types but

also with geographic locations (latitude and longitude).

Many climate models use simple functions for vegetation parameters since, to first

order, the planet is warmer and wetter as you approach the equator. However, east

Africa is unique in having semiarid grasslands along the equator, and drastically dif—

ferent surface conditions govern the radiationbudget in this region. Climate models
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are dependent on an accurate representation of the surface radiation budget to repli-

cate atmospheric development. Thus, modeling climate for a unique area like east

Africa requires a different treatment of vegetation characteristics.

RAMS version 4.4 (Cotton et a1. 2003), a state-of-the-art three dimensional at-

mospheric model, includes a representation of vegetation called the Land-Ecosystem-

Atmosphere Feedback, version 2 (LEAF-2) (Walko et a1. 2000). For a given land

cover class, LEAF-2 provides functions for severalvegetation characteristics including

LAI, fractional cover, roughness length, and displacement height. Although these

characteristics are interrelated, we will consider only LAI here.

Remote sensing parameterization for land surface schemes in climate models is

focusing on the transformation of categorical LULC information into quantitative

land surface biophysical parameters (Pitman 2003). The parameters that will result

from this analysis, and that will be inputs to the regional climate model, include

surface albedo, fractional vegetative cover, leaf area index (both senescence and green)

and above ground biomass. In this paper we will investigate the variation of LAI

temporally and spatially for each land type.

The phenological discrepancy between the RAMS model and the remote sensing

measurement given in Section 2 will show that the pre—assumed relationship is sig-

nificantly different from the colleted information from MODIS (Moderate Resolution

Imaging Spectroradiometer).

Based on the observations of LAI of MODIS data, the polynomial spline regression

is employed to fit the function of each land type in East Africa. The fitted curve is

a piecewise polynomial joined at knots, which are the equally-spaced time points of
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one whole year. The estimated curve is derived from the least square procedure. In

this paper, the linear spline is used for simple implementation and reliable theoretical

property. The corresponding statistical theory were provided in Huang (2003) and

Wang and Yang (2005).

There are two great advantages of spline regression. It is non-parametric, i.e. the

estimation only depends on the available data without assuming any specific form

of the model. Second, it has a specific expression for the estimated function. Other

nonparametric regression methods such as kernel or local polynomial do not produce

an overall function formula. Hence the spline function is preferred for data-driven

estimation and future prediction.

We will develop the function first temporally and then further investigate the

spatial influence. In other words, the estimate function of LAI will rely on the time

and the spatial index (latitude and longitude). Compared with the simulation result

derived from RAMS, the estimates at the observations will play the role of ”observa—

tion”.

The research objective of this study was to derive spatially explicit phenologies

for all LULC types in East Africa for improved parameterization of regional climate

methods (such as RAMS). By addressing this objective, the following two questions

must be addressed:

What are the differences in LAI between the observations from MODIS censor

and the simulated values from RAMS?

Are there any significant differences among the land types and do they if any vary

with geographic locations?
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4.2 Method

4.2.1 Study Area and Data Description

East Africa is a region that is undergoing rapid land use change and where changes

in climate would have serious consequences for people’s livelihoods and requiring new

coping and land use strategies.

Consequently, uncertainty in climate modeling is expected to be high, partly due

to uncertainty related to the use of generic land cover parameters including their

phenological functions. The CLIP project also created a new land use) land cover

(LULC) classification based on the best available international LULC products for

the East Africa region (cite Ge et al 2005, Torbick et al 2005a). The new LULC

classification (Torbick et al 2005b), labeled ”CLIP—cover,” was used as the spatial

land cover layer for which the LAI remote sensing data were extracted by LULC, or

land type.

Two primary data sets are used to develop the phenological curves. The first is a

hybrid LULC classification with 34 land types at 1km spatial resolution for the entire

study region. The hybrid combines the strengths of Global Land Cover for the year

2000 (GLCZOOO) (Mayaux et a1 2004) and Africover (Africover 2002) LULC products.

Assessments determined GLC2000 more accurately classified natural land cover types,

while Africover more accurately classified human—managed landscapes (Torbick et al

2005b). The new hybrid CLIP Cover captures these strengths geospatially for a single

LULC for the study region.

The second is LAI from the MODIS instrument on the Terra satellite platform.
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Briefly, LAI is a description of vegetation structure and the amount of plant canopy

relative to a unit on the surface. In climate models, LAI is used to represent compo-

nents of energy balance equations between the surface and lower atmospheric bound-

aries. The MODIS LAI product used, MOD15A2 v4.0 (Knyazikhin et a1. 1999), is

available at 8-day temporal intervals at 1km spatial resolution covering the entire

study region in a 2-dimensional tessellation. The data was obtained through the Na-

tional Aeronautics and Space Administration (NASA) Land Processes Distribution

Active Archive Center.

Data was obtained from February 2000 to December 2003 at 8-day intervals. Data

preprocessing included mosaicing tiles, rescaling data values, quality control for cloud

cover and fill values, and reprojecting data from Integerized Sinusoidal Projection

into Lambert Azimuthal Equal Area. Using the hybrid LULC product, LAI data was

subset into tables by LULC type. Each table contains 8-day LAI from February 2000

- December 2003 by LULC type with geographic coordinates (latitude / longitude)

at each pixel (or LAI value) representing spatial location information.

4.2.2 Polynomial Spline Regression

The imagery data for each land cover type is collected from January 2000 to December

2003, roughly every 8 days for each pixel (solution = 1 kilometer). Some difliculties

that have been encountered were empty cells due to cloud cover, small size of some

land covers.

First calculate the mean for each grid (0.1 degree) at every available Julian day.
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For each specific grid, the LAI of each land cover type can be seen as a series of data

points over explanatory variable time (one year). So we treat each series of LAI at

each grid as a univariate function of time. The linear spline regression was employed

to get the spline estimator of LAI, which is shown in Figures 4.11 and 4.12 .

In order to capture the spatial feature of each land cover type, we combine all

the regression coefficient of linear splines. Then for each coefficient we perform the

polynomial regression on the spatial index, latitude and longitude. The corresponding

outcomes are listed in Tables 4.5 - 4.8.

The dependence of LAI on time is investigated in the framework of nonparametric

regression. To introduce this concept, let {(Ti, Yi) 21:1 be identically and indepen-

dently distributed observations, satisfying

Y,- = m(T,-) + o(T,-)8,-,i = 1,...,n.

where the errors 5,- have mean zero and variance one. The mean function m (t) and

standard deviation function a (t) are not assumed to be of any specific form but

have to be estimated from the data directly, see Wang and Yang (2005). If the data

actually follows a polynomial regression model, the fimction m (t) is a polynomial of

t and o (t) will typically be a constant.

To introduce the concept of spline, one divides the finite interval [a, b] into (N + 1)

subintervals Jj = [tj,tj+1) ,j = 0,1,...,N — 1,JN = [tN,b]. A sequence of equally-

N

] 1
spaced points {tj} .= , called interior knots, are given as

t0=a<t1< <tN <b=tN+1,tj =a+jh,j =0,1,...,N+l,

in which h = (b -— a) / (N + 1) is the distance between neighboring knots. We ap-
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proximate m (t) by linear spline. These are piecewise linear functions, linear on J]-

each and continuous on the entire interval [a, b].

The linear spline estimator of m (t) based on data {(Ti, Yi)}?___1 is given by

N

1?). (t) = 510 + Zfij (t — tj)+ + &N+1t (4.2.1)

i=1

where the coefficient are the solutions of the following least square problem

Nn

{(30, ---,&1v+1}T = argmin RN+2 Z Yi - ao - Zaj (Ti - tj)+ - aN+1t

i=1 j=l

in which (t — tj) + = max {0,t - tj} is the so-called ”truncated linear function” with

truncation at knot tj.

4.2.3 Spline Fitting for LAI by LULC Type

At first we resample the LAI pixels within 0.1 latitude degree and 0.1 longitude degree

together as one grid block. In order to get the representative LAI values, the spatially

averaged LAI at each grid is obtained for each available Julian day. The second step

is to get the means of the same Julian days over four years. After the above two-step

averages, LAI means of a whole year at each grid is available.

Based on the LAI means, the equation (4.2.1) is established after one step least

squared procedure for each grid. To avoid the non-continuity difference between the

values of early January and late December, we duplicate the one year data to create

a two-year data, hence [a,b] = [0,730]. For uniformity across various LULC types

and locations, we pick one knot every two months, i.e. N =2 11

ll .

_« ~. _ . - .... J -_LAI (t) _ a0 + Zn] (t t,)+ + alzt, t, _ 365- 6” ._ 1,11 (4.2.2)
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Let Z =LAI, a: = latitude, y = longitude, t =Julian day. For each LC type we develop

the LAI function as follows,

11

z (x, y, t) = 60 (x, y) + Z a, (2:, y) . (t — t,-) + + 612 (x, y) t, (4.2.3)

j=l

The coefficients 6,- (2:, y) for j = 0,1,..., 12, are estimated based on the MODIS

data at each individual grid. Different LC type will have different coefficients set, see

Tables 4.5 - 4.8.

4.3 Results

4.3.1 Land Cover Phenologies

In order to show the magnitude of the difference driven by the spatial affect, in

particular the latitude, the linear spline curves estimated by formula (4.2.1), the

RAMS simulation curve and the difference curve are provided respectively at equator,

5" north, , and 5° south. Each grid points covered the area of .1 by .1 squared degrees,

the longitudinal of three grid points are chosen to be as close as possible. In Figures

4.11 and 4.12, the green solid line represents the LAI at 5" North, the red dashed line

for the equator, and the blue dotted line for 5" South.

Figures 4.11 and 4.12 illustrates several examples of the seasonal variation in LAI

for common classes in the study area. The lower right graphs are the trigonometric

curve of LAI over time for two land types, open to very open trees, and rainfed

herbaceous crop. Although the length of vertical axis of the RAMS curve is the same

0.2, the start points of the range are different though. While in the figures of the linear
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splines the range of the vertical is 6, from 0 to 6, that is a substantial difference. If the

same scale is chosen as the one for the spline estimates, no distinguishable differences

occur among the RAMS curve at the three selected latitudes. While there is no

longitude effect in RAMS, it plays an unnoticeable role in the system. There is only

one valley for northern latitudes and one peak for south latitudes in RAMS, and the

valley or peak point is in the exact middle of the year. At the equator it is a flat

straight line no matter what land type is represented.

The linear spline estimators have a better fit spatially and temporally compared

with RAMS. The green solid line (5° N) achieves its peak point of LAI around August,

while all the blue dotted lines (5° S) show the largest LAI value in the spring, such

as early March for Rainfed Herbaceous Crop. Not surprising are the fact that the

northern and southern curves are symmetric about the center, June, for each type

because the two locations are symmetric about the equator. For both land types, the

LAI at the equator has greater LAI than those far away from the equator. Especially

for land type rainfed herbaceous crop, the regression line at the equator is far above

both the spline regression lines at 5° N and 5°S latitude. The linear spline estimates

produce two noticeable valleys at the equator. That is a big difference from the

constant LAI value of RAMS. The LAI varies at the equator over time, it is not fixed

given the keep-changing weather condition.

The lower right graphs in Figures 4.11 and 4.12 show that the differences between

the LAI values from RAMS and the linear spline estimates. Horn the graph, except

there is little overlap between the difference at equator and the ”0 line” for land

types, all the remaining distance is very large. The statistical testing of the difference
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is given in next section.

In summary, the observed LAI and resultant splines are distinctly different from

the RAMS/LEAF-2 default parameterization, with the LEAF-2 parameterization

completely failing to capture the seasonality at the equator or in the regions +/-

5 away. The spline parameterizations accurately capture bimodal greening events

at the equator, unimodal features away from the equator, and the very low LAI for

maize regions following harvest.

4.3.2 Sensitivity and Uncertainty

Confidence band of a function estimator is the collection of simultaneous confidence

intervals over the range of data. It can be used to test the hypothesized curve. Linear

spline confidence bands were developed in Chapter 2. Given a small significance

level (less that 0.05), the confidence bands based on the sample information can be

obtained. If the null curve is totally covered by the upper and lower confidence bands,

then its deviation from the true curve is insignificant and will be accepted as a valid

representation of the true curve; otherwise, it should be rejected as the null curve,

since it is significantly different from the data pattern.

In this paper, the hypotheses for a land type are:

H0 :LAI trend curve follows the RAMS Curve Ha :LAI trend curve does not

follow the RAMS Curve.

For the test, the same data from the previous four land types for comparison is

used in Figure 4.13 to 4.16. The upper right corner figures represent the LAI average
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value for each grid block. The three grid blocks are chosen to have almost the same

longitude. The triangle is for LAI at equator, the diamond for North 5 degree, the

cross for the South 5 degree. The blue solid line represents the LAI value of the

RAMS, the green solid line is the linear spline regression line, and the dashed red

lines (upper and lower) are the confidence bands derived from the MODIS data given

the significance level 0.001.

Although tested with a significance level as low as 0.001, the RAMS curves are

above both bands for 5°N and 5° S. At the equator there is some overlap for deciduous

woodland and deciduous Shrubland with sparse trees, however it is still far from being

totally covered by the bands. Therefore this test illustrates that the RAMS curves

overestimate the LAI, with the difference being significantly large indicated from the

small p—value< 0.001.

4.3.3 Phenological Functions of Land Cover

To model the LAI spatially, the coefficients in equation (4.2.3) are further approxi-

mated with quadratic functions of x and y. The same four dominant land types are

selected for analysis.

Horn Section 4.2, a coefficient set with 13 coefficient elements {cij (:l:,y) ”:0 is

obtained. Each coefficient element 61- (2:, y) is related to all grid point. For better re-

gression, the outliers (grid points) are first detected and removed from the coefficients

based on the screening of the kernel density estimators. Then the corresponding part

in the data set will be left out too. The deleted outliers are shown in the following
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table , at most 5.234% out of the whole data will not affect the regression.

 

Deciduous with Deciduous Open to Very Rainfed

Outliers Shrubland Trees Woodland Open Trees Herbaceous Crop

 

Grid(%) 348 (4.831%) 344698593) 269 (5.418%) 324 (5.234%)
 

     Data (%) 16254 (3.2%) 16084 (2.672%) 14334 (3.982%) 18448 (4.068%)  
 

The polynomial regression is applied to fit the above trimmed coefficients. The

employed function is as follows for

&j(:1:,y) = Co + cla: + c222 + dly + dgy2 + elsry

By the ordinary least square procedure, the new set of coefficients (c0, cl,c2, d1, d2, e)

are obtained for the previous four land cover types and are listed in Tables 4.5 to

Table 4.8.

Employ the table coefficients for 6,- (T, y) in (4.3.3), and further plug into equation

(4.2.3), the LAI estimates are obtained based on the parametric regression spatially

and spline regression temporally. There is negligible amount of unreasonable esti-

mates

 

Deciduous with Deciduous Open to Very Rainfed

Estimate Shrubland Tl'ees Woodland Open Trees Herbaceous Cro

Less thanO 699 (0.142%) 369 (0.062%) 122 (0.035%) 110 (0.025%)

 

      
 

We replace all the negatives with 0, then the linear correlation coefficients between

the final estimates and the raw LAI is provided in the following table.
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Deciduous with Deciduous Open to Very Rainfed

Shrubland Tmes Woodland Open Trees Herbaceous Crop

0.62814 0.57409 0.59555 0.53253

 

      

4.3.4 Implications

Figures 4.17 shows LAI values at 8 May 2000 for three combinations of land cover

and LAI phenology, along with a MODIS image for comparison. LAI exerts a strong

influence on the radiation budget at the surface, and when incorporated into models it

can improve accuracy, see Lu and Shuttleworth (2002). Figure 4.17 (a) shoWs grid-cell-

averaged LAI for OGE with LAI values assigned from LEAF-2. Figure 4.17 (b) shows

CLIPCover crosswalked with the same vegetation classes in the LEAF-2 lookup table.

Figure 4.17 (c) shows the LAI distribution using the CLIPCover classes, but with

LAI values assigned based on the MODIS-derived spline functions. Here, time class-

specific curves of LAI (splines) have been estimated for different regions to generate

look-up tables for LAI more appropriate for these regions than LEAF-2. Figure

4.17 ((1) shows the raw MODIS LAI for the date selected. Since RAMS treats LAI

slightly differently from MODIS, the example shown here has been corrected for this

discrepancy. The profound difference in LAI from Figure 4.17 (a) to (d) at the Equator

shows that the LEAF—2 function is essentially treating the semidesert of eastern Kenya

as having high LAI with no variation. These successive improvements have helped to

give a more precise surface parameterization while keeping the flexibility needed to

accommodate projected land use change.
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4.4 Conclusions

In general, we found that this approach resulted in a large improvement over the

generic cover parameters in RAMS in the representation of seasonal variability of

LAI. This improvement is expected to significantly improve the seasonal precipitation

pattern in RAMS scenarios. For certain land cover, the phenological information

varies spatially. At the same grid point the phenologies changes for different land

covers.

Sensitivity needs to quantify spatially and by type. For better estimation and

prediction, the time dependence and the spatial correlation should be considered.

There are more influence affects like the elevation and the topology distance to other

geographic features such as Ocean, lakes, Mountain and human settlement etc.
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noise level sample size n confidence estimated bands oracle bands

0.99 0.476 (0.458) 0.606 (0.606)

100 0.95 0.256 (0.246) 0.438 (0.436)

0.99 0.704 (0.708) 0.802 (0.802)

0.2 200 0.95 0.454 (0.456) 0.532 (0.532)

0.99 0.826 (0.834) 0.832 (0.832L

500 0.95 0.462 (0.456) 0.468 (0.468)

0.99 0.618 (0.618) 0.618 (0.618)

100 0.95 0.504 (0.504) 0.504 (0.504)

0.99 0.860 (0.860) 0.860 (9.860)

0.5 200 0.95 0.716 (0.716) 0.716 (0.716)

0.99 0.932 (0.932) 0.932 (0.932)

500 0.95 0.802 (0.802) 0.802 (0.802)

 

 

 

 

      
Table 4.1. Coverage probabilities of constant spline bands.
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noise level sample size 11 confidence level 0.99 confidence level 0.95

100 0.900 (0.896) 0.816 (0.814)

0.2 200 0.956 (0.962) 0.902 (0.904)

500 0.990 (0.988) 0.954 (0.958)

100 0.904 (0.904) 0.822 (0.814)

0.5 200 0.956 (0.960) 0.900 (0.902)

500 0.990 (0.988) 0.956 (0.960)

 

 

   
 

Table 4.2. Coverage probabilities of linear spline bands.
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effL eff3

d n p=0 p=0.3 40:0 p=0.3

100 1.015 (0.287) 0.958 (0.320) 1.000 (0.268) 0.926 (0.266)

4 200 0.992 (0.126) 0.974 (0.164) 1.001 (0.133) 0.973 (0.153)

500 0.993 (0.060) 0.990 (0.083) 0.995 (0.058) 0.990 (0.083)

1000 0.998(00416) 1.000 (0.06Q 0.998 (0.042) 0.997 (0.057)

100 0.899 (0.648) 0.666 (0.597) 0.952 (0.832) 0.641 (0.552)

10 200 1.026 (0.4%) 0.818 (0.361) 1.045 (0.479) 0.826 (0.395)

500 1.012 (0.145) 0.977 (0.171) 1.002 (0.138) 0.970 (0.182)

1000 0.999 (0.078) 0.986 (0.104) 0.989 (0.082) 0.988 (0.105)
 

Table 4.3. Relative efficiency of raw against 628,... for d = 4, 10.
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n eff) efflo efflg effgo
 

500 1.030 (0.830) 0.995 (0.778) 0.737 (0.567) 0.861 (0.648)
 

1000 1.130 (0.756) 1.015 (0.523) 1.055 (0.467) 1.056 (0.509)
 

1500 1.022 (0.318) 1.029(0248) 1.107 (0.302) 0.957 (0.205)
 

2000 1.029 (0.197) 1.016 (0.194) 1.045 (0.188) 1.061(0223)
 

0.3

500 0.379 (0.297) 0.410 (0.408) 0.352 (0.296) 0.444 (0.721)
 

1000 0.618 (0.269) 0.604 (0.290) 0.623 (0.268) 0.607 (0.311)
 

1500 0.864 (0.345) 0.843 (0.280) 0.806 (0.254) 0.831 (0.250)
  2000  0.915 (0.247)  0.872 (0.194)  0.917 (0.221)  0.907 (0.221)
 

Table 4.4. Relative efficiency of 753,0, against mm for d = 50.
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Co C1 C2 41 dz 61

do 13.86733 0.189258 —0.01538 —0.61737 0.007717 -0.00977

€11 0.501879 0.009621 0.000144 —0.02756 0.00039 —0.00021

fig —0.63643 —0.00351 -1.1E — 05 0.033409 —0.00044 0.000168

63 0.425755 —0.00089 —7.2E — 05 -0.02161 0.000266 -1.6E - 05

04 0.230287 —0.00537 —0.00025 -—0.01455 0.000229 0.000037

€15 —0.38993 0.001671 —7.7E - 05 0.022872 —0.00033 —6.9E — 05

fig —0.l7788 —6.9E — 05 0.000194 0.010029 —0.00015 0.000025

(17 0.560264 0.007802 0.000233 —0.03082 0.000431 -0.00013

€18 —0.65163 —0.00305 —3.8E - 05 0.034248 —0.00045 0.000146

€19 0.430822 —0.00104 -6.2E — 05 —0.02189 0.00027 -8E — 06

6110 0.222698 —0.00512 -0.00026 —0.01413 0.000224 0.000024

611 -0.36273 0.000745 -1.7E - 05 0.021394 —0.00031 -2.3E — 05

5112 —0.2125 -0.00392 0.000027 0.012197 -0.00018 0.00008
 

Table 4.5. Coefficients table for Deciduous Shrubland with Sparse Tmes.
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Co 9. C2 d1 d2 81

50 15.60422 0.258968 —0.01681 —0.7006 0.008762 —0.01201

{11 0.285465 0.010554 0.000218 -0.01437 0.000196 —0.00021

(12 —0.52319 —0.00485 —3.6E — 05 0.025799 —0.00032 0.000184

(“13 0.423792 —0.00264 —0.00014 —0.02168 0.000263 0.000014

(‘14 0.165587 —0.00551 —0.00016 -0.01029 0.000164 0.000077

(15 —0.44096 0.003254 —0.00018 0.025446 —0.00036 —0.00014

(15 0.062666 0.000927 0.000261 —0.00331 0.000032 0.00001

€17 0.322273 0.008389 0.000262 —0.01656 0.000226 —0.00012

98 -0.53571 —0.00429 —4.9E - 05 0.026532 —0.00033 0.000161

5.9 0.428083 —0.00285 -0.00013 —0.02193 0.000267 0.000022

6119 0.157467 -0.0052 -0.00017 —0.00982 0.000158 0.000064

6111 —0.41156 0.002126 —0.00014 0.023738 —0.00034 —9.7E — 05

612 —0.07965 —0.00318 —1E — 06 0.004623 —7.5E — 05 0.00005
 

Table 4.6. Coeflicients table for Deciduous Woodland.
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60 61 62 d1 d2 61

60 21.36797 0.582205 -0.01761 —0.9429 0.011065 -0.01953

61 0.755761 0.026441 0.000046 —0.0398 0.00054 -0.00064

62 —0.40319 —0.00305 -0.00016 0.020365 —0.00027 0.000065

63 —0.52959 -0.02078 —l.5E — 05 0.03061 1 —0.00044 0.000568

64 0.583969 0.007367 -0.00017 -0.03334 0.000476 -0.00027

65 —0.20593 —0.00388 -0.00013 0.012463 —-0.00018 0.000071

65 —0.4363 -0.00384 0.000293 0.024033 -0.00035 0.000095

67 1.062424 0.023523 0.000225 -0.05847 0.000819 —0.0005

68 —0.49433 -—0.00221 -0.00021 0.025909 —0.00035 0.000024

69 -0.49496 —0.021 11 0.000005 0.028505 --0.00041 0.000584

610 0.529546 0.007892 -0.00021 -0.03003 0.000427 -0.0003

6.11 —0.01689 -0.00576 —1.4E - 05 0.000928 —8E - 06 0.000164

612 -0.22684 —0.01172 0.000174 0.011508 -0.00016 0.000297
 

Table 4.7. Coefficients table for Open to Very Open Trees.
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60 61 62 611 612 61

60 27.46197 0.516892 -—0.01812 -1.34425 0.017536 —0.01782

61 0.665941 0.016663 0.000098 —0.03529 0.000488 —0.00035

62 —0.30472 0.00122 —0.0002 0.015172 -0.0002 -7.9E — 05

63 —0.44979 —0.01913 —2E — 06 0.0253 —0.00035 0.000526

64 0.59182 0.004496 —0.00022 —0.03303 0.000461 —0.0002

65 —0.11557 -0.00089 —0.00021 0.006697 -9.1E — 05 -3.5E — 05

66 —0.56834 —0.0029 0.000415 0.031754 —0.00046 0.000102

67 0.902208 0.017373 0.000252 -0.04916 0.000688 -0.0003

68 —0.37557 0.001015 -0.00024 0.019326 -0.00026 —9.1E - 05

69 —0.4228 —0.01907 0.000015 0.023719 —0.00033 0.000531

610 0.54799 0.004403 -0.00024 —0.03046 0.000424 —0.00021

611 0.038773 —0.00055 ——0.00012 —0.00236 0.000039 —5E — 06

612 -0.28223 -0.00642 0.000175 0.015208 -0.00022 0.000154
 

Table 4.8. Coefficients table for Rainfed Herbaceous Crop. -
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Figure 4.1. Constant spline confidence bands with opt = 1.
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Figure 4.2. Constant spline confidence bands with opt = 2.
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sample size n = 500, confidence = 0.95
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sample size n = 500, confidence = 0.99

 

  
  
 

Figure 4.3. Linear spline confidence bands with opt = 1.
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Figure 4.4. Linear spline confidence bands with opt = 2.
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Figure 4.5. Testing H0 : m (:c) = 25:1 akxk, d = 2,3, 5, 6 for fossil data.
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Figure 4.6. Relative efficiency of 163,0, against 163,0, d = 4.
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Figure 4.7. Relative efficiency of mm, against 163,0, d = 10.
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Figure 4.8. Relative emciency of 171,,0, against 613,0, d = 50, a = l, 10.
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Figure 4.9. Relative efficiency of m,,,, against 763,0, (1 = 50, a = 19,50.
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Figure 4.10. Linearity test for the Boston housing data.
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Figure 4.11. LAI trend of rainfed herbaceous crops.
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Figure 4.12. LAI trend of open to very open trees.
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Figure 4.13. Spline confidence bands of LAI of deciduous woodland.
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Figure 4.14. Spline confidence bands and RAMS curves of LAI of deciduous shrub-

land.
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Figure 4.15. Spline confidence bands and RAMS curves of LAI of rainfed herbaceous

crop.
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Figure 4.16. Spline confidence bands and RAMS curves of LAI of open to very open

trees.
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Figure 4.17. Improved reprwentation of land surface in RAMS.
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