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ABSTRACT

THERMAL DESIGN STUDIES IN NIOBIUM AND HELIUM FOR
SUPERCONDUCTING RADIO FREQUENCY CAVITIES

By
Ahmad Aizaz
Liquid helium is now a common refrigerant for superconducting radio frequency (SRF)
technology. It helps in cooling the niobium (Nb) made SRF cavities below their
superconducting transition temperature (T.). Testing of these cavities is routinely done in
saturated liquid helium-I (He-I) for low field measurements and in saturated liquid
helium-II (He-I) for high field measurements. The thermal design studies of these
cavities involve two thermal parameters, namely the temperature dependant thermal
conductivity of Nb at low temperatures and the Nb-He interface heat transfer coefficient.
During the fabrication process of the SRF cavities, Nb sheet material is plastically
deformed through a deep drawing process to obtain the desired shape. The effect of
plastic deformation on low temperature thermal conductivity as well as heat transfer
coefficients in the two states (He-1 and He-II) has been studied. Strain induced due to the
plastic deformations reduces the thermal conductivity in its phonon transmission regime,
which may explain the performance limitations of the SRF cavities during their high field
operations. The effect of annealing the Nb samples at two different temperatures to
restore the phonon peak in the thermal conductivity curve has also been studied.
Measurements of heat transfer coefficient for nucleate pool boiling liquid helium are in
agreement with the theoretical predictions as well as with the existing experimental data.
These measurements reveal higher heat transfer for rough surfaces as compared with

smoother ones. Kapitza conductance measurements for Nb - He-II interface for rough



surfaces with surface index (SI) more than 3 as compared with the flat and smooth
surfaces have also been carried out before and after the annealing. Here, SI is defined as
the ratio of exposed surface area to that of projected area. These measurements provide
helpful insight in understanding the problem of Kapitza conductance for different surface
topologies where the rough and annealed surface revealed increased Kapitza

conductance.
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1 Introduction

Advances in particle physics are closely linked to advances in particle accelerators.
Among many factors affecting the performance of the accelerator, the availability of
higher energy particle beams is one of the most important.

A key component of the modern particle accelerator is the device that imparts energy
to the charged particles. This is the superconducting electromagnetic cavity resonating at
a microwave radio frequency (SRF). The resonating frequency is typically between 50
MHz and 3000 MHz. Among many practical limitations of achieving high performance
in SRF cavities, this study deals with their thermal limitations. The work described in this
thesis is an attempt to improve the performance of SRF cavities by studying its thermal
design parameter.

1.1 SRF Cavities

An SRF cavity is the device through which power is coupled into the particle beam of
an accelerator. As mentioned earlier, SRF accelerating cavities are microwave resonators,
which generally derive from a “pillbox™” shape (right circular cylindrical), with
connecting tubes to allow particle beam to pass through for acceleration. Figure 1.1
shows a typical cylindrically symmetric cavity. The electric field is roughly parallel to the
beam axis, and decays to zero radially upon approaching to the cavity walls. Boundary
conditions dictate that the electric field must be normal to the metal surface with peak
electric field occurring near the iris; a region where the beam tube joins the cavity. The
magnetic field is in the azimuthal direction, with the peak magnetic field located near the

cavity equator but decays to zero on the cavity axis.
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Figure 1.1: A typical SRF elliptical cavity, showing particle beam and fundamental
or lowest RF frequency mode (TM 010) of the SRF cavity.

An important figure of merit in evaluating various SRF cavity structures is its quality
factor (Q,), which is defined as the product of RF angular frequency () and the ratio of

the stored energy in the electromagnetic fields (U) to the dissipated power (Pgiss), and can
be written as
Qo= U/ Pyiss (1-1)

It is known that surface resistance causes power dissipation by the surface currents,
which arise in order to support the magnetic fields at the RF surface. The dissipated

power can be written as the ratio of the square of accelerating voltage (V) and the shunt
impedance (R,), that is,.
Pyiss = (Vacc) / Ra (1-1a)

and Q, is also frequently written as

Q. =G/Rs (1-1b)



where, G is the geometric constant depending upon the shape of the cavity and R; is the
RF surface resistance.

Therefore, the dissipated power in the cavity can be related with R;, as:

Py = (RZJQO = ( 2)6 R, (1-1c)

Here (Ra / Qo) is another figure of merit often quoted for determining the level of mode

excitation by charges passing through the cavity. Note that it is independent of RF
surface resistance as well as of cavity size. Often one quotes the average accelerating
electric field (E,.) that the electron sees during transit. This is given by

Eacc = Vacc/d (1-1d)
where, d is the active length of an accelerating structure and is usually an iris to iris
distance of a typical elliptical cavity such as shown in figure 1.1.

Wall losses usually occur in the form of heat dissipation through the wall material of
the cavity into the liquid helium surrounding the cavity. As the power increases, a stage
comes when the losses become too great to allow the liquid helium to remove the heat
from the cavity. At this point, the temperature of the material starts rising higher than the
material’s superconducting critical temperature (T.) above which the material becomes a
normal conductor, bringing about a sudden degradation of the performance of the SRF
cavity. This mechanism of performance degradation of SRF cavities is usually known as
thermal breakdown or “quench” and is described more in the subsequent paragraphs.

1.2 Advantages of SRF Cavities

It is well known that many materials, known as superconductors, lose all DC

electrical resistance when the temperature drops below the T.. However, unlike DC



resistance, RF resistance is zero only at T=0 K (absolute zero). At temperatures above
absolute zero, but below the critical temperature, the surface resistance is greatly reduced,
yet non-zero. This phenomenon is usually explained through the “London two-fluid
model”. According to this model, for temperatures less than T./2, the superconducting

surface resistance can be well represented as:

f? A(0)
R =A— — R -
= A=—exp( KBT,)+ \ (1-2)

The first term on the right hand side of equation 1-2 is the BCS surface resistance; named
after the three scientists who first presented the BCS theory i.e. Bardeen, Cooper, and
Schrieffer. For surface temperatures (7) less than T2, the binding energy, A(0), is
nearly unchanged from its value at absolute zero. The coefficient A is a function of
material parameters such as the superconducting coherence length, the penetration depth,
the electron mean free path, and the Fermi velocity. Here, kp is the Stefan-Boltzmann
constant and the value of A (1.333x10™* for RRR ~230) can be evaluated computationally
via programs by Turneasure !'! or Halbritter [*!. Material purity is usually described via
the Residual Resistivity Ratio (RRR), which is the ratio of electrical resistivity at room
temperature to the normal conducting resistivity at 4.2 K. The BCS surface resistance in a
typical f= 3 GHz cavity varies from 3 uOhms at T=4.2 K to less than 1 nOhm at T=1.4
K. It is important to note that cavities operating at 4.2 K in He-I, i.e. when the
temperature is not significantly less than T./2, the use of relation 1-2 may not produce
accurate results predicted by BCS theory.

The second term on the right hand side of equation 1-2 is the residual resistance R,,

which is temperature independent. Mechanisms for R, are not well understood, though



several possibilities have been proposed and investigated > Y], Residual resistance values
are generally found to be between 5 and 100 nOhm, although values as low as 1 nOhm
have been measured ©°!,

The chief advantage in the use of SRF cavities is the reduced wall loss power
dissipation. The wall loss power dissipation is proportional to the surface resistance,
which is reduced by a factor of 10° in superconducting cavities as compared to copper
cavities. The total power usage does not reflect all of this gain, however, due to the need
to refrigerate the cavities to liquid helium temperatures. Even including refrigerator
power, using typical refrigerator efficiencies, the net power usage drops by a factor of
several hundreds to a thousand in superconducting cavities. In continuous operation
(CW) this means greatly reduced power and higher accelerating gradients. In pulsed
operation, SRF cavities offer long pulse lengths and high duty cycles compared to normal
conducting cavities.

Niobium is currently the material of choice for superconducting cavities. The main
reason for this choice is that niobium has the highest critical temperature of all pure
metals (T, = 9.25 K), and in addition, is relatively simple to fabricate.

Experimentation with specially designed SRF non-accelerating cavities ") has
clearly shown that there are no fundamental limits to the peak electric fields on a niobium
surface up to Epeax = 200 MV/m. The theoretical limit on accelerating cavity performance
is therefore dependant on the cavity’s magnetic fields. The DC critical magnetic field is
thus related with the metal temperature as

H.(T)=H, (0)[1—(%) J (1-3)

c



where H.(0) is the critical magnetic field at T=0 K.

In RF conditions, the requirements are relaxed somewhat, as the penetration of the
magnetic field into the RF surface requires nucleation of a flux line, which requires a
finite amount of time. The nucleation time has been determined to be such that the
complete shielding of magnetic fields can persist to fields higher than the critical field, up
to a limit termed the superheating critical field, H,. In niobium, the superheating critical
field is estimated to be approximately Hy, = 2300 ©®! oersted (or simply Oe).

In typical SRF accelerating cavities, Hpeak = 2300 Oe corresponds to accelerating
gradients of 50 to 60 MV/m. Given that, accelerators with niobium cavities generally
operate at Ey.c = 10-20 MV/m, the need for further improvement is clear.

1.3 Limitations of SRF Cavities Through Thermal Breakdown

Thermal breakdown is a phenomenon in which the temperature of part or the entire
RF surface exceeds the critical temperature, thereby becoming normal conducting and
rapidly dissipating all of the stored energy in the cavity fields. The field at which
breakdown occurs depends upon multiple factors; including thermal conductivity of the
bulk niobium and heat transfer from the niobium to liquid helium bath. There are many
processes, which, by acting either independently or simultaneously, can cause thermal
breakdown of the cavity. Some of these are listed below.

1.3.1 Thermal Breakdown Due to Defects

Material defects are the most commonly understood cause of thermal break down in
SREF cavities. In this, the break down is considered localized, where a small defect in the
RF surface dissipates power more readily than surrounding superconducting walls.

Breakdown occurs when the power dissipation overwhelms the ability of the Nb to



conduct away the heat to surrounding liquid helium acting as the coolant. Thus the
temperature of the defect rises above the critical temperature of the bulk Nb, making it
normal conducting and eventually leading to thermal breakdown. It has been shown in
previous studies [°! that the local magnetic field just before thermal break down around a

hemispherical defect, to a first order approximation, can be given as:

H, = ,M (1-4)
r,R,

Here, H, is the thermal breakdown magnetic field, k is the thermal conductivity of the

Nb, T, is critical temperature of Nb, Ty, is the bulk temperature of the liquid helium, ‘r4’ is
the defect radius and Ry is the electrical surface resistance of the defect. From this
relation, it appears that the defect in the Nb skin is thermally isolated from the cooling
effects of the surrounding liquid helium and the breakdown magnetic field is totally
dependant only upon the thermal conductivity of the bulk Nb.

1.3.2 Global Thermal Instability (GTI)

Another type of thermal breakdown usually attributed to high surface magnetic field
regions is global thermal instability (GTI) !'°). In GTI, the heating is nearly uniform over
all of the high surface magnetic field regions. GTI occurs because, even without localized
defects, the RF surface retains some uniform residual RF resistance. GTI is initiated
when the power dissipation due to residual resistance raises the temperature enough such
that the exponentially growing BCS surface resistance becomes dominant, causing a
thermal runaway process, which leads to a thermal breakdown. In this kind of thermal
breakdown, both the Nb thermal conductivity as well as Nb-He interface heat transfer

coefficient determines the maximum achievable fields before quenching.



1.3.3 Thermal Breakdown Due to Field Emission

Field emission (FE) is the process of electrons coming out of the Nb surface in the
presence of high surface electric fields. These emitted electrons impact elsewhere on the
cavity surface, heating the surface, and thereby increasing the surface resistance. This
increases power dissipation of the cavity, as well as adding to the load on the
refrigeration plant. In the extreme, FE heating of the cavity walls can lead to thermal
breakdown, as mentioned in the last section. Acceleration of emitted electrons draws
power out of the electromagnetic fields, which would otherwise be available for
acceleration of the particle beam. Eventually, as fields are raised, the power dissipation
into FE related processes limits the attainable fields in the cavity.

1.4 Thermal Magnetic Interactions in SRF Cavities

As discussed in the last section, the heat removal from the inner surface (RF surface)
of the SRF cavity is via conduction through the niobium and convection to the liquid
helium surrounding the cavity. The operation of low frequency (f < ~300 MHz) cavities
as well as low field-testing of high frequency SRF cavity is usually performed in liquid
He I at around 4.2 K. However, the op<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>