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ABSTRACT

Design and Performance Tradeoffs of High-Gain
Observers with Applications to the Control of Smart
Material Actuated Systems

By

Jeffrey H. Ahrens

The study of high-gain observers has typically involved properties that are asymptoti-
cally recovered as the gain is pushed higher. In any practical implementation of high-gain
observers one will ultimately encounter performance tradeoffs associated with the choice
of gain. These include tradeoffs between fast reconstruction of the system states, bet-
ter rejection of modeling uncertainty, and closed-loop stability versus amplification of
measurement noise, large transient response amplitude, and computational cost in the
discrete-time case. We propose several high-gain observer designs and examine their ef-
fectiveness at dealing with these tradeoffs.

We examine the tradeoff between closed-loop stability and large observer transient
response by considering a time-varying high-gain observer that is of the form of an ex-
tended Kalman filter (EKF). We highlight an important feature of the Riccati equation
with respect to the observer transient and show closed-loop asymptotic stability for a par-
ticular class of nonlinear systems under EKF feedback. We compare the performance of
the time-varying extended Kalman filter against a fixed-gain high-gain observer in terms
of closed-loop stability and transient response.

To balance the tradeoff between state reconstruction speed during the observer tran-

sient with amplification of measurement noise at steady-state we propose a high-gain



observer that switches between two gain values. This scheme is able to quickly recover
the system states during large estimation error and reduce the effect of measurement
noise in a neighborhood of the origin of the estimation error. We argue boundedness of
the trajectories of the closed-loop system.

Since closed-loop stability for sampled-data systems using high-gain observers follows
for sufficiently small sampling periods, there is a tradeoff between elevated sampling rates
and closed-loop performance. We consider a multirate sampled-data output feedback
control design in order to relax the tradeoff between computational cost and closed-loop
stability. This scheme employs control update rates that are fixed by a state feedback
design with a sufficiently fast measurement sampling rate. We prove practical stabilization
for the closed-loop system under multirate output feedback. We also argue stability with
respect to a set in the presence of bounded disturbances.

For smart material actuated systems, the existence of significant hysteresis nonlinear-
ity inherent in smart materials along with difficulties in measuring system states points
to output feedback control designs employing hysteresis compensation. We apply our
multirate output feedback scheme to a shape memory alloy actuated rotary joint by com-
bining the observer with a hysteresis inversion controller. The rotary joint is modeled as
a hysteresis operator of Preisach type combined with a dynamic system. Experimental
results of the proposed scheme are reported.

This dissertation attempts to address certain criticisms of high-gain observers and thus

may be of interest to both control theoreticians and practicing engineers.
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CHAPTER 1

Introduction

Most nonlinear control design tools assume state feedback (i.e., measurement of all state
variables) to achieve a desired goal. In many applications full state measurement is either
impractical or not possible. In such cases, it is necessary to use alternate methods to
obtain the system state information. One method is the use of observers to estimate the

system states from the output measurements. For linear time-invariant systems

Tt = Az + Bu

y = Crz
a state observer takes the form
=A%+ Bu+ H(y - C#)

This observer, referred to as a Luenberger observer, reproduces the right hand side of the
system dynamics and is driven by the output error through the observer gain H. With the
pair (A, C) detectable, H can be chosen to guarantee global convergence of the estimates

T to the system states x. For a general class of nonlinear systems



y = h(z)

designing an observer to provide convergence outside a small neighborhood of the origin
of the estimation error has proved to be challenging. To achieve nonlocal convergence,
nonlinear observer designs typically exploit the special structure of a certain class of
nonlinear systems. One such nonlinear observer is the high-gain observer. High-gain

observers are applicable to a class of nonlinear systems that have the form

;o= ¥(z,z) (1.1)
& = Az+ Bo(z,z,u) (1.2)
y = Cz (1.3)
¢ = O(z.2) (1.4)

where u is the control input, z € R and z € RY constitute the state vector, and y and ¢
are the measured variables. The r x r matrix A, the r x 1 matrix B, and the 1 x » matrix

C are given by

-0 1 . 0- _0-
0 0 1 0 0
A= | : | ,B=]: (1.5)
0 0 1 0
-0 0 . OJ _1_
C=|10 --- 0] (1.6)

One source for the model (1.1)-(1.4) is the normal form of input-output linearizable sys-
tems, as discussed in [36]. In addition to the normal form, this class of systems also
arises in mechanical and electromechanical systems where the position is measured, but
its derivatives, the velocity and acceleration, are not measured. In [26], Esfandiari and

Khalil introduced a robust output feedback technique based on the use of high-gain ob-



servers. Output feedback is achieved by first considering a globally bounded partial state

feedback controller given by

u= 7(‘13 C)

that is designed to meet the performance objectives. Then, the state x is replaced by the

estimate £ that is generated by the high-gain observer
T = A + Boy(2, ¢, u) + H(y — Ci) (1.7)

where @) is a known nominal model of ¢ and the observer gain H is designed as

T
al] a9 ar
H=|2 =% ...... —= 1.8
e’ g2 e’ (18)
The a;’s are chosen such that the roots of
Sr+alsr—1+...+ar_ls+ar (19)

have negative real parts. The output feedback controller is given by

u=7(z,Q)

Some of the key features of the high-gain observer can be seen by rescaling the estimation

error according to

(z; — ;)
i1

§i =

With this rescaling we can arrive at the following equation for the estimation error

sf = Apé + eB[d(z, z,7(2,C)) — dp(z, ¢, v(,C))] (1.10)



where A is a Hurwitz matrix. This equation shows that the effect of the modeling
uncertainty (¢— ¢q) is reduced with smaller €. Also, this equation shows that the observer
error evolves in a time scale t/e, which is faster then the time scale of the plant. One
attribute of the high-gain observer is what is known as the peaking phenomenon. Due to

the gain structure (1.8), the observer will exhibit a transient response of the form

%e.rp(—at/r:)

Notice that while this term will rapidly decay, the amplitude will be quite large. Thus, the
transient response approaches an impulsive-like behavior as € is pushed smaller. Peaking
in the estimates can lead to large control magnitude which in turn can lead to instability
if not properly handled. One way to do this is to globally bound the control by saturating
it outside a compact region of interest. This will limit the control magnitude so that the
plant does not experience the effects of peaking. Although globally bounding the control
can prevent peaking from driving the system unstable, its effects will still be present in the
control signal. Peaking can cause the control to swing quickly between its minimum and
maximum values. This type of control behavior can lead to excessive power consumption
or mechanical wear. Therefore, it is still desirable to avoid peaking in favor of a more well
behaved control signal.

As we alluded to above, the closed-loop system under high-gain observer feedback will
contain fast and slow time scales. This two-time scale nature of the closed-loop system
allows it to be studied using singular perturbation analysis. The idea of combining a glob-
ally bounded state feedback control with a sufficiently fast high-gain observer was used
by Atassi and Khalil {7] to prove a separation principle for the class of systems under
consideration. They showed that by choosing € sufficiently small, one can guarantee sta-
bility of the closed-loop system. In addition, they showed that as € — 0 the performance
under output feedback using high-gain observers approaches the performance under state

feedback.



In this thesis we will consider continuous-time as well as sampled-data systems. In
sampled-data systems the actual process is continuous-time while the controller is imple-
mented in discrete-time by digital computers. In [19], Dabroom and Khalil considered
discrete-time implementation of the high-gain observer. Various discretization methods
were studied to determine the most suitable algorithm and best choice of observer pa-
rameters. Furthermore, in [20], Dabroom and Khalil showed that an output feedback
controller based on the discrete-time high-gain observer stabilizes the origin of the closed-
loop system for sufficiently small sampling period 7. In addition, it was shown that the
performance under sampled-data output feedback asymptotically approaches the perfor-
mance under continuous-time state feedback as 7' — 0. In discrete-time, the sampling
period of the observer is chosen proportional to the gain parameter €. That is, T = ac for
some positive constant a. Thus, for the discrete-time high-gain observer, more accurate

estimation of the system states is achieved by faster sampling of the output.

1.0.1 High-Gain Observer Performance Tradeoffs

The tradeoffs that concern us here are the ones that come with the choice of the gain pa-
rameter €. Choosing smaller values of ¢ yields the following benefits: faster reconstruction
of the system states, better rejection of modeling uncertainty, and recovery of the perfor-
mance under state feedback. This comes at the expense of amplification of measurement
noise, larger peaking amplitude, and more computational cost in the discrete-time case.
On the other hand, with larger €, one can expect reduced susceptibility to measurement
noise, smaller peaking amplitude, and less computational demands in the discrete-time
case. However, this comes with the price of slower state reconstruction and greater sig-
nificance of the modeling error.

With this in mind, we consider the design and performance tradeoffs of closed-loop
systems under output feedback using high-gain observers with application to the control of

systems with smart material actuators. This will be done in four steps. First, we consider



a time-varying high-gain observer that is of the form of an extended Kalman filter (EKF).
We will show that when applied to a class of nonlinear systems similar to (1.1)-(1.4),
the closed-loop system under EKF feedback, when parameterized as a high-gain observer,
is asymptotically stable. Further, we compare the performance of the extended Kalman
filter with a fixed-gain high-gain observer to evaluate whether the added complexity of the
EKF provides advantages in terms of closed-loop stability and the peaking phenomenon.
Second, we highlight the tradeoff between state reconstruction and modeling uncertainty
versus immunity to measurement noise and propose a switched-gain high-gain observer
design to relax this tradeoff. Third, turning our attention to sampled-data systems, we
consider a multirate sampled-data output feedback control design in order to relax the
tradeoff between computational cost and closed-loop stability. Finally, we apply our
multirate output feedback design to smart material actuated systems. We introduce each
of these ideas here; additional background and discussion is given in the introduction to

each chapter.

Extended Kalman Filters

The gain of the high-gain observer, as shown above, is designed by a pole placement ap-
proach. Atassi and Khalil [8] studied the high-gain observer for pole placement, algebraic
Riccati equation, and Lyapunov equation-based algorithms. They were able to show that
each of these three gain design methods, along with a globally bounded control, satis-
fies the separation result of [7]. Another observer for nonlinear systems is the extended
Kalman filter [27]. The extended Kalman filter has been widely used in the areas of con-
trol and signal processing as a state estimator for nonlinear stochastic systems. The EKF
is based on linearization about the current state estimate and on the covariance of the

input and measurement noise, which are typically treated as stochastic processes. The



filter gain, P(t)CTR"l, is obtained from the solution to the Riccati equation
5 _ . T- T p—1
P = Ay(2(t))P + PA] (2(t)) + Q@ - PC* R °CP (1.11)

where @ and R are the input and output error covariance matrices, respectively. The
matrix Aj(Z(t)) is obtained from the linearization of the nonlinear system about the cur-
rent estimate. In the noise free case, the EKF can be parameterized to function as a
deterministic observer for nonlinear systems. Furthermore, based on a particular choice
of the covariance matrices, the EKF can be designed as a time-varying high-gain observer.
We prove that under EKF feedback the origin of the closed-loop system is asymptotically
stable and the estimation error converges exponentially. Further, we compare the bene-
fits and limitations of observers with time-varying gain versus observers with fixed gain.
This comparison will involve the value of € that provides closed-loop stability and the

susceptibility of the observer with respect to peaking.

Switched-Gain Observers

One common criticism of high-gain observers is their performance in the presence of
measurement noise. We note that high observer gain tends to differentiate noise thereby
degrading the performance of the closed-loop system. To deal with the tradeoff between
state reconstruction speed and suppression of modeling uncertainty versus amplification
of measurement noise we introduce a high-gain observer design where the gain matrix is
switched between two values. We note that during the observer transient, it may be more
desirable to use high-gain to quickly reconstruct the system states when the estimation
error is large at the expense of increased impact of measurement noise. On the other hand,
at steady-state, when the transient has died down, it is more desirable to use smaller gains
to lessen the effect of noise. This is the basic idea behind the switched-gain observer. We
use high-gain during the transient to quickly recover the state estimates, then once the

estimation error has reached steady-state, we switch to a lower gain to reduce the effect



of measurement noise. We prove that under the switched-gain observer, all trajectories

of the closed-loop system are bounded.

Multirate sampled-data output feedback control

Motivated by applications of control to smart material systems we seek to analyze the
performance of a closed-loop system when multirate sampled-data output feedback is
considered. For sampled-data state feedback the sampling period is dictated by the band-
width of the closed-loop system. With discrete-time observers, a more accurate estimate
of the system states can be obtained with faster sampling of the output. Here we consider
a sampled-data system where the input and output are sampled at different rates. Using
discrete-time high-gain observers, we note that the sampling frequency should be chosen
proportional to the observer poles which are located at O(1/¢). Therefore, the output
sampling period decreases as £ decreases. We seek to balance the tradeoff between fast
sampling rates, needed to guarantee stability under high-gain observer feedback, and the
computational costs associated with elevated sampling rates. We start with a sampling
rate that is chosen based on state feedback design. We show that stability of the closed-
loop system can be achieved by using a sufficiently fast measurement sampling rate and
a control update rate that is fixed by the same state feedback design. We prove practi-
cal stabilization of the origin of the closed-loop system under multirate output feedback.
Further, in the presence of bounded disturbances in the closed-loop system we prove sta-
bilization with respect to a set containing the origin. We show through simulation that

the multirate scheme may be less susceptible to peaking than the single-rate scheme.

Smart Materials Actuators and Control

Finally, we will apply the multirate output feedback control design to the control of sys-
tems that employ smart materials as actuation devices. Smart materials exhibit significant

hysteresis and we consider controller designs that employ hysteresis inversion algorithms




such as the one introduced by Tan and Baras in [63]. In general, these inversion algo-
rithms are computationally demanding and controller designs based on them may place
a constraint on the choice of sampling rate. We work with a model for smart material
actuators that consists of a hysteresis operator in cascade with a linear dynamic system
and use hysteresis inversion for feedforward compensation. In the presence of bounded
hysteresis inversion error, we demonstrate the applicability of multirate output feedback
control. Further, we present experimental results for the control of a shape memory alloy
actuated robotic joint. This is done by applying a controller based on hysteresis inversion
with a high-gain observer in the multirate scheme.

This thesis is divided into three parts. In the first part, we consider the extended
Kalman filter as a time-varying high-gain observer and compare the EKF to a fixed-gain
high-gain observer. This is covered in Chapter 2. In Chapter 3 we turn our attention to
the effect of measurement noise and consider a switched-gain observer design. Chapters
4 and 5 consider multirate output feedback using high-gain observers and applications to
the control of smart material actuated systems, respectively. Finally, Chapter 6 discusses

the conclusions and future work.



CHAPTER 2

The Extended Kalman Filter as a

Time-Varying High-Gain Observer

2.1 Introduction

In this chapter we examine a high-gain observer that has time-varying gain. This ob-
server will be of the form of the well-known extended Kalman filter (EKF). Based on a
parameterization of the EKF we provide stability results for closed-loop systems under
EKF feedback. Further, through simulation, we study whether a time-varying high-gain
observer is able to balance the tradeoff between closed-loop stability and large peaking
transients in the observer. First, we provide some background on the extended Kalman
filter.

Since the 1970’s, the extended Kalman filter has seen successful application as a state
estimator for nonlinear stochastic systems. See [27] and [62] for an introduction. In the
noise free case, the EKF can be parameterized to function as an observer for deterministic
nonlinear systems. In the 1990’s, study of the stability and convergence properties was
conducted. An early method for constructing deterministic observers as asymptotic limits
of filters appeared in [9]. Additional work on the convergence properties of extended

Kalman filters used as observers has been conducted in [11], [12], [21], [56], [57], [61].
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Early convergence results were able to show that the EKF converges exponentially for
general classes of systems, but these results were mostly local. Efforts to expand the
domain of attraction appeared in [11] and [56]. In [56] a modification of the linearized
system matrix was introduced to improve stability. In [11] a study of the influence of
the disturbance covariance matrices Q and R on the convergence was conducted for the
discrete-time case. The results of [11] show that choosing @ and R according to a linear
matrix inequality can enlarge the domain of attraction. In [21] it was recognized that, for
a particular parameterization of the covariance matrices, the EKF is a time-varying high-
gain observer that asymptotically approaches a fixed-gain observer as the gain is pushed
higher. Furthermore, it was shown that the EKF is a global exponential observer for a
class of nonlinear systems transformable to the lower triangular form. This argument was
based on a global Lipschitz property for the system nonlinearities.

To this point, analysis of the closed-loop system under EKF feedback has been lim-
ited. A separation result for a Kalman-like observer for a certain class of MIMO nonlinear
systems was presented in [70]. This result made use of certain assumptions on the bound-
edness of the states of the system under control; these assumptions were consistent with
the proposed application of feedback control of polymerization reactors. Global results
were given under global Lipschitz conditions. Aside from very restrictive assumptions on
the nonlinearities, exponential stability of the estimation error does not guarantee the
behavior of the closed-loop system, even when the system under state feedback is expo-
nentially stable [66]. Hence, it seems appropriate to study the behavior of the closed-loop
system when an extended Kalman filter is used as an observer. Toward that end, we relax
the global Lipschitz condition and consider a class of systems transformable to the special
normal form with linear internal dynamics. Based on a parameterization of the Riccati
equation, the closed-loop system under EKF feedback is placed in the standard singu-
larly perturbed form. We note that by relaxing the global Lipschitz condition, difficulties

may arise as a result of the peaking phenomenon. Peaking in the estimates can lead to
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instability in the closed-loop system. This phenomenon is typically overcome by globally
bounding the control outside a compact region of interest. In our situation, in addition to
globally bounding the control, the time-varying matrices of the Riccati equation must be
globally bounded in order to have a well defined solution. Previous convergence results
relied on assuming that the solution to the Riccati matrix equation is bounded. In [9)
and [61] observability conditions are given that ensure the boundedness of this solution.
In this chapter we argue boundedness by using perturbation analysis. This is done by
making use of standard results on time-invariant Riccati equations.

We begin in the next section by putting the EKF on a theoretical footing. We argue
that the origin of the closed-loop system under EKF output feedback is asymptotically
stable. In addition, we show that the observer error is semiglobally exponentially stable.
In Section 2.3, we compare through simulation the use of the extended Kalman filter versus
a fixed-gain high-gain observer. We study the performance of the EKF parameterized
as a time-varying high-gain observer in terms of closed-loop stability and the peaking

phenomenon.

2.2 Closed-Loop Stability Under EKF Feedback

Consider the system

¢ = Fz+Gx (2.1)
t = Az + B¢(z,z,u) (2.2)
y = Cx (2.3)

where z € R” and z € RY are the states, u is the input, and y is the output. The function
¢ is assumed to be continuously differentiable and satisfies ¢(0,0,0) = 0. The £ x ¢ matrix
F is Hurwitz. The » x r matrix A, the r x 1 matrix B, and the 1 x r matrix C are the

same as (1.5)-(1.6). The internal dynamics (2.1) are driven by the output y = z7. Given

12



this structure, the system (2.1)-(2.2) is said to be in the special normal form [34]. Let

X = [z :c]T and rewrite (2.1)-(2.2) as
x = f(x,u)
The extended Kalman filter for this system is given by
X = f(tw) + PCIR™My = Cex)

P=4cP+PAl +Q-pPcIRlCcP

where R, Q, and P(0) are positive definite symmetric matrices and

Ce = [01x€ C]
The matrix Ae takes the form
A A
Ap = 11 12
Ag1 Ag2
in which
Ajp=F , Ap=[G 0 Oy
0
A21 = Ba—f(~ T,u) , A22 =A +A0
where N )
0 o 0
0
Ag = , do; = QS (2,Z,u)
0 0 Oz
i (1(;')1 d(,“)2 - dor ]

13

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)



In the forthcoming equations, we will use Aj; in place of F. We consider the state
feedback controller

u=7(z,z) (2.9)
The closed-loop system under state feedback is given by
z = A112+Gx (2.10)
t = Az + Bo(z,z,7(2,7)) (2.11)
We state our assumptions.
Assumption 2.1
1. The origin (x = 0,2 =0) of (2.10)-(2.11) is globally asymptotically stable.

2. The function v is locally Lipschitz in its arguments and globally bounded in x. Fur-

thermore, v(0,0) = 0.
In addition, we assume that the closed-loop system satisfies the following ISS property

Assumption 2.2 The system

2 = A11z+Gzx 2.12
11 1

& = Ar+ Bé(z,z,7(z+v,1)) (2.13)

with v viewed as the input, is input-to-state stable (ISS).

Assumption 2.3 The functions

9¢

E(z,x, u) and

(2,2, u)

0
a:L'z'
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fori=1,--- ,r are globally bounded in z and i1

Assumption 2.3 ensures that the matrices Ag; and Agg of the Riccati equation are
bounded. Globally bounding the control protects the plant from peaking. Bounding
Ag1 and Ago protects the Riccati equation from peaking, ensuring a well defined solu-
tion. Due to the parameterization for Q (see below), peaking will appear only in the
Z estimates. However, for convenience we bound A9y and A9 in Z as well. This sim-
plifies the analysis by allowing the Riccati equation to be studied independently of the

estimation equations. We parameterize @ in the following way

Q Q
©= :; 1 -1 - 1 (214)
Qy =ZD7 Q3D
where Q1 and Q3 are chosen to be positive definite symmetric, D = diag(l,¢, - - - ,sr"l],

and € > 0. We take R = 1. The above parameterization produces a two-time scale
behavior in the solution to the Riccati equation (2.6). We partition and scale P according
to
p_| N D~ (2.15)
p~1pI 1p=lp3p-1
where P} (0) and P3(0) are chosen to be positive definite and P»(0) is chosen so that P(0)

is positive definite. Then, the observer can be written as
5=Ay2+Gi, + DT (y - C3) (2.16)

&= Ai + Bo(3,d,u) + éD_ng,D_lCT(y ~ Ci) (2.17)

The gain %D"IP:;D_ICT has the structure of a high-gain observer ([7], [21]). This was

exploited in [21], using a parameterization similar to the above, to show global exponential

1 Global boundedness can always be achieved by saturating T and z outside a compact
region of interest.



stability of the extended Kalman filter. For the fast estimation error we use the standard

rescaling

‘T‘i - I,l'
er—1

§ =

(2.18)

fori =1,---,7. Thus, ¢ — & = D9, where Dy = diag[sr—l,er—z,---,l]. Define the

estimation error for the internal states by n = z— 2. The closed-loop system under output

feedback can now be written in the standard singularly perturbed form

€€

£ Pz

13 P3

A11z +Gxy

Az + Bo(z,z,7(z — 1,z — Dof))

Apn+e NG - ey

(A - P3CTC)e + eBb(z, 2,71, Dgg)

AP+ PLAT + A19PT + PyAl, + @, - P CTCPT
Py(A+eAp)T — Py,CTCPy + AjgPy + €A1 P
+£P1A%1D +eQoD

(A+eAp)P3 + P3(A+eAp)T +Q3 - PscTepy

+e2(PY A¥ D+ DAy Py)

where § = ¢(z,z,u) — ¢(2,z,u) and

0 0
Ape
0 0
|7 ldgy T2dgy - dor

(2.19)
(2.20)
(2.21)
(2.22)

(2.23)

(2.24)

(2.25)

Note that A12D"1 = Aj9. Equations (2.19)-(2.21) and (2.23) characterize the “slow”

dynamics and (2.22), (2.24), and (2.25) the “fast” ones. In the next two subsections we

present stability results on the closed-loop system under EKF feedback (2.19)-(2.25).
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2.2.1 Boundedness of the Riccati Equation

We begin by studying the Riccati equation (2.23)-(2.25) alone. To do so, we will treat
A9 and Ag9 as bounded time-varying matrices and use perturbation theory to argue

that the solutions of (2.23)-(2.25) are bounded. We have the following result.

Theorem 2.1 Consider the closed-loop system (2.19)-(2.25) under output feedback. Let
Assumptions 2.1-2.8 hold and let M and N be any compact subsets of REHTH gnad RT
respectively. Then, for trajectories (z,x,n) X & starting in M x N there exists 5’{ such
that, for all 0 < € < e’f, P(t) is bounded and P3(t) is positive definite for all t > 0,

uniformly in €.

Proof: First, it can be checked that for all (2,2) € RETT the pairs (Ae(2,2),Ce) and
(Ae(2,2), V@) in (2.6) satisfy the notions of uniform detectability and uniform controlla-
bility given in [9], respectively. As a consequence, there exists a bounded solution P(t) to
(2.6) and also (2.23)-(2.25) through the rescaling (2.15). However, the bounds obtained
have dependence on €. For the analysis we need to show that the solution P(t) of the
rescaled Riccati equation (2.23)-(2.25) is bounded uniformly in €. We begin by viewing

the following equations as a nominal model (¢ = 0 on the right hand side) of (2.23)-(2.25)

Py = AP + P AT + AP + BpAl, 1 Q- BcTCR]  (2.26)
ePy = Py(A-PcTO)T + APy (2.27)

ePy = AP+ P3AT + Q3 - P5cTCpy (2.28)

By standard results on Riccati equations {40}, with Q3 positive definite and (A, C) ob-

servable, (2.28) has a unique limiting solution Pé*' = P;T > 0 such that

atdef 4 P;CTC

17



is a Hurwitz matrix. Moreover, P3(t) approaches P;‘ exponentially fast [14], i.e.,
IB3(t) ~ Pyl < g3e™ 3%/ (2.29)

for some positive constants g3 and o3. For equation (2.27) it is easy to show that the

limiting solution is given by
P =-ApPf(a-PfcTe) T = ap (2.30)

where the second equality follows from Ajo = GC, caTl = 0, and C(I — CTC) = 0.
Rewrite (2.27) as

- _ _ T
ePy = (Py- BY) [at - (P3 - P CTC] (2.31)
By (2.29) and the fact that AT is a Hurwitz matrix we have that
1By (t) — Pyl || < gge™ 02t/ (2.32)

for some positive constants g9 and og. Since Py(t) is bounded and Ajpp is Hurwitz, the

solution to the Lyapunov equation (2.26) is bounded. Indeed we have
1Py (t) - P[]l < gge™ 911 (2.33)

where Pl+ is the limiting solution to (2.26) and g] and oy are positive constants. Hence,
each P; is bounded uniformly in € for all ¢ > 0. We point out that equations (2.23)-(2.25)
are € perturbations of (2.26)-(2.28). We argue for the boundedness of P(t) studying the

error

18



between the full system and the nominal system. Since, P(t) is bounded for all t > 0 we

have that ||P(t)|| < N for some positive constant N. Consider the system

Pl = Allpl + PIA’{I + (A12 - }_)QCTC)P2T + PQ(AIQ - PzCTC)T
~PcTcR] (2.34)
~ _ ~ T _ _ T - - T -
ePy = P2A2 )+ (A12 ch C)P3 — PQC CP3 + EQ2D
+eAyy(By + Py) +e(Py + P1)AL D + (P + Py) AL, (2.35)

ePy = A2(t)]33 + P3Ag(t) - P3CTCP3 + EAOE(f)3 + 133)

+e(P3 + P3)Ag; +e2(Py+ PQ)Ang +e2DAy(Py + Py)T  (2.36)
where
Ag(ty= AT —(p3 - P)CTC (2.37)

We use the vec operator to write (2.34)-(2.36) as a system of vector equations. This
operator transforms a matrix to a vector by stacking the columns of the matrix from
left to right starting with the first column on top. Let m; = vec(i’i), 7; = vec(F;),

ToT = vec(ﬁ’2T), Tor = vcc(P2T), q2 = vec(Q9), and go = vec(Qg). Also, let

2

e = | mor

3

Consider the following identity from Kronecker matrix algebra ([10], Ch. 7)

vec(ABC) = (CT @ A)vec(B) (2.38)
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Using this identify we can arrive at the following standard singularly perturbed vector

equations

L5}

A’Ilﬂ'l + (AfQ + A[3(7r2)) Ty + ]W4TI'2T (2.39)
ETe = (Nl + N2(t) + N3(7r5)) e +€ (N47Tg + N47-i'g + N57r1 + N57‘r1)

+eNg(q2,927) (2.40)

where the matrices M; and N; are listed in Appendix A. By standard results on Kronecker

products, we have that M and Nj are Hurwitz matrices and

[M3(m)ll < myllmoll , [IN3(me)ll < nyllmell (2.41)

for some positive constants m] and nj. Furthermore, as discussed in Appendix A we
have

INg()]] < gge™74t/€ (2.42)

for some positive constants g4 and o4. Also, the matrices My, My, Ny, Ny, and
Ng(q2,99T) are bounded with bounds that are independent of €. Consider (2.40) with

€ = 0 on the right hand side
67'1’5 = (Nl + N2(t) + N3(71’5)) e (243)

It can be shown that the origin

of (2.39) and (2.43) is locally exponentially stable. Let S and S¢ be the positive definite
solutions to

SiMy + ML S| = —I
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and

SeNy + N Se = —1

Using V = V{(71) + Vo(7e) with
Vi= W?Slﬂ'l and Vo = ’ﬂ'g‘Sgﬂ'g
it can be shown that there exist an £] such that for all 0 <& < ¢y
V < —egllm|? = Bme (244)

de
in the set —i-f {ll7|| < c1} for some positive constants cy, c, and c3 independent of
€. Since (2.40) is an e-perturbation of (2.43) we can use V as a Lyapunov function for

(2.39)-(2.40) to arrive at
. C -
V < —calinli? = (2 - cg) Imell? + eslimell + cglime llmy | (2.45)

where c4, c5, and cg are positive constants independent of €. It is easy to show that
there exist an €9 such that, for all 0 < € < €9 and all {||7¢|| > ec7}, V < 0 where c7 is

independent of €. Hence, we have that for € sufficiently small the set
def
Qp = {lIxll < ep}

is positively invariant and 2p C 21, where p is some positive constant independent of .
Since P(0) = 0, the solution starts in 2p. Also, since 1P| < cgll7|| for some cg > 0, it
follows that

IPI < |IP|l+ 1P| < N +epeg , ¥V >0

Therefore, P(t) is bounded.
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To show that P3(t) is positive definite for all ¢ > 0 we can rewrite (2.25) in the

following way
ePy = A3(t)Py+ P3A3(t)T + PsCTCPy + Q3+ eU3(Py, Py t,c)  (2.46)

where

A3(t) = AT — (Py - Py )cTe - BycTe

and

U3 = eDAy Py +ePJ AS D + Ag Py + P3AL.

We note that A3(t) is bounded by some constant L for all ¢ > 0. It can be shown that

the corresponding state transition matrix satisfies
—9L(t—
| @3(t, mse)al] > flzfe~2E(E=T)/E (247)

Let
Qp(t) = Q3+ P3CTCPy + cu3(Py, Py t.¢) (2.48)

From the boundedness of ¥3, there exists €3 such that
0< kI <Qp(t) <krol

for all 0 < € < e3 where k1 and k9 are positive constants independent of €. Also, since

P3(0) is chosen to be positive definite we have

P3(0) > pl >0
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for some positive constant p. Using the relation
eI Py(t)z = ! B3(t,0;¢)P3(0)d3 (¢,0;6)z + é /0 t oL ®3(t,7:€)Q p()®3 (¢, 7;€)zdr
along with (2.47) we can arrive at

xTP3(t)1' > [pe_u‘t/a + ;—}J (1 - e_2Lt/E)] “1‘“2 (2.49)

Thus, there exist a positive constant cg independent of ¢ such that
2T Py(t)z > cqlz||? (2.50)

Therefore, P3(t) is positive definite for all ¢ > 0. Taking e’i‘ < min{ey,€e9,63} completes

the proof. <

2.2.2 Closed-Loop System Stability

We are ready to state our results on the stability of the closed-loop system under EKF
feedback.

Theorem 2.2 Consider the closed-loop system (2.19)-(2.25) under output feedback. Let
Assumptions 2.1-2.3 hold and let M and N be any compact subsets of R+ gng RT,
respectively. Then, for trajectories (z,x,m) x & starting in M x N there exists 53 such

that, for all 0 < € < €3, the following holds:

e the origin (z =1 =0,z = £ = 0) of the closed-loop system is asymptotically stable

and M x N is a subset of its region of attraction.

o The origin of the estimation error equations (2.21)-(2.22) is exponentially stable.

23



Proof: In Theorem 2.1 it is shown that there exits ET such that, for all 0 < e < e’i‘, P(t)

is bounded and P3(t) is positive definite for all ¢ > 0. In particular
811 < P3(t) < ol (2.51)
where 3 and (9 are positive constants independent of €. It can be seen that

-1
53=P3

satisfies

633 = —(A+ EAOE)TS3 - S3(A + EA05) + CTC - S3Q3S3

~£253(DAg Py + PY AY D) 53 (2.52)

By the argument above S3 will have a bounded, positive definite, symmetric solution for

all t > 0. Hence,

B3I < S3(t) < Byl (2.53)

where (3 and (4 are positive constants independent of €.
Boundedness and Ultimate Boundedness

Following analysis similar to (7] we argue that the trajectories (x,7,€) are bounded and
satisfy ||(x(t),n(t))|| + ||£(t)|| < u for any p > 0 after some finite time T*(iz). Denote the

right hand side of (2.19)-(2.21) as

f(x.n, Dg) (2.54)

0= Apn+e NG - PcT)g (2.55)

>
i
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With ¢ = 0 we have from Assumptions 2.1 and 2.2 that (2.54)-(2.55) has a globally
asymptotically stable equilibrium at the origin. Thus, there exists a positive definite

radially unbounded function V] (x,n) and a positive definite function U(x,n) such that

v,

oy
L f(x —2 A1 < -Ulx, :
o f(x,n,0) + an A11n < =U(x,n) (2.56)

for all x and 7. Let M be any compact subset of REHTH Choose a positive constant
¢ such that ¢ > max(x,n)Ele(X’n)‘ Then M is in the interior of the set Q¢ =
{(Vilx,n) <c} C RIFTHE Let A = Q¢ x (W< psz}. Due to the global boundedness of

and 6 in &, for all (x,n) € Q¢ and € € R", we have
f X:7 £

IFOem O <kp o [19(z 2, Dog)ll < ko (2.57)

where k1 and ky are positive constants independent of €. Furthermore, for any 0 < € < 1,

there is L1, independent of €, such that for all (x,7.£) € A and every 0 < € < € we have,
1£(x.m.€) = f(x;n, 0)ll < Ly €]l (2.58)
Letting W () = {TS3§ and using (2.52) it can be shown that

. 1
W< —EgT [CTC + S3Q3S3 + €2S3(DAg1 Py + PY AT D) S35 + AT 55

+eS3A0c |¢ + 8T BT 53¢ + €7 5389 (2.59)

Due to the boundedness of Py from Theorem 2.1 and the global boundedness of Ag. and

Agy in  and Z we have

lAgell < k3, |[[DAg Poll < ky



for some positive constants k3 and k4. Thus, (2.59) simplifies to
W < —2(G31Qsll - 264k — 2253k 12 + 20451
Therefore, with €4 chosen such that 2e484k3 + 262,@%]&74 < %ﬁ§||Q3||, we have
Vi < —U(xm) + LiLoligl + €™ LollG — PCT |llgg| < ~U(x,m) + eks +€"kg (2.60)

: k k
W < ~ZTHEN? + 28418111l < —ZTNEN® + 204k €] (2:61)

for all 0 < & < g4, and all (x,7,€) € Qe x {W(€) < pe?}, where ks, kg, and k7 are given
by

D
ks = Li1Lg B3

= [P
ke = Lok, /=
6= Lok /50

and k7 = 5§||Q3|| with p = 64kgﬁi’/k% and Lo an upper bound on [0V} /dx , 9V;/0n]

in Q¢. Also, from the boundedness of Py
IG - PycT| <k (2:62)

for some positive constant k. Taking esks +£gk6 < v, where v = min(xyn)eagc U(x,n),
we have that, for every 0 < € < ¢e5, V] <0 for all (x,7,€) € {(V1(x,n) = ¢} x {W(§) <
p52} and W < 0 for all (x,7,€) € Qex{W(€) = pez}. Therefore, A is positively invariant.

For (x(0),7n(0),%(0)) € M x N, the initial rescaled error £(0) satisfies ||£(0)] <
ks /€r—l for some nonnegative constant ks dependent on M and N. Since (x(0),7r(0)) is

in the interior of Q¢, we have that

I(x(8),m(8)) = (x(0),n(O))I < Kyt (2.63)
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while (x(t),7(t)) € Q¢. Therefore, there is a finite time Tjy such that (x(t),7(t)) € Q¢ for

all t € [0,Tp). During this time interval
. k ]
W< =gl for W(E) 2 p?

Therefore, it can be shown that

, Byk2 k7
W((t) < Q(T_‘* yeep (—E—t> (2.64)

3

Choose eg small enough that

2
T(¢) dif 4c0y In —641;5 <
k7 peT

Such an ¢ exists since T(¢) — 0 as € — 0. Therefore, W(£(t)) < p€2 for every 0 <
€ < €g. Choosing 5'1 = min{s’f,é, €4,€5.€6} guarantees that, for every 0 < e < 5’1, the
trajectory (x(t),n(t),&(t)) enters A during the time interval [0,T(¢)] and remains there
for all t > T'(¢). Thus, the trajectory is bounded for all t > T'(¢). Also, for t € [0,T(¢)],
the trajectory is bounded by equations (2.63) and (2.64).

To show ultimate boundedness, we begin by noting that inside A the trajectory £ is

O(¢). Thus, we can find a e7 = e7(u) < 5’1 such that, for every 0 < € < 7, we have

IE@I < pe/2 (2.65)

for all t > T'(e7). For all (x,n.£) € A we have that Vl < =U(x.n) + €k5 + € kg. Thus,

for (x,7) ¢ {U(x,m) < 2kge + 257k “F u(e))

, 1
V1< -5U0m) (2.66)
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Since U(x,n) is positive definite and continuous, the set {U(x,7n) < v(g)} is compact for
sufficiently small €. Let cy(e) = maxy(y 1) <v(e) V1(x,m); cg(€) is nondecreasing and
lim._,qcg(e) = 0. Consider the compact set {V(x,n) < cg(e)}. We have {U(x,n) <
v(e)} € {Vi(x,n) < cg(e)}. Choose eg = eg(n) < 5,1 small enough such that, for all
€ < €g, the set {U(x,n) < v(e)} is compact, the set {V](x,n) < ¢g(€)} is in the interior
of Q¢, and

{106 < cole)} C Il < w/2} (2.67)

Then, for all (x,n) € Q¢, but (x,n) ¢ {V1(x,n) < cg(e)}, we have an inequality similar
to (2.66). Therefore, the set {V}(x,n) < cg(e)} x {W(€) < pe2} is positively invariant
and every trajectory in Q¢ x {W(£) < p€2} reaches {V](x,n) < cg(e)} x {W(€) < pez}
in finite time. Thus,

(@), nDI < 1/2 (2.68)

for all t > T for a finite time T = T(u). Taking 5'2 = elz(p) = min{e7,eg} it can be
shown that

OG-+ 116N < p

for all t > T* where T* = max{T(¢7),T}.
Exponential Stability of the Estimation Error

From the ultimate boundedness of (z,z,2,7) we can work locally to argue asymp-
totic stability of the closed-loop system. We have that ||6(2, 2,7, Do€)|| < L3ln|l + Ly4ll€]|
for all (x,n) € B(0, ) x {||¢]| £ i} where p is the ultimate bound from above and Lg

and Ly are positive constants. Let

Vo =T Ppn+€lSq¢ (2.69)

28



be a Lyapunov function candidate for the estimation error, where the positive definite
matrix Py, satisfies Py Ayq + Aclr1 Pr = —1. Using (2.55), the first inequality of (2.61),

and (2.62) it can be shown that

~" kPl - BsL3 | | Il

Vo < —lnll el _
~erIRIPL - ByLy ST - 2041, el

It is easy to show that there exist eg such that for all 0 < ¢ < g, the matrix above is
positive definite. Thus, for all (x(0),7(0),£(0)) starting in M x A the estimation error,

(n, &), converges exponentially.
Asymptotic Stability

Let ¢ = [n E]T. Asymptotic stability of the closed-loop system follows from the

composite Lyapunov function

V(x,m,€) = 6V (x,m) + (Va(¢)/?2 (2.70)
with 8 > 0. From the first inequality of (2.60) we have
V < —8U(x,n) + 0kglICll — kgliCll (2.71)

for kg = L1Lo + er_lLch and a positive constant kg. Taking 6 < kg/2kg yields asymp-

totic stability. Finally, choosing 53 = min{e’Z, €9} completes the proof. <

2.3 Comparison

In this section we use numerical examples to further study the EKF and compare the EKF

that has a time-varying gain with a HGO that uses a fixed-gain. This is done by dividing
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the section into three subsections. First, we examine the choice of control saturation or
estimate saturation to globally bound the control in EKF feedback. We then examine the
possible closed-loop stability advantages of using time-varying gains versus fixed gains.
Finally, we present some results on the choice of initial condition of the Riccati equation

to suppress peaking at the initial time instants.

2.3.1 Control Versus Estimate Saturation in the EKF

The stability results for locally Lipschitz nonlinear systems in Section 2.2 came at the
expense of sacrificing global results for semiglobal ones. An essential factor in this sacrifice
is the effect of peaking on the closed-loop system. In high-gain observers, peaking is caused

by the special structure of the observer gain

(2.72)

%
—_—

For high-gain observers, peaking can be overcome by globally bounding the control outside
a compact region of interest [26]. This can be done by using a saturation function on the
controller. For the case of the extended Kalman filter, globally bounding the control alone
is not enough. Peaking in the estimates may induce numerical difficulties in the solution
to the Riccati differential equation (RDE) as the following example shows. Consider the
system

:i?l =9, i‘Q = I3, :i:3 = .’Lg +u (2.73)

and the feedback linearizing controller
u= —zg — 1 — 319 — 373 (2.74)

where a will be chosen later on. By saturating the control outside a compact region of

interest the effect of peaking can be overcome and the closed-loop system under (fixed-
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gain) high-gain observer feedback can recover the response under state feedback as € — 0.
Let a = 3. Using the extended Kalman filter parameterized as in the previous section

we have that the matrix A + ¢Aq. in (2.25) is

01 0
A+eApe=100 1 (2.75)

22

00 3513

During any occurrence of peaking, the estimate 23 will become O(1/ 62). Therefore, from
(2.75) with saturation only on the control, the RDE will contain unbounded terms as
€ — 0. This system was simulated for ¢ = 0.01 with 21(0) = 0.9, z9(0) = z3(0) = 0,
#1(0) = #9(0) = £3(0) = 0, P(0) = Identity, Q3 = diag(3,3,1], and with the control

saturated outside (-20,20). Denote the EKF gain by

hi(t)
H(0) = 2D71P0D ™! = | hy(t

h3(t)

Figure 2.1 illustrates the response of the system under control saturation. The peaking
in £3 induces a very large gain (from the solution to the RDE) and this gain in turn
exacerbates the peaking in the estimate. Figure 2.1 shows that the saturation of the
control prevents the system states from deviating too much from their initial values, but
the estimate £3 and the gain h3(t) have become prohibitively large. These difficulties
are overcome by saturating the each estimate outside a compact region of interest. This
will globally bound the control and the time-varying terms in the RDE. This approach
is shown in Figure 2.2 where we have saturated 1, £9, and Z3 outside (-2,2). Figure
2.2 shows that the estimate £3 saturates then quickly converges. Also, we see that the
control remains bounded, the gain h3 converges quickly to its steady-state value, and the

output z1 gracefully approaches the origin.
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Figure 2.1. Simulation results showing the output 1, the estimate Z3, the control u, and
the gain hg(t) for EKF feedback under control saturation only.
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Figure 2.2. Simulation results showing the output 1, the estimate &3, the control u, and

Estimate Sat.

-

0.5
Time

Estimate Sat.

0.5

0.5
Time

the gain h3(t) for EKF feedback under estimate saturation.
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EKF vs. HGO fore = 0.01 EKF vs. HGO fore = 0.001

1
- ~ 0.5
b9 >
0
0 10 20 0 10 20
Time Time

Figure 2.3. Simulation results showing the output zj, for the EKF (solid) and HGO
(dashed) for € = 0.01 (left) and the EKF and HGO for £ = 0.001 (right).

2.3.2 EKF Versus a Fixed-Gain HGO

Like the HGO, the EKF achieves faster and more accurate reconstruction of the state x
as € — 0. It can be shown from analysis similar to the above that the response for the
EKF approaches the response for the HGO as ¢ — 0. Here we illustrate this through a

numerical example. We use a HGO with the following fixed-value for the gain matrix
HT = [3/5 3/e2 1 /53} (2.76)

Figure 2.3 (left) plots the output y = z; of the closed-loop system for the EKF (solid)
and the HGO (dashed) for £1(0) = 0.9 and ¢ = 0.01 with all other parameters as above.
Figure 2.3 (right) shows that the two responses have converged for ¢ = 0.001.
Considering the foregoing observation we note that for relatively “large” values of ¢,
the time-varying terms in the Riccati equation will have more influence over the closed-
loop response. The question of whether the added complexity of the time-varying gain

gives an advantage over a time-invariant gain is examined next. We consider the system
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(2.73) for two cases. First, let @ = 3. Through simulation of the system under state
feedback control for initial conditions in the set {|z;| < 5}, we selected a saturation level

of 6 for each estimate. We chose

3/ 3/62 1 /53
PO) = D7 R3O0 = | 322 /3 3/e4 (277)
1/53 3/64 3/55

which corresponds to the steady-state solution of the Riccati equation. The time-varying
terms will cause the solution to deviate from this value. For the HGO we use the same
gain matrix H as above, which is the steady-state value of the EKF gain. This system
was simulated for € = 0.01, 21(0) = 4.9. Figure 2.4 shows the response of the output
z1 and the control signal u for the closed-loop system under EKF feedback (left) and
the state x3 and the control u for HGO feedback (right). The time-varying gain was
able to stabilize the system where as the figure shows the state z3 going unstable for the
response under high-gain observer feedback. Figure 2.5 shows the response of the EKF
gains for this example. The values of the fixed HGO gains are shown as dotted lines
for reference. Here, the time-varying terms in the Riccati equation caused the gains to
become large during the initial transient before settling close to the values of the HGO
gains. This high-gain aided in stabilizing the closed-loop system. The response of the
EKF estimates are shown in Figure 2.6. The estimates experience both positive and
negative saturation, but quickly settle. We compare these observations with the second
case where we now take a = 2 in (2.73) and (2.74). Simulating for € = 0.1 we see that the
fixed-gain high-gain observer was able to achieve stability and the time-varying observer
went unstable as illustrated in Figure 2.7. This is a result of the sensitivity of the Riccati
equation to the transient response of the estimates. Figure 2.8 illustrates this response.
Here the estimates £9 and Z3 experience prolonged negative saturation. Figure 2.9 shows

the effect this has on the gain response. The gains actually decrease below the values
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of the HGO gains for roughly 2.5 seconds. The estimates were unable to recover from
saturation quickly enough to prevent the system states from blowing up. Again, these
simulations were performed for “large” gains. We emphasize that both the EKF and the
HGO can stabilize each system (a = 2, 3) by making ¢ small enough (e.g. € = 0.001).
Due to linearization, we expect systems under EKF feedback to have an added degree
of stability in a neighborhood of the origin of the estimation error (z — Z). To test this we
reexamined the above simulation for @ = 2 and 3 with z1(0) = 0.9, x9(0) = z9(0) = 0,
and £1(0) = £9(0) = £3(0) = 0. We ran the simulations for € < 1 to determine the values
of € that made the EKF and HGO closed-loop feedback systems stable and unstable. For
a = 2 we found that the closed-loop system under EKF feedback was stable for € < 1.
On the other hand, for HGO feedback the system was stable for € < 0.1 and unstable for
€ = 0.2. For a = 3 the EKF feedback system was stable for ¢ < 0.01 and unstable for
€ = 0.02. With the HGO, stability was obtained for € < 0.001 and instability resulted with
€ = 0.002. These observations are summarized in Tables 2.1 and 2.2. Each of these tables
show the values of € for which the closed-loop system under EKF and HGO feedback are
stable and unstable for both local (21 (0)—Z1(0) = 0.9) and nonlocal (z1(0)—21(0) = 4.9)
estimation error. The tables show that, for these examples, the EKF does indeed have
a local stability advantage. However, nonlocally the stability advantage depends upon
the system under consideration (a = 2 or 3). As another example, we repeated these

simulations for the following system
) =19, I9g=13, I3= 1(21 +u (2.78)
and the feedback linearizing controller
u= —1'(21 — 1] — 3z — 323 (2.79)
where we used a = 2,3 and P(0) and Q3 were chosen as before. The results are given in
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Local Nonlocal

Stable  Unstable Stable  Unstable
EKF e<l1 X EKF £€<005 e=0.1
HGO £<0.15 e£=0.2 HGO £<0.12 £=0.15

Table 2.1. Table showing the values of € for which the closed-loop systems under EKF and
HGO feedback are stable and unstable for system (2.73) with a=2 and a saturation level
of 6. Shown are the values for the local results with x1(0) = 0.9 (left) and the nonlocal
results with 27 (0) = 4.9 (right).

Local Nonlocal

Stable Unstable Stable Unstable
EKF <001 £=0.02 EKF <001 £=0.02
HGO €<0.001 £ =0.002 HGO £<0.001 &=0.002

Table 2.2. Table showing the values of ¢ for which the closed-loop systems under EKF and
HGO feedback are stable and unstable for system (2.73) with a=3 and a saturation level
of 6. Shown are the values for the local results with z1(0) = 0.9 (left) and the nonlocal
results with 21 (0) = 4.9 (right).

Tables 2.3 and 2.4, again for local and nonlocal estimation error. Again, we find that lo-
cally, the EKF has an added degree of stability. This added degree of stability for the EKF
in a neighborhood of the origin of the estimation error was observed in other examples.
However, from the nonlocal results in Tables 2.1-2.4, we see that nonlocally advantages
to using a time-varying high-gain observer versus a fixed-gain high-gain observer appear

to be at least system dependent.

2.3.3 Initialization of the Riccati Equation

In the previous subsection, the choice of the initial condition of the Riccati equation P(0)
was made to correspond to the fixed-gain values of the HGO. This was done in order to

compare the effect of the time-varying terms in the EKF. Since the choice of P(0) impacts
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Local Nonlocal

Stable Unstable Stable  Unstable
EKF ¢<1 X EKF £<0.17 £=0.18
HGO <07 £=0.75 HGO <019 £=02

Table 2.3. Table showing the values of ¢ for which the closed-loop systems under EKF
and HGO feedback are stable and unstable for system (2.78) with a=2 and a saturation
level of 10. Shown are the values for the local results with z1(0) = 0.9 (left) and the
nonlocal results with z1(0) = 4.9 (right).

Local Nonlocal

Stable  Unstable Stable  Unstable
EKF <1 X EKF £<0.03 =0.04
HGO £<003 £=0.04 HGO <001 £=0.02

Table 2.4. Table showing the values of £ for which the closed-loop systems under EKF
and HGO feedback are stable and unstable for system (2.78) with a=3 and a saturation
level of 10. Shown are the values for the local results with x1(0) = 0.9 (left) and the
nonlocal results with z1(0) = 4.9 (right).

the transient response of the observer, it can also influence the stability of the closed-loop
system. To see this, consider a simulation of (2.73)-(2.74) for a = 2, z1(0) = 4.9, the
saturation level equal to 6, and € = 0.1. Under these conditions, and with P(0) chosen as
in (2.77), the closed-loop system under EKF feedback was unstable as shown in Figure
2.7. This time let P(0) = I, where I is the identity matrix. The plots on the left of
Figure 2.10 show the response of the state 1 and the control u. This figure shows that
the closed-loop system is now stable. Now consider the same simulation, but this time
with an impulsive-like disturbance of duration 0.01s and an amplitude of 300 that is
experienced at the input of 21 at time ¢ = 20. At steady-state the solution to the Riccati
equation P(t) will reach a value close to (2.77). Thus, any disturbance that has the effect
of resetting the initial conditions of the system will induce a response similar to the case

where P(0) was given by (2.77). This can be seen in the plots on the right of Figure
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2.10. Here we see that, after the disturbance at ¢t = 20, the closed-loop system has once
again become unstable. Thus the initial condition of the Riccati equation can improve
stability of the closed-loop, but only for the initial transient. Afterwards, it is susceptible
to steady-state disturbances.

Finally, we examine the effect of the initial condition of the Riccati equation on peaking
in the EKF. Peaking occurs in high-gain observers, not necessarily because the gain is
large, but because of the structure of the gain matrix. In Nonlinear Systems [36], it is
remarked that peaking is “an intrinsic feature of any high-gain observer with hy >>
hi >> 1. We consider once again the system (2.73) and control (2.74) for a = 3,
e = 0.01, z1(0) = 0.9, z(0) = z3(0) = 0, £1(0) = 29(0) = 23(0) = 0, P(0) = I,
Q3 = diag(3,3,1], and with the estimates saturated outside (—2,2). Figure 2.11 shows
that the estimates undergo peaking during the initial transient. Also shown are the gains
hi, hg, and h3. Here, the gains quickly approached values where h3 >> hg >> h] >> 1.
We can choose the initial condition of the Riccati equation to eliminate peaking during

the initial transient. Consider the following initial condition for the Riccati equation

1x100 1 1
P(0) = 1 10
1 01

With this choice we have that h1(0) >> hg(0) and h1(0) >> h3(0). Simulation with this
initial condition was carried out and the result is shown in Figure 2.12. Comparison with
Figure 2.11 shows that the peaking in the estimates has been suppressed. The figure also
shows that the gain hq very quickly decreases toward its steady-state value. Initialization
strategies to overcome peaking have been explored for observers with time-varying gains
in [17], [33], and for sampled data output feedback control in [37]. However, as has been
pointed out in [17] and [37], these designs may suffer from peaking through impulsive-like

disturbances that occur after the initial transient. Therefore, the peaking phenomenon is
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relevant irrespective of the initial gain choice.

2.4 Conclusions

Considering the tradeoff between closed-loop stability and peaking in a high-gain observer,
we have considered the extended Kalman filter parameterized as a high-gain observer with
time-varying gain. We have examined the closed-loop behavior of nonlinear systems in
the special normal form under extended Kalman filter feedback. We have shown that the
origin of the closed-loop system is asymptotically stable and the origin of the estimation
error is exponentially stable. We have seen that in addition to globally bounding the
control, the time-varying functions in the Riccati equation must be globally bounded for
the Riccati equation to have a well defined solution. We have exp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>