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ABSTRACT

ORDER-TUNED VIBRATION ABSORBERS FOR

SYSTEMS WITH CYCLIC SYMMETRY WITH

APPLICATIONS TO TURBOMACHINERY

By

Brian John Olson

This work investigates the performance of centrifugally-driven, order-tuned ab-

sorbers for vibration reduction in a class of systems with cyclic symmetry. The

rotating flexible structures of interest are bladed disk assemblies, such as the fans,

compressors and turbines in a jet engine, which consist of a nominally cyclic array

of interconnected substructures. Under steady operation, these assemblies rotate at

a constant speed and are subjected to traveling wave dynamic loading (the so—called

engine order excitation), which is characterized by excitation frequencies that are

proportional to the mean rotational speed of the rotor. Such excitations result in

component vibrations and can lead to high cycle fatigue failure, noise, reduced per-

formance, and other undesirable effects. Since order-tuned absorbers feature natural

frequencies that scale directly with the rotor speed, they are ideally suited to address

these vibrations. However, at the time of writing, there has been no systematic an-

alytical treatment of absorber systems applied to cyclic rotating flexible structures

under engine order excitation. This thesis reports the first such study.

The aim of this investigation is threefold: to quantify and understand the underly-

ing linear resonance structure of a cyclically-coupled bladed disk assembly fitted with

order-tuned absorbers; based on these findings, to design the absorbers to eliminate

or otherwise reduce blade motions relative to the rotating hub; and to generalize

the linear theory, methodology, and design to include the basic, first-order effects of

nonlinearity.



The analysis is carried out assuming identical, identically-coupled substructures,

which gives rise to a linearized model with block circulant matrices. A standard

change of coordinates based on this cyclic structure essentially decouples the governing

equations, and it gives rise to closed form expressions from which analytical results can

be gleaned. The linear resonance structure is found to be surprisingly rich, a feature

that arises from the order-nature of the absorbers. One of the main findings of the

linear analysis, and indeed of this entire thesis, is the existence of a “no-resonance

zone,” that is, an entire spectrum of absorber designs for which there are no system

resonances over the full range of possible rotor speeds. By designing the absorbers

within this small, but finite spectrum, system resonances are avoided altogether and

there is at least some level of robustness to parameter uncertainties.

In the presence of weak nonlinearity, which is introduced via the absorber path

geometry, the underlying linear resonance structure is shown to qualitatively persist—

including the no-resonance zone—provided that the excitation strength is sufficiently

small. There does exist a nonlinear design strategy in which relative blade motions can

be eliminated completely, but it depends on both the rotor speed and force amplitude.

The design is thus effective for only a single set of operating conditions, which suggests

that nonlinearity cannot be exploited to further improve absorber performance in the

systems of interest. When nonlinearity cannot be avoided it is shown that softening

characteristics are more desirable than hardening; the former simply sets an upper

limit on the range of speeds over which the absorbers are effective while the latter

may give rise to problematic resonances. Finally, for the weakly coupled and lightly

damped systems under consideration, there may be a host of symmetry-breaking

instabilities involving the desired traveling wave response. However, none could be

identified. This is a very promising finding since bifurcations of this kind are highly

undesirable from an applications viewpoint.



To my wife, Julie, my parents, and to the countless

people who have supported me during this effort.
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The theory of matrices exhibits much that is visually attractive. Thus,

diagonal matrices, symmetric matrices, (0,1) matrices, and the like are

attractive independently of their applications. In the same category are

the circulants.

- Philip J. Davis
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CHAPTER 1

Introduction

1. 1 Motivation

The goal of this work is to investigate the performance of order-tuned absorbers for vi-

bration reduction in (nearly) cyclic systems. The applications of interest are rotating

flexible structures, and in particular turbine blades, bladed disks assemblies, blisks

(integral disk/blade systems), and helicopter rotor blades. During steady operation

these systems rotate at a constant speed and are subjected to traveling wave dynamic

loading, which is characterized by excitation frequencies that are proportional to the

mean rotational speed of the rotor. Such excitations result in component vibrations

and can lead to high cycle fatigue (HCF) failure, noise, reduced performance, and

other undesirable effects. This is an ideal setting for the use of centrifugally-driven,

order-tuned vibration absorbers, yet their implementation to such systems has re-

ceived little attention to date. Much is already known about the dynamic behavior

of systems of vibration absorbers, and the same is true for systems with symmetries

in general and for rotating flexible structures in particular. This work aims to apply

the theory, methodology, and design of order-tuned absorbers to such systems.

We begin with a brief survey of order-tuned vibration absorbers in Section 1.2

and of systems with cyclic symmetry in Section 1.3. The application of vibration

absorbers to rotating flexible structures is discussed in Section 1.4 and the chapter



closes in Section 1.5 with the main objectives and contributions of this work and an

outline of the dissertation.

1.2 Order-Tuned Vibration Absorbers

Vibration absorbers were originally proposed by Frahm [4] in a United States patent

in 1911, but it was Den Hartog [5, 6] who first carried out systematic studies on

their characteristics and design, including an optimal choice of design parameters.

They come in two basic varieties: frequency-tuned and order-tuned. In the former,

the absorber is tuned to a given problematic frequency (typically near a resonance)

and damping is added so that it performs effectively in the neighborhood of that

frequency. Such absorbers rely on elastic elements to provide their restoring forces,

and they are designed so that these forces counter the translational or rotational

motion of the primary systems to which they are attached. In contrast, order-tuned

vibration absorbers exploit the centrifugal field from rotation of the primary system

[7,8]. Since rotating flexible structures are dominated by forces that occur at orders

of rotation (the so-called traveling wave or engine order excitations [9]), order-tuned

absorbers are ideally suited for such applications.

A class of order-tuned absorbers that has enjoyed considerable attention in recent

decades are centrifugal pendulum vibration absorbers, or CPVAs. They essentially

consist of mass particles that ride along designer-specified paths relative to the pri-

mary system and their parameters are chosen such that they counteract the fluctu-

ating loads applied to that system. Each employs the centrifugal field from rotation

(rather than an elastic element) for its restoring force and this results in absorber

natural frequencies that are proportional to the rotation rate, where the constant of

proportionality is dictated by geometric parameters that are chosen by design. The

selection of the absorber path shape and location relative to the center of rotation of

the primary system prescribes its linear tuning order, as well as its nonlinear response



characteristics.

The dynamic performance, characteristics, and features of CPVAS are well-

understood in typical situations, and there are numerous examples of their imple-

mentation. For example, they are widely-used for reducing torsional vibrations in

rotating machinery, where they are attached directly to the rotor. CPVAs have been

used in light aircraft engines [10] and helicopter rotors [11], and they are also finding

new applications including diesel camshafts [12] and variable displacement automo-

bile engines [13]. In nearly all applications, CPVAS employ circular paths due to the

simplicity of their manufacture and also due to a lack of knowledge about noncircular

paths.

Den Hartog described the basic features of CPVAs, including how one selects pa-

rameters for linear tuning, as well as a discussion of the frequency shifting that arises

from nonlinear softening effects in circular—path absorbers (that is, the decrease in fre-

quency as the amplitude of oscillation increases) [7]. He also suggested intentionally

detuning (in fact, overtuning) the absorbers to avoid the jump instabilities associated

with these nonlinear effects. This approach works well, but it comes at the expense of

reduced absorber performance [14]. Newland carried out a systematic analysis of the

nonlinear response of a CPVA and offered a strategy for selecting an appropriate level

of detuning for circular path absorbers [15]. Extensive linear-based design guidelines

exist for CPVAs applied to crankshafts of internal combustion engines [10].

Subsequent research on CPVAs focused on several issues, including the design

of the absorber path for optimal performance and the response of CPVA systems

composed of several absorbers fitted to a rotor. Research on CPVA paths begins

with the analysis of Madden who suggested that a cycloidal path would avoid the

nonlinear frequency shift that leads to jumps [16]. Denman carried out a systematic

study of various paths and showed that a cycloidal path is slightly hardening whereas

a particular epicycloidal path is neutral, that is, neither softening nor hardening



[17]. Further work showed that while the epicycloidal path leads to essentially linear

absorber motions over all amplitude ranges, the corresponding torque applied to the

primary system is not purely harmonic at the desired order, but contains higher

order harmonics that arise from nonlinear kinematic effects [18]. An examination of

general paths and their attendant torques led to the development of subharmonic

pairs of epicycloidal absorbers that generate a purely harmonic torque [19—21].

When a rotor is fitted with multiple, identically-tuned CPVAs the absorbers are

coupled through its inertia, and the coupling is inherently weak since the absorber

inertia is much smaller than that of the rotor. Moreover, the absorbers are designed

to be lightly damped and they are tuned (close to) the order of the excitation. These

features give rise to a system of internally resonant, weakly coupled, and weakly

damped oscillators—“a situation ripe with instabilities and rich dynamics. Such fea-

tures also lead to mathematical models with small nondimensional parameters that

are amenable to analytical treatment using perturbation methods. Systematic inves-

tigations of nonlinear responses have been carried out using averaging and symmetric

bifurcation theory for a range of path types [14, 22,23]. It was shown that the desired

synchronous response of the absorbers can undergo two basic types of instabilities.

The first type maintains the symmetry of the response but results in jumps, just as

in the case of a single absorber. For multiple absorbers, an additional instability

can occur wherein the symmetry of the response is broken. This results in a rich

bifurcation where multiple response branches arise, including some spatially localized

responses [22,24]. Similar analyses were carried out for CPVA systems composed of

multiple subharmonic pairs [25]. The effects of small imperfections among the ab-

sorbers, which are inevitable due to manufacturing, in-service wear, and so on, were

considered in the context of linear system models, where it was shown that these

systems experience localized free modes of vibration, as well as localized responses to

order excitation [26,27].



Early experimental work on CPVAS focused on particular applications, for exam-

ple, specific internal combustion engines. However, systematic experiments using a

dedicated test rig have recently been carried out for both circular and epicycloidal

path absorber systems [28—30]. These results confirm the linear and nonlinear be—

havior of CPVAs for these path types, and also demonstrate the rich behavior that

occurs if absorbers are tuned too closely to the excitation order [29,31]. In terms

of applications, CPVAs show great promise for use in advanced internal combustion

engines that offer increased fuel efficiency and reduced emissions [13].

Finally, impact dampers have recently attracted considerable attention in the

jet engine community as an effective means of reducing blade vibration amplitudes.

Such dampers typically consist of a single mass traveling back and forth in a cavity

machined in a turbine blade, where energy dissipation occurs when the mass impacts

the cavity walls. In this case, the impact damper is also designed to act as a tuned

absorber, with both effects contributing to vibration reduction. Much of this work

has been carried out experimentally for specific applications [32,33], although there

has been some systematic theoretical work as well [34]. Other impact damper designs

are also being explored by industry, such as dry particle damping systems [35] that

include a large number of tiny masses in a blade cavity, where energy dissipation

is achieved from multiple impacts between the masses. Such designs have proven

effective experimentally, although they suffer durability problems in the harsh jet

engine environment (e.g., rotation, extreme temperatures, and so on).

1.3 Systems with Cyclic Symmetry

Many rotating flexible structures consist of an array of interconnected constituent

parts (substructures) whose geometry and structural properties are rotationally peri-

odic, and they are said to have cyclic symmetry. In a bladed disk, for example, the

fundamental substructure is one blade plus the corresponding segment of the disk,



which is collectively referred to as a sector. The entire dynamics of these systems

can be captured by analyzing a single sector, so long as one applies the appropriate

phase conditions at the interfaces with adjacent sectors. This is a feature shared by

all perfectly cyclic systems, and it offers a tremendous computational savings in their

analysis.

The linear free response of a cyclic structure is characterized by identical motions

of each sector, except for a fixed sector—to-sector phase difference, and hence the mode

shapes are harmonic in the circumferential direction. For bladed disk assemblies, this

leads to nodal lines across the disk called nodal diameters, and the system mode

shapes are referred to as nodal diameter modes. An engine order excitation of order

n will generally excite only the modes with n nodal diameters. Due to the cyclic

symmetry of the system, most of the natural frequencies occur in repeated pairs and

these correspond to traveling wave modes, where (in the absence of damping) the

system kinetic energy remains fixed and is simply passed from one blade to another.

The distinct frequencies correspond to standing wave modes, where the system ki—

netic energy varies sinusoidally [36]. If the sectors are only weakly coupled to one

another, all of the system natural frequencies lie closely together, leading to a very

rich structure with high modal density and high sensitivity to imperfections.

Generally, the blades on a turbomachinery rotor are meant to be identical. In

practice, however, there are always small random uncertainties among the blades

due to manufacturing tolerances, in-service wear, material imperfections, and so on.

These small variations, referred to as mistuning, can lead to a confinement of vibration

energy to a few blades or even a single blade, a phenomenon known as localization

[37—40]. Due to this spacial confinement of energy, some of the blades may experience

higher amplitudes than what is predicted from the ideal, perfectly periodic system

[41—45]. Forced response amplifications of 200% or more can occur, resulting in high

cycle fatigue and eventual failure. This is a major cost, safety, and readiness concern



for commercial and military jet engines alike [46].

The features of a typical cyclic system also lead to a rich variety of nonlinear

dynamic behaviors. In particular, the repeated natural frequencies give rise to internal

resonances when the systems are weakly damped and the excitation of interest is

resonant. Additionally, there is the possibility of multiple interacting modes when

the substructures are weakly coupled. These characteristics lead to situations ripe

for instabilities, bifurcations, and a multitude of possible responses, just as in the

case of torsional CPVAs. Previous research in this area has dealt with the modal

interactions that arise from internal resonances [47—50] and nonlinear localization

[51—54]. However, it is important to note that localization of responses can occur in

perfectly tuned nonlinear system models, where the mistuning between subsystems

arises from the frequency dependence on amplitudes, rather than from imperfections.

A recent line of particularly interesting research in cyclic systems has focused on

the problem of how to design systems to reduce the harmful effects of localization. A

promising idea is to introduce into the system intentional patterns of mistuning that

can make the system robust with respect to the unavoidable imperfections. This has

been quite successful, at least for linear system models [55—58].

1.4 Vibration Absorbers for Rotating Flexible Structures

under Engine Order Excitation

Since order-tuned absorbers are designed to address system vibrations at a trouble—

some order (rather than a fixed frequency), it is natural to consider their use on

rotating flexible structures subjected to engine order excitation. In this context, the

desired system response is a traveling wave, where each sector behaves identically

except for a fixed phase difference among nearest neighbors; any other response type

implies decreased absorber performance. The ideal response is one in which the blades



remain stationary relative to the rotating hub and the absorbers respond in a trav-

eling wave to identically counter the engine order (traveling wave) excitation of the

blades.

Order-tuned absorbers have already been considered for helicopter rotor blades

[59], for an ideal flexible beam [60], and for potential implementation in hollow turbine

blades [61]. In addition, absorbers that employ order tuning at small amplitudes

and that transition into impact absorbers at larger amplitudes have recently been

experimentally [32, 33] and analytically [34] investigated. While these studies have

been promising, they have been limited in several key ways: (I) each considered very

specific applications; (2) the studies do not systematically address how to size and

tune the absorbers for optimal performance over a wide range of operating conditions;

and (3) all previous studies focused on the implementation of an absorber to an

individual structural element (e. g., a single blade). In fact, these studies were limited

to either theoretical results based on linear analyses or observations gleaned from

experiments or simulations.

This thesis reports the first systematic analytical treatment of order-tuned vibra-

tion absorbers applied to a fully-coupled cyclic structure under engine order excitation,

including detailed recommendations for both linear and nonlinear absorber design. In

this way, it serves not only as the first study of its kind to unite the individually ma-

ture bodies of research on absorber systems and cyclic systems, but it also provides

context and direction for what is sure to be a plentiful and rich course of ongoing

theoretical and experimental work.

1.5 Dissertation Overview

The goal the investigation is threefold: (1) to quantify and understand the under-

lying linear resonance structure of a cyclically-coupled bladed disk assembly fitted

with order-tuned absorbers; (2) based on these findings, to design the absorbers to



eliminate or otherwise reduce blade motions relative to the rotating hub; and (3) to

generalize the linear theory, methodology, and design to include the basic, first-order

effects of nonlinearity.

As we shall see, the underlying linear resonance structure of the cyclically cou-

pled system fitted with absorbers is surprisingly rich, a feature that arises from the

order-nature of the absorbers. This is manifested in the classical eigenvalue veering

phenomenon and gives rise to an ideal absorber design (perfect absorber tuning) in

which the absorber tuning order is set to identically match the engine order. In the

absence of damping, the result is a total elimination of the blade motions relative to

the rotating hub—independent of the rotor speed. One of the main findings of the

linear analysis, and indeed of this entire thesis, is the existence of an entire spectrum

of absorber designs for which there are no system resonances over the full range of

possible rotor speeds. This corresponds to a continuous set of absorber under-tuning

values, the so—called “no-resonance zone,” where resonance is avoided altogether. By

selecting a design within this small, but finite gap, there is at least some level of

robustness to parameter uncertainties, but at the expense of residual (zero damping)

or slightly increased (nonzero damping) blade motions.

Nonlinearity is introduced via the absorber paths and, for the desired traveling

wave response, it gives rise to additional frequency response branches and resonances,

but the fundamental linear resonance structure mentioned above is shown to qualita-

tively persist. There does exist a nonlinear tuning strategy that guarantees a branch

of solutions corresponding to zero (or otherwise reduced) blade motions. However,

unlike its linear counterpart, it is highly sensitive to parameter uncertainties. Even

more importantly, the nonlinear tuning is shown to depend on both the rotor speed

and force amplitude, and is thus effective only for a single set of operating conditions.

These findings suggest that it is not practical to exploit nonlinearity to further improve

the absorber performance in the cyclic systems under consideration. If nonlinearity



is inevitable, it is clearly shown that softening characteristics are more desirable than

hardening; the former simply sets an upper limit on the range of rotor speeds over

which the absorbers are effective, while the latter may give rise to problematic reso-

nances (especially if the damping is light). Finally, for the weakly coupled and lightly

damped systems under consideration, there may be a myriad of additional responses

other than the desired traveling wave variety. However, based on a number of case

studies and extensive numerical investigations, none could be identified. (Analytical

local stability results for the fully-coupled nonlinear system are essentially intractable,

even after a simplifying reduction of the Jacobian matrix is carried out.) This is, in

fact, very good news from a practical viewpoint since a traveling wave response of

the absorbers is desired.

The main body of the dissertation is organized as follows. Chapter 2 highlights

relevant background topics and material, including some mathematical preliminaries,

engine order excitation, vibration characteristics of cyclic systems, and frequency- and

order-tuned vibration absorbers. A suitable mathematical model for a bladed disk

assembly fitted with order-tuned vibration absorbers is developed in Chapter 3, from

which a number of specific models to be systematically analyzed in the two subsequent

chapters are gleaned. A linearized model is investigated in Chapter 4, which gives rise

to a linear absorber tuning strategy, and these results are generalized in Chapter 5 to

include the basic effects of nonlinearity. Finally, the dissertation closes with detailed

recommendations for absorber design, a summary of contributions, and directions for

future work in Chapter 6.
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CHAPTER 2

Background

2. 1 Introduction

This chapter highlights pertinent background material that will be useful in the anal-

yses of subsequent chapters. Some mathematical preliminaries are considered first

in Section 2.2, including the Kronecker product, the Fourier matrix, and the basic

theory of Circulants. These sections are quite brief and are meant only to highlight

well-known, but fundamental results and properties. A more exhaustive treatment

of the theory of Circulants (including many proofs) is given in Appendix B, and Ap-

pendix A reviews some selected topics from linear algebra. A model for engine order

excitation is subsequently developed in Section 2.3 and its traveling wave nature

discussed. In order to characterize the basic free and forced response of cyclically-

coupled systems under engine order excitation, a cyclic chain of linear oscillators is

investigated in Section 2.4. Finally, the theory of frequency- and order-tuned vibra-

tion absorbers is given in Section 2.5, and the chapter closes in Section 2.6 with some

concluding remarks.

2.2 Mathematical Preliminaries

We make frequent use of the theory of circulant matrices throughout this work. Their

basic properties are outlined in this section, along with some other relevant mathemat-

11



ical preliminaries. The Kronecker product is defined first in Section 2.2.1, followed by

the Fourier matrix in Section 2.2.2. Circulant and block circulant matrices are defined

in Section 2.2.3, and it is shown how to diagonalize such matrices in Section 2.2.4.

These sections are meant as a quick reference and correspondingly the treatment is

brief and proofs are omitted. A more detailed account of the theory of Circulants is

given in Appendix B, which was distilled from the classical text by Davis [62] and

the work by Ottarsson [36], and some selected topics from linear algebra are given in

Appendix A.

2.2.1 The Kronecker Product

Let A E men and B E Cpxq. Then the Kronecker (direct) product of A and B is

the mp x no matrix

fallB a12B ~- alnB-

a B a B a B

A53: 3 f . 3 an

LamlB am2B ' ' ' amnB_  
Some selected useful properties of the Kronecker product are as follows.

1. If A, B, C, and D are square matrices such that AC and BD exist, then

(A (X) B)(C 09 D) = (AC) <8) (BD).

2. If A and B are invertible matrices, then (A <8) B)‘1 = A’1 <8) B"1.

3. If A and B are square matrices, then (A (X) B)H = AH <8) BH.

Here, ()H = (j)T denotes the Hermitian operator, or conjugate transpose.

2.2.2 The Fourier Matrix

Let j = \/—1 and N = {1,2, . . .,N}. Then the N X N complex Fourier matrix is

defined as

w(i—1)(k—1) = Leak—1190., 23k 6 N (22)
E = EN = le'ikl ; eik = m

5
%
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2 7r

where w = wN = eff is the primitive Nth root of unity (see Section 34.1 of

Appendix B) and

__ 27r(i — 1) ,

992 — “N, 2 E N (2.3)

is the angle subtended from the positive real axis in the complex plane to the it”

power of wN. (See Figure 31 on page 191.) When the dimension of EN is clear, the

subscript N will be omitted. It is shown in Section 2.2.4 that all circulant matrices

share the same linearly independent eigenvectors

e, ___ -1_(1, w(i-1),w2(i—1), , , _ ,w(N-1)(i—1))T

W , iEN (2.4)
1 - . x . - ,. T

: __(1,e.7901,ej2%, . _ . [BAN-1M)

x/N

which compose the N columns (or rows) of E, that is, E = [e1,e2,...,eN]. An

important property of the Fourier matrix is that it is unitary and, therefore,

E'HE = EEH = I, (2.5)

where I is the identity matrix. Finally, the matrices EH, E001, and (E<E§>I)nH = EH®I

are also unitary.

2.2.3 Circulant Matrices

An N x N circulant matrix (or circulant for short) is formed from an N-vector by

cyclically permuting its entries and is of the form

P61 C2 .o. CN '-

CN 61 CN—1

C= . . . . (2.5)

t02 63 Cl _  
Thus a circulant matrix is defined completely by an ordered set of generating elements

c1, c2, . . . ,cN. It is convenient to define the circulant operator circ ( ~ ) that takes as its

argument these generating elements and results in the array given by Equation (2.6),

that is,

C =circ(cl,c2,...,cN). (2.7)

13



The set of all such matrices will be designated by (EN. A11 NA! x NM block circulant

matrix is defined similarly to Equation (2.6) and has the representation given by

Equation (2.7), where each entry ck is replaced by the M x 1% matrix Ck for each

k E N. The ordered set of matrices C1, C2, . . . , CN are called its generating matrices.

The set of all NM x NM block circulant matrices with M x M blocks, which is

sometimes called a block circulant of type (M, N), will be denoted by Q‘KMW. Finally,

if a matrix is both circulant and symmetric it can be written as

circ (c1,c2,...,cN,cN+2,cN,...,C3,c2), N even

T 2 T

C: (2.8)

CirC(C1,C2,...,CN-1,CN+1,CN+1,CN_1,...,C3,C2), NOdd

T T T T

and necessarily has repeated generating elements; only (N + 2) /2 are distinct if N

is even and (N + 1) /2 are distinct if N is odd. The set of all N X N symmetric

Circulants is denoted by V‘KN. An Nil/I x Nil! block circulant, block symmetric

matrix is obtained by replacing each ck in Equation (2.8) with Ck for each k E N.

The set of all NM x NM block circulant, block symmetric matrices with M x M

blocks will be denoted by fi‘é‘fif’MW.

2.2.4 Diagonalization of Circulants

A matrix C E (KN with generating elements c1, c2, . . . ,cN can be diagonalized via the

unitary (similarity) transformation

  

A1 0

H A2 .

- 0 /\N_

where

N

A,- = chui(k_1)(i_1), i E N. (2.10)

k=1

As a consequence, all circulant matrices share the same eigenvectors, which are given

by Equation (2.4). Their eigenvalues are given by Equation (2.10) and depend only 011

14



the generating elements. Similarly, a matrix C 6 flng,N can be block diagonalized

via the unitary transformation1

(Eff ‘8 1M)C(EN 69 1M) = .. , (2-11)

  
where 0 and IM are the M x M zero and identity matrices, respectively, and

N

11,-: chw(k—1)(i‘1>, i e N (2.12)

1:21

which depends only on the generating matrices C1, C2, . . . , CN- Since Equa-

tion (2.11) is a unitary transformation it preserves the eigenvalues of C. Hence its

eigenvalues are the eigenvalues of the N matrices A,- E (CM XM . If v,- is an eigenvector

of A,- then the corresponding eigenvector of C is u,- = e,- ® v,.

2.3 Engine Order Excitation

2.3.1 Mathematical Model

Ideally, the steady axial gas pressure in a jet engine might vary with radius but is

otherwise uniform in the circumferential direction, thus resulting in an identical force

field on each blade in a particular fan, compressor, or turbine within the engine. In

practice, however, flow entering an engine inlet invariably meets static obstructions,

such as struts, stator vanes, etc., in addition to rotating bladed disk assemblies in

its path to the exhaust. Even in steady operation, therefore, the flow slightly up-

stream of these bladed assemblies is non-uniform in pressure, temperature, and so

on. This results in a static pressure (effective force) field on the blades that varies

circumferentially, an example of which is shown in Figure 2.1.

Consider, for example, an engine in steady operation with n evenly-spaced struts

slightly upstream (or downstream) of a bladed assembly. As explained in [9] these

 

1Note that (EN (8) 1M)“ = (Eli (8) IM), which follows from Property 3 of Section 2.2.1.
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Figure 2.1. The the axial gas pressure 11(6): ideal and (example) actual conditions.

obstructions produce a circumferential variation upon the mean axial gas pressure

that is essentially proportional to cos n9, where 9 is an angular position. Thus a

blade rotating through this static pressure field experiences a force proportional to

cos th, where Q is the constant angular speed of the bladed disk assembly and t is

time. An adjacent blade experiences the same force, but at a constant fraction of

time later. This type of excitation is defined as engine order excitation and n is said

to be the order of the excitation.

To be more precise, the axial gas pressure of a steady flow through a jet engine

may be described by a function p(0) = [)(6 + 27r), where 0 is an angular coordinate

measured relative to a fixed origin on the machine. That is, the pressure field is

rotationally periodic and can therefore be expanded in a Fourier series with terms of

the form p0 cos n6. Then if the angular position of the it” blade relative to the same

origin is defined by

2

9,0) = 0t+§(i— 1), iEN

where N is the total number of blades and N = {1, 2, . . . , N} is the set of blade, or

sector numbers, it follows that the total effective force exerted on blade i due to the
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nth harmonic of the pressure field p(6) can be captured by

Fcos(nf2t + 27rj'6(i — 1)), i E N. (2.13)

Upon complexifying this gives rise to

[7,-(t) = Fej‘f’iejnm, i e N (2.14)

which is a model for the nth predominant component of the excitation. It has period

T = 27r/nf2, strength F, and is said to have angular speed it. The so-called inter-blade

phase angle is defined by

a, = 5]") = 27%“ — 1) = 7m, ie N (2.15)

where n E Z4. is the order of the excitation and go,- is the angle subtended from

blade 1 to blade i and is defined by Equation (2.3). Equation (2.14) is defined as

nth engine order (e.o.) excitation (72 cc. excitation) or traveling wave excitation and

is used to model the dynamic loading on models of bladed disk assemblies throughout

this work. The traveling wave characteristics of this type of excitation are considered

next.

2.3.2 'D‘aveling Wave Characteristics

Equation (2.14) is a function of continuous time t and it is discretized in space via the

index i. This gives rise to two interpretations of engine order excitation relative to the

rotating hub (one discrete and the other continuous) and these can be visualized in

Figure 2.2, which shows a dissection of the excitation amplitudes along time and sector

axes. In the first and usual sense, Equation (2.14) is a discrete temporal variation

of the dynamic loading applied to individual blades. That is, under an engine order

n excitation each sector is harmonically forced with strength F and frequency n9,

but with a fixed phase difference relative to its nearest neighbors. Physically, one can

think of this as placing N different observers at the discrete sectors and having the it”
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observer record the excitation strength applied to sector i as a function of time. Their

recorded time traces would resemble those shown in Figure 2.2a. In the second and

more general sense, Equation (2.14) can be viewed as a continuous spatial variation of

the excitation strength relative to the rotating hub (along the sector axis) that evolves

with increasing time, i.e., it is a propagating waveform or traveling wave. If a single

observer was placed on the rotating hub and recorded the strength of this traveling

wave as a function of i (taken here to be continuous), it would resemble the curve

shown in Figure 2.2b. In this context, the instantaneous loading applied to individual

blades is obtained by essentially “sampling” the continuous traveling wave at each

sector i E N and, as time evolves, these sampled points define N time-profiles of the

force amplitudes, which is equivalent to the discrete temporal interpretation described

above. However, the latter interpretation illuminates some important traveling wave

characteristics of the engine order excitation that are otherwise difficult to explain,

and in what follows these are systematically described.

To explain the traveling wave mathematically, it is convenient to define

(Pi-(X) = 008(21rgérflx) = COSka), (2-16)

which is a cosinusoidal waveform with wavelength 27r/cpk. Then for i E N Equa-

tion (2.14) can be written (in real form) as

F,(t) = Fcos(<pn+1(i — 1) + nflt), (2.17a)

= F<I>.,,+1(i— 1+ Ct), (2.17b)

which is a harmonic function with a wavelength of 27r/tpn+1 = N/n sectors (99,,“

is the wave number) and angular frequency n52. Equation (2.17b) shows that it is

a traveling wave (TW) in the negative i-direction (descending blade number) with

speed C = nil/99,,“ = N9/27r, measured in sectors per second. An example plot

of this continuous backward traveling wave (BTW) is shown in Figure 2.2b and, as

described above, the applied loads can be obtained from this figure by continuously
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Figure 2.2. An example illustration of the discrete temporal and continuous spatial vari-

ations of the traveling wave excitation defined by Equation (2.14) (in real form): (a) the

discrete dynamic loads with amplitude F and period T = 27r/nf2 applied to each sector; and

(b) the continuous BTW excitation with wavelength N/n and speed C = NQ/27r relative

to the rotating hub.
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“sampling” the waveform at the discrete sector numbers as time evolves. Then the

engine order excitation applied to the individual blades consists of a wave composed of

these N discrete points, examples of which are shown in Figure 2.3a-d. Interestingly,

this gives rise to discrete SW or even forward traveling wave (FTW) applied dynamic

loads (depending on the value of n relative to N) even though Equation (2.17) is

strictly a backward traveling waveform relative to the rotating hub. These additional

possibilities arise due to aliasing of the “sampled points” just as it occurs in elementary

signal processing theory [63,64]. Before characterizing the traveling and standing

waveforms it is shown that one need only consider engine orders n 6 N.

The traveling wave nature of the discrete applied loads (i.e., SW, BTW, or FTW)

depends only on the value of n relative to N. To see this, let

nznmodNEN, nEZ+ (2.18)

and assume n = a + mN for some integer m. Then one can write <I>fi+mN+1(X) =

(1),-H100 and it follows that if n = it corresponds to a SW, BTW, or FTW then so

does n + mN for any m E Z+. In this sense, the traveling wave nature of the applied

dynamic loads is seen to alias relative to N. These features are characterized next for

engine orders n E N, where it is understood that the results can be applied to any

n > N simply by taking 71. modulo N (where appropriate).

For the special case when n = N the rotating blades become entrained with the

excitation since quN) =‘ 27rn(i -— 1) with i,n E Z+ and hence each is forced with

the same strength and phase. As illustrated in Figure 2.3d, this is effectively a SW

excitation where each blade is harmonically forced according to F,(t) = F cos th.

N/Z) = 7rn(i -—Entrainment also occurs when n = N/2 if N is even, in which case (DE

1), where (i -— 1) is odd (resp. even) for even (resp. odd) sector numbers i E N.

Accordingly, all blades with odd sector numbers are driven by F;(t) = F cos nflt, as

are the blades with even sector numbers, but with a 180-degree phase shift. As shown

in Figure 2.3b, this amounts to the same standing wave excitation as the n = N case,
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Table 2.1. Sets of engine orders n (mod N) E N = Ns‘if UN§,€, UNST'E, corresponding to

backward traveling wave (BTW), forward traveling wave (FTW), and standing wave (SW)

dynamics loads applied to the blades for (a) odd N and (b) even N. These can be visualized

in Figure 2.3 i-ii.

 

 

(a)0ddN (b) EvenN

NBOTW={n€Z+ilSnSflf—l} NgTw={n€Z+zlgngflf—2}

N1‘9'1‘w={n€Z+IflgflSnSN—l} NgTw={n€Z+zy—2fl$nSN—l}

Nefw ={N} NSEW ={-§,N}

 

except for a phase reversal in the excitation among adjacent blades. The engine

orders corresponding to SW excitations for odd and even N are denoted by the sets

NSOWE C N, which are defined in Table 2.1 and all other values of n E N correspond

to traveling waves. Engine orders n E Ng'i‘Ff/V (resp. n E NPQ'fEIlV) correspond to

BTW (resp. FTW) excitation, an example of which is shown in Figure 2.3a (resp.

Figure 2.3c), where Nngv and NSTEJN are also defined in Table 2.1. These sets can

be visualized in Figure 2.3 i—ii for odd and even N.

2.4 Vibration Characteristics of Cyclic Systems

The basic free vibration characteristics of cyclic systems are discussed next, in addition

to forced vibration under the engine order excitation described in Section 2.3. A

prototypical linear model is introduced in Section 2.4.1, which consists of a cyclic array

of N identical, identically coupled oscillators, each with a single degree of freedom

(DOF). Its forced response is considered in Section 2.4.2, including a decoupling

strategy based on the cyclic symmetry of the system. The details of its free response

are given in Section 2.4.3 and in Section 2.4.4, which discuss the eigenfrequency

characteristics and normal modes of vibration, respectively. Finally, conditions for

resonance are given in Section 2.4.5, along with a description of the underlying linear

resonance structure in terms of the engine order and angular speed of the excitation.
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Figure 2.3. Engine orders n mod N corresponding to BTW, FTW and SW applied dynamic

loading for (i) odd N and (ii) even N (see also Table 2.1); example plots of applied dynamic

loading (represented by the dots) for a model with N = 10 sectors and with (a) n = 1

(BTW), (b) n = 5 (SW), (c) n = 9 (FTW), and (d) n = 10 (SW). The BTW engine order

excitation is represented by the solid lines.
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Figure 2.4. A prototypical linear cyclic system with cyclic boundary conditions x0 = xN

and $N+1 2 1'1.

2.4.1 A Prototypical Model

The undamped cyclic system to be considered is shown schematically in Figure 2.4.

It consists of a cyclic chain of N single-DOF oscillators each of mass M, the dynamics

of which are captured by the transverse displacements x;, and these are uniformly

attached around the circumference of a (nonrotating) rigid hub via linear elastic

elements of stiffness kb and effective length L. Adjacent masses are elastically coupled

via linear springs, each with stiffness kc. It is assumed that the elastic elements are

unstressed when the oscillators are in a purely radial configuration, that is, when

x,- = 0 for each i E N. An individual oscillator, together with the nearest—forward-

neighbor elastic coupling, forms one fundamental sector and there are N such sectors

in the overall system. Finally, the system is subjected to engine order excitation of

order n E Z... and angular speed 9, which can be modeled by Equation (2.14).

The linear equation of motion for sector i is obtained in the usual manner. It is

divided through by the inertia term ML and time is rescaled according to r 2: wot,

where 0.20 = W is the undamped natural frequency of a single isolated sector.

Then if q,- = x,- /L the dynamics of the it” sector are governed by

(If, + (11+ V2(-qi—1 + 2‘12" (n+1) = femejnm, ie N (2-19)

where V = T/lcc/kb is a nondimensional coupling strength and ()’ = d( - )/dr. The

dimensionless angular speed and strength of the engine order excitation are denoted

by a = 52/010 and f = F/Lkb, respectively, n is its order, and g5,- is the interblade
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phase angle defined by Equation (2.15). In Equation (2.19) it is understood that

(10 = (IN and qN+1 = (11. (2-20)

which implies that the Nth oscillator is coupled to the first.

By stacking the N coordinates q, into the configuration vector q =

(q1,q2, . . . ,qN)T, the governing equation of motion for the overall N—DOF system

takes the form

q” + Kq = rein“, ie N (2.21)

where f = (fey-”1, fejf2, . . . , fej‘f’N)T is the system forcing vector, which accounts

for the constant phase difference in the dynamic loading from one sector to the next.

The N x N matrix

"1+2u2 —u2 0 0 —u2 '

—u2 1+2u2 —u2 0 0

0 —u2 1+2z/2 0 0

K = . . . . . . (2.22)

0 0 0 1+2);2 —u2

_ —u2 0 0 —u2 1+2u2J  
reflects the nondimensional stiffness of each sector relative to the hub (additive unity

along its diagonal) and also the inter-sector coupling (V2 along the super- and sub-

diagonal). The elements ~V2 appearing in the (1, N) and (N, 1) positions of K are

due to the cyclic boundary conditions given by Equation (2.20), and in particular the

(123:1 terms in Equation (2.19). (In their absence, the system represents a finite chain

of N oscillators.) Thus, in addition to being symmetric, Equation (2.22) is also a

circulant and can be written as2

K = circ (1+ 2V2, —V2, 0, . . . ,0, —V2) 6 .SflgN, (2.23)

 

2This is a property shared by all linear(ized), perfectly cyclic systems with N sectors, a single—

DOF per sector, and nearest-neighbor coupling. In the more general case of multi—DOF per sector,

the system matrices are block circulant (and also block symmetric) and hence belong to fifé’fiy’MW,

where M is the number of DOF per sector.
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where the circ ( ) operation is defined in Section 2.2.3. In the absence of coupling

(that is, if V = 0) K is diagonal and Equation (2.21) represents a decoupled set of N

harmonically forced, single—DOF oscillators.

The forced response of Equation (2.21) under engine order excitation is considered

next with emphasis on a modal analysis whereby the fully coupled system (that is,

one in which V 51$ 0) is reduced to a set of N single—DOF oscillators, only one of

which is (harmonically) excited. Such an analysis illuminates the basic vibration

characteristics of linear cyclic systems, including their eigenfrequency and resonance

structures. The approach taken here, and a generalization in which each sector has

many DOF, is applied to the linear system in Chapter 4 and also in Chapter 5 to

handle (block) reduction of the Jacobian matrices.

2.4.2 Forced Response Under Engine Order Excitation

The steady-state response of Equation (2.21) can be obtained using standard tech-

niques [65] and, for non—resonant forcing, it is given by

ss _ 2 2 —1 jnor
q (r) — (K — n o I) fe , (2.24)

where I is the N x N identity matrix. However, this requires inversion of the

impedance matrix K — n2021, which can be computationally expensive for a large

number of sectors, and it offers little insight into the basic vibration characteristics.

In what follows, a transformation based on the cyclic symmetry of the system is

exploited to fully decouple the single, N-DOF system to a set of N, single—DOF os-

cillators from which the steady-state response can easily be obtained. The procedure

is similar to the usual modal analysis from elementary vibration theory. However, a

key difference is that the transformation matrix (and hence the system mode shapes)

is known a priori and, since the transformation is unitary (thus preserving the sys-

tem eigenvalues), the natural frequencies can be obtained after the transformation

is carried out. Moreover, due to orthogonality conditions between the normal modes
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and forcing vector, the steady—state response of the overall system reduces to finding

the forced response of a single harmonically-forced, single—DOF oscillator in modal

space, which offers a clear advantage over the solution to Equation (2.24).

It was shown in Section 2.3.2 that an engine order excitation can be regarded

as traveling wave dynamic loading, and it is therefore reasonable to expect steady—

state solutions of the same type. We begin with a simple way to show the existence

of such a response, and then systematically describe it based on the results of the

aforementioned modal analysis.

EXISTENCE or A TRAVELING WAVE RESPONSE

Since the excitation is a traveling wave it is natural to search for traveling wave

steady-state solutions of the same form, that is,

(133(7) = Aej‘toei’m (2.25)

for each i E N. Equation (2.25) assumes that each sector responds with the same

amplitude A, but with a constant phase difference relative to its nearest neighbors,

and together all N such solutions form a traveling wave response among the sectors.

(In real form, Equation (2.25) can be written as qu(7’) = A<I>n+1(i — 1 + Ct), where

<I>( - ) is defined by Equation (2.16) and C = no/99n+1 is the wave speed of the engine

order excitation.) By mapping this trial solution into Equation (2.19) and dividing

through by the common term ejfiejn"T one obtains

—(no)2A + A + V2 (—Ae"j‘pn+1 + 2.4 — Aej‘pn‘fl) = f, (2.26)

where the identity

(bizizl - 952' = i30n+1 (227)

has been employed. Upon simplification, the amplitude A is found to be

 

f
A = , 2.28

1+ M1 — cocci“) — (no)2 ( )
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from which it follows that a)”+1 = \/1 + 2VQ(1 —— cos 90n+1) is one of the N natural

frequencies of the coupled system, and it corresponds to mode p = n + 1.3

Equation (2.28) highlights a fundamental result when a linear cyclic system with

nearest-neighbor elastic coupling is subjected to engine order excitation of order n:

mode n + 1 is excited. The reason for this is not clear from this approach, but it

can be described systematically via a modal analysis that considers the fully coupled

system.

MODAL ANALYSIS

It is well—known that circulant matrices, such as the stiffness matrix defined by Equa—

tion (2.23), can be diagonalized via a similarity transformation involving the Fourier

matrix, and in what follows this property is exploited to fully decouple the governing

equations of motion given by Equation (2.21). The theory is due to P.J. Davis (1979)

and is exhaustively developed in his seminal work, Circulant Matrices [62]. A detailed

development of the pertinent theory is given in Appendix B (and summarized without

proofs in Section 2.2) in a way that should be familiar to the vibrations engineer.

Diagonalization can be achieved by employing Equation (2.9), and in particular

Theorem 37 on page 197. To this end, the change of coordinates4

N

q(r) = Eu(r) = Z ekuk(r) or qp(r) = e;u(r), p E N (2.29)

k=1

is introduced, where E is the N x N complex Fourier matrix and ep (given by Equa-

tion (2.4)) is its pt” column, (,)T denotes transposition, and u = (u1,u2, . . . ,uN)T

is a vector of modal, or cyclic coordinates. Substituting Equation (2.29) into Equa-

tion (2.21) and multiplying from the left by EH yields

EHEu” + E'HKEu = Eerjm’T. (2.30)

 

3Strictly speaking, the excited mode is p = 71 mod N +1, which will be shown in the next section.

4The index p corresponds to the pm mode of vibration and shall be referred to as the mode

number.
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Since EHE = I from Equation (2.5) (that is, E is unitary, which is proved in Sec-

tion B42) and in light of Equation (2.9), it follows that

11:1: (I)? 2 0 U1 egf

u (.72 ug e f .

.2 + 2 , , = 2, or“, (2.31)

11%, 0 QIQV UN efif

‘ scalar element of the N x 1 modal forcing vector EHf is eyf. Equa-where the p”

tion (2.29) is a unitary (similarity) transformation and hence the system natural

frequencies are preserved, which is guaranteed by Theorem A.1 on page 180. For

each p E N they follow from Equation (2.10) and are given implicitly by

2

“31295 (_) 21+ 2V2 — V2w(P—1)+ O + . . . + 0 — V2w(N—1)(p_l)

= 1+ 232 _ V2 (we-1) + u,(N-1)(p-1))

= 1+ 2V2(I — cos app), (2.32)

where w = egg: is the primitive NM root of unity (see Section B41) and the identity

"(tip-1) + w(N‘1)(p‘1) = 2 cos app has been employed. The overbar indicates that the

frequencies are in dimensionless form.

Equation (2.31) is a decoupled set of N, single—DOF harmonically forced modal

oscillators and, in the steady-state, the pth modal response is

2 1.2.3113— eJ'WT, p e N. (2.33)
p — (no)2

The steady state response of sector i (in physical coordinates) can be obtained from

the transformation given by Equation (2.29) and is given by qfs(r) = ezTuSSU), or

N 1 )

ss _ j(i—1 99k] ss
q2 (r) —— 2 —_e ”k (7‘)

k=1 N

1 iv: elf-(f j(i—1)gok jnor IE N (2 34)
: -—-— e ‘6 , Il -

VN 16:11:): — (no)
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which reflects that the total system response is simply a superposition of individual

modal responses. Depending on the details of the modal forcing terms eyf Equa-

tion (2.34) shows that there are N possible resonances, and these arise if the excitation

frequency matches a system natural frequency. However, only a single mode survives

under an engine order excitation of order n, which is clear by applying Theorem 33

on page 192. Then the pt” modal forcing term reduces to

eyf = ,Z,(k—1><o—1)fwo<k—1>

N

Z w(k-—1)(n+1-—p)

{Wfl n+1—p=mN
= (2.35)

0, otherwise

(m is an arbitrary integer), which shows that the force vector f is mutually orthogonal

to all but one of the modal vectors ep, that is, only a single mode is excited. Therefore,

given an engine order n E Z+ and since p E N, the excited mode is

p = nmod N + 1. (2.36)

Finally, since (i —- 1)<p,-,+1 = (1),, Equation (2.34) can be written as

 qfs(r) = _2 f( )2 amid-"UT, i E N (2.37)

wn+1- n0

which is recognized to be in agreement with the results of the previous section.

Indeed, the process described above is significantly more laborious than the direct

approach of the previous section, but many general features can be gleaned from

the analysis. The eigenfrequency characteristics are described next, followed by a

description of the normal modes in Section 2.4.4, and the system resonance structure

is detailed in Section 2.4.5.
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2.4.3 Eigenfrequency Characteristics

The dimensionless natural frequencies follow from Equation (2.32) and are given by

 

top = 3% = (/1+ 2u2(1— cosop), p e N (2.38)

which clearly exhibit the effect of the coupling. For V = 0 we recover (DP = 1, or

(up = 010 in dimensional form, which was used to nondimensionalize the model in

Section 2.4.1. In this case the sectors are dynamically isolated and each has the same

natural frequency. For nonzero coupling (V # 0) it is clear that there will be repeated

natural frequencies, a degeneracy that is due to the circulant structure of K. This is

manifested in the cyclic term

cos (op = cos(%—(%fl) = Re (tug/.1) , (2.39)

which can be obtained by projecting the powers of the Nt” roots of unity onto the real

axis. (See Figure B.1 on page 191.) Multiplicity of the eigenfrequencies can also be

visualized in Figure 2.5, which shows the dimensionless natural frequencies in terms of

the diametral components (that is, the number of nodal diameters) in their attendant

mode shapes versus the mode number p for weak and strong coupling and for odd

and even N. These cyclic features are now described in terms of mode numbers in

the sets PgTa, PSTEV, and "Pg“? which are defined in Table 2.2. A description of

the BTW, FTW, and SW designations of these sets is deferred to the next section.

The natural frequency corresponding to mode p = 1 E Pg; (zero harmonic of

Equation (2.39)) is distinct, but the remaining natural frequencies appear in repeated

pairs, except for the case of even N, in which case the p = (N +2) /2 E FEW frequency

(N/2 harmonic) is also distinct. There are (N — 1) /2 such pairs if N is odd, and these

correspond to mode numbers in "PST“, and PEQTWv respectively. For even N there are

(N — 2)/2 repeated natural frequencies corresponding to mode numbers in ”PETW and

PETW. Finally, if k E ”PgT’g, then the mode number of the corresponding repeated

eigenfrequency is N + 2 — k 6 PET%.
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Figure 2.5. Dimensionless natural frequencies (2,, in terms of the number of nodal diameters

(n.d.) versus mode number p for weak coupling (WC) and strong coupling (SC): (a) N = 11

(odd) and (b) N = 10 (even). Also indicated below each figure is, for general N, the number

of n.d. at each value of p and also the mode numbers corresponding to standing waves (SW),

backward traveling waves (BTW), and forward traveling waves (FTW).
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Table 2.2. Sets of mode numbers p E N = 733,33 U P03 U P1351; corresponding to standing
BTW

wave (SW), backward traveling wave (BTW), and forward traveling wave (FTW) normal

modes of free vibration for (a) odd N and (b) even N.
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The normal modes of vibration are described next, and it will be shown that each

can be categorized as a SW, BTW, or FTW.

2.4.4 Normal Modes of Vibration

In Section 2.4.2 it was shown that Equation (2.21) can be decoupled via a unitary

(similarity) transformation involving the Fourier matrix E 2 [e1, e2, . . . ,eN] and as

a consequence ep is the pth normal mode of vibration corresponding to the natural

frequency 52,). In what follows these mode shapes are characterized by investigating

the free response of the sysem, and it is Shown that they are of the SW, BTW, or

FTW variety.

The free response of the system in its pt” mode of vibration can be described by

q(p)(r) = apepej‘f’PT, where ap is a modal amplitude and the natural frequency dip

is defined by Equation (2.38). (There will generally be a phase angle as well, which

is omitted since its presence does not affect the arguments to follow.) Noting that

element i of ep can be written as won—IMF” = ej‘ppu’ll and for i,p E N the free

response of sector i can be written (in real form) as

(1,“) ) (T) = ap COS (99120 - 1) + apr). (2.405)

where Cp 2 (DP/(op and the function (Dk(x) is defined by Equation (2.16). Equa-
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Figure 2.6. A backward traveling wave ap<I>p(i — 1 + Cpr) 2 ap cos((pp(i — 1) + (DPT) with

amplitude ap, wavelength 27r/tpp = N/(p — 1), and speed C,D = ‘p/gop.

tion (2.40) is a function of continuous time T and it is discretized according to the

sector number i. In this way, it is endowed with the same discrete temporal and con—

tinuous spatial duality that was described in Section 2.3.2 in the context of traveling

wave dynamic loading (engine order excitation). That is, it can be regarded as (1)

the time-response of individual (discrete) sectors, or (2) a continuous spacial variation

of displacements among the sectors that evolves with increasing time (i.e., a travel-

ing wave). The propagating waveform is strictly a BTW in the negative i-direction

(descending sector number) with wavelength 27r/cpp = N/ (p — 1) and speed Cp, an il-

lustration of which is shown in Figure 2.6. However, depending on the value of p, this

gives rise to SW, BTW, or FTW mode shapes, a property that follows analogously

from the features described in Figure 2.3.

For the special case of p = 1 it is clear from Equation (2.40a) that each sector

behaves identically with the same amplitude and the same phase since «p1 = 0. An

additional special case occurs when p = (N + 2) /2 if N is even. Then WN+2) )2 = it

and each sector has the same amplitude but adjacent sectors oscillate with a 180-

degree phase difference. Hence the vibration modes p 6 Pg“? correspond to SW

mode shapes whose characteristics can be visualized in Figure 2.3b and Figure 2.3d
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by replacing the amplitude F with ap. The remaining mode Shapes correspond to

repeated natural frequencies and are either BTWS or FTWS. In particular, the normal

modes p E PgiEiN (resp. p E PSTETJ are backward (resp. forward) traveling waves

and can be visualized in Figure 2.3a (resp. Figure 2.3c). If mode k E 773%, is a

BTW corresponding to a natural frequency 0k, then the attendant FTW mode is

N + 2 — k E PSTEVJV corresponding to “—JN+2—k = wk.

Figure 2.7 illustrates the normal modes of free vibration for a model with N = 100

sectors. In this figure, the extent of the radial lines represents sector displacements;

those appearing outside (resp. inside) the hub are to be interpreted as being positively

(resp. negatively) displaced relative to their zero positions. Modes 1 and 51 are SWs

and modes 2—50 (resp. 52—100) consist of backward (resp. forward) traveling waves.

Finally, the number of nodal diameters can be clearly identified in Figure 2.7. For

example, modes 4 and 98 feature 3 n.d.

2.4.5 Resonance Structure

In general, there may be a system resonance whenever the excitation frequency

matches a natural frequency, that is, if no 2 (DP or n52 = (12,, in dimensional form.

These possible resonances can be conveniently identified in a Campbell diagram, an

example of which is shown in Figure 2.8a for a model with N = 10, V = 0.5, and

for engine orders n E N. (The general case of n 6 2+ is considered below.) In this

figure, the natural frequencies are plotted in terms of the dimensionless rotor speed

and several engine order lines no are superimposed. Possible resonances correspond

to intersections of the order lines and eigenfrequency loci, and there are (N + 2) /2

(resp. (N + 1) /2) such possibilities for each engine order when N is odd (resp. even).

In light of Equation (2.35), however, there is only a single resonance associated with

each n under the traveling wave dynamic loading of Section 2.3 and it corresponds

to the mode number given by Equation (2.36). These are indicated by black dots in
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Figure 2.7. Normal modes of free vibration for a model with N = 100 sectors. Mode 1

consists of a SW, in which each sector oscillates with the same amplitude and phase. Mode

51 also corresponds to a SW, but neighboring oscillators oscillate exactly 180 degrees out

of phase. Modes 2-50 (resp. 52—100) consist of BTWS (resp. FTWs).
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Figure 2.8. (a) Campbell diagram and (b) corresponding frequency response curves for

N: 10, V=0.5, f =0.01, and n=1,...,N.

Figure 2.8a and the corresponding frequency response curves are shown in Figure 2.8b

for a model with f = 0.01. For example, a 3 co. (resp. 7 e.o.) excitation gives rise to

a resonance of the 4th (resp. 8“”) mode, which is a BTW (resp. FTW) with 3 nodal

diameters. (The TW and n.d. designations can be verified in Figure 2.5.)

The basic resonance structure shown in Figure 2.8a for n = 1, . . . , N essentially

aliases relative to the total number of sectors, in the sense that the excited modes for

n =mN+1,...,(m+1)N withm E Z+ arethe same asthoseforn=1,...,N. This
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Table 2.3. Condition on the engine order n E 2+ to excite mode p E N for N = 10.

 

 

 

Excited Mode Conditions on Engine Order n

1 mN = 10, 20, 30,...

2 1+mN=1,11,21,...

3 2+mN=2,12,22,...

N—l N—2+mN=8,18,28,...

N N—1+mN=9,19,29,...   
follows from the orthogonality condition given by Equation (2.35) and is manifested in

Equation (2.36), which gives a relationship for the excited mode in terms of the engine

order n and total number of sectors N. Since n > 0 by assumption (see Section 2.3)

the first mode (p = 1) is excited when n = mN = 10, 20, 30, . .. , the second mode

(p = 2) is excited when n = 1+mN = 1, 11,21, . . . , and so on. Table 2.3 summarizes

these conditions for a model with N = 10 sectors and the corresponding resonance

structure for n = N, . . . , 20N is Shown in Figure 2.9a. Each collection of resonance

points it = mN +1, . . . , (m + 1)N is qualitatively the same in structure. However, for

m > 1 the resonances become increasingly clustered, which is shown in Figure 2.9b for

n = N, . . . , 2N and in Figure 2.90 for n = 2N, . . . ,3N. In terms of the sets defined

in Table 2.1 and Table 2.2, an engine order nmodN E NSWE excites a SW mode

1) E 773$. Similarly, an engine order nmodN E Nngv (resp. nmod NE NSTEV)

excites a FTW (resp. BTW) mode p E PSTEVJV (resp. p E 731(3)"?le

2.5 Vibration Absorbers

2.5.1 Introduction

When an engineering structure experiences unwanted levels of vibration due to peri-

odic excitations acting on its constituent parts it may be impractical (or even impos-
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Figure 2.9. (a) Campbell diagram for N = 10, V = 0.5, f = 0.01, and n = 1,. . .,20N and

the corresponding frequency response curves for (b) n = N, . . . ,2N and (c) n = 2N, . . . , 3N.
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sible) to change the makeup of the system to improve its vibratory characteristics, or

to change or eliminate the source of the excitation. In these cases tuned vibration

absorbers offer a possible solution.

The notion of a vibration absorber was introduced by Frahm [4] in a United States

patent in 1911, but it was Den Hartog [5, 6] who first carried out systematic studies

on tuned absorbers, including an optimal choice of parameters. Tuned vibration

absorbers are auxiliary components that are attached to a primary system to eliminate,

or otherwise reduce its steady-state motions. This is done through a particular choice

of absorber parameters, typically by setting the natural frequency of the absorber

close to the most problematic harmonic of the excitation. The absorber is said to be

exactly tuned if these frequencies match identically; otherwise, the absorber is said to

be detuned.

We shall discuss two varieties of vibration absorbers: the classical frequency-tuned

dynamic vibration absorber (DVA) in Section 2.5.2 and the order-tuned centrifugal

pendulum vibration absorber (CPVA) in Section 2.5.3. The DVA, which is shown in

Figure 2.10a, relies on an elastic element for its restoring force, whereas the CPVA,

examples of which are shown in Figure 2.10b (circular path) and Figure 2.10c (general

path), employ the centrifugal field due to rotation of the primary system. Order-tuned

absorbers play a key role in this dissertation.

2.5.2 The Frequency-Tuned Dynamic Vibration Absorber

Here we highlight the classical theory of the frequency-tuned DVA due to Den Hartog

[6]. Consider the 2——DOF system shown in Figure 2.10a. It consists of a primary

system (M, C, K) that is harmonically excited by f (t) = foeth, where f0 is the

strength of the excitation and w is its (constant) frequency, t is time, and j = \/——_1.

When this primary system is isolated (i.e., when the absorber is not attached) it has

a resonance at 021V 2 MK/M (its undamped natural frequency), which is indicated

39



{4:474%;; or; «

0180 tTo.

Primary .

M Tit) 1202;;
SYstem ' —[ / ’3 .m R(S)

WT], c0) - o

DVA m L—] ‘ J

W) J ‘/9, 9 fl

(a) DVA (b) Circular Path CPVA (c) General Path CPVA

Figure 2.10. Tuned vibration absorbers: (a) DVA; (b) Circular Path CPVA; (c) General

Path CPVA.

 

 

   

  

   

by the dashed lines in Figure 2.11. A DVA subsystem (m, c, k) is attached to M and

its parameters are chosen to attenuate the vibratory response of the primary system

near to = (UN. The undamped natural frequency of the isolated DVA is denoted by

can 2 k/m.

The governing equations of motion for the composite system in Figure 2.10a are

given by

M5: + 05: + Kx = fejw‘, (2.41)

where x = (x, y)T and f 2 (f0, 0)T are displacement and forcing vectors and

K+k —k

a K_[_k k],

MO

0 m

C+c —c

—c c

M: , C:

    

are the mass, damping, and stiffness matrices. Assuming harmonic motion, the steady-

state solution to Equation (2.41) follows in the usual way and, for non-resonant forcing,

   

 

is given by

[:8 = if
where

X 2 f0 (k — mu)2 +jwc)

P (2.43)

 



are the steady-state amplitudes of the primary and absorber systems, respectively,

and

F = (K + k — min” + j(C + c)w) (k — mw2 + jcw) — (k +jc01)2 . (2.44)

We first consider a tuning strategy for the undamped DVA, that is, for c = 0. It will

be shown that the undamped absorber can be designed to completely eliminate the

steady—state motions of M——independent of C—but that the resulting design is not

robust to frequency drift. It is then shown how this Situation can be improved by

including damping in the absorber model.

ABSORBER TUNING: UNDAMPED DVA

In the absence of absorber damping (c = 0), the condition (.02 = k/m is sufficient to

eliminate steady-state motions of M, which is clear from the first element of Equa-

tion (2.43). Since we are interested in improving the response of the primary system

near its resonance to ”E toN = T/K/M, the absorber Should be designed such that

K k
022 = “12V = (.03, or w2 = M = a, (2.45)

which is the absorber tuning. That is, the absorber is designed such that its natural

frequency matches that of the isolated primary system. This is accomplished by

choosing the absorber parameters m and k such that Equation (2.45) is satisfied.

If the undamped absorber is tuned according to Equation (2.45), then

X = 0 .

(2.46)

Y = “fa/k }

(independent of C) and the steady—state motions of the primary system are completely

eliminated. Under this tuning strategy the absorber oscillates out of phase with

respect to the excitation, which is clear from the Sign of Y, and it exerts at all times

a force equal in magnitude to the applied force f (t). The resulting frequency response

of the primary system is given by the solid lines in Figure 2.11.
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Figure 2.11. Dimensionless amplitude of the primary system versus dimensionless exci-

tation frequency: effect of an undamped vibration absorber (c = 0) on the response of the

undamped primary system (C = 0).

From a design standpoint, there are two different ways to acheive the absorber

tuning:

1. If the allowable amplitude Y is prescribed, set k = |—f0/Y[ = fo/Y (from

Eq. (2.46)). Then the required absorber mass follows from Eq. (2.45) and is

given by m = k/w?V = (%)M.

2. If the absorber mass m is prescribed, set k = mu)?V = (77%)K (from Eq. (2.45)).

Then the resulting absorber amplitude is Y and is given by Eq. (2.46).

In the first strategy the absorber is assumed to have a limited space in which to

operate and the designer is not at liberty to arbitrarily choose its mass. Conversely,

if the absorber mass is specified (typically it is made as small as possible), then the

corresponding absorber amplitude is automatically prescribed.

ABSORBER TUNING: DAMPED DVA

The undamped DVA just described is successful in that it removes the original res-

onance peak in the response of the primary system, but it does so at the expense

of an additional resonance, which is shown in Figure 2.11. This may be undesirable
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Figure 2.12. Dimensionless amplitude of the primary system versus dimensionless exci-

tation frequency: effect of a damped vibration absorber (c # 0) on the response of the

undamped primary system (C = 0).

for a machine that must pass through the first resonance in order to reach its steady-

state operating speed, and also if it exhibits significant frequency drift under normal

operation. The composite system can be made robust to these situations by includ-

ing damping in the absorber model. The basic idea is to first optimally detune the

absorber away from the perfect tuning given by Equation (2.45), which assures that

the two points shared by all frequency response curves of the composite system have

the same ordinate value. Then the absorber damping is adjusted to optimize the

two resonance peaks. Den Hartog [6] was the first to propose such an optimization

scheme, and the reader is referred to his work for details.5 See [67—69] for additional

work related to the optimum design of damped vibration absorbers. An example plot

of an optimally tuned system with a damped DVA is shown in Figure 2.12. ‘

 

5The reader should note that Equation (3.24) on page 96 of [6] has a typographical error. The

damping terms should be (2(c/cc)g)2, not (2(c/cc)gf)2. This equation is correctly reported in [66].
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2.5.3 The Order-Tuned Centrifugal Pendulum Vibration Absorber

The classical frequency-tuned DVA of Section 2.5.2 is effective only at a particular

frequency and it works well for systems with steady operating speeds. However,

absorbers of this type are not suitable for many systems with rotating assemblies,

such as an automobile or jet engine, which are characterized by varying speeds and

forces that occur at orders of rotation [7]. Here we briefly highlight the essential

features of a centrifugal pendulum vibration absorber (CPVA) and indicate how it

can be tuned to a given order of rotation, rather than to a fixed frequency, and is

hence effective at all speeds.

The system Shown in Figure 2.10b on page 40 captures the essential features of

a typical CPVA. It consists of a rigid rotor (primary system) with polar moment of

inertia J and radius R, which rotates about a fixed axis at O. The primary system

is harmonically excited by a torque of the form T(t) = To + Tejnm, where T is the

strength of the fluctuating excitation, n is its order, t is time, Q is the Speed of the

rotor, and To is the mean torque. A pendulum absorber of length r and mass m is

attached to the periphery of the rotor and its parameters are chosen to reduce the

torsional oscillations of the primary system.

An analysis Similar to the one carried out in Section 2.5.2 for the frequency-tuned

DVA shows that the steady-state torsional oscillations of the rotor can be eliminated

completely by setting the undamped natural frequency of the absorber to that of

the excitation. A key difference, however, is that the absorber’s natural frequency is

proportional to the rotor speed [70]. That is,

Mn: fig

7'

where a = T/R/r is defined as the linear tuning order of the absorber. This gives

an, (2.47)

rise to a tuning condition n = n (the so-called order-tuning) which is independent of

the rotor speed. In this way, the absorber tuning is effective over the full range of
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possible rotor speeds.

Similar statements can be made for the more general, arbitrary-path absorber

system shown in Figure 2.100, which has been exhaustively studied by Shaw and

coworkers. The reader is referred to a wealth of existing literature for the theoretical

details [14, 18, 20—23, 25, 27, 71, 72] and experimental validation [28—30, 73—75].

2.6 Concluding Remarks

An overview of relevant theoretical background has been given, including some mathe-

matical preliminaries, a detailed account of engine order excitation and its application

to a prototypical cyclic system, and on the basic operation and features of frequency-

and order-tuned vibration absorbers.

Key mathematical concepts were briefly stated in Section 2.2, including the Kro-

necker product, the Fourier matrix, circulant matrices, and the diagonalization of

Circulants. This was done in a way that elicits ease of reference; a much more de-

tailed account of the required mathematical machinery is given in Appendix A and

Appendix B, including many of the proofs.

A mathematical model for engine order excitation was developed in Section 2.3.

It was described in terms of a discrete temporal variation of dynamic loading applied

to individual blades as well as a continuous spatial variation of the excitation strength

relative to the rotating hub, and the former was subsequently categorized as a BTW,

SW, or FTW. The essence of these two interpretations of the excitation is captured

in Figure 2.2.

A detailed account of the vibration characteristics of a generic linear cyclic system,

with nearest-neighbor elastic coupling, under engine order excitation was given in

Section 2.4, including a description of its rich eigenfrequency and resonance structures

for large engine orders. The essence of these features are captured in Figure 2.8 and

Figure 2.9.
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Finally, the basic theory of frequency-tuned dynamic vibration absorbers was

highlighted in Section 2.5 and this was compared to that of order-tuned absorbers. A

key feature in the latter is that the absorbers are tuned to a given order of rotation,

rather than to a fixed frequency.

Mathematical models are developed next for arbitrary-path, order-tuned absorbers

fitted to a bladed disk assembly under engine order excitation.
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CHAPTER 3

Mathematical Models

3. 1 Introduction

A general mathematical model is developed for the bladed disk assemblies of interest

fitted with arbitrary—path, order-tuned vibration absorbers, from which a number of

specific models to be considered in subsequent chapters are distilled. The chapter

begins with a brief overview of typical modeling approaches in Section 3.2, includ-

ing motivation for the Simplified lumped-parameter blade models to be employed.

The geometry of an arbitrary absorber path is then described in Section 3.3, which

forms a kinematic model for a general-path absorber, and the desired model for a

nominally-cyclic bladed disk assembly fitted with such absorbers is formulated in Sec-

tion 3.4. This general model forms the basis for all of the analysis to follow, and a

number of simplifications and reductions are carried out to put it in a more tractable

form. Specifically, the equations of motion for the case of circular-path absorbers

with motion-limiting stops are derived in Section 3.5, and these are subsequently lin-

earized for small blade and absorber motions and cast into a form that is employed

in Chapter 4. Reduction of the full nonlinear equations of motion via scaling and av-

eraging is deferred to Chapter 5, where the nonlinear system dynamics are estimated

for the case of a single isolated blade/absorber and for the cyclically-coupled system

with identical sectors. In these nonlinear models a specific two—parameter family of
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paths is employed, which is derived in Section 3.4.4. Finally, blade and absorber

damping levels are estimated in Section 3.6 and a summary of the models is given in

Section 3.7.

3.2 Modeling Approach

3.2.1 Absorber and Blade Models

For the applications of interest an absorber realization may consist of a spherical mass

that rolls 011 a machined path (or more generally a surface) relative to the primary

system, in this case a blade [76]. By ignoring the effects of rotational inertia, it can

be modeled by a mass particle that translates along a prescribed curvilinear path

relative to the blade. (Realistic absorber masses are very small relative to those of

the blades due to strict limitations on rattling space.) If in addition the absorber path

is circular, then it can be modeled by a simple pendulum attached to the primary

structure.

Accurate modeling of the bladed disk assemblies of interest, a typical represen-

tation of which is shown in Figure 3.1a, can be Significantly more complicated due

to their complex geometries. The blades are characterized by significant transverse

curvature (camber), in addition to variations in thickness, width, and curvature along

their chordwise lengths. They are generally attached at their roots to the periphery of

a circular disk by means of, for example, a dovetail joint and the composite assembly

forms one stage in a turbomachine [77]. As our understanding of the dynamics of

such bladed disk assemblies has improved, so too has the level of sophistication of the

attendant modeling and analysis techniques. Typical models generally fall into three

basic categories and they are briefly presented below in order of increasing complexity,

both in terms of the dynamic phenomena that they are able to capture and in the

corresponding analysis.
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Figure 3.1. (a) Finite element model of a bladed disk assembly (reproduced with per-

mission from [3]); (b) General cyclic system with N identical cells and nearest-neighbor

coupling.

The first and undisputedly simplest models assume lumped parameters and essen-

tially consist of a cyclic chain of nominally identical oscillators [36, 47, 58, 78—80]. (See

Figure 3.1b.) The analysis involved with such models is relatively Simple, especially

if one assumes that each sector is identical, i.e., that the structure is perfectly cyclic.1

Then the fully coupled system can be reduced to a set of reduced-order models via a

transformation based on its cyclic symmetry, similarly to the way it was done in Sec-

tion 2.4.2. This often offers significant insight into the overall system behavior, even

if a very small number of DOF is employed. While these models are very attractive

due to their simplicity and are able capture some very rich dynamics of cyclically-

symmetric structures, they do have serious limitations. Clearly, one cannot expect

to capture all of the complicated mode shapes of the actual system, such as plate-

or shell-type modes of the hub. Moreover, parameter identification can be extremely

diflicult if it is desired to use such models to predict specific behavior in an actual

 

1Such a structure is said to be perfectly tuned. When there are small differences among the

sectors, due to material tolerances, in-service wear, and so on, the structure is said to be mistuned.

This designation is not to be confused with intentional under- or over-tuning of the absorbers, which

is referred to as detuning. (See Section 4.4.)
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structural system [36].

The second type of models employ distributed—parameter elements and are there-

fore able to satisfactorily capture more complicated normal modes, including those

that involve flexure of the rotating hub, but at the expense of a significantly more

involved analysis [9,81,82]. For example, the transverse blade vibrations may be

captured by cantilevered beams, provided that the disk is sufficiently stiff and the

blades are sufficiently long relative to the hub dimensions (large aspect ratio). Clas-

sical beam theory breaks down for smaller aspect ratios but can be replaced by a

more general shell theory. Again, while such an approach offers higher-fidelity mod—

eling, it is accompanied by more difficult and expensive analyses by means of, for

example, Rayleigh/Ritz/Galerkin methods, variational techniques, transfer matrices,

finite elements, and numerical methods [77].

Finally, the third modeling approach involves a full finite element representation

of a real bladed disk assembly [3,83—86], such as the compressor stage shown in

Figure 3.1a. A finite element model is typically generated for only one sector and, as-

suming that all sectors are identical, cyclic symmetry can be used to calculate the free

and forced response much more efficiently than by modeling the entire system. While

this approach offers the highest-fidelity modeling, the computation involved can be

prohibitively high. This is especially true for large industrial stages with complicated

geometry or if mistuning is included, which causes possibly drastic changes in the

dynamics due to a disruption of the cyclic symmetry. Many realizations of randomly

mistuned rotors must be run in order to accurately assess the full statistics of the

blade response. This is generally not feasible due to the size of an industrial finite

element model of a bladed disk, which can run into the millions of DOF. However,

advanced reduced-order modeling techniques have been developed by Pierre et al. and

others since the 19908 [85-89], which offer a more tractable finite element analysis.
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3.2.2 Motivation for Lumped-Parameter Blade Models

The aim of this dissertation is to investigate the performance of centrifugally-driven,

order-tuned absorbers to attenuate vibrations in cyclic rotating flexible structures sub-

jected to traveling-wave dynamic loading. These two classes of systems are special

cases of systems of vibration absorbers and nominally cyclic systems, respectively,

both of which have been extensively studied in many contexts and, taken individu-

ally, each forms a very mature body of research. However, at the time of writing

there have been no systematic analytical treatments of vibration absorbers applied

to nominally cyclic systems, and it is thus appropriate to begin such an effort with

Simplified, lumped-parameter models. In what follows, a number of such models are

developed, the analysis of which forms the remainder of this thesis. The applications

of interest are rotating flexible structures—bladed disk assemblies in particular—and

the work is carried out in this context, though the methodology and results should

also be applicable to address vibration issues in other systems with nominal cyclicity.

A kinematic model for the absorbers is developed first by quantifying the geometry

of an arbitrary path.

3.3 The Geometry of an Arbitrary Absorber Path

This section describes in general terms the geometry of the absorber paths, which

prescribe their positions relative to the primary systems, or blades. Key results are

relationships among the path variables, which are described in Section 3.3.1 and an

expression for the tangent angle of each path, which is given in Section 3.3.2. These

are employed in Section 3.4, where the equations of motion for a bladed disk assembly

fitted with general-path absorbers are derived.

Consider the ith general path Shown in Figure 3.2. It can be described relative

to a basepoint O by the radius vector R,(S,-) = R,(S,-)ézR, where S,- is the arc length
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along the path relative to an origin at its vertex V. The angle subtended by S,- is

denoted by I9,(S,-) and the distance from the basepoint to the path vertex is given

by R,(0) = R0, = CtiLz' + d,, where a, and L,- are defined in Section 3.4 and d,- is

the local radius of curvature at V. Physically, the absorbers may have rattling space

limits, which are denoted by 3:50,, and in such cases their displacements are restricted

such that [5,] S 30,-. The path could also be described in terms of the length p, and

angle 2,6,. A circular path is obtained by restricting p,- = d,- = constant, which is

indicated by the dashed lines in Figure 3.2. Finally, the paths are generally assumed

to be symmetric about their vertices at S,- = 0 implying that R,(S,-) = R,(—S,-), i.e.,

that each R,(S,~) is an even function in 3,. However, this assumption is formally

introduced in later developments when specific paths are chosen for the analysis. In

what follows, there are no assumptions built into the absorber paths other than their

gross placement relative to the blades.

Relationships between the path variables R,, 8,, and 29,; are derived next and

R
the angle c,- between the radius and tangent unit vectors éz- and éiS is subsequently

quantified. We draw liberally from the development in [90].

3.3.1 Fundamental Relationship Between Path Variables

Let P be anarbitrary position along the general path corresponding to R), 5,, 19; > 0

and let Q correspond to R,- + 6R.,-, S,- + 68,-, and 0', + 619,-, where 6B,, 63,-, 619, > 0 are

small additional increments. Then relationships between the path variables can be

obtained by considering the triangle PQM in Figure 3.2. If 6c, 2 PO, it follows from

(P0)2 = (PM)2 + (MQ)2 that

85,- 2 3111829,- 2 6R, , sin(619,-,/2) 2
— = .— — x 519- 2 —— ,

(5.9,) (R1 w.- ) +029.- +R‘““‘ ‘/ ) cot/2
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Figure 3.2. Geometry of a general absorber path.



where we have divided through by (619,-)2. Then

a 2- L3:
519,- ‘ 6c, 2329,-

_ as, 2 sin619, 2 6R, . sin(619,/2) 2

— (57,.) [fit-5,7) +<€t+stm<W2>Wl -

In the limit as Q ——> P (that is, 619,- —> 0) it follows that

(334$ = (1)2 [UL-(1))? + {if}: + R.<0><1))2J ,

 

01‘

«18.)? = (It-c119,? + (c1302. (31)

Equation (3.1) gives the fundamental relationship between the path variables 8,, R,,

and 19,. By dividing through by (d29,-)2 and (dS',-)2 the equivalent expressions

 

 

dS,_ 2 dB, 2
d19,—\/Ri+(di9,)’ (3.2a)

._ m9,- _ dR, 2

easily follow, which are employed in the next section and elsewhere in the thesis. In

light of their frequent appearance in the subsequent analysis, the expressions appear-

ing in Equation (3.2b) are denoted by F,. Then the angle subtended by S,- is given

by the integral

 
_ SiFdX)

152(51) —-/0 Ri(X)dX' (33)

Next the angle between the unit vectors éZR and é? is quantified.

3.3.2 Angle Between Radius Vector and Tangent

In Figure 3.2 consider the ratio

  

' 5:9-

tan/31 m _ R,sin 529,- __ Risa—ism, (3 4)

1 MQ 6R, + 23,- sin2(619,-/2) gig, + 2R, sin(6z9,/2)Si“,§§9j,/22’
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where MP = R,- sin 619,- has been employed and also

MQ = OQ — OM

= R, +6R, — R,cos6'z9,

= 6R,- + R,(1— cos 619,-)

2 5R, + 2R, 511120519,- /2).

In the limit as Q —-> P (that is, 619, —-—> 0), [3, —+ q,- and it follows from Equation (3.4)

that

tan c,- = 619ml 0 tan [3,-

z-—)

I an)

§%+ a<o><1>

m9,-

28%;:

 

= R (3.5)

which is an expression for q,- in terms of R, and 19,-. Expressions for sin c,- and cos c,,

which will be needed in subsequent sections, can be obtained as follows. Consider

dSz' 6132‘ (1192' 2 dB,- 2 (119,

= —_ Z ' '— f E . 3.2

dR’i (119, CIR, l/Rz + ((1191; dRi
( rom C111 ( 3.))

_ 2 fl 2 (i132 dfii )2

“ fiba) + d6,- dB.-

d29, 2

z \fl+ (Rim)

= ‘/1 + tanz g,- (from Eqn. (3.5))

= sec<,=1/cosc,.

 

   

 

 

 

 

From this result, together with Equation (3.5), it follows that

am,-dam,- _ ._

ms,75337—22
sin c,- = tan q, cos c, = R
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To summarize, and in light of Equation (3.2b),

 

. (129- dR, 2
11: ‘ -= -—2 = 1— ., SIIIC, dS, (dS,) , (3 7a)

dR,

cos c, — —dS,-’ (3.7b)

d19-

tan c, = Ric—ifi’ (3.7c)

2

which relate the path variables R.,-, 8,, and 29,- to the angle q, between the unit vectors

(3,3 and éf.

We now turn to a derivation of the governing equations of motion for a bladed

disk assembly fitted with general-path absorbers, from which a number of specific

models are distilled.

3.4 Bladed Disk Assembly Fitted with General-Path Ab-

sorbers

In this section an idealized mathematical model of a bladed disk assembly under en-

gine order excitation is systematically developed. Each blade on the rotating assembly

is fitted with a centrifugally-driven, order-tuned vibration absorber and the governing

nonlinear equations of motion for the overall coupled system are derived. The anal-

ysis to follow in subsequent chapters is carried out for the case of perfect symmetry

among the sectors, implying identical blade and absorber models, and for a specific

family of absorber paths. However, the equations of motion are derived for the gen—

eral case of nominal cyclicity and arbitrary-path absorbers, a model that is amenable

to ongoing work on, for example, the effects of parameter mistuning and it allows

for the eventual investigation of various path geometries. The model is described in

Section 3.4.1, followed by the development of the system kinetic and potential energy

in Section 3.4.2. The general nonlinear equations of motion are subsequently derived

in Section 3.4.3 by employing the method of Lagrange and a particular two-parameter
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z'+1

 
Figure 3.3. Lumped parameter model of a rotating bladed disk assembly.

family of paths, which are employed in Chapter 5, is described in Section 3.4.4.

3.4.1 Lumped-Parameter Model

An idealized, lumped-parameter model of a rotating bladed disk assembly is shown

schematically in Figure 3.3. It consists of a nominally-cyclic array of N blades, and

each is modeled by a simple pendulum of length L,- and mass M,. These are uniformly

attached around the periphery of a rigid disk of radius H, which rotates at a constant

speed 9 about a fixed axis through C. The single-mode flexural stiffness of blade z'

(the ith primary system) is modeled with a linear torsional spring of stiffness kg’, and

the elastic inter-blade coupling (due to shrouds, aerodynamic effects, and so on) is

captured by linear springs of stiffness kf. As indicated in the sector model shown

in Figure 3.4, the coupling springs connect adjacent blades at a distance b (radially

along the blade lengths) relative to their attachment points to the rotor. It is assumed

that the springs are unstressed when the blades are in a purely radial configuration,

that is, when 0,- = O for each 2' E N.

The blades are fitted with nominally identical vibration absorbers, which essen-

tially consist of particle masses m, (typically each m,- << M,) riding on user-specified
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Figure 3.4. Sector model of a bladed disk assembly fitted with a general-path absorber.

The mathematical details of the absorber path are given in Section 3.3.

paths. In what follows the equations of motion are derived for arbitrary paths, and

then specific paths are chosen for the analyses in subsequent chapters. Figure 3.4

shows a schematic of the it“ blade fitted with a general-path absorber, which to-

gether with a portion of the rigid disk composes the it“ fundamental sector. If we

require that point 0 in Figure 3.2 coincides with the attachment point of blade 2' to

the rotor, and that the unit vectors éz-L and é? are aligned and rotate with the blade as

shown in Figure 3.4, then the mathematical details for the it“ absorber path are given

in Section 3.3. Loosely speaking, the absorbers are said to be “centered” a distance

a,L,- radially along the blade pendulums. Then a, is the dimensionless distance from

the blade base point 0 to the absorber “attachment” or “base” point N.

There are a number of ways to model the system damping, but in light of the

inherently small levels encountered in practice the details are not crucial. (It is ac-

knowledged, however, that modeling and quantifying these details in actual structural

systems and absorber implementations can be quite challenging.) For the purposes

of this study it will suffice to employ simple linear viscous damping models; the blade

and inter-blade damping is captured by linear torsional and translational dampers
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(not shown in Figure 3.3 or Figure 3.4) with constants C? and CE, respectively. The

effective translational absorber damping constant is denoted by cf}, where a bar has

been added to the superscript a to distinguish it from the torsional damping constant

C? to be employed in the linearized model in Section 3.5. Further comments on damp-

ing are given in Section 3.6, including estimates of realistic damping constants and

an approximate (resp. exact) relationship between c? and of for the case of general

(resp. circular) paths.

Finally, the primary systems (blades) are harmonically excited in the transverse

sense by engine order excitation of order n and the model described in Section 2.3, that

is, Equation (2.14) is adopted for this purpose. Consideration of all possible engine

orders can be somewhat cumbersome, since one must not only distinguish between

odd and even n in the analysis, but also how certain order-dependent features alias

relative to N [91-94]. These additional complications were revealed in the analysis

of the generic cyclic system in Section 2.4. In order to eliminate some of these

details, and to focus on a particular absorber tuning strategy, the engine order is

restricted such that 0 < n < N throughout the remainder of this work, though it

is possible for n 2 N in practice. This does not qualitatively affect the approach

nor the conclusions? The case of noninteger n E R+ is non-physical for bladed disk

assemblies under engine order excitation, but it is of academic interest and may be

possible in other systems. This situation and its implications in cyclic systems is

treated briefly in Appendix C.

 

2The reader should note that the effect of large engine orders, specifically those greater than N,

can be directly inferred from the results of Section 2.4.
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3.4.2 Kinetic and Potential Energy

The total system kinetic energy is that of the N blades and their attendant absorbers

and is given by

1 N 1 N
T = 5 Z Mpllupn2 + 5 Zmpnvpn2. (3.8)

where H - M denotes the vector norm and

u, =Hné§2+L,(o+é,-)é§ ZEN

v, = Ho é? + R,(Q + m? + S,é,5

are the absolute velocities of the it“ blade and absorber masses, respectively. The unit

vectors é? and fa? are mutually orthogonal, as are the vectors é? and (3,5, and these

are defined in Figure 3.2 and Figure 3.3. (See also Figure 3.4.) Physically, HQ é? is

the velocity of the it“ blade basepoint relative to the hub center C and L,(Q + 0,)é?

(resp. R,(Q + 9,)é? + 3,6323) is the velocity of the it“ blade mass M, (resp. absorber

mass m,) relative to O. The corresponding speeds are given by

”11,” =H292+L12(Q+g,‘)2+2L,HQ(Q+9,)COSQ,, iEN

“V,” = H2522 + R,2(o + 9,)2 + 3,2

+ won,- (9 + é,)cos(0, + 19,-)

+ 2H(25‘, (1‘,- cos(6,~ + 29,) + :11? 8111(92' + 191))
 

2

+2R,(Q,+é,)1‘,, iEN

where the inner products

é? «a? = cos 9,

afl M9 (
e,- e2 = cos(6, + 1),) . E N

, 2

a? {2,5 = r, cos(9, + 19,-) + ——f- sin(6, + 29,)

7.

é? - é? = r,
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have been employed, as well as the expressions given in Equation (3.7).

Ignoring gravitational effects, the system potential energy arises only from the

flexural stiffness of the blades (linear torsional springs) and elastic coupling (linear

coupling springs) among the sectors. It is given by

N N

1 1
v = 5} up; + 5 E :kgb2(9p+1 — 9,)2, (3.9)

p=1 p=1

where 6N+1 = 61. The coupling elements kf are meant to capture only the basic

pliancy between adjacent blades and hence their nonlinear kinematic contributions

have been neglected in Equation (3.9). This approximation is done independently of

any assumptions on the blade amplitudes and does not imply small (linearized) blade

motions.

Next the governing nonlinear equations of motion are derived.

3.4.3 Equations of Motion

DIMENSIONAL FORM

The equations of motion are derived by employing Lagrange’s method with the gen-

(3) (b)
eralized coordinates q,- = S,- and q, = 6,- for each 2' E N. They follow from

T .

%( é€c>)+ aliv— 8(k)=Ql”, z'eN, k=a,b (3.10)

aqi aqi 39¢

where the kinetic and potential energy terms T and V are defined by Equation (3.8)

and Equation (3.9). The it“ set of generalized forces arise from the engine order

excitation and linear viscous damping. They are

®”=—#$

Q?” = —c§’é,- — c,¢_,b(é,- — 9H) — cfb(é,- — 9,,1) , ie N (3.11)

+ C?R,F,S,‘ + FoLiejcbieant
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where F0 and n are the strength and order of the excitation. Then the governing

equations of motion for the 2th sector follow from Equation (3.10) and take the form

.. .. _ . dR- .

m,S, + m,R,-F,6, + CEIS, - n1,R,a§:t—(Q + 9,)2

Z

d .

+ m,H§22 (F, sin(6, + 19,-) — (1,—1;” cos(6, + 1%)) = O, 2' E N (3.12a)

Z

M,L,29', + c929,- — grams,- + ka, + M,L,Hn2 sin 9,-

R?6,' + R,F,‘S,‘ + 213,325, (9 + 6,)

. Z

+ m, d(Rz-1“2)+ W522 + H0212,- sin(0, + 192')

+ C$_1b(é, - 0,-1) + Cfbw,‘ — 9,41)

+ k§_,b2(6, — 9,_1)+ k§b2(6, — 9,,1) = FOL,eJ'¢ieJ'"‘22, 2' e N (3.12b)

which describe the absorber and blade dynamics, respectively. The subscripts on the

blade angles are taken mod N here and in all subsequent sections such that 6N+1 = 61

and 60 = 6N, which are cyclic boundary conditions implying that the N”2 blade is

coupled to the first.

DIMENSIONLESS FORM

It is desirable to work with a dimensionless form of the governing equations. This is

done by restricting L,- = L, A4,- = M, and k? 2 lab for all 2 E N and rescaling time

_ Heb/L2

wo -— M (3.13)

is the undamped natural frequency of a single isolated blade (without an absorber)

according to 7' = wot, where

 

with zero coupling (kf = 0) and zero rotor speed (Q = 0). Then if 3, = S,/L

and r,- = R,- /L denote the 2th nondimensional arc and radial lengths, respectively, a

dimensionless form of the equations of motion follows by dividing Equation (3.12a)

(resp. Equation (3.12b)) through by the inertia term Mng (resp. MLng). They
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are

22,-3;] +12,1‘,F,-9,’-’ +6513; — nay-£07 + 6;)2

Z

d. .

+ 22,602 (F, sin(6, +19,) — i3 cos(6, + 1%)) = 0, 2 E N (3.14a)

l

62,-, + Elbe; — gf'l’,r,.9; + 6., + 602 sin 6,

dr,

”Fl-29;, + 7311,19,]; + 27‘,E;;S£(0 + 9:)

+“2 (10‘2th) x z 2 -
+ _ds-sis,- + 60 7',- s1n(6, + 191:)

'l

C 9’. _ 9'. C 9’. _ 9’.
+£2—1( Z 'l—l)+€2( 2 1+1)

+ v2.1a — 6H) + W. — 92+1) = Fejriei'm. 2'6 N (rs-Mb)

where ()' = d( - )/d7' and it follows from Equation (3.3) and Equation (3.7a) that

_9_ = 32PM)
at.) [0 mood” (3.15)

F,(s,) = \/1— (3%)? (3.16)

The dimensionless parameters appearing in Equation (3.14) are defined in Table 3.1

 

 

and the nondimensional distance from the blade basepoint O to the path vertex V is

denoted by 7‘0, E r,(0) = a, + 7, (dimensionally R0,- : a,L + d,). It should be noted

that actual selection of parameter values is application-specific. The reader is referred

to [34] for an example discussion on how to map physical experimental parameters

onto these nondimensional parameters.

There are no assumptions pertaining to the absorber paths in the nonlinear models

described above, other than their gross placement relative to the blades. In the

next section a specific two-parameter family of paths is derived and these are used

to investigate the basic effects of nonlinearity on the absorber performance. The

equations of motion are derived for the case of circular absorber paths in Section 3.5.
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Table 3.1. Selected list of dimensionless variables and parameters.

 

 

Parameter Description

F FOL/kb Strength of the engine order excitation (nonlinear models)

f FOL/1‘;wa Strength of the engine order excitation (linearized model)

To, — 7‘,(0) = a, + 7,- Radial length from blade base point 0 to path vertex V

1*, R,- /L Radial length from blade base point 0 to 2th absorber at P

s, S, /L Arc length from path vertex V to 2th absorber mass at P

:13, 65/1/20 Normalized blade angle

91' 122/1210 Normalized absorber angle (circular path)

a, Distance from blade base point 0 to absorber base point N

k /L2 . _ . .
v V if:- Distance from blade base to couphng spring attachment pt.

7, d, /L Length of 2th absorber pendulum (circular path)

6 H/L Radius of the rotor disk

,a, m,/1W 2th absorber mass

k? ,

V, wf/wo = W Strength of coupling between blade 2 and blade 2 + 1

a, 27r7’6(2' — 1) it“ inter-blade phase angle

(,9,- 21963—12 Angle subtended from sector 1 to sector 2

'r wot Time

19,- Angle subtended by S,-

CC-l/L2 'th . .

{1“ ——2—— 2 absorber (torsmnal) damping constant

(kb/L2)M

- Gil/[42 'th . . .

{:1 ' 2 absorber (effective translational) damping constant

(kb/L2)M

1; 2

{If C M 2m blade damping constant

(kb/L2)M

b 2 Cc 't} . .

{f (I) 2 2 coupling damping constant

(kb/LQW

o - Q/wo Angular speed of the rotor
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3.4.4 A Generalized Two—Parameter Family of Paths

In what follows, a two-parameter family of paths is derived in terms of linear and

nonlinear tuning parameters, which will serve as the fundamental absorber design

variables in the subsequent chapters. The basic idea is to assume an expanded form

of each absorber position relative to its basepoint, which is captured by the radial

lengths 7‘,(s,-). In doing so, only even terms are included such that the paths are

symmetric about their vertices. The expansions are introduced to the full nonlinear

equations of motion and, by restricting zero blade motions relative to the rotating hub

and appropriately truncating nonlinear terms, a set of well-known nonlinear systems

results. These reduced systems depend only on the absorber dynamics and they

motivate the selection of two tuning parameters. The first parameter sets the linear

absorber tuning order (a topic that is more fully described in Chapter 4) by setting the

path curvature at its vertex. The second parameter prescribes the nonlinear tuning

by varying the curvature along the path, and can be thought of as the strength of the

path nonlinearity. Proper selection of this parameter is motivated in Chapter 5.

In what follows, each absorber path is assumed to be identical and identically

fitted to the blades by imposing a, = a and '7,- = '7 for all 2' E N. Then

70,5r0=a+'y, ViEN (3.17)

represents the dimensionless distance from the blade basepoint to the path vertex.

By restricting 6, = 6; = 65' = 0, Equation (3.14a) reduce to

d... A.

s;' — 40%f + 602 (1‘,- sin 19,- — J1 cos 19,-) = 0, 2 e N (3.18)
3, (13,

which describes the nonlinear absorber dynamics for the desired case of zero blade

motions relative to the rotating hub. Next the dimensionless radial length r,(s,) is

expanded according to

7“3(a) = 60 + bzs? + (as? + 06?). (3.19)
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where only even terms are considered since r,(—s,) = r,(s,) is even by assumption.

Each has the same constant coefficients, implying that all of the paths are identical.

Since r0 = 0+7 = r,(0) = \/b_0_ the first parameter in Equation (3.19) is automatically

prescribed and is given by b0 = r3 = (oz+7)2, and the remaining parameters b2 and b4

are to be specified. Substituting Equation (3.19) into Equation (3.18) and expanding

in 3,: yields

5;, + 72.2023,- + 0025,3 + (Ms?) 2 0, (3.20)

_ 2
T] = —2b4 _ ((02 1) +12b0b4)5

Wax/lb

are defined to be the linear absorber tuning order and the nonlinear absorber tuning

where
 

 

 

parameter, respectively.

Equation (3.20) is recognized to be a standard undamped and unforced Duffing os-

cillator, a comprehensive treatment of which can be found in most texts on nonlinear

systems [95—97]. For small amplitudes the nonlinear term can be neglected and the os-

cillator exhibits free harmonic motions with frequency no. It is well-known that linear

tuning of the centrifugally-driven absorbers under consideration can be accomplished

by setting the absorber tuning order 72, which depends on the absorber placement and

system geometry, relative to the order of the excitation n [10]. When these match

identically, and in the absence of damping, a complete elimination of vibrations of

the primary system is possible, which is shown systematically in Chapter 4 for the

models described above. For larger motions the nonlinearity in Equation (3.20) be-

comes important and the oscillations become amplitude-dependent. In the context of

absorber path design, therefore, the nonlinear tuning parameter r) is used to modify

the absorber behavior without compromising the small-motion linear tuning a z n.

When 77 > 0 the response is hardening, and it is softening for 17 < 0. Finally, the
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Figure 3.5. A generalized family of absorber paths defined by Equation (3.19) for a = 0.84,

6 = 0.67, a = 3 ('y = 0.168 and r0 = 1.008), —0.47 S s,- S 0.47, and for a range of nonlinear

tuning from softening to hardening: 17 = —20, —-10,0, 10, 20.

coefficient terms in front of 6 in Equation (3.21) appear since the absorber paths are

measured from the base of the blade, and not from the center of the rotor as it is

done in the CPVA work by Shaw and coworkers [14].

The remaining expansion coefficients b2 and b4 can be obtained from Equa-

tion (3.21) in terms of the system geometry and the linear and nonlinear tuning

parameters 12 and 7). To summarize,

b0 = r0

6 — 77627.0

b = ——2 6 + To , (3.22)

du+ah2 m
4 :

—fi(6—+E)2 — M"

where r0 is defined by Equation (3.17). An example plot of the generalized family of

absorber paths defined by Equation (3.19) is shown in Figure 3.5 for a particular blade

geometry and absorber design and for a range of nonlinear tuning from softening to

hardening.

Next we consider a special case of the equations of motion in which circular-path
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absorbers are employed.

3.5 Bladed Disk Assembly Fitted with Circular-Path Ab-

sorbers

In what follows, the nonlinear equations of motion for a nominally cyclic bladed disk

assembly fitted with circular-path absorbers are deduced from the general system

given by Equation (3.12). These are linearized for small blade/absorber motions

in Section 3.5.2 and subsequently modified to account for physical rattling space

limitations of the absorbers. The resulting mathematical model is employed in the

linear analysis of Chapter 4.

3.5.1 Equations of Motion

Consider the sector model shown in Figure 3.6, which features the same pendulum-

like blade model described in Section 3.4. In this case the blades are fitted with

circular-path absorber pendulums of mass m, and radius (1,, the motions of which are

described by the angles 12),. (The angles 1212.0 correspond to motion-limiting stops, which

are incorporated into the equations of motion in the next section.) The governing

equations of motion for the overall system could be derived from this model in the

usual manner via the method of Lagrange. However, it will be more convenient to

deduce them from the general results of Section 3.4 by restricting the arbitrary path

shown in Figure 3.2 to be circular.

By restricting each ,0, = d, to be constant the general path shown in Figure 3.2

(solid line) reduces to a circular path (dashed line). Then S, 2 dub, for all i E N and
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Figure 3.6. Sector model for a bladed disk assembly fitted with circular-path absorbers

with limited rattling space.

it can be shown that

‘

R? = (1,-2L? + d? + 2d,0£,'L,' COS (,0,

R, sin 19, = d, sin 16,

R,- c0819,- : a,L,- + d, COS 2122‘

 

 

> , i e N (3.23)

Rfl‘,‘ = Oz,L,' COS 7,0,“ + d,‘

d(RiFi) _ _aiL2$in'</22

dS, _ d,-

d ' .

lat-Elsi: = -—a,L, Sln Ll), 2

which relate the general—path variables R,, 8,, and 19, to the circular-path angle 1,0,.

The expressions given in Equation (3.23) can be employed to deduce the circular-

path equations of motion term-by-term from Equation (3.12), the results of which

are summarized in Table 3.2. For the proposed circular-path model it is natural

to express the absorber damping in terms of a torsional viscous damping constant

instead of the effective translational representation of Section 3.4. The generalized

forces are re-formulated to account for this and are given by

Q?” = —C§l?l12

Q?” = —c§’é, — c§_,b(é, — 92—1) — cfb(é, — 9,1,1) , i e N (3.24)

+ CW9,- + FOL,ej¢iej"Qt
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where c? is the torsional damping constant for the 2th absorber and is not to be con-

fused with cf”. (These are implicitly related in Section 3.6.) The desired equations of

motion follow from Equation (3.12) by performing the substitutions given in Table 3.2

and by employing the re—formulated generalized forces given by Equation (3.24). For

i E N they are

mat? (6,- + 1,6,) + cg'rb, + m,d,Hf22 sin(6, + 16,)

+ m,d,a,L,-6, cos 16, + m,d,oz,L, (Q + 6,)2 sin 16, = 0, (3.2521)

11,1219, + cfé, — C3,}, + 1536,- + M,L,-Hn2 sin 9,-

- 022L226, +6122 (6, + ’16,)

+d,a,L, (16, + 26,) C08 1,6,

—d,a,L, (162-2 + 2(9 + 6,)16,) sin 16,

+Ho2(a,~L, sin 19,- + d, sin(6, + m,))   
+ Cf_lb(6, — 6,_1) + Czcb(6, - 6,44)

+ k§_,b2(e, — 6,_1) + 1513(9, — 9,11) = FOL,ej‘f’iej"Qt. (3.25b)

In the next section these are linearized for small blade/absorber motions and are

modified to account for limited absorber amplitudes imposed by the geometry of the

blades.

3.5.2 Linearized Model with Restrictions on the Absorber Amplitudes

In any realistic physical implementation the absorber amplitudes will be restricted by

the blade geometry and this is captured by the motion-limiting stops in Figure 3.6,

where 16? represents the limiting angle of the 2th absorber. Impacts occur whenever

|1l2,-| = 1629, the dynamics of which have been investigated in [34,98] for the case of

a single isolated blade/absorber combination. This feature is included for generality

but will not be directly exploited in the analysis of Chapter 4, where it is assumed

that |1,6,| < 16;? throughout.
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Table 3.2. Selected terms in the general-path equations of motion given by Equation (3.12)

and their counterparts for the case of circular-path absorbers.

 

 

General Path Term Circular Path Term

"1231 "12612161

miRiFiéi mi(aiLi COS 162' + 012992

—m,R,%%(Q + 6,)2 m,a,L,-(§2 + 6,)Zsin1b,

m,-HQ2 (F,- sin(6, + 19,) — %% cos(6, + 19,)) 171.,HQ2 sin(6, + 16,)

m,R,-26, m,(oz,2L,2 + d? + 2d,a,L, cos 16,)6,

miR/irigi midi(di + 02132 COS 1629162

2m,R,%%8, (Q + 6,) —2m,d,a,L,(§2 + 6,)1/9, sin 16,

rn,£i%?—:§§ll8§2 —m,d,-o:,L,1lzé2 sin 16,

m,HQ2R, sin(6, + 19,) m,HQ2(a,L, sin 6, + d, sin(6, + 16,))
 

Equation (3.25) is linearized for small blade and absorber motions and is made

dimensionless in the same way as it was done in Section 3.4.3. The absorber and blade

motions are subsequently scaled according to 2:, = 6,/160 and y, = 1,6,/1,60, where each

16,0 = 160 has been assumed to be identical, and thus impacts correspond to Iy,| = 1.

Then by dividing through by 160 the dynamics of the ith sector are governed by

#11?(x§'+ 222') + 63y; + uni-602(56- + 112) + union-(Iv? + 02111) = 0, 2' E N (326a)

113$, + £65”; — £39, + if, + 60220,-

a?1C? +1362? + yl’) + 0,7,(3/2” + 22,) i

+ #2 2 2

+9150 221' +7150 (332 + 212)

C I I
C I I

+ €1—1($i— 232—1) + £2 ((13,,- — xi+1)

+ 22.2.16. — 552—1)+ 1,31,- n+1) = renew, ,1; N (3.261))

where the dimensionless parameters are defined in Table 3.1. Equation (3.26) forms

the basis for the linear analysis of Chapter 4.

Estimates for the blade and absorber damping constants are developed next in

addition to a relationship between the nondimensional torsional and effective transla—
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tional absorber damping constants {a and 55,.

3.6 Estimates of the Dimensionless Damping Constants

As a guide to sensical parameter selection in numerical simulations, approximate

expressions for the blade and absorber damping constants 5b and {a are formulated

in terms of their respective damping ratios. These can be obtained by considering the

free vibration of an isolated blade/absorber combination when the absorber is locked

in place and from the free response of an absorber when the blade is locked relative

to the rotating disk. The linearized model of Section 3.5.2 is used for this purpose.

A relationship between the torsional absorber damping constant {a and the effective

translational damping constant {a is also derived. In all of what follows identical

sectors are assumed.

Consider the special case when the absorbers are locked in their zero positions

relative to the blades. In the absence of coupling (i.e., only an isolated sector is consid-

ered) the corresponding linearized equation of motion follows from Equation (3.26b)

by setting y = y' = y” = 0 and it can be expressed as

(1+ 11(1). + ,)2)n:” + gbz’ + (1 + (1 + 11(1). + 7))602)$ = faint". (3.27)

In practice the absorber-to—blade mass ratio is very small and centrifugal stiffening

has a negligible effect on the blade natural frequencies. By restricting a = 0 and

o = 0 it thus follows from Equation (3.27) that

61; '5 2,01,, (3.28)

where pb is the blade damping ratio. Damping levels in the blades can be 0.1% or

less relative to critical, which gives rise to the approximation 5b g 0.002.

A similar calculation can be carried out for the absorbers. When the blades

are locked in their zero positions relative to the rotating disk the absorbers become
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dynamically isolated and their linearized dynamics are governed by

#726” + {ay’ + 62(0 + (5)0231 = 0, (329)

which follows from Equation (3.26a) with :1: = :13’ = :L'” = 0. By employing the

equivalent mass, damping, and stiffness terms in Equation (3.29), one can obtain

a. = 21112rwpa. (3.30)

where n =Wis the linear absorber tuning order (this is discussed more fully

in Chapter 4) and ,0,, is the absorber damping ratio. As discussed in the forthcoming

chapters, we will be interested in the system dynamics for absorber tuning a close

to the engine order n and also near resonance conditions, which correspond approxi—

mately to a = 1 /m’5 1 /n. Under these conditions 120 g 1 and Equation (3.30)

can be approximated by

5a 9: 2H72Pa- (3.31)

Given the absorber mass, pendulum length (circular path) and critical damping level,

Equation (3.31) can be employed to approximate the torsional damping constant Ea.

The damping constants 5a and 55 can be (approximately) related by comparing the

absorber damping term in Equation (3.14a) (nonlinear system with general-path ab-

sorbers) to that in Equation (3.26a) (linearized system with circular-path absorbers).

By multiplying the latter through by the stopper angle 1/10 and dividing by 7 (this

makes it possible to compare the equations directly) the absorber damping term for

the linearized system can be written as 5016: /'y = Easg/yz, where s, = 716,- has been

employed, and the corresponding damping term for the nonlinear system is 5,3,. An

exact (resp. approximate) relationship between the torsional and effective transla-

tional absorber damping constants for a circular (resp. general) path can be obtained

by equating these expressions and is given by

_ 2 _
a — 7 5a, (3.32)
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Figure 3.7. Approximate (a) torsional and (b) translational absorber damping constant

versus mass ratio 12 based on Equation (3.31) and Equation (3.33) for pa = 0.005, 01 = 0.84,

6 = 0.67, and engine orders (e.o.) n = 1, . . . , 10.

where 7 is the dimensionless length of the absorber pendulum (resp. the dimen-

sionless curvature of the absorber path at its vertex). When the path is general

Equation (3.32) gives a reasonable relationship between the absorber damping con-

stants, depending on the strength of the path nonlinearity 17 and the amplitude of

the absorber motions. For linear absorber tuning a a: n and for rotor speeds close to

resonance

which follows from Equation (3.32) together with Equation (3.31).

Figure 3.7 shows example plots of 5a and €51 in terms of the mass ratio ,11 for an

absorber damping ratio pa = 0.001 and for various engine orders. These charts can

be used to obtain an appropriate order of magnitude for the damping constants to
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be used for the frequency response loci and in numerical simulations. In Chapter 5

the frequency response curves are generated for a model with a = 0.84, 6 = 0.67,

a = 0.0035, n = 3, and pa = 0.005, which gives rise to 5a 2 2 x 10‘6. The values

51) = 2 x 10‘3 and £5, = 2 x 10‘6 are used when damping is included, and also in the

simulations.

3.7 Concluding Remarks

A lumpted-parameter mathematical model of a bladed disk assembly fitted with

centrifugally-driven, general-path vibration absorbers has been systematically devel-

oped, which serves as the basis for all of the analysis to follow. We shall be interested

in three specific cases of this general nonlinear system:

1. The linearized system with motion-limiting stops, which is given by Equa-

tion (3.26);

2. The fully nonlinear system given by Equation (3.14) with zero inter-blade cou-

pling (1/ = 0), together with the two—parameter family of paths defined by

Equation (3.19); and

3. The fully-coupled nonlinear system (V 74 0) given by Equation (3.14), together

with the two-parameter family of paths defined by Equation (3.19).

These three systems are systematically analyzed in the next two chapters, and through-

out the remainder of this work they shall be referred to as (1) the coupled linear or

linearized system, (2) the isolated nonlinear system, and (3) the coupled nonlinear

system.

We begin in the next chapter with an analysis based on the coupled linearized

system.
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CHAPTER 4

Forced Response of the Coupled Linear

System

4. 1 Introduction

In this chapter the fundamental linearized dynamics of a cyclically-coupled bladed

disk assembly fitted with circular-path vibration absorbers are investigate in detail.

The aim is twofold: to quantify and understand the underlying linear resonance

structure of the coupled linear system under engine order excitation and, based on

these findings, to design the absorbers to eliminate or otherwise reduce blade motions

relative to the rotating hub. (The basic effects of nonlinearity are investigated in

Chapter 5 for an isolated blade/absorber combination and also for the fully coupled

cyclic system.) An auxiliary, but very important topic includes a decoupling strategy

based on the cyclic symmetry of the system whereby the fully-coupled linear model

can be simplified to a set of reduced-order models, from which analytical results

easily follow. The analysis is based on the well-known theory of Circulants, which

is summarized in Section 2.2 and covered in detail in Appendix B, and it is also

employed in Chapter 5 to handle block diagonalization of Jacobian matrices.

As we shall see, the underlying linear resonance structure is surprisingly subtle and

complicated, a feature that arises from the order-nature of the absorbers. However,
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the (block) decoupled models to be formulated give rise to a set of tractable analytical

expressions for the system eigenfrequencies which, when represented in a Campbell

diagram, clarify the nature of the resonance structure for various absorber designs and

for any number of sectors, engine order, or coupling strength. A particular absorber

design strategy is motivated from these eigenfrequency versus rotor speed plots in

terms of a detuning parameter, which essentially assigns the absorber tuning order

(which depends on the system geometry) relative to the order of the excitation. It

will be shown that ideal (exact) tuning, where the absorber tuning order is chosen to

identically match the excitation order, completely eliminates the system resonances

and (in the absence of damping) results in zero-amplitude steady-state blade motions

over all rotor speeds. Such a tuning scheme, however, is susceptible to the effects

of parameter uncertainties. An important contribution of this chapter is that, in

addition to the exact tuning, there exists a range of absorber undertuning values for

which there are no system resonances—independent of the rotor speed. Therefore, a

practical tuning strategy involves intentionally detuning the absorbers within this “no-

resonance zone.” The approach offers a more robust design against system resonances,

but at the expense of some residual steady—state blade vibrations.

The chapter is organized as follows. The linearized system to be considered is

described in Section 4.2, where the dimensionless equations of motion are formulated

for a single sector and subsequently for the overall coupled system. Two special

cases of these governing equations are considered: the case when the blades (resp.

absorbers) are locked in their zero positions relative to the rotating hub (resp. blades)

in Section 4.2.3 (resp. Section 4.2.4). The former motivates the absorber tuning order,

which is employed in subsequent sections to tune the absorbers to a given order of

the excitation, and the latter is investigated in detail in Section 4.3.1, with the aim

of providing a benchmark against which the effectiveness of the absorbers can be

evaluated. The forced response of the general system is detailed in Section 4.3.2, and
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an absorber tuning strategy is motivated in Section 4.4. The effects of damping are

briefly considered in Section 4.5, and the chapter closes with some concluding remarks

Section 4.6.

4.2 Mathematical Model

The bladed disk model to be considered is shown in Figure 4.1a in dimensionless

form. It consists of a rotationally periodic array of N identical, identically-coupled

sector models, one of which is depicted in Figure 4.1b. The disk has radius 6 and

it rotates at a fixed speed a about an axis through C'. Each blade is modeled by a

simple pendulum of unity mass and length, the dynamics of which are captured by

the normalized angles 115,. (See Table 3.1 on page 64.) The blades are attached to the

rotating disk via linear torsional springs with unity stiffness and adjacent blades are

elastically coupled by linear springs with stiffness V. It is assumed that the springs are

unstretched when the blades are in a purely radial configuration, that is, when each

:13, = 0. As shown in the inset of Figure 4.1b each blade is fitted with a pendulum-

like, circular-path absorber with radius 7 and mass 12 at an effective distance a along

the blade length. The absorber dynamics are captured by the normalized pendulum

angles y, and they are limited according to ly,| S 1 by stops, which represents the

rattling space limits imposed by the blade geometry.1 Linear viscous damping is also

included (but not indicated in the figure). Blade and inter-blade damping is captured

by linear torsional and translational dampers with constants £1, and (c, respectively,

and the absorber damping is captured by a torsional damper with constant {0. Finally,

the system is subjected to the traveling wave dynamic loading described in Section 2.3,

and Equation (2.14) is employed for this purpose. Throughout the remainder of this

thesis it is assumed that 0 < n < N for simplicity. This does not, however, affect the

 

1This feature is included for generality, but in all of what follows it is assumed that Iy,~| < 1, i.e.,

that impacts do not occur. The impacting dynamics for this system are investigate in [34] for an

isolated blade/absorber combination.
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Figure 4.1. (a) Model of bladed disk assembly and (b) sector model.

results; they can be generalized to account for n 2 N according to the discussions in

Section 2.3 and also Section 2.4.

Next a mathematical model that describes the linear dynamics of the 2th sector is

described. The overall system is composed of N such models, and these are cast in a

matrix-vector form with block circulant coefficient matrices in Section 4.2.2.

4.2.1 Sector Model

The governing equations of motion for the 2th 2—DOF sector follow from Equa—

tion (3.25) of Chapter 3. They are

#12193? + 11,”) + anl + #160261. + 312') + 1110(112' + 021/1) = 0, 2' E N (41a)

x,’ + 5be — €ay,’- + 2:,- + 60211:,-

+ 0.21:, +72(n;' + yg’) + any,” + 21,)
y.

+a'6025c, + 7602(2, + y,)

+ €c(—$i—1 + 217i — $i+ll

+ V2(—£II,_1 + 2.1:, — :r,+1) = fej‘biej'laT, ie N (4.1b)
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where the dimensionless parameters are defined in Table 3.1 on page 64. In Equa—

tion (4.1) the parameter subscripts have been dropped since the sectors are assumed

to be identical and identically coupled, and the remaining subscripts i are taken

modN such that rN+1 = :12, and (1:0 2 :rN. In matrix—vector form, Equation (4.1)

becomes

Mz,’ + CZ, + KZ, + Cc( - Z;_1+ 221'— Zi+1l

. _ , 26 N (4.2)

+ Kc( — z,_1 + 22,- — z,+1) = 161291611101

.I',‘ 6., /’160

.,- = = , 4.3

2 [In] [1192/ 160] ( )

captures the sector dynamics and the elements of the sector mass, damping, and

where the vector

stiffness matrices are given in Table 4.1. The matrices

C 0 2 0

capture the inter-blade coupling and vanish when {0 = 0 and V = 0, respectively, in

CC:

 

which case Equation (4.2) describes the forced motion of N isolated blade/absorber

systems. (Equation (4.2) is studied in detail in [34, 98] for the case when N = 1,

Kc = 0, and Cc = 0, including the impact dynamics that occur when |y,| = 1, that

is, |1/),| = 160.) The sector forcing vector is given by

_ f
f _ [0], (4.5)

where f is defined in Table 3.1. Finally, the parameter we 2 %,/kc/M (see V in

Table 3.1) is the undamped natural frequency of a single isolated blade (with no

absorber) with 12,, = 0 and f2 = 0 and with a single coupling stiffness element kc

connected to an adjacent, stationary blade.
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Table 4.1. Elements of the sector mass, damping, and stiffness matrices M, C, and K.

 

M11=1+M(C¥+7)2 Cii=§b K11: 1+(1+#(01+7))502

M12 = 117(01 + 1) 012 = -€a K12 = #1602

M21: Mi2 C21 = 0 K21: K12

M22 = #72 C22 = {a K22 = m (a + 5) 02
 

4.2.2 System Model

By stacking each z, into the configuration vector q = (21, 22, . . . ,zN)T, the governing

matrix equation of motion for the overall 2N—DOF system takes the form

Mq” + Cq' + Kq = fejm", (4.6)

where M is block diagonal with diagonal blocks M and K E fl‘fifiyzN has generat-

ing matrices K + 2K0, —KC, 0, . . . , 0, —KC. The matrix C E fiffflyzN is similarly

defined by replacing K with C and Kc with Cc in K. In terms of the circulant

operator the system mass, damping, and stiffness matrices are given by

M = circ (M,0,0, . . .,0, 0) = diag (M)

. iEN

C = circ (C + 2C0, -—CC, 0, . . . ,0, —CC) , (4.7)

A

K = circ (K + 2K6, —KC, 0, . . . ,0, —KC)

where the circ ( - ) operation is defined in Section 2.2 and also in Appendix B.2 Finally,

the system forcing vector is

, . . ,- T

f: (feJ¢1,fe]¢2,...,feJ¢N) , (4.8)

where f is given by Equation (4.5) and (15, is defined by Equation (2.15).

 

2See [62] for a comprehensive treatment of circulant matrices and their properties. A brief review

of such matrices is given in Section 2.2 on page 11 and a more exhaustive treatment of the theory,

including many proofs, is given in Appendix B. In all of what follows and whenever reference is

made to Section 2.2 it is understood that, in most cases, more details can be found in Appendix B.
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4.2.3 Special Case: The Blades Locked

Consider the special case when the blades are locked in their zero positions relative

to the rotating disk. This leads to a system of dynamically isolated absorbers that

oscillate freely under the influence of centrifugal effects. The governing equations

ll:
follow from Equation (4.2) by setting :13, = 1:: = 27,. 0, and are given by

11122y[’+ 0221/; + K223}, = 0, i E N (4.9)

where the mass, damping, and stiffness terms 6122, 022, and K22 are defined in

Table 4.1. Equation (4.9) is a set of N uncoupled and unforced single-DOF harmonic

oscillators. Their dimensionless undamped natural frequencies are given by

 

1.1/'22 : — = I 0' E 7710', (4.10)

or 11222 = an in dimensional form, where 1.00 is defined by Equation (3.13) and

(1+6

7

 

:
3
1

|| (4.11)

is defined to be the absorber tuning order. Since the absorbers are restrained only

through centrifugal effects, £222 scales directly with 0 [32,61]. This feature is exploited

in Section 4.4 to tune the absorbers to a given order of the excitation, rather than to a

fixed frequency, as is done in the classical sense [99]. The tuning parameter ii is used

for this purpose and is determined by selecting the dimensionless curvature of the

pendulum absorber '7' (dimensionally d) and the distance of its effective attachment

point from the center of rotation of the rotor, that is, a + 6 (dimensionally aL + H).

4.2.4 Special Case: The Absorbers Locked

Here we consider a model in which the absorbers are locked in their zero positions

relative to the blades. By setting y, = y: = y;’ E 0, the equations of motion for the
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it" sector follow from Equation (4.2) and are given by

Mum? + 0111?; + K11$2+€c( — 552—1 + 222; — $i+1l

_ . , ie N

+ V2( — 1132—1 + 2:17, - WM) 2 11836631on

(4.12)

where 56, V, and f are defined in Table 3.1 and also :1:N+1 2 11:1 and 51:0 = :1:N- The

governing matrix equation of motion for the overall N—DOF system is given by

M11XII+C11XI+K11X =f11€j7107, (4.13)

where x = (171,22, . . . ,zN)T is a configuration vector and

fl, = (fej951,fej¢2, . . . , feJ¢N)T (4.14)

is the system forcing vector. The system matrices are both symmetric and circulant,

and they can be represented by

M11 = circ(ll«111,0,0,...,0,0) = diag(lWll)

. ieN

C11 = circ (C11 + 260, —€C, 0, . . . , 0, -£C) . (4.15)

K11 = circ(K11+ 2V2, —1/2,0, . . . ,0, —I/2)

In the absence of coupling, that is, when V = 5C E 0, the system matrices given

by Equation (4.15) are all diagonal, and Equation (4.13) is a decoupled set of N

harmonically forced, single-DOF oscillators.

We now detail the steady—state forced response of Equation (4.13) (with the ab—

sorbers locked) and, subsequently, that of Equation (4.6) (with the absorbers free to

move). In both cases a coordinate transformation is employed in order to significantly

uncouple the governing matrix equations.

4.3 Forced Response

The forced response of the overall system is governed by Equation (4.6), which can

be handled using standard techniques [65]. Its solution in the steady-state follows in

83



the usual way and is given by

qSS(T) = Z—lfejnaT, (4.16)

where Z = K—n202M+]'noC is the system impedance matrix of dimension 2N >< 2N.

However, Equation (4.16) does not offer any insight into the design and effectiveness

of the proposed vibration absorbers, and it also requires computation of 2‘1, which

can be quite involved for many bladed disk models. We thus turn to a decoupling

strategy that exploits the system symmetry and it is systematically shown how to

reduce the governing matrix equation of motion to a set of reduced-order models.

It is well-known that, due to its cyclic symmetry (and in particular due to the

circulant structure of the system matrices [62]), Equation (4.6) can be decoupled

via a modal (unitary) transformation to a set of N reduced-order models, each with

two DOF [36,92,100—102]. (The reduced-order models have the same number of

DOF as an individual sector, in this case two.) Similar statements can be made for

Equation (4.13), which captures the system dynamics for the special case when the

absorbers are locked in their zero positions relative to the blades. Since the system

matrices are circulant for this special case, one can fully decouple the N-DOF model

to a set of N, single—DOF systems. A special feature of the uncoupled systems

described above is that only mode 12 + 1 is excited, provided that n is an integer (as

shown subsequently). Hence the steady-state response of the overall 2N—-DOF (resp.

N—DOF) system described above reduces to the solution of a single, harmonically

forced, 2—DOF (resp. single—DOF) system.

In order to provide a benchmark against which the effectiveness of the absorbers

can be evaluated, we first consider the forced response of the system when the ab-

sorbers are locked relative to the blades. It should be noted that the corresponding

analysis could be obtained directly from the more general analysis of Section 4.3.2.

However, it is instructive to introduce the modal transformation in this simpler set-

ting, which clearly demonstrates the essential features of the approach. The forced
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response of the general system, where the absorbers are free to move, is investigated

in Section 4.3.2 and employs the same methodology. An absorber tuning strategy is

motivated in Section 4.4 based on these results.

4.3.1 Response with the Absorbers Locked

The purpose of this section is twofold: to demonstrate the essential features of the

analysis, a generalization of which is employed in Section 4.3.2 for the case when

the absorbers are free to move, and to review some of the vibration characteristics

of linear cyclic systems. Some specific topics include: decoupling the equations of

motion; orthogonality of the modal forcing vector; the steady-state system response;

characteristics of the natural frequencies and attendant normal modes (see [9, 92, 94]

for further characteristics); and conditions for resonance. The results will also be use-

ful for comparisons when evaluating the effectiveness of the absorbers in subsequent

sections. The reader who is familiar with these topics can proceed, with minimal loss

of continuity, to Section 4.3.2.

MODAL ANALYSIS

Consider the forced response of the system in Figure 4.1a for the special case when the

absorbers are locked in their zero positions relative to the blades. Due to the cyclicity

of the model and the corresponding circulant structure of the system matrices given

by Equation (4.15), one can employ a standard unitary (similarity) transformation

to decouple the governing equations of motion. In particular, we wish to apply the

result given by Equation (2.9) of Section 2.2.4 to each of the system matrices. This
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can be achieved by introducing the change of coordinates314

x = 15351, or 2,) = e351, 1) E N (4.17)

where E is the N x N complex Fourier matrix and ep is its pth column (these are

defined by Equation (2.2) and Equation (2.4)), and 51 = (5:1, 5:2, . . . ,2N)T is a vector

of modal, or cyclic coordinates. Substituting Equation (4.17) into Equation (4.13),

multiplying from the left by the unitary matrix EH, and invoking Equation (2.9)

yields a system of N decoupled scalar equations. They are

17136;; + 03%;, + 119,212,, —_— gillej’w", p e N (4.18)

_. T '
" .

where (- )H = ( ) denotes the conjugate transpose and eyfu IS the pth element of

EHfll, and is discussed subsequently. The modal mass, damping, and stiffness terms

follow from Equation (2.10) and are given by

191,912) = MN

C(21)) = 011 +2§C(1—c031,0p) , peN (4.19)

If]? = K11+ 2V2(1- coscpp)

where cpp is defined by Equation (2.3) and the elements M11, Cu, and K11 are

defined in Table 4.1. Note that the identity 1166—1) + 10(N_1)(p_1) = 2cos app has

been employed, where 11W 2 w = 82677: is the primitive Nth root of unity.5 The

transformation of the single N—DOF system given by Equation (4.13) to the system of

N decoupled single~DOF systems given by Equation (4.18) is illustrated in Figure 4.2.

Assuming harmonic motion, the pt“ steady-state modal response follows easily

 

3The reader who is not familiar with transformations of this type should regard Equation (4.17)

as the usual modal transformation employed in elementary linear vibration theory. (See Figure 4.2.)

The columns e, of the fourier matrix E are, in fact, the eigenvectors of any circulant matrix, and

hence they define the system mode shapes for all linear cyclic systems with a single DOF per sector.

4The index p corresponds to the p“ mode of vibration and shall be referred to as the mode

number.

5See Section 8.4.1 of Appendix B for a derivation of the N‘" roots of unity. The distinct N‘h

roots are plotted in Figure 8.1 on page 191 for N = 1,. . . ,9.
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Blade

® Rotor

a.» .s
Modal (Cyclic)

 

Transformation (p E N )

(a) A Single Coupled N—DOF System (b) N Decoupled 1—DOF Systems

in Physical Space in Modal Space

Figure 4.2. The tOpology of a bladed disk assembly in (a) physical space and (b) modal

space. The modal transformation x(r) = Ei(r) reduces the cyclic array of N single—DOF

coupled models 8, which together form a N—DOF coupled system, to a set of N single—DOF

decoupled models HP.

from Equation (4.18) and is given by

- 1 . -
SE;S(T) = meyfnemm, p 6 N (4.20)

I111

where

f(P) _f{(p) _ 2 2,9109) - 61(1)) N 421

11— 11 ”011+J220111 126' (-)

Under the assumption that 0 < n < N is an integer, the pt“ modal forcing term

simplifies considerably and is given by [36,92]

N

H“ _ L k—1)n+1— )

p fll — WEI!”
( p

{Wfl p=n+1

0, otherwise

e

(4.22)

which follows from Theorem B3 on page 192. Equation (4.22) shows that only mode
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n + 1 is excited and, therefore,6

 

- \/Nf '

122:1”) = -(n+,)€]nm (423)

1111

is the only non-zero modal response in the steady-state. The response of sector i (in

physical coordinates) follows from the transformation given by Equation (4.17) and

is given by.1:" ——eTxSS, or

$:S(T) = Xej‘f’iejnm, i E N (4.24)

where 5158(7) = (0,.. ,,0 T,,+1(TT) 0, ...,0)T and "Luna—1) = ej‘”i have been employed

and X: f/ F](n+1) is the steady-state amplitude of the blades. Equation (4.24)

shows that each blade behaves identically except for a constant phase shift from one

sector to another, which is captured by the inter-blade phase angle qb,. This approach

offers a significant computational advantage over the brute force solution of the full

N—DOF system, and it is employed in Section 4.3.2 for the general case when the

absorbers are free to move.

EIGENFREQUENCY CHARACTERISTICS AND CONDITIONS FOR RESONANCE

Since the transformation given by Equation (4.17) is unitary, the (dimensionless)

natural frequencies 02(1)) are preserved and they follow in the usual way from If[21) and

MS). In terms of the parameters defined in Table 3.1, they are given by

 

(4.25) 

_(p)_ 112-ii) 1+ 602(1+ 11(01 + 7)) + 2V2(1— cos app) _

11211—_ = 2 , 2 E N

“’0 l+u(a+7)

where 1.00 is given by Equation (3.13) and 1,0,, is defined by Equation (2.3). For zero

inter-blade coupling (V = 0) all of the natural frequencies are identical, and they

 

6It is customary in the rotordynamics literature to designate the system modes in terms of

their “diamatral components,” or number of “nodal diamters.” (These can be clearly visualized

in the modal configurations shown in Figure 2.7 on page 35.) Specifically, if 0 < n S N/2 (or

0 < n S (N — 1)/2 if N is odd) then an 12 en excitation can only excite modes with n nodal

diameters. However, such a designation is slightly more cumbersome if one considers larger values

of n (in this chapter and the next we consider 0 < n < N) and hence we shall say instead that an

engine order n excites only mode p = n + 1.
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increase with increasing rotor speed a due to centrifugal effects. The presence of

the absorber masses ()1 74 0) slightly lowers the natural frequencies. For very small

absorber masses relative to the mass of the blades, that is, 0 < u << 1, the natural

frequencies can be approximated by

 

117]]? ’3.“ \/1+ 602 + 2V2 (1 — cos 1,9,9), 26 N (4.26)

which clearly exhibits the effects of centrifugal stiffening and coupling. Finally, if

11 = V—— o _=_ 0 we recover a]’[)—— 1, or 10g): (120, which was used in Section 4. 2. 1 to

nondimensionalize the model. By comparing Equation (4.26) to Equation (2.38), it

is clear that the eigenfrequency characteristics discussed in Section 2.4.3 apply here

as well.

111 the turbomachinery literature it is common to plot the natural frequencies

in terms of the “diametral components,” that is, the number of “nodal diameters”

(n.d.) in their attendant mode shapes [103]. (These can be visualized in Figure 2.7

on page 35.) However, in light of the crucial role centrifugal stiffening plays in the

absorber performance (this is investigated in detail in Section 4.4), we shall opt instead

for an interference, or Campbell diagram representation of the natural frequencies.

Such a diagram is shown in Figure 4.3a for N = 10 blades and for a particular

sector model. In this figure, the natural frequency loci are plotted in terms of the

dimensionless rotor speed, and they are seen to increase for increasing a due to

centrifugal effects. The diametral component of each frequency locus is also indicated.

or, equiva-
(16(0)

In general, there may be a system resonance whenever no —-w

lently, nQ—— to]? (Q), and these possible resonances can be identified in a Campbell

diagram by the intersections of the natural frequency loci with an engine order line no.

(An example of such a frequency versus rotor speed diagram is shown in Figure 4.3a,

where several order lines are indicated.) Such resonances can arise, for example, from

excitations with multiple dominant orders, mistuning [9], nonlinear effects, or non-

integer n. (Appendix C briefly discusses the case Of n 6 11+.) However, for linear
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Table 4.2. Data to accompany Fig. 4.3 and Figs. 4.5—4.7 for a model with N = 10,

n = 3, a = 0.84, 6 = 0.67, ,0 = 0.015, and 5,, = 23,, = {c = 0. Then 6,, = —0.00701

 

 

(from Equation (D2) of Appendix D) and 633p —0.00706 (from Equation (4.46) of

Section 4.4.2).

Figure Tuning 6 'y n a nap, V ares

4.3 — — 0.169 - - — 0.50 0.442

4.5a Over +0.15 0.127 3.45 3.473 3.487 0.01 0.338

4.51) Over +0.15 0.127 3.45 3.473 3.487 0.25 0.364

4.5C Over +0.15 0.127 3.45 3.473 3.487 0.50 0.443

4.6a Under —0.07 0.194 2.790 2.811 2.820 0.50 0.468

4.61) Over +0.07 0.147 3.210 3.232 3.244 0.50 0.423

4.7a Under —0.00351 0.169 2.989 3.011 3.021 0.50 -

4.7b Exact 0 0.168 3 3.021 3.032 0.50 -

 

cyclic systems, and in the absence of parameter mistuning, an integer engine order

1 g n < N excites only mode p = n + 1, which is clear from Equation (4.22). (See

Section 2.4.5 for a description of the resonance structure for the case when n 2 N.)

For a given engine order, the corresponding actual resonance, that is, the value of a

for which

720' : Q]?+l)(0’), or, equivalently nil = w[7]+1)(Q) (4.27)

is indicated by a circle in Figure 4.3a for each of the engine orders considered, and the

corresponding frequency response curves are shown in Figure 4.3b for f = 0.01 and

5,, 2 6,; = 0. The resonant frequency for the n = 3 case is indicated in Table 4.2, along

with other data corresponding to Figures 4.5—4.7; these are explained in Section 4.3.2

and Section 4.4.2.

4.3.2 Response with the Absorbers Free

We now turn to the forced dynamics of the overall 2N-DOF system, which are gov-

erned by Equation (4.6), and employ an approach Similar to that of Section 4.3.1. In

90



0711 987 6/5 4 38.0.

 

 

 

 

 
 

21 // / / (16.0, d

5 n. .

%§

7 \—-—-2

’,J x],

16.0 0

A A n A A U

0.2 0.4 0.6 0.8 1

(a) Campbell Diagram

longl

2r 9876 5 4 3 2e.o.

1 .

0» 1 I‘

1 e.o.

j l u
-2 iguaag‘

. _ . 0.

0.2 0.4 0.6 0.8 1

(b) Frequency Response Curves

Figure 4.3. (a) Campbell diagram for N = 10, a = 0.84, 6 = 0.67, '7 = 0.169, p = 0.015,

V = 0.5, and engine orders (e.o.) n = 1, 2, . . . , N — 1 and (b) the corresponding frequency

response curves with f = 0.01, and 5b = {c = 0.
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the present case the system matrices M, C, and K are black circulant, and one can

(block) decouple these equations to a set of N, 2—DOF forced oscillators by employing

the result given by Equation (2.11) on page 15.7

MODAL ANALYSIS

We introduce the change of coordinates

q = (E (8) I)u, or 2,; = (egg) I)u, p E N (4.28)

where E is the N x N complex Fourier matrix and 9p is its pth column, <8) is the

Kronecker product (these are defined in Section 2.2.2 and Section 2.2.1), I is the

2 x 2 identity matrix (the dimension of I corresponds to the number of DOF in

each sector), and u = (111, 112, . . . , uN)T is a vector of modal, or cyclic coordinates

with each up = (53p,3]p)T Substituting Equation (4.28) into Equation (4.6) and

multiplying from the left by the unitary matrix (E (X) I)” = (E718) I) yields a system

of N block decoupled equations, each with two DOF. They are given by

Mpug + Cpug, + Kpup = (egg) I)fej"m, p E N (4.29)

where (ey® I)f is the pm 2 x 1 block of (EH69 I)f. Figure 4.4 illustrates the trans-

formation of the single 2N—DOF system given by Equation (4.6) to a system of N

block decoupled 2—DOF forced oscillators given by Equation (4.29).

The 2 x 2 mass, damping, and stiffness matrices associated with the pth mode

follow from Equation (2.12) of Section 2.2.4 and are given by

191,, = M

(3;; = C + 206(1 — cos 90p) , p E N (4.30)

KP = K + 2KC(1 — cos app)

where 90,, is defined by Equation (2.3), the elements of M, C, and K are defined in

Table 4.1 and their attendant parameters are given in Table 3.1, and the coupling

 

7The number of DOF in each decoupled system is that of an individual sector, in this case two.
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® Absorber

Blade

® Rotor

H .ea

()pEN

    

t,, \Sec or

I

Modal (Cyclic)

Transformation

(a) A Single Coupled 2N—DOF System (b) N Decoupled 2—DOF Systems

Figure 4.4. The topology of a bladed disk assembly fitted with absorbers in (a) physical

space and (b) modal space. The modal transformation q(1') = (E (8 I)u(r) reduces the

cyclic array of N, 2—DOF sector models (B,A), which together form a 2N—DOF coupled

system, to a set of N, 2—DOF block decoupled models (8p, AP).

matrices Cc and Kc are defined by Equation (4.4). In light of Equation (4.22), the

pth modal forcing vector takes the form

Hf”
H ‘_ ep 11

(ep®I)f—[ 0]

{Wfl p=n+1 (4.31)

0, otherwise

where f“ is the system forcing vector for the case when the absorbers are locked in

their zero positions relative to the blades, f = (f, 0)T is the sector forcing vector, and

= (0, 0)T. Since only mode p = n + 1 is excited, un+1('r) is the only nonzero modal

response in the steady-state.

Assuming harmonic motion, and in light of Equation (4.31), the pth steady-state

modal response follows easily from Equation (4.29) and is given by

(7') {W
WI fem” p=n+1

(4.32)

0, otherwise
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where

2,) 2 RP — 712021911) + jnan, p E N (4.33)

is the pm modal impedance matrix. The response of sector 2' (in physical coor-

dinates) follows from the transformation given by Equation (4.28) with USS(T) =

(O, . . . ,0, uff+1(7'), O, . . . ,0)T and is given by

ZS-S(T) = ZT-lilfejd’iejnm, i E N (4.34)
2

where MiG—1) = ej‘f’i has been employed. From Equation (4.34) it is clear that each

blade/absorber combination behaves identically except for a constant phase shift from

one sector to another, which is captured by the inter-blade phase angle (1),. This

approach offers a significant computational advantage over the brute-force solution

to the full 2N—DOF system, as given by Equation (4.16).

EIGENFREQUENCY STRUCTURE AND CONDITIONS FOR RESONANCE

The 2N dimensionless natural frequencies of the system are defined implicitly by the

characteristic polynomial

det (K — 02M) = O,

the solution of which can be quite involved for any reasonable bladed disk model.

This effort can be Significantly reduced, however, by instead using the modal matrices

defined by Equation (4.30). We recall that each Mp and KP follow from a unitary

(Similarity) transformation of M and K and hence the system natural frequencies

are preserved. These eigenfrequencies follow from the N, second—order characteristic

polynomials det (f(p — (321911,) = O, or

det(K — @2M + 2KC(1 — cos $22)) = 0, p e N (4.35)

where the sector mass, stiffness, and coupling matrices are defined in Table 4.1 and by

Equation (4.4). Equation (4.35) features the same cyclic term, i.e., Equation (2.39),
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that was encountered in Section 2.4.3 and we thus expect Similar eigenfrequency

characteristics to the ones described there and also in Sectioni 4.3.1. If P is the

number of DOF in an individual sector (in the present study P = 2), then there are P

natural frequencies (12(1)) corresponding to each p E N. There are, in this case, N such

groups of P = 2 natural frequencies of the overall system. The multiplicity of these

groups of natural frequencies is identical to that of the individual eigenfrequencies

described in Section 2.4.3.

If vp is an eigenvector of the pt" decoupled modal system, then the corresponding

normal mode Of the overall system is ep ®vp, where ep is the 13”" modal vector for the

case when the absorbers are locked relative to the blades.8 With the exception of the

p = 1 mode, vp is influenced by the overall system configuration, and in particular

by its elastic coupling, which is clear by inspection of the modal stiffness matrices

KP- In a particular mode of vibration, the blade and absorber in each sector oscillate

either in phase or out of phase relative to one another with amplitudes that depend on

the strength and nature of the inter—sector coupling, and these features are captured

by vp. The dynamics of each sector are identical, except for a constant difference

in phase from one sector to another, and this is captured by ep. Hence the modal

configuration of the overall system is described by a composite of these two vectors,

which is mathematically given by ep (8) vp.

The 2N dimensionless natural frequencies (0)13 (13 E N) are plotted in Figure 4.5

in terms of the rotor speed a for N = 10, n = 3, for a particular sector model, and

for various levels of the inter-blade coupling 12. (The natural frequencies 61%) and

022 are also shown for reasons discussed below. Also, for quick reference here and

in subsequent chapters, Table 4.3 gives a selected list of commonly used undamped

natural frequencies.) In these Campbell diagrams, the N natural frequencies a?)

 

8When the absorbers are locked each of the the system matrices is a circulant. Since all circulant

matrices share the same linearly independent eigenvectors, which are the columns of the Fourier

matrix, the system normal modes are ep with p E N.
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Table 4.3. Selected list of dimensionless undamped natural frequencies.

 

Freq. Eqn. Description

 

Co?) (4.35) Of the coupled system corresponding to in-phase modes

Qép) (4.35) Of the coupled system corresponding to out-of—phase modes

0(1)) (4.25) Of the coupled system if the absorbers are locked relative to the blades

([111 — Of an isolated blade without an absorber

(.022 (4.10) Of each absorber if the blades are locked relative to the rotating hub

 

branching from o = 0 (since N is even there are (N — 2) / 2 = 4 repeated pairs) cor-

respond to in—phase modes, wherein the absorber/blade combination in a particular

— (p)
sector oscillates in phase. The remaining N natural frequencies (122 have the same

number of repeated pairs and correspond to out—of-phase modes. As shown in Fig-

)1)) and also Qép)ure 4.5a, the frequencies (I) are nearly coincident when the inter-blade

coupling is weak, that is, when U is small and they spread out for increasing V, which

is shown in Figure 4.5b and Figure 4.5c. In the absence of inter—blade coupling, (a?)

are identically coincident (as are a?) and there are exactly P = 2 distinct natural

frequencies, each with multiplicity N.

The frequency loci in Figure 4.5 exhibit the classical eigenvalue veering phe-

nomenon, or mutual repulsion of the eigenfrequencies [104,105], which arises due

to small the dynamic coupling (via the absorber mass) between the blades and ab-

(P)
sorbers. To see this, we focus on Figure 4.5a, where the sets of frequencies ‘31 and

wép) are mutually nearly coincident. This plot also shows the natural frequencies (2)511)

(resp. (.322), corresponding to the case when the absorbers (resp. blades) are locked

relative to the blades (resp. rotor). As the rotor speed or is increased from zero, the

)1) ) (resp. avg») initially lie close to (.322 = 77.0 (resp. of? ), wherenatural frequencies (I)

the absorber tuning order it is defined by Equation (4.11). (For zero rotor speed

05p) and 02222 are, in fact, coincident and each has the same initial slope of 5..) They
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Figure 4.5. Campbell diagrams showing the engine order (e.o.) line no and the dimen-

sionless natural frequencies wi’i’, (2122 = no, and 52‘1”; versus the dimensionless rotor speed

a for N = 10, n = 3, a = 0.84, 7 = 0.127, 6 = 0.67, and ,u = 0.015 with: (a) u = 0.01;

(b) V = 0.25; (C) U = 0.5.
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exhibit veering near the intersections of 0%) and Q22, and for large rotor speeds the

eigenfrequencies a?) asymptotically approach (DE?) for each p E N. However, the

frequencies a?) nearly track (1222 = no as 0 becomes increasingly large, but with a

slight offset in Slope. This is Shown in the inset of Figure 4.5a. In fact, it can be

shown that

fig?) —+ no as o ——> OO, (4.36)

where the critical absorber tuning order 71(5) > a is defined by Equation (D.1) in

Appendix D. This is a crucial Observation, one that is exploited in the absorber

tuning of Section 4.4. Finally, note that there is a fixed relationship between a

and a, which is nearly linear for a > 1. Once the absorber mass u and its tuning

order ft are prescribed, then the critical tuning order is automatically set and can be

approximated by

mm, = (1 + a2u) n, (4.37)

which works quite well for a > 1 and for reasonable choices of a and ,u.

Possible resonances can be identified in Figure 4.5 by the intersections of the

eigenfrequency loci 61%(o) with the order line no, and they correspond to rotor

speeds o = ores for which no = Q§,%(o). However, it was shown in Section 4.3.2 that

only mode n + 1 is excited in the steady-state, and hence there is a system resonance

only when

no 2 Q§71;1)(o), or, equivalently nil = w§71;1)(9) (4.38)

is satisfied. These resonances are indicated by circles in Figure 4.5 and they are sum-

marized in Table 4.2 on page 90 along with other relevant data. The main Objective

of this chapter is to select the absorber parameters to avoid such resonances over a

range of rotor Operating speeds; this is the subject of the next section.

As a final note, the inter-blade coupling V can be quite small—on the order of 1%

or less—but much larger values are also possible. Aerodynamic coupling also exists
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and can be Significant in terms of both stiffness and damping. In order to Show clearly

which modes are excited, and also the effects of absorber (de)tuning, a rather large

(possibly unrealistic) value of the coupling will be employed in the ensuing numerical

analysis; this does not qualitatively affect the approach nor the conclusions.

4.4 Absorber Tuning

Absorber tuning refers to a particular choice of absorber parameters to attenuate,

as much as possible, the response of the primary systems (blades) over a range of

operating speeds, and in particular near resonance. This is done by prescribing the

dimensionless parameters u, 7, and a, which in turn Specify the absorber mass m,

the radius r of its path, and it’s placement along the blades, respectively. It is Shown

in Section 4.4.1 that, in the absence of damping, there exists an absorber tuning such

that full annihilation of the blade vibrations is possible, although this may require

large-amplitude vibrations of the absorbers. This tuning is accomplished by matching

the order of the isolated absorbers to that of the excitation, just as it is done with

frequencies in the classical dynamic vibration absorber [99], and also with orders for

the centrifugal pendulum vibration absorber [7]. (See Section 2.5.) In the presence

of small absorber damping, however, it becomes impossible to eliminate the blade

vibrations completely, a topic that is briefly addressed in Section 4.5. The effects of

detuning the absorbers relative to the excitation order is explored in Section 4.4.2.9

It is shown that overtuning the absorbers results in only one system resonance over

all possible rotation speeds, even though there are two DOF per sector and there

are N such sectors, and the same is true for most values of undertuning. However,

there exists a small region of absorber undertuning, bounded on one side by the exact

 

9In this work detuning means that all absorbers are identically over- or under-tuned relative

to n. This is not to be confused with mistuning, which refers to small random uncertainties in

the system parameters. In the turbomachinery literature, detuning and mistuning are often used

interchangeably, but they must be clearly distinguished in this investigation.
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tuning (zero detuning), for which there are no system resonances. This no-resonance

gap motivates a particular tuning strategy, which offers a significant reduction of the

blade amplitudes, and it is robust to random perturbations of the system model.

Consider again the Campbell diagrams in Figure 4.5. Whereas n is fixed for a par-

ticular engine order excitation, the tuning order a depends on the model parameters

a, 6, and '7 (these are prescribed by design), and the additional choice for the di-

mensionless absorber mass It sets the critical tuning order n(fz) The tuning strategy

employed here is to Simply choose these parameters to optimally orient the line no

(and hence no) relative to no in the frequency-o plane. This in turn sets the asymp-

totic behavior of the system natural frequencies “7113 and hence prescribes the system

resonance structure. It is clear that by choosing no 2 no (this corresponds to zero

detuning) there will be no crossings of the order line no and the natural frequency loci

“7113(0), and hence there will be no system resonances over the full range of possible

rotor speeds. However, Slight errors in this tuning can introduce a resonance, and

therefore such a design is not robust. One can more generally avoid resonances by

choosing parameters such that a S n < 11(5). This is clear from the large—o asymp-

totic behavior of Qép), and specifically from the inset of Figure 4.5a. The existence

of this finite, but narrow, tuning range allows one to design an absorber system with

some level of robustness to parameter uncertainties.

The arguments described above are developed in detail in the next section using

the steady-state system response of Section 4.3.2, and in the context of absorber

detuning in Section 4.4.2.

4.4.1 Exact Tuning

It is customary to introduce the tuning order ft as one of the absorber parameters,

and this is done in the present study via the substitution

 (4.39)



thereby replacing 7 with a in the formulation. With zero system damping, i.e., 5a 2

5b = 56 = O, and after some Simplification, the steady-state response described by

Equation (4.34) can be reduced to

 

 

[343] = [if] emiejnm, 2' E N (4.40)

z‘

where

X #32022 — a?)

— r

fa? (34.2 — a?) + n2(1+ 752)) (441)
Y _

(1 + %)F

are the blade and absorber steady-state response amplitudes and

r = ”(120+ a2)2n202 + 32(7),? — a2)

+ (n.2 — n2)(ua6(1+ a?) — 7~i2(n2 — 6))02

+ 21/2'f2.2(n2 — a2)(1— cos 4,97,“),

where 99, is defined by Equation (2.3). The ideal, or exact absorber tuning follows by

inspection of the first entry of Equation (4.41) and is given by

a = n, or 4.722 = no = no. (4.42)

If the system is tuned according to Equation (4.42) the blade and absorber amplitudes

reduce to

fn2 , (T7. = n) (4.43)

ua2(1+ %)(1+ n2)o2

which shows that the blade vibrations can be eliminated completely. In this case

 

the absorber amplitudes are inversely proportional to the mass ratio )1 and also to

a(oz + (5). It is therefore desirable to make the absorber masses large relative to the

blade mass and to place them as close to the end of the blades as possible. In practice,
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however, there are limits on the size and makeup of the absorber masses (typically ,u

is very small, on the order of 10"2 to 103) and on their placement relative to the

blades. The negative Sign in Y implies that the absorbers oscillate out of phase with

respect to the excitation. Physically, this means the absorbers exert forces on the

blades that identically counter the action of the applied loading for all time and for

all rotor speeds. 10

4.4.2 Absorber Detuning and the No-Resonance Zone

By implementing the absorber tuning given by Equation (4.42) one is simply setting

the natural frequency of the isolated absorbers to the excitation frequency, that is,

(D22 = no = no, and the absorbers are said to be exactly tuned. Again, we emphasize

that the said tuning is valid at all rotation Speeds, a feature that is made possible by

the structure of 4.7222(o) :2 no. However, any perturbation of the model or absorber

parameters, due to in-scrvice wear, environmental effects, and so on, will invariably

destroy the exact tuning. To account for such effects, and to allow for intentionally

detuned designs, we let

a = n(1+ o), (4.44)

where 6 is a detuning parameter. Perfect, or exact tuning corresponds to 8 = 0, while

undertuning (resp. overtuning) corresponds to ,8 < 0 (resp. O > 0).

Figure 4.6 and Figure 4.7 depict the blade/absorber frequency response amplitude

curves and also the natural frequency loci for a set of four representative detuning

values. (The corresponding tuning orders, detuning data, and the resonant rotor

Speeds are given in Table 4.2 on page 90.) In these plots we take f = 0.01 and use

the parameters employed in Figure 4.5c. The solid lines in the blade and absorber

response curves show the response amplitudes as a function of rotor speed. The

dashed lines correspond to the blade/absorber amplitudes when the absorbers are

 

1(These results remain valid even for varying rotor Speeds, that is, o = 0(7), so long as the

variations occur on a much longer time scale than the dynamics of the blades and absorbers.
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locked in their zero positions relative to the blades; these curves are used for reference

to assess the dynamic effects of the absorbers.

Overtuning the absorbers (i.e., setting 8 > 0) increases the Slope a ofc1222(o) = no

relative to the engine order n in the frequency-o planes, and it is clear from Figure 4.6b

that a resonance of the iii-phase mode corresponding to IIJYIH) is guaranteed. For

sufficiently large undertuning such that fi < ficr < 0 (with ficr defined below), the

out-of—phase mode corresponding to (ESL-H) is excited near resonance; an example of

this situation is shown in Figure 4.6a for ,3 = —0.07. One of the more interesting

findings of this chapter is that there are no system resonances for absorber tuning

values that satisfy

Ber < 3 S 0, (445)

where I cr is the critical absorber undertuning and is given implicitly by Equation (D2)

of Appendix D. Zero (resp. critical) detuning, that is, 8 = 0 (resp. [3 = ficr),

corresponds to a = n (resp. a = n). An example tuning within the no-resonance gap

defined by Equation (4.45) is Shown in Figure 4.7a for 3 = Ber/2 = —0.00351, where

ficr = —0.00701, and the perfectly tuned case is Shown in Figure 4.7b. These cases

clearly demonstrate the effectiveness of properly tuned absorbers. The resonance

that occurred at ores = 0.442 when the absorbers are locked is completely eliminated,

and the response amplitudes of the blades are significantly reduced (or eliminated

completely) over the full range of possible rotor speeds.

Another way to visualize the nO-resonance gap defined by Equation (4.45) is to

construct a plot of the rotor speeds corresponding to (possible) resonance(s) versus

the absorber detuning parameter 8. Such a plot is shown in Figure 4.8 for the same

parameters used in Figures 4.5-4.7. In this diagram, the no—resonance gap is identified

by the Shaded region between the dotted lines corresponding to 5 = 0 (zero detuning)

and B = Ber (critical detuning), where ficr = —-0.00701 for this case.

The extent of the nO-resonance gap depends on the absorber parameters and the
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Figure 4.6. Absorber and blade frequency response curves and Campbell diagrams for

N = 10, n = 3, a = 0.84, 5 = 0.67, p = 0.015, V = 0.5, f = 0.01, and zero damping:

(a) fi = —0.07 (undertuned); (b) fl = +0.07 (overtuned); (— -) frequency response with the

absorbers locked. See Table 4.2 on page 90 for the corresponding tuning order data and

resonant rotor speeds ores.
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Figure 4.7. Absorber and blade frequency response curves and Campbell diagrams for

N = 10, n = 3, a = 0.84, 6 = 0.67, p = 0.015, V = 0.5, f = 0.01, and zero damping:

(a) 5 = Our/2 = —0.00351 (slightly undertuned); (b) 0 = 0 (zero, or perfect tuning);

(— —) frequency response with the absorbers locked. The critical absorber detuning is

leer =

resonant rotor speeds ores.

—0.00701. See Table 4.2 on page 90 for the corresponding tuning order data and
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Figure 4.8. Rotor speeds om corresponding to resonance (—) and possible resonant speeds

(— —) in terms of the absorber detuning 8 for N = 10, n = 3, a = 0.84, 6 = 0.67, p = 0.015,

and 1/ = 0.50. The no-resonance gap is defined by 0.3, < 6 S 0, where 3a = —0.00701.

engine order, but is independent Of the inter-blade coupling V. The sensitivity of the

gap to variations in these parameters is indicated in Figure 4.9, which follows from

Equation (D2) in Appendix D. (A simpler approximate expression, which works

quite well over a wide range of parameters, is described below.) In all cases, the

sensitivity is most pronounced for small engine orders and it decreases for increasing

n. As shown in Figure 4.9a (resp. Figure 4%) the critical detuning ficr exhibits

near-linear (resp. -quadratic) behavior in terms of u (resp. a), and by inspection

of Figure 4.9c it is nearly independent Of 6 for most engine orders (n > 2). Note

that ficr vanishes (implying that the no—resonance gap vanishes) in the absence of the

absorbers (u = 0) or when the absorbers are attached to the periphery of the rotor

( = 0). This is consistent with intuition since zero-mass absorbers cannot provide

the required loads to counter the action of the excitation on the blades. Also, if

the absorber and blade pendulum attachment points coincide on the circumference

of the rigid rotor, their dynamics become independent. It is clear, therefore, that
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Figure 4.9. Critical undertuning *5“ x 100 of the absorbers versus (a) the dimensionless

absorber mass )2 (with a = 0.84 and 6 = 0.67), (b) the dimensionless distance from blade

base to absorber base point a (with 6 = 0.67 and u = 0.015), (c) the dimensionless radius

of rotor disk 6 (with a = 0.84 and u = 0.015), and (d) the engine order n (with a = 0.84,

6 = 0.67, and p = 0.015). The dashed line in (d) corresponds to the large-n approximation

of flu given by Equation (D3) in Appendix D.

both )2 (absorber mass) and a (absorber placement relative to its attendant blade)

are coupling parameters in the sense that their departure from zero implies dynamic

coupling between the blades and absorbers.

The parameter trends described above, and in particular those shown in Fig-

ure 4.9a and Figure 4.9b, motivate a two-parameter expansion Of the critical detuning

ficr about (u, o) = (0,0). This results in the Simple approximation

C‘ _ —2n2(n2 _ (5)1102 + 003: 03), (4-46)
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which works quite well over a large range of realistic parameter values. More im-

portantly, Equation (4.46) clearly Shows that the extent of the no-resonance zone

depends primarily on the absorber mass and its placement along the blade. It can be

widened by increasing either ,u or a. For any engine order n > 2, Equation (4.46) also

shows that (3a is essentially independent of the rotor diameter, which is consistent

with the exact curves shown in Figure 4.9.

Based on the above analysis it is reasonable to choose [3 = Her/ 2, which is simply

the average of the exact and critical detuning. Then Equation (4.44) becomes

a = n(1+ 3r) (4 47)T o

and the engine order n. is very close to (but not exactly) the average of 72(5) and

5.. Such a tuning strategy, which was used in the example shown in Figure 4.7a,

guarantees (in the absence of damping) no system resonances and it offers good

robustness to parameter and model uncertainties.

The effects of system damping are investigated next.

4.5 The Effects of Damping

When an undamped absorber is exactly-tuned according to Equation (4.42), its ac-

tion identically counters that of the engine order excitation on the blade to which

it is attached. This results in a full elimination of blade motions independent of the

blade and inter-blade damping levels. However, any level of absorber damping (or

detuning) will give rise to residual blade motions, in which case coupling and blade

damping levels will also affect the response. The aim of this section is to numerically

characterize the effects of damping on absorber performance, particularly within the

no—resonance zone described in Section 4.4.2. It is shown that the no-resonance gap

persists in the presence of sufficiently small absorber damping and that it is essentially

unaffected by realistic blade and inter-blade damping levels. We begin by describing
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the effects Of the absorber damping for tuning values outside the no-resonance zone.

To understand the effects of absorber damping on the overall system dynamics, it

is instructive to consider two extremes: when the absorbers are free and undamped

and when they are locked relative to the blades, which correspond to the limiting cases

of {a = 0 and {a ——> 00, respectively. When the absorbers are free, undamped, and

tuned outside of the nO—resonance zone (and in the absence of blade and inter-blade

damping) there is a single resonance at o = ores, which corresponds to the intersec-

tion of the engine order line no with 40:71—31) or LUSH” , and it is defined implicitly by

Equation (4.38). For infinite absorber damping the absorbers are essentially locked

relative to the blades and hence each blade/absorber combination has the same ampli-

tude, that is, |3:,-(r)| = |y,-(r)| for i E N. In this case there is also a Single resonance

(denoted in this section by 0 = oL), which is defined implicitly by Equation (4.27).

An example of ores and oL is shown in Figure 4.10a and the corresponding frequency

response curves are depicted in Figure 4.10b-c. There must be a continuous spectrum

of frequency responses between the {a = 0 and Ea —+ 00 extremes, which is charac-

terized by a resonance shift toward 01,. This is shown in Figure 4.11 for the same

parameter values used in Figure 4.10 with 5b = {C = 0 and for various levels of the

absorber damping {(1. As the absorber damping is increased from zero, the resonance

point shifts (in this case to the right) toward 0L, and the peak blade/absorber am—

plitudes initially decreases, which is shown in Figure 4.11a—d. By further increasing

{a the resonance point continues to evolve toward 0L and the peak amplitudes begin

to increase, which is shown in Figure 4.11e—f. Finally, in the limit as Ea —> 00 the

frequency response becomes essentially identical to the locked absorber case. This is

Shown in Figure 4.11g.

A qualitatively similar trend can be observed when the absorbers are tuned within

the no—resonance zone, except that there are no system resonances for the limiting

case of 5a = 0, and hence if £0, is sufficiently small. This is shown in Figure 4.12a-d
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Figure 4.10. (a) Campbell diagram showing the resonant rotor speeds ores and oL and

the corresponding (b) blade and (c) absorber frequency response curves for a model with

N = 10, n = 3, a = 0.84, B = 0.01, 6 = 0.67, )1 = 005,11 = 0.5, f = 0.01, and (b = 5,; = 0.
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Figure 4.11. Blade and absorber (free and locked) frequency response curves for overtuned

absorbers (B = 0.01), for the same parameter values used in Figure 4.10, and for various

levels of the absorber damping 50.
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Figure 4.12. Blade and absorber (free and locked) frequency response curves for absorbers

tuned within the no—resonance zone (B = BC,/2 = —0.00351), for the same parameter values

used in Figure 4.10, and for various levels of the absorber damping (a.
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for [3 = flcr/ 2, Eb = 5C = 0, and for various levels of the absorber damping 60. A

system resonance is born if the absorber damping is sufficiently increased, which is

shown in Figure 4.12e-g. III these cases the absorber’s performance is so severely

degraded by the presence of damping that they are no longer effective in attenuating

blade motions, even with proper tuning. However, for reasonable absorber damping

levels there are no system resonances over the full range Of rotor speeds, and in this

sense the nO—resonance zone is seen to persist for sufficiently small 50. Figure 4.12b

shows a representative set Of frequency response curves for a typical level of absorber

damping.

Finally, it can be shown that the blade and inter-blade damping has a much less

dramatic effect on the system dynamics. By increasing either Q, or EC the blade and

absorber amplitudes are simply reduced and, for absorber tuning outside of the reso-

nance zone, there is generically no significant shift in the resonance point. Physically,

this is a sensical result; the presence of blade or inter-blade damping actually helps

the absorbers achieve attenuation of blade motions, whereas an increase in {a does

the exact Opposite.

4.6 Concluding Remarks

An implementation of order-tuned vibration absorbers to a linearized, cyclically sym-

metric bladed disk assembly has been investigated. A standard change of coordinates

based on the cyclic symmetry of the system was employed to reduce the governing

2N equations of motion to a set of N, reduced—order equations, from which an ab-

sorber tuning strategy was formulated. One of the main findings of this chapter, and

indeed of this entire thesis, is the existence of a no-resonance zone, that is, a range of

absorber undertuning values for which there are no system resonances over the full

range of possible rotor speeds. By tuning each absorber within this generally small

(but finite) range, resonance can be avoided altogether and there is at least some level
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of robustness to parameter uncertainty. The extent of this no—resonace gap depends

primarily on the mass of the absorber to that of the blade and on its placement along

the blade length, especially for larger engine orders. The gap can be widened by

increasing the absorber mass and/or by placing it further away from the root of the

blade, effectively strengthening its dynamic potential to suppress blade motions.

These fundamental results are now generalized in the next chapter to include

first-order nonlinear effects.
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CHAPTER 5

Forced Response of the Nonlinear System

5. 1 Introduction

The linear results of Chapter 4 are now generalized to include the basic first-order

effects of nonlinearity, which is introduced via the absorber path geometry. Together

with the linear design recommendations of Section 4.4, the aim of this chapter is

to possibly exploit nonlinearity to further improve the absorber performance, partic-

ularly for linear tuning within the no—resonance zone. It is therefore of particular

importance to determine if the no-resonance zone persists under increasing absorber

path nonlinearity. Also, it is well known that for the lightly damped and weakly

coupled cyclic systems under consideration, there may be a host Of solution types

other than the desired traveling wave response [106—108] in which all sectors behave

identically except for a constant shift in phase among adjacent sectors. If nonlinearity

is to be exploited, or if it is otherwise present and unavoidable in the sector models,

these additional instabilities (if they exist) must be addressed as a part of the design

process.

It is convenient to employ the generalized, two-parameter familiy of paths that

were developed in Section 3.4.4 to introduce the nonlinearity. These allow the final

path design to be specified directly by choosing a linear tuning order a (this was

carried out in Section 4.4 in terms of the linear order detuning )3) and a nonlinear
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tuning parameter 7). According to the linear theory there is a continuous Spectrum

of (under)tuning values for which there are no system resonances over the full range

of possible rotor Speeds. Proper linear design therefore involves tuning the absorbers

within this no-resonance zone. The path parameter n acts essentially as the strength

of the path nonlinearity, which has a continuous range from softening (77 < 0) to

hardening (n > 0). Its selection forms the main focus of this chapter.

The nonlinear sector models from Section 3.4 are employed, along with the two-

parameter family of paths described above. These are systematically reduced via

scaling and averaging to a set of nonlinear averaged sector models, which forms a

basis for the analytical and numerical investigations that follow. In addition to the

desired traveling wave response, the averaged models are general enough to capture

solutions with slowly-varying amplitudes and phases in individual sectors. However,

we focus only on traveling wave responses, where all of the sectors behave identically

but with a fixed phase difference among adjacent sectors, and on instabilities of this

response, which would result in bifurcations to other response types. The analysis

is carried out first for the isolated nonlinear system, consisting of a single linear

blade and nonlinear absorber. This allows for a complete description of the effects of

nonlinearity on the sector dynamics without additional complicating features due to

inter-sector coupling. When coupling is present, and under a traveling wave response,

the nonlinear system qualitatively features these same dynamics on a sector-to-sector

basis, but there may also exist bifurcations to non-traveling wave motions in addition

to the usual jump bifurcations associated with the isolated sector. In fact, it is shown

that the multi—sector traveling wave response corresponds directly to an equivalent

Single sector model whose natural frequency is shifted by a specific amount that

depends on the coupling and the mode being excited.

It is shown that the underlying linear resonance structure—and hence the no-

resonance gap and desired linear absorber tuning—qualitatively persists in the pres-
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ence of nonlinearity, provided that the excitation and path nonlinearity are sufficiently

small. Moreover, given any linear tuning strategy and for zero damping, there exists

a nonlinear tuning that guarantees a branch of solutions for which there are zero

blade motions relative to the rotating hub. However, for proper linear undertuning

this gives rise to an undesirable hardening path with potentially problematic aux-

iliary resonances and it is highly susceptible to parameter uncertainty. Even more

importantly, the nonlinear tuning criterion depends on the rotor speed as well as

the strength of the excitation and is thus effective near a single operating condition,

much like the frequency—tuned DVA of Section 2.5.2. These findings suggest that it is

impossible to exploit nonlinearity to further improve the absorber performance, and

it is therefore desirable to maintain nearly-linear absorber motions. Should nonlin—

earity be unavoidable, the results clearly Show that softening characteristics are more

desirable than hardening, where the former simply sets an upper limit on permissible

rotor speeds and the latter involves potentially problematic auxiliary resonances at

low rotor Speeds, particularly for light damping. Finally, when inter—sector coupling

is included, no instabilities to non-traveling wave motions could be identified. In

this way, the analysis of an individual sector offers global qualitative results that are

applicable to the fully coupled system, including stability.

The chapter is organized as follows. A mathematical formulation is carried out

in Section 5.2, beginning with a description of the governing nonlinear equations of

motion in Section 5.2.1. These are sealed in Section 5.2.2, the underlying linear reso-

nance structure is shown to persist under the scaling in Section 5.2.3, and the method

of averaging is employed in Section 5.2.4. This gives rise to simplified approximate

sector models that form the basis for all of the analysis that follows. Existence of

the desired traveling wave response is discussed in Section 5.3 in terms Of station-

ary points of the averaged system, and its local stability is subsequently addressed.

Features of the forced response of the isolated nonlinear system are highlighted in
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Section 5.4 with an emphasis on the blade and absorber frequency response and also

criteria for zero blade amplitudes. Finally, the forced response of the fully coupled

nonlinear system is considered in Section 5.5 with the goal Of quantifying possible

instabilities to non-traveling wave responses, and the chapter closes in Section 5.6

with some concluding remarks.

5.2 Formulation

111 what follows the nonlinear equations of motion given by Equation (3.14), together

with the generalized family of paths described in Section 3.4.4, are systematically

reduced via scaling and averaging to a model that is amenable to the tools from

nonlinear dynamics. AS with the analysis of Chapter 4, this is carried out under

the assumption of identical, identically-coupled sectors. The governing equations of

motion are briefly reviewed in Section 5.2.1 and they are scaled in Section 5.2.2 to

capture first-order nonlinearity via the absorber paths. In Section 5.2.3 a compar-

ison is made between the scaled sector models and the linearized sector models of

Chapter 4, and it is shown that the linear resonance structure qualitatively persists

under the scaling. Finally, averaging is carried out in Section 5.2.4 in both polar and

Cartesian forms. The resulting averaged sector models form the basis for all of the

analysis that follows.

5.2.1 Equations of Motion

The cyclically-coupled model to be considered features the same lumped-parameter

arrangement for the bladed disk assembly that was employed in Chapter 4, which

is Shown in Figure 5.1a (see Section 4.2 on page 78 or Table 3.1 on page 64 for a

description of it parameters), and the circular-path kinematic model for the absorbers

is replaced by the more general, arbitrary-path description of Section 3.3. This is

shown in the sector model in Figure 5.1b, where u is the ith dimensionless absorber
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Figure 5.1. (a) Model of bladed disk assembly and (b) sector model.

mass, 3,- is its nondimensional displacement along the arbitrary path, which subtends

an angle 29,-(si) relative to the vertex at V, and r,(s,~) is the dimensionless radius

length to the absorber relative to the blade basepoint 0. Relationships between these

fundamental path variables were derived in Section 3.3.1.

The equations of motion for the ith sector follow from the development in Sec-

tion 3.4 and they are given by

dr-

usg' + uriFidg’ + €518; — urifiw + 0;)2

Z

d .

-I- p.602 (F,- sin(I9, + 19,-) — a—E 003(6, + 192)) = 0, i E N (5.1a)

I

0;, + 51,9; — gariFis; + 6i + (502 sin 9i

de'

r226? + riFisg’ + 2ri-C-Esg(o + 6;)

+ l1 d I‘-

+ 1533—21255; + 6027‘,- sin(9,' + 29,)

+ u2(—6,-_1 + 26,- — 9,“) = Fcos(nor + (15,-), ie N (5.1b)

where the coupling damping {c has been ignored, the functions F,- = I‘,(s) and

I9,- = 19,-(5) are defined by Equation (3.15) and Equation (3.16), respectively, and

the subscripts i have been dropped from the system parameters (these are defined in
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Table 3.1 on page 64) since the sectors are taken to be identical. The absorber paths

are assumed to be of the form given by Equation (3.19) on page 65, where

(am? + 1) +6)2
b0 = fl,

~2
an

b — — (5-2)
2 a + 6

 

 

b __ 6756 _ a(n2+1)+6

4 ‘ 12(0. + (5)3(52 +1) 2(0. + (5)012 +1)’7

  

are the path coefficients if ”y is written in terms of the absorber tuning order according

to Equation (4.39) of Chapter 4. In this representation, each path depends only on

the linear and nonlinear tuning parameters a = VII—g and 77. Once these are set by

design, and given the disk radius 6, then a and ’7 are automatically prescribed (these

represent the effective placement of the absorbers along the blade lengths and the

curvature at their vertices).

NeXt the full nonlinear system given by Equation (5.1) is systematically reduced

to a set of weakly nonlinear oscillators, and perturbation techniques are subsequently

carried out on these reduced equations.

5.2.2 Scaling

In any realistic physical implementation, the absorber masses will be much smaller

than that of the blades, primarily due to stringent restrictions on the absorber rattling

space and therefore on its dimensions and mass. It is thus reasonable to take

at

x4=€

as the basis for the scaling, where 0 < 6 << 1 is a small dimensionless parameter and

the constant m iS to be determined. The blade and absorber dynamics are assumed

to scale with 5 according to

120



for each i E N in a manner that is to be determined. Blade damping levels relative

to critical are often 0.01% or less and, in order to achieve the desired order tuning,

absorber damping is generally made as small as possible. As discussed in Section 3.6,

the corresponding dimensionless blade and (effective translational) absorber damp—

ing constants are on the order of 10‘3 and 10—6, respectively, and they are scaled

according to

£5 = apes), and Ea 2 5451-1.

It is additionally assumed that the inter-blade elastic coupling is weak, that is,

which together with the assumption of light damping allows for the investigation of

a host of possible instabilities, bifurcations, and multiple interacting modes.1 Finally,

weak forcing is assumed, that is,

F = e’f ,

since the nonlinear dynamics near resonance are of interest.

The scaling parameters 111, k, I, p, q, n, and r are chosen such that, to leading order

(8 = 0), a simplified and solvable system is obtained, one that is used as the basis

for the method of averaging. In order to investigate the potentially rich dynamics

when the system is weakly coupled and lightly damped, the scaling is chosen so that

the nonlinearity, damping, and coupling all appear at (9(5) and it should preserve, as

much as possible, the linear resonance structure described in Chapter 4. To this end,

a suitable choice for the scaling parameters is found to be

m=2, &=%, [2%, p=3, qzl, 11:1, r23. (5.3)

 

1When the coupling is strong (which can occur in shrouded assemblies or via other coupling

mechanisms) and for sufficiently weak forcing, there exists the possibility of only two interacting

modes, the analysis of which is left for future work.
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h
Upon substitution and Simplification the it scaled sector model becomes

6;, + (Dig; + €122( - éz'_1 + 262' - 61+”

= e( — r03? — 6023,- — ébé; + fcos(nor + (151)) + 0(53/2), (5.4a)

a? + .5323, = e( — roég’ — 6026, — 55,3; — 77025;”) + 0(53/2), (5.45)

where the frequencies all zm and 0722 = no are summarized in Table 4.3

on page 96 and r0 is defined by Equation (3.17) (where 'y is eliminated according to

Equation (4.39)).

When 5 = 0, Equation (5.4) reduces to a pair of decoupled, undamped, and un-

forced linear oscillators. The first oscillator describes the free vibration of an isolated

blade without an absorber, while the second captures the dynamics of each absorber if

the blades are locked relative to the rotating hub, which was discussed in Section 4.2.3.

The general case of small 5 7.4 0 is simply a perturbation of these uncoupled systems;

Equation (5.4a) is a linear, weakly forced oscillator that approximates the motions of

blade i E N while Equation (5.4b), which captures the ith absorber dynamics, is un-

forced and weakly nonlinear due to the cubic absorber path term. These oscillators are

weakly coupled due to the assumptions of small )1 (representing the blade-tO—absorber

coupling) and small inter-blade stiffness coupling.

Absorber design is carried out by choosing the linear absorber tuning order a

(the proper selection of which was discussed in Section 4.4) and the nonlinear tuning

parameter 7), both Of which appear only in the ith absorber equation, that is, Equa-

tion (5.4b). This in turn prescribes the absorber paths by setting the constants b0,

b2, and b4 in Equation (5.2) and it fixes the effects of the absorbers on the blade

dynamics via the first two (inertia and stiffness) terms in the parentheses on the right

hand side of Equation (5.4a).

Before proceeding with a further reduction of Equation (5.4) via averaging, it

should be verified that the scaled sector models suitably capture the underlying linear
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resonance structure that was described in Chapter 4. This is done in the next section,

where it iS shown that the no-resonance zone qualitatively persists under the scaling.

5.2.3 Linear Resonance Structure of the Scaled System

If the scaling in Section 5.2.2 is applied to the ith linearized sector model defined

by Equation (4.1), and if the assumption of motion-limiting stops is removed by

multiplying through by the stopper angle ibo, then it can be directly compared to the

ith scaled sector model given by Equation (5.4) with n = 0. These two systems (in

this section we refer to them as the linearized model and scaled model for simplicity)

match identically if u = 0 in N111 and K11 (see Table 4.1 on page 81), which simply

ignores the contribution of the absorber inertia in those terms. In this way, the scaling

is seen to essentially linearize the blade dynamics (with an accompanying additional

loss of some dynamic coupling terms involving u) while at the same time capturing

the basic first-order effects of the absorber path nonlinearity.

Since a = 82 will generally be small, it is expected that the linear resonance struc-

ture qualitatively persists under the scaling of the previous section. This is verified

in Figure 5.2a which shows example plots of the rotor Speeds ores corresponding to

resonance for the linearized (solid lines) and scaled (dashed lines) systems described

above versus the linear absorber detuning parameter 6 for zero damping and for var-

ious values of u. (Table 5.1 lists the corresponding values of 5, 6a, and Aer for the

various mass ratios.) To simplify matters, the curves are shown for the special case

of a single isolated blade/absorber combination, that is, for z/ = 0 (this is equivalent

to considering only the possible resonance corresponding to p = 1), but this does

not preclude a direct comparison of the two models for accuracy. It is clear that the

linear resonance structures of the two systems are in good agreement for sufficiently

small mass ratios, and both feature the no—resonance gap. As )1 increases, so too does

the percent error in ores between the linearized and scaled systems, which is Shown
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Table 5.1. Data to accompany Figure 5.2.

 

 

,u 5 ficr (X 103) Aer .14 5 Her (X103) /\cr

0 0 0 - 0.005 0.0707 —2.348 —0.597

0.001 0.0316 —0.470 —0.268 0.010 0.1000 —4.685 —0.841

0.002 0.0447 —0.940 -0.378 0.015 0.1225 —7.012 —1.027

0.003 0.0548 —1.410 -0.463 0.020 0.1414 -—9.329 —1.182

0.004 0.0632 —1.879 —0.534 0.025 0.1581 —11.637 —1.317 
 

in Figure 5.2b. For reasonable mass ratios, however, the error is seen to be small

over a wide range of detuning values, except near the critical detuning 6 = Ber where

the error becomes unbounded (implying that the scaled system predicts a slightly

larger no-resonance gap). The scaled model increasingly overestimates ficr by a fi-

nite amount,2 but otherwise satisfactorily captures the underlying linear resonance

structure.

Next the nonlinear scaled sector models of the previous section are further re-

duced via the method Of averaging. The perturbation analysis simply casts them into

a standard and tractable form, from which blade and absorber amplitudes can be

estimated.

5.2.4 Averaging

In what follows averaging is carried out on the scaled sector models of Section (5.2.2).

This is done first in the standard polar form and the results are subsequently converted

to cartesian coordinates. Both forms are used in the analysis, either explicitly or

implicitely—whichever is most convenient.

 

2This could be Obtained by deriving the counterpart to 6C, for the scaled system (see Equa-

tion (D2) Of Appendix D) and comparing the two critical detuning values.
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(Predicted by Linearized Eqns.)

   

  

  

 

      

 
 

 

 

 

 

 

   

 

-— Linearized Eqns.

—--- Scaled Eqns.

(with n = 0)
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Figure 5.2. (a) The rotor speed om corresponding to resonance for the linearized system

of Chapter 4 and the scaled system formed by Equation (5.4) (with 17 = 0) versus the

linear absorber detuning parameter [3 for a model with N = 1, n = 3, a = 0.84, 6 = 0.67,

v = 0, and for mass ratios 0.005 S u _<_ 0.025; (b) the corresponding percent error. The no-

resonance gap (predicted by the linearized system of Chapter 4) is defined by 6c, < 6 S 0,

where the values of the critical undertuning 6a are given in Table 5.1 for the various mass

ratios.
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POLAR FORM

The weakly nonlinear set of oscillators defined by Equation (5.4) can be cast into a

form that is suitable for averaging via the transformation3

A

6,-(7) = u,(r) cos (nor + 9b, + g,(r))

A

64(7) 2 —nou,(7’) Sin (nor + (bi + 921(7))’1.

A

s,(r) = 1),-(T) cos(nor + (b, + <,(r))

A

.925) = wow) sin(nm + 4.- + 9(7))

along with the usual constraint equations. Equation (5.5) represents a standard

variation of parameters to transform the dependent variables from 6, (resp. 3,) to u,

and g, (resp. v, and <,), which allows for solutions with slowly-varying amplitudes

and phases in individual sector responses, and it also serves to capture the desired

traveling wave response among the sectors by including the inter-blade phase angle

96,. In this way, the transformation additionally carries the continuous time and

discretized space duality that was systematically described in Section 2.3.2 in the

context of engine order excitation. Depending on the value n relative to N, it can

therefore capture BTW, FTW, and SW responses. It should be noted from the

onset, however, that there could be a multitude of other response types and that

the averaged models to be developed based on Equation (5.5) are general enough to

capture them. However, the desired and most basic response is that of a traveling

wave, the existence, stability and bifurcation of which forms the main focus of this

chapter.

Upon substitution of Equation (5.5) into Equation (5.4) and elimination of terms

 

3The notation g,- and (,- is recycled in this chapter for convenience, and should not be confused

with Equation (B.15) or the circular-path absorber angle in Figure 3.6.
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at 0(53/2) and higher we Obtain

 

1

ug = no—((w¥1 — n2o2)u, cos(nor + d, + 9,) + eff;)) Sin(nor -I- (I), + 9,)

I 1 2 2 2
u,9, = (—(w11 — n o )u, cos(nor + (25,-1— 9,) + Effi)cosnor + (b, + 9,)

"10' (5.6)

v; = no—((c;,§2 — n2o2)v, cos(nor + o, + <,) + ef2(.‘2))sin(nor + (b, + q)

. l _ 1:2 _ 2 2
11,9 ._ no (r322 n o )v, cos(nor + d), + c,) + sf”) cos(nor + (b, + <,)

for each i E N, where the functions

(a) - . ‘
f11 = — nogbu, sin(nor + (b, + 9,) — fcos(nor)

— (r0032 — 6og)v, cos(nor + (I), + c,)

- 2171' 0080107 + <2, + <1) - 174—1 0080107" + (bi-1+ <i—1)
+ V2 _ ) (5.7)

— u,+1COS(n0T + ¢i+i + (4+1)

f2? = — noéav, sin(nor + 05, + §,) + 902v? cos3(nor + (l), + <,)

-— (r0031 — 6o2)u, cos(nor + (b, + 02') )

capture all of the (9(5) terms in Equation (5.4). The differences

2 2
o —o

(3%1 — 77.202 = ___02_1" (5.8a)

7'

£232 -— n202 = ('52 — n2)02, (5.8b)

give a measure of proximity of the rotor speed relative to blade resonance and to the

absorber design relative to ideal linear tuning, respectively, where (1)11 is the natural

frequency of an isolated blade without an absorber, or = m is its resonant

frequency,4 and 5722 is the natural frequency of each absorber if the blades are locked

relative to the rotating hub. Equation (5.8) motivates the speed and order detunings

02 = 03(1 + 5A), (5.9a)

a? — n2 = EA, (5.95)

 

. . . . . . _. +1 .

4This is not to be confused With ores, which corresponds to the Intersection Of 02:3 1 With the

engine order line no.

127



  

F ”U

5 nd

wép’ £3,
\2

\

-----7"” ' (Dip) \(1)

will) :

i—>A

/ > 0

Figure 5.3. Example Campbell diagram showing the speed and order detuning parameters

A and A.

where A plays the role of the rotor speed and A is the counterpart to the linear order

detuning from Chapter 4. These can be visualized in Figure 5.3, where it is observed

that 6211 2’ 6291) for small mass ratios a. (See Equation (4.26) on page 89.) Under the

detuning scheme defined by Equation (5.9) the right hand side of Equation (5.8a) and

Equation (5.8b) reduce to —5A and €A02, respectively, and Equation (5.6) becomes

suitable for averaging. Finally, the two order detuning parameters A and fl are related

by

= Wm + 2)

fl ’

which follows from Equation (5.9b) and Equation (4.44). The no-resonance zone is

A (5.10)

such that ficr < fl S 0, to which there corresponds a range Aer < A S 0 that can be

computed using Equation (5.10).

After the appropriate substitutions are made Equation (5.6) is averaged over one

period T = 27r/n0. The result is partitioned into two vector functions, one that

defines the stationary points of the ith averaged sector model (this is discussed more

fully in Section 5.3.1) and the other inherits any remaining terms. To 0(83/2) and

for each i E N, the desired form is

_ _ _ _ _ a a

(“i,uz'eia ’Uz', 112'le = §EG(V¢—1,V¢,Vz‘+1)+ '2n—08(Vi—1vviavi+1)a (5-11)
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where v, = (21,, 9,, 27,, 6,)T. The elements of the 4 x 1 vector G are given by

‘

G1 = — a(n2 +1)0217,sin(§,— ,) — naébi‘i, —— fsin 9,

G2 = - a(n2 +1)a2i'),cos( ,-— 6,) — Ail, — fcos 9,

>, 26 N (5.12)

2
Cg = + o'(n2 +1)0 17., sin(g, -— 6,) — 7105517,

3

2 J G4 = — 0(722 + 1)02fl, cos(9, — 6,) + A0227, + $70217

where the identity (1),-3:1 — gb, = :1: 27rfi = :t 4,0,,“ has been employed, and the first

element of g is

91 = 92fli—1sin(éi—1 - é, - 9071+1) + 9211i+15in(§i+1 - 91+ ¢n+1), 2'6 N

(5.13)

with the remaining entries being equal to zero.

As a final and important note, it is customary at this point to expand all ap—

pearances of 0 according to Equation (5.9a) and to keep only 0(5) terms in Equa-

tion (5.11), which amounts to simply replacing a with the constant 0,. However,

we opt instead to keep a in the analysis which, as we shall see, gives much more

satisfactory results.5 Benchmark results in which the substitution is made are given

in Appendix E; these are to be compared with the analysis and results to follow,

particularly the blade and absorber frequency response curves of Section 5.4.

The averaged sector models defined by Equation (5.11) serve as the basis for the

analysis in the rest of this chapter. The corresponding Cartesian form is also useful,

which is given next.

 

5Note that Guckenheimer and Holmes take the same approach in their analysis of a simple Duffing

oscillator in Chapter 4 of [96]. (In particular, see Equation (4.2.14) on page 174.)
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CARTESIAN FORM

The averaged systems given by Equation (5.11) can be converted to Cartesian form

via the transformation

 

me) = \/A2<r>+B.-2<T>. mam = —B.<r>/A.<r>
 

 

, z E N.

W) = ,/C.2<r) + 0.2m, tam) = —D.-<T>/C.-<r>

Then if w, = (A,, B,, C,, D,)T it can be shown that

W; = 5%; P(w,_1,w,, Wi+1) +% P(Wz'—1, W23 W141) + 0(53/2), 26 N (5-14)

where the elements of P are given by

P1 = —oi'(n2 + 1)02D, — AB, — naébA, ‘

+ 192(232' — (Bi—1 + Bi+1) COS W41)

P2 = +o'(n2 +1)02C,+ AA, — naébB, + f

+ 192(- 2141' + (Ai—l + Ai+1) COS 92n+1) L (515)

P3 = —a(n2 +1)02B,+ A02D, — nail-,0, + g77072(D;‘-3 + CED,)

P4 = +a'('n2 + 1)02A, — A020, — noéaD, — €43-'r)02(C,Di2 + 03) J

The first two elements of the vector p are

.2 ‘.

Pi = -V (Ai—l - 242405111 991241 , i6 N (5.16)

.2 .

P2 = —V (Bi—1 — Bi+1)3111 <pn+1

and the remaining two elements are zero.

Existence and local stability of the desired traveling wave response of the coupled

system is discussed next.

5.3 Traveling Wave Response

The desired system response is that of a traveling wave (TW), where each sector

behaves identically, except for a fixed phase difference among its nearest neighbors.
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Such a response is characterized by the fullest degree of (cyclic) symmetry that is

possible, which can be visualized in Figure 2.7 on page 35. Then the absorbers become

entrained with the (discrete BTW, FTW, or SW) applied dynamic loading among the

blades (see Section 2.3.2) and are hence most effective in addressing their attendant

vibrations. This type of response is the counterpart to the desired synchronous motion

in the CPVA work by Shaw and coworkers, where any other response type implies

a degradation of absorber performance in which some of the absorbers work against

the others [22, 23].

The averaged models described in Section 5.2.4 were formulated specifically to cap-

ture a TW response, but they are also general enough to identify other solution types

(if they exist) that involve amplitude and phase modulations in individual sectors.

Throughout the remainder of this chapter we focus on TW solutions, the existence,

determination, and stability of which is considered next. Possible bifurcation to other

response types is addressed in Section 5.5.

5.3.1 Existence

A TVV response is characterized by identical dynamics of individual sectors together

with a fixed phase difference in these dynamics among neighboring sectors. If v =

('&,9,17,6)T and w = (A, B, C, D)T, then such a response corresponds to

(v,_1,v,, v,+1) = (v,v,v), Vi E N (Polar Form) (5.17a)

(w,_1,w,, w,+1) = (w,w,w), Vi E N (Cartesian Form) (5.17b)

where the phase difference among adjacent sectors is built into the transformation de—

fined by Equation (5.5) via the inter-blade phase angles 96,. Since g(v, v, v) = 0 (resp.

h(w,w, w) = 0), which can be verified from Equation (5.13) (resp. Equation (5.16))

by setting @,_1 = @,+1 = @ (resp. A,_1 = A,+1 = A and B,__1 = B,+1 = B), it thus
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follows that

O = C(v, v, v), (Polar Form) (5.18a)

O = P(w, w, w), (Cartesian Form) (5.18b)

defines a TW response when the averaged models are in polar (resp. Cartesian) form.

That is, if a stationary point v (or w) can be found that satisfies Equation (5.18a)

(or Equation (5.18b)), then there exists a corresponding TW response. Existence,

therefore, follows from the equilibria of an individual averaged sector model, a sim-

plification that follows from the assumption of identical, identically-coupled sectors,

and expressions for their determination are derived in the next section. In contrast,

local stability of a stationary point involves all N averaged sector models, which is

discussed in Section 5.3.3.

5.3.2 Stationary Points

To each stationary point v (or w) that satisfies Equation (5.18) (when it exists)

corresponds a TW solution. In general, the determination of these equilibrium points

is too formidable to be carried out analytically, but some important insight can be

gleaned from their defining equations. If damping is ignored, however, a simplified set

of implicit expressions can be obtained, from which blade and absorber amplitudes WI

and [6| easily follow. These expressions are used to generate representative frequency

response curves in Section 5.4 for the isolated nonlinear system and in Section 5.5 for

the fully coupled nonlinear system. Finally, in all of what follows it is assumed that

n E Z+, o > O, f # 0, O < a < 1, and n2 — 6 > O. Physically, the last two conditions

imply that the absorber is attached along the length of the blade and, essentially,

that the rotor radius is comparable to the blade length if the engine order is very

small—a restriction that will generally be satisfied for the engine orders of interest

and for practical rotor/blade geometries.
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We begin by considering the fully damped system and focus on general insight;

the special undamped case is considered subsequently.

THE DAMPED SYSTEM

When they exist, the stationary points can be obtained from either Equation (5.18a)

or Equation (5.18b). The former is slightly less cumbersome to work with analytically

and hence it is employed throughout the remainder of this section. It can be written

as

2
0 = —o:(n2 +1)o 93in ‘ — 6) — noébfl — fsin 9, (5.19a)

0 = —0z(n2 +1)029cos(9 — 6) — (A — 2192(1— cos cpn+1))fl — fcos 9, (5.19b)

0 = +or(n2 + 1)0221 sin(‘ — 6) — noéaii, (5.19c)

0 = —a(n2 + 1)02'& cos(9 — 6) + A0217 + 2%770293, (5.19d)

from which a number of general insights can be gleaned.

In the absence of nonlinearity, which appears only in Equation (5.19d) via the

cubic absorber path term, Equation (5.19) approximates the amplitudes of the exact

linearized response defined by Equation (4.34) as o is swept from zero. Moreover,

the inter-sector coupling appears only in Equation (5.19b) in combination with the

speed detuning parameter A, and it therefore reflects the same shift in the linear

resonance (associated with coupling) that was observed in Chapter 4. In this way,

the fundamental effects of nonlinearity on the TW response amplitudes, and bifurca-

tions to other traveling wave responses, can be qualitatively captured in the absence

of coupling—that is, for an isolated sector. This is the focus of Section 5.4. The

frequency response amplitudes for the fully coupled nonlinear system are essentially

the same as those of the uncoupled case, except for a shift in the primary resonance

by an amount that is directly proportional to 122; when the coupling is small, this

shift is nearly undetectable. However, there may also be potentially rich instabilities
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to response types other than the desired TW (i.e., those with a reduced degree of

symmetry) when coupling is present. This possibility is discussed in Section 5.5.

The presence of damping renders Equation (5.19) essentially intractable since

there is no clear way to eliminate phases and solve for the desired amplitudes fl and 27.

Even the corresponding Cartesian form poses much difficulty. Thus when damping is

included the equilibrium points are obtained numerically.

The special case of zero damping is considered next. In this instance, an implicit

pair of expressions for the blade and absorber amplitudes can be derived.

THE UNDAMPED SYSTEM

For zero damping, and when the stationary points exist, they are defined implicitly

by Equation (5.19) with Eb = 55, = 0, that is,

0 = —o:(n2 + 1)o2v Sin( —6)— fsin 9, (5.20a)

0 = —a(n2 + 1)02v cos (9— 6—) (A— 2(1— cos go,,+1))u —fccos 9, (5.20b)

O = +a(n2 + 1)02"& Sin( — 6), (5.20c)

0 = —a2(n + 1)o2ucos(9— 6) + A0227 + 917702273, (5.20d)

from which a simple pair of implicit expressions for the blade and absorber amplitudes

can be distilled. However, the case of zero damping is highly degenerate and this

system gives rise to nonhyperbolic equilibria. Nonetheless, an arbitrarily small level

of damping removes the degeneracy, which is shown in Section (5.3.3), and thus the

expressions in Equation (5.20) collectively give a good approximation to the blade

and absorber amplitudes in the presence of light damping. Local stability is obtained

accordingly.

It should be pointed out from the onset that, due to the appearance of sin9

and cos9 in the forcing terms of Equation (5.20a) and Equation (5.20b), the usual

approach to eliminate phases cannot be employed and, correspondingly, the analysis
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is somewhat more cumbersome. Equation (5.20c) is used as a guide on how to proceed.

Under the assumptions indicated above, it is satisfied only if sin(9 — 6) = 0, 21 = 0, or

both. The first condition gives rise to the most general form of the equilibria and it

is described in detail below. The second condition gives rise to the desired motions in

which the blades remain stationary relative to the spinning rotor. It is simply a special

case of the first and is described in Section 5.4.2. Finally, the third condition can be

obtained from the first two, and it does not give rise to any additional equilibria.

If sin(9 — 6) = 0 then Equation (5.20c) is trivial and it follows from Equa-

tion (5.20a) that sin9 = 0, and together these expressions imply sin6 = 0. The

phases must therefore satisfy

9 2 kn and 6 = In, k,l E Z (5.21)

and the system given by Equation (5.20) reduces to

0 = —cr(n2 + 1)021‘Jcos(k7r)cos(l7r)

— (A —— 2192(1— cos gon+1))i‘i — fcos(lc7r), (5.22a)

0 = —-a(n2 + 1)ogflcos(k7r)cos(l7r) + 20227 + 37,0263, (5.22b)

for k,l E Z. There are at most four integer pairs (1:, I) that yield distinct

blade/absorber amplitudes (11,9), and one such choice is summarized in Table 5.2.

Physically, when (k,l) = (0,0) (resp. (1,1)) each blade and its attendant absorber

oscillate with the same phase and their motions are in phase (resp. out of phase) with

respect to the applied dynamic loading. For the case of (k, l) = (0,1) (resp. (1,0))

their motions are out of phase and the blades (resp. absorbers) responds out of phase

(resp. in phase) relative to the excitation. (Of course, some of these motions may be

unstable.) These details are not belabored, however, since in the absence of damping

every stationary point is nonhyperbolic, which is shown in Section 5.3.3.

The (k, l)-dependence in Equation (5.22) can be eliminated by multiplying Equa-

tion (5.22a) by cos(kvr) and Equation (5.22b) by cos3(l7r) = cos(l7r). Then by defining
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Table 5.2. Example integer pairs (k, I) that yield distinct stationary points 17. and 9 of the

averaged system. Also indicated are the corresponding values of 9 and 6 and whether the

resulting blade/absorber motions are in phase (IP) or out of phase (OP).

 

k l cos(k7r) cos(l7r) cos(k1r) cos(l7r) 9 = [ca 6 = l7r Phase
 

 

0 O 1 1 1 0 0 IP

1 1 —1 —1 1 7r 7r IP

0 1 1 —1 —1 0 7T OP

1 0 —1 1 —1 7r 0 OP

1] = i] cos(kn) and i2 = i7 cos(l7r) and simplifying the result it follows that

0 = a(n2 +1)a2o + (A — 2122(1— cos ¢n+1))a + f, (5.23a)

0 = a(n2 +1)a — A73 — 2,233, (5.2310)

from which the steady-state blade/absorber amplitudes lill = li'il and liil = |i7| can

easily be computed.

There are at most three roots for i), and these can be obtained by eliminating it

in Equation (5.23). They follow implicitly from

  

  

3 2 2 1 2 2 2 1 A

-n‘03 + a .(n + ) a + /\ ,~, + ‘2" + )f = 0, (5.24)
4 A — 2122(1— cos <Pn+1l A - 2V2(1 — cos $0n+1)

where the corresponding values

2 2 A
21 = a(n + 1)o ~ f (5.25)

—A - 2192(1— cos cpn+1)v _ A — 2192(1— cos <9n+1)

follow from Equation (5.23a). Given the geometry of the bladed disk assembly, the

strength and order of the excitation, a particular linear tuning, the coupling level,

and the strength of the absorber path nonlinearity, one can construct the blade and

absorber amplitude frequency response curves in terms of the rotor speed using Equa-

tion (5.24) and Equation (5.25). In doing so, the reader is reminded that the dimen-

sionless rotor speed a and its detuning parameter A are related by Equation (5.9a),

where e = fl.

Local stability of the TW response is considered next.
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5.3.3 Local Stability

A hyperbolic fixed point v (or w) implies a unique hyperbolic periodic orbit in the ith

nonlinear sector and together all such orbits form a TW response among the sectors

with the same stability type [96,109]. Local stability of v is considered next for

the fully coupled system. The results are subsequently stated for the corresponding

Cartesian form and also for the special case of a single isolated sector.

THE COUPLED NONLINEAR SYSTEM

Local stability of a stationary point v = (21, 9, i7, 6)T, the elements of which are defined

implicitly by Equation (5.19), can be obtained by considering the small perturbations

r], = v, — v, i E N

away from v, = (9,, 9,, 9,, 6,)T. Then for each i E N, Equation (5.11) can be locally

approximated to leading order by the linearized equation

5

= 2nal(A ‘ B)m_1+ U771 + (A + B)m+1] + HOT, 2' e N. (5.26)
I

77:”

In Equation (5.26) the subscripts are taken mod N such that 770 = TIN and "NH = 171

and

_méb 2 —5,—,C(é_§_) — ch) ‘12”?209 +1) 25(5—5) “Cw-6)

_—oC(,_—) oaS(§_C—) A02 + 2,0252 —oaS(,_C—)d  

where the shorthand notation a = a(n2 + 1)o2, SOC) = sin(x) and C(X) = COSfX) has

been introduced. If the matrices A and B are partitioned into four 2 x 2 blocks then

the (1,1) blocks are given by

0 19211 cos (9,,“ 192 sin <9.,,+1 0

A11 = 3 B11 =
—-192 cos (0,,“ 0 0 13217. sin cpn+1 ’

and all other entries are zero.
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The N linear systems defined by Equation (5.26) can be handled in the same

way as the sector models in Section 4.3.2. By stacking each 4 x 1 vector 11, into the

configuration vector 17 = (711,172,. . . ,nN)T it follows that 77’ 2 5J((Q17, where

1

JS’S) = E—circ (U, A + B, 0, . . . ,0, A — B) (5.27)
no

is the 4N >< 4N Jacobian matrix, which belongs to fiffflyzuv. That is, .18? is a block

circulant, block symmetric matrix of type (4, N) and can thus be block diagonalized

via the unitary transformation defined by Equation (2.11) on page 15. This gives rise

to the set of N, 4 x 4 matrices

(P)_

k
J U + 2Acos (pk + 2jB sin (pk), k E N (5.28)

_2no_(

where, recall, (pk = 2V1“ — 1). The 4N system eigenvalues are preserved under this

transformation and hence they can be obtained by solving N reduced-order eigensys-

tems involving 4 x 4 matrices instead of just one potentially formidable eigenvalue

problem involving a 4N x 4N matrix. However, the transformation renders the re-

duced Jacobians complex, which makes their interpretation more difficult. This is

discussed more fully in Section 5.5.

A similar analysis can be carried out for the averaged sector models in Cartesian

(P)
form. In this case the Jacobian matrix J(S) (the counterpart to JCS when Cartesian

coordinates are used) has generating matrices P, Q + R, 0, . . . ,0, Q — R, where

_ —no€b —A + 2192 0 —c’w2 .

P _ A — 2192 —no€b (102 0

_ 0 —5i'02 gnozCD — 71065, 3902(02 + 3D?) + A02

L c102 0 --§3,7702(3C'2 + D2) — A02 —%noZCD — noéa _ 
and the (1, 1) blocks of Q and R are given by

0 *2

Q112 [,2

_V COS Son-H

V COS $011+1 0

with all other elements being equal to zero. This gives rise to the set of N, 4 x 4

block decoupled Jacobian matrices

1

2no

Jim: —-——(P + 2Qcos 99k + 2szin (pk),

138

.2 .

V Slnson+1
] , R11 = [

0

0 02 sin ¢n+1

keN

 

(5.29)



which are the Cartesian counterparts to the matrices defined by Equation (5.28).

Some local stability results are given next for the special case of an isolated sector,

including a polynomial expression for the eigenvalues of its Jacobian matrix.

THE ISOLATED NONLINEAR SYSTEM

The Jacobian matrix corresponding to an isolated sector can be obtained from Equa-

tion (5.28) or Equation (5.29) by setting I? = 0, in which case the matrices A, B, Q,

and R (and hence the lat-dependence) all vanish. In polar and Cartesian forms, the

.1 acobians are

  

  

f —no£b —C—H:’C(§_<-) — {0(9) —OS(§_<-) 5170(9—5)-

J(P) : 1 —A OUS(é_<-) + f5(§) —QC(§:C) —C¥’US(§_C-)

15 2720 (SS(§_,-) C—YflC(§_—g‘) _nUSC—l _C—w’CQ—‘C—l ,

-_6‘C(§-<‘) MSw—c‘) ”\02 + 917702772 _G'flSw—s’)-

(5.30a)

—noéb —A 0 —ao2 -

J(C) _ _1__ A —noéb 6202 0

IS — 2no 0 —C_l’0'2 3170200 — nag}, gnozw'z + 3D2) + A02 ’

_ (102 0 —§,no2(302 + D2) — A02 —%nozCD — noéa

(5.30b)

which have the same elements as the matrices U/2no and P/2no, respectively, in the

absence of inter—sector coupling.

Stability results are more transparent and tractable for the isolated sector case,

especially in Cartesian form. The eigenvalues C of J)? follow implicitly from the

fourth-order polynomial det (J(SC) — (I) = 0, which can be written as

s4 + (1353 + (a2 + d2)32 + dls + (a0 + do) = 0, (5.31)
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where s = 2noC. The coefficients are

a2 = A2 + 113 (32(Iz2(n2 +1)2 + (377(C'2 + D2) + 4A) (977(C'2 + Dz) + 4)\))o4

a0 = 1150122022 +1)202 + 377(02 + 02m + 4AA)

>< (402(712 + 1)202 + 977(C2 + 02)A + 4AA)04

<13 = 2710(65 + 65)

d2 = ”202(63 + 45555 +61?) >,

d, = 272.05 ((12012 + 1)2(€5 + 51,) + 11,; (372((32 + D2) + 4)) (971(02 + D?) + 4205,)

+2noA2€5 + 2n3a3éa£b(€a +61)

d0 = 116n20‘6éb(3202(n2 + We}. + (377((32 + D2) + 4/\)(917(C2 + D2) + 4A)é,,)

+ 71202652 (A2 + 73025,?)   l
where each (1;, (k = 1, 2,3,4) vanishes when 55, = 5b = 0. In the absence of damp-

ing Equation (5.31) is quadratic in 32 and it thus features quadrantal symmetry in

the complex plane. This in turn implies nonhyperbolic or otherwise unstable station-

ary points v, depending on the details of a2 and a0. An arbitrarily small level of

blade and/or absorber damping destroys the quadrantal symmetry, thus removing

the possibility of nonhyperbolicity.

Next the averaged sector equations are employed to detail some global features

of the forced response. This is done first for the isolated nonlinear system in Sec—

tion 5.4 and subsequently for the fully coupled nonlinear system in Section 5.5. For

convenience, and where appropriate, the analysis is carried out using both polar and

cartesian forms.

5.4 Forced Response of the Isolated Nonlinear System

III order to focus on the nonlinear dynamic performance of the absorbers without the

potentially complicating effects of inter-sector coupling (in particular, the possibility

of additional symmetry-breaking instabilities) we focus on an isolated sector in this
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section, which consists of a single blade and nonlinear absorber. (A treatment of the

fully coupled nonlinear system is postponed to Section 5.5.) The results are presented

in Section 5.4.1 in terms of blade and absorber (amplitude) frequency response curves.

A criterion that guarantees a branch corresponding to zero blade amplitudes is sub-

sequently derived in Section 5.4.2, which is the nonlinear counterpart to the ideal, or

exact linear tuning.

5.4.1 Frequency Response

Example plots of the blade and absorber TW amplitudes lfll and |v| are shown in Fig-

ure 5.4 versus the rotor speed 0 for a hardening absorber path (17 > 0), zero damping,

and for various levels of the order detuning 6, and a corresponding set of plots is shown

in Figure 5.5 for a softening path (7) < 0). In these figures, the undamped absorber

and blade amplitudes were generated using Equation (5.24) and Equation (5.25) with

I? = 0, and stability results were numerically determined according to Equation (5.30)

with the addition of very light damping (approximately 0.01% absorber damping rel-

ative to critical and zero blade damping). For comparison, the linearized frequency

response curves of Chapter 4 are also included. Figure 5.6 features the same frequency

response loci shown in Figure 5.5 for softening absorbers, but with nonzero blade and

absorber damping éb = 2 x 10”3 and £5 = 2 x 10—6. These curves were obtained

numerically according to Equation (5.19) (stationary points) and Equation (5.30a)

(local stability). A set of frequency response curves showing more resolution with

respect to 6 within and near the nqresonance zone is Shown in Figure 5.7 for a

hardening absorber path and in Figure 5.8 for a softening absorber path; these are

meant to accompany Figure 5.4 and Figure 5.5, respectively. Finally, it was shown in

Section 5.2.2 that the linear resonance structure described in Chapter 4 is preserved

under the scaling (see Figure 5.2 on page 125), and it is clear from Figures 5.4-5.8

that this structure qualitatively persists in the averaged system as well. However, the
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nonlinearity gives rise to some additional features, and we describe them first for the

case of hardening absorber paths.

In Figure 5.4 either one or two nonlinear resonances can be observed, depending

on the order detuning /3, and there is interplay/duality — between the two. For

convenience, these are defined as primary and auxiliary (nonlinear) resonances and

are denoted by 72151” and REL, respectively. The primary resonance is simply the

nonlinear counterpart to the linear resonance (denoted by ’RL) and, for a hardening

absorber path, it bends toward the direction of increasing rotor speed. When it exists,

722112 is a secondary resonance that arises due to the presence of the nonlinearity.

For large undertuning values, REL and RL are nearly coincident close to o = or :

0.346, which is shown in Figure 5.4a, but the hardening nonlinearity sharply bends

the primary resonance in the direction of increasing a. In this figure, the nonlinearity

gives rise to an additional resonance RyL, which appears from zero rotor speed. For

the blade, it increases gradually for increasing 0, whereas for the absorber it begins

at nearly constant amplitude. For both, the auxiliary resonant amplitudes increase

sharply at o = or which, recall, is the resonant speed of an isolated blade without an

absorber and it also corresponds to zero speed detuning, i.e., A = 0.

As 9 is increased REL and ’RL move together to the right6 (Figure 5.4b) toward

infinite o, leaving behind the same set of linear amplitude branches that were observed

in Chapter 4. This situation, which is shown in Figure 5.4c, corresponds to the no-

resonance zone predicted by the linear theory. However, the auxiliary resonance REL

persists, which is an artifact of the absorber path nonlinearity. The case of perfect

linear tuning (13 = 0) is similar, except that the linear amplitude branch for the blade

vanishes (this is shown in Figure 5.4d) and Ram and 72131” become coincident—that

is to say, as [3 is swept through exact linear tuning 721:1” essentially switches roles to

become the primary resonance. By further increasing the linear detuning (that is, for

 

6The error between the location of these resonances can be approximated by the curves in Fig-

ure 5.21) on page 125.
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Figure 5.4. Blade/absorber frequency response curves for the essentially undamped iso-

lated nonlinear system with a hardening absorber path (17 = 1), for various detuning values

6, and for n = 3, a = 0.84, 6 = 0.67, p = 0.0035 (s = 0.0592), and F = 0.0001 (f = 0.117).
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Figure 5.6. Blade and absorber frequency response curves for the same conditions in

Figure 5.5 except with nonzero damping: {b = 2 x 10‘3 and {a = 2 x 10‘6.
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Figure 5.7. Blade and absorber frequency response curves to accompany those shown in

Figure 5.4 for a hardening absorber path showing various levels of the order detuning 6

relative to 6cr = —0.00164 inside and near the no—resonance zone.
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Figure 5.8. Blade and absorber frequency response curves to accompany those shown in

Figure 5.5 for a softening absorber path showing various levels of the order detuning 6

relative to 6C, = —0.00164 inside and near the no—resonance zone.
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6 > 0) the linear resonance appears from the left at zero rotor speed and REL moves

with it to the right, which is shown in Figure 5.4e—f. As 6 becomes large the primary

and linear resonances become nearly identical. This is shown in Figure 5.4g.

In summary, the primary nonlinear resonance behaves in the same way as the

linearized resonance when the linear detuning is swept from negative to positive, and

it observes the no—resonance zone by vanishing when 6m— < 6 < 0. It also features

a hardening bend in the direction of increasing 0 that extends out to infinite rotor

speed. Finally, the nonlinearity gives rise to an additional auxiliary resonance that

exists for all undertuning values, that is, for any 6 < 0.

A similar trend can be observed in Figure 5.5 for the case of a softening absorber

path, except that the auxiliary resonance exists when the absorber is overtuned and,

of course, the primary and auxiliary resonances bend in the direction of decreasing

rotor speed. The primary nonlinear resonance does exist for detuning values within

the no—resonance zone, but its effective location corresponds to large rotor speeds

and it approaches infinite o as the linear order tuning approaches zero (ideal tuning).

In this way, the no—resonance zone essentially persists, where the primary nonlinear

resonance simply places an upper limit on the effective range of permissible rotor

speeds. As ”RISK” moves with RL toward infinite o for increasing 6, it leaves its

remnants behind which, when the tuning such that 6 > 0, is regarded as the auxiliary

resonance RSTL. A key difference for the softening case is that the linear branches

within the no-resonance zone are (for sufficiently small forcing levels and absorber

path nonlinearity) isolated from nonlinear response branches for rotor speeds to the

left of primary resonance. (Compare Figure 5.5c-d with Figure 5.4c-d.) For a softening

absorber path, it is therefore possible to spin the rotor up from zero speed to some

(sufficiently small) steady operating point without passing through resonance. This

is generally not possible for a hardening path, in which case there are potentially

unavoidable auxiliary or primary resonances for all order detuning values—including
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those within the no—resonance zone. It can thus be said that absorber designs involving

hardening paths are generally not acceptable. Softening absorber paths are clearly

desired, but they do set an upper limit on the rotor speed, the value of which depends

to a large extent on the excitation strength and the strength of the absorber path

nonlinearity.

Figure 5.5 also shows simulation data corresponding to the full nonlinear model

for blade and absorber damping levels of 5b = 2 x 10‘3 and £5, = 2 x 10’6, respectively.

The predicted frequency response amplitudes (which correspond to zero damping) are

seen to be in reasonably good agreement with these data. A corresponding set of fre-

quency response loci were numerically generated with the same damping levels used

in the simulations. These follow from Equation (5.19) (stationary points) with I? = 0

and Equation (5.30a) (stability) and are shown in Figure 5.6. The results are seen to

be in very good agreement with the simulation data, thus validating the accuracy of

the averaged sector models. If only qualitative features of the forced response are de-

sired, however—response amplitudes in particular—the simple analytical expressions

defined by Equation (5.24) and Equation (5.25) are quite sufficient.

In both Figure 5.5 and Figure 5.6, simulation data could not be obtained for

the nonlinear auxiliary resonance branches (for the particular parameter values used)

due to their small domains of attraction. However, when the excitation strength is

increased, these domains widen and the branches of REL can be captured. This is

shown in Figure 5.9, which depicts the blade and absorber frequency response loci

for a softening absorber path, linear tuning within the no-resonance zone, and for

various levels of the dimensionless force amplitude F. The figure also indicates an

upper limit on the excitation strength, where a bifurcation destroys the no—resonance

structure.

The frequency response results described above are in overall good agreement with

the actual nonlinear response (based on the full nonlinear equations and indicated

149



(a) 520.0001

f: 0.117

(b) 520.0002

f: 0.235

(c) Ff: 0.0003

f: 0.352

(d) 122 0.0004

f = 0.470

(e) {‘2 0.0005

f = 0.587

(f) 12200006

f = 0.705

(g) F: 0.0007

f = 0.822

—1

—2

.3

41M 
 

log (11)

l

0

.1 ,

—2

  
411W

 
 

  

 

  

 

  

10

1i
0)

—l

—2

$1M

‘4 -FTI‘V “ \

0.2 0.4 0.6 0.8 1"

lo 11181!

0

—1

_2, \‘

—31L—_-"J ------

—4 -\

Ao  
0.2 0.4 6.6 0.8 1

 

 

—-— Nonlinear (stable)

---- Nonlinear (unstable)

._ Linearized

o o 0 Simulation   

 

  

 
 

 

 

  

  

 

 
 

  

 

110ng

01 L
—I ‘i

_2M

_‘36 '

—4 .

A o

0.2 0.4 0.6 0.8 1

log If)!

1 1

O W.1 ,---

.2M

-3(p

.4

A A - o

0.2 0.4 0.6 0.8 1

110ng

0 g
—1

_2 \

.3

.4

a

0 2 0 4 0.6 0 8 1

log |9|

I ,

01

—I:
-2P

sf
-4,

A o

0.2 0.4 0.6 0.8 1

l0 ‘6’18! I

0’ k\r-v-----
-I ' ‘7‘K

—2

—3.

‘4)
o

0 2 0 4 0.6 0 8 1

lo 1‘)Isl I

0.

—1'-u--r'ifl"‘.fl—”’4‘ I -

_2

45"
.4

A . A o

0 2 0 4 0.6 0 8 1

lfglfil

0» ‘ L
—1 ——"" A . g.-----a.

_2

—31

.4

o  
0.2 0.4 6.6 0.8 1

Figure 5.9. Blade and absorber frequency response curves for the essentially undamped

isolated nonlinear system with a softening absorber path, for linear tuning within the no-

resonance zone (6 = 6Cr /2 = ——0.822 x 10‘3), for various levels of the force amplitude F,

and for n = 3, a = 0.84, (5 = 0.67, and ,u = 0.0035 (5 = 0.0592).
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by the simulation data), particularly when damping is included and if the parameter

values are reasonable. The representative examples depicted in Figure 5.6 show that

the averaged sector models can be very accurate, even for very large positive or

negative order detuning 6 (values of a relative to n) or speed detuning A (rotor

speed 0 relative to or). The same cannot be said, however, had the usual approach

to averaging been carried out. Recall from Section 5.2.4 that an alternative approach

was adopted in which 0 is retained in the averaged equations, essentially keeping key

higher-order terms in the model. This is a crucial observation in the methodology

since the usual approach to averaging (which amounts to simply replacing o with the

constant or) gives at best mediocre results, and it fails completely to capture the

no-resonance zone. The reader can verify these claims by comparing the analysis and

results presented thus far with those given in Appendix E, where the usual approach

to averaging is employed.

A criterion for zero blade motions relative to the rotating hub is derived next,

which is the nonlinear counterpart to the ideal, or exact linear tuning described in

Section 4.4.1.

5.4.2 Criteria for Zero Blade Amplitudes

The desired system response is one in which the blades remain stationary relative to

the Spinning rotor and the absorbers move accordingly in a TW configuration. Such a

response can be achieved for a linear system (in the absence of damping) by the exact

linear tuning described in Section 4.4.1. However, a more realistic linear tuning strat-

egy is one in which the absorbers are detuned within the no-resonance zone, which

offers robustness to parameter uncertainties but it comes at the expense of residual

blade vibrations. The aim of this section is to possibly exploit the absorber path non-

linearity to address these vibrations and further improve the absorber performance.

The desired response is, in fact, possible (but not necessarily stable) for zero
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damping and the corresponding requirements 011 the system parameters follow from

Equation (5.20) by setting I] = 0. Then

0 = —-a(n2 +1)021‘Isin(9 — 6) — fsin 9, (5.32a)

0 = —cz(n2 +1)029cos(9 — 6) — fcos 9, (5.32b)

0 = A029 + $20293. (5.32c)

However, the phase 9 is undefined if i] = 0 and hence Equations (5.32a) and Equa-

tion (5.32b) should be independent of 9. To see this, the latter is solved for 17 and is

introduced to the first. Upon simplification the result is

0 = f sin 6,

which is indeed 9independent and it implies 6 = ln for l E Z. Then Equation (5.32a)

and Equation (5.32b) both reduce to a single expression and, together with Equa-

tion (5.32c), the required conditions become

A

0 = a(n2 +1)029cos(ln) + f, (5.33a)

0 = (A + %n«62)626. (5.33b)

Since 21 = 0 by assumption, the case of 9 = 0 gives rise to the trivial response

(9,9) = (0, 0) and mathematically it corresponds to a nonhyperbolic stationary point.

By restricting 9 > 0 (meaning that the absorber must assume nonzero motions in

order to achieve zero blade vibrations) and eliminating the absorber amplitude in

Equation (5.33), one can solve for the critical nonlinear tuning parameter. The result

is

4Aaz(n2 + 1)2o4

3f2

which is seen to depend on the engine order, the placement of the absorber relative

 , (5.34)
Ilcr = —

to the blade, and the linear tuning order. However, it also depends on both the

excitation strength and the rotor speed, which implies that the critical nonlinear
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tuning is valid only for a single set of operating conditions. While it may be possible

to design an active absorber, where the nonlinear tuning is adjusted on-the—fiy for

varying f and 0, effective implementation in the harsh operating environments (e.g.,

rotation, extreme temperatures, and so on) is likely to by impractical, if not entirely

impossible. Moreover, since proper linear tuning is negative (Ac, < A S 0) and all

other parameters in the right hand side of Equation (5.34) are positive, the nonlinear

tuning requires hardening absorber paths (77 > 0). As discussed in Section 5.4.1 this is

an undesirable path type, one that gives rise to potentially problematic resonances—

even for proper linear tuning.

These findings clearly Show that the nonlinear tuning defined by Equation (5.34)

is unsatisfactory for the passive absorbers under consideration. More generally, they

also suggest that nonlinearity cannot be exploited to improve the absorber perfor-

mance. However, we do offer some general recommendations for the critical nonlinear

tuning next with the understanding that they are feasible only for an active absorber

implementation, which may have applications in other settings.

Example plots of blade and absorber frequency response curves are shown in

Figure 5.10 for linear tuning within the no—resonance zone, for perfect nonlinear tuning

according to 77 = 77”, and also for slight over- and undertuning with respect to 770,. In

addition to the host of other issues described above, this figure highlights sensitivity to

parameter uncertainties. As shown in Figure 5.10c, any level of nonlinear overtuning

is accompanied by a jump instability to the nonlinear auxiliary resonance. Slight

nonlinear undertuning relative to ncr is therefore desirable. However, it is again

stressed that this is feasible only for an active absorber implementation, and there

still remains a potentially problematic auxiliary resonance.

Finally, while the nonlinear tuning scheme described above is not acceptable for

applications involving passive absorbers, all is not lost; some insight can be gleaned

and reinforced from the analysis. Equation (5.33a) implies that the absorber ampli-
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Figure 5.10. Example blade and absorber frequency response curves for linear tuning

within the no—resonance zone (6 = 6cr/2), for several nonlinear tuning values relative to

Her, and for a model with n = 3, a = 0.84, 6 = 0.67, p = 0.0035 (5 = 0.0592), f = 0.0001

(f = 0.117), and g}, = g}, = 0.
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tude increases linearly with the strength of the excitation in a way that depends on

the engine order and placement of the absorber along the extent of the blade. Consis-

tent with intuition, the absorber should be placed as close to the end of the blade as

possible to achieve the smallest absorber motions given a specific excitation strength.

Equation (5.33a) also indicates that, for a given forcing level, higher engine order

excitations will give rise to lower absorber amplitudes.

The nonlinear results discussed up to this point for the special case of an isolated

sector qualitatively embody all of the fundamental features of the fully coupled system,

except for the possibility of additional instabilities to response types other than the

desired TW variety. The existence of such bifurcations is considered next.

5.5 Forced Response of the Coupled Nonlinear System

The forced response of the isolated nonlinear system, which consists of a single linear

blade and nonlinear absorber, were described in detail in Section 5.4. These funda—

mental results can be used to qualitatively predict many of the corresponding features

of the fully coupled nonlinear system, including its TW response amplitudes and jump

bifurcations to other traveling wave solutions. The frequency response amplitudes of
 

the coupled system qualitatively match those of the uncoupled case, except for a shift

in the primary resonance (when it exists) according to the third term on the right

hand side of Equation (5.19b), that is,

A — 2122(1 — cos 19"“) E A, (5.35)

2 = e122. Hence the shift will be smallby an amount that is directly proportional to V

if the inter-sector elastic coupling is weak, in which case amplitude predictions for the

fully coupled system based on the isolated sector model are quite accurate. In what

follows, it will be shown that stability results associated with the isolated nonlinear

system qualitatively apply to the coupled system as well, where any bifurcation iden-
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tified in the former simply corresponds to a jump in blade/absorber amplitudes in

the latter to another traveling wave response. These bifurcations are said to preserve

the symmetry of the response. However, the coupled nonlinear system may feature

additional symmetry-breaking instabilities that the isolated system cannot predict,

which involve bifurcation to response types other than the desired TW. These possi-

ble instabilities are addressed in the next section, where the findings strongly suggest

that symmetry-breaking bifurcations do not occur.

It should be noted that, while closed form analytical expressions are available for

the prediction of response amplitudes, determination of local stability in the pres-

ence of coupling is quite a bit more formidable. The set of block decoupled Jacobian

matrices from Section 5.3.3 (for the coupled case) do offer a substantial savings in

computation (which is quite useful for numerical studies), but even these 4 x 4 re-

duced matrices are analytically unaccommodating and hence essentially intractable.

(Stability results for the simplified case of zero coupling follow from Equation (5.31),

which features complicated coefficients. The addition of coupling gives rise to N poly-

nomials of the same form with coefficients that are many times more complicated.)

At least some insight can be gleaned from the reduced Jacobians, however, and this

is done in Section 5.5.1, but they are otherwise handled numerically. In what follows

we offer a sampling of results based on extensive case studies and numerical investiga-

tions. These are briefly summarized in Section 5.5.2 using examples of models with

N = 5 (odd) and N = 6 (even) sectors.

5.5.1 Local Stability of the ’I‘I'aveling Wave Response

For the special case of zero coupling (1? = 0), local stability of a stationary point v

follows from the 4 x 4 Jacobian matrix J)SC ) , which is defined by Equation (5.30b).7

For a particular equilibrium point, and if this matrix is Hurwitz (meaning that all

 

7In what follows, we restrict the discussion to Cartesian forms for convenience, where it is un-

derstood that the same arguments hold for the corresponding polar forms as well.
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four of its eigenvalues lie in the open left-half complex plane), there corresponds a

stable periodic orbit in the isolated nonlinear system [96,97,109]. If any eigenvalue

of J )SC ) crosses the imaginary axis into the right-half complex plane as the rotor speed

(or any other parameter) is varied, a jump bifurcation occurs in which all of the

blade and absorber amplitudes spontaneously assume different values, and the TW

symmetry is preserved.

A similar type of (syminetry-preserving) instability can be observed in the fully

coupled nonlinear system in which there is a jump in blade and absorber amplitudes

and the response maintains its TW configuration. This is found to occur when an

eigenvalue of one particular reduced Jacobian crosses the imaginary axis. Thus any

crossings by an eigenvalue of any other reduced Jacobian matrix generically corre-

sponds to a symmetry-breaking bifurcation in the coupled nonlinear system to a

response type other than the desired TW. However, based on extensive numerical

investigations, no such instabilities could be identified.

To see these features more clearly, we consider in more detail the reduced Jacobian

matrices that were derived in Section 5.3.3, which are stated again here (in Cartesian

form) for convenience. They are

2noJECC) = P + 2Qcos 90k + 2jR sin (0),, k E N (5.36)

where the factor 2no has been moved to the left of the equality for convenience. The

matrices Q and R vanish when I? = 0 and the matrix P is the same as J)? (isolated

sector), except for the addition of 21?2 (resp. —2192) in the (1,2) (resp. (2, 1)) element.

Since Equation (5.36) was obtained by way of a unitary transformation of the full

Jacobian matrix Jg? E 336%.?4,N (coupled sector), the eigenvalues persist in these

N, 4 x 4 reduced matrices. Note that they feature a cyclic structure with respect to

the index k E N, which arises from the sine and cosine terms involving 19),. Since

cos 99N+2—k = cos {Pk and sin goN+2_k = —sin 19;, the reduced Jacobians generally
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appear as complex conjugates of the form

P + 2Q cos (,9), i 2jR sin 19),, (5.37)

except for k = 1 when the form is P + 2Q or if N is odd, in which the k = (N + 2)/2

case gives rise to P — 2Q in addition.8

Based Oii extensive numerical evidence it is found that the real matrix

C c 1

Jiadp Ji ) = —(P + 2Q) (5.38)
2no

is the only one of the N reduced Jacobians that gives rise to instabilities. It corre-

sponds to Equation (5.36) with k = 1 and is such that

  

f—noéb —A 0 —C_YU2 .

A ——noéb do? 0

P 2 = A

+ Q 0 —do2 gno2CD — noga gno2(C'2 + 3D2) + A02 ’

_ do? 0 —%n02(302 + D2) - A02 -—gno2C'D — nofia J

where A is the effective resonance shift defined by Equation (5.35) and, recall,

(Y = o(n2 + 1)02. Equation (5.38) is the same as the Jacobian matrix J)? of the

isolated nonlinear system, but it additionally incorporates the resonance shift asso-

ciated with coupling, which is reflected in A. In fact, it is the Jacobian matrix of

an efiective isolated nonlinear system consisting of a single blade, a nonlinear ab-

sorber, plus a single elastic coupling element, which follows from the averaged sector

model corresponding to i = 1 rather than the model obtained by setting I? = 0.

In this way, instabilities observed in Ji531: directly correspond to those predicted by

Jg). Moreover, since instabilities were detected only by the effective Jacobian matrix

J$2,, = JEC) and none of the other reduced Jacobians, it thus follows (based on nu-

merical evidence) that there are no symmetry-breaking bifurcations to response types

other than the desired TW. Again, this observation is based on extensive numerical

 

8Analogous features that arise due to cyclicity can be observed in the multiplicity of eigenfre-

quencies and normal modes of a generic cyclic system (Figure 2.5) and also in the BTW, FTW, and

SW characteristics of engine order excitation (Figure 2.3).
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evidence and case studies. Therefore, while it cannot be said with certainty that such

bifurcations absolutely cannot occur, these findings strongly suggest that they do not.

A sampling of results is given next for specific values of N and with an emphasis on

blade/absorber frequency response and traveling wave characteristics of the coupled

system.

5.5.2 Case Studies

In this section we briefly highlight some case studies for models with a Specific number

of sectors. It is clear that N = 1 is a trivial case since it features only one sector.

The next simplest systems with N = 2 and N = 3 sectors are special cases where, in

addition to nearest-neighbor coupling, they also feature all-to-all coupling in which

each sector is coupled to all other sectors. Moreover, it is well-known that the case of

N = 4 sectors gives rise to additional rich dynamics that are not generically observed

for general N [106—108]. Finally, it is recalled from Section 2.4 that the traveling

wave nature (BTW, FTW, or SW) of the system can be different for an odd or even

number of sectors. The case studies are thus summarized for models with N = 5

(odd) and N = 6 (even) sectors. We begin with the case of N = 5.

A representative set of blade and absorber frequency response curves are is shown

in Figure 5.11 for softening absorber paths, undertuned absorbers, and for a number

of coupling levels that increase from zero. In fact, Figure 5.11a corresponds to the

blade and absorber amplitude responses shown in in Figure 5.5b and Figure 5.6b for

the isolated (zero coupling) nonlinear system, and Figures 5.11b-g simiply show how

this picture changes as the coupling in increased from zero. For small coupling the

frequency response loci are nearly the same as the isolated sector case, where the

resonance shift associated with coupling is essentially imperceptible. As the coupling

is increased the primary nonlinear resonance (linear resonance) moves to the right.

This resonance shift is expected, and is manifested by the term defined by Equa-
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tion (5.35). Finally, simulation data is included near primary resonance in several of

the plots, which indicates that the results are valid even for large coupling strengths.

The sparsity of data points can be attributed to very long simulation run times; even

with today’s computers it can take many hours for a numerical solver to settle into a

steady-state.

Figure 5.12 shows the blade and absorber time responses for the same parameters

used in Figure 5.11e and for a rotor Speed of o = 0.55. Since the absorbers are

undertuned outside of the no-resonance zone, the mode shape associated with an

individual sector is (1, —1) and hence the blade and its attendant absorber feature

out—of—phase motions with respect to one another. This can be confirmed, for example,

by comparing the dashed line in Figure 5.1221 to that in Figure 5.12b. Finally, the

engine order n = 3 excites mode p = n + 1 = 4 which, according to Table 2.2 on

page 32, is of the FTW variety. This can also be identified in the figure, where the

periodic motions of, for example, blade 1 are followed by the same motions in blade 2,

3, and so on until the pattern repeats itself.

A corresponding set of blade and absorber frequency response curves are shown

in Figure 5.13 for the same parameters use in Figure 5.11, except with N = 6 sectors.

Nothing qualitatively different is expected nor observed in these figures. However, in

this case the engine order n = 3 excites a SW mode corresponding to p = n + 1 = 4,

which can be verified by Table 2.2 and clearly observed in the blade and absorber time

responses depicted in Figure 5.14, which corresponds to Figure 5.13e with o = 0.55.
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5.6 Concluding Remarks

This chapter has extended the linear design, theory, and methodology of Chapter 4 to

include the basic, first-order effects of nonlinearity, which was introduced via the ab-

sorber path geometry. A key finding is that, for the passive order—tuned absorbers of

interest, one cannot exploit nonlinearity via the path design to improve absorber per-

formance. However, general conclusions on the effects of system nonlinearity can be

gleaned from the analysis. The results Show that hardening characteristics are unde-

sirable since they give rise to a primary resonance, a potentially troublesome auxiliary

resonances at low rotor speeds, or both. If system nonlinearity is unavoidable, it was

shown that softening characteristics are acceptable and that they essentially set an

upper limit on permissible rotor speeds. Finally, for the weakly coupled and lightly

damped system under consideration, no symmetryAbreaking instabilities of the de-

sired TW type solution could be identified. These results, together with the linear

absorber tuning strategy given in Chapter 4, give rise to a final recommendations for

absorber design, which are summarized in the next chapter.
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CHAPTER 6

Conclusions

This thesis has investigated the use of centrifugally-driven, order-tuned vibration

absorbers to suppress the steady-state motions of a rotating bladed disk assembly

under engine order excitation. For this purpose a simplified, lumped parameter model

was employed. Each sector was assumed to be identical and identically coupled,

consisting of a single-DOF pendulum-like blade model together with a general path,

lumped—mass absorber. At the time of writing, this work reports the first systematic

analytical treatment of systems of order-tuned absorbers applied to cyclic rotating

flexible structures under engine order excitation, and thus such a simplified model is

justified. Just as the generic single-DOF harmonic oscillator can be employed in the

theory of elementary vibrations to capture and understand fundamental properties

such as natural frequency and resonance, so can the model employed in this work to

quantify the rich linear resonance structure, the basic effects of system nonlinearity,

and to clearly motivate both a linear and nonlinear absorber design strategy in terms

of the system and absorber path parameters. The results of this work are fundamental

to future studies of its kind, both analytical and experimental.

The major contributions of this investigation are briefly reviewed in Section 6.1.

These have given rise to a number of detailed recommendations for absorber design,

which are summarized in Section 6.2. Finally, directions for future work are high-

lighted in Section 6.3.
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6.1 Summary of Contributions

The main results of this study follow from Chapter 4, where the linearized dynamics

of the cyclically-coupled system fitted with order-tuned absorbers were investigated,

and in Chapter 5, where these basic results were generalized to include the first-order

effects of nonlinearity.

According to the linear theory of Chapter 4 there exists an ideal (exact) absorber

design such that, in the absence of damping, a complete elimination of blade vibrations

(relative to the rotating hub) is possible. The design is accomplished by setting the

(isolated) absorber natural frequency equal to the excitation frequency, just as it

is done with the classical frequency-tuned dynamic vibration absorber due to Den

Hartog [99]. However, since both frequencies scale directly with the rotor speed, this

amounts to an order tuning in which the absorber tuning order identically matches the

order of the excitation. In this way, the linear order tuning is valid independent of the

rotor speed. While exact tuning offers the best possible (linear) absorber performance,

it is susceptible to the effects of parameter uncertainties. Any level of unintentional

absorber overtuning or sufficiently large undertuning gives rise to a linear system

resonance. The most significant finding of Chapter 4, and arguably of this entire

study, is the existence of a no-resonance zone. It consists of a finite range of absorber

undertuning values for which there are no system resonances over the full range of

possible rotor Speeds. The upper bound of this spectrum of feasible designs consists

of exact tuning and it is bounded from the bottom by a critical linear detuning.

Proper absorber design involves intentional undertuning within this generally small,

but finite gap. The absorbers profit from such a design in terms of robustness to

parameter uncertainties, but this is accompanied by slightly reduced performance in

the form of residual blade vibrations.

The fundamental linear results described above were generalized in Chapter 5 to

include the basic first-order effects of nonlinearity, which was introduced via the ab-
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sorber path geometry, and the possibility of exploiting this nonlinearity to improve

the absorber performance was investigated. It was shown that the underlying linear

resonance structure (and hence the no-resonance zone) qualitatively persists, provided

that both the path nonlinearity and excitation levels are sufficiently small. In this

way, the linear tuning from Chapter 4 remains effective. There does exist a critical

nonlinear tuning that guarantees a branch of solutions corresponding to zero blade

motions (which is, in fact, valid for any linear tuning). However, it was shown to

depend on the rotor speed and excitation strength, and is thus effective for only a sin-

gle operating condition—much like the classical frequency-tuned dynamic vibration

absorber. It is therefore impossible to exploit nonlinearity to further improve the

performance of the passive order-tuned absorbers of interest. However, the analysis

does highlight some general conclusions on the effects of nonlinearity (in the absorbers

or otherwise) that can aid in the absorber design process. First, it was shown that

softening characteristics are acceptable, and that they essentially place an upper limit

on permissible rotor Speeds. In contrast, hardening characteristics should be avoided

altogether, since they give rise to problematic auxiliary and/or primary resonances.

Finally, for the weakly coupled and lightly damped system under consideration, no

symmetry-breaking instabilities of the desired TW response could be identified.

6.2 Recommendations for Absorber Design

In what follows the major results of this thesis pertaining to absorber design are

consolidated for quick reference. In Section 6.2.1 the linear tuning strategy described

above, together with conclusions based on the nonlinear analysis, are summarized

in a parameter space that involves the linear order detuning and nonlinear tuning

parameters. Section 6.2.2 comments on system damping, and suggestions for the

absorber sizing and placement are give in Section 6.2.3. Finally, a particular class of

absorber path types is recommended in Section 6.2.4.
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6.2.1 Linear and Nonlinear Tuning

Proper absorber design can be summarized in the parameter Space depicted in Fig-

ure 6.1. This design chart indicates ideal (exact) absorber tuning and also qualitative

regions of desired, acceptable, possibly poor, and poor absorber performance due to

primary resonance (prim. res.) and/or auxiliary resonance (aux. res.) in terms of the

linear and nonlinear tuning parameters 6 and 77, the values of which span the range

from (linear) under- to overtuning and (nonlinear) softening to hardening, respec-

tively. A nonlinear absorber tuning scheme with 77 > 0, that is, if the absorber paths

are hardening, involves a potentially problematic auxiliary resonance at low rotor

speeds, an unavoidable primary resonance, or both. Thus any design in quadrants

I and region II of the (6,77) parameter space gives rise to poor absorber perfor-

mance. Designs in region 11,, are generally undesirable, especially for light damping,

in which case the auxiliary resonance is more problematic. Similar statements can

be made for any linear overtuning (6 > 0) or for sufficiently large linear undertuning

(6 < 6G,), in which case a linear (primary nonlinear) resonance is guaranteed. Hence

any design in quadrant IV of Figure 6.1 yields poor absorber performance, as do

all designs in quadrant III to the left of 6a. This leaves only the shaded region in

quadrant three (denoted by IIId) where absorber designs are feasible, though the

performance degrades as the paths are made more softening. (This has the effect of

moving the primary resonance in the direction of lower rotor speeds, thus limiting the

effective operating range of the bladed assembly.) Ideal absorber tuning corresponds

to (6, 77) = (0,0), but in order to incorporate robustness to parameter uncertainty,

a tuning scheme in which the absorbers are slightly softening and tuned within the

no—resonance zone is recommended, that is, in the region indicated by “Acceptable”

in Figure 6.1.
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Figure 6.1. Absorber design chart showing ideal tuning and qualitative regions of desired,

acceptable, possibly poor, and poor absorber performance due to primary resonance (prim.

res.) and/or auxiliary resonance (aux. res.) in terms of the linear and nonlinear tuning

parameters 6 and 77, the values of which span the range from under- to overtuning and

softening to hardening paths, respectively.
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6.2.2 Damping

The basic effects of absorber, blade, and inter—blade, damping were discussed in Sec-

tion 4.5, where it was indicated that the latter two forms of damping actually help

the absorbers address blade vibrations. However, the presence of absorber damping

essentially weakens their action on the blades and, hence lessens their ability to op-

erate properly. For sufficiently large absorber damping, this can lead to a system

resonance—Aeven for proper linear undertuning—thereby destroying the no—resonance

zone. Thus in addition to the linear and nonlinear design recommendations given

in Section 6.2.1, the absorber damping should be kept sufficiently small so that the

no—resonance zone persists. The response plots shown in Figure 4.12 on page 112 can

be used to estimate maximum permissible absorber damping levels.

6.2.3 Absorber Sizing and Placement

Throughout this work the results have shown that large absorber inertia (relative to

the blades) is highly desirable. This is quite clear in physical terms since a larger

absorber mass is able to exert increased dynamic loads on its attendant blade and is

hence more effective (if properly tuned) in addressing blade vibrations. It was also

shown in Section 4.4.2 that the extent of the no—resonance gap depends (nearly lin-

early) on the absorber-to—blade mass ratio and (nearly quadratically) on the absorber

placement along the blade length. By increasing either, the gap can be widened. Thus

the absorber mass should be made as large as possible, where it is understood that

this is limited fundamentally by the blade geometry, and it should be placed close to

the end of the blade.

6.2.4 Path Type

A key result from Chapter 5 is that nonlinearity cannot be exploited to improve the

absorber performance, and it is therefore desirable for the absorber motions to be lin-
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ear. This can be achieved by selecting a tautochronic path, the geometry of which has

been systematically described by Denman [17] for a bifilar pendulum absorber config-

uration. Such a path could be implemented by restricting 77 = 0 in Equation (3.20)

on page 66 and then backing out the appropriate expansion coefficients b0, ()2 and 04

in Equation (3.19).

6.3 Directions for Future Work

This investigation has laid the fundamental groundwork for future analytical and

experimental studies involving order-tuned vibration absorbers applied to nominally

cyclic rotating flexible structures under engine order excitation. This is essentially

a new line of study, one that unites the individually mature bodies of research on

absorber systems and cyclic systems, and hence there is considerable work left to be

done. Some major topics that remain to be addressed are briefly considered below.

Many of the individual subtopics could form the basis of an MS. or PhD. level thesis.

MISTUNING STUDIES

The models considered for this study were perfectly cyclic, consisting of identical,

identically-coupled sectors. However, there will always exist mistuning among the

sectors, that is, small random uncertainties in system parameters (due to in—service

wear, machine tolerances, and so on) that break the cyclic symmetry [37—40]. This

can lead to localization of vibration energy to a subgroup of sectors, giving rise to

higher vibration amplitudes than what is predicted by the perfectly cyclic system

[41—45]. With our current knowledge of localization in nominally cyclical systems, it

is expected that their responses will also exhibit localized behavior when absorbers

are attached to the substructures. There are many questions pertaining to absorber

design that must be addressed in this context, which include the following.

172



0 Will the response be localized in the blades, in the absorbers, or both? If so, to

what degree?

0 How is the response affected by system parameters, in particular by key param-

eters that govern localization?

0 In the presence of mistuning, how does one account for nonlinearity (including

impacts) that become unavoidable for the small absorber masses required by

the blade geometry?

0 How does localization affect the linear and nonlinear absorber design? Does the

no—resonance zone persist? Is it possible to exploit nonlinearity when mistuning

is present?

0 Can intentional patters of mistuning of the blades and/or absorbers be employed

to enhance the operation of the overall system?

The answers to these questions are crucial if absorbers are to be implemented in

practical systems.

HIGHER-FIDELITY MODELS

Future analytical studies should consider higher-fidelity blade models, including those

with lumped parameters and many degrees of freedom [36], continuous beam and shell—

type elements [9], and full finite element representations [3]. It may also be possible

to employ systems of vibration absorbers, including multiple absorbers applied to

a single structural element or multiple absorber implementations in a Single system,

each tuned to address a specific problematic resonance.

METHODOLOGY

The desired traveling wave response exhibits the highest possible degree of symmetry

and it is said to belong to the cyclic group ZN [110—112]. In addition to the usual

jump bifurcations that preserve this symmetry (these are predicted by the isolated

sector model), there could be a host of other instabilities when coupling is present,

including those with reduced symmetry (the so-called isotropy subgroups of ZN) or
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no symmetry at all [106—108]. In this work, however, numerical evidence has strongly

suggested that no such symmetry-breaking bifurcations occur. The mathematical

machinery of group theory, which offers a tremendously powerful and systematic way

to catalogue these bifurcations, could possibly be used to prove this claim [113,114].

The theory of groups has also been employed in mistuning studies [57, 115, 116], and is

likely to be very useful to investigate the effects of mistuning on absorber performance.

EXPERIMENTS

Lastly, experimental validation of the results of this thesis (and of future analyti-

cal studies) is critical. In the context of this work, it must be verified that the

small, but finite no-resonance zone is physically realizable in order for the tuning

recommendations to be of use. Moreover, even if it can be analytically proved that

there exist no symmetry-breaking bifurcations, this must be also be observed in a

carefully-controlled experimental setting before the results can be seriously consid-

ered for practical implementation.
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APPENDIX A

Selected Topics from Linear Algebra

A.1 Introduction

In what follows some selected topics from linear algebra are reviewed. Most of the

basic results are included either as a quick reference or to support theoretical develop-

ments elsewhere in this thesis. Two matrix operations are introduced in Section A.2

and some special matrices are described in Section A.3. Similarity transformations

and their basic properties are discussed in Section A.4.

A.2 The Direct Sum and Direct Product

Definition A.1 (Direct Sum) Fori = 1, . . . , N let A, 6 (WWW with each p, 6 2+.

Then the direct sum of A, is denoted by

A1€BA2€B...®AN=®£:1A,

and results in the block diagonal square matrix

IA, 0 0‘

0 A o

A: . .2 . .

_0 0 AN‘  
of order p1 +732 +. . .+pN, where each zero matrix 0 has the appropriate dimensionA
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In this work the direct sum of N matrices A, is denoted by the block diagonal matrix

diag(A1, A2, . . . ,AN) = diag (A,).

i=1,...,N

For the case when each A, = a, is a scalar (1 X 1), the direct sum of a, will be denoted

by the diagonal matrix

diag (a1,ag, . . . ,aN) = diag (a,).

i=1,...,N

The direct, or Kronecker product is defined next.

Definition A.2 (Kronecker Product) Let a, b E C". Then the direct product (or

Kronecker product) of a and bT is the square matrix

-alb1 albg albn-

a2b1 0202 - - - a2 bn

aebT= . . .

Lanbl aan ' ’ ’ anbnd  

Let the matrices A E men and B E Cqu. Then the direct product ofA and B is

the mp >< nq matrix

PallB a12B - - - 0.1an

a B a B a B

A®B= 2% 2? , 2:7 . 1

_amlB 'am2B amnB‘  

Some important properties of the direct product are as follows.

1. The direct product is a bilinear operator. If 07 is a scalar and A, B are square

matrices, then

07(A (X) B) = (6A) (8) B = A (X) (6B). (A.1)

2. The direct product distributes over addition. If A, B and C are square matrices,

such that A and B (resp. B and C) are of the same dimension, then

(A+m®C=A®C+B®O (Ru)

A®(B+C)=A®B+A®C. (A.2b)
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3. The direct product is associative. If A, B, and C are square matrices, then

A®(B®C)=(A®B)®C. (11.3)

4. If A, B, C, and D are square matrices such that AC and BD exist, then

(A s B)(C e D) = (AC) a (BD). (A.4)

5. If A and B are invertible matrices, then

(A®B)_1= A’1®B‘1. (A.5)

6. If A and B are square matrices, then

(A a B)T = AT 63) BT, (Afia)

(A e B)H .—_ A“ a B7“, (A.6b)

where ( - )T denotes transposition and (-)H is the conjugate transpose.

7. If A and B are square matrices with dimensions n and m, respectively, then

det(A (29 B) = (det A)m(det B)", (A.7a)

tr(A <87 B) = trA trB. (A.7b)

A.3 Special Matrices

There are a number of special matrices employed in this work, and their definitions

and pertinent properties are outlined here. Hermitian, and unitary matrices are

defined first (a summary of these special matrices is given in Table A.1), followed by

a brief treatment of two important permutation matrices. The details of the Fourier

matrix and circulant matrices, which are employed throughout this work, are deferred

to Appendix B.
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Table A.1. Some types of special matrices.

 

Type Condition

Symmetric A = AT

Hermitian A = A“H

Orthogonal ATA = I or AT = A—1

Unitary AHA = I or AH = A-1

 

 

A.3.1 Hermitian and Unitary Matrices

Definition A.3 (Hermitian Matrix) A matrix H e chN is said to be Hermi-

MnmnzHfl A

The elements of a Hermitian matrix H satisfy h,;C = hk, for all 1 S i, k S N. Thus

the diagonal elements h,, of a Hermitian matrix must be real, while the off—diagonal

elements may be complex. If H = HT then H is said to be symmetric.

Definition A.4 (Unitary Matrix) A matrix U E CNXN is said to be unitary if

UHU = I. A

Real unitary matrices are orthogonal matrices. If a matrix U is unitary then so

too is UH. If in addition it is nonsingular then UH = U‘l.

A.3.2 Permutation Matrices

A general permutation matrix is formed from the identity matrix by reordering its

columns or its rows. Here we introduce two such matrices: the cyclic forward shift

matrix and the flip matrix.

THE CYCLIC FORWARD SHIFT MATRIX

The N X N cyclic forward shift matrix plays an important role in the theory of

Circulants. It is populated with one’s along its superdiagonal and in the (N, 1) position
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and its remaining elements are set to zero, that is,

— -I

  

010---00

001...00

N 000m10 ()

000--.01

_100---00‘NxN

It will be shown subsequently that Equation (A8) is a circulant matrix, and hence

we defer a treatment of its properties to Appendix B.

TIIE FLIP MATRIX

The N x N flip matrix has one’s in the (1,1) position and along the subantidiagonal,

with all other elements equal to zero. It is given by

  

1 0 0 ~-- 0

0 0 ~-- 0 1

0 0 0 ~-- 1 0

RN = . . . , . . (A.9)

0 0 1 0 0

L0 1 0 0 0‘ NxN

and is such that

xi, = IN, (A.10a)

7671(1) = 76% = EN = rel—VI, (A.10b)

where IN is the N x N identity matrix.

A.4 Similarity Transformations

Definition A.5 (Similarity Transformation) Let Q be an arbitrary nonsingular

matrix. Then B = Q-IAQ is a similarity transformation and B is said to be similar

to A. A
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Table A.2. Some types of linear transformations.

 

 

Type Condition Transformation

Equivalence P, Q are nonsingular B = PAQ

Congruence Q is nonsingular B = QTAQ

Similarity Q is nonsingular B = Q‘lAQ

Orthogonal Q is nonsingular and orthogonal B = QTAQ = Q‘IAQ

Unitary Q is nonsingular and unitary B = QHAQ = Q—IAQ
 

If B is similar to A, then A = (Q‘1)—1B(Q_1) is similar to B. It therefore

suffices to say that A and B are similar matrices. A summary of some other linear

transformations is given in Table A.2. By inspection of this table, it also follows that

if B is orthogonally (resp. unitarily) similar to A, then A and B are orthogonally

(resp. unitarily) similar matrices.

Theorem A.1 If A and B are similar matrices, then they have the same character-

istic equation and hence the same eigenvalues. C]

PROOF. Let pA and p3 denote the characteristic polynomials of A and B, respec-

tively, and let B be similar to A. That is, let B be any matrix such that B = Q-IAQ

for some nonsingular matrix Q. Then the characteristic polynomial of B is

PB()= det(B- 1)

=det(Q’1AQ- AQ—IIQI

=det(Q‘1(A- A179)

..-det(Q1)det(A —AI)det(Q)

: pA()‘)I

where we have used the fact that det(Q"1)det(Q) = det(Q’lQ)= det(I)-— 1. Thus

A and B have the same characteristic polynomial and share the same eigenvalues. I

Theorem A.1 guarantees that the eigenvalues of a matrix are preserved under a

Similarity transformation; the same is true for orthogonal and unitary transforma—

tions.
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Next we Show that if A and B are similar matrices, and if p is an arbitrary finite

polynomial, then p(A) is similar to p(B).

Theorem A.2 Let p be an arbitrary finite polynomial and B = Q“1AQ. Then

PfB) = Q_1P(A)Qo 1:1

PROOF. Let Q be an arbitrary nonsingular matrix and let

N

P“) = Z thk

k=0

be a polynomial of degree N with arbitrary constant coefficients ck. Then

mm = P(Q”1AQ)

N

= Z Ck(Q—1AQ)k

k=0

= e01 + ClQ—IAQ + c2Q_1AQQ"1AQ + . . . + eNQ—IAQ- . -Q—1AQ

= e01 + Clo—1A6 + CgQ_1A2Q + . . . + cNQ‘lANQ

= Q-1(c01+c1A+c2A2 +...+cNAN) Q

= Q‘1P(A)Q.

which completes the proof. I

If one chooses p(t) = tk with k > 0, then we have the following.

Corollary A.1 IfB = o-IAQ, then Bk = o-lAkQ for any k e 2.. [:1

Diagonalizability of a matrix is defined next.

Definition A.6 (Diagonalizable Matrix) A square matrix A is diagonalizable if

there exists a nonsigular matrix Q and a diagonal matrix D such that Q"1AQ = D.A

Thus a matrix is diagonalizable if it is similar to a diagonal matrix. If A is

diagonalizable by Q, we say that Q diagonalizes A and that Q is the diagonalizing

matrix.
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Theorem A.3 An N x N matrix A is diagonalizable if it has N linearly independent

eigenvectors. CI

PROOF. Suppose A has N linearly independent eigenvectors and denoted them by

q1,q2, . . . ,qN. Let A, be the eigenvalue of A corresponding to q, for each i =

1, . . . , N. Then if Q is the matrix that has as its ith column the vector q,, it follows

that

AQ = (Aqi,AQ2,---,AQN)

=(Q1A1,Q2A2,-~.QNAN)

=(qi,qz.....qzv) diag (Ar)

i=1,...,N

EQD.

Since Q is nonsingular by hypothesis, D = Q—IAQ. I
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APPENDIX B

The Theory of Circulants

B.1 Introduction

This appendix gives a more exhaustive treatment of the theory of circulants and is

meant to complement the overview given in Section 2.2. It is distilled from the seminal

work by Davis [62] and follows the presentation style of Ottarsson [36], one that should

be familiar to the vibrations engineer. The sections that follow act simultaneously

as a detailed reference and tutorial. Thus, in addition to a detailed treatment of the

theory (including many of the proofs), some worked examples are also included.

The appendix is organized as follows. Circulant and block circulant matrices are

defined in Section B2 and Section B.3, respectively, and some of their more relevant

properties are given. Diagonalization of (block) circulants is discussed at length in

Section B.4, which begins with a treatment of the NM roots of unity in Section B41

and the Fourier matrix in Section 8.4.2. It is subsequently shown how to diagonalize

the cyclic forward shift matrix in Section B.4.3, a circulant in Section B44, and a

block circulant in Section B.4.5. The appendix closes in Section B.4.6 with some

generalizations of the theory, including the diagonalization of block circulants with

circulant blocks.

183



B.2 Circulant Matrices

We begin with a definition.

Definition B.1 (Circulant Matrix) An N x N circulant matrix (or circulant) is

formed from an N-vector by cyclically permuting its entries and is of the form

F61 C2 .o. CN .-

CN C1 CN—l

C = . . , . A

_C2 C3 . o 0 C1 _,  

Thus a circulant matrix is defined completely by an ordered set of generating

elements c1, c2, . . . , cN in its first row. These are cyclically shifted to the right by one

position per row to form the subsequent rows. The set of all such matrices will be

designated by (5N, and are said to be circulant matrices of type N.

It is convenient to define the circulant operator circ ( - ) that takes as its argument

the generating elements c1, c2, . . . ,cN and results in the array given in Definition B.1,

that is,

C=circ(c1,c2,...,cN). (B.1)

An N x N circulant can also be characterized in terms of its (i, 16) entry by (C),;c =

Ck—i+1(mod N) With 1 S i, k S N'

Example B. 1

circ (a, b, c, d) =

9
0
5
3
.
9

O
R
E
G
-

$
1
.
9

o
~
n

Q
t
y
-
0
8
2
1
.
.

  )- .I

If a matrix is both circulant and symmetric it can be written as

circ(c1,c2,...,cN,cN+2,cN,...,C3,c2), Neven

'2' 2 '2'

C: (B.2)

ClI‘C (CIIC2I" ' )CN—1)CN+17CN+1‘ICN—17' "763702)7 N Odd

2 2 2 _2“
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and necessarily has repeated generating elements; only (N + 2) /2 are distinct if N is

even and (N -I- 1)/2 are distinct if N is odd. The set of all N x N symmetric circulants

will be denoted by .7‘6N.

  

Example B.2

In 0 c b”

b b

N = 4: circ (a,b, c, b) = a C E 5’64

c b a b

b c b a

. ED

fa b c c b

b a b c c

N25: circ(a,b,c,c,b)= c b a b c EY‘gg,

c c b a b

_b c c b a_  
It is clear from Equation (A8) of Section A.3.2 that the cyclic forward Shift matrix

is a circulant with generating elements 0,1,0,. . .,0,0. Hence the integer powers of

0N can be written as

o9, =circ(1,0,0,0,0,...,0,0) =1N

a}, = circ(0,1,0,0,0,...,0,0)

0%; =circ(0,0,1,0,0,...,0,0)

aN—l =circ(0,0,0,0,0,...,0,1)

 0% =circ(1,0,0,0,0,...,0,0) =69, =INJ

Next we give (without proof) a necessary and sufficient condition for a square

matrix to be circulant.

Theorem B.1 Let 0N be the cyclic forward shift matrix. Then a N x N matrix C

is circulant if and only if CON 2 UNC. D
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Any matrix that commutes with the cyclic forward shift matrix is, therefore, a

circulant. Theorem B.1 also says that circulant matrices are invariant under similarity

transformations involving the cyclic forward shift matrix.

Example B.3 Consider the 3 x 3 matrix

a b c

A: ca b

b c a

Since

abc 010 cab 010 abc

ca0001=bca=001cab,

bca 100 abc 100 bca

it follows that A = circ (a, b, c) E ‘53. EU

An important feature of circulants is that they can be represented by a finite ma-

trix polynomial involving the cyclic forward shift matrix and its powers. In particular,

by inspection of the structure of the matrices OR, in Equation (B.3), it is clear that

a circulant matrix with generating elements c1, c2, . . . ,cN can be represented by the

matrix sum

Circ (CM/’2’ - - - ’CN) = CIIN + C20N + 03va + . . . + CNUINI1

N
k_

= Z CkO'N 1- (B.4)

k=l

This property is exploited in Section B.4.4 to diagonalize a general circulant matrix.

Example BA The matrix A = circ (a, b, c) from Example B.3 can be represented by

the matrix sum

A 2 a1;; + bo3 +co§

100 010 001 abc

=a010+b001+0100 = cab. (217,1

001 100 010 bca



Next we introduce block circulant matrices, which is a natural generalization of

ordinary circulants.

B.3 Block Circulant Matrices

Suppose each entry ck of the circulant array in Definition B.1 is replaced by the

M x M matrix Ck for k = 1,. . . , N. Then the resulting NM >< NIVI array is a block

circulant matrix of type (M, N) and is written as

C=CirC (C1,C2,...,CN), (B.5)

where C1, C2, . . . , CN are its generating matrices. The set of all such matrices will

be denoted by .95‘6’MW. A matrix C E QCKM,N is not necessarily a circulant, as the

following example demonstrates.

Example B.5 Let

 

  
  

2 —1 —-1
A: , B: 0

—1 2 0 —1

Then

’2 —1§—1 0§0 05—10'

F ‘ “120‘10.....00—1

ABOB —102—1§-10§00

c- B A B 0 - 0—1—120-10.....9..
OBAB 00;-10§2—1§—10

B 0 B A -9..... 9-.i..Q..-.-:.1.§:.1..--2.-i.-Q---:.l.

- - —10§00§—10;2—1

_0 -—1§0 0:0 —1§—1 2,

is a block circulant of type (2,4), but it is not a circulant. ED

Next we give (without proof) a necessary and suflicient condition for a matrix to

be a block circulant.

Theorem B.2 Let 0N be the cyclic forward shift matrix of dimension N and IM be

the identity matrix of dimension M. Then a NM x NM matrix C is a block circulant

of type (Al, N) if and only if C(a’N (8) 1M): (0N <8) IM)C. D
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The reader can verify that the matrix C in Example B.5 satisfies the condition in

Theorem B.2, but not that in Theorem B.1.

A block circulant, block symmetric matrix of type (M, N) has the same form as

Equation (B.2), and is obtained by replacing each entry ck by the M x M matrix

Ck for k = 1, . . . , N. The set of all such matrices will be denoted by @‘fifiVMW.

The matrix C in Example B.5 is recognized to be a block symmetric, block circulant

matrix of type (2, 4), that is, it is contained in .93‘633Y2A.

A block circulant with generating matrices C1, C2, . . . ,CN can be represented by

the marix sum

CirC(C1,C2,...,CN)=IN®C1+UN®C2+...+O’%—1®CN

where the integer powers of the cyclic forward shift matrix are given by Equa-

tion (B.3).

B.4 Diagonalization of Circulants

Any circulant matrix can be represented in terms of the cyclic forward shift matrix,

which is clear from Equation (34). The diagonalization of a general circulant begins,

therefore, by finding a matrix that diagonalizes O’N- Together with some basic results

from linear algebra (these are summarized in Appendix A) this leads naturally to the

diagonalization of an arbitrary circulant. Regarding a suitable diagonalizing matrix,

there are a number of candidates [91,92,94,100, 102, 117], but all seem to feature

powers of the Nm roots of unity or their real/imaginary parts. In this work we

employ the complex Fourier matrix, which has as its elements the distinct Nm roots

of unity and their integer powers; these are defined in Section B.4.1. The Fourier

matrix is introduced in Section 8.4.2, whereupon its relevant features are detailed.

The diagonalization of the cyclic forward shift matrix is carried out in Section 8.4.3
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via a unitary transformation involving the Fourier matrix, and the diagonalization of

a general circulant matrix is subsequently described in Section B.4.4. These results

are generalized to handle general block circulant matrices in Section 8.4.5 and some

special block circulants in Section 8.4.6.

B.4.1 Nth Roots of Unity

Here we follow the presentation in [118]. The NM roots of a complex number 20 =

7.06j90 are given by a nonzero number 2 = rejg such that zN = 20 with N E Z+, or

A?

upon substitution, 7‘ ejNO = roejao. This equality holds if and only if rN = r0 and

N0 = 90 + 27rk with k: E Z. Therefore,

r=N\/r;

, keZ (Bfl

6 _ 60 + 27rk

" N

and the NM roots are

6 2 k

z: Wexp<j—0——-——:VW), kEZ. (B.8)

It is clear from this exponential form that the roots all lie on a circle of radius N r0

centered at the origin in the complex plane, and that they are equally distributed every

27r/N radians. Hence all of the distinct roots correspond to k = 0, 1,2, . . . , N — 1.

The distinct Nm roots of unity follow from Equation (B.8) by setting r0 = 1 and

TLN Xp(N A) , , ’ ’. . I, ' ( ' )

The primitive Nth root of unity corresponds to k: = 1 and is denoted by

2%:

toN = e . (B.10)

Note that the integer powers toN-(e_b7')k—— e77Vk of the primitive Nm root of unity

are equivalent to the distinct Nth roots of unity, i.e., those given by Equation (39).
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They are

1, wN,w12V, . . . ,wfi—l,

example plots of which are shown in Figure B.1 for N = 1, 2, . . . ,9.

B.4.2 The Fourier Matrix

2 'n'

Definition B.2 Let MW = {N— be the primitive Nth root of unity with N E Z+ and

j = \/—1. Then the N X N complex Fourier matrix is defined as

  

f1 1 1 1 '

1 1 wN wjzv tug—1

2(N—1)
EN = — 1 wjzv 'wfv w . A

W . . . N.

_1 lug—1 wiéN—l) - - - wng—l)(N—1)J NXN

Clearly the Fourier matrix is symmetric, but generally it is not Hermitian. It can

be written element-wise as

1 <i—1)<k—1)
E - = ——

( N)lk r—NwN

___ Lem—1m

x/N

1 (QM-User
W ,

where p,- is the angle subtended from the positive real axis in the complex plane to

i,k=1,...,N (B.11)

the ith‘ power of WV. It will be shown in Section B.4.4 that all circulant matrices

share the same linearly independent eigenvectors, the elements of which compose the

N columns (or rows) of EN- They are denoted by the column vectors

1 (-'—1) 2i—1 N—l i—l T
fi(1,w1:, ,wA) )’°"’le )( ))

. . . T
2 _1_ (1, 63991, (232992} , _ , , BAN-1M)

W

A very important feature of EN is that it is unitary. To see this, we first consider

82':

, i=1,...,N. (13.12)

the finite geometric series identity and subsequently a result involving a summation

on powers of the primitive Nm roots of unity.
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<5LABELING 1 _ 2120

KEY _ 5

wé?

 

 

 

 

 
N=7 N=8 N=9

Figure B.1. The distinct Nth roots of unity wfv (k: = 0, 1, 2, . . . , N — 1) arranged on the

unit circle in the complex plane (centered at the origin) for N = 1,2, . . .,9. Note that

log, = 1 is real, as is tog/2 = -1 if N is even. The remaining roots appear in complex

conjugate pairs.
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Lemma B.1 (Finite Geometric Series Identity) Let N E Z+ and q E C. Then

foranysEZ andqaél,

3+N— 1
8(1 _

Z qr _ ‘1_____)_N C]

1- q
7:8

PROOF. Consider the finite geometric series

s+N-—1

Z qr:qs+qs+1+q3+2_+_.uqs+N—1

_ s 2
—q (1+q+q +...+q

l\l='lultiplying from the left by q yields

3+N—1

q 2 c1" =q3(q+q2+q3+m+q

r=s

Subtraction of the second equation from the first results in

s+N—1

(I-Q) Z qr=q3(1-qN),

T=8

from which the proof is established since q 74 1 by restriction. I

Lemma B.1 is now used to establish the following theorem, which is needed to

show that the Fourier matrix is unitary. The result will also aid in the diagonalization

of circulants in subsequent sections.

2'7r

Theorem B.3 Let i, k E Z and wN = e79" be the primitive Nth root of unity with

N E Z+. Then for any 3, m E Z,

3+N—1 . N, i—k=mN
r(i—k) _ E]

Z “’N — ,
7:3 ' O, othermse

° . 2’71' .

PROOF. Let q : nix—k) = eqirU-k) and note that qN = 1. If i — k = mN, then

 

q = erm" = 1 for any integer m and it follows that

3+N—1 (_ k) s+N—1 N

r 2— _1

Z W = 2,17“ = (1)8 +(1)S+1+(1)S+2 + . . . + (1)S+ J = N.

N terms
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——> ——> ———>

1 2 3 1 2 3 1 2 3

1 l 0 0 1 1 0 0 1 0 1 0

l 2 0 1 0 t 2 0 0 1 2 2 0 0 1

3 0 0 1 3 0 1 0 3 1 0 0

(a) (I3)ik (b) (53M (C) (03%

Figure B.2. Arrays showing the (i,k) elements of the (a) identity, (b) flip, and (c) cyclic

forward shift matrices of dimension N = 3 for i, k = 1, 2, 3.

For the case when i — k 75 mN it follows from Lemma B.1 that

s+N—1

81—1

qu=———q()=0,
l-q

7‘23

which completes the proof. I

Theorem B.3 allows for a representation of the N X N identity, flip, and cyclic

forward shift matrices in terms of certain conditions on their indices relative to N.

For i, k = 1, . . . , N and for any integer m the (i, k) element of these matrices is given

by

N—1

1 r(i-k) 1, i — k = mN
.. : _

=

013

(INN: N r20 wN { 0, otherwise (B a)

N—l .

1 r(i+k—2) 1, i + k — 2 = mN
. = —

:
B.1 b

“$ka N r—O wN { 0, otherwise ( 3 )

N—l _ ._ _

T(2—k+1) : { 1a Z k +1 — mN (B.13C)
1

(O'Nh'k = N wN 0, otherwise

respectively. The reader can check these by verifying the arrays in Figure B.2 for the

special case of N = 3.

We are now ready to state the main result of this section, and indeed one of the

most important results of this appendix.

Theorem BA The Fourier matrix EN is unitary. [:1
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PROOF. For 1 S i, k S N the (i, k) entry of ENE}; is given by

N

(ENE%)ik = Z(EN)ir(Ei\i)rk

1‘
1 ll

;,,<2-—w<r—l>;,,—
1W N x/TV— N

(T-1)(k-1)

(”
42

(from Eqn. (B.11))

fl

II

= (IN),k, (from Eqn. (B.13a))

from which it follows that ENE}? 2 IN- I

Remarks

1. The column vectors of EN are orthonormal, that is, ejiHek = 6,-k, where 52'}: is

the Kronecker delta.

2. Since EN is unitary so too is the Nil/I x NM matrix BN (8 IM-

3. The NM x 1V1 matrices e, (8) IM are such that (e,- ® IM)H(ek (8) 1M) = 5ikIM-

Next we derive a relationship between the Fourier and flip matrices.

2 H 2
Theorem B.5 EN 2 RN = (EN) . Cl

PROOF. First we Show that Eiv = ENEN = K.N using the same approach as the

proof of Theorem B.4. For 1 S i,k S N and for any integer m the (i,k) entry of
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ENEN is given by

r=1

N 1 (MIN (1)(k1)i— r— r— —

= —w —w fomE . BM
1; N N N N (1' qn( ))

N—l

___1_ wr(i+k—2)

— N

N r=0

2 (RN 1k, (from Eqn. (B.13b))

2

from which it follows that Bi, = KN. Finally, the result EN = (13716) follows

from conjugation and transposition of reN = ENEN, and by invoking the properties

2

5% 2 RN and (13%,)71 = (E716) . I

A number of properties follow directly from Theorem B.5.

Corollary B.1 Let EN, RN, and IN be the N x N Fourier, flip, and identity matri-

ces. Then

i. ENICN ZK'NEN;

.. 2 '

ii. nN=IN or KN: x/IN;

m; Ej‘V =IN or EN = ,4/IN. o

Propterty (i) says that the flip and Fourier matrices commute or, since EN is unitary,

that K,N is invariant under a unitary transformation with respect to EN- Hence KN

is not diagonalizable by EN. Properties (ii) and (iii) give alternative definitions of

the flip and Fourier matrices, respectively. Moreover, since the (possibly fractional)

power of a diagonal matrix can be obtained by raising each diagonal element of that

matrix to the power in question, if follows that the eigenvalues of K,N are :l:1 and

those of EN are :l:1 and :tj, each with the appropriate multiplicities.
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B.4.3 Diagonalization of the Cyclic Forward Shift Matrix

In this section it is shown that the Fourier matrix diagonalizes the cyclic forward shift

matrix. For this purpose, it is convenient to introduce diagonal matrix

9N = diag (1,wN,w}2V,... ,w%1), (8.14)

which has as its diagonal elements the distinct NM roots of unity.

Theorem B.6 EKIUNEN = RN. [3

PROOF. For 1 S i, k. S N the (i, k) entry of ENQNERT, is given by

N N

(ENQNEixi)ik = Z Z(EN)-zp(9N)pr(Ei\i)rk

r=1p=1

N N

1 we— nee-1),, we—ul —<r-1><k—1>
1 w

IWwN PTNmN

r=1p=

1 N

__Zwk,-1)(T—1)w§6—1)w—(r—1)(k—1)

1Vr=1

1 N ( 1)(‘ k+1)

=3?sz

r=1

N—l

__;L_ ufl(i—k+1)

_ N

Arr=0

= (O’le’ki (from Eqn. (B.13c))

from which it follows that EN9NEH = UN. The desired result follows by multiplying

from the right by EN and multiplying from the left by ETA-l I

Theorem 8.6 implies that a'N is unitarily similar to a diagonal matrix whose

diagonal elements are the nonnegative integer powers of the primitive Nth root of

unity. Since the eigenvalues of a matrix are preserved under such a transformation

(this is guaranteed by Theorem A.1), it follows that

2 lV—l
/\(0'N) = {1,wN,wN,...,wN },
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where A( ) denotes the matrix spectrum. The eigenvectors of aN are the linearly

independent columns of EN 2 [e1, e2, . . . ,eN], which are given by Equation (8.12).1

In light of Corollary A.1, we have the following result.

Corollary 8.2 Elxl'O'fvEN = Qlfv for any h E Z+. (:1

8.4.4 Diagonalization of a Circulant

It will be convenient to define

N

g(t,7') = Ztk_1 (8) 1', (8.15)

k=1

where t and 1' are arbitrary square matrices. Then the general circulant and block

circulant matrices given by Equation (8.4) and Equation (8.6) can be represented by

(UN, ck)—1c—;c— c1rc (c1,c2, . .. cN) , (8.16a)

I
I
M
Z

(0’)N,Ck= 20N—1 ®Ck =ClI‘C (C1,C2,...,CN), (B.16b)

respectively. WhatlS meant1by the notation g(O‘N, ck), for example, is to substitute t

with aN and T with ck in Equation (8.15) and then perform the summation observing

any indices k introduced by the substitution. Note also that

9(9N17)=i:ciiagN (9(wlv1,r))=:diagN £71454)(2 1) , (B-17)

which is diagonal (resp. block diagonal) when 1' is a scalar (resp. matrix).

Theorem B.7 Let C E “KN have generating elements c1, c2, . . . ,cN. Then

F -

Elf/GEN =

  
 

1In fact, all circulant matrices share the same eigenvectors ek, which is shown in the next section.
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is a diagonal matrix, where

N

A,- = g(wfilmk) = chwS—lxz—U, i =2 1,. . . ,N

k=l

are its diagonal elements. [I]

PROOF. Consider the representation

C = g(a'N, ck) (from Eqn. 8.16a)

= g(ENflNE%,ck) (from Thm. 8.6)

= ENQ(QN, ck) E7115. (from Thm. A.2, Thm. 13.4)

Thus EffiCEN = g(flN,ck), where the diagonal matrix g(flN,ck) = ' diagN(/\,-)

i: ,...,

follows from Equation (8.17). I

Remarks

1. The Fourier matrix EN diagonalizes any circulant matrix.

2. Elf/CEN is a unitary transformation, and hence preserves the eigenvalues of C.

Thus A,- (i = 1, . . . ,N) are the eigenvalues of C.

3. All cirulants share the same linearly independent eigenvectors (the columns of

the Fourier matrix EN), which are given by Equation (8.12).

The eigenvalues of a matrix C E .7ng with generating elements c1,02, . . . ,cN

are given by

 

 

N/2 .

C1+ 22% cos(Qflk—gfm—ll) + (—1)i_lcfl2t2, N even

, _ k=2
A, — (N+l)/2 . (8.18)

c1 + 2 Z ck cos(2flk_]{r)(l_fl) , N odd

k=2

a result that is proved in [36]. In this case there are repeated eigenvalues due to

the presence of the cosine term. The eigenvalue /\1 is distinct, but the remaining

eigenvalues /\.,' = AN+2_,- appear in repeated pairs. However, when N is even A NP

is also distinct.
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Example 8.6 Let C = circ (4, -1,0, ——1). Then

'1 1 1 1"4 —1 0 —1' ’1 1 1 1

11—'—1'—14—1011'—1—-'E21CE4=_ J J _ J J

fl1—11—10—14—1fi1—11—1

1 j —1 —jJ —1 0 —1 4j _1 —j —1 j

’1 1 1 1”1 2 3 2 '

_11—j —1j 1 23' —3 -2j

\/41 —1 1 —1 1 —2 3 —2

1 j —1 —j 1 —2j —3 2]“,    
= diag (2, 4, 6, 4).

Hence the eigenvalues ofC are 2, 4, 6, 4. Since C E Y‘él, these can be verified using

Equation (8.18) for N = 4, which yields

A,- =4—2cosg(i— 1)

for-i=1,...,4. [SD

The determinant of a circulant matrix C = circ(c1,c2, . . .,cN) is simply the

product of its eigenvalues and is given by

N'.N

Hzcwr-W-i
i=1k=1

.N

det C = H A, = (13.19)

i=1

where the eigenvalues A,- are defined in Theorem 8.7 or by Equation (8.18) if C is

also symmetric.

8.4.5 Block Diagonalization of a Block Circulant

Theorem 8.7 can be generalized to handle block circulants.

Theorem 8.8 Let C E fi‘gMgv and denote its M X M generating matrices by

Cl,C2,.. . ,CN. Then

(Eiv1g ® IM)C(EN <59 1M) =
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is a block diagonal matrix, where

N

A, = Q(’ul'j\71,ck) = ZCk'lL’ES-l)(i_l), i=1,...,N

k-I

are its M x A»! diagonal blocks. [:1

PROOF. Consider the representation

N

C = Z afafl ® Ck (from Eqn. 8.16b)

k=1

N

= 2(ENQ®“1E%)® Ck (from Cor. 8.2)

k=1

N

= 2(EN a 1M) (rig—la Ck) (E31, 69 1M) (from Eqn. A.4)

k=1

= (EN ‘81 IMMQN. Ck) (E7111; <59 1M), (from Eqn- 315)

where the block diagonal matrix

QWMCU: diag (At)
i=1,...,N

follows from Equation (8.17). Since (EN <8) IM) is unitary the desired result follows

by multiplying from the right by (EN <8) IM) and from the left by (Ext, ® IM) =

(EN 69 I11)“. .

Remarks

1. The unitary matrix EN (8 IM can reduce any NM x NA! block circulant matrix

with M x M blocks to a block diagonal matrix with A! x M diagonal blocks.

2. (E716 <8) IM)C(EN (8 IM) is a unitary transformation, and hence preserves the

eigenvalues of C, which are the eigenvalues of the N, M x M matrices A,.

3. If v,- is an eigenvector of the ith eigensystem A,, then the corresponding eigen-

vector of C is u,- = 9,- ® vi.
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Example 8.7 Consider the matrix C = circ (A,B,0, B) from Example B.5. It can

be block diagonalized via the transformation

  

' 0 —1g 0 0 0 0 0 0 '

:..1....9.-§..9 .....9-3-9.....9.....9..... 9.-

0 0 5 2 —1f 0 O 5 0 0

EH 1 c E 1 = ..9.....9‘129.....99..... 9.-

(4®2)(4®2) OOgO 0g4—1goo

.9.....9-1.9..... 9.-5.':..1---.f¥..l..9 .....9..

0 0 g 0 0 g 0 0 g 2 —1

_O 0§0 OEO Oi—12j

= diag (A1, A2, A3, A4),

from which the eigenvalues can be obtained from the 2 x 2 matrices A,- fori = 1,. . . ,4.

In particular, /\(A1) = {—1,l}, /\(A3) = {3, 5}, and A(A2) = A(A4) = {1,3}. CED

8.4.6 Some Generalizations

Let C 6 38(6))”,N and denote its generating matrices by C1, C2, . . . ,CN. Then if

( ' )* and ( - )# denote arbitrary matrix operations and for any matrices A 6 CNXN

and B E Ci’lIXA/I’

N

(11* a B#)c(A a B) = (A* ®B#) gay-1 a C, (A69 B)

k=1

(”
)2

[(A*a’;v‘1) a (B#Ck)] (A a B)

a
.
.
.

H
H

(Amy-1A) a (B#CkB), (B20)(”
)2

3
‘

)
L

where Equation (A.4) has been employed. The importance of this result is that C

can be decomposed into a summation of direct products of two separate equivalence

transformations, one that operates on ”TV—1 and the other on Ck- This decomposition

justifies the diagonalizing matrix employed in Theorem 8.8 and it also motivates some

generalizations.

In light of Theorem 8.6 together with Corollary A.1, it is clear that the choice of

A = EN and ( ' )* = ( - )H accomplishes block diagonaliztion of a matrix C E 35%M,N-
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Then if one chooses B = 1M, the appropriate diagonalizing matrix to block decouple

C without operating on its generating matrices is EN (8) IM- However, if B and ()#

are kept general, we have the following result.

Theorem 8.9 Let C E 53ng have M x NI generating matrices C1, C2, . . . , CN.

Then for an arbitrary matrix B E CMXM and operator (-)#

  

“It, 0 I

H # ‘1’?(EN ®B )C(EN a3) =

is a block diagonal matrix, where

11,-: g(u)}\;1,8#Ck8) = ZB#Cka)V_1)(z—1), i=1,...,N

k=1

are its ll! x M diagonal blocks. [:1

This result is useful if there exists an equivalence transformation B#Ck8 that

simplifies each of the generating matrices. For example, if each Ck is a circulant of

type M then the additional choice of B = EM and ( )# = ( - )H fully diagonalizes a

block circulant matrix C E fi‘fiv’M with circulant blocks.

Corollary 8.3 Let C E fi‘fiww have generating matrices C1,C2, . . .,CN 6 ch

and denote the generating elements of each C, by C(12), cg), . . . ,CEC}. Then

-Agi) 0 -

Au)

(BK, ® E},)C(BN 69 EM) —_— diag 2

i=1,...,N -

(i)
_ 0 AM,  

is a diagonal matrix, where

N M

(i) 22(1) (l—1)(p—1) (k-1)(i-1)

AI) = Cl “’M “’N

k=11=1

th th
is the p diagonal element of the i diagonal block. C]
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Example 8.8 Reconsider the matrix C = circ (A, 8,0, 8) from Example B. 5. Since

A, B 6 (fig it can be diagonalized via the transformation

  

'-10:0 0:0 0:0 0'

91999999

0 0:1 0:0 0:0 0

EH E“ C E. E = 99939999
(4®2)(4® 2) 00:00:30200,

99999599

0 0:0 0:0 0:1 0

_omomomoa

from which is follows that /\(C) = {—1, 1,1,3,3,5, 1,3}. ED
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APPENDIX C

Noninteger Engine Order Excitation

It is well-known that a perfectly cyclic system (i.e., one without parameter uncertainty,

or mistuning) under engine order excitation will respond in one and only one mode

corresponding to p = nmodN + 1, where n is the order of the excitation. For a

bladed disk assembly in a jet engine the excitation order corresponds to a problematic

harmonic in an expansion of the axial gas pressure field, and is therefore a positive

integer. HoWever, noninteger engine order may occur in other applications and in

what follows we briefly consider the general case of n 6 8+. Then orthogonality

between the normal modes and system forcing vector generically breaks down and

this gives rise to additional system resonances.

Consider the prototypical cyclic system of Section 2.4 under engine order excita-

tion. In the steady-state it responds according to Equation (2.34), which indicates

that the total forced response is simply a superposition of modal responses. For

the case of n E Z4. only mode p = nmodN + l survives, which follows from the

orthogonality condition given by Equation (2.35), that 18,1

N

H
pfe u!§5_1)(ll+1—p) (n E R+) ((3.1)

9
)
:

ll

f, n+1—p=mN

(TL 6 Z+) (C2)

r
—
’
\
—
\ E
)

0, otherwise

 

1The result holds even for n S 0, but physically we restrict n > 0.
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where m is an arbitrary integer. (This result follows from Theorem 8.3 on page 192.)

However, if the engine order is noninteger such that n E R+/Z+ Equation (C.2) does

not hold and therefore every system mode contributes to the total response, which

is given by Equation (2.34) by replacing the pth model forcing term eyf with the

right hand side Equation (C.1). Correspondingly, for a given engine order there are

N system resonances and these occur whenever the excitation frequency matches a

natural frequency, that is, when no = (12p, where the pth eigenfrequency is defined

by Equation (2.38). Thus in addition to the “principle resonance” corresponding to

p = n mod N + 1, there are (N — 1) /2 (resp. N/2) resonances due to the noninteger

excitation if N is odd (resp. even). An example is shown in Figure C.1 for a system

with N = 10 sectors and for various engine orders n 6 8+. The additional resonances

can be clearly observed, and they become more pronounced for larger deviations of

the engine order away from the integer value n = 3.
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Figure C.1. Frequency response curves for the system shown in Figure 2.4 on page 23 for

N = 10, V = 0.5, and f = 0.01: (a) n = 3; (b) n = 3.001; (c) n = 3.01; and (d) n = 3.1; and

(e) corresponding Campbell diagram for n = 3.1. In ((1) and (e) the principle resonance

corresponding to n + 1 = 4.1 is indicated by the black circle.

206



APPENDIX D

The Critical Linear Detuning and Tuning

Order

The critical linear absorber tuning order ft is defined implicitly by Equation (4.36) and

represents the limiting slope of the natural frequencies (By) in the frequency versus

0 curves of Figure 4.5. It is convenient to express ft in terms of the absorber tuning

order fr, which is introduced via Equation (4.39). Then

 

 

. ~ &1u+&0+\/&%p2+51u+58

n(n) = 2712 , (D-l)
 

where

60 = 71207.2 + 6)

130 = 73.2012 — 6)

61 = a2(7”z2 +1)(fi2 + g + 1)

 131 = 2a262(a2 + 1) ((73,2 +1)(6.2 + 6) - gm? — 6))

J

The critical absorber undertuning can be obtained by replacing it with n(1 + B) in

Equation (D.1), setting 71 = n, and then solving for fl = Ber. Then ficr is given

implicitly by
 

2 a1u+co+\/b2,u2+b1u+c8

(1+ 661—) = , (13.2)
01# + 200
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where

a1=a2(%—n2(2+%)) ‘

bl = 462712012 — 6)(n2 + 1) (2 + g)

b2 2 a262(n2 +1)2 > .

C0 = 712(712 — (5)

01 = 20271.2(712 — i)  a J

Note that when #- = O, the right hand side of Equation (D2) is unity, which implies

13m = O (i.e., the no-resonance gap vanishes), and the same is true when a = O (in

which case (11 2 bl = b2 = c1 E 0, but co 75 0).

It is clear from Figure 4.9 that changes in ficr due to parameter variations decrease

for increasing engine order. In the limit as n —> 00 Equation (D2) reduces to

1

1+ 2:—< 6..) ”a?” , (n —> 00) (13.3)

which is shown by the dashed line in Figure 4.9d. It depends only on Oz and n and

approximates flcr to within 3% of its limiting large—n value for n 2 10.
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APPENDIX E

Averaging: The Usual Approach

E. 1 Introduction

In the process of averaging it is customary to expand all parameters involving 5 and

to keep only (9(5) terms in the resulting expressions. This amounts to replacing it

with n and also or with the constant or = 1 /m, which is the resonant rotor

speed of an isolated blade without an absorber. In what follows, we carry out the

averaging for the isolated nonlinear system of Chapter 5 in this way and show that the

results are adequate for large linear under- or overtuning of the absorbers but they are

completely unsatisfactory Within the no-resonance zone (precisely where the results

are of the most interest) due to the latter substitution. The aim of this appendix

is to document the rather significant difference in the averaged models obtained via

the usual approach employed below and by means of the slightly modified approach

employed in the nonlinear analysis in Chapter 5.

We begin by defining a detuning scheme (different from that employed in Chap—

ter 5) and then present the averaged equations in both polar and Cartesian forms.

The appendix closes with some representative frequency response curves and a short

discussion.
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E.2 Detuning Scheme

In order to investigate the nonlinear dynamics near perfect linear tuning and close to

the rotor speeds of interest, we take

73 = n(1+ 5A), (E.1a)

0 = 0,.(1+ 8A), (E.1b)

where /\ serves as the linear order detuning parameter and A plays the role of the

rotor speed. Then the order detuning parameters are related by B = 5A, which is

clear by comparing Equation (E.1a) to Equation (4.44). It should be pointed out

that the detuning scheme adopted here is slightly different than the one employed in

Chapter 5, that is, Equation (5.9). (Equation (B.1) was the original detuning used

by the author before the improved method of averaging was adopted.) This does not,

however, preclude qualitative comparisons between the results of the two approaches.

Next the averaged equations are derived in polar and Cartesian forms.

E3 The Averaged Equations

The nonlinear analysis is carried out exactly as it was done in Section 5.2.4 except

that all appearances of 0 are replaced by the constant or and, as we shall see, this

gives rise to a significantly less accurate model, one that serves as a benchmark for

the modeling approach employed in Chapter 5.

Under the detuning scheme defined in Section B.2, Equation (5.8) on page 127

reduces to1

66%, — 6262 = —52A + 0(52)

-2 2 2 E 2M2
UJ —n U =
22 712—6

(B.2)

+ 0(52) 

 

1For the detuning employed in Chapter 5 the 0(5) terms are —5A and 902.
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Table E. 1. Shorthand notation.

5:5/271 n —6 [12(62—6m £b=m/n?—6éb f=(n2—6)f

(1' = (n.2 +1)a 5x = 2n2A Ea = 71v n2 — 655

 

 

After the appropriate substitutions are made, Equation (5.6) is averaged over one

period T = 27r/n0 and the shorthand notation given in Table E1 is introduced.2

Then if v = ([1, g, '1),§")T the result is

(fi',1‘1§',17’,'17€’)T = gem + 0(53/2), (13.3)

where

G3(v) = we sin 6 — g") — ‘5,»6

G4(v) = —d1‘1cos(§—§"+) X27 + 371273

are the elements of the vector G. In Equation (E.4), note that the rotor speed appears

in Gg(v) only (implicitly via the shorthand detuning parameter 5). However, in the

model employed in Chapter 5, the rotor speed appears in each Gp(v) (p = 1,. . . ,4).

It is this absence of the rotor speed that gives rise to less accurate results.

The corresponding Cartesian form of the averaged equations is

w’ = €P(w) + 0(53/2), (B.5)

where w = (A, B, C, D)T and the functions

P1(w) = —aD — AB — ébA

P2(W) = +5zC + AA — EbB + f

P3(w) = —aB + :\D — $0 + §n(D3 + 021))

P4(W) = +C_YA — AC — gal) - 9177(CD2 + C3)

 

2The shorthand notation in Table B.1 applies to this appendix only; some of these symbols are

defined differently elsewhere in the thesis.
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compose the elements of the vector P.

Some representative frequency response results are given next, and we briefly point

out their reduced accuracy.

E.4 Forced Response of the Undamped System

For the purpose of comparison we consider the forced response of the undamped av-

eraged model corresponding to the isolated nonlinear system, that is, Equation (B.3)

with Ea = Eb = 0. Figure E.1 summarizes the results in terms of the speed detuning

parameter A (which is related to the dimensionless rotor speed 0 via Equation (E.1b)),

for several order detuning values fl, and for a hardening absorber path; a representa-

tive set of softening frequency response curves is shown in Figure B.2. In these figures,

the nonlinear frequency response loci are indicated by thick solid (stable) and dashed

(unstable) lines and the corresponding linear frequency response is given by the thin

gray line. The simulation data from Chapter 5 is superimposed in Figure E.2, which

corresponds to the full nonlinear model, i.e., Equation (3.14) together with the gen—

eralized absorber path described in Section 3.4.4, with representative damping levels

a, = 2 x 10-3 and 5;, = 2 x 10—6.

For large under- or overtuning values B the approximate averaged results given

above are, in fact, quite satisfactory. This is clear from the hardening (resp. softening)

frequency response curves shown in Figure E.1a—b (resp. E.2a—b) and Figure E.1e-g

(resp. E.1e-g), which correspond to absorber detuning values outside the no—resonance

zone. In these regions, the averaged model captures the essence of the linearized

resonance ’RL in addition to the first-order nonlinear effects of the absorber, which

are manifested in the additional auxiliary resonance 721:1” and the hardening/softening

bends in the primary resonance REL}

 

3The linearized, nonlinear auxiliary, and nonlinear primary resonances 72L, ”REL, REL are dis-

cussed more fully in Section 5.4.
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Figure E.1. Blade and absorber frequency response curves for the same conditions in

Figure 5.4 on page 143 (hardening absorber path) based on the less accurate model defined

by Equation (B.3).
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Figure 5.5 on page 144 (softening absorber path) based on the less accurate model defined

by Equation (E3)
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In contrast, for order detunings ficr S E < 0 inside the no—resonance-zone the

results are poor at best or completely erroneous. This is shown in Figure E.1c-d (reSp.

E.2c-d) for a hardening (resp. softening) absorber path. For example, in Figure E.2c

the linear theory predicts no resonances over the full range of rotor speeds, and this

is verified by the simulation data, yet the nonlinear theory gives rise to a primary

resonance. As another example, the nonlinear auxiliary resonance in Figure E.2d is

expected, as it also appears in the improved model employed in Chapter 5 (compare

with Figure 5.5d and Figure 5.6d), but the nonlinear theory does not adequately

capture the linear branch of absorber motions.

Since the no—resonance zone is where the results are of the most interest, and since

that is precisely where they are least accurate (or completely erroneous), the averaged

model described above is not at all satisfactory.
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