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ABSTRACT
DIFFUSION FLAME STABILITY
By

Amy B. Moore

We analyze the solutions of a boundary value problem arising from a one-dimensional
diffusion flame. We state properties satisfied by the linear operator of the system and
prove existence of the stcady state solutions for certain parameter valucs. It has been
well cstablished that the stcady state solutions form an S-curve when no radiative
heat losses are included. We show that this S-curve transforms into an island shaped
curve and an ignition branch for large activation temperatures when radiation is in-
cluded, but islands ncver form for low activation temperatures. We also analyze the
stability of the steady state solutions by analyzing the eigenvalues of the linearized
system. The evolution of stable oscillations is scen for certain parameter values by
perturbing steady state solutions. Hopf bifurcation points are identified and classified
as subcritical or supercritical and the regions in which small perturbations lead to
stable oscillations are analyzed. A method for easily determining whether a Hopf
bifurcation point of a general system of differential equations is subcritical or super-
critical is developed. The method is used to more accurately identify the regions in

which stable periodic solutions exist in diffusion flames.
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1 Introduction

Solutions of a boundary value problem arising from a one-dimensional, non-premixed,
film diffusion flame (in which the physics include only diffusion, chemical reaction,
and possibly convection or volumetric heat losses due to radiation) have been inves-
tigated, both theoretically and numerically. When no radiating heat loss is included,
Fendell [4] showed that plotting the maximum temperature of the steady state so-
lution versus the Damkohler number yields an S-curve. Vance ct al. [14] examined
the response of a diffusion flame to small perturbations by studying the cigenvalues
of the linearized system. In particular, Vance and colleagues discussed the impact of
the Lewis number on the stability of the upper branch of the S-curve. Sohn et al. [11]
investigated when the Lewis number is larger than unity by integrating the conserva-
tion equations numerically. Kukuck and Matalon [8], Chcatham and Matalon (2], and
Kim et al. [6, 7] also explored the stability problem, but all used asymptotics instead
of analyzing eigenvalues. Kim and colleagues predicted pulsating instability when
the Lewis number is slightly greater than unity. Vance et al. [14] used cigenvalues
not only to determine stability, but also to predict when flame oscillations would oc-
cur. Oscillatory behavior in flames was observed in micro-gravity candle experiments
aboard the Mir space station, as well as during droplet burning experiments. Sohn
and colleagues [11] also observed both decaying oscillations and oscillations leading
to flame extinction.

In the later 1990s, the effect of heat loss on diffusion flames was studied. Cheatham

and Matalon (1] included a linearized volumetric heat loss term, h(T — Tp), in the



energy cquation. Kukuck and Matalon (8], using the same model, examined what
effect this heat loss had near the upper turn of the S-curve. Sohn and colleagues [12]
included heat loss due to radiation, which introduced a term of the form RD(T 4 —Tg)
to the tempcraturc equation. This study showed that plotting the maximum tem-
perature of the stcady state solution versus the Damkohler number in this model
yields an island curve, or isola, instead of the usual S-curve. In addition, they found
a region of unstable stcady flames which, when perturbed, evolved into stable oscil-
lations. This was the first time such behavior was reported. However, the behavior
seemed reasonable due to remarkably sustainable flame oscillations in a droplet flame
experiment (12]. Christiansen and colleagucs (3] included heat loss due to radiation
in a way similar to Sohn et al. [12], but also included variable properties, full species
multicomponent diffusion, and detailed multistep reaction chemistry. They, however,
were not able to find stable oscillations. They explain that this is due either to the
different geometry or to the fact that the stable oscillations appeared only in “an
extremely narrow regime.”

We will examine a system which includes a radiating hecat loss term. We prove
the existence of the solutions of such equations for certain paramecter values and
establish many important properties of the lincar opcrator. We will also show how
an isola emerges from the usual S-curve at large activation temperatures, but never
develops for smaller activation temperaturcs. We demonstrate that when the ratio of
characteristic chemical and radiation time scales is large, only a lower ignition branch
remains. We then identify the parameter values affecting the stability of the stcady
state solutions. In addition, we will show when stable periodic solutions exist and

2



describe a method for easily determining the existence of such solutions.



2 Mathematical Model

We will consider a one-dimensional diffusion flame which lies between two porous
walls. Fuel issues from a large reservoir behind the wall at £ = —1 and an oxidizer

diffuses from a free stream through the wall at z = 1, see Figure 1.

FUEL
FLAME
OXIDIZER

=
I
|
~
=
I
~

Figure 1: The one-dimensional diffusion flame between two porous walls

The equations governing the flame evolution over time ¢ > 0 can bec written as

aT T

a = m'FW—RD(T‘l—Tg) (1)
2

oYy a2yf

Here T, the temperature, is a function of both the spatial and time coordinates, z
and ¢, respectively. Yo and Yf, the oxidizer and fuel mass fractions, respectively, are
also functions of z and t. Le is the Lewis number, taken to be the same for the fuel
and oxidizer, and R is the ratio of characteristic chemical and radiation time scales.

The reactivity term, W, which is a result of the chemistry, is given by

W = DYoYfe_Ta/ T (4)

4 .



where D is the Damkohler number and Ty is the activation temperature. Note that
all of these coordinates and functions have been nondimensionalized exactly as in

Sohn et al. [12]. We assume the following boundary conditions at the porous walls:

T=T Yo=0 Yf=1 at x=-1 (5)

T =T Yo=1 Yf=0 at x =41 (6)

This model is physically idecalized. However, understanding this simple model can
aid in understanding more complicated situations. For this rcason, this model has
been studicd extensively before. In particular, the equations used by Vance et al. [14]
are identical to the above equations 1 - 6 when R = 0, however Vance'’s equations
include a convection term. In our experience, the introduction of this convection term
does not change the resulting stability behavior substantially. The equations used by
Sohn et al. {12] are also equivalent to the above equations when Tgq = 5, T = 0.1, and
Le = 1. A slightly different configuration is preferred by Kukuck and Matalon (8].
Christiansen et al. [3] added many complicated real-world influences. For a discussion
of radiative loss, sce T’ien [13]. They all provide cxcellent physical descriptions of
diffusion flames and cite many references.

Throughout the analysis, we shall take Ty = 0.1, as Sohn et al. [12]. Except
for a bricf discussion in Scctions 6 and 7, we will take Le = 1, also as Sohn and
colleagucs. In our expericnce, the introduction of other paramcters, like the Peclet

number of convection, different starting fuel fractions Yf at z = —1, and different



wall temperatures Ty do not change the resulting stability behavior substantially.



3 Existence of the Steady State Solutions

We will begin by showing the existence of the steady state solutions for small values
of the Damkdéhler number, D. In Section 5 we will find the steady state solutions
numerically. We thercfore know that thesc solutions exist, however, we will prove

existence for only small D values.
Ui

Foru=1| 4, eC[-1, 1]3, define the function F(u) to be

u3

—Du2U3e—Ta/u1 + RD(u‘f - T(‘)l)
F(u) = Du2U3e_Ta/"1

DuQU3e—Ta/u1

and the operator Nu to be

To To
Nu(z) = 0 1;1: _ ] —12—z
1 0
1-z -1-z

/I (=1 —s)F(u(s))ds + /1(1 — 8)F(u(s))ds
) - :



Claim 3.1 u is a fized point of N if and only if u solves the boundary value problem

u’(2) = F(u(2))

Ty Ty -
u(-1)=1| o |,u()=| 1
1 0

Proof 3.1 Let u be a fized point of N. Hence,

Ty Ty
1—=zx -1-z
wz) = | o 5 | 1 5
1 0

1—-z (¥ “1-z 1
5 /_1(—1 — 8)F(u(s))ds + 3 /z (1 — s)F(u(s))ds.

+

To To
So, u(-1)=1] o and u(l) = 1 |- In addition,
1 0
To Ty
W) = | o -_-21 -1 1 —21
1 0

z l1-z
—= /_1(—1 — 8)F(u(s))ds + —2—(—1 — ) F(u(z))

1 .
_% L (1 - s)F(u(s))ds — 12 (1 - z)F(u(z))




0
T 1
_ % - %Ll(—l—s)F(u(s))ds—%/x (1 = s)F(u(s))ds

and

W"(z) = —5(-1- D)) + 5(1 - 2)F(u(z)

Thus, u is a solution of the boundary value problem 7. To prove the converse, let u

be a solution of the boundary value problem 7. Then

l1—-=z -1-z
Nu(z) = 0 7 | 1 7
1 0
) I z n -1-z 1 "
+ / (=1 —=s)u"(s)ds + / (1 =s)u"(s)ds
2 Ja T
Tp Ty
_ 1-=zx _ -1-=z
- 10 2 1 2
1 0
1 z z
+— Tl(-1- s)u’(s)l_ .t / u'(s)ds]
1
1-1z ’ 1 ,
0= )]+ [ e



_ . 1 ; T . —12— z
1 0
41 . Z1(=1 = 2 (2) = 0+ u(z) — u(~1)]
+ ‘12‘ 20— (1 - 2)u'(z) + u(1) - u(z)]

= u(x)

and u is a fired point of N. Hence u is a fized point of N if and only if u is a solution

of 7.

Fix M > maz{T,1} and 0 < € < T;. Define

U = {ueC[-1,13: e <uy < M, Jug| < M, Jug| < M}.

ul

Foru=| 4, eC|-1, 1]3, define the norm

u3

lull = suppe(_q q)(lwa(@)] + |ug(z)] + |uz(@)))-

Claim 3.2 N has a unique fized point in U if

10



D < min{ M-1 M- TO
2 _T /M’ b
8M € a R;?} +M2e—Ta/M
€ — TO 1 }
RTA ’ 2 —To/M '
—2(1 _ M2eTa/M _ pprd agppe—Ta/M M€ 5 Ta | 3opM3
€

Proof 3.2 To prove that N has a unique fized point, we will show that U is a com-

plete, nonempty metric space, N : U — U, and N 1is a contraction mapping. First,

note that U is a closed, nonempty subset of the Banach space C|—1, 1]3. Hence, U is a
ul

complete, nonempty metric space. If u = ug €U, then clearly NueC[-1, 1]3. To

u3
show that NucU, we must show that Nu satisfies the necessary bounds. Let ze[—1,1],

then

|(Nu(z))a

1 1-z [* -
| 42-:1:_'_ 2x/1(—1—s)Du2u3e Ta/u14s

-1—-z
2

1
/ (1- s)Du2u3e_Ta/u1ds|
T

IA

T 1
1+ 2/ 1 |Du2u33_Ta/ullds + 2/ |Du2u3e_Ta/"1 |ds
T

IA

1
1+ 4/ . |Du2u3e_Ta/u1|ds

1+4-2.- DM2e~Ta/M

IA

— 1+8DM2e Ta/M,

11



M-1

1—-=zx 1—-z z —Ta/ul
(Nu@)gl = |55+ 5 (-1~ s)Duguge™Ta/"1as
—1-z [1

< 1+8DM2eTa/M

M-1

Now, note that

(Nu(z)); = Tp+ 1-z

/zl(—l - s)(—Du2u3e_Ta/ul

+RDu} — RDT§)ds
-1

. 1
L /z (1 - s)(~Duguge~Ta/%1 4 RDu} — RDT)ds

2
= Tp+2 = 1(% - % + (z +1))(~RDTY)
+3 : /_“”1(8 +1)(~Duguge™T6/"1 + RDuf)ds
G- é ~ (1 - 2))(~RDTY)
4z ; 1 /Il(s - 1)(—Du2u3e—Ta/u1 + RDu‘li)ds
= To+ 31;73‘(1 -+ 2(12__.3) /_xl(s + Duguge™Ta/1ds

1
+———D($2+ D / (1- s)u2u3e—Ta/u1ds
T

- T 1
+£D—(i2——l—)/ 1(3 + l)u%ds + %Ll)/ (s— l)ullids.
- T

12



Hence,

4
(Nu(z)); < Tp+ RD2T0 1-12%)+ 2(-1-2—‘—’”—)@ +1)(z + 1) M2eTa/M
2@ oy - oym2e=Ta/M

2

RDT}
= Tp+ 5 0 (1- x2) + D(1 - xz)Mze_Ta/M

RDT}
Tp+—52+ pM2eTa/M.

IA

M -Ty

So, (Nu(z)); <M if DL And,

R_ + Mze_Ta/M

o Oi

ng

2
—D(z—;-l)-(l —z)(1 —x)Mze-Ta/M
+RD(2— 1)

1 - z2) - (z +1)(z + 1)M2e~Ta/M

(Nu(@)); 2 To+ oz

RD(z +1)

4
5 1-z)(z-1)M

(z+1)(z+ )M+

RTA
= Ty+D(1- 12)(—21 — M2e~Ta/M _ pprty
RTA
> Ty+ D(TO — M2~ Ta/M _ pprty.

So, (Nu(z)); 2 eif D < <~ To

] . Therefore, N maps U into
RTy 2 —Tu/M 4
—= — M% "4/ — RM

2
U.

u1

We will now show that N is a contraction mapping. Let u = ug |12 =

u3

13



21
eU and ze[-1,1]. So, € < uy,2; < M and hence, by the Mean Value Theo-

)
z3
rem,
_ _ _ T,
e Ta/u1 _e~Ta/21| < e Ta/M:ng - 2]
So,

|u2u3e_Ta/u1 - zQZ3e"Ta/zl| = |u2u3e—Ta/u1 - 22u3e—Ta/u1
+22u3e_Ta/“1 - z223e—Ta/u1

+22236_Ta/u1 - 22236—Ta/21|

< luge™Te/ M1 fluy — 2|
+[226_Ta/u1||u3 — 23]
+|Z223||€_Ta/u1 - e—Ta/21|

< Me_Ta/M|u2 — 29|
+Me~Ta/Myyq _ o)
+M26—Ta/Mf—g|u1 - 27|

< Kjllu-z]],

where Ky = oMe~Ta/M M%"?/MT(I' In addition,
szl1 - z‘lil = |(ug — 21)(u:1; + u%zl + ulz% + z:13)|

14



< aM3ug — 7]

< Kollu - 2|,

where K9 = aM3. Hence,

vu=nall = [|5= [ 1= o (Pats) - Fets))ds

+—12- - /_:(1 — 5)(F(u(s)) = F((s)))ds|

—Duguge™Talv1 4 RD(u - T)

1-z (% T
- H 1) Duguge™Ta/u1

2
DuQU3€_Ta/u1
—Dz2z3e_Ta/zl + RD(zlli - 704)
- D2223e_Ta/zl )ds
D22236“Ta/21
—Du2u3e_Ta/u1 + RD(U‘l1 - Té)

—-1—z 1 T
7 J, =9 Duguge™Ta/u1

Du2u3€—Ta/u1
—-Dz223e—Ta/z1 + RD(Zil - 704)
— D22236—Ta/21 )dsH

D22z3e—Ta/z1

1-z [T -
= Supg[_1,1] [l 2 /1(—1—8)(—13“2"36 Talm

+RD(uf - T¢) - (~Dzgzge~Ta/21 + RD(:] - T)))ds

15



-1-z
2

1
/I (1 - s)(~Duguge~Ta/¥1 4 RD(u4 - TY)

—(—D22236_Ta/21 + RD(z:él1 - Té)))ds

+| - T /_’51(_1 ~ 5)(Duguge™Ta/U1 — Dzgzqe~Tal?1)ds
+_12_ z /:(1 - s)(DuQU3e—Ta/u1 - D2223e—Ta/z1 )dsl
+| : T /_11(—1 — 5)(Duguge™1a/%1 — Dzgzqe~Ta/?1)ds

_12_ z /xl(l - s)(Du2u3e_Ta/u1 - DZQZBe_Ta/Zl )dsl]

1
4/ l — DuQU3e_Ta/u1

<
+RD(u} — T§) - (~Dzg23e~Ta/?1 1+ RD(2} - Tg))|ds
+4 /~11 |Du2u36_Ta/u1 — ngz3e_Ta/zl Ids
+4 [1 |Du2u?,e_Ta/u1 - D22z3e_Ta/zl |ds

< 8(3D|u2u3e_Ta/u1 - 22236_Ta’/zll + RDIu‘l1 - zil|)

< 8(3DK||lu - z|| + RDK3|lu - z]|)

= cflu—zl,

where ¢ = D(24K1 + 8RK9). Thus, N is a contraction mapping if

1

D < ————
24Kq +8RK9

1

p— ‘/
48516_Ta/‘7\{+ 24A12e Ta/1 ITa

+32RM3
2
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Hence, by the Contraction Mapping Theorem, N has a unique fired point in U if

D < min{ M-1 M~ To
2,~Ta/M’ RTA ’
8M<4e _2_0_ + M2e_Ta/M
€ — TO 1 }
RTA ’ 2,—Ta/M '
TO _ M2~Ta/M _ gt agpe—Ta/M | 2AM7e 5 Ta | 39rM3
€
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4 Properties of the Linear Operator

In this section, we will prove that the linear operator has important properties which
we will use in later sections.

We begin by transforming the system 1 - 6 into a system for a perturbation of a
steady state solution. Let the steady state solutions be denoted by T, Y,, and Y:f'
Also, assume that T'(z) > 0 for all ze[—1,1]. By expressing T, Yp, and Yf as the sum
of the steady state solution and a perturbation, 1 - 3 can be written as

O (i) + m(at) = op(Te) +u1(@,0)
ot or
+D(Yo(z) + ug(z,t))

(Yf.(:l:) + ug(z, t))e_Ta/(T(m) + uq(z,t))

~RD((T(2) + u (z,))1 - T§) (8)
1 82
Le 92
~ 2 D(¥ola) + ua(z, 1)

2 (Yolz) +ug(a, ) = (Yolz) + up(z, 1))

(yf(;,;) n u3(x,t))e—Ta/(T($) +uq(z,t)) (9)
- 2
(Vf@) + ug@t) = Zoooy(¥yla) +ug(a.t)

—ﬁD(Y(;(z) + ug(z, 1))

SIS

(Yf(2) + ug(z, p))e~Ta/ (T@) +u(@.0) (1)
In order to linearize our nonlinear terms. we will define the following functions:

W(e) = D(Yolz)+cug(a, )(Yf(z) + cug(z, e~ Ta/(T(@) + cur(, 1))

18



Z(c) = RD((T(z)+ cuy(z,0))} - T).

Then the nonlincar term of 8 is simply W(1) — Z(1) and the nonlinear term of 9 and
-1

10 is E—EW(I). In order to linearize these terms, we will first express W(1) and Z(1)

as the Taylor expansions of W(c) and Z(c), respectively, about ¢ = 0 evaluated at

¢ = 1. Note that

w(Qa) = w()+w'(0)+ %W”(O) + éW’”(O) + .. (11)
and
Z(1) = Z(0)+Z'(0)+ %z”(()) + %Z’”(O) ¥ (12)
where

W(0) = D?offe—Ta/T
W) = Du)¥ye T/ + DYo(ug)eTe/T + DYy 1201 ~Ta/T
W) = 2D(u2)(u3)e—Ta/T+2D(u2)ff%e-%/f

- T, 2
+2D(u3)Y0———a(u1)e_Ta/T

T2
5 (—2Ma(u1)? | T2(u1)?\ _1, /7
+DYoYf( Bt )e a/

w"0) = GD(uz)(ug)-—_T“;z‘l)e—Ta/f’

2 2 2 ~
+3D(u2)ff(_2T;gu1) +Ta;.f‘41) )e‘Ta/T

19



2Ta('u.1)2

Tg(m)2

+3D(u3) (

T3 T4

62 (uy)3

) e—Ta/T

Yo
+D}70Yf(
RD(T* - T)
4RD(u;)T3
12RD(uq) %72

24RD(u;)°T.

Taluy) (
T4 7o

T6

T3(u1)3) ~Tg/T

Using these expressions in 11 and 12 and using the fact that T, Y, and Yf are exact

stecady state solutions, equations 8 - 10 can be written as

where

®|@

= Lu+ No(u,u) + N3(u,u,u) + O(u

u(z,t)

No(u,u)

= Lu+ f(u)

uy(z,t)
= ug(z,t)

ug(z,t)

W”(O)A _

ZII (O)

1 1
=31 -=w"0

Le

— -l_w” (0)

Le

20

1),
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WIII (0) _ ZIII(O)

1 1
N3(u,u,u) = 5 —5 W”’(O) ’
L om
——w"(0)
and the lincar operator L is given by
2 o Ta _T,T -3 ; —Ta)T > _Ty)T
—= + DYoYs=5e “8/° —ARDT DYge™‘a DYpe ‘@
o2 T2 52 f
Dy vy, Ta,Ta/T 1 Dy ~Ta/T Dy —Ta/T
-z VoV gge Teaz TeVre ;ZL—YO of
Dby y Ta 14T _Dy ~Ta/T 18 Dy _T,T
LeYoYf T2e Leyf ¢ Le 922 Ley

In addition, since the steady state solution satisfies the boundary conditions, the

perturbation must satisfy the zero boundary conditions,
up=ug=ugz=0 at z = =+1. (14)

To establish the properties of L needed for out analysis, define the operators

oz
L — 1 82
0 = P
Lea:r22
1 0
Le 952

and
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Then L = Ly + Ly and Ly is a bounded operator. Let the domain of L be D(L) =
{v'eAC[-1,1] : u"cLQ[—l,l],u(—l) = u(l) = 0}3, a subset of the Hilbert space
L2[-1,1)3.

Before examining L, we will first analyze another linear operator. Define S to be

Su = 4"

with the domain of S, D(S) = {u'¢AC[-1,1] : u”cL2[—l, 1],u(-1) = u(1) = 0}. It is
shown in [9, page 81] that —S is the operator associated with a sectorial sesquilinear
form. In addition, S is self-adjoint and has compact resolvent [9, page 83]. It is also
casy to sce that for ueL2[—1, 1],

r—1

-1
S -
U 2

T 1
| @+ vuwir+ = [ - 1uway

and the point spectrum of S is given by

_.2;2
op(8) = (T k-1,23..}.
Note that

S 0 0

1

Ly = il
0 0 LeS 0
0 O iS
Le
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and D(Lg) = D(S)3. Clearly,

s~ 0
Lt = | o Lest! o
0 0 LeS—1

The compactness of S -1 implies the compactness of La 1 4nd hence L has compact
resolvent. Thercfore, according to [9, page 38], the spectrum of Ly is equal to its

point spectrum and

2,2 2,2
-4k —7°k
o(Lg) = { T T ile k=1,2,3,..}.

It is casy to sce that Lg is symmetric. Thus, L is a symmetric, lincar operator
in the Hilbert space L2[—1, 1]3 and zero, a rcal number, is in the resolvent sct of Ly.
Therefore, according to (9, page 71], Ly is sclf-adjoint.

Since Ly is self-adjoint, (9, page 73] states that ||(Lg — /\)_1|| = dist(A, a(LO))"1
for all A in the resolvent set of L. Hence, since L is bounded, we see that there
is a Ag in the resolvent set of L( such that ||L{(Lg — f\O)_IH < 1. Therefore,
according to [9, page 25, (1+ L1(Lg — /\0)_1)_'1 exists. It is also easy to see that
(L-20) "1 = (Lg—2) 11 + L1(Lg — Ag)~1)~L. Since both (Lg — Ag)~1 and
(1+Lyi(Lg— /\0)_1)_1 cxist, A is in the resolvent set of L. Also, the compactness
of (Lg —/\0)_1 implics that (L — )\0)—1 is compact [9, page 31]. Thus, L has compact
resolvent.

Since — Ly is sclf-adjoint and hence ||(—Lg — A)_1|| = dist(/\,a(—LO))_1 for all
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A in the resolvent set of — L), it is easy to sec that, by definition, —L is scctorial.
Therefore, since — Ly is sectorial, —Lj is bounded and lincar, and D(—Lg) is a subsct
of D(—B), [9, page 194] states that —L is scctorial. We thercfore may apply what

we know about semilinear parabolic equations to equations of the form

= Lu+ f(t,u).

& ¥
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5 Steady State Solutions

We find steady state solutions of 1 - 6 numerically by using Mathematica’s NDSolve.
We transform 1 - 6 into an initial value problem by specifying T/(—1), Y(—1), and
Y;(—l) instead of T'(1), Yo(1), and Yf(l). This is done in one of two ways. For a
fixed value of the Damkohler number, D, we use Newton’s Method to find 77(-1),
Y)(~1), and Yf’-(—l) such that T'(1) = T}, Yo(1) = 1, and Yf(l) = 0. Alternatively,
for a fixed value of T/(—1), we use Newton’s Method to find D, Y5(—1), and Y;(—l)
such that T'(1) = T}, Yo(1) = 1, and Yf(l) = 0. After finding a steady state solution,
we continue to use this shooting method to find others. This can be done fast if a
suitable continuation method is employed. We use either continuation in D or T'(—1)
and we must switch, often several times, to draw a curve of steady state solutions.

When radiation is neglected (R = 0), plotting the maximum temperature (Tmaz)

versus D gives the classical S-curve, see Figure 2. Including a convection term, as in

Tmax
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0.4
0.3
0.2

Log D
6 8 10 12

Figure 2: S-curve (R = 0) of steady states when Le = 1 and Tq = 1.2

Vance et al. [14], also yields this S-curve. When radiating heat loss is included, this
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S-curve transforms. As R increases from 0, the back of the S-curve begins to push
down. For small activation temperatures (Tg < 1), the back of the S-curve pushes

down and eventually flattens down into the ignition branch, see Figure 3.

T, max
0.275

0.25
0.225
0.2
0.175
0.15
0.125

6 7 & 9 10 11 12

Figure 3: Transformation of S-curve when Le =1and Tg = 1

For large activation temperatures (Tg > 1), the transformation of the S-curve is
morc complicated. When R is small, the transformation of the S-curve is similar to
the transformation seen for small activation temperatures. The curve looks like the S-

curve with the back of the curve pushed down, see Figure 4. However, as R continucs
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Figure 4: Transformation of S-curve for small R when Le =1 and Tq = 1.2
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to increase, the plot of the steady states looks quite different than those seen for small
activation temperaturcs. Sohn et al. [12] showed that with certain radiation values,
this plot gives an island curve, or isola. We sec this behavior as well. As radiation
increases and the back of the S-curve pushes down, the curve eventually breaks into

an island and an ignition branch, sec Figure 5. As R continues to increase, the island

Log D

7 &8 9 10 11 12

Figure 5: Formation and shrinking of islands when Le =1 and T = 1.2

shrinks and eventually disappears lcaving only the ignition branch, sce Figure 6. With
further increases in R, the ignition branch remains and approaches closer and closer
to Tp. This transformation occurs when Tq > 1. The R valucs at which an island
first appears and then disappears are summarized in Table 1 for various activation

temperatures.
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Figure 6: Disappearance of islands when Le =1 and Tg = 1.2

Ta RAppear RDisappear
1.1 0.1111 0.117
1.2 0.05 0.07

2 39x107° 19x10~3
3 31x1079  7x1079
5 12x10717 31x107
6 67x10"22 29x10~8

Table 1: Tg vs. values of R where the islands appear and disappcar
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6 Stability of the Steady State Solutions

In this section we analyze the stability of the steady state solutions. A stcady solution
is called stable if all solutions of 1 - 6 that start as small perturbations of the steady
state solution decay to the stcady state. The steady state is unstable if there exists
a number 7 > 0 such that for every number € > 0 one can find a perturbation of the
steady solution which is initially closer to the steady solution than € yet eventually
differs from it by more than r.

We saw in Section 4 that every perturbation, u, of a steady state solution satisfies

the differential equation

= Lu+ f(u),

®|®

where —L is scctorial. Hence, according to [9, page 265], the stability of a stcady
state solution is determined by the spectrum of L. We also saw in Section 4 that L
has compact resolvent. Therefore, by [9, page 38], the eigenvalucs of L have no finite
accumulation point and the spectrum of L is equal to its point spectrum. Hence,
the steady state solution is stable if all the eigenvalues of L have necgative real parts.
On the other hand, if L has an eigenvalue with positive real part, the steady state
solution is unstable. Therefore, to determine the stability of the steady states, we

first solve the eigenvalue problem
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u(x1,t)

Il
o

To solve this eigenvalue problem, we discretized the equations using a second-order
central difference scheme and Mathematica solved the resulting matrix eigenvalue
problem. Increasing mesh size allowed for the discretization error to be kept small.
On the graphs we will use thick curves to denote stable stcady states and thin
curves to denote unstable steady statcs. When the lcading eigenvalue is complex,
the curve will be dashed. For example, in Figure 8, the leading eigenvalue is real
and positive on the middle branch. At point 1, the leading eigenvalue changes to
a pair of complex values with positive real part. At point 2, the real part of the
leading eigenvalue pair changes from positive to negative and the leading eigenvalue
becomes real and negative at point 3. The stability of the S-curve varies littlc with
varying parameter values. The lower branch seems to be always stable and the middle
branch is always unstable. However, Vance et al. [14] showed that the stability of
the beginning of the upper branch depends on the Lewis number. There exists an
Le,jt > 1 such that if Le < Le.;; then the entire upper branch consists of stable
stcady state solutions, see Figure 7. When Le > Le..;; the beginning of the upper
branch is unstable, sec Figure 8. We sce in Figure 9 how the interactions of the three
leading eigenvalues determinc the stability of the S-curve when Le > Le..;;. At

point 1, the two positive leading eigenvalues join and form a complex conjugate pair
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Figure 7: Stability of the S-curve when Le = 1 < Leq ;¢
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Figure 8: Stability of the S-curve when Le = 5 > Le;4

of leading eigenvalues with positive real part. At point 2, the real part of this pair
becomes negative, implying the stability of the steady state solution. At point 3, the
real part of the complex conjugate pair of eigenvalues decreases below the negative,
constant eigenvalue.

To examine the effect of R on the stability, we sct Le = 1. When R is nonzero, the
lower and middle branches scem to remain stable and unstable, respectively, however

the stability of the upper branch is affected by the value of R. Since 1 < Le.;,
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Real Parts of Leading Eigenvalues
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Figure 9: Real parts of the three leading cigenvalues at the beginning of the upper
branch when Le =5

the entire upper branch is stable when R = 0. When R is nonzero, the beginning of
the upper branch is sometimes unstable, like the R = 0, Le > Le,.;; case. We will
discuss when the beginning of the upper branch is unstable only when the behavior
here proves to be interesting when examining the Hopf bifurcation points. The more
intcresting result of radiation is the appcarance and disappearance of an interval of
unstable steady solutions on the back of the S-curve, which we discuss in detail.
When Ty < .95, the upper branch remains stable for all radiation values. As
R increases and the S-curve flattens out, the unstable middle branch shrinks and
eventually disappears, creating a completely stable curve. But, when T3 > .95, we
see the effect of radiation on the stability of the upper branch. When R is small and
the back of the S-curve begins to push down, the stability is similar to the stability
of the S-curve. Then, at a certain R value, an interval of unstable steady solutions

appears on the back of the transformed S-curve. This interval appears for Tg > .95,

however the curves depend on the Ty values. Let us first consider when .95 < Ty < 1.
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In this case, we also sce that the beginning of the upper branch becomes unstable at
a certain R value. We saw in Section 5 that the curve flattens as R incrcascs. As
the curve flattens, the regions of unstable steady solutions shrink and eventually the
entire curve becomes stable. An example of this stability behavior is scen in Figure

10 for Tq = 1.
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Figure 10: Stability of the steady states when Le =1 and Ty = 1

When Ty > 1, the interval of unstable steady solutions appears before the trans-
formed S-curve splits into the island and ignition branch, sce Figure 11. For example,
when Ty = 1.2, the interval of unstable steady states first appears when R is ap-
proximately 0.0064 and the island docs not form until approximately R = 0.05. The
interval persists on the island after the split, sce Figure 12. As R incrcascs further,
the island becomes a collection of completely unstable steady states and then even-
tually disappears. The stable lower branch persists. We see this transformation for
all T > 1. The first columns of Table 2 give the R values at which this interval of

unstable stcady solutions appears and disappears for varying T values.
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Figure 12: Stability of the steady states when Le = 1, Tq = 1.2, and R is high

Ta RAppear RDisappear RLeftSubcritical RRightSubcritical

95 .28 .34 — —
97 19 .30 — —

1 12 .25 .202 —
1.1 .026 12 .096 11
1.2 .0064 058 .048 .034

Table 2: Tq vs. values of R where the interval of unstable steady solutions appears
and disappears and values of R at which the bifurcation points at the ends of the
interval become subcritical
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7 Hopf Bifurcations

A Hopf bifurcation occurs when the lcading cigenvalue is complex and its real part
changes sign. At a Hopf bifurcation point, according to E. Hopf [5], a branch of
time periodic solutions splits from the steady state solutions. These time periodic
solutions may be stable or unstable. If the time periodic solutions exist on the side
of the bifurcation point where the stcady state solutions are stable, then the time
periodic solutions are unstable and the bifurcation is called subcritical. If the branch
of time periodic solutions exists where the stcady state solutions are unstable, then
the time periodic solutions are stable and the bifurcation is called supercritical. In
this case, slightly perturbing an unstable stcady solution near the bifurcation point
will lead to a solution which will approach the time periodic solution as ¢t grows. Sohn
et al. [12] found stable periodic solutions on the island curves, implying the existence
of supecrcritical Hopf bifurcation points of the system 1 - 6 for certain paramcter
valucs. We vary these parameter values to develop a better understanding of when
these stable periodic solutions exist.

One way of dctermining the type of Hopf bifurcation is to make a small initial
perturbation of an unstable stcady state solution near the bifurcation point and solve
1 - 6 directly using a higher order finite difference scheme. Two different types
of flame behaviors may occur on the unstable side of a bifurcation point. Either
the perturbation diverges to extinction, see Figure 13, or the solution approaches a
periodic solution, sce Figure 14. If the solution stabilizes and clearly approaches a

periodic solution, as in Figurc 14, then the bifurcation is supercritical. However, we
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Figure 13: Plot of the difference between the solution of the perturbed problem and
steady solution in which the perturbation leads to extinction
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Figure 14: Plot of the difference between the solution of the perturbed problem and
steady solution in which the perturbation approaches a stable periodic solution

may also see the solution diverge to extinction when the bifurcation is supercritical. If
the perturbation is too large or the unstable steady state solution is too far from the
bifurcation point, the solution may not approach an cxisting stable periodic solution.
For example, there is a supercritical Hopf bifurcation point at approximately D =
1.59 x 107 when Le = 1,Ta =3,and R = 105, By making a small perturbation

near the bifurcation point, say at D = 1.62 x 107, we see the solution approach a



stable periodic orbit and hence this stable periodic solution exists. However, if we
make a larger perturbation at this point or move farther from the bifurcation point,
say to D = 1.622 x 107, the solution diverges to extinction. On the other hand, if the
bifurcation is subcritical, there is no stable periodic solution to approach and every
perturbation of every unstable steady statc near the bifurcation point will eventually
lead to extinction. When looking for stable periodic solutions, it is important to
search near the bifurcation point and make small perturbations to prevent extinction
when a stable periodic solution exists. Unfortunately, this can be time consuming.
If one is too close to the bifurcation point or the perturbation is too small, then it
takes too long to determine whether a periodic solution evolves. It may appear as if
the solution is periodic when in fact it is just growing very slowly, see Figure 15. For
dar

0.0004
0.0002

-0.0002

-0.0004

2 4 6 & 10 12 14
Figure 15: Plot of the difference between the solution of the perturbed problem and
steady solution in which the perturbation grows slowly, but does not approach a
stable periodic solution
example, there is a subcritical Hopf bifurcation point at approximately D = 703.64

when Le =5, Tq = 1.2, and R = 0. An initial perturbation of size 5 x 10~ leads to

a growth rate of only about 1% in amplitude after the first cycle. A first noticeable
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increase in the growth rate in this case happens if we start with a 300 times larger
initial perturbation (or continue for about 5000 pecriods), and it lcads to extinction
after about an 800 times larger initial perturbation. These small growth rates ncar the
bifurcation point make it difficult to determine the type of Hopf bifurcation. One way
of verifying the behavior of the solution is to examine a few oscillations and use the
frequency and growth rate to compute the apparent cigenvalue. If the solution seems
to be behaving exactly as the cigenvalues predict, then the solution will likely diverge
to extinction. However, if the solution seems to grow more slowly than expected,
then the nonlinear terms may be affecting the solution enough to stabilize it. Such
analyses aid in finding possible supercritical Hopf bifurcation points.

Our findings of oscillations persisting for hundreds or thousands of periods contrast
sharply with statements made by Sohn et al. in {12] and in the previous nonlincar
analysis (Sohn et al. in [11]), concluding that the oscillations should be terminated
after a few cycles. However, it is unlikely that an actual experiment would produce
these kinds of oscillations which would last virtually unchanged for hundreds of cycles.
The key reason for being able to produce graphs like Figure 15 is the ability to choose
D very close to the bifurcation value and make small perturbations of the unstable
stcady state. For example, in the situation described carlier when Le = 5, T = 1.2,
and R = 0, if the Damkohler number is dropped to D = 700 from D = 703.5, the
growth rate jumps from 0.0004 to 0.0100, i.e. a 0.5% drop in the Damkoéhler number
causcs a 25 fold increase in growth rate, which shortens the period of persistence of
oscillations by roughly a factor of 25.

When R = 0 we have the S-curve, as we saw in Section 5. Vance ct al. [14]
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showed that when Le < Le,;s, the middle branch is unstable and the upper branch
is stable. In addition, although they found flame oscillations when Le < Le.;¢, they
found no Hopf bifurcation points. On the other hand, when Le > Le,.;;, Vance and
colleagues showed that the beginning of the upper branch is unstable and there is a
Hopf bifurcation point where the stability changes on the upper branch. However,
in this case, all perturbations of unstable steady solutions near Hopf bifurcation
points led to extinction. We made many calculations for many different values of
physical parameters, yct we always found the bifurcation to be subcritical when R = 0.
When Le = 1 and R is nonzero, we saw in Section 6 that there are sometimes Hopf
bifurcation points at the beginning of the upper branch. However, we found almost
all Hopf bifurcation points here to be subcritical. There is a very small range of
parameter values for which the Hopf bifurcation points here are supercritical. This
will be discussed below.

As we did in Section 6, we will set Le = 1 to discuss the effect of R on the
bifurcation points. For small R, the stability analysis is similar to the stability of
the S-curve and therefore no supercritical Hopf bifurcation points were found. As R
increascs, though, and the intcrval of unstable steady solutions on the back of the
S-curve appears, supercritical Hopf bifurcations appear at one or both ends of the
interval, see Figures 10, 11, and 12. Supercritical Hopf bifurcation points are circled
in the figures. Subcritical Hopf bifurcation points are not circled. We discuss the
Hopf bifurcations for various values of Ty below.

When Ty < .95, we saw no Hopf bifurcation points. When .95 < Tq < 1, there
arc three Hopf bifurcation points which appear. There is a Hopf bifurcation point
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at the beginning of the upper branch and one at each end of the interval of unstable
steady solutions on the back of the transformed S-curve. When these points first
appear, the Hopf bifurcation point at the beginning of the upper branch is subcritical
and the Hopf bifurcation points at the ends of the interval of unstable stcady states
are supercritical. The Hopf bifurcation point at the right endpoint of the interval of
unstable stcady states remains supercritical as long as it appcars for all .95 < Ty < 1.
For .95 < Ty < .98, the Hopf bifurcation point at the left endpoint of the interval of
unstable steady states remains supercritical as long as it appears. In this case, the
Hopf bifurcation point at the beginning of the upper branch becomes supercritical
right before it disappears. This is the only sct of parameter valucs for which we see
a supercritical Hopf bifurcation point in this location and the bifurcation point is
supercritical for only a very small range of R. For example, when Tq = .97, this
bifurcation point is still subcritical at R = .255, however it is supecrcritical when it
disappears by R = .256. When .98 < T < 1, the Hopf bifurcation at the beginning of
the upper branch is subcritical as long as it appears. The left endpoint of the interval
of unstable stcady states remains supercritical until right before it disappears when
it changes to subcritical. This bifurcation point is subcritical for only a small range
of R. For example, when T, = 1, it is still supercritical at R = .201, however it is
subcritical when it disappears at around R = .204.

When T4 > 1, the bifurcations are supercritical when they first appear. However,
as R increases, the Hopf bifurcations first become subcritical and then they disappear.
Also when T, > 1, at a certain R value, the S-curve splits into an island and an
ignition branch. Whether the bifurcations become subcritical before or after the split
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depends on the Ty value. For lower Tg values (Tq < 1.2), the bifurcation points
change from supercritical to subcritical before the curve splits into an island and
ignition branch. For example, when Ty = 1.2 and R = 0.01, supercritical Hopf
bifurcations occur at D = 268973 and D = 843180 on the back of the S-curve.
However, when the island forms at approximately R = 0.05, these bifurcation points
are subcritical. The bifurcation points disappear altogether by R = 0.06. At higher
values of Ty (Tg > 1.2), the bifurcation is supercritical when the island forms. We
saw in Table 1 that when Le = 1 and Ty = 3, an island forms at approximately
R =3.1x 1079 and there are no longer islands by R = 7 x 10~°. In Figures 16 and
17, we sec that there are stable periodic solutions on the islands when R = 10~7 and
R=1077. However, when R = 5 x 10—5, although there is still a Hopf bifurcation
point on the island, it is subcritical. When R = 6.4 x 10_5, the entire island is
unstable and hence there arc no Hopf bifurcation points on the island. We will
further investigate the R value at which the bifurcation changes from supercritical to
subcritical later. The existence of stable oscillations on islands was first observed by
Sohn et al. [12]. Sohn and colleagues always found stable oscillations on the islands
since they considered only Ty = 5, a relatively large value of Tg.

Slightly perturbing an unstable steady solution near a supercritical Hopf bifur-
cation point leads to stable oscillations. When far from the bifurcation point, per-
turbations may not lead to stable oscillations. How near the unstable steady state
must be to the bifurcation point in order for a small perturbation to lead to stable
oscillations depends on the bifurcation point. For smaller T values, perturbing any
of the unstable stecady states in between two supercritical Hopf bifurcation points on
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Figure 16: Stability of the islands when Le = 1, Tq = 3, and R is low

R=64*10"7°
11 12 13 14 15 16 17 18

Log D

Figure 17: Stability of the islands when Le =1, Ty = 3, and R is high

the back of the curve leads to stable oscillations. For larger T values, perturbing
the unstable steady states ncar the bifurcation points leads to stable oscillations; but
perturbing an unstable steady state in the middle of this interval leads to extinction.
In this case, the sizc of the interval in which perturbations approach stable periodic
solutions varies. We showed that when T; > 1, the Hopf bifurcation points on the
back of the S-curve (or island) change from supercritical to subcritical as R increases.

We see that as this R approaches the point at which the type of Hopf bifurcation
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changes, the size of the interval in which small perturbations lead to stable oscillations
approaches zero. We can cxamine these perturbation interval sizes to approximate
the points at which the bifurcation points change from supercritical to subcritical.
For example, when Tg = 3, Le = 1, and R = 1 x 10_5, there is a supercritical
Hopf bifurcation point when D = 1.59 x 107. Perturbing stcady solutions betwcen
this point and D = 1.62 x 107 leads to stable oscillations, but perturbing steady
states at larger values of D lcads to extinction. Therefore, the perturbation interval
size when R = 1 x 1079 is approximately 3.0 x 10°. However, when R increascs
to 2.1 x 10~ the size of this interval decreases to around 3.3 x 103. We estimated
the perturbation interval sizes at several R values between 1 x 1072 and 2.1 x 107
and used those values to approximate a function, T'(R), which gives the perturba-
tion interval size at R. We first expressed this function as its Taylor series centercd
at Ry, the point at which the bifurcation changes from supercritical to subcritical.
We then used the perturbation interval sizes computed at the largest four values of
R:1.6x 10—5, 1.8x 10_5, 2% 10_5, and 2.1x10™° to estimate the third order Taylor
polynomial. Using this approximation of T, we see that the perturbation interval size
becomes zero, and hence the bifurcation point becomes subcritical, at approximately
R = 2.3 x 10~°. This order three Taylor polynomial approximation of T is plotted
in Figure 18, along with the seven perturbation intcrval sizes computed. The last
two columns of Table 2 give the R values at which the two bifurcation points at the
ends of the interval of unstable steady states become subcritical for various activation
temperatures. However, these values were found by using the method developed in

Section 8, instcad of by analyzing perturbation interval sizes.

43



Perturbation Interval Size

|
150000
100000
50000

R times 100000
1.5 2 2.5

Figure 18: Plot of R vs. the perturbation interval sizc when Le = 1 and Ty = 3
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8 Analytically Identifying Supercritical Hopf Bi-
furcation Points of a General System

In the previous scction we discussed classifying Hopf bifurcation points as either
subcritical or supercritical by perturbing unstable stcady solutions near a bifurcation
point and examining the bchavior of the solution of the perturbed problem. We
addressed some of the difficulties in using this method and how supecrcritical Hopf
bifurcation points may appecar to be subcritical. In this section, we will develop
a method for determining whether a Hopf bifurcation point of a general system is
subcritical or supercritical. Instead of examining the apparent behavior of solutions,
this method will use the structure of the equations and the eigenvalues to explicitly
state whether stable periodic solutions exist. This method was partially developed by
Renardy in (10}, however, his argument depended on the existence of inverse functions
which do not exist at the bifurcation point.

Let H be a Hilbert space of complex, vector-valued function whose inner product

has the property that the inner product of real functions is real. Then, for all u,veH,

(z,v) = (Re(u)—iIm(u), Re(v) — iIm(v))

= (Re(u), Re(v)) + (Im(u), Im(v)) + i((Re(u), Im(v)) — (Im(u), Re(v)))

= (Re(u) + tIm(u), Re(v) + iIm(v))

= (u,v).
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Consider a general system

u=L(A)u+ f(u; A), (15)

where, for cach ¢, u(t)eH, A is a parameter, L is a linear opcrator, and f is nonlinear.
Assume that u = 0 is a stcady solution of 15. We will examine real solutions of this
differential equation. Let the domain of f be denoted by D(f). Assume f(u;A) and

L(M)u are both recal when u is real and f can be written as
f(u;X) = No(u,u;A) + Ng(u,u,u; A) + O(|u|4),

where Ng and N3 are the quadratic and cubic parts of f, respectively. Note that since
f(u; X) is real when u is real, both No(u,u; ) and N3(u,u,u; ) are real when u is

rcal. Assume that f, No, and N3 have the following properties for all uq, ug, uge D(f):

1. f(uy) = f(u7)

2. Na(up,ug) = No(ug,uy)

3. N3(uy,ug,u3) = N3(uy,u3,ug) = N3(ug, uq,u3)
4. N9 and Nj3 are linear in cach coordinate.

Note that these properties imply that for u, v, weH,

1
No(u,v) = Z(Ng(u+v,u+v)—N2(u—v,u—v)) (16)
1
N3(u,v,w) = ﬁ(N3(u+v+w,u+v+w,u+v+w)
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+N3(u—v—-w,u—v—-—w,u—v—w)
+N3(-u+v—-—w,~u+v—-—w,~u+v—w)

+N3(—u—v+w,—u—v+w,—u—v+w)). (17)

Hence, we see that No(u,v) and N3(u, v, w) arc real if u,v, and w arc real. This fact,

along with the lincarity of Nog and N3, imply that for u,v, weH,

No(@,7) = No(Re(u) —ilm(u), Re(v) —iIm(v))
= Ny(Re(u), Re(v)) — No(Im(u), Im(v))

—i(Ng(Im(u), Re(v)) + No(Re(u), Im(v)))

= No(u,v)

and

N3(@,5,W) = Ng(Re(u)— iIm(u), Re(v) — ilm(v), Re(w) — iIm(w))
= N3(Re(u), Re(v), Re(w)) — N3(Im(u), Im(v), Re(w))
~N3(Im(u), Re(v), Im(w)) — N3(Re(u), Im(v), Im(w))
+i(N3(Im(u), Im(v), Im(w)) — Ng(Im(u), Re(v), Re(w))
—N3(Re(u), Im(v), Re(w)) — N3(Re(u), Re(v), Im(w)))

= N3(u,v,w).

Now, let us examine 15 ncar a Hopf bifurcation point. Assume that the system
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has a Hopf bifurcation point at A = 0. That is, assume L(A) has a complex conjugate

pair of leading cigenvalues o(A) and a()),

Re(c(0)) = 0,

Im(a(0)) # O,

d(Rea()))

o0 # 0

and the rest of the spectrum of L()) is in the left half plane. Let wi, where w > 0
denote o(0). Therefore, +wi is the complex conjugate pair of leading cigenvalues of
L(0) at the bifurcation point. Let a()\) and a*()) denote the cigenvector and adjoint

eigenvector, respectively, corresponding to o()). So,
L(MN)a(X) = a(N)a(A) and L*(A)a*(A) = a(A)a*(N).

Without loss, assume (a()),a*())) = 1. Also, note that

(a*(X),a() = (a*(A),%&%m)
- @, Z5=25a0)
- I(A)i—m) |(Z*(a*(0),a(0) - ENa* (1), a)]
- m [("(’\)a*('\)’a(/\)) - (U(A)a*(A),a(A))]
= 0. a8)
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Consider the projection P()) given by

POA\u = u— (u,a*(V))a(r) — (u,a*(N))a(})

with the domain of P equal to H. The normalization of the eigenvector and adjoint

eigenvector and 18 imply that

P(Na(A) = P(A)a(x) = 0. (19)

Hence,

PON)2u = P(A)(u~— (u,a*(A)a(A) — (u, a*(N)a(N))

= P(Nu— (u,a*(X))P(N)a(X) — (u,a*(A))P(A)a(})

= P(Mu

and P()) is indeed a projection. We will now find P*()).

Claim 8.1 P*(\)v = v — (v,a(}A))a*(}) — (v,a(A)a*(N).

Proof 8.1 Ifu,veH, then

(P(Wu,v) = (u~(u,a*(A)a(}) - (u,a*(}))a(}),v)

= (u,9) = (v,a*(A))(a(X),v) = (v,a*(X))(a(X), )

= (U, ’U) - ('U., (a(,\),v)a*(/\ ) - (u> (a(A)a U)a*_(’\))

~—

= (u,v - (a(X),v)a* () = (a(A), v)a*()).
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Later we will nced to know the null space of P*(X).

Claim 8.2 The null space of P*()) is Span(a*()),a*(\)).

Proof 8.2 We will first show that P*(\)a*()\) = P*(A)a*(A) = 0.

P*(N)a*()) = a*(X) — (a*(A),a(A)a*(A) = (a*(A),a(N)a*(N)

and

P*(Na*(X) = a*(A) = (a*(¥),a(N))a*(A) = (a*(¥), a(A))a*(A)

5]

= a*(A\)—0—-1x%xa*())

So, Span(a*()),a*())) is a subset of the null space of P*()\). Now, let v be in the

null space of P*()\). Then

P*Qw = 0

v — (v,a(A)a*(\) — (v,

>

a(A)a*(A) = 0

v = (v,a(X))a*(A) + (v,a(N)a*(A)

v = c1a*(N) + cga*(N)

for constants c| and cy. So, the null space of P*()) is a subset of Span(a*(X),a*(A))
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and the null space of P*()) is equal to Span(a*()),a*())).

Throughout the rest of this section, assume that u is a real solution of 15. Now,

define
z = (u,a*(N)) and y = P(A\)u.

Then z is a scalar and

zaA) +zaN) +y = (u,a*(A))a(A) + (u,a*(X))a(N) + u

So, we may write u as the decomposition

u=za(A) +Za(A) +y where z = (u,a*(})) and y = P(\)u.

Note that since u is real and za(A) + Za(A\) = 2Re(za())), y is real as well. Now,

z = (u,a*(N))

= (a,a*())




= oMz + (f(za(X) + Za(A) + y; A),a*(N))

= o(A)z+9(z,3: M), (20)

where

9(z,3,2) = (f(za()) +2a()) +; A),a* (V).
Similarly,

z = o(NZ+3(zu; ), (21)

where

9(z9,8) = (f(za(X) +za(d) +y; A),a*(N)).
And,
g = P\u




by 19. Hence,

y = B(Ay+h(z,y; ), (22)

where

B(\)

Il
2
=
=
R

and

hzy:A) = P)f(za(A) +Za(d) +; N).

Claim 8.3 B()) is singular.

Proof 8.3 Assume that B(\) has an inverse, B(A)_l. Then, noting that P(/\)2 =

P()) since P()) is a projection,

BB = 1
POLWBW L = 1
PA2L)BO)™Y = P
POLABW ™ = P(Y)

BB = P,

a contradiction since P()) is not the identity. Hence, B()\) is singular.
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Claim 8.4 (B()\) — cvz)_1 ezists for all a in the resolvent set of L()), ezxcept zero.

Proof 8.4 We will denote the resolvent set of B()X) by p(B())) and the resolvent set

of L(X\) minus zero by p(L(X)) — {0}. We will show that p(L(\)) — {0} is a subset of

p(B(X)). Let a be an element of p(L(X)) — {0}. Let geH and define

h =

Then

(B()) —a)h =

(g’m)_

(L) - o)~ P()g — BTNy @A

a

PO)LAYLA) — a)"LP(A)g - a(L(N) — a)"1P(N)g

_(g,a7(Y) a(:(’\))P(,\)L(,\)a(,\) +(g,a*(N)a(X)

@8N p3) L)) + (9, F DY)
P(A)(L(X) = a)(L(A) = &) "LP(A)g + aP(A\)(L(N) — @) "1 P(\)g

~a(L() ~ @)~ P)g — 2L A5 (3 p(a)ay

(9,a*(A))
Qa

+(g,a*(N)a(r) - a(N)P(N)a(X)

+(g,a*(N))a(N)
P(AP(N)g + aP(A)(L(A) — a) "LP(\)g — a(L(A) — a) "LP(N)g
+(g,a*(A)a(A) + (g, a*(V)a(N)

P(A\)g — a((L(A) — @) 1P(A)g,a*(A))a())

—a((L(A) — @) LP(N)g, a*(N))a(N)

+(g,a*(A)a(A) + (g, a*(N)a(N)
P(N)g — a(P(N)g, (L(X) — a) ~Hy*a*(A))a(A)
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—a(P(N)g, (L(X) — &)~ 1)*a*(N))a(¥)

+(g,a*(A))a(A) + (g,a*(N)a(A). (23)

According to [9, page 57], ((L(X) — a)_l)* = (L*(\) - @)~ L. In addition, since

L*(Na*(2) = a(N)a* (),

Similarly, (L*(\) — 6)_1(1*(/\) =

(B(A) — a)h

(L*(N) —@)a*(A) = (a(X) —@)a*(N)

—a*()) = (L*O) -a) la*().

a*(A). Hence, by 23,

o(A) —a

P(A)g = —=—(P(\)g,a*())a(})

(A) -

— 2 (PO)g,a*(N)a(V)
55— P9, a0

+(g,a*(N)a(A) + (g,a*(N))a()

9= (90" (N)al)) = (9,80 ~ - (9 = (9,a" W)
~ (g, @ W)al), a* (A)a(d) ~ ==—(g = (9,a*(A)a(})
o) —a

—(g,a*(N))a(X),a*(X))a(X) + (g,a*(N)a(}) + (g, a*(X))a(X)

g - 0_(/\;1_ a(gya*()\))a()\) + ﬁz(g)a*(A))(a(,\),a*(A))a(A)

X)) * a o
o) = 5 (9:a*(N)(a(A),a”(A))a(A) — o) = a(g,a (A)a(A)

v A ICORTEDTIEY

+3W — a(g, a*(A))(a(A), a*(A))a(})
«

M—_a(g,a*(/\))a(/\) +

+

9- (9,a™(M)a(N)

a
o(A) —a
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a SOl a T
_;'(—T—)'—__a(g’a (’\)) (’\) + bf(xj _ a(g$a (A))a(’\)
Thus, aep(B())) and p(L(X)) — {0} is a subset of p(B())). Therefore, (B()) —Oz)"'l

exists for all a in the resolvent set of L()), except zero.

According to The Center Manifold Theorem, u approaches an invariant manifold.

On the manifold, there arc constants {di()\)}?z 1 such that

y = di(N2% +dg(N)2Z + d](NZ2 + dg(N) 23 + dg(A)2%Z + dg(N) 22>

+d3( )z + O(|z| )-
Note that some of the coefficients are conjugates due to the fact that y is real. Now,

§ = 2d1(N)25 + do(N)Zz + do(N)2F + 2d1 (N ZF + 3dg(N) 222 + 2d4(N)2Z2
1 2 2 1 3 4

+dg(N)22% + dg(NZ22 + 2dg(N) 272 + 3d3(N)Z2% + O(|2%).

We can solve for these coefficients {d,;(/\)};-1 — 1 by setting this expression for y equal
to the expression given in 22. Note that g(z,y,A) = O(|z|2) and g(z,y,) = O(|z|2).

So, by 20 and 21,

B(\d; (V)22 + B(\)dy(\)2Z = 2d1(N)a(N)z2 + 2d1 (M) 2zg(z, ¥; A)
+B(\)d (NZ + B(\d3(\)z®  +do(N)o(N)zz + dy(N)Zg(z, 3; A)

+B(Ndg(N)z2Z + B\ )dg(N)2z2  +dg(N)a(N)2Z + do(N)zg(z, y; A)
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+BN\)dsN +h(zu30)  +2d;(No(N)Z2 + 2d; (N)Zg(2, v; \)
+3d3(N)a(A)23 + 2d4(\)o(N) 222
+dg(N)o(N)2%Z + dg(Vo(N) 252
+2dg(No(V)222 + 3d3(N)a (V)T

+0(|2|h). (24)

By analyzing f more closely and remembering that N9 and N3 are linear in each

coordinate,

f(za(A) +Za(X) = No(za(A) +Za(N) + dy ()22 + do(N)2Z + d} (V)22

+d (V)22 +dg(N)2Z  +d3(N)2 + dg(N)22Z + dg (V222 + dg(N) 2 + O(|2[%),

+d NZ2 +d3(N)22 za(X) +2a(N) + d(\)22 + do(N)2Z + dq (V)

+dg(N)22Z +dg(N)2z% +d3(N)2B + dg(N)22Z + dg (V) 222 + d3 (V)T

+dzNZ +0(24);8)  +0(121%); A) + N3(za(A) + Za(X) + dg (V)22 + do(N)22

+d](N)Z2 + d3(N)2D + dg(N)22Z + dg (V)22 + dg(N)Z>

+0(|21%), za(A) + Za(X) + dy (A)22 + do(N)2Z + dq (V)Z>

+d3(N)z3 + dg(N)22Z + dg(N)222 + d3(N) 2 + O(|2]%),

za(A) + za(N) + dj (V)22 + dg(N)2Z + d] (V)22 + dg(N)2°

+dg(N)z%Z + (V)22 + dg(NZ + O(1211); 3) + O(l21)*

= Ny(a(A),a(A); )22 + 2Ny (a(N), a(N); )22

VIR 2

+No (), a(a); A)E2 + (2Na(a(X), d1 (A): )




+N3(a(A), a(A), a(A); A))z3 + (2Ng(a(X), da(A); A)
+2Ng(a(X),d1(X); A) + 3N3(a(), a(A), a(N); A)z2z

+(2No(a(N), d1(A); A) + 2No(a(N), do(A); A)

+3N3(a(A), a(x), a(X); A))z22 + (2Ng(a(A), d1 (V); A)

+N3(a(n), a(x), aV); A)Z + 0(J21). (25)

By rewriting h and g with this representation of f and sctting terms of equal
degree in 24 equal to each other, we can solve for the coefficients {di(A)}§= 1- We
use Claims 8.3 and 8.4 to detcrmine which operators are invertible and which are not,

noting that, except for () and o()), the spectrum of L()) is in the lcft half plane.

The first coefficient dq()\) must satisfy

BO)d(A) = 20(A)d;(N)
+P(A)Na(a(A), a(A); )

di(A) = —(B(A) —20(N)TLPO)Ny(a(M),a(A); )  (26)

and dqi()) must satisfy

B(A)d1(A) + P(A)Na(a(A),a(A); ) = 20(X)dy(})

d(N) = —(B() - 20(N) "LP(A)Nog(a(R), a(X); A).
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The coefficient dy(A) must satisfy

B(Ada(A) + 2P(A)Na(a(A), a(A); A) = a(A)da(A) + a(A)da(A).

This equation cannot be solved as the dq(A) and dj(A) equations since at the bifur-

cation point o(A) + o(X) = 0 and B()\) is singular. So, we must find do()) in another

way. Since B(\) = P(X)L()), this equation becomes

P(A)L(N)dg(X) + 2P(A)Ng(a(N),a(A); ) = a(A)dg(A) + o(A)da())

P(A)(L(N)dg(X) + 2Ng(a(A),a(A); X)) = (a(A) + a(X))da(N). (27)

In order for such an equation to have a solution, the righthand side must be in

the range of P()\). Thus, this equation will have a solution if and only if ((o()X) +
c_f_(/\—))dQ(,\), v;) = 0 for all v; in the null space of P*(A). At the bifurcation point,
this will clearly hold since o(0) + o(0) = 0, but if (dg(A),v;) = 0 for all v; in the null
spacc of P*()), then the equation will have a solution at each ), instead of just at

the bifurcation point. According to Claim 8.2, a basis for the null space of P*()) is

{a*(\),a*(A)}. If (dg(N),a*())) = 0 and (do(}),a*(A)) = 0, then

L(0)da(X) = (L(N)da(X),a*(A))a(X) = (L(A\)da(X), a*(¥))a())

PO)L(A)d2(A) =
= L(Ndg(3) — (dg(A), L*(Na*(A))a(A) - (dg(), L*(N)a*(A)a(A)

= L(N)dy(}) — (da(N), c(N)a*(N)a(A) — (dg(X), a(X)a*(X))a(X)

*(A)a(A)

)

= L(MNdy()) — a(X)(do(X),a*(A))a(X) — a(X)(dg(N),
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Hence, 27 becomes

LA)da(N)+ = (a(A) +a(X))da(})

~2P(A)Na(a(2), a(2); A)

=
=
|
—~~
Q
—_
>
~
+
X
>
A
<
N
—
>~
~—
Il

dy(\) = —2(L(A) = (o(A) +o(N) !

P(A)Na(a(A),a(A); A), (28)

a quantity which exists both at and away from the bifurcation point.

3

By setting the coefficients on 2° equal and substituting in the values of dj()) and

do(X),

B(\)d3(A) + P(\)(2Ng(a(X),d1(A); ) = 2d1(A)(Na(a(}),a(N); A),a*(N))
+N3(a(A),a(N),a(A);A)  +da(A)(No(a(d),a(A); A), a*(X)
+30(A)d3(A)
d3(\) = (B()—30()) " [~P(A)(2Ng(a(N),
~(B(\) —20(2) !
P(X\)Na(a(}), a(X); A); A)

+N3(a(}),a(X),a(r); X))

~2(B()) - 20(X)) T P(X) Na(a(X),
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The 227 terms give

B(A)dg(A) + P(X)(2Ng(a(X), da(A); A)

+2Np(a(h), dj (A): A)

+3N3(a(A), a(A),a(A); A))
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a(A); A)(Na(a(X),a(A); ), a*(A))
~2(L(A) = (a(X) + V) "LP(A)

Na(a(A), a(h); )

(N2(a(A), a(A); A), a*(A))).

20’(/\)d4(/\) + 0(/\)d4(/\)
+2d1(2)(2N2(a(X), a(A); A), a* (X))
+dg(A)(Na(a(A), a(A); A),a*(A))

+da(A)(2Ng(a(X), a(A); A), a*(A))

+2d1(V)(Na(a(A), a(A); A), a* (V)
(B(N) = (20(X) + o) "L [-P(N)

(2Ng(a(X) — 2(L(X) = (6(A) + o(N))) 71

P(A)Na(a(X),a(A); A); A) + 2Ng(a(X),

~(B(A) = 20(A) "L P(A)No(a(N),

a(A); A); A) + 3N3(a(A), a(A), a(A); A))

—2(B() — 20(N) “LP(A) Ny (a(N),

a(A); A)(2Ng(a(A),a(N); A), a*(N))

—2(L(A) — (6(A) + a(N)) "LP(N)

Na(a(A),a(A); A)(Na(a(A),a(A); A),




a*(A) = 2(L() = (o(A) + a(N) !
P(X)Na(a(}), a(); A)(2Ng(a(A),
a(A); A),a* (V)

~2(B(\) — 20(1)) "1 P())

Na(a(A), a(A); A)(Na(a(A), a(A); A),

a*(A))]

2

and the 2z terms give

B(A)dg(A) = o(M)dg(A) +20(N)dg(N)

+P(A)(2Ng(a(A), d1(A); A) +2d1 (A)(Na(a(X), a(X); X),a* (X))

+2Ng(a(A), da(A); A) +dz(2)(2Na(a(X), a(X); A),a* ()

+3N3(a(X),a(A),a(r); A)) +do(X)(No(a(X), a(A); A),a*(A))

+2d1(3)(2No(a(X), a(A); A), a* (X))
) = (B = (6(2) +20(N)) " H=P(A)(2Na(a(N),

~(B(\) - 26(0) "L P(\)Na(a(X), a(3); A); )
+2N9(a(}), —2(L(A) - (o(A) + (1)) ™!
P(A)No(a(X), a(X); A); A) + 3N3(a()), a(X), a(X); X))
~2(B(A) — 20() TLP(A)Np(a(1), a(X); A) (Na(a(d),

a(); A), a* (V) — 2(L(A) — (0(A) + (M) "LP(N)

Na(a(X), a(A); 2)(2Ng(a(X), a(X); ), a* ()
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(3

—2(L(A) — (a(A) + a(V)) “LP(A) N (a(N),

a(A); A)(Na(a(A), a(A); A),a*(A))

~2(B(\) — 20(0) “LP(A)Na(a(X), a(A); A)

(2Ng(a(A), a(M); ), a*(A))]-

-3

Lastly, the Z° terms give

B(\d3(}) = 30(Nd3(N)

+P(X)(2Ng(a(r), d1(A); A) +dg(A)(Na(a(X),a(X); A),a* (X))

FN3@O), a0, a0 N) 428 () (No(a(n), a(); A), (V)
d3(0) = (B() - 30(N) " [-P())(2Na(a(N),
—(B(X) = 20(X)) " P(A) Na(a(X), a(3); 1); A)
+N3(a(X),a(}), a(N); A))
~2(L(A) = (a(X) + a(0) "L P(A)Na(a(A), a(N); A)

(Na(a(A),a(M); A),a™(N))

~2(B(A) - 20(0) "L P(A)Ny(a(X), a(V); A)

(Na(a(A), a(A); A), a*(X))].

Now, by equation 20,

= oMz + (f(za(A) + 2a(X) + d; (V)22 + ..+ dg(N)Z + O(Iz[4); A), a* (V)

= oAz + A] (N2 + Ag(N)2Z + A3(A)Z2 + By (\) 22 + By(1)22% + B3(2)272
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+B4(NZ +0(|2%), (29)

where, by 25,
A1(A) = (Na(a(X),a(A); A),a*(N)) (30)
Ag(A) = (2Na(a(A),a(X); A),a*(N)) (31)

Bi(A) = (2Na(a(X),d1(A); ) + N3(a(X),a(}),a(X); A),a* (X))

Bg(A) = (2Ng(a(A),do(A); A) + 2Ng(a(A),d1(A); A)

+3N3(a(}),a(}),a(A); A),a*(X)) (32)

B3(A) = (2N9(a(X),d1(N); A) + 2Ng(a(x), do(A); A)

B4() = (2Ng(a(X),d1(A); A) + N3(a(X),a(X),a(N); A),a*(N)).

To understand the behavior of the solution 2 of 29, we will find a related equation
which is in Poincaré normal form. Thus, we set, for some valucs {al—(A)};": 1 Which

we will choose later,

w = z+a ()\)z2 +ag(N)2Z + a3(/\)E2 + a4(A)z3 + a5(/\)z23 + aﬁ()\):f2

+az (W) + 0(|z]Y). (33)
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We would like to write

: = wtb(\w? + bo(A)wi + by(A)2 + by(A)wd + b (\)w?T + bg(A)wi?

+h (N + O(Jw|?). (34)
Note that

2 = w2+ 2 (\wB + 269 (N w?D + 2b3(\) w2 + O(|w|?)
2 = w+ by (w2 + by(Nw?w + bg(NwS + by (\ww
+ho(A\)win? + b3 (AT + O(Jw|?)
2 = +2b1 /\)w + -b;_ +2b3(/\)w2E+0 |w| )
2 = wd+0o(uw)
27 = w2ﬁ+0(]w|4)

zZ4 = wﬁ2+0(]w]4)

&

= @ +O(lulh.
By substituting thesc expressions into cquation 33, we sce that

w = w+ wi(b(A) +a1(N) + wB(by(A) + ag(N)) + W2(b3(A) + a3(A))
w3 (bg(N) + 2a; ()b (A) + ag(A)bg (V) + ag (X)) + ww(bs(A)
+2a7(M)bg(X) + ag(M)ba(X) + ag(A)by (A) + 2a3(A)b3(A)

+ag (N) + wiw(bg(A) + 2a1(A)bg(A) + ag(A)by (A)
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+ag(M)bg(X) + 2a3(A)ba(A) + ag(N)) + T (b7 ()

+ag(A)b3(A) + 2a3(A)b (A) + az(X) + O(w| ).

In order for this equation to hold, we must have that the coefficicnts on the terms
of degree higher than one are zero. We can write our {bi(’\)};‘?= 1 in terms of the
{ai(/\)}z= | to ensurc that the necessary terms are zero, although we will not write
those values of {bi(’\)}z= 1 here. So, we sce that we can write z as 34 by having our

{b;(\)}] _ | defined in this way. Now,

2

W = z+2a1(N)zz+ ag(A)2z +ag(N)zE + 2a3(/\)§ +3a4(X)2°2 + 2a5(X)z7T2

+a5(A)2%% + ag(\)F2: + 2a6())27F + 3a7(A)222 + O(|2|4)

= o(N)z+ cl(/\)z2 +c9(A)zz + C3()\)22 + C4(A)z3 + c5(/\)222 + c6(/\)232
+e7(NF + 0|z, (35)
where, by 29,

() = Aj(A) +20(\ay ()

co(A) = Ag(A) + o(Nag(A) + o(N)ag(A)

c3(A) = A3(\) +20(Naz()

cg(A) = Bi(A) +2a1(A)A1(A) + ag(A)A3(A) + 3a(A)ayg(A)

c5(A) = Bo(A) +2a1(A)Ag(A) + ag(A)Ag(X) +

ag(N) A (A) + 2a3(A)A3(N) + 20(N)ag(X) + o(N)as(A)
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cg(A) = Bg(X) +2a1(A)A3(A) + ag(A)A1(A) + ag(A)Az(A)

+2a3(A)Ag(A) + a(A)ag(A) +20(A)
A

c7(A) = B4(X) + ag(A)A3(A) + 2a3(A)A1(A)

ag ()
+ 3a(A)a7(A).

By using 34 to express cach z in terms of w, 35 becomes

b = o(Nw+ (a(Wb1(N) + 1 (N)w? + ((N)bg(R) + ca(N)wT + (a(A)b3(A)
+e3()@2 + (a(A)bg(A) + 261 (Ve (V) + BgMea(N) + eq(W)w?
+(a(A)b5(A) + 2bg(N)er (A) + ba(N)cp(A) + by (Mea(X) + 2b3(N)ez(A)
+e5(A)w?B + (a(\)bg(A) + 263(\)e1(X) + b (W)ea(R) + ba(N)ep(A)
+2By (N3 (A) + cg(A)w? + (a(N)b7(X) + b3(A)ea(A) + 251 (Mez(N)

+eg (W)@ + O(fwlh). (36)

Since both the {bi(’\)}17= , and {ci(’\)};'7=l arc expressions of {ai(A)}Z= 1
we can choose our {“i()\)}27= 1 to make all of the above coefficients on terms of

2

degree higher than one, except the coefficient on the w“w term, to be zero. At the

bifurcation point, ¢(0) + 3(0) = 0, which causes the a5(0) terms in the coefficient of
w2 to vanish. Therefore, we cannot eliminate this term in the differential equation

at the bifurcation point. We will not include the values of all the coefficients here,

but instead will give only those values which prove useful. By substituting in the
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chosen values of {az-(/\)}z= 1> the above cquation 36 becomes

W = o(Aw+ (o(Abg(A) + 2bp(Ney(A) + Bg(Neg(A) + by (Aea(A)

+2b3(Ne3(A) + e5(N)w?w + O(jw|?).

Now, the expressions for these b;(A) and c;(A) valucs are

_ A1)
bi(A) = )
Ag(N)
2N = 222
ba(X) =0
_ A3(A)
B = e
341 (M) A2(N) | Ao(N)A2(N)
be(A) = —ar(A 20 22V
5 R DIy
243(NA3()
(20(X) = a(A))(—a(N) +20(N))
c1(A) = —A1(N)
. __A(N)a(X)
co(A) = o
oy 230000
C3(/\) - A3(’\) —0’(A)+2(_/\)
es(A) = 32(/\)_2A1(a/\();;2(/\)+2a5(,\)0(/\)_141(2_z:;)2(/\)_Az(%_\‘i_)z(/\)
a3 _ 2A3(N)A3(2)
+ag(A)a(A) o) £ 2000

Hence, by substituting in these values and using the fact that W@ = |w|2w,

W = o(Nw + Blw]?w + O(Jw]?), (37)
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where

—(\) 2 2
M ANETN +00) AN | g 2dz0)

lo(A)2 () a(X) — 20(X)

+ag(A)(a(X) + a(N)).

ﬂ:

This is in Poincaré normal form. Thus, its stability is fully analyzed in [5]. We know
that the periodic solutions which bifurcate from the steady solution w = 0 are stable

if and only if Re(8) < 0 at the bifurcation point. Now, at the bifurcation point since

7(0) = wi,
p= AOA0: IAzg))Pi + By(0) _21_435_1@_!"’_
So,
Re(B) = Re(mjﬂoﬁ + 32(0))

A1(0)A9(0)2
and the bifurcating periodic solutions are stable if and only if Re (————1( )w 2(0)i +

BQ(O)) < 0. Let us now find the values needed to compute this value. By 26, 28, 30,

31, and 32,

A1(0) = (Ng(a(0),a(0);0),a*(0))

b
[ (&)
—~~

(aw]
N

il

(2N9(a(0), a(0);0),a*(0))

By(0) = (2Nz(a(0),d5(0); 0) + 2No(a(0), d1(0); 0) + 3N3(a(0), a(0), a(0); 0), a*(0))
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d1(0) = —(B(0) — 2iw) "1 P(0)Na(a(0), a(0); 0)

—2L(0)~1 P(0) N9 (a(0), a(0); 0).

QU
N
~~

(=]
~—

Il

Now, remember that

= w+ by (A)w? + by (AW + by(A\)T2 + by (A\)ywS + bs(\)w?@ + bg(\)ww?

IS
[

+b7(N@° + O(ful?),
- 2 s 52 3 2_ 7 =2
y = d1(N)z° +do(N)2Z + d1(N)Z° + dg(X)z” + dg(X)z°Z + dyg(N)2Z

+dz(NZ +0(lz|h),

and

u = za(A) + Za(A) + .

Hence, the bifurcating periodic solutions of the system 37 are stable if and only the
bifurcating periodic solutions of the original systcm 15 are stable. So, thc periodic
solutions of 15 which bifurcatc from u = 0 arc stable if only if Re(3) < 0. For this

rcason, we call Re(() the stability coefficient of 15.
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9 Identifying Supercritical Hopf Bifurcation Points

of Our System

In this scction we will use the method established in Section 8 to develop another
method for classifying the Hopf bifurcation points of the system 1 - 6. We saw in

Section 4 that a perturbation of a steady solution must satisfy

ou
- = L
g u+ f(u)
= Lu+ No(u,u) + N3(u,u,u) + O(ul), (38)
where
u(z,t) = ug(z,t)
ug(z,t)
and the lincar operator L is given by
2 N . ) ) N X -
Calgn DYoYf&e_T‘I/ T _4rD73 DY;e~Ta/T DYpe Ta/T
022 T2 2 f
Dy Ta 14T 190 Dy -To/T _Dy -Ta/T
eYOYf T2e Legz2 Le Yf e ¢ 62Leyoe
_Dyy Ta -T,T _Dy ~ToT 10 Dy -To/T
LeYoYf ’f‘ze Leyf € Lepz2 Le Yoe 74
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Also,

W”(O) _ Z”(O)

N -

No(u,u) = —éw”(o)

1 n
LeW (0)

and

W’”(O) — z" (o)

Ly (0) ,

[«

N3(u,u,u) = I

1 m
—W™ (0
L ( )

where

w”0) = 2D(u2)(u3)e—Ta/T+2D(u )Yf%e—ﬂz/’f

+2D(ug )Yo—25-> a(ul) —Ta/T

5 —2Ta(u1)2 T2(w1)?\ —T,/T
+DYoYf( S+ )e

w”(0) = 6D(ug)(u3) 7{“1 e~Ta/T

2 12(up)2
+3D(ug) f( 2T;gu1) ;2) ) ~Ta/T

_ 2 )
+3D(uz)Yo( 2T;g"1) LT ;:11) )e~Ta/T

3 672wy T3(ur)3 -

+DYoYf(6Ta](Zl) 6Ta7£§1) + Taggl) )e_Ta/T

Z"(0) = 12RD(u;)%7?

Z"(0) = 24RD(up)3T.
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And, the perturbation must satisfy the zero boundary conditions,

uy =ug=ug =0 at T = %l. (39)

Define H = {ueAC[-1,1] : u'eL2[—1,1],u(—1) = u(l) = 0}3 as a subset of
L2[—1, 1]3. It follows from [9, page 81] that H is a Hilbert space of complex, vector-
valued functions. Let ||- || denote the norm in H. Notc that u = 0 is a stcady solution

of 38 in H. By examining the forms of W (0) and Z”(0), we scc that we can write

Y1 <i,j < 3%, %Y

No(ww) = | £y < j<3bi jun;
Y1 <i,j < 36, jUilj
and
L1 < g,k < 3%, j, kUitjtk
N3(wuwu) = | B <y j k< 3%, j,kuitju |

21 <5,k < 3fi, j, kUuitjug

where aj j» bi,j’ ¢, j» 1 <1435 <3and d’i,j,k’ ei,j,k’ fi,j,k’ 1<14,5,k <3 are
functions of z. Also notc that these functions may be chosen so that a; j = 4 i

bij = Y54 €5 = ¢ o & j k=i k5 = 954k €5k = C,k,j = €j,i, k> 2nd

fi,j,k = fi,k,j = fj,i, g for all 1 <4, 37,k < 3. Therefore, it follows from 16 and 17
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that,

¥1 < 4,5 < 344, jUiv;

No(u,v) X1 <i,j < 3bi, juivj
X1 <i,j < 36, juivj
and
X1 <, j, k < 3%, j, KUV Wk
N3(w,v,w) = 1 By < 5k < 3, j, kuiv0k

21 <i,5,k < 3fi, j, KUV Wk

It is casy to sce in these forms that No and Ng are linear in cach coordinate and that
No(u,v) = No(v,u) and N3(u,v,w) = N3(u,w,v) = N3(v,u,w) for all u,v, weH.
Also, note that f(u) = m Hence f, N9, and N3 have properties 1 - 4 in Section 8.

Suppose that 38 has a Hopf bifurcation point at the Damkaohler number Dgy. Define
our bifurcation parameter, A, to be A = D — D(. Thus, 38 has a Hopf bifurcation
point at A = 0. Note that the lincarized system L depends on D and hence L = L(\).
In addition, let us use the same notation for the leading eigenvalue, eigenvector,

projection, and so on, as we did in Section 8. The following thcorem is a result of

Section 8.

Theorem 9.1 Assume that 38 has a Hopf bifurcation point at Dy and Re(B8) < 0
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where

A} (0)A2(0)s

Re(f}) = Re( -

+ B2(0))

and

A1(0) = (No(a(0),a(0);0),a*(0))

A2(0) = (2Na(a(0),a(0);0),a*(0))

By(0) = (2Ng(a(0),dq(0);0) + 2Ng(a(0),d;(0);0) + 3N3(a(0), a(0),a(0); 0),a*(0))
d1(0) = —(B(0) - 2iw)~ ' P(0)Ny(a(0),a(0); 0)

da(0) = —2L(0)"1P(0)No(a(0),4(0); 0).

Then there is a time periodic solution 6(z,t) of 1 - 6, a critical Damkohler number

]

Derit, and an € > 0 such that if | Y, is a steady state solution of 1 - 6 at D,

where D is between Dy and Dy and p(z) is an initial perturbation of | y,

T

with ||p(z)|| < ¢, then | vy, | + u(z,t), the solution of 1 - 6 with u(z,0) = p(z),
Yy

approaches 6(z,t) ast — oc.
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Note that all the values needed for computing the stability coefficient, such as the
cigenvalue and cigenvector, can be found (or very closcly approximated) by Math-
ematica. As in the mecthod for determining the stability of the steady states (sce
Scction 6), this is done by discretizing and thercfore changing the operator L(A) into
a real matrix. Hence, finding the adjoint eigenvector, a®*()), can even be done casily
by finding an eigenvector of the transposc of L(\).

Using Mathematica to compute the stability coefficient, 3, is much more straight-
forward than searching for stable periodic solutions as we did in Section 7. Determin-
ing where a Hopf bifurcation point changes from supercritical to subcritical is now
done with case. For example, in Section 7, we examined when Tg = 3 and Le = 1.
We saw that for smaller R values, the size of the interval in which small perturbations
lcad to stable oscillations is relatively large. However, as R increases, the size of this
interval decrcases and approaches zero as R approachces the point at which the bifur-
cation point becomes subcritical. By analyzing the sizes of these intervals for various
R values, we found that the bifurcation changed from supercritical to subcritical at
approximatcly R = 2.3 x 1079, Finding this valuc of R required much time and
many computations. However, this result is easily verified in Figure 19. We sce that
the stability coefficient changes signs, and hence the bifurcation point changes from
supercritical to subcritical, at approximatcly R = 2.3 x 10~9. It is in this way that
we computed the R values at which the bifurcation points changed from supercritical

to subcritical in Table 2.
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Figure 19: Plot of R vs. the stability coefficient when Le =1 and Tq = 3
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10 Conclusions

We organize our conclusions by examining different ranges of Tg and explaining the
transformation of the steady state solutions, the stability, and the Hopf bifurcations
as R increascs.

When Ty < 1 and R increases from zero, the back of the S-curve pushes down
to Ty and no islands form. When Ty < .95, the upper branch remains stable for all
values of R. When .95 < T, < 1, the beginning of the upper branch becomes unstable
and an interval of unstable stcady solutions appears on the back of the transformed
S-curve as R incrcases. The Hopf bifurcation point at the right endpoint of the
interval of unstable stcady solutions on the back of the curve is always supercritical.
In addition, the left endpoint of the interval of unstable stcady states on the back
of the curve is a supercritical Hopf bifurcation point when it first appears and the
Hopf bifurcation point at the beginning of the upper branch is subcritical when it
first appears. When .95 < T < .98, the Hopf bifurcation point at the left endpoint
of the interval of unstable stcady states remains supercritical as long as it appears.
The Hopf bifurcation at the beginning of the upper branch becomes supercritical
right before it disappears. When .98 < Tq < 1, the Hopf bifurcation poir;t at the
beginning of the upper branch is always subcrit.ical. The Hopf bifurcation point at
the left endpoint of the interval of unstable steady solutions becomes subcritical right
before it disappears.

When Tg > 1 and R is small, the transformation of the S-curve is similar to the

Ta <1 case. As the Tg <1 case, an interval of unstable stcady solutions appears on
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the back of the transformed S-curve and the Hopf bifurcation points at the ends of the
interval are supercritical when they first appear. After the appearance of this interval,
the transformed S-curve breaks, creating an island and a lower branch. The lower
branch is completely stable. The island contains a Hopf bifurcation point. When
1 < Ty < 1.2, the bifurcation points change from supercritical to subcritical before
the island forms. When T > 1.2, the bifurcation point on the island is supercritical
when the island forms, but changes to subcritical as R increases further. As R
increases, the island shrinks and the lower branch pushes down closer to 7j;. At a
certain value of R, as the island shrinks, the island becomes a collection of complctely
unstable stcady solutions and then disappears. The stable lower branch persists.
The method established in Section 8 made determining the type of Hopf bifur-
cation a straightforward process. Although we can often correctly identify whether
a Hopf bifurcation point is subcritical or supercritical by perturbing unstable steady
solutions ncar the Hopf bifurcation point, it is time consuming and at times it may
appear as though a supercritical Hopf bifurcation point is subcritical. By finding the

stability coefficient, we clearly establish when stable periodic solutions exist.
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