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ABSTRACT

Minimum Distance

Measurement Errors Model Fitting

By

Weixing Song

This work proposes a class of minimum distance tests for fitting a parametric
regression model to a class of regression functions in the measurement error models.
In the errors-in-variables model case, these tests are based on certain minimized Lo
distances between a nonparametric regression function estimator and a deconvolution
kernel estimator of the regression function of the parametric model being fitted. In
the Berkson model case, these tests are based on certain minimized distances between
a nonparametric regression function estimator and the parametric model being fitted.
The thesis establishes the asymptotic normality of the proposed test statistics under
the null hypothesis and that of the corresponding minimum distance estimators in
both cases. Simulation studies show that the testing procedures are quite satisfactory

in the preservation of the finite sample level and in terms of a power comparison.
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Introduction

In the classical regression model, we use a set of variables, say d—dimensional predic-
tor X, to explain the response Y, a one dimensional real random variable, here, both
X and Y are observable. But in the real applications, the predictor X is not always
observable. To deal with the statistical inference problems in this case, statisticians
proposed the so called measurement errors model. In this model, a surrogate of X,
say Z, is observed. Then how to investigate the statistical relationships between X
and Y based on the data from Z and Y is the main issue in the measurement errors
models.

Based on the stochastic structure between X and Z, the measurement errors model
usually can be divided into two classes, error models which including the errors-in-
variables models in which Z = X + u and the error calibration models in which
Z = a+ X + u, and the Berkson model (or Regression calibration models) in which
X = Z + 7, where u,n are measurement errors. About this classification, see Carroll,
Rupert and Stefanski (1995) for the details.

The measurement errors regression models have been receiving a continuing atten-

tion in the statistical literature over the last century. For some literature reviews on



errors-in-variables models, see Gleser (1981), Anderson (1984), Fuller (1987), Bickel
and Ritov (1987). Carroll and Hall (1988), Fan (1991a, 1991b), Fan and Truong
(1993), Carroll, Rupert and Stefanski (1995), and the references therein. As for the
Berkson models, see Rudemo, et al. (1989), Huwang, L. and Huang, Y.H.S. (2000),
Wang (2003, 2004) for some literature reviews. Most of the existing literature has
focused on the estimation problem. Model checking or lack-of-fit testing problem is
not discussed thoroughly. Only some sporadic results on this topic can be found in
the literature.

In the errors-in-variables model case, Fuller (1987) discusses a graphic method
for lack-of-fit testing of a linear errors in variables regression model. Carroll and
Spiegelman (1992) consider the graphic and numerical diagnostics for nonlinearity and
heteroscedasticity in linear regression model with errors in variables. Zhu, Song and
Cui (2003) considered the lack-of-fit testing in the polynomial regression with errors
in variables and constructed a residual-based test of score type, but their method has
two limitations. First, the predictor is one dimensional and the regression function
under the null hypothesis is polynomial; second, the density function of the predictor
is assumed to be known which is generally unrealistic in the real applications. Cheng
and Kukush (2004) also addressed the same problem based on so-called adjusted least
squares estimators. Few results on the errors in variables regression model checking
without imposing strict conditions are available in the literature.

Berkson model has a relatively simpler structure than errors-in-variables model
in that the density function of the predictor can be estimated by the usual kernel
method. Like the errors-in-variables models, there is a vast literature on the estima-

2



tion problems about the parameters. but no discussion on the model checking problem
for this case.

Many interesting and profound results, on the other hand, are available for the
regression model checking problem in the absence of errors in predictor, see, e.g.,
Eubank and Spiegelman (1990), An and Cheng (1991), Eubank and Hart (1992, 1993),
Hart (1997), Stute (1996), Zheng (1996), Stute, Thies, and Zhu (1998), Khmaladze
and Koul (2004), among others. For a general discussion on the model fitting in
the classical regression case, a good reference is Hart (1997). Stute (1996), Stute,
Thies, and Zhu (1998) constructed a test statistic based on certain marked empirical
processes. Their simulation results show the testing procedure is quite satisfying, but
their procedure can only be used for the one dimensional case. The recent paper
of Koul and Ni (2004)(K-N) uses the minimum distance (MD) ideas developed by
Wolfowitz (1953, 1954, 1957) to propose tests of lack-of-fit for the regression model
without errors in variables. Their work can be used to deal with the multidimensional
case. In a finite sample comparison of these tests with some other existing tests, they
noted that a member of this class preserves the asymptotic level and has very high
power against some alternatives and compared to some other existing lack-of-fit tests.
Our work will extend this methodology to the measurement errors model set up.

To be specific, in the classical regression set up, let X,Y be random variables,
with X being d-dimensional and Y one dimensional with E|Y| < oo. Let u(z) =
E(Y|X = r) denote the regression function, and let {my(-): 0 € ©}, © Cc R, ¢ > 1,

be a given parametric model. The statistical problem of interest here is to test the



following hypothesis:

Hy: p(r) = n190( r). for some 6y € ©, and all z € Z, v.s. Hy : Hp is not true,
(1)
where 7 is a compact subset of Rd, d > 1. based on a random sample (X;,Y;);1 <
i < n from the distribution of (X,Y). In the K-N paper, the design is random but
observable. Let K, K* be two possibly different density kernels on [-1, l]d. For any

bandwidth sequence h, let

Kp(z) = hl—dK(%) Kpi(0) = Kz - X;), fyn(@) Z K}(z).

Note that f X h 1s the kernel estimator of fy corresponding to the kernel K *. K-N

defines
T0) = [ [ ZK;“ )%, — mg(x)]*F2 (=) dG), @)

and O = argming-gTn(0) where w = wp ~ (logn/n)l/(d+4), and h = hp is a
bandwidth depending on the sample size n. For some crucial technical reasons, differ-
ent bandwidths h and w are chosen. The integration measure G is a o-finite measure
on R? which may be chosen to make the test statistic to have good power. Under
the null hypothesis and some regular conditions, the consistency and asymptotic nor-
mality of én are proved. They also showed that the asymptotic null distribution of

d/ 2 n (Tn(c’;n) ~-C n) is standard normal, where

N 1 X ) . )
Cn = n_2 Z /I K} (0)2 [ 2(2)dG(z), & =Y - m, (Xi)

. 2

d n
Iy = h—2 (/ Ky, (x Kh]( )éié lfu, (r)dG(r))
n 2



Thus, the test that rejects the null hvpothesis whenever nhg/Ql:‘;l/2|Tn(9~n) ~Cnl >
20/2 is of the asymptotic size a, where zn is (1 — a)th percentile of the standard
normal distribution. Unlike in other related papers, K-N do not need the null regres-
sion function to be twice continuously differentiable in the parameter vector. The
asymptotic normal distribution of 85, and Tn(én) were made feasible by recognizing
to use different band widths for the estimation of the numerator and denominator
in the nonparametric regression function estimation. A consequence of the above
asymptotic normality result is that at least for large samples one need not use any
resampling method to implement these tests.

In this thesis, we will discuss, in the measurement errors setup, how to develop

testing procedures for the following hypothesis:
Hy: p(z) = mgo(r), for some 6y € ©, and all z, v.s. Hy : Hp is not true.  (3)

From K-N’s procedure, we know that if we want to use the minimum distance
method, a kernel-type regression estimator must be constructed, but this in turn
implies that we must find an estimator for the density function of the predictor. This
is not a problem in the classical regression case in that the predictor is observable. But
in the measurement errors models case, the predictor X is not observable, to adapt
K-N’s minimum distance method, the above procedure needs some modification.

We now briefly describe the modification needed for the errors-in-variables model.
It consists of two steps:

Step 1. Hypothesis Change: The hypothesis (3) concerns with the regression

function p(r) which depends on the true predictor, but the true predictor is not



observable. By recognizing that v(z) := E(Y|Z = z) = E(u(X)|Z = z), we consider
the new regression model Y = v(z) + ¢, where the error  is uncorrelated with Z
and has mean 0. The problem of testing for Hp can be transformed to test for
v(z) = 1/90(2), where vy(z) := E(mg(X)|Z = z). Since Z is observable, so we can
construct a classic kernel estimator for the new regression function v(z).

Step 2. Deconvolution Kernel Density Estimator: The minimum distance
will be constructed based on the classical kernel estimator of v(z) and a proper
estimator of vy(z) := E(mg(X)|Z = 2) under the null hypothesis. Note that, under

the null hypothesis,

vg(z) = Jmg(z)fx (z)fu(z — x)dx
f [ Ix(@)fulz —z)dr

To estimate this quantity for given 6, we need an estimator of fy . In this connection
the deconvolution kernel density estimators are found to be useful here. Putting the
deconvolution kernel density estimator of fy into the above expression, we construct
the deconvolution kernel estimator of vg(z).

To obtain the asymptotic distribution of the test statistic, we need to consider
the asymptotic behavior of the deconvolution kernel estimator of vg(z). Although we
extend Stefanski and Carroll (1991)’s result to a more general case, the convergence
rate of the deconvolution kernel estimator is still slower than the classical kernel
estimator. This brings us some difficulty in proving the technical results. To overcome
this difficulty, we adopt the sample splitting technique. The sample splitting scheme
required in the proof is not so realistic in certain cases, but the simulation results

show that the test statistic behaves good if we do not follow the sample splitting



scheme.

In the Berkson model case, things become relatively easy. From X = Z + u
and the independence between Z and u, E(Y|Z) is known under the null hypothesis
except the parameter. After changing the hypothesis, the testing procedure can be
developed in the similar way as done in the errors-in-variables model case.

This thesis is organized as follows. Chapter 1 discusses the model fitting for
errors-in-variables model in which the regression function under the null hypothesis
is linear in parameters. Theorem 1.3.1 gives the asymptotic distribution of the un-
derlying parameter estimator. Theorem 1.4.1 gives the asymptotic distribution of the
minimized distance under the null hypothesis. A test statistic therefore can be con-
structed based on this theorem. Several simulations are present in section 1.5. Some
problems related to the sample allocation scheme and the results about the general
errors-in-variables models are discussed the subsequent section.

Chapter 2 discusses the minimum distance model fitting in Berkson model. Corol-
lary 7?7 and Theorem 2.3.1 state the consistency of the underlying parameter estima-
tors, Theorem 2.4.1 and Theorem 2.5.1 give the asymptotic distribution of the param-
eter estimator and the minimized distance under the null hypothesis. A test statistic
therefore can be constructed based on the Theorem 2.5.1. Simulations conducted in

section 2.6 show the testing procedure is quite satisfactory.



CHAPTER 1

Minimum Distance

Errors-in-Variables Model Fitting

1.1 Introduction

The findings in the classical regression case motivate one to look for tests of lack-of-
fit in the presence of the errors in variables based on the above minimized distances.
Since the predictor in errors in variables models are unobservable, clearly the above
procedures need some modification. To be specific, in an errors in variables regression

model of interest here, one observes Z;, Y; obeying the model
Y, =u(X,i)+€z', Zi =Xi+ui, 1< <n, (1.1)

where X;’s are the unobservable d-dimensional random design variables. We addi-
tionally assume that (X;, ;. u;, Z;, Y;),i=1,2,--- ,n, are i.i.d. copies of (X, ¢, u,
Z,Y). The rv.’s (X, u, €) are assumed to be mutually independent, with u be-
ing d-dimensional, and ¢ being 1-dimensional r.v.’s, E(¢) = 0, E(u) = 0, and their

8



marginal distributions having densities fy, fu, and fe, respectively. For the sake of
identifiability, the density f; is assumed to be known. This is a common and stan-
dard assumption in the literature of the errors in variables regression models. The
densities fy and fe need not be known. The problem of interest in this chapter is

to develop tests for the hypothesis
Hy: p(z) = 0(7)17'(1), for some 6y € RY, vs. Hy: Hy is not true, (1.2)

in the model (1.1).

A way for constructing tests here is to first recognize that the independence of X
and € and E(¢) = 0 imply that v(2) := E(Y|Z = z) = E(u(X)|Z = 2). Thus one can
consider the new regression model Y = v(z) + (, where the conditional expectation
E(¢|Z) = 0, hence ( is uncorrelated with Z. The problem of testing for H is now
transformed to test for v(z) = ueo(z), where vg(2) := BTE(T(X)[Z = 2). Note that
for any z for which f(z) > 0, we have

v(z) = J u(x) fx () fu(z — 2)dz
I fx(@) fulz —x)dz ~

(1.3)

From (1.3) one sees that if fy is known then f7 is known and hence vy is known ex-
cept for 6. Let Q(z) := E(r(X)|Z = z). Therefore a modification of K-N’s procedure

in this case is as follows. Define

_ 1 n T 2 q
Tn(8) = /[nfz(z) izlkhi(z)(yi—e Q(Zi))] dG(z), 6eRY,
Op = argmineeRan(()),

Here h is a bandwidth depending only on n and Kj};(z) is redefined as K((z —
Z;)/ h)/hd for any kernel function K and bandwidth h . Then we may use 6, to

9




estimate 6, and construct the test based on the T, (f). Unfortunately, f X 1s generally
not known and hence f7 and Q(z) are unknown. This makes the above procedures
infeasible. To construct the test statistic, one needs estimators for f7 and Q(z). In
this connection the deconvolution kernel density estimators are found to be useful
here.

For any density L on Rd, let ¢; denote its characteristic function and define

1 oo it . o) 2L®)
(2m)d JRd p(-it ')cbu(t/h)

a 1 n I—Zi d
Fxp@ = n—hdZLh( =), zeRr?
i=1

Ly(z) = at, i:=(-1)2 zeR(14)

The above Lj, is called the deconvolution kernel function, while f X1, is called de-
convolution kernel density estimator of fy-, cf. Masry (1993), Carroll, Ruppert and
Stefanski (1995).

Note that Q(z) is equal to R(z)/fz(z), where R(2) = [r(x)fx(z)fu(z — z)dz,

and fz(z) = [ fx(z)fu(z — z)dz. Then one can estimate Q(z) by
Qn(2) = Rn(2)/fzp(2), (1.5)

where Rp(z) = [r (r)th( ) fulz—x)dz, fzp(z) = fth(z)fu(z—x)d:c. At this
point, it is worth mentioning that, by the definition of L, and a direct calculation,
one can show f 7k, 1s nothing but the classical kernel estimator of f; with kernel L
and bandwidth h. That is, fzp,(2) = S0 L((z — Z;)/h)/nhS.

Our proposed inference procedures will be based on the analogs of T, where Q(2)
is replaced by the above estimator Qp. and f 7 is replaced by a kernel estimator.

A very important question related to the above procedure is the following: Are

10




the two hypotheses, Hyq : u(r) = ng(r). for some - and all z, and Hoq : v(2) =

BEE (r(z)|Z = z), for some 6 and all z, equivalent? The answer is negative in
general, but in some special case, these two hypotheses are equivalent. See a general
discussion in Section 1.6.2

The large sample behavior of the deconvolution kernel density estimators strongly
depends on the smoothness of the distribution of measurement error u. Using the
terms from Fan and Truong (1993), a distribution is called ordinary smooth if the
tails of its characteristic function decay to 0 at an algebraic rate; it is called super
smooth if its characteristic function has tails approaching 0 exponentially fast. As
Masry (1993) showed, the local and global rates of convergence of the sequences of
deconvolution kernel density estimators are slower than that of the classical kernel
density estimators. Moreover, these convergence rates are much slower in the super
smooth cases than in the ordinary smooth cases. But Stefanski and Carroll (1991)
shows that in the one dimensional case with r(z) = z, for estimating E(X|Z = z2)
by Qn(z), faster rates are obtainable. For example, in the case of normal measure-
ment error, the mean squared error rate of convergence of f Xhs to fx is of order
(log(n))_Q, while the convergence rate of Qn(z) to E(X|Z = 2) is of order n=4/7.
Even so, the convergence rate is still slower than the mean squared error convergence
rate of the classic kernel estimator, which is n_4/ 9 in the one dimensional case. This
creates extra difficulty when considering the asymptotic behaviors of the analogs of
the corresponding MD estimators and test statistics. In fact, if we base the estimators

of fx, hence Q(z) and the other quantities on the same sample, the consistency of

11



the corresponding MD estimator is still available. but its asymptotic normality and
that of the corresponding MD test statistic may not be obtained. We overcome this
difficulty by using different bandwidths and splitting the full sample, say S, with
sample size n into two subsamples, S with size n. and Sy with size ng, then using
the subsample Sy to estimate fy hence Q(z) and the subsample S; to estimate the
remaining quantities. The sample size allocation scheme is stated in section 2.

To be precise, let

n n
fzny(2) = DO Kpi(iny fxw(@) = 3 Lu((z - Zj)/w)/ngu?,
i=1 j=ni+1

Rngle) = [ 1) fxw @fulz = 2z, Fzuy(e) = [ Frtug(@fulz - 2)da

Qng(z) = ﬁnz(z)/waQ(z),

where h1, hg depend on nq, and wy and w9 depend on ny. Now define

- 2
Mn(8) = Ky, ()Y - 6T Qny(2;))] “dG(2),
®) /[nleh2 Z)Z Ay Qny(2))] dC(2)

On

arginfg-pq Mn(6). (1.6)

Then we may use én to estimate 6, and construct the test statistic through Mn(én).
We first prove the consistency of 6p, for 6, then the asymptotic normality of /nl(én —

6p). Finally, let

ni
& = Y-8 Qny(Z). Cni=n QZ/K,W )2 (2),
R 711 o X 2
Ip = th (/Khl1(2)1"11lj(Z)Cide¢h2(Z)) ,
i#j=1
di, (2) 2 t{) (1.7)
Zho'~

12



We prove that the asymptotic null distribution of the normalized test statistic
nlh(ll/zf“,-,—l/jz(f\fn(én) — Cp) is standard normal. Consequently, the test that re-
jects H( whenever nh(li/zf'r_ll/QM'fn(én) - Cp| > 20 /2 is of the asymptotic size
a.

This chapter is organized as follows. Section 2 states the needed assumptions.
A multidimensional extension of Lemma A.1 in Stefanski and Carroll (1991) is also
proved there, together with some other needed results. Section 4 proves the asymp-
totic normality of the MD estimator. The asymptotic normality of the MD test
statistic is discussed in section 5. Section 6 includes some results from a finite sample
simulation study.

In the sequel, ¢ will denote the generic finite positive constant whose value depends
on the context. For any vector b, T denotes its transpose. For any function f, we will
use f , f to denote the first and the second derivative with respect to its argument.
The convergence in distribution is denoted by =, and N (a, B) stands for the d-
dimensional normal distribution with mean vector a and covariance matrix B and

Eg. denotes the conditional expectation given the subsample Sy. The integration

1
with respect to the G-measure is understood to be over the compact set Z.
1.2 Assumptions

This section first states the various conditions nceded in this chapter. About the
errors, the underlying design and the integrating o-finite measure measure G, we

assume the following:

13




(el) The random variables {(Z;.Y;) : Z; € Rd,Yi eR.1=1,2,--- .n}from(1.1)are
i.i.d. with the conditional expectation v(2) = E(Y|Z = z) satisfying fz/2dG <

oo, where G is a o-finite measure on Rd.

(e2) 0 < 0:2 = E? < 00, E||r(X)||2 < 00, and the function 52(3) = E[f)gr‘(X) -

65 Q(2))?Z = 2] is as. (G) continuous on Z.
(e3) E||?0 < 00, E[|r(X)||219 < oo, for some § > 0.
(ed) Ele/4 < 00, E|Ir(X)||4 < 0.
(u) The density function fy is continuous and [ |éy(t)|dt < oco.

(f1) The density fy of the d-dimensional r.v. X, and its all possible first and second

derivatives are continuous and bounded.

(£2) For some &y > 0, the density f7 is bounded below on the compact subset 1'50

of Rd, where for any § > 0

d
Is = e R*: max |y; —z;] <46, 1.8

T

v=(1 -yl 2= (21,29l 2 € T},

(g) G has a continuous Lebesgue density g.
About the null model we need to assume the following:

(m1) There exists a positive continuous function J(z), such that as ||¢t|| — oo,

J(r(z = 2) = 7(2)) exp(=itT z) fu(r)dx
ou(t)

e« < J(z).

for some a@ > 0 and all z € Rd, and EJQ(Z) < 00.

14



(m2) E||7‘(Z)||2 < 00, EIQ(Z) < 0o, where I(z) := [ |Ir(z)| fu(z — z)dx.
About the kernel functions. we assume:

(€) The kernel function L is a density, symmetric around the origin, [|t||%|o (t)] <
oo, for all t € RY; Morcover, f le2L(v)dv < oo and f||tl|3]o'L(t)|dt < oo for

3 =0, a, with a as in (ml).
About the bandwidths and sample size we need to assume the following:

n) With n denoting the sample size, let ny, no be two positive integers such that
& 1, "2 p g

n=nj+ng, ng = [nllj], b> 1+ (d+ 2a)/4, where a is as in (m1l).
(h1) hq ~n{, where a < min(1/2d,4/d(d + 4)).

(h2) hg = c(log(ny)/ny)}/(d+4).

(w1) wy = n2—1/ (d+4+2a)

(W2) wy = cy(log(ng) /ng)L/(d+4),

Assumption (m1l) is not so strict as it appears. Some commonly used regression
functions such as polynomial and exponential functions indeed satisfy this assumption
as shown below.

Example 1: Suppose d=q, r(z) = r, and u ~ N;(0, Zy). Then,

J(r(z = 2) = r(2)) exp(=itT x) fu(x)dx
ou(t)

thuf) _ Haau(t)

= | / rexp(=itT ) fu(x)dr| - exp (— L exptTzut/2) < el

where the constant ¢ depends only on £y. Hence (m1) holds with a = 1 and J(z) = c.

15




Example 2: Suppose d=q=1. r(x) = r. and u has a double exponential distribution

with mean 0 and variance o?,. In this case, oy (t) = 1/(1 + ot 2/2) and

[(r(z — 1) — r(2)) exp(—itz) fy(z)dr
du(t)
= | [ xexpl-ita)ful@ds] loute)
_ aOu ’/l C|t]
Pul 1 + 0%1‘2/2’

with ¢ now depending only on 01%- Hence as |t| — oo, (ml) holds for a = 0 and,

J(z) =c.

Example 3: Suppose d=q=1, r(r) = e¥, and u ~ N(0, 012,). Then

/(T(z — 1) —1(2)) exp(—itr)fu(x)d$|
- / (2% — &%) exp(—itz) fu(x)drl
“|

where ¢ is some positive number depending only on 03. Hence (1) holds for a =0

INA

/ et fu(x) dacl + [ul( t)l] < ce®lou(t)],

and, J(z) = ce®.
Next, we give some general preliminaries needed in the proofs below.
In the case of r(z) = x and d = 1, Stefanski and Carroll (1991) obtain the following

results:
{ERnQ(z) - R(z)}2 < 011'31(1 + 22), Var(f?n2(z)) < c(n2wl)_1(wl_2a + 22),

for all z € R, and under the assumptions (i) fy, fX and fX are continuous and
bounded; (ii) [ |¢u(t)|dt < oo: (iii) as |t| — oo, lou(t)/ou(t)] = o(|t|%), for some
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a > 0; (iv) ng — oc, and wq — 0. The kernel function L used in the deconvo-
lution estimator is assumed to be four-times continuously differentiable, compactly
supported and real valued. The following lemma is a multidimensional extension of

the above results which will be frequently used in the sequel.

Lemma 1.2.1 Suppose d > 1, and (f1), (v), (1), (h1) hold. Then for any z € Rd,

IERny(2) - R:)I? < cwir?(2),

E|lRny(2) — ERny(2)I2 < ——(J2(2)uy 2 +[Ir(2))1?),
n2w1

where I(2) is as in (m2), J(z) is as in (m1) and where ¢ is a constant not depending

-

on z,n9 and wjy.

Proof. A direct calculation yields that for any = € Rd Ewal =[L(v)fx(z—
vwy)dv. By assumption (f1), there exists a vector a(z,v) such that fy (z —vw;) has
a Taylor expansion up to the second order, fy (z — vw;) = fx () - wlvaX(I) +

w%vaX (a(zx,v))v/2. Hence

ERny(2) / / () fx (z — vwy) fulz — z)dvdz
= [[r @)L sx @) ule - 2)dvds
—u || / r@L@pT f () fulz — 2)dvdz

+3 [ r@LedeT fxtate e - 2)dvds,

Assumption (€) implies that the first term is [ r(z)fx () fu(z — z)dz = R(2), the
second term vanishes because of [ vTL(v)dv = 0, while the third term is bounded
above by c¢I(z) by assumption (f1), where c is a positive constant depending only on
the kernel function L. Therefore, the first claim in the lemma holds.

17



Note that Rn2(z) - ERn2(z) is an average of i.i.d. centered random vectors. A

routing calculation shows that

. . 1 2
EllRng(2) = ERny () < WE“ /r(x)Lu,l((I ~ 2)/wy) fulz - 2)da

by using the fact that the variance is bounded above by the second moment. Let
D(t,2) = [r(z)fu(z — x) exp(—itTa:)dJ:. By the definition of the deconvolution

kernel Ly, it follows that
1 2
waal [ @)Ly (@ - 2w futz - 2)ds

dsdt.

// DT'(t,2)D(s, 2)é[ (twy)o (sw1)d x (t + 8)bul(t + 7)
(27) 24y, (t) pu(s)

By changing variable, D(t,z) = exp(—ith) Jr(z — ) fulx) exp(itT:c)da:. Adding

and subtracting r(2) from r(z — z) in the integrand, we obtain

[(r(z = 1) = (2)) fu(z) exp(ith)dz]‘

— i T
D(t, z) = exp(—it Z)¢u(z)[ (2) + du(t)

From assumption (ml), || D(t, z)|| is bounded above by |0y (t)| - [[I7(2)|| + J(2)|[¢[|%]
for all z € RY. Hence EIIRnQ(z) - E'RnQ(z)||2 is bounded above by
2
elirz)IZ z)” / / |61 (twy) ] (sw))bu(t + s)dtds (1.9)

+%ﬁﬂf/ (I + s o L (twy)op (swy)dult + s)l|dtds

cJ4(z
22 [ jesilo o swnoutt + s)deds.
Note that for any m,p = 0 or a, from assumption (), we have
J[ 1PIsIm oL o sunou(s + s)dds

< wpPmoA // IP sl ™o (o (8)ou((t + s)/wy)dtds
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cwpPom—2d / IsI™ 6 (s)ll6u((t + 5)/wy)ldtds

(,u,l—P—m—Qd/”S“m|oL(s)|(/|ou((t+S)/u'1)]df)ds

= Pl / sl 6 (5)lds - / jou(t)ldt = cwy P~

IA

The second claim in the lemma follows from (1.9) by using the above inequality. [
By the usual bias and variance decomposition of mean square error, the following

inequality is a direct consequence of Lemma 1.2.1,

E||Rny(2) - R(2)II? < cwir?(z) +

c —
(22w % + |Ir(2)]).
71,2w1

If the bandwidth wy is chosen by assumption (w1), then
_ 4
EllRny(2) - R@)I% < eng T20F(120) 1+ 7 2() + Ir()I?). (L10)
In the sequel, we will write
T(2) = 12(2) + T 2(2) + |Ir(2)]1%. (1.11)

The following lemma we will be used repeatedly, which along with its proof appears
as Theorem 2.2 part (2) in Bosq (1998). We state the lemma for a sample size n and

a bandwidth A, they may be replaced by ny or ng. hg or wo according to the context.

Lemma 1.2.2 Let fZ be the kernel estimator with a kernel K which satisfies a Lip-
schitz condition and bandwidth h. If f7 is twice continuously differentiable, and the

bandwidth h is chosen to be Cn(log(n)/n)l/(d"r@, where cn — ¢ > 0, then

(logy, n) "L (n/ 1og(n)) 2/ (4+9) sup |5 (z) = fz(2) - 0 as.
z2€T

for any positive integer k and compact set I.
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1.3 Asymptotic normality of 6,

Recall the definitions in (1.6). Because the null model is linear in 6, so the minimizer
6n, has an explicit form obtained by setting the derivative of Mp(0) with respect to

0 equal to 0, which gives the equation

]

n]
1 : 1 T

1 1 . .
/I ;1— Z:l Khli(z)yi . a _Z:lKhli(z)Q"2(Zi)dwh2(z)'
1= 1=

Adding and subtracting 9(7; QnQ(Zi) from Y}, and doing some routing arrangement,

6n, will satisfy the following equation:
1
- (O (ZVdid (6 —
/I nlthlz )@ny(Z;) nlgxhlz<z)czn2<zz)dwh2<z> (én — )

ni
L5 K0~ Gy 200 1 3 K 1y G,
=1 i=1

(1.12)

The above explicit relation between 6, — 0o and the other quantities allows us, com-
pared to K-N, to investigate the asymptotic distribution of 5 without proving the
consistency in advance. Most importantly, the separation of 5 from Rn,Q(z) makes

a conditional expectation argument in the following proofs relatively easy. To keep

the exposition concise, let

"1
Uny () o= niZKhli<z>m—9§Q(z,->>. (113)
Dp(z) = ZKhlz )(Qng(Z;) — Q(Z))).

20



1 1
e = ”IZ > I R
2

The main result in this section is the following theorem:

Theorem 1.3.1 Suppose Hy, (el). (e2), (e3), (u), (f1), (f2), (m1), (m2), (¢), (n),

(h1), (h2), (wl). and (w2) hold, then /iy (bn — 6g) = Ng(0,5g x5 1), where

2 T (.2
- [RER0E R,

f(z)

and 72(z) = ag + 52(2), where ag, and 52(2) are defined as in (e2).

o = /Q QT (2)dG(2),

Proof. It suffices to show that the matrix before én — 6p on the left hand side of
(1.12) converges to X in probability, and /7 times the right hand side of (1.12) is
asymptotically normal with mean vector 0 and covariance matrix X.

Consider the second claim first. Adding and subtracting GTQ( Z;) from Y; —
00 an( ;) in the first factor of the integrand, and adding and subtracting Q(Z;) from
Qn2( ;) in the second factor of the integrand, replacing 1/ f Zh (2) by 1/ f%h (2) —

l/fZ(z) + l/fZ(z = Any(2) + l/fZ , /71 times the right hand side of (1.12)

can be written as the sum of the following eight terms:
Sn1 :-\/ﬁ—/Un1 (2)Dn( )Anl(z)dG( ), Spo = \/T/Unl )Dn(2)dv(z),

Sp3 :W/Unl Juny (2)Ang (2)dG(2), Spg = \/—/Un1 Juny (2)dv(2),

Sps = —\/—/Dn Dn z)Any (2)dG(2) by,

Sne = —\/T/Dn Z)dl/( )60,
Swr =~V [ Dule)udy (2)8n, ()G 6

Spg = —\/ﬂ/D,;(z);z.gl(z)dU(z)HO.
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Among these terms, S, is asymptotically normal with mean vector 0 and covariance
matrix X. The proof uses Lindeberg-Feller central limit theorem, and the arguments
are exactly the same as in K-N with ’”HO(XI') and m(,o(xi) there replaced by OgQ(Zi)
and Q(Z;) here, respectively. The proof is omitted. All the other seven terms are of
the order op(1). Since the proofs are similar, only S8 = op(1) will be shown below
for the sake of brevity. We note that by using a similar method as in K-N, we can
show Unl(Z) is Op(1/ nlh‘li), which is used in proving S,;; = op(1) for I = 1,2, 3.
First, notice that the kernel function K has compact support [—1, l]d, ) Khli
is not 0 only if the distances between each coordinate pair of Z; and 2 are no more
than h. on the other hand, the integrating measure has compact support Z, so if we

define

I, = weR? Jyj—zj|<hpj=1, .4

y=(y1, - -,yd)T,z = (21, ,Zd)T,Z € I},

then Ihl is a compact set in Rd, and Khlz' =0if Z; ¢ Ihl. Hence, without loss
of generality, we can assume all Z; € 7, 1 Since f7 is bounded from below on the
compact set 150 by assumption (f2) and Zj, 1 C I‘SO for ny large enough, so from

assumption (w2), Lemma 1.2.2, we obtain

fz(2) log no 32—4
sup |=—%—— — 1| = o (log. n9) + as., (1.14)
ZEIhl fZ“"Q(:) ( k"2 ( nog ) >
sup m = Op(1).
ZEIhI fZle(:)

Secondly, we have the following inequality:
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o 17ny(Z) = REZDI | f2(24)

”QTIZ(ZL) Q(Zl)” < fZ(ZI) waz(Zz)+
22D\ oz 1.15
waQ(Zi) ot l)” (119)

Recall the definition of S,,g. We have
n
1 .
ISl < vaTiboll | - 3 Ky 0ny ) - QUZ)

—ZKW Q(Z)lldw(2)-

From (1.15) and (1.14), this upper bound satisfies

lo 2
VAT Op(1) - Apy1 + VT o (ogg ng) (=1 2) THE) - Anpa, (116)
where
ni
e ZKhlz WRng(Z;) ~ R(Z))I - —ZKW 1Q(Zy)ldv(2)

A = [ [ ZKhll ez auz)

By the Cauchy-Schwarz inequality, A ! is bounded above by

n
B ZKhlz Nitng(20) = R dota) - [ [%ZlKhlxz)ucz(Zi)n}de(z)
=1

Note that
1 m . 2
e[ [ > KMy ) - RZI]| du(z)
1=
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nl
/ (3 3 Ky iEn O ng(Z) = REZ) - I1Rng(2)) = REZN)du()

nl z,] 1
/£,

-||Rn2< Z;) - R(Z)I))dvz).

Z’*hlz JKhyj(2)Es, (1 Rng(Z) = R(Z)

By the Cauchy-Schwarz again,

Eg, (I1fing(2;) = R(Z)II Ry (Z;) - R(Z))I))

< (EgylBng(Zy) - RZ)IDYA(Eg Ifing(25) - REZHIHM?,

which in turn, from the independence of the subsamples S1 and Sy, the choice of ™

4/(d+2a+4)

bandwidth wy, and (1.10), is bounded above by cny T1/2(2)T'/%(2)),

where T is defined in (1.11). So

/[ ZKhlz W Rno(Z;) ~ (Zz-)n]de(z)
< 8+2a+/ ZK (2)T/2(z )) du(2).

Using the similar method as in K-N, together with the assumptions (m1) and (m2),

we can show that

]
/ (nl—1 > Khli(z)71/2(2i))2du(:) = Op(1), (1.17)
1=1

ni

/(%ZKhli(z)HQ( ||) (z) = Op(1).
1=1

Finally, from (1.16), we obtain

2/(d+2a+4)

2
ISnsll < VAT - Oplny )+ T - op (logy, no) (12 ) T+

n2
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which is of the order op(1) by the assumption (n).
To finish the proof, we only need to show the matrix before 6y, — 6 on the left
hand side of (1.12) converges to ¥ in probability. Adding and subtracting Q(Z;)

from an( ;), this matrix can be written as the sum of the following eight terms:

Tlll = /Dn Z)Dn Anl( n2 .“_/D'fl “lll Anl( )dG(Z)’
Tyg = [ 1y ()DF (), (IG(). Tg i= [ imy (] (2)8my (2)dG2),

Tns = /Dn(z)D,j;(z)dw(z), The - -—/Dn u;l;l( )dy(z),

Ty = [im@DE@awE),  Tugi= [uny ol )av(e)
Notice the connection between T,1 and S,5, Tp2,T,3 and S,7, T,5 and S,
The Tp7 and Spg. By using similar argument as above, we can verify that
T, = op(1) for I = 1,2,3,4,5,6,7. From (1.14), and the second fact in (1.17),
Tp4 is also of the order of op(1). Finally, employing similar method as in K-N, we

can show T),g converges to £ in probability. Thereby proving the theorem. O

1.4 Asymptotic normality of the minimized dis-

tance

This section contains a proof of the asymptotic normality of the minimized distance

M”(én). To state the result precisely, the following notations are needed:

& = —%Q( D G= Y- 60 Qny(2),
711

Cn - —22/1(,712 CPdu(z),  Mn(6p) ::/[ ZIK,W )c,] du(2),
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r = 2/(‘1’2(::))2 z)du( / /1\ WK (u+v (Iu] dv.

where 72(:) is as in Theorem 1.3.1.

The main result proved in this section is the following:

Theorem 1.4.1 Suppose If Hy, (el), (e2), (e4), (), (f1), (f2), (m1), (m2), (€),
(n). (h1). (h2) ,(wl1) and (w2) hold, then nlh(li/2f“,; /2 (Mn(fn) — Cn) = N(0,1),

where Cp. I'n are as in (1.7).

The proof of this theorem is facilitated by the following five lemmas:

Lemma 1.4.1 If Hy, (el), (€2), (ed), (v), (f1), (f2), (m1), (m2), (¢), (n), (h1),

(wl1) and (w2) hold, then
n1h {2 (Nin(8g) — Cn) = Ng(0,T)

Proof. Replacing (; by & + Og(Q(Zi) - Qn2(Zi)) in the definition Mn(ﬁo) and
expand the quadratic term, nlhtli/2(1\~fn(90) - C'n) can be written as the sum of the

following four terms:

ni
1
Bnl = ?;/Khlz Khl] )fzgjdu()
ni
By = %% [ Knyit K66 (@2 - Qng(2)u2)
By = % /Khl, K, (€08 (Q(Z0) — Qo Z))du(2),
1

and

B,y = %§/Khll K ()68 (QUZ) = Qny(2)))
i#]

gg(Q(Zj) - QnQ (Zj))dl,»‘f(z).
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Using the similar method as in K-N. one can show that nlh(ll/QBnl = N4(0.T).
To prove the lemma, it is sufficient to show nlhcli/anl = op(1) for I = 2,3,4. We
begin with the case of [ = 2.

By (1.14) and the inequality (1.15), and let

]
Coij = 3 [ Knyie) K, j6scuta)
i#]

then B, 9 is bounded above by the sum B,,91 + Bj,29, where

1 .
Byo1 = Op(1)- =5 Y [IBny(Z;) — R(Z))|l - 1Cpi;ll,
log ng 2 1 e
Bpoo = o((logknz)( o )m)'?Z[”Q(Zj)”'lcnij”-
1j5=1

On the one hand, by the conditional expectation argument and inequality (1.10), we
have
1 &
E% Z,I[HR@(Z]-) — R(Zj)Il - |Cpyj]
]:

!
i E'_?l? .leEsl<|1Rn2<Zﬂ ~ RZ{)D - 1Crij |
]=

n1
eng 2+ 20+4) E[n—lz > TH4Z)) - (Cpi]
1j=1
1
);-I—E[TI/Q(ZI) 1Chi1ll-

IN

_ C"2~2/(d+2a+4

Now. consider the asymptotic behavior of E[Tl/2(Zl) -|Cpi1l]- Instead of consider

the expectation, we investigate the second moment. It is easy to see that ET (Z )C?; i
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equals to

UCIDIDY //I\hl, WNp 1)K j(W) KR 1(9)€€ du(2)du(y) (1.18)
1#1 j#1
= (-1 //E K 2(2) K, 0y )52) E(Kp 1(2)Kp 10T (21)du(2)dv(y).

The second equality is from the independence of §;, i = 1,--- ,n] and E{; = 0. But

E(Khlg(Z)Khlg(y)E%) = (Kh12(2)1(}112(?4)(022 +62(Z9)))

_ @/K(%)K('yh—lu)(ag+62(u))fZ(u)du

_ y

Similarly, we can show that

- v) (02 + 62(z — hyv)) f7(z — hyv)dv,

E(Kp 1(2)Kp1(0)T(27)) /K (v) v)T(z~h1v)fZ(z—h1v)dv.

Putting back these two expectations in (1.18), and changing variables y = 2z + hju,

then by the continuity of f. (52(2), g(z), and T(z), we obtain ET(Zl)le =

(ng — l)hl_d. Therefore,

2 zjllllﬁfn2 (Z].)” . ICnij” _ 0(n2—2/(d+2a+4)nl_1 . \/nl—-fhl_dﬂ).
J

( —2b/(d+2a+4)—1/2h—d/2>
1

This, in turn, implies B,9; = Op(n . by assump-

tion (n).  Similarly, one can show n12znl ez |Cm]” is of the

2/(d+4

-1/2,-d/2
nl/h1 /)

. Hence

1 2 1 2 5
d/2 ~dF2¢ ~d+
"lhl/ |Bpol = Op(nl2 ¢ +2"+4) + Op(nf + logy. nq (log nl)a+4)
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is of the order op(1) since b > (d + 2a + 4)/4 by assumption (n).
By exactly same method as above, we can show that nlh(li/an:; =op(1).
: d/2
It remains to show that nlh1 B4 = op(1). Note that
Bual < = Lst [ B @Kn 0002  10ny(2) - Q2

i#]
1Qny(Z;) = Q(Z;)lldu(2).

From (1.15), the right hand side of above inequality is bounded above by the sum

2
1
p(1)- B 41+°P((1°gk"2)(Og:2)m)(3n42+3n43) (1.19)

4
+0p((10gk ng) (log;2 ) ﬂ) Bn4g,

where
1 A
Bt = 5 3 [ Knji@Ki ) Vng(2) - R
1iZ]
1By (25) = R(Z))lldv:(2),
1 &
Buty = 3 3 [ Knyil)Kn () 1ing(2) = RZ)I - 1Q(Z))du(c),
L
Bu = QZ [ Eni@Kny ) 1ny(2) = REZDI - 1Rl ),
11#]
Buaa = %2; [ Enging ) 1001 1)) dv(2)
i#]

By a conditional expectation argument, Cauchy-Schwarz inequality, (2.2), and the

continuity of f; and T'(z), we obtain

d+20+4 —4/(d+2a+4
EBpyy < cny 4/(d+2a )/E[K (2)TY2(2))2du(2) = O(ny /(d+2a+4))
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—4/(d+2a+4)

This implies B 41 = Op( ), since b > (d + 2« + 4)/4 by assumption

(n), so that
d/2 d/? —4b/(d+2a+4
n1h%2 . 0p(1)Bryy = nyh92 - Op(1)0 pny W/ (H20H)) _ )

Similarly, we can show

—2/(d+2a+4 —-2/(d+2a+4
Bngz = Op(n, [(d+2084)) By = Op(ng 0+2044)) Bogg = 0p(1).
Therefore, for | = 2,3,

d/2 2
n1h op(aogw( ~2)d+) B,y

-~ 55054, d/2 2
Fa +2a+4h1/ (logy, n1)(log n) +4)

= o[)(n1

which is of the order op(1) by assumption (n). For B, 44, we have

"1h/ Op((log nz)(logZQ)E%)anm

1-77+4, d/2 4
= op(ng a“1_4_}11/ (Iog%nl)(]ognl)m)

which is also of the order op(1). Finally, from above and (1.19), we prove

nlhlli/anA = op(1). Thereby proving the lemma.

Lemma 1.4.2 In addition to the conditions in Lemma 1.4.1, suppose (h2) also holds,

d/2 5
Proof. Recall the definitions of Mp(6). Adding and subtracting
E Z Kpi(2)60 Qny(Zy)

30




in the squared integrand of Mn(én), we can write A‘In(én) — Mp(fp) as the sum

Wi + 2W}, 9, where

nl
W = [nllehlz (60 - 0n)T Qny(2))] i (2).

Who = /nl Z Khlz(z Z Khlz - én)TQANQ(Zi)dkahz(z)v

and (; =Y, — 90 Qn2(Zz-). Easy to see that

n] X R 9 .
W < 2 [ [ 3 Knyile)00 - in) @na(2,) - (2] (2120
1=1

ni
1 s \T 2 .
+2 [ 3 Kiyi(e)eo = Q2] (o)
1=
We write the first term on the right hand side as W11 and the second term as W, 9.

On the one hand, note that W11 is bounded above by

f 2
b, — 6|2 Z .(2)1On Z)I| dy
1= 01 sup | ng(z‘/ hl()IIQ 2(Z)) ~ Uz “aw(z)

By the conditional expectation argument as we used in the previous part, we can
show that the integral part is indeed of the order op(1). By assumption (w2), the
compactness of Tj, X and the asymptotic behavior of 65, — 6 stated in Theorem 1.3.1,

nlhtli/QWnll = op(hd/z) = op(1). On the other hand, W),19 is bounded above by

||9n—90||2-sup|z 1 /15 ZK,,N- Nz “du ).
U)

Since the integral part is of the order Op(1), so nlh(lj/ Whio = Op(h(li/ 2

) = op(1)
. . . d/2 .
is easily obtained. Therefore, nyh;" “Wp1 = op(1) is proved.

Now, consider an Rewrite it as

Wpo = / Z Khlz 2)C; - Z Kh]_l( Qn2( )d'lf/‘h2(2) (6p — én.)-
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Note that integral part of W), o is same as the expression on the right hand side of

(1.12), thus

nl

Zkhlz ) Qo (Z3)d0p, (2) - (B = bn).
Therefore, W9 is bounded above by
1o 0112 [ In 'IZKW i@y (Z) N2 (o)

Adding and subtracting Q(Z;) from Qn2( i), it turns out that W9 is further

bounded above by the sum W91 + Wn22, where

Wot = 20n ~ 012 [ln IZKW 1Qny(Z;) ~ QI iy (2),

Wz = 2lon - 61 | [n{lzKhlz-(z)||Q<zz->m?du3h2<z>.

Arguing as in W,11 and W19, we can show

2 d/2
”1h1/ [Wna1l = op(1), "lhl/ [Wpaal = op(1).
Therefore, "1h1/ |[Wy,2| = op(1). Together with the result nlh d/2 [Wn1l = op(1),

the lemma is proved. O
Lemma 1.4.3 If Hy, (el), (e2), (u), (f1), (f2), (m1), (m2), (¢). (n). (h1), (h2),
(wl) and (w2) hold, nlh(f/Q(f\/In(ﬁo) - 1‘.'111(90)) = op(1).

Proof. Recall the definition of ¢; and Un(z). Note that nlhd/ [An(6g) — A.In(()o)l

is bounded above by

a2 f%(l) ”
il 2l 5 o
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Replace (; by &; + (Jg’(Q(Zl-) - QnQ(Zi)), the integral part of the above inequality
can be bounded above by the sum

2

1
1 .
/Un1 )duo(z 2/ [;1—12Kh1i(z)ag(cg(zi) = Qny(Z;))| du(2).
1=
The first term is of the order Op((nlh‘li)_l/z) which is obtained by the similar

method as in K-N, while the second term, by the conditional expectation argument,

has the same order as

2 y4
.()(712—4/(d+2a+4))+ sup 424—12-01,(1).

Sup | =
zEIhl wa2(Z)

~€Ih1 wa (2)

Therefore,ny hy d/2 [Mn(6g) — Mn(go)l is less than or equal to

a2 1
Op(n1h§/? - = 1ogy.ny (log ny /)2 (@)
“hl
d/2 —4b/(d+2a+4
+ Op(nlhl/ lng "1(log'nv1/n1)2/(d+4) ‘n] /(d+2a+ ))

—4b/(d+4
12/(d+4) A/ (d+4) - /(d+ )).

+ Op(nlh(li/2 -log) ny(logny/ny -logz nj(logng

All the three terms are of the order op(1) by the assumptions (n), (h1), (h2), (w1)

and (w2). Hence the lemma. O

Lemma 1.4.4 If Hy. (el). (€2), (e4), (v), (f1), (f2), (m1), (m2), (€), (n), (h1),

(h2), (w1) and (w2) hold, n1h"*(Cr = Cn) = op(1).

Proof. Recall the notation Ap;(z) in (1.13). Adding and subtracting HOTQn2(Zi)
from Yj in the integrand of hCy, then expand the quadratic term, then Cn —Cp can

be rewritten as the sum of (',;. 1 = 1,2,3.,4,5, where
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n
Cp1 o= %Z/ 22055~ 0 Qny(Z) 2y (2)u2),
2 ¢ T6 i \T6
Cra = —%Z [ KR 10 = 0 Qng(210) - 60 — 6) Gy (20 () (),
n
Cng = —Z / K3 1(0Y; — 0 Qng ()00 — 60)T Qg (2)012),
Gt = 33 > / K ()Y = 65 Qg (20)) - (99 — 0n)T Qg (2))28my (2)aw(2),
1=
G = 3 / K3 4(2)(%; = 6 Qg (Z))((80 — 0n)T Qg ()20 2).
1=

To prove the lemma, it is enough to prove nlh(ll/QCnl =op(1) for 1 =1,2,3,4,5.

For the case of | = 1, first notice that

|Cn1|

IA

2 sup IAnl 2 Z/Khlz z)£2d¢
" i= 1

2 sup |An, (2)] - K? ()68 (Q(Z;) - Qny(2;))2du(z
#2 5up |y 2) ?21/ 2 (O] @Z) - Ony(2) ()

= Ch11+ Chiz
Since ny 2 an fK2 .(z)§-2d¢(2) = Op(1/n hd) by a routing expectation argu-
1 2e=1J Hhyl# pli/n1hy

ment, so

nlhcli/2lcn11| _ Op(nlh(ll/Z - (logy, nl)(logn1)2/(d+4)nl—2/(d+4) . (nlhl)_l)

Op(ntlld/2—2/(d+4) . (logk nl)(log n1)2/(d+4)) — Op(l).

Second, from the compactness of ©, we have
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1 1
=52 / K} (208 (Q(Z) - Qny(2))2du(2)
7 i=1

2 Z/Khli 2)Q(Z,) - QnQ(Z;‘)”QdL‘C'(z).
7 i=1

Again by the conditional expectation argument, the second factor of the above ex-
pression has the same order as

—4/(d+2a+4)) su ‘ fZ

Op(n, ) E / Kh ; (2)T2(2;)dv(2)

fz( )
+ S L K 4
zEl]l,'I:ll lfzw2(z) 2 Z/ 7y (NRZ)N"dY(2).

Because

n
—17 Z /K}%lz‘(z)ﬂ(zi)dw(ﬂ = Op(1/n1h9),

QZ [ 82, @NQ@iPave) = 0p1/mhd),
"1 i=1

so, from (h2), (w2), and Lemma 1.2.2, we obtain njh; d/2 |Cp12| is of the order

Op(n;2/(d+4)—4b/( +2a+4)h d/2 (logknl)(]ogn1)2/(

d+4))

+ Op( d/2 —2/ d+4)— 4b/(d+4)(log‘2nl)(lognl)ﬁ/(dH))

which is op(1) by assumption (h1). Hence we get njhy d/2 [Cn1l = op(1).
Now we will show that njhy d/2 |Cn3l = op(1). Once we prove this, then

nlhl/ |Cp2l| = 0p(1) is a natural consequence. In fact,

Z ] K3 ()& + 8 @Z) - 0 Gny(20)
(6 — 6n) (QHQ(Zi) - Q(Z;) + Q(Z;))du(z).
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So |Cp 3] is bounded above by the sum 2(C},31 + Cj,30 + Cp33 + Cpp34), where

Cra1 = 22 / KE {2)Eill60 = 6ull|@ny (Z) - Q(Z))ldv (),

Cn32 = Kh J(2)I&10p — nlllQ(Z;) I du(2),
"1z 1 1

Cuas = L5 3 [ KMol — iy (2) - QU2 (2)
12 1

Cn3q = %2“1/1% (2160116 — 1l @nq (Z;) — QIZHINQ(Z;) 1w (2).

It is sufficient to show that njh; d/2 |Cp3il = op(1) for I = 1,2,3,4. Because the
proofs are similar, here we only show nlhcll/ 2|01132| = op(1), others are omitted for
the sake of brevity. In fact, note that

n2 Z/Kh ;I&GIR(Z) Iy (2) = Op(l/nlh('li)
" =1

by a expectation argument, then from |6, — Ooll = Op('nl_l/ 2) by Theorem 1.3.1,
d/2 d/2,» d 2

we have "lhl/ |Cn32l = "lhl/ |6n — 6pll - Op(l/nlh‘li) = Op(n; / / )- Be-

cause nl— /2 _d/2 1-1/2+ad/2 and a < 1/2d by assumption (hl), so the above

expression is op(1). Similarly, we can show that the same results hold for C),4 and

Cp,5.- Details are left out. O
Lemma 1.4.5 Under the same conditions as in Lemma 1.4.4, Tn —T = op(1).

Proof. Recall the notation for §;. Define

« 2
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The lemma is proved by showing that
f]l - fn = 0p(1). fn -TI'= Op(].) (121)

But the second claim can be shown using the same method as in K-N, so we only
prove the first claim. Write up = 0 — 0y, r; = 9(7)1Q(Zi) - (9,7;(2”2(21-). Now I'n

can be expressed as the sum of f‘n and the following terms:

nl
d —
By = 2in72 Y [ [ KnyiaKn,)eimjding o)
i#]
- 2
+f o Jejriding @)+ [ Kn i K jrirjabngy ()]
-2
Bpy = 4hl 1 Z /Khlz Khlj( )Ezgjdlf’hg( ))

i#]
(/Khli(z)Khlj(z)firjdth(z)

+/Khl'i(z)Khlj(z)gjridd}hQ(z)+/Kh]_i(Z)Khlj(z)rirjdd;hQ(Z))’

so it suffices to show that both terms are of the order op(1). Applying the Cauchy-

Schwarz inequality to the double sum, one can see that we only need to show the

following:
.92
hin ‘2 /Khll VK ()€ j1ddn, (2)] = op(1) (1.22)
z#J
NERY:
hin *2 /Khl2 VK ()1, ()] = op(1),
i#j
L . 2
W72y [/Khli(z)Khlj(z)lfl-{j]dtrh2(z)J = Op(1).
i#]

The third claim in (1.22)can be proved by using the same argument as in K-N. Now,
consider the first claim above. From Lemma 1.2.2, we only need to show the claim
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is true when dLA:h?(z) is replaced by di:(z). Since r; has nothing to do with the
integration variable, so the left hand side of the first claim after the replacing can be

rewritten as

2
hin 12Z| |2[/Kh11 2)Kp j(2)Igldv (2 )] . (1.23)
i#j

Note that r; = u} (Q(Z}) - Qny(Z;)) ~u} Q(Z;) 6 (Qny(Z;) - Q(2;)). s0 (1.23)

can be bounded above by the sum of the following three terms:

2
At = ST 2unl2 S 1y Z)) ~ Q2P | [ Eniorkn e,
Z#J

3t 2fun éj[ [ Eni@Kn ki@l
i#]

ni
T20601% 3 19ng(2) ~ QUZ I [ [ K@)k, lelaua)]
i#]

An2

An3
Apo = op(1) can be shown be the fact that up = bn — 6 = op(1), and that

2
nn 12§ [ [ Knyi, eI = 0p(1)
1F]

which can be shown by using the same argument as in K-N. Let’s consider Ap,3.
Using the inequality (1.15), Lemma 1.2.2 or (1.14), and the compactness of O, it is
easy to sce A, 3 is bounded above by the sum A,31 + A3, where

n]
Angt = Op(1)- K72 3 Nng(Z)) = REZDIE- | [ KoK jo)eilavta)]

i#j

1

2
Apzo = o])(l).h‘llnl—ZZ[/Khli(z)Khlj(z)Kil||Q(Zj)||dc;(z)] .
i#J

Apply the conditional expectation argument to the second factor in A, 31, using the
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fact (1.10) and the elementary inequality a < (1 + a)2. we can show

2
E[MT2 S Iy Z)) - RZ)IE [ [ Ky i) ]
t#]
4 -2 : 2 2
= E[nn? 3 (Eg I1Rny(2)) - REZNID] [ Kpy i)k o)) ]
7
4 nj 9
< ey P2 3 | /Khll (2)Kpy (6N +T(Z))ldu(z)] .
i#]

The expectation of the right hand side of above inequality turns out to be O(1) by
using same argument as in K-N. So,
ny 5
n{ni? 3 IRny(2)) - RZ))IP| / Kpi(2)Kpy j(2)I€ila0(2)]” = op(1).
i#)
This, in turn, implies that the second factor in Aj,31 = op(1). Same method as in
K-N also leads to the following fact:

2
hn 22[ / Kpyi(2) Ky j(IEIIR(Z v (=) = 0p().
i#]

Hence Ay 39 = 0p(1). Therefore, B,1 = op(1), and B9 = 0p(1). Thereby proving
the first claim in (1.21), hence the lemma. a

We end this section by adding some remarks. First, the MD estimator and testing
procedure depends on the choice of the integrating measure. In the classical regression
case, K-N provides some guidelines on how to choose G. The same guidelines also
apply here. For example, in the one-dimensional case, the asymptotic variance of
Vn(bn - f) can attain its minimum if G is chosen to be fZ,lz(z). As far as the MD
test statistic Mn,(é”) is concerned, the choice of G will depend on the alternatives.
In the classical regression case, K-N found that the test has high power against the
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selected alternatives, if the density function is chosen to be the square of the density
estimator of the design variables. Same phenomenon happens in our case. Secondly,
since replacing I n in Theorem 4.1 by other consistent estimator of I" does not affect
the validity of the result, so we can choose some other consistent estimator of I', for

example,

"M kg 3T A 2

_ > iz1 Kpyi(2)(Y; — 00, Qng(Z;))% 2 )
fa=c [ (ZE ) a@dlp, (), (129)
n1fzhy(2)
to make the test procedure computationally efficient, where the constant C equal to

2 [[f KWK (u+ v)du|2dv

1.5 Simulations

This section contains results of four simulations corresponding to the following cases:
Case 1: d = g = 1 and my linear, the measurement error € is chosen to be normal
and u double exponential; Case 2: d = ¢ = 1 and my linear, the measurement
error € and u are chosen to be normal; Case 3: d = 1,q = 2, and my polynomial,
the measurement error € is chosen to be normal and u double exponential; Case 4:
d = q = 2, and my linear, the measurement error € is chosen to be normal and u
double exponential. In each case the Monte Carlo average of 6, MSE(én), empirical
levels and powers of the MD test are reported. The asymptotic level is taken to be
0.05 in all cases. For any random variable W, we will use {ijj }:]] —pJ=12
to denote the j-th subsample S i from W with sample size n j- So the full sample is

S1USy. Finally, to make the simulation less time consuming, 'y, defined in (1.24)

40

- Y

| O s
Py

gy d



will be used in the test statistic in stead of [',. So the value of the test statistic is

calculated by ﬁn = nlh%/QI_‘;l/Q(Mn(én) - C'n).

Case 1 In this case, {Xjkj}ijl are obtained as a random sample form the
uniform distribution on [-1, 1], {sj K }:j _ are obtained as a random sample from
the normal distribution A/(0, (0.1)2), and {-1ijj}Z;=1 are obtained as a random
sample from the double exponential distribution with mean 0 and variance 0.01. The
parametric model is taken to be mg(X) = 6X, and the true parameter 6y = 1. Then

(Y;, Z;) are generated using the model
Y]k] = X]k] +Ejkj’ ijj = X]k] +ujkj’
k]- =1,2,--- s Jj = 1,2. From example 2, we know that the assumption (ml) is

held for @ = 0. The kernel functions K and K* and the band widths used in all the

simulations are

1/3

3 - _1/5
K(2) = K*z) = 51 = 2D)1(l < 1), by =an] 72, hy = bny o (10gny) /3,

(1.25)

with some choices for a and b. For the chosen kernel function (1.25), the constant
C in T'p is equal to 0.7642. The kernel function used in (1.4) is chosen to be the
standard normal, so that the deconvolution kernel function with bandwidth w takes
the form

Ly(z) =

\/12_71- exp ( - %IQ> [1 - ———0'0055522 ~ 1)],

and the band width wq = 712_1/5, wo = (log(ng)/n.z)l/S) which are chosen by the
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assumptions (wl) and (w2). Correspondingly. Q;;Q(z) = Rn,Q(z)/qu,z(z), where

1%712(3) = /'If:Xu‘l(T)fu(Z — I)dr, f.Zqu = /quQ(ff)fu(z —z)dr.

Table 1.1 reports the Monte Carlo mean and the MSE(é”) under H() for the sample

(ny,n9) | (50,134) (100,317) (200,753) (300,1250) (500,2366)

Mean 1.0103 1.0095 1.0102 1.0105 1.0098

MSE 0.0014 0.0007 0.0004 0.0003 0.0002

Table 1.1: Mean and MSE of én, d =1,q =1, Double Exponential

sizes n] = 50, 100, 200, 500, correspondingly, no = 134,317,753,1250,2366, each
repeated 1000 times. One can see there appears to be small bias in 6, for all chosen
sample sizes and as expected, the MSE decreases as the sample size increases.
To assess the level and power behavior of the ﬁn test, we chose the following four
models to simulate data from.
Model 0: Y = X + ¢,
Model 1: Y = X +0.3X2 + ¢,
Model 2: Y = X + 1.4exp(—0.2X2) + ¢,
Model 3: Y = XI(X >0.2) +¢.
To assess the effect of the choice of (a,b) that appear in the bandwidths on the
level and power, we ran the simulations for numerous choices of (a, b), ranging from

0.3 to 1. Table 1.2 reports the simulation results pertaining to 571 for three choices
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of (a.b). The simulation results for the other choices were similar to those reported
here. Data from Model 0 in this table are used to study the empirical sizes, and from
Models 1 to 3 are used to study the empirical powers of the test. These entities are
obtained by computing #{]ﬁnl > 1.96}/1000.

From Table 1.2, one sees that the empirical level is sensitive to the choice of (a, b)
for moderate sample sizes (n] < 200) but gets closer to the asymptotic level of 0.05
with the increase in the sample size, and hence is stable over the chosen values of
(a, b) for large sample sizes. On the other hand the empirical power appears to be far
less sensitive to the values of (a, b) for the sample sizes of 100 and more. Even though
the theory is not applicable to model 3, it was included here to see the effect of the
discontinuity in the regression function on the power of the minimum distance test.
In our simulation, the discontinuity of the regression has little effect on the power of

the minimum distance test.

Case 2: The measurement error in this case has normal distribution M (0, (0.1)2). By
Example 1 in Section 2, we see the assumption (ml) is satisfied with @ = 1. Hence,
by the sample allocation scheme (n), the sample sizes ny = [n,l]b, b > 7/4. In the

simulation, we choose b = 7/4 + 0.0001. The band widths are chosen to be

o= /3 kg = (loglng)/ny)'/,

~1/7

wp = ny , wo = (]og(712)/712)1/5

by the assumptions (h1), (h2), (w1) and (w2). The kernel functions K, K* are the
same as in the first case, while the density function L has a Fourier transform given
by oy (t) = max{(1 - t2)3, 0}, the corresponding deconvolution kernel function then
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takes the form
11 2.3 2, 2
Ly(r) = ;/0 cos(tr)(1 — t°) exp(0.005¢“ /w<)dt.

Table 1.3 reports the Monte Carlo mean and the MSE of the MD estimator 971
under Hy. One can see there appears to be small bias in 6, for all chosen sample
sizes and as expected, the MSE decreases as the sample size increases.

To assess the level and power behavior of the ’571 test, we chose the following four
models to simulate data from.

Model 0: YV = X + ¢,

Model 1: Y = X +0.3X2 +¢,

Model 2: Y = X + 1.4exp(—0.2X2) + ¢,
Model 3: Y = XI(X >0.2) +¢.

Table 1.4 reports the simulation results pertaining to ﬁn Data from Model 0 in
this table are used to study the empirical sizes, and from Models 1 to 3 are used to
study the empirical powers of the test.

Case 3: This simulation considers the case of d = 1, ¢ = 2. Everything here is same
as in Case 1 except the null model we want to test is my(X) = 6; X + 62X2. The

true parameters are §1 = 1,09 = 2. Easy to see that RnQ(z) takes the form

. . R T
Rug(e) = ([ 2hxuy @ue = 2)da, [ 22y (@) ulz - 1)dz)

Table 1.5 reports the Monte Carlo mean and the MSE of the MD estimator bn =
(énI'énQ) under H(. One can see there appears to be small bias in 6y, for all chosen

sample sizes and as expected. the MSE decreases as the sample size increases.
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(nq,n9)
(a.b) | (50.134) (100,317) (200.753) (300,1250) (500,2366)
(0.3,0.5) | 0.003 0.008 0.009 0.020 0.041
(0.3,0.8) | 0.008 0.014 0.017 0.031 0.053
Model 0 | (0.5,0.5) | 0.010 0.011 0.020 0.030 0.049
(0.8,0.8) | 0.020 0.024 0.027 0.042 0.052
(1.0,0.8) | 0.024 0.028 0.026 0.039 0.050
(1.0,1.0) | 0.028 0.037 0.030 0.048 0.054
(0.3,0.5) | 0.407 0.865 0.987 0.997 1.000
(0.3,0.8) | 0.491 0.888 0.990 0.998 1.000
Model 1 | (0.5,0.5) | 0.704 0.975 0.999 1.000 1.000
(0.8,0.8) | 0.896 0.997 1.000 1.000 1.000
(1.0,0.8) | 0.921 0.999 1.000 1.000 1.000
(1.0,1.0) | 0.926 0.997 1.000 1.000 1.000
(0.3,0.5) | 0.898 0.972 0.999 0.999 1.000
(0.3,0.8) | 0.919 0.976 0.999 0.999 1.000
Model 2 | (0.5,0.5) | 0.985 0.999 0.999 1.000 1.000
(0.8,0.8) | 0.998 1.000 1.000 1.000 1.000
(1.0,0.8) { 0.999 1.000 1.000 1.000 1.000
(1.0,1.0) [ 0.999 1.000 1.000 1.000 1.000
(0.3,0.5) | 0.774 0.959 0.993 0.998 1.000
(0.3,0.8) | 0.807 0.964 0.993 0.998 1.000
Model 3 | (0.5,0.5) | 0.933 0.966 0.999 1.000 1.000
(0.8,0.8) | 0.999 1.000 1.000 1.000 1.000
(1.0,0.8) | 0.992 1.000 1.000 1.000 1.000
(1.0,1.0) | 0.988 1.000 1.000 1.000 1.000

Table 1.2: Levels and powers of the M.D. test, d = 1,q = 1, Double Exponential
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(n1,n9) | (50,941) (100,3164) (200,10643) (300,21638) (500,52902)
Mean | 1.0051 1.0078 1.0085 1.0101 1.0169
MSE | 0.0013  0.0007 0.0004 0.0003 0.0004
Table 1.3: Mean and MSE of 6, d = 1,q = 1, Normal
(n1,n9)

Model | (50,941) (100,3164) (200,10643) (300,21638) (500,52902)
Model 0 | 0.018 0.022 0.029 0.035 0.049
Model 1 | 0.918 0.999 1.000 1.000 1.000
Model 2 | 0.999 1.000 1.000 1.000 1.000
Model 3 | 0.993 1.000 1.000 1.000 1.000

Table 1.4: Levels and powers of the M.D. test, d = 1,q = 1, Normal

(n1,ng) | (50,134) (100,317) (200,753) (300,1250) (500,2366)
Mean of 6,7 | 1.0160 10144  1.0139 1.0136 1.0128
MSE of §,,; | 0.0058  0.0031  0.0015 0.0011 0.0007
Mean of 6,5 | 2.0450  2.0452  2.0463  2.0493 2.0473
MSE of 9 | 0.0124  0.0076  0.0046  0.0042 0.0033

Table 1.5: Mean and MSE of 6y, d = 1,9 = 2, Double Exponential
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(711.712)
Model | (50,134) (100.317) (200.753) (300,1250) (500,2366)

Model 0 | 0.001 0.009 0.019 0.029 0.046
Model 1 | 0.297 0.815 0.999 1.000 1.000
Model 2 | 0.528 0.965 0.999 1.000 1.000
Model 3 | 0.996 0.999 1.000 1.000 1.000

Table 1.6: Levels and powers of the M.D. test. d = 1,q = 2, Double Exponential

To assess the level and power behavior of the Dp, test, we chose the following four

models to simulate data from.
Model 0: Y = X +2X2 4 ¢,
Model 1: Y = X +2X2 +03X3 +0.1+¢,
Model 2: Y = X +2X2 + 1.4exp(-0.2X2) +e.
Model 3: Y = X + 2X2sin(X) + ¢,

Table 1.6 reports the simulation results pertaining to ﬁn. Data from Model 0 in
this table are used to study the empirical sizes, and from Models 1 to 3 are used to
study the empirical powers of the test.

Case 4: This simulation considers the case of d = 2,q = 2. The null model we want
to test is mg(X) = 61X + 6,X9. The true parameters are 6] = 1,69 = 2. The

kernel functions K and K* and the band widths used in the simulation are

9
K(zy.29) = K*(31.29) = +:(1 = 2D)(1 = D) (121] < LIzgl S 1), (1.26)

hy = 771_1/5, ho = 111_1/6(]0g "1)1/6.
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(n1.ng) | (50,354) (100,1001) (200.2830) (300,5200) (500,11188)
Mean of 6,7 | 1.0099  1.0120 1.0115 1.0094 1.0113
MSE of 8,7 | 0.0042  0.0019 0.0011 0.0008 0.0005
Mean of 6,9 | 2.0202  2.0220 2.0213 2.0225 2.0209
MSE of 8,5 | 0.0042  0.0027 0.0014 0.0011 0.0008

Table 1.7: Mean and MSE of én, d = 2,q = 2, Double Exponential

For the chosen kernel function (1.26), the constant C in I'n is equal to 0.292. The
kernel function used in the (1.4) is chosen to be the bivariate standard normal, so the

deconvolution kernel function with band width w takes the form

Aoy, ooty oomad -y

1
Ly(r) = —exp ( - 5 5

27 w w?

Since (m1) holds for a = 0, so the band widths wy = n;1/6, wo = (log(n2)/n2)1/6)
which are chosen by assumption (w1) and (w2). According to the assumption (n) we
take ng = n%.SOOl.

Table 1.7 reports the Monte Carlo mean and the MSE of the MD estimator 6, =
(énl’én2) under Hj. One can see there appears to be small bias in 6, for all chosen
sample sizes and as expected, the MSE decrcases as the sample size increases.

To assess the level and power behavior of the D, test, we chose the following four
models to simulate data from.

Model 0: Y = X1 +2X9 + ¢,
Model 1: Y = X7 +2X9 +03X1X9 + 0.9 +¢,

Model 2: Y = X + 2X9 + 1.4(exp(—-0.2X]) — exp(0.7X79)) + ¢.

48



Model 3: Y = X, I(Xy > 0.2) +¢,

(n1.n9)
Model | (50,354) (100,1001) (200,2830) (300,5200) (500,11188)

Model 0 | 0.002 0.012 0.018 0.016 0.038
Model 1 | 0.908 0.998 1.000 1.000 1.000
Model 2 | 0.992 0.999 1.000 1.000 1.000
Model 3| 0.935 0.996 1.000 1.000 1.000

Table 1.8: Levels and powers of the M.D. test, d = 2, ¢ = 2, Double Exponential

Table 1.8 reports the simulation results pertaining to ﬁn. Data from Model 0 in
this table are used to study the empirical sizes, and from Models 1 to 3 are used to

study the empirical powers of the test.

1.6 Discussion

1.6.1 Sample Size Allocation

The simulation studies show that the proposed testing procedures are quite satisfac-
tory in the preservation of the finite sample level and in terms of a power comparison.
But in the proof of the above theorems, we need the sample size allocation assump-
tion (n) to ensure that the estimator QnQ(z) has a faster convergence rate. The
assumption (n) plays a very important role in the theoretical argument, but it loses
attraction to a practical practitioner. For example, in the simulation case 1 where the
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measurement error follows a double exponential distribution, the sample size alloca-
tion is ng = [nI{]. and b = 1.2501. ng in the second subsample S increases in a power
rate of the sample size nq in the first subsample, If n; = 500, ng is at least 2365, the
sample size of the full sample is 2865 which is perhaps not easily available in practice.
The situation becomes even worse when the measurement error is super smooth or
d > 1. For example, in Case 2, the measurement error has a normal distribution, ny
is at least 52902 if ny = 500; in Case 4, d = 2, ng is at least 11188 if n; = 500.
Then an interesting question arises. What is the small sample behavior of the
test procedure if (1) n; = ng and the two subsamples S; and Sy are independent
or (2) n = ny = ng and the same sample is used in the test? We have no theory
at this point about the asymptotic behavior of Mn(én) For d =1, we only conduct
some Monte Carlo simulations here to see the performance of the test procedure, see
Table 1.9-Table 1.12. The simulation results about levels and powers of the MD test
appears in the following tables, in which the measurement error follows the same
double exponential and normal distributions as in the previous section, the null and

alternative models are the same as in Case 1.
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Sample size: (n],n9)

Model | (50.50) (100,100) (200,200) (300,300) (500,500)
Model 0 | 0.008 0.036 0.033 0.038 0.049
Model 1 | 0.938 1.000 1.000 1.000 1.000
Model 2 | 1.000 1.000 1.000 1.000 1.000
Model 3 | 0.990 1.000 1.000 1.000 1.000

Table 1.9: n] =ng, d =1,¢ = 1, Double exponential

Sample size

Model

30

100

200

300

500

Model 0
Model 1
Model 2

Model 3

0.015
0.934
0.999

0.991

0.024

1.000

1.000
1.000

0.036
1.000
1.000

1.000

0.043 0.047

1.000 1.000

1.000 1.000

1.000 1.000

Table 1.10: Same sample, d = 1,q = 1, Double exponential

Sample size: (n,n9)

Model | (50,50) (100,100) (200,200) (300,300) (500,500)
Model 0 | 0.013 0.023 0.027 0.035 0.047
Model 1 | 0.931 0.999 1.000 1.000 1.000
Model 2 | 1.000 1.000 1.000 1.000 1.000
Model 3 | 0.984 1.000 1.000 1.000 1.000

Table 1.11: ny =ng9,d=1,q =1, Normal
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Sample size

Model 50 100 200 300 500

Model 0 | 0.017 0.019 0.036 0.036 0.051
Model 1 | 0.954 0.998 1.000 1.000 1.000

Model 2 | 0.999 1.000 1.000 1.000 1.000

Model 3 | 0.992 1.000 1.000 1.000 1.000

Table 1.12: Same sample, d = 1,¢q = 1, Normal

Sample size

Model 50 100 200 300 500

Model 0 | 0.000 0.004 0.010 0.018 0.041
Model 1 | 0.628 0.996 1.000 1.000 1.000
Model 2 | 0.994 0.999 1.000 1.000 1.000

Model 3 | 0.844 0.998 1.000 1.000 1.000

Table 1.13: Same sample, d = 2,q = 2, Double Exponential

To our surprise, the simulation results for the first three cases in which d = 1 are
very good. There are almost no differences between the simulation results based on
our theory and the simulation results by just neglecting the theory. In the Case 4
with d = 2, we only conduct the simulation for S; = S9, see Table 1.13. The test
procedure is conservative for small sample sizes, but the empirical level is close to the

nominal level 0.05 when sample size reaches 500. This phenomenon suggests us that
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by loosing some conditions, such as (n). even the assumptions on the choices of the

bandwidths, Theorem 1.3.1 and Theorem 1.4.1 maybe still valid.

1.6.2 General Errors-in-Variables Model Fitting

In the previous sections we have so far discussed the model fitting problem in the
errors-in-variables models in which the regression function is linear in 6 under the
null hypothesis. The separation between the parameter and the predictor enables
us not only to get an explicit expression for the estimator, but also to utilize a
conditional expectation argument, so that we can use Lemma 1.2.1 to get a better
sample allocation scheme. If the regression function under the null hypothesis has
a general form other than the form we discussed in this chapter, things become
complicated.

For the sake of brevity, this section only reports the results we obtained for the
general errors-in-variables model fitting.

To be specific, in the errors-in-variables model (1.1), the problem of interest is to

develop tests for the following hypotheses:
Hy: p(r) = 1n.90(I), for some 6y € ©, v.s. Hp: Hpis not true, (1.27)

where {mgy(z) : € ©} is a given parametric family. Just like in the special case
considered in the previous sections, the problem of testing for Hp is transformed to
test for v(z) = ueo(z), where now vg(z) := E(mg(X)|Z = 2). A very important
question related to this hypothesis change is the following: Are the two hypotheses,

Hyg : p(x) = 77190(1), for some 6y and all r, and Hpqg : v(z) = 1/90(:), for some
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g and all 2, equivalent? The answer is negative generally, because for any two
measurable functions mq(z). mo(zx), E(m(X)|Z = z) = E(m9(X)|Z = 2), for all 2,
need not imply mj(z) = mg(x) for all x. In this case, if our test rejects Hyg, then
we can reject Hy( as well, but if the test fails to reject Ho(), then we can say nothing

about Hyq. Note that E(m(X)|Z = z) = E(my(X)|Z = z) is equivalent to

/ my (2) g () fulz — 2)dz = / mo(2)fx (2) fu(z - 2)dz

for all z. Hence if fy(z — ), as a distribution family with parameter 2z € ]Rd, forms
a complete family, then these two hypotheses are indeed equivalent. This is the
case, for example, for the normal distribution, and if d = 1, for double exponential
distribution.

From (1.3) one sees that if fy is known then f7 is known and hence vy is known
except for 6. Therefore a modification of K-N’s procedure in this case is as follows.

Let
n
_ 2
Tn(6) = /[n—f_zl(_z) E Khz-(z)Yi—ue(z)] dG(z), 6¢€86, (1.28)

Tn(8) = /[nfz ZK,M B(Zi))]QdG(z), 6co,

On = argmmgeeTn(H), On = arg minggTn(6),

Here h is a bandwidth only depending on n. Then we may use 6p to estimate 6, and
construct the test statistic through Th(6n).

Unfortunately, fy is generally not known and hence f7 and Hy are unknown.
This makes the above procedures infeasible. To construct the test statistic, one needs
estimators for f7 and Hy. For f, one can still use the classical kernel estimator, with
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a possibly different kernel function K* and a bandwidth hy. So one only needs to find
an estimator for vg. Using deconvoluting kernel density estimator with bandwidth
h3 for fx One can estimate vy(z) by

. () f fn(z—x)d
() = J mg(c Xh3(r) n(z—x (I,
th3(~)

th3(z) = /th3(r)fn(z—r)(lr.

Our proposed inference procedures will be based on the analogs of T where vy(2) in
(1.28) is replaced by its estimator 7g(z).

To be precise, we assign the first n] = n1(n) and ny < n observations to estimate
fz, and use all n observations to estimate fy. The bandwidths Ay, hg will depend
on the sub-sample size ny, and h3 will still depend on the full sample size n.

Replace vg(z) in (1.28) by its estimator 7(2) and define

MEO) = /[n1f2h2 thlz ; — vp(2)] "G,

Mn(6)

/ [nlehQ(z ZKhlz 2)(Y, ’99(22‘))]2(1(;(2), 6 eco,

6, = argmfaeeMn(O), Op = arginfg g Mn(6).

Then we may use 6n, to estimate 6, and construct the test statistic through Mn(én)
We can show that 6}, converges to 6 in probability. But as is clear 67, is really not an
estimator, but we need this convergence result to prove the consistency for 6, for 6,
and the asymptotic normality of \/ﬁ(én — 6p). Finally, let g be a density of G, and

let

G = Y- HGO(Zi)s §i=Y;— Hén(zi)’
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A 2 )2
Cn = nj Z/ Ry ()G AU(:).

Cn = 71122/1&'}111- 2d’~h2( ).

_ sa s 2
n = 2h1n12z /Khli(:)Khl(Z)Ci(jduh2(z)) ,
i#]

2(z) = of+ E((mg,(X) - Hgo(z))QlZ =2), 02 := Var(e),

2
= 2/(7’2(“-’))29(2)61@"(2) / /K(u)K(u.+ v)du) dv,
- dG(z) dG( )
dvy (z) = = , dy(z) :=

Under appropriate sample size allocation scheme, and under the null hypothe-

sis and other regular conditions, we can show that the asymptotic distribution of
d/ 2. / A .

(Mn(o,,) Chn) is standard normal. But the sample allocation scheme

ny = nj(n) is not feasible, particularly in the super smooth case. Simulation results

show that, if we do not follow the sample allocation scheme, just like we did in the

previous section, the test statistic behaves quite satisfactory.
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CHAPTER 2

Minimum Distance Berkson Model

Fitting

2.1 Introduction

Berkson model is also commonly used in the real applications. As an example, con-
sider the herbicide study of Rudemo, et al. (1989) in which a nominal measured
amount Z of herbicide was applied to a plant but the actual amount absorbed by the
plant X is unobservable. As another example, from Wang (2004), an epidemiologist
studies the severity of a lung disease, Y, among the residents in a city in relation to
the amount of certain air pollutants, X. The amount of the air pollutants Z can be
measured at certain observation stations in the city, but the actual exposure of the
residents to the pollutants, X, is unobservable and may vary randomly from the Z-
values. In both cases, X can be expressed as Z plus a random error. There are many

similar examples in agricultural or medical studies, see e.g., Fuller (1987), Carroll,
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Ruppert and Stefanski (1995), among others.

All these examples can be formalized into the so called Berkson model
Y = pu(X)+ e X=Z+n, (2.1)

where 7 and ¢ are random errors with Ee = 0, and where 7 is d-dimensional, and Z
is the observable d-dimensional control variable. All three variables €, n, and Z are
assumed to be mutually independent.

The parametric Berkson model where the regression function is of a parametric
form {mg(x) 1T € Rd, 6 € © C RY}, ¢ > 1, has been focus of numerous authors.
Fuller (1987) and Cheng and Van Ness (1999), among others, discuss the estimation
in the linear Berkson measurement error models. For nonlinear models, Carroll et al.
(1995) and references therein, consider the estimation problem by using regression
calibration method. Huwang and Huang (2000) studies the estimation problem when
mg(x) is a polynomial in x of a known order and shows that the least square estimators
based on the first two conditional moments of Y, given Z, are consistent. Wang (2003,
2004) addresses the same problem in general nonlinear models and shows that the
estimators obtained by minimizing the first two conditional moments of Y, given Z,
are consistent and asymptotically normal.

But literature appears to be scant on the lack-of-fit testing problem in this im-
portant model. This paper makes an attempt in filling this void. To be precise, with

(X,Y) obeying the model (2.1), the problem of interest here is to test the hypothesis

Hy: p(r)= 17190(1), for some 6y € © and for all r;
Hy: Hjis not true,

58



based on a random sample (X;,Y;). 1 <@ < n. from the distribution of (X,Y).

Many interesting and profound results. on the contrary, are obtained for the re-
gression model checking problem in the absence of errors in independent variables,
see, e.g., Eubank and Spiegelman (1990), An and Cheng (1991), Hart (1997) and
references therein, Stute (1997), Stute. Thies, and Zhu (1998), among others. The
recent paper of Koul and Ni (2004) uses the minimum distance methodology to pro-
pose tests of lack-of-fit for the regression model without errors in variables. In a finite
sample comparison of these tests with some other existing tests, they noted that a
member of this class preserves the asymptotic level and has very high power against
some alternatives and compared to some other existing lack-of-fit tests. This paper
extends this methodology to the above Berkson model.

To be specific, Koul and Ni (2004) (K-N) considered the following tests of Hy
where the design is random and observable, and the errors are heteroscedastic. For

any density kernel K, let K (r) := I\"(I/’h)/hd, h>0,zc€ RY. Define, as in K-N,

n
f‘UJ(I) = ;II‘ZKZ,(I—X]), w=wn~(logn/n)l/(d+4),

j=1
1 & 2dG ()
Tn(8) = /[;Zz: (r—X; Yj-—mg(Xj))] f?z,(r),

and 0n = argminaeeTn(f)), where K, K* are density kernel functions, possibly
different, h = h, and w = wp are the window widths, depending on the sample size
n, and G is a sigma finite measure on C which is a compact subset of R They proved
the consistency and asymptotic normality of this estimator, and that the asymptotic

null distribution, under Hy. of Dy, := nhg/Q(Tn(én) —C'n)/f‘,llﬂ is standard normal,
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where

n
- 1 . ~ X
Cn = = Z/CK,%(I ~ X)) 2 o2 ()dG(x), & =Y - mg (X;)
1=1

Ip = ;2—1’133- :i (/CK(I—th‘))K(I —hXj))%i%jf‘.Q(r)dG(z))2.
i£j=1

The test based on Dy, is preferable over the tests developed by Hardle and Mam-

men (1993), and Zheng (1996). Unlike in these and other related papers, K-N do not
need the null regression function to be twice continuously differentiable in the param-
eter vector nor do their proofs need the rate for uniform consistency of nonparametric
regression function estimators. Moreover, the asymptotic normality of nl/ 2(57;, -0)
and Dp, was made feasible by recognizing to use different window widths for the esti-
mation of the numerator and denominator in the nonparametric regression function
estimation. A consequence of the above asymptotic normality result is that at least
for large samples one does not need to use any resampling method to implement these
tests.

These findings thus motivate one to look for tests of lack-of-fit in the Berkson
model based on the above minimized distances. Since the predictors in Berkson
models are unobservable, clearly the above procedures need some modifications.

Let fe, fx. fn. f7 denote the density functions of the r.v.’s in their sub-scripts and
og denote the variance of €. In linear regression models if one is interested in making
inference about the coefficient parameters only, these density functions need not be
known. Berkson (1950) pointed out that the ordinary least square estimators are
unbiased and consistent in these models and one can simply ignore the measurement
error 1. But if the regression model is nonlinear or if there are other parameters in
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the Berkson model that need to be estimated, then extra information about these
densities should be supplied to ensure the identifiability. A standard assumption
in the literature is to assume that fy is known or unknown only up to an Euclidean
parameter vector, cf., Carroll, et al. (1995), Huwang and Huang (2000), Wang (2004),
among others. Throughout this paper, we shall assume that fy is known unless the
regression function under the null hypothesis is linear.

To adopt K-N’s procedure to the current setup, we first need to obtain a nonpara-
metric estimator of u. Note that in the model (2.1), f = [ f7(2) fp(z — 2)dz.
Let K be a kernel density,

n
fz()=n"1S Kz - 2;)
1=1

be the kernel estimator of f(z), and

Kp(z,z) == /Kh(y —2)fplz —y)dy, z, z € RY.

It is then natural to estimate fy (z) by

fX(x): /fZ fnx—zdz—- ZKhIZ) xeRd.
z—l

Given the estimator f x (), one is then tempted to estimate the regression function

1(z) by

n n
jn(l‘) = Z Rh(‘r’Zi)Yi/ Z Rh(‘T‘Z‘i)‘
1=1 =1

Unfortunately, the classical argument shows that jn(I) is not a consistent estimator of
i(x). It in fact is consistent for J(r) = E[H(Z)|X = z], where H(z) = E[u(X)|Z =
z].
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We include the following simulation study to illustrate this point. Consider the
model Y = X2 + €, X = Z + n, where € and n are Gaussian r.v.’s with means zero -
and variances 0.01, and 0.05, respectively. The r.v. Z is the standard Gaussian. Then
J(z) = 0.0976 + 0.907z2. We generated 500 samples from this model, calculated Jn,
and then put all three graphs, Jn(z), u(z) = 1:2, J(z) = 0.0976 + 0.907z2 into one

plot in the Figure 2.1. The curves with solid, dash-dot, dot lines are those of jn,

1t
0.8}
0.6}
0.4}
0.2r
or
-1.5 1:5
X
Figure 2.1: Comparison Plot
J(z), and u(z) = :r2, respectively.
To overcome this difficulty, one way to proceed is as follows. Define
Hg(2) = E[my(X)|Z = ], Jo(z) = E[Hp(Z)|X = 1],
On(0) = / K}y (z, 2,)Y; - Jg(@)| “dG (), (2.2)
[nf (2) & Z " )

) = [ [ fX(z)ZKh("Z W ~ Hy(Zy)] dC),
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and 0~n = argmineee@n(ﬁ). 0n = argmineeeQn(é?).

Under some conditions, we can show that 0p, 67,; are weakly consistent for 6. and
the asymptotic null distribution of the test statistic based on the suitably standardized
minimum distance Qn(#n) is the same as that of a degenerate U-statistic, whose
asymptotic distribution in turn is the same as that of an infinite sum of weighted
centered chi square random variables. Since the kernel function in the degenerate
U-statistic is complicated, the computation of the eigenvalues and the eigenfunctions
is not easy and hence this test is hard to implement in practice.

An alternative way to proceed as we do here is to recognize that E(Y|Z) = H(Z)
and hence consider the new regression model Y = H(Z) + ¢, where the error ¢
is uncorrelated with Z and has mean zero. The problem of testing for H( is now
transformed to test for H(z) = Hy O(z). Thus we do the following modification of the

above K-N procedure to adjust for not observing the design variable. Let

qu Z == ZKUJ - g . oW~ (logn/n)l/(d+4);

l:l Kh(Z - Zl)}/l

i e Re.
anw(z)

Hn(z) :=

Note that Hy is a nonparametric estimator of the conditional expectation H(z) =

E(u(X)|Z = z). Define

2
MYO) = / Ky(z - Z;)Y; — Hg(2)| dG(z),
n [anw Z h g\~ ]
2
Mn(8) = / Kp(z - Z)IY; - Hp(Z))] 4G (=),
[nfh(z)z Az 2]
0;‘, = argmmgee]\f[,,(g), 9,1 =argming€91\ln(9).

where G is a measure supported on a compact subset Z C RZ. We consider AMn to be
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the right analog of the above T for the Berkson model. Let 6 be the true parameter
under Hyy. This paper proves that 6}, converges in probability to 6, under Hg. This
in turn is used to prove the consistency of 6, for 6. and the asymptotic normality of
\/T_l(én —6p), under Hy. Additionally, we prove that the asymptotic null distribution
of the normalized test statistic rzhd/Qf; 1/2 (Mn(()n) — Cn) based on the minimum
distance Mn(én), is standard normal, which, unlike the first modification of (2.2),
can be easily used to implement this testing procedure, at least for the large samples.

Here,

di(z) = ‘éc( 2) . zeRY § =y, —Hy (Z), 1<i<n, (23)
f7,(2) "
n
Cn = 122/ 2;) db(a),
) s 2
I'n = _thz /Kh z—Z;)Kp(z - j)Cidewhz(Z)) :

o]
We note that there is a typo in the definition of the I'n of K-N, there should be a
factor of 2 in there also.

The paper is organized as follow. The needed assumptions are stated in the next
section. Section 3 contain the proofs of consistency of 67, and 6n, while sections 4 and
5 contains the proofs of the asymptotic normality of 6n, and that of the proposed test
statistic. The simulation results in section 6 show little bias in the estimator 5, for
all chosen sample sizes. The finite sample level approximates the nominal level well
for larger sample sizes and the empirical power is high (above 0.9) for moderate to

large sample sizes against the chosen alternatives.
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2.2 Assumptions

Here we shall state the needed assumptions in this paper. Throughout the paper 6
denotes the true parameter value under H(y. About the errors, the underlying design

and G we assume the following:

(e1) The random variables {(Z;,Y;) : Z; € R =12, ,n} are i.i.d. with the
conditional expectation H(z) = E(Y|Z = z) satisfying fHZ(z)dG(z) < 00,
where G is a o-finite measure on 7.

e2) 0 < 02 < 00, Em?2 (X) < 0o, and the function 72(z) = E[(mg (X) —

€ 6 6o
HOO(Z))2|Z = z| is a.s. (G) continuous on Z.
(e3) E|e|2+5 < 00, E[meO(X) - HgO(Z)]2+5 < 00, for some § > 0.
4 . 4

(ed) E|e]* < oo, E[meo(X) _HGO(Z)} < oo.

(f1) The density f, is uniformly continuous and bounded from below on Z.

(f2) The density f7 is twice continuously differentiable.

(g) The integrating measure G has a continuous Lebesgue density g on Z.
About the kernel functions K and K*, we shall assume the following:

(k) The kernel functions K, K* are positive symmetric square integrable densities

on [-1, l]d. In addition, K* satisfies a Lipschitz condition.

About the parametric family of functions to be fitted we need to assume the

following:

(m1) For each 6, my(r) is a.s. continuous w.r.t. the Lebesgue measure.



m2) The function Hy(z) is identifiable w.r.t. 6. i.e.. if Hy (z) = Hpy_(z) for almost
6 61 6o

all z(G), then 61 = 69.

(m3) For some positive continuous function £ on I with E¢(Z) < oo and for some

B >0,

|Hp, (2) = Hg, ()] < 1163 - 6111°6(z), Vby.00€0,z€T.

m4d) For every z, Hy(z) is differentiable in 8 in a neighborhood of 8y with the vector
0 0

of derivative Hg(z), such that for every 0 < k < o0,

\Hg(Z;) — Hy,(Z;) — (8 — 69) " Hyy (Z;)]

sup = Op(l)'
16 — 6yl
1<i<n,\/nhS|6-6g <k
(m5) For every 0 < k < o0,
—d/2. - .
sup o V1 Hg(Z;) — Hy (Z)ll = 0p(1), ¥ > Ne.

1<i<n,\/nhd|0-6g| <k

(m6) X := ngOHéOdG is positive definite.
About the bandwidth hp we shall make the following assumptions:

(h1) hp > 0 as n — oo.
(h2) nh%d—»ooasnaoo.

(h3) hp ~n~ %, where a < min(1/2d.4/(d(d + 4))).

The above conditions are similar to those imposed in K-N on the model my.

Consider the following conditions in terms of the given model.
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(m2/) The parametric family of models my(z) is identifiable w.r.t. 0, ie., if
mgl(.r) = m02(.’1‘) for almost all r, then 8] = 5.
(m3’) For some positive continuous function L on R? with EL(X) < oo and for

some 3 > 0,
img, (x) —mg, (z)| < 1163 - 6111°L(x), V0,.05€0, reRe

(m4’) The function mg(z) is differentiable in 8 in a neighborhood of 6, with the

vector of differential r'n90 such that for every k& < oo,

Img(z) — mg (x) — (6 = 80) gy (2)|

sup = Op(l)-
16 = 6ol
reRd,\/nhd||0—6y <k
(m5') For every 0 < k < oo,
—d/2, . .
sup /g () — gy ()l = 0p(1), ¥ > Ne.

reR4,\/nhd|10-6p| <k

In some cases, (m2) and (m2/) are equivalent. For example, if the family of
densities { fy(- — 2); z € R} is complete then this holds. Similarly, if my(z) = 6'~(z)
and [ y(z)fp(x — z)dz # 0, for all 2, then also (m2) and (m2) are equivalent.

We can also show that (m3’)-(m5’) imply (m3)-(m5), respectively. This follows

because Hy(z) = [ my(x) fn(z — z)dz. Thus under (m3’),
|Ho, (2) ~ Hy, (2)] < II92—91H/ ) fylx - z)dr, VzeRY

Hence (m3) holds with ¢(z) = [ L(z)fy(x — z)dx. Note that Ef(Z) = EL(X) < o0
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Similarly, using the fact that [ fp(z — z)dr = 1, the left hand side of (m4) is
bounded above by
[mg(x) — mgy (x) = (8 - 6p) ’mao(rn

sup

= op(1),
16— 6l P
zeRq (/g |66y <k

by (m4’). Similarly, (m5') implies (m5) and (m1) implies that Hpg(z) is a.s. continuous

in z (G).

The conditions (m1)-(m6) are trivially satisfied by the model mg(z) = ¢

v(z)
provided the components of E[y(X)|Z = z] are continuous, non-zero on Z, and the
matrix [ E[y(X)y'(X)|Z = 2]dG(z) is positive definite.

The conditions (el), (e2), (f1), (k), (m1)-(m3), (h1l) and (h2) suffice for the con-
sistency of @y, while these plus (e3), (f2), (m4), (n5), (m6) and (h3) are needed for
the asymptotic normality of . The asymptotic normality of Mn(én) needs (el),
(e2), (e3), (ed), and (f1)-(m6), and (h3). Of course, (h3) implies (h1) and (h2).

Let f 7, denote kernel density estimator of f7 with bandwidth h = hn. From

Mack and Silverman (1982), we obtain that under (f1), (k), (h1) and (h2),

sup |fzp, (2) = fz(2)| = op(1), sup |fz7,,(2) = fz(2)| = op(1), (24)
zeT z€T

o | f2E
ce1 | Tzu(2) l opl1)

These conclusions are often used in the proofs below.

In the sequel, the true parameter 6 is assumed to be an inner point of © and
(=Y - HQO(Z ). The integrals with respect to the G-measure are understood
to be over the compact set Z. The convergence in distribution is denoted by — g4
and Np(a, B) denotes the p-dimensional normal distribution with mean vector a and
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covariance matrix B. p > 1. We shall also need the following notation.

U

G(:z
2.
7z

~

dy(z) =

|

. og(z) = VargO(C|Z =2z)= 0;2 + T2(Z), 2 e R (2.5)

~

n
. . = 1
G = Y; - H(JO(Z{)' 1<i<n; Cp:= ) Z /K}QI(: — Zl-)Clzdz,'(z),
1=1

r = 2/(0%(:))2g(z)dw(3)-/(/K(lt)ls’(u+v)dzt)2dv.

2.3 The Consistency of 6* and 4,

This section proves the consistency of 67, and 6n. Let L9(G) denote a class of square

integrable real valued functions on R? with respect to G. Define

p(vi.v9) = /[Vl(l‘) - UQ(I)]QdG(I), v1,v9 € Lo(G),

and the map T (v) = arg mingcg p(v, Hg), v € Lg(G).
The following lemma is found useful in the proofs here. Its proof is similar to that

of Theorem 1 in Beran (1977).

Lemma 2.3.1 Let Hy satisfy conditions (m1)-(m3). Then the following hold.

(a). T(v) always exists, for Vv € Lo(G).

(b). If T(v) is unique, then T is continuous at v in the sense that for any sequence
of {vn} € Lo(G) converging to v in Lo(G), T(vn) — T(v), i.e.

plvn.v) — 0 implies T(vn) — T(v), as n — oo.

(c). T(Hy(-)) = 0. uniquely for V6 € ©.

Recall the notation at (2.3) and (2.5). As in K-N, for any integral J := [ rdv, the
replacement of di by du(z) is reflected by the notation J := J rdv. We also need to
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define, for a 8 € RY,

~
~

pn(z.0) = =3 Ki(z— 2 Hp(Z,), (26)
-1
1 o :
fin(2,6) = — Y Kpl(z - Z)Hy(Z;),
=1
1 7
Un(z.6) = - > Kp(z = Z))Y; — pn(2,6)
1=1
n
= =3 Knlz— Z)lY; ~ Hy(Z))]. Un(2) = Un(z.6)
=1
n
Zn(2,0) = un(z.0) (= 00) = = 3 Kp(z — Z;)[Ho(Z;) — Hgy(2))],
1=1

These entities are the analogs of the similar entities defined at (3.1) in K-N. The
main difference is that py there is replaced by Hy and X;’s by Z;’s. A consequence

of Lemma 2.3.1 is the following

Corollary 2.3.1 Suppose Hy, (el), (e2), (f1), and (m1)-(m3) hold. Then 6}, — 6,

in probability.

Proof. We shall use part (b) of the Lemma 2.3.1 with vp = Hp(2), and v = HHO(Z)‘
Note that M}}(0y) = p(Hn, Hgo), 65, = T(vn), and by the identifiability condition

(m2), T'(v) = 6 is unique. It thus suffices to prove
p(Fin, Hyy) = op(1). (2.7)

To show this, by plugging in Y; = (; + Hp_(Z;), and expanding the quadratic
t 1 0o\ “i

integrand, p(Hn, HHO) is bounded above by the sum 2[C,1 + Cj,2(fp)], where

Cpi = /U?,(z)d&(;), Cpa(6) = /[,l,n(z,e) — [ 7w (2)Hp(2)]2di (=), 6 € RY.
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By Fubini and the independence of Z and €, we have

E/U,Q,(z)dw(z) - n_l/ EK2(z - Z1)(02 + 72(2}))du(z). (2.8)

By the uniform continuity of f7 ensured by (f1),

2
h2d/K

= 0(1/n9).

EK2(z - 2)) (y)dy = -—/K2 )f7(z — yh)dy

Similarly, using additionally the a.s. continuity of 72(2), we also have
EK}(z—2))r%(2)) = E[ 2d/1<2 (Zl)dz] = 0(1/h%).
These calculations imply that

E[U2@)duz) =0(-) and [ U2()dv(z) = 0p(—)  (29)
nhd nhd

Hence by (2.4), we obtain

1
Ch1 < zszrl)r /U Op( hd) = op(1).
Let
ep(2,0) = EKp(z— Z1)Hyp(Zy) = /K(u)Hg(z —uh)f7(z — uh)du
ew(2,0) = EK}(z— Z))Hy(z) /K u)f7(z — uh)du - Hy(2).

By adding and subtracting ej, (z,6) and e}, (z,0) in the quadratic term of the integrand
in Cpy9, and using the similar method as in K-N, one can show that Cy,9(6g) = op(1)

by (f1), (m1). This proves (2.7) and hence the corollary. a
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Remark 2.3.1 Lemmas 3.1 and Corollary 3.1 are similar to those in the K-N paper.
The only difference is that here we have Hy and Z; in place of my and X; there so that
the current (; are analogs of ¢; of the K-N paper. Another difference is because of the
measurement error in design, (2.8) here has the extra variance term T2(Z ), although
the asymptotic order of this expectation is the same as in the no measurement error

model given in (2.9) above. Thus, from now onwards, in many proofs below we shall

be brief.

The proof of the following theorem is exactly similar to that of Theorem 3.1 of
K-N after the above said modifications are made in there. Details are left out for the

sake of brevity.

Theorem 2.3.1 Suppose (el), (e2), (e3), (f1), (m1)-(m3), and (h2) hold. Then

under Hy, én — 0, in probability.

2.4 Asymptotic Distribution of 4,

In this section, we shall prove the asymptotic normality of \/ﬁ(én —6g)- The first

step towards this goal is to show that
nh@|6n — 60|12 = Op(1). (2.10)
Recall the definition of Zp, and let Dp(0) = [ Z.,Ql(z, 9)dz,7)h2(z). We claim that
nh®Dp (0n) = Op(1). (2.11)

To see this, observe that nhdA{n(OO) = nhdf[,-,li z?:l Kp(z - Zi)Ci_]leZ’hz(Z) =
Op(1) by (2.9) and (2.4). But, according to the definition of 65, one has Mp (én) <
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Mn(6p). so nhdMn(én) = Op(1). This fact, together with the inequality Dn(6n) <
2Mn (6n) + 2Mn(6p), proves (2.11).
Next, we shall show that for any a > 0, there exists an Ng such that
P(Dn(én)/uén —0pl2 > a+ ”bilrlxil bTEOb) >l-a. Vn>Na (212
where ¥ as in (m6). The claim (2.10) then will follow from (2.11), (2.12), (m6), and
the fact
nh® D () = nh®6n — 8|12 - [Dn(@n)/ 16 - 8ol1%).
To prove (2.12), let
un = 0n — 8, (2.13)
dn = Hy (Z;) = Hyy(Z;) —unHg)(Z;), 1<i<n,
n
Tn(b) = / [b’ n ! 21 Kp(z = Z))Hg, (2 -)] ddp,(2), bERL
i=
Note that

Dn(6n) _ /z%<z,én)
16 — 6012 luni2

1/21/2

dl/)h2( z)>D 1+D 2 — 2Dn1 n2 »

(2.14)
where

Pn1 = /[ ZK’I (|ini||)]2d‘;’12(3)’

un'n LY Ky (2~ Z)Hy (Z)12
= 0 1 T’
/1 T [ diny 2)

Do =

By the assumption (m4) and (2.10), one verifies that D, = op(1). For the term

D712' note that

Djo > inf Zp(b). (2.15)
[Ib]]=1
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Decompose

n
s = [b,%E:lKh(l—Zi)HGO(Zi)]sz(C)
1=

= ,1(b) + Zpa(b).

f%li'(:)

Note that EK}(z — Z)HGO(Z) = Hgo(z)fz(z) + o(1). Hence, by the Law of Large

Numbers, ¥,,1(b) — b'ZOb, for every b € R9. Moreover,

2
Za(t) < sup | L2

z€Z wa(Z)

- 1‘ - Tp1(b) = 0p(1), VbeRY.

Also, note that for any § > 0, and any two unit vectors by, by € R% and lby —bo]l <4,

one has

1Z51(02) — Zp1(07)]

/] n

+| / [CRNE Xn: Ky (z = Z;) Hgy (Z))] [%2 > Kp(z - Z;) Hgy (2)] du(2)]

1=1 1=1

But the expected value of the random variables inside the square of the second
factor tends to HGO(Z)fZ(Z) in probability, so the second factor is Op(1). From
these observations and the compactness of {b € RA - l[b] = 1}, one obtains
SUP||p|| =1 IZn(b) — b'ZObH = op(1). This fact, together with (2.15), implies (2.12) in
a routing fashion, and also concludes the proof of (2.10). We remark here that the
inequality (2.14) above corrects a typo in the K-N paper in the equation just above
(4.8) there on page 120.
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We shall prove the asymptotic normality of /n (6n — 6p).  The proof
is classical in nature.  Recall the definition of Mp(6), and let My(9) =
—2fUn(z,0)[1,;(:.0)(1[.'},‘2(2). Sice 6y is an interior point of ©, by consistency. for
sufficiently large n. ¢, will be in the interior of ©, and Mn(én) = 0, with arbitrarily
large probability. But the equation Mn(én) = 0 is equivalent to

/Un(z),zn(z,én)dz,ah2(z) = /Zn(z,én);ln(z,én)duahQ(z). (2.16)

We shall show that \/nx the left hand side of this equation converges in distribu-
tion to a normal random variable, while the right hand side of this equation equals
Rn(6n - 6g). for all n > 1, with Rp = X + 0p(1). To establish the first of these two

claims, rewrite this random variable as the sum of Sp +Sp1 + 951 + 952 + 913 + 904>

where

Sn = /Un(z)ﬂh(z)dw(z)’ fip(2) = EKh(Z-Z)HGO(Z)’

Sut = [ Un(@in()1/ 73, (2) - 1/ 532G,

it = [ Un(a)lim(z,60) - (2w (2),
tma = [ Un(@in(z.0) ~ i N1/ 73, (2) = 1/ 53(2)dG (),

on3 = / Un(2)lfin(z. 6n) — iin(z, 60)]d (=),

gt = [ Un(in(z.00) — in(z. 0011/ 73, (2) ~ 1/ £ ()G 2).

We need the following lemmas.

Lemma 2.4.1 Suppose (el), (e2), (f1), (k), (m1)-(m6), (h1),(h2) Hy hold.

(i) If, additionally. (e3) and (g) hold, then \/nSn — 3 N(0.X), where
d
(02 + 12(u)) - Hgo(u)Hé (u)g2 ()
)) =/ 0 du.
fz(u)

75




(i1) If, additionally. (f2) and (h3) hold, then
Vn|Sp1l = op(1). (2.17)

Lemma 2.4.2 Under Hy, (el), (¢2), (f1), (k). (m1), (m2). (m4), (m5), (h1) and
(h2),

1]1/2{],1}“ pd Op(l), k = 1,2, 3.4

The proof of (2.17) is facilitated by the following lemma, which along with its

proof appears as Theorem 2.2 part (2) in Bosq (1998).

Lemma 2.4.3 Let qu,(z) be the kernel estimator associated with a kernel K* which
satisfies a Lipschitz condition. If (f2) holds and w is chosen to be an(log n/n)l/(d+4),

where ap — ag > 0, then

)2/(d+4) sup |wa(z) — f7(2)l = 0 as.

(logy, n)_l(n/ logn
2€1

for any positive integer k.

Proof of Lemma 2.4.1. Again this proof is similar to that of Lemma 4.1 of K-N but
we include details here to see how the difference in the asymptotic variance appears.
For convenience, we shall give the proof here only for the case ¢ = 1, i.e., when /i (z)
is one dimensional. For multidimensional case the result can be proved by using linear
combination of its components instead of iy (z), and applying the same argument.
Let sp; := [ Ky (2 = Z;)Cjhep(2)di(z). Then /nSp can be rewritten as \/nSp =
n—1/2 Z?:l Spi- Note that s,; : 1 <i<n areiid. centered random variables for

each n. By the Lindeberg-Feller CLT, it suffices to show that

Es’| =% Es2I[lspl >nt/2) —0,  forvA>0.  (218)
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In fact, one can show that ES,%l is equal to

g(u+vh) g(u+th)

5 5 dudvdt — %,
fZ(u + vh) fZ(u + th)

/// K('U)K(t)og(u)fz(u)[lh(u + vh)ip (u+th)

thereby proving the first claim in (2.18). To prove the second claim, note that by the

Holder inequality, E3%11“5n,1| > n1/2/\] is bounded above by
-5 - 5 — . (2+48)/2 12
A0 —0/2 Es‘,sll <A 0,=0/2 E([/ |Kh(z - Z)ip(2) dw(z)] . |(|2+5).

By assumption (e3), this upper bound is seen to be of the order O((nhQ)—6/2) = 0(1)
by (h2), thereby proving the second claim in (2.18). The proof of (2.17) uses Lemma

2.4.3 and is similar to that of (4.6) of K-N, hence no details are given. a

Proof of Lemma 2.4.2. This proof is similar to that of Lemma 4.2 in K-N with
obvious modifications. Details are left out for the sake of brevity.

Next, we shall show that the right hand side of (2.16) equals Ry (6n — 6(), where
Rn = X+ op(1). Recall the notation at (2.13). The right hand side of (2.16) can be

written as the sum W, + W, 9, where

n
~ 1 d,; .-
5% = Nlunll - | fn(z,0n)— Kp(z—2)—"1qd z),
w = Nl [ (e )5 2 Kl = 2y
Wy = [ fimz, 6000 (2, Bn)idp (2) - un
Observe that

n~1/2 f E||Kp(z = 2)Hgy(2)%du(z) = O~ /2h=d) = o(1).  (2.19)

By (2.4), (2.19) and the assumptions (mn4), (m5), we can show that |[Wp1]l =

op(llun|l) and Wy9 = £ + op(1). This proves Rp = £ + op(1).
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Upon combining these results about the left hand side and the right hand side of

(2.16), we obtain the following theorem.

Theorem 2.4.1 Assume (el)-(e3), (f1), (f2), (g). (k), (m1)-(m5), and (h3) hold.
Then under H,

V(b — 6g) = £5 1n1/25n + op(1).

Consequently, \/ﬁ(én - 6p) = N(O, 2612261). where ¥ and X are defined in

Lemma 2.4.1 and (m6) respectively.

The above theorem shows that the asymptotic variance of \/ﬁ(én — 0p) consists
of two parts. The part involving the element 062 reflects the variation in the regres-
sion model, while the part involving the component 72 reflects the variation in the
measurement error. This is the major difference between asymptotic distribution of

the m.d. estimators discussed for the classical regression model in the K-N paper and

for the Berkson model here.

2.5 Asymptotic Distribution of the Minimized

Distance

This section contains a proof of the asymptotic distribution of the minimized distance
Mn(6r). Recall the notation in (2.3), the main result proved in this section is the

following
Theorem 2.5.1 Suppose (el), (e2), (e4), (f1), (f2), (g9), (k), (m1)-(m5) and (h3)

hold. Then under Hy, nhd/Q(Mn(én) —~Ch) —4 N1(0.T). Moreover ]f‘nF_l -1 =
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Op(].)

Consequently, the test that rejects Hy whenever nh.d/Qf’,:l/?MIn(én) - Cnl >
202 is of the asymptotic size a, where zq is the 100(1 — a)% percentile of the
standard normal distribution.

Our proof of this theorem is facilitated by the following five lemmas.

Lemma 2.5.1 Suppose (el), (e2), (e4), (f1), (9), (k), (h1) and (h2) hold, then under
Hy,

nh®2 (N (69) — Cn) —g N1(0,T).

Lemma 2.5.2 Suppose (el), (e2), (f1),(k), (m3)-(m5) (h1) and (h2) hold, then un-
der Hy,

nh2|Mn(6n) — Mn(09)] = op(1).

Lemma 2.5.3 Suppose (el), (e2), (f1), (f2), (k), (m3)-(m5) and (h3) hold, then
under Hy,

nh®2| My (80) — Mn(6p)| = op(1).
Lemma 2.5.4 Under the same conditions as in Lemma 2.5.3,
"hd/Qlén - énl = op(1).

Lemma 2.5.5 Under the same conditions as in Lemma 2.5 2, ['n — T = op(1),

Consequently, the positive definiteness of I' implies [f,zf‘_l — 1| = op(1).

The proof of the Lemma 2.5.1 is facilitated by Theoremn 1 of Hall (1984) which is
reproduced here for the sake of completeness.
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Theorem 2.5.2 Let Zi.l <1< n, be i.i.d. random vectors. and let

Un = Z Hn(Z~'£.Z~'J). Gn(.l‘.y) = EHn(Zl,I)Hn(Zl.}/),
1<i<j<n

where Hy is a sequence of measurable functions symmetric under permutation with
E[Hn(21,22)|21]=0, EH3(21,22)<00 Vn>1.

If. additionally.

EG2(Zy, Z9) +n~V EHA(2y, Zo)
(EH3(Z1,29))2

— 0, asn — oo,

then Up is asymptotically normally distributed with the mean 0 and the variance

2 o
N EHX(21.29).

Proof of Lemma 2.5.1. Note that A.’In(HO) can be written as the sum of Cp, and
M, 9, where
1 :
My =~ > / Kp(z = Z)Kp (2 = Z;)¢i¢jdy(2).
i#]
We shall prove that nhd/2AIn2 —d N1(0,T) with the help of Theorem 2.5.2. Let
Z; =(Z].¢;) and Hn(Z;,Z5) = n—1pd/2 J Kp(z = Z;)Kp(z = Z;)¢;¢;dv(=). Then,
nh 200 =2 Y Ha(2.2;).
1<i<j<n
Observe that Hn(Z_l-,Zj) is symmetric, E[Hn(Z1,21)|Z1] = 0, and E'H,%(ZI,ZQ)

equals to

7—12_111—‘1 /./ [/ K(u)l\'(y ; Z 4 11)02(1 —uh)fz(x - uh)du)dv(e)dv (y)
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which is finite for each n > 1. Hence, to apply Theorem 2.5.2, it remains to show

that

EC,,<21 2y) n"lEBHAN(Z). 29)
— 0, (2.20)

(EHE(Z), Z9))2 [EHE(Z1,29))?

But by the similar method as in K-N's paper, we can show that
EG2(Zy.29) =0(n~%hY), EHA(Zy.2y) = 0(n—4nd). (2.21)
EH% (Zy.29) (2.22)
2 2
= // [/K y—2 4 u) UC(I ~uh)fz(x - uh)du] dy(z)dy(y)

This verifies (2.20). By (2.22), the continuity of ag(z) and fz(z), we obtain that

%nQ EH,%(Zl, 22) converges to

2(r
/// Ku)K(w+ u)K (v )K(v+w)(ag(z))2f%(z)j4(( ))drdudvd'&ﬂ.%)
7(z

- /( o2(x))%g(x)dv(z / /K w+ud)2dw.

This completes the proof of Lemma 2.5.1. O

Proof of Lemma 2.5.2. Recall the definitions of Up(z) and Zn(z, ) from (2.6). Add
and subtract HHO(Zi) to the i-th summand inside the square integrand of Mp (6n),

to obtain that
Mn(8p)—Mn(6n) = 2/Un(Z)Zn(Z,én)dli‘hQ(Z)"/Zg(zﬁén)d'j‘hz(z) =:2Q1-Q9.
It thus suffices to show that

nh.d/QQl = op(1), nhd/2Q2 = op(1). (2.24)
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By subtracting and adding (6n, — 00) H9 (Z;) to the i-th summand of the second

factor in @1, we can rewrite Q1 as the sum of Q11 and @9, where

= v ZKh(z ] 4 (2)
Qup = [ Un(ein(z.80)dipy ),

where d,,; are as in (2.13). By (2.10), for for any n > 0, there exists a k < oo, N < o0,
such that P(An) > 1 —n for all n > N, where An = {(nh%)1/2||6, — 6| < k}. By

the Cauchy-Schwarz inequality, (2.4), (2.9), and the fact

[ Bue)tdng () = 0pl0), (225)

we obtain that on Ap, nhd/ 2|Q11| is bounded above by

dp;
| n||

Vallfn — gl - (nh)1/2 sup - Op((nht)~1/2).

1<i<n,(nh®)1/2 |10 <k
This bound in turn is op(1) by Theorem 2.4.1 and the assumption (m4). Hence
to prove the first claim in (2.24), it remains to show that nhd/2lQ12| =
op(1). But Qo can be written as the sum of Q197 and Q199, where Q97 =
(071 - 6p) fUn )in(z, 9n)dwh2( z), Qo2 = —(én - 90),fUn(Z)[lln(Z»én) -
pn(z,GO)]d'zﬁhQ(z). Arguing as above, on the event Ap, nhd/2|Q122| is bounded

above by

2;dy5 2 dy—1 . 3 2
n“h%||6n — 6gll* - Op((nh”) )'lglfén||Hgn(Zz')—H90(Zz’)|| -Op(1) = op(1),

by (2.4), (2.9), (2.25) and assumptions (m4) and (h2). Next note that Q197 is the

same as the expression in the left hand side of (2.16). Thus it is equal to
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un/Zn(z On) fin (= ~érz)d¢3h2(z)
= un/2n(~ gn)lln( «90)d1*/"h2(z)
+u§l/zn(~”-én)[l’ln(lﬁén) _p.n(z,eo)]di)hz(z)

=: Dl + DQ.

By Cauchy-Schwarz inequality, (2.4), (2.25), assumption (ml) and the compactness
of ©, nhd/2|D1| < nhd/QIIén —0pll0p(1) = Op(hd/2) = op(1) by Theorem 2.4.1 and
(h2). Similarly, one can show that nhd/2|D2| < nhd/2||én —Opllop(1) = 0p(hd/2) =
op(1). This completes the proof of the first claim in (2.24).

The proof of the second claim in (2.24) is similar. Details are left out for the sake

of brevity. O

Proof of Lemma 2.5.3. Note that

nh®/2| My (80) — Mn(8p)|

= nhd/zl/[%;Kh(Z - Zz)Cz]Q(f%;(z) - f%I(Z))dG(z)I

nh®2 . 0p((nh®)~1) - Op((logy, ) - (log n/m)2/ (@+4)) = (1)

IN

by (2.9) and Lemma 2.4.3. Hence the lemma.

Proof of Lemma 2.5.4. For convenience, let t; := H; (Z;) — HGO(Zi)v Ap(z) =

2 on
—AfQZ—(—ZL — 1, then one obtains
wa(z)

) 1 & 1 o 2 2,
Cp = ?Z/ Cz (lchz( z) = n—zi—zl/Kh(z—Zi)(Ci—ti) dtrh2(2)7
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it can written as the sum of Apq and Ao, where

n
Anp = 53 /K%(: - Z,)(G ~ ) ()

I
tol i
M=
—
>~
>0

Ana (2= Z)(G - )2 An(=)du(2).

In order to prove the lemma, it suffice to show that
nh/2(A,1 = Cn) = op(1). nh%24,9 = op(1). (2.26)

By expanding the term ({; — ti)2 in A1 and noting that max lti|2 = Op((nhd)"l)
by (m4) and (2.10), the first claim in (2.26) follows the similar argument as in K-N.

To prove the second claim in (2.26), note that A9 can be written as
1 & 9 5
Ang = 2 > /Kh(z = Z;)(G — t;)"An(z)du(2)
i=1
Ly Z /Kh(z = Z))G An(2)du(2) + = _ZI/Kh(z — Z)t2 An(2)dy(2)
1=

-5 /Kh = Z;)(t;An(2)du(z).

But all the three terms on the right hand side are of the order 0p((nhd/2)'1).
Thereby completing the proof of the second claim of (2.26), and hence that of the

lemma. g

Proof of Lemma 2.5.5. Define

In = —2hdz /Kh — Z))Kp(z — Zj)¢;¢ du(z ) _2211"2 Z
i#) i#)

Tn 2hd(n — 1)n_1/ [EK),(x — Z)K),(y - Z)U%(Z)]de(.r)dw(y).

We shall prove

f,l - fn = Op(l) Fn - rn = O])(].), rn -I'= Op(l) (227)
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Note that [', can be rewritten as the sum of the following three terms:

2
By = 2;#2(/ Z)Kp(z - Z; )(cl-—ti)(cj—t]-)dw(z)) :
i#]
2
By := _thz /Kh Kp(z = Zj)(G = t)(¢ - t]‘)An(Z)d@i’(Z)) ,
i#]
B3 = _2hdz /}\h 2—-2 Kh(Z—Z‘)(C'*ti)(Cj "tj)dw(z)'
i#]

[ Kntz = 20Kn(z = Z)(G - 1G5 - 1))Bn(d0(2)).

So, to prove the first claim in (2.27), it suffices to show that
By —Tn=o0p(l), Bg=op(l)=Bj3.

By taking the expectation, Fubini and usual calculation one can obtain

2
w28 Y ([ Kntz - 29KnG: - Z))lGlIGldw(a))” = 0p),
i#]
2

=2d }; (/Kh(z - Z)Kp(z - Z))IGildu(2))” = Op(1),
i#]

n~2pd $° (/Kh(z — Z)K(z - Zj)du'.’(z))Q = 0p(1).
i#]

Furthermore, we also have

sup An(z) = op(1), max |t;| = op(1
zel% n(z) = op(1) 1<l<"| | = op(1)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

by (2.4), (m4) and (2.10). By expanding ({; — ti)(Cj - fj) and the quadratic terms

in By. we have,

) 2
By - Ful < /Kh Z)Kp(z = Z))(tt51 + 1G] + G du(2) )
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#J

X / Kh(:: — Zi)Kh(z — Zj)(ltitﬂ + |<lt_]| + ICJ‘fI'D({L,'(Z))

= Bnl + Bn2.

By (2.30), (2.31) and (2.32), one has Bj1 = op(1). and B9 = op(1). Hence |B] —
f‘n| = Op(l)~
Next, consider By. Note that

2
By < 2sup Ap(z)- 2hd2(/Kh(z— DEp(z - j)[(i—tiHCj—tﬂdw(Z))
2€1 i#j

which is of the order op(1) by the inequality |Ci—ti|-|Cj —t]-{ < |<i<j[+(|titj|+|citj|+
Kjtil) and expanding the quadratic terms, and by (2.32), (2.29), and the results that
Byg = op(1), Byg = op(1l). Finally, again an application of the Cauchy-Schwarz
inequality to the double sum yields B3 = op(1). This completes the proof of (2.28)
and hence that of the first claim in (2.27).

To prove the second claim in (2.27), note that I'n = ET,,. Hence, with Cij =

JKp(z - Z)Kp(z - ZQ)Cideu’z(z), one obtains

E[ln - Tn)?
4h2d 2 212 —4,2d 4 4,2d 2 ~2
= = E[Z.(CU— ECE)? < an™h2 3" E(Cl) +an~th Z ECi.;Ciq
i#] i#] k#5#
= 43 EHNZ;.Z)+4 Y EHA(Zp.Z))H}Z.2)
oy kAl
< a(n? +n®)EHY(Z;,2;) = 0(n1hd) = o(1),

by (2.21) and (hl), thereby proving the second claim in (2.27).
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The third claim in (2.27) is easily obtained from the following fact,

r, = 2/1d //[EKh (r—Z2)Kp(y - ]2d1,) Ydv:(y)
= 2n(n—1)EH:(2y,2Z9) = w n? EH%(Z Zy) - T,
n
by (2.23). This completes the proof of Lemma 2.5.5. O

2.6 Simulations

This section contains results of two simulation studies corresponding to the following
cases: Case 1: d = ¢ = 1 and mg linear; Case 2: d = ¢ = 2, and my nonlinear.
In each case the Monte Carlo average values of én, NISE(én), empirical levels and
powers of the m.d. test are reported. The asymptotic level is taken to be 0.05 in all
cases.

In the first case {Z; } . are obtained as a random sample from the uniform distri-
bution on [—1,1], {¢; }" 1 and {771} -1 are obtained as two independent random sam-
ples from Ny (0, (0. 1)2). Then (X;,Y;) are generated using the model Y; = pu(X;)+¢;,
X;=2Z;+mn;,i=12,---,n

The kernel function and the band widths used in the simulation are
K(z) = K*(z) = 2(1 21zl < 1), h = an Y3, w = b= V5 10g n) /5,

with some choices for a and b. The integrating measure G is taken to be the uniform
measure on [—1,1].

The parametric model is taken to be mg(z) = 0r, r,0 € R, 6y = 1. Then,
Hy(z) = 6z. In this case various calculations simplify as follows. By taking the
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derivative of Mn(f) in 6 and solving the equation of dMy(0)/06 = 0, we obtain

én = Ap/Bn. where

1 n n _9
Ap = /_1 [ Knz - zv] - [ Knz- 202 - [ D Kulz - 2)] ez
1=1 =1 i=1
1 . 2 2 X -
Bn = /_1 [ Kne-2)z)" - [ Kulz-2)] dz
1=1 1=1
Then,
Mp(bn) = /11 ( znj Kp(z - Z;)(Y; - énzi))2 : (zn: Ku(z - zi))_de
-4 3 i=1

A 1 n . n _92
Cn = [ (X K- 200 - 0n2)%) - (X Kulz-2)) =
1=1 i=1

The value of the test statistic is calculated by 'ﬁn = nhd/2f;1/2(Mn(én) - C’rl).
Table 2.1 reports the Monte Carlo mean and the MSE(én) under Hy for the

sample sizes 50, 100, 200, 500, each repeated 1000 times. One can see there appears

to be little bias in y, for all chosen sample sizes and as expected, the MSE decreases

as the sample size increases. To assess the level and power behavior of the Dp test,

Sample Size 50 100 200 500

Mean 1.0003 0.9987 1.0006 0.9998
MSE 0.0012 0.0006 0.0003 0.0001

Table 2.1: Mean and MSE of én, d=1,q=1

we chose the following four models to simulate data from. In each of these cases
Xi=2Z;+n;.
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Model 0: Y; = X; +¢;.

Model 1: Y; = X; + 0.3X? + ¢;,

Model 2: Y; = X; + 14 exp(—O.QXzz) + €5,
Model 3: Y; = X;1(X; > 0.2) +¢;.

To assess the effect of the choice of (a,b) that appear in the bandwidths on the
level and power, we ran the simulations for numerous choices of (a,b), ranging from
0.2 to 1. Table 2.2 reports the simulation results pertaining to Dp, for three choices
of (a,b). The simulation results for the other choices were similar to those reported
here. Data from Model 0 in this table are used to study the empirical sizes, and from
Models 1 to 3 are used to study the empirical powers of the test. These entities are
obtained by computing #{|Dn| > 1.96}/1000.

From Table 2.2, one sees that the empirical level is sensitive to the choice of (a, b)
for moderate sample sizes (n < 200) but gets closer to the asymptotic level of 0.05
with the increase in the sample size, and hence is stable over the chosen values of
(a,b) for large sample sizes. On the other hand the empirical power appears to be far
less sensitive to the values of (a, b) for the sample sizes of 100 and more. Even though
the theory we developed is not applicable to model 3, it was included here to see the
effect of the discontinuity in the regression function on the power of the minimum
distance test. In our simulation. the discontinuity of the regression has little effect
on the power of the minimum distance test.

Now consider the case 2 where d = 2, ¢ = 2 and {my(z) = 611 +exp(faz9), 6§ =
(91,92)T € Rz, z1,79 € R. Accordingly, here Hy(z) = 6121 + exp(f29 + 0.0059%).
The true 6y = (1, 2)! was used in the simulations.
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Sample size

Model a, b 50 100 200 500

0.3,0.2 ] 0.007 0.026 0.028 0.048
Model 0| 0.5, 0.5 | 0.014 0.022 0.040 0.051

1.0,1.0 [ 0.021 0.020 0.031 0.043

0.3,0.2]0.754 0.987 1.000 1.000
Model 1 | 0.5, 0.5 | 0.945 1.000 1.000 1.000

1.0,1.0|1.000 1.000 1.000 1.000

0.3,0.2]0.857 0996 1.000 1.000
Model 2 | 0.5, 0.5{0.999 1.000 1.000 1.000

1.0,1.0 | 1.000 1.000 1.000 1.000

03,02 (0874 0.993 1.000 1.000
Model 3 | 0.5, 0.5 | 1.000 1.000 1.000 1.000

1.0,1.0 | 1.000 1.000 1.000 1.000

Table 2.2: Levels and powers of the M.D. test,d =1,q =1

90




In all models below, {Z; = (Z1;. ZQZ-)T}Z”=1 are obtained as a random sample
from the uniform distribution on (-1, 1]2, {Ei}znzl are obtained from N7y (0, (0,1)2),
and {n; = (n;. 7721')T}?=1 are obtained from the bivariate normal distribution with

mean vector 0 and the diagonal covariance matrix with both diagonal entries equal

to (0.1)2. We simulated data from the following four models, where X; = Z; + ;.
Model 0: Y; = X1; + exp(2X9;) +¢;,
Model 1: Y; = X1; + exp(2Xg;) + 14X, + 1 +¢;,
Model 2: ¥; = X1; + exp(2Xg;) + 14X3, X2, +¢;,
Model 3: Y; = X}; + exp(2X;) + 1.4(exp(—0.2X1;) + exp(0.7X3))) + ¢;.

The kernel function and the bandwidths used in the simulation were taken to be

9
= (1= )1 - 2D)I(21] S LJzgl 1),

ho= n~ 145y = 1/6(10g n)1/6.

K(z) = K*(2)

The sample sizes chosen are 50, 100, 200 and 300, each repeated 1000 times. Table
2.3 lists the means and the MSE of the estimator 6, = (énlv 9712), which are obtained
by minimizing Mp (0) and employing the Newton-Raphson algorithm. As in the case
1, one sees little bias in the estimator for all chosen sample sizes.

Table 2.4 gives the empirical sizes and powers for testing Model 0 against Models 1
- 3. The entries in Table 2.4 corresponding to Model 0 are used to study the empirical
size of the m.d. test, and the entries from Models 1 - 3 are used to study the empirical
power of the test. From this table one sees that our m.d. test is conservative when the

sample sizes are small, while the sizes do increase with the sample sizes and indeed
p ' p
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preserve the nominal size 0.05. It also shows that the m.d. test performs well for

sample sizes larger than 200 at all alternatives.

Sample Size 50 100 200 300

Mean of f,,; | 0.9978 0.9973 0.9974 0.9988

MSE of 4,7 | 0.0190 0.0095 0.0053 0.0034

Mean of 6,9 | 1.9962 1.9965 2.0013 2.0004

MSE oféng 0.0063 0.0028 0.0014 0.0010

Table 2.3: Mean and MSE of én, d=2,q=2

Sample size | 50 100 200 300

Model 0 | 0.003 0.019 0.049 0.052
Model 1 | 0.158 0.843 0.979 0.996
Model 2 | 0.165 0.840 0.976 0.992
Model 3 | 0.044 0.608 0.954 0.997

Table 2.4: Levels and powers of the M.D. test, d =2,q =2

92



BIBLIOGRAPHY

(1] An, H.Z., Cheng, B., (1991). A Kolmogorov-Smirnov type statistic with appli-
cation to test for nonlinearity in time series. Int. Statist. Rev. 59, 287-307.

[2] Anderson,T.W. (1984). Estimating Linear Statistical Relationships. Ann. Statist.
12 1-45.

(3] Beran, R.J. (1977). Minimum Hellinger distance estimates for parametric models.
Ann. Statist. 5 445-463.

(4] Berkson, J. (1950). Are these two regressions? J. Amer. Statist. Assoc. 5 164-
180.

(5] Bickel, P.J. & Ritov,Y. (1987). Efficient Estimation in the Errors in Variables
Model. Ann. Statist. 15, 2, 513-540.

(6] Bosq, D. (1998). Nonparametric statistics for stochastic processes: Estimation
and Prediction, 2nd edition. Springer Lecture Notes in Statistics, 110. Springer-
Verlag, New York, Inc.

(7] Carroll,R.J. & Hall,P. (1988). Optimal rates of convergence for deconvoluting a
density. JASA. 83 1184-1185.

(8] Carroll,R.J. & Spiegelman,C.H. (1992). Diagnostics for nonlinearity and het-
eroscedasticity in errors in variables regression. Technometrics 34 186-196.

[9] Carroll, R.J., Ruppert, D. and Stefanski, L.A. (1995). Measurement Error in
Nonlinear Models, Chapman & Hall/CRC, Boca Raton.

(10] Cheng, C. and Van Ness, J.W.(1999). Statistical regression with measurement
error. Arnold, London.

[11] Cheng, C.L. and Kukush, A.G.(2004). A goodness-of- fit test for a polynomial
errors-in-variables model, 56 641-661.

93



(12] Elias Masry (1993). Strong consistency and rates for deconvolution of multivari-
ate densities of stationary process. Stochastic Processes and their Applications
47 53-74.

(13] Eubank.R.L., Hart, J.D., (1992). Testing the goodness of fit in regression via
order selection criteria. Ann. Statist. 20 1412-1425.

(14] Eubank,R.L., Hart, J.D., (1993). Commonality of CUMSUM, von Neumann and
smoothing based goodness-of-fit tests. Biometrika 80 89-98.

(15] Eubank,R.L., Spiegelman, C.H., (1990). Testing the goodness of fit of a linear
model via nonparametric regression techniques. J. Amer. Statist. Assoc. 85 387-
392.

[16] Fan,J. (1991a). On the optimal rates of convergence for nonparametric deconvo-
lution problems. Ann. Statist. 19 1257-1272.

(17] Fan,J. (1991b). Asymptotic normality for deconvolution kernel density estima-
tors. Sankhya Ser. A. 53 97-110.

(18] Fan,J. & Truong, K.T. (1993). Nonparametric regression with errors in variables.
Ann. Statist. 21 1900-1925.

(19] Fuller, W.A. (1987). Measurement Error Models.Wiley, New York.

[20] Gleser,L.J. (1981). Estimation in a Multivariate ” Errors in Variables” Regression
Model: Large Sample Results. Ann. Statist. 9, 1, 24-44.

[21] Hart, J.D. (1997). Nonparametric smoothing and lack-of-fit tests. Springer-
Verlag, New York, Inc.

[22] Huwang, L. and Huang, Y.H.S. (2000). On errors-in-variables in polynomial re-
gression — Berkson case. Statist. Sinica. 10, 923-936.

(23] Koul, Hira L. and Pingping Ni (2004). Minimum distance regression model check-
ing, J. Stat. Plann. Inference 119, No.1, 109-141.

[24] Mack, Y.P. and Silverman, B.W. (1982). Weak and strong uniform consistency
of kernel regression estimates, Z. Wahrsch. Gebiete 61, 405-415.

[25] Rudemo. M., Ruppert, D. and Streibig, J. (1989). Random effect models in
nonlinear regression with applications to bioassay. Biometrics. 45 349-362.

94



[26] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25
613-641.

[27] Stefanski, L.A., and Carroll, R.J. (1991). Deconvolution-based score tests in
measurement error models. The Annals of Statistics 19 249-259.

[28] Stute, W. (1997). Nonparametric model checks for regression. Ann. Statist. 25
613-641.

[29] Stute, W., Thies, S., Zhu, L.X. (1998). Model checks for regression: an innovation
process approach. Ann. Statist. 26, 1916-1934.

[30] Wang, L. (2003). Estimation of nonlinear Berkson-type measurement errors mod-
els. Statist. Sinica. 13, 1201-1210.

[31] Wang, L. (2004). Estimation of nonlinear models with Berkson measurement
errors.Ann. Statist. 32, 6, 2559-2579.

[32] Wolfowitz, J., (1953). Estimation by the minimum distance method. Ann. Inst.
Statist. Math., Tokyo, 5 9-23.

[33] Wolfowitz, J., (1954). Estimation by the minimum distance method in nonpara-
metric stochastic difference equation. Ann. Math. Statist., 25, 203-217.

[34] Wolfowitz, J., (1957). The minimum distance method. Ann. Math. Statist., 28,
75-88.

[35] Zheng, J.X., (1996). A consistent test of functional form via estimation technique.
J. Econometrics., 75, 263-289.

(36] Zhu,L.X., Song,W.X., & Cui,H.J. (2003). Testing lack-of-fit for a polynomial
errors-in-variables model. Acta Math. Appl. Sin. Engl. Ser. 19 353-362.

95



i




