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ABSTRACT

ORDER-TUNED VIBRATION ABSORBERS FOR
SYSTEMS WITH CYCLIC SYMMETRY WITH
APPLICATIONS TO TURBOMACHINERY

By
Brian John Olson

This work investigates the performance of centrifugally-driven, order-tuned ab-
sorbers for vibration reduction in a class of systems with cyclic symmetry. The
rotating flexible structures of interest are bladed disk assemblies, such as the fans,
compressors and turbines in a jet engine, which consist of a nominally cyclic array
of interconnected substructures. Under steady operation, these assemblies rotate at
a constant speed and are subjected to traveling wave dynamic loading (the so-called
engine order excitation), which is characterized by excitation frequencies that are
proportional to the mean rotational speed of the rotor. Such excitations result in
component vibrations and can lead to high cycle fatigue failure, noise, reduced per-
formance, and other undesirable effects. Since order-tuned absorbers feature natural
frequencies that scale directly with the rotor speed, they are ideally suited to address
these vibrations. However, at the time of writing, there has been no systematic an-
alytical treatment of absorber systems applied to cyclic rotating flexible structures
under engine order excitation. This thesis reports the first such study.

The aim of this investigation is threefold: to quantify and understand the underly-
ing linear resonance structure of a cyclically-coupled bladed disk assembly fitted with
order-tuned absorbers; based on these findings, to design the absorbers to eliminate
or otherwise reduce blade motions relative to the rotating hub; and to generalize
the linear theory, methodology, and design to include the basic, first-order effects of

nonlinearity.



The analysis is carried out assuming identical, identically-coupled substructures,
which gives rise to a linearized model with block circulant matrices. A standard
change of coordinates based on this cyclic structure essentially decouples the governing
equations, and it gives rise to closed form expressions from which analytical results can
be gleaned. The linear resonance structure is found to be surprisingly rich, a feature
that arises from the order-nature of the absorbers. One of the main findings of the
linear analysis, and indeed of this entire thesis, is the existence of a “no-resonance
zone,” that is, an entire spectrum of absorber designs for which there are no system
resonances over the full range of possible rotor speeds. By designing the absorbers
within this small, but finite spectrum, system resonances are avoided altogether and
there is at least some level of robustness to parameter uncertainties.

In the presence of weak nonlinearity, which is introduced via the absorber path
geometry, the underlying linear resonance structure is shown to qualitatively persist—
including the no-resonance zone—provided that the excitation strength is sufficiently
small. There does exist a nonlinear design strategy in which relative blade motions can
be eliminated completely, but it depends on both the rotor speed and force amplitude.
The design is thus effective for only a single set of operating conditions, which suggests
that nonlinearity cannot be exploited to further improve absorber performance in the
systems of interest. When nonlinearity cannot be avoided it is shown that softening
characteristics are more desirable than hardening; the former simply sets an upper
limit on the range of speeds over which the absorbers are effective while the latter
may give rise to problematic resonances. Finally, for the weakly coupled and lightly
damped systems under consideration, there may be a host of symmetry-breaking
instabilities involving the desired traveling wave response. However, none could be
identified. This is a very promising finding since bifurcations of this kind are highly

undesirable from an applications viewpoint.



To my wife, Julie, my parents, and to the countless

people who have supported me during this effort.
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The theory of matrices erhibits much that is visually attractive. Thus,
diagonal matrices, symmetric matrices, (0,1) matrices, and the like are
attractive independently of their applications. In the same category are
the circulants.

- Philip J. Davis
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CHAPTER 1

Introduction

1.1 Motivation

The goal of this work is to investigate the performance of order-tuned absorbers for vi-
bration reduction in (nearly) cyclic systems. The applications of interest are rotating
flexible structures, and in particular turbine blades, bladed disks assemblies, blisks
(integral disk/blade systems), and helicopter rotor blades. During steady operation
these systems rotate at a constant speed and are subjected to traveling wave dynamic
loading, which is characterized by excitation frequencies that are proportional to the
mean rotational speed of the rotor. Such excitations result in component vibrations
and can lead to high cycle fatigue (HCF) failure, noise, reduced performance, and
other undesirable effects. This is an ideal setting for the use of centrifugally-driven,
order-tuned vibration absorbers, yet their implementation to such systems has re-
ceived little attention to date. Much is already known about the dynamic behavior
of systems of vibration absorbers, and the same is true for systems with symmetries
in general and for rotating flexible structures in particular. This work aims to apply
the theory, methodology, and design of order-tuned absorbers to such systems.

We begin with a brief survey of order-tuned vibration absorbers in Section 1.2
and of systems with cyclic symmetry in Section 1.3. The application of vibration

absorbers to rotating flexible structures is discussed in Section 1.4 and the chapter



closes in Section 1.5 with the main objectives and contributions of this work and an

outline of the dissertation.

1.2 Order-Tuned Vibration Absorbers

Vibration absorbers were originally proposed by Frahm [4] in a United States patent
in 1911, but it was Den Hartog [5,6] who first carried out systematic studies on
their characteristics and design, including an optimal choice of design parameters.
They come in two basic varieties: frequency-tuned and order-tuned. In the former,
the absorber is tuned to a given problematic frequency (typically near a resonance)
and damping is added so that it performs effectively in the neighborhood of that
frequency. Such absorbers rely on elastic elements to provide their restoring forces,
and they are designed so that these forces counter the translational or rotational
motion of the primary systems to which they are attached. In contrast, order-tuned
vibration absorbers exploit the centrifugal field from rotation of the primary system
[7,8]. Since rotating flexible structures are dominated by forces that occur at orders
of rotation (the so-called traveling wave or engine order excitations [9]), order-tuned
absorbers are ideally suited for such applications.

A class of order-tuned absorbers that has enjoyed considerable attention in recent
decades are centrifugal pendulum vibration absorbers, or CPVAs. They essentially
consist of mass particles that ride along designer-specified paths relative to the pri-
mary system and their parameters are chosen such that they counteract the fluctu-
ating loads applied to that system. Each employs the centrifugal field from rotation
(rather than an elastic element) for its restoring force and this results in absorber
natural frequencies that are proportional to the rotation rate, where the constant of
proportionality is dictated by geometric parameters that are chosen by design. The
selection of the absorber path shape and location relative to the center of rotation of

the primary system prescribes its linear tuning order, as well as its nonlinear response



characteristics.

The dynamic performance, characteristics, and features of CPVAs are well-
understood in typical situations, and there are numerous examples of their imple-
mentation. For example, they are widely-used for reducing torsional vibrations in
rotating machinery, where they are attached directly to the rotor. CPVAs have been
used in light aircraft engines [10] and helicopter rotors [11], and they are also finding
new applications including diesel camshafts [12] and variable displacement automo-
bile engines [13]. In nearly all applications, CPVAs employ circular paths due to the
simplicity of their manufacture and also due to a lack of knowledge about noncircular
paths.

Den Hartog described the basic features of CPVAs, including how one selects pa-
rameters for linear tuning, as well as a discussion of the frequency shifting that arises
from nonlinear softening effects in circular-path absorbers (that is, the decrease in fre-
quency as the amplitude of oscillation increases) [7]. He also suggested intentionally
detuning (in fact, overtuning) the absorbers to avoid the jump instabilities associated
with these nonlinear effects. This approach works well, but it comes at the expense of
reduced absorber performance [14]. Newland carried out a systematic analysis of the
nonlinear response of a CPVA and offered a strategy for selecting an appropriate level
of detuning for circular path absorbers [15]. Extensive linear-based design guidelines
exist for CPVAs applied to crankshafts of internal combustion engines [10].

Subsequent research on CPVAs focused on several issues, including the design
of the absorber path for optimal performance and the response of CPVA systems
composed of several absorbers fitted to a rotor. Research on CPVA paths begins
with the analysis of Madden who suggested that a cycloidal path would avoid the
nonlinear frequency shift that leads to jumps [16]. Denman carried out a systematic
study of various paths and showed that a cycloidal path is slightly hardening whereas

a particular epicycloidal path is neutral, that is, neither softening nor hardening



[17]. Further work showed that while the epicycloidal path leads to essentially linear
absorber motions over all amplitude ranges, the corresponding torque applied to the
primary system is not purely harmonic at the desired order, but contains higher
order harmonics that arise from nonlinear kinematic effects [18]. An examination of
general paths and their attendant torques led to the development of subharmonic
pairs of epicycloidal absorbers that generate a purely harmonic torque [19-21].
When a rotor is fitted with multiple, identically-tuned CPVAs the absorbers are
coupled through its inertia, and the coupling is inherently weak since the absorber
inertia is much smaller than that of the rotor. Moreover, the absorbers are designed
to be lightly damped and they are tuned (close to) the order of the excitation. These
features give rise to a system of internally resonant, weakly coupled, and weakly
damped oscillators—a situation ripe with instabilities and rich dynamics. Such fea-
tures also lead to mathematical models with small nondimensional parameters that
are amenable to analytical treatment using perturbation methods. Systematic inves-
tigations of nonlinear responses have been carried out using averaging and symmetric
bifurcation theory for a range of path types [14, 22, 23]. It was shown that the desired
synchronous response of the absorbers can undergo two basic types of instabilities.
The first type maintains the symmetry of the response but results in jumps, just as
in the case of a single absorber. For multiple absorbers, an additional instability
can occur wherein the symmetry of the response is broken. This results in a rich
bifurcation where multiple response branches arise, including some spatially localized
responses [22,24]. Similar analyses were carried out for CPVA systems composed of
multiple subharmonic pairs [25]. The effects of small imperfections among the ab-
sorbers, which are inevitable due to manufacturing, in-service wear, and so on, were
considered in the context of linear system models, where it was shown that these
systems experience localized free modes of vibration, as well as localized responses to

order excitation [26, 27].



Early experimental work on CPVAs focused on particular applications, for exam-
ple, specific internal combustion engines. However, systematic experiments using a
dedicated test rig have recently been carried out for both circular and epicycloidal
path absorber systems [28-30]. These results confirm the linear and nonlinear be-
havior of CPVAs for these path types, and also demonstrate the rich behavior that
occurs if absorbers are tuned too closely to the excitation order [29,31]. In terms
of applications, CPVAs show great promise for use in advanced internal combustion
engines that offer increased fuel efficiency and reduced emissions [13].

Finally, impact dampers have recently attracted considerable attention in the
jet engine community as an effective means of reducing blade vibration amplitudes.
Such dampers typically consist of a single mass traveling back and forth in a cavity
machined in a turbine blade, where energy dissipation occurs when the mass impacts
the cavity walls. In this case, the impact damper is also designed to act as a tuned
absorber, with both effects contributing to vibration reduction. Much of this work
has been carried out experimentally for specific applications {32, 33], although there
has been some systematic theoretical work as well [34]. Other impact damper designs
are also being explored by industry, such as dry particle damping systems [35] that
include a large number of tiny masses in a blade cavity, where energy dissipation
is achieved from multiple impacts between the masses. Such designs have proven
effective experimentally, although they suffer durability problems in the harsh jet

engine environment (e.g., rotation, extreme temperatures, and so on).

1.3 Systems with Cyclic Symmetry

Many rotating flexible structures consist of an array of interconnected constituent
parts (substructures) whose gecometry and structural properties are rotationally peri-
odic, and they are said to have cyclic symmetry. In a bladed disk, for example, the

fundamental substructure is one blade plus the corresponding segment of the disk,



which is collectively referred to as a sector. The entire dynamics of these systems
can be captured by analyzing a single sector, so long as one applies the appropriate
phase conditions at the interfaces with adjacent sectors. This is a feature shared by
all perfectly cyclic systems, and it offers a tremendous computational savings in their
analysis.

The linear free response of a cyclic structure is characterized by identical motions
of each sector, except for a fixed sector-to-sector phase difference, and hence the mode
shapes are harmonic in the circumferential direction. For bladed disk assemblies, this
leads to nodal lines across the disk called nodal diameters, and the system mode
shapes are referred to as nodal diameter modes. An engine order excitation of order
n will generally excite only the modes with n nodal diameters. Due to the cyclic
symmetry of the system, most of the natural frequencies occur in repeated pairs and
these correspond to traveling wave modes, where (in the absence of damping) the
system kinetic energy remains fixed and is simply passed from one blade to another.
The distinct frequencies correspond to standing wave modes, where the system ki-
netic energy varies sinusoidally [36]. If the sectors are only weakly coupled to one
another, all of the system natural frequencies lie closely together, leading to a very
rich structure with high modal density and high sensitivity to imperfections.

Generally, the blades on a turbomachinery rotor are meant to be identical. In
practice, however, there are always small random uncertainties among the blades
due to manufacturing tolerances, in-service wear, material imperfections, and so on.
These small variations, referred to as mistuning, can lead to a confinement of vibration
energy to a few blades or even a single blade, a phenomenon known as localization
[37-40]. Due to this spacial confinement of energy, some of the blades may experience
higher amplitudes than what is predicted from the ideal, perfectly periodic system
[41-45]. Forced response amplifications of 200% or more can occur, resulting in high

cycle fatigue and eventual failure. This is a major cost, safety, and readiness concern



for commercial and military jet engines alike [46].

The features of a typical cyclic system also lead to a rich variety of nonlinear
dynamic behaviors. In particular, the repeated natural frequencies give rise to internal
resonances when the systems are weakly damped and the excitation of interest is
resonant. Additionally, there is the possibility of multiple interacting modes when
the substructures are weakly coupled. These characteristics lead to situations ripe
for instabilities, bifurcations, and a multitude of possible responses, just as in the
case of torsional CPVAs. Previous research in this area has dealt with the modal
interactions that arise from internal resonances [47-50] and nonlinear localization
[51-54]. However, it is important to note that localization of responses can occur in
perfectly tuned nonlinear system models, where the mistuning between subsystems
arises from the frequency dependence on amplitudes, rather than from imperfections.

A recent line of particularly interesting research in cyclic systems has focused on
the problem of how to design systems to reduce the harmful effects of localization. A
promising idea is to introduce into the system intentional patterns of mistuning that
can make the system robust with respect to the unavoidable imperfections. This has

been quite successful, at least for linear system models [55-58].

1.4 Vibration Absorbers for Rotating Flexible Structures

under Engine Order Excitation

Since order-tuned absorbers are designed to address system vibrations at a trouble-
some order (rather than a fixed frequency), it is natural to consider their use on
rotating flexible structures subjected to engine order excitation. In this context, the
desired system response is a traveling wave, where each sector behaves identically
except for a fixed phase difference among nearest neighbors; any other response type

implies decreased absorber performance. The ideal response is one in which the blades



remain stationary relative to the rotating hub and the absorbers respond in a trav-
eling wave to identically counter the engine order (traveling wave) excitation of the
blades.

Order-tuned absorbers have already been considered for helicopter rotor blades
[59], for an ideal flexible beam [60], and for potential implementation in hollow turbine
blades [61]. In addition, absorbers that employ order tuning at small amplitudes
and that transition into impact absorbers at larger amplitudes have recently been
experimentally [32,33] and analytically [34] investigated. While these studies have
been promising, they have been limited in several key ways: (1) each considered very
specific applications; (2) the studies do not systematically address how to size and
tune the absorbers for optimal performance over a wide range of operating conditions;
and (3) all previous studies focused on the implementation of an absorber to an
individual structural element (e.g., a single blade). In fact, these studies were limited
to either theoretical results based on linear analyses or observations gleaned from
experiments or simulations.

This thesis reports the first systematic analytical treatment of order-tuned vibra-
tion absorbers applied to a fully-coupled cyclic structure under engine order excitation,
including detailed recommendations for both linear and nonlinear absorber design. In
this way, it serves not only as the first study of its kind to unite the individually ma-
ture bodies of research on absorber systems and cyclic systems, but it also provides
context and direction for what is sure to be a plentiful and rich course of ongoing

theoretical and experimental work.

1.5 Dissertation Overview

The goal the investigation is threefold: (1) to quantify and understand the under-
lying linear resonance structure of a cyclically-coupled bladed disk assembly fitted

with order-tuned absorbers; (2) based on these findings, to design the absorbers to



eliminate or otherwise reduce blade motions relative to the rotating hub; and (3) to
generalize the linear theory, methodology, and design to include the basic, first-order
effects of nonlinearity.

As we shall see, the underlying linear resonance structure of the cyclically cou-
pled system fitted with absorbers is surprisingly rich, a feature that arises from the
order-nature of the absorbers. This is manifested in the classical eigenvalue veering
phenomenon and gives rise to an ideal absorber design (perfect absorber tuning) in
which the absorber tuning order is set to identically match the engine order. In the
absence of damping, the result is a total elimination of the blade motions relative to
the rotating hub—independent of the rotor speed. One of the main findings of the
linear analysis, and indeed of this entire thesis, is the existence of an entire spectrum
of absorber designs for which there are no system resonances over the full range of
possible rotor speeds. This corresponds to a continuous set of absorber under-tuning
values, the so-called “no-resonance zone,” where resonance is avoided altogether. By
selecting a design within this small, but finite gap, there is at least some level of
robustness to parameter uncertainties, but at the expense of residual (zero damping)
or slightly increased (nonzero damping) blade motions.

Nonlinearity is introduced via the absorber paths and, for the desired traveling
wave response, it gives rise to additional frequency response branches and resonances,
but the fundamental linear resonance structure mentioned above is shown to qualita-
tively persist. There does exist a nonlinear tuning strategy that guarantees a branch
of solutions corresponding to zero (or otherwise reduced) blade motions. However,
unlike its linear counterpart, it is highly sensitive to parameter uncertainties. Even
more importantly, the nonlinear tuning is shown to depend on both the rotor speed
and force amplitude, and is thus effective only for a single set of operating conditions.
These findings suggest that it is not practical to exploit nonlinearity to further improve

the absorber performance in the cyclic systems under consideration. If nonlinearity



is inevitable, it is clearly shown that softening characteristics are more desirable than
hardening; the former simply sets an upper limit on the range of rotor speeds over
which the absorbers are effective, while the latter may give rise to problematic reso-
nances (especially if the damping is light). Finally, for the weakly coupled and lightly
damped systems under consideration, there may be a myriad of additional responses
other than the desired traveling wave variety. However, based on a number of case
studies and extensive numerical investigations, none could be identified. (Analytical
local stability results for the fully-coupled nonlinear system are essentially intractable,
even after a simplifying reduction of the Jacobian matrix is carried out.) This is, in
fact, very good news from a practical viewpoint since a traveling wave response of
the absorbers is desired.

The main body of the dissertation is organized as follows. Chapter 2 highlights
relevant background topics and material, including some mathematical preliminaries,
engine order excitation, vibration characteristics of cyclic systems, and frequency- and
order-tuned vibration absorbers. A suitable mathematical model for a bladed disk
assembly fitted with order-tuned vibration absorbers is developed in Chapter 3, from
which a number of specific models to be systematically analyzed in the two subsequent
chapters are gleaned. A linearized model is investigated in Chapter 4, which gives rise
to a linear absorber tuning strategy, and these results are generalized in Chapter 5 to
include the basic effects of nonlinearity. Finally, the dissertation closes with detailed
recommendations for absorber design, a summary of contributions, and directions for

future work in Chapter 6.
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CHAPTER 2

Background

2.1 Introduction

This chapter highlights pertinent background material that will be useful in the anal-
yses of subsequent chapters. Some mathematical preliminaries are considered first
in Section 2.2, including the Kronecker product, the Fourier matrix, and the basic
theory of circulants. These sections are quite brief and are meant only to highlight
well-known, but fundamental results and properties. A more exhaustive treatment
of the theory of circulants (including many proofs) is given in Appendix B, and Ap-
pendix A reviews some selected topics from linear algebra. A model for engine order
excitation is subsequently developed in Section 2.3 and its traveling wave nature
discussed. In order to characterize the basic free and forced response of cyclically-
coupled systems under engine order excitation, a cyclic chain of linear oscillators is
investigated in Section 2.4. Finally, the theory of frequency- and order-tuned vibra-
tion absorbers is given in Section 2.5, and the chapter closes in Section 2.6 with some

concluding remarks.

2.2 Mathematical Preliminaries

We make frequent use of the theory of circulant matrices throughout this work. Their

basic properties are outlined in this section, along with some other relevant mathemat-
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ical preliminaries. The Kronecker product is defined first in Section 2.2.1, followed by
the Fourier matrix in Section 2.2.2. Circulant and block circulant matrices are defined
in Section 2.2.3, and it is shown how to diagonalize such matrices in Section 2.2.4.
These sections are meant as a quick reference and correspondingly the treatment is
brief and proofs are omitted. A more detailed account of the theory of circulants is
given in Appendix B, which was distilled from the classical text by Davis [62] and
the work by Ottarsson [36], and some selected topics from linear algebra are given in

Appendix A.

2.2.1 The Kronecker Product

Let A € C™*™ and B € CP*9. Then the Kronecker (direct) product of A and B is

the mp x ng matrix

anB @12B -+ a;;B
a91B a»wB - a9,B

AgB= | AT "eE T S (2.1)
a1 B ameB -+ amnB

Some selected useful properties of the Kronecker product are as follows.
1. If A, B, C, and D are square matrices such that AC and BD exist, then
(A®B)(C® D) =(AC)® (BD).

2. If A and B are invertible matrices, then (A @ B)"l = A"l @ B~1.

3. If A and B are square matrices, then (A ® B)? = A" @ BH.

Here, ()H = (T)T denotes the Hermitian operator, or conjugate transpose.

2.2.2 The Fourier Matrix

Let j = vV=1and N = {1,2,...,N}. Then the N x N complex Fourier matrix is
defined as

w(—1(k=1) eI k=1)o; iwkeN (22

2~

1
E=Ey = [ei]; k= %
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29T
where w = wy = e_%" is the primitive N** root of unity (see Section B.4.1 of

Appendix B) and
o 2n(i-1)
(701 - N ?

is the angle subtended from the positive real axis in the complex plane to the it

ieEN (2.3)

h

power of wy. (See Figure B.1 on page 191.) When the dimension of Ep is clear, the
subscript N will be omitted. It is shown in Section 2.2.4 that all circulant matrices
share the same linearly independent eigenvectors

e; = _1_(1,w(z'—1>,w2(i—1), )

VN

T

) T , ieN (2.4)
- _(1, IPi eI20i ,ej(N—l)w)
VN
which compose the N columns (or rows) of E, that is, E = [ej,es,...,eyN]. An

important property of the Fourier matrix is that it is unitary and, therefore,

E"E =EEM =1, (2.5)
where I is the identity matrix. Finally, the matrices E, EQI, and (E®I) = EN®I
are also unitary.

2.2.3 Circulant Matrices

An N x N circulant matriz (or circulant for short) is formed from an N-vector by

cyclically permuting its entries and is of the form

cl C2 .. CN
CN €1 CN-1

C={|. . . . (2.6)
C2 C3 oo Cl

Thus a circulant matrix is defined completely by an ordered set of generating elements
€1,¢2,...,cN- It is convenient to define the circulant operator circ (- ) that takes as its
argument these generating elements and results in the array given by Equation (2.6),
that is,

C =circ(cy,co,...,CN) - (2.7)

13



The set of all such matrices will be designated by €. An NM x NM block circulant
matrix is defined similarly to Equation (2.6) and has the representation given by
Equation (2.7), where each entry ¢ is replaced by the M x M matrix Cy for each
k € N. The ordered set of matrices Cy, Cs,. .., Cp are called its generating matrices.
The set of all NM x NM block circulant matrices with M x M blocks, which is
sometimes called a block circulant of type (M, N), will be denoted by &%), n. Finally,

if a matrix is both circulant and symmetric it can be written as

circ (01,02,... ,CN,CN+2,CN,...,03,6‘2) , N even
z 2 V)
C = (2.8)
circ (CI,CQ,. "7CN-—1ch3:l,cN+laCN—11‘~->C31C2) ) N odd
v 2 7

and necessarily has repeated generating elements; only (N + 2)/2 are distinct if N
is even and (N + 1)/2 are distinct if NV is odd. The set of all N x N symmetric
circulants is denoted by #€n. An NM x NM block circulant, block symmetric
matrix is obtained by replacing each c; in Equation (2.8) with Cj, for each k € N.
The set of all NM x NM block circulant, block symmetric matrices with M x M
blocks will be denoted by BE€B5s N

2.2.4 Diagonalization of Circulants

A matrix C € ¥ with gencrating elements ¢y, cg, ..., cy can be diagonalized via the

unitary (similarity) transformation

M 0
N A2 .
ENCEy = N : (2.9)
0 AN
where
N
i = chw(k_l)(i_l), i€EN. (2.10)
k=1

As a consequence, all circulant matrices share the same eigenvectors, which are given

by Equation (2.4). Their eigenvalues are given by Equation (2.10) and depend only on

14



the generating elements. Similarly, a matrix C € 8% y can be block diagonalized

via the unitary transformation!

A 0
EX ©1,,)C(Ey ®I) = Az
(Ex ©In)C(Ey © 1)) = . , (2.11)

0 Ay

where 0 and I are the M x M zero and identity matrices, respectively, and
N
Ai=) CruhDED e n (2.12)
k=1

which depends only on the generating matrices C1,Cs,...,Cpy. Since Equa-
tion (2.11) is a unitary transformation it preserves the eigenvalues of C. Hence its
eigenvalues are the eigenvalues of the N matrices A; € CM*M _[f v, is an eigenvector

of A; then the corresponding eigenvector of C is u; = €; ® v;.

2.3 Engine Order Excitation

2.3.1 Mathematical Model

Ideally, the steady axial gas pressure in a jet engine might vary with radius but is
otherwise uniform in the circumferential direction, thus resulting in an identical force
field on each blade in a particular fan, compressor, or turbine within the engine. In
practice, however, flow entering an engine inlet invariably meets static obstructions,
such as struts, stator vanes, etc., in addition to rotating bladed disk assemblies in
its path to the exhaust. Even in steady operation, therefore, the flow slightly up-
stream of these bladed assemblies is non-uniform in pressure, temperature, and so
on. This results in a static pressure (effective force) field on the blades that varies
circumferentially, an example of which is shown in Figure 2.1.

Consider, for example, an engine in steady operation with n evenly-spaced struts

slightly upstream (or downstream) of a bladed assembly. As explained in [9] these

INote that (Exy ® Ipn)™ = (EX¥ ® In), which follows from Property 3 of Section 2.2.1.
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Figure 2.1. The the axial gas pressure p(f): ideal and (example) actual conditions.

obstructions produce a circumferential variation upon the mean axial gas pressure
that is essentially proportional to cosnf, where 6 is an angular position. Thus a
blade rotating through this static pressure field experiences a force proportional to
cos nfdt, where (2 is the constant angular speed of the bladed disk assembly and t is
time. An adjacent blade experiences the same force, but at a constant fraction of
time later. This type of excitation is defined as engine order ezcitation and n is said
to be the order of the excitation.

To be more precise, the axial gas pressure of a steady flow through a jet engine
may be described by a function p() = p(@ + 27), where 6 is an angular coordinate
measured relative to a fixed origin on the machine. That is, the pressure field is
rotationally periodic and can therefore be expanded in a Fourier series with terms of
the form p, cosnf. Then if the angular position of the ith blade relative to the same

origin is defined by

2m . :
0;(t) =Qt+w(z—1), ieN

where N is the total number of blades and N' = {1,2,..., N} is the set of blade, or

sector numbers, it follows that the total effective force exerted on blade 7 due to the
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nt" harmonic of the pressure field p(f) can be captured by
Fcos(nit + 2 & (i — 1)), i€ N. (2.13)
Upon complexifying this gives rise to
Fi(t) = Fel®ie™ e N (2.14)

which is a model for the nt" predominant component of the excitation. It has period
T = 27 /nQ, strength F', and is said to have angular speed §2. The so-called inter-blade
phase angle is defined by

n

¢ = ¢§n) = 27rN

(i—1) = ny;, ieN (2.15)

where n € Z4 is the order of the excitation and ¢; is the angle subtended from
blade 1 to blade 7 and is defined by Equation (2.3). Equation (2.14) is defined as

nth

engine order (e.o.) excitation (n e.o. excitation) or traveling wave excitation and
is used to model the dynamic loading on models of bladed disk assemblies throughout
this work. The traveling wave characteristics of this type of excitation are considered

next.

2.3.2 Traveling Wave Characteristics

Equation (2.14) is a function of continuous time ¢ and it is discretized in space via the
index i. This gives rise to two interpretations of engine order excitation relative to the
rotating hub (one discrete and the other continuous) and these can be visualized in
Figure 2.2, which shows a dissection of the excitation amplitudes along time and sector
axes. In the first and usual sense, Equation (2.14) is a discrete temporal variation
of the dynamic loading applied to individual blades. That is, under an engine order
n excitation each sector is harmonically forced with strength F' and frequency nf2,
but with a fixed phase difference relative to its nearest neighbors. Physically, one can

think of this as placing N different observers at the discrete sectors and having the ith
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observer record the excitation strength applied to sector i as a function of time. Their
recorded time traces would resemble those shown in Figure 2.2a. In the second and
more general sense, Equation (2.14) can be viewed as a continuous spatial variation of
the excitation strength relative to the rotating hub (along the sector axis) that evolves
with increasing time, i.e., it is a propagating waveform or traveling wave. If a single
observer was placed on the rotating hub and recorded the strength of this traveling
wave as a function of i (taken here to be continuous), it would resemble the curve
shown in Figure 2.2b. In this context, the instantaneous loading applied to individual
blades is obtained by essentially “sampling” the continuous traveling wave at each
sector ¢ € N and, as time evolves, these sampled points define N time-profiles of the
force amplitudes, which is equivalent to the discrete temporal interpretation described
above. However, the latter interpretation illuminates some important traveling wave
characteristics of the engine order excitation that are otherwise difficult to explain,
and in what follows these are systematically described.

To explain the traveling wave mathematically, it is convenient to define

@k (x) = cos( Ly = cos(orx), (2.16)

which is a cosinusoidal waveform with wavelength 27/¢.. Then for i € N Equa-

tion (2.14) can be written (in real form) as

Fi(t) = Fcos(pn+1(i — 1) + nQt), (2.17a)

= F®,.1(i— 1+ Ct), (2.17b)

which is a harmonic function with a wavelength of 27 /p,4+1 = N/n sectors (vp+1
is the wave number) and angular frequency nQ2. Equation (2.17b) shows that it is
a traveling wave (TW) in the negative i-direction (descending blade number) with
speed C = nQ/p,+1 = NS/2m, measured in sectors per second. An example plot
of this continuous backward traveling wave (BTW) is shown in Figure 2.2b and, as

described above, the applied loads can be obtained from this figure by continuously
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Figure 2.2. An example illustration of the discrete temporal and continuous spatial vari-
ations of the traveling wave excitation defined by Equation (2.14) (in real form): (a) the
discrete dynamic loads with amplitude F' and period T' = 27 /nf2 applied to each sector; and
(b) the continuous BTW excitation with wavelength N/n and speed C = NQ/27 relative

to the rotating hub.
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“sampling” the waveform at the discrete sector numbers as time evolves. Then the
engine order excitation applied to the individual blades consists of a wave composed of
these N discrete points, examples of which are shown in Figure 2.3a-d. Interestingly,
this gives rise to discrete SW or even forward traveling wave (FTW) applied dynamic
loads (depending on the value of n relative to N) even though Equation (2.17) is
strictly a backward traveling waveform relative to the rotating hub. These additional
possibilities arise due to aliasing of the “sampled points” just as it occurs in elementary
signal processing theory [63,64]. Before characterizing the traveling and standing
waveforms it is shown that one need only consider engine orders n € N.

The traveling wave nature of the discrete applied loads (i.e., SW, BTW, or FTW)

depends only on the value of n relative to N. To see this, let
n=nmodN € N, nezy (2.18)

and assume n = 7 + mN for some integer m. Then one can write @7, ,N1+1(X) =
®;.41(x) and it follows that if n = 7 corresponds to a SW, BTW, or FTW then so
does 7+ mN for any m € Z4. In this sense, the traveling wave nature of the applied
dynamic loads is seen to alias relative to N. These features are characterized next for
engine orders n € N, where it is understood that the results can be applied to any
n > N simply by taking n modulo N (where appropriate).

For the special case when n = N the rotating blades become entrained with the
excitation since d)gN) = 2mn(i — 1) with i,n € Z4 and hence each is forced with
the same strength and phase. As illustrated in Figure 2.3d, this is effectively a SW
excitation where each blade is harmonically forced according to F;(t) = F cosnft.
Entrainment also occurs when n = N/2 if N is even, in which case qﬁEN/ 2 = (i —
1), where (: — 1) is odd (resp. even) for even (resp. odd) sector numbers i € N.
Accordingly, all blades with odd sector numbers are driven by F;(t) = F cosnflt, as
are the blades with even sector numbers, but with a 180-degree phase shift. As shown

in Figure 2.3b, this amounts to the same standing wave excitation as the n = N case,
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Table 2.1. Sets of engine orders n (mod N) € N' = NSE(JNSE, | JNSE, corresponding to
backward traveling wave (BTW), forward traveling wave (FTW), and standing wave (SW)
dynamics loads applied to the blades for (a) odd N and (b) even N. These can be visualized
in Figure 2.314-11.

(a) Odd N (b) Even N
N1(3)Tw={n€Z+11SnSsz——l} NETW={neZ+:1§n§N‘2}
Ngw ={N} NE, ={% N}

except for a phase reversal in the excitation among adjacent blades. The engine
orders corresponding to SW excitations for odd and even N are denoted by the sets
NSOWE C N, which are defined in Table 2.1 and all other values of n € N correspond
to traveling waves. Engine orders n € Ng’i‘%v (resp. n € NFOT]{:V) correspond to
BTW (resp. FTW) excitation, an example of which is shown in Figure 2.3a (resp.
Figure 2.3c), where ./\/BO'ILI;:N and NF(?T%V are also defined in Table 2.1. These sets can

be visualized in Figure 2.3 ¢-17 for odd and even N.

2.4 Vibration Characteristics of Cyclic Systems

The basic free vibration characteristics of cyclic systems are discussed next, in addition
to forced vibration under the engine order excitation described in Section 2.3. A
prototypical linear model is introduced in Section 2.4.1, which consists of a cyclic array
of N identical, identically coupled oscillators, each with a single degree of freedom
(DOF). Its forced response is considered in Section 2.4.2, including a decoupling
strategy based on the cyclic symmetry of the system. The details of its free response
are given in Section 2.4.3 and in Section 2.4.4, which discuss the eigenfrequency
characteristics and normal modes of vibration, respectively. Finally, conditions for
resonance are given in Section 2.4.5, along with a description of the underlying linear

resonance structure in terms of the engine order and angular speed of the excitation.
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Figure 2.3. Engine orders n mod N corresponding to BTW, FTW and SW applied dynamic
loading for (i) odd N and (ii) even N (see also Table 2.1); example plots of applied dynamic
loading (represented by the dots) for a model with N = 10 sectors and with (a) n = 1
(BTW), (b) n =5 (SW), (c) n =9 (FTW), and (d) n = 10 (SW). The BTW engine order
excitation is represented by the solid lines.
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Figure 2.4. A prototypical linear cyclic system with cyclic boundary conditions g = zn
and IN+1 = T].

2.4.1 A Prototypical Model

The undamped cyclic system to be considered is shown schematically in Figure 2.4.
It consists of a cyclic chain of N single-DOF oscillators each of mass M, the dynamics
of which are captured by the transverse displacements z;, and these are uniformly
attached around the circumference of a (nonrotating) rigid hub via linear elastic
elements of stiffness k;, and effective length L. Adjacent masses are elastically coupled
via linear springs, each with stiffness k.. It is assumed that the elastic elements are
unstressed when the oscillators are in a purely radial configuration, that is, when
z; = 0 for each ¢ € N. An individual oscillator, together with the nearest-forward-
neighbor elastic coupling, forms one fundamental sector and there are N such sectors
in the overall system. Finally, the system is subjected to engine order excitation of
order n € Z4 and angular speed §2, which can be modeled by Equation (2.14).

The linear equation of motion for sector i is obtained in the usual manner. It is
divided through by the inertia term ML and time is rescaled accordiﬁg to T = wpt,
where w, = \/k_b/_M is the undamped natural frequency of a single isolated sector.

Then if gq; = x;/L the dynamics of the ith sector are governed by
g/ + i + V2 (—qio1 +2q; — giy1) = feI%ieIT, die N (2.19)

where v = \/k¢/kj is a nondimensional coupling strength and (-)" = d(-)/dr. The
dimensionless angular speed and strength of the engine order excitation are denoted

by 0 = Q/w, and f = F/Lky, respectively, n is its order, and ¢; is the interblade
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phase angle defined by Equation (2.15). In Equation (2.19) it is understood that

=gy and  qny1 =41, (2.20)

which implies that the N th oscillator is coupled to the first.

By stacking the N coordinates ¢; into the configuration vector q =
(q1,q9,--- ,qN)T, the governing equation of motion for the overall N-DOF system
takes the form

qd"+Kq=fd"7,  ieN (2.21)

where f = (fel®1, fei®2 ... felON )T is the system forcing vector, which accounts
for the constant phase difference in the dynamic loading from one sector to the next.

The N x N matrix

-1 + 2,2 —? 0 0 —?
—? 1+ 22 —? 0 0
0 v 1422 . 0 0
K= . . . . . . (2.22)
0 0 0 U S, 77—y
| -2 0 0 ... = 1+27

reflects the nondimensional stiffness of each sector relative to the hub (additive unity
along its diagonal) and also the inter-sector coupling (V2 along the super- and sub-
diagonal). The elements —v2 appearing in the (1, N) and (N, 1) positions of K are
due to the cyclic boundary conditions given by Equation (2.20), and in particular the
gi+1 terms in Equation (2.19). (In their absence, the system represents a finite chain
of N oscillators.) Thus, in addition to being symmetric, Equation (2.22) is also a

circulant and can be written as?

K = circ (1 + 202 -120,...,0, -—u2) € SEN, (2.23)

2This is a property shared by all linear(ized), perfectly cyclic systems with N sectors, a single-
DOF per sector, and nearest-neighbor coupling. In the more general case of multi-DOF per sector,
the system matrices are block circulant (and also block symmetric) and hence belong to B€8.%m N,
where M is the number of DOF per sector.
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where the circ (- ) operation is defined in Section 2.2.3. In the absence of coupling
(that is, if » = 0) K is diagonal and Equation (2.21) represents a decoupled set of N
harmonically forced, single-DOF oscillators.

The forced response of Equation (2.21) under engine order excitation is considered
next with emphasis on a modal analysis whereby the fully coupled system (that is,
one in which v # 0) is reduced to a set of N single-DOF oscillators, only one of
which is (harmonically) excited. Such an analysis illuminates the basic vibration
characteristics of linear cyclic systems, including their eigenfrequency and resonance
structures. The approach taken here, and a generalization in which each sector has
many DOF, is applied to the linear system in Chapter 4 and also in Chapter 5 to

handle (block) reduction of the Jacobian matrices.

2.4.2 Forced Response Under Engine Order Excitation

The steady-state response of Equation (2.21) can be obtained using standard tech-

niques [65] and, for non-resonant forcing, it is given by
ss _ 2 _27\—1¢ jnot
q*(1) = (K —=n“0°I)"'fe , (2.24)

where I is the N x N identity matrix. However, this requires inversion of the
impedance matrix K — n202I, which can be computationally expensive for a large
number of sectors, and it offers little insight into the basic vibration characteristics.
In what follows, a transformation based on the cyclic symmetry of the system is
exploited to fully decouple the single, N-DOF system to a set of N, single-DOF os-
cillators from which the steady-state response can easily be obtained. The procedure
is similar to the usual modal analysis from elementary vibration theory. However, a
key difference is that the transformation matrix (and hence the system mode shapes)
is known a priori and, since the transformation is unitary (thus preserving the sys-
tem eigenvalues), the natural frequencies can be obtained after the transformation

is carried out. Moreover, due to orthogonality conditions between the normal modes
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and forcing vector, the steady-state response of the overall system reduces to finding
the forced response of a single harmonically-forced, single-DOF oscillator in modal
space, which offers a clear advantage over the solution to Equation (2.24).

It was shown in Section 2.3.2 that an engine order excitation can be regarded
as traveling wave dynamic loading, and it is therefore reasonable to expect steady-
state solutions of the same type. We begin with a simple way to show the existence
of such a response, and then systematically describe it based on the results of the

aforementioned modal analysis.

EXISTENCE OF A TRAVELING WAVE RESPONSE

Since the excitation is a traveling wave it is natural to search for traveling wave

steady-state solutions of the same form, that is,
g3 () = Ael%iginoT (2.25)

for each i € N. Equation (2.25) assumes that each sector responds with the same
amplitude A, but with a constant phase difference relative to its nearest neighbors,
and together all N such solutions form a traveling wave response among the sectors.
(In real form, Equation (2.25) can be written as ¢{%(7) = A®p41(i — 1 + Ct), where
®(-) is defined by Equation (2.16) and C = no/pp, 4] is the wave speed of the engine
order excitation.) By mapping this trial solution into Equation (2.19) and dividing

through by the common term e/%eJ"?7 one obtains
—(no)2A+ A+ 12 (—Ae_j‘p"“ 1A - Aef%l) = f, (2.26)

where the identity
$ix1 — ¢ = £pnt1 (2.27)

has been employed. Upon simplification, the amplitude A is found to be

f (2.28)

T 1+ 2w2(1 — cosppi1) — (no)?’

26



from which it follows that @, ;| = V14 2v2(1 = cospp,11) is one of the N natural
frequencies of the coupled system, and it corresponds to mode p = n + 1.3

Equation (2.28) highlights a fundamental result when a linear cyclic system with
nearest-neighbor elastic coupling is subjected to engine order excitation of order n:
mode n + 1 is excited. The reason for this is not clear from this approach, but it
can be described systematically via a modal analysis that considers the fully coupled

system.

MODAL ANALYSIS

It is well-known that circulant matrices, such as the stiffness matrix defined by Equa-
tion (2.23), can be diagonalized via a similarity transformation involving the Fourier
matrix, and in what follows this property is exploited to fully decouple the governing
equations of motion given by Equation (2.21). The theory is due to P.J. Davis (1979)
and is exhaustively developed in his seminal work, Circulant Matrices [62]. A detailed
development of the pertinent theory is given in Appendix B (and summarized without
proofs in Section 2.2) in a way that should be familiar to the vibrations engineer.
Diagonalization can be achieved by employing Equation (2.9), and in particular

Theorem B.7 on page 197. To this end, the change of coordinates?
q(7) = Eu(r) = Z epug(T or  gp(r) = egu(T), pEN (2.29)

is introduced, where E is the N x N complex Fourier matrix and e, (given by Equa-
tion (2.4)) is its pt" column, (-)T denotes transposition, and u = (uy,ug,...,uyn)T
is a vector of modal, or cyclic coordinates. Substituting Equation (2.29) into Equa-

tion (2.21) and multiplying from the left by EM yields

E"Eu” + EHKEu = E"fel"07 (2.30)

3Strictly speaking, the excited mode is p = nmod N + 1, which will be shown in the next section.
4The index p corresponds to the p'* mode of vibration and shall be referred to as the mode
number.
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Since EME = I from Equation (2.5) (that is, E is unitary, which is proved in Sec-

tion B.4.2) and in light of Equation (2.9), it follows that

uf w? ) 0 [ wy ezf

n -

u w u9 ey f| .

21+ 2 = e, (2.31)
" -2

Uy 0 oyl lun e%f

th scalar element of the N x 1 modal forcing vector EMf is ez,'tf . Equa-

where the p
tion (2.29) is a unitary (similarity) transformation and hence the system natural
frequencies are preserved, which is guaranteed by Theorem A.1 on page 180. For

each p € N they follow from Equation (2.10) and are given implicitly by

2
12, (ﬁ) =1+22 - 2P 404 .. 40— 2uV-DE-D)
Wo
= 1 + 2[/2 - 1/2 (u;(p_l) + u,v(N_l)(p—l))

=14 20%(1 = cos ), (2.32)

where w = egﬁi is the primitive Nt* root of unity (see Section B.4.1) and the identity
wP=1) 4 o (V=1)(P=1) = 2¢0s ¢p has been employed. The overbar indicates that the
frequencies are in dimensionless form.

Equation (2.31) is a decoupled set of N, single-DOF harmonically forced modal

oscillators and, in the steady-state, the pth modal response is

uSS(T) — P ejnar

myppmy , pEN. (2.33)

The steady state response of sector ¢ (in physical coordinates) can be obtained from

the transformation given by Equation (2.29) and is given by ¢}*(7) = ezTuSS(T), or

ej(i—l)"%u‘;f(T)

=,
5
I
M=
3~

1 N e (i i
_ Z k e](z—l)n,')ke_')nar7 ieN (2.34)
LDI% — (no)?
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which reflects that the total system response is simply a superposition of individual
modal responses. Depending on the details of the modal forcing terms e;,'{f Equa-
tion (2.34) shows that there are N possible resonances, and these arise if the excitation
frequency matches a system natural frequency. However, only a single mode survives
under an engine order excitation of order n, which is clear by applying Theorem B.3

on page 192. Then the pth modal forcing term reduces to

N
e;)){f = Z IN (k“l)(P—l)fwn(k——l)
k=1

2l

(k—l)(n+1—1))

HM2

f

\/_
\/Nf, n+l—p=mN

_ (2.35)
0, otherwise

(m is an arbitrary integer), which shows that the force vector f is mutually orthogonal
to all but one of the modal vectors ey, that is, only a single mode is excited. Therefore,

given an engine order n € Z4 and since p € N, the excited mode is
p=nmodN + L. (2.36)
Finally, since (z — 1)@, +1 = ¢;, Equation (2.34) can be written as
g55(r) = 2#2 eI9iednIT e N (2.37)

which is recognized to be in agreement with the results of the previous section.
Indeed, the process described above is significantly more laborious than the direct
approach of the previous section, but many general features can be gleaned from
the analysis. The eigenfrequency characteristics are described next, followed by a
description of the normal modes in Section 2.4.4, and the system resonance structure

is detailed in Section 2.4.5.
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2.4.3 Eigenfrequency Characteristics

The dimensionless natural frequencies follow from Equation (2.32) and are given by

Op = :J—: = \/1 + 21/2(1 — cos<pp), peEN (2.38)

which clearly exhibit the effect of the coupling. For v = 0 we recover @p = 1, or
wp = wp in dimensional form, which was used to nondimensionalize the model in
Section 2.4.1. In this case the sectors are dynamically isolated and each has the same
natural frequency. For nonzero coupling (v # 0) it is clear that there will be repeated
natural frequencies, a degeneracy that is due to the circulant structure of K. This is

manifested in the cyclic term

cos pp = cos(gﬁ(p_1 ) = Re (wfv_l) , (2.39)

1

which can be obtained by projecting the powers of the N th roots of unity onto the real
axis. (See Figure B.1 on page 191.) Multiplicity of the eigenfrequencies can also be
visualized in Figure 2.5, which shows the dimensionless natural frequencies in terms of
the diametral components (that is, the number of nodal diameters) in their attendant
mode shapes versus the mode number p for weak and strong coupling and for odd
and even N. These cyclic features are now described in terms of mode numbers in
the sets Pgﬁv, P%,%V, and ’Pso\;g , which are defined in Table 2.2. A description of
the BTW, FTW, and SW designations of these sets is deferred to the next section.
The natural frequency corresponding to mode p = 1 € Pg‘;\l,a (zero harmonic of
Equation (2.39)) is distinct, but the remaining natural frequencies appear in repeated
pairs, except for the case of even N, in which case the p = (N+2)/2 € ’Pgw frequency
(N/2 harmonic) is also distinct. There are (N —1)/2 such pairs if N is odd, and these
correspond to mode numbers in PSTW and ’PIQTW, respectively. For even N there are
(N —2)/2 repeated natural frequencies corresponding to mode numbers in 'PETW and
'PETW. Finally, if k£ € ng%v then the mode number of the corresponding repeated

eigenfrequency is N +2 —k € PI%L%V.
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Figure 2.5. Dimensionless natural frequencies @, in terms of the number of nodal diameters
(n.d.) versus mode number p for weak coupling (WC) and strong coupling (SC): (a) N = 11
(odd) and (b) N = 10 (even). Also indicated below each figure is, for general N, the number
of n.d. at each value of p and also the mode numbers corresponding to standing waves (SW),
backward traveling waves (BTW), and forward traveling waves (FTW).
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Table 2.2. Sets of mode numbers p € N' = P |J PE, U P2, corresponding to standing
wave (SW), backward traveling wave (BTW), and forward traveling wave (FTW) normal
modes of free vibration for (a) odd N and (b) even N.

(a) Odd N (b) Even N
P =1 PSw = {LNQJL?}
,PgTW={p€Z+2SnSﬂ2+_l'} 'PgTw={p€Z+:2§n§%,-}

The normal modes of vibration are described next, and it will be shown that each

can be categorized as a SW, BTW, or FTW.

2.4.4 Normal Modes of Vibration

In Section 2.4.2 it was shown that Equation (2.21) can be decoupled via a unitary
(similarity) transformation involving the Fourier matrix E = [e},e9,...,ey] and as
a consequence e€p is the pth normal mode of vibration corresponding to the natural
frequency @p. In what follows these mode shapes are characterized by investigating
the free response of the sysem, and it is shown that they are of the SW, BTW, or
FTW variety.

The free response of the system in its pth mode of vibration can be described by
q(”)('r) = apepej‘:’l”', where ap is a modal amplitude and the natural frequency w,
is defined by Equation (2.38). (There will generally be a phase angle as well, which
is omitted since its presence does not affect the arguments to follow.) Noting that
element ¢ of ey, can be written as w®P-D0-1) = eiep(i=1) anq for i,p € N the free

response of sector ¢ can be written (in real form) as

ql(p)(‘r) = apcos (pp(i — 1) + wpT), (2.40a)

where Cp = @,/pp and the function ®x(x) is defined by Equation (2.16). Equa-
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Figure 2.6. A backward traveling wave a,®,(i — 1 + Cp7) = apcos(pp(i — 1) + @p7) with
amplitude ap, wavelength 27/, = N/(p — 1), and speed Cp = @,/ ¢p.

tion (2.40) is a function of continuous time 7 and it is discretized according to the
sector number 7. In this way, it is endowed with the same discrete temporal and con-
tinuous spatial duality that was described in Section 2.3.2 in the context of traveling
wave dynamic loading (engine order excitation). That is, it can be regarded as (1)
the time-response of individual (discrete) sectors, or (2) a continuous spacial variation
of displacements among the sectors that evolves with increasing time (i.e., a travel-
ing wave). The propagating waveform is strictly a BTW in the negative i-direction
(descending sector number) with wavelength 27/pp = N/(p — 1) and speed Cp, an il-
lustration of which is shown in Figure 2.6. However, depending on the value of p, this
gives rise to SW, BTW, or FTW mode shapes, a property that follows analogously
from the features described in Figure 2.3.

For the special case of p = 1 it is clear from Equation (2.40a) that each sector
behaves identically with the same amplitude and the same phase since ¢; = 0. An
additional special case occurs when p = (N +2)/2 if N is even. Then ¢y 90 =7
and each sector has the same amplitude but adjacent sectors oscillate with a 180-
degree phase difference. Hence the vibration modes p € Pé)v’\l,s correspond to SW

mode shapes whose characteristics can be visualized in Figure 2.3b and Figure 2.3d

33



by replacing the amplitude F' with ap. The remaining mode shapes correspond to
repeated natural frequencies and are either BTWs or FTWs. In particular, the normal
modes p € Pgﬁv (resp. p € P%Ev) are backward (resp. forward) traveling waves
and can be visualized in Figure 2.3a (resp. Figure 2.3c). If mode k € Pgﬁv is a
BTW corresponding to a natural frequency @, then the attendant FTW mode is
N+2-ke Pgﬁ,\, corresponding to Wy o ) = @

Figure 2.7 illustrates the normal modes of free vibration for a model with N = 100
sectors. In this figure, the extent of the radial lines represents sector displacements;
those appearing outside (resp. inside) the hub are to be interpreted as being positively
(resp. negatively) displaced relative to their zero positions. Modes 1 and 51 are SWs
and modes 2-50 (resp. 52-100) consist of backward (resp. forward) traveling waves.

Finally, the number of nodal diameters can be clearly identified in Figure 2.7. For

example, modes 4 and 98 feature 3 n.d.

2.4.5 Resonance Structure

In general, there may be a system resonance whenever the excitation frequency
matches a natural frequency, that is, if no = @, or nQ2 = wp in dimensional form.
These possible resonances can be conveniently identified in a Campbell diagram, an
example of which is shown in Figure 2.8a for a model with N = 10, v = 0.5, and
for engine orders n € N. (The general case of n € Z is considered below.) In this
figure, the natural frequencies are plotted in terms of the dimensionless rotor speed
and several engine order lines no are superimposed. Possible resonances correspond
to intersections of the order lines and eigenfrequency loci, and there are (N + 2)/2
(resp. (N + 1)/2) such possibilities for each engine order when N is odd (resp. even).
In light of Equation (2.35), however, there is only a single resonance associated with
each n under the traveling wave dynamic loading of Section 2.3 and it corresponds

to the mode number given by Equation (2.36). These are indicated by black dots in
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Figure 2.7. Normal modes of free vibration for a model with N = 100 sectors. Mode 1
consists of a SW, in which each sector oscillates with the same amplitude and phase. Mode
51 also corresponds to a SW, but neighboring oscillators oscillate exactly 180 degrees out
of phase. Modes 2-50 (resp. 52-100) consist of BTWs (resp. FTWs).
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Figure 2.8. (a) Campbell diagram and (b) corresponding frequency response curves for
N=10,v=0.5, f=0.01,andn=1,...,N.

Figure 2.8a and the corresponding frequency response curves are shown in Figure 2.8b
for a model with f = 0.01. For example, a 3 e.o. (resp. 7 e.0.) excitation gives rise to
a resonance of the 40 (resp. 8th) mode, which is a BTW (resp. FTW) with 3 nodal
diameters. (The TW and n.d. designations can be verified in Figure 2.5.)

The basic resonance structure shown in Figure 2.8a for n = 1,..., N essentially
aliases relative to the total number of sectors, in the sense that the excited modes for

n=mN+1,...,(m+1)N with m € Z4 are the same as those forn = 1,..., N. This
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Table 2.3. Condition on the engine order n € Z, to excite mode p € N for N = 10.

Excited Mode | Conditions on Engine Order n
1 mN = 10, 20, 30, . ..
2 1+mN =1,11,21,...
3 24+ mN =2,12,22,...
N-1 N-2+mN =8,18,28,...
N N-—-14+4mN =9,19,29,...

follows from the orthogonality condition given by Equation (2.35) and is manifested in
Equation (2.36), which gives a relationship for the excited mode in terms of the engine
order n and total number of sectors N. Since n > 0 by assumption (see Section 2.3)
the first mode (p = 1) is excited when n = mN = 10,20, 30, ... , the second mode
(p = 2) is excited whenn = 1+mN = 1,11,21, ..., and so on. Table 2.3 summarizes
these conditions for a model with NV = 10 sectors and the corresponding resonance
structure for n = N, ..., 20N is shown in Figure 2.9a. Each collection of resonance
points n = mN +1,...,(m+1)N is qualitatively the same in structure. However, for
m > 1 the resonances become increasingly clustered, which is shown in Figure 2.9b for
n=N,...,2N and in Figure 2.9¢c for n = 2N,...,3N. In terms of the sets defined
in Table 2.1 and Table 2.2, an engine order nmod N € NSOV;,E excites a SW mode
p € Pg\;\},‘:; . Similarly, an engine order nmod N € F’l’“sv (resp. nmod N € NF(?TEV

excites a FTW (resp. BTW) mode p € Pl?”rE\:v (resp. p € Pgri%, )

2.5 Vibration Absorbers

2.5.1 Introduction

When an engineering structure experiences unwanted levels of vibration due to peri-

odic excitations acting on its constituent parts it may be impractical (or even impos-
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Figure 2.9. (a) Campbell diagram for N =10, » = 0.5, f = 0.01, and n = 1,...,20N and
the corresponding frequency response curves for (b) n = N,...,2N and (¢) n = 2N,...,3N.
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sible) to change the makeup of the system to improve its vibratory characteristics, or
to change or eliminate the source of the excitation. In these cases tuned vibration
absorbers offer a possible solution.

The notion of a vibration absorber was introduced by Frahm [4] in a United States
patent in 1911, but it was Den Hartog [5, 6] who first carried out systematic studies
on tuned absorbers, including an optimal choice of parameters. Tuned vibration
absorbers are auxiliary components that are attached to a primary system to eliminate,
or otherwise reduce its steady-state motions. This is done through a particular choice
of absorber parameters, typically by setting the natural frequency of the absorber
close to the most problematic harmonic of the excitation. The absorber is said to be
ezactly tuned if these frequencies match identically; otherwise, the absorber is said to
be detuned.

We shall discuss two varieties of vibration absorbers: the classical frequency-tuned
dynamic vibration absorber (DVA) in Section 2.5.2 and the order-tuned centrifugal
pendulum vibration absorber (CPVA) in Section 2.5.3. The DVA, which is shown in
Figure 2.10a, relies on an elastic element for its restoring force, whereas the CPVA,
examples of which are shown in Figure 2.10b (circular path) and Figure 2.10c (general
path), employ the centrifugal field due to rotation of the primary system. Order-tuned

absorbers play a key role in this dissertation.

2.5.2 The Frequency-Tuned Dynamic Vibration Absorber

Here we highlight the classical theory of the frequency-tuned DVA due to Den Hartog
[6]. Consider the 2-DOF system shown in Figure 2.10a. It consists of a primary
system (M,C, K) that is harmonically excited by f(t) = foe/“t, where f, is the
strength of the excitation and w is its (constant) frequency, t is time, and j = v/—1.
When this primary system is isolated (i.e., when the absorber is not attached) it has

a resonance at wyy = /K /M (its undamped natural frequency), which is indicated
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Figure 2.10. Tuned vibration absorbers: (a) DVA; (b) Circular Path CPVA; (c) General
Path CPVA.
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by the dashed lines in Figure 2.11. A DVA subsystem (m, c, k) is attached to M and
its parameters are chosen to attenuate the vibratory response of the primary system
near w = wy. The undamped natural frequency of the isolated DVA is denoted by
wn = k/m.
The governing equations of motion for the composite system in Figure 2.10a are
given by
Mx + Cx + Kx = fe/*t, (2.41)

where x = (z, y)T and f = (fo, O)T are displacement and forcing vectors and

Mz[M 0}, c_|ote | K=[K+k —k}’

0 m —c c -k k

are the mass, damping, and stiffness matrices. Assuming harmonic motion, the steady-

state solution to Equation (2.41) follows in the usual way and, for non-resonant forcing,

is given by
o=
where 0
x - fo(k—mw +]wc)
r (2.43)
e fo (k + jwc)



are the steady-state amplitudes of the primary and absorber systems, respectively,

and
= (K +k—mw? +j(C+ c)w) (k - mw? +jcw) — (k + jew)?. (2.44)

We first consider a tuning strategy for the undamped DVA, that is, for ¢ = 0. It will
be shown that the undamped absorber can be designed to completely eliminate the
steady-state motions of M—independent of C—but that the resulting design is not
robust to frequency drift. It is then shown how this situation can be improved by

including damping in the absorber model.

ABSORBER TUNING: UNDAMPED DVA

In the absence of absorber damping (¢ = 0), the condition w? = k/m is sufficient to
eliminate steady-state motions of M, which is clear from the first element of Equa-
tion (2.43). Since we are interested in improving the response of the primary system

near its resonance w = wy = /K /M, the absorber should be designed such that

2

we = w12v = w% or W= — = ;, (245)

which is the absorber tuning. That is, the absorber is designed such that its natural
frequency matches that of the isolated primary system. This is accomplished by
choosing the absorber parameters m and k such that Equation (2.45) is satisfied.

If the undamped absorber is tuned according to Equation (2.45), then

X =0 }
(2.46)
Y = —fo/k

(independent of C) and the steady-state motions of the primary system are completely
eliminated. Under this tuning strategy the absorber oscillates out of phase with
respect to the excitation, which is clear from the sign of Y, and it exerts at all times
a force equal in magnitude to the applied force f(t). The resulting frequency response

of the primary system is given by the solid lines in Figure 2.11.
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Figure 2.11. Dimensionless amplitude of the primary system versus dimensionless exci-
tation frequency: effect of an undamped vibration absorber (¢ = 0) on the response of the
undamped primary system (C = 0).

From a design standpoint, there are two different ways to acheive the absorber

tuning:

1. If the allowable amplitude Y is prescribed, set k = |-f,/Y| = fo/Y (from
Eq. (2.46)). Then the required absorber mass follows from Eq. (2.45) and is

given by m = k/w?\, = (ﬁ-)M

2. If the absorber mass m is prescribed, set k = mw;"v = (ﬁ)K (from Eq. (2.45)).
Then the resulting absorber amplitude is Y and is given by Eq. (2.46).

In the first strategy the absorber is assumed to have a limited space in which to
operate and the designer is not at liberty to arbitrarily choose its mass. Conversely,
if the absorber mass is specified (typically it is made as small as possible), then the

corresponding absorber amplitude is automatically prescribed.

ABSORBER TUNING: DaMPED DVA

The undamped DVA just described is successful in that it removes the original res-
onance peak in the response of the primary system, but it does so at the expense

of an additional resonance, which is shown in Figure 2.11. This may be undesirable
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Figure 2.12. Dimensionless amplitude of the primary system versus dimensionless exci-
tation frequency: effect of a damped vibration absorber (¢ # 0) on the response of the
undamped primary system (C = 0).

for a machine that must pass through the first resonance in order to reach its steady-
state operating speed, and also if it exhibits significant frequency drift under normal
operation. The composite system can be made robust to these situations by includ-
ing damping in the absorber model. The basic idea is to first optimally detune the
absorber away from the perfect tuning given by Equation (2.45), which assures that
the two points shared by all frequency response curves of the composite system have
the same ordinate value. Then the absorber damping is adjusted to optimize the
two resonance peaks. Den Hartog [6] was the first to propose such an optimization
scheme, and the reader is referred to his work for details.5 See [67-69] for additional
work related to the optimum design of damped vibration absorbers. An example plot

of an optimally tuned system with a damped DVA is shown in Figure 2.12.

5The reader should note that Equation (3.24) on page 96 of [6] has a typographical error. The
damping terms should be (2(c/c.)g)?, not (2(c/c.)gf)?. This equation is correctly reported in [66].
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2.5.3 The Order-Tuned Centrifugal Pendulum Vibration Absorber

The classical frequency-tuned DVA of Section 2.5.2 is effective only at a particular
frequency and it works well for systems with steady operating speeds. However,
absorbers of this type are not suitable for many systems with rotating assemblies,
such as an automobile or jet engine, which are characterized by varying speeds and
forces that occur at orders of rotation [7]. Here we briefly highlight the essential
features of a centrifugal pendulum vibration absorber (CPVA) and indicate how it
can be tuned to a given order of rotation, rather than to a fixed frequency, and is
hence effective at all speeds.

The system shown in Figure 2.10b on page 40 captures the essential features of
a typical CPVA. It consists of a rigid rotor (primary system) with polar moment of
inertia J and radius R, which rotates about a fixed axis at O. The primary system
is harmonically excited by a torque of the form T'(t) = Ty, + Te?™¥, where T is the
strength of the fluctuating excitation, n is its order, t is time, §2 is the speed of the
rotor, and T, is the mean torque. A pendulum absorber of length r and mass m is
attached to the periphery of the rotor and its parameters are chosen to reduce the
torsional oscillations of the primary system.

An analysis similar to the one carried out in Section 2.5.2 for the frequency-tuned
DVA shows that the steady-state torsional oscillations of the rotor can be eliminated
completely by setting the undamped natural frequency of the absorber to that of
the excitation. A key difference, however, is that the absorber’s natural frequency is

proportional to the rotor speed [70]. That is,

wn = \/EQ
T

where 1 = {/R/r is defined as the linear tuning order of the absorber. This gives

AQ, (2.47)

rise to a tuning condition n = 7 (the so-called order-tuning) which is independent of

the rotor speed. In this way, the absorber tuning is effective over the full range of
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possible rotor speeds.

Similar statements can be made for the more general, arbitrary-path absorber
system shown in Figure 2.10c, which has been exhaustively studied by Shaw and
coworkers. The reader is referred to a wealth of existing literature for the theoretical

details [14, 18, 20-23, 25,27, 71, 72] and experimental validation [28-30, 73-75].

2.6 Concluding Remarks

An overview of relevant theoretical background has been given, including some mathe-
matical preliminaries, a detailed account of engine order excitation and its application
to a prototypical cyclic system, and on the basic operation and features of frequency-
and order-tuned vibration absorbers.

Key mathematical concepts were briefly stated in Section 2.2, including the Kro-
necker product, the Fourier matrix, circulant matrices, and the diagonalization of
circulants. This was done in a way that elicits ease of reference; a much more de-
tailed account of the required mathematical machinery is given in Appendix A and
Appendix B, including many of the proofs.

A mathematical model for engine order excitation was developed in Section 2.3.
It was described in terms of a discrete temporal variation of dynamic loading applied
to individual blades as well as a continuous spatial variation of the excitation strength
relative to the rotating hub, and the former was subsequently categorized as a BTW,
SW, or FTW. The essence of these two interpretations of the excitation is captured
in Figure 2.2.

A detailed account of the vibration characteristics of a generic linear cyclic system,
with nearest-neighbor elastic coupling, under engine order excitation was given in
Section 2.4, including a description of its rich eigenfrequency and resonance structures
for large engine orders. The essence of these features are captured in Figure 2.8 and

Figure 2.9.
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Finally, the basic theory of frequency-tuned dynamic vibration absorbers was
highlighted in Section 2.5 and this was compared to that of order-tuned absorbers. A
key feature in the latter is that the absorbers are tuned to a given order of rotation,
rather than to a fixed frequency.

Mathematical models are developed next for arbitrary-path, order-tuned absorbers

fitted to a bladed disk assembly under engine order excitation.
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CHAPTER 3

Mathematical Models

3.1 Introduction

A general mathematical model is developed for the bladed disk assemblies of interest
fitted with arbitrary-path, order-tuned vibration absorbers, from which a number of
specific models to be considered in subsequent chapters are distilled. The chapter
begins with a brief overview of typical modeling approaches in Section 3.2, includ-
ing motivation for the simplified lumped-parameter blade models to be employed.
The geometry of an arbitrary absorber path is then described in Section 3.3, which
forms a kinematic model for a general-path absorber, and the desired model for a
nominally-cyclic bladed disk assembly fitted with such absorbers is formulated in Sec-
tion 3.4. This general model forms the basis for all of the analysis to follow, and a
number of simplifications and reductions are carried out to put it in a more tractable
form. Specifically, the equations of motion for the case of circular-path absorbers
with motion-limiting stops are derived in Section 3.5, and these are subsequently lin-
earized for small blade and absorber motions and cast into a form that is employed
in Chapter 4. Reduction of the full nonlinear equations of motion via scaling and av-
eraging is deferred to Chapter 5, where the nonlinear system dynamics are estimated
for the case of a single isolated blade/absorber and for the cyclically-coupled system

with identical sectors. In these nonlinear models a specific two-parameter family of
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paths is employed, which is derived in Section 3.4.4. Finally, blade and absorber
damping levels are estimated in Section 3.6 and a summary of the models is given in

Section 3.7.

3.2 Modeling Approach

3.2.1 Absorber and Blade Models

For the applications of interest an absorber realization may consist of a spherical mass
that rolls on a machined path (or more generally a surface) relative to the primary
system, in this case a blade [76]. By ignoring the effects of rotational inertia, it can
be modeled by a mass particle that translates along a prescribed curvilinear path
relative to the blade. (Realistic absorber masses are very small relative to those of
the blades due to strict limitations on rattling space.) If in addition the absorber path
is circular, then it can be modeled by a simple pendulum attached to the primary
structure.

Accurate modeling of the bladed disk assemblies of interest, a typical represen-
tation of which is shown in Figure 3.1a, can be significantly more complicated due
to their complex geometries. The blades are characterized by significant transverse
curvature (camber), in addition to variations in thickness, width, and curvature along
their chordwise lengths. They are generally attached at their roots to the periphery of
a circular disk by means of, for example, a dovetail joint and the composite assembly
forms one stage in a turbomachine [77]. As our understanding of the dynamics of
such bladed disk assemblies has improved, so too has the level of sophistication of the
attendant modeling and analysis techniques. Typical models generally fall into three
basic categories and they are briefly presented below in order of increasing complexity,
both in terms of the dynamic phenomena that they are able to capture and in the

corresponding analysis.
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Blade

(a) (b)
Figure 3.1. (a) Finite element model of a bladed disk assembly (reproduced with per-
mission from [3]); (b) General cyclic system with N identical cells and nearest-neighbor
coupling.

The first and undisputedly simplest models assume lumped parameters and essen-
tially consist of a cyclic chain of nominally identical oscillators [36,47, 58, 78-80]. (See
Figure 3.1b.) The analysis involved with such models is relatively simple, especially
if one assumes that each sector is identical, i.e., that the structure is perfectly cyclic.!
Then the fully coupled system can be reduced to a set of reduced-order models via a
transformation based on its cyclic symmetry, similarly to the way it was done in Sec-
tion 2.4.2. This often offers significant insight into the overall system behavior, even
if a very small number of DOF is employed. While these models are very attractive
due to their simplicity and are able capture some very rich dynamics of cyclically-
symmetric structures, they do have serious limitations. Clearly, one cannot expect
to capture all of the complicated mode shapes of the actual system, such as plate-
or shell-type modes of the hub. Moreover, parameter identification can be extremely

difficult if it is desired to use such models to predict specific behavior in an actual

ISuch a structure is said to be perfectly tuned. When there are small differences among the
sectors, due to material tolerances, in-service wear, and so on, the structure is said to be mistuned.
This designation is not to be confused with i ional under- or tuning of the absorbers, which
is referred to as detuning. (See Section 4.4.)
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structural system [36].

The second type of models employ distributed-parameter elements and are there-
fore able to satisfactorily capture more complicated normal modes, including those
that involve flexure of the rotating hub, but at the expense of a significantly more
involved analysis [9,81,82]. For example, the transverse blade vibrations may be
captured by cantilevered beams, provided that the disk is sufficiently stiff and the
blades are sufficiently long relative to the hub dimensions (large aspect ratio). Clas-
sical beam theory breaks down for smaller aspect ratios but can be replaced by a
more general shell theory. Again, while such an approach offers higher-fidelity mod-
eling, it is accompanied by more difficult and expensive analyses by means of, for
example, Rayleigh/Ritz/Galerkin methods, variational techniques, transfer matrices,
finite elements, and numerical methods [77].

Finally, the third modeling approach involves a full finite element representation
of a real bladed disk assembly [3,83-86], such as the compressor stage shown in
Figure 3.1a. A finite element model is typically generated for only one sector and, as-
suming that all sectors are identical, cyclic symmetry can be used to calculate the free
and forced response much more efficiently than by modeling the entire system. While
this approach offers the highest-fidelity modeling, the computation involved can be
prohibitively high. This is especially true for large industrial stages with complicated
geometry or if mistuning is included, which causes possibly drastic changes in the
dynamics due to a disruption of the cyclic symmetry. Many realizations of randomly
mistuned rotors must be run in order to accurately assess the full statistics of the
blade response. This is generally not feasible due to the size of an industrial finite
element model of a bladed disk, which can run into the millions of DOF. However,
advanced reduced-order modeling techniques have been developed by Pierre et al. and

others since the 1990s [85-89], which offer a more tractable finite element analysis.
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3.2.2 Motivation for Lumped-Parameter Blade Models

The aim of this dissertation is to investigate the performance of centrifugally-driven,
order-tuned absorbers to attenuate vibrations in cyclic rotating flexible structures sub-
jected to traveling-wave dynamic loading. These two classes of systems are special
cases of systems of vibration absorbers and nominally cyclic systems, respectively,
both of which have been extensively studied in many contexts and, taken individu-
ally, each forms a very mature body of research. However, at the time of writing
there have been no systematic analytical treatments of vibration absorbers applied
to nominally cyclic systems, and it is thus appropriate to begin such an effort with
simplified, lumped-parameter models. In what follows, a number of such models are
developed, the analysis of which forms the remainder of this thesis. The applications
of interest are rotating flexible structures—bladed disk assemblies in particular—and
the work is carried out in this context, though the methodology and results should
also be applicable to address vibration issues in other systems with nominal cyclicity.

A kinematic model for the absorbers is developed first by quantifying the geometry

of an arbitrary path.

3.3 The Geometry of an Arbitrary Absorber Path

This section describes in general terms the geometry of the absorber paths, which
prescribe their positions relative to the primary systems, or blades. Key results are
relationships among the path variables, which are described in Section 3.3.1 and an
expression for the tangent angle of each path, which is given in Section 3.3.2. These
are employed in Section 3.4, where the equations of motion for a bladed disk assembly
fitted with general-path absorbers are derived.

Consider the it" general path shown in Figure 3.2. It can be described relative

to a basepoint O by the radius vector R;(S;) = Ri(Si)éf, where S; is the arc length
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along the path relative to an origin at its vertex V. The angle subtended by S; is
denoted by 9¥,(S;) and the distance from the basepoint to the path vertex is given
by R;(0) = R,; = a;L; + d;, where «; and L; are defined in Section 3.4 and d; is
the local radius of curvature at V. Physically, the absorbers may have rattling space
limits, which are denoted by +S,;, and in such cases their displacements are restricted
such that |S;| < S,;. The path could also be described in terms of the length p; and
angle ¥;. A circular path is obtained by restricting p; = d; = constant, which is
indicated by the dashed lines in Figure 3.2. Finally, the paths are generally assumed
to be symmetric about their vertices at S; = 0 implying that R;(S;) = R;(—S;), i.e.,
that each R;(S;) is an even function in S;. However, this assumption is formally
introduced in later developments when specific paths are chosen for the analysis. In
what follows, there are no assumptions built into the absorber paths other than their
gross placement relative to the blades.

Relationships between the path variables R;, S;, and ¥; are derived next and
R

the angle ¢; between the radius and tangent unit vectors &;* and é;s is subsequently

quantified. We draw liberally from the development in [90].

3.3.1 Fundamental Relationship Between Path Variables

Let P be an arbitrary position along the general path corresponding to R;, S;,v; > 0
and let Q correspond to R; + 8R;, S; +6S;, and 9; + 89;, where 8 R;, 8S;,89; > 0 are
small additional increments. Then relationships between the path variables can be
obtained by considering the triangle PQM in Figure 3.2. If 8¢; = PQ, it follows from
(PQ)% = (PM)2 + (MQ)? that

5¢;\2 ([, sind®\?  (8R; _ sin(89;/2))?
(6_’(91) = (Rz’—éﬂl ) + 6_29.l'+Rlen(5l)l/2) 61_91/2 s
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Figure 3.2. Geometry of a general absorber path.
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where we have divided through by (89;)2. Then
85\ _ (85:8a Y’
519,; B 5Ci 6?91:
_(88:\? sind9;\>  [6R; , sin(89;/2) \?
-(32) [(R‘_&T) (G + R ) |
In the limit as Q — P (that is, J; — 0) it follows that
dSi\? _ elip e, (4R o 2
(%) - [(&(1)) + (G4 ROM) |

or

(dS;)? = (Ryd¥;)? + (dR;)%. (3.1)

Equation (3.1) gives the fundamental relationship between the path variables S;, R;,

and 9;. By dividing through by (d9;)? and (dS;)? the equivalent expressions

i N\2
% ={[R?+ (%) : (3.2a)
[ 1
_ @i _ dR;\?
ro=rd - o (42, a2

easily follow, which are employed in the next section and elsewhere in the thesis. In
light of their frequent appearance in the subsequent analysis, the expressions appear-
ing in Equation (3.2b) are denoted by I';. Then the angle subtended by S; is given
by the integral

P B V1%
Ui(Si) = 0 mdx- (3.3)

Next the angle between the unit vectors élR and éls is quantified.

3.3.2 Angle Between Radius Vector and Tangent

In Figure 3.2 consider the ratio

in89;
g MP_ Resngh i/ 64)
' MQ R +2R;sin?(89,/2)  SRiyop, sin(&%/?)J—L—M“g,gl?/‘z/2 ’
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where MP = R, sin 4, has been employed and also

MQ =0Q -OM
= R; + 8R; — R; cos bY;
=0R; + R;(1 — cos 89;)

= 8R; + 2R; sin®(89;/2).

In the limit as Q — P (that is, 8J; — 0), J; — ¢; and it follows from Equation (3.4)

that

tang; = 25‘llgi.m 0 tan (3;
l—)

_ R
G+ 2R,(0)(1)

d;
= RIIR’L—a

(3.5)

which is an expression for ¢; in terms of R; and ;. Expressions for sing; and cosg;,

which will be needed in subsequent sections, can be obtained as follows. Consider

dsS;  dS; dv; o (dR;\? dv;
- — o R2+ (4L from Eqn. (3.2
dR; _ d9; dR; \/RZ *\@,) 4R (from Eqn. (3.2a))

_ R (Y @-9&)2
V&) + (@
dv; \?
=\/ b+ (mg)
=1/1+ tan2g; (from Eqn. (3.5))

= secs; = 1/ cosg;.

From this result, together with Equation (3.5), it follows that

d9; dR; _
'dR; dS;

dv;
ds;’

R;

sing; = tang;cosg; = R
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To summarize, and in light of Equation (3.2b),

, dv; dR; \?
[:=s P » St == .
; = sing; a5, 1 (dS,-) , (3.7a)
d .

cosg; = d—g{:’ (3.7b)

19.
tang; = R,-gﬁz_, (3.7¢)

1

which relate the path variables R;, S;, and 9J; to the angle ¢; between the unit vectors

&R and &7
We now turn to a derivation of the governing equations of motion for a bladed
disk assembly fitted with general-path absorbers, from which a number of specific

models are distilled.

3.4 Bladed Disk Assembly Fitted with General-Path Ab-

sorbers

In this section an idealized mathematical model of a bladed disk assembly under en-
gine order excitation is systematically developed. Each blade on the rotating assembly
is fitted with a centrifugally-driven, order-tuned vibration absorber and the governing
nonlinear equations of motion for the overall coupled system are derived. The anal-
ysis to follow in subsequent chapters is carried out for the case of perfect symmetry
among the sectors, implying identical blade and absorber models, and for a specific
family of absorber paths. However, the equations of motion are derived for the gen-
eral case of nominal cyclicity and arbitrary-path absorbers, a model that is amenable
to ongoing work on, for example, the effects of parameter mistuning and it allows
for the eventual investigation of various path geometries. The model is described in
Section 3.4.1, followed by the development of the system kinetic and potential energy
in Section 3.4.2. The general nonlinear equations of motion are subsequently derived

in Section 3.4.3 by employing the method of Lagrange and a particular two-parameter
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Figure 3.3. Lumped parameter model of a rotating bladed disk assembly.

family of paths, which are employed in Chapter 5, is described in Section 3.4.4.

3.4.1 Lumped-Parameter Model

An idealized, lumped-parameter model of a rotating bladed disk assembly is shown
schematically in Figure 3.3. It consists of a nominally-cyclic array of N blades, and
each is modeled by a simple pendulum of length L; and mass M;. These are uniformly
attached around the periphery of a rigid disk of radius H, which rotates at a constant
speed () about a fixed axis through C. The single-mode flexural stiffness of blade ¢
(the ith primary system) is modeled with a linear torsional spring of stiffness kf, and
the elastic inter-blade coupling (due to shrouds, aerodynamic effects, and so on) is
captured by linear springs of stiffness k. As indicated in the sector model shown
in Figure 3.4, the coupling springs connect adjacent blades at a distance b (radially
along the blade lengths) relative to their attachment points to the rotor. It is assumed
that the springs are unstressed when the blades are in a purely radial configuration,
that is, when 6; = 0 for each i € N.

The blades are fitted with nominally identical vibration absorbers, which essen-

tially consist of particle masses m; (typically each m; <« M;) riding on user-specified
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Figure 3.4. Sector model of a bladed disk assembly fitted with a general-path absorber.
The mathematical details of the absorber path are given in Section 3.3.

paths. In what follows the equations of motion are derived for arbitrary paths, and
then specific paths are chosen for the analyses in subsequent chapters. Figure 3.4
shows a schematic of the it blade fitted with a general-path absorber, which to-
gether with a portion of the rigid disk composes the it? fundamental sector. If we
require that point O in Figure 3.2 coincides with the attachment point of blade i to
the rotor, and that the unit vectors é{' and éf are aligned and rotate with the blade as
shown in Figure 3.4, then the mathematical details for the it* absorber path are given
in Section 3.3. Loosely speaking, the absorbers are said to be “centered” a distance
o; L; radially along the blade pendulums. Then ¢; is the dimensionless distance from
the blade base point O to the absorber “attachment” or “base” point N.

There are a number of ways to model the system damping, but in light of the
inherently small levels encountered in practice the details are not crucial. (It is ac-
knowledged, however, that modeling and quantifying these details in actual structural
systems and absorber implementations can be quite challenging.) For the purposes
of this study it will suffice to employ simple linear viscous damping models; the blade

and inter-blade damping is captured by linear torsional and translational dampers
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(not shown in Figure 3.3 or Figure 3.4) with constants ci-’ and c{, respectively. The
effective translational absorber damping constant is denoted by c?, where a bar has
been added to the superscript a to distinguish it from the torsional damping constant
c? to be employed in the linearized model in Section 3.5. Further comments on damp-
ing are given in Section 3.6, including estimates of realistic damping constants and
an approximate (resp. exact) relationship between c? and ¢ for the case of general
(resp. circular) paths.

Finally, the primary systems (blades) are harmonically excited in the transverse
sense by engine order excitation of order n and the model described in Section 2.3, that
is, Equation (2.14) is adopted for this purpose. Consideration of all possible engine
orders can be somewhat cumbersome, since one must not only distinguish between
odd and even n in the analysis, but also how certain order-dependent features alias
relative to N [91-94]. These additional complications were revealed in the analysis
of the generic cyclic system in Section 2.4. In order to eliminate some of these
details, and to focus on a particular absorber tuning strategy, the engine order is
restricted such that 0 < n < N throughout the remainder of this work, though it
is possible for n > N in practice. This does not qualitatively affect the approach
nor the conclusions.? The case of noninteger n € Ry is non-physical for bladed disk
assemblies under engine order excitation, but it is of academic interest and may be
possible in other systems. This situation and its implications in cyclic systems is

treated briefly in Appendix C.

2The reader should note that the effect of large engine orders, specifically those greater than N,
can be directly inferred from the results of Section 2.4.
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3.4.2 Kinetic and Potential Energy
The total system kinetic energy is that of the /N blades and their attendant absorbers

and is given by

1 1
T =53 Myllupl? + 5D mpllvpl® (38)
p=1 p=1
where | - || denotes the vector norm and

u; = HQ & + Ly(Q + 6;)&Y N
, ?

vi = HQ&d + Ry(Q + 6,)&Y + 5,87
are the absolute velocities of the it" blade and absorber masses, respectively. The unit
? and é? are mutually orthogonal, as are the vectors é? and é;g , and these

are defined in Figure 3.2 and Figure 3.3. (See also Figure 3.4.) Physically, HS2 é? is

vectors €

the velocity of the it blade basepoint relative to the hub center C and L;(Q + 9,’)éf
(resp. R;(Q+ éi)é? + S"ié;g ) is the velocity of the it? blade mass M; (resp. absorber

mass m;) relative to O. The corresponding speeds are given by

lwll = H2Q2 + L3 (Q + 6;) + 2L, HQ(Q + ;) cos 6;, ieN
Ivill = H2Q? + R2(Q + ;)% + $?
+ 2HQR; (Q + 6;)cos(6; + 9;)

+2HQS; (I‘i cos(0; + ;) + Z—};l sin(6; + 192~)>

1

+ 2R; (9 + 6;) T, ieEN
where the inner products
é? . éf = cosb; W
é? éf = cos(6; + ;) > .
é? é;q =T cos(6; +9;) + —1 sin(6; + 9;) , l
1
& . e’ =T J
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have been employed, as well as the expressions given in Equation (3.7).

Ignoring gravitational effects, the system potential energy arises only from the
flexural stiffness of the blades (linear torsional springs) and elastic coupling (linear
coupling springs) among the sectors. It is given by

N
Z kbo2 + Z KSb2(0p11 — 6p)?, (3.9)

p—l
where 01 = 6;. The coupling elements k{ are meant to capture only the basic
pliancy between adjacent blades and hence their nonlinear kinematic contributions
have been neglected in Equation (3.9). This approximation is done independently of
any assumptions on the blade amplitudes and does not imply small (linearized) blade
motions.

Next the governing nonlinear equations of motion are derived.
3.4.3 Equations of Motion

DIMENSIONAL FORM

The equations of motion are derived by employing Lagrange’s method with the gen-

eralized coordinates ql(a) = §; and qu) = @; for each i € N. They follow from

%( a-ﬁ))* ax)_ aﬁﬁ@“» ieN, k=ab (3.10)
94; 0q;"  9q;

where the kinetic and potential energy terms T and V are defined by Equation (3.8)
and Equation (3.9). The " set of generalized forces arise from the engine order

excitation and linear viscous damping. They are

Q¥ = -5,
ieEN (3.11)

~

Q™ = —cb0; — ¢¢_1b(6; — 6;1) — c§b(6; — 6141)

+ BRI S; + FoLjel%iel™Y
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where F, and n are the strength and order of the excitation. Then the governing
equations of motion for the it" sector follow from Equation (3.10) and take the form
. . dR: .
m;S; + m; R0, + C?Si - TI"L,'RI'-&??(Q + 9,‘)2
1

+ m; HQ? (Fi sin(6; + ;) — Z—?— cos(6; + 191)> =0, ieN (3.12a)
1

M;L26; + %6; — R;T;S; + k0; + M;L; HQ? sin 6,
R%0; + R;T;S; + 2R,-d—];fs,-(n +6,)
. 1
o d(R;T;)

N —WSE + HQ2R; sin(0; + V)

+¢§_1b(0; — 0;—1) + cSb(0; — 6i11)

+ k{1620 — 6im1) + KB (6; — Big1) = FoLie%ie/™¥, i€ N (3.12b)

which describe the absorber and blade dynamics, respectively. The subscripts on the
blade angles are taken mod N here and in all subsequent sections such that 8,1 = 6;
and 6y = 6y, which are cyclic boundary conditions implying that the Nt blade is

coupled to the first.

DIMENSIONLESS FORM

It is desirable to work with a dimensionless form of the governing equations. This is

done by restricting L; = L, M; = M, and ki’ = ky, for all ¢ € N and rescaling time

. ky/L?
wo = |/ i (3.13)

is the undamped natural frequency of a single isolated blade (without an absorber)

according to 7 = wet, where

with zero coupling (k{ = 0) and zero rotor speed (2 = 0). Then if s; = S;/L
and r; = R;/L denote the ith nondimensional arc and radial lengths, respectively, a
dimensionless form of the equations of motion follows by dividing Equation (3.12a)

(resp. Equation (3.12b)) through by the inertia term Mng (resp. ML2w(2,). They
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are

= dr;
pisy + i) + €1 sy — piri— as; (o +6;)2

+ pido? (I’i sin(6; + v;) —

dr
-ds—l- cos(6; + 191-)> =0, ieEN (3.14a)
1

6 + £b9/ E8riTysh +60; + o2 sin 6,

dr;
T?G:' + [y s ' + 271——-—5 (0 +86)

ds;
o d(r;I';) .
+ s 'sh+ 602r;sin(f; + V;)
1
+&_1(0; = 0;_1) + &0 — 0i11)
+ Vz‘2—1(0i - 91'_1) + 1/12(91' — 9i+l) = Fejoiej”gr, ieN (3.14b)
where ()’ = d(-)/dr and it follows from Equation (3.3) and Equation (3.7a) that
8; 1"
nis = [ My, (3.15)
0 Ti(x)
dri\?
Ti(s) = 1/1— (i) : (3.16)
ds;

The dimensionless parameters appearing in Equation (3.14) are defined in Table 3.1
and the nondimensional distance from the blade basepoint O to the path vertex V is
denoted by 7, = r;(0) = a; + 7; (dimensionally Ry; = a;L + d;). It should be noted
that actual selection of parameter values is application-specific. The reader is referred
to [34] for an example discussion on how to map physical experimental parameters
onto these nondimensional parameters.

There are no assumptions pertaining to the absorber paths in the nonlinear models
described above, other than their gross placement relative to the blades. In the
next section a specific two-parameter family of paths is derived and these are used
to investigate the basic effects of nonlinearity on the absorber performance. The

equations of motion are derived for the case of circular absorber paths in Section 3.5.
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Table 3.1. Selected list of dimensionless variables and parameters.

Parameter Description

i

Hi

o;

¥i

FoL/ky Strength of the engine order excitation (nonlinear models)

FoL/kpo Strength of the engine order excitation (linearized model)

= 1;(0) = a; +7; Radial length from blade base point O to path vertex V

R;/L Radial length from blade base point O to ith absorber at P
S;/L Arc length from path vertex V to it? absorber mass at P
6;/Vo Normalized blade angle

Ui [¥o Normalized absorber angle (circular path)

Distance from blade base point O to absorber base point N

v &'{CL—2 Distance from blade base to coupling spring attachment pt.
d;/L Length of " absorber pendulum (circular path)

H/L Radius of the rotor disk

m;/M ith absorber mass

C
Wi fwo = \/ 5/152 Strength of coupling between blade 7 and blade ¢ + 1

2r (i — 1) it" inter-blade phase angle
2’—'“)%——12 Angle subtended from sector 1 to sector ¢
Wot Time

Angle subtended by S;

2 /L? : : :
Gl it" absorber (torsional) damping constant
(kp/L2)M

c‘?/L?'

ith absorber (effective translational) damping constant
(kp/L2)M

i

b/r2
/L ith blade damping constant
;/ (kp/L2)M
b\2 c§ th . .
(Z) i coupling damping constant
(kp/L2)M
= Q/wo Angular speed of the rotor
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3.4.4 A Generalized Two-Parameter Family of Paths

In what follows, a two-parameter family of paths is derived in terms of linear and
nonlinear tuning parameters, which will serve as the fundamental absorber design
variables in the subsequent chapters. The basic idea is to assume an expanded form
of each absorber position relative to its basepoint, which is captured by the radial
lengths 7;(s;). In doing so, only even terms are included such that the paths are
symmetric about their vertices. The expansions are introduced to the full nonlinear
equations of motion and, by restricting zero blade motions relative to the rotating hub
and appropriately truncating nonlinear terms, a set of well-known nonlinear systems
results. These reduced systems depend only on the absorber dynamics and they
motivate the selection of two tuning parameters. The first parameter sets the linear
absorber tuning order (a topic that is more fully described in Chapter 4) by setting the
path curvature at its vertex. The second parameter prescribes the nonlinear tuning
by varying the curvature along the path, and can be thought of as the strength of the
path nonlinearity. Proper selection of this parameter is motivated in Chapter 5.

In what follows, each absorber path is assumed to be identical and identically

fitted to the blades by imposing a; = a and «; = v for all i € . Then
Toi =To=a+"7, VieN (3.17)

represents the dimensionless distance from the blade basepoint to the path vertex.
By restricting 6; = 6, = 6. = 0, Equation (3.14a) reduce to

ds; ds;

which describes the nonlincar absorber dynamics for the desired case of zero blade

motions relative to the rotating hub. Next the dimensionless radial length r;(s;) is

expanded according to
r?(s;) = bg + bas? + bysf + O(s?), (3.19)
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where only even terms are considered since r;(—s;) = r;(s;) is even by assumption.
Each has the same constant coefficients, implying that all of the paths are identical.
Since 7o = a+7 = r;(0) = /by the first parameter in Equation (3.19) is automatically
prescribed and is given by by = rg = (a+%)?, and the remaining parameters by and by
are to be specified. Substituting Equation (3.19) into Equation (3.18) and expanding
in s; yields

s+ 7%02s; + 7]025%3 + (’)(s?) =0, (3.20)

(bg — 1)2 + 12b0b4)
= —2by — )
e ( 6b0v/bo

are defined to be the linear absorber tuning order and the nonlinear absorber tuning

where

parameter, respectively.

Equation (3.20) is recognized to be a standard undamped and unforced Duffing os-
cillator, a comprehensive treatment of which can be found in most texts on nonlinear
systems [95-97]. For small amplitudes the nonlinear term can be neglected and the os-
cillator exhibits free harmonic motions with frequency 7nio. It is well-known that linear
tuning of the centrifugally-driven absorbers under consideration can be accomplished
by setting the absorber tuning order 72, which depends on the absorber placement and
system geometry, relative to the order of the excitation n [10]. When these match
identically, and in the absence of damping, a complete elimination of vibrations of
the primary system is possible, which is shown systematically in Chapter 4 for the
models described above. For larger motions the nonlinearity in Equation (3.20) be-
comes important and the oscillations become amplitude-dependent. In the context of
absorber path design, therefore, the nonlinear tuning parameter 7 is used to modify
the absorber behavior without compromising the small-motion linear tuning 7 =~ n.

When 7 > 0 the response is hardening, and it is softening for n < 0. Finally, the
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Figure 3.5. A generalized family of absorber paths defined by Equation (3.19) for o = 0.84,
6 =0.67, 7 =3 (y=0.168 and r, = 1.008), —0.47 < s; < 0.47, and for a range of nonlinear
tuning from softening to hardening: n = —20, —10, 0, 10, 20.

coefficient terms in front of § in Equation (3.21) appear since the absorber paths are
measured from the base of the blade, and not from the center of the rotor as it is
done in the CPVA work by Shaw and coworkers [14].

The remaining expansion coefficients by and b4 can be obtained from Equa-
tion (3.21) in terms of the system geometry and the linear and nonlinear tuning

parameters 7 and 7. To summarize,

)
by =1y
5—’&27‘0
by = ——2
2= e ® (3.22)
R S
YT TR0 ) 20+10)

where 1, is defined by Equation (3.17). An example plot of the generalized family of
absorber paths defined by Equation (3.19) is shown in Figure 3.5 for a particular blade
geometry and absorber design and for a range of nonlinear tuning from softening to
hardening.

Next we consider a special case of the equations of motion in which circular-path
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absorbers are employed.

3.5 Bladed Disk Assembly Fitted with Circular-Path Ab-

sorbers

In what follows, the nonlinear equations of motion for a nominally cyclic bladed disk
assembly fitted with circular-path absorbers are deduced from the general system
given by Equation (3.12). These are linearized for small blade/absorber motions
in Section 3.5.2 and subsequently modified to account for physical rattling space
limitations of the absorbers. The resulting mathematical model is employed in the

linear analysis of Chapter 4.

3.5.1 Equations of Motion

Consider the sector model shown in Figure 3.6, which features the same pendulum-
like blade model described in Section 3.4. In this case the blades are fitted with
circular-path absorber pendulums of mass m; and radius d;, the motions of which are
described by the angles ¥;. (The angles ¥»? correspond to motion-limiting stops, which
are incorporated into the equations of motion in the next section.) The governing
equations of motion for the overall system could be derived from this model in the
usual manner via the method of Lagrange. However, it will be more convenient to
deduce them from the general results of Section 3.4 by restricting the arbitrary path
shown in Figure 3.2 to be circular.

By restricting each p; = d; to be constant the general path shown in Figure 3.2

(solid line) reduces to a circular path (dashed line). Then S; = d;v; for all i € N and
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Figure 3.6. Sector model for a bladed disk assembly fitted with circular-path absorbers
with limited rattling space.

it can be shown that

)
R? = 0112[/22 + dl2 + 2d;a; L; cos v,

R;sin¥; = d; siny;

Rjcos¥; = oy L; + d; cos i;

? ieN (3.23)
R,I'; = a;L;cosvy; + d;
d(Ri[i) _  aiLisiny;
ds; d;
dR; .
Ri dS: = —a,-L,- sin l[/,‘ )

which relate the general-path variables R;, S;, and ¥; to the circular-path angle ;.
The expressions given in Equation (3.23) can be employed to deduce the circular-
path equations of motion term-by-term from Equation (3.12), the results of which
are summarized in Table 3.2. For the proposed circular-path model it is natural
to express the absorber damping in terms of a torsional viscous damping constant
instead of the effective translational representation of Section 3.4. The generalized

forces are re-formulated to account for this and are given by
)

an) = —c%y;

QP = —b; — cf_1b(6: — 6i-1) — c5b(6; — bi1) teN (3:24)

~”

T By + FyLyel%iein9t

69



where ¢ is the torsional damping constant for the ith absorber and is not to be con-
fused with c?. (These are implicitly related in Section 3.6.) The desired equations of
motion follow from Equation (3.12) by performing the substitutions given in Table 3.2
and by employing the re-formulated generalized forces given by Equation (3.24). For

i € N they are

mid? (91 + l,[)l) + C?lj)i + mid,-HQQ Sill(ei + l/),)
+ midiaiLiéi cosy; + mid;a; L; (Q + 91)2 siny; = 0, (3.25a)

M;L26; + cP0; — <29y + k20, + M;L;HQ? sin 6

[ a?L?éi +d12 (01 + wl)

+d;o; L; (¢l + 292) cos Y;

—d;a; L; (’(,/)22 +2(Q + 91)’1/11) sin ¥;
+HQ?(a; L sin 0; + d; sin(8; + 1;)) i

+¢§_1b(6; — 6;1) + c§b(6; — 6,11)

+ kS 02605 — 6i_1) + kS0P (6; — 0;41) = FoLied®ied™¥. (3.25D)

In the next section these are linearized for small blade/absorber motions and are
modified to account for limited absorber amplitudes imposed by the geometry of the

blades.

3.5.2 Linearized Model with Restrictions on the Absorber Amplitudes

In any realistic physical implementation the absorber amplitudes will be restricted by
the blade geometry and this is captured by the motion-limiting stops in Figure 3.6,
where v represents the limiting angle of the ith absorber. Impacts occur whenever
|¥i] = %2, the dynamics of which have been investigated in [34,98] for the case of
a single isolated blade/absorber combination. This feature is included for generality
but will not be directly exploited in the analysis of Chapter 4, where it is assumed

that |+;| < ¥ throughout.
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Table 3.2. Selected terms in the general-path equations of motion given by Equation (3.12)
and their counterparts for the case of circular-path absorbers.

General Path Term Circular Path Term

m;S; m;d;

m; R;T16; mg(a; g cos v + d;)b;
—miRi%%(Q+9i)2 mia; L (Q +9i)2sinwi

m; HO2 (ri sin(f; + 9;) — T3t cos(6; + 19,-)) m; HOZ sin(6; + ;)

m,-R?é,- 'rni(azle2 + d? + 2d;0; L; cos ¥;)b;
m; R;T;5; m;d;(d; + ;L cos ;)
2miRi%5'i (Q+46) —2m;d;o; Li (L + ;)9 siny;
m,ﬂgg.?ﬁsf —midiaiLid')iz sin 9

m; HQ2R; sin(0; + V) m;HQ?(0; L sin 0; + d; sin(0; + ;)

Equation (3.25) is linearized for small blade and absorber motions and is made
dimensionless in the same way as it was done in Section 3.4.3. The absorber and blade
motions are subsequently scaled according to z; = 0;/v, and y; = ¥; /¢, where each
¥? = o has been assumed to be identical, and thus impacts correspond to ly;| = 1.

Then by dividing through by %, the dynamics of the ith sector are governed by
w2 (] + yll) + €5 + mivido?(zi + i) + pimoi(zf + 0%y) =0, i€ N (3.26a)

o+ €0l — €] 4 3, + o,
afe] +77 (] + ) + oy +217)
+ Ky 2 2
+a;d0°T; + 100 (i + y;)
> g / !
+ gf_l(xg - xé_l) + &z — Tit1)

2 (i — i) + V(T — zig) = feI9eI™T i€ N (3.26b)

where the dimensionless parameters are defined in Table 3.1. Equation (3.26) forms
the basis for the linear analysis of Chapter 4.
Estimates for the blade and absorber damping constants are developed next in

addition to a relationship between the nondimensional torsional and effective transla-
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tional absorber damping constants &, and &g.

3.6 Estimates of the Dimensionless Damping Constants

As a guide to sensical parameter selection in numerical simulations, approximate
expressions for the blade and absorber damping constants &, and €, are formulated
in terms of their respective damping ratios. These can be obtained by considering the
free vibration of an isolated blade/absorber combination when the absorber is locked
in place and from the free response of an absorber when the blade is locked relative
to the rotating disk. The linearized model of Section 3.5.2 is used for this purpose.
A relationship between the torsional absorber damping constant &, and the effective
translational damping constant £ is also derived. In all of what follows identical
sectors are assumed.

Consider the special case when the absorbers are locked in their zero positions
relative to the blades. In the absence of coupling (i.e., only an isolated sector is consid-
ered) the corresponding linearized equation of motion follows from Equation (3.26b)

by setting y = ¥’ = y” = 0 and it can be expressed as
(1+ pla+7)2)z" + &z’ + (1+ (1 + pla+ 7))do?)x = feI™. (3.27)

In practice the absorber-to-blade mass ratio is very small and centrifugal stiffening
has a negligible effect on the blade natural frequencies. By restricting 4 = 0 and

o = 0 it thus follows from Equation (3.27) that

& = 2pp, (3.28)

where pp, is the blade damping ratio. Damping levels in the blades can be 0.1% or
less relative to critical, which gives rise to the approximation &, = 0.002.
A similar calculation can be carried out for the absorbers. When the blades

are locked in their zero positions relative to the rotating disk the absorbers become
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dynamically isolated and their linearized dynamics are governed by

" + €t + pyv(a + 8)o’y =0, (3.29)

which follows from Equation (3.26a) with z = 2/ = z” = 0. By employing the

equivalent mass, damping, and stiffness terms in Equation (3.29), one can obtain
€ = 21y*70pa, (3.30)

where n = /(a + d) /7 is the linear absorber tuning order (this is discussed more fully
in Chapter 4) and p, is the absorber damping ratio. As discussed in the forthcoming
chapters, we will be interested in the system dynamics for absorber tuning n close
to the engine order n and also near resonance conditions, which correspond approxi-
mately to 0 = 1/v/nZ — 6 = 1/n. Under these conditions 7o = 1 and Equation (3.30)
can be approximated by

€a = 207 pa. (3.31)

Given the absorber mass, pendulum length (circular path) and critical damping level,
Equation (3.31) can be employed to approximate the torsional damping constant &g.

The damping constants £, and €5 can be (approximately) related by comparing the
absorber damping term in Equation (3.14a) (nonlinear system with general-path ab-
sorbers) to that in Equation (3.26a) (linearized system with circular-path absorbers).
By multiplying the latter through by the stopper angle 1, and dividing by « (this
makes it possible to compare the equations directly) the absorber damping term for
the linearized system can be written as Eadl.f /Y= fas; / ~2, where s; = yi; has been
employed, and the corresponding damping term for the nonlinear system is fasg. An
exact (resp. approximate) relationship between the torsional and effective transla-
tional absorber damping constants for a circular (resp. general) path can be obtained

by equating these expressions and is given by
_~2e
§a = 7"Ca, (3.32)
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Figure 3.7. Approximate (a) torsional and (b) translational absorber damping constant
versus mass ratio u based on Equation (3.31) and Equation (3.33) for p, = 0.005, @ = 0.84,
d = 0.67, and engine orders (e.0.) n=1,...,10.

where 7 is the dimensionless length of the absorber pendulum (resp. the dimen-
sionless curvature of the absorber path at its vertex). When the path is general
Equation (3.32) gives a reasonable relationship between the absorber damping con-
stants, depending on the strength of the path nonlinearity n and the amplitude of
the absorber motions. For linear absorber tuning 7 = n and for rotor speeds close to

resonance

€a = 2pa, (3.33)

which follows from Equation (3.32) together with Equation (3.31).
Figure 3.7 shows example plots of & and &z in terms of the mass ratio p for an
absorber damping ratio p, = 0.001 and for various engine orders. These charts can

be used to obtain an appropriate order of magnitude for the damping constants to
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be used for the frequency response loci and in numerical simulations. In Chapter 5
the frequency response curves are generated for a model with a = 0.84, § = 0.67,
p = 0.0035, n = 3, and p, = 0.005, which gives rise to £ = 2 x 1076. The values
& =2 1073 and & = 2 x 1076 are used when damping is included, and also in the

simulations.

3.7 Concluding Remarks

A lumpted-parameter mathematical model of a bladed disk assembly fitted with
centrifugally-driven, general-path vibration absorbers has been systematically devel-
oped, which serves as the basis for all of the analysis to follow. We shall be interested

in three specific cases of this general nonlinear system:

1. The linearized system with motion-limiting stops, which is given by Equa-
tion (3.26);

2. The fully nonlinear system given by Equation (3.14) with zero inter-blade cou-
pling (v = 0), together with the two-parameter family of paths defined by
Equation (3.19); and

3. The fully-coupled nonlinear system (v # 0) given by Equation (3.14), together
with the two-parameter family of paths defined by Equation (3.19).

These three systems are systematically analyzed in the next two chapters, and through-
out the remainder of this work they shall be referred to as (1) the coupled linear or
linearized system, (2) the isolated nonlinear system, and (3) the coupled nonlinear
system.

We begin in the next chapter with an analysis based on the coupled linearized

system.
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CHAPTER 4

Forced Response of the Coupled Linear

System

4.1 Introduction

In this chapter the fundamental linearized dynamics of a cyclically-coupled bladed
disk assembly fitted with circular-path vibration absorbers are investigate in detail.
The aim is twofold: to quantify and understand the underlying linear resonance
structure of the coupled linear system under engine order excitation and, based on
these findings, to design the absorbers to eliminate or otherwise reduce blade motions
relative to the rotating hub. (The basic effects of nonlinearity are investigated in
Chapter 5 for an isolated blade/absorber combination and also for the fully coupled
cyclic system.) An auxiliary, but very important topic includes a decoupling strategy
based on the cyclic symmetry of the system whereby the fully-coupled linear model
can be simplified to a set of reduced-order models, from which analytical results
easily follow. The analysis is based on the well-known theory of circulants, which
is summarized in Section 2.2 and covered in detail in Appendix B, and it is also
employed in Chapter 5 to handle block diagonalization of Jacobian matrices.

As we shall see, the underlying linear resonance structure is surprisingly subtle and

complicated, a feature that arises from the order-nature of the absorbers. However,
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the (block) decoupled models to be formulated give rise to a set of tractable analytical
expressions for the system eigenfrequencies which, when represented in a Campbell
diagram, clarify the nature of the resonance structure for various absorber designs and
for any number of sectors, engine order, or coupling strength. A particular absorber
design strategy is motivated from these eigenfrequency versus rotor speed plots in
terms of a detuning parameter, which essentially assigns the absorber tuning order
(which depends on the system geometry) relative to the order of the excitation. It
will be shown that ideal (exact) tuning, where the absorber tuning order is chosen to
identically match the excitation order, completely eliminates the system resonances
and (in the absence of damping) results in zero-amplitude steady-state blade motions
over all rotor speeds. Such a tuning scheme, however, is susceptible to the effects
of parameter uncertainties. An important contribution of this chapter is that, in
addition to the exact tuning, there exists a range of absorber undertuning values for
which there are no system resonances—independent of the rotor speed. Therefore, a
practical tuning strategy involves intentionally detuning the absorbers within this “no-
resonance zone.” The approach offers a more robust design against system resonances,
but at the expense of some residual steady-state blade vibrations.

The chapter is organized as follows. The linearized system to be considered is
described in Section 4.2, where the dimensionless equations of motion are formulated
for a single sector and subsequently for the overall coupled system. Two special
cases of these governing equations are considered: the case when the blades (resp.
absorbers) are locked in their zero positions relative to the rotating hub (resp. blades)
in Section 4.2.3 (resp. Section 4.2.4). The former motivates the absorber tuning order,
which is employed in subsequent sections to tune the absorbers to a given order of
the excitation, and the latter is investigated in detail in Section 4.3.1, with the aim
of providing a benchmark against which the effectiveness of the absorbers can be

evaluated. The forced response of the general system is detailed in Section 4.3.2, and
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an absorber tuning strategy is motivated in Section 4.4. The effects of damping are
briefly considered in Section 4.5, and the chapter closes with some concluding remarks

Section 4.6.

4.2 Mathematical Model

The bladed disk model to be considered is shown in Figure 4.1a in dimensionless
form. It consists of a rotationally periodic array of N identical, identically-coupled
sector models, one of which is depicted in Figure 4.1b. The disk has radius d and
it rotates at a fixed speed o about an axis through C. Each blade is modeled by a
simple pendulum of unity mass and length, the dynamics of which are captured by
the normalized angles z;. (See Table 3.1 on page 64.) The blades are attached to the
rotating disk via linear torsional springs with unity stiffness and adjacent blades are
elastically coupled by linear springs with stiffness v. It is assumed that the springs are
unstretched when the blades are in a purely radial configuration, that is, when each
z; = 0. As shown in the inset of Figure 4.1b each blade is fitted with a pendulum-
like, circular-path absorber with radius v and mass p at an effective distance « along
the blade length. The absorber dynamics are captured by the normalized pendulum
angles y; and they are limited according to |y;| < 1 by stops, which represents the
rattling space limits imposed by the blade geometry.! Linear viscous damping is also
included (but not indicated in the figure). Blade and inter-blade damping is captured
by linear torsional and translational dampers with constants &, and ., respectively,
and the absorber damping is captured by a torsional damper with constant ;. Finally,
the system is subjected to the traveling wave dynamic loading described in Section 2.3,
and Equation (2.14) is employed for this purpose. Throughout the remainder of this

thesis it is assumed that 0 < n < N for simplicity. This does not, however, affect the

This feature is included for generality, but in all of what follows it is assumed that |y;| < 1, i.e.,
that impacts do not occur. The impacting dynamics for this system are investigate in [34] for an
isolated blade/absorber combination.
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Figure 4.1. (a) Model of bladed disk assembly and (b) sector model.

results; they can be generalized to account for n > N according to the discussions in
Section 2.3 and also Section 2.4.

Next a mathematical model that describes the linear dynamics of the ith sector is
described. The overall system is composed of N such models, and these are cast in a

matrix-vector form with block circulant coefficient matrices in Section 4.2.2.

4.2.1 Sector Model

The governing equations of motion for the ith 2-DOF sector follow from Equa-

tion (3.25) of Chapter 3. They are

w2 (2! + 4" + €ayl + 1ot (zi +yi) + wvala! +0%y) =0, €N  (41a)

x;' + §b:c; — fay,( +z; + 502:ci

a2x§’ +72(x;' +y) + o (y) + 2))

+u
+adoz; + 602 (z; + ;)
+Ee(—xi_1 + 227 — T3 yq)

+ v (—zig + 23 — z41) = fel%ieIOT, ieN  (4.1b)
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where the dimensionless parameters are defined in Table 3.1 on page 64. In Equa-
tion (4.1) the parameter subscripts have been dropped since the sectors are assumed
to be identical and identically coupled, and the remaining subscripts i are taken
mod N such that zy;; = z; and z¢p = zx. In matrix-vector form, Equation (4.1)

becomes
Mz;’ + ng + Kz; + Cc( - z;_l + 222 — z§+1)

o , 1eEN (42)
+Ke(—2zim1 + 22, — 2i41) = felignoT

x| 6i/Yo
“i= M - [wi/wo] (4:3)

captures the sector dynamics and the elements of the sector mass, damping, and

where the vector

stiffness matrices are given in Table 4.1. The matrices

2
Ce= < Ojl, Ke= lu 0} ) (4.4)

0 0 0 0

capture the inter-blade coupling and vanish when £, = 0 and v = 0, respectively, in
which case Equation (4.2) describes the forced motion of N isolated blade/absorber
systems. (Equation (4.2) is studied in detail in [34,98] for the case when N = 1,
K. = 0, and C, = 0, including the impact dynamics that occur when |y;| = 1, that

is, |¥i| = ¥o.) The sector forcing vector is given by

f
f= M : (4.5)

where f is defined in Table 3.1. Finally, the parameter w, = % ke/M (see v in
Table 3.1) is the undamped natural frequency of a single isolated blade (with no
absorber) with k;, = 0 and 2 = 0 and with a single coupling stiffness element k.

connected to an adjacent, stationary blade.
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Table 4.1. Elements of the sector mass, damping, and stiffness matrices M, C, and K.

My =1+ p(a+)? Ci1 =& K1 = 1+ (1 + p(a+7)) b0
Mg = py(a+7) Cia= - K1 = pyéo?

My = My Co1 = Ko1 = K2

Mg = pvy? Cop =& Koo = py(a +6) o?

4.2.2 System Model

By stacking each z; into the configuration vector q = (21,29, ...,2 N)T, the governing

matrix equation of motion for the overall 2N-DOF system takes the form
Mq" + Cq' + Kq = fel™7, (4.6)

where M is block diagonal with diagonal blocks M and K € BCHBS> N has generat-
ing matrices K + 2K, —K_,O0, ...,0, ~K,. The matrix C € BERBS N is similarly
defined by replacing K with C and K. with C. in K. In terms of the circulant

operator the system mass, damping, and stiffness matrices are given by

M = circ(M,0,0,...,0, 0) = diag (M)

N ieN

C == CiI‘C (C + ZCC, “"Cc, 0, e ,0, —Cc) y (47)
K = circ(K+ 2K, -K,0,...,0,—-K,)

where the circ (- ) operation is defined in Section 2.2 and also in Appendix B.2 Finally,

the system forcing vector is
R . : . \T
f= (fej‘:’l,fe]é?, . ,fef¢N) , (4.8)

where f is given by Equation (4.5) and ¢; is defined by Equation (2.15).

2See [62) for a comprehensive treatment of circulant matrices and their properties. A brief review
of such matrices is given in Section 2.2 on page 11 and a more exhaustive treatment of the theory,
including many proofs, is given in Appendix B. In all of what follows and whenever reference is
made to Section 2.2 it is understood that, in most cases, more details can be found in Appendix B.
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4.2.3 Special Case: The Blades Locked

Consider the special case when the blades are locked in their zero positions relative
to the rotating disk. This leads to a system of dynamically isolated absorbers that
oscillate freely under the influence of centrifugal effects. The governing equations

n _—

follow from Equation (4.2) by setting x; = xi =1; =0, and are given by

Mooy + Cooyl + Kooy; =0,  i€N (4.9)

where the mass, damping, and stiffness terms Moy, C9g, and K99 are defined in
Table 4.1. Equation (4.9) is a set of N uncoupled and unforced single-DOF harmonic

oscillators. Their dimensionless undamped natural frequencies are given by

5
gy = ‘:202 - O‘;“ o = o, (4.10)

or wyy = 7§2 in dimensional form, where w, is defined by Equation (3.13) and

a+9
v

(4.11)

=]
Il

is defined to be the absorber tuning order. Since the absorbers are restrained only
through centrifugal effects, wyq scales directly with o [32,61]. This feature is exploited
in Section 4.4 to tune the absorbers to a given order of the excitation, rather than to a
fixed frequency, as is done in the classical sense [99]. The tuning parameter 7 is used
for this purpose and is determined by selecting the dimensionless curvature of the
pendulum absorber v (dimensionally d) and the distance of its effective attachment

point from the center of rotation of the rotor, that is, a + § (dimensionally oL + H).

4.2.4 Special Case: The Absorbers Locked

Here we consider a model in which the absorbers are locked in their zero positions

relative to the blades. By setting y; =y} =y’ = 0, the equations of motion for the

82



ith sector follow from Equation (4.2) and are given by

My + Cnial+ Kz + &c(—2i_y + 27, — 20,;)
o , ieEN
+ I/2( -1+ 2z; — xi-{-l) = f6]¢iejn0T
(4.12)

where &, v, and f are defined in Table 3.1 and also zy;1 = 71 and g = z)y. The

governing matrix equation of motion for the overall N-DOF system is given by

MnX”—i—CuX’-{-Kle = fllejnar, (4.13)

T

where x = (z1,292,...,2N)" is a configuration vector and

fi1 = (fel1, fei®2, ... feion)T (4.14)

is the system forcing vector. The system matrices are both symmetric and circulant,
and they can be represented by

a

Mj; = circ(M1,0,0,...,0,0) = diag (M)
R ieN
Ci1 = circ(Cy1 + 28, —¢,0,...,0, —&) ) (4.15)
K;; = circ (K11 + 22, -120,...,0, —u2)
In the absence of coupling, that is, when v = £, = 0, the system matrices given
by Equation (4.15) are all diagonal, and Equation (4.13) is a decoupled set of N
harmonically forced, single-DOF oscillators.

We now detail the steady-state forced response of Equation (4.13) (with the ab-
sorbers locked) and, subsequently, that of Equation (4.6) (with the absorbers free to

move). In both cases a coordinate transformation is employed in order to significantly

uncouple the governing matrix equations.

4.3 Forced Response

"T'he forced response of the overall system is governed by Equation (4.6), which can

be handled using standard techniques [65]. Its solution in the steady-state follows in

83



the usual way and is given by
q*(r) = Z7 eI, (4.16)

where Z = K—n202M+ jnoC is the system impedance matrix of dimension 2N x 2N.
However, Equation (4.16) does not offer any insight into the design and effectiveness
of the proposed vibration absorbers, and it also requires computation of Z~!, which
can be quite involved for many bladed disk models. We thus turn to a decoupling
strategy that exploits the system symmetry and it is systematically shown how to
reduce the governing matrix equation of motion to a set of reduced-order models.

It is well-known that, due to its cyclic symmetry (and in particular due to the
circulant structure of the system matrices [62]), Equation (4.6) can be decoupled
via a modal (unitary) transformation to a set of NV reduced-order models, each with
two DOF [36,92,100-102]. (The reduced-order models have the same number of
DOF as an individual sector, in this case two.) Similar statements can be made for
Equation (4.13), which captures the system dynamics for the special case when the
absorbers are locked in their zero positions relative to the blades. Since the system
matrices are circulant for this special case, one can fully decouple the N-DOF model
to a set of N, single-DOF systems. A special feature of the uncoupled systems
described above is that only mode n + 1 is excited, provided that n is an integer (as
shown subsequently). Hence the steady-state response of the overall 2N-DOF (resp.
N-DOF) system described above reduces to the solution of a single, harmonically
forced, 2-DOF (resp. single-DOF) system.

In order to provide a benchmark against which the effectiveness of the absorbers
can be evaluated, we first consider the forced response of the system when the ab-
sorbers are locked relative to the blades. It should be noted that the corresponding
analysis could be obtained directly from the more general analysis of Section 4.3.2.
However, it is instructive to introduce the modal transformation in this simpler set-

ting, which clearly demonstrates the essential features of the approach. The forced
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response of the general system, where the absorbers are free to move, is investigated
in Section 4.3.2 and employs the same methodology. An absorber tuning strategy is

motivated in Section 4.4 based on these results.

4.3.1 Response with the Absorbers Locked

The purpose of this section is twofold: to demonstrate the essential features of the
analysis, a generalization of which is employed in Section 4.3.2 for the case when
the absorbers are free to move, and to review some of the vibration characteristics
of linear cyclic systems. Some specific topics include: decoupling the equations of
motion; orthogonality of the modal forcing vector; the steady-state system response;
characteristics of the natural frequencies and attendant normal modes (see (9,92, 94]
for further characteristics); and conditions for resonance. The results will also be use-
ful for comparisons when evaluating the effectiveness of the absorbers in subsequent
sections. The reader who is familiar with these topics can proceed, with minimal loss

of continuity, to Section 4.3.2.

MODAL ANALYSIS

Consider the forced response of the system in Figure 4.1a for the special case when the
absorbers are locked in their zero positions relative to the blades. Due to the cyclicity
of the model and the corresponding circulant structure of the system matrices given
by Equation (4.15), one can employ a standard unitary (similarity) transformation
to decouple the governing equations of motion. In particular, we wish to apply the

result given by Equation (2.9) of Section 2.2.4 to each of the system matrices. This
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can be achieved by introducing the change of coordinates®4
x = Ex, or  Tp= egi, peEN (4.17)

where E is the N x N complex Fourier matrix and e is its pth column (these are
defined by Equation (2.2) and Equation (2.4)), and X = (1, Zo, ... ,:EN)T is a vector
of modal, or cyclic coordinates. Substituting Equation (4.17) into Equation (4.13),
multiplying from the left by the unitary matrix EH", and invoking Equation (2.9)

yields a system of N decoupled scalar equations. They are

NP Wz 1 kW, = Myt pe N (4.18)
where ()" = (T)T denotes the conjugate transpose and e’f]; is the pt* el t of
o f11 is the p** element o

EHf'll, and is discussed subsequently. The modal mass, damping, and stiffness terms

follow from Equation (2.10) and are given by

YL Y
¢ = o 426 (1-cosgp) ¢, PEN (4.19)

o
——
-2

]

K11 + 20201 - oS p)

where ¢, is defined by Equation (2.3) and the elements M, C11, and Kj; are
defined in Table 4.1. Note that the identity wP~1 + w(V-D{P-1) = 2¢0s ©p has
been employed, where wy = w = egﬁi is the primitive Nt root of unity.® The
transformation of the single N-DOF system given by Equation (4.13) to the system of
N decoupled single-DOF systems given by Equation (4.18) is illustrated in Figure 4.2.

Assuming harmonic motion, the pth steady-state modal response follows easily

3The reader who is not familiar with transformations of this type should regard Equation (4.17)
as the usual modal transformation employed in elementary linear vibration theory. (See Figure 4.2.)
The columns e; of the fourier matrix E are, in fact, the eigenvectors of any circulant matrix, and
hence they define the system mode shapes for all linear cyclic systems with a single DOF per sector.

4The index p corresponds to the p'* mode of vibration and shall be referred to as the mode
number.

5See Section B.4.1 of Appendix B for a derivation of the Nt* roots of unity. The distinct N'*
roots are plotted in Figure B.1 on page 191 for N =1,...,9.
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Blade
® Rotor

x(7) = Ex(7)
—>
Modal (Cyclic)
Transformation (peN)
(a) A Single Coupled N—-DOF System (b) N Decoupled 1-DOF Systems
in Physical Space in Modal Space

Figure 4.2. The topology of a bladed disk assembly in (a) physical space and (b) modal
space. The modal transformation x(7) = Ex(7) reduces the cyclic array of N single-DOF
coupled models B, which together form a N-DOF coupled system, to a set of N single-DOF
decoupled models B,.

from Equation (4.18) and is given by

1

=SS — _— _aHg jnoT
Ty (7) ) e, f11’"7,  peN (4.20)
11
where
f‘(ﬁ) = f(g)) - n2021\;[§11)) + jnaé’ill)), pEN. (4.21)

Under the assumption that 0 < n < N is an integer, the pt" modal forcing term

simplifies considerably and is given by [36, 92]

N
e _ S }: (k—1)(n+1-p)
epfll—_ w

VNS

{\/Nf, p=n+1

0, otherwise

(4.22)

which follows from Theorem B.3 on page 192. Equation (4.22) shows that only mode
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n + 1 is excited and, therefore,6

(7)) = A (4.23)

is the only non-zero modal response in the steady-state. The response of sector 7 (in
physical coordinates) follows from the transformation given by Equation (4.17) and

‘e ol 8s _ ST oss
is given by z7° = €; x>, or

(1) = X% ie N (4.24)

where x%(7) = (0,...,0, &y 1(7),0,. .. ,())T and w™(*=1) = 7% have been employed
and X = f/ fg'llﬂ) is the steady-state amplitude of the blades. Equation (4.24)
shows that each blade behaves identically except for a constant phase shift from one
sector to another, which is captured by the inter-blade phase angle ¢;. This approach
offers a significant computational advantage over the brute force solution of the full

N-DOF system, and it is employed in Section 4.3.2 for the general case when the

absorbers are free to move.

EIGENFREQUENCY CHARACTERISTICS AND CONDITIONS FOR RESONANCE

Since the transformation given by Equation (4.17) is unitary, the (dimensionless)

natural frequencies @i’i) are preserved and they follow in the usual way from K ﬁ) and

Ml(?. In terms of the parameters defined in Table 3.1, they are given by

(4.25)

_®) wi’i) 146021 + pla+7)) + 21/2(1 — cos pp) .
Wo 1+ p(a+y)

where w, is given by Equation (3.13) and ¢p is defined by Equation (2.3). For zero

inter-blade coupling (v = 0) all of the natural frequencies are identical, and they

6It is customary in the rotordynamics literature to designate the system modes in terms of
their “diamatral components,” or number of “nodal diamters.” (These can be clearly visualized
in the modal configurations shown in Figure 2.7 on page 35.) Specifically, if 0 < n < N/2 (or
0<n < (N-1)/2if N is odd) then an n e.o excitation can only excite modes with n nodal
diameters. However, such a designation is slightly more cumbersome if one considers larger values
of n (in this chapter and the next we consider 0 < n < N) and hence we shall say instead that an
engine order n excites only mode p =n + 1.
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increase with increasing rotor speed ¢ due to centrifugal effects. The presence of
the absorber masses (u # 0) slightly lowers the natural frequencies. For very small
absorber masses relative to the mass of the blades, that is, 0 < u <« 1, the natural

frequencies can be approximated by

a;{’i) o \/1 + 602 + 2v2(1 — cos ©p), ieEN (4.26)

which clearly exhibits the effects of centrifugal stiffening and coupling. Finally, if

u=v =0 =0 we recover u‘)ﬁ) =1, or w%’i)

= wp, which was used in Section 4.2.1 to
nondimensionalize the model. By comparing Equation (4.26) to Equation (2.38), it
is clear that the eigenfrequency characteristics discussed in Section 2.4.3 apply here
as well.

In the turbomachinery literature it is common to plot the natural frequencies
in terms of the “diametral components,” that is, the number of “nodal diameters”
(n.d.) in their attendant mode shapes [103]. (These can be visualized in Figure 2.7
on page 35.) However, in light of the crucial role centrifugal stiffening plays in the
absorber performance (this is investigated in detail in Section 4.4), we shall opt instead
for an interference, or Campbell diagram representation of the natural frequencies.
Such a diagram is shown in Figure 4.3a for N = 10 blades and for a particular
sector model. In this figure, the natural frequency loci are plotted in terms of the
dimensionless rotor speed, and they are seen to increase for increasing o due to
centrifugal effects. The diametral component of each frequency locus is also indicated.

In general, there may be a system resonance whenever no = azﬁ)(a) or, equiva-
lently, nQ) = w&’i)(ﬂ), and these possible resonances can be identified in a Campbell
diagram by the intersections of the natural frequency loci with an engine order line no.
(An example of such a frequency versus rotor speed diagram is shown in Figure 4.3a,
where several order lines are indicated.) Such resonances can arise, for example, from

excitations with multiple dominant orders, mistuning [9], nonlinear effects, or non-

integer n. (Appendix C briefly discusses the case of n € Ry.) However, for linear
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Table 4.2. Data to accompany Fig. 4.3 and Figs. 4.5-4.7 for a model with N = 10,
n=3 a=084d§ =067, u = 0.015 and & = & = & = 0. Then B, = —0.00701
(from Equation (D.2) of Appendix D) and Sif® = —0.00706 (from Equation (4.46) of
Section 4.4.2).

h

Figure Tuning B Y
4.3 - - 0.169 - - - 0.50 0.442
4.5a Over +0.15 0.127 3.45 3.473 3.487 0.01 0.338
4.5b Over +0.15 0.127 3.45 3.473 3.487 0.25 0.364
4.5¢ Over +0.15 0.127 3.45 3.473 3.487 0.50 0.443
4.6a Under -0.07 0.194 2.790 2.811 2.820 0.50 0.468
4.6b Over +0.07 0.147 3.210 3.232 3.244 0.50 0.423
4.7a Under -0.00351 0.169 2.989 3.011 3.021 0.50 -

4.7b Exact 0 0.168 3 3.021 3.032 0.50 -

n napp v Ores

cyclic systems, and in the absence of parameter mistuning, an integer engine order
1 < n < N excites only mode p = n + 1, which is clear from Equation (4.22). (See
Section 2.4.5 for a description of the resonance structure for the case when n > N.)
For a given engine order, the corresponding actual resonance, that is, the value of o

for which
no = a‘;iqﬂ)(a), or, equivalently nQl = wﬁﬂ)(Q) (4.27)

is indicated by a circle in Figure 4.3a for each of the engine orders considered, and the
corresponding frequency response curves are shown in Figure 4.3b for f = 0.01 and
& = & = 0. The resonant frequency for the n = 3 case is indicated in Table 4.2, along
with other data corresponding to Figures 4.5-4.7; these are explained in Section 4.3.2

and Section 4.4.2.

4.3.2 Response with the Absorbers Free

We now turn to the forced dynamics of the overall 2N-DOF system, which are gov-

erned by Equation (4.6), and employ an approach similar to that of Section 4.3.1. In
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Figure 4.3. (a) Campbell diagram for N = 10, a = 0.84, § = 0.67, v = 0.169, u = 0.015,
v = 0.5, and engine orders (e.0.) n = 1,2,..., N — 1 and (b) the corresponding frequency
response curves with f = 0.01, and & =& = 0.
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the present case the system matrices M, C, and K are block circulant, and one can
(block) decouple these equations to a set of N, 2-DOF forced oscillators by employing

the result given by Equation (2.11) on page 15.7

MoODAL ANALYSIS

We introduce the change of coordinates
q=(E®I)u, or  zp= (e17;® Iu, pEN (4.28)

where E is the N x N complex Fourier matrix and ep is its pth column, ® is the
Kronecker product (these are defined in Section 2.2.2 and Section 2.2.1), I is the
2 x 2 identity matrix (the dimension of I corresponds to the number of DOF in
each sector), and u = (ug, uo,... ,uN)T is a vector of modal, or cyclic coordinates
with each u, = (ip,gp)T Substituting Equation (4.28) into Equation (4.6) and
multiplying from the left by the unitary matrix (E ® I)H = (E"® I) yields a system

of N block decoupled equations, each with two DOF. They are given by
Mpug + Cpu;, +Kpup = (er@ I)felnoT, peEN (4.29)

where (eﬁ@ Df is the pt* 2 x 1 block of (EM® I)f. Figure 4.4 illustrates the trans-
formation of the single 2N-DOF system given by Equation (4.6) to a system of N
block decoupled 2-DOF forced oscillators given by Equation (4.29).
The 2 x 2 mass, damping, and stiffness matrices associated with the pt" mode
follow from Equation (2.12) of Section 2.2.4 and are given by
Mp =M
Cp = C+2C¢(1 —cospp) ¢, peEN (4.30)
K, = K+ 2K¢(1 — cosypp)
where ¢y is defined by Equation (2.3), the elements of M, C, and K are defined in

Table 4.1 and their attendant parameters are given in Table 3.1, and the coupling

"The number of DOF in each decoupled system is that of an individual sector, in this case two.
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(A Absorber

Blade
® Rotor

Sector

q(7) = (E®Tu(7)

— ( res
Modal (Cyclic)
Transformation (peN)

(a) A Single Coupled 2N—DOF System (b) N Decoupled 2—DOF Systems

Figure 4.4. The topology of a bladed disk assembly fitted with absorbers in (a) physical
space and (b) modal space. The modal transformation q(7) = (E ® I)u(r) reduces the
cyclic array of N, 2-DOF sector models (B,A), which together form a 2N-DOF coupled
system, to a set of N, 2-DOF block decoupled models (B, Ap).

matrices C. and K, are defined by Equation (4.4). In light of Equation (4.22), the

pt" modal forcing vector takes the form

Hi
~ e fll
(efeDf = [ P }

0
VN f, =n+1

_ P (4.31)
0, otherwise

where f]; is the system forcing vector for the case when the absorbers are locked in
their zero positions relative to the blades, f = (f,0)T is the sector forcing vector, and
= (0,0)T. Since only mode p = n+1 is excited, u,,1(7) is the only nonzero modal
response in the steady-state.
Assuming harmonic motion, and in light of Equation (4.31), the pth steady-state

modal response follows easily from Equation (4.29) and is given by

s \/_Z"1 feI"9T  p=n+1
u,(7) = (4.32)
0, otherwise
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where
Zp=Kp - n202Mp + jnoCp, peEN (4.33)

is the pth modal impedance matrix. The response of sector ¢ (in physical coor-
dinates) follows from the transformation given by Equation (4.28) with u*s(r) =

0,...,0,u’ 1(7),0,... ,O)T and is given by

25(1) = 21 £l ieN (4.34)

i=1) = ¢J% has been employed. From Equation (4.34) it is clear that each

where w"(
blade/absorber combination behaves identically except for a constant phase shift from
one sector to another, which is captured by the inter-blade phase angle ¢;. This
approach offers a significant computational advantage over the brute-force solution

to the full 2N-DOF system, as given by Equation (4.16).

EIGENFREQUENCY STRUCTURE AND CONDITIONS FOR RESONANCE

The 2N dimensionless natural frequencies of the system are defined implicitly by the

characteristic polynomial

-

det (K — @®M) = 0,

the solution of which can be quite involved for any reasonable bladed disk model.
This effort can be significantly reduced, however, by instead using the modal matrices
defined by Equation (4.30). We recall that each Mp and f{p follow from a unitary
(similarity) transformation of M and K and hence the system natural frequencies
are preserved. These eigenfrequencies follow from the N, second-order characteristic

polynomials det (K, — @2Mp) = 0, or
det(K — @®M + 2K¢(1 —cosgp)) =0, peN (4.35)

where the sector mass, stiffness, and coupling matrices are defined in Table 4.1 and by

Equation (4.4). Equation (4.35) features the same cyclic term, i.e., Equation (2.39),
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that was encountered in Section 2.4.3 and we thus expect similar eigenfrequency
characteristics to the ones described there and also in Sectioni 4.3.1. If P is the
number of DOF in an individual sector (in the present study P = 2), then there are P
natural frequencies @®) corresponding to each p € M. There are, in this case, N such
groups of P = 2 natural frequencies of the overall system. The multiplicity of these
groups of natural frequencies is identical to that of the individual eigenfrequencies
described in Section 2.4.3.

If vp is an eigenvector of the pth decoupled modal system, then the corresponding

th modal vector for the

normal mode of the overall system is ep ® vp, where e is the p
case when the absorbers are locked relative to the blades.® With the exception of the
p = 1 mode, vy is influenced by the overall system configuration, and in particular
by its elastic coupling, which is clear by inspection of the modal stiffness matrices
Kp. In a particular mode of vibration, the blade and absorber in each sector oscillate
either in phase or out of phase relative to one another with amplitudes that depend on
the strength and nature of the inter-sector coupling, and these features are captured
by vp. The dynamics of each sector are identical, except for a constant difference
in phase from one sector to another, and this is captured by e,. Hence the modal
configuration of the overall system is described by a composite of these two vectors,
which is mathematically given by e, ® vyp.

The 2N dimensionless natural frequencies u‘)i’: % (p € N) are plotted in Figure 4.5
in terms of the rotor speed o for N = 10, n = 3, for a particular sector model, and
for various levels of the inter-blade coupling v. (The natural frequencies wg’{) and
@o, are also shown for reasons discussed below. Also, for quick reference here and
in subsequent chapters, Table 4.3 gives a selected list of commonly used undamped

natural frequencies.) In these Campbell diagrams, the N natural frequencies G)gp )

8When the absorbers are locked each of the the system matrices is a circulant. Since all circulant
matrices share the same linearly independent eigenvectors, which are the columns of the Fourier
matrix, the system normal modes are e, with p € N.

95



Table 4.3. Selected list of dimensionless undamped natural frequencies.

Freq. Eqn. Description

wg” ) (4.35) Of the coupled system corresponding to in-phase modes

u')ép ) (4.35) Of the coupled system corresponding to out-of-phase modes

ngq) (4.25) Of the coupled system if the absorbers are locked relative to the blades
w11 - Of an isolated blade without an absorber

Woo (4.10) Of each absorber if the blades are locked relative to the rotating hub

branching from ¢ = 0 (since N is even there are (N — 2)/2 = 4 repeated pairs) cor-
respond to in-phase modes, wherein the absorber/blade combination in a particular

have the same

sector oscillates in phase. The remaining N natural frequencies wg” )

number of repeated pairs and correspond to out-of-phase modes. As shown in Fig-

(p)

ip ) and also Wy

ure 4.5a, the frequencies w are nearly coincident when the inter-blade

coupling is weak, that is, when v is small and they spread out for increasing v, which
is shown in Figure 4.5b and Figure 4.5c. In the absence of inter-blade coupling, wg” )

are identically coincident (as are Qé” )) and there are exactly P = 2 distinct natural

frequencies, each with multiplicity N.

The frequency loci in Figure 4.5 exhibit the classical eigenvalue veering phe-
nomenon, or mutual repulsion of the eigenfrequencies [104,105], which arises due
to small the dynamic coupling (via the absorber mass) between the blades and ab-

gp ) and

sorbers. To see this, we focus on Figure 4.5a, where the sets of frequencies @

-(p)

@y~ are mutually nearly coincident. This plot also shows the natural frequencies wg’{)

(resp. @sy), corresponding to the case when the absorbers (resp. blades) are locked

relative to the blades (resp. rotor). As the rotor speed o is increased from zero, the

- (p)

gp ) (resp. (Dgp )) initially lie close to wyy = 710 (resp. @;7 ), where

natural frequencies @
the absorber tuning order 7 is defined by Equation (4.11). (For zero rotor speed

wg” ) and @y are, in fact, coincident and each has the same initial slope of 72.) They
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Figure 4.5. Campbell diagrams showing the engine order (e.o.) line no and the dimen-

sionless natural frequencies @{, @,y = 7o, and

@’y versus the dimensionless rotor speed

ofor N=10,n =3, a = 084, vy = 0.127, § = 0.67, and p = 0.015 with: (a) v = 0.01;

(b) v =0.25; (c) v = 0.5.
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exhibit veering near the intersections of Qi’i) and Wwq,, and for large rotor speeds the

eigenfrequencies J;Y’ ) asymptotically approach wg’{) for each p € N. However, the

frequencies G)g’) nearly track wyy = Mo as o becomes increasingly large, but with a
slight offset in slope. This is shown in the inset of Figure 4.5a. In fact, it can be
shown that

P —ho as o — oo, (4.36)

where the critical absorber tuning order n(n) > n is defined by Equation (D.1) in
Appendix D. This is a crucial observation, one that is exploited in the absorber
tuning of Section 4.4. Finally, note that there is a fixed relationship between 7
and n, which is nearly linear for 7 > 1. Once the absorber mass p and its tuning
order n are prescribed, then the critical tuning order is automatically set and can be
approximated by

fapp = (1 + a2p) 71, (4.37)

which works quite well for 7 > 1 and for reasonable choices of a and pu.
Possible resonances can be identified in Figure 4.5 by the intersections of the

eigenfrequency loci u‘)&p %(a) with the order line no, and they correspond to rotor

speeds o = ores for which no = J)gp %(0). However, it was shown in Section 4.3.2 that
only mode n + 1 is excited in the steady-state, and hence there is a system resonance

only when
no = cI)g"H)(a), or, equivalently nQl = wi";])(ﬂ) (4.38)

is satisfied. These resonances are indicated by circles in Figure 4.5 and they are sum-
marized in Table 4.2 on page 90 along with other relevant data. The main objective
of this chapter is to select the absorber parameters to avoid such resonances over a
range of rotor operating speeds; this is the subject of the next section.

As a final note, the inter-blade coupling v can be quite small—on the order of 1%

or less—but much larger values are also possible. Aerodynamic coupling also exists
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and can be significant in terms of both stiffness and damping. In order to show clearly
which modes are excited, and also the effects of absorber (de)tuning, a rather large
(possibly unrealistic) value of the coupling will be employed in the ensuing numerical

analysis; this does not qualitatively affect the approach nor the conclusions.

4.4 Absorber Tuning

Absorber tuning refers to a particular choice of absorber parameters to attenuate,
as much as possible, the response of the primary systems (blades) over a range of
operating speeds, and in particular near resonance. This is done by prescribing the
dimensionless parameters u, v, and a, which in turn specify the absorber mass m,
the radius r of its path, and it’s placement along the blades, respectively. It is shown
in Section 4.4.1 that, in the absence of damping, there exists an absorber tuning such
that full annihilation of the blade vibrations is possible, although this may require
large-amplitude vibrations of the absorbers. This tuning is accomplished by matching
the order of the isolated absorbers to that of the excitation, just as it is done with
frequencies in the classical dynamic vibration absorber [99], and also with orders for
the centrifugal pendulum vibration absorber [7]. (See Section 2.5.) In the presence
of small absorber damping, however, it becomes impossible to eliminate the blade
vibrations completely, a topic that is briefly addressed in Section 4.5. The effects of
detuning the absorbers relative to the excitation order is explored in Section 4429
It is shown that overtuning the absorbers results in only one system resonance over
all possible rotation speeds, even though there are two DOF per sector and there
are N such sectors, and the same is true for most values of undertuning. However,

there exists a small region of absorber undertuning, bounded on one side by the exact

9In this work detuning means that all absorbers are identically over- or under-tuned relative
to n. This is not to be confused with mistuning, which refers to small random uncertainties in
the system parameters. In the turbomachinery literature, detuning and mistuning are often used
interchangeably, but they must be clearly distinguished in this investigation.
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tuning (zero detuning), for which there are no system resonances. This no-resonance
gap motivates a particular tuning strategy, which offers a significant reduction of the
blade amplitudes, and it is robust to random perturbations of the system model.

Consider again the Campbell diagrams in Figure 4.5. Whereas n is fixed for a par-
ticular engine order excitation, the tuning order 7 depends on the model parameters
a, 6, and v (these are prescribed by design), and the additional choice for the di-
mensionless absorber mass p sets the critical tuning order 7(7). The tuning strategy
employed here is to simply choose these parameters to optimally orient the line o
(and hence no) relative to no in the frequency-o plane. This in turn sets the asymp-
totic behavior of the system natural frequencies @5”’ % and hence prescribes the system
resonance structure. It is clear that by choosing 7ic = no (this corresponds to zero
detuning) there will be no crossings of the order line no and the natural frequency loci
d)g’j %(a), and hence there will be no system resonances over the full range of possible
rotor speeds. However, slight errors in this tuning can introduce a resonance, and
therefore such a design is not robust. One can more generally avoid resonances by
choosing parameters such that 7 < n < n(f2). This is clear from the large-o asymp-
totic behavior of Gzép ), and specifically from the inset of Figure 4.5a. The existence
of this finite, but narrow, tuning range allows one to design an absorber system with
some level of robustness to parameter uncertainties.

The arguments described above are developed in detail in the next section using

the steady-state system response of Section 4.3.2, and in the context of absorber

detuning in Section 4.4.2.

4.4.1 Exact Tuning

It is customary to introduce the tuning order n as one of the absorber parameters,

and this is done in the present study via the substitution

_a+td
ﬁ2

: (4.39)
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thereby replacing v with 7 in the formulation. With zero system damping, i.e., & =
& = & = 0, and after some simplification, the steady-state response described by

Equation (4.34) can be reduced to

[;‘:E:ﬂ = [ﬂ % e N (4.40)
where 2( ) 2) \
fn(n® —n
X = r
y f2(L(n? - a?) +n2(1 +ﬁ2)) ' (4.41)
B (1 + g)r
J

are the blade and absorber steady-state response amplitudes and

I = pa®(1 + 72)%n%0% + 2%(n? — 72)

+ (n? — %) (,uaé(l +7%) —a%(n? - 6))02
+ 2’/2h2(n2 - ﬁz)(l — COSPn+1),

where ¢; is defined by Equation (2.3). The ideal, or ezact absorber tuning follows by

inspection of the first entry of Equation (4.41) and is given by
n = n, or Wy = MO = no. (4.42)

If the system is tuned according to Equation (4.42) the blade and absorber amplitudes

reduce to
X=0

fTL2 ) (fl = n) (443)

_ua2(l + %)(1 + n2)o?

which shows that the blade vibrations can be eliminated completely. In this case

the absorber amplitudes are inversely proportional to the mass ratio u and also to
afa + §). It is therefore desirable to make the absorber masses large relative to the

blade mass and to place them as close to the end of the blades as possible. In practice,
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however, there are limits on the size and makeup of the absorber masses (typically u
is very small, on the order of 1072 to 1073) and on their placement relative to the
blades. The negative sign in Y implies that the absorbers oscillate out of phase with
respect to the excitation. Physically, this means the absorbers exert forces on the
blades that identically counter the action of the applied loading for all time and for

all rotor speeds.19

4.4.2 Absorber Detuning and the No-Resonance Zone

By implementing the absorber tuning given by Equation (4.42) one is simply setting
the natural frequency of the isolated absorbers to the excitation frequency, that is,
Wy = No = no, and the absorbers are said to be eractly tuned. Again, we emphasize
that the said tuning is valid at all rotation speeds, a feature that is made possible by
the structure of @yy(0) = no. However, any perturbation of the model or absorber
parameters, due to in-scrvice wear, environmental effects, and so on, will invariably
destroy the exact tuning. To account for such effects, and to allow for intentionally
detuned designs, we let

i =n(l+8), (4.44)

where 3 is a detuning parameter. Perfect, or exact tuning corresponds to 8 = 0, while
undertuning (resp. overtuning) corresponds to 8 < 0 (resp. 8 > 0).

Figure 4.6 and Figure 4.7 depict the blade/absorber frequency response amplitude
curves and also the natural frequency loci for a set of four representative detuning
values. (The corresponding tuning orders, detuning data, and the resonant rotor
speeds are given in Table 4.2 on page 90.) In these plots we take f = 0.01 and use
the parameters employed in Figure 4.5c. The solid lines in the blade and absorber
response curves show the response amplitudes as a function of rotor speed. The

dashed lines correspond to the blade/absorber amplitudes when the absorbers are

These results remain valid even for varying rotor speeds, that is, ¢ = o(7), so long as the
variations occur on a much longer time scale than the dynamics of the blades and absorbers.
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locked in their zero positions relative to the blades; these curves are used for reference
to assess the dynamic effects of the absorbers.

Overtuning the absorbers (i.e., setting 8 > 0) increases the slope 72 of Wyy(0) = fic
relative to the engine order n in the frequency-o planes, and it is clear from Figure 4.6b
that a resonance of the in-phase mode corresponding to anﬂ) is guaranteed. For
sufficiently large undertuning such that § < f¢r < 0 (with G defined below), the
out-of-phase mode corresponding to w;nﬂ) is excited near resonance; an example of
this situation is shown in Figure 4.6a for 3 = —0.07. One of the more interesting

findings of this chapter is that there are no system resonances for absorber tuning

values that satisfy

Ber < B <0, (4.45)

where ¢ is the critical absorber undertuning and is given implicitly by Equation (D.2)
of Appendix D. Zero (resp. critical) detuning, that is, 3 = 0 (resp. B = Bcr),
corresponds to 7 = n (resp. 7 = n). An example tuning within the no-resonance gap
defined by Equation (4.45) is shown in Figure 4.7a for 8 = (¢r/2 = —0.00351, where
Bcr = —0.00701, and the perfectly tuned case is shown in Figure 4.7b. These cases
clearly demonstrate the effectiveness of properly tuned absorbers. The resonance
that occurred at ores = 0.442 when the absorbers are locked is completely eliminated,
and the response amplitudes of the blades are significantly reduced (or eliminated
completely) over the full range of possible rotor speeds.

Another way to visualize the no-resonance gap defined by Equation (4.45) is to
construct a plot of the rotor speeds corresponding to (possible) resonance(s) versus
the absorber detuning parameter 3. Such a plot is shown in Figure 4.8 for the same
parameters used in Figures 4.5-4.7. In this diagram, the no-resonance gap is identified
by the shaded region between the dotted lines corresponding to 3 = 0 (zero detuning)
and § = Bcr (critical detuning), where Ger = —0.00701 for this case.

The extent of the no-resonance gap depends on the absorber parameters and the
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Figure 4.6. Absorber and blade frequency response curves and Campbell diagrams for
N=10,n =3, a =084, § = 0.67, p = 0.015, » = 0.5, f = 0.01, and zero damping:
(a) B = —0.07 (undertuned); (b) 8 = +0.07 (overtuned); (— —) frequency response with the
absorbers locked. See Table 4.2 on page 90 for the corresponding tuning order data and
resonant rotor speeds Opes.
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Figure 4.7. Absorber and blade frequency response curves and Campbell diagrams for
N=10,n =3, a = 0.84, § = 0.67, up = 0.015, v = 0.5, f = 0.01, and zero damping:
(a) B = Ber/2 = —0.00351 (slightly undertuned); (b) 8 = 0 (zero, or perfect tuning);
(= =) frequency response with the absorbers locked. The critical absorber detuning is
Ber = —0.00701. See Table 4.2 on page 90 for the corresponding tuning order data and
resonant rotor speeds Oyes.
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Figure 4.8. Rotor speeds o,es corresponding to resonance (—) and possible resonant speeds
(= =) in terms of the absorber detuning 8 for N = 10, n = 3, a = 0.84, § = 0.67, u = 0.015,
and v = 0.50. The no-resonance gap is defined by G.; < 8 < 0, where G, = —0.00701.

engine order, but is independent of the inter-blade coupling v. The sensitivity of the
gap to variations in these parameters is indicated in Figure 4.9, which follows from
Equation (D.2) in Appendix D. (A simpler approximate expression, which works
quite well over a wide range of parameters, is described below.) In all cases, the
sensitivity is most pronounced for small engine orders and it decreases for increasing
n. As shown in Figure 4.9a (resp. Figure 4.9b) the critical detuning (¢ exhibits
near-linear (resp. -quadratic) behavior in terms of u (resp. «), and by inspection
of Figure 4.9c it is nearly independent of § for most engine orders (n > 2). Note
that Bcr vanishes (implying that the no-resonance gap vanishes) in the absence of the
absorbers (1« = 0) or when the absorbers are attached to the periphery of the rotor
(a = 0). This is consistent with intuition since zero-mass absorbers cannot provide
the required loads to counter the action of the excitation on the blades. Also, if
the absorber and blade pendulum attachment points coincide on the circumference

of the rigid rotor, their dynamics become independent. It is clear, therefore, that
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Figure 4.9. Critical undertuning — G, x 100 of the absorbers versus (a) the dimensionless
absorber mass p (with @ = 0.84 and 6 = 0.67), (b) the dimensionless distance from blade
base to absorber base point a (with § = 0.67 and p = 0.015), (c) the dimensionless radius
of rotor disk ¢ (with o = 0.84 and p = 0.015), and (d) the engine order n (with a = 0.84,
8§ =0.67, and p = 0.015). The dashed line in (d) corresponds to the large-n approximation
of B given by Equation (D.3) in Appendix D.

both u (absorber mass) and a (absorber placement relative to its attendant blade)
are coupling parameters in the sense that their departure from zero implies dynamic
coupling between the blades and absorbers.

The parameter trends described above, and in particular those shown in Fig-
ure 4.9a and Figure 4.9b, motivate a two-parameter expansion of the critical detuning

Ber about (i, o) = (0,0). This results in the simple approximation

app _ (712 + 1)2

or - = —m uo? +0(u?, o), (4.46)
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which works quite well over a large range of realistic parameter values. More im-
portantly, Equation (4.46) clearly shows that the extent of the no-resonance zone
depends primarily on the absorber mass and its placement along the blade. It can be
widened by increasing either p or a. For any engine order n > 2, Equation (4.46) also
shows that (. is essentially independent of the rotor diameter, which is consistent
with the exact curves shown in Figure 4.9.

Based on the above analysis it is reasonable to choose § = [(¢r/2, which is simply

the average of the exact and critical detuning. Then Equation (4.44) becomes
fz=n(1+5") (4.47)
T .

and the engine order n is very close to (but not exactly) the average of 7(7) and
7. Such a tuning strategy, which was used in the example shown in Figure 4.7a,
guarantees (in the absence of damping) no system resonances and it offers good
robustness to parameter and model uncertainties.

The effects of system damping are investigated next.

4.5 The Effects of Damping

When an undamped absorber is exactly-tuned according to Equation (4.42), its ac-
tion identically counters that of the engine order excitation on the blade to which
it is attached. This results in a full elimination of blade motions independent of the
blade and inter-blade damping levels. However, any level of absorber damping (or
detuning) will give rise to residual blade motions, in which case coupling and blade
damping levels will also affect the response. The aim of this section is to numerically
characterize the effects of damping on absorber performance, particularly within the
no-resonance zone described in Section 4.4.2. It is shown that the no-resonance gap
persists in the presence of sufficiently small absorber damping and that it is essentially

unaffected by realistic blade and inter-blade damping levels. We begin by describing

108



the effects of the absorber damping for tuning values outside the no-resonance zone.

To understand the effects of absorber damping on the overall system dynamics, it
is instructive to consider two extremes: when the absorbers are free and undamped
and when they are locked relative to the blades, which correspond to the limiting cases
of & = 0 and £, — oo, respectively. When the absorbers are free, undamped, and
tuned outside of the no-resonance zone (and in the absence of blade and inter-blade
damping) there is a single resonance at 0 = oyeg, which corresponds to the intersec-

tion of the engine order line no with QYHI) or anH)

, and it is defined implicitly by
Equation (4.38). For infinite absorber damping the absorbers are essentially locked
relative to the blades and hence each blade/absorber combination has the same ampli-
tude, that is, |z;(7)| = |y;(7)| for « € M. In this case there is also a single resonance
(denoted in this section by o = o), which is defined implicitly by Equation (4.27).
An example of opes and oy, is shown in Figure 4.10a and the corresponding frequency
response curves are depicted in Figure 4.10b-c. There must be a continuous spectrum
of frequency responses between the £; = 0 and & — oo extremes, which is charac-
terized by a resonance shift toward o;. This is shown in Figure 4.11 for the same
parameter values used in Figure 4.10 with £, = & = 0 and for various levels of the
absorber damping &,. As the absorber damping is increased from zero, the resonance
point shifts (in this case to the right) toward o, and the peak blade/absorber am-
plitudes initially decreases, which is shown in Figure 4.11a-d. By further increasing
€, the resonance point continues to evolve toward o;, and the peak amplitudes begin
to increase, which is shown in Figure 4.11e-f. Finally, in the limit as £, — oo the
frequency response becomes essentially identical to the locked absorber case. This is
shown in Figure 4.11g.

A qualitatively similar trend can be observed when the absorbers are tuned within

the no-resonance zone, except that there are no system resonances for the limiting

case of £, = 0, and hence if &, is sufficiently small. This is shown in Figure 4.12a-d
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Figure 4.10. (a) Campbell diagram showing the resonant rotor speeds ores and or and
the corresponding (b) blade and (c) absorber frequency response curves for a model with
N=10,n=3,a=0.84, 3=0.01, 6§ =0.67, n = 0.05, » = 0.5, f =0.01, and & = { = 0.
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Figure 4.11. Blade and absorber (free and locked) frequency response curves for overtuned
absorbers (8 = 0.01), for the same parameter values used in Figure 4.10, and for various
levels of the absorber damping &,.
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Figure 4.12. Blade and absorber (free and locked) frequency response curves for absorbers
tuned within the no-resonance zone (3 = B./2 = —0.00351), for the same parameter values
used in Figure 4.10, and for various levels of the absorber damping &,.
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for B = Ber/2, & = & = 0, and for various levels of the absorber damping £&,. A
system resonance is born if the absorber damping is sufficiently increased, which is
shown in Figure 4.12e-g. In these cases the absorber’s performance is so severely
degraded by the presence of damping that they are no longer effective in attenuating
blade motions, even with proper tuning. However, for reasonable absorber damping
levels there are no system resonances over the full range of rotor speeds, and in this
sense the no-resonance zone is seen to persist for sufficiently small £,. Figure 4.12b
shows a representative set of frequency response curves for a typical level of absorber
damping.

Finally, it can be shown that the blade and inter-blade damping has a much less
dramatic effect on the system dynamics. By increasing either &, or & the blade and
absorber amplitudes are simply reduced and, for absorber tuning outside of the reso-
nance zone, there is generically no significant shift in the resonance point. Physically,
this is a sensical result; the presence of blade or inter-blade damping actually helps
the absorbers achieve attenuation of blade motions, whereas an increase in &, does

the exact opposite.

4.6 Concluding Remarks

An implementation of order-tuned vibration absorbers to a linearized, cyclically sym-
metric bladed disk assembly has been investigated. A standard change of coordinates
based on the cyclic symmetry of the system was employed to reduce the governing
2N equations of motion to a set of N, reduced-order equations, from which an ab-
sorber tuning strategy was formulated. One of the main findings of this chapter, and
indeed of this entire thesis, is the existence of a no-resonance zone, that is, a range of
absorber undertuning values for which there are no system resonances over the full
range of possible rotor speeds. By tuning each absorber within this generally small

(but finite) range, resonance can be avoided altogether and there is at least some level
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of robustness to parameter uncertainty. The extent of this no-resonace gap depends
primarily on the mass of the absorber to that of the blade and on its placement along
the blade length, especially for larger engine orders. The gap can be widened by
increasing the absorber mass and/or by placing it further away from the root of the
blade, effectively strengthening its dynamic potential to suppress blade motions.
These fundamental results are now generalized in the next chapter to include

first-order nonlinear effects.
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CHAPTER 5

Forced Response of the Nonlinear System

5.1 Introduction

The linear results of Chapter 4 are now generalized to include the basic first-order
effects of nonlinearity, which is introduced via the absorber path geometry. Together
with the linear design recommendations of Section 4.4, the aim of this chapter is
to possibly exploit nonlinearity to further improve the absorber performance, partic-
ularly for linear tuning within the no-resonance zone. It is therefore of particular
importance to determine if the no-resonance zone persists under increasing absorber
path nonlinearity. Also, it is well known that for the lightly damped and weakly
coupled cyclic systems under consideration, there may be a host of solution types
other than the desired traveling wave response [106-108] in which all sectors behave
identically except for a constant shift in phase among adjacent sectors. If nonlinearity
is to be exploited, or if it is otherwise present and unavoidable in the sector models,
these additional instabilities (if they exist) must be addressed as a part of the design
process.

It is convenient to employ the generalized, two-parameter familiy of paths that
were developed in Section 3.4.4 to introduce the nonlinearity. These allow the final
path design to be specified directly by choosing a linear tuning order 7 (this was

carried out in Section 4.4 in terms of the linear order detuning 3) and a nonlinear
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tuning parameter n. According to the linear theory there is a continuous spectrum
of (under)tuning values for which there are no system resonances over the full range
of possible rotor speeds. Proper linear design therefore involves tuning the absorbers
within this no-resonance zone. The path parameter 7 acts essentially as the strength
of the path nonlinearity, which has a continuous range from softening (n < 0) to
hardening (n > 0). Its selection forms the main focus of this chapter.

The nonlinear sector models from Section 3.4 are employed, along with the two-
parameter family of paths described above. These are systematically reduced via
scaling and averaging to a set of nonlinear averaged sector models, which forms a
basis for the analytical and numerical investigations that follow. In addition to the
desired traveling wave response, the averaged models are general enough to capture
solutions with slowly-varying amplitudes and phases in individual sectors. However,
we focus only on traveling wave responses, where all of the sectors behave identically
but with a fixed phase difference among adjacent sectors, and on instabilities of this
response, which would result in bifurcations to other response types. The analysis
is carried out first for the isolated nonlinear system, consisting of a single linear
blade and nonlinear absorber. This allows for a complete description of the effects of
nonlinearity on the sector dynamics without additional complicating features due to
inter-sector coupling. When coupling is present, and under a traveling wave response,
the nonlinear system qualitatively features these same dynamics on a sector-to-sector
basis, but there may also exist bifurcations to non-traveling wave motions in addition
to the usual jump bifurcations associated with the isolated sector. In fact, it is shown
that the multi-sector traveling wave response corresponds directly to an equivalent
single sector model whose natural frequency is shifted by a specific amount that
depends on the coupling and the mode being excited.

It is shown that the underlying linear resonance structure—and hence the no-

resonance gap and desired linear absorber tuning—qualitatively persists in the pres-
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ence of nonlinearity, provided that the excitation and path nonlinearity are sufficiently
small. Moreover, given any linear tuning strategy and for zero damping, there exists
a nonlinear tuning that guarantees a branch of solutions for which there are zero
blade motions relative to the rotating hub. However, for proper linear undertuning
this gives rise to an undesirable hardening path with potentially problematic aux-
iliary resonances and it is highly susceptible to parameter uncertainty. Even more
importantly, the nonlinear tuning criterion depends on the rotor speed as well as
the strength of the excitation and is thus effective near a single operating condition,
much like the frequency-tuned DVA of Section 2.5.2. These findings suggest that it is
impossible to exploit nonlinearity to further improve the absorber performance, and
it is therefore desirable to maintain nearly-linear absorber motions. Should nonlin-
earity be unavoidable, the results clearly show that softening characteristics are more
desirable than hardening, where the former simply sets an upper limit on permissible
rotor speeds and the latter involves potentially problematic auxiliary resonances at
low rotor speeds, particularly for light damping. Finally, when inter-sector coupling
is included, no instabilities to non-traveling wave motions could be identified. In
this way, the analysis of an individual sector offers global qualitative results that are
applicable to the fully coupled system, including stability.

The chapter is organized as follows. A mathematical formulation is carried out
in Section 5.2, beginning with a description of the governing nonlinear equations of
motion in Section 5.2.1. These are scaled in Section 5.2.2, the underlying linear reso-
nance structure is shown to persist under the scaling in Section 5.2.3, and the method
of averaging is employed in Section 5.2.4. This gives rise to simplified approximate
sector models that form the basis for all of the analysis that follows. Existence of
the desired traveling wave response is discussed in Section 5.3 in terms of station-
ary points of the averaged system, and its local stability is subsequently addressed.

Features of the forced response of the isolated nonlinear system are highlighted in
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Section 5.4 with an emphasis on the blade and absorber frequency response and also
criteria for zero blade amplitudes. Finally, the forced response of the fully coupled
nonlinear system is considered in Section 5.5 with the goal of quantifying possible
instabilities to non-traveling wave responses, and the chapter closes in Section 5.6

with some concluding remarks.

5.2 Formulation

In what follows the nonlinear equations of motion given by Equation (3.14), together
with the generalized family of paths described in Section 3.4.4, are systematically
reduced via scaling and averaging to a model that is amenable to the tools from
nonlinear dynamics. As with the analysis of Chapter 4, this is carried out under
the assumption of identical, identically-coupled sectors. The governing equations of
motion are briefly reviewed in Section 5.2.1 and they are scaled in Section 5.2.2 to
capture first-order nonlinearity via the absorber paths. In Section 5.2.3 a compar-
ison is made between the scaled sector models and the linearized sector models of
Chapter 4, and it is shown that the linear resonance structure qualitatively persists
under the scaling. Finally, averaging is carried out in Section 5.2.4 in both polar and
Cartesian forms. The resulting averaged sector models form the basis for all of the

analysis that follows.

5.2.1 Equations of Motion

The cyclically-coupled model to be considered features the same lumped-parameter
arrangement for the bladed disk assembly that was employed in Chapter 4, which
is shown in Figure 5.1a (sce Section 4.2 on page 78 or Table 3.1 on page 64 for a
description of it parameters), and the circular-path kinematic model for the absorbers
is replaced by the more general, arbitrary-path description of Section 3.3. This is

shown in the sector model in Figure 5.1b, where p is the ith dimensionless absorber
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Figure 5.1. (a) Model of bladed disk assembly and (b) sector model.

mass, s; is its nondimensional displacement along the arbitrary path, which subtends
an angle 9;(s;) relative to the vertex at V, and r;(s;) is the dimensionless radius
length to the absorber relative to the blade basepoint O. Relationships between these
fundamental path variables were derived in Section 3.3.1.

The equations of motion for the i*" sector follow from the development in Sec-

tion 3.4 and they are given by

d'l‘i

psy + prilif + €as| — priz (o +67)?
1
+ pbo? (Fi sin(6; + v;) — Z% cos(f; + ﬁi)) =0, ieEN (5.1a)
1

67 + &40} — EariT'ss) + 6; + 60 sin b;

dr;
rl-29§’ + rilysl! + 2ri-(#s;(o +67)

tu d(r:T: !
+ —(—;i—}-zsis; + 602r; sin(6; + 9;)
1
+v2(=6;_1 + 26, — ;+1) = Fcos(not + ¢;), ieEN (5.1b)

where the coupling damping &, has been ignored, the functions I'; = [;(s) and
¥; = U;(s) are defined by Equation (3.15) and Equation (3.16), respectively, and

the subscripts ¢ have been dropped from the system parameters (these are defined in
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Table 3.1 on page 64) since the sectors are taken to be identical. The absorber paths
are assumed to be of the form given by Equation (3.19) on page 65, where

b — (a(ﬁ2 +1)+ 5)2

ﬁ2

\

by = — 2" > (5.2)

678 a(f?+1)+4

b G et e D)

are the path coefficients if -y is written in terms of the absorber tuning order according
to Equation (4.39) of Chapter 4. In this representation, each path depends only on
the linear and nonlinear tuning parameters i = a,yi‘s and 7. Once these are set by
design, and given the disk radius J, then a and + are automatically prescribed (these
represent the effective placement of the absorbers along the blade lengths and the
curvature at their vertices).

Next the full nonlinear system given by Equation (5.1) is systematically reduced
to a set of weakly nonlinear oscillators, and perturbation techniques are subsequently

carried out on these reduced equations.

5.2.2 Scaling

In any realistic physical implementation, the absorber masses will be much smaller
than that of the blades, primarily due to stringent restrictions on the absorber rattling

space and therefore on its dimensions and mass. It is thus reasonable to take
p=e

as the basis for the scaling, where 0 < ¢ < 1 is a small dimensionless parameter and
the constant m is to be determined. The blade and absorber dynamics are assumed

to scale with € according to

0; = 5&01 and S; =€ 8
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for each i € A in a manner that is to be determined. Blade damping levels relative
to critical are often 0.01% or less and, in order to achieve the desired order tuning,
absorber damping is generally made as small as possible. As discussed in Section 3.6,
the corresponding dimensionless blade and (effective translational) absorber damp-
ing constants are on the order of 1073 and 1076, respectively, and they are scaled

according to
£, = P&, and £ = e96s.

It is additionally assumed that the inter-blade elastic coupling is weak, that is,

which together with the assumption of light damping allows for the investigation of
a host of possible instabilities, bifurcations, and multiple interacting modes.! Finally,

weak forcing is assumed, that is,
F=¢,

since the nonlinear dynamics near resonance are of interest.

The scaling parameters m, K, [, p, 4, n, and r are chosen such that, to leading order
(¢ = 0), a simplified and solvable system is obtained, one that is used as the basis
for the method of averaging. In order to investigate the potentially rich dynamics
when the system is weakly coupled and lightly damped, the scaling is chosen so that
the nonlinearity, damping, and coupling all appear at O(¢) and it should preserve, as
much as possible, the linear resonance structure described in Chapter 4. To this end,

a suitable choice for the scaling parameters is found to be

m=2 k=3, [=3% p=3 g=1 n=1 r=35. (5.3)

'When the coupling is strong (which can occur in shrouded assemblies or via other coupling
mechanisms) and for sufficiently weak forcing, there exists the possibility of only two interacting
modes, the analysis of which is left for future work.
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Upon substitution and simplification the it scaled sector model becomes

é;’ + 5’11éi + 61}2( - éi—l + Qéi - éi-{-l)
=e( — 108! — 60%8; — £,0) + feos(noT + ¢:)) + 0(e3/?), (5.4a)

8 +@hsi = e(—rob — 0%0; — a8 — 10?8}) + O(e%/?), (5.4b)

where the frequencies w;; = V1+ 602 and Wyy = No are summarized in Table 4.3
on page 96 and 7, is defined by Equation (3.17) (where ~ is eliminated according to
Equation (4.39)).

When ¢ = 0, Equation (5.4) reduces to a pair of decoupled, undamped, and un-
forced linear oscillators. The first oscillator describes the free vibration of an isolated
blade without an absorber, while the second captures the dynamics of each absorber if
the blades are locked relative to the rotating hub, which was discussed in Section 4.2.3.
The general case of small € # 0 is simply a perturbation of these uncoupled systems;
Equation (5.4a) is a linear, weakly forced oscillator that approximates the motions of
blade ¢ € N while Equation (5.4b), which captures the ith absorber dynamics, is un-
forced and weakly nonlinear due to the cubic absorber path term. These oscillators are
weakly coupled due to the assumptions of small y (representing the blade-to-absorber
coupling) and small inter-blade stiffness coupling.

Absorber design is carried out by choosing the linear absorber tuning order n
(the proper selection of which was discussed in Section 4.4) and the nonlinear tuning
parameter 7, both of which appear only in the ith absorber equation, that is, Equa-
tion (5.4b). This in turn prescribes the absorber paths by setting the constants by,
by, and b4 in Equation (5.2) and it fixes the effects of the absorbers on the blade
dynamics via the first two (inertia and stiffness) terms in the parentheses on the right
hand side of Equation (5.4a).

Before proceeding with a further reduction of Equation (5.4) via averaging, it

should be verified that the scaled sector models suitably capture the underlying linear
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resonance structure that was described in Chapter 4. This is done in the next section,

where it is shown that the no-resonance zone qualitatively persists under the scaling.

5.2.3 Linear Resonance Structure of the Scaled System

If the scaling in Section 5.2.2 is applied to the ith linearized sector model defined
by Equation (4.1), and if the assumption of motion-limiting stops is removed by
multiplying through by the stopper angle 15, then it can be directly compared to the
ith scaled sector model given by Equation (5.4) with n = 0. These two systems (in
this section we refer to them as the linearized model and scaled model for simplicity)
match identically if 4 = 0 in M7; and K71 (see Table 4.1 on page 81), which simply
ignores the contribution of the absorber inertia in those terms. In this way, the scaling
is seen to essentially linearize the blade dynamics (with an accompanying additional
loss of some dynamic coupling terms involving p) while at the same time capturing
the basic first-order effects of the absorber path nonlinearity.

Since u = £2 will generally be small, it is expected that the linear resonance struc-
ture qualitatively persists under the scaling of the previous section. This is verified
in Figure 5.2a which shows example plots of the rotor speeds ores corresponding to
resonance for the linearized (solid lines) and scaled (dashed lines) systems described
above versus the linear absorber detuning parameter 3 for zero damping and for var-
ious values of u. (Table 5.1 lists the corresponding values of €, fcr, and Acr for the
various mass ratios.) To simplify matters, the curves are shown for the special case
of a single isolated blade/absorber combination, that is, for v = 0 (this is equivalent
to considering only the possible resonance corresponding to p = 1), but this does
not preclude a direct comparison of the two models for accuracy. It is clear that the
linear resonance structures of the two systems are in good agreement for sufficiently
small mass ratios, and both feature the no-resonance gap. As u increases, so too does

the percent error in opes between the linearized and scaled systems, which is shown
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Table 5.1. Data to accompany Figure 5.2.

M € Ber (x10%) Acr M € Ber (x10%) Acr

0 0 0 - 0.005 0.0707 —-2.348 —0.597
0.001 0.0316 —-0.470 —0.268 0.010 0.1000 —4.685 —0.841
0.002 0.0447 —-0.940 -0.378 0.015 0.1225 -7.012 —-1.027
0.003 0.0548 —1410 -0.463 0.020 0.1414 -9.329 -—-1.182
0.004 0.0632 —-1.879 —0.534 0.025 0.1581 -11.637 -1.317

in Figure 5.2b. For reasonable mass ratios, however, the error is seen to be small
over a wide range of detuning values, except near the critical detuning 3 = (. where
the error becomes unbounded (implying that the scaled system predicts a slightly
larger no-resonance gap). The scaled model increasingly overestimates (¢ by a fi-
nite amount,? but otherwise satisfactorily captures the underlying linear resonance
structure.

Next the nonlinear scaled sector models of the previous section are further re-
duced via the method of averaging. The perturbation analysis simply casts them into
a standard and tractable form, from which blade and absorber amplitudes can be

estimated.

5.2.4 Averaging

In what follows averaging is carried out on the scaled sector models of Section (5.2.2).
This is done first in the standard polar form and the results are subsequently converted
to cartesian coordinates. Both forms are used in the analysis, either explicitly or

implicitely—whichever is most convenient.

2This could be obtained by deriving the counterpart to (., for the scaled system (see Equa-
tion (D.2) of Appendix D) and comparing the two critical detuning values.
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Figure 5.2. (a) The rotor speed oes corresponding to resonance for the linearized system
of Chapter 4 and the scaled system formed by Equation (5.4) (with n = 0) versus the
linear absorber detuning parameter 3 for a model with N =1, n = 3, a = 0.84, § = 0.67,
v = 0, and for mass ratios 0.005 < p < 0.025; (b) the corresponding percent error. The no-
resonance gap (predicted by the linearized system of Chapter 4) is defined by G < 8 <0,
where the values of the critical undertuning (.. are given in Table 5.1 for the various mass
ratios.
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PoLAR FORM

The weakly nonlinear set of oscillators defined by Equation (5.4) can be cast into a

form that is suitable for averaging via the transformation3

-

0i(7) = u;(1) cos(noT + ¢; + 0i(7))
6!(1) = —nou;(7) sin (not + ¢; + 0;(7))

8;(1) = vi(7) cos(noT + ¢; + (7))

§;(1) = —nov(t)sin(not + ¢; + (7)) )

along with the usual constraint equations. Equation (5.5) represents a standard
variation of parameters to transform the dependent variables from 6; (resp. §;) to u;
and p; (resp. v; and ¢;), which allows for solutions with slowly-varying amplitudes
and phases in individual sector responses, and it also serves to capture the desired
traveling wave response among the sectors by including the inter-blade phase angle
¢;. In this way, the transformation additionally carries the continuous time and
discretized space duality that was systematically described in Section 2.3.2 in the
context of engine order excitation. Depending on the value n relative to N, it can
therefore capture BTW, FTW, and SW responses. It should be noted from the
onset, however, that there could be a multitude of other response types and that
the averaged models to be developed based on Equation (5.5) are general enough to
capture them. However, the desired and most basic response is that of a traveling
wave, the existence, stability and bifurcation of which forms the main focus of this
chapter.

Upon substitution of Equation (5.5) into Equation (5.4) and elimination of terms

3The notation p; and ¢; is recycled in this chapter for convenience, and should not be confused
with Equation (B.15) or the circular-path absorber angle in Figure 3.6.
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at 0(53/ 2) and higher we obtain

1 \
ul = — ((Q%l — n20%)y; cos(noT + ¢; + ;) + Efll ) sin(not + ¢; + 0;)
o 1 2 .22 (2) ) )
uj0; = (Wi — n®0°)u;cos(not + ¢; + 0;) + efll cos(not + ¢; + 0;)
”1" > (5.6)
L: =~ ((w%Q — n2a2)vl cos(noT + ¢; + ;) + ef ) sin(not + ¢; + ;)
v = L (122, — 242
5= (wyy — n°0®)v; cos(not + ¢ + ;) + €f22 cos(not + ¢; + ;) )
for each i € N, where the functions
(1) : ; ’
fil = — no&pu;sin(not + ¢; + ¢;) — f cos(noT)
— (rowy — 802)v; cos(not + é; + ;)
o| 2a;cos(noT + ¢; + ;) — @iy cos(noT + ¢;_1 +<i_1)
+ 0 i (5.7)
— ;41 c0os(noT + iy1 + Git1)
fg(lz) = — nofzv; sin(noT + ¢; + ;) + n02v3 cosd(not + ¢ + ;)
= (ro@}) = 80%)u; cos(noT + i + 1) J
capture all of the O(e) terms in Equation (5.4). The differences
2 2
o —o
oh — '’ = ——T, (5.84)
r
03y — n?0? = (i? — n?)o?, (5.8b)

give a measure of proximity of the rotor speed relative to blade resonance and to the
absorber design relative to ideal linear tuning, respectively, where ,; is the natural
frequency of an isolated blade without an absorber, o, = vnZ — 8 is its resonant
frequency,? and Wyy is the natural frequency of each absorber if the blades are locked

relative to the rotating hub. Equation (5.8) motivates the speed and order detunings

0% =021 +¢eN), (5.9a)

72 —n? =), (5.9b)

4This is not to be confused with o,es, which corresponds to the intersection of "y Y with the
engine order line no.
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Figure 5.3. Example Campbell diagram showing the speed and order detuning parameters
A and A.

where A plays the role of the rotor speed and A is the counterpart to the linear order
detuning from Chapter 4. These can be visualized in Figure 5.3, where it is observed
that @;; = dzgll) for small mass ratios . (See Equation (4.26) on page 89.) Under the
detuning scheme defined by Equation (5.9) the right hand side of Equation (5.8a) and
Equation (5.8b) reduce to —eA and e\o?, respectively, and Equation (5.6) becomes

suitable for averaging. Finally, the two order detuning parameters A and [ are related

by
_ Br’(B+2)
vE

which follows from Equation (5.9b) and Equation (4.44). The no-resonance zone is

A (5.10)

such that B¢ < 8 < 0, to which there corresponds a range Acr < A < 0 that can be
computed using Equation (5.10).

After the appropriate substitutions are made Equation (5.6) is averaged over one
period T = 2w/no. The result is partitioned into two vector functions, one that
defines the stationary points of the ith averaged sector model (this is discussed more
fully in Section 5.3.1) and the other inherits any remaining terms. To 0(63/ 2) and

for each ¢ € N, the desired form is

) - - - > £
(@, 8], 53, 5,57 = %G(Vi—l,vi,vz‘ﬂ) + %g(vi—hw,vwl), (5.11)
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where v; = (4;, 8;,7;,5)T. The elements of the 4 x 1 vector G are given by

\

G = — a(n? + 1)o%; sin(p; — §) — noéyu; — f sin g

Gy = — (n +1)a v; cos(g; — ‘) At; — f cos p;

~
-

2u; — 1;_1 cos —0; — ©,
.9 i i—1 E -1 i ‘Pn+1) ieN (5.12)

— G441 €08(8i+1 — 8i + Pn+1)
G3 = + a(n® + 1)o%a;sin(g; — ;) — noap;

Gy =— a(n2 + 1)02121' COS(@i - C_i) + /\02’1_)1' + %7]0’2’[)? )

where the identity ¢;41 — ¢; = :}:27r7’%r = + ¢, +1 has been employed, and the first

element of g is

g1 = 0*@;_1sin(Bi—1 — 8i — Yn41) + P2aip1sin(Biv1 — 8i + Pnr1), ieN
(5.13)
with the remaining entries being equal to zero.

As a final and important note, it is customary at this point to expand all ap-
pearances of o according to Equation (5.9a) and to keep only O(g) terms in Equa-
tion (5.11), which amounts to simply replacing o with the constant o,. However,
we opt instead to keep o in the analysis which, as we shall see, gives much more
satisfactory results.® Benchmark results in which the substitution is made are given
in Appendix E; these are to be compared with the analysis and results to follow,
particularly the blade and absorber frequency response curves of Section 5.4.

The averaged sector models defined by Equation (5.11) serve as the basis for the
analysis in the rest of this chapter. The corresponding Cartesian form is also useful,

which is given next.

SNote that Guckenheimer and Holmes take the same approach in their analysis of a simple Duffing
oscillator in Chapter 4 of [96]. (In particular, see Equation (4.2.14) on page 174.)
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CARTESIAN ForRM

The averaged systems given by Equation (5.11) can be converted to Cartesian form

via the transformation

w(r) = \JAr) + BX(r),  tanai(r) = —Bi(r)/Ai(7)

, iEN.
Bi(r) = \JCR(T) + DX(r),  tang(r) = —Di(r)/Cy(r)
Then if w; = (A;, B;, C;, D;)T it can be shown that
W= _2_;_5 P(w;_1,w;,Wi11)+ % P(Wi_1, Wi, Wi 1) +0(¥?),  ieN (5.14)
where the elements of P are given by
P = —a(n? + 1)0%D; — AB; — noéyA; \
+ 9% (2B; — (Bi—1 + Bi41) cos pnt1)
Py = +a(n2 + 1)02C'i + AA; — naébBi +f
+ 02 (= 24; + (Ai—1 + Aiy1) cos ony1) (- (5.19)
Py = —a(n® + 1)02B; + Ao?D; — noé;C; + 3no? (D + C2D;)
Py = +a(n® + 1)0?A; — Ao?C; — noéaD; — %'naz(CiD? + C’z3) )
The first two clements of the vector p are
) .
p1 = —07(Aim1 — Aig1) sinpny Ciew (516)

p2 = —0*(Bi_1 — Biy1)singy )
and the remaining two elements are zero.
Existence and local stability of the desired traveling wave response of the coupled

system is discussed next.

5.3 Traveling Wave Response

The desired system response is that of a traveling wave (TW), where each sector

behaves identically, except for a fixed phase difference among its nearest neighbors.
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Such a response is characterized by the fullest degree of (cyclic) symmetry that is
possible, which can be visualized in Figure 2.7 on page 35. Then the absorbers become
entrained with the (discrete BTW, FTW, or SW) applied dynamic loading among the
blades (see Section 2.3.2) and are hence most effective in addressing their attendant
vibrations. This type of response is the counterpart to the desired synchronous motion
in the CPVA work by Shaw and coworkers, where any other response type implies
a degradation of absorber performance in which some of the absorbers work against
the others (22, 23].

The averaged models described in Section 5.2.4 were formulated specifically to cap-
ture a TW response, but they are also general enough to identify other solution types
(if they exist) that involve amplitude and phase modulations in individual sectors.
Throughout the remainder of this chapter we focus on TW solutions, the existence,
determination, and stability of which is considered next. Possible bifurcation to other

response types is addressed in Section 5.5.

5.3.1 Existence

A TW response is characterized by identical dynamics of individual sectors together
with a fixed phase difference in these dynamics among neighboring sectors. If v =

(a, 0,0, c‘)T and w = (A, B, C, D)T, then such a response corresponds to

(Vic1,Viy vigl) = (v, v, V), VieN (Polar Form) (5.17a)

(Wi_1, Wi, Wig1) = (w,w,w), VieN (Cartesian Form) (5.17b)

where the phase difference among adjacent sectors is built into the transformation de-
fined by Equation (5.5) via the inter-blade phase angles ¢;. Since g(v,v,v) = 0 (resp.
h(w,w,w) = 0), which can be verified from Equation (5.13) (resp. Equation (5.16))

by setting g;_1 = 0,41 = 0 (resp. Aj_1 = Aj+1 = A and B;_; = B;;1 = B), it thus

131



follows that

0=G(v,v,v), (Polar Form) (5.18a)

0=P(w,w,w), (Cartesian Form) (5.18b)

defines a TW response when the averaged models are in polar (resp. Cartesian) form.
That is, if a stationary point v (or w) can be found that satisfies Equation (5.18a)
(or Equation (5.18b)), then there exists a corresponding TW response. Existence,
therefore, follows from the equilibria of an individual averaged sector model, a sim-
plification that follows from the assumption of identical, identically-coupled sectors,
and expressions for their determination are derived in the next section. In contrast,
local stability of a stationary point involves all N averaged sector models, which is

discussed in Section 5.3.3.

5.3.2 Stationary Points

To each stationary point v (or w) that satisfiles Equation (5.18) (when it exists)
corresponds a TW solution. In general, the determination of these equilibrium points
is too formidable to be carried out analytically, but some important insight can be
gleaned from their defining equations. If damping is ignored, however, a simplified set
of implicit expressions can be obtained, from which blade and absorber amplitudes |a|
and 7| easily follow. These expressions are used to generate representative frequency
response curves in Section 5.4 for the isolated nonlinear system and in Section 5.5 for
the fully coupled nonlinear system. Finally, in all of what follows it is assumed that
neZy,0>0,f#0 0<a<1,andn?—§>0. Physically, the last two conditions
imply that the absorber is attached along the length of the blade and, essentially,
that the rotor radius is comparable to the blade length if the engine order is very
small—a restriction that will generally be satisfied for the engine orders of interest

and for practical rotor/blade geometries.
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We begin by considering the fully damped system and focus on general insight;

the special undamped case is considered subsequently.

THE DAMPED SYSTEM

When they exist, the stationary points can be obtained from either Equation (5.18a)
or Equation (5.18b). The former is slightly less cumbersome to work with analytically
and hence it is employed throughout the remainder of this section. It can be written

as

0 = —a(n? +1)o%vsin (g — ¢) — nofyu — fsing, (5.19a)
0=—a(n?+ 1) cos(a — <) — (A — 203 (1 — cosppt1))a— feosd,  (5.19b)
0 = +a(n? + 1)o?asin(g - ¢) — noé&s, (5.19¢)
0= —a(n?+1)0%acos(g — $) + Ao + %1702173, (5.19d)

from which a number of general insights can be gleaned.

In the absence of nonlinearity, which appears only in Equation (5.19d) via the
cubic absorber path term, Equation (5.19) approximates the amplitudes of the exact
linearized response defined by Equation (4.34) as o is swept from zero. Moreover,
the inter-sector coupling appears only in Equation (5.19b) in combination with the
speed detuning parameter A, and it therefore reflects the same shift in the linear
resonance (associated with coupling) that was observed in Chapter 4. In this way,
the fundamental effects of nonlinearity on the TW response amplitudes, and bifurca-
tions to other traveling wave responses, can be qualitatively captured in the absence
of coupling—that is, for an isolated sector. This is the focus of Section 5.4. The
frequency response amplitudes for the fully coupled nonlinear system are essentially
the same as those of the uncoupled case, except for a shift in the primary resonance
by an amount that is directly proportional to ¥2; when the coupling is small, this

shift is nearly undetectable. However, there may also be potentially rich instabilities
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to response types other than the desired TW (i.e., those with a reduced degree of
symmetry) when coupling is present. This possibility is discussed in Section 5.5.
The presence of damping renders Equation (5.19) essentially intractable since
there is no clear way to eliminate phases and solve for the desired amplitudes @ and @.
Even the corresponding Cartesian form poses much difficulty. Thus when damping is
included the equilibrium points are obtained numerically.
The special case of zero damping is considered next. In this instance, an implicit

pair of expressions for the blade and absorber amplitudes can be derived.

THE UNDAMPED SYSTEM

For zero damping, and when the stationary points exist, they are defined implicitly

by Equation (5.19) with & = £z = 0, that is,

0=—a(n®+1)o vsm( -3) - fsin g, (5.20a)
0=—an?+1)o vcos(@ ) - (a- 20%(1 = cos Yn+1)) T — fcosa,  (5.20b)
0 = +a(n? + 1)o?asin(g - ), (5.20c)
0=—a(n®+1)o ucos(@ )+ A5 + %17021')3, (5.20d)

from which a simple pair of implicit expressions for the blade and absorber amplitudes
can be distilled. However, the case of zero damping is highly degenerate and this
system gives rise to nonhyperbolic equilibria. Nonetheless, an arbitrarily small level
of damping removes the degeneracy, which is shown in Section (5.3.3), and thus the
expressions in Equation (5.20) collectively give a good approximation to the blade
and absorber amplitudes in the presence of light damping. Local stability is obtained
accordingly.

It should be pointed out from the onset that, due to the appearance of sin g
and cos g in the forcing terms of Equation (5.20a) and Equation (5.20b), the usual

approach to eliminate phases cannot be employed and, correspondingly, the analysis
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is somewhat more cumbersome. Equation (5.20c) is used as a guide on how to proceed.
Under the assumptions indicated above, it is satisfied only if sin(§—¢) = 0, @ = 0, or
both. The first condition gives rise to the most general form of the equilibria and it
is described in detail below. The second condition gives rise to the desired motions in
which the blades remain stationary relative to the spinning rotor. It is simply a special
case of the first and is described in Section 5.4.2. Finally, the third condition can be
obtained from the first two, and it does not give rise to any additional equilibria.

If sin(g — ¢) = 0 then Equation (5.20c) is trivial and it follows from Equa-
tion (5.20a) that sing = 0, and together these expressions imply sin¢ = 0. The

phases must therefore satisfy
0=hm and ¢=lIm, kleZ (5.21)
and the system given by Equation (5.20) reduces to

0= —a(n2 + 1)025 cos(km) cos(lm)
— (A = 20%(1 - cos ¢nt1))@ — f cos(km), (5.22a)

0 = —a(n? + 1)o%u cos(kr) cos(Im) + Ao + %na2f)3, (5.22b)

for k,l € Z. There are at most four integer pairs (k,l) that yield distinct
blade/absorber amplitudes (@, 7), and one such choice is summarized in Table 5.2.
Physically, when (k,l) = (0,0) (resp. (1,1)) each blade and its attendant absorber
oscillate with the same phase and their motions are in phase (resp. out of phase) with
respect to the applied dynamic loading. For the case of (k,l) = (0,1) (resp. (1,0))
their motions are out of phase and the blades (resp. absorbers) responds out of phase
(resp. in phase) relative to the excitation. (Of course, some of these motions may be
unstable.) These details are not belabored, however, since in the absence of damping
every stationary point is nonhyperbolic, which is shown in Section 5.3.3.

The (k,!)-dependence in Equation (5.22) can be eliminated by multiplying Equa-
tion (5.22a) by cos(k7) and Equation (5.22b) by cos3(I7) = cos(lr). Then by defining
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Table 5.2. Example integer pairs (k,!) that yield distinct stationary points % and ¥ of the
averaged system. Also indicated are the corresponding values of g and ¢ and whether the
resulting blade/absorber motions are in phase (IP) or out of phase (OP).

k l cos(km) cos(lr) cos(km) cos(lm) o=kr ¢=Ir  Phase

0 0 1 1 1 0 0 IP
1 1 -1 -1 1 ™ s IP
0 1 1 -1 -1 0 T oP
1 0 -1 1 -1 m 0 OoP
@ = wcos(km) and ¥ = ¥ cos(Im) and simplifying the result it follows that
0=a(n?+1)0%0 + (A — 20%(1 — cos ppy1)) @ + f, (5.23a)
0=a(n?+1)a— X - 3nod, (5.23b)
from which the steady-state blade/absorber amplitudes |&| = |a| and |0| = |9] can

easily be computed.
There are at most three roots for ¢, and these can be obtained by eliminating @

in Equation (5.23). They follow implicitly from

3 3 a?(n? + 1)242 . an?+1)f
- + Ao+ =0, 5.24
i * (A—ZI}?(].—COSSOn+1) v A —202(1 — cosppi1) (5.24)
where the corresponding values
2 2 ;
o a(n® +1)o 5 f (5.25)

TA—20%(1 — cospne1) A= 202(1 — cospni)
follow from Equation (5.23a). Given the geometry of the bladed disk assembly, the
strength and order of the excitation, a particular linear tuning, the coupling level,
and the strength of the absorber path nonlinearity, one can construct the blade and
absorber amplitude frequency response curves in terms of the rotor speed using Equa-
tion (5.24) and Equation (5.25). In doing so, the reader is reminded that the dimen-
sionless rotor speed ¢ and its detuning parameter A are related by Equation (5.9a),

where € = /1.

Local stability of the TW response is considered next.
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5.3.3 Local Stability

A hyperbolic fixed point v (or w) implies a unique hyperbolic periodic orbit in the it
nonlinear sector and together all such orbits form a TW response among the sectors
with the same stability type [96,109]. Local stability of v is considered next for
the fully coupled system. The results are subsequently stated for the corresponding

Cartesian form and also for the special case of a single isolated sector.

THE CoUPLED NONLINEAR SYSTEM

Local stability of a stationary point v = (g, g, 7, c‘)T, the elements of which are defined

implicitly by Equation (5.19), can be obtained by considering the small perturbations
M =V;—V, ieEN

away from v; = (;, 9;, 9;,;)T. Then for each i € N, Equation (5.11) can be locally

approximated to leading order by the linearized equation

= 2na[(A B)niy +Umi + (A+B)m+1] +HOT, ieN.  (526)

In Equation (5.26) the subscripts are taken mod N such that g = ny and ny 1 =1

and
_n0£b2 ~a9C(g-5) ~ fCg) AQ’D%C(%H) —aS(p-q) aC(p)
U= —A+20 avs(g—() +fS(é) -aC(Q;—C) avS(g 9) ,
aS(g-3) aiC(p—¢) S T G
aC(Q o) dﬂS(é_c—) Ao“ + qnocv —auS(‘_—,_c-)

where the shorthand notation & = a(n? + 1)o?, S(x) = sin(x) and C(y) = cos(x) has

X)
been introduced. If the matrices A and B are partitioned into four 2 x 2 blocks then

the (1,1) blocks are given by

52

0 DU CoS 41 »2 sin On+1 0
A= 2 ) By =

—U°CoS Yp+1 0 0 o2 sin Pn+1

and all other entries are zero.

137



The N linear systems defined by Equation (5.26) can be handled in the same
way as the sector models in Section 4.3.2. By stacking each 4 x 1 vector #; into the

configuration vector n = (n1,7m9,...,M N)T it follows that n’ = eJ(CPS)n, where

IR = ﬁcirc (U,A+B,0,...,0,A - B) (5.27)

is the 4N x 4N Jacobian matrix, which belongs to Z¢% n. That is, J(CPS) is a block
circulant, block symmetric matrix of type (4, N) and can thus be block diagonalized
via the unitary transformation defined by Equation (2.11) on page 15. This gives rise

to the set of N, 4 x 4 matrices

e _ 1 o
J, = Ty (U +‘2Acos ©r + 27Bsin (pk), ke N (5.28)

where, recall, ¢ = %{}(k —1). The 4N system eigenvalues are preserved under this

transformation and hence they can be obtained by solving N reduced-order eigensys-
tems involving 4 x 4 matrices instead of just one potentially formidable eigenvalue
problem involving a 4N x 4N matrix. However, the transformation renders the re-
duced Jacobians complez, which makes their interpretation more difficult. This is
discussed more fully in Section 5.5.

A similar analysis can be carried out for the averaged sector models in Cartesian
form. In this case the Jacobian matrix J (C%) (the counterpart to J(CPS) when Cartesian

coordinates are used) has generating matrices P,Q + R,0,...,0,Q — R, where

—no&, —A+ 202 0 —ao?
p- A-20%  —no§, ao? 0
B 0 —ao? 8n02CD - noéa 3no?(C? +3D?) + Ad?|’
ao? 0 ——%7702(302 + D?) — \o? —%nazCD —noés
and the (1,1) blocks of Q and R are given by
Qu = 0 —b% cos Pn+l Ris = 2 sin Pn+1 0
I Ontl 0 ’ 1 0 P2 singpyr |’

with all other elements being equal to zero. This gives rise to the set of N, 4 x 4

block decoupled Jacobian matrices

© _ 1 , Rsi ‘
= o (P + 2Qcos ¢ + 2jR sin cpk), ke N (5.29)
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which are the Cartesian counterparts to the matrices defined by Equation (5.28).
Some local stability results are given next for the special case of an isolated sector,

including a polynomial expression for the eigenvalues of its Jacobian matrix.

THE ISOLATED NONLINEAR SYSTEM

The Jacobian matrix corresponding to an isolated sector can be obtained from Equa-
tion (5.28) or Equation (5.29) by setting 7 = 0, in which case the matrices A, B, Q,
and R (and hence the k-dependence) all vanish. In polar and Cartesian forms, the

Jacobians are

—nogy  —atlug = fCp)  —a5p-g AWy
g 1| -4 @S-+ fSp)  —0Ce—) —a0Sp)
-aC;_¢) auS(;_¢) Ao? + no?e?  —aaS;_q
(5.30a)
—no&, —A 0 —ao?
©c_ 11 A —noé, ao? 0
5 T ong| o0 —ao? %nazCD — noés %7}02(C2 +3D%) + X2 |’
ao? 0 —%na?(BC2 + D?) — \o? —%noch - no&;
(5.30b)

which have the same elements as the matrices U/2no and P/2no, respectively, in the
absence of inter-sector coupling.
Stability results are more transparent and tractable for the isolated sector case,

especially in Cartesian form. The eigenvalues ¢ of J%g ) follow implicitly from the

fourth-order polynomial det (J gg ) CI) = 0, which can be written as

s+ d3s3 + (a9 + do)s? + dys + (ag + dg) = 0, (5.31)
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where s = 2no(. The coefficients are
ay = A2+ & (32a2(n2 +1)2 + (3n(C? + D?) + 4)) (99(C* + D?) + 4/\))04
ap = 15 (4a?(n® + 1)202 4 39(C% + D?)A + 4)A)
x (4a%(n? +1)202 + 9(C% + DY A + 40A)o*
d3 = 2no (& + &)
dy = n*o® (&3 + &y + &F) (-
d; = 2no® (a2(n2 +1)2(6a + &) + 15 (3n(C? + D?) + 4)) (99(C? + D?) + 4,\)éb)
+2n0 A%, + 2303626, (62 + &)
dy = n20%, (32a2(n2 +1)% + (3n(C? + D?) + 4)) (99(C? + D) + 4A)£,,)

+ n202§§ (A2 + 1z202£§)

/
where each di (k = 1,2,3,4) vanishes when &5 = éb = 0. In the absence of damp-
ing Equation (5.31) is quadratic in s and it thus features quadrantal symmetry in
the complex plane. This in turn implies nonhyperbolic or otherwise unstable station-
ary points v, depending on the details of ag and ag. An arbitrarily small level of
blade and/or absorber damping destroys the quadrantal symmetry, thus removing
the possibility of nonhyperbolicity.

Next the averaged sector equations are employed to detail some global features
of the forced response. This is done first for the isolated nonlinear system in Sec-
tion 5.4 and subsequently for the fully coupled nonlinear system in Section 5.5. For
convenience, and where appropriate, the analysis is carried out using both polar and

cartesian forms.

5.4 Forced Response of the Isolated Nonlinear System

In order to focus on the nonlinear dynamic performance of the absorbers without the
potentially complicating effects of inter-sector coupling (in particular, the possibility

of additional symmetry-breaking instabilitics) we focus on an isolated sector in this
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section, which consists of a single blade and nonlinear absorber. (A treatment of the
fully coupled nonlinear system is postponed to Section 5.5.) The results are presented
in Section 5.4.1 in terms of blade and absorber (amplitude) frequency response curves.
A criterion that guarantees a branch corresponding to zero blade amplitudes is sub-
sequently derived in Section 5.4.2, which is the nonlinear counterpart to the ideal, or

exact linear tuning.

5.4.1 Frequency Response

Example plots of the blade and absorber TW amplitudes |@| and || are shown in Fig-
ure 5.4 versus the rotor speed o for a hardening absorber path (7 > 0), zero damping,
and for various levels of the order detuning (3, and a corresponding set of plots is shown
in Figure 5.5 for a softening path (n < 0). In these figures, the undamped absorber
and blade amplitudes were generated using Equation (5.24) and Equation (5.25) with
7 = 0, and stability results were numerically determined according to Equation (5.30)
with the addition of very light damping (approximately 0.01% absorber damping rel-
ative to critical and zero blade damping). For comparison, the linearized frequency
response curves of Chapter 4 are also included. Figure 5.6 features the same frequency
response loci shown in Figure 5.5 for softening absorbers, but with nonzero blade and
absorber damping éb = 2x 1073 and & = 2 x 1075, These curves were obtained
numerically according to Equation (5.19) (stationary points) and Equation (5.30a)
(local stability). A set of frequency response curves showing more resolution with
respect to ( within and near the no-resonance zone is shown in Figure 5.7 for a
hardening absorber path and in Figure 5.8 for a softening absorber path; these are
meant to accompany Figure 5.4 and Figure 5.5, respectively. Finally, it was shown in
Section 5.2.2 that the linear resonance structure described in Chapter 4 is preserved
under the scaling (see Figure 5.2 on page 125), and it is clear from Figures 5.4-5.8

that this structure qualitatively persists in the averaged system as well. However, the
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nonlinearity gives rise to some additional features, and we describe them first for the
case of hardening absorber paths.

In Figure 5.4 either one or two nonlinear resonances can be observed, depending
on the order detuning /3, and there is interplay/duality — between the two. For
convenience, these are defined as primary and auziliary (nonlinear) resonances and
are denoted by ’REL and RI;IL, respectively. The primary resonance is simply the
nonlinear counterpart to the linear resonance (denoted by ’RL) and, for a hardening
absorber path, it bends toward the direction of increasing rotor speed. When it exists,
'RIa\IL is a secondary resonance that arises due to the presence of the nonlinearity.

For large undertuning values, R%:IL and RL are nearly coincident close to 0 = oy =
0.346, which is shown in Figure 5.4a, but the hardening nonlinearity sharply bends
the primary resonance in the direction of increasing . In this figure, the nonlinearity
gives rise to an additional resonance RI;IL, which appears from zero rotor speed. For
the blade, it increases gradually for increasing o, whereas for the absorber it begins
at nearly constant amplitude. For both, the auxiliary resonant amplitudes increase
sharply at ¢ = o, which, recall, is the resonant speed of an isolated blade without an
absorber and it also corresponds to zero speed detuning, i.e., A = 0.

As (3 is increased ’R,II;IL and RL move together to the right8 (Figure 5.4b) toward
infinite o, leaving behind the same set of linear amplitude branches that were observed
in Chapter 4. This situation, which is shown in Figure 5.4c, corresponds to the no-
resonance zone predicted by the linear theory. However, the auxiliary resonance R§L
persists, which is an artifact of the absorber path nonlinearity. The case of perfect
linear tuning (3 = 0) is similar, except that the linear amplitude branch for the blade
vanishes (this is shown in Figure 5.4d) and RYL and ’RgL become coincident—that
is to say, as [ is swept through exact linear tuning ’REIL essentially switches roles to

become the primary resonance. By further increasing the linear detuning (that is, for

6The error between the location of these resonances can be approximated by the curves in Fig-
ure 5.2b on page 125.
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B > 0) the linear resonance appears from the left at zero rotor speed and 'RgL moves
with it to the right, which is shown in Figure 5.4e-f. As § becomes large the primary
and linear resonances become nearly identical. This is shown in Figure 5.4g.

In summary, the primary nonlinear resonance behaves in the same way as the
linearized resonance when the linear detuning is swept from negative to positive, and
it observes the no-resonance zone by vanishing when G < 6 < 0. It also features
a hardening bend in the direction of increasing o that extends out to infinite rotor
speed. Finally, the nonlinearity gives rise to an additional auxiliary resonance that
exists for all undertuning values, that is, for any 3 < 0.

A similar trend can be observed in Figure 5.5 for the case of a softening absorber
path, except that the auxiliary resonance exists when the absorber is overtuned and,
of course, the primary and auxiliary resonances bend in the direction of decreasing
rotor speed. The primary nonlinear resonance does exist for detuning values within
the no-resonance zone, but its effective location corresponds to large rotor speeds
and it approaches infinite o as the linear order tuning approaches zero (ideal tuning).
In this way, the no-resonance zone essentially persists, where the primary nonlinear
resonance simply places an upper limit on the effecti\{e range of permissible rotor
speeds. As 'REIL moves with R toward infinite o for increasing £, it leaves its
remnants behind which, when the tuning such that 3 > 0, is regarded as the auxiliary
resonance RI;IL. A key difference for the softening case is that the linear branches
within the no-resonance zone are (for sufficiently small forcing levels and absorber
path nonlinearity) isolated from nonlinear response branches for rotor speeds to the
left of primary resonance. (Compare Figure 5.5c-d with Figure 5.4c-d.) For a softening
absorber path, it is therefore possible to spin the rotor up from zero speed to some
(sufficiently small) steady operating point without passing through resonance. This
is generally not possible for a hardening path, in which case there are potentially

unavoidable auxiliary or primary resonances for all order detuning values—including
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those within the no-resonance zone. It can thus be said that absorber designs involving
hardening paths are generally not acceptable. Softening absorber paths are clearly
desired, but they do set an upper limit on the rotor speed, the value of which depends
to a large extent on the excitation strenéth and the strength of the absorber path
nonlinearity.

Figure 5.5 also shows simulation data corresponding to the full nonlinear model
for blade and absorber damping levels of &, = 2 x 1073 and &5 = 2x 1075, respectively.
The predicted frequency response amplitudes (which correspond to zero damping) are
seen to be in reasonably good agreement with these data. A corresponding set of fre-
quency response loci were numerically generated with the same damping levels used
in the simulations. These follow from Equation (5.19) (stationary points) with & =0
and Equation (5.30a) (stability) and are shown in Figure 5.6. The results are seen to
be in very good agreement with the simulation data, thus validating the accuracy of
the averaged sector models. If only qualitative features of the forced response are de-
sired, however—response amplitudes in particular—the simple analytical expressions
defined by Equation (5.24) and Equation (5.25) are quite sufficient.

In both Figure 5.5 and Figure 5.6, simulation data could not be obtained for
the nonlinear auxiliary resonance branches (for the particular parameter values used)
due to their small domains of attraction. However, when the excitation strength is
increased, these domains widen and the branches of RN can be captured. This is
shown in Figure 5.9, which depicts the blade and absorber frequency response loci
for a softening absorber path, linear tuning within the no-resonance zone, and for
various levels of the dimensionless force amplitude F. The figure also indicates an
upper limit on the excitation strength, where a bifurcation destroys the no-resonance
structure.

The frequency response results described above are in overall good agreement with

the actual nonlinear response (based on the full nonlinear equations and indicated
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Figure 5.9. Blade and absorber frequency response curves for the essentially undamped
isolated nonlinear system with a softening absorber path, for linear tuning within the no-
resonance zone (8 = (/2 = —0.822 x 1073), for various levels of the force amplitude F,
and for n =3, a = 0.84, § = 0.67, and u = 0.0035 (¢ = 0.0592).
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by the simulation data), particularly when damping is included and if the parameter
values are reasonable. The representative examples depicted in Figure 5.6 show that
the averaged sector models can be very accurate, even for very large positive or
negative order detuning 3 (values of 7 relative to n) or speed detuning A (rotor
speed o relative to o). The same cannot be said, however, had the usual approach
to averaging been carried out. Recall from Section 5.2.4 that an alternative approach
was adopted in which ¢ is retained in the averaged equations, essentially keeping key
higher-order terms in the model. This is a crucial observation in the methodology
since the usual approach to averaging (which amounts to simply replacing o with the
constant o) gives at best mediocre results, and it fails completely to capture the
no-resonance zone. The reader can verify these claims by comparing the analysis and
results presented thus far with those given in Appendix E, where the usual approach
to averaging is employed.

A criterion for zero blade motions relative to the rotating hub is derived next,
which is the nonlinear counterpart to the ideal, or exact linear tuning described in

Section 4.4.1.

5.4.2 Criteria for Zero Blade Amplitudes

The desired system response is one in which the blades remain stationary relative to
the spinning rotor and the absorbers move accordingly in a TW configuration. Such a
response can be achieved for a linear system (in the absence of damping) by the exact
linear tuning described in Section 4.4.1. However, a more realistic linear tuning strat-
egy is one in which the absorbers are detuned within the no-resonance zone, which
offers robustness to parameter uncertainties but it comes at the expense of residual
blade vibrations. The aim of this section is to possibly exploit the absorber path non-
linearity to address these vibrations and further improve the absorber performance.

The desired response is, in fact, possible (but not necessarily stable) for zero
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damping and the corresponding requirements on the system parameters follow from

Equation (5.20) by setting @ = 0. Then

0=—a(n?®+1)0s sin(g — ¢) — fsing, (5.32a)
0=—a(n?®+1)o% cos(6—¢) — f cos , (5.32b)
0= Ao+ %770263. (5.32¢)

However, the phase p is undefined if @ = 0 and hence Equations (5.32a) and Equa-
tion (5.32b) should be independent of g. To see this, the latter is solved for ¥ and is

introduced to the first. Upon simplification the result is
0= fsing,

which is indeed g-independent and it implies ¢ = I7 for | € Z. Then Equation (5.32a)
and Equation (5.32b) both reduce to a single expression and, together with Equa-

tion (5.32c), the required conditions become

0 = a(n?® + 1)o%v cos(Ir) + f, (5.33a)

0= (,\ + %01‘12)02{1. (5.33b)

Since @ = 0 by assumption, the case of v = 0 gives rise to the trivial response
(@,v) = (0,0) and mathematically it corresponds to a nonhyperbolic stationary point.
By restricting o > 0 (meaning that the absorber must assume nonzero motions in
order to achieve zero blade vibrations) and eliminating the absorber amplitude in
Equation (5.33), one can solve for the critical nonlinecar tuning parameter. The result
is

4xa?(n? +1)%04

3f2

which is seen to depend on the engine order, the placement of the absorber relative

, (5.34)

Ner = —

to the blade, and the linear tuning order. However, it also depends on both the

excitation strength and the rotor speed, which implies that the critical nonlinear
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tuning is valid only for a single set of operating conditions. While it may be possible
to design an active absorber, where the nonlinear tuning is adjusted on-the-fly for
varying f and o, effective implementation in the harsh operating environments (e.g.,
rotation, extreme temperatures, and so on) is likely to by impractical, if not entirely
impossible. Moreover, since proper linear tuning is negative (A < A < 0) and all
other parameters in the right hand side of Equation (5.34) are positive, the nonlinear
tuning requires hardening absorber paths (n > 0). As discussed in Section 5.4.1 this is
an undesirable path type, one that gives rise to potentially problematic resonances—
even for proper linear tuning.

These findings clearly show that the nonlinear tuning defined by Equation (5.34)
is unsatisfactory for the passive absorbers under consideration. More generally, they
also suggest that nonlinearity cannot be exploited to improve the absorber perfor-
mance. However, we do offer some general recommendations for the critical nonlinear
tuning next with the understanding that they are feasible only for an active absorber
implementation, which may have applications in other settings.

Example plots of blade and absorber frequency response curves are shown in
Figure 5.10 for linear tuning within the no-resonance zone, for perfect nonlinear tuning
according to n = ner, and also for slight over- and undertuning with respect to n¢r. In
addition to the host of other issues described above, this figure highlights sensitivity to
parameter uncertainties. As shown in Figure 5.10c, any level of nonlinear overtuning
is accompanied by a jump instability to the nonlinear auxiliary resonance. Slight
nonlinear undertuning relative to 7. is therefore desirable. However, it is again
stressed that this is feasible only for an active absorber implementation, and there
still remains a potentially problematic auxiliary resonance.

Finally, while the nonlinear tuning scheme described above is not acceptable for
applications involving passive absorbers, all is not lost; some insight can be gleaned

and reinforced from the analysis. Equation (5.33a) implies that the absorber ampli-
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Figure 5.10. Example blade and absorber frequency response curves for linear tuning
within the no-resonance zone (8 = (. /2), for several nonlinear tuning values relative to
Ter, and for a model with n = 3, o = 0.84, § = 0.67, » = 0.0035 (¢ = 0.0592), f = 0.0001
(f =0.117), and & = & = 0.
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tude increases linearly with the strength of the excitation in a way that depends on
the engine order and placement of the absorber along the extent of the blade. Consis-
tent with intuition, the absorber should be placed as close to the end of the blade as
possible to achieve the smallest absorber motions given a specific excitation strength.
Equation (5.33a) also indicates that, for a given forcing level, higher engine order
excitations will give rise to lower absorber amplitudes.

The nonlinear results discussed up to this point for the special case of an isolated
sector qualitatively embody all of the fundamental features of the fully coupled system,
except for the possibility of additional instabilities to response types other than the

desired TW variety. The existence of such bifurcations is considered next.

5.5 Forced Response of the Coupled Nonlinear System

The forced response of the isolated nonlinear system, which consists of a single linear
blade and nonlinear absorber, were described in detail in Section 5.4. These funda-
mental results can be used to qualitatively predict many of the corresponding features
of the fully coupled nonlinear system, including its TW response amplitudes and jump

bifurcations to other traveling wave solutions. The frequency response amplitudes of

the coupled system qualitatively match those of the uncoupled case, except for a shift
in the primary resonance (when it exists) according to the third term on the right

hand side of Equation (5.19b), that is,

A —20%(1 = cosppp1) = A, (5.35)

by an amount that is directly proportional to ¥2 = €52, Hence the shift will be small
if the inter-sector elastic coupling is weak, in which case amplitude predictions for the
fully coupled system based on the isolated sector model are quite accurate. In what
follows, it will be shown that stability results associated with the isolated nonlinear

system qualitatively apply to the coupled system as well, where any bifurcation iden-
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tified in the former simply corresponds to a jump in blade/absorber amplitudes in
the latter to another traveling wave response. These bifurcations are said to preserve
the symmetry of the response. However, the coupled nonlinear system may feature
additional symmetry-breaking instabilities that the isolated system cannot predict,
which involve bifurcation to response types other than the desired TW. These possi-
ble instabilities are addressed in the next section, where the findings strongly suggest
that symmetry-breaking bifurcations do not occur.

It should be noted that, while closed form analytical expressions are available for
the prediction of response amplitudes, determination of local stability in the pres-
ence of coupling is quite a bit more formidable. The set of block decoupled Jacobian
matrices from Section 5.3.3 (for the coupled case) do offer a substantial savings in
computation (which is quite useful for numerical studies), but even these 4 x 4 re-
duced matrices are analytically unaccommodating and hence essentially intractable.
(Stability results for the simplified case of zero coupling follow from Equation (5.31),
which features complicated coefficients. The addition of coupling gives rise to N poly-
nomials of the same form with coefficients that are many times more complicated.)
At least some insight can be gleaned from the reduced Jacobians, however, and this
is done in Section 5.5.1, but they are otherwise handled numerically. In what follows
we offer a sampling of results based on extensive case studies and numerical investiga-
tions. These are briefly summarized in Section 5.5.2 using examples of models with

N =5 (odd) and N = 6 (even) sectors.

5.5.1 Local Stability of the Traveling Wave Response

For the special case of zero coupling (7 = 0), local stability of a stationary point v
follows from the 4 x 4 Jacobian matrix Jgg ), which is defined by Equation (5.30b).”

For a particular equilibrium point, and if this matrix is Hurwitz (meaning that all

"In what follows, we restrict the discussion to Cartesian forms for convenience, where it is un-
derstood that the same arguments hold for the corresponding polar forms as well.
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four of its eigenvalues lie in the open left-half complex plane), there corresponds a
stable periodic orbit in the isolated nonlinear system [96,97,109]. If any eigenvalue
of J gg ) crosses the imaginary axis into the right-half complex plane as the rotor speed
(or any other parameter) is varied, a jump bifurcation occurs in which all of the
blade and absorber amplitudes spontaneously assume different values, and the TW
symmetry is preserved.

A similar type of (symmetry-preserving) instability can be observed in the fully
coupled nonlinear system in which there is a jump in blade and absorber amplitudes
and the response maintains its TW configuration. This is found to occur when an
eigenvalue of one particular reduced Jacobian crosses the imaginary axis. Thus any
crossings by an eigenvalue of any other reduced Jacobian matrix generically corre-
sponds to a symmetry-breaking bifurcation in the coupled nonlinear system to a
response type other than the desired TW. However, based on extensive numerical
investigations, no such instabilities could be identified.

To see these features more clearly, we consider in more detail the reduced Jacobian

matrices that were derived in Section 5.3.3, which are stated again here (in Cartesian

form) for convenience. They are
2norJ§CC) = P + 2Qcos ¢} + 2jR sin ¢y, ke N (5.36)

where the factor 2no has been moved to the left of the equality for convenience. The
matrices Q and R vanish when © = 0 and the matrix P is the same as J gg ) (isolated
sector), except for the addition of 202 (resp. —252) in the (1,2) (resp. (2,1)) element.
Since Equation (5.36) was obtained by way of a unitary transformation of the full
Jacobian matrix J(C%) € BEBS4 N (coupled sector), the eigenvalues persist in these
N, 4 x 4 reduced matrices. Note that they feature a cyclic structure with respect to
the index k € N, which arises from the sine and cosine terms involving ¢;. Since

cospnio_k = cosyy and sinpyyo_ = —singyg the reduced Jacobians generally
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appear as complex conjugates of the form
P +2Qcos i £ 2jR sin ¢y, (5.37)

except for £ = 1 when the form is P 4+ 2Q or if N is odd, in which the k = (N +2)/2
case gives rise to P — 2Q in addition.8

Based on extensive numerical evidence it is found that the real matrix
; 1
3O =3O - _— (p4o 5.38
EFF 1 o U( +2Q) (5.38)

is the only one of the N reduced Jacobians that gives rise to instabilities. It corre-

sponds to Equation (5.36) with & = 1 and is such that

-nof, —A 0 —ao?
A —naéb ao? 0
P+2Q= .
+2Q 0 —ao? %7702CD — noég %7702(02 + 3D?) + o2
ao? 0 —%n02(3C’2 + D?) — \o? —%na2CD - noés

where A is the effective resonance shift defined by Equation (5.35) and, recall,
& = a(n? + 1)o2. Equation (5.38) is the same as the Jacobian matrix Jgg) of the
isolated nonlinear system, but it additionally incorporates the resonance shift asso-
ciated with coupling, which is reflected in A. In fact, it is the Jacobian matrix of
an effective isolated nonlinear system consisting of a single blade, a nonlinear ab-
sorber, plus a single elastic coupling element, which follows from the averaged sector
model corresponding to ¢ = 1 rather than the model obtained by setting & = 0.
In this way, instabilities observed in JgIJ:‘)F directly correspond to those predicted by
J gSC ), Moreover, since instabilities were detected only by the effective Jacobian matrix

J g:CF)F = J(]C) and none of the other reduced Jacobians, it thus follows (based on nu-

merical evidence) that there are no symmetry-breaking bifurcations to response types

other than the desired TW. Again, this observation is based on extensive numerical

8Analogous features that arise due to cyclicity can be observed in the multiplicity of eigenfre-
quencies and normal modes of a generic cyclic system (Figure 2.5) and also in the BTW, FTW, and
SW characteristics of engine order excitation (Figure 2.3).
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evidence and case studies. Therefore, while it cannot be said with certainty that such
bifurcations absolutely cannot occur, these findings strongly suggest that they do not.

A sampling of results is given next for specific values of N and with an emphasis on
blade/absorber frequency response and traveling wave characteristics of the coupled

system.

5.5.2 Case Studies

In this section we briefly highlight some case studies for models with a specific number
of sectors. It is clear that N = 1 is a trivial case since it features only one sector.
The next simplest systems with N = 2 and N = 3 sectors are special cases where, in
addition to nearest-neighbor coupling, they also feature all-to-all coupling in which
each sector is coupled to all other sectors. Moreover, it is well-known that the case of
N = 4 sectors gives rise to additional rich dynamics that are not generically observed
for general N [106-108]. Finally, it is recalled from Section 2.4 that the traveling
wave nature (BTW, FTW, or SW) of the system can be different for an odd or even
number of sectors. The case studies are thus summarized for models with N = 5
(odd) and N = 6 (even) sectors. We begin with the case of N = 5.

A representative set of blade and absorber frequency response curves are is shown
in Figure 5.11 for softening absorber paths, undertuned absorbers, and for a number
of coupling levels that increase from zero. In fact, Figure 5.11a corresponds to the
blade and absorber amplitude responses shown in in Figure 5.5b and Figure 5.6b for
the isolated (zero coupling) nonlinear system, and Figures 5.11b-g simiply show how
this picture changes as the coupling in increased from zero. For small coupling the
frequency response loci are nearly the same as the isolated sector case, where the
resonance shift associated with coupling is essentially imperceptible. As the coupling
is increased the primary nonlinear resonance (linear resonance) moves to the right.

This resonance shift is expected, and is manifested by the term defined by Equa-
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tion (5.35). Finally, simulation data is included near primary resonance in several of
the plots, which indicates that the results are valid even for large coupling strengths.
The sparsity of data points can be attributed to very long simulation run times; even
with today’s computers it can take many hours for a numerical solver to settle into a
steady-state.

Figure 5.12 shows the blade and absorber time responses for the same parameters
used in Figure 5.11e and for a rotor speed of ¢ = 0.55. Since the absorbers are
undertuned outside of the no-resonance zone, the mode shape associated with an
individual sector is (1, —1) and hence the blade and its attendant absorber feature
out-of-phase motions with respect to one another. This can be confirmed, for example,
by comparing the dashed line in Figure 5.12a to that in Figure 5.12b. Finally, the
engine order n = 3 excites mode p = n + 1 = 4 which, according to Table 2.2 on
page 32, is of the FTW variety. This can also be identified in the figure, where the
periodic motions of, for example, blade 1 are followed by the same motions in blade 2,
3, and so on until the pattern repeats itself.

A corresponding set of blade and absorber frequency response curves are shown
in Figure 5.13 for the same parameters use in Figure 5.11, except with N = 6 sectors.
Nothing qualitatively different is expected nor observed in these figures. However, in
this case the engine order n = 3 excites a SW mode corresponding to p =n + 1 =4,
which can be verified by Table 2.2 and clearly observed in the blade and absorber time

responses depicted in Figure 5.14, which corresponds to Figure 5.13e with o = 0.55.
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sentially undamped coupled nonlinear system with N = 6 (odd) sectors, softening absorber
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5.6 Concluding Remarks

This chapter has extended the linear design, theory, and methodology of Chapter 4 to
include the basic, first-order effects of nonlinearity, which was introduced via the ab-
sorber path geometry. A key finding is that, for the passive order-tuned absorbers of
interest, one cannot exploit nonlinearity via the path design to improve absorber per-
formance. However, general conclusions on the effects of system nonlinearity can be
gleaned from the analysis. The results show that hardening characteristics are unde-
sirable since they give rise to a primary resonance, a potentially troublesome auxiliary
resonances at low rotor speeds, or both. If system nonlinearity is unavoidable, it was
shown that softening characteristics are acceptable and that they essentially set an
upper limit on permissible rotor speeds. Finally, for the weakly coupled and lightly
damped system under consideration, no symmetry-breaking instabilities of the de-
sired TW type solution could be identified. These results, together with the linear
absorber tuning strategy given in Chapter 4, give rise to a final recommendations for

absorber design, which are summarized in the next chapter.
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CHAPTER 6

Conclusions

This thesis has investigated the use of centrifugally-driven, order-tuned vibration
absorbers to suppress the steady-state motions of a rotating bladed disk assembly
under engine order excitation. For this purpose a simplified, lumped parameter model
was employed. Each sector was assumed to be identical and identically coupled,
consisting of a single-DOF pendulum-like blade model together with a general path,
lumped-mass absorber. At the time of writing, this work reports the first systematic
analytical treatment of systems of order-tuned absorbers applied to cyclic rotating
flexible structures under engine order excitation, and thus such a simplified model is
justified. Just as the generic single-DOF harmonic oscillator can be employed in the
theory of elementary vibrations to capture and understand fundamental properties
such as natural frequency and resonance, so can the model employed in this work to
quantify the rich linear resonance structure, the basic effects of system nonlinearity,
and to clearly motivate both a linear and nonlinear absorber design strategy in terms
of the system and absorber path parameters. The results of this work are fundamental
to future studies of its kind, both analytical and experimental.

The major contributions of this investigation are briefly reviewed in Section 6.1.
These have given rise to a number of detailed recommendations for absorber design,
which are summarized in Section 6.2. Finally, directions for future work are high-

lighted in Section 6.3.
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6.1 Summary of Contributions

The main results of this study follow from Chapter 4, where the linearized dynamics
of the cyclically-coupled system fitted with order-tuned absorbers were investigated,
and in Chapter 5, where these basic results were generalized to include the first-order
effects of nonlinearity.

According to the linear theory of Chapter 4 there exists an ideal (exact) absorber
design such that, in the absence of damping, a complete elimination of blade vibrations
(relative to the rotating hub) is possible. The design is accomplished by setting the
(isolated) absorber natural frequency equal to the excitation frequency, just as it
is done with the classical frequency-tuned dynamic vibration absorber due to Den
Hartog [99]. However, since both frequencies scale directly with the rotor speed, this
amounts to an order tuning in which the absorber tuning order identically matches the
order of the excitation. In this way, the linear order tuning is valid independent of the
rotor speed. While exact tuning offers the best possible (linear) absorber performance,
it is susceptible to the effects of parameter uncertainties. Any level of unintentional
absorber overtuning or sufficiently large undertuning gives rise to a linear system
resonance. The most significant finding of Chapter 4, and arguably of this entire
study, is the existence of a no-resonance zone. It consists of a finite range of absorber
undertuning values for which there are no system resonances over the full range of
possible rotor speeds. The upper bound of this spectrum of feasible designs consists
of exact tuning and it is bounded from the bottom by a critical linear detuning.
Proper absorber design involves intentional undertuning within this generally small,
but finite gap. The absorbers profit from such a design in terms of robustness to
parameter uncertainties, but this is accompanied by slightly reduced performance in
the form of residual blade vibrations.

The fundamental linear results described above were generalized in Chapter 5 to

include the basic first-order effects of nonlinearity, which was introduced via the ab-
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sorber path geometry, and the possibility of exploiting this nonlinearity to improve
the absorber performance was investigated. It was shown that the underlying linear
resonance structure (and hence the no-resonance zone) qualitatively persists, provided
that both the path nonlinearity and excitation levels are sufficiently small. In this
way, the linear tuning from Chapter 4 remains effective. There does exist a critical
nonlinear tuning that guarantees a branch of solutions corresponding to zero blade
motions (which is, in fact, valid for any linear tuning). However, it was shown to
depend on the rotor speed and excitation strength, and is thus effective for only a sin-
gle operating condition—much like the classical frequency-tuned dynamic vibration
absorber. It is therefore impossible to exploit nonlinearity to further improve the
performance of the passive order-tuned absorbers of interest. However, the analysis
does highlight some general conclusions on the effects of nonlinearity (in the absorbers
or otherwise) that can aid in the absorber design process. First, it was shown that
softening characteristics are acceptable, and that they essentially place an upper limit
on permissible rotor speeds. In contrast, hardening characteristics should be avoided
altogether, since they give rise to problematic auxiliary and/or primary resonances.
Finally, for the weakly coupled and lightly damped system under consideration, no

symmetry-breaking instabilities of the desired TW response could be identified.

6.2 Recommendations for Absorber Design

In what follows the major results of this thesis pertaining to absorber design are
consolidated for quick reference. In Section 6.2.1 the linear tuning strategy described
above, together with conclusions based on the nonlinear analysis, are summarized
in a parameter space that involves the linear order detuning and nonlinear tuning
parameters. Section 6.2.2 comments on system damping, and suggestions for the
absorber sizing and placement are give in Section 6.2.3. Finally, a particular class of

absorber path types is recommended in Section 6.2.4.
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6.2.1 Linear and Nonlinear Tuning

Proper absorber design can be summarized in the parameter space depicted in Fig-
ure 6.1. This design chart indicates ideal (exact) absorber tuning and also qualitative
regions of desired, acceptable, possibly poor, and poor absorber performance due to
primary resonance (prim. res.) and/or auxiliary resonance (aux. res.) in terms of the
linear and nonlinear tuning parameters § and 7, the values of which span the range
from (linear) under- to overtuning and (nonlinear) softening to hardening, respec-
tively. A nonlinear absorber tuning scheme with n > 0, that is, if the absorber paths
are hardening, involves a potentially problematic auxiliary resonance at low rotor
speeds, an unavoidable primary resonance, or both. Thus any design in quadrants
I and region II of the (/3,7n) parameter space gives rise to poor absorber perfor-
mance. Designs in region Il are generally undesirable, especially for light damping,
in which case the auxiliary resonance is more problematic. Similar statements can
be made for any linear overtuning (8 > 0) or for sufficiently large linear undertuning
(3 < Ber), in which case a linear (primary nonlinear) resonance is guaranteed. Hence
any design in quadrant IV of Figure 6.1 yields poor absorber performance, as do
all designs in quadrant II] to the left of Bc;. This leaves only the shaded region in
quadrant three (denoted by III;) where absorber designs are feasible, though the
performance degrades as the paths are made more softening. (This has the effect of
moving the primary resonance in the direction of lower rotor speeds, thus limiting the
effective operating range of the bladed assembly.) Ideal absorber tuning corresponds
to (3,m) = (0,0), but in order to incorporate robustness to parameter uncertainty,
a tuning scheme in which the absorbers are slightly softening and tuned within the
no-resonance zone is recommended, that is, in the region indicated by “Acceptable”

in Figure 6.1.
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Figure 6.1. Absorber design chart showing ideal tuning and qualitative regions of desired,
acceptable, possibly poor, and poor absorber performance due to primary resonance (prim.
res.) and/or auxiliary resonance (aux. res.) in terms of the linear and nonlinear tuning
parameters § and 7, the values of which span the range from under- to overtuning and
softening to hardening paths, respectively.
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6.2.2 Damping

The basic effects of absorber, blade, and inter-blade, damping were discussed in Sec-
tion 4.5, where it was indicated that the latter two forms of damping actually help
the absorbers address blade vibrations. However, the presence of absorber damping
essentially weakens their action on the blades and hence lessens their ability to op-
erate properly. For sufficiently large absorber damping, this can lead to a system
resonance—even for proper linear undertuning—thereby destroying the no-resonance
zone. Thus in addition to the linear and nonlinear design recommendations given
in Section 6.2.1, the absorber damping should be kept sufficiently small so that the
no-resonance zone persists. The response plots shown in Figure 4.12 on page 112 can

be used to estimate maximum permissible absorber damping levels.

6.2.3 Absorber Sizing and Placement

Throughout this work the results have shown that large absorber inertia (relative to
the blades) is highly desirable. This is quite clear in physical terms since a larger
absorber mass is able to exert increased dynamic loads on its attendant blade and is
hence more effective (if properly tuned) in addressing blade vibrations. It was also
shown in Section 4.4.2 that the extent of the no-resonance gap depends (nearly lin-
early) on the absorber-to-blade mass ratio and (nearly quadratically) on the absorber
placement along the blade length. By increasing either, the gap can be widened. Thus
the absorber mass should be made as large as possible, where it is understood that
this is limited fundamentally by the blade geometry, and it should be placed close to

the end of the blade.

6.2.4 Path Type

A key result from Chapter 5 is that nonlinearity cannot be exploited to improve the

absorber performance, and it is therefore desirable for the absorber motions to be lin-
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ear. This can be achieved by selecting a tautochronic path, the geometry of which has
been systematically described by Denman [17] for a bifilar pendulum absorber config-
uration. Such a path could be implemented by restricting 7 = 0 in Equation (3.20)
on page 66 and then backing out the appropriate expansion coefficients by, by and by

in Equation (3.19).

6.3 Directions for Future Work

This investigation has laid the fundamental groundwork for future analytical and
experimental studies involving order-tuned vibration absorbers applied to nominally
cyclic rotating flexible structures under engine order excitation. This is essentially
a new line of study, one that unites the individually mature bodies of research on
absorber systems and cyclic systems, and hence there is considerable work left to be
done. Some major topics that remain to be addressed are briefly considered below.

Many of the individual subtopics could form the basis of an M.S. or Ph.D. level thesis.

MISTUNING STUDIES

The models considered for this study were perfectly cyclic, consisting of identical,
identically-coupled sectors. However, there will always exist mistuning among the
sectors, that is, small random uncertainties in system parameters (due to in-service
wear, machine tolerances, and so on) that break the cyclic symmetry [37-40]. This
can lead to localization of vibration energy to a subgroup of sectors, giving rise to
higher vibration amplitudes than what is predicted by the perfectly cyclic system
[41-45]. With our current knowledge of localization in nominally cyclical systems, it
is expected that their responses will also exhibit localized behavior when absorbers
are attached to the substructures. There are many questions pertaining to absorber

design that must be addressed in this context, which include the following.

172



e Will the response be localized in the blades, in the absorbers, or both? If so, to
what degree?

e How is the response affected by system parameters, in particular by key param-
eters that govern localization?

e In the presence of mistuning, how does one account for nonlinearity (including
impacts) that become unavoidable for the small absorber masses required by
the blade geometry?

e How does localization affect the linear and nonlinear absorber design? Does the
no-resonance zone persist? Is it possible to exploit nonlinearity when mistuning
is present?

e Can intentional patters of mistuning of the blades and /or absorbers be employed
to enhance the operation of the overall system?

The answers to these questions are crucial if absorbers are to be implemented in

practical systems.

HIGHER-FIDELITY MODELS

Future analytical studies should consider higher-fidelity blade models, including those
with lumped parameters and many degrees of freedom [36], continuous beam and shell-
type elements [9], and full finite element representations [3]. It may also be possible
to employ systems of vibration absorbers, including multiple absorbers applied to
a single structural element or multiple absorber implementations in a single system,

each tuned to address a specific problematic resonance.

METHODOLOGY

The desired traveling wave response exhibits the highest possible degree of symmetry
and it is said to belong to the cyclic group Zy [110-112]. In addition to the usual
jump bifurcations that preserve this symmetry (these are predicted by the isolated
sector model), there could be a host of other instabilities when coupling is present,

including those with reduced symmetry (the so-called isotropy subgroups of Zp) or
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no symmetry at all [106-108]. In this work, however, numerical evidence has strongly
suggested that no such symmetry-breaking bifurcations occur. The mathematical
machinery of group theory, which offers a tremendously powerful and systematic way
to catalogue these bifurcations, could possibly be used to prove this claim [113,114].
The theory of groups has also been employed in mistuning studies [57, 115,116}, and is

likely to be very useful to investigate the effects of mistuning on absorber performance.

EXPERIMENTS

Lastly, experimental validation of the results of this thesis (and of future analyti-
cal studies) is critical. In the context of this work, it must be verified that the
small, but finite no-resonance zone is physically realizable in order for the tuning
recommendations to be of use. Moreover, even if it can be analytically proved that
there exist no symmetry-breaking bifurcations, this must be also be observed in a
carefully-controlled experimental setting before the results can be seriously consid-

ered for practical implementation.
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APPENDIX A

Selected Topics from Linear Algebra

A.1 Introduction

In what follows some selected topics from linear algebra are reviewed. Most of the
basic results are included either as a quick reference or to support theoretical develop-
ments elsewhere in this thesis. Two matrix operations are introduced in Section A.2
and some special matrices are described in Section A.3. Similarity transformations

and their basic properties are discussed in Section A.4.

A.2 The Direct Sum and Direct Product

Definition A.1 (Direct Sum) Fori=1,...,N let A; € CPi*Pi with eachp; € Z .
Then the direct sum of A; is denoted by

AléBAz@...@AN:@{Y__lAi

and results in the block diagonal square matrix

(A, 0 ... 0]

0 Ay ... O
A=t .

0 0 ... AN_

of order p1 +pa +...+pN, where each zero matriz O has the appropriate dimension.A
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In this work the direct sum of N matrices A; is denoted by the block diagonal matrix

diag (Al, AQ, ce ,AN) = diag (Az) .
i=1,...,N
For the case when each A; = q; is a scalar (1 x 1), the direct sum of a; will be denoted
by the diagonal matrix
diag (ay,a9,...,ay) = diag (a;).
i=1,...,.N

The direct, or Kronecker product is defined next.

Definition A.2 (Kronecker Product) Let a,b € C". Then the direct product (or

Kronecker product) of a and bT is the square matriz

-albl a1b2 T albn-

a2b1 a2b2 ce agb
agbl =| " "

_anbl anby --- anbn_

Let the matrices A € C"™*™ and B € CP*9. Then the direct product of A and B is

the mp X nq matriz

PauB a2B --- alnB-
anB apyB --- a9,B

AgB=| 7 ™2 2n A
hamlB ameB .- amnB_

Some important properties of the direct product are as follows.

1. The direct product is a bilinear operator. If a is a scalar and A, B are square
matrices, then

a(A®B)=(cA)®B =A® (aB). (A.1)

2. The direct product distributes over addition. If A, B and C are square matrices,
such that A and B (resp. B and C) are of the same dimension, then

(A+B)@C=A®C+B®C, (A.2a)
A®(B+C)=A®B+AQ®C. (A.2b)
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3. The direct product is associative. If A, B, and C are square matrices, then

A®B®C)=(A®B)3C. (A.3)

4. If A, B, C, and D are square matrices such that AC and BD exist, then

(A®B)(C®D) = (AC) ® (BD). (A.4)

5. If A and B are invertible matrices, then

(A@B)"l=A"lgB™L (A.5)

6. If A and B are square matrices, then
(AB)T = AT @ BT, (A.6a)
(A®B)" = A" g B¥, (A.6b)

H

where ()T denotes transposition and (- )™ is the conjugate transpose.

7. If A and B are square matrices with dimensions n and m, respectively, then

det(A ® B) = (det A)™(det B)™, (A.Ta)
tr(A ® B) = trA trB. (A.7b)

A.3 Special Matrices

There are a number of special matrices employed in this work, and their definitions
and pertinent properties are outlined here. Hermitian, and unitary matrices are
defined first (a summary of these special matrices is given in Table A.1), followed by
a brief treatment of two important permutation matrices. The details of the Fourier
matrix and circulant matrices, which are employed throughout this work, are deferred

to Appendix B.
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Table A.1. Some types of special matrices.

Type Condition

Symmetric A=AT

Hermitian A =AM

Orthogonal ATA=1 o AT=A"1
Unitary AMA=1 o AH=A"!

A.3.1 Hermitian and Unitary Matrices

Definition A.3 (Hermitian Matrix) A matriz H € CN*N s said to be Hermi-
tian if H = HN. A

The elements of a Hermitian matrix H satisfy h;p = hy; for all 1 < i,k < N. Thus
the diagonal elements h;; of a Hermitian matrix must be real, while the off-diagonal

elements may be complex. If H = HT then H is said to be symmetric.

Definition A.4 (Unitary Matrix) A matriz U € CV*N s said to be unitary if
vhUu =1 A

Real unitary matrices are orthogonal matrices. If a matrix U is unitary then so
too is UM, If in addition it is nonsingular then ut=u-l
A.3.2 Permutation Matrices

A general permutation matrix is formed from the identity matrix by reordering its
columns or its rows. Here we introduce two such matrices: the cyclic forward shift
matrix and the flip matrix.

THE CycLiC FORWARD SHIFT MATRIX

The N x N cyclic forward shift matriz plays an important role in the theory of

circulants. It is populated with one’s along its superdiagonal and in the (N, 1) position

178



and its remaining elements are set to zero, that is,

(010 --- 0 0]
00 1 0 0
N 1looo .10 (4-8)
000 - 1
100 -+ 0 0],y n

It will be shown subsequently that Equation (A.8) is a circulant matrix, and hence
we defer a treatment of its properties to Appendix B.
THE FLIP MATRIX

The N x N flip matriz has one’s in the (1, 1) position and along the subantidiagonal,

with all other elements equal to zero. It is given by

(100 --- 0 0

00 ---01

00O0 .---10
KN=1|. . . . . . (A.9)

001 - 00

L0 10 ---0 0_ NxN
and is such that

ky =1y, (A.10a)
n% = n% =Ky = KI_VI, (A.10b)

where Iy is the N x N identity matrix.

A.4 Similarity Transformations

Definition A.5 (Similarity Transformation) Let Q be an arbitrary nonsingular
matriz. Then B = Q~1AQ is a similarity transformation and B is said to be similar
to A. A
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Table A.2. Some types of linear transformations.

Type Condition Transformation
Equivalence P, Q are nonsingular B =PAQ

Congruence Q is nonsingular B =QTAQ

Similarity Q is nonsingular B=Q!AQ
Orthogonal Q is nonsingular and orthogonal B= QTAQ =QlAQ
Unitary Q is nonsingular and unitary B=Q"AQ=Q1AQ

If B is similar to A, then A = (Q‘l)—1 B (Q_l) is similar to B. It therefore
suffices to say that A and B are similar matrices. A summary of some other linear
transformations is given in Table A.2. By inspection of this table, it also follows that
if B is orthogonally (resp. unitarily) similar to A, then A and B are orthogonally

(resp. unitarily) similar matrices.

Theorem A.1 If A and B are similar matrices, then they have the same character-

istic equation and hence the same eigenvalues. ]

PROOF. Let p4 and ppg denote the characteristic polynomials of A and B, respec-
tively, and let B be similar to A. That is, let B be any matrix such that B = QlAQ
for some nonsingular matrix Q. Then the characteristic polynomial of B is

Q (A -2DQ)
Q D)det(A — AI)det(Q)

where we have used the fact that det(Q~1)det(Q) = det(Q Q) = det(I) = 1. Thus

A and B have the same characteristic polynomial and share the same eigenvalues. ®

Theorem A.l guarantees that the eigenvalues of a matrix are preserved under a
similarity transformation; the same is true for orthogonal and unitary transforma-

tions.
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Next we show that if A and B are similar matrices, and if p is an arbitrary finite

polynomial, then p(A) is similar to p(B).

Theorem A.2 Let p be an arbitrary finite polynomial and B = Q~1AQ. Then
p(B) = Q 'p(A)Q. =

PROOF. Let Q be an arbitrary nonsingular matrix and let

N

pt) =Y cxtt

k=0

be a polynomial of degree N with arbitrary constant coefficients ¢;. Then

=l +c1Q'AQ +pQ 'AQQ IAQ +... + c§yQIAQ---Q71AQ
=l +cQ 1AQ+Q 1AZQ +... +cxQ1ANQ
=Q! (cOI+clA+62A2+...+cNAN) Q

=Q !p(A)Q,

which completes the proof. [

If one chooses p(t) = tF with k > 0, then we have the following.
Corollary A.1 IfB = Q 1AQ, then Bf = Q!A*Q for any k € Z. ]
Diagonalizability of a matrix is defined next.

Definition A.6 (Diagonalizable Matrix) A square matriz A is diagonalizable if
there exists a nonsigular matriz Q and a diagonal matriz D such that Q 1AQ = D.A

Thus a matrix is diagonalizable if it is similar to a diagonal matrix. If A is
diagonalizable by Q, we say that Q diagonalizes A and that Q is the diagonalizing

matriz.
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Theorem A.3 An N x N matriz A is diagonalizable if it has N linearly independent

etgenvectors. O

PROOF. Suppose A has N linearly independent eigenvectors and denoted them by
qd1,92,...,9n. Let A; be the eigenvalue of A corresponding to q; for each i =
1,...,N. Then if Q is the matrix that has as its it column the vector q;, it follows

that

AQ = (AQIa AQQv v )AQN)
= (@11, Q2A2, -, ANAN)

= (q1,92,.-.,qy) diag (N)
i=1,...,.N
= QD.

Since Q is nonsingular by hypothesis, D = Q" 1AQ. [ ]

182




APPENDIX B

The Theory of Circulants

B.1 Introduction

This appendix gives a more exhaustive treatment of the theory of circulants and is
meant to complement the overview given in Section 2.2. It is distilled from the seminal
work by Davis [62] and follows the presentation style of Ottarsson [36], one that should
be familiar to the vibrations engineer. The sections that follow act simultaneously
as a detailed reference and tutorial. Thus, in addition to a detailed treatment of the
theory (including many of the proofs), some worked examples are also included.
The appendix is organized as follows. Circulant and block circulant matrices are
defined in Section B.2 and Section B.3, respectively, and some of their more relevant
properties are given. Diagonalization of (block) circulants is discussed at length in
Section B.4, which begins with a treatment of the N** roots of unity in Section B.4.1
and the Fourier matrix in Section B.4.2. It is subsequently shown how to diagonalize
the cyclic forward shift matrix in Section B.4.3, a circulant in Section B.4.4, and a
block circulant in Section B.4.5. The appendix closes in Section B.4.6 with some
generalizations of the theory, including the diagonalization of block circulants with

circulant blocks.
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B.2 Circulant Matrices

We begin with a definition.

Definition B.1 (Circulant Matrix) An N x N circulant matriz (or circulant) is

formed from an N -vector by cyclically permuting its entries and is of the form

-cl c2 ) CN ]
CN €1 ** CN-1

cC=|_ . | . A
-62 cs .« oo cl ]

Thus a circulant matrix is defined completely by an ordered set of generating
elements c1,co, ..., cy in its first row. These are cyclically shifted to the right by one
position per row to form the subsequent rows. The set of all such matrices will be
designated by €y, and are said to be circulant matrices of type N.

It is convenient to define the circulant operator circ (- ) that takes as its argument
the generating clements ¢y, cg, ..., cn and results in the array given in Definition B.1,
that is,

C =circ(cy,¢9,...,CN) - (B.1)

An N x N circulant can also be characterized in terms of its (¢, k) entry by (C);x =

Ck—i+1(mod N) with 1 < i,k < N.

Example B.1

circ (a, b, ¢,d) = € b4. e

(SR e W ST S
o Q& f o
Q 8 o o
e o o

L o

If a matrix is both circulant and symmetric it can be written as

CiI‘C(CI,CQ,...,C%}_,CN;Q,C%/_,...,C:},CQ), N even
C= (B.2)
cire (CI,CQw--aCNé—l»CNg-l»CNQH,CNEIa---»C3»C‘2> , N odd
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and necessarily has repeated generating elements; only (N + 2)/2 are distinct if N is
even and (N +1)/2 are distinct if N is odd. The set of all N x N symmetric circulants

will be denoted by # €.

Example B.2

(0 b c b

N=4: cire (a, b, ¢,b) = batbec € Sy
c b ab
b ¢ b a

- e}

[a b c ¢ b
b a b c c

N=5: circ (a,b,¢,¢,b) = |c b a b c| € FE s
c c b ayd
b ¢ ¢ b a

It is clear from Equation (A.8) of Section A.3.2 that the cyclic forward shift matrix
is a circulant with generating elements 0,1,0,...,0,0. Hence the integer powers of

o N can be written as

o = cire(1,0,0,0,0,...,0,0) = Iy
ol = circ(0,1,0,0,0,...,0,0)

o3 = circ(0,0,1,0,0,...,0,0)

o1 =¢irc (0,0,0,0,0,...,0,1)

o = circ(1,0,0,0,0,...,0,0) = % =TIy

Next we give (without proof) a necessary and sufficient condition for a square

matrix to be circulant.

Theorem B.1 Let o be the cyclic forward shift matriz. Then a N x N matriz C
is circulant if and only if Coy = onC. 0
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Any matrix that commutes with the cyclic forward shift matrix is, therefore, a
circulant. Theorem B.1 also says that circulant matrices are invariant under similarity

transformations involving the cyclic forward shift matrix.

Example B.3 Consider the 3 x 3 matrix

a b c
A=|c a b
b ¢ a
Since
a b cl|0 10 c a b 01 0lla b c
c a bl|0 0 1|l =1{b ¢c al=1]0 0 1]l]lc a b],
b ¢ alll 0 O a b ¢ 1 0 O0|l|b ¢ a
it follows that A = circ(a,b,c) € 63. i)

An important feature of circulants is that they can be represented by a finite ma-
trix polynomial involving the cyclic forward shift matrix and its powers. In particular,
by inspection of the structure of the matrices af\, in Equation (B.3), it is clear that

a circulant matrix with generating elements ¢y, cg, ..., cy can be represented by the

matrix sum

circ (¢1,¢9,...,eN) = c1Iny + o N + 630?\[ +...+ cNa%_1
N
= cha"f\fl. (B.4)
k=1

This property is exploited in Section B.4.4 to diagonalize a general circulant matrix.

Example B.4 The matriz A = circ(a, b, c) from Example B.3 can be represented by

the matriz sum

A = al3 + bo3 + co3

1 00 010 0 01 a b ¢
=al0 1 Ol +b6/0 0 1| +cf1l O O] =1|c a b ap
0 01 1 00 010 b ¢ a
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Next we introduce block circulant matrices, which is a natural generalization of

ordinary circulants.

B.3 Block Circulant Matrices

Suppose each entry c¢; of the circulant array in Definition B.1 is replaced by the
M x M matrix Cy for £ =1,..., N. Then the resulting NM x NM array is a block

circulant matrix of type (M, N) and is written as
C = circ (Cy,Cy,...,Cyp), (B.5)

where C1, Co,...,Cy are its generating matrices. The set of all such matrices will
be denoted by &€ y. A matrix C € #%)s y is not necessarily a circulant, as the

following example demonstrates.

Example B.5 Let

2 -1 -
A— ’ B— 1 0
-1 2 0 -1
Then
(2 —1i-1 0i0 0i{-1 0|
i . =1.2:0 =10 0i0 -1
A B 0 Bl 7770 I 00
c—|BABOI_ 10 -1-12i0-10 0
0O B AB 00;—1022—1;—10
B 0 B A 0.0:0 —1i=1 20 -1
- 4ol ET 00 01 02
0 -1i0 0i0 —-1i-1 2|
is a block circulant of type (2,4), but it is not a circulant. mi

Next we give (without proof) a necessary and sufficient condition for a matrix to

be a block circulant.

Theorem B.2 Let o be the cyclic forward shift matriz of dimension N and Ips be
the identity matriz of dimension M. Then a NM x NM matriz C is a block circulant
of type (M, N) if and only if C(ony ® Ipg) = (ony @ Ipf)C. 0
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The reader can verify that the matrix C in Example B.5 satisfies the condition in
Theorem B.2, but not that in Theorem B.1.

A block circulant, block symmetric matrix of type (M, N) has the same form as
Equation (B.2), and is obtained by replacing each entry ¢, by the M x M matrix
Ck for k= 1,...,N. The set of all such matrices will be denoted by BE€BS s n.
The matrix C in Example B.5 is recognized to be a block symmetric, block circulant
matrix of type (2,4), that is, it is contained in BE€BS; 4.

A block circulant with generating matrices Cy, Co, ..., Cp can be represented by

the marix sum

Circ(cl’c%---»CN)=IN®C1+0N®C2+...+a%_l®CN

N
= Z afv—l ® C, (B-6)
k=1

where the integer powers of the cyclic forward shift matrix are given by Equa-

tion (B.3).

B.4 Diagonalization of Circulants

Any circulant matrix can be represented in terms of the cyclic forward shift matrix,
which is clear from Equation (B.4). The diagonalization of a general circulant begins,
therefore, by finding a matrix that diagonalizes o )y. Together with some basic results
from linear algebra (these are summarized in Appendix A) this leads naturally to the
diagonalization of an arbitrary circulant. Regarding a suitable diagonalizing matrix,
there are a number of candidates [91,92,94, 100, 102, 117], but all seem to feature
powers of the N th roots of unity or their real/imaginary parts. In this work we
employ the complex Fourier matrix, which has as its elements the distinct N th roots
of unity and their integer powers; these are defined in Section B.4.1. The Fourier
matrix is introduced in Section B.4.2, whereupon its relevant features are detailed.

The diagonalization of the cyclic forward shift matrix is carried out in Section B.4.3
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via a unitary transformation involving the Fourier matrix, and the diagonalization of
a general circulant matrix is subsequently described in Section B.4.4. These results
are generalized to handle general block circulant matrices in Section B.4.5 and some

special block circulants in Section B.4.6.

B.4.1 N Roots of Unity

Here we follow the presentation in [118]. The N** roots of a complex number z, =

roel% are given by a nonzero number z = rel? such that zV = z, with N € Z4, or

upon substitution, rVeINO — roejao. This equality holds if and only if NV = ro and

NO = 6, + 2nk with k € Z. Thercfore,

r= N/r,

, kez (B.7)
- 0, + 2mk
-~ N
and the Nt" roots are
k
2= %exp( o ’;VQW ) . keZ (B.8)

It is clear from this exponential form that the roots all lie on a circle of radius /7,
centered at the origin in the complex plane, and that they are equally distributed every
27 /N radians. Hence all of the distinct roots correspond to k = 0,1,2,...,N — L.
The distinct Nth roots of unity follow from Equation (B.8) by setting ro = 1 and
6o = 0 and are given by

w%)—exp(?vﬂk), k=0,1,2,...,N—1. (B.9)
The primitive N th root of unity corresponds to k = 1 and is denoted by

wy =¥ (B.10)

Note that the integer powers wk N = (e_}%") = e_iV'k of the primitive N th root of unity

are equivalent to the distinct Nt% roots of unity, i.e., those given by Equation (B.9).
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They are

2 N-1
l,wN,wN,...,wN ,

example plots of which are shown in Figure B.1 for N =1,2,...,9.

B.4.2 The Fourier Matrix

PAL
Definition B.2 Let wy = e“ﬁ be the primitive Nt root of unity with N € Z4+ and
Jj=+V—1. Then the N x N complex Fourier matrix is defined as

1 1 1 o 1 |
. 1 wy w12V w%‘l
2(N-1)
Ey=—|1 w12v w?\, w . A
vN ) ) N
bl uy%_l U’%N_l) wng—l)(N—l)J NN

Clearly the Fourier matrix is symmetric, but generally it is not Hermitian. It can

be written element-wise as

(ENn)ik w%_l)(k_l)

1 ii-1ex

1
VN
VN
L itk=1)e;

ﬁ ’

where ¢; is the angle subtended from the positive real axis in the complex plane to

ik=1,...,N (B.11)

the it" power of wp. It will be shown in Section B.4.4 that all circulant matrices
share the same linearly independent eigenvectors, the elements of which compose the

N columns (or rows) of Epn. They are denoted by the column vectors

. : T
ﬁ (l, w%_l), w%l_l), o ,wEVN_l)(z_l))

_ _1__<1’8j99i’e.7299i"”’e]'(N'“l)%)T

e; =
, i=1,...,N. (B.12)

VN

A very important feature of Ex is that it is unitary. To see this, we first consider
the finite geometric series identity and subsequently a result involving a summation

on powers of the primitive Nt roots of unity.
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AR
LABELING _ 0
KEY -
wj

Wy
N=5
N=1 N=2 N=3

Figure B.1. The distinct N roots of unity wf\, (k=0,1,2,...,N — 1) arranged on the

unit circle in the complex plane (centered at the origin) for N = 1,2,...,9. Note that
w® = 1is real, as is wy/* = —1 if N is even. The remaining roots appear in complex

conjugate pairs.
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Lemma B.1 (Finite Geometric Series Identity) Let N € Z; and q € C. Then
forany s € Z and q # 1,
s+N-1

Zq— lﬁ;l el-q7) &

PROOF. Consider the finite gcometric series

s+N-1
Z qr — qs +qs+1 +qs+2 +.”qs+N—1

=¢*(1+q+¢®+...+¢

Multiplying from the left by ¢ yields
s+N-1
) @ =@+ ++...+g

r=8

Subtraction of the second equation from the first results in

s+N-1
(1-9) Y ¢ =¢*(1-4"),
r=s
from which the proof is established since g # 1 by restriction. ]

Lemma B.1 is now used to establish the following theorem, which is needed to
show that the Fourier matrix is unitary. The result will also aid in the diagonalization

of circulants in subsequent sections.

25
Theorem B.3 Let i,k € Z and wy = e']V' be the primitive Nth root of unity with
N € Z4+. Then for any s,m € Z,

s+N-1 N, i-k=mN

S - :
r=s

0, otherwise

SR 24w, . )
PROOF. Let q = w% Q. e_ﬁ(l k) and note that qN =1 Ifi—k = mN, then
g = €e%™" =1 for any integer m and it follows that

s+N-1 s+N-1
3wt = Zq = (1) + Q)+ (1) 2+ + ()N = N

vl

N terms
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_— _— _—
1 2 3 1 2 3 1 2 3

1 1 0 0 1 1 010 1 0 1 0

R 0 1 0 1| 2 0 0 1 1] 2 0 0 1
3 0 0 1 310 1 0 3 1 0] 0

(a) (Is)ik (b) (k3)ik (c) (o3)ik

Figure B.2. Arrays showing the (i, k) elements of the (a) identity, (b) flip, and (c) cyclic
forward shift matrices of dimension N = 3 for 7,k = 1, 2, 3.

For the case when i — k # mN it follows from Lemma B.1 that

s+N-1

s —
quZQ(l 1)=0,
l1-¢g

which completes the proof. [ ]

Theorem B.3 allows for a representation of the N x N identity, flip, and cyclic

forward shift matrices in terms of certain conditions on their indices relative to N.

Fori,k =1,..., N and for any integer m the (i, k) element of these matrices is given
by

(In)ik = Yb—gwﬁi"‘) - { (1) 21;1;;57:]\[ (B.13a)

yneen- (G e

D e P A

respectively. The reader can check these by verifying the arrays in Figure B.2 for the
special case of N = 3.
We are now ready to state the main result of this section, and indeed one of the

most important results of this appendix.

Theorem B.4 The Fourier matriz Epn s unitary. m)
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PROOF. For 1 <,k < N the (i, k) entry of ENE% is given by

N
= Z L :(i_l)(r—l)Lw_(r_l)(k_l) (from Eqn. (B.11))

= (IN)ik (from Eqn. (B.13a))

from which it follows that E NE% =1Iy. ]

Remarks

1. The column vectors of Ep are orthonormal, that is, e;Hek = d;k, Where &;; is
the Kronecker delta.

2. Since Ey is unitary so too is the NM x NM matrix Ey ® I;.

3. The NM x M matrices e; ® Iy are such that (e; ® Ins)"(ex ® Ins) = &;xIps
Next we derive a relationship between the Fourier and flip matrices.
2 )2
Theorem B.5 Ey, = ky = (EN) . 0

PRrOOF. First we show that E%, = EyEyNy = k) using the same approach as the
proof of Theorem B.4. For 1 < i,k < N and for any integer m the (¢, k) entry of
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EnNE )y is given by

M=

(ENEN)ik = ) _(EN)ir(EN)rk
r=1
Nl(l)()l()(kl)
1— T—
= z —=wy —=wy (from Eqn. (B.11))
r=1 \/_ \/_
N
Z r(i+k-2)
= (KN)ik > (from Eqn. (B.13b))

2
from which it follows that E}?V = Kkp. Finally, the result k)y = (E%) follows
from conjugation and transposition of Ky = ENEjp, and by invoking the properties
2
n% = Kk and (E?V)H = (E%) . [ |

A number of properties follow directly from Theorem B.5.

Corollary B.1 Let Ey, Ky, and Iy be the N x N Fourier, flip, and identity matri-

ces. Then
. Enkny =kNEpN;
. 2 s
1. KN =IN or Ky = \/IN:

1. Ej‘\; =Iny or Ey= \4/IN' a

Propterty (i) says that the flip and Fourier matrices commute or, since Ey is unitary,
that &< is invariant under a unitary transformation with respect to Epn. Hence xp
is not diagonalizable by Ep. Properties (ii) and (ii¢) give alternative definitions of
the flip and Fourier matrices, respectively. Moreover, since the (possibly fractional)
power of a diagonal matrix can be obtained by raising each diagonal element of that
matrix to the power in question, if follows that the eigenvalues of k) are +1 and

those of Ejy are £1 and +j, each with the appropriate multiplicities.
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B.4.3 Diagonalization of the Cyclic Forward Shift Matrix

In this section it is shown that the Fourier matrix diagonalizes the cyclic forward shift

matrix. For this purpose, it is convenient to introduce diagonal matrix

Qy = diag (1,wN,w12V, . ,w%_l) , (B.14)
which has as its diagonal elements the distinct N th roots of unity.
Theorem B.6 E%UNEN =Qy. O

PROOF. For 1 < i,k < N the (7, k) entry of ENQNE% is given by

N N
(ENQNE%)UC =Y (EN)ip@N)pr (EX)rk
r=1p=1
AN (i-1)(p-1) (r-1)_1 (r—1)(k-1)
N prWN N
r=1p=1 \/N \/N
1L
= Zw%—l)(r—l)w(Nr—l)w—(r—1)(k—1)
r=1
1 ol (r-1)(i—k+1)
r=1
p = (i—k+1)
r1—
=N Z YN
r=0
= (ON)ik > (from Eqn. (B.13c))

from which it follows that E n§2 NE% = o). The desired result follows by multiplying
from the right by E)y and multiplying from the left by E% [ ]

Theorem B.6 implies that o is unitarily similar to a diagonal matrix whose
diagonal elements are the nonnegative integer powers of the primitive N th root of
unity. Since the eigenvalues of a matrix are preserved under such a transformation

(this is guaranteed by Theorem A.1), it follows that

N —
Mon) = {l,wN,w?V,...,wN 1},
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where A(-) denotes the matrix spectrum. The eigenvectors of o are the linearly
independent columns of Ex = [e}, eo, ..., ey], which are given by Equation (B.12).1

In light of Corollary A.1, we have the following result.

Corollary B.2 EHa’fVEN = Q forany k € Z. O

B.4.4 Diagonalization of a Circulant

It will be convenient to define
N

ot ™) => t"ler, (B.15)
k=1
where t and 7 are arbitrary square matrices. Then the general circulant and block

circulant matrices given by Equation (B.4) and Equation (B.6) can be represented by

olon, k) ck—mrc(cl,cQ,...,cN), (B.16a)

n[\/]z

o(on, Cy) = Za ® Cy, = circ (C1,Ca, ..., Cp), (B.16b)

respectively. What is meant by the notation p(o p, ¢.), for example, is to substitute t
with oy and 7 with ¢, in Equation (B.15) and then perform the summation observing

any indices k introduced by the substitution. Note also that

. (k=1)(:-1)
o(QN,T) = dla.g o(wiyt, 7)) = dlag ‘rw : (B.17)
s (o(ui 7)) =t (ol
which is diagonal (resp. block diagonal) when 7 is a scalar (resp. matrix).

Theorem B.7 Let C € €N have generating elements c1,co,...,cn. Then

EXCEy =

In fact, all circulant matrices share the same eigenvectors ey, which is shown in the next section.
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18 a diagonal matriz, where

Ai=g(w§\71,c> Zc w(k G- l, i=1,...,N

are its diagonal elements. )

Proor. Consider the representation

C =y(on,c) (from Eqn. B.16a)

- g(ENQNEﬁ,ck) (from Thm. B.6)

= ENQ(QN,ck)E%. (from Thm. A.2, Thm. B.4)

Thus E%CEN = o(Q2y, cx), where the diagonal matrix o(Qpy,cx) = ‘ %iagN (A)
1=1,...,

follows from Equation (B.17). [ ]

Remarks

1. The Fourier matrix Ep diagonalizes any circulant matrix.

2. E%CE N is a unitary transformation, and hence preserves the eigenvalues of C.
Thus A; (i =1,...,N) are the eigenvalues of C.

3. All cirulants share the same linearly independent eigenvectors (the columns of
the Fourier matrix Epr), which are given by Equation (B.12).

The eigenvalues of a matrix C € %y with generating elements cj,ca,...,cn

are given by

( N/2
c1 + Qch cos(%]%f)—(z;l—)) + (—1)i_ICE2_Q, N even
o k=2
=9 e, | (B.18)
cp +2 Z Ck cos(27r A-L)G-1 ) , N odd
\ k=2

a result that is proved in [36]. In this case there are repeated eigenvalues due to
the presence of the cosine term. The eigenvalue A is distinct, but the remaining
eigenvalues A\; = An4o_; appear in repeated pairs. However, when N is even /\Nit2

is also distinct.
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Example B.6 Let C = circ(4,—-1,0,-1). Then

- - - - -

1 1 1 1[4 -1 0o -1 1 1 1 1
EZ{‘CE4=i1 -j -1 jf|-1 4 -1 0|11 j -1 —j
vVallr -1 1 -1|l0 -1 4 -=-1|v4|1 -1 1 -1
1 j -1 —j||-1 0 -1 4f |1 -5 -1 j|
11 1 1)1 2 3 2]
11— -1 G|t o2 -3 -2
Vallt -1 1 —1f|1 -2 3 -2
1 -1 |1 -2 -3 2

= diag (2,4,6,4).

Hence the eigenvalues of C are 2,4,6,4. Since C € # €4, these can be verified using
Fquation (B.18) for N = 4, which yields

Ad =4—2cosg—(i— 1)

fori=1,...,4. it

The determinant of a circulant matrix C = circ(cy,co,...,cn) is simply the

product of its eigenvalues and is given by

N N N 1
detC=J[N=][ 3 cpuls VY, (B.19)
i=1 i=1k=1

where the eigenvalues ); are defined in Theorem B.7 or by Equation (B.18) if C is

also symmetric.

B.4.5 Block Diagonalization of a Block Circulant
Theorem B.7 can be generalized to handle block circulants.
Theorem B.8 Let C € BC) n and denote its M x M generating matrices by

Cl,CQ, oo ,CN. Then

(EN @ Ip/)C(Ey ®Iy) =
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s a block diagonal matriz, where

Ai=g(w};1,ck) ch k=1G-1) -1, N

are its M x M diagonal blocks. O

PRrROOF. Consider the representation

N

C= Z affv_l ® Cy (from Eqn. B.16b)
k=1
N

= Z(ENﬂfv—lE%) ® Cy (from Cor. B.2)
k=1
N

= Z(EN ®Iy) (Qf\f-1® Ck) (E% ®Ia) (from Eqn. A.4)
k=1

= (Exy ®Ia7)o(S2n, Cy) (ETA{/ ® Ipp), (from Eqn. B.15)

where the block diagonal matrix

o(Qn,Cy) = diag (Ay)
i=1,....N

follows from Equation (B.17). Since (Eyx ® Ips) is unitary the desired result follows
by multiplying from the right by (Ex ® Ips) and from the left by (EK‘, ®Iy) =
(Exy @ Inp)™. .

Remarks

1. The unitary matrix Exy ® I can reduce any NM x NM block circulant matrix
with M x M blocks to a block diagonal matrix with M x M diagonal blocks.

2. (E% ® Ip)C(EN ® 1)) is a unitary transformation, and hence preserves the
eigenvalues of C, which are the eigenvalues of the N, M x M matrices A;.

3. If v; is an eigenvector of the ith eigensystem A;, then the corresponding eigen-
vector of C is u; = e; @ v;.

200



Example B.7 Consider the matriz C = circ (A, B,0,B) from Ezample B.5. It can
be block diagonalized via the transformation

0 -1i0 0{0 0i0 O
-1.0i0.0:0 0:0 0
0 0:2 —-1:0 0i0 O
EN®L)CE,;L) = |.0..0:i=z1.2:0 0:0 0
(B ©L)CEs01) 0 0i0 0i4 <1i0 0
0.0:0 0i-1.4:0 0
0 0:0 0:0 0:2 -1
0 0i0 0i0 0i-1 2
= diag (Al, AQ, A3, A4) y
from which the eigenvalues can be obtained from the 2 x 2 matrices A; fori=1,... 4.

In particular, A\(Ay) = {—1,1}, A(A3) = {3,5}, and A(Ag) = A(A4) = {1,3}. &

B.4.6 Some Generalizations

Let C € #¢)s v and denote its generating matrices by Cq,Cg,...,Cpy. Then if
(-)* and (-)# denote arbitrary matrix operations and for any matrices A € CV*N

and B € (CMXAI’

N
(A*@B¥)C(A®B) = (A*@B¥) |} ok 1o Ci| (A®B)
k=1

[ A*okr1) (B#Ck)] (A ®B)

® (B¥C,B), (B.20)

N
N
where Equation (A.4) has been employed. The importance of this result is that C
can be decomposed into a summation of direct products of two separate equivalence
transformations, one that operates on a'fv—l and the other on Cj. This decomposition
justifies the diagonalizing matrix employed in Theorem B.8 and it also motivates some
generalizations.

In light of Theorem B.6 together with Corollary A.1, it is clear that the choice of

A =Epy and (-)* = (- )" accomplishes block diagonaliztion of a matrix C € BEMN-
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Then if one chooses B = I, the appropriate diagonalizing matrix to block decouple
C without operating on its generating matrices is Ejy ® Ips. However, if B and ()#

are kept general, we have the following result.

Theorem B.9 Let C € €y N have M x M generating matrices Cy,Cs,...,Cy.

Then for an arbitrary matric B € CM*M and operator ()#
-\1’1 0 ]
H o p# Y2
(Ey ® B")C(Ey ® B) =

18 a block diagonal matriz, where

N
| — k—1)(i—1 .
¥, = o(wiy!, B¥C;B) = Y B#C,Buly VTN, i=1 N
k=1

are its M x M diagonal blocks. )

This result is useful if there exists an equivalence transformation B#C;B that
simplifies each of the generating matrices. For example, if each Cy is a circulant of
type M then the additional choice of B = Ejs and (- )# = (-)M fully diagonalizes a

block circulant matrix C € %)y pr with circulant blocks.

Corollary B.3 Let C € #B%)s n have generating matrices C1,Cs,...,Cny € €y

and denote the generating elements of each C; by c(ll),cg), . (1) Then

(EN @ EJf)C(Ey ®Epy) = CiiagN
1=1,...,

1s a diagonal matriz, where

i k -1 k-1)(:—-1
/\g))zzz() )wgv )(-1)

-th

is the p”’ diagonal element of the i'" diagonal block. O
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Example B.8 Reconsider the matriz C = circ (A, B, 0, B) from Ezample B.5. Since

A, B € %, it can be diagonalized via the transformation

[—10i0 0i0 0i0 0]
01000000
00i{1 00000
E" @ EN)C(E, ® E,) = |--0.0:0.3:0 0:0 0

(Bf ©E3)C(Es© By) 00i00{3000]"
00000500
00{00{00{10
| 00i00:00i0 3]

from which is follows that A\(C) = {-1,1,1,3,3,5,1, 3}. e
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APPENDIX C

Noninteger Engine Order Excitation

It is well-known that a perfectly cyclic system (i.e., one without parameter uncertainty,
or mistuning) under engine order excitation will respond in one and only one mode
corresponding to p = nmod N + 1, where n is the order of the excitation. For a
bladed disk assembly in a jet engine the excitation order corresponds to a problematic
harmonic in an expansion of the axial gas pressure field, and is therefore a positive
integer. However, noninteger engine order may occur in other applications and in
what follows we briefly consider the general case of n € R4. Then orthogonality
between the normal modes and system forcing vector generically breaks down and
this gives rise to additional system resonances.

Consider the prototypical cyclic system of Section 2.4 under engine order excita-
tion. In the steady-state it responds according to Equation (2.34), which indicates
that the total forced response is simply a superposition of modal responses. For
the case of n € Z4 only mode p = nmod N + 1 survives, which follows from the

orthogonality condition given by Equation (2.35), that is,!

N
H f (k=1)(n+1-p)
e, f=—= E wy (n € Ry) (C.1)
N k=1

(nezy) (C.2)

{\/va, n+1-—p=mN

0, otherwise

IThe result holds even for n < 0, but physically we restrict n > 0.
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where m is an arbitrary integer. (This result follows from Theorem B.3 on page 192.)
However, if the engine order is noninteger such that n € Ry /Z4 Equation (C.2) does
not hold and therefore every system mode contributes to the total response, which
is given by Equation (2.34) by replacing the pt" model forcing term e;;‘f with the
right hand side Equation (C.1). Correspondingly, for a given engine order there are
N system resonances and these occur whenever the excitation frequency matches a
natural frequency, that is, when no = @y, where the pt" eigenfrequency is defined
by Equation (2.38). Thus in addition to the “principle resonance” corresponding to
p=nmod N + 1, there are (N — 1)/2 (resp. N/2) resonances due to the noninteger
excitation if N is odd (resp. even). An example is shown in Figure C.1 for a system
with N = 10 sectors and for various engine orders n € R4. The additional resonances
can be clearly observed, and they become more pronounced for larger deviations of

the engine order away from the integer value n = 3.
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Figure C.1. Frequency response curves for the system shown in Figure 2.4 on page 23 for
N =10,v =0.5, and f = 0.01: (a) n = 3; (b) n = 3.001; (c) n = 3.01; and (d) n = 3.1; and
(e) corresponding Campbell diagram for n = 3.1. In (d) and (e) the principle resonance

corresponding to n + 1 = 4.1 is indicated by the black circle.
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APPENDIX D

The Critical Linear Detuning and Tuning
Order

The critical linear absorber tuning order 7 is defined implicitly by Equation (4.36) and

represents the limiting slope of the natural frequencies wg) in the frequency versus
o curves of Figure 4.5. It is convenient to express 7 in terms of the absorber tuning

order 7, which is introduced via Equation (4.39). Then

o \jd1u+&0+ \/dfu2+81u+8g
n(n) =

=2 , (D.1)

where

by = n2(a2 - 6)
a) = (7% + 1)(7‘12 +44 1)

~

by = 2a272(7% + 1)((ﬁ2 +1)(A% +6) — S(A2 - 5))

/
The critical absorber undertuning can be obtained by replacing 7 with n(1 + ) in
Equation (D.1), setting 7 = n, and then solving for 3 = Bc;. Then B¢ is given

implicitly by

aip+co + \/b2u2 +b1u+c(2)

1 2 , D.2
(1 + Ber) i+ 200 (D.2)
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where

a1=a2(%—n2(2+g)) ‘

= —2a2n2(n2 - 5)(”2 + 1)(2 + %)

o~
=
|

by = a2(52(n2 + l)2 > .

co = nQ(n2 —-9)

c] = 2a%n? (n2 - é)

(o]

J
Note that when p = 0, the right hand side of Equation (D.2) is unity, which implies
Ber = 0 (i.e., the no-resonance gap vanishes), and the same is true when a = 0 (in
which case a; = by = b9 = ¢; =0, but ¢y # 0).

It is clear from Figure 4.9 that changes in (.r due to parameter variations decrease

for increasing engine order. In the limit as n — oo Equation (D.2) reduces to

1

1+ Ber)? =
(1 fer) 1+ a?p

,  (n—o00) (D.3)

which is shown by the dashed line in Figure 4.9d. It depends only on o and g and

approximates Gcr to within 3% of its limiting large-n value for n > 10.
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APPENDIX E

Averaging: The Usual Approach

E.1 Introduction

In the process of averaging it is customary to expand all parameters involving € and
to keep only O(¢) terms in the resulting expressions. This amounts to replacing 7
with n and also o with the constant or = 1/ vnZ —§, which is the resonant rotor
speed of an isolated blade without an absorber. In what follows, we carry out the
averaging for the isolated nonlinear system of Chapter 5 in this way and show that the
results are adequate for large linear under- or overtuning of the absorbers but they are
completely unsatisfactory within the no-resonance zone (precisely where the results
are of the most interest) due to the latter substitution. The aim of this appendix
is to document the rather significant difference in the averaged models obtained via
the usual approach employed below and by means of the slightly modified approach
employed in the nonlinear analysis in Chapter 5.

We begin by defining a detuning scheme (different from that employed in Chap-
ter 5) and then present the averaged equations in both polar and Cartesian forms.
The appendix closes with some representative frequency response curves and a short

discussion.
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E.2 Detuning Scheme

In order to investigate the nonlinear dynamics near perfect linear tuning and close to

the rotor speeds of interest, we take

n=n(l+eN), (E.1a)

o =opr(l+el), (E.1b)

where A serves as the linear order detuning parameter and A plays the role of the
rotor speed. Then the order detuning parameters are related by 3 = ¢\, which is
clear by comparing Equation (E.la) to Equation (4.44). It should be pointed out
that the detuning scheme adopted here is slightly different than the one employed in
Chapter 5, that is, Equation (5.9). (Equation (E.1) was the original detuning used
by the author before the improved method of averaging was adopted.) This does not,
however, preclude qualitative comparisons between the results of the two approaches.

Next the averaged equations are derived in polar and Cartesian forms.

E.3 The Averaged Equations

The nonlinear analysis is carried out exactly as it was done in Section 5.2.4 except
that all appearances of ¢ are replaced by the constant o, and, as we shall see, this
gives rise to a significantly less accurate model, one that serves as a benchmark for
the modeling approach employed in Chapter 5.

Under the detuning scheme defined in Section E.2, Equation (5.8) on page 127

reduces to!

2 —n%0? = —2A + O(e?)
(E.2)

'For the detuning employed in Chapter 5 the O(e) terms are —eA and eAo?.
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Table E.1. Shorthand notation.
E=¢/2nvn2 -6 A=2m2-8A §=nvn2-6§ f=@02-68f
a=(n2+1a X = 2n2\ e = nvn? — 665

After the appropriate substitutions are made, Equation (5.6) is averaged over one
period T = 27/no and the shorthand notation given in Table E.1 is introduced.?

Then if v = (4, g, 'ir,q”)T the result is
- nT _ - 3/2
,0,0¢) = EG(v) +0(&e*), (E.3)

where

are the elements of the vector G. In Equation (E.4), note that the rotor speed appears
in Go(v) only (implicitly via the shorthand detuning parameter A). However, in the
model employed in Chapter 5, the rotor speed appears in each Gp(v) (p =1,...,4).
It is this absence of the rotor speed that gives rise to less accurate results.

The corresponding Cartesian form of the averaged equations is
w = eP(w) + O(%/?), (E.5)
where w = (A, B, C, D)T and the functions

Pi(w)=-aD - AB — f_bA
Pyw)=+aC +AA-§B+ f

P3(w) = —aB + AD — £C + 3n(D3 + C?D)

Py(w) = +@A — AC — §&D — 3n(CD? + C3)

/

2The shorthand notation in Table E.1 applies to this appendix only; some of these symbols are
defined differently elsewhere in the thesis.
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compose the elements of the vector P.
Some representative frequency response results are given next, and we briefly point

out their reduced accuracy.

E.4 Forced Response of the Undamped System

For the purpose of comparison we consider the forced response of the undamped av-
eraged model corresponding to the isolated nonlinear system, that is, Equation (E.3)
with £ = £ = 0. Figure E.1 summarizes the results in terms of the speed detuning
parameter A (which is related to the dimensionless rotor speed o via Equation (E.1b)),
for several order detuning values 3, and for a hardening absorber path; a representa-
tive set of softening frequency response curves is shown in Figure E.2. In these figures,
the nonlinear frequency response loci are indicated by thick solid (stable) and dashed
(unstable) lines and the corresponding linear frequency response is given by the thin
gray line. The simulation data from Chapter 5 is superimposed in Figure E.2, which
corresponds to the full nonlinear model, i.e., Equation (3.14) together with the gen-
eralized absorber path described in Section 3.4.4, with representative damping levels
£, =2x10"3 and & = 2 x 1075,

For large under- or overtuning values 3 the approximate averaged results given
above are, in fact, quite satisfactory. This is clear from the hardening (resp. softening)
frequency response curves shown in Figure E.la-b (resp. E.2a-b) and Figure E.le-g
(resp. E.le-g), which correspond to absorber detuning values outside the no-resonance
zone. In these regions, the averaged model captures the essence of the linearized
resonance RY in addition to the first-order nonlinear effects of the absorber, which
are manifested in the additional auxiliary resonance ’R,IE:IL and the hardening/softening

bends in the primary resonance ’RIJL.:;

3The linearized, nonlinear auxiliary, and nonlinear primary resonances RY, RNE, ’Rs[‘ are dis-
cussed more fully in Section 5.4.
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Figure E.1. Blade and absorber frequency response curves for the same conditions in
Figure 5.4 on page 143 (hardening absorber path) based on the less accurate model defined
by Equation (E.3).
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Figure E.2. Blade and absorber frequency response curves for the same conditions in
Figure 5.5 on page 144 (softening absorber path) based on the less accurate model defined
by Equation (E.3).
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In contrast, for order detunings G < 8 < 0 inside the no-resonance-zone the

results are poor at best or completely erroneous. This is shown in Figure E.lc-d (resp.

E.2c-d) for a hardening (resp. softening) absorber path. For example, in Figure E.2c
the linear theory predicts no resonances over the full range of rotor speeds, and this
is verified by the simulation data, yet the nonlinear theory gives rise to a primary
resonance. As another example, the nonlinear auxiliary resonance in Figure E.2d is
expected, as it also appears in the improved model employed in Chapter 5 (compare
with Figure 5.5d and Figure 5.6d), but the nonlinear theory does not adequately
capture the linear branch of absorber motions.

Since the no-resonance zone is where the results are of the most interest, and since
that is precisely where they are least accurate (or completely erroneous), the averaged

model described above is not at all satisfactory.
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