

H
.
”

,
4
.
"

v
‘
v
'
m
'

w.

,hhng-1.

.. . 4. In

~o-r0r:

,-;.~-.n~

,
T
.
‘
I
’
.
"
-

 v..,.
;
,

‘
‘

m3

300?

This is to certify that the

dissertation entitled

SECURE BIT: BUFFER-OVERFLOW PROTECTION

presented by

KRERK PIROMSOPA

has been accepted towards fulfillment

of the requirements for the

Doctoral degree in Computer Science

CLAW;
Major Profieésor’s ignature

Amer? 30,. 2006

Date

MSU is an Affirmative Action/Equal Opportunity Institution

——-'-—“ --———————— L,

LIBRARY

Michigan State

University

~
r
—
—
<
—
.
—
-
u
l
-
.
-
v
—
-
-
-
-
-
v
—
-
.
-
.
-
.
-
v
-
.
-
—
-
—
-
-
v
-
-
v
-
-
-
-
-
.
-
-
-
v
—
-
—
-
.
—
-
-
—
A
—

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

2/05 p:/C|RC/Date0ue.indd-p.1

SECURE BIT: BUFFER-OVERFLOW PROTECTION

By

Krerk Piromsopa

A DISSERTATION

Submitted to

Michigan State University

In partial fulfillment of the requirements

For the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2006

ABSTRACT

SECURE BIT: BUFFER-OVERFLOW PROTECTION

By

Krerk Piromsopa

For decades, buffer-overflow attacks have remained the most persistent threat to the

computer security world. The most common type of buffer-overflow attacks is an attack

that changes the control flow by overflowing control data.

In this thesis, Secure Bit, architectural approach, is proposed to protect against buffer-

overflow attacks on control data (retum-address and function-pointer attacks in

particular). Secure Bit provides a hardware bit to enforce the integrity of addresses from

being modified by external data (input). Secure Bit is completely transparent to user

sofiware; providing full backward compatibility with legacy user code. It can detect and

prevent all address-corrupting buffer-overflow attacks with little run-time performance

penalty. Addresses passed in buffers between processes are marked insecure and control

instructions using those addresses as targets will raise an exception. An important

differentiating aspect of this protocol is that once an address has been marked as insecure

there is no instruction to remark it as secure.

To validate Secure Bit, we first theoretically pursue a secure system with respect to

buffer-overflow attacks and prove that Secure Bit provides a sufficient condition for

preventing buffer-overflow attacks. Robustness and transparency are demonstrated by

emulating the hardware, and booting Linux on the emulator, running application sofiware

on that Linux, and performing known attacks. In addition to the cost analysis and issues

related to the success of Secure Bit, we also suggest possible attacks that may not be

protected by Secure Bit.

In addition to the proposed Secure Bit, this thesis also provides a survey of current

approaches against buffer-overflow attacks. Notably. approaches are conceptually

grouped into three broad categories providing a platform for studying buffer-overflow

protection schemes.

For dad, the foremost inspiration of my life

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to all who contributed to the completeness of this

thesis. Royal Thai Government and Department of Computer Engineering,

Chulalongkom University, Thailand gave me the opportunity to pursue this PhD. in the

first place. I thank to everybody at the Department of Computer Science and Engineering

and Michigan State University for making East Lansing a home away from home for the

past few years.

It is my honor to work with the great advisor Prof. Dr. Richard J. Enbody. He helped me

with not only the research, but also with my writing. Without his principle of keeping

things simple, this thesis is not possible. If I am to be a good professor, he is certainly my

role model. I am deeply indebted to him.

I thank to the committee members: Dr. Anthony Wojcik, Dr. Pang-Ning Tan. and Dr.

Michael Shanblatt. Their invaluable suggestions and comments helped me to improve

this thesis in many ways.

Last but not least, I thank my parents, my brother, and my wife for supporting me

through these years. They made my life worth living.

Preface

This thesis is divided into ten main chapters: introduction, review, theory, fundamentals,

design, implementation, possible attacks, evaluation, analysis and conclusion. Though

each chapter is written to be self-contained, reading the whole document in order is

recommended.

Chapter 1, the introduction, presents the background of memory management from a

system point of view, and the basic concept of buffer overflow. Through the chapter,

readers are expected to learn the importance of protection against buffer overflow attacks.

Chapter 2, the background, reviews several approaches currently used by programmers.

and architects to defeat buffer overflow. We generally try to explain a concept and point

out the strength and weakness of each approach. Indirectly. we conclude that buffer

overflow still needs a better solution.

Chapter 3, the theory, is intended to theoretically pursue a secure system with respect to

buffer-overflow attacks. We begin by defining bulTer overflows in general. Later in this

chapter, we establish a sufficient condition for preventing buffer-overflow attacks and

prove that it will create a secure system with respect to buffer-overflow attacks.

Chapter 4, the fundamentals of Secure Bit, proposes Secure Bit. In this chapter, readers

will learn the concept of Secure Bit as an architectural approach for preserving the

integrity of an address against buffer-overflow attacks.

vi

Chapter 5, the design, is the discussion of architectural issues critical to the

implementation and deployment of Secure Bit. This chapter provides sufficient concepts

for adapting Secure Bit to any existing architecture.

Chapter 6, the implementation, elaborates the implementation details of Secure Bit in the

BOCHS emulator and the modification necessary to the Linux kernel. Through the

chapter, readers are expected to learn the impact of Secure Bit to both the architecture

and the systems level.

Chapter 7, the possible attacks, is the analysis of possible methods that may be used to

circumvent the protection provided by Secure Bit. We will present other types of attacks

that are not protected by Secure Bit and discuss the possible solutions.

Chapter 8, the evaluation, is the assessment of protection provided by Secure Bit.

Chapter 9, the analysis, provides cost analysis and issues related to success of Secure Bit.

Chapter 10, the conclusion, summarizes the thesis and provides possible researches and

applications in applying Secure Bit.

Finally, we hope to see the success of this research as an architecture solution against

buffer overflow.

vii

TABLE OF CONTENTS

LIST OF TABLES --

LIST OF FIGURES

CHAPTER 1 INTRODUCTION

1.1 MEMORY MANAGEMENT OF PROCESSES ..

1.2 BUFFER-OVERFLOW ATTACKS ...

1.3 FUNDAMENTAL OF BUFFER-OVERFIDW ATTACKS

1.4 SAMPLE ATTACKS AND VARIATIONS ..

1.5 SUMMARY...

CHAPTER 2 REVIEWS

.................................... 2

.................................... 2

.................................... 4

.................................. l0

1]

2. I INTRODUCTION ...

2.2 PROTECTION SCHEMES ..

2.2. I Static Analysis ..

2. 2. 2 Dynamic Solutions..

2.2.3 Isolation..

2. 2. 4 Summary ofProtection schemes...

2.3 STATIC ANALYSIS ...

2. 3. l Lexical Analysis..

2. 3. 2 Semantic Analysis...

2.4 DYNAMIC SOLUTIONS ..

2. 4. 1 Address Protection ...

2.4.2 Input Protection..

2.4.3 Bounds Checking..

2. 4.4 Obfuscation ..

viii

.................................. l2

................................. [2

................................. l3

................................. I6

................................. l7

.................................. l8

................................. l8

................................. 20

................................. 20

................................. 20

................................. 3]

................................. 34

................................. 37

2.4.5 Isolation... 38

2.5 ANALYSIS ... 4I

2.5. l Pitfalls ... 4 I

2.5.2 Performance .. 42

2. 5. 3 Compatibility (Transparency) ... 42

2.5.4 Deployment and Cost .. 43

2.6 CONCLUSIONS ... 44

CHAPTER 3 BUFFER-OVERFLOW PROTECTION: THE THEORY 45

3.I BUFFER OVERFLOW .. 45

3.2 PREVENTION ... 47

3.3 SUMMARY ... 50

CHAPTER 4 FUNDAMENTALS OF SECURE BIT - 51

4.I GENERAL MECHANISMS ... SI

4.2 FORMALIZATION OF CONCEPT .. 53

4.3 PROTOCOL ENFORCEMENT.. 55

4.4 SUMMARY... 57

CHAPTER 5 DESIGN - 58

5.I MEMORY ARCHITECTURE ... 58

5. I. I Memory Organization Modification.. 59

5. I. 2 Interleaving Memory ... 60

5. I.3 Secure Bit Relocation (Shared Memory) ... 6]

5.2 INSTRUCTION SET ARCHITECTURE.. 62

5. 2. I Arithmetic and Logical Instructions .. 63

5.2.2 Control Instructions .. 64

5.3 OPERATING SYSTEM ... 65

5. 3. I Domains and Bufler Manipulation.. 65

ix

5. 3.2 Virtual Memory ...

5.4 SUMMARY...

CHAPTER 6 IMPLEMENTATION

6.l BOCHS EMULATOR ..

6.2 MEMORY ..

6. 2. I Memory allocation ..

6.2.2 Memory interface ..

6.3 INSTRUCTION SET ARCHITECTURE ..

6. 3. I Operations ...

6.3.2 Data Manipulation ..

6. 3. 3 Control Data ...

6.4 LINUX ...

6.5 SUMMARY...

CHAPTER 7 POSSIBLE ATTACKS ON SECURE BIT

7.1 ATTACKS ON NON-CONTROL DATA ...

7.2 FALSE POSITIVES ..

7.3 SUMMARY...

CHAPTER 8 EVALUATION

8.1 BOOTING LINUX..

8.2 COMPATIBILITY ..

8.3 MOUNTING ATTACK ...

8.4 INSTRUCTION SET ARCHITECTURE ..

8.5 SUMMARY...

CHAPTER 9 ANALYSIS

9.I BACKWARD COMPATIBILITY ..

........................ 66

........................ 68

69

........................ 69

........................ 70

........................ 70

........................ 7I

........................ 73

........................ 74

........................ 74

........................ 75

........................ 75

........................ 78

79

........................ 80

........................ 83

........................ 83

85

........................ 85

........................ 86

........................ 89

........................ 93

........................ 94

95

........................ 95

9.2 DEPLOYMENT ... 95

9.3 SPACE ... 96

9.4 PERFORMANCE.. 96

9.5 POWER CONSUMPTION .. 96

9.6 COST ANALYSIS .. 97

CHAPTER 10 CONCLUSION _ - 99

10.1 CONTRIBUTIONS ... 99

10.2 SECURE BIT .. 100

10.3 FUTURE RESEARCH ... 101

10.4 CONCLUSION .. 101

APPENDIX A: SECURE BIT 1: THE ORIGIN - - 103

APPENDIX B: NON-LIFO CONTROL FLOW 108

APPENDIX C: TCPA, INTEL LAGRANDE, AND MICROSOFT NGSCB 110

BIBILOGRAPHY - - - - 114

xi

LIST OF TABLES

Table 1 Directory structure of Linux Kernel .. 76

Table 2 Results from stack smashing test ... 91

Table 3 Results from GOT test ... 93

xii

LIST OF FIGURES

Figure 1 Memory management model of a process .. I

Figure 2 Stack Smashing .. 5

Figure 3 An example of a vulnerable program ... 8

Figure 4 Buffer-Overflow Attacks on Pointers ... 9

Figure 5 Algorithm of Static Analysis... 12

Figure 6 Algorithm of Dynamic Solutions ... 13

Figure 7 Taxonomy of solutions against buffer-overflow attacks 17

Figure 8 Sample of code reordered by IBM ProPolice ... 22

Figure 9 LibVerify. (From [2]) ... 29

Figure 10 Memory Snap shot with Secure Bit (a) normal operation. (b) Passing a buffer

across domains. (c) Related instructions validate the address 52

Figure 11 State-transition diagram of buffer-overflow attacks ... 54

Figure 12 System block diagram .. 58

Figure 13 Interleaving Memory Interface and Secure Bit controller 60

Figure 14 Address translation scheme for Secure Bit Relocation 61

Figure 15 Operations of Secure Bit... 64

Figure 16 BOCHS Components.. 69

Figure 17 Memory Allocation for storing Secure Bit ... 70

Figure 18 Code for (a) manipulating Secure Bit (b) reading Secure Bit 72

Figure 19 List of overloading functions for accessing physical memory 73

Figure 20 Macros for operations on Secure Bit .. 74

Figure 21 Data manipulation using sbit_write mode .. 75

Figure 22 Validation of Secure Bit in control instructions ... 75

xiii

Figure 23 Linux Kernel Organization ... 77

Figure 24 Macros for managing sbit_write mode (in “/include/asm-i386/uaccess.h”) 77

Figure 25 Sample Buffer-Overflow attack on non-control data 80

Figure 26 Example of stack smashing venerability .. 90

Figure 27 Wrapper program for exploding stack smashing.. 91

Figure 28 Example ofGOT vulnerability ... 92

Figure 29 Wrapper program for exploding GOT example ... 93

Figure 30 Top: DRAM card without ECC; Bottom: DRAM card with an extra memory

chip for ECC ... 97

Figure 31 Semantic of call and return function... 105

Figure 32 Stack snapshot with Secure Bit (a) After call instruction, (b) After buffer

overrun, and (c) During return instruction. ... 105

Figure 33 Function pointer protection using Secure Bit. .. 106

Figure 34 Sample IA-32 optimization of near call and far call for size.......................... 108

Figure 35 Intel LaGrande Architecture (from [36]) .. l 1 I

xiv

Chapter 1 Introduction

This chapter is intended to be an introduction to buffer overflows. We begin by revisiting

the memory management of processes in generic operating systems. Based on the

memory management, we continue to explore buffer overflows in general, and retum-

address attacks and function-pointer attacks in particular. Included is an example of a

multistage buffer-overflow attacks which can bypass most solutions.

1. 1 Memory Management of Processes

Knowledge of how modern operating systems handle the memory of processes is

required in order to understand how buffer overflows happen. From a programmer’s

point of view, the memory of each process is partitioned into text (code) and data.

Similarly, the operating system partitions the memory into several sections (also referred

to as segments). Apart from the text and the data, the operating system also allocates

memory for the heap, the BSS, and the stack. This memory model is applied to both

UNIX-like systems and WINDOWS systems. Figure 1 shows the model and growing

direction of each segment.

Stack (growing down)

Heap (growing up)

BSS

Data

Text

Figure 1 Memory management model of a process

The text segment is the area where the program binary is stored. The data segment

consists of all initialized global data and global variables. The BSS (Block Started by

Symbol) is allocated for additional space determined at compile time. This space stores

I

static variables and all uninitialized global variables. Compilers are responsible for

generating these three segments. The heap is the space that a program can dynamically

allocate at execution time. The stack is typically used for storing local variables,

arguments and return addresses. A snapshot of data stored in the stack is shown in Figure

1.

While the text segment can easily be protected by labeling as read only, the others cannot.

Thus, it is possible for users to arbitrarily modify data in those areas. In the next section

we learn a class of attack where input is used to maliciously modify control data and

cause a program to be in unexpected state. This kind of attack is known as a “buffer-

overflow attack”.

1.2 Buffer-Overflow Attacks

We begin by establishing the fundamentals of buffer-overflow vulnerabilities and attacks.

Later we present variations on buffer-overflow attacks.

1.3 Fundamental of Buffer-Overflow Attacks

Several researchers ([12, 15, 23, 27, 38, 46]) have positioned that there are two necessary

conditions for buffer-overflow attacks to be successful: (1) injecting malicious code and

(2) redirecting the program control flow to execute that code. Although it is common,

injecting malicious code is not necessary since the code can be resident code found in

shared libraries. For example. jumping to resident shell code while in privileged mode is

sufficient. Therefore, we claim that only the second condition is truly necessary.

We first take a quick look at buffer overflow vulnerabilities and how they were first

exploited. A buffer overflow is an anomalous condition where a program somehow

writes data beyond the allocated end of a buffer in memory [76, 81]. The eventual result

is an access to unexpected data [56, II]. A buffer-overflow attack is a buffer overflow

that overwrites critical data and results in malicious or unexpected behavior. Examples

range from denial of services to gaining privileged control over the target system [56, II].

In all cases, the malicious data in an attack are input data, such as data from another

domain (e.g., user inputs, network packets, data passed from another process), that was

not verified. It is possible for buffer overflow to take place entirely within a process, but

such a condition usually results in segmentation fault rather than an attack.

With this observation, we define a bufler-overflow attack to be

an attack caused by overflowing a buffer with datafrom another domain

which results in malicious or unexpected behavior ofa program.

This concept is not new. For example, Howard and LeBlanc state in their book “All

input is evil until proven otherwise” [32] Accordingly, an intuitive solution against

buffer-overflow attacks is an ability to detect and validate input, especially input which is

eventually used for control.

Using the concept that inputs are the origin of attacks, a key component for detecting and

validating the input is metadata. Metadata is additional information on the properties of

data. It can be one or a combination of: type descriptor, guard value, encoding key,

redundancy copy of data, tagged value, or even programming logic. This concept is also

not new. It was suggested that metadata is a key to preventing buffer-overflow attacks in

the 2003 article [29]. In this chapter we will use the variety of metadata and its

management as a way of classifying buffer-overflow prevention schemes.

Note that metadata can also be used for other purposes, e.g. tagged architectures such as

Symbolics [47] or tagged operating systems [28]. However, the main focus of this thesis

is on the use of metadata for buffer-overflow attack prevention.

In summary, buffer-overflow attacks occur when a malformed input is being used to

overflow a buffer causing a malicious or unexpected result. Some metadata is necessary

for prevention. In Chapter 2, we will present a variety of schemes for handling buffer-

overflow attacks. Most of them use metadata.

1.4 Sample Attacks and Variations

There are two main targets of buffer-overflow attacks: control data and local variables. In

the vast majority of attacks, control data is the target so prevention schemes have focused

on control data. Control data can be divided into several types: return addresses, function

pointers, and branch slots. Return addresses have been the primary target since their

location can easily be guessed. More advanced buffer-overflow attacks target other

control data. Some literature refers to attacks on return addresses as first-generation

attacks, and those on function pointers as second-generation attacks [I l].

The first step-by-step description of how to construct a buffer-overflow attack was

written by Elias Levy (a.k.a. Aleph One) in 1996 [51]. In his paper, the term “Stack

4

Smashing” is probably first used to refer to the plastering of stack with shell code and its

address to set up an eventual overflow of a return address on the stack.

All determine

I ' execution flow
Exception handlers Function

Function pointers return

Virtual methods address @

,\

Buffers Other vars E '"—"l Args l
._ \ -u '0

 ' r
V V V

I I I

void func(char *p, int i) {

I'int j=0;

..._.: /* local variable */

|_CDunnny dummy;

-_char b[128];

strcpy(bIP)i

I

,
-

I I I I l I I I I l

Figure 2 Stack Smashing

Figure 2 shows a stack-smashing example. In this example, attackers (shown in the black

hat) will pass a buffer containing malicious code (e.g. shell) and multiple copies of the

address of the target buffer as an argument to the vulnerable program (through parameter

p). A buffer manipulation function (e.g. strcpy in this example) will overflow the

function’s return address with the address of the target buffer (which contains malicious

code). The eventual result is that the return instruction will use the address of the target

buffer as a return address and return the program flow to execute that malicious code.

Additional attack vectors are provided but not used in the code such as function pointerfp.

As outlined above, it is important to note that the critical component of this attack is the

modification of the return address (replaced by the address of the target buffer).

To illustrate an advanced buffer-overflow attack, we provide a multistage buffer-

overflow attack (a.k.a. Hannibal Exploit [19]) that can bypass most sofiware buffer-

overflow solutions. Fundamental to a multistage buffer-overflow attack is that there

exists a vulnerable pointer to a buffer. That is, there is a user-writeable buffer sufficiently

near a useful pointer. First, the pointer is modified (by overflowing) to point to a specific

location (e.g. a jump slot or a function pointer). In the second stage of the attack, an input

is stored at the pointer’s target. These two steps allow attackers to create a pointer to any

location (first stage) and overwrite the pointer’s target with a desired value (second stage).

The next time some program jumps to that target, it will be redirected based on the value

inserted by the attacker. In particular the program will be redirected to the attacker’s

malicious code. For example, if the program is running in privileged mode and the

pointer points to shell code, the attacker will have created a privileged shell allowing free

reign. Figure 3 is an example of such a vulnerable program.

Before examining the code, let’s review how a jump table is used. Consider the slot in

the table for the pointer to the printfexecutable. A call to printfindexes to that slot in the

table and then jumps to the printfexecutable.

To attack this type of program, the buffer-overflow is done in two stages. First, the ptr

pointer is overflowed to point to a desired memory location (I), e.g. the printf slot in the

jump table. In particular, argv[1] controlled by the attacker will contain the address of

the printf slot in the jump table. The strcpy routine will copy argv[I] into buffer. but

overflows to overwrite ptr with the printf address slot. In the figure, we see that the

pointer ptr originally pointed to ‘buffer’ (are labeled ‘Before’) but now points to the jump

slot (are labeled ‘After). Now that ptr points to the printf slot in the jump table, we need

to insert a desired value into that slot.

Suppose, for illustration, that we also have determined the address of resident shell code

(we will call it residentcode). Using our modified ptr we will overwrite the jump table

slot with the residentcode address. We use the second strcpy call (2) to write argv[2]

(also controlled by the attacker and whose value is residentcode) into the target of ptr

which now points to the printf entry in the jump table. The result of that second strcpy

call is that we have placed the address residentcode (resident shell code) into the printf

slot of the jump table. The attacker has achieved his goal. Now when a program calls

printf, control passes as usual to the printf entry in the jump table, but now the attacker

has redirected control to residentcode, the address of the shell code. Instead of printf a

shell will be started. If the program which called printfwas operating in privileged mode.

the attacker will have succeeded in creating a privileged shell with full system access.

(See [57] for more details). As we will see below, this multi-stage attack gets around

most buffer-overflow protection schemes. Less obvious is that we can use a similar

approach to circumvent some sofiware solutions to buffer-overflow attacks by modifying

a handling vector which can allow us to bypass the buffer-overflow handling routine.

u

printf Jump Slot

Before A/fter

Iresidentcode I

I buffer I ptr IxI/€} ‘2‘

//ee

int vulnerable(char **argv)I

int x;

char *ptr;

char buffer[30];

ptr=buffer;

printf("ptr %p - before\n" ,ptr);

I

9 str tr ar 1

printf("ptr %p - after\n",ptr);

Figure 3 An example of a vulnerable program

<
3
}

WM);

printf(“done\n”):

Another variation which most schemes cannot protect is an attack on generic pointers. By

modifying both the source and destination pointers, copying from one arbitrary memory

location to another is possible. Figure 4 illustrates an attack based on attacking pointers.

In this figure, the first strcpy will allow attackers to overflow buffer b so the src and des

pointers are replaced with two pointers of the attacker’s choice: in this case, valid control

data and target address respectively. The second strcpy will then copy from the src

location to the des location. Using this approach, it is possible to modify any memory

entry with a known local entry while avoiding most protection mechanisms. For example,

an encoded function pointer can be used to attack another function pointer (e.g. jump

slot).

Jump Slot, I

{1‘} Control Data

 . / l R

void func(char *p) { Valld

char *src, *des; Control Data

char b[10] ;

char a[10];

\ at: b

\ str src des '

I

{
9
?
}

Figure 4 Buffer-Overflow Attacks on Pointers

A related attack is worth noting here: printf vulnerabilities [63]. Malformed formatting

instructions can allow arbitrary memory to be overwritten. It is not a buffer-overflow

attack, but with the ability to overwrite arbitrary memory the attack then proceeds like

many buffer-overflow attacks by attacking control data. Some buffer-overflow schemes

can prevent some of those attacks. However, any variable can also be attacked, and no

buffer-overflow scheme protects arbitrary data. Fortunately, simple static analysis of

source code can identify printf vulnerabilities. As we will see below, static analysis is not

sufficient for buffer overflows.

Recently “integer overflows” (known more generically as “integer arithmetic” attacks)

have emerged as a variation [5]. In these attacks guard data which protects buffers is

attacked. After defeating the guard data some buffer-overflow attack is used. Therefore,

these attacks can be considered as a variation of a buffer-overflow attack which the more

robust schemes can protect against.

An attack on local variables is exemplified by the classic password attack from 1987

paper [80]. Basically, a variable is being overflowed allowing an arbitrary password to be

validated resulting in root or administrator access. No control data is involved so no

existing buffer-overflow protection schemes protect against this type of attack.

1.5 Summary

Through the chapter, we have learned the fimdamentals of buffer-overflow attacks that

can occur in any user accessible area. In the big picture, a buffer-overflow attack is the

effect of modifying critical data by overflowing a buffer. The critical data are control data

and generic variables. Most attacks target control data. When control data is the target.

attackers are then able to redirect the control flow to execute the unexpected code.

10

Chapter 2 Reviews

This chapter is the review of current approaches against buffer-overflow attacks. To

elucidate the wide variety of approaches, the methods are categorized to form a taxonomy

(in Figure 7). For each class in the taxonomy, we briefly discuss the mechanisms and the

(potential) problems.

2. 1 Introduction

Although they date back to the infamous MORRIS worm of 1988 [62], buffer-overflow

attacks remain the most common type of attacks. Though skilled programmers should

write code without buffer overflows, no program is guaranteed free from bugs so it

cannot be considered completely secure against buffer-overflow attacks. The persistence

of buffer-overflow vulnerabilities speaks to the difficulty of eliminating them. In

addition, as buffer overflow vulnerabilities are eliminated in operating systems, they are

being found and exploited in applications. When applications are run with root or

administrator privileges, the impact of a buffer overflow is equally devastating.

In an effort to avoid relying on individual programming Skill, 3 number of researchers

have proposed a variety of methods to protect systems from buffer-overflow attacks.

Most of them are not able to provide complete protection. For example, some only

prevent the original stack-smashing attack, but can be circumvented by more recent

attacks.

11

2.2 Protection schemes

In Chapter 1, we have established a basis for understanding buffer-overflow attacks so we

can now examine current approaches to protect against them. We partition the approaches

into three broad categories: static analysis, dynamic solutions, and isolation. Static

analysis tries to fix functions that are vulnerable to buffer-overflow attacks. Dynamic

approaches monitor or protect data that is either a target or the source of buffer-overflow

attacks. Isolation seeks to limit the damage of attacks.

2.2.1 Static Analysis

Given a set of known vulnerabilities, we can simply avoid buffer-overflow attacks by

fixing the vulnerable functions. Since this approach works on source code it is called

“Static Analysis.”

The main idea of “Static analysis” is to find and solve the problem before deploying the

program. To do so, we first analyze the source code or disassembly of the program by

looking for code with a predefined signature. For example, it is well known that the

“strcpy” function in C can be vulnerable to buffer-overflow attacks. Knowing this fact,

we can create a signature to search for any use of the “strcpy” function, warn the

programmer of the vulnerability and suggest solutions (e.g. using the bound-checking

version “stmcpy”). A generic static analysis algorithm is presented in Figure 5.

// Static Analysis

1. Open pre-defined signatures

2. Search target source code for signature code

3. if(found(signature))

replace with less vulnerable code, inform programmer

Figure 5 Algorithm of Static Analysis

12

2.2.2 Dynamic Solutions

Knowing which data are critical to attacks, we can prevent attacks by validating the

integrity of that data. As mentioned above, the data of interest are control data such as

(but not limited to) return addresses. We name these “Dynamic Solutions” because data

are dynamically managed and verified in the run-time environment. The generic

algorithm is shown in Figure 6.

// Dynamic Buffer-Overflow Protection

// During run-time execution

Tag control data

If (accessing_control_data && legal_tag)

Continue

Else

raise exception

Figure 6 Algorithm of Dynamic Solutions

In order to validate (and identify) the integrity of data, it is necessary to have a tag

(metadata) associated with the data. This “metadata” will allow us to check the integrity

of data by validating the tag. To differentiate the approaches we will compare four

components of dynamic solutions:

Underlying assumptions of the approach

Creation of metadata

Validation of metadata

Handling of invalid data

We provide several examples to illustrate the components.

Example I,

In this first example, buffer overflows are foiled by preventing any input (including

buffers) from being used as control data. Metadata is used to tag data as input. When any

13

data is used by control instructions (e.g. jump, call, or return), the instructions must verify

that it is not input (by verifying the metadata). If it is input, an exception is raised.

From this example, we can derive the main concepts as:

Assumption: Input is untrustworthy for use as control data.

Creation: All functions that send or receive data from another process must set the

metadata tag of data as untrustworthy input.

Validation: Control instructions must validate that the associated control data is not

tagged.

Handling: Exception is raised.

Example 2,

In this second example, return addresses can only be created by call instructions. When a

return address is created, it must be tagged by the call instruction. Other instructions must

clear the metadata tag. A return instruction must verify that the address has a valid tag

(not modified by other instruction) before executing the return. If the return address is

invalid, an exception is raised.

From this example, we can derive the main concepts as:

Assumption: The validity of return addresses must be maintained.

Creation: Call instruction must set the tag of the return address.

Validation: Return instruction must validate that the return address is tagged.

Handling: Exception is raised.

14

The two examples are different in that their solutions are based on different assumptions.

However, they share the same idea that a tag (or metadata) is necessarily attached to

critical data. They differ in that the first example tags input in general while the second

example specifically tags return addresses.

Dynamic methods can also be differentiated in how the metadata is stored. In general.

there are two types of metadata: hardware supported and software managed metadata.

Hardware solutions require modification of either the hardware organization, the

instruction set architecture or both. For software managed metadata, the metadata is

(mostly) managed by sofiware as normal data. In general, prologue and epilogue are

inserted to the program for the creation, validation and handling of metadata.

Using these components we can broadly classify dynamic solutions into four groups:

Address Protection

Input Protection

Bounds Checking

Obfuscation

The address protection schemes such as Example 2 share the assumption that addresses

(e.g. return address) are critical data and must be tagged. In these schemes the metadata is

created by fimctions that create the address (e.g. call instruction), and verified by the

many instructions that use the address (e.g. return instruction). The schemes within this

group are differentiated by the types of metadata they use.

15

The input protection schemes such as Example I assume that external data are

untrustworthy and should not be used as internal control data. The underlining concept is

that “All input is evil until proven otherwise” [32]. In most cases, metadata are tightly

coupled to the data in hardware (e.g. tagged memory). Data from external sources are

tagged so it can be recognized, if there is an attempt to use it as control data. The

schemes in this group differ in the management of metadata.

Rather than tagging data, bounds checking schemes explicitly bound buffers to prevent

overflow. In this case, the metadata is associated with every block of allocated data and

is used to bound accesses.

Instead of protecting the data directly, obfuscation schemes reorganize memory to

obscure memory making malicious manipulation of memory through buffer overflows

more difficult. These schemes assume that attackers rely on a certain snapshot of

addresses to overflow the critical data. If the snapshot is random or difficult to guess, an

attack is more difficult

2.2.3 Isolation

Isolation schemes limit the damage from attacks rather than preventing attacks. As a

result their protection is not limited to buffer-overflow attacks. This category includes

sandboxing and confinement schemes.

Isolation schemes isolate the attacker either to eliminate an attack vector or to contain

damage after a successful attack. Preventing the execution of code in stack memory

16

isolates the stack from the attacker. Altematively, limiting the memory of a process can

isolate a compromised process. NX nonexecutable memory is an example of the former

while sandboxing is an example of the latter.

As with dynamic solutions, isolation can be implemented purely in software or with

support from hardware.

2.2.4 Summary of Protection schemes

In this section, we introduced a classification of buffer overflow protection into three

broad categories: fixing the function. protecting the data, or limiting the effects. In this

paper, we refer to these schemes as Static Analysis, Dynamic Solutions and Isolation

respectively. For illustration, we draw a taxonomy in Figure 7. and will continue to

review various proposed solutions in the next section.

I Buffer-Overflow Protections I

l Static analysis I Dynamic Solutions I Isolation I

Lexical Analysis

Address Protection

Semantic Input Protection Sandboxinfl

Bounds Checking

Obfuscation

Figure 7 Taxonomy of solutions against buffer-overflow attacks

17

2.3 Static Analysis

A number of tools examine source code to detect for possible buffer overflow

vulnerabilities. The method can be a simple string matching algorithm, a lexical analyzer,

or a scanner (parser). Static Analysis allows a programmer to prevent the problem before

deploying the program. However, the static analysis has no runtime information. As a

result, it might not be able to evaluate all possible problems and may generate false

alarms. No matter how good the static analysis tool is, a programmer, eventually. has to

make a final decision in correcting the program logic.

2.3.1 Lexical Analysis

ITS4: Researchers at Reliable Software Technologies developed a static analysis tool for

detecting security vulnerabilities in C and C++ and named it It ’s the Software Stupid!

(ITS4 [74]). The tool uses lexical analysis and matches tokens with known vulnerable

functions in a pre-defined database. It is useful for highlighting potential security

problems as code is written. The report generated from ITS4 includes a brief description

of the problem, a brief description of how to solve the problem, and the level of severity.

FlawFinder and RATS: FlawFinder [25] and RATS [61] are similar tools that scan

source code using lexical analysis. When the developers of each team noticed that they

were developing similar tools, they decided to combine the two tools into one in the

future. Basically, FlawFinder uses the same method as that of ITS4. However, the report

generated from FlawFinder is associated with the values of the parameters of the function.

For example, variable strings are considered more risky than constant strings. In addition

to C, RATS also supports Perl, PHP and Python source code.

18

STOBO: This Systematic Testing Of Buffer Overflow (STOBO [30]) is an interesting

static analysis tool for C programs. It uses profiling to generate its report. This tool will

insert special fimctions into the original program to keep track of each variable and

memory allocation. Running the modified program will provide dynamic analysis from

the runtime environment.

LibSafe: LibSafe [2] is the implementation of static analysis in the run time environment.

It is a safe implementation of a library that is forced to be loaded before the standard C

library. Since the library is accessed in the order of loading, Libsafe is able to intercept

the known vulnerable functions (e.g. strcpy, strcat).

Dynamic Tainted Analysis: Dynamic Tainted Analysis [50] is a monitor tool modified

for examining the arguments and results of each system call, and determines whether data

should be marked as input. The current implementation is in Valgrind, a Linux tool for

detecting memory management problems. Memory is emulated for tracking the

information flow (using a tainted bit associated to each byte). System calls are monitored

and recording. According to the policy, some system call may generate the tainted data.

All arithmetic instructions are captured to propagate the tainted. This tool is useful in that

it uses dynamic information for fixing the program.

Potential Problems:

0 False alarms

- Does not handle buffer overflow in user-defined functions and macros

l9

2.3.2 Semantic Analysis

Splint: Splint [24] is a tool for statically checking C programs for security vulnerabilities

and coding mistakes. The name and some of its functionality originates from a popular

static analysis tool for C called Lint released in the seventies. Splint uses a parser to

perform semantic analysis. This means that the tool has a better chance of differentiating

between correct and incorrect use of frmctions than those based on lexical analysis.

Boon: BOON [75] is another tool for statically checking C programs for security

vulnerabilities. Boon treats the C String as an abstract data type, and models buffers with

two integer ranges. These two ideas provide a framework for the analysis.

Potential Problems:

0 False alarms

0 Does not handle buffer overflow in user-defined functions and macros

2.4 Dynamic Solutions

Several dynamic solutions have been introduced. Each method varies in assumption,

choices of metadata and management scheme, or handling routines. We will review them

in the following order: Address Protection, Input Protection, Bounds Checking. and

Obfuscation. For each method, we will pinpoint the choice of metadata and the

management of the metadata.

2.4.1 Address Protection

There are several similar methods that share the assumption of protecting the address.

However, they use different types of metadata. These variations include: a canary value,

20

tagged memory, and hardware stack. Though some solutions in this class have become

obsolete as attacks have matured, they are a good initial step in preventing buffer-

overflow attacks.

2.4.1.1 Canary Words

Assuming that corrupting an address will also corrupt the adjacent data. the validity of

address can be verified by validating special adjacent metadata (the canary word)‘. The

general mechanism can be described as:

1. Place a canary word next to the address (e.g. return address) when the address is

created (e.g. by a call instruction).

2. Verify the canary word before using the address (e.g. before a return instruction

uses a return address).

StackGuard [15, I 7, 18, 31]

Assumption: Return addresses must not be modified alter creation

Metadata: Canary word adjacent to the return address

Creation: Compiler injects prologue to the header of every function for placing a canary

word next to the return address.

Validation: Compiler injects epilogue at the end of every function for validating the

canary word.

Handling: Compiler injects an error handling routine.

A canary word is similar to a canary in a mine: if the canary dies. that indicates a problem.

21

Potential Problems:

0 Insufficient assumption: buffer-overflow attacks have changed in response to this

type of protection to now attack other addresses.

0 Insufficient protection for the canary word itself and the return address (See [7]

for more details.)

ProPolice [23I

ProPolice supports two mechanisms. The first one is return address protection similar to

StackGuard. In addition to the return address protection, ProPolice also assumes that

buffer overflow occurs only in one direction, and reorders the declaration statement to

protect against function pointer attacks. Since an overflow only goes in one direction,

declaration reordering can prevent the function pointer from being overflowed. Figure 8

shows the sample of the reordering process. However, this can only protect some

variables from being overflowed, but not other variables that are still in the overflow

direction.

Original Code Reorder Code

Int bar() I int bar() I

void (* funct2ll); char buff[80];

char buff[80]; void (* funct2)();

} }
Figure 8 Sample of code reordered by IBM ProPolice

2.4.1.2 Address Encode

Knowing that encryption can help preserving the integrity of data, the same concept is

applied to protect the integrity of addresses (e.g. function pointers or return addresses). In

this type of protection, the metadata is the key used to encode the data. The general

mechanism can be described as:

l. Encode an address with a pre-defined key before storing it to the memory.

22

2. Decode the address on dereferencing (loading back to the processor).

PointGuard [I6] and Hardware Supported PointGuard [64, 71/

Assumption: Pointer must not be modified after creation.

Metadata: Per-process random key for encrypting pointers (generated by software or

hardware supported hash table)

Creation: Compiler injects code for encoding pointer (with or without hardware

supported instruction)

Validation: Compiler injects code for decoding pointer on dereferencing. Pointer to

outside process boundaries is flagged as malicious.

Handling: Exception is raised

Potential Problems:

0 (Possibly) insufficient randomness of encryption key

0 Issues with arrays and compile-time assignment of pointers. Since a pointer is

encoded with a per-process key that is generated when the program is loaded, it is

not possible to assign a value to the pointer before the key is determined. In

addition, languages (such as C, C++) may handle a string as a pointer of

characters (array). It is not clear whether the string pointer should be encoded.

0 Shared libraries and interprocess communication. While each process is aware of

its key, the shared library is shared. Thus, passing a pointer to the shared library

requires sharing a key between the main program and the shared library. Similarly,

passing a pointer to another process also requires special handling for the key.

2.4.1.3 Copy of address

A simple method for preserving the integrity of an address is to preserve another copy of

the address. The mechanism can be summarized as follow:

1. Create a safe copy of the address (e.g. return address) when it is created.

2. Verify the (return) address against the safe copy before using it (e.g. on

return).

23

StackGhost [27]

Assumption: Return addresses must not be modified after creation.

Metadata: A copy of return addresses stored in the register window of Sun SPARC

processor.

Creation: Hardware supported instructions automatically create a copy of the return

address in the register.

Validation: Operating system validates return address with the copy in the register

window

Handling: Operating system (OpenBSD) patch of handling routine to handle the new

exception.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

Dynamic update of return addresses (e.g. non-LIFO control flow).

Overflow of register window.

Architecture specific.

RAS I44, 78, 79/

Assumption: Return address must not be modified after creation.

Metadata: A copy of return addresses stored in the Return Address Stack (RAS)—a

hardware accelerator technique in some processors

Creation: Hardware supported instructions automatically create an entry of a return

address in Return Address Stack (RAS)

Validation: Compiler injects prologue for validating the return address against the copy

before the return instruction.

24

Handling: Exception is raised.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

Dynamic update of return addresses (e.g. non-LIFO control flow) .

Overflow of return address stack.

Architecture specific.

Split Stack I78]

Assumption: Return address must not be modified after creation.

Metadata: A special memory area for storing the return address (control stack)

separately from the regular data stack. Note that this can be implemented as either

software or hardware.

Creation: Software: compiler injects epilogue to call instruction for storing the return

address in a control stack (software). Hardware: the semantics of the call instruction are

modified to store the address.

Validation: Software: compiler injects prologue to return instruction for restoring the

return address from the control stack,, or Hardware: the semantics of the return

instruction are modified.

Handling: Compiler injects handling routine (software) or exception is raised (hardware).

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

0 Dynamic update of return addresses (e.g. non-LIFO control flow).

0 Breaking of system programs that assume the layout of the stack frame.

25

SmashGuard [53]

Assumption: Return address must not be modified after creation.

Metadata: A hardware stack for storing a copy of return address.

Creation: The semantics of the call instruction are modified to push a copy of return

address onto the hardware stack.

Validation: The semantics of the return instruction are modified to pop and compare the

two return addresses.

Handling: Exception is raised.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

0 Dynamic update of return addresses (e.g. non-LIFO control flow). In the paper,

the authors extend functionality of stack to cover some aspects of this issue.

0 Breaking of system programs that assume the layout of the stack frame.

RAD Compiler [12], RAD Binary Rewrite [59] andDISE II4]

RAD Compiler, RAD Binary Rewrite and DISE share the same concept of storing a

redundant copy of return addresses for preserving the integrity of the return address.

However, the mechanisms for injecting the protection code are slightly different. In RAD

Compiler [12], the compiler is responsible for embedding the protection code into the

program. In RAD Binary Rewrite [59], the loader is responsible for injecting the

protection code using binary rewrite. For DISE [14], the hardware-assisted

implementation, dynamic instruction stream editing, will expand the instructions on the

fly. Due to the similarity, we will only elaborate the details of RAD Binary Rewrite [59].

26

RAD Binary Rewrite

Assumption: Return address must not be modified after creation.

Metadata: A special memory area for storing a redundant copy of return addresses

(Return Address Repository, RAR) which is protected by the mprotect() system call to

mark the area as read-only [12].

Creation: Loader performs binary rewrite to inject prologue to the header of every

function for storing a copy of the return address in RAR.

Validation: Loader performs binary rewrite to inject epilogue to the end of every

function for validating the return address with a redundant copy.

Handling: Loader performs binary rewrite to inject a new exception handing routine.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

Dynamic update of return addresses (e.g. non-LIFO control flow).

Performance issue of the mprotectO system call.

StackShield I73]

There are three mechanisms proposed in StackShield: Global Ret Stack, Ret Range

Check, and Function Pointer Protection. The first two mechanisms are similar concepts.

but differ slightly in implementation. We will present the first two together and the

pointer protection separately.

Global Ret Stack and Ret Range Check

Assumption: Return address must not be modified after creation.

27

Metadata: A special memory area for storing a redundant copy of return addresses

(Global Array).

Creation: Compiler injects prologue into the header of every function for copying the

return address to the Global Array.

Validation: Compiler injects epilogue into the end of every function for copying the

return address from the Global Array back to the original location without checking

(Global Ret Stack) or for validating the return address with a redundant copy (Ret Range

Check).

Handling: Compiler injected exception handling routine.

Function Pointer Protection

Assumption: Function Pointer must only point to a location in the text (code) segment.

Metadata: The range of the code segment.

Creation: Loader creates the code segment.

Validation: Compiler injects prologue to each function pointer for validating that its

value must be in the valid range.

Handling: Compiler injected exception handling routine.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

0 Insufficient protection for the metadata itself and the return address (See [7] for

more details.)

0 Dynamic update of return addresses (e.g. non-LIFO control flow).

28

Lib Verify 12/

LibVerify is a type of dynamic solutions that is implemented via binary rewrite. Figure 9

shows the mechanism.

Assumption: Return address must not be modified after creation.

Metadata: A special memory area for storing a redundant copy of return addresses.

Creation: Loader performs binary rewrite to create a copy of secure code by injecting a

prologue for storing return addresses in the special memory area.

Validation: Loader performs binary rewrite to inject epilogue for verifying the return

address.

Handling: Loader performs binary rewire to inject handling routine.

Potential Problems:

protection to now attack other addresses.

0 Dynamic update of return addresses (e.g. non-LIFO control flow).

Oxbffllfb l

l
1

bottom of slat !

GIIV. VIII'S

parameters

0

return addr

stack vars

expected location of I :

return addr

{ o W

0;" ,

MOI“ bullet

allaékcpde overflow ‘

frame pointer—o ;:§;:~:{;:.:’Z

{‘fij'VI/‘f"

5 attack

stack pointer» k .

V *

stack address space

void new_ main(){

char buflerl96]; \

Strcpy(bufier. large_stting):

II jump to wrapper_exit.‘ix

I .- - V.
Ni ‘i \

c". _-r,. . .\ 1..-,Y \

---_ -fl- ,\ .___ T ,

void ' Iljumptoumlnpon ryi

I: \2 l \.

.. |ar9°_8"ingl: l\ ,l I.

' 4 ,/ i
l r"

f I I \

WWJWYOI ”“5””, I ,"l

II store return address.“ / »’

ll jump to new_main/ / r,

wrapper_exit() {*fl “itl/'1

Ilveriiy return address

It return ~""

3 .__.------\

Figure 9 LibVerify. (From |2|)

29

Insufficient assumption: overflow attacks have changed in response to this type of

110an

TCQIOII

Iergl

IF” III In

hIIIaIy

ICWIIII.‘

library

SCACHE [35].

Assumption: Return address must not be modified after creation.

Metadata: Cache memory.

Creation: Hardware creates replica cache line for each return address store.

Validation: Hardware compares the return address loaded from stack with the replica in

the cache line.

Handling: Exception is raised.

Potential Problems:

0 Insufficient assumption: overflow attacks have changed in response to this type of

protection to now attack other addresses.

0 Complexity ofcache replacement algorithm.

0 Dynamic update of return addresses (e.g. non-LIFO control flow).

2.4.1.4 Tags

TaggedArchitecture [28]

Tagged memories go back at least thirty years with many proposed architectures and a

few which made it to market. For our purposes, tagged-memory architectures provide

three main functions. The first supports language and the Symbolics [47] Lisp computer,

which achieved a relatively short-lived commercial success, is a classic example. In that

computer, the tags were used to efficiently keep track of dynamic types. The second type

uses tags to support capabilities. Capabilities reach back forty years, and their popularity

has increased recently with increased interest in security exemplified by capability-based

operating systems such as EROS [65]. The tags support the capabilities which control

access. The third is best exemplified by the IBM System/38 [21] database computer (the

30

predecessor of the IBM AS/400) which used a tag to protect pointers. Of those, it is the

IBM System/38 that is relevant to this survey.

Here, we will present the concepts embedded in the IBM System/38 as a representative of

protection against buffer-overflow attacks provided by tagged architecture in general.

IBM System/38 [21]

Assumption: Return address and fimction pointer must not be modified after creation.

Metadata: A bit associated with each word (or byte) of memory.

Creation: Call instruction and a special instruction set the tag of a return address and a

function pointer respectively.

Validation: Return instruction and branch instruction validate the tag bit of a return

address and a function pointer.

Handling: Exception is raised.

Potential Problems:

0 Compatibility

0 Performance

2.4.2 Input Protection

Some methods assume that input data should be treated differently from local data. The

idea is that input should not be used as control data. We will review three methods,

Minos [19, 20], Tainted Pointer [4], and Dynamic Flow Tracking [67] that share the same

assumption, but different implementations. Minos views data across segments as input.

Tainted Pointer considers data passed from the operating system as input. Dynamic Flow

31

Tracking relies on operating systems for marking input. Note that Secure Bit treats data

passing between processes through the kernel as input.

Minos [19, 20]

Assumption: Input (low-integrity data) must not be used as control data.

Metadata: A bit associated to each word (or byte) of memory.

Creation: A reserved bit in a descriptor is used to indicate whether data is moving across

segments (rings) and marks the data as low integrity (set the tag) or carries the tag over.

All 8-bit and 16-bit load operations and floating point, MMX, BCD, and similar

extensions mark the data as low integrity. In addition, data that is accessed after the ctime

established by the kernel and some system calls (e. g. exec, pread) will force the data to be

low integrity.

Validation: Jump, Call or Return instructions validate that control data are low integrity.

Handling: Exception is raised.

Potential Problems:

0 Possible issues with multi-threading program (e.g. Sun Java JVM). To solve the

issue, some programs may have to be executed in a “compatibility mode” which

has no protection.

Tainted Painter [[0]

Assumption: Input must not be used as control data.

Metadata: A bit associated to each byte of memory (tainted bit).

Creation: The current implementation is in a hardware simulator (SimpleScalar) which

modifies SimpleScalar I/O functions (SYS_READ and SYS_RECV) to mark every byte

32

coming into a process as tainted. ALU instructions are modified to propagate the

taintedness. (Note that compare instructions will untaint every byte in the operands of the

instruction.)

Validation: Jump instructions validate the pointer.

Handling: Exception is raised

Potential Problems:

0 Since the current implementation is in a hardware simulator some operating

system issues are not yet resolved. For example, there are potential issues with

multi-threading program (e.g. Sun Java JVM).

0 Issues with compare instruction. Since the compare instruction can be used to

untaint data that opens a vector for attack.

Dynamic Flow Tracking [67]

Assumption: Input must not be used as control data.

Metadata: A bit associated to each byte of memory (tainted bit).

Creation: The current implementation is in a hardware simulator (SimpleScalar) which

modifies SimpleScalar I/O functions (SYS_READ and SYS_RECV) to mark every byte

coming into a process as tainted. ALU instructions are modified to propagate the

taintedness.

Validation: Jump instructions validate the pointer.

Handling: Exception is raised

Potential Problems:

0 Since the current implementation is in a hardware simulator some operating

system issues are not yet resolved. For example, there are potential issues with

multi-threading program (e.g. Sun Java JVM).

33

2.4.3 Bounds Checking

In Bounds Checking, the methods assume that all accesses to data must be done within

the boundary of that variable. We will review two main approaches: software and

hardware approaches. For the software, the implementation can be a modification to the

compiler of current languages or virtual machine solutions (e.g. type-safe programming

languages).

Array Bounds Checking [3 7]

Researchers from Imperial College, London [37] created a backward compatible bounds

checking in C. The method does not change the representation of a pointer. Thus, it is

compatible with the standard C library. For every pointer, a base pointer is defined. A

pointer value is valid for only one memory region. Checking whether the reference is in

the same region as the one referred by a base pointer enforces bounds checking. This

method is useful to prevent buffer overflow attacks. However, with the overhead of a

symbol table used to keep track of each pointer, it experiences more than a 30 times

slowdown in a pointer-intensive program. As a result, this tool is ideal for debugging, but

may not be suitable for most applications. Similar tools include Rational PurifyPlus [60],

and BoundsChccker [6]. Conceptually, we can view this approach as a software

implementation of segmentation which uses an entry in the symbol table as a segment

descriptor.

Assumption: Accessing a memory area must be in a boundary.

34

Metadata: A descriptor attached to each pointer and memory allocation.

Creation: Compiler generates descriptor for each pointer and allocation.

Validation: Compiler injects prologue for checking pointer and array boundary.

Handling: Handling routine

Potential Problems:

Performance issue (30X).

Compatibility with legacy code (with respect to the presentation of pointer and

array).

0 Nested structure of memory.

Segmentation: Limited hardware protection has existed in various processors for many

years. Among them, segmentation is a novel one. Segmentation is primarily used as a

mechanism to support the relocation of memory. In the early implementation of

segmentation, a base register is required for each memory access. IA-32 and 1432 [52]

also adopt the idea and associate segmentation with base address, boundary check, and

rings. Explicitly declaring and referring every buffer with base and boundary,

segmentation can protect against buffer-overflow attacks. A drawback of segmentation is

the extra storage for storing segment descriptors. 1n IA-32, every memory access (in

protected mode) requires a base and limit. However, most operating systems bypass

segmentation by setting one large segment for whole memory in order to maintain

portability and gain better performance. 1432 was a CISC architecture that is designed

with security awareness. Based on the paradigm of the ADA programming language, it

checks every data boundary and forces every function call to create a new domain

(segment). Since 1432 instructions are bit encoded, ranging from six to 321 bits.

35

computation took 10 to 20 times as long as the contemporary VAX 11/780 [13].

Consequently, 1432 was a commercial failure.

A similar concept can also apply to a function pointer. For example, one of the 19605

architecture, [CL 2900 series systems [28], had a native hardware 'pointer' type (a.k.a.

descriptor) that included in it the size of the object pointed to. The hardware would check

that any dereferences were not out of bounds.

Assumption: Accessing a memory area must be within a boundary.

Metadata: Hardware supported descriptor registers.

Creation: Compiler generates descriptor for each memory allocation via supported

management from the operating system.

Validation: Hardware supported bound checking though a descriptor.

Handling: Exception is raised.

Potential Problems:

0 Performance issue

0 Nested structure of memory

Type-safe programming languages and interpreted languages: In the type-safe

programming languages and interpreted languages (e.g. Java, .Net), the metadata and

bounds checking process is embedded into the virtual machine. Correct bounds checking

can prevent buffer overflows. However, the virtual machine itself is written in C/C++ so

somehow the virtual machine has to interact with underlying components which use type-

36

unsafe languages. Type-safe languages decrease the probability of being attacked, but can

still be exploited by buffer overflows. For example, there have been buffer-overflow

attacks in Java [22, 68], Perl [72], etc. There also exists a type-safe C: CCured [48].

Assumption: Accessing a memory area must be within a boundary.

Metadata: A descriptor attached to each variable.

Creation: Virtual machine generates a descriptor for each memory allocation.

Validation: Virtual machine validates every single memory access.

Handling: Virtual machine handles the exception.

Potential Problems:

Performance issue

Complexity of Garbage Collector (if applicable)

Compatibility with legacy code

2.4.4 Obfuscation

When there is no appropriate solution, confusion and increased difficulty can be used as a

protection mechanism. However, it should not be used alone when other methods are

applicable [8].

Address Obfuscation

Conceptually, Address Obfuscation [3] reorganizes the memory area of each process to

make it difficult for attackers. Facing a changed the memory alignment, malicious users

will encounter difficulty in overwriting the expected addresses. A compiler is modified to

randomize the base addresses of each memory segment, the distances between each pair

37

of data items, and permutes the order of variables/routines. A similar mechanism is

implemented in the Address Space Layout Randomization (ASLR) schema of the PAX

project [54]. In the big picture, this method cannot protect against skilled attackers who

obtain the binary of the program. Since the randomness does not occur during execution,

a dissembler tool will unveil the necessary information.

Assumption: Buffer-overflow attacks assume a specific layout of memory snapshot.

Metadata: Offset added to each variable for accessing each data.

Creation: Compiler generates offset value for each variable.

Validation: None

Handling: None

Potential Problems:

0 Randomness of the offset value

2.4.5 Isolation

There are two main ideas behind isolation. The first is to limit the execution of code that

may result from buffer-overflow attacks. Another idea is to sandbox the whole process

from accessing certain system resources based on a predefined policy. Apart from these

two main ideas, variations include the isolation of executable code from being installed or

modified in the run-time environment.

Non-Executable Memory

38

Another common technique is non-executable partitions of memory such as pages or

segments. Many non-X86 processors such as SPARC support non-executable memory,

and AMD has recently added a similar feature named “NX” [41]. Non-executable

memory prevents code in the buffer on the stack from being executed, effectively

protecting against a class of buffer overflow attacks that results in the execution of code

on the stack. The Solar Designer group [66] and INGO [34] also proposed a patch to the

Linux kernel to make a non-executable stack. However, the integrity of the return

address is not protected—leaving the system vulnerable to attacks using the address of

either a resident shell or code in the heap. In certain cases, such as signal handler return

on Linux, the system requires an executable stack in order to function properly. Moreover,

any LISP-like functional language requires an executable stack in their normal operation

(aka. trampoline). As a result, this method only protects against a narrow range of attacks.

SPEF: Alternatively, researchers from Microsoft and the University of California at Los

Angeles have developed a Secure Program Execution Framework [40] (SPEF). Instead of

protecting the data, the method protects the code. The method aims at making a system

difficult to inject malicious code. SPEF is a platform that consists of architectural

mechanisms and compilation tools. The installation of a program requires both

encryption and transformation. As a result, injecting the malicious code is not simple and

requires a special process. This method prevents the injection of malicious code.

Obviously, it is still possible to overflow the buffer and modify the return address or the

function pointer to point to a known address. Based on 3DES and domain ordering

hardware, SPEF should experience performance difficulties and may not be feasible for

39

general applications. Another implementation that shares the same concept but uses

instruction block signature is [46]

Instruction-Set Randomization: Similar to SPEF, Instruction-Set randomization [38]

introduces difficulty in injecting the malicious code. The General idea is to randomize the

coding of instructions by XORing them with a key. The authors propose a per-process

key schema which makes it difficult for a dynamic-linked library. As a result, the method

supports only static-linked libraries. The technique can also be applied to scripting

languages by adding a random number at the end of each instruction and modifying the

virtual machine to validate the number in each instruction. In [38], an example of random

Perl is presented. The drawbacks are the lack of support for dynamic-linked libraries, the

requirement of special hardware, and the limitation of using polymorphic and self-

modifying code. Like SPEF, which only prevents the injection of malicious code,

overflowing with a known address is possible.

Sandboxing: Sandboxing is a policy-enforcement mechanism. Since buffer-overflow

occurs when information is passed from one domain to another domain, sandboxing a

process intuitively cannot prevent such attacks. With appropriate policy rules, it is,

however, possible to limit the damage of buffer-overflow attacks. Sandboxing can be

done at several levels: kernel level [55], user level [9], or even hardware-supported

sandboxing (e.g. Intel LaGrande [36], TCPA [43, 70], TrustZone [1], Microsoft NGSCB

[45], ChipLock [39], Bear [43].) Like tagged memory, there exists a very fine-grained

approach to memory management (e.g. MMP [77]), but such approaches can be

40

successful for buffer-overflow protection only if a perfect combination of a security

policy and an implementation exists. We believe that it is complementary to other

techniques rather than a replacement.

2.5 Analysis

With the knowledge of buffer overflow attacks in hand, we will raise issues critical to

protections against buffer-overflow attacks. Those issues are: Common Pitfalls,

Performance, Compatibility (Transparency), and Deployment and Cost.

2.5.1 Pitfalls

Buffer-overflow prevention, like many security efforts, has been an “arms-control race”

in that attacks have evolved to counter prevention schemes which in turn require

increased sophistication in prevention. In hindsight, we can look back and see why

earlier efforts failed. Two themes have emerged:

Insufficient assumptions: Some approaches only provide protection against a subset of

buffer—overflow attacks. This is due to the maturing of buffer-overflow attacks that have

shifted their target from one address to another. For example, the best known type of

buffer-overflow attack modifies retum-addresses. As soon as developers tried to protect

the return address, function-pointer attacks became popular. Another example is trusted

code. It can be wrong to assume that trustworthy code is 100% safe from buffer-overflow

attacks. Compromising the signed code or the signing mechanism allows execution of

malicious ‘trusted’ code.

41

Insufficient protection of metadata: Metadata is necessary to assist in protecting

critical data. Ideally, metadata must not be controllable by attackers. If attackers can

control the metadata, they can successfully create buffer-overflow attacks by modifying

both data and metadata. For example, if a key or canary can deterrninistically be

reproduced, attacking an encrypted data or guarded canary is possible. (More examples in

[7, 42, 49])

2.5.2 Performance

In the trade off between performance and security, performance has always received

priority. This is best exemplified by segmentation (e.g. I-432). An appropriate utilization

of segmentation is a perfect tool, if one is willing to explicitly declare each variable with

a base and limit (including those of integer and floating-point variables, Since buffer

overflow can also result from type casting). However, the tremendous overhead of the

symbol table (or the segment-descriptor table) for such an approach is unacceptable.

2.5.3 Compatibility (Transparency)

Given a large number of existing programs and libraries, backward compatibility can be a

significant requirement. A good product can fail in the marketplace, if it breaks too many

things. This paradigm also applies to computers. Here are some compatibility issues

critical for solutions against buffer-overflow attacks.

Data representation is a critical problem, if the data representation of the prevention

scheme is not interoperable with legacy software libraries. An example is the pointer (and

array) representation of PointGuard

42

Non LIFO control flows include signal handling, trampoline (a type of software

optimization where code is dynamically generating and running on top of the stack

frame), and far and near call optimization [57]. In most cases, methods that try to create a

redundant copy of data of the stack frame will fail to support the dynamic stack

management of non-LIFO control flows. Examples of these methods include: Separated

Stack, RAS, RAD, etc.

Binary Compatibility is perhaps the most difficult goal in implementing solutions against

buffer-overflow attacks. To support binary compatibility, the solution must maintain not

only the same data representation, but it also has to maintain the programming model, the

communication protocol (e.g. call and return) and the syntax of every instruction. Most

solutions presented here fail to achieve this goal. However, some code modifications may

be necessary in order to provide protection. For example, a minor modification such as a

patch to the operating system may provide protection while preserving binary

compatibility for all user code. Secure Bit, which embedded the mechanism in the

hardware, provides binary compatibility for user code. Approaches which use binary

rewrite by modifying the program loader also can provide binary compatibility.

2.5.4 Deployment and Cost

Deployment may only be critical to those solutions that require hardware support. If

hardware modifications are beyond the acceptable ratio of investment to benefit, it may

fail commercially. Another issue is cost. In general, cost analysis can be viewed as

performance penalty (time), and space. Usually these two conditions have an inverse

43

relationship with each other. Risk assessment is possibly the major player here. However,

such a study is beyond the scope of this paper.

2.6 Conclusions

In this chapter, we have learned that collectively protection against buffer-overflow

attacks on control data is based on an ability to detect and validate control data.

Intuitively from this observation, some metadata is necessary to distinguish between

input and local data.

Among the proposed solutions, there are only three themes: preventing functions from

overflowing data, protecting target data or tagging data that may cause buffer overflow,

and limiting the effects caused by buffer-overflow attacks. These themes are embedded

in Static Analysis, Dynamic Solutions, and Isolation respectively.

In the big picture, every solution which protects against buffer-overflow attacks comes at

some cost. Also, as attacks have matured some solutions have proven insufficient for

providing full protection against all classes of attacks. We conclude that no solution is

perfect in every aspect.

44

Chapter 3 Buffer-Overflow Protection: The Theory

This chapter theoretically pursues a secure system with respect to buffer-overflow attacks.

We begin by defining buffer overflows in general, and buffer-overflow attacks on control

data attacks in particular. Later in this chapter, we establish a sufficient condition for

preventing buffer-overflow attacks and prove that it will create a secure system with

respect to buffer-overflow attacks.

It is worth clarifying that materials in this Chapter specifically focus on buffer-overflow

attacks on control data. However, there exists an attack on variables (non-control data)

which is not explicitly covered in this material.

3. 1 Buffer Overflow

A definition of buffer overflow is presented in Definition 1 (from the Webopedia

Computer Dictionary [76]).

Definition 1:

The condition wherein the data transferred to a buffer exceeds the storage capacity of the

buffer and some of the data "overflows" into another buffer, one that the data was not

intended to go into.

Since buffers can only hold a specific amount of data, when that capacity has been

reached the data has to flow somewhere else, typically into another buffer, which can

corrupt data that is already contained in that buffer.

45

Exploiting buffer overflow can lead to a serious system security breach (buffer-overflow

attacks) when necessary conditions are met. The seriousness of buffer-overflow attacks

ranges from writing into another variable, another processes memory (segmentation fault),

or redirecting the program flow to execute malicious or unexpected code. Based on the

definition of buffer overflow, Definition 2 defines the buffer-overflow attacks.

Definition 2:

A buffer-overflow attack on control data is an attack that (possibly implicitly) uses

memory-manipulating operations to overflow a buffer which results in the modification

of an address to point to malicious or unexpected code.

In general, a buffer-overflow attack is an attack on any data (including variables and

addresses). To avoid confusion, the term “buffer-overflow attacks” is used to refer to

attacks on control data.

Observation: An analysis of buffer-overflow attacks indicates that a buffer of a process

is always overflowed with a buffer passed from another domain (machine, process)—

hence its malicious nature.

Initially, the attacked address was a return address, but later other control data (e.g.

function pointers, jump table) were attacked. In either case, the eventual access of that

address (e.g. by a return or function call or jump) will redirect the program control flow

46

to execute the malicious or unexpected code. If the address was modified by something

other than a buffer overflow, it is a race condition, a Trojan horse, or other type of attacks.

3.2 Prevention

This section discusses the necessary conditions for preventing buffer-overflow attacks on

control data.

Postulate I:

In buffer-overflow attacks on control data, the generic buffer/memory-manipulating

operations are used by the vulnerable routine to overflow the address (e.g. a return

address or a function pointer).

From Definition 2, we observe that preserving the integrity of the address is a sufficient

condition to prevent this class of buffer-overflow attacks. To clarify, Definition 3 shows

the meaning of the integrity of an address in this context.

Definition 3:

Maintaining the integrity of an address means that the address has not been modified by

overflowing with a buffer passed from another domain.

Consider the implication of Definition 3 in light of our “Observation” about Definition 2

which noted the importance of attacks working across domains (machines, processes): in

order to preserve the integrity ofthe address (e. g. a return address or a.function pointer),

47

an address cannot be createdfrom data passed across domains (e. g. machines, processes)

via bafler overflow.

To maintain its integrity, the address created locally can be signed when it is created and

is validated by associated instructions (e.g. return, call, and jump instructions) before they

are completely executed. Implicitly, a signature represents some metadata associated with

the address. Necessarily, the signature must not be passed across domains; and the

integrity of it must be preserved. If the signature could be passed across domains or

maliciously modified, a valid address could be used for attacking a system. If we assume

that a signature only exists locally, the last condition is enforced when a buffer is passed

across a network/hardware device where the signature cannot be passed. Nonetheless,

several approaches failed to provide sufficient protection for metadata (signature) and

resulted in a new vector of attack where both address and signature are modified.

If local data and data passed from another domain can be differentiated, we can detect

buffer-overflow attacks on control data. Thus we may reverse the signature by signing

data that passed across domains and leave the local data unsigned. This scheme provides

better backward-compatibility since no modification is required for legacy processes.

With these definitions, Theorem 1, and its corollary are introduced. The corollary is the

key to the entire framework presented in this paper since it defines a sufficient condition

for buffer-overflow attacks.

48

Theorem I:

Modifying an address by replacing (“overflowing”) it using a buffer passed from another

domain is a necessary condition for buffer-overflow attack on control data.

Restatement: If there is to be a buffer-overflow attack on control data, an address must

be modified using a buffer passed from another domain.

Proof:

Theorem 1 follows directly from Definition 1, and Definition 2.

QED

Corollary 1. I:

Preserving the integrity of an address is a sufficient condition for preventing a buffer-

overflow attack.

Restatement: If the integrity of an address is preserved, that is a sufficient condition for

preventing a buffer-overflow attack.

Proof:

From Theorem 1, “If there is to be a buffer-overflow attack, an address must be modified

by manipulating a buffer from another domain.” The contrapositive of that statement is

“If an address cannot be modified (or such modification can be detected). then a buffer-

49

overflow attack is not possible.” We know that the contrapositive of a true statement is

true.

QED

Intuitively, from Definition 2, the attack is the ability to redirect the program flow to

execute malicious or unexpected code. To achieve this goal, the address must be

modified. If the address cannot be modified, the buffer-overflow attack fails. If

modification of the address can be recognized, the buffer-overflow attack can be

recognized and stopped. On the other hand, if the address can be validated, execution can

proceed safely.

3.3 Summary

The buffer-overflow attack is a problem that was indirectly addressed in several ways.

Among several variations, buffer-overflow attacks on control data required overflowing

addresses (return addresses and function pointers) with a buffer passed from another

domain (machine, and process). From the chapter, we conclude tha “a necessary

condition for preventing buffer-overflow attacks is the preservation of the integrity of

addresses across domains”.

50

Chapter 4 Fundamentals of Secure Bit

Fundamentally, a bit (semantic meaning or metadata) is augmented to every memory byte

(or word) to protect the integrity of addresses. This semantic meaning is used to

distinguish local data and data from another domain (input).

In this chapter, a general concept of Secure Bit is given. Later, we prove that the

mechanism creates sufficient conditions for a secure system with respected to buffer-

overflow attacks on control data.

4. 1 General Mechanisms

A Secure Bit is added to every memory location (and register). This bit is handled by the

memory manipulating instructions as part of a regular memory word (moved along with

the associated word). Except for passing words in buffers between processes, such

operations have to mark the Secure Bit at the destination (either a register, or a memory

location). Words in buffers passed between processes get their Secure Bit set. Call, return,

and jump instructions check the Secure Bit; and if the Secure Bit is set, the processor

issues an interrupt or fault signal. Figure 10 shows a memory snapshot with Secure Bit in

(a) local operations, (b) passing buffers, and (c) executing control instructions.

By setting the Secure Bit in a buffer passing across domains, control instructions can

easily detect that an address (a return address or a function pointer) was modified by a

buffer passing from another domain—there is a buffer-overflow. For later reference, we

51

establish the condition of setting the Secure Bit when manipulating data across domains

as Protocol 1.

Passing a buffer across CallIReturnlJump

Normal Operation domains Check for address

(Set Secure Bit) Integrity

Parameters 1 Overflowing with 1 Overflowing with

1 Buffer from another 1 Buffer from another

Return Address 1 7

, _ domains domains

Function Pounters 1 ?

Buffer 1 1

1 1

a b c

Figure l0 Memory Snap shot with Secure Bit (a) normal operation. (b) Passing a buffer across

domains. (c) Related instructions validate the address

Protocol 1: Passing a bufi‘er across domains (devices, machines, and processes) always

sets the Secure Bit.

Restatement: All input will have the Secure Bit set.

We will establish that Protocol 1 is a sufficient condition for preventing buffer—overflow

attacks in the next section.

To distinguish between normal memory manipulation (within the domain) and passing a

buffer across domains, a mode of operation (sbit_write) is introduced to a processor.

Manipulating memory will always set the Secure Bit when the sbit_write mode is set.

Normal memory manipulating operation (when the sbit_write mode is clear) will carry

52

the Secure Bit along with the associated memory words. With the presence of this mode,

the kernel (or a process) can switch the mode of operation when handling the buffer from

another domain. This scheme allows us to provide backward compatibility to all legacy

code—mode changes are only necessary within an operating system so Secure Bit is

transparent to all other code. We will elaborate the mechanism and necessary conditions

for enforcing Protocol 1 in next section (4.3).

4.2 Formalization of Concept

To claim that a system can enforce the integrity of the addresses and result in a secure

system, a validation will be discussed. Assuming that a computer system can be

represented as a finite-state automaton, we can define a secure system.

Definition 4: A security policy is a statement that partitions the states of the system into a

set of authorized, or secure, states and a set of unauthorized or insecure, states. (A

definition from [4])

In the case of buffer-overflow attacks, the security policy is simply the statement:

“Overflowing a buffer cannot create a valid address

(e.g. a return address or a function pointer)”

which follows from Corollary 1.]. Before going further, we first define a secure system.

Definition 5: A secure system is a system that starts in an authorized state and cannot

enter an unauthorized state. (A definition from [4])

53

Lemma 2: A system which preserves the integrity of an address (e.g. a return addresses

or a function pointer) is a secure system with respect to buffer-overflow attacks.

Restatement: A system that does not use input as control data is a secure system with

respect to buffer-overflow attacks on control data.

Proof: Assume that a system is partitioned into two states: normal operation and buffer-

overflow attack. By the definition of a buffer-overflow attack (Definition 2), only

overwriting the address (e.g. a return address or a function pointer) with an address

passed as a buffer (input) to vulnerable programs will result in the state of buffer-

overflow attack. By the definition of maintaining the integrity of the address (Definition

3), if such overflowing can be recognized and prevented, the system will not result in the

state of buffer-overflow attacks. With respect to Definition 5, our system cannot enter an

unauthorized state and is considered to be a secure system.

QED

’ 1. Overflow the address in

another domain

Buffer (.).,.\:¢,-{I§(:,,

A l. to (,1 ix 1:

Normal

Operation

Figure ll State-transition diagram of buffer-overflow attacks

54

We will show that the enforcement of Protocol 1 results in a secure system with respect

to buffer-overflow attacks.

Lemma 3: Secure Bit and Protocol 1 can preserve the integrity of an address, and result

in a secure system with respect to bufl‘er—overflow attacks.

Proof: With the presence of the Secure Bit and Protocol 1, we can detect that an address

(e.g. a return address or a firnction pointer) is overflowed by a buffer passed from another

domain (including input). If we can detect that an address is modified by a buffer from

another domain, we can preserve the integrity of the address. This follows directly from

Definition 3. Thus Secure Bit preserves the integrity of the address and is a secure system

with respect to buffer-overflow attacks. This follows directly from Theorem 2

QED

4.3 Protocol Enforcement

This section discusses modifications necessary to enforce Protocol 1. We first elaborate

the definition of passing data across domains in our context. From this definition, we

provide a guideline for necessary modifications required to enforce such a protocol.

To ease understanding the definition of passing data across domains, we first introduce

the term “threat surface” found in Threat Modeling [69]. By invoking threat modeling

into the life cycle of software engineering, the “threat surface” is defined as all possible

inputs crossing from the software interface. In this context, a domain is a boundary with

respect to the current process, and passing data across domains means interfacing the

55

software with other components — it is “threat surface”. Intuitively, passing data across

domains includes passing a buffer between processes (regular IPC), reading and writing

from I/O devices, passing a command-line argument to a new process, sending and

receiving data from a network socket, etc. Though it sounds somewhat complex, the

fundamental concept is that every buffer that is used to interface between the software

and outside components is data passing across domains and is therefore suspect.

With this fundamental concept in hand, we can easily analyze the threat surface of

soflware (the OS. in our case) and modify the surface to operate in sbit_write mode: set

the Secure Bit to every memory word passing across domains. The set of access points

between processes (the threat surface) is easily identified because they operate across

different segments or pages (or any other future type of memory protection structure). In

this case, the buffers on the threat surface always pass though the kernel. Thus, we can

simply enforce Protocol 1 by modifying the modules that move data across domains to

operate in the sbit_write mode.

In certain cases, the kernel may want to pass control data to a user process without setting

the Secure Bit (e.g. signal handling and inter-process communication). However, those

data are not considered as an input from untrusted environments. Put another way: the

kernel is allowed to pass trusted control data to a process without resulting in an attack (if

we can validate that data [32]).

56

4.4 Summary

By augmenting a bit to each byte (or word) of memory, we can implement Secure Bit an

provide transparent protection against buffer-overflow attacks on control data. This

additional bit is managed by the kernel via sbit_write mode, and provides the semantics

for differentiating between local and external data. With the presence of these conditions,

the semantics of instructions can be modified to enforce the protocol of preventing

external data from being used as control data.

57

Chapter 5 Design

This chapter discusses issues of design critical to the implementation and deployment of

Secure Bit. Those issues include Memory Architecture, Instruction Set Architecture and

System Software.

5. 1 Memory Architecture

In our design, a pin is added to the memory chip to ensure the integrity of the Secure Bit.

This pin is associated with operations that modify the Secure Bit. It functions as both

input and output at the same time. In a similar way, processors also require a pin to

access this Secure Bit. Figure 12 shows the system block diagram when Secure Bit is

present. Secure Bit (shown in *) is the only line added.

Address (I) ’

‘ Data (1/0) T

Processor < *s‘cun 31" 5 Memory

(I/O) Chip

cs (I) a

R/mI) a
Figure 12 System block diagram

We must ensure that only our integrity-preserving instructions have control over the

Secure Bit and that other instructions that write data to memory will always copy the bit.

To ensure that every access to memory using other instructions will always copy the bit,

the semantics of the write instruction have to be modified. In a generic load-store (RISC)

58

processor, there will be one write instruction. However, the IA32 architecture has several

write instructions (e.g. MOV, MOVS, LEA, etc.). As a result, the semantics of these

instructions have to be modified. In order to set or clear the bit, the processor can simply

send “1” or “0” to the secure pin. When cache is present, this can be done by issuing the

value to the Secure-Bit line of the cache bus leaving the memory controller to handle

main memory updates. In term of cache latency, our SimpleScalar implementation [26]

has unveiled that there is no hidden cost.

Another issue is that the Secure Bit creates a data bus with an odd number of lines.

Moreover, there is no off-the-shelf memory controller or memory chip that currently

supports Secure Bit. We will handle this issue by exploring several possibilities.

5.1.1 Memory Organization Modification

Like ECC memory, a memory chip can be added to a RAM card for storing the Secure

Bit. The processor, chipsets and caches (all levels) have to be modified to manage this

additional memory. Modifications are trivial, but widespread: a path for one Secure Bit

per word is needed from the memory chips to the processor execution unit. This path

includes: the memory chip itself, CACHE memory, chipsets, and processor. The benefit

of this approach is simple organization and better performance. Costs are buried in the

hardware. In fact, some researchers [19] suggest that the costs are covered in three days

with respect to MOORE’s law.

59

5.1.2 Interleaving Memory

Though the memory architecture is similar to that of a parity bit, as a transitional

approach (which might be a better approach anyway), we can interleave data storage and

semantic storage (Secure Bit) using a separate interface. While data lines have a byte

boundary. the semantic line has a bit boundary. This separation allows us to create a

simple memory controller that will convert a bit interface of the Secure Bit to access

legacy, byte-boundary memory chips. Since addressing 8 bits requires three bits. the

address of the Secure Bit memory (on the byte-boundary memory chips) is simply

obtained by interleaving the last three bits of the address for selecting a particular bit

from a byte. Figure l3 shows block diagram of the memory interfaces and the circuit of

the controller.

Address 8 Control ’

Signals Data

Storage

Processor ‘ Data(I/O) +

a)

o

43 ._, Secure

‘ , (v Bit

Secure B1t ”a

H Storage

(U0) 1

X

?<

’ § Address for Secure Bit Storage

Address X

X

>5 5 '
x Selector 8'1 Lme f

g , Selector

Secure Bit

(1/0)

Figure 13 Interleaving Memory Interface and Secure Bit controller

60

This approach allows us to implement Secure Bit on top of standard byte-boundary

memory chip. However, an additional bus line is still need for Secure Bit.

5.1.3 Secure Bit Relocation (Shared Memory)

Alternatively, Secure Bit can be implemented as a processor-only solution and leave

chipsets and memory interfaces unmodified. The idea is to allocate a part of the main

memory for storing Secure Bit. An additional base register is introduced to a processor

for use as a base address for this memory area. The mechanism is similar to that of simple

memory relocation using a base register. Figure 14 shows the address translation scheme.

Physical Memory Address Main memory

 i
iA

V

High order bits 3 bits

A V

Base Register

Secure Bit Address

 4.
Figure 14 Address translation scheme for Secure Bit Relocation

In this translation scheme, base register, adder and line selector circuits have to be added

to a processor chip. This hardware will allow Secure Bit to be stored in a regular byte

boundary memory. If desired, there can be separate Ll caches for Secure Bit and

Data/Code. However, it is possible to share the bus lines between levels of the memory

hierarchy.

61

The benefits of this approach are that only modifications in a Processor are necessary. In

fact, the scheme also provides an efficient way for managing Virtual Memory. This is due

to the fact that the bitmap can easily be accessed by the swapper routine. However,

sharing the memory means less usable memory (31/32 of physical memory for data and

1/32 for Secure Bit), and less bandwidth for main memory due to bus sharing. We believe

that hardware optimization can solve some parts of this issue. Nonetheless, the details are

beyond the scope of this thesis.

5.2 Instruction Set Architecture

To implement Secure Bit we needed to change the semantics of several instructions and

add an sbit_write mode to the architecture. With several combinations of addressing

mode, boundary access, processors’ mode and address translation, the full details are

somewhat lengthy, but can be summarized as follows.

0 The sbit_write flag is added to the EFLAGS register.

0 The semantics of the RETURN instruction are modified to validate the Secure Bit

of the return address and raise the protection flag when the Secure Bit is

invalidated.

o The semantics of the CALL and JUMP instruction are modified to validate the

Secure Bit of the address/register that holds the target address when the target is

an indirect value (a function pointer), and raise the protection flag when the

Secure Bit is invalidated

o Other instructions that access memory are modified to carry the Secure Bit along

with the memory word when the sbit_write mode is cleared, and to set the Secure

Bit at the destination when the sbit_write mode is set.

62

0 Operations (e.g. shift, arithmetic, or logical) with an insecure operand have an

insecure result (Secure Bit is set). An immediate operand is considered to be

secure (Secure Bit is cleared).

Although the summary above is for the IA-32 there is nothing about a RISC ISA which

would prevent a similar implementation. In fact, our hardware simulation (using

SimpleScalar [83]) indirectly supports that assertion (See [26] for more details).

In an attempt to elaborate the design of Secure Bit, we will investigate two types of

instructions and related data paths (and components). Those types are: Arithmetic and

Logical instructions, and Control instructions.

5.2.1 Arithmetic and Logical Instructions

In order to maintain the integrity of addresses, we must ensure that not only external data

are prevented from being used as control data, but that any derivative of external data is

also prohibited. This condition can be enforced by extending the arithmetic unit of the

processor to carry Secure Bit along with every operation.

A typical processor contains three types of arithmetic and logical operations: shift

operations, logical operations, and arithmetic instructions. In most cases, shift

instructions (as well as rotate instructions) only involve a register or a word of memory.

However, they sometimes shift or rotate across two registers (or words). When two or

more operands are involved, the Secure Bits of all bytes of both operands are ORed

together. If logical ‘1’ obtained, the result of the Secure Bit is set. Similarly. the Secure

63

Bit generated from logical and arithmetic operations is the OR of the Secure Bits of all

operands.

With the presence of sbit_write mode, the Secure Bit of the results must be forced to be

‘ l ’ regardless of the operations. Altogether, the ALU of the processor can be augmented

for managing Secure Bit using simple OR logic. A possible logic diagram is presented in

Figure 15. When the operand contains more than a byte of data, the Secure Bit of each

operand is the OR of all Secure Bits in every byte. This way, we can easily enforce

protocol one.

[FLAGS Register

sbit_write flag

1

Secure Bit of Operandl §—\\\\ Secure Bit Of Result

—U '

Secure Bit of OperandZ

Figure IS Operations of Secure Bit

5.2.2 Control Instructions

Control instructions such as call, jump, and branch, are instructions that change the

control flow such as call, jump, and branch. Depending on the architecture, a call

instruction can be implemented as a branch-and-link instruction where the previous

instruction pointer is stored in a pre-defined register. However, we are only concerned

with the use of the address associated with those instructions.

64

A control instruction may use an immediate operand for specifying the target address or

use a value stored in memory (or storage) as a target. Since the Secure Bit of an

immediate value is ‘0’, such a case is considered to be secure. Thus, we only have to

validate that no external data should be assigned to the instruction pointer (also referred

to as the program counter). This can be enforced by adding a Secure Bit to the instruction

pointer. If the instruction pointer is loaded with external data, the Secure Bit will be set to

‘ l ’. The processor can simply verify this bit and generate the hardware exception.

5.3 Operating System

There are two issues concerning the management of Secure Bit in the operating system:

enforcing the Secure Bit protocol, and virtual memory. In order to enforce the protocol,

the kernel must be modified to mange buffers passing between domains in sbit_write

mode. With the presence of virtual memory, the kernel must be modified to allocate

additional space for storing Secure Bits. We address both issues.

5.3.1 Domains and Buffer Manipulation

To facilitate the management of Secure Bit, it is useful to define domains or boundaries

with respect to external data. Modern processors usually partition privileges into at least

two modes (also referred as rings): supervisor mode (ring 0) and user mode (ring 3).

Each section (page or segment) of memory is then associated with a mode using the

applicable memory management mechanism, such as paging or segmentation. Switching

to execute code in different modes requires special mechanisms (e.g. call gate or trap).

The typical implementation of an operating system would put the kernel in supervisor

mode and processes in user mode. In this way, the kernel can allocate resources for each

65

user process. Thus, all data flowing in and out of the process directly invokes the kernel.

The first obvious boundary here is the boundary between kernel and processes.

With sbit_write mode, the kernel also has the flexibility of defining the boundary

between processes in the same mode. Considering the threat model, data that a program

does not have control over is consider to be external data. This is the second boundary.

It is necessary to note that sometimes a process may be constructed as a group of

lightweight processes (threads). Since all threads have freedom to share all data

(including control data) among each other, they are considered to be in the same domain.

Given the boundaries discussed above, enforcing the protocol is simply enforcing all

functions that copy data to be operated in sbit_write mode between the kernel and user

processes, except for the cases when the kernel must pass control data for the process to

handle an exception signal and when data is passing between threads.

5.3.2 Virtual Memory

With the presence of virtual memory, a page of memory can be swapped to the swap

space (where it is protected by existing protection mechanisms). As a result, a Secure Bit

has to be swapped securely in and out of main memory. There are at least three ways to

do that securely.

Modifying disk firmware to handle Secure Bit much like parity or ECC bits is

conceptually the easiest, but practically expensive.

66

Alternatively, a separate portion of swap space can be allocated to Secure Bits. A chip-

set modification or new instruction can move the Secure Bit to disk. (A separate bitmap is

likely an efficient way to store the bits—512 bytes for 4K bytes of memory.) Note that

the space for storing the Secure Bit is only required for the Stack and the Heap. The Text

section does not need any swap space for the Secure Bit. The paging routine will be

modified to render the bitmap of the Secure Bit on swap out, and use the sbit_write mode

to restore the Secure Bit on swap in.

A third technique implements Secure Bit on top of byte-boundary memory with

assistance from cache and address translation mechanisms (see section 5.1.3). This

approach not only allows Secure Bit to be deployed without modifying the memory, but

it also allows Secure Bit to be swapped without any special operations.

Since the swapper in the kernel is far removed from the threat surface where buffers are

passed from the outside, attacking these routines with a buffer overflow attack is

impossible. Similarly, malicious modification of the swap space is protected (e.g. by the

operating system, by the file permission). The latter protection is considered to be safe

from buffer-overflow attacks.

Though execution time will be increased for swapping a process, the complexity is

relatively small compared to other methods. Furthermore, a hardware/software

67

optimization plays a role here. Regardless of the size of a generic hard drive today, the

additional space is not an issue.

5.4 Summary

The major concerns in the design of Secure Bit are: Memory Interface, Instruction Set

Architecture, and System Software. The memory Interface can be implemented using

several approaches. Each has its strength and weakness. The proper design of a memory

interface using the relocation scheme would yield better performance and facilitate the

memory management unit in the operating system. The semantics of the impacted

instructions are easily enforced with trivial modifications to Arithmetic and Logical Unit

(ALU), instruction pointer, and exception handling units. Trivial modifications to the

kernel for managing buffers in sbit_write mode are sufficient for enforcing the protocol.

Overall, Secure Bit can be straightforwardly added to any processor. The specific

requirement only applies to the memory interface, ALU, instruction pointer, and

exception handling units. However, such modifications may touch several parts of the

processor.

68

Chapter 6 Implementation

This chapter discusses the implementation details of Secure Bit in the BOCHS [82]

emulator and modifications necessary to the Linux kernel. Readers are expected to have

background in the IA-32 architecture and knowledge of the architecture of a Unix-style

operating system.

6. 1 BOCHS emulator

BOCHS [82], the IA-32 emulator, is constructed from various components. Each

component is written in C++. The main components are the CPU, I/O, and Memory

objects. The I/O object has several sub-objects representing block devices and I/O

subsystems. Similarly, the memory object has several sub-objects. Each sub-object

inherits methods from its ancestor. For example, the BIOS has the interface of the

memory object, but the lower engine is mapped to a file. As a result, introducing a new

sub-component to the emulator is done by deriving a new object from the main object. In

addition to these objects, debugger code is embedded into several parts for controlling

and monitoring the emulator. The general organization is presented in Figure 16

Disk

Ph—e‘fi‘p“

' I 0CPU Object / eral

Etc.

\m—g'kh‘” . __.____

Memory Object

BIOST] { MEM Etc.

Figure 16 BOCHS Components

69

To implement Secure Bit, we have to add a bit to a memory byte (or word), customize the

CPU and introduce a new device. This section is dedicated to the discussion of these

implementation issues.

6.2 Memory

Secure Bit requires that a bit is added to each memory byte. To manage this bit, we

intuitively have to allocate additional space for storing Secure Bits. In addition, the

interfacing routines must be modified for interfacing with instructions. We will address

them respectively.

6.2.1 Memory allocation

Since the emulator is running on top of a byte boundary memory, we have to allocate and

map Secure Bit on top of legacy memory. This concept is similar to the one proposed in

Section 5.1.2. In the emulator, the space for storing the Secure Bit is the size of physical

memory divided by 8 (1 byte for storing 8 Secure Bits). The snapshot of this code is

shown in Figure 17.

// for secure bit (KPR)

Bit64u test_mask_s = (alignment — l)/8;

size_t bytes_s = bytes/8;

actual_vector_s = new Bit8u [(bytes_s+test_mask_s)];

// round address forward to nearest multiple of alignment. Alignment

// MUST BE a power of two for this to work.

Bit64u masked_s = ((Bit64u)((actual_vector_s + test_mask_s))) &

~test_mask;

vector 5 = (Bit8u *)masked_s;

// sanity check: no lost bits during pointer conversion

BX_ASSERT (sizeof(masked_s) >= sizeof(vector_s));

// sanity check: after realignment, everything fits in allocated space

BX_ASSERT (vector_s+bytes_s <= actual_vector_s+bytes_s+test_mask_s);

BX_INFO (("allocateml memory an: %p. after alignment, vector=tp for

secure bit",actual_vector_s,vector_s));

Figure 17 Memory Allocation for storing Secure Bit

70

In the memory object, BOCHS uses two vectors, vector and actual_vector, for managing

the memory of the emulated machine. To add Secure Bit, two canonical vectors,

vector_s and actual_vector_s, are added, and one eighth the size of actual_vector is

allocated to actual_vector_s. Note that the actual_vector is the word aligned version of

vector. The mentioned variables are declared in “/memory/memory.h”, and the related

code is located in function “alloc_vector_aligned” of file “/memory/misc_mem.cc”.

These vectors simplify the association and addressing of data and its assocated Secure Bit.

6.2.2 Memory interface

Conceptually, we have learned that accessing a Secure Bit can be done on top of the byte-

boundary memory. Ignoring the segmentation and the mixing of the byte word double-

word memory model of the IA-32, a naive design using a line selector should look similar

to the diagram in Figure 13.

Due to the complexity of addressing modes in IA-32, the implementation of Figure 13 in

the emulator results in a hierarchy of code for manipulating and reading the Secure Bit.

However, segmentation and paging are managed by the processor, and the same address

can be used to access both data and its Secure Bit. Thus, the mapping is only applicable

to the accessing of physical memory. We will omit the details and show the read and

write access to Secure Bit in Figure 18 (a) and (b) respectively. This code is located in

“/memory/memory.cc”.

71

// Set/Clear Secure Bit by KPR

Bit32u a20addr_s;

Bit8u sbyte;

for (int i=0;i<len ;i++)

{

a20addr s=(a20addr+i)>>3;

sbyte=(320addr+i)&OxOOOOOOO7;

sbyte=1 << sbyte;

if (*sbit==1)

{ // set

vector_s[a20addr_s]l=

(sbyte&0xff);

} else { // clear

vector_s[a20addr_s]&=

~(sbyte&0xff);

}

// Read Secure Bit by KPR

Bit32u a20addr_s;

Bit8u sbyte;

Bit8u sread;

sread=OxOO;

for (int i=0;i<len ;i++)

{

a20addr_s=(a20addr+i)>>3;

sbyte=(a20addr+i) & 0x00000007;

sbyte=1 << sbyte;

sread|=(vector_s[a20addr_s]

&sbyte);

sbyte=sbyte<<1;

}

*sbit=sread;

sbyte=sbyte<<1; }

A. writePhysicalPage B. readPhysicalPage

Figure 18 Code for (a) manipulating Secure Bit (b) reading Secure Bit

To facilitate our modification to Secure Bit, it is helpful to provide some overloaded

functions that maintain the same interface (number of parameters). While some

instructions, such as processor control instructions (processor mode and vm8086), do not

require any access to Secure Bit, the interfacing functions do. Rather than using one

interface, overloading functions provide several interfaces to the same mechanism. Those

functions that do not take Secure Bit as a parameter would call the regular Secure Bit

aware functions and leave the Secure Bit unmodified. Figure 19 lists all interfaces to

physical memory.

Corresponding to these interfaces, the linear memory interfaces (before translating from

linear address to physical address) and higher levels are either modified or overloaded to

use one of these interfaces. This scheme allows minimal modification to the processor.

The modifications to higher level memory access routines are detailed in “/cpu/access.cc”.

72

/// Overload Functions

/// For Secure Bit (KPR)

///

/// Read Data and Secure Bit

BX_MEM_SMF void readPhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmN(3);

/// Write Data and Secure Bit

BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit) BX_CPP_AttrRegparmN(3);

/// Write Data (with optional Secure Bit)

/// if ignore=0, leave the Secure Bit unmodified

BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data, int *sbit,int ignore)

BX_CPP_AttrRegparmN(3);

///

/// End (KPR)

///

/// Read Data, ignore Secure Bit

BX_MEM_SMF void readPhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data) BX_CPP_AttrRegparmN(3);

/// Write Data, ignore Secure Bit

BX_MEM_SMF void writePhysicalPage(BX_CPU_C *cpu, Bit32u addr,

unsigned len, void *data) BX_CPP_AttrRegparmN(3);

Figure 19 List of overloading functions for accessing physical memory

For debugging purpose, we also modify the dbgfitch_mem function which is used for

memory dumping. Basically, this function is used by the monitor sub-system of the

emulator for dumping the memory.

6.3 Instruction Set Architecture

To enforce the Secure Bit, the semantics of several instructions have to be modified. All

data operations have to carry and maintain the Secure Bit (except the clear instruction).

Data manipulation instructions (e.g. move) have to set Secure Bit to ‘1’ when operated in

sbit_write mode, and control instructions must validate the Secure Bit of all target

addresses. We will consider each set of instructions seperately.

73

6.3.1 Operations

The IA-32 contains operations that can be grouped as shift operations, logical operations,

and arithmetic operations. Since BOCHS implemented a function for each operation and

addressing mode (approximately 180 combinations), the details are somewhat lengthy.

To smooth the progress of our modifications, we introduce a macro for each operation in

Figure 20. For each operation, the Secure Bit of every operand is fetched into

corresponding variables and calculated using the relevant macro.

// Secure Bit operation for each type of ALU instruction

#define SBIT_SHX(sbit1) (sbitl ==O)?O:l

#define SBIT_ROX(sbitl) (sbitl ==O)?O:l

#define SBIT_XOR(sbit1,sbit2) (sbitllsbit2)==0?0:1

#define SBIT_AND(sbit1,sbit2) (sbitllsbit2)==0?0z

#define SBIT_OR(sbitl,sbit2) (sbitllsbit2)==0?0:1

#define SBIT_NOT(sbit1) (sbitl ==O)?O:l

#define SBIT_ADD(sbitl,sbit2) (sbitllsbit2)==0?0:1

#define SBIT_SUB(sbit1,sbit2) (sbitllsbit2)==0?0:1

#define SBIT_MUL(sbit1,sbit2) (sbitllsbit2)==0?0:1 // and DIV

l
—
l

Figure 20 Macros for operations on Secure Bit

In the current implementations, we leave MMX and other vector operations unmodified,

sicne most of these instructions are sometimes implemented in the co-processor. We

believe that these instructions are rarely used in manipulating control data, leaving the

Secure Bit of these operands unmodified should not cause any problem. However,

applying the same concepts to these operations should be trivial.

6.3.2 Data Manipulation

In an attempt to avoid adding any new instruction, we choose a reserved bit in the

EFLAGS register to create a mode. To allow this mode bit to be accessible by all widths

of instructions, the fifth bit is selected. This choice allows the processor to use existing

instructions for managing the sbit_write mode. Switching the mode can be done easily by

74

flipping a bit in the EFLAGS register. Given this setup, we create a macro “sbit_mode”

to refer to this flag and use it to manage the Secure Bit in move instructions (including

string instructions and similar). Basically, the instructions are modified to read the Secure

Bit, calculate the result, and store it in the destination. The statement for calculating the

Secure Bit of a destination is exemplified in Figure 21.

—

sbit=(sbit_mode)? lzsbit;
1

Figure 21 Data manipulation using sbit_write mode

6.3.3 Control Data

The IA-32 architecture uses two registers (word) for constructing the linear address of an

instruction: code segment (ECS) and instruction pointer (EIP). Code segment is the base

register, and instruction pointer is the offset. We simply enforce our protocol by

validating the Secure Bit of a target address assigned to both registers. The modification

can be summarized as: for every assignment to a code segment and instruction pointer. if

the Secure Bit is set to ‘1’, raise the exception. This statement can be translated to code,

Figure 22.

// Validate call target

if (sbit != O) {

BX_INFO(("call_ew: sbit of target is not secure"));

#ifdef HAS_SBIT_EXCEPTION

exception(BX_GP_EXCEPTION, O, 0);

#endif

}
Figure 22 Validation of Secure Bit in control instructions

6.4 Linux

To understand the modifications to the kernel, we first explain the organization of Linux

kernel in general. Linux uses a monolithic kernel where all device drivers and file

systems are included in the kernel with the memory management unit, process

75

management unit, and scheduler. Some parts of the kernel are architecture specific. Table

1 presents the directory structure of the Linux kernel. This organization will serve as the

basis of our threat interface.

Name Description

Arch Architecture specific functions

Drivers Device drivers

Fs File system

Include Generic header

lnit Kernel startup routine

1pc System V inter-process communication

Kernel Generic kernel

Lib Generic library

Modules Kernel modules

Net Network library

Table 1 Directory structure of Linux Kernel

To enforce the protection mechanism, we modify the part of the Linux kernel that passes

a buffer across domains (copying data between a process and a kernel or a common threat

interface of every process). With this modification, we cover a variety of communication:

a buffer of a network socket, command-line arguments, a buffer passing from a process to

kernel and vice versa, and a buffer passing between processes. These routines are usually

implemented as preprocessing macros in one file “/include/asm-i386/uaccess.h” which

refer to functions in the file “/arch/i386/lib/usercopy.c”. The modifications can be

summarized by listing the set of routines to operate in sbit_write mode:

0 copy_to_user

o copy_from_user

Figure 23 shows the organization of the Linux kernel and routines for handling buffers

across domains.

76

Process

1 Buffer 1%

‘6:

copy_to_user S d dl t

Etc“ copy_from_user ta" ar "p"

Input Devices Storage Devices TCPIIP

 Kernel

Figure 23 Linux Kernel Organization

Since sbit_write mode is implemented as a bit in the EFLAGS register, switching the

mode can be easily done by flipping a bit in the register. To facilitate the modification.

two macros, SET_SBITMODE() and CLR_SBITMODE(), are created, Figure 24. The

SET_SBITMODE macro is inserted into the top, and the CLR_SBITMODE macro is

inserted into the end of the copy functions.

// For Secure Bit 2 by Krerk Piromsopa

#define SET_SBITMODE() \

asm volatile(\

" pushl %eax\n" \

" lahf\n" \

" orb 30x20, %ah\n" \

" sahf\n" \

" popl %eax")

#define CLR_SBITMODE() \

asm volatile(\

" pushl %eax\n" \

" lahf\n" \

" andb $Oxdf, %ah\n" \

" sahf\n" \

" popl %eax")

Figure 24 Macros for managing sbit_write mode (in “/include/asm-i386/uaccess.h”)

As mentioned earlier in Section 4.3, the kernel has the ability to pass validated control

data to a process without setting the Secure Bit (using other functions). If that data is

77

trustworthy (not an input from other processes or devices), the system will not move to

the state of a buffer-overflow attack. Thus, we list the same functions that do not operate

in sbit_write mode as follows:

0 copy_to_user_s

o copy_from_user_s

Routines that are allowed to pass trusted data to the user (using copy_to_user_s and

copy_from_user_s) are several kernel and filesystem routines. The kernel routines are

located in “/kernel” and “/arch/i386/kernel”. Those routines that are allowed to manage

trusted user data are routines that mange signal handling, ptrace, description table,

capability and scheduler. The file system routines that can store trusted user data are

located in in “/fs/pipe.c” and in “/fs/binfint_elf.c”, which are the pipe communication

(read and write) used by pthread and elf-headers creation.

6.5 Summary

The implementation of Secure Bit into an existing architecture is a straightforward

process. However, the implementation complexity depends on the complexity of the

architecture. In this chapter, the modifications necessary for enforcing Secure Bit at both

the architecture and the systems level using IA-32 and Linux as an example were

presented. The same concepts should be easily adapted to any operating system or

architecture.

78

Chapter 7 Possible Attacks on Secure Bit

For any proposed security scheme, one must always consider ways around it. Two

possible attack vectors exist. One is on the Secure Bit itself; the other is on the protocol.

Attack the Secure Bit itself: Since no mechanism exists to clear a Secure Bit

associated with a word, any attempt to mark an untrustworthy piece of data as

trustworthy cannot succeed. Furthermore, since operations using untrustworthy

data result in untrustworthy data, it is not possible to use some combination of

operations to result in a trustworthy piece of data which was corrupted by

untrustworthy data. One might consider attacking a Secure Bit which has been

swapped to disk, but existing protection mechanisms provide sufficient protection.

Attack the Protocol: The other possibility is an attack on the protocol itself. Most

of the protocol is implemented in hardware so that part is protected from software

attacks. The remaining part lies in the modifications to the operating system.

However, operating system binaries should be in protected memory. e.g. read-

only, so this part of the protocol is also protected.

If Secure Bit itself resists attacks, what related attacks or weaknesses exist? There are

two of interest. We have stated that Secure Bit is not designed to protect against attacks

on non-control data. We will first consider at a buffer-overflow attack of non-control

data which can be used to modify control. Then we will look at an unsafe style of

compilation which may cause Secure Bit to generate a false positive.

79

7. 1 Attacks on non-Control data

With the presence of Secure Bit, using data passed from another domain (or its derived

result) as a function pointer or a return address is prohibited. Since an external attack is

not possible, only an internal attack is a possibility (assigning local data or a constant

value). Such an internal attack must actively circumvent protections to maliciously attack

itself or is an effect from another attack. However, it is not an attack on control data, but

a “process suicide” (programming error) or other type of attack. With respect to the

definition of buffer-overflow attacks on control data (definition 2) only using data passed

from another domain (including input) as control data is considered a buffer-overflow

attack.

Figure 25 presents a sample case of an attack on non-control data where the vulnerability

might be applicable.

int b() {

char *src,*dest;

char buff[lO];

printf("Input string:.\n");

gets(buff); // Overflow *src, *dest

strcpy(src,dest); // Copy src to dest

int main (int argc,char *argv[]) {

a();

}

Figure 25 Sample Buffer-Overflow attack on non-control data

80

In this example, main calls function “a” which then calls the vulnerable function “b”.

Within “b” the user inputs buff which can overflow to both overwrite *s rc to point to

the return address of a previous call (e.g. "a () ") and overwrite *dest to point to the

target address (e.g. return address of “b () ” or “main () ”). Note that this overflow is

possible only if all optimization is turned off so that neither src nor dest is in a register.

Under these circumstances it is possible to change the control flow without replacing

control data with external data—only internal data is used. Note that the damage in this

example is to create an infinite loop or to crash the program, effectively a denial of

service to the process.

While most internal data targets will be benign, one can imagine malicious possibilities,

even if they are a bit far-fetched. For example, if for some reason a programmer created

a function pointer to shell and had both a vulnerable copy routine and no optimization;

one could copy that shell pointer elsewhere to allow a shell call someplace different than

the programmer intended. Note that the desired privileged-elevated shell is not possible

with this attack. Alternatively, (again with a vulnerable copy routine and no optimization)

if one had function pointers to both an authorization “accept” function and a “reject”

function, one might be able to redirect program flow to subvert an authorization routine

to the “accept” function when the “reject” function was expected.

Though these attacks sound probabilistically low, they are not impossible. We simply

have to eliminate at least one critical condition. There are three possible methods. The

first is preventing a raw address from being stored directly in the program. A second

81

possibility is securing the target address from being modified (e.g. GOT and function

pointers). The final possibility is to validate that both the source and destination pointers

have not been maliciously modified.

Rather than storing an address directly into the GOT table or function pointer, we may

choose to store an encoded version of an address or to store a relative address. Even a

trivial encoding such as XOR with some constant would be sufficient. However, this

approach does not prevent a copy between locations that share the same encoding scheme

or key used to encrypt the address (e.g. between function pointers or entries in the GOT).

Rather than making the useful address useless, we can protect the target from being

modified. In the case of GOT, we can protect the GOT from being a target by declaring it

as read only after the shared library is configured. Nonetheless, we cannot apply the same

idea to protect function pointers or return addresses in general.

Alternatively, we can validate (assert) the source and destination pointers before running

the “strcpy(..)” function. If the source and destination pointers can be validated, the attack

can be prevented. However, a false alarm may be generated when a pointer is the

arithmetic result of input where its Secure Bit is legally set.

Thus, we propose extending Secure Bit to protect against buffer-overflows of non-control

data. In addition to the broader protection provided, this specific attack can be prevented

82

by preserving the integrity of the source and destination pointers from outside

modification. However, this is outside the scope of this thesis.

7.2 False Positives

Programs should not use input to construct control data. If a program uses input as

control data, Secure Bit will raise an exception. Raising such an exception is reasonable,

but compilers sometimes choose to generate control data from inputs for optimizations.

The obvious example is the switch statement in the C programming language. In such a

case, a compiler can use a part of the input to create a target address. This method

sometimes yields faster switching and smaller code.

The switch statement can be implemented by using compare instructions. This approach

avoids the unsafe approach of using input as control data. For example, code generated

from the GNU C compiler always uses the safe approach of implementing switch

statements with compare instructions.

7.3 Summary

Secure Bit provides protection against buffer-overflow attacks on control data. However,

there exists an attack on pointers that may allow local data to be constructed as control

data. This is not a direct attack on control data and requires another mechanism for

protection. Nonetheless, a solution is beyond the scope of this thesis.

In addition, Secure Bit may prevent some optimized code from running when input is

used to construct an address. In this situation, the program (or compilers) may have to be

83

modified. Though the case is rarely applicable and can be avoided, it prevents Secure Bit

from providing 100% backward compatibility to legacy user binaries.

84

Chapter 8 Evaluation

Our assumption is that Secure Bit will protect against buffer overflow without degrading

performance. Though it requires more memory, adding more memory is a one—time cost

compared to the indefinite cost of future buffer-overflow attacks. We evaluate our work

with respect to several hardware and software issues as follows.

0 An ability to boot Linux on a Secure-Bit-enabled machine demonstrates the H

completeness of our implementation in its ability to handle software of the

complexity of a real operating system.

0 An ability to run a legacy application on a Secure-Bit-enabled machine
demonstrates the transparency and compatibility of Secure Bit from an application

point of view.

0 An ability to prevent an unmodified buffer-overflow-vulnerable program from

being exploited validates the effectiveness in preventing buffer-overflow attacks.

0 The instructions that have to be modified in order to support Secure Bit indirectly

demonstrate the necessary semantics for preventing buffer overflow attacks in

hardware.

We will evaluate these issues individually.

8. 1 Boating Linux

We have booted Linux on the emulator to demonstrate the transparency of Secure Bit as

well as its compatibility. With Linux running, we mount existing buffer-overflow attacks,

and demonstrate how Secure Bit will trap them. Since our architecture does not modify

85

the syntax of any instruction, we are able to boot an unmodified version of Linux

(RedHat 6.2 [84]) in the emulator

To provide the protection, the kernel is modified to manage buffers passing between

kernel and process in sbit_write mode (See section 6.4 for more details). The Secure-Bit-

enabled Linux is able to boot in the emulator.

8.2 Compatibility

The Secure Bit protection mechanism is compatible with legacy binaries. In fact, we have

successfully compiled and run several serious benchmarks, such as GCC, in the emulator

without any modification. One notable application is Apache. With Apache running we

were able to set up a Web server which was useful for both testing compatibility as well

as resistance to attacks.

The first version of our Secure-Bit-enabled Linux failed to run any Java program in SUN

.IVM. The same program ran correctly on Kaffe [85], a free implementation of Java

Runtime Environment. The difference is that SUN JVM uses pthread libraries. POSIX

thread (pthread) libraries, a standards based lightweight process API for C/C++, use the

pipe system call for passing control data between threads. Since threads belong to the

same process, passing control data within a process does not violate the Secure Bit policy.

Thus, the kernel was modified to correctly implement the policy. The Pipe system call is

modified to allow data to flow between threads without flagging the Secure Bit. This

modification allows Secure Bit to provide compatibility to thread-aware software.

86

To appreciate the compatibility of Secure Bit, here are some benchmarks (some are from

SPEC CPUZOOO [86]) that we have run on the emulator.

gzip (SPEC CPU2000): GNU zip is a popular data compression program. It uses

Lempel-Ziv coding (L277) as its compression algorithm. An ability to run this

application indicates that the system is able to handle that complex algorithm.

bzip2 (SPEC CPU2000): bzip2 compresses files using the Burrows-Wheeler

block-sorting text compression algorithm and Huffman coding. Compression is

generally considerably better than that achieved by more conventional

LZ77/LZ78-based compressors, and approaches the performance of the PPM

family of statistical compressors. Running this program simply demonstrates an

ability to handle a slightly more complex piece of code.

gcc (SPEC CPU2000): This gcc is based on gcc version 2.91.66. We used it to

manually build the Linux box (kernel and some applications). Since gcc exercises

a wide variety of data structures, it serves as a good benchmark for validating

compatibility.

Perl and Shell scripts: Perl is an interpreted language optimized for scanning,

extracting, and printing text. As a part of building our server, we have

encountered several Perl scripts and shell scripts. The ability to run these scripts

shows that Secure Bit does not introduce any incompatibility with popular

scripting languages.

OpenSSL: As a part of building a working server, we also build OpenSSL

version 0.9.5. OpenSSL provides a full-strength general purpose cryptography

87

library. The library is used to manage the cryptography for Apache and OpenSSH.

This demonstrates the compatibility in handling the complexity of cryptography.

Apache with mod_ssl: Apache version 1.3.12 and mod_ssl version 2.6.6 are

selected for use in our Linux box. Since this version is vulnerable to the

SLAPPER worm, it also allows us to test the protection provided by Secure Bit..

One notable characteristic of Apache is that it is a multithreading application.

Apache always forks a new thread for handling an individual HTTP request.

Running Apache shows that Secure Bit can handle the complexity of real,

multithreaded server application (including SSL).

Telnetd and WUFTPD: These daemons are turned on by default in RedHat 6.2.

Before installing OpenSSH, this was our default for transferring data and

accessing the box remotely. One characteristic of ftp protocol is that two ports

are used for the communication (one for control and one for data). These

applications demonstrate ability in handling legacy network applications (and

protocols).

OpenSSH: As a replacement for telnet and ftp, we successfully built and installed

SSHD server and SSH client (including sftp and scp). They are our method for

remotely accessing the Secure Bit box. Embedded in an ability to run OpenSSH

is the ability to handle encrypted client-server applications.

Java Virtual Machine: There exist several implementations of Java Virtual

Machine. We have tested Sun JVM and Kaffe. By default, Java Virtual Machine

includes garbage collector and uses several threads for managing the Virtual

88

Machine. An ability to run these applications shows that Secure Bit can handle

the complex Virtual Machine and lightweight processes (threads).

It is not practical to test all applications, but this list indicates that Secure Bit is

compatible with a variety of existing software.

8.3 Mounting Attack

Testing a full suite of well-known buffer-overflow attacks is unrealistic on an emulator.

Instead, we have created a simple program that is vulnerable to buffer-overflow attacks,

and tried to mount several attacks on it. In addition to normal retum-address attacks and

function-pointer attacks, we also mount a multistage buffer-overflow attack that

overflows the Global Offset Table (as described in Section 1.4). In fact, we managed to

install a vulnerable version of Apache mod_ssl in the emulator and remotely mount the

SLAPPER [33] worm attack. Resisting SLAPPER is important because its multistage

attack defeats other buffer-overflow protection mechanisms [7]. Without any

modification, all attempts failed to compromise the Secure Bit.

To understand the attacks protected by Secure Bit, we have created a test suite for

modeling buffer-overflow attacks on control data. This suite is sufficient for representing

variations of stack smashing, retum-address attacks, function-pointer attacks, and GOT

attacks.

Test 1: Stack smashing and return-address attacks

In a stack smashing attack, a buffer overflow replaces the return address of the calling

function stored in the stack frame. Figure 26 shows a simple stack smashing vulnerable

89

program used in our test. With appropriate arguments, this return address of the main

function will be overflowed (by the strcpy() fimction).

void concat_arguments(int argc, char**argv) {

Char buf[20];

Char *p = buf;

int i;

for(i=l;i<argC;i++) {

strcpy(p, argv[i]);

p+=strlen(argv[i]);

if(i+l != argc) {

*p++ = ' ';

}

/* The damage occurs here. */

}

printf("%s\n", buf);

}

int main(int argc, char **argv) {

concat arguments(argc, argv);

printf("%p\n", &concat_arguments);

}

Figure 26 Example of stack smashing venerability

To facilitate the testing process, a wrapper program was created to explode this example

by passing a lengthy argument to the program. Assuming that the address of

concat_arguments0 function is 0x080484 (obtained from objdump utility) and the return

address is 44 bytes relative to the buff, we can construct a buffer-overflow attack to

create an infinite call to concat_argumentso by overflowing the return address with the

address of concat_arguments0. The details can be found in Figure 27

Without Secure Bit, the program is expected to loop indefinitely. However, Secure Bit

stops this program by raising a segmentation fault signal. Monitoring the console, we can

observe the protection provided by Secure Bit (see Table 2).

9O

int main(int argc,char **argv) {

char *buf = (char *) malloctsizeof(char)*1024);

char **arr = (char **)malloc(sizeof(char *)*3);

unsigned char tmp;

int i=0,j=44;

/* fill the buffer until we reach the offset */

for(i=0;i<j;i++) buf[i]='x';

/* target address */

buf[j] = 0x37; buf[j+1]= 0x84; buf[j+2]= 0x04; buf[j+3]= 0x08;

buf[j+4]= 0x02; /* for argc */

buf[j+5]= 0x00; /* string terminator */

/* arguments for execv() */

arr[O]="./test"; arr[1]=buf; arr[2]='\0‘;

execv("./test",arr); /* call the vulnerable program */

}

Figure 27 Wrapper program for exploding stack smashing

A. $./wrapper

Application Ox8049744

Console xx7

Segmentation fault

B. Retnear32: sbit of EIP is not secure [8048437]

Emulator

Console

Table 2 Results from stack smashing test

Test 2: function-pointer attacks, and GOT attacks

Another obvious target for buffer-overflow attacks on control data is a function pointer.

Though function pointers can be found arbitrarily, a particularly tricky attack is on the

entries in the Global Offset Table (GOT). This attack is important because it defeats most

other buffer-overflow protection schemes [7]. An example of such a vulnerability is

shown in Figure 28. In this example, the function-pointer entry of print/0 function

located in the GOT will be modified to point to residentcodeo function.

91

int residentcode() {

/* We are in trouble */

execl("/bin/sh","/bin/sh",0x00);

}

int vulnerable(char **argv) {

int x:

Char *ptr;

char buffer[30];

ptr=buffer;

printf("ptr %p - before\n",ptr);

strcpy(ptr,argv[1]); /* overflow ptr */

printf("ptr %p - after\n",ptr);

strcpy(ptr,argv[2]); /* overflow the target */

}

int main (int argc,char *argv[]) {

printf("Sample program.\n");

vulnerable(argv);

printf("Program exits normally.\n");

}

Figure 28 Example of GOT vulnerability

Suppose that the address of residentcodeo function is 0x8048454 and the GOT entry of

print/'0 function is located at Ox8049730 (obtained from objdump utility). Exploding this

program can be accomplished by first overflowing the ptr pointer to point to the entry of

printh function. Overflowing this entry can bind the prinq'o function to any code. In

this case, the residentcodeo function is the target. The wrapper program for exploiting

such vulnerability is shown in Figure 29.

Without any protection mechanism, a shell session would be expected. However, Secure

Bit stops the second call to print/'0 function from executing the residentcodeO by raising

segmentation fault signal. A snapshot of the console is shown in Table 3.

92

int main(int argc,char **argv) {

int *iptr;

char *bqu = (char *)malloc(sizeof(char)*46);

char buf2[5]="Addr";

char **arr = (char **)malloc(sizeof(char *)*4);

memset(bufl,'x',0x20);

iptr=(int *) bufl;

iptr+=(0x20 / sizeof(int));

/* printf entry in the GOT */

*iptr=0x08049730; buf1[0x24]='\0';

/* address of residentcode() */

iptr=(int *)buf2;

*iptr=0x08048454;

/* arguments for execv() */

arr[O]="./vul"; arr[l]=bufl; arr[2]=buf2; arr[3]=’\0';

execv(arr[0],arr);

1

Figure 29 Wrapper program for exploding GOT example

A. Sample program.

Application ptr OxbffffacO - before

Console ptr Ox8049730 - after

Segmentation fault

B. jmp_ed: sbit of target is not secure

Emulator

Console

Table 3 Results from GOT test

8.4 Instruction Set Architecture

Instructions that are modified to handle Secure Bit can be divided into 3 groups: Control

instructions, ALU instructions, and Move instructions. Control instructions are modified

to validate the Secure Bit of target addresses. ALU instructions are modified to propagate

the Secure Bit. Depending on the sbit_write mode, Move instructions are modified to

either carry the either carry the Secure Bit or set the bit to ‘1’. Such modifications are

93

trivial but touch several instructions. From the architecture point of view (see Chapter 5),

these modifications however involve few data paths and logic for handling the Secure Bit.

8.5 Summary

We qualitatively conclude that Secure Bit provides protection against buffer-overflow

attacks on control data with minimal modifications to the processor and operating system.

94

Chapter 9 Analysis

In this chapter, we analyze several cost aspects of Secure Bit. These aspects are:

backward compatibility, deployment, space (hardware requirement), performance, and

power consumption.

9. 1 Backward Compatibility

The Secure Bit protection mechanism is compatible with legacy binaries. In fact, we have

successfully run several serious benchmarks, such as GCC and Apache, in the emulator

without any modification. Only the kernel modules required small modifications. We

conclude that Secure Bit provides backward compatibility to user binaries and that the

protection mechanism is transparent to the user.

9.2 Deployment

Though the Secure Bit requires new hardware, the amount of investment is relatively

small compared to new, security-enhanced hardware such as Intel LaGrande [36] (with

Microsoft NGSCB [45]). In fact, Secure Bit is complimentary to LaGrande by enhancing

it to provide buffer-overflow protection, so Secure Bit could be added onto LaGrande. An

intermediate implementation path is also available because Secure Bit could be

implemented as middleware. Yet another alternate path is possible by implementing

Secure Bit only on the processor with a special memory mapping scheme and cache, thus

freeing memory from modification.

95

9.3 Space

The one-time cost of Secure Bit is comparable to that of a parity bit: having n words of

memory, an additional n bits are needed. From a memory point of view, this Secure Bit is

simply another data bit. From a processor point of view, it is only controlled by selected

instructions. The Secure Bit need not be kept on disk, but the memory bus will have to

handle it. The details of this cost are critical to the success of Secure Bit, and our

investigation of an implementation at the processor level with SimpleScalar addresses

this point—there are no hidden costs.

9.4 Performance

Accessing Secure Bit adds no additional latency to accessing other data since Secure Bit

access can be done in parallel with accessing its associated data. The few instructions

added to the kernel for switching the sbit_write mode add a delay that is too small to

measure. Only a trivial additional penalty is added for rendering the Secure Bit when

swapping the page in and out from swapping spaces. However, a hardware/software

optimization can play a role here, but that study is beyond our scope. Thus, we can

conclude that no significant performance penalty is introduced.

9.5 Power Consumption

With Secure Bit in place, more electric current is apparently required to drive the extra

line. An extra line occurs in several places including registers, data paths, data buses, and

memory chips. Since electric current only flows when logic switches, power consumption

is highly depended on the memory trace. However, we believe that the power consumed

by Secure Bit is comparable to that of ECC or parity memory. In fact, it is minimal

96

compared to the benefits provided by Secure Bit. Nonetheless, such a detailed study

would be valuable, but is beyond the scope of this thesis.

9.6 Cost Analysis

Up to this point, we have to trade off between investment and security. One may argue

that security provided by Secure Bit is coming at a high price. We do agree that Secure

Bit requires modifications to the processor, chipset, and memory hierarchy. However, the

cost should be resonable.

Except for instruction semantics, all modifications are similar to adding ECC or parity

bits to memory words. To appreciate memory modifications, Figure 30 shows memory

cards with and without ECC bits. In the latter case, an extra memory chip is included on

the card along with a smaller chip to run error-correcting algorithms. Secure Bit could

use leftover bits in the ECC memory, or use a similar dedicated chip.

a; .

up!

.u .

Figure 30 Top: DRAM card without ECC;

Bottom: DRAM card with an extra memory chip for ECC

97

Considering that processor implementations are constantly evolved, adding Secure Bit to

the processor would be trivial. In fact, some researchers [19] suggest that the costs are

covered in three days with respect to Moore’s law.

98

Chapter 10 Conclusion

This chapter summarizes the contributions of this thesis, the significance of Secure Bit,

its short-comings and possible future research.

10. 1 Contributions

This thesis provides several original concepts critical to the success of buffer-overflow

protection. These concepts are:

0 Survey and classification of current approaches against buffer-overflow attacks:

This classification provides a foundation for observing and analyzing pitfalls and

identifying components critical to the practicality of solutions.

a Theory of buffer overflow and its counterparts: From our observations, we

proposed a theory for preventing address-corrupting buffer—overflow attacks and

supported this idea by proving that it provides a secure system with respect to

buffer-overflow attacks. This theory serves as a framework for validating a

solution against buffer-overflow attacks in that the integrity of address and

metadata (if applicable) must be preserved.

0 Secure Bit: The protocol and implementation of Secure Bit have provided a case

study for buffer-overflow protection where metadata is encapsulated in, hardware

and unavailable to users, programmers, and attackers.

In addition, we contributed to the classification of buffer-overflow attacks itself. Attacks

are classified into generic buffer-overflow attacks, multistage buffer-overflow attacks,

and pointer attacks (a.k.a. arbitrary copy). However, this classification is not entirely

original, but is based the collected wisdom of others.

99

10.28ecure Bit

The necessary and sufficient condition for an address-corrupting buffer-overflow attack is

the corruption of an address. Based on that condition, we proposed and demonstrated

Secure Bit: a hardware buffer-overflow-attack prevention scheme. Secure Bit is

transparent to user software so it provides backward compatibility. In addition, it protects

against first-generation stack smashing, against the more recent function-pointer attacks

and Global Offset Table attacks.

Based on the principle of protecting the integrity of an address, the mechanism should

provide protection against future buffer-overflow attacks. Although this thesis is limited

to control-modifying attacks, we may be able to apply the concept of the Secure Bit to

prevent a type of buffer-overflow attack that modifies a data pointer to leak confidential

information (e.g. password protected data in an object) by preserving the integrity of a

data pointer (modifying the syntax of every instruction that accesses memory in indirect

mode to validate the Secure Bit).

Our booting of Linux on an emulation of Secure Bit demonstrates the transparency and

the robustness of our approach. Running real software such as GCC, JVM and Apache

on that Linux plus staging attacks on the emulation further demonstrates its effectiveness.

Finally, a hardware simulation [26] demonstrates Secure Bit’s viability at the register-

transfer level.

100

10.3Future Research

Like other solutions, Secure Bit also fails to protect from buffer-overflow attacks on non-

control data where attackers can arbitrarily copy data from one location to another. After

completely eliminating buffer-overflow attacks on control data from the field, the next

critical target is the buffer-overflow attack on data in general. However, unlike the

control data, variables are sometimes derived from input. That characteristic prevents us

from transparently providing the same protection.

We propose applying Secure Bit to protect data by providing the ability for the user to

manage additional metadata for differentiating between legal use of input and illegal

overflow.

10.4Conclusion

In addition to Secure Bit, this thesis provides insight for step-by-step study of buffer

overflow, buffer-overflow attacks, and buffer-overflow protection. While we hope to see

the success of Secure Bit as an architecture solution against buffer overflow, we expect

this research to be a useful resource for studying buffer-overflow attacks.

101

APPENDICES

102

Appendix A: Secure Bit 1: the Origin

We propose a new, minimalist, architectural approach, Secure Bit, to protect against

buffer overflow and function-pointer attacks. Secure Bit is completely transparent to

software, and has no (little) run-time performance penalty. The goal of Secure Bit is to

provide hardware support to protect against current and future generations of buffer-

overflow attacks by protecting the integrity of addresses.

Fundamentally, we add one bit to every memory word to protect the integrity of

addresses by adding semantic meaning to each word of the memory. This semantic

meaning will be used to distinguish local data and data from another domain.

Protection Against Return Address Attacks

We begin with a somewhat simplistic description of Secure Bit to provide an overview.

We add a Secure Bit to every memory location to mark a memory location as a return

address. The bit is set by a call statement, and its validity is checked (and cleared) by a

retunr statement. If only the call statement can set the bit and any write clears the bit, the

integrity of the return address will be preserved with respect to buffer overflow attacks.

The one-time cost of Secure Bit is comparable to that of a parity bit: having n words of

memory, additional n bits are needed. From a memory point of view, this Secure Bit is

another data bit. From a processor point of view, it is only controlled by selected

instructions. The Secure Bit need not be kept on disk, but the memory bus will have to

103

handle it. The details of this cost are critical to the success of Secure Bit, and our

investigation of an implementation at the processor level plans to address this point.

In contract to other approaches that change the system memory management scheme or

inject prologue and epilogue around vulnerable operations, we protect against the buffer

overflow attacks by marking (locking) return addresses. The semantics of call and return

instructions are modified to manage the Secure Bit. Modifying memory using other

instructions will always clear the Secure Bit.

Normally, the call instruction writes a return address on the stack. The return instruction

reads the return addresses from the stack and changes the instruction pointer to that

particular address. In our design, these semantics are modified to include Secure Bit

management. When call writes the return address, it will also set the Secure Bit of that

memory location. On return, the return instruction will check if the Secure Bit is set

before changing the program counter. If the Secure Bit is not set, the processor will raise

a protection failure signal. The summary of the semantics is shown in Figure 31.

At the execution of the call instruction, the return address and Secure Bit are stored to the

memory (stack) at the same time. If malicious code tries to overwrite the return address

on the stack, the ordinary write instruction will clear the Secure Bit. On executing the

return instruction, the processor first checks the Secure Bit. Since any modification to

memory from other operations always clears the Secure Bit, the malicious user is

104

effectively not permitted to change the return address. Figure 32 shows stack snapshots of

each step of operation.

Call Instruction Return Instruction

Save current PC to stack Read the return address from top of stack

*Set the Secure Bit for that address of *Clear the Secure Bit.

stack *If the Secure Bit of entry on top of stack

Increase Stack Pointer. is not marked, Issue General Protection

fault signal/interrupt.

Decrease Stack Pointer

Jump to return address

* - Semantic added to support secure memory architecture.

Figure 31 Semantic of call and return function

Call Instruction Overflow Return Check

Mark return address (clear Secure Bit) for address Integrity

Parameters Overflow Overflow

with with

@ Return Address 7

Address of Address of

Buffer

Malicious code Malicious code

a b c

Figure 32 Stack snapshot with Secure Bit (a) After call instruction, (b) After buffer overrun, and (c)

During return instruction.

105

Protection Against Function Pointer Attacks

In addition to return address protection, we can also apply the Secure Bit to the protection

of function pointers. In fact, we believe that in protecting function pointers, we can

protect all addresses that target valid entry points of a program (the target addresses of

jump instructions)—a more general approach than simply protecting function pointers.

To provide this protection, jump instructions are modified to check for a valid entry point

before changing the program counter to the target address (similar to our “return”-

instruction semantics). If the address is not a valid entry point, a general protection fault

signal is raised. Management of the Secure Bit in this situation is more complicated, but

the loader provides an excellent place for management since it is aware of all entry points.

We introduce a special write instruction that writes (the address) and sets the bit. Since

this instruction is only designed to serve the loader program, it can be placed in

supervisor mode. Figure 33 shows a memory snapshot of loader and call/jump instruction

semantics.

Loader marks . Overflowed with Address of

valid entry points Normal Operation Malicious code

.23}, Function A

'5 Function 8 Pointer to Pointer to

” Function A Malicious Code

Buffer Overflowed

Malicious Code

Text / Memory

Valid Call / Jump

(,4

Invalid Call I Jump

2:.

Figure 33 Function pointer protection using Secure Bit.

106

In order to target malicious code to be executed by modifying an address, the malicious

user also has to set the Secure Bit. As a privileged instruction the write is not available to

the user, and since this privileged write instruction does not exist in any part of the

program/library for normal operations other overflow attacks to fool this instruction will

not be available. As a result, it is impossible to inject the malicious code to the data area

and set it as a valid entry point at the same time within the normal overflow process. With

this approach the obvious next point of attack is the loader. The loader can be made as

secure as the kernel, that is, if an attacker could modify the loader, they could modify the

kernel which would obviate attacking the loader. Alternatively, one could use a certificate

to secure the loader. With this method, the run-time system could check the validity of

the loader before loading programs.

107

Appendix B: Non-LIFO control flow

Non-LIFO control flow can pose a problem for all buffer-overflow protection schemes

since it skips return addresses on the stack. If software always uses LIFO control flow,

hardware solutions such as SRAS [6, 40] would provide a substantial amount of

protection without recompilation of legacy code. However, non-LIFO procedure control

flow exists. Handling of non-LIFO control flow is necessary and nontrivial. Our study in

chapter 2 found that several techniques cannot handle this issue. In several cases, a tool

has to be explicitly turned off in order to execute the portions of code with non-LIFO

control. Several tools ignore discussing the issue and leave it unresolved. With no

absolute answer, our analysis indicates that they cannot handle non-LIFO control flow.

Non-LIFO control appears as an optimization of some compilers or an implementation of

specific languages such as exception handling in C++. Figure 3.4 is an example of IA-32

code optimization (for size) where “near call” and “far call” share the same return

(RETF). Basically, the “far call” is a call between segments where both code segment

(CS) and instruction pointer (IP) are pushed onto stack. In order to share the same return

('RETF), the entry point of “near call” is modified to construct an appropriate stack frame.

NEAR_ENTRY:

POP AX ; POP instruction pointer (IP)

; from the top of stack into

; accumulator (AX)

PUSH CS ; PUSH CS

PUSH AX ; PUSH IP back onto stack

FAR_ENTRY:

RETF ; POP IP and CS off stack

Figure 34 Sample lA-32 optimization of near call and far call for size

108

The critical aspect that breaks buffer-overflow protection schemes, and the integrity of

Secure Bit in particular, is that the construction of the return address is not a product of

call instruction. In the optimization example above, the return address constructed from

the “near entry” results from the pushing of “code segment” and “instruction pointer”

registers. If the properties of the Secure Bit are added to the push of these two registers,

the problem can be solved. In addition to the call instruction, we modify the “PUSH CS”

instruction to mark the Secure Bit. For the IF, the actual IP is created by the call

instruction. However, it is manipulated through the accumulator in the non-LIFO

optimization. As a result, a bit is added to the accumulator for handling the Secure Bit.

The “POP AX” instruction is slightly modified to save the value of the Secure Bit to an

additional bit in the register. Similarly, the “PUSH AX” instruction is modified to store

the value of the Secure Bit back onto the stack. Caution is needed ensure that the

mechanism will not be misused to render a new type of buffer overflow attack.

Additional examples of non-LIFO control appear in Objective C, in the use of

trampolines, and with the Longjmp instruction. In all cases, if the integrity of addresses

are preserved, the order of control will not matter. Observe how Secure Bit handles non-

LIFO control. If only a very limited set of instructions can set a Secure Bit, control flow

may be executed in any order (including non-LIFO), but the return addresses will always

be a valid return address.

109

Appendix C: TCPA, Intel LaGrande, and Microsoft NGSCB

Rather than providing a solution against the attacks, many vendors provide an add-on

hardware module to enhance security. Usually, it is a hardware-accelerated-encryption

unit. The main idea is to provide a mechanism for trusting the computer or a piece of

software by using encryption (PKI), saving the vulnerable data (key) in the hardware. In

addition to TCPA, a strong partition of processes is embedded into the hardware. The

additional mechanism can be viewed as an implementation of sandboxing in hardware.

With an appropriate software-driven policy, sandboxing can confine the damage from

buffer overflow attacks. This section first describes the details of TCPA as background.

Given Intel’s LaGrande (the hardware technology building on top of TCPA), Microsoft’s

NGSCB (the software technology built on top of the hardware) is introduced. The section

should provide sufficient background to understand that these technologies are not

enough for buffer overflow protection.

Recently, a group of vendors formed the Trusted Computing Platform Alliance (TCPA

[43, 70]), an organization working on creating a standard for a “trusted PC.” The group

announced the Trusted Platform Module (TPM) a specification of hardware with

encryption power and secures registers to save certain secure data. On top of that, Trusted

Computing Group, the successor organization to TCPA, has released the TCG API, a

software API that interoperates with TPM hardware. The sample application of TPM is

checking if the system is in a safe stage before installing or processing a transaction.

Currently, there are several ongoing projects that use TPM to protect more dynamic

110

system components. Examples here are Intel’s LaGrande Technology and Microsoft

NGSCB [45] Technology.

Intel’s LaGrande Technology (LT) is a set of enhanced hardware components designed to

help protect sensitive information from software-based attacks. An overview of

LaGrande Technology [36] unveils a number of key capabilities that claims to deliver the

protections to the IA-32 platform. The capabilities include: Protected Execution. Sealed

storage, Protected Input, Protected graphics, Attestation, and Protected Launch. To

achieve these capabilities, several extensions are placed on the processor, chipset,

keyboard, mouse, graphics device, and TPM device. All together, they provide a domain

manager, the mechanism used to manage domain separation, as an intermediate layer

between operating system and hardware (Figure 35).

Standard Protected

" v.- 91.4.! it- Us“

LaGrande Technology

may use resources in the

Standard Partition

' ' i ’ ‘ ‘ " . ': Applications (or services)

" . : that reside In protected

Protected I t I panitlon may be agnostic

Memo app 9 . of other applications or be

ry ; " dependent. An application

Domain Managers may be

constructed using venous

architectures.
Domain Manager

 There is hardware support

for protection of access to

resources and attestation

Figure 35 Intel LaGrande Architecture (from |36|)

Ill

In this architecture, applications can be written to make use of both partitions, standard

and protected. Much of the application code may still reside in the standard partition, and

services written to handle sensitive information, would move to a module in the protected

domain. The document also tells the fact that LT’s domain separation is a memory paging

protocol that protects the data from viewing or modification by unauthorized applications.

Hardware mechanisms are used to prevent the data from direct memory access (DMA),

and device probes. However, the applications in the protected domain may use resources

in the standard partition. There is also similar technology named TrustZone by ARM [49]

Microsoft's Next-Generation Secure Computing Base (NGSCB) technologies [48] are

designed to help provide better system integrity, information security, and privacy, by

offering a foundation to help ensure that privacy- and security-sensitive hardware and

software which can interact with greater integrity. The main features of NGSCB are:

Strong Process Isolation, Sealed Storage, Secure Path to and from User, and Attestation.

In this architecture, new hardware and software components are introduced. The nexus is

a new component acting as the kernel of the protected software stack. TPM 1.2 is

expected to serve as the Security Support Component (SCC), a hardware module that can

perform certain cryptographic operations and securely store cryptographic keys that are

used by the nexus. Process Isolation can limit the damage caused by buffer overflow. In

general, a NGSCB-enabled computer requires a new hardware component similar to that

provided by the Intel LaGrande Technology.

112

An issue of protection against buffer overflow is raised here. Buffer overflow happens in

poorly written code. Passing information from one function to another function

(regardless of domain) can in principle result in buffer overflow. LT’s Domain manager

cannot protect against buffer overflow attacks, and noticeably does not claim to. It may

be able to enforce bound checking when information is passed from one domain to

another, but still the mechanism cannot enforce information passing between functions in

particular domains. LaGrande Technology is based on encryption, but encryption is not a

solution to prevent buffer overflow. For example, SSL and SSH, which are encrypted

communication protocols, are still exploitable by buffer overflow attacks. LaGrande

Technology is another ring (-1) with hardware support for encryption and a secure

interface to devices. It only protects applications from wire-trapping and extracting data

from the devices (including memory and storage). While elaborate details have not been

made public, domain manager might be implemented as a segmentation mechanism on

top of the paging mechanism in order to maintain backward compatibility. Segmentation

can be used to limit (or protect against) buffer overflow if a subroutine is forced to create

a new segment every time it is called (similar to the mechanism found in 1432 as

mentioned earlier).

Though Intel’s LaGrande Technology and Microsoft’s NGSCB cannot protect against

buffer overflow, they are perfect tools to enforce digital copyright management and to

protect security sensitive data. Our analysis shows that the technology is useful only to

limit the damage caused by buffer overflow. The protection provided by the Secure Bit

can significantly enhance both technologies.

113

10.

ll.

12.

13.

14.

BIBILOGRAPHY

. ARM. 2004. TrustZone Technology.

Baratloo, A., Singh, N., and Tsai, T. 2000. Transparent Run-Time Defense against

Stack Smashing Attacks. In Proc. ofthe USENIXAnnual Technical Conf (2000)

Bhatkar, S., Duvamey, D. C., and Sekar, R. 2003. Address Obfuscation: an

Efficient Approach to Combat a Broad Range of Memory Error Exploits. In Proc.

ofthe 12th USENIXSecurity Symposium.

Bishop, M. 2002. Computer Security, Addison-Wesley, (Dec. 2002)

Blexim. 2002. Basic Integer Overflow. http://www.phrack.org/phrack/60/p60-

0x0a.txt

Compuware DevPartner, DevPartner for Visual C++ BoundsChecker Suite.

Available: http://www. compuware. com/products/deVpartner/bounds. htm

Bulba and Kil3e. 2002. Bypassing stackng and stackshield. Phrack Magazine,

10(56)

Cannon, J. C. 2004. Privacy: What Developers and IT Professionals Should Know,

Addison Wesley Professional

Chang, F. Itzkovitz, A. and Kararncheti, V. 2000. User-level Resource-

constrained Sandboxing. USENIX Windows System Symposium

Chen, S., Xu, J., Nakka, N., Kalbarczyk, Z., Iyer, R. K. 2005. Defeating Memory

Corruption Attacks via Pointer Taintedness Detection, in Proc. Of IEEE

International Conf. on Dependable Systems and Networks (DSN), Yokohama,

Japan, June 28 - July 1, 2005

Chien, E. and Szor, P. 2002. Blended Attacks Exploits, Vulnerabilities and

Buffer-Overflow Techniques in Computer Viruses. In Proc. of Virus Bulletin

Conf. '

Chiueh, T., Hsu, F. 2001. RAD: A Compile-Time Solution to Buffer Overflow

Attacks. In Intl. Conf on Distributed Computing Systems.

Colwell, R. P., ET AL. 1985. Instruction Sets and Beyond: Computers,

Complexity and Controversy. IEEE Computer.

Corliss, M. L., Lewis, E. C., and Roth, A. 2005. Using DISE to Protect Return

Addresses from Attack. ACMSIGARCH, Vol 33. No. I

114

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Cowan, C., Beattie, S., Day, R. F., PU, C., Wagle, P., and Walthinsen, E. 1999.

Protecting Systems from Stack Smashing Attacks with StackGuard. the Linux

Expo, Raleigh, NC

Cowan, C., Beattie, S., Johansen J., and Wagle, P. 2003. PointGuard: Protecting

Pointers From Buffer Overflow Vulnerabilities. In Proc. of the 121h USENIX

Security Symposium.

Cowan, C., Pu,C., Maier, D., Hinton, H., Bakke, P., Beattie, S., Grier, A., Wagle,

P., and Zhang, Q. 1998. StackGuard: Automatic Adaptive Detection and

Prevention of Buffer-Overflow Attacks. In the proc. ofthe 7th USENIX Security

Symposium

Cowan, C., Wagle, P., Pu, C., Beattie, S., and Walpole J. 2000. Buffer

Overflows: Attacks and Defenses for the Vulnerability of the Decade. DARPA

Information Survivability Conf. and Expo (DISCEX).

Crandall. JR. and Chong. F.T. 2004. Minos: Control Data Attack Prevention

Orthogonal to Memory Model. Intl. Sym. on Microarchitecture.

Crandall, JR. and Chong. F.T. 2005. A Security Assessment of the Minos

Architecture. ACMSIGARCH, Vol 33. No. 1

Dahlby, S.H. Henry, G.G. Reynolds, ON. and Taylor, RT. 1982. Chapter 32. The

IBM System/38: A High-Level Machine. Computer Structures: Principles and

Examples.

Dean, D., Felten, E. W., and Wallach, D. S. 1996. Java Security: From HotJava to

Netscape and Beyond. In Proc. ofthe IEEE Symposium on Security and Privacy,

Oakland, CA

Etoh, J. 2000. GCC extension for protecting applications from stack-smashing

attacks. Available: http://www.trl.ibm.com/projects/security/ssp/

Evans, D. and Larochelle, D. 2002. Improving Security Using Extensible

Lightweight Static Analysis. IEEE Software

Davis, N. 2001. Clean Up Your Code with Flawfinder. published on Linux

DevCenter. Available:

http://www.linuxdevcenter.com/pub/a/Iinux/2001/05/29/insecurities.html

Fletcher, M., Piromsopa, K., and Enbody R. 2005. Simulating Hardware-level

Buffer-overflow Protection. Technical Reports #MSU-CSE-05-9, Department of

Computer Science and Engineering, Michigan State University (2005)

Frantzen, M. and Shuey. M. 2000. StackGhost: Hardware facilitated stack

protection. In Proc. ofthe 10th USENIXSecurity Symposium

115

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Genhringer, E. F. and Keedy, J. L. 1985 Tagged architecture: how compelling are

its advantages?. lntl. symposium on Computer architecture, pp. 162-170

Glew, A. 2003. "Segments, Capabilities, and Buffer Overrun Attacks," Computer

Architecture NEWS, ACM SIG Computer Architecture Vol.31, No.4 - September

2003, pp. 26 — 31

Haugh, E. and Bishop, M. 2003. Testing C Programs for Buffer Overflow

Vulnerabilities. In Proc. of the 2003 Symposium on Networked and Distributed

System Security (SNDSS 2003) (Feb. 2003)

Hinton, H., Cowan, C., Delcambre, L., and Bowerds, S. 1999. SAM: Security

Adaptation Manager In Proc. of the Annual Security Applications Conference

(ACSAC).

Howard, M. and Leblanc, D. 1965. Chapter 10:All Input Is Evill. Writing Secure

Code, Microsoft Press, 2nd ed.(1965)

Hsiangren, S. 2002. Apache/mod_ssl (slapper) Worm. GIAC Certified Incident

Handler.

Ingo. 2004. Exec Shield, new Linux security feature.

Inoue, K. 2005. Energy-Security Tradeoff in a Secure Cache Architecture against

Buffer Overflow Attacks. ACMSIGARCH, Vol 33. No. 1

Intel Corporation. 2003. LaGrande Technology Architectural Overview.

Jones, R. W. M. and Kelly, RH]. 1997. Backwards-compatible bounds checking

for arrays and pointers in C programs. In The 3rd lntl. Workshop on Automated

Debugging.

Kc, G. S., Keromytis, A. D. and Prevelakis, V. 2003. Countering Code-Injection

Attacks With Instruction-Set Randomization. In Proc. ofthe 1 01h ACM Conf on

Comp. and Comm. Security

Kgil, T., Falk, L., and Mudge, T. 2005 ChipLock: Support for Secure

Microarchitectures. ACMSIGARCH, Vol 33. No. 1

Kirovski, D. Drinic, M. and Potkonjak, M. 2002. Enabling Trusted Software

Integrity. ACM Intl. Conf. on Architectural Support for Programming Languages

and Operating Systems

Krazit, T. 2004. PCWorld — News - AMD Chips Guard Against Trojan Horses.

IDG News Service.

.Litchfield, D. 2003. Defeating the Stack Based Buffer Overflow Prevention

Mechanism of Microsoft Windows 2003 Server. NGSSoftware

116

43.

44.

45.

46.

47.

Macdonald, R., Smith, S. W., Marchesini, J. and Wild, 0. 2003. Bear: An Open-

Source Virtual Secure Coprocessor based on TCPA. Tech. Report TR2003-4 71,

Department of Computer Science, Dartmouth College.

Mcgregor, J. P., Karig, D. K., Shi, Z., and Lee, R. B. 2003. A Processor

Architecture Defense against Buffer Overflow Attacks. In Proc. ofthe IEEE Intl.

Conf on Information Tech. .° Research and Education (ITRE 2003), 243-250.

Microsoft Corporation. 2004. The Next-Generation Secure Computing Base: An

Overview.

Milenkovie, M., Milenkovie, A., and Jovanov, E. 2005. Using Instruction Block

Signatures to Counter Code Injection Attacks. ACMSIGARCH, Vol 33. No. 1

Moon, D. A. 1987. Symbolics architecture. Computer archive Volume 20, Issue 1

(January 1987) IEEE Computer Society Press Los Alamitos, CA, USA, 43 — 52.

48. Necula, G. C. Mcpeak, S. and Weimer, W. 2002. CCured: Type-Safe Retrofitting

49.

50.

51.

52.

53.

54.

55.

56.

57.

to Legacy Code. In The Proc. ofthe Principles ofProgramming Languages

Newsham, T. 1997. BugTraq Archive: Re: StackGuard: Automatic Protection

From Stack-smashing Attacks

Newsome, J., and Song, D. 2005. Dynamic Taint Analysis: Automatic Detection

and Generation of Software Exploit Attacks. In NDSS (Feb, 2005)

One, A. 1996. Smashing stack for fun and benefit, Phrack Magazine, 49(7)

Organick, E. 1983. A programmer's View of the Intel 432 System, McGraw-Hill

Ozdoganoglu, H., Vijaykumar, T.N., Brodley, C.E., Jalote, A. and Kuperman, B.

A. 2003. SmashGuard: A Hardware Solution to Prevent Security Attacks on the

Function Return Address. Tech Report (TR-ECE 03-13), Department of Electrical

and Computer Engineering, Purdue University.

PAX TEAM. 2003. Documentation for the PaX project.

Peterson, D. S. Bishop, M. and Pandey, R. 2002. Flexible Containment

Mechanism for Executing Untrusted Code. In Proc. of the Ilth USENIX UNIX

Security Symposium

Pincus, J. and Baker, B. 2004. Beyond Stack Smashing: Recent Advances in

Exploiting Buffer Overruns, IEEE Security & Privacy, Vol. 2, No. 4, July/August

2004. pp. 20 - 27

Piromsopa, K. and Enbody, R. 2004. Buffer Overflow: Fundamental. Technical

Reports #MSU-SE-04-47, Department of Computer Science and Engineering,

Michigan State University

117

58.

59.

60.

61.

62.

63.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Piromsopa, K. and Enbody, R. 2005. Secure Bit2 : Transparent, Hardware Buffer-

Overflow Protection. Technical Reports #MSU-CSE-05-9, Department of

Computer Science and Engineering, Michigan State University (2005)

Prasad, M. and Chiueh, T. 2003. A Binary Rewriting Defense against Stack based

Buffer Overflow Attacks. In Usenix Annual Technical Conference, General Track

Rational PurifyPlus. IBM Rational Software

RATS, Available: http://www.securesw.com/rats/

Schmidt, C., and Darby, T. The What, Why, and How of the 1988 Internet Worm,

Available: http://www.snowplow.org/tom/worm/worm.html

Shankar, U. Talway, K. Foster, J.S. and Wagner, D. 2001. Detecting Format

String Vulnerabilities with Type Qualifiers. In Proc. ofthe 10th USENIXSecurity

Symposium

. Shao, Z., Zhuge, Q., He, Y., Sha, E. H.-M. 2004. Defending Embedded Systems

Against Buffer Overflow via Hardware/Software. In Proc. of the 201h Annual

Computer Security Applications Conference, Tucson, Arizona (Dec. 6-10, 2004)

Shapiro, J. S. 1997. EROS: A Capability System, Department of Computer and

Information Science Technical Report MS-CIS-97-04, University of Pennsylvania

Solar Designer. 2002. Linux kernel patch from the Openwall Project (Non-

Executable User Stack). Available: http://www.openwall.com/

Suh, G., Lee, J., and Devadas, S. 2004. Secure program execution via dynamic

information flow tracking. In ASPLOSXI (Oct, 2004.)

Sun Alert Notification. 2004. Document ID 57643: Netscape NSS Library

Vulnerability Affects Sun Java Enterprise System.

Swiderski, F and Snyder, W. 2004. Threat Modeling, Microsoft Press (2004)

Trusted Computing Platform Alliance. 2004. TCPA IT White paper.

Tuck, N., Calder, B. and Varghese, G. 2004. Hardware and Binary Modification

Support for Code Pointer Protection From Buffer Overflow. In Proc. ofthe 37th

lntl. Symposium on Microarchitecture

US. Department of Energy Computer incident Advisory Capability. 2004. O-130:

Perl and ActivePerl win32_stat Buffer Overflow, Available:

http://www. ciac. org/ciac/bulletins/o-I30. shtml

Vendicator. 2000. Stack Shield technical info file v0.7.

118

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

Viega, J., Bloch, J.T., Kohno, Y, and Mcgraw, G. 2000. ITS4: A Static

Vulnerability Scanner for C and C++ Code. In Proc. ofthe 16th Annual Computer

Security Applications Conference.

Wagner, D. Foster, J. S. Brewer, E. A. and Aiken, A. 2001. A First Step Towards

Automated Detection of Buffer Overrun Vulnerabilities. In Proc. of the 10th

USENIXSecurity Symposium.

Webopedia Computer Dictionary. What is buffer overflow‘.’.

http://www.webopedia.com/TERM/B/buffer_overflow.html

Witchel, E., Cates, J. and Asanovic, K. 2002. Mondrian memory protection. In

ASPLOS-X, Oct 2002.

Xu, J., Kalbarczyk, Z., Patel, 8., and Iyer, R. K. 2002. Architecture Support for

Defending Against Buffer Overflow Attacks. In Workshop on Evaluating and

Architecting Systemsfor Dependability.

Ye. D., Kaeli, D. 2005. A Reliable Return Address Stack: Microarchitectural

Features to Defeat Stack Smashing. ACMSIGARCH, Vol 33. No. 1

Young W. D. 1987. Coding for a Believable Specification to Implementation

Mapping. IEEE Symposium on Security and Privacy 1987: pp. 140-149.

Wikipedia, the free encyclopedia, “Buffer Overflow”, Available:

http://en.wikipedia.org/wiki/Buffer_overflow

BOCHS. The Open Source IA-32 Emulation Project, Available:

http://bochs.sourceforge.net/

Austin, T., Larson, E., and Ernst, D. 2002. SimpleScalar: an infrastructure for

computer system modeling. IEEE Computer, vol. 35, no.2, Feb. 2002.

RedHat Linux, Available: http://www.redhat.com/

Parrnelan. E. G. 2001. Porting Kaffe to a new platform. Available:

http://www.kaffe.org/doc/port-kaffe/port-kaffe-O.2.html

SPEC CPU2000. Available: http://www.spec.org/cpu/

119

i"iiiirggiigiIjijiil

