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Abstract

MINIATURE MICROWAVE PLASMAS OF HYDROGEN AND ARGON
INVESTIGATED USING OPTICAL EMISSION SPECTROSCOPY

By

David Story

Research on miniature microwave plasmas is motivated in part by the interest in
generating on-chip plasma sources for applications such as miniature spectroscopy,
sterilization of on-chip laboratories, and local area plasma-assisted etching and chemical
vapor deposition.

The goal of this work is to determine the properties of miniature plasma
discharges generated by microwave energy. Specifically, small discharges of argon and
hydrogen with volumes of less than 1 cubic centimeter are investigated. Various
properties of the plasma discharges are measured including plasma gas temperature,
electron density, and internal plasma electromagnetic field strength.

The discharges are measured across a wide pressure range from 0.1 Torr to over
100 Torr using non-invasive optical emission spectroscopy techniques. Specific optical
emission diagnostic techniques utilized includes Stark broadening of atomic hydrogen
emissions to determine electron density, molecular hydrogen rotational temperature,
Zeeman splitting in molecular hydrogen emissions to determine both the microwave
magnetic field strength and the plasma temperature.

Modeling of the plasma discharges is also done using particle and energy balance

equations.
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Chapter 1 Introduction

The creation and characterization of miniature microwave plasma sources is a
relatively new and under-investigated field. Some miniature plasma sources have been
developed for the pixel cells in flat panel displays, as well as to investigate the possibility
of bringing mass spectrometry and optical emission spectroscopy functions to the
computer processor unit (CPU). However, none of the previously mentioned sources are
created with microwave power, which allows for more flexible geometries and a wider
range of pressure variations.

The first objective of this investigation is to establish the operating conditions
for a microwave plasma source that allows the creation of miniature discharges, and then
to measure the properties of the resulting plasma discharges. An additional objective is
to develop a predictive understanding of miniature microwave plasma behavior by using
plasma global models, and by comparing model results to the measured plasma
properties. The overall goal is to add to the scientific understanding and engineering
design principles for miniature microwave discharges.

To this end, investigations are performed in both noble and molecular gases
(argon and hydrogen) across a range of pressure and microwave powers. The
investigation includes the implementation of instrumentation for non-invasive optical
emission spectroscopy. The plasma discharge properties focused on in this investigation
include discharge shape and size, plasma power density, plasma electron density, plasma

gas temperature, and electric and magnetic field strength in the plasma.



In this investigation, hydrogen and argon plasmas are formed at pressures
ranging from 0.1-100 Torr, and at powers from 5-60 W. To obtain both high optical
emission sensitivity and spectral resolution a special optical system is designed to bring
lenses to within 5 mm of the plasma center. The optical system permits non-invasive
measurements of the intense plasma discharges.

Argon discharges are analyzed experimentally to determine plasma density and
plasma discharge power density. Two techniques are compared to determine the electron
density from argon discharges.

Analysis of hydrogen data was extensive, including plasma discharge size and
shape, plasma power density, plasma electron density, plasma gas temperature, and
electric and magnetic field strength in the plasma. Optical spectrum measurements reveal
peaks in the diatomic hydrogen rotation spectrum used to estimate rotational temperature.
Higher resolution measurements of the sub-band structure of diatomic hydrogen were
used to determine resident magnetic fields consistent with Zeeman splitting. This
suggests hydrogen plasmas have a partially discrete or constant magnitude magnetic field
component, which varies with pressure.

Atomic hydrogen spectroscopic readings demonstrated sub-band structure as
well. Peaks within the hydrogen alpha, beta, and gamma bands were consistent with
energy level splitting seen in the Stark effect. As a result, the magnitude of the resident
electric field was estimated across the pressure regime.

Chapter 2 provides a background for the study of miniature microwave plasma

sources by presenting the current state of miniature plasma sources.



Chapter 3 presents the experimental set-up. The experimental set-up includes
designs and builds for both the plasma system and the diagnostic system, a multi-channel
fiber optic feed-through. The diagnostic set-up required the build of a new optics system
to penetrate the reactor and focus on the center of the plasma discharge. Chapter 3
concludes with test results for both the plasma reactor system and fiber optic feed-
through.

Chapter 4 presents the global model, a theory that describes the plasma physics
of monotonic gases such as argon. Low to medium pressure plasmas can be described
accurately with the global model. The global model is found ineffective at higher
pressures; this was substantiated on preliminary test sets made during initial system
testing.

Chapter S presents the spectroscopic theory for diatomic molecules and for
single electron atoms. Both sets of theory are directly applicable to hydrogen plasmas.

Chapter 6 applies spectroscopic theory from Chapter S to predict the peak
amplitude and splitting in atomic and rotational spectra associated with hydrogen.
Chapter 6 introduces spectral theory specific to hydrogen-like (Rydberg) atoms, without
which determination of the Stark spectrum would be impossible.

Chapter 7 accumulates the experimental results, and makes direct comparisons
between the experimental results and predictions made by the global model in Chapter 4
and the spectroscopy theory developed in Chapter 5 and Chapter 6. Chapter 7 records
experimental results for diatomic and atomic hydrogen spectra, and matches these results

to the Zeeman and Stark effects developed in Chapter S and Chapter 6.



Chapter 8 summarizes project results, and lays the groundwork for future
experiments aimed to get at the root of plasma behavior. Chapter 8 also suggests future
experimental techniques to provide more insight into the nature of the hydrogen plasma

behavior, specifically high-pressure contraction.



Chapter 2 Background

The current research activity in miniature plasma sources and microwave plasma
sources is presented in the following two subchapters. The miniature microwave plasma
source designed for this project is detailed in Chapter 3. The miniature microwave
plasma source design is similar to larger microwave plasma sources, but requires

fundamental knowledge of miniature source operation to be successful.

2.1 Miniature Plasma Sources

This brief overview presents the current state of miniature plasma sources. The
following plasma sources will be discussed in the proceeding paragraphs: Micro-cell
plasma display panels, micro-strip line sources, capacitive sources, inductive sources,

torch and arc discharges, and micro-hollow cathode tubes.

2.1.1 Micro-Cell Plasma Display Panels

Micro-cell plasma display pixel cells consist of two parallel glass plates fitted
with electrodes on their surfaces, as shown in Figure 1 [1]. Each electrode is covered by
thin dielectric layer and coated with MgO. The cell is filled with various combinations of
Xenon, Neon, Helium, and trace amounts of Argon. The cell is sealed; the cell pressure
can vary from 100 torr to 500 torr, depending on other cell parameters including gas
mixture and excitation frequency. The cell is approximately 1 mm cubed in dimension.

The MgO layer produces secondary electrons on impact by electrons, greatly

multiplying the number of electrons in the plasma and the number of collisions that
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Figure 1 Micro-Cell Plasma Display Panels.



generate excited radicals. In fact, secondary electron emission is by far the main source
of electrons in micro-cell plasma displays. The MgO layer provides a high secondary
electron emission rate, and hence increases the cell efficiency rate. The cell efficiency
rate is defined as the ratio of the power absorbed per unit volume that produces excited
states of Xenon to the total power absorbed per unit volume.

The breakdown voltage, or the voltage necessary to ignite the plasma, and the
self-sustaining voltage are a function of the ionization energy of the fill gas, the
frequency, the cell capacitance, lifetimes for each of the gas species, and the secondary
electron emission rate of the MgO layer. The typical breakdown voltage for a cell is
approximately 300 volts. During self-sustaining operation, at a frequency of 50 kHz, the
plasma electron density is approximately 10''-10'? electrons per cubic centimeter [2].

Application of a high voltage pulse across the electrodes initiates the plasma
discharge. The energetic free electrons excite Xenon atoms through atomic collision.
Excited Xenon atoms release photons as electrons fall from higher energy states
(resonant, excimer, and metastable states) to the ground state. The photons are emitted in
the ultraviolet range. The ultraviolet radiation reacts with the phosphor coating on the
cell walls, which converts the ultraviolet light into visible light- red, green, or blue,
depending on the type of phosphor coating.

Investigation shows that the mixtures relatively lean in Xenon produce the lowest
breakdown voltages while still delivering high ionization rates. Neon-Xenon and
Helium-Xenon ratios of 95%-5% reduce the breakdown voltage from 300 volts,
necessary for 100% Xenon cells, to approximately 125 volts. Xenon efficiency rates

peak at 90% for 100% Xenon cells, and drop-off moderately to approximately 70% as the



Xenon concentration is reduced to 5%. Cell efficiency rates are higher for Neon-Xenon
mixtures than for Helium-Xenon mixtures in all concentrations. The effect of Argon as
an additive is negligible [3].

Researchers have also studied the optimum shape and operating frequency of
these plasmas. Two-dimensional modeling of the plasma cell predicts that much higher
cell efficiency rates and electron densities can be achieved with a cylindrically shaped
cell operating at radio frequencies (13.56 MHz) [4]. The cylindrical shape geometry
allows for greater plasma volume for a given surface area. As a result, the cell can be
made smaller, and the necessary breakdown voltage and self-sustaining voltage reduced.

The advantages of smaller size cannot be realized if the frequency is not increased
as well. Although much less mobile than the electrons, ionized Helium still has enough
time to pass through the sheath to the walls at relatively low frequencies. Applying radio
frequency voltage helps trap the Helium ions in the reduced plasma volume. As a result,
plasma electron densities can be increased by a factor of five to ten, reaching 1.0 X 10"

electrons per cubic centimeter.

2.1.2 Micro-Strip Line Sources

Miniature microwave frequency plasma sources are targeted for on-chip
applications, including micro-strip line technology. Micro-strip line sources, as shown in
Figure 2 [5], consist of approximately one-millimeter square channels in fused silica
dielectrics, or simply 0.3-1 mm silica tubes, and the corresponding ground plane and
microwave matching elements formed on the top and bottom of the channel. Argon is
flowed through the channel; the plasma is ignited with a piezoelectric sparking device

and sustained with approximately 15 Watts of microwave power at 2.45 GHz.

8
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The resulting plasma is very bright as viewed looking into the open-ended
channel. The micro-strip line plasma has been demonstrated at one atmosphere, allowing
contaminants to be introduced from the environment, and hypothetically, detected by
matching the contaminant to its atomic emission spectra. The benefit of a source of this

type is an on-chip optical emission or atomic emission spectrometer.

2.1.3 Capacitive Sources

A simple plasma source geometry is that of the capacitive source. In general, a
high DC, rf (13.56 MHz) or microwave (2.45 GHz) voltage is set up across parallel
plates. The resulting electric field ionizes neutrals, producing ions and free electrons.
The free electrons accelerate under the influence of the electric field, and collide with
neutrals and ions. If the free electrons are given sufficient energy, these collisions
generate more free electrons, and the plasma becomes self-sustaining.

In DC discharges, electron acceleration is strictly a function of the applied electric
field and the mean free path of the electron, which is a function of pressure. In an RF or
microwave power discharge, the effective mean free paths can be made shorter if
collisions reverse the electron momentum at a frequency roughly equal to the frequency
of the applied electric field. Optimal coupling occurs when the frequency of the applied
power matches the electron collision frequency, which occurs at a pressure of
approximately 5 torr for an applied RF power at 13.56 MHz.

One specific capacitive source application is the miniature mass spectrometer, as
shown in Figure 3 [6]. The plasma is coupled to the incoming gas by accelerating plasma
electrons through a two-grid electrode system. The plasma electrons are focused into a

narrow beam as they enter the sample gas ionization chamber to keep the ion

10
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energy distribution as narrow as possible. The electrons ionize the gas sample; the ions
are then accelerated and deflected as they travel along the mass spectrometer channel by
a series of alternating voltage pulses synchronized to periodically spaced terminals.

Microwave power is the preferred source for two reasons. Firstly, sputter damage
to the plasma cell walls is reduced as the plasma ions are trapped by the high frequency
electric fields. Secondly, and more importantly, the high frequency electric fields used to
generate the plasma discharge have a negligible effect on the heavy ions in the mass
spectrometer channel. Obviously, since the theory of operation for the mass spectrometer
is the ionization, acceleration, deflection, and accurate deflection detection of the gas
species, spurious electric fields must be avoided or the entire system will be
compromised.

Technically, the micro-cell plasma display discussed in section 2.1.1 is a
capacitive plasma source. Also, the micro-strip line plasma source presented in the

previous section can be generated as a capacitve discharge or a surface wave discharge.

2.1.4 Inductive Sources

Large-scale inductive sources dominate the microchip fabrication landscape.
Miniature inductive plasma sources could be used as part of a microprocessor based
emission spectrometer or mass spectrometer, or could be the basis for thrust generation in
ion beam drives for space propulsion. Recent work has demonstrated the ability to create
5 mm, 10 mm, and 15 mm diameter planar inductively coupled plasmas (ICPs) at
pressures below 10 torr, powered by 1-20 Watts RF power between 13.56 MHz-500

MHz.

12



Miniature planar ICPs, as shown in Figure 4 [7], are constructed by masking off a
20-turn spiral pattern, 15 mm in diameter for the largest of the three sources. The planar
spiral is fixed directly above a 1.8-mm glass window, which contains the plasma. Two
high-Q capacitors are placed in series with the helix to adjust the tuning; the tuning is
effected by the inter-winding capacitance. The plasma containment vessel is filled with
Argon or air, and operated at pressures between 0.01 torr and 10 torr.

The miniature ICP sources accurately follows the same trends for plasma
potential, electron temperature (when the plasma sheath is correctly removed from the
calculation), and ignition frequency (electron elastic collision frequency equals rf source
frequency) as do large-scale ICPs. But, both experimental Langmuir probe and
interferometer measurements (35 GHz) yield electron densities (approximately 1.0 x 10"
to 1.0 x 10" electrons per cm®) which are an order of magnitude lower than that predicted
by global plasma models. This discrepancy is thought to be a function of wall
recombination, resulting from the relatively low volume to surface area ratio. Similar

effects were mentioned previously in the low frequency micro-cell plasma display cell.

2.1.5 Microwave Torch and Arc Discharges

Torch and arc discharges have been investigated for over four decades. In present
torch and arc configurations, gas is forced through a small (~Imm) diameter nozzle
supersonically, and ignited by microwave power. The resulting plasma can take two
forms in general, corona and torch. The plasma forms as the high electric field at the
electrode or nozzle tip accelerates electrons into neutrals at a high enough velocity to
ionize the neutrals. This form is known as the corona, and is concentrated at the very tip

of the nozzle.

13
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As the plasma slowly begins to absorb more power, the vibration energy and
translation energy in the gas increases, as well as the ionization. This reduces the
effective electric field near the nozzle, gradually extinguishing the corona form of the
plasma near the nozzle, but exciting the working gas that is farther from the nozzle. The
plasma appears as a flame, with a hollowed center where the corona discharge is
extinguished. This form of the plasma is called the torch. The electric field present when
the corona discharge forms is approximately 14,000 volts per centimeter; the electric
field in the torch discharge is approximately 300 volts per centimeter [8]. Electron
temperatures in the range of 5000-5200K have been recorded for similar experimental
sets [9].

As the gas flow rate is increased, the gas will flow around the torch, and the
vibration temperature and translation temperature of the gas will be reduced due to gas
cooling. The torch effectively runs out of fuel, the microwave energy again begins to
accelerate electrons near the tip, and the corona form of the plasma returns as the torch
appears to be blown out.

When the microwave power dissipated in the torch discharge increases above a
critical point, the sharp electrode edge is heated to produce thermionic electron emission.
The resulting plasma looks more like a controlled arc than a torch, and is referred to as an
arc torch discharge. The thermionic emission provides enough electrons to prohibit the
return of the corona plasma form, stabilizing the discharge.

Another attempt to stabilize the torch discharge is the introduction of a conical
nozzle that contains, or redirects the working gas such that the plasma consumes nearly

all of the flowed reactant. Typical electron densities, as measured by the resonant
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frequency and bandwidth shift, registered approximately 1.0 x 10° to 1.0 x 10'' cm™ for
this form of the plasma torch, operating at one atmosphere. This variation of the torch
discharge is shown in Figure 5 [10].

Torch or arc torch discharges have been developed for pressures ranging from 0.5
torr up to one atmosphere. Torch discharges have been used for surface treatment and
cleaning, and for thin film depositions on internal cavity walls, holes, vias, and on
substrates of complex shape.

A variation of the torch or arc torch is the microwave powered plasma pencil
[11]-[13]. The experimental set-up is similar to that given for the microwave torch and
arc discharge. The difference is that the plasma pencil utilizes the gas delivery tube as a
hollow cathode to supply the microwave power. Research in this area includes attempts
to focus the plasma beam with a high-current magnetic lens system. This is similar to the
focusing achieved in modern microscopy, such as the electron microscope. Plasma
diagnostics of the plasma pencil yielded electron temperatures from 5200K to 5800K,

with gas temperatures on the order of 700K to 950K, operating at one atmosphere [13].

2.1.6 Micro-Hollow Cathode Tubes

The micro-hollow cathode tube refers to a structure, as shown in Figure 6 [14], in
which the plasma forms between a hollow cathode and an arbitrarily shaped anode. The
micro-hollow cathode tube is characterized by an initial pre-discharge. The initial pre-
discharge plasma is shaped by the electric field. As the applied DC voltage and current
are increased, the pre-discharge forms a column extending from the hollow cathode to the

anode.
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The pre-discharge potential is pinned to the anode. As a result, the electrons
follow electric field lines and accelerate radially inward. When the pressure is such that
the mean free path of the electrons closely matches the diameter of the hollow tube, the
electrons (fast electrons) gain enough energy to ionize the gas species and form a
negative potential discharge within the hollow cathode tube. The electrons (fast
electrons) oscillate between the negative discharge and negative cathode [15].

The electrons (fast electrons) generate ions and electrons on collision with the gas
species. Ions and electrons follow field lines axially along the hollow cathode tube. As a
result of these interactions, the plasma potential drops as the current through the plasma
increases. This regime, where the effective resistance of the plasma is negative, is the
normal operating regime and referred to as the ‘hollow cathode discharge’.

The hollow cathode discharge often has a spherical shape, confined by the hollow
cathode and the anode. With increasing current, the voltage begins to increase, and the
plasma breaks into filaments, as commonly seen in high-voltage discharges between
small, sharp-edged gaps.

The critical discharge figure of merit for the hollow cathode discharge is pD; the
plasma pressure (p) multiplied by the diameter (D) of the hollow cathode. The hollow
cathode discharge forms for pD values from a fraction of a torr-cm to 10-20 torr-cm.
Electron energies, determined by spectroscopy, are greater than 10 eV [14].

The anode and cathode are made from molybdenum [14], and separated by a 250-
micron mica layer. Argon gas is flowed through the hollow cathode tube. Hollow
cathode discharges have been formed with hole diameters as small as 200 microns, and at

pressures approaching 900 torr (17.9 torr-cm).
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2.2 Microwave Plasma Sources

This study focuses on microwave plasma sources. Microwave plasma sources
offer several advantages over plasma sources driven at lower frequencies. First, when
microwave energy is focused in a resonator cavity, the electric field strength, which is a
function of potential and wavelength, is strong enough to excite a discharge. Second, the
microwave energy can propagate through dielectric media; hence, the microwave probe
does not need to come in contact with the plasma itself, making the discharge
electrodeless. This is not true with low frequency discharges, which require putting the
electrodes in direct contact with the plasma. Potential damage to or contamination from
metal electrodes by collisions with high-energy plasma species is eliminated.

A second advantage to higher frequencies is seen in miniature plasmas. The fast
electric field reversal maintains the electrons in the center of the discharge, reducing the
number of collisions with the container wall. By trapping the electrons, fewer electrons
are lost to the walls and more energy is absorbed by the electrons, resulting in greater
ionization. This effect was discussed in section 2.1.1 when examining micro-cell plasma
displays, which were dominated by secondary electron emission, in contrast to direct
ionization within the plasma itself.

In general, microwave plasmas operate with smaller plasma potentials, thus
reducing the plasma sheath potential, which affects the energy at which the gas species
exit the plasma. Such reduced gas species energy is necessary for the success of many
surface reactions involved in plasma-assisted chemical vapor deposition (PACVD).

The literature covering microwave plasma sources is extensive. The following

subsections examine three common designs: the 2.45 GHz microwave plasma cavity
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resonator, the surface wave plasma reactor, and the electron cyclotron resonance (ECR)

reactor.

2.2.1 2.45 GHz Microwave Plasma Cavity Resonator

A common microwave plasma source design, developed at Michigan State
University, is the 2.45 GHz microwave plasma cavity resonator, shown in Figure 7 [16].
Microwave power is introduced to a cylindrical cavity through a coaxial probe,
penetrating the cavity axially from the top or the side. The height of the cavity and the
probe depth are adjusted for cavity microwave field resonance with the applied
microwave frequency. In one design, the cavity diameter is 17.8 cm, and the height is
adjusted to 21 cm. The resulting resonant mode is TM 013. Microwave power levels
range from S00W-5kW. Operating pressures run from 5 torr to 180 torr. Such systems
have been developed for PACVD of diamond.

The plasma discharge forms within a sealed quartz dome, mounted at the base of
the cylindrical reactor. The discharge is initiated by the electric field focused in the
quartz dome. The reactant gases are injected from the base plate of the reactor with high
velocity, mixing in the quartz dome before ignition. Premixing the gases improves
deposition uniformity in plasma assisted chemical vapor deposition (PACVD) reactions.
Uniform deposition can be maintained on wafers up to four inches in diameter.

The substrate holder is interchangeable and adjustable in height, to better interact
with the plasma formed above it. In high-pressure experiments, the substrate holder has
been water-cooled to better facilitate deposition. The system has been scaled up to

accommodate 915 MHz power supplies. The 915 MHz reactor is 45 cm in diameter; the
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largest possible substrate size is 33 cm. The 915 MHz reactor power requirement is

8kW-18kW.

2.2.2 Surface Wave Plasma Reactor

The surface wave plasma reactor’s geometry is completely different from that of
the 2.45 GHz-microwave plasma cavity. In the surface wave reactor, the microwave
power is transmitted from the waveguide through a sealed 2.5-cm diameter quartz tube,
into a waveguide surfatron, which functions as a double-stub tuner. The quartz tube is
filled with reactant gases; the pressure can be adjusted from 1-60 torr. The surface wave
reactor uses 1 kW microwave power at 2.45 GHz. The surface wave plasma reactor
schematic is given in Figure 8 [17].

The plasma fills the quartz tube, and distends several centimeters below the
waveguide structure at low pressures. The plasma excitation along the plasma column is
facilitated by the propagation of microwave energy along the column via surface waves
that travel along the boundary of the plasma. Below the waveguide structure, the quartz
tube diameter can be increased to accommodate substrates up to 8 cm in diameter. The
plasma expands to fill the quartz tube below the waveguide, allowing for complete

coverage of the substrate during deposition.

2.2.3 Electron Cyclotron Resonance (ECR) Reactor

The electron cyclotron resonance (ECR) reactor is similar in geometry to the 2.45
GHz-microwave plasma cavity, however the nature of the plasma is quite different. In

the ECR reactor, electron heating -motion and collision- is a result of the electron
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cyclotron effect; the force imposed on charged particles that results from an oscillating
electric field in the presence of a permanent magnetic field (875 gauss).

In the reactors described previously, the most efficient heating occurs at pressures
where the mean free path of the electrons give rise to a collision frequency that matches
the microwave frequency. At the point of collision with an atom, the electron momentum
is randomized. At the same instant, the electric field reverses to accelerate the electron,
increasing its average velocity with each field reversal and collision, until the electron has
enough energy to ionize the atom or molecule.

In ECR reactors operating at resonance frequency, the electron revolves around
the magnetic field lines with an angular rate equal to the frequency of the applied
microwave power. Each field reversal accelerates the electron for one-half revolution
before the next reversal. The electron will ionize an atom upon collision if it has been
given enough time to build up sufficient energy.

A specific example of an ECR source is the compact ion and free radical model
#610 plasma source developed at Michigan State University, shown in Figure 9 [18].
The reactor is a stainless steel cylinder with 5.8-cm outer diameter. The front half of the
cylinder is the coaxial microwave power feed, terminated with a loop antenna. The back
half is filled with a 3.6-cm x 3.0-cm quartz reaction vessel. The operating pressure is
kept between 0.1 mtorr and 3.0 mtorr, much lower than the operating pressure for the
2.45-GHz microwave plasma cavity resonator described in section 2.2.1. Microwave

power levels range from SOW-200W.

25



il i & =

*101083Y (A D 9OUBUOSIY UONO[IAD) UONII|T 6 34nS1y

paa4 sen

Joudepy
JusUBULId

awo( zuend

sen) Juejoo))

1D

uep
jusuBULIdg

doo ruuayuy

]

10303uu0)) adL 1 -N

26



Chapter 3 Experimental Setup

The primary research objective is to quantify the operating characteristics of
miniature microwave plasmas with sizes ranging from 0.25-10mm. To this end, a new
microwave plasma system must be built that can create miniature plasmas in the specified
range at controlled pressures. Additionally, it should allow for multiple gas feeds at
controllable flow rates. It should be safe, affordable, run at low power, and ideally,
portable.

Plasma diagnostics must be investigated and developed. Diagnostics must
provide the following plasma characteristics: electron density, gas temperature, and
plasma power density. Diagnostics should also be portable, requiring only standard
laptop computer interface.

The following section describes the design, construction, operation, test, and
function of the miniature microwave plasma reactor and system designed specifically for
this investigation. The next section describes the plasma diagnostic set, and the extra
design work that was necessary to extract the required plasma characteristics from such a
small, low-power source.

Section 3.3 provides valuable initial test data from the plasma system, giving
insight into plasma ignition and plasma operating conditions that drive diagnostic and

theoretical development decisions.

3.1 Miniature Microwave Plasma System

A miniature microwave plasma source and experimental system was designed,

built, and tested at Michigan State University. The experimental system, as shown in
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Figure 10, consists of the plasma source, vacuum chamber, microwave power system,
pressure control system, and gas delivery system. The microwave plasma source, shown
in Figure 11, is a 6.5-cm outer diameter coaxial waveguide, with 10-mm diameter center
probe. The waveguide is terminated with an adjustable short. The center probe can be
adjusted to vary the center conductor gap, where the plasma is formed. The distance
from the short to the center conductor gap is adjusted to approximately one-half the
wavelength of the applied microwave power (2.45 GHz). A quartz tube slips over the
center probe, surrounding the gap and enclosing the plasma.

The plasma source is connected to a 100 W microwave power supply (2.45 GHz)
through a circulator and a series of directional couplers and terminators or loads. The
circulator is fixed to the microwave source output to prdtect its magnetron from reflected
power. Thermistors convert transmitted and reflected microwave power into current,
which drives the associated power meters.

The pressure control system functions to stabilize the system pressure. It consists
of two Baratron pressure sensors (20 torr and 1000 torr), a 2-atmosphere pressure gauge,
manual pressure sensor selector, three independent pressure control setting channels, two
digital pressure display units, and automatic pressure control feedback circuitry to fix
pressures from 1 mtorr to 1000 torr. The pressure control feedback drives a throttle
valve, which determines the rate the reactant gas is evacuated from the system. An
impeller pump (Alcatel, 40 liter/min) develops the vacuum.

The automatic pressure control circuitry receives signals from the manually
selected Baratron pressure sensors. The 20 torr head measures pressure accurate to 1

mtorr, for pressures less than 10 torr. The 1000 torr head measures pressure accurate to
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0.1 torr, up to pressures of 1000 torr. The pressure controller compares the Baratron
input to that of the selected pressure setting, and drives the throttle valve to converge to
the control setting. The pressure and target pressures are registered on the digital
displays.

The gas delivery system includes a 4-channel bank of gas flow meters (Hastings:
model #CPR-4A, MKS: Type 247). Three flow meters are rated for flows up to 1000-
standard cubic centimeters per minute (sccm); the fourth flow meter is limited to 10-
sccm, and as a result, provides the highest resolution. The 4-channel flow control unit
actuates all four flow meters. The controller drives the flow meters with the difference
between the selected flow rate and the flow rate feedback from the flow meters. The
flow rate through each of the four flow meters is registered on controller digital displays.
Each gas channel is connected to 2500-psi gas cylinders, regulated to 15 psi. The gas
cylinders are secured to the side of the plasma source system. The gas channels and gas
canisters are completely interchangeable. This allows for experiments using any
combination of up to four gases.

The experimental system is sealed by metal-to-metal fittings (VCR seals, 64 total
seals). The base pressure is less than 1 mtorr under normal operation (impeller pump
only); the base pressure drops to less than 1.0 x 107 torr during leak tests, which requires
the addition of an auxiliary turbo pump (Alcatel, 100 liter/min). Leak tests consistently
register leaks less than 1 mtorr for 16-hour intervals. The system volume is 78 liters.

To reduce contamination and water vapor accumulation, the system is closed
during system purge. Argon, regulated to just under one atmosphere, brings the system

back up to pressure when the experiment is complete.
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The following chart summarizes the current state of the miniature microwave

plasma source and experimental system. The system specifications include the plasma

source, vacuum chamber, microwave power system, pressure control system, and gas

delivery system.

Base pressure (roughing pump): < Imtorr
Base pressure (turbo pump): < 107 torr
Leak rate (w/o reactor): < Imtorr/16 hrs
Plasma ignition power: 10W

Power meters:

1 forward power meter following 50/50 splitter
1 reflected power meter following circulator

Gas channels:

3 1000-sccm channels
1 10-sccm channel

Pressure heads:
1 1000-torr Baratron transducer
1 20-torr Baratron transducer
1 2-atmosphere head

Pressure display for each pressure head:

Digital display: Baratron heads
Analog display: 2-atmosphere head

Automatic pressure control select between 1000-torr and 20-torr Baratron heads
Accurate automatic pressure control from 1 mtorr to 1000 torr

Three pressure control setting channels

Automatic Argon system purge to 1 atmosphere with adjustable pressure regulator

Additional air valve isolation from roughing pump
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Manual equalization valve to bring roughing pump to 1 atmosphere
Nitrogen vent to roof:

Adjustable Nitrogen flow rate
Shut-off valve to prevent backflow from neighboring DLC system

All seals metal-to-metal (VCR) fittings

In summary, the following input parameters can be controlled and monitored:

. Pressure: 0.5 torr-2 atmospheres

. Power: 0.5-100 W

. Probe diameter (plasma diameter): 0.2-10mm
. Plasma height: 0.2mm-20mm
. Gas flow: 1.25-1000sccm (velocity function of nozzle size)

. Gas species: Argon, Nitrogen, Hydrogen, Air, Hydrogen/Methane mixture

The flexibility in design allows for plasma investigation at a wide range of

pressures, at different discharge aspect ratios, at power levels from 0.5 W to 100 W, and

with reconfiguration capability on all four-gas channels.

3.2 Plasma Diagnositics

The plasma diagnostics proposed to investigate miniature microwave plasmas

created by the plasma source built for this investigation are limited to spectroscopy due to

the configuration of the source. The following sections describe the diagnostic set up for

the optical emission spectrometer.

3.2.1 Optical Emission Spectroscopy

Optical plasma diagnostic techniques include plasma-induced emission and laser-

induced fluorescence [19]-[20]. Other radiation based non-intrusive techniques include
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optogalvanic, infrared, spontaneous and stimulated Raman, and multi-photon
spectroscopy [21]. Optical diagnostic techniques, specifically plasma-induced emission,
will be used to estimate electron density, electron temperature, and gas temperature in
this investigation. The experimental set up for plasma-induced emission, or optical
emission spectroscopy (OES), is given in Figure 12.

Line broadening is seen in high-density plasmas where high local electric fields
are present, which result from localized charge imbalances. This effect is called Stark
broadening, or electric field broadening. Estimates can be made from Stark broadening
for translation temperature and electron density.

Stark broadening of the Hydrogen Balmer series (Hq, Hp) as a function of electron
temperature has been computed by Griem [22]. Electron density and temperature
determine the broadening for purely Stark broadened Hy lines. Deconvolving the Stark
shape from the total spectrum line leaves a Doppler broadened H, curve, and gives an
estimate for Hydrogen translation energy and electron density (assuming a Maxwell
distribution) [23]-[24].

Gas temperature is measured using the optical emission lines corresponding to H»
and N, rotational temperature; molecular Hydrogen electronic configurations and
rotational energy levels and transitions are shown in Figures 13 -14 [25].

Rotational temperature transitions within the same electronic configuration and

vibration energy produce line intensities in accordance with the Boltzmann distribution.

I = Kv3S v mex _BVJ'(J'+Dhe (3.1)
J'J kT
"
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Where:

K = Constant for same electron configuration and vibration level
v =Frequency of radiation

S » =Hoal-London factor

B,»  =Molecular rotation constant

J' = Rotation quantum number

h =Planck’s constant

c =Speed of light

k =Boltzmann’s constant

T, =Rotation temperature

3.2.2 Optical Emission Spectroscopy Design

The intensity of the light that was gathered by the optical emission spectrometer
from plasma emission was found to be so weak in preliminary testing that virtually no
signal could be detected by the optical emission spectrometer. The plasma light intensity
itself was well above any detectable threshold, very visible to the naked eye in all cases.
However, the simple lens and fiber optic system used to focus the light into the
McPherson model 216.5 optical emission spectrometer was insufficient. This preliminary
design is shown in Figure 15.

In an attempt to increase the emission intensity, the lens system was plunged into
the plasma reactor, focusing the plasma emission on an array of optical fibers inside the
reaction chamber. The vacuum was sealed with a double O-ring feed-through, similar to
seals used in electron microscopy. Light was focused into the fibers, and collimated at
the end of the fibers, by specially designed and cut spherical lenses. The collimated light
at the end of the fibers was refocused into the McPherson 216.5 optical emission
spectrometer. Figures 16-18 detail the diagnostic setup, fiber feed-through design, and

spherical lens specifications, respectively.
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Radius=1.25 mm

0.88 mm

Figure 18 Spherical Lens Design.
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3.2.3 Optical Emission Spectroscopy Test

Initial test results for the optical emission spectroscopy design are given in Figure
19. Photomultiplier tube currents in excess of 200 nA were recorded for the Hg line with
an accelerating voltage of -900V. Vacuum pressures were unaffected by the new feed-
through; there was no discernable difference in leak rate after the feed-through
installation.

The plasma formation was unaffected by the new feed-through, and there was no
detectable microwave energy leak around the feed-through mount. To compensate the
light blocked at the reactor window by the new feed-through, its unused fibers were used

to channel light into the cavity to adjust the probe in the absence of the plasma.

3.3 Preliminary Findings

Preliminary findings are restricted to a set of experiments conducted immediately
following the miniature microwave plasma system build (June-August, 2001). The first
set of experiments tested the miniature microwave system functions, such as leak rate,
base pressure, pressure control, flow control, and microwave power measurement. The
second set of experiments was concemed with plasma formation and stability. In the
second set of experiments, Argon plasmas were formed at pressures ranging from 1
mtorr-760 torr (1 atmosphere). These experiments were conducted to verify that plasmas
could be formed, controlled, and operated safely over the required pressure range.

The miniature microwave system leak rate registered less than 1 mtorr over a
period of 16 hours. Base system pressure measured less than 9.0 x 10° torr while

pumping with an auxiliary turbo pump. System pressure was monitored to 0.1 mtorr.
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System pressure could be stabilized with no gas flow at pressures as low as
Imtorr. System pressure could be stabilized with gas flow at pressures approaching 10
mtorr. The pressure at which the miniature microwave system pressure can be stabilized
is limited by the resolution of the flow meters, not the throttle valve feedback control
loop.

Argon plasmas were ignited at pressures between 5 torr-10 torr. The microwave
power (2.45 GHz) necessary for ignition was approximately 30W-40W. The microwave
power necessary for a self-sustaining plasma was as small as 0.2 W for pressures less

than 100 torr.

3.3.1 Preliminary Experiments

Preliminary experiments concentrated on Argon plasmas and their characteristics.
Argon plasmas are easily formed, as monotonic gases ionize more readily. Plasmas were
ignited at pressures between 10 torr-15 torr. Pressure settings were adjusted such that
stable plasmas were formed at pressures from 1 mtorr-1000 torr.

Argon plasmas formed at pressures below 1 torr diffused through the gaps in the
quartz tube, filling the entire reactor. Plasmas formed at pressures greater than 400 torr
began to collapse, pulling away from the quartz tube. Plasmas greater than 800 torr were
spherical. In general, higher pressure Argon plasmas formed discharge filaments when

the plasma impedance was not matched to the impedance of the microwave power circuit.

3.3.2 Preliminary Diagnostic Results

Preliminary diagnostics were restricted to plasma size, shape, and power density,

as recorded by digital imaging. Measurements for plasma size and shape were taken
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directly from the digital image. Microwave power meters recorded transmitted and
reflected microwave power. The resulting data is summarized in the series of plots given
in Figures 20-21, first published June 15, 2001 [26].

Specifically, power density is recorded for pressures from 100 torr-760 torr for
the Argon plasma, and plotted in Figure 20. The power density, calculated from the
diagnostic data, is used in section 7.2.1 to calculate electron density and temperature
using the global model. Ignition power was recorded for pressures from 5 mtorr-760 torr,

and is plotted in figure 21.
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Chapter 4 Global Model Theory

To complete the characterization of the miniature microwave plasma, it is
necessary to model the plasma mathematically. Several models have been proposed for
low-pressure plasmas [27]-[29], moderate pressure plasmas [30], and high-pressure
plasmas (~1 atmosphere) [31]-[32]. Matching these models to the diagnostic estimates is
necessary to prove the validity of these models, such that these models can be used in the
future for miniature plasma source design.

Global models for non-equilibrium plasmas calculate electron density (n) and
electron temperature (T.) as a function of input power (P.s), pressure (P), gas
concentrations and plasma reactor geometry.

Briefly, global models require species balance, momentum balance, and energy
balance in the Boltzmann transport equations. Conservation of these three quantities are
commonly referred to as the zero, first, and second moment Boltzmann equations. The
global models balance these equations macroscopically, as opposed to other finite
difference analysis techniques [33] that balance these equations for each small volume
element included in the microwave reactor system. Global models can incorporate
chemical reactions and reaction rates for specific species.

Global models do not consider convective flow dominated conditions, as found at

higher pressures (> 100 torr).

4.1 Global Model

The global model development begins with the general Boltzmann transport

equations. This set of equations can be simplified by limiting the plasma behavior.
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Pinning the plasma boundary conditions to the edge of a collisionless sheath reduces the
equation set further. The resulting set of equations require pressure dependent
relationships, valid over limited pressure regimes. The global model, in its final form,
combines Boltmann transport particle, momentum, and energy balance equations,
matched at the edge of a collisionless sheath. Solved iteratively, the global model
predicts electron and ion densities, electron temperatures, and electron and ion flux. The
mathematical development proceeds directly from texts by Bittencourt [34], Lieberman
[35], Goldston [36], Bird [37], and Chen [38].

The global model requires balancing zero (mass/species), first (momentum), and
second (energy) moments of the Boltzmann transport equations. More complicated
mathematical models require balancing higher order Boltzmann transport equations; for
example, heat transfer through convective flows requires balancing the third moment
Boltzmann transport equation. These equations are critical in developing mathematical

models. The zero moment Boltzmann equation is given as follows:

a/)—ma"'v'(pmaﬁa):»sa

ot
4.1

9
e

2
=m,(Kin, —k,n,” —kyn,)
collision

Pmu = O density
Uy = & average velocity
S = o ionization rate
m, = electron mass
n, = electron number density

K;,k,,k, = ionization,recombination,attachment rates
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Equation 4.1 is called the continuity equation, and represents the conservation of
mass. Physically, the difference between the rate at which particles o flow from a
differential volume (dV) and the rate the particles are generated (Sy) is equal to the time
rate of change of the particles o within the differential volume. The first moment

Boltzmann equation is given as,

D - — ~ -
Pma l;la =naqa(E+z'7axB)+pmag_VPa +Aa
t

;(ia - a(pmaﬁa)
at collision

acceleration due to gravity

(4.2)

a partial pressure
o

momentum collision rate

g
Po
Ae

Equation 4.2 is referred to as the equation of motion, and represents the
conservation of momentum. Physically, as expected, the mass density times the time
derivative of the average velocity is equal to the sum of the forces. In Equation 4.2, the

forces are composed of the Lorentz force and forces resulting from gravity and pressure.

The additional term, 4, represents the mean momentum change with respect to time of

the o particles as a result of collisions within the plasma.
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The second moment Boltzmann equation is given as,

g;[%] + (%](V oiig)+(VPy V)il + Gy = My —iiy ® g + (g’ [2)S4
N Py <V2 >4 12)|
Mg =
o |
collision
M, = a energy collision rate 4.3)

Equation 4.3 is called the energy transport equation, and represents the
conservation of energy. The first term represents the total thermal energy rate of change
of a differential volume moving with average velocity u. The second term represents the
thermal energy entering and leaving the differential volume. The third term represents
the work performed on the species within the unit volume by the forces (pressure) on the
surface. The fourth term represents the heat flux through the differential volume. The
terms on the right side of the equation represent the energy change as a result of particle
collisions.

The global model follows directly from the first three Boltzmann moment
equations. Approximations to the Boltzmann moment equations can be made, given the
plasma pressure regime. Sections 4.1.1-4.1.3 examines approximations made for the low,
moderate, and high-pressure regimes, respectively. In each pressure regime, the plasma

is assumed to be in steady state operation.
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4.1.1 Low Pressure, Steady-State Approximations

The Boltzmann transport equations can be simplified dramatically by assuming no
change in state in the plasma over time; that is, the plasma density function is constant in
phase space, both distance and velocity, at every point in the plasma. At low-pressure,
electron diffusion immediately counteracts the effects of internal forces, such as electric
field. As a result, there is no net electron acceleration in the plasma, and the total
derivative with respect to time is set equal to zero in Equation 4.2, when considering
electrons. Ion diffusion is much slower; drift due to the electric field dominates
diffusion. For ions, given a constant state, the partial derivative with respect to time is set

equal to zero in Equation 4.2. Thus,

mr]egﬁe =en,E+VP, =—-enVo+VP, =0, where: E=-V¢

VB, =kT,Vn, isothermal plasma 4.4)

=17, = r]0e¢/ Te . Boltsmann distribution Sformula

1
=>5Mu,~2+e¢,-+(P,»/n,«):0 4.5)
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Solving Equations 4.4 and 4.5 for u;, and substituting into Equation 4.1 gives:

1/2
Tean)=7e (—ﬂm-”—] 7|=ven
M n
’7 = ”e = ”i
Mg /Mo = 0.425
(4.6)
A <(R,L)

A = mean free path
ns = density at edge of collisionless sheath
Ny = bulkdensity

The solution to Equation 4.6 can be found in closed-form. The ratio of the
density at the edge of the plasma sheath to the bulk density is a constant. Combining

Equations 4.4 and 4.5 with Poisson’s equation, that is,

upg = Bohm velocity (velocity at sheath edge) @)

M = ion mass
2 e
Vg = — (7. —1;)
€
Poisson's equation
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€
4.8)

1 2

e =5Mus

1/2

eT,
=>up=|—+ 49
B (M) (4.9)

The Bohm velocity (ug) is defined as the velocity on the edge of the plasma
sheath, when the sheath is collisionless. In the global model development, the plasma
sheath is always considered collisionless; the Bohm velocity development is valid for

each of the pressure regions considered in this study.

4.1.2 Intermediate Pressure, Steady-State Approximations

Intermediate pressures are defined as pressures in which ion motion is still
dominated by drift. However, the mean free path is less than the plasma reactor
dimensions. Therefore, the collision term in Equation 4.2 must be included at

intermediate pressures. Thus,

Vm =ui/’1i
2eA;
]
(4.10)
uj = JLE

V,y = momentum reversal rate, A; = ion mean free path

M; = ion mobility
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Equations 4.10, taken with the Boltzmann distribution function and the time
invariant continuity equation, Equation 4.1, gives the following non-linear differential

equation:

1/2 1/2
24\2 4 a’nj
A Al _pdny 411
uB( Il'j ' ( n , i=T ( )

The analytic solution to Equation 4.11 does not converge to the low-pressure
analytic solution in section 4.1.1, as the mean free path goes to infinity. Godyak found an
approximate solution that does converge to the low-pressure solution. According to
Godyak, the following ratios are to be used to relate plasma density at the sheath edge to

plasma density in the bulk, given a cylindrical discharge with radius R and length L:

-1/2
. L }
hy =—==0.86{3+— 4.12)
o [ 24
-1/2
1R R
hy =—50.80[4+—] (4.13)
7o 4

And the ionization rate is given as:

-1/2
ML _ 4 4UB R
V., =+ =22-L14+— 4.14
“ o R[ 'J ( )

The density ratios are used in the global model to find the ratio of the plasma

volume to the effective plasma area, that is,
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4o _1_RL
"2 Rhy + Lhg

nsA= 770A¢f[f
(4.15)

de = volumel effective area
ng = density at sheath edge
Ay = effective area

In both low and intermediate pressure regimes, the plasma density is constant, or
nearly constant, through the bulk of the plasma, and sharply driven to zero in the sheath
between the bulk plasma and reactor walls. The flat distribution is due to the uneven
diffusion rates of the two charged species, electrons and ions. At higher pressures, the
ion diffusion rate is not negligible, and the bulk plasma density is no longer constant.

Returning to Equation 4.1, given constant densities:

4 TedS= IK illgNdvol;  where: K;;1, =V, 1y = neutral gas densities

S vol

ugio (hR 27RL + by 2m?2)= K,-:ngno(m?zL) (4.16)
K __ 1

upg dejfﬂg

Equation 4.16 is solved iteratively for T, as both K, and ug are functions of T..
The ratio d.r is used in the global model as part of the global model power balance
equation. A description of the power balance equation can be found at the end of section

4.1.3. The relationship between ngd.i(Te) and T, for Argon in the low to moderate
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pressure regime is shown in Figure 22 [19]. Figure 22 also gives ngd.(Te) as a function

of T, in the high pressure regime, which is addressed in section 4.1.3.

4.1.3 High Pressure, Steady-State Approximations

High-pressures are defined as pressures in which the ion diffusion rate is not
dominated by ion drift. That is, ion diffusion and electron diffusion, and the resulting
drift due to internal electric fields, must balance such that ion density and ion flux is
equal to electron density and flux at every point in the plasma. Accordingly, in steady-

state, Equation 4.2 and the isothermal assumption gives:

e kT,
Ia = NaE ———2=V 1y = UaNgE — DgV 1y

MoVma MoVma
ni=Mne=1n
4.17)
[ =Te =T = nu =neue =1mu
a = ions, electrons
D, = a diffusion
F=nu= _MVU =-DVnp
Hi + He
(4.18)

D = ambipolar diffusion coeff

Substituting Equation 4.18 into the continuity equation, Equation 4.1, gives the

following second—order differential equation:

- Dqu = V1 (4.19)
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Solving Equation 4.19 in cylindrical coordinates gives the following solution set:

n=nyJ, Xoyr cos e 1 X1 = 2.405 (Ist zero of Jy)
0“0 R L 01 0
T, =-D%§=’—‘?nojo(x;"J : T,=z-fluxarr
(4.20)
I, =r—flux at z
on _ XyD v
L T - 2002 g0, (x01)005(“‘—]
or R

J1(Xg)=0.519

Returning to the steady-state continuity equation, integrating with respect to

volume, and applying Green’s theorem gives:

JTeds= [v,n(r,z)dvol (4.21)
S vol

Integrals on the right and left side of Equation 4.21 can be found in closed-form
with the relationships given in Equations 4.20. Setting the right and left side of Equation

4.21 equal gives the following:

2 2
) -G)
ke o) )

2
g D Mg do g

(4.22)
Kiz”g”e =Ville
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Equation 4.22 is of the same form as Equation 4.16, with D(T,) replacing ug(T.).
Equation 4.22 is solved iteratively for T,, with the aid of the Figure 22 [39], which gives
ngde(Te) as a function of T, in the high pressure regime.

The energy conservation equation, Equation 4.3, is simplified by assuming
relatively constant differential volumes, and by neglecting convection.  These
assumptions eliminate the third and fourth terms in equation 4.3. The assumption that the
plasma is steady-state requires the partial derivative of thermal energy with respect to

time to be zero. Applying the chain rule to the total derivative and gradient:

Dt\ 2

(4.23)
-~ (3 3 = - 3. =
V'(EPa“J=EPaV°“+E”°VPa
D3Pa3~—-3_a3)-(3_)
—| = |+=P,Veu=Ve|=Pu|+—|=P,|=Ve| =P 4.24
Dr(z)z"u (2“")8:(2“ p o (429)

The derivative with respect to time on the left side of Equation 4.24 is equal to the
total power absorbed in the plasma volume, defined as S, less the power lost in
electron-neutral collisions that ionize neutrals. The gradient on the right side of Equation

4.24 is equal to the thermal energy flux to the reactor walls. Specifically:
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Subs = (€. +&)[T e dS +ee. [Kingn, dvol
S vol

2
d e ds = 42Dy (X)) Ly + IR
S y/4 L XOI

(4.25)

2

L R
I KizlgMe dvol = 47K iz11gno —~—Ji (Xo1)

vol 01

E,,E;,E. are loss terms

Where the integrals in Equation 4.25 are exactly the same integrals found in
Equations 4.20-4.22. The loss terms represent thermal energy lost in the electrons and
ions as they diffuse to the reactor walls, and ionization collisions in the plasma bulk,

respectively. Combining Equations 4.25 with Equation 4.21 gives:

__ Sabs
M = ——
eDAeff &r
- L r R?
Aeﬂ = 4”Jl(x01 ;Xm +z';(-0—l (4.26)

Er =&, H & HE,

Equation 4.26 is also valid for low and intermediate pressure regimes, with ug
replacing D, and the effective area given in Equations 4.15. Note the effective area in
Equation 4.26 has units of distance.

The collection of equations in section 4.1.1, section 4.1.2, and section 4.1.3
provide the global model equation set. Solving the continuity equation gives the electron

temperature; solving the power balance, or energy conservation equation, yields electron
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and ion density. To complete the equation set, it is necessary to determine the power loss
terms, €., €, and €. The electron density distribution, f, is critical in finding these terms.
The global model places only one restriction on the electron energy distribution; that is,

electron-ion collisions are elastic. As a result:

| ) 3
— dv+ dv =—kT,
;[2mvf v !(z)f v 5T,

(4.27)

Jor monotonic gases (normalized)

Therefore, the maximum entropy of the distribution function f, constrained by
Equation 4.27, sets the electron energy distribution function equal to the Maxwell
distribution. The average energy flux for the electron, given a Maxwell distribution, is

2eT,; the average velocity is given by:

7 )2
<V, >=( ‘3] (4.28)

Assuming only elastic collisions, the ions pass from the plasma bulk to the reactor
wall with no change in energy. The difference between the bulk plasma potential and the
reactor wall potential is equal to the energy flux per ion. The potential difference is
found in two parts. Firstly, from the plasma bulk to the sheath edge; secondly, from the
sheath edge to the reactor wall. The former potential (a) is found by invoking energy
conservation from the center of the discharge to the sheath edge; the latter potential (b) is

found by balancing electron and ion flux to the reactor wall. Thus,
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2
1 > 1 T,
= Mug?=-M| [Ee| =g =2
(a) e¢e 5 upg 2 [ J Do 2

BO»r,=T,=> —l:r]sew /e < Ve >=1)lip

(4.29)
L) (), L)
And,
Er =€ tEite =2+ %[1 + ln(—z%j] +&(T.) (4.30)

The rate energy is lost per unit volume per ionization collision is a function of
electron temperature, and is given by the curve presented in Figure 23. Calculations of

electron density and temperature for experimental data are given in chapter 7.
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Chapter 5 Spectroscopy Theory: Zeeman Effect

Extracting information from spectroscopy results requires an understanding of
Quantum Theory. Bohr-Sommerfeld Theory adequately explains simple atomic spectra
classically, with given ad hoc quantization rules. For example, the Balmer formula, a
direct result of Bohr-Sommerfeld, accurately accounts for the principle peaks in the
visible atomic Hydrogen spectrum. The theory also accounts for the quantization of
angular momentum, and applies to the vibration and rotation spectrum of simple
molecules, and the normal Zeeman effect.

However, Quantum Theory is necessary to explain complex atomic spectra, the
anomalous Zeeman effect, and fine structure. Quantum Theory is necessary to formulate
angular momentum coupling (spin-orbit) and coupling to magnetic moments. Quantum
theory is necessary to address relativistic effects (Thomas Precession, Darwin Shift) and
multi-body effects (Lamb Shift); effects that are pronounced in atomic Hydrogen spectra.
Additionally, a systematic analysis of spectral data is not possible without the constructs
of Quantum Theory.

The first two sections introduce Quantum Theory fundamentals, followed by
sections that describe the quantum effects of fields on particles. In a plasma, these
quantum interactions effect changes in spectral lines. Specifically, the effects that
contribute to spectral peak splitting found in atomic and diatomic hydrogen are discussed

in the final sections.
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5.1 Introduction: Quantum Theory

One starting point for Quantum Theory is the Schrodinger equation, proposed by
E. Schrodinger in 1925. The Schrodinger equation defines the wave function state; that
is, the wave function position and momentum. Classically, the equations of motion are
found by following the stationary path defined by the action integral (Maupertuis,
Hamilton). In Quantum Theory, the equations of motion —the Schrodinger equation- is
found by following all possible paths. In 1948, R. Feynman developed the Schrodinger
equation formally by summing all possible paths constrained by the action integral and
uncertainty in conjagate state variables position and momentum. The Schrodinger

equation is given as follows:

2
()4 V) = 0 (xr) (5.1)
2m ot

Setting the potential energy term (V) to the energy stored in the near parabolic
energy well of an atomic bond, the Schrodinger equation yields Hermite polynomials as
the wave function (V) solution for the harmonic oscillator. Setting the potential energy
term to the potential that results from a central potential, the Schrodinger equation yields
spherical harmonic functions (associated Legendre polynomials) as the wave function
solution for a single electron orbiting the nucleus.

It should be noted that the wave function solutions for the harmonic oscillator and

the central charge can both be constructed without the use of the Schrodinger equation.

67



Dirac constructed eigenvectors and developed solutions for the harmonic oscillator based
strictly on the constructs of Hilbert space and conjugate relations. Born, Heisenberg, and
Jordan did the same with angular momentum operators to solve for the angle dependent
solutions to a central potential.

For the purpose of studying spectroscopy peaks, the Schrodinger equation will be
temporarily set aside. First, the eigenvector equations and operator functions for the
harmonic oscillator and central charge will be briefly illustrated. This tact will
demonstrate the powerful nature of the eigenvector technique, particularly for
spectroscopy, where the only results needed are the corresponding eigenvalues, which set
the energy levels of the system.

The eigenvector approach will introduce the angular momentum operators that are
used to determine degenerate energy levels in central charge potentials. These operators
will then be used to find the energy levels and degeneracies in coupled angular
momentum problems. Perturbation theory will show how these energy levels split —the
degeneracies are removed- with the effect of applied magnetic fields (Zeeman effect).
Results will be applied to the hydrogen rotational spectrum.

The Schrodinger equation will be used to address effects caused by changes made
to the potential energy of the system. Perturbation theory is needed to calculate energy
shifts that result from magnetic fields (Zeeman) and electric fields (Stark). The
Schrodinger equation must be modified to account for the interaction of the electron spin
with the orbital angular momentum of the electron. Also, the Schrodinger equation must
be adjusted to account for the relativistic mass of the electron. Results will be applied to

the diatomic and atomic hydrogen spectrums; the complete energy spectrum for diatomic
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hydrogen is given in Chapter 6; the complete energy spectrum for atomic hydrogen (Hg,

Hg, H,) is given in Chapter 7.

5.2 Eigenvectors

Mathematically, the eigenvector equation is given by the following:

Alx)y=4]|x) (5-2)

Where A is a vector operator, X is a set of eigenvectors or eigenfunctions, and A is
the eigenvalue diagonal matrix. Physically, the linear algebra terms observability and
projection space mean the physical quantity or operator (A) can be observed and
measured (A) if the object (x) can be projected without distortion.

An example is a microscope. The microscope objective lens operates (A) on the
light reflected from the object (x -LHS) to create an image projected onto the focal plane
(x —RHS) of the eyepiece. In this case, the operation of the objective lens is observable if
the image is clear; that is, x-RHS = x-LHS. The eigenvalue for the microscope is simply
its magnification.

Operators that commute can be observed by the same set of eigenfunctions. This

can be seen for operators A and B in the following:
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Alx)=A|x)
Al XY= x)
(x"| AB| x) = A(x"| B| x)
(5.3)
(x| BA| x) = A(x"| B| x)
(X'1[4,B]| x) = (A= AKX'| B| x)
[4,B]=0= (X' | B|x)=0= B|x) = Ax
For the microscope example, a compound objective lens commutes; it does not

matter whether the higher magnification occurs first or second. The next two sections

describe the operators for the harmonic oscillator and central potential.

5.2.1 Harmonic Oscillator

The infinitesimal translator operator changes the wave function position argument

as follows:

’ d . . d ’ . 4
T(ax)=l—ax-a—=l—j-—jh§-a%=l—j~p-a% (5.4)

X

Where p is the momentum operator, and is Hermitian. The Hamiltonian —the

energy operator- is given by:
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—1—H=%(P2+Q2) (5-5)

p =mhoP (5.6)

ma? = &)

And ma’ is the spring constant (k) of the system. Q and P represent derivative
position and momentum operators, which like true momentum operators p and q, do not

commute.

[0.P]= (5.7)

The one-dimensional harmonic oscillator potential energy is a function of
compression- or translation -which can be discretized; allowed transitions increase or
decrease compression by one unit. Operators that change the energy of the wave function
are commonly called “ladder operators™.

Creation and annihilation operators [40] for the one-dimensional harmonic
oscillator are given in the following. These operators are unitless, and represent the
infinitesimal energy change that results from the infinitesimal translation, given in

Equation 5.4.
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2
(5.8)
+ 1
a =—(Q- /P
\/E(Q J )
And,
[a,a*]=1 (5.9)
Now,
%H=%(P2+Q2)=%(aa++a+a)=N+% (5.10)
Where,
N=a'a (5.11)

Returns the original wave function as the eigenvector, with eigenvalue equal to

the number of units of energy stored in compression (n). In eigenvector notation:

N|n)=n|n) (5.12)

And with,

[N,a]l=[a%a,a] = a*[a,a]+[a*,ala=-a

(5.13)

[N,a*1=[a*a,a*1=a"[a,a*]+[a*,a* Ja=a"
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It is clear that,

Na|n)=(N,al+aN)|n)=(n—-1)a|n)
(5.14)

Na® |n) = ﬁN,a+]+a+N)| n)=(n+Da" | n)

Which implies a+|n> and ajn> are also eigenvectors of N, with eigenvalues n+1

and n-1, respectively. Relating Equations 5.13 and 5.14, it follows that:

alny=n|n-1)
(5.15)
at |n)=vn+1|n+1)
Returning to the Hamiltonian,
HIn)=ha{N+%)|n)=ha)(n+l/2)|n) (5.16)

Therefore, the energy levels for the one-dimensional harmonic oscillator are given

by the eigenvalues:

E,=ha(n+1/2) (5.17)
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5.2.2 Central Potential

Understanding the central charge potential requires a thorough understanding of
the angular momentum component, which contains the most interesting spectral
information —that of degenerate peaks that split in the presence of an applied electric or
magnetic field. The angular momentum component and angular momentum operators
will be covered in the next section. The central potential Hamiltonian will be presented

in the following section.

5.2.2.1 Angular Momentum Operators

The infinitesimal rotation operator changes the wave function position argument

as follows [41]:

' 9 13l 9,9
Rz(8¢)—-—ra¢--5-¢;—l a¢(xay yax]

(5.18)

L , 0 L9010’/ __ . , of
—l—j~[x~—jh$—y'—jha—xj A—]—j'.]z- 4

This is exactly analogous to the infinitesimal translation operator presented in the
previous section. The second order expansion of the infinitesimal rotation operator leads

directly to the angular momentum commutation relations:
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R, (a¢) =R, (a¢,/2)Rz (a(p’/z)

=1-j'-]z'a%_‘]lz(a%h)2

And,

R,(20)R, (09 R, (3R, (3¢) = R.[0¢)-1

Which implies,

[,_ 74 _Jf(a%h)z}{l— j-dy- 0% —J,f(a%h)z}
_[l_j.Jy .a%_.]i(a%h)zj":l—j-.]x .a%—ﬁ(a%;,)z}

= (I - Jny(a% ]= —j-J, o)
= [Jx"]y]z thz

And, in general,

[J,',Jj]= Jhgljk‘]k
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The angular momentum components Jy, J,, and J, do not commute. Likewise,
orbital angular momentum operators L,, L,, and L, do not commute. Recasting the

components of L in spherical coordinates, as shown in Figure 24:

h
x>~
I
i
I
~
-
H
<
~
I

. J . 0
v [i£+1cot9$}
(5.23)

Where the primed coordinates are body-axis coordinates. Now, raising the
operator dimension by one gives the horizontal component of the angular momentum

magnitude, in both body-axis and inertial frame:

’

W+ v 1 3 ) 02
=2 ==L, 1_+L L, |]=- —-"ZLsin0—=+cot?—
h = 2(+ /) Sin6a8 38 ag?

(5.24)
[Lh’ Lz 1=0

Here it is clear that L’ and L, commute. Therefore, L? and L, commute and have
the same eigenfunctions. L? is identical to the Laplacian operator in spherical

coordinates, and is given by:

2| 1 9. .9 1 3

- ———si

—+ 5.25
sin@ 06 n 00 sinz e a¢2 ( )
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Figure 24 Angular Momentum Operator: Spherical Coordinates.
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L, is periodic about the z axis. Its eigenvector equation must be the following:

L Y™ =m| Y™
(5.26)
= ¥"(6,9) = F(6)e’™?

The eigenvector equation for L’ is different for each m. For m = I, the eigenvector

equation is:

2
B|ﬁ>=——i—3ﬂmeii+ !

/
Y,
sinfd6 30 sinl@ ¥

(5.27)
% |sin’ @) = 1(1 +1) | sin’ 6)

Where the corresponding eigenfunction and eigenvalue are sin'6 and 1(1+1). The
angular momentum ladder operators are the infinitesimal angular momentum operators

from Figure 24 and Equation 5.23. More succinctly, they are given as:

. d
Ly=L,tjL, = [i’-a—g—mcote] (5.28)

Where m is the eigenvalue for L, Physically, m is the dimension of the

divergence operator (V @), and depends on the dimension —or eigenvalue- of the wave

function.
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Commutator relations are as follows:

[L:.Li)= L,
[L,,L }=-L

[Ly, L )=2L;
With Equation 5.24:
=1+ = %(L_L,, +L, L )+12

LL, =1*-L,(L.+))
LL_=1*-L,(L,-1)

And,
[[2,L]=0=[L% L, ]=[L*L_]=0
So,

Ly |l,my = LyI? | I,m) = I(1 + 1)Ly | 1, m)
L,Ly |I,my=Ly (L, x1)|I,m)=(m=z1)Ly |I,m)

= Ly |l,m)=cy | l,m1)
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Equation 5.32 implies L, |/,m) are both eigenvectors of L? and L, with
eigenvalues 1 (I+1) and m 1, respectively. Further, L, are ladder operators, analogous

to the ladder operators for the harmonic oscillator found in Equation 5.15. Using

Equation 5.30, and the fact the ladder operators are Hermitian:

=L, | 1,m>|2 =(,m|L_L, |1,my=[I(1+1)—m(m+ D)k, m|1,m)

=L Lmy® = (m | LyL | Lm) = (I +1) = m(m = )Kl,m | I, m)
(5.33)

= ¢y = Il +1)=m(mt1)

Ly | Lmy=JIU+1)=m(m+1) |[lm*1) = - <m< +]

Before leaving this introduction, it is useful to see that the results given in
Equation 5.33 can be arrived at be restricting oneself to the physical interpretation of the
operators. The operators can be written as successive gradient/divergence operators, each
changing the dimension of the waveform by one. As seen in Equation 5.30, the anti-
commutation of L, and L. yields the Laplacian for the horizontal-plane component of

angular momentum. Using the identity in Equation 5.28 for a given m:

1 a . +(m+]) 1 a c—-m
L L, =- — —_— 6 5.34
¥ sin+z'"+') Rl . sin™™ @ 906 . -39
1 d —-(m-l). 1 +m P



Ladder operators applied to the RHS of L} increase (decrease) the dimension by
one; that is, the exponent on the sin function (m) increases (decreases) to reflect the
dimension of the wavefunction. Starting withm =1, L_|Y/y=/|Y/), and applying the
L. operator s times, m — m —s, and the new wavefunction that satisfies Equation 5.34 is

given by:

L Yy=LI 1YYy=(-5) |( 9 gin*m eJY,’> (5.35)

sint” g 96

The spherical harmonic function, Y,"(8,0), is multiplied by the radial wave
function component to complete the wave function. The complete central potential
Hamiltonian and radial wave function component are covered briefly in the next section.

Finally, the angular momentum operator can be connected to the harmonic
oscillator (Schwinger) [42] by mixing the fields of uncoupled harmonic oscillators, each
with independent commutation relations. One operator (L.) creates one unit of +#/2
angular momentum (L,) and annihilates one unit of —#4/2 angular momentum.
Likewise, its conjugate (L.) annihilates one unit of + #/2 angular momentum and creates
one unit of —#/2 angular momentum. This connection reinforces the results from the

Clebsch-Gordan calculation in section 5.4.1.
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5.2.2.2 Central Potential Hamiltonian

Returning to the Schrodinger equation, the central potential Hamiltonian

(hydrogen atom) is given in spherical coordinates as:

p2 2
H="+ 5+ V(r)
2m  2mr
_hlo,
" jror
(5.36)
2
Lz =—ﬁ2 ] is]nei+_l__a—
sin@ 06 30 sinle a¢2
2
Vir)=-=
’
And,
Hly)=E|y) (5.37)

Substituting as follows:
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= x=2
s yia
2 2
y=2_ [T (5.38)
he Y-2F
.
ry=xtle 2y,

Equation 5.37 can be rewritten:

x-—d—2—+(21+2—r)i—(l+l-v) v =0 (5.39)
dx? " dx : '

Solving by Taylor series expansion gives [43]-[44]:

7

= F(l+1-v20+2:x)=
= FU+1-v20420)= ), T(+1-v) QI+1+p) pl x—w

T/+1+p-v) (+1) x* | -1y
p=0

1
2ry—_oox e?
X—oo

(5.40)

Which does not converge for large r. However, ry in Equation 5.38 does

converge if the polynomial is finite, that is:

I+1-v=0,-1-2-3,...=2>v=n:n-(I+1)=0,1,2,3,...

(5.41)
n=123,. H|w)=n|w)
=1=012.n-1{2 |y) =11 +1) | p)
—1<m<+l L, \y)y=m|y)
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Where (n, 1(1+1), m) are the eigenvalues —or quantum numbers- for a central
potential. The principle quantum number, n, defines the energy level, 1(1+1) the
rotational energy (angular momentum), and m, bounded in Equation 5.33, the magnetic

moment.

5.3 Electron Spin

Electron spin follows the eigenfunction precepts detailed for orbital momentum.
However, spin is a more elusive concept. In 1922, O. Stern and W. Gerlach carried out a
series of experiments in Frankfurt (Stern-Gerlach Experiments) that illustrated just how
illusive a concept spin is [42]. Randomly oriented electrons were ejected from a
collimating slit, passed through a gradient magnetic field, and recorded on a screen. Two
peaks were observed, corresponding to spin up and spin down orientations. These peaks
were identified as S," and S,

Then, S," is passed through a second gradient magnetic field, perpendicular to the
first. Again, two peaks result, identified as S« and S,. The S," beam of electrons was
then passed through a third gradient magnetic field, oriented identically to the first. The
result: both spin up and spin down peaks were observed (S;, S;), even though S, had
been removed in the first step of the experiment.

The conclusion is that the S,” measurement —or filtering- restores the missing S,

spin. Mathematically, this can be seen with the following operator set:
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h
Sy = 5[(| +X= 1)+ ( =X+ )]

s, = gl— 4 1)+ 70 -] (5.42)

S, = 204+ )= (- 1)

Physically, an exact measurement of S,” means that there is no certainty to the
measurement of S, -that S,” and S, are equally likely- as S, and S, do not commute. This
relationship is analogous to the relationship between position and momentum.

Spin commutator relationships are identical to those of the orbital angular

momentum commutators, given in Equation 5.22.

[Si,S ;1= jhei Sy (5.43)

In addition, spin has the following anti-commutator relationships:
{Sissj}:'%hzalj352:(-1—4-1.'.1);’2:_3_’12 (5.44)

And spin ladder operators are given by:

h
[S2,84+)= ES+

[S,,S_]= _gs_ (5.45)

h
[S,.5-1= 235,
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Where:

Sy | s,m) = \/s(s+l)—m(mil) |s,m*]) = —% <m< +—;— (5.46)

For a system of two spins,

S=8+S,

S0 =(5+85,) | 1) =s(s+ DA% | 1)
(5.47)
S |2y =mh| )

S A2 =(S1.+S2) 1 1) =(m +my)| ) =m| )

The full eigenfunction —or wavefunction- solution for the central potential

problem is simply the product of the spatial and spin wavefunctions:

w(r.t)=o(x,1)x(1,2)
(5.48)

w3 = (p(xy, x2) - #(xa,x1))23(1,2)

¥ = (@(x1,x2)+ B(x2,x1))11(1,2)

The Pauli Exclusion Principle excludes two identical particles from the same state
(position, momentum) [45]; therefore, the wavefunction must be anti-symmetric. The

first wavefunction (y3) is anti-symmetric in space, symmetric in spin; there are three
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configurations of spin (triplets) that satisfy the symmetry condition. The second
wavefunction (y;) is symmetric in space, anti-symmetric in spin; there is only one
configuration of spin (singlet) that satisfies the anti-symmetry condition.

In diatomic molecules, the triplet wavefunction density is lower between atoms
than that of the singlet; that is, the inner product term in the square (exchange density) is
smaller. The triplets represent anti-bonding orbitals, set at a higher energy than the
singlet bonding orbitals.

Triplet and singlet states can be built from individual spin states, using ladder

operators and the orthogonality principle, as shown in the following.

(Is=Lm=1)y=++)

ls=lm=0=S_|s=lm=1)=(S|_+S5,_)|s=1l,m=1)

11 1.1
= J11+1)=1(1-0) | s = 1,m = 0) _\/5(5+1)-5(5—1)(| —)+ | +))

<:>|s=l,m=0)=—‘}_—2(|—+->+|—+))

|ls=lm==1)=S_|s=1,m=0)= (S +S,_)| s =1,m =0)

1 1 1.1
= Jl(l+l)—0(0+l) |s=1l,m=0)= \/5(5+1)—5(5—1)w/5(| —|—))

(5.49)

=ls=lm=-1)=—)

And,
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|s=0,m=0)=V2( —)| +)
(5.50)
= (s=0,m=0]s=1m=0)=(2(——|+))[V2(—)+|+)) =0

Equations 5.49 and 5.50 convert individual spins to total spin. The total angular
momentum is energy degenerate, but not so under the influence of a magnetic field.
Total spin and total magnetic moment are needed to calculate this interaction. The next

section shows how to combine angular momentum terms, spin and otherwise.

5.4 Angular Momentum Addition: Clebsch-Gordan Coefficients

The addition of angular momentum requires the conversion from the |1;,m;;l;,m;>
(Li%, Liz; Ly% Ly,) representation to the [j,,ja;j,m> (J,% J2% J%, J,) representation. The
elements in the square matrix that perform this transformation are called the Clebsch-
Gordan coefficients.

The representation transformation is important in spectral analysis. All four
elements in both representations commute for spherically symmetric groups. For groups
that are cylindrically symmetric, but not spherically symmetric, only the Ilatter

representation commutes. Specifically, for diatomic molecules such as hydrogen, Le L,

does not commute with L;, or L,,. In spin-orbit coupling found in atomic hydrogen,
L e S does not commute with L, or S,. But in both cases, they do commute with all the
elements in the latter representation; therefore, that representation is observable and
complete.

Equations 5.49 and 5.50 are an example of Clebsch-Gordan coefficients; in this

case, transforming from (Slz, Sz ng, S,,) to (S,z, S,% S? S,) representations. For
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diatomic hydrogen in the ground state (Xg, X,) —that is, no orbital angular momentum-
two electron spins couple with the molecular angular momentum (R) to give the total
angular momentum, as shown in Figure 25. For atomic hydrogen, one electron spin
couples with its orbital angular momentum (spin-orbit coupling). These two cases are

examined in the next two sections.
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Figure 25 Angular Momentum Diatomic Hydrogen.
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5.4.1 Diatomic Hydrogen: Clebsch-Gorden Coefficients

Special attention will be given to the portion of the rotational spectrum of
diatomic hydrogen where electrons fall from the charge-transfer excited state (X,)
molecular orbital to the ground (Z,) molecular orbital. Each peak represents a transition
from an angular momentum state one unit higher, lower, or equal to the final state [46].

Both X, and Z; are degenerate in orbital angular momentum. Although they are
both s-orbitals, and spherically symmetric, the angular momentum eigenvalue is unity
(I=1); this is a result of the rotation about the axis perpendicular to the internuclear axis
(m; = +1, 0, -1), as shown in Figure 25 [47]. The spin degeneracy for two electrons, as
described in section 5.3, accounts for an additional degeneracy in each of the orbital
momentum states. Represented in triplet and singlet form, the spin degeneracy is unity
(S=1). The total degeneracy in each ground state is equal to (21+1)(2S+1) = 9.

Equations 5.49 and 5.50 are a simple example of the Clebsch-Gordan coefficients;
the angular momentum (s) and magnetic moment (s,) of individual electrons are added to
give the total angular momentum (S) and magnetic moment (S;). The Clebsch-Gordan
coefficients summing electron spins were found by applying operators S* and S". In
general, Clebsch-Gordan coefficients summing angular momentum are found with the

following recursion relationships, from application of the ladder operators J* and J".

J(jiijim+l)(j1,j2;m1,m2 | j15 7235 J,m 1)

= JUL Fm))Uy £ my + 1)y, josm FLmy | i, s jym) (5.51)

+ (2 Fmy N jp £ my + 1)y, josmy my F 1| i, jas jsm)
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Adding the diatomic hydrogen orbital angular momentum eigenvector to one

electron spin eigenvector gives:

1
l+m+5 1
) 1 - 2
|J=1+5a'">= V 20 +1
P—m+—
2
21 +1
2
2/ +1

m=m-—,m;=—
/ 2 s 2)

1
m=m+—mg= _E>

. 1
I]=1—5,M)=

1
|
1
1
+ |
2
1—m+% 1 1
- m=m-—,mg;=—
d TR M=y
1
P+m+— 1 1
+Y\——=|m=m+—m; = ——
I ! > s 2>

Equations 5.52 and 5.53 can be rewritten as a rotation matrix.

]
- . 1+m+l 1—m+l— -
= 1+%m) —2 — 2y =t my =41
STy 20 +1 20 +1 A S P

. 1
|J=1-E,M)
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Addition of the second electron spin gives the following 3x4 matrix as the sum of

orbital angular momentum and two electron spins:

[17+1,m) ]|

|1,m)

L1 =1,m) |

MI+1,++
MI,++

M) 44

M/+l,+—
Ml,+—
Ml—l,+—

MI+1,—+
MI,—+
M-+

(5.55)

An identical 3x4 Clebsch-Gordan coefficient matrix exists with m replaced by

negative m. These two matrices are coupled for diatomic molecules. P. Zeeman

discovered and explained the coupling physically in 1902. Simultaneous forward (m)

and reverse rotations (-m) rotations sum to a single vibration, which precesses in the

presence of a magnetic field [48]-[49], as shown in Figure 26. As a result, nine distinct

degeneracies are present for each total angular momentum >0; three for rotation (+, 0, -),

and three spin (+, 0, -) for each rotation.
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Figure 26 Precession of Vibrating Diatomic.
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The following lists the matrix elements for the rotation matrix in Equation 5.55.

=(m — .1 l+m [I+m+]

M L+—=+=|l+1m)=

iz = 2 2I ™ \/21+1J 2[+2
= 11 I+m+1 [[-m+]

M = A= /Il,

Ie= = 2 2| ™ \/ 21 +1 \/ 21+2

= ! |1 I+m+1 [I-m+]

M _ ’ , 1 l, —

el = 2 2[ ") \/ 2/ +1 \/ 21+2

l l—-m+1
My = +l-—-_ |+
I+1, (m; > [1+1,m) = \/2[”\/ -

! m+1 I+m
Mo =(m—1+= + -
1++ (my — 2’ | m) = (21-}-1 (\f J21+2]
. I+m+1 [[+m+1
MI,+— =<mla+_,_— | 1,m> =_J J J J
2 2 2A+1 Y 2+1 \ 21+2
1 l I+m I+m I—m+1 [I=m+1
M _=(m,——+ _
272 2A+1 YV 2+1 Y 21+2

M[—-—=<m,+l,——,——|[,m>=Jl+m+l J J
| 2 2 20 +1 20+2

.1 l—-m [l-m+1
My gy =(my —Lt— 4= |1 =1m) =
e =l = lag g H=Lm) \/21 \/21+1

1 1 l+m |[l—-m

M - -= a+-,__ 1—1, = — [
=14 = (my 5 2| m) ’ - /21+1
11 l+m [l—-m

M— —+ = a—_,+— l—l, = — |—
I-1,-+ = {my 3 2| m) ’ > ’.2“-1

Mll———(m/+1—%—-—|l—1 m) = J1+'"J1+m+1

(5.56)

2/ +1

Entries in the matrix for Equations 5.55-5.56 are the Clebsch-Gordan coefficients
for the sum of orbital angular momentum and two electron spins for a diatomic molecule,
such as hydrogen. These coefficients are combined to find rotation and spin degeneracies.
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5.4.2 Atomic Hydrogen: Clebsch-Gorden Coefficients

The total angular momentum and magnetic moment for atomic hydrogen can be
found by the addition of one unit of orbital angular moment and one electron spin, as
given in Equation 5.54 in the previous section. These coefficients are necessary to find
the energy change as a result of spin-orbit coupling, a result that follows from

perturbation theory.

5.5 Perturbation Theory

Perturbation theory allows additional operators to be included in the Hamiltonian
to account for small changes in energy. Energy changes result from applied fields, and
energy corrections can be made for the relativistic mass of the electron and spin-orbit
coupling. Energy changes caused by electric (Stark) and magnetic (Zeeman) fields
remove orbital and spin degeneracies.

In general, the Hamiltonian can be appended with additional energy operators.
The set of equations on the following page summarize the perturbation mathematics for
non-degenerate energy levels, such as those found in the fine structure of atomic
hydrogen. Further development later in this section allows for the perturbation of

degenerate energy levels, found in the mixing of atomic wave functions.

96



Hy | ng) = Eq | ng)

(Ho+AV) | ng) = Eg | (ng + g )

n =g+ ng,(ng | ng) =0

(Eo—Ho)lny=(AV =A,)| n)

(ng | (Eg = Ho) I n)=(ng | (AV = 4,)| ny =0
(AV = A,) | nyeng

Ap|n>=Ang |V |ny|n> (5.57)

That is, the change in energy along the nth eigenvector is the projection of the
potential operating on |ny>. Finding |n> should be as easy as applying (Eo-Ho)™' to both
sides of Equation 5.57, and it is. But, (Eo-Ho) maps |ny> to 0, so (Eo-Ho)" is ill-defined

for n. However, (EO-HO)" is not ill-defined forn,, which is orthogonal to n. Defining @,

orthogonal to n results in the following:

@, | ny= (1= | ngXng )| meng
(5.58)

T o, )
|n>=|n>+|no>—|no>+—(EO_H0)(/1V Ay)ln)

Ay =Ang |V | n)

L

Equation 5.58 can be solved iteratively for eigenvectors |[n>; eigenvectors |n;> will

be combinations of eigenvectors orthogonal to n¢>, the set of eigenvectors for the
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unperturbed Hamiltonian. Given the notation, the first and second order perturbations for

energy level and eigenfunctions are given in the following two sets of equations [42]:

Vie =mg |V [ np)

A =0
(5.59)
A =(ng | AV | ndy = AV,
D 0 2 VakVin
A =(ng |V | nd) =(ng | AV —L— AV | nQ) = AV, + A2 Y —okThn
no 0 O (Eo - Ho) 0 ,EZ,(E,,—E/()
Vie =< |V | np)
ng) =l ng)
by =)+ 283V | nd)y = ngy + A Y —L | ky
(Eo— Hy) o ( —Ek)
2 0
A nd) +—2 AV
ny) =l ng) (Eo— Hy) | n)
o 0 L] L] 0
= nd) + —1— AV | n) + —I2— AV | n___AV | nd)
0 (Eo— Ho) 0 (Eo —Hp) (Eg — Ho)
Sy +AY | k)
k;tn(E —Ek)
(5.60)

+,12 ZZ VkIVln | ) Z Vnndn |k>
Fonow (E,—ExXE, - E}) (E, - Ey)
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Intuitively, Equations 5.59-5.60 state that the first order perturbation is the
projection back to the zero order eigenvectors of AV, which operates on the zero order
eigenvector set. The second order perturbation operates and projects a second time. On
convergence, AV|n> projects back onto [n>, returning exactly the eigenvector equation.

Equations 5.59-5.60 are predicated on the fact that £, # E, fork # n; that is, the
energy levels are non-degenerate. For degenerate energy levels, Equations 5.59-5.60 fail
to produce perturbed energy levels and wave functions.

However, degenerate energy levels allow the freedom to mix eigenfunctions
within a given level. The new eigenfunction representation can be composed such that

the inner product terms V,, go to zero for each £, = E, wherek # n. Returning to

Equations 5.57-5.60:

I/
Py =Z|”’i ><m; |
i=0

1
|1 >= Py |1; >= Y| m;y ><m; |1; >
i=0
(5.61)

0=(m] | (Eg—Ho) |12y = (m)) | (AV = A,) 1 1)

I 1
= Y mY AV | m) ><m |10y =Y W <m] 119y =By <m |1)

Equation 5.61 transforms the wave function representation into one in which the

new inner product term matrix (Vy,) is diagonal; that is, V\,=0 for allk #n. The
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eigenvalues for Equation 5.61 are the perturbed energy levels; the eigenvectors for
Equation 5.61 are the linear transform coefficients mapping |m> to ||>. Equations 5.59-
5.60 are now valid for degenerate energy levels; summation is over all remaining non-
degenerate states, all states with unique, non-zero eigenvalues.

The next three sections look at spin-orbit coupling in atomic hydrogen, the
relativistic mass correction for atomic hydrogen, and the anomalous Zeeman effect. Each

of these effects can be accurately approximated by perturbation theory.

5.5.1 Spin-Orbit Interaction

A magnetic field will interact with the orbital angular momentum and electron
spin of an atom, splitting the energy lines in the visible spectrum. This effect is called the
anomalous Zeeman effect. But first, it is important to look at just the interaction of the
orbital angular momentum with the electron spin —the spin-orbit interaction.

The central potential in the Schrodinger equation is not strictly a central potential
due to the shape of the electron cloud surrounding the nucleus. A moving electron
accelerates radially in response to a field gradiant just as it would to an applied magnetic

field, namely:

V = ed(r)
(5.62)

B:—XxE:LxVV
c ec

The electron spin couples with B; the energy correction operator represents the

work done to rotate the electron spin away from the magnetic field.
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(5.63)

- = 4
H;g=-ueB= 212 So(px—r-l—ﬂ-) =(l) 2]21-(1—(1405)
mjc r dr 2)mic” r dr
Where the extra multiplicative constant '2 is due to Thomas precession [50].

(L oS )does not commute with L, or S,, but does commute with total angular momentum

J? and J,. There are two total angular momentum terms, from section 5.4.1:
LoS:%@z—B—Sﬂ

2
= = h .. 3 = =
.2
Sh% j=1+1/2
. . 27/
=/xl/ =1/
e =112
2

1 1dVv i=1%1/2.m i=l+1/2,m
b (L) i
nlm 2mgc2 r dr ol ! /

A 1 <1dV> 2
nm =2 2\r dr
2mycc \r ar [, _I%Ihz;j=1_1/2

(5.64)
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Equation 5.64 is Lande’s interval rule [42]. Referencing Equations 5.36-5.41, the

potential gradient term can be found in steps:

2

l e
(q"nlerV‘LPnD 2E :__2_
n© 4o
1 1
=>(‘1’/|—|‘*‘/>——2—
n“ 4y
2 e
<\Pnl l H | Wnl) —-?—
n- qp
2
4 m,e 4 1
=><‘*'n11 | W) = =

QI+0n’ hPay (21 +D)n o}

20( + 1)h? +é

¥t 1 5 H | W) =¥ | - 3 5 1 ¥n) =0
mer r
=¥ Ill‘*’>—m"e2 < | 5 |1 W) = 2 1
113 !} = / nl/ = -3
e R C ((R ) I+ +2)n° af  (5:69)
19 2 e’

=¥V, |——V | ¥, €
"y or T+ e a
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The ratio of the energy shift for atomic hydrogen to the Balmer intervals is on the

order of o’=1/137% [42], that is:

a Ui
0=
mye*
2
o= -1 (5.66)
hce 137
" <1£> U
AI,,/,,,__ngc2 rdr/, 2m§c2 ag _ fi _Lz
e2 ez ez he 137
2q 2ay 2ay
Which means A, can be written as:
' Lo 1+1/2
i
! e 1 2/
i = e D]
e I 2 WY S .
2
(5.67)
r ol f=1+1/2
. 4
4 204 1 2 /
S A +2) |
2n _n(1+1);j:1_1/2
| 2

This expression will be combined with the relativistic mass correction in the next

section.
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5.5.2 Relativistic Mass Correction

The perturbation operator for relativistic mass comes directly from the relativistic

energy term:
E,%, = mgc4 + pzc2
(5.68)
? e 2 L p? 2
—)E,,,—mec2=m€,c2 1+ 3 2-—1 = - 3
2m(, mg,c 2me 2mec 2m(,
: 1
Solving for A,;:
2
2 2 2
1 1 e e
By =——— ¥ || 2= | 1 W) =———(Ep + | E, + 5
2m,c e 2myc r r
S : [E,? + 2E,,e2<l> +e2<L2>J
2m,c r r
(5.69)

, at ( 2n 3)
=myct — -=
2,4 2141 4

Now, adding the spin-orbit interaction to the relativistic mass correction, with

total angular momentum j substituted for orbital angular momentum I:

- (5.70)
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And the total energy, including rest mass, is [50]:

- -—|+.. (5.71)

Briefly, an additional correction term —the Darwin term [S1]- allows for s orbital
(1=0) corrections in Equation 5.69. Both the Darwin term and Lamb Shift evolve from
the relativistic quantum field equation —the Dirac equation. The Lamb shift makes a very
small correction to remove the degeneracies in orbital angular momentum [42]. Its effect
is nearly negligible for this set of experiments, and will not be pursued here.

Equation 5.71 completely describes the energy levels associated with the fine
structure of atomic hydrogen. The fine structure of atomic hydrogen, and nominal

transition intensities, are addressed further in sections 5.7 and 5.8.

5.5.3 Anomalous Zeeman Effect

Degeneracies in the spin-orbit interaction are lifted with an applied magnetic
field. This effect is the anomalous Zeeman effect. The perturbation term enters as the
electron momentum interacts with the field momentum, the field that produces the

magnetic moment.
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Thus, for a relatively weak magnetic field,

A= %(Bm) — A= —%(.%By—_ffo)

) 2 ) 2,2
p—)p—(A =>H= P +V - ‘ (p0A+A0p)+ e 4
c 2m, 2m,c Zm(,c2
(5.72)
ped=Aep—jiVed=Aep+0=Aep =%B(—ypx+xpy)=%BLz
A’ =Ade 4 =%Bz(x2 +y2)
Ignoring the smaller quadratic term:
p2 eB
H="—1+v- (L, +2S,) (5.73)
2m, 2m,c

Where the factor of two on the spin term is due to the g-factor of the electron [50].

To summarize:

2
H0= P +V
2m,
1 14V
His =—55~——(LeS) (5.74)
2mec r dr
eB eB
Hp =- 2 (Lz+2Sz)_— 3 (Jz+Sz)
2m;c 2mgc
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The transformation to total angular momentum and total magnetic moment is

given in Equation 5.54 (Clebsch-Gordan coefficients), namely:

1
| j=l4=—m)= =3 (5.75)
IF¥m+—
| =m+—1- m, =——)
241 27 2
Therefore, the first order energy perturbation is:
eB . 1 . 1
Np=———(j=lt=m|(J,+85,)| j=1%=,m)
2m,c 2 2
| R 1 | I 1
eB Iim+5 I+m+5 A lim+5 1+m+5
Ag=- mh + += - (5.76)
2myc 2/ +1 2/ +1 21 2/+1 2/ +1
-8 mh[li 1 }
2myc 2l +1

For a stronger field, J, no longer commutes; only LZ, Sz, L, and S, remain as

commuting operators.
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As a result,

Np=-——(j=l%=m|(L,+25,)| j=1%=,m)
2m,c

=— cB h(m; +2m,) (.77)
myC

Not all degeneracies are removed in a strong magnetic field; m;, ms combinations
yield the same first order energy correction. Line splitting where the applied magnetic

field effect exceeds that of the spin-orbit interaction is called the Paschen-Back limit.

5. 6 Rotational Spectrum for Diatomic Hydrogen

The intraband rotational spectrum, the series of peaks for a constant vibration
eigenvalue and single angular momentum transition, becomes evident as the applied
magnetic field removes the degeneracies on orbital and spin angular momentum. Figure
27 shows the energy level diagram for the Z,—Z, transition [52]. Each of the fifteen
transitions is associated with a unique energy difference; the reason: the energy split in
orbital angular momentum is approximately 50 percent larger (28.4/20) for X, than Z,
[53] due to the higher rotational inertia of the charge-transfer orbitals.

Zeeman splitting for a free electron (;Zgp) in an applied magnetic field of 5 T is
approximately 4.7 cm-1 (0.2 A/T at 4627.66 A) [54]. Accordingly, the magnetic field in

the plasma can be calculated by tracking the intraband peak separation in the rotational
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Figure 27 Zeeman Energy Levels.
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hydrogen spectrum. Peak intensities are a function of the Clebsch-Gordan coefficients,
given in Equation 5.54, and energy state population, which is approximately a Boltzmann
distribution. Over a narrow energy band, the Boltzmann distribution is linear, with slope
1/kT. Plasma magnetic field calculations and temperature estimates from experimental

rotational spectra are found in Chapter 7.

5.7 Fine Structure of Atomic Hydrogen

The fine structure of the atomic hydrogen spectrum is composed of the assembly
of corrections formulated in section 5.5, and specified for Hy and Hp in Figures 28 [50]-
29. Degeneracies are removed by the energy corrections. However, the fine structure of
atomic hydrogen is further mixed upon application of an electric field. It is this
additional separation in peaks that complicate the atomic hydrogen spectrum in low to
medium electric fields (~1000 V/cm-5000 V/cm). Calculations for the electric field

directly from the Stark shifted spectrum are summarized in the following chapter.

5.8 Nominal Fine Structure Transition Intensity

Hq nominal atomic hydrogen fine structure line intensity ratios are given in Figure
30. Fine structure line intensity ratios are a product of the Clebsch-Gordan coefficients
that construct the fine structure energy levels, and the overlap integrals that connect these
energy levels. The inner product of the angular waveforms relies on the following

identity [55]:

cose-Yzm=\/(H'"H)([_'"H)Ymm+\/(1+m)(1_m)1’/_nm (5.78)
* (21 +1)(2/ +3) ; QI+1)@2I-1) "
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Figure 28 Ha Fine Structure Transitions [50].
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And the orthogonality of the waveforms. As aresult,

(5.79)

. 1\/(‘1'T-m)(ji'm+l)
2

<Y 1/2m1/21€08O01Y 412 mt1/2 >== —
’ ! JG+D

Using the identity given in Equation 5.78, the transitional wave functions can be

summarized by the expressions,

( Jj—-m+l1

+ Rn,j+l/2‘,—2(j D Yiv1/2.m-1/2 = (5.81)
Jj+m+1

- Rn,f+wz,/mn-+uz,m+m = (5.82)

Un jm = (C-G) (5.80)
jtm
+Ry j-1/2 z—ij—l/Z,m—l/Z =(5.83)
Jj—m
Ry o172, =Y j-1/2,m+1/2 = (5.84)
l 2j
Where:

(J+m+1)(j—-m+2)
Yii3/2,m-1/2

4 +Dj+2)

Yit1/2,m-1/2€086 =1 + (5.81)

J(j+m)(j—m+l)

Y._ _
4j(j+1) j=1/2,m-1/2
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Yis1/2,m+1/2€080 =5

Yi 1/2,m=-1/2€086 =

L

‘/(j—m+l)(j+m+2)

4(j+1)(j+2) J+3/2,m+1/2

+

\/(j—m)(j+m+1)
j=1/2.m+1/2

4j(J+1)

r\/(j+m)(j—m+l)

YTES j+1/2.m-1/2

(Jj—m(j+m-1)

Y 1/2,m+1/2€086 =1

\

— Yi_3/2.m-1/2
4jGj-1n IT"

'J(j-m)(j+m+1)

4j( +1) J+1/2.m+1/2

‘[(j+m)(j—m—l)
L

Y_
4j(j-1) j=3/2,m+1/2

(5.82)

(5.83)

(5.84)

The notation u,;m, represents both the initial and final wave functions, with fine

structure quantum numbers n,j,m as given in section 5.5. The relative amplitude of

transitions between energy levels is given by:

n', . 2 2
Zn,j-j =< @y, |Z|¢n',j' >"= Z|< Un,jm | R Un',j'm >|

m;j,j'
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Where Equation 5.85 specifies the inner products of radial wave functions in
Equations 5.81-84. These inner products are only a subset of all possible transitions,
limited by the orthogonality property of spherical harmonics.

Specifically, the H, fine structure transition amplitudes are given by the

following, with allowable transitions limited to AJ = 0, +/-1.

3.P1/2 2
2512 = IRy IR Ry >l *
m=1/2

U(l/z—mﬂ)J(1/2+m)(1/2—m+1) (1/2+m)

2(1/72+1) 4-1/2(1/2+1) 2:1/2
(5.86)
2
+ 1/2-m+1) [(1/2+m)(1/2-m+1) |(1/2+m)
2(1/2+1) 4-1/2(1/2+1) 2-1/2
=1.04
z%;f,‘,§§= Y I<Rso|R| Ry > *
m=1/2
1/2+m) |1/2—-m+1) [A/24+m)(1/2—-m+])
2-1/2 \ 231/2+1) 4-1/2(1/2+1)
(5.87)

2
+\/(1/2-»:) A72+m+1) [(1/2=m)1/2+m+1)
2-1/2 | 201/2+1) 4-1/2(1/2+1)

=0.10
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3.P3/2 _ 2
512 = DI<Ryy | R|Ryg > *
m=1/2

[ (3/2+m)\/(3/2-m)(3/2+m—l) (1/2+m)

2-3/2 4.3/2(3/2-1) 2-1/2
(5.88)
2
+\/(3/2—»1) 3/2+m)3/2-m=1) [(1/2-m)
2-3/2 4-3/2(3/2-1) 2-1/2
=2.08
23:213//22 = YR3y|RIRy >+
m=1/2
3/2=m+1) [1/12=m+1) [(1/2+m+1)(1/2-m+2)
23/2+1) -\ 231/2+1) 41/2+1)(1/2+2)
(5.89)
2
L [G24m+1) [1/2+m+]) (1/2=m+1)(1/2+m+2)
2(3/2+1) 2(1/2+1) 41/2+1)(1/2+2)
=5.01
z%;f,‘;,zz = Yl Ryo|R| Ry > #
m=1/2
J(1/2+m) 3/2+m) [3/2-m)3/2+m-1)
2-1/2 2-3/2 4-3/2(3/2-1)
(5.90)

2
+J(]/2—m) (3/2-m) (3/2+m)(3/2-m-1)
2:1/2 2-3/2 4-3/2(3/2-1)

=0.20
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3.D3/2 _ ,
33 = DSR2 RIRy; > *
m=1/23/2

(B/2-m+1) |3/2+m)3/2-m+1) |(3/2+m)
2(3/2+1) 4-3/2(3/2+1) 2-3/2

_J(3/2+m+l)\/(3/2—m)(3/2+m+1) (3/2—»1)}2

23/2+1) 4-3/203/2+1) 2372
=1.00
23233/3 = YRy |RIRy >+
m=1/23/2

(5/2+m) [(5/2=m)5/2+m—=1) [(3/2+m)
2-5/2 4-5/2(5/2-1) 2-3/2

2
+\/(5/2—m) (5/2+m)(5/2-m-1) [(3/2-m)
2-5/2 4-5/2(5/2-1) 2-3/2

=9.02
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Where the pertinent normalized radial wave functions are given as [56]:

Ry = Lg(z —R)e k2

N

1

Ry =—
M T

Re—R/Z

1 - (27-18R+2R%)eR/3 (5.93)

Rig=——
30" J4920.7

! 6—R)Re R/3

Ryy = ———(
3 2460375

1 R2.R/3

S
327 12,301.875

In a plasma discharge, fine structure line intensities vary dramatically as a
function of electron density [57]-[58]. For example, peak 1/2>1/2 in Figure 30, barely
detectable in the nominal case, becomes as strong or stronger than peaks 5/2>3/2 and
3/2>1/2 at electron densities >10"* cm™ [42]. Figures 31 [59]-32 [60] demonstrate fine
structure peak ratios in experimental conditions closer to experiments run for this study.
Both are taken from low-pressure gas discharges. However, electron densities are not
recorded for either experiment. As evident, the characteristic shape of the fine structure
peaks can be used as a signature for identifying Stark effect splitting in hydrogen

plasmas.
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Figure 31 Ha Fine Structure Peaks Near Band Center [59].
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Figure 32 Ha Fine Stucture: Absorption Spectroscopy, Pulsed Dye Laser [60].
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Chapter 6 Atomic Hydrogen: Stark Effect

Chapter 5 covers Zeeman splitting in the rotation spectrum of molecular
hydrogen, and the fine structure of atomic hydrogen. Each of these effects are
completely described in spherical coordinates. Chapter 6 addresses Stark splitting in
atomic hydrogen. Stark splitting can be expressed in spherical coordinates as well, but
spherical coordinates limit spectral analysis of atomic hydrogen when considering the
gross structure splitting in combination with fine structure splitting. The gross structure
‘'waveforms mix so thoroughly that initiating fine structure points is intractable.

Chapter 6 addresses this shortcoming. The following sections first solve for the
Stark effect splitting in spherical coordinates, then the problem is moved to parabolic and
semi-parabolic coordinates to better match the symmetry of atomic hydrogen. Wave
functions that result from a coulombic central force, such as that found in atomic
hydrogen, have an additional degree of freedom when expressed in parabolic coordinates.
The additional freedom represents an additional symmetry that was hidden —and not
necessary- in spherical coordinates.

As a result, the Stark effect does not mix the resulting waveforms in parabolic
coordinates, and the gross structure is predictable in the presence of fine structure
splitting.

Sections on Stark fine structure splitting immediately follow the treatment of
Stark splitting in parabolic coordinates. For both gross and fine structure splitting,

transition amplitudes are included with experimental spectral data in Chapter 7.
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6.1 Stark Splitting: Spherical Coordinates

The wave functions for atomic hydrogen are developed in spherical coordinates in
section 5.2.2.2. The next two sections address the Stark effect for atomic hydrogen in the
spherical coordinate system. The first section solves the Schroedinger equation by direct
application of perturbation theory, developing the perturbation —or overlap- matrices
associated with the given potential operator. Then, solves for the eigenvalues of the
perturbation matrices, which immediately give the Stark shifted atomic hydrogen energy

levels. The second section details the Stark shifted spectrum for atomic hydrogen.

6.1.1 Perturbation Matrix

The perturbation matrix is composed of all possible wave function overlap
integrals; that is, the integrals of each pair of degenerate wave functions and the
applicable potential energy operator. The potential energy operator for the Stark effect is

related to the applied electric field as follows:

eEz ; LinearPolarization

Vtark = (6.1)
eE(x x jy);CircularPolarization

Due to reactor geometry, the polarization of the electric field for this set of
experiments is strictly linear. First-order approximations to energy level shifts are the
eigenvalues of the perturbation matrix.

Spherical wave functions of atomic hydrogen associated with electronic energy

levels two through four are given on the following pages [56],[61].
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The non-zero elements of the perturbation matrices for each energy level can be

summarized in the following:

n=2:
ay =<¥1,0,0 |z 1¥a10 >=3.00ag
n=3:

a3 =<¥300l2|¥3,10 >=735a
by =<y3)_1|z|y373-1 >=4.50ag
c3=<¥310lz|¥320 >=520q
dy =<y314112|¥32.41 >=4.50q

n=4:

ay =<Wa00|z|¥a)0 >=13.42q9
by =<W¥4)-112|Wa2-1>=9.30ag
€4 =<¥41,0121¥a2,0 >=10.73q
dg =<Wa1+112|¥4241 >=9.30ag
€3 =<WYa2_2|2|¥432 >=6.00qg
Ja=<War-112|Ws3-1>=7.59
84 =<Va20|2|¥a30 >=8.05a
hy =<W¥a2.41|2|W¥a341>=7.59ag
iy =<W42.42|2|W¥4342 >=6.00ag

(6.5)

Where the perturbation -or overlap- matrices are expressed by the following for

each of the electronic energy levels two through four:
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The characteristic equation and solution for each of the electronic energy levels is

given by the following:

0,0,0
+
A= s
tdy
i\/a32 +C32
n=4:

22 (62 + 72 - (a2 + 2 )2 - 2 2 - 2 )4 I( 2_ a3 - g2)- c312]= 0

( 0,0,0,0
+ 64
* 4

A= +\63 + /2
i\/d§+h}

i‘[%(ai +gd+cd)el ;\/(04 +g} +c})-4ale}

6.7)
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Substituting from Equation 6.5 gives the following Stark energy level shifts in

electronic energy levels two through four for linearly polarized electric fields:

n=2
[0
- + 3ea0E
n=3
0
OE = {+4.5eaE
ot 9.0ea0E
n=4:
0 (6.8)
+6.0eapE
& _ eao
+12.0eagE
+18.0geayE

Which can be summarized easily by the following equation:

O = eaoE-%ni

(6.9)
0<i<n

Where n is the electronic quantum number.
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6.1.2 Stark Energy Spectrum: Spherical Coordinates

Figures 33-34 are diagrams of the Stark shifted energy levels for atomic hydrogen
transitions Hy and Hpg, respectively. Each figure is specific to an electric field that is
linearly polarized. Transition lines are left out of Figures 33-34, and transition
amplitudes are not addressed.

In spherical coordinates, allowable transitions in a linearly polarized electric field
are limited to those in which quantum numbers Al=+/-1 and Am=0. However, Stark
shifted wave functions assigned to each energy level can no longer be expressed as
spherical harmonics; rather, they are linear combinations of spherical harmonics, and the
mixing that results from the applied electric field is not trivial. As a result, the allowed
transitions and transition amplitudes are extremely difficult to generate in spherical
coordinates.

Following mixing, each eigenfunction is generated from the eigenvalues of the
perturbation matrices, and the perturbation matrices themselves. The presence of
degenerate eigenvalues (e.g. multiple zeroes) requires very complicated operators to
generate the eigenfunctions, or wave functions. These operators turn out to be the ladder
operators associated with a new, cylindrically symmetric coordinate system. Instead of
working through the ladder operators, it is far simpler to solve the Schroedinger equation

for atomic hydrogen in the new coordinate system, that of parabolic coordinates.

6.2 Parabolic Coordinates

The application of an electric field destroys the symmetry in the radial component

of the generalized central force problem; it is now cylindrically symmetric. As a result,

131



10,0>+1,0>+[2,0>

[

SE=4.5a,¢E (typ)

/ [1,4/-1>+2 +/-1>

N=3 2,-2>, |2,2>

[1,4/-1>+2 +/-1>

10,0>+(1,0>+(2,0>

0,0>+]1,0>

[

8E=3.0aceE (typ)

N=2 / ,-1>, |1,1>

10,0>+]1,0>

Figure 33 Ha Stark Energy Spectrum: Spherical Coordinates.
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Figure 34 Hp Stark Energy Spectrum: Spherical Coordinates.

133



the orbital wave functions are no longer separable in spherical coordinates. More
importantly, the mixing of the wave functions that results from perturbation analysis
makes ferreting out the spherical harmonic components associated with each energy level
very difficult. Both issues are resolved by moving to a new coordinate system that

matches the symmetries of the problem.

6.2.1 Parabolic Transform

Cylindrical symmetry is retained when folding up R? space in such a way that the
x-y plane forms a right circular cone about the z axis, and each additional plane with
constant z folds into hyperboloid sheets, as shown in Figure 35. Every plane intersects
the infinite set of hyperboloid sheets to form circles, ellipses, parabolas, and hyperbolas;
conic sections that define the dynamics associated with a central force proportional to
1/R. (Each conic section is actually a geodesic with respect to rotated SO(2,1) space, or
Lorentzian measure [62]). The inverse map of this three-dimensional folding is the
parabolic transformation.

The parabolic transform map is shown in Figure 36; this map generates the

parabolic coordinate system [63]. Using complex variables:

q =%wz =%(é+m)2 =%(€2 —n? )+ jén

z =—(§2 —772) (6.10)
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Figure 35 Hyperbolic Transform of Constant z Surfaces.
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Figure 36 Parabolic Transform in the Complex Plane.
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Now, Rz is separable as the difference of fourth-order terms. Further, the

Laplacian can be found directly from the differentials generated by the map [64].

(6.11)

ool
En&? +n?) (9¢ o o0&

With a change of variables,

£=Va

(6.12)

n=Av

The Laplacian can be expressed as,

2
v2__4 i(uiJ+_f’_(vi) LI (6.13)
u+v|ou\ du) ov\ ov uv 362

And,

z=%@—ﬁ
(6.14)

1
R=—u+v
S+
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Consequently, the Schroedinger equation in parabolic coordinates, with a

coulombic central force and applied electric field, is written as,

h2
- vy v=Ey
2m
2m|u+v |ou\ Ju) ov\ ov uv 96> v (6.15)
2
+ lZe teE—(u-v) |y =Wy
E(U‘FV)

Where Z is the number of protons of the single electron atom (Rydberg atom),
which is equal to one in the case of hydrogen. The energy term (W) must match the
electronic energy found in spherical coordinates. Equation 6.15 is separable into the

following independent equations:

2 2

h—(i(v-a-)-l " -imalz 2 Lep2ly 2o (6.16)
2mLav ov) 4| v 4 2 8
Z=2,+7,=1
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The separation of equations in u and v requires the existence of an additional
invariant of motion, covered in the next section. The inability to make this further
separation in spherical coordinates is the reason that spherical harmonics remain mixed
after solving for the eigenfunctions of the Stark shifted energy levels. The Stark effect
perturbation matrices for both equations in u and v, on the other hand, are diagonal. This

will be demonstrated in section 6.2.3.

6.2.2 Runge-Lenz Vector

Figure 37 illustrates an additional constant of motion, the Runge-Lenz vector,
particular to dynamics where the central potential is proportional to 1/R. A classical

development for the procedure follows:

mR? =1L
mRz(kx;)x ie) =L

xl?=1:x——k—1§=1:x;3 (6.17)

—mk(f?xgz;xfe >
R

N———r

—mk(R - Ro)= Lx (5~ Bo)

Ay = Lx p+mkR = L x py + mkR,
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The quantum mechanics form of the Runge-Lenz vector is [65]:

A

A=—(Ixp-pxL)+mR (6.18)

1
2

Where,

— ARcos¢ = —ZO(RXI)) +me’R =17 + me’R

(6.19)
2 2
_l_ = Lniz_[l +—£—2—COS¢:| = 1ez——[l + acos¢]
R L me L
a =i
mez

Therefore, the Runge-Lenz invariant fixes the eccentricity of the orbital trajectory.
Section 6.3.1 and 6.3.3 use Equation 6.19 to develop operators that connect elliptical
paths of constant energy, but differing eccentricity.

The Runge-Lenz vector is not independent of the other two invariants, angular

momentum and energy. The operator relationships are given as follows:

(6.20)
A2 = 2w (L +1)+1
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With units of electron mass and charge, and c=1. The Runge-Lenz vector does

not commute with angular momentum L, but upon rescaling:

1

a=
N-2W

A

laj,a;]= jEjxLy

(6.21)
(Li,L;]= jeuly
(Li,a;]= jekag
Now, let:
Jig = %(L ta) (6.22)
Equation 6.22 gives,
Va.i»/B.j1= JOapEijk) ok (6.23)

Linear combinations of the invariants angular momentum and the scaled Runge-

Lenz vector yield two uncoupled, commuting angular momenta (J,, J>). As a result,
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szz-}(inLOAiAOL+a2)

1
- +a2)=i[L2 +— A2] (6.24)
4 4 -2w

Where W is discrete energy, with principle quantum number n. Now, each
angular momentum satisfies the previously derived central potential relationships. That
is,

. L. ) 1 .
Jiz | jim; >= ji(j; +1)| jim; >= 5(.”— D(n+1)| jim; >
Jzil Jimi >=mj | jim; > (6.25)
—Jismi < i

6.2.3 Parabolic Energy Levels and Wave Functions

Removing the quadratic Stark effect, solutions to Equations 6.16 are identical.
Each equation is equivalent to the Schroedinger equation in spherical coordinates, with

m/2 replacing angular momentum 1. With the following substitutions:

1 m
U=e 2 u?f,(u),x= u
fu( ) m
(6.26)
1 m
Vee? -z_f ),y L,
=e V) , P =
Y —2W
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The two differential equations can be written as functions of x and y as:

2
x—a—+(m+1-x) 0 [;Zu -%(»:H)Hfu =0

92 o oo

az a 1 |
ys)—)?+ (m +1- ,V)“a;+(Jr—ZTV_-ZV —E(m + ])J:va =0

(6.27)

Where Equations 6.27 are of exactly the same form as the reduced differential

equation for the radial component of the wave function in spherical coordinates, given in

Equation 5.38. As aresult, the solutions are:

= Ty +p) Tlm) x”

= F(-n,,m+1,x)=
Jum FEmem 2= 2 Sy T ) 7

< T(-n,+p) T'(m) x*

> X

r(-n,) Tlm+p) p!

1 1
T Zu—-z-(m—i-l)znZu —E(M'i'l)

nv=—]——-]—(m+l)=nZu —-%(m+l)

N-2W
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> X

-ny,-m-1 x
v e

-n,—-m-1 x
u e

(6.28)



Where the last equality for n, and n, holds for the zero perturbation case. Now,

f..v converges if the polynomial is finite, that is:

- nu,v = O’—l’_2’_3a--- = nu,v = 0,1,2,3,...
(6.29)

:n(Zu+Zv)=n=nu+nv+m+l

The energy levels in parabolic coordinates are discrete and degenerate, defined by
two electric quantum numbers, n, and n,, which replace the angular momentum quantum
number 1 found in spherical coordinates. Wave functions in parabolic coordinates are of
the same form as the radial component of the wave function in spherical coordinates;,
both generated by the same differential equation form. The radial component in spherical
coordinates and the parabolic wave function are given in the following. The radial
component in spherical coordinates is taken directly from Equations 5.37 and 5.39; the

parabolic wave function is taken directly from Equations 6.26 and 6.28.

P
Ry =c.ple 2 F(=(n=1-1)21+2,p)

Yny nym = 4
(6.30)

m 1

u
U=chpu2e 2 F(-n,m+1u)

m 1
— —v

V=cple 2 F(=n,m+l1,v)
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Now, the orthogonality of the radial wave function,

[drr®R,, ;R S (6.31)

njdi =

Implies the following inner product relationship for the parabolic wave functions:

2
duuU ; U ; =0
I n,',,m n‘{,m v

(6.32)

2 - .a
JY Vg =0

Therefore, the perturbation matrix is diagonal in parabolic coordinates, and the
eigenfunctions, or wave functions, do not mix; the parabolic manifold is unchanged [66].

As a result, the allowed transitions and transition amplitudes are tractable.

6.3 Stark Effect Perturbation

The linear Stark effect perturbation removes degeneracy from the parabolic wave
functions, and further mixes the fine structure of atomic hydrogen in response to the
application of a constant value electric field. The next two sections address the Stark
effect with respect to both parabolic wave functions (gross structure) and the fine
structure of atomic hydrogen, and develop the transition intensities for both gross and
fine structure that govern Hqo and Hp bands of the atomic hydrogen spectrum. For
comparison, transition intensity bar charts are included along side experimental spectra

results in Chapter 7.
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6.3.1 Stark Effect: Parabolic Wave Functions

From the previous sections, specifically Equations 6.16, 6.28, 6.30, and 6.32, the

perturbation matrix elements can be calculated as follows:

Dy =ZeE —-2W (n, +m)|3 Iduu u[ ny +m(u)}2

(6n3 +6n,m+ m® + 6n, +3m+ 2)

1 1 V[L"' ]2
Oy m= ZeE “oW g, e J-dv v vMe nv+m(v) (6.33)
=—%eE- (6n3+6nvm+m2+6nv+3m+2)

L': ) = -D"(n, + m)!(n" +mJF(— n,,m+1,u)
u m

Where the last equation gives the relationship between the Lagurre polynomials

and the hypergeometric function [67]. Summing Z terms from Equations 6.28 and 6.33,

1=+~ 2W(nu +%(m+ 1))+ J- ZW(nv +%(m+ 1)]

1]

” (6n3 +6n,m+m* +6n, +3m+ 2) (6.34)

(6n3 + 6n,m+ m? + 6n, +3m+ 2)
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Which, for small 8W, gives [68],

1=~-2Wn +-§:eEn2 -n(n, —n,)
(6.35)

W= ———]—+%eE~n(nu -n,)

2n2

My =0,1,2.3,...

| n=n,+n,+m+l

The Stark energy levels in parabolic coordinates exactly match the eigenvalues
for spherical coordinates, found in Equation 6.9. Figures 38-39 illustrate the Stark shifted
energy levels for atomic hydrogen bands H, and Hg, and transitions resulting from linear
and circular polarization [69].

Wave functions associated with the shifted energy levels are not mixed in
parabolic coordinates. Transition amplitudes can be found from direct integration of the
unperturbed eigenfunctions. Gordon [70] determines atomic hydrogen transition
amplitudes resulting from linear polarization, as represented in parabolic coordinates, in

the following:
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Figure 38 Ha Stark Effect Transitions: Parabolic Coordinates.
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Figure 39 Hp Stark Effect Transitions: Parabolic Coordinates.
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’ ’
z";' nym _ (_1)"14*'"; 2ay [(n, + m)! (n, + m)! (n, + m)! (n,, + m)!
My My am?? n,! n,! ! !

4nn’ 2 n-n aud
X
(n—n")? ("“H?')

(6.36)
2 ,”2 ’
, AN +n 2nn , ,
X{{("l —ny)——~(m —ny )—'—,2]'/’;;1("1”1 Wom(mny)
(n+n) (n+n)
iy, = D0 (121~ Tt W a1y~ )] }
Where,
ann' n) ) 1] —dnn’ |
—4nn —n;)(-n; —4nn
)= F| = nmr m+1, —p4 R 1 +.. (637
Ym(nin;) n;,—n;,m (n_n,)zj (m+1) l!l:(n—n')z} ( )

Figure 63 and Figure 69 in Chapter 8 give the Hy and Hp transition intensities.

6.3.2 Stark Effect: Fine Structure

The Stark effect on the fine structure of atomic hydrogen, which is negligible with
respect to Stark splitting in high external fields, is important under conditions of a
relatively low applied electric fields (<1000 V/cm) [60]. Energy level shifts are a
function of the atomic hydrogen non-degenerate fine structure (Equation 5.71), the
associated Clebsch-Gordan coefficients (Equation 5.53), and results from overlap
integrals similar to those calculated in section 6.1.1 (Equation 6.5). Calculating the

energy perturbation elements for states defined by total angular momentum (njm):
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OE=<V¥y i_1/2m|2|¥Wn js1/2.m >

=<R, j-1/2|1RIRy js1/2> (6.38)

Ni+m s Jji—-m+1

Y ;2| cos@
\/Z_j |/2m12| | 21+

j—m * ‘\/ m+1
\/z_ij—l/Z.m+]/2|C059| \/72 Yiv1/2me1/2 >

+

_/+]/2"1 172>

N

The inner product of the radial waveforms can be found in closed form with the

use of the generating function for Laguerre polynomials, namely:

,
() e (6.39)
(l t)r+
Where the radial waveforms are given by,
3/2
n-1-1)! (2 2R 2R
Ry (R)= |- (—) e- ’“"( )Lﬁ’:‘,‘(——)
(n+DHP2m\n n n
(6.40)

R i(R)= (n=1)! (3)3/2e_k/n(2R) 2] ](Z_R)
" (n+1-1)P 2n)\n n) "N n
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Substituting,

a
2+ (+! d"N e Fia
L, /( )= /-
(n—1-1D!dg" | (1- @)?'*?
a=0
(6.41)
B
n-l| —pﬁ
L2I ll( )= (n+l-D'd e
(-0 ap"!| a-py¥
=0
Which gives,
1 \/nz—l2
< R"’[_l |R1Rn,l >= ———— :
4(n+1)\(n-1)!
a B
oo e Pia - ]
- [ dpp?+2e? an | e ta A e P
da"~!71| (1 - ) ?+2 apg™! a- g
p:
a=0 p=0
)
dpp*'* -
1 , 2 12 dn—/ -1 dn—l Ipp
Tan+D =D da T apr T -2 - py?
2 2 -I-1 -1
1 n? -1 21+2) d" d" -a)1-f)’ (6.42)
4 (n+Di(n-D)! do"1~" ap! (l—aﬂ)z’+3 ==
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Now, using differentials of the geometric series,

N o0 Ny .
L N l VT =Z(N+.I)'(aﬂ)’ (6.43)
Nd@ep)” a-ep)™ S N
Equation 6.42 is reduced to:
I Vn?-1?
<Ry |RIRy >=
4 (n+D)(n-1)
> +2+i) a7 o
'Z( " ) pa [a’(l—a)] — b’(l—ﬂ)"’] (6.44)
i=0 L da a=0 4f =0
i
= —%n\/ n? -2
And,
3 .
<R, 12| RIRy jy1/2 >= —En\/nz —(j+1/2)? (6.45)

The inner product of the angular waveforms relies on the identity given in

Equation 5.78, and repeated here:

(6.46)

cose_ylm=\/(1+m+1)(1-m+1)n+lm+ (I +m)(l —m) -
: (21 +1)(21 +3) : QI+D@i-1) "
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And the orthogonality of the waveforms. As a result,

(6.47)

. 1 |[(JFm)(jEtm+])
<Y;,_ cos@|Y; >=—
i=1/2,m+1/2 | 1Y js1/2.m21/2 2\[ G

Using Equations 6.38, 6.45, and 6.47, the fine structure perturbation matrix
elements connecting each orbital pair (njm) can be expressed explicitly by the following

[70]:

aEﬂjm =<V¥n,j-1/2.m | z| '//n,j+l/2.m >

3 2 . 2
En\ﬁj -(j+1/2) [(j+m)(j_m+1)_(j—m)(j+m+l)]
2Jj(+D 2/j(j+D)

OE pjm = eEag - (6.48)

3yn = (j+1/2)?
- — nm
4 JU+1)

=eEaqg -

Thus, each fine structure energy level is split into 2j+1 equally spaced energy
levels, identified by magnetic quantum number m, where— j < m < +;. The uppermost
energy level in each fine structure element (j=n-1/2) remains degenerate. The Stark effect
energy level shifts in the atomic hydrogen H fine structure line are summarized in
Figure 40. The fine structure Stark effect is critically important to the spectral analysis of

data in Chapter 7.
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6.4 Coordinate Transforms

Connecting spherical and parabolic coordinates requires the development in
section 6.2.2, which generates two uncoupled, commuting angular momenta that are
operators for the coulombic central force problem in any coordinate system in which R,
is separable, given stationary L,. Consequently, spherical and parabolic coordinates are
connected by ladder operators that follow in form the ladder operators developed for
angular momentum in section 5.2.1.1.

In the next sections, the ladder operators in parabolic coordinates are developed;
then, the ladder operators are shown as the connection between parabolic and spherical
coordinates, generating the associated Clebsch-Gordan coefficients [71]. Finally, semi-
parabolic coordinates are used to represent the angular momentum operators found in
parabolic coordinates as two coupled, two dimensional harmonic oscillators (Schwinger)
acting in three dimensional Lorentz space SO(2,1), for constant L, [60]; that is,
oscillators composing angular momenta on the hyperboloid surfaces described in section

6.2.1.

6.4.1 Parabolic Ladder Operators

The angular momentum operators in parabolic coordinates, and their associated
properties, are developed in section 6.2.2, and given in Equation 6.25. With the

additional constraint of Equation 6.35,
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) . ) 1 .
Ji2 | jim; >= ji(ji +1)| jim; >= E(”-l)(nﬂ) | jim; >

Jz il Jjimg >=m; | jim; >
(6.49)
—Jismi <

n=n+ny+m+l

Where u is replaced by 1, and v is replaced by 2 in the last equation to match the
angular momenta notation. Now, the angular momentum operators in parabolic
coordinates exactly mirror the angular momentum operator developed in section 5.2.2.1.
Consequently, ladder operators in parabolic coordinates can be composed in an identical
way, and the ladder operators themselves, with exception given to the additional

constraint of Equation 6.38, yield identical results. That is,
Jia = I £ ji}, (6.50)

And,

1 —
Jli | ny,ny,my,my >= \/Z(nz —1)—-m1(m1 il) I n +1,n2,m| il,mz >

(6.51)

1
Jf | ny,ny,my,my >= ‘/z(nz =1)=my(my x1) | ny,ny F1,m;,my £1>
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Where,

n=n+n+m+l

(6.52)
m=nm +my
But, m; and m; are arbitrary. Setting them equal, and using Equation 6.28,
n = l(n -)-m
1 2 1
(6.53)
1
n=—mn-1)-m
1 2( )—m

Which results in the following ladder operators in parabolic coordinates [72],

JY | nony,ny,m>= \n(n—ny) | n,m —1,ny,m+1>

Ji | nynj,ny,m>= J(nl +D[n—=(m +1)] | n,ny+1,ny,m-1>

(6.54)
J3 | nny,ny,m >= Jm(n—ny) | nn,ny —lm+1>

J3 | nny,ng,m>=[(ny + )n—(ny + )] | n,my,ny +1,m—1>

By symmetry, the operators H, L,, and A, commute in parabolic coordinates.

Consequently, the Stark perturbation potential can be expressed in terms of the rescaled
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Runge-Lenz vector a such that it commutes with H and L,, and its eigenvalues are equal

to the Stark energy level shifts found in Equation 6.35.

3
Vstark = €Ez,r — Ena
3
= Vsark | n.01,00,m >= -z—eEnaz | n,ny,ny,m >
3
= EeE”(Jl,z =Ja.:) | nny,ny,m> (6.55)

eEn(my —my) | n,nj,ny,m >

N | W

3
= EeEn(nz -m) | n,n,ny,m>

Mixing J;, in SO(3) x SO(3) space generates a single three dimensional angular

momentum operator A in SO(4), defined as follows [60]:

A=A, Ay, ) = Ul x = Jaxo Jiy = J2,p0J1,2 + J2,2)

(4,41 = j€juix

R\ jE3RA >= AA+) | R, > (6.56)
A | RBRA >=m| jL R4, >

_A<A <A
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Motivation for this transform is given in section 6.2.1. The rotation operator

Ro=¢'> connects ellipses with constant energy (W) but different eccentricity (o), where

o =A/me”, as given in section 6.2.2.

6.4.2 Clebsch-Gordan Coefficients

Wave functions in spherical and parabolic coordinates each have exactly one state

in which the shared quantum number m is a maximum. That is,

|nl=n—1m=n—-1>g4.jq=nn=0n=0,m=n-1>,,.pi (6.57)

As a result, these states are identical functions in both coordinate systems.

Operating on each side of Equation 6.57 with its prescribed ladder operator L yields:

L |nl=n-1m=n-1 > spherical = \/Z(n— D|inl=n-1m=n-2 > spherical
L |nnm=0n=0m=n-1 > parabolic

= (Jl- +J2_) | n,n = O’nZ =0,m=n-1 >parabolic

= \/;__1 |n,m =Lny =0m=n-2 > parabolic

++n-1 |, =0,my =llm=n-2 > parabolic

(6.58)
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Setting the spherical and parabolic results equal generates the expected Clebsch-

Gordan coefficients+1/+/2, matching results from eigenvalue/eigenvector calculations,
and mechanizing the process.

The following tables give Clebsch-Gordan coefficients, transforming from
spherical to parabolic coordinates, for constant values of n-m= 2, 3, and 4, respectively
[73]-[74]. The rows are defined by parabolic quantum number n,, the columns by the

spherical quantum number t=1-m.

0 1 2

m+2 1 1 m+1
\l2(2m+3) 2 5\/2(2m+3)

1 m+1 0 m+2
2m+3 2m+3
m+2 -1 m+1
22m+3) V2 \202m+3)
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0 1 2 3
0 _I_Jm+3 l\/3m+9 13m+3 1 [m+]
2V2m+3  2V2m+5  2V2m+3  2\N2m+5
| l‘/3m+3 _I.Jm+] -1 [m+3 -1 [3m+9
2V2m+3 2\V2m+S5 2 V2m+3 2 V2m+5
) l ’3m+3 _—_1 ’m+l —_]\/m+3 l‘Fm+9
2V2m+3 2 ¥N2m+5 2 V2m+3 2\2m+5
3 1 [m+3 -1 [3m+9 1J3m+3 =1 [m+1 (6.59)
2V2m+3 2 V2m+5 2V2m+3 2 N2m+5
Such that:
n|+n2 /
— m
¢n1,n2,m" Z le,ml,jz,mzy/”'l’”’ (6.60)

Where ¢ and ¥ are the parabolic and spherical wave functions, respectively.

6.4.3 Semi-Parabolic Coordinates

Returning to the original parabolic transform given in Equations 6.10 and 6.11,

the Schroedinger equation for a central coulombic potential can be written:

N | —

| en&2+n?) |96\ 08) an” an )| £2n? 367
(6.61)

[ 2
+|W+——Flw=0
(52+nz)}
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And is easily separable, for constant L,=m, into the following:

—82 1 0 m2 2

—+———-—+2WE+4Z, |F(£)=0

e teae ‘}

(2 19 m? 5

—t————+2Wn“ +4Z, |G(7) =0 (6.62)
o nan g2 2}

Z|+22:1

In units of electron charge and mass, c=1. Each differential equation in Equation
6.62 represents a two dimensional oscillator in polar coordinates. The angular
momentum (m?), potential energy (W), and charge fractions (Z,,) connect the two
equations. For a harmonic oscillator with unit frequency, operators for the first of the

two equations can be written:

p=5t=Dt

V=& (6.63)
10,9 m 1, m
’gag o& éz _52¢D§D 52
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Where D is shorthand for the first derivative with respect to §. As a result:

[pLV(H-V)]=0
[pxLVIH-V)=-V[p,H-V]

(6.64)
[p£LV]=[ecD,V]=¢[D,V]+[c.V]ID =2V

=S [ptlLH-V]==2H-V)

And,
[(H—V),V]=%D§D§-§—§'D§D§%=(p+l)2 —(p-1?=4p (6.65)

Combining Equations 6.64 and 6.65 [75],

[p.H]=(-H +2V) =S¢

[H.(-H+2V)]=4p =5, (6.66)

[((H +2V),p]=-H =-§,

And, identical operators (T;) can be developed for the second equation in
Equation 6.62. Physically, S and T are each angular momentum in SO(2,1) space, fixed

to the common hyperboloid L,=m, precessing independently about the common axis n=n,
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perpendicular to the plane of motion. Figure 41 presents this physical interpretation [60];
that is, the orbital mechanics in semi-parabolic coordinates.

Mixing operators S and T in SO(2,1) x SO(2,1) generates a new set of three
dimensional operators (W) in SO(3) that commute with L,, and with A, from Equation

6.56.

W = (Sg T, Sy~ Ty, S+ T) (6.67)

Where (Sz, Tz, Wz, W,) all commute with L, and A2 Consequently, the rotation
operator Rg=¢/™", analogous to the rotation operator defined in section 6.4.1, connects
ellipses with constant energy but different eccentricity. Physically, mixing operators S
and T rotates the normal vector n to n’ in Figure 41 [60]; the orbital plane intersecting the
hyperboloid. As a result, the operator W represents all elliptical orbital paths in semi-
parabolic coordinates, whereas S and T each represented strictly circular paths about the
1 axis.

Stark and Zeeman splitting can be combined by way of the S and T vectors in
semi-parabolic coordinates, and this is necessary for analysis of the fine structure of
atomic hydrogen for large applied magnetic fields. For this experiment, Zeeman splitting
in the fine structure is negligible [60], due to the relatively low level of the magnetic

fields, as determined from the rotational spectrum of molecular hydrogen.
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Figure 41 Semi-Parabolic Coordinate Representation of Stark, Zeeman Effect [60].
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Chapter 7 Results

Results concentrate on matching the spectroscopy readings with theory presented
in the previous three chapters. The first section gives spectrometer set-up background,
critical in assembling high-resolution scans with as low signal-to-noise ratio as possible.
The next section ties the spectrometer readings from Argon to the electron density for
Argon, and determines how accurately the measurements for Argon fit the global model
presented in Chapter 4.

The final sections examine both diatomic and atomic hydrogen spectroscopy
results. The spectroscopy readings are interpreted according to theory presented in
Chapter 5 and Chapter 6; calculations are made as to the temperature, electron density,
and electric and magnetic field strengths of the hydrogen plasma. From these
calculations, conclusions are drawn in the final chapter, Chapter 8, as to the nature of the

hydrogen plasma contraction, which begins to occur at pressures as low as 5 Torr.

7.1 Spectrometer Set-Up

Initially, thirteen 1 mm diameter fiber optic channels were focused on the plasma
center and available to project the plasma emission through the spectrometer slit.
Focusing multiple channels to the spectrometer slit increased the signal to the
spectrometer, but drastically reduced the resolution.

Next, one fiber optic channel was set less than 0.25 mm from the slit. Steadily
increasing the distance from the slit had the predictable result of reducing signal-to-noise

and increasing resolution. Maximum spectrometer resolution of 0.3 A (FWHM) was
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reached at a distance of 8 mm, nearly matching the manufacturers specification for a light
cone of ratio 9:1.

Accelerating voltage was adjusted to increase signal-to-noise. Figure 42 shows
the spectrometer step response to accelerating voltage supplied to the photomultiplier
tube (PMT); each step represents a 100 Volt increase in accelerating voltage, from 0 V to
900 V. Evident is a definite nonlinear response, beginning at approximately 500 V. The
noise response of the spectrometer is consistent with an older PMT [76].

The response is extremely sensitive to both accelerating voltage and the time
derivative (dl/dt) of the excitation signal. Reducing the accelerating voltage to the point
that maximized the PMT nonlinear response magnified dI/dt, and allowed the PMT to
effectively operate as a detector.

At low accelerating voltages, signal-to-noise was decreased by the accuracy of the
pico-ammeter. The pico-ammeter resolution was specified at 10" A, but the accuracy —
the random signal error- was an order of magnitude worse. As a result, several
experiments needed to be run for each test case to determine the best accelerating voltage
setting to maximize signal-to-noise.

Even after determining the accelerating voltage, the signal still suffered from
undershoot. Consistently, sharp drops (0.2 pA) in signal occurred after consecutive
readings with high slope (dl/dt). To determine the fidelity of these responses, it was
necessary to slow the spectrometer to the slowest accurate scan rate. Scan rates lower
than 1 A/minute produced data with less resolution and more noise than slightly higher
scan rates; that is, the motor control for the spectrometer mirror was not as accurate for

the lowest scan rates.
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All of the aforementioned adjustments allowed for resolution fine enough to
correlate fine structure peaks present in atomic hydrogen spectra, providing a signature
for each spectrum. Peaks could be identified that were separated by as little as 0.08 cm’”,
approximately 0.04 A. at the H, line (6562.85 A.) -7.5 times better than the FWHM
resolution of the spectrometer. Evidence for resolution of this order is demonstrated in
the atomic hydrogen H, peaks, presented in Section 7.4.1.1.

The line shape of the spectral responses appeared to have first-order decay at the
trailing edge; although not universal, often enough for concern. Reducing the accelerating
voltage did effect a change, but did not eliminate the decay from the hydrogen rotational
band. To determine whether the decay was real or measurement error, all measurements
were run forward and backward. In each case, with the reduced accelerating voltages, the
forward and backward curves matched exactly; the data was real, and the fine structure

peaks were further confirmed.

7.2 Argon Results

The electron density is measured experimentally and compared to the global
model predictions for Argon. Gas temperatures for the Argon plasmas in this study are
taken from Rogers [77]. The theoretical and experimental data can be expected to diverge
at higher pressures (>100 torr), as convective flows begin to dominate diffusion as the
major transport mechanism [77].

The first section presents the results from the global model, based on
experimental inputs. The next section summarizes the set of experiments run to

determine the electron density for the Argon plasma and compares the experimental

171



results for electron density to the global model. The final section suggests an alternative

model for electron density based on the line shape of the Argon spectrum at 4300.1 A.

7.2.1 Global Model Results

The global model predicts electron density and electron temperature as a function
of input power, pressure, gas concentrations, and plasma geometry. In this case, the
global model prediction for electron density will be compared with experimental values.
The tables in Tables 1-3 and the plots given in Figures 43-44 summarize the global model

results.

7.2.2 Argon Spectroscopy Measurements

Hydrogen was added to the argon plasma at a ratio of 1:25. Stark broadening in
the atomic Hydrogen beta (Hg) spectrum was used to determine the electron density for

the argon plasma, a result first calculated by Griem [22],[78], and parameterized by

Nikolic, et al [79]. The following summarizes the electron density estimate:

3

N, = |:3.99xl 0%e (A—’isi‘ﬂﬂ 2 em™3
a

A’1Stark = \/A'lz - Al%‘s - A'?'%nstrumem
a=0.0762 (7.1)
MFS = OO77A

A’11nstrumem =0.30
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