A NOVEL ALGORITHM OF SOLVATION FREE ENERGY CALCULATION: THE KECSA-
MOVABLE TYPE IMPLICIT SOLVATION MODEL (KMTISM)

By

Ting Wang

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Chemistry - Master of Science

2015



ABSTRACT

A NOVEL ALGORITHM OF SOLVATION FREE ENERGY CALCULATION: THE KECSA-
MOVABLE TYPE IMPLICIT SOLVATION MODEL (KMTISM)

By

Ting Wang
A number of theoretical methods have been developed for calculating solvation free
energies for biological and chemical processes. In this paper an implicit solvation
model, KECSA-Movable Type Implicit Solvation Model (KMTISM) is created by
utilizing an energy sampling approach termed the “Movable Type” (MT) method,
and a statistical energy function for solvation modeling, “Knowledge-based and
Empirical Combined Scoring Algorithm” (KECSA). The solvation free energies can be
obtained from the NVT ensemble partition function generated by the MT method
within the implicit solvent model approximation. Several subsets from the
Minnesota Solvation Database v2012 are selected to use as validation sets. The
solvation free energies getting from KMTISM are compared with several solvation
free energy calculation methods, including MM-GBSA and MM-PBSA. Comparison
against a quantum mechanics-based polarizable continuum model is also discussed

(Cramer and Truhlar’s Solvation Model 12).
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CHAPTER 1. INTRODUCTION



In the world of chemistry, chemical processes, which occur in aqueous environment
including biological processes, always have interested researchers for many years. A
rigorous simulation of those liquid phase reactions requires accurate methods to
calculate solvation free energies, which are based on a good understanding of the
solvation process of a solute, and an appropriate treatment of solvent. The existing
methods for calculating solvation energies treat solvent molecules either explicitly?!-
57 or implicitly®8-148, When solvent molecules around solute molecules are treated
explicitly, sampling methods such as molecular dynamics (MD) and Monte Carlo
(MC) are widely used to calculate the solvation free energies. On the other hand, the
solvation methods using implicit solvent models usually treat solvent as a
continuum dielectric. To obtain electrostatic energies, either classical or quantum
mechanics-based methods are used. Among the force field-based methods, which
are based on fundamental molecular mechanics principles, the Poisson-Boltzmann
and Generalized Born models combined with the hydrophobic solvent accessible
area (MM-PBSA & MM-GBSA) are two of the most frequently used molecular
mechanics implicit solvent models.127-148 Reasonably accurate solvation free
energies can be obtained by those models for both small and large molecules. For
the calculation of solvation free energies of small molecules and ions using an
implicit solvent model, quantum mechanics-based methods, such as the polarizable
continuum models (PCM) coupled with different QM methods, 31.32.3537.39,46
COSMO,’7 and Cramer and Truhlar’s Solvation Models (SM) series’8-126 have yielded
impressive performances. An accurate calculation of solvation free energy is crucial

in the prediction of binding affinity of ligands to proteins, which is the key step in



application of drug design. In this thesis, a novel solvation free energy calculation
approach, which employs statistical potential models together with basic statistical

mechanical methodologies, will be described in detail.

In force field-based methods, pairwise potential energies are usually categorized
into Lennard-Jones and electrostatic potentials. Unlike force field energy functions,
statistical potential-based methods directly transform pairwise probabilities into a
pairwise potential by using a hypothetical reference state.14%-186 The number density
distributions of certain pairwise atoms display the impacts of chemical
environments on the pairwise potential at the same time. Another critical aspect
that affects the performance of statistical potentials is the availability of structure
data for both proteins and small molecules. The success of statistical potentials in
many applications, for example, protein folding!79-186 and protein-ligand binding,14°-
169 substantially depends on protein and small molecule structural database. In this
thesis, the Protein Databank (PDB) and the Cambridge Structural Database (CSD),
which provide accurate position information of crystal waters, are used to construct

atom pairwise information for solvation free energy calculations.

The core idea of statistical potentials is derived from the concept of potential of

mean force (PMF). As shown in Equation 1, a)i(jz) (r12) is the mean potential between

1

certain atom pairs, and g is the correlation function. § = —
B

where kg is the

Boltzmann constant and T is the temperature. p;;(r1,) is the number density for

atom type i and atom type j observed in molecules structures from selected



database, and p;;(ry,) is the number density of the same atom pairs in the reference

State.

) 1 ( @) ) 1 pij(r12)

w;: (riz) =—=ln r =—=In(——= 1

ij (T12) g t\9 (r12) I (p:fj(rlz)) (1)
Atom pairwise radial distribution functions are used to remove the background
influence in application of statistical potentials. Atom pairwise radial distributions

reflect all interactions in chemical space, and the conversion from radial

distributions to energy functions is a challenge.168.169

Both accurate energy functions and extensive phase space sampling are required for
the computation of solvation free energies. Equation 2 shows the Helmholtz
solvation free energy of transferring a molecule (L) from vacuum to aqueous phase
(S), which is obtained from the ratio of partition functions.

z Je BELsMqr
AGSLOW =~ AAéolv = —RTIn (ZL;) = —RTln(m) (2)
Movable Type (MT) method is a novel and efficient sampling method that was
developed by Dr. Kenneth Merz Group. The MT method is able to estimate solvation
free energies, binding free energies and even protein-ligand poses,'87 by sampling all
atom pairwise energies at all achievable distances from molecular structure

database.



In the following content, a detailed description of new statistical potential method
for solvation free energy calculation will be discussed. The method combines the MT
sampling method and a new reference state model, is going to be discussed. We
selected 393 small molecules from Cramer and Truhlar’'s MNSol databasel®3 to
validate our model, and the results from our model were compared with those

results from MM-GBSA and MM-PBSA models, which are available in AMBER.146-148



CHAPTER 2. METHOD



2.1 Movable Type Continuum Solvation Model

Originated from the idea of ancient printing technique where a list of characters is
created and then assembled using a movable type system, the “Movable Type” free
energy calculation method!®’ firstly needs a database that contains interaction
energy information between all kinds of atom pairs found in the chemical space of
interest, as “characters” in printing. The modified “ Knowledge-based and Empirical
Combined Scoring Algorithm” (KECSA) is used to obtain the atom pairwise energies.
After the “characters” database is built, a Z-matrix is constructed to represent the
Boltzmann-weighted energy ensemble, where atom pairwise energies of different
distances are gathered to represent free energies of the chemical space of interest.
As Equation 3 shows, Zt matrix is a Boltzmann-weighted energy matrix for the kth
atom pair in molecule L including energies ranging from r; to r;, of distance. The Z-
matrix is composed of the Boltzmann-weighted energies of the observed atom pair
at different distances, from the first atom pair in the molecular system. All of the

energy terms are chosen from the energy database.

e~ BEK(r)  o=BEK(rix1) ... o=BEK(rn—is1)
- EL - EL i - EL n—i

ZIIE _le ﬁ:k(rz) e B 1:(7" +2) e B k(:T +2) (3)
e~BEKTD)  o=BEKT) ... o=BEg(r)

As shown in Equation 4, the Boltzmann-weighted energy combinations between
different atom pairs at different distances with a matrix size of n forms a pointwise

product of Z-matrices, where Z%, represents the atom pairwise energy of atom pair
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1 and atom pair 2 within molecule system L, and the sampled distance ranges are

from r; to ;, and r{ to r;, respectively.

Zb, = 7ixZk =

e BELD+EL(r1))  o=BETCuD+EF (1)) ... o= BEI(rnoir)+EF (T_it1))
e BEL+ER(13))  o=BEIru)+ES(r(2)) ... o=BEI(rn—ir2)+EF (1t is2)) @
o-BEFEI+EL() o BEH)EN(T) o~ BEFEIEL(Th)

If random disordered permutations are applied to the Z-matrices, the diversity of
energy combinations at different distances can be maximized. For the entire
molecule system L, the final Z-matrix is a pointwise product of disordered matrices
of all atom pairs within the molecule system, which represents the collection of
Boltzmann-weighted energies with a size of n configurations. The final Z-matrix is
created based on the assumption that the molecular energy is composed of all of the

atom pairwise energies within the same molecular system.

The final Z-matrix of the molecular system is shown in Equation 5, where ZZ,, ;
represents the pointwise product of disordered matrices of atom pairs from 1 to k

of molecule L.



Zk a1 = disordered(ZL) x disordered(Z%) x --- x disordered(ZE)

e~ BELT)TEF )+ ErD)  p=BELCD+EF(r-D+E{(ris2)) ...  o=BEL()+Ef(rips)+Ef(rn))

e BEICLD+EF )+ E((r))  p=BEITin)+EF )+ Eg(ris))) ... o=BEL (i) +E5 (r1—2)+Eg(r3))

e BEL)+EF(rD+-ER(r))  o=BETTD+EF(rim)+Eg(2)) ... o=BETTi—)+ES (rn—)+Eg(r)
(5)

The atom pairwise information collected within the molecular system is from
certain bond lengths, angels and torsions. This will make the final Z-matrix contains
some unreasonable distance combinations between different atom pairs. That is
why a Q-matrix of atom pairwise radial distribution probabilities is needed to
prevent the appearance of physically unreasonable combinations between different
atom pairs. In order to obtain a reliable Q-matrix, a large structural database, which
contains 8256 protein crystal structures from PDBBind v2013190-192 database and
44766 small molecules from both PDBBind v2013 and CSD small molecule database,
was used to get the elements of the Q-matrix. For each element in an atom pairwise
Z-matrix, there is a corresponding distance - dependent probability value selected
from the radial distribution probability database of the same atom pair type. The Q-
matrices are constructed in a similar manner to that of the corresponding Z-matrix,
namely, the Q-matrices are also formed by using pointwise product. To make sure
the overall probability is 1, the final Q-matrix for the same molecular system is going
to be normalized first. After that, the final matrix, C,,,;, is generated by multiplying

the final Q-matrix by the final Z-matrix (Z%,,,;). As shown in Equation 6, the sum of



the final matrix (C%,,,;) provides the Boltzmann factors average of a matrix size

(sampling size) of n.

<€_'8EL> = Sum(cltlotal) = sum(Qﬁotal Z%otal (6)

Hence, the energies of different molecular conformations can be created
simultaneously by matrix products over all atom pairs by using the Z and Q matrices
with a sampling size of n. By combining the ensemble average of Boltzmann factors,

the solvation free energy can be calculated as Equation 7 shown.

DOFg{e~FELS(™M
LS(e_ ) (7)
DOF(e”BEL(M)

AGLyy, ~ —RTIn | 2] = —RTln[ = —RTIn|

[ e=PELs(™M) gy
Zy,

) e BEL() gr

In Equation 7, the energy of the molecule in solution (E;s) is expressed as Equation
8, and DOF, s and DOF; represents the degrees of freedom of the molecule in
solution and in the gas phase respectively. For simplicity, the values of DOF; s and

DOF;, are set to be equal in the current implicit solvation model.

ELS(r) = EL (T) + EL—S interaction(r) (8)

In order to avoid the issues that are related to the additivity of the free energy, the
solvation free energy is computed directly from the NVT ensemble. It is revealed
both theoretically19419> and experimentally,1°¢ that energy can be broken down, but

the entropy and free energies cannot. Hence, we obtain the interaction energies by
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using Equation 8, and substitute it into Equation 7 to get the solvation free energy
directly, so that the issues that are related to the decomposition of free energies can
be avoided. Avoiding the free energy issues described above is also a big advantage

of our MT method.

The MT energy sampling method can be used to calculate the solvation free energy
involving both an explicit and implicit solvent model. Previously, we apply the MT
method to a simple continuum ligand-solvent interaction model.18¢ In this
document, a new semi-continuum water model is developed, where the solute-
solvent interaction is calculated by placing water molecules around the solute. In
our simulation, the water molecules were modeled as isotropic rigid balls, whose
Van der Waals radii are set as 1.6 A.197.198 The solvent layers were set to start at 8 A
away from the solute’s van der Waals surface; water molecules were evenly put into
those solvent layers with an increment of 0.005 A per layer. The number of water
molecules at each layer was related to their maximum cross-sectional areas, and the
solvent accessible surface area at each solvent layer for each atom in the solute
molecules. Figure 1 shows the modeling of the implicit solute-solvent model using
the movable type method. The number of water molecules (N,,) accessible to each
atom at distance R away from the atomic center of mass is rounded down via
filtering using the maximum cross-sectional area (S,,) of water with the atomic

solvent accessible surface area (S,) in the solvent layer at distance R.

N,,(R) = floor (Sas—?) 9)

11



According to Figure 1, the maximum cross-sectional areas (S,,) of a water molecule

is calculated as:

S, = LZ; 21(R, + R,)R,, sin (” > 9) d (g -0)

= 2n(R, + R, )R, cos (”T_e) (10)

where R, and R, are the van der Waals radii for water and the atom in the solute

molecule respectively.

12
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Figure 1. Modeling of the implicit solute - solvent model using the movable type

method.
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The Boltzmann factor matrix for the kth solute atom-water interaction (Z{~5) is
defined as a Boltzmann weighted solute atom-water energy multiplied by the
number of accessible water molecules at the different distances. The final solute
molecule-water Z-matrix (ZL55,,) is composed of the multiplication of the Z-matrices
for all solute atom-water interactions. The final Z-matrix for the solute-solvent
complex system (Z¢,;5,;) is derived by the multiplication of the Z-matrix for the intra-
solute molecular interactions (Z%,,,;). Multiplication of the final Z-matrix with its
corresponding normalized Q-matrix constructs the Boltzmann-weighted energy

ensemble (C5,,;), and then the solvation free energy is calculated by Equation 14.

e—ﬁEf?_s(ﬁ)Nw(Tﬂ e—.BE}?_S(THONw(THl) e—BEf?_S(Tn—iH)Nw(Tn—Hﬂ
74-5 _ e~ BEE S r)Nw(2)  o=BEL SrindNw(inz) ... o=BEX S(n-is2)Nw(Tn_it2)
k
e BEETS@N, () o=BECSGrpNw(r) L. o~ BERTS )Ny ()
(11)
ZL=S, = disorder(Z4~5)xdisorder(Z4~5)% ---xdisorder (Z4~5) (12)
total Qtotalxzé‘gtal QtotalXQtotalXZf“‘otillXZ%otal (13)

-BELs(T)
AGsolv ~ —RT In [ZZ—Lj] = —RTIn [fe - dr] =

[e PEL™) gr | —

—RTIn [M —RTIn [sum(Qﬁ)StalXZIEgmz) (14)

Sum(ctotal) Sum(Q%otalXZ%otal)
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2.2 KECSA Energy Function

2.2.1 Data Collection
The first requirement to assemble a statistical potential is the collection of
structural information. The Cambridge Structural Database (CSD) provides many
crystal structures of small molecules that are co-crystalized with water
molecules.188 Besides, the Protein Data Bank (PDB) also has plenty of protein-ligand
complexes with water molecules that are at the interface between binding pockets
and ligand molecules, even though the resolution of those structures are usually
poor compared to the structures in CSD. The aim of this research is to build a
solvation free energy model especially for small molecules; hence the main resource
for structural data collection was the CSD small molecule database. The criteria for
data mining in CSD were set as: (1) the structures with an R factor less than 0.1
were required; (2) all polymer structures and molecules with ions were excluded.
7085 small molecules with crystal water molecules were obtained as our data set at

last.
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2.2.2 Atom Type Recognition
Our energy function methods are “fixed-charge” models for the selected atom or
residue pairs; in other words, the statistical potentials are obtained by converting
the number density distributions between two atoms or residues to energies. Many
same atoms posses different electron densities however; in order to differentiate
them from each other, a detailed atom type categorization has been constructed as
shown in Table 1. 21 atom types were used in our current solvation model based on

the structure information of the data set from CSD.

16



Table 1. List of 21 atom types in the current solvation model

Atom Type Description

C1 sp! carbon

C2 sp? carbon

C3 sp? carbon

Car Aromatic carbon

N2 sp? nitrogen

N3 sp? nitrogen

N4 Positively charged nitrogen
Nam Amide nitrogen

Nar Aromatic nitrogen
Npl3 Trigonal planar nitrogen
Ow Water oxygen

02 sp? oxygen

03 Hydroxyl oxygen

OE Ether and ester sp3 oxygen
Oco2 Carboxylate, sulfate, & phosphate oxygen

S2 sp? sulfur

S3 sp3 sulfur

P3 sp? phosphorus

F Fluorine
Cl Chlorine
Br Bromine

17



2.2.3 Energy Function Modeling
The direct pairwise contacts combined with the indirect environmental effects
contribute to the results of pairwise radial distribution. This is generally described
as a “mean force”-driven correlation function. For the atom pairwise radial
distribution, the mean force potential is usually defined as the following equation,
where Py, is the mean force potential, Ej (7) is the energy between the kth particle
and any particle i € {a, b, --- n} in this system at a distance r separating these two

particles.

P = J Ex()e EkO/RT gy oy drpy +drnk
k fe_Ek(r)/RT dTak drbk ---drnk

(15)

Basically, statistical potentials have issues with analyzing various chemical
environment effects on the observed atoms, thus would create a primary source of
error in the potential models.1° As noted by Thomas and Dill,'84 overrepresented
contacts in a structural database could mask the presence of other contacts.
Quantitatively minor contacts are generally underestimated in statistical potentials,
while the reference state presumes a uniform availability of all contacts. KECSA is a
new statistical potential energy function that was developed by our group; it defines
a new reference state to eliminate the contact masking due to quantitative

preferences.18?

KECSA defines a reference state energy or background energy as the energy

contributed by all atoms surrounding the observed atom pairs, unlike the traditional

18



statistical potentials using a reference state mimicking the ideal gas state. It
introduces a reference state number distribution modeled by a linear combination
of the number distribution under mean force (n;;(r)) and the number distribution

of an ideal gas state ((%) Amr2Ar):

ni;(r) = (% 4nr2Ar) x + (n; ()1 —x) (16)

where x represents the intensity of the observed atom pairwise interaction in the
chemical space V. This definition puts the number distribution of a certain observed
atom pair in the reference state somewhere between the ideal gas state and the
mean force state, depending on its relative strength. Stronger interactions have
background energies closer to an ideal gas state while weaker interactions have
background energies approaching the mean force state energy contributed by all

atoms in the chemical space.

[t requires us to define an “x” term for each atom pairwise interaction to build a
KECSA energy function for modeling solvent, solute and solvent-solute interactions.
Several methods have been used to model x in our knowledge-based energy
function. In the original KECSA, the number ratio of the chosen atom pair i and j
over the total atom pairs in the chemical space was used to represent the intensity x
for simplicity. At the same time, we assigned an identical x for every atom pair

found in the given chemical space based on the assumption that all contacts are

19



uniformly available in the chemical space given by the selected database.1>* As

shown in Equation 17, N, is the total atom type number in the chemical space.

ni;(r) = (% 4nr2Ar) x + (nij(r)) (1-x)

N

= (% 4nr2Ar) Nit + (nij(r)) (1 - Nit) (17)

k%

The original model of n;; (r) is based on the notion that every atom pair has an

equal contact opportunity in a background energy contributed by the other atom
pairs, while neglecting the fact that the background energies have different effects
on atom pairwise distributions with different interaction strengths (say atom i and j
under a covalent bond constraint compared to atom k and [ under a non-bond

interaction constraint).

In order to take every atom pairwise contact as an energy state distributed between
an ideal gas state energy and mean force state energy following a Boltzmann
distribution in the reference state, a more accurate n;; (r) model is introduced.
Based on that, the x factor is defined as Equation 18, where e PEij(™) js the

Boltzmann factor and N;;(r) is the degeneracy factor (contact number) for atom

type i and j.

Nijre PP
SPERNi(rye PR

(18)
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The number distribution of the observed atom pair in the background state n;; (r) is

modeled as Equation 19, with the x term built up as a probability of all contacts.

Nijre PP

SEER N e PRI

N B —BE;j(r)
TL:]*(T) — (%47TT2AT) + (nij(r)) (1 Njj(r)e J ) (19)

SPERNg(rye PR

Finally, the energy function for each atom type pair is built as Equation 20 shows.

1 n;;(r) 1 n;;(r) 1 N;;3r%Ar
E;;(r =——ln<*’ >=——ln — / =—ln[x<’—>+
IJ( ) B ni;(r) B (%47TT2AT)X+(HU(T))(1—X) B R3n;j(r)

-BE;(r) 2 -BE;;()
1 N;ii(r)e Y N;i3r°Ar Nii(r)e Y
1—x]=—ln / <’ >+ 1-— / 20
=915 lz?z?lvu(ne‘“ff“’ R3ny;(r) SRETNy(re PRI (20)

In Equation 20, each E;;(r) can be derived iteratively at discrete distance point, with

the energy functions built up in the chosen chemical space. By using this model,
every E;;(r) derived using the KECSA energy function is never a mean force
potential between atom type i and j as found in traditional statistical potentials.18°
Instead, E;;(r) represents pure atom pairwise interaction energy between atom

type i and j, since the reference state energy defined in KECSA is a background

energy contributed by all other atom pairs and not just the ideal gas state energy.
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2.3 Test Set Selection

There are two main differences between KMTISM and other continuum solvation
models, which are (1) unlike the traditional continuum solvation models, which
separate the Gibbs free energies into linear enthalpy and entropy components, the
KMTISM calculates the free energy change using a ratio of partition functions in the
NVT ensemble.139 (2) Electrostatic interactions are calculated explicitly using
classical or QM based energy calculation approaches while they are implicit via the
categorization of pairwise atom-types in the KECSA model. In this manner, KMTISM
can be viewed as the null hypothesis for the addition of explicit electrostatic
interactions. If electrostatic interactions are added to a model, it should outperform
the knowledge-based approach; if not, the explicit electrostatic model is not an
improvement over the implicit inclusion of this key interaction. The validity of using
pre-constructed atom-type pairwise energy data in free energy calculation for
molecules with similar atoms, which differ in their chemical environment is a major
concern for the KMTISM method. So, some compounds that contain C, O, N, S, P and
halogen atoms with different functional groups were tested for the KMTISM
examination. Since that KECSA energy function was parameterized by using organic
structure data, the validation of KMTISM mainly focused on reproducing the
aqueous solvation free energy of drug-like molecules. The Minnesota Solvation
Database, which includes aqueous solvation free energies for 391 neutral molecules
and 144 ions, is a well-constructed data set, and also meet our requirement quite

well. Among the 391 neutral molecules and 144 ions in the database, 372 neutral
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molecules and 21 ions were selected as our test set after excluding those inorganic
molecules, and those molecules with atom types not represented in the KECSA
potential. Various hydrocarbons, mono- and poly-functional molecules with
solvation free energies ranging from -85 to 4 kcal/mole were included in this test
set. This test set was further categorized into various subsets based on the
functional group within the molecules. Because of the poly-functional nature of

some molecules, some of the molecules were included in several subsets.

Carbon, nitrogen, and oxygen are key elements in organic molecules. More than one-
half of the compounds in the neutral test set (219 out of 372 compounds) were
composed exclusively of carbon, nitrogen and oxygen atoms. Four subsets from
those 219 molecules from the Minnesota Solvation Database were created, which
included 41 hydrocarbons, 91 molecules with oxygen-based functional groups, 44
molecules with nitrogen-based functional groups, and 43 molecules with mixed
nitrogen and oxygen functional groups. Molecules with sulfur, phosphorus and
halogen atoms were also tested in validation. In order to avoid interference from
other polar atoms, a test set with only halocarbons was also created. On the other
hand, sulfur and phosphorus are often contained in oxyacid groups in organic
molecules. A test set with molecules that contain sulfur or phosphorus was selected
from the neutral data set. Heterocyclic compounds, amides, and their analogs are
pervasive in drug-like molecules and are well represented in the Minnesota
Solvation Database. 37 heterocyclic compounds and 33 amides and their analogs

were classified into two subsets. In addition, a challenging test with complex and

23



highly polar molecules was also constructed, which included 28 selected molecules
containing three or more different functional groups. The ion test set in this
research was mainly positively charged nitrogen and negatively charged
carboxylate oxygen subsets, which was limited to biologically relevance of the ions.
In this way, 11 cations and 10 anions, namely 21 ions in total, were selected from
Minnesota Solvation Database. Alkoxide ions among others present in the Minnesota
Solvation Database were excluded herein, but will be examined with the aid of

molecular dynamics simulation of ion-water interactions for those ions in the future.

24



CHAPTER 3. RESULTS AND DISCUSSION
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3.1 Comparison with MM-GBSA and MM-PBSA Results

The Solvation free energies were calculated by KMTISM and the results were
compared with MM-GBSA and MM-PBSA for all subsets. Both MM-GBSA and MM-
PBSA calculation were carried out by using AMBER with the General AMBER force
field (GAFF). The MM-GBSA parameters were set as igb = 2 and saltcon = 0.100. For

the MM-PBSA part, istrng was set as 0.100.

Against the neutral molecule test set, KMTISM and MM-PBSA gave comparable
correlation coefficients (R?) and both had a better correlation than MM-GBSA. Based
on the values of Kendall’s 7, MM-PBSA outperformed the other two methods in
ranking ability, with KMTISM as the second best. In terms of accuracy of the models,
KMTISM has the lowest root mean square error (RMSE), while the RMSE values for
MM-GBSA and MM-PBSA were almost twice as large. The experimental data versus
calculated data is shown in Figure 2, and the statistical analyses are given in Table 2

and Table 3.

A linear scaling model was applied to all three models using Equation 21 in order to
bring their respective regression lines closer to y = x. Linear scaling provided a way
to examine the deviation of the calculated results from their regression lines, but did
not improve the performance of the methods. In Equation 21, a and b are the slope
and the intercept of the regression line between experimental data and computed

data, respectively.
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Ycorrected = — (21)

a

Table 2. Performance of KMTISM, MM-GBSA, and MM-PBSA for the prediction of the

solvation free energies of neutral molecules.

Total neutral molecule set Amide set

KMTISM MM-GBSA MM-PBSA KMTISM MM-GBSA MM-PBSA

R? 0.792 0.734 0804 0.660 0.493 0.509

Kendall's T 0.755 0.708  0.793 0.568 0.484  0.465

Raw RMSE (kcal/mole) 2597 4629 4.647 4368 8666 9.717
Scaled RMSE (kcal/mole)  2.248 2.634 2.160 3.852 4.885 4.663

Hydrocarbon set Halocarbon set

KMTISM MM-GBSA MM-PBSA KMTISM MM-GBSA MM-PBSA

R? 0.699 0906 0954 0.648 0.004 0.594

Kendall's T 0.663 0.748 0.887 0.656 0.091 0.625

Raw RMSE (kcal/mole) 0.858 1.179  0.925 1.052 2.768  1.148
Scaled RMSE (kcal/mole)  0.845 0.498  0.332 1.030  2.063 1.109

Oxygenated molecule set Organo-sulfur and -phosphorus set

KMTISM MM-GBSA MM-PBSA KMTISM MM-GBSA MM-PBSA

R? 0.829 0881 0916 0.762 0.751  0.777

Kendall's T 0.657 0.723 0.754 0.680 0.626 0.618

Raw RMSE (kcal/mole) 2.104  4.232 3.868 4337 8297 9.179
Scaled RMSE (kcal/mole)  1.578  1.613 1.186  3.500 4.316  3.992
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Table 2. (Cont’d)

Nitrogenous molecule set

Heterocycle set

KMTISM MM-GBSA MM-PBSA KMTISM MM-GBSA MM-PBSA

R? 0.615 0485 0.795 0.604 0.528 0.552

Kendall's 0.420 0412 0592 0.652 0.622 0.646

Raw RMSE (kcal/mole) 2384 2416 1.690 4314 7.584 8.722
Scaled RMSE (kcal/mole)  2.276  2.555  1.797  3.721 4413  4.217

Oxygenated and nitrogenous

Polyfunctional molecule set

KMTISM ~ MM-GBSA ~MM-PBSA  KMTISM ~ MM-GBSA  MM-PBSA

R? 0.545 0.747 0.694 0.736 0.615 0.650

Kendall’s T 0.565 0.663 0.621 0.726 0.577 0.609

Raw RMSE (kcal/mole) 3.259 4282 5.043 4.688 10.138 11.132
Scaled RMSE (kcal/mole) 2991  2.794 2484 3597 5335 4.804
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Table 3. Performance of KMTISM, MM-GBSA and MM-PBSA for the prediction of the

solvation free energies of ions

Ion set

KMTISM MM-GBSA MM-PBSA
R? 0.352 0.000 0.003
Kendall's T 0.258 -0.057 -0.067
RMSE (kcal/mole) 5.777 11.736 10.481

Carboxylate set

KMTISM MM-GBSA MM-PBSA
R? 0.239 0.161 0.166
Kendall's T -0.090 -0.180 -0.180
RMSE (kcal/mole) 5.337 11.918 11.252

Charged amine set

KMTISM MM-GBSA MM-PBSA
R? 0.557 0.008 0.009
Kendall’s T 0.491 -0.127 -0.127
RMSE (kcal/mole) 6.149 11.569 9.727
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Figure 2. KMTISM, MM-GBSA, and MM-PBSA calculated versus experimental

solvation free energies (kcal/mole) for 372 neutral molecules (kcal/mole).

The MM-GBSA and MM-PBSA results suggested a biased regression against the
experimental solvation energies (y = 1.3186x — 1.2902 for MM-GBSA and

y = 1.5095x — 0.1556 for MM-PBSA, where x and y represent the experimental and
calculated solvation free energies). The slopes of their regression lines indicated an
overestimation of the solvation free energies using these two methods. The
significant improvement in RMSE values for MM-GBSA and MM-PBSA after the
linear scaling as well as their correlation coefficient (R? and Kendall’s 7) values

show that they have a better ranking ability than free energy prediction. On the
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other hand, KMTISM’s regression function (y = 1.1078x — 0.0811) affected the

RMSE to a lesser extent.

Results for different test sets categorized by functional groups provide deeper
insights into the prediction abilities of the three computational methods. Errors
increased with the complexity of the functional groups fro all three models. As
Figure 3 and Figure 4 shown, solvation free energies of hydrocarbons, and oxygen
and nitrogen containing molecules were better reproduced than molecules with
other functional groups, while amides and mixed polyfunctional groups resulted in

the largest RMSEs.
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Figure 3. KMTISM’s top three performing test sets according to RMSE. KMTISM, MM-

GBSA, AND MM-PBSA calculated solvation free energies (kcal/mole) versus

experimental data are listed from left to right. From the top to bottom the test sets

are the hydrocarbon, oxygen containing, and halocarbon test sets.
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Figure 4. KMTISM’s worst three performing test sets according to RMSE. KMTISM,

MM-GBSA, and MM-PBSA calculated solvation free energies (kcal/mole) versus

experimental data are listed from left to right. From the top to bottom the test sets

are the amide, organosulfur and organophosphorus, and polyfunctional test sets.

Among all data sets, the hydrocarbon set was reproduced with the lowest RMSE

values for all of the approaches, while unsaturated hydrocarbons proved more

difficult for KMTISM than the other two models. The overestimation of the solvation

free energies of unsaturated hydrocarbons causes the drop in R? for KMTISM, for
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example, the two compounds with the largest error (~2 kcal/mole) were ethene
and s-trans-1,3-butadiene, where all heavy atoms were sp? hybridized. In the
training set of KECSA, which includes mostly drug-like molecules, different adjacent
polar functional groups significantly altered the electron densities of adjacent
unsaturated carbon atoms (via delocalization, for example) and this varies the
electrostatic characteristics of these carbon atoms more than that seen in the case of

sp3 hybridized carbon.

On the other hand, polar atom types in the KECSA energy function were categorized
according to their corresponding hydrophilic functional groups and were less
affected by adjacent functional groups. Polar atom type-water radial probabilities
were driven by a more fine grained atom pairwise set of interactions, thereby,
improving the performance of the KECSA energy function for these groups. The top
three test sets based on KMTISM’s performance according to RMSE included the
oxygenated molecule set and halocarbon set. Against the oxygen-containing
molecule set, KMTISM gave a correlation coefficient comparable to MM-PBSA, while
its RMSE was better than MM-GBSA. For the halocarbon set, the results of KMTISM
were better than those of the MM-PBSA and MM-GBSA methods. For the data set of
eight fluorocarbons, the RMSE for KMTISM was 1.1 kcal/mole, while the RMSE
values for MM-GBSA and MM-PBSA were 5.8 kcal/mole and 2.2 kcal/mole,

respectively.
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The atom type classification process was an essential source of error for any
statistical energy function, due to the variety of atom types in different molecules
with different chemical environments. The use of atom types in classical potentials
is also an issue, however it is typically mitigated by an explicit electrostatic model,
which takes into account environmental effects. Collecting similar atom types into
the same category can reduce the predictive ability of a statistical potential. For
instance, with KECSA, the sp3oxygen atom in ethers and peroxides were modeled
using the same atom type. This resulted in the solvation free energies for the two
peroxides to be overestimated by KMTISM, that is, the AG,,; for methylperoxide was
-9.90 kcal/mole or -8.86 kcal/mole (scaled) versus the experimental value of -5.28
kcal/mole and the AGq,,; for ethylperoxide was -10.27 kcal/mole or -9.20 kcal/mole
(scaled) versus the experimental value of -5.32 kcal/mole. In comparison with the
MM-GBSA and MM-PBSA methods, the solvation free energy AG,,,; for
methylperoxide was -9.89 kcal/mole or -6.51 kcal/mole (scaled) using MM-GBSA
and -9.07 kcal/mole or -5.90 kcal/mole (scaled) using MM-PBSA. The solvation free
energy AGq,,; for ethylperoxide was -9.21 kcal/mole or -6.00 kcal/mole (scaled)
using MM-GBSA and -8.59 kcal/mole or -5.59 kcal/mole (scaled) using MM-PBSA.
Therefore, none of the methods examined particularly did well modeling the

solvation free energy of peroxides.

As the structural complexity of a molecule increased, the computed RMSE increased
as well. Possible long range polar interactions add additional difficulty to accurate

solvation free energy calculations using the methods described herein. The largest

35



errors were found in the amide set, organosulfur and organophosphorus set, and
polyfunctional molecule set for all of the three methods. With lower errors for most
individual polar functional groups based on the analysis of the monofunctional test
set results, KMTISM had less cumulative error against these three test sets when
compared with the MM-GBSA and MM-PBSA methods for both the raw RMSE values
(see Table 2). This results shows that KMTISM has an advantage over the MM-GBSA
and MM-PBSA methods for the prediction of the solvation free energy of
polyfunctional molecules. This advantage will have an essential effect on the ability
of this model to predict, for example, protein-ligand binding affinities, where the
solvation free energy of the ligand can have an important impact on binding affinity

prediction.

As shown in Figure 5, the magnitude of the errors in the solvation free energies for
the ion test sets were relatively poor for all three methods, however, KMTISM still
showed better correlations and RMSE than the other two implicit water models,
especially for the charged amine test set (see Table 3). While the error magnitude

was large all methods, the percentage error is comparable to the neutral set.
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Figure 5. Solvation free energy results for KMTISM, MM-GBSA, and MM-PBSA

against the ion test sets.

The carboxylate functional group, which is conjugated, lowered the accuracy of
KMTISM’s calculation, while charged amines, on the other hand, whose electron

densities are more localized, were better reproduced by the KMTISM method.
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3.2 Comparison with SMX Results

Overall, due to its higher computational expense, QM based solvation models have
had limited application to the study of macromolecular systems, but are normally
used to understand the effect of solvation on small molecules. A thorough analysis of
KMTISM against QM based solvation models was not the focus of the present
research, but a general comparison helps put the present work in perspective

relative to more advanced models.

Cramer and Truhlar’s Solvation Model (SMX) series has been developed over several
decades and is considered to be one of the best methods available to calculate
solvation free energies of small molecules.”8-126 The mean absolute errors (MAE) for
solvation free energy prediction was reported as ranging from 0.57 to 0.84
kcal/mole by their most up-to-date models, for 274 neutral molecules using
different QM methods. For 112 ions, the calculated solvation free energy MAEs
ranged from 2.7 to 3.8 kcal/mole.1?¢ As for our KMTISM, a calculated solvation free
energy MAEs of 1.8 kcal/mole for 372 neutral molecules was reproduced, while a
MAE of 5.1 kcal/mole for 21 ions was obtained. The trend is quite clear that the
latest SMX models are more accurate than KMTISM, as well as MM-GBSA and MM-
PBSA, by ~1 kcal/mole for both the neutral molecules and ions as measured by
MAE, even though the data sets tested were not the same. Nonetheless, the
performance of our first generation KMTISM model is quite impressive, and we are

quite confident that future versions of KMTISM can provide more accurate results.

38



CHAPTER 4. SUMMARY AND CONCLUSION REMARKS
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MM-GBSA and MM-PBSA are two widely used implicit solvation models. KECSA-
Movable Type Implicit Solvation Model (KMTISM), which uses Movable Type
sampling method and combines with a statistical energy function developed by our
group, the KECSA energy function, is a novel method to predict solvation free
energies for small molecules and ions. It has shown to have a comparable or even
better ability to predict the solvation free energy for several test sets chosen from
the Minnesota Solvation Database. However all of these methods perform worse
than the most recent SMX model reported by Cramer and Truhlar. The advantages
of KMTISM is that it uses computed energies to directly determine free energies,
rather than using the approximation that the free energy of solvation is a collection
of linearly combined free energies, as is employed in many traditional continuum
solvent models. Therefore, the Helmholtz free energy is calculated by the
construction of the relevant partition functions. A novel sampling method, the MT
method, which is able to estimate free energy, enthalpy, as well as entropy changes
very fast, was employed to assemble those partition functions. The use of a
statistical energy function, whose parameterization can have weak spots for atom
types with high polarizabilities and uncommon atom types whose lack of available
experimental data can produce issues, is the disadvantages of the KMTISM model.
In the future, several aspects should be worked on. First, a detailed study of
enthalpy changes and entropy changes using the MT method is going to be carried
out. Then, the statistical energy terms derived from data collection of MD
simulations of atom types with high polarizability and uncommon atom types in

structural databases are going to be improved. Also, replacing the statistical energy
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function with different force field based energy functions and combine them with
the MT sampling method in order to affect the fast evaluation of thermodynamic

quantities, is another aspect that we will focus on.
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