
IMAGE ANNOTATION AND TAG COMPLETION VIA KERNEL METRIC
LEARNING AND NOISY MATRIX RECOVERY

By

Zheyun Feng

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2016



ABSTRACT

IMAGE ANNOTATION AND TAG COMPLETION VIA KERNEL METRIC
LEARNING AND NOISY MATRIX RECOVERY

By

Zheyun Feng

In the last several years, with the ever-growing popularity of digital photography and

social media, the number of images with user-provided tags has increased enormously. Due

to the large amount and content versatility of these images, there is an urgent need to

categorize, index, retrieve and browse these images via semantic tags (also called attributes

or keywords). Following this trend, image annotation or tag completion out of missing

and noisy given tags over large scale datasets has become an extremely hot topic in the

interdisciplinary areas of machine learning and computer vision.

The overarching goal of this thesis is to reassess the image annotation and tag completion

algorithms that mainly capture the essential relationship both between and within images

and tags even when the given tag information is incomplete or noisy, so as to achieve a better

performance in terms of both e↵ectiveness and e�ciency in image annotation and other tag

relevant tasks including tag completion, tag ranking and tag refinement.

One of the key challenges in search-based image annotation models is to define an ap-

propriate similarity measure (distance metric) between images, so as to assign unlabeled

images with tags that are shared among similar labeled training images. Many kernel metric

learning (KML) algorithms have been developed to serve as such a nonlinear distance metric.

However, most of them su↵er from high computational cost since the learned kernel metric

needs to be projected into a positive semi-definite (PSD) cone. Besides, in image annota-

tion tasks, existing KML algorithms require to convert image annotation tags into binary



constraints, which lead to a significant semantic information loss and severely reduces the

annotation performance.

In this dissertation we propose a robust kernel metric learning (RKML) algorithm based

on regression technique that is able to directly utilize the image tags. RKML is computation-

ally e�cient since the PSD property is automatically ensured by the regression technique.

Numeric constraints over tags are also applied to better exploit the tag information and

hence improve the annotation accuracy. Further, theoretical guarantees for RKML are pro-

vided, and its e�ciency and e↵ectiveness are also verified empirically by comparing it to

state-of-the-art approaches of both distance metric learning and image annotation.

Since the user-provided image tags are always incomplete and noisy, we also propose a tag

completion algorithm by noisy matrix recovery (TCMR) to simultaneously enrich the missing

tags and remove the noisy ones. TCMR assumes that the observed tags are independently

sampled from unknown distributions that are represented by a tag matrix, and our goal is

to recover that tag matrix based on the partially revealed tags which could be noisy. We

provide theoretical guarantees for TCMR with recovery error bounds. In addition, a graph

Laplacian based component is introduced to enforce the recovered tags to be consistent with

the visual contents of images. Our empirical study with multiple benchmark datasets for

image tagging shows that the proposed algorithm outperforms state-of-the-art approaches

in terms of both e↵ectiveness and e�ciency when handling missing and noisy tags.
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Chapter 1

Introduction

We are facing the problem of image explosion: massive images have been provided through

di↵erent sources including the Internet, camera network, research laboratories, personal

digital devices and many other photo management applications. The Internet has greatly

promoted the ability to release and access all manner of multimedia information especially

images. For instance, KPCB analyst Mary Meeker’s annual Internet Trends report states

that all internet-connected citizens share over 1.8 billion photos each day [143] through multi-

platform services such as Snapchat 1, Instagram 2, Facebook 3, WhatsApp 4, etc., as shown

in Figure 1.1. Therefore, such a proliferation of images poses an urgent challenge for large

scale image categorization, indexing, retrieval and browser.

In the image retrieval community, most methods can be categorized into two groups:

content based image retrieval (CBIR) [176] and tag based image retrieval (TBIR) [135].

CBIR matches the query image and the gallery images based on their visual similarities

that could be computed from a group of visual features including color, texture, shape [75],

LBP [152], HOG [37], SIFT [137], GIST [154] and the list goes on [204]. Despite the elaborate

system designing and computational e↵orts, the performance of CBIR is still prohibited by

the notorious semantic gap between the low level visual features that reflect the image

1https://www.snapchat.com/
2https://www.instagram.com
3https://www.facebook.com/
4https://www.whatsapp.com/
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Figure 1.1: Daily number of images uploaded to the Internet through selected apps [143].

contents and the high level semantics behind images [67, 201]. To considerably improve

the performance of CBIR, substantial advancements in terms of the involved technologies

and designs are still required, which includes feature extraction, feature selection, indexing,

query rephrasing and completion [132].

To overcome the limitations of CBIR in terms of both retrieval e↵ectiveness and e�-

ciency, the TBIR was proposed accordingly. Instead of the visual features which take great

computation cost, TBIR represents images with a set of tags (also called keywords, labels

or attributes). The user gives out the query as a sequence of semantic words, and then

the relevant images are retrieved based on the matches between the textual query and the

image tags. Compared with CBIR, TBIR has two significant advantages. First, it allows

the users to better express their query needs with semantic words, which alleviates the se-
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mantic gap and improves the retrieval accuracy. And secondly, TBIR formulates the image

retrieval problem as a document retrieval problem, which allows to use the inverted index

technique [227] and greatly improves the retrieval e�ciency.

Besides tag based image retrieval, there is also many other tag dependent tasks that

categorize [116], indexing and browse [168] images via semantic tags for similar reasons.

However, the good performance of these tasks substantially relies on the image set which is

supposed to have su�cient high quality tags.

However, among the great amount of available images, only a small portion of images are

associated with appropriate tags. Generally images are annotated manually, either by profes-

sional annotators or simply by the photo takers and reviewers. The professionally annotated

tags are elegant and reliable, but cost tremendous label e↵orts and time. Typical such image

datasets include CCUB NABirds 700 Dataset5 and Microsoft COCO Dataset [125], which

took years to collect, annotate and build up by a group of researchers. Apparently, this is

prohibitively labor costing in terms of the proliferation of images [202]. Fortunately in most

cases, the image tags are provided by the users who upload the image to social media (e.g.

Flickr6) and the reviewers of this image, or directly crawled from the accompany descrip-

tions/titles of that image. However tags generated in this way are far away from reliable,

since they are usually general, ambiguous, biased, and sometimes even inappropriate, incom-

plete or redundant for many reasons according to [70, 101]. All these factors could severely

prevent the performance of TBIR and other tag-based tasks.

As a result, the need for reliable tags over large scale images becomes profitable and

emergent, which motivates the research community to develop e↵ective and e�cient auto-

5
http://info.allaboutbirds.org/nabirds/.

6
https://www.flickr.com/.
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matic tagging systems [56]. Among them, image annotation and tag completion are two big

branches that catch the most eyes.

The di↵erences between these two branches come from the two types of the supervised

information. In the image annotation framework, a subset of images is associated with

appropriate tags and the other images are not assigned with any tag. And the goal is

to predict tags for the unlabeled images. In the tag completion task, all the images are

associated with certain number of tags. However some tags are appropriate while some

others are not, and there are also some tags supposed to be observed but actually not. And

its final purpose is to update the whole tag matrix to make it better describe the image’s

visual contents.

So basically, the goal of image annotation and tag completion work is to learn from

labeled examples in order to predict the labels of other examples or the scores of the other

labels. That is, given a training set of supervised information (examples or labels), it is

aimed to learn a hypothesis that assigns each label a confidence score to associate a sample

where the label or the sample could have never been observed by the algorithm. E�ciently

finding such an e↵ective hypothesis based on the training set and the observed labels, which

minimizes some validation measure of performance, is the main focus of this learning.

This chapter is devoted to an overview of these two broad topics of tag assigning and

amelioration, aiming to develop a general correspondence between or within the image visual

contents and the semantic tags. Here we move towards to the definitions in a fairly non-

technical manner and the formal detailed definitions will be given in Chapter 2.
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1.1 Image Annotation

The objective of image annotation is to automatically annotate an image with appropriate

tags, which exclusively reflect its visual content. Image annotation has been a hot topic

of on-going research for more than a decade, and many techniques have been developed.

Conventionally, image annotation is tackled as a machine learning problem, where two major

components are included: visual feature extraction and mapping those features to semantic

tags [132]. Feature extraction obtains significant patterns from images, and then the patterns

are mapped to keywords in the semantic space via a set of machine learning algorithms, which

capture the relationship between visual contents and semantic tags in one of three ways: (i)

formalizing a statistical model between tags and visual features [22, 49, 119, 132]; (ii) casting

the problem into a set of binary classification ones [47, 72]; and (iii) representing the tags

as a matrix and treating the annotation problem as a matrix factorization [223] or matrix

completion problem [126, 201]. The key of these methods is to train a reliable model with

su�ciently accurate tags by optimizing image compactness and separability in a global sense.

However, the semantic gap, and the imperfect tags usually lead to a biased model and result

in a suboptimal solution. That means the discriminatory power of input images might vary

between di↵erent neighborhood, and a global model hence cannot fit well the visual-semantic

relation over the data manifold. Besides, many parametric models are not rich enough to

e↵ectively capture the complicate dependencies between image content and tags.

Recently, a local non-parametric model, the search based approach, has been proved to be

quite e↵ective, particularly for large image datasets with many keywords [67, 93, 139, 194].

Its key idea is to annotate a test image I with the common tags shared by the subset of

training images that are visually similar to I.
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The crux of search based annotation methods is to e↵ectively measure the visual simi-

larity between images. Distance metric learning (DML) [78, 210, 205] tackles this problem

by learning a metric that pulls semantically similar images close and pushes semantically

dissimilar images far apart. Many studies on DML are restricted to learning a linear Ma-

halanobis distance metric in a finite dimensional space, which is expected to be consistent

with the associated tags.

However, most distance metric learning algorithms assume all data is of linear separa-

bility [26], and they usually fail to capture the nonlinear relationships among images. To

address this problem, several nonlinear DML algorithms have been proposed. Their key idea

is to map data points from the original vector space to a high (or even infinite) dimensional

space through a nonlinear mapping, which can be either explicitly constructed using boost-

ing methods [73, 74, 172], or implicitly derived through kernel functions. And the latter is

referred to as Kernel Metric Learning (KML) [26, 39, 187], which has been widely used to

settle image similarity problems in image classification [39, 60, 187], clustering [2, 26, 205],

and retrieval [77, 78]. Figure 1.2 illustrates an example comprised of two groups of data

points annotated by di↵erent tags, and Figure 1.2(b) shows the distributions of data points

adjusted by a learned linear distance metric, which fails to separate the objects with di↵erent

tags, while in Figure 1.2(c) the newly learned nonlinear (kernel) distance metric successfully

separates the data with di↵erent tags.

1.2 Image Tagging

Recently many user-provided tags are automatically generated, and thus are incomplete or

inaccurate in describing the visual content of images [201]. In particular, these tags are
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(a) Original data distribution (b) Linear distance metric (c) Nonlinear distance metric

Figure 1.2: An illustrative example for the comparison of linear and nonlinear distance metric
learning algorithms. (a), (b) and (c) show the original data distribution, the distribution
adjusted by a learned linear distance metric, and the distribution adjusted by a learned
kernel metric, respectively.

crawled from the descriptions of the uploader and reviewers, and in most cases only a small

number of tags are provided for each image and some are even irrelevant to the visual

content of images. This disadvantage makes it di�cult to fully utilize these accompany tags

and limits their applications in tag dependent tasks such as tag based image retrieval and

tag recommendation [126, 129, 226]. To better benefit from the tags, there is an urgent

demand for e�cient algorithms that are able to improve the tagging quality for a large scale

of images, specifically, e↵ective algorithms that can simultaneously recover the missing tags

and remove or down weight the noisy tags.

Generally there are two groups of algorithms can fulfill this desire to re-weight the given

tags: the fine-grained ones and the coarse ones. And both groups model mainly the correla-

tions among the partially observed tags, then apply this model to the whole dictionary and

re-weight all tags in the dictionary.

The fine-grained ones [40, 44, 116, 115] aim at the images with a specific contents and

carefully manually annotated tags. The contents of images are simple and concentrated,

while the semantic knowledge are complete and clean, and sometimes even manually asso-
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ciated to the correspondent segments in the images. Typical datasets for these algorithms

are Animal with Attributes dataset [115] and CUB-200-2011 dataset [189]. The fine-grained

group includes transfer learning [115], label propagation [40], zero shot recognition [116] and

fine-grained categorization [44]. This group is able to learn new attributes by exploiting

their graphical or probabilistic relationship via both an intermediate-level semantic repre-

sentation and the low-level mapping between tags and their correspondent segments in the

image repository.

However, natural images are usually assorted and involve a large scope of topics includ-

ing scene, people, animal, action, objects and many other aspects of life and environment.

Besides, because of the large amount and versatility of the images, the tags are usually

user-provided instead of manually annotated, and thus contain many missing annotations

and errors. And probably, the tag dictionary might be very long. Typical datasets could be

referred to Flickr1M dataset [201] and NUS-WIDE [33] dataset. In this case the fine grained

methods are no longer capable to capture the tag-tag or tag-image dependencies since on

the one hand, the manual segmentation and tag localization are labor costing; and on the

other hand the observed tags are usually too problematic to train a reliable model. In the

contrast, the coarse methods are able to simultaneously address the challenges of missing

and noisy tags [33] for a huge variety of images using machine learning techniques, which

rely mainly on the semantic information that covers a wide range of knowledge, and as well

as the auxiliary visual content information.

We refer to this problem as tag completion [33] to distinguish it from previous coarse

image tagging work. Although the final objective of those tagging works is to assign an

image with complete and exact tags with reasonable confidence scores, their initial setups

vary, as illustrated in Figure 1.3. Image annotation [28, 67, 139] automatically assigns unla-
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Figure 1.3: Exemplar illustration of tag completion and other image tagging works includ-
ing image annotation, tag recommendation and tag refinement. The upper box shows the
initially given information (both visual and semantic), and the bottom box indicates the
ultimate objective of all four tasks.

beled images with appropriate keywords. As a state-of-the-art image annotation approach,

search based algorithms [52, 67] rely on the quality of tags assigned to training images [52].

Tag recommendation suggests candidate tags to online annotators in order to improve the

e�ciency and quality of the tagging process [108, 158, 206]. It usually identifies missing

tags by topic models (e.g. Latent Dirichlet Allocation (LDA)) [12, 108, 225], but does not

address the noisy tag problem, an important issue in exploiting user-provided tags. Tag re-

finement applies various techniques, including topic model, tag propagation, sparse training

and partial supervision [28, 131, 206], to select a subset out of the user-provided tags based

on image features and tag correlation [224]. Although it is able to handle noisy tags, it
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cannot explicitly enrich the missing tags.

1.3 Thesis Contributions

In this section we shall elaborate on the main problems considered in this thesis and our key

contributions to address these problems.

This dissertation mainly deals with the image annotation and tag completion problems,

giving theoretical guarantees and providing empirical comparisons with state-of-the-art base-

line algorithms. Generally, we attempt to delve into the image-image correlation, image-tag

mapping and tag-tag interaction to capture their underlying relationship. In particular, the

main contributions can be summarized as follows.

• New e↵ective image distance metric and its theoretical foundation. The

dissertation proposes an novel kernel based distance metric learning algorithm (RKML)

specifically for image annotation in Chapter 3. This algorithm achieves success by fully

exploring the image-tag dependency, which is consequently used to better capture the

nonlinear complexities among images. Many strategies are applied to guarantee the

annotation accuracy, including the incorporation of soft semantic constraints which

better explore the semantic information between tags, and the adoption of rank based

regularization term which e↵ectively reduces the overfitting risk to the training data.

Besides, the theoretical guarantee for the proposed kernel distance metric learning is

provided.

• E�cient kernel metric learning and related computation. The proposed RKML

algorithm explores the regression technique to avoid the projection to PSD cone, which

is necessary in distance metric learning and is intensively computationally expensive.
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Besides, Nyström approximation is applied in the kernel computation to speed up the

implementation. These skills as well as the rank based regularization greatly reduce

the computation burden for the proposed RKML algorithm.

• Novel image tag completion work that e↵ectively dealing with missing and

noisy tags. The dissertation also proposes a novel image tag matrix completion

(TCMR) framework in Chapter 4 that e↵ectively recovers the expected tags from

incomplete and noisy given tags. This algorithm focuses to capture the tag-tag cor-

relation, and then uses it to reversely update the tag confidence score matrix. Based

on the idea of topic model, TCMR assumes that the observed tags of any image are

drawn independently from a mixture of a small number of multinomial distributions,

which can be straightforwardly interpreted as the low rank matrix completion theory.

So following this theory, the nuclear norm is applied to simultaneously capture the

interactions among tags in two ways, either between di↵erent tag keywords or between

tag vectors associated with di↵erent images. Maximum likelihood component is also

employed as the loss function, which successfully connects probabilistic models and

matrix completion theory. All these techniques are applied to ensure the performance

of tag matrix recovery out of missing and noisy tags.

• Theoretical guarantee of image tag completion by noisy matrix recovery.

The final objective function of the optimization problem is convex, which guarantees

that the global optimal solution exists and it would be e�cient to find this optimal

solution. The error bounds between the recovered matrix and the statistically optimal

one are also provided theoretically.
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1.4 Thesis Overview

The remainder of this dissertation is organized as follows. Chapter 2 lays out the foundation

for the rest of the dissertation. In particular, we provide a survey on some of the background

materials including image tagging tasks like image annotation and image tag completion,

distance metric learning (both linear and kernel), statistical models applied in image tagging

work, and as well as low rank matrix recovery theory. It will become clear in this chapter

that there exist deep connections between these topics.

The first part of the thesis focuses on the image annotation problem. In Chapter 3 we

focus on the kernel distance metric learning problem, investigate how it a↵ects the image

annotation performance, and propose strategies to solve the limitations in existing kernel

distance metric learning algorithms and their applications in real-world.

The second part of the thesis deals with the image tag completion problem. Chapter 4

discusses its relationship to the statistical/topic models and matrix completion theory. The

e↵ectiveness of the proposed algorithm is justified both theoretically by the recovery error

bounds and empirically on a bunch of datasets in terms of several of setups.

Finally, Chapter 5 summarizes this work by concluding the main contributions, some

potential extensions and the future research directions. Besides, the appendix summarizes

rather standard things on relevant topics of this work, and gives the error bounds that are

used in the proof of results in the thesis and is mainly for reference. In order to facilitate

independent reading of various chapters, some of the definitions are repeated for multiple

times.
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1.5 Notation

This section serves as a glossary for the main mathematical symbols used throughout the

thesis. Vectors are shown by lower case bold letters, such as x 2 Rd. Such a vector usually

represents the visual feature or tag vector of an image. Matrices are indicated by uppercase

letters such as A and their pseudo-inverse is represented by A†. We use [m] as a shorthand

for the set of integers {1, 2, . . . ,m}. Throughout the paper we denote by | · |, | · |1, | · |F and

| · |⇤ the `2 (Euclidean) norm, `1-norm, Frobenius norm and spectral norm, respectively.

1.6 Bibliographic Notes for Previous Publications

Some of the results in this dissertation have appeared in prior publications.

The material in Chapter 3 is based on a work published in the International Conference

on Computer Vision [52] (ICCV), the content of Chapter 4 comes from [51] which is published

at the European Conference on Computer Vision (ECCV), and [50] which is published at

the IEEE Transactions on Image Processing.
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Chapter 2

Background

The goal of this chapter is to give a general and formal overview of the materials related to

the work that has been done in this thesis. In particular, we will discuss the key concepts and

questions relevant to problems of image annotation, image tag completion, kernel distance

metric learning and noisy matrix recovery. The exposition given here is necessarily very brief

and the detailed discussion will be provided in the relevant chapters.

2.1 Image Representation

In the computer vision area, image representation plays an important and ineluctable role.

Specifically, appropriate feature representation significantly improves the performance of

typical image relevant tasks including image classification, image clustering, image under-

standing, video understanding, etc. Since an image consists of an unstructured array of

pixels,the first step of image representation is to extract e�ciently certain types of discrim-

inative visual features from these pixels, either colorful or grayscale [220]. Various feature

extraction techniques will be reviewed in detail in the following sub-sections.

2.1.1 Color Feature

Color feature is one of the most basic and fundamental features to capture the image char-

acteristics, which is usually defined subject to a particular color space, such as RGB, HSV ,
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and L↵� spaces [41, 65]. Within these spaces, color features could be extracted, including

color histogram [204], color moments [220] and color coherence vector [220].

2.1.2 Texture Feature

Unlike color features which measured the property of a single pixel, texture features explore

the traits of a group of pixels. According to the extracted domain, texture features can be

divided into two groups including spatial texture feature and spectral texture features [220].

Spatial texture features are usually extracted by computing the pixel statistics, searching

local pixel patterns or converting with stochastic/generative models in the original image

space. Typical spatial features include texon histogram [140] and Markov random field [97].

Generally, since spatial features are directly generated in the original image space, they

could be straightforwardly extracted from irregular shaped regions, while they usually su↵er

severely from the noise, mutation and distortions of images [220].

Spectral texture features serve as significant image analysis tools in the Computer Vision

area in early 2000s, and they are usually extracted in the frequency domain that is trans-

formed from the original image space. Common spectral texture features includes Fourier

transform (FT) [122], discrete cosine transform (DCT) [164], wavelet [85] and Gabor fil-

ters [128]. Among them, FT and DCT are e�cient but sensitive to scale and rotation,

wavelet is fast computed but limited to orientations, and Gabor feature is robust to scale

and orientation but would lose certain spectral information due to the incomplete cover of

spectrum [183].
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2.1.3 Typical Features in Image Tagging

Here, several state-of-art image visual features are summarized and compared in detail, which

are potentially useful for image level tasks including image annotation and image tagging.

SIFT feature [137] is initially proposed for object recognition. It first extracts the SIFT

descriptors from a set of reference images at di↵erent scales with Gaussian filters and then

uses bag-of-words model to computer the histogram of the descriptors to form the final image

feature. There are various versions of SIFT features including sparse SIFT, dense SIFT and

SURF. Sparse SIFT [218] builds the features at Hessian-a�n and Dense SIFT [120] extract

the descriptors within a flat window. SURF [7] is a speed-up version of SIFT which take care

of the scale problem by a convolution with box filters and handle the orientation problem

with wavelet responses.

Gist feature [155] is initially described as a low dimensional representation of the scene

and specifically for scene recognition, which requires no image segmentation as in tradition.

It summarizes the gradient information, both scales and orientations, by convolving the

image with a bank of Gabor filters [128], which provides a rough description of the image

characteristics.

HOG feature [38, 48] is reported to provide excellent performance for object and human

detection. It first densely extracts the histogram of oriented edges (HOG) descriptors and

stacks the neighboring HOG descriptors together to increase the feature dimension and the

descriptive power as well. Bag-of-words model is used later to finally compute the HOG

feature for an image.

LBP feature [153], short for Local Binary Patterns, is a powerful texture feature based on

occurrence histogram of local binary patterns. Basically LBP divides the image into blocks,
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for example 3 ⇥ 3, then threshold the block with the center pixel value and encode it into

a sequence of binary digits. The sequence is then converted to a decimal number which is

set as the value of the center pixel. Thus the histogram of each block can be computed and

concatenated together to form a feature vector of the representing image. Essentially, LBP

encodes the local contrast and patterns, making it highly discriminative while computed

e�ciently.

2.2 Image Annotation

Once su�cient visual features are extracted from the image, high level semantics like annota-

tions and tags could be learned immediately from the given information. According to [67],

traditional automatic image annotation methods can be categorized into three groups, while

recently new deep neural network based models have also gained more and more attention

in the annotation community.

2.2.1 Generative Models

This type of models usually trains global probabilistic models to explain the co-occurrence

between image visual features and semantic labels, and then predict new tags with the

newly learned relationship. Among them, many are borrowed from the techniques of natu-

ral language and text-based document processing. Duygulu et al. tried to translate image

blobs into label keywords directly using a machine translation model [46], which inspired

several relevance models. These early works, including Cross-Media Relevance Model [92],

Continuous-Space Relevance Model [119] and Multiple Bernoulli Relevance Model [49], as-

sumes the blobs and tags are conditionally independent given an specific image. Besides,
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an algorithm in [22] is designed to model the joint distribution between tags and visual fea-

tures with a mixture distribution, while [145] models the visual and semantic relationship

via Bayesian network.

Meanwhile, latent space models derived from natural language and text processing, in-

cluding Latent Semantic Analysis [45] and Probabilistic Latent Semantic Analysis [76], and

variants of Latent Dirichlet Allocation models [4, 148, 132, 108, 158] have been successfully

applied to image annotation.

Besides the previous large groups, in [195] the authors propose a semi-supervised formu-

lation based on linear regression with a tag-biased regularization.

These methods usually have unsatisfactory performance since the probabilistic models

are too global to capture the nonlinear relation between images.

2.2.2 Discriminative Models

Image annotation can also be viewed as a classification problem where each keyword is treated

as an independent class. As a state-of-the-art classifier, Support Vector Machine (SVM) has

been shown with high e↵ectiveness when handling high dimensional data like image. An SVM

classifier is basically a binary classifier, so in order to be adaptive to the image annotation

tasks which requires multiple classifier, some SVM-based annotation models first train a

separate SVM for each concept with each classifier generating a probability, and later fuse

all the SVM classifiers together to get a final confidence score for each tag [36, 47]. Further,

a batch mode re-tagging method is proposed in [27], where a SVM with augmented features

is proposed to learn adapted a set of classifiers to refine the existing noisy tags.

Besides SVM, there is a group of other discriminative models that have been successfully

applied in image annotation. [139] assigns tags by a k nearest neighbor classifier combining
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with multiple distance metrics. [144] applies a structural model to attribute-based image

classification, and transfers the user inputs as well as the attribute-class mapping results

to predicted tags. [13] learns the class labels by exploiting the group lasso technique and

minimizing the ranking errors. Commonly for these methods, both the training and testing

phases are computationally expensive. But [72] raises a max-margin formulation that models

the dense pairwise label correlations, and reduces the complexity from exponential to linear.

[157] also learns a multi-label classifier that explicitly and e�ciently models the dependencies

between submodular pairwise labels via graph-cut, and directly optimizes the F-score.

In [133], a multiview Hessian discriminative sparse coding is presented, which exploits

Hessian regularization to steer the solution which varies smoothly along geodesics in the

manifold, and treats the label information as an additional view of feature for incorporating

the discriminative power for image annotation. In [79], R. Hong et al. explore both the

positive and negative tag correlations and propose an method with discriminative feature

mapping, which selects the e↵ective features from a large and diverse set of low-level features

for each concept under multiple-instance learning settings.

Despite the considerable performance in learning image annotations, this group of algo-

rithms shares the same shortcomings that they have poor scalability on large datasets or

when the tag dictionary is large; and they also perform unsatisfactory especially when the

training tags are incomplete or noisy.

2.2.3 Search based Models

Since image annotation is a highly nonlinear problem, parametric models might not be suf-

ficient to capture the complex distribution of the data, recent works on image tagging have

mostly focused on nonparametric nearest-neighbor methods, which o↵er higher expressive
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power. Search based approaches have gained much popularity in the exploring of tag rele-

vance due to its feasibility on large scale data. Recent studies on image annotation show that

search based approaches are more e↵ective than both generative and discriminative mod-

els [67, 202]. Here, we briefly review the most popular search-based approaches developed

for image annotation.

TagProp [67] constructs a similarity graph for all images, and propagates the label in-

formation from the training images to testing images via this graph. In [123] a majority

voting scheme among the neighboring images is proposed. [130] obtains the tag relevance

score using kernel density estimation, and then performs random walk to boost the primary

tag relevance score over the tag proximity graph that is constructed from the neighboring

images. A sparse coding scheme is proposed in [59] to select semantically related images

for tag propagation, and then local and global ranking agglomeration is adopted to down

weight the noisy tags. Besides, conditional Random Field model is adopted in both [93] and

[203] to capture the spatial correlation between annotations of neighboring images, but [93]

embeds the kernelized logistic regression with multiple visual distance metric learning while

[203] optimizes the model by maximizing margins of the hinge loss function.

This category of works usually concerns more on search technique or visual-semantic

consistency problems, where much attention has been paid to learn e↵ective and e�cient

distance metrics.

2.2.4 Neural Network based Models

Neural network based image annotation models typically includes conventional artificial neu-

ral network (ANN) [55] and recent developed deep convolutional neural network (CNN) [109].

An ANN consists of multiple layers of nodes called neurons, and nodes in di↵erent layers
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are connected by edges with correspondent weights. Each neuron works by inputting the

outputs of the previous layers and the weights of its connecting edges into an activation

function to generate a final output. Figure 2.1 shows how an ANN annotates an image with

three tags. As an example, four 3-layer ANNs are used in [112] to annotate image regions.

Figure 2.1: Annotate an image with ANN [220].

Very recently, deep convolutional neural networks (CNN) have demonstrated promising

results for image classification [109], and features based on CNNs have also shown potential

to significantly boost performance in terms of image annotation and tagging [64, 180]. [64]

proposes a feature based on DNN that combines convolutional architectures with approxi-

mate top-k ranking objectives, and finally overwhelmingly outperforms the traditional visual

feature in multiple image annotation jobs. [34] builds many sparsely connected neural layers

by training only the winner-take-all neurons, which yields large network depth and excellent

performance on image annotation tasks. In [214], Yang et al. tactfully apply deep neural

network to establish the correlations between visual features and semantics, and address the

21



imbalanced keyword distribution by incorporating the keyword frequencies and log-entropy.

This group has some distinctive pros and cons. For massive input and output data, when

we have no idea what the function mapping between the two together is, neural network can

learn this function without having to explicitly provide it. And it also well handles defective

data sets with noise and missing variables. Nevertheless, emerging from a neural network’s

weights can be di�cult to understand, specifically, it may work, but it is hard to explain the

literal and physical meaning, and there is no theoretical guarantees. Sometimes, its training

takes longer than certain other methods of machine learning.

2.3 Image Tagging

Image tag was initially applied to improve the performance of content-based image re-

trieval [114], and then image tagging works were developed to generate tags by associating

semantic words to unlabeled images [5]. Probabilistic and language models are widely used

in early models that match the semantics and images [4, 5, 119]. As the image annotation

problem, the image tagging problem can also be formulated as a multi-label classification

problem where each image can be assigned to more than one class simultaneously [14]. And

following this idea, there are many multiclass techniques, including SVM, CRF, and some

other works such as [14, 15, 115], that has been modified to adapt to the image tagging

problem.

Similar as literature on image annotation, most existing image tagging works explore only

the relationship between the visual features the tags, for instance, the direct mapping be-

tween visual and tag spaces, the probabilistic dependencies and the graphical model between

visual contents and tags[67, 126, 129, 201].
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To achieve a better tagging performance, some works try to learn a better mapping by

studying the precise tag localization or an adaptive distance metric. [15] and [14] factorize

the Bags-of-Words feature as a weighted sum of class histograms plus an error to model the

image content, and thus pose the multi-label classification problem as a rank minimization

problem. [123] proposes to scalably and reliably learn the tag relevance vector of an image

by accumulatively votes the tags associated to its similar images (nearest neighbors). [52]

and [202] apply distance metric learning methods to capture the dependency between visual

and textual contents.

However, since compared to image annotation, additional tag information are observed

in image tagging tasks, some other works delve into the textual correlations among tags. [40]

introduces a so-called Hierarchy and Exclusion graph to encode the rich semantic relations

including mutual exclusion, overlap and subsumption. [42] maps both images and text to a

common semantic space using word embedding, which improves the tagging performance by

avoiding direct cross-modal mapping that is always impractical to be constructed.

Besides, other works mainly follow the ideas of topic model and matrix completion.

They usually explore the mutual dependencies between tags and then solve an optimization

problem derived from the image-tag relation [58, 151, 193, 215, 224].

And in our study, we focus on the essential correlations among di↵erent tags, which can

be e↵ectively recovered out of the incomplete and noisy observed tags by the noisy matrix

recovery model. In order to provide a more comprehensive presentation on this model, we

further review the image tag completion works as well as the closely relevant topic model

based image tagging approaches as follows.
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2.3.1 Image Tagging with Topic Models

Topic model is originally designed for document clustering [12, 11] which discovers the ab-

stract ”topics” that occur in a collection of documents. Figure 2.2 shows a typical topic

model pipeline. It is first assumed that there is a hand of ’topics’ in the collection of doc-

uments, as shown in the left column, and each topic could be modeled by a distribution

over a set of words. Then the generation of a document can be described as follows. First,

a distribution over the topics (the histogram at right) should be chosen, and then for each

word, we choose a topic assignment and choose the word from the corresponding topic [11].

Figure 2.2: The illustration of how topic model works [11], where each topic is highlighted
by a specific color.

In the last decade, Topic models has been widely applied in image understanding and

tag recovery applications [151, 225]. [206] applies topic model to tag refinement by jointly

modeling tag similarity and tag relevance. [108] uses LDA [12] to discover latent topics from

resources with complete tag annotations, and discovered topics are then used to recommend
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topics for new resources that are annotated with only a few tags. [158] presents a topic-

regression multi-modal LDA for image annotation. However all these methods focus on the

simple co-occurrence of tags and fail to capture their underlying dependencies, and thus

work poorly on imperfect tags. Recently, [151] encodes the textual tags as relations among

the images, and then uses topic model to learn the image content and modify their encoded

relations. [87] extends traditional LDA to noisy tags by additionally introducing a general

distribution unrelated to the image content which leads to the noisy tags. The key limitation

of these proposed topic models are (i) they have to solve a non-convex optimization, and (ii)

they usually do not have any theoretical guarantee on the learned models.

2.3.2 Image Tag Completion

There are only a handful studies fitting the category of tag completion with both incomplete

and noisy tags. [226] proposes a data-driven framework for tag ranking that optimizes the

correlation between visual cues and assigned tags. In [129] the noisy tags are first removed

based on the visual and semantic similarities, and then tags are obtained by expanding the

observed tags with their synonyms and hypernyms using WordNet. [201] proposes to search

for the optimal tag matrix that is consistent with both observed tags and visual similarity.

[190] proposes to complete the missing tags by a local linear learning, which constructs

a unified objective function to calculate the tag scoring vector for each image among its

neighborhood. In [208], the authors propose an image-tag re-weighting scheme to adjust

the penalty of each tag and image based on both image similarities and tag associations,

and therefore formulate a unified re-weighted empirical loss function to handle the defective

setting with both incomplete and noisy tags. Despite the successful application, none of

these studies provides any theoretical guarantee for their approaches.
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Besides, matrix decomposition is adopted in literature including [15, 149, 223, 224] to

handle both missing and noisy tags. [134] formulates tag completion into a non-negative

data factorization problem. [126] exploits sparse learning techniques to reconstruct the tag

matrix. The key limitation of these approaches is that they require a full observed tag matrix

with a small number of errors, making it inappropriate for tag completion problem.

2.4 Image Annotation by Metric Learning

It is ubiquitous to find appropriate measures to represent the distance or similarity between

data in research and engineering communities including machine learning, computer vision,

information retrieval and data mining, which increases the emergence of distance metric

learning (DML) [9]. Euclidean distance is the simplest and most generally used distance

metric, but despite easily used, hardly it is able to capture the irregularities and idiosyncrasies

of the complicated and versatile data. The studies of DML can be traced back to 2002 [205],

and immediately it becomes a hot topic and inspires many research work. Yang et al. [210],

Kulis [110] and Bellet et al. [9] have comprehensive yet detailed surveys on this topic including

problem formulation, optimization and applications. Given the rich literature on this subject,

we only discuss the metric learning studies closely related to image annotation, we refer the

readers to [9, 67, 202, 210] for more detailed surveys on the focused topic, if necessary.

The goal of distance metric learning is to take advantage of the prior information in form

of labels/tags or pairwise constraints to create a projection of the data into another space

such that the relevant images have smaller distances and share more labels while irrelevant

images have larger distances and share fewer labels. According to the linearity of projection,

we roughly categorize DML into two groups: linear and nonlinear distance metric learning.
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Besides, there are also some extensions including online learning and local metric learning.

Certain parts of these groups may overlap.

2.4.1 Linear Distance Metric Learning

Most linear DML methods assume data points lie in a finite linear space, and focus on

Mahalanobis metric learning problem setting, written as

dM (x,x0) =
q

(x� x0)>M(x� x0),

where the metric M should be symmetric and positive semidefinite (PSD). Most notable

works for learning such a Mahalanobis distance fall into several groups [210].

The first group learns metrics with explicit class labels ( may also be referred to tags,

concepts or keywords). For instance, NCA [63] explicitly learns metrics through a k-nearest

neighbor classification, MLCC [60] constructs a convex problem leading to a metric that

collapses same class samples to a single point and pushes samples in the other classes infinitely

far away, LMNN [196] extends the K-NN based works by achieving maximal margin nearest

neighbor classification, and LDML [68] models the image similarity using posteriori class

probabilities and obtains the distance metric by maximizing the log-likelihood.

The second group learns metrics from pairwise constraints and typically includes fol-

lowing examples. NMC [205] proposes a convex formulation that maximizes the sum of

distance between dissimilar points while keeping the sum of distance between similar exam-

ples small. RCA [3] learns a distance metric through a set of positive constraints (must-link),

and later DCA [78] and ERCA [216] extend RCA by additionally introducing negative con-

straints (cannot-link) at the cost of a more expensive algorithm. LRML [77] provides a semi-
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supervised metric by integrating the unlabeled data information and a graph regularization.

ITML [39] introduces LogDet divergence regularization and minimizes the di↵erential en-

tropy under both positive and negative constraints. In ITML, a Bregman divergence defined

as

Dld(M,M0) = tr(MM�10 )� log det(MM�10 )� d,

where d is the dimension of the input space, is introduced to keep the learned metric to be as

identical as possible to the Euclidean metric (I). In ITML, it is automatical and pretty easy

to guarantee the positive semidefiniteness of M by minimizing Dld(M,M0), due to the fact

that the LogDet divergence is finite if and only if M is positive definite. Furthermore, [91]

and SDML [160] follow this idea and propose more e�cient Mahalanobis distance learning

algorithms. Besides the LogDet divergence regularization, SDML [160] also employs an

extra L1 regularization on the o↵-diagonal elements of M to speedup the computation in

high dimensional space while make it theoretically descent. And moreover, to handle the

noisy constraints, RML [82] minimizes the worst-case violation over all possible sets of correct

constraints.

Exceptionally, despite the popularity of DML algorithms that taking care of class la-

bels and constraints, only a few works are designed to handle other types of supervised

information such as annotated tags. For image annotation tasks, [93, 200, 202] propose to

explore metrics from implicit side information instead of class assignments or pairwise con-

straints. KCRF [93] embeds a Kernelized Logistic Regression (KLR) with multiple visual

distance learning into a unified Conditional Random Fields (CRF) framework. PRCA [200]

first proposes a probabilistic metric learning out of the probabilistic side information based

on a graphical model. UDML [202] unifies both inductive and transductive metric learning
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techniques to e↵ectively exploit both visual and textual image contents. Besides, MLR [142]

learns a metric for solving ranking and retrieval tasks, and its extension R-MLR [124] addi-

tionally deals with the noisy features using a mixed L2,1 norm to ignore most of the irrelevant

features.

Furthermore, the linear similarity metric learning is usually an alternative of linear dis-

tance metric learning. The only di↵erence is that similarity measure does not necessary have

distance properties, especially the PSD and symmetric requirements, and as a result it is

usually more flexible and scalable to large data. Typical linear similarity metric learning

algorithms include SiLA [159], OASIS [25], SLLC [8] and RSL [30].

2.4.2 Nonlinear Distance Metric Learning

Due to the multimodal distributions of real-world data, recently a number of nonlinear dis-

tance metric learning approaches have been developed to tackle these nonlinear patterns.

The main idea of nonlinear metric learning is to learn a linear metric in a reproduced non-

linear feature space. Depending on how the nonlinear mapping is constructed, the nonlinear

DML family is usually classified into two categories, boosting based approaches [73, 74, 172]

and kernel based approaches [39, 78, 187].

Typical boosting methods are listed as follows. BoostDist [73] combines boosting hy-

potheses over the product space with a weak learner that is based on partitioning the original

feature space. BoostMetric [173] applies a set of positive semidefinite matrices with trace and

rank being one as weak learners to an boosting based learning process. And GB-LMNN [98]

applies gradient boosting to learn a nonlinear mapping directly in the function space.

Initial kernel metric learning (KML) algorithms, such as KPCA [169], Kernel NMC [205],

Kernel MCML [60], Kernel DCA [78], KLMCA [187], Kernel ITML [39] and KernelBoost [74],
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directly extend their linear or boosting based counterparts to kernel metric learning using

the kernel tricks. Although several approaches have been empirically shown to be able to

kernelizable, in general kernelizing setting, a specific metric learning is not trivial. It involves

a new problem formulation where the interface of data is limited to inner products, and a

n⇥n matrix is ineluctable to learn. Besides, as the number of training examples n increases,

the problem becomes intractable. These problems together yield an extremely di↵erent and

di�cult solution as in the linear space. To address this problem, a hand of general kernel-

ization extension works [24, 219] have been developed based on KPCA [169]. A so-called

KPCA trick, which introduces a kernel to project the data into a nonlinear space followed

by a dimensionality reduction strategy, is adopted and its soundness is justified theoreti-

cally through representer theorems [24]. It is also possible to obtain general kernelization

through the equivalence between Mahalanobis distance learning and linear transformation

kernel learning with spectral regularizers [90, 89]. In preactical implementation, such an

appropriate kernel function could be select through a multiple kernel framework that is

proposed in [191].

In parallel, some other KML works straightforwardly propose new kernel based metric

learning frameworks. [2] proposes an explicit kernel transformation to tackle a constrained

trace ratio optimization problem. It exploits both positive and negative constraints and as

well as the topological structure of data. The suggested implementation of this KML algo-

rithm is quite e�cient since it is not necessary to learn all entries in the n⇥n metric matrix.

NAML [26] formulates a trace maximization problem to joint kernel learning, dimension

reduction and clustering together and solves it in a EM framework. [209] proposes a support

vector metric learning (SVML) that co-joints a Mahalanobis distance and the SVM model

with a RBF kernel, where the PSD constraint is automatically guaranteed and the metric
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can be made low rank.

However, although literature has shown that kernel metric learning may dramatically

improve the quality of learned distance over highly nonlinear data, it also su↵ers from the

computational burden and easily cause data overfitting, which results in a poor generalization

performance.

2.4.3 Online Metric Learning

As previously stated, a main challenge in linear or nonlinear distance metric learning is to

enforce the learned metric to be positive semidefinite (PSD), which turns out to be very

computationally expensive in terms of both time and space, especially when dealing with

large scale problems. Online learning is contrary very useful in handling these problem by

getting rid of the bottleneck of PSD requirements and thus gains great popularity, though

it occasionally performs a bit inferior to batch algorithms. Prominent online works can be

referred to POLA [171], LEGO [91], OASIS [25], RDML [95] and MDML [111]. POLA [171]

is the first online Mahalanobis distance learning approach, which provides a regret bound

and is done quite e�ciently. LEGO [91] learns metrics in an online setting using a LogDet

regularization, and OASIS [25] is a similarity metric learning which scales linearly with the

data size through online learning of a bilinear model using a margin criterion and an e�cient

hinge loss. RDML [95] solves a convex quadratic program in each iteration step instead of

doing eigenvalue computation like POLA, and it performs comparably to LMNN and ITML

yet much faster. MDML [111] is based on composite mirror descent and can accommodate a

large class of loss functions and regularizers for which e�cient updates are derived. Besides,

both MCML [60] and ITML [39] have online versions with excellent performance.
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2.4.4 Local Metric Learning

The previous studies learn a global linear or nonlinear metric, which may incapable to

capture the complexity if the data is heterogeneous. However it may beneficial to use local

metrics that vary across the space, which have been shown to significantly outperform global

methods at the expense of higher time and memory requirements. [211] presents a Local

Distance Metric (LDM) that aims to optimize local compactness and local separability in

a probabilistic framework. Multiple Metric LMNN (M2-LMNN) [197, 198] learns several

Mahalanobis distances in di↵erent parts of the space that are partitioned by clustering al-

gorithms. GLML [113] leverages the power of generative model in the context of metric

learning, by locally and simultaneously minimizing the asymptotic probability of misclassi-

fication and as well as the bias caused by finite sampling. In [192], PLML is proposed which

learns local metrics as linear combinations of basis metrics defined on anchor points over

di↵erent regions of the instance space, and it is quite robust to overfitting due to its global

manifold regularization. Further, [86] extends PLML by regularizing the anchor metrics to

be low rank, which allows a better optimization to achieve the optimal metric.

2.4.5 Other Metric Learning

Besides, there are also a few approaches that are outside the scope of the previous categories.

For instance, the multi-task metric learning is designed for multi-task setting, where given a

set of related tasks a metric is learned for each task in a coupled fashion in order to improve

the performance on all tasks. Typical multi-task metric learning algorithms include mt-

LMNN [156], MLCS [212], GPML [213] and TML [222]. And as for sparse metric learning,

typical examples include LPML [166] and SML [217], which favor the sparsity through L1
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norm and L2,1 norm regularization, respectively. However, LPML is not guaranteed to be

low rank while SML su↵ers from the complexity issue in high dimensional problems. Besides,

an unified and general framework for sparse metric learning is proposed in [83, 84].

2.5 Image Tagging by Matrix Completion

Literally matrix completion means completing partially specified matrices to fully specified

matrices satisfying certain prescribed properties. The matrix completion problem can be

dated to back 1990, when Johnson claims in [96] that given a few assumptions about the

nature of the matrix, the expected matrix is allowed to be reconstructed. These assumptions

include positive semidefinite property, contraction property and given rank assumption [96,

118].

A breakthrough occurs in 2009 when Candès and Recht [20] prove that a low-rank ma-

trix can be reconstructed based on convex optimization of the nuclear norm. Until now,

low rank matrix completion has become a recurring problem in many fields, for example,

collaborative filtering [62] (notably, the Netflix challenge) and computer vision problems

including structure-from-motion [186], multi-classification [1, 15], global positioning [174],

among many others. We refer to [19] for a discussion of more applications.

2.5.1 Low Rank Matrix Recovery with Nuclear Norm Minimiza-

tion

Since finding the lowest rank matrix satisfying the equality constraints is NP-hard [31] and

the function of matrix rank is non-convex, a popular approach is to replace it with the

nuclear norm, the tightest convex relaxation of matrix rank [19, 21]. The theoretical base for
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such relaxation is provided in [21, 162] that under favorable conditions, the minimization of

the rank function can be achieved by the nuclear norm, which lays the foundation for later

matrix completion problem learning. And with the nuclear norm, it is possible to accurately

recover a low rank matrix from a small fraction of its entries even if they are corrupted with

noise [19, 20, 105].

In the noiseless setting, the matrix completion problem is considered as exact or near-

exact recovery, where relevant works [21, 66, 99, 161, 174] discover the minimum required

number of random observations to exactly reconstruct a low rank matrix by a constrained

nuclear norm minimization. [21, 99, 174] prove that O (nrpoly(lnn)) observed samples are

required to recover a r-rank n⇥n matrix in special case. [66] develops more general methods

and improves that result by introducing a degree of incoherence ⌫ between the unknown

matrix and the basis, and finally indicates that O(nr⌫ ln2 n) randomly sampled entries is

su�cient to recover any low-rank matrix with high probability. And [161] simplifies the

previous arguments and sharpens the results of [21, 99, 174] by providing a bound on that

number which is optimal up to a small numerical constant and one logarithmic factor. These

results thus provide theoretical guarantees for the nuclear norm constrained minimization

methods.

In a parallel line of work, noisy matrix completion, which is more common and where a

few observed entries are corrupted with noise, has also been extensively studied [19, 53, 54,

100, 102, 103, 104, 105, 107, 150, 165]. The observed noisy matrix is usually regarded as A =

L+ S, where L is an unknown low rank matrix and S corresponds to the noisy corruptions.

Compared to the noiseless setting, noise could severely harm the matrix completion results,

as shown in [207] that the nuclear norm minimization could fail to recover the low rank

matrix even if S contains only a single non-zero column.
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When all entries of A are observed, the matrix completion problem becomes a matrix

decomposition problem. [23] assumes S is sparse and proves that L and S can be perfectly

recovered under additional su�cient identifiability conditions, and milder conditions are

further given in [81]. RPCA [18] studies the same model based element-wise sparse S where

the corruption positions are sampled uniformly at random, while [207] considers column-wise

sparse S, where the uncorrupted columns are chosen uniformly at random and guaranteed

to recover as long as L is low rank.

When only partial entries of A are observed, the matrix completion problem is regarded

as approximate matrix recovery. It is first systematically addressed in [18] in the noiseless

framework with element-wise sparse S, where the corruption positions are sampled uniformly

at random. And [29] improves by considering column-wise sparse S, and it proves that the

uncorrupted columns of L can be recovered and the corruption positions in S can be identified

as well, as long as the following assumptions are satisfied: The uncorrupted columns are

chosen uniformly at random, L is low rank, the number of corrupted columns are limited and

the number of observed uncorrupted entries are su�cient. Recently, both element-wise and

column-wise corruptions are simultaneously addressed in [105], where the high probability

recovery of L requires only an upper bound on the maximum of the absolute values of L and

S, instead of the rank of L and the sparsity level of S as in previous studies.

In the noisy/approximate matrix recovery setting, most works delve into low rank matrix

reconstruction by minimizing the nuclear norm with uniform sampling [19, 54, 100, 102,

107]. Keshavan et al. [100] improves over the results of [19] and achieves reconstruction

guarantees that are order-optimal in a variety of circumstances. Foygel et al. [54] presents

reconstruction guarantees based on analysis on the Rademacher complexity of the nuclear

norm unit ball [179]. Koltchinskii et al. [107] proposes a nuclear norm penalization with fast
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convergence rate that is shown to be optimal up to logarithmic factors in a minimax sense and

is equipped with a non-minimax lower bound. And later, unknown noise variance is focused

on in [102], where the author proposes a reconstruction estimator that achieves, up to a

logarithmic factor, optimal rates of convergence under the Frobenius risk. And this estimator

yields comparable matrix completion performance as the previous studies [19, 107, 150, 165]

with known noise deviation.

A common strategy to solve the convex optimization problem is the iterative scheme,

and typical algorithms include [16, 138, 185]. Besides, a low complexity algorithm OptSpace

based on a combination of spectral techniques and manifold optimization is first introduced

by [99] to handle the exact recovery problem, and its robustness to noisy matrix prob-

lem setting is theoretically proved in [100]. And other e�cient nuclear norm minimization

solvers [57, 88, 94, 141] have also been intensively learned. However, most of them fail to solve

large scale problems, making nuclear norm regularization less feasible in practice, despite its

strong theoretical guarantees. Fortunately, it is recently claimed that large scale matrix

completion problem could be solved through a parallel stochastic gradient algorithm [163],

or by an e�cient nuclear solver via active space selection [80].

The nuclear norm has been applied as a regularizer to image classification [15, 61, 71],

visual recovery [136, 149] and tag relevant tasks including image tag refinement [224] and

image tag completion [51], where the nuclear norm is used to enforce correlations between

classifiers or tags. In the matrix completion/recovery scheme, most studies adopt smooth

losses, including common squared loss [54, 61, 184], sparse `1-norm loss [57, 224], logistic

loss [15, 61], maximum margin estimator [136], and even `-Lipschitz loss [53].
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2.5.2 Low Rank Recovery under Other Constraints and Sampling

Distributions

Most matrix completion works focus on the uniform sampling and the nuclear norm regular-

ization, which might be unrealistic since in practice the observed entries are not guaranteed

to follow uniform scheme and its distribution is not known exactly. To overcome this limita-

tion, some researchers search for better sampling distributions [104, 105] while some others

develop more suitable surrogate of the matrix rank [53, 54, 150, 17].

In [104, 105], the uniform sampling is replaced by a general and unknown sampling

distribution within the nuclear norm minimization framework. Nevertheless, the condition

needed in [104] is much milder that it requires only an upper bound on the maximum absolute

values of the entries in A, instead of both L and S as done in [105].

It is shown in [178] that the standard nuclear norm might perform poorly, and a common

alternative is the empirically weighted nuclear norm [53, 150, 178], which incorporates the

prior knowledge of sampling distribution that can be computed based on the locations of the

observed entries. Besides, a direct rank penalized estimator, obtained by hard thresholding of

the singular values of A, is proposed in [103], where general oracle inequality for the prediction

error is established. And in parallel, [165] introduces the Schatten-p norm based penalization

and also establishes the prediction error bounds for matrix completion. Recently, a so-called

max norm [127] recently has been proposed as another convex surrogate to the rank of the

matrix, which is defined as

|M |max = min
M=UV>

|M |2,1|V |2,1,
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where | · |2,1 is the maximum `2 row norm of a matrix. The max norm is first applied to

matrix completion under the uniform sampling distribution in [54]. And later a max norm

constrained minimization method is proposed in [17] for noisy matrix completion under a

general sampling model, which is shown to be minimax rate-optimal and yields a unified and

robust approximate recovery guarantee.
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Chapter 3

Image Annotation with Kernel

Distance Metric Learning

A Regression based Kernel Metric Learning (RKML) algorithm is proposed in the image

annotation framework in this Chapter.

The remainder of the chapter is organized as follows. Section 3.1 motivates the prob-

lem and main intuition behind the proposed algorithm, and as well as setups the notations.

Section 3.3 is devoted to the detailed description of the proposed RKML algorithm and its

extensions. The theoretical properties and guarantee, i.e., the bounds of error between the

computed kernel distance metric and its statistical optimal one, is given in Section 3.4, and

the omitted proofs are deferred to Section 3.5. Section 3.6 presents the detailed implemen-

tation issues. Section 3.7 describes the intensive experimental setup, results and analysis.

Section 3.8 summarizes the chapter and Section 3.2 surveys the closely related works.

3.1 Motivation and Setup

Among the huge volume of image annotation algorithms, the search based approach has been

proved to be quite e↵ective, particularly for large image datasets with many keywords [67, 93,

139, 194]. Their key idea is to annotate a test image I with the common tags shared by the

subset of training images that are visually similar to I, which gives rise to an emergent need of
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an e↵ective visual similarity measure between images. Due to the intricate complexities and

nonlinear dependencies between image visual contents, we resort to Kernel Metric Learning

(KML) [26, 39, 187] to tackle this problem by learning a kernel based distance metric that

pulls semantically similar images close and pushes semantically dissimilar images far apart.

Figure 3.1 illustrates empirical e↵ects of applying appropriate kernel distance metric to

images associated with proper tags, indicating that as two images share more tags, their

visual distance is shortened by a learned kernel distance metric.

Figure 3.1: Illustration of how kernel distance metric works to images with appropriate tags.
In the left box, images share the tags marked in the same color as the lines connecting them.

Kernel metric learning has been widely used to settle image similarity problems in image

classification [39, 60, 187], clustering [2, 26, 205], and retrieval [77, 78]. Traditional kernel

distance metric learning approaches [39, 60, 78, 187, 205] are usually extended from existing

linear distance metric learning, and they usually find the optimal kernel metric by minimizing

the distance between must-link images and simultaneously maximizing the distance between

cannot-link images.
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Despite the success of KML algorithms in those applications, they still su↵er from two

significant limitations. First, the high dimensionality of KML, denoted by d, usually leads

to a high computational cost in solving the related optimization problems. In particular,

to ensure the learned metric to be Positive Semidefinite (PSD), the existing methods need

to project the learned matrix into a PSD cone whose computational cost is O(d3), which is

relatively computationally expensive. Although online learning algorithms [25, 39, 91] are

able to get rid of the PSD requirements, they need to train a considerable amount of data

and still cost remarkable time to earn a reasonable performance. Secondly, the high dimen-

sionality in kernel metric learning process may lead to the overfitting of training data [95],

and finally reduces the annotation performance. To address the over-fitting problem, some

studies try to find better kernels with boosting methods [74, 172], some straightforwardly

reduce the dimensionality of the projected data [26, 187], and some others directly add a

regularizer [95]. However, none of them has a solid theoretic support in dealing with the

overfitting problem.

Unlike most linear or kernel metric learning algorithms in similar setup including image

classification, clustering and retrieval, which deal with binary semantic constraints (must-

link or cannot-link to a label), the proposed RKML algorithm is able to handle the numeric

semantic constraints, which better represent the complex semantic relationship between im-

ages and thus make better use of the supervised information. Besides, the proposed RKML

algorithm avoids the time consuming PSD cone projection step by exploiting the special

property of regression, where the PSD property is automatically guaranteed. Additionally

the overfitting risk that is easily caused by the high dimensionality and commonly exists in

kernel metric learning is alleviated in RKML by appropriately regularizing the rank of the

learned kernel metric matrix, instead of an independent norm (Frobenius or Absolute norm)

41



of the learned metric matrix. This strategy also facilitates the further implementation by

connecting RKML with the Nyström approximation, and thus speeds up the computation

with limited storage memory requested in the computation phase. Finally, the proposed

RKML is equipped with theoretical guarantees, the bounds of error between the learned

metric and the statistical optimal one, which is original and constructive for kernel distance

metric learning.

3.2 Related Work

Due to the rich literature in both areas of image annotation and distance metric learning,

here we only survey the studies closely related to this work. For more comprehensive and

detailed background review, please refer to Chapter 2.

According to [67], automatic image annotation methods can be categorized into three

groups: (i) generative models [22, 49], which are designed to model the joint distribution

between tags and visual features, (ii) discriminative models [47, 144] that view image anno-

tation as a classification problems where each keyword is treated as an independent class,

and (iii) search based approaches [139, 194]. Recent studies on image annotation show that

search based approaches are more e↵ective than both generative and discriminative mod-

els. Here, we briefly review the most popular search-based approaches developed for image

annotation. TagProp [67] constructs a similarity graph for all images, and propagates the

label information via the graph. In [123] a majority voting scheme among the neighboring

images is proposed. A sparse coding scheme is proposed in [59] to facilitate label propaga-

tion. Conditional Random Field model is adopted in [93] to capture the spatial correlation

between annotations of neighboring images.
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Many algorithms have been developed to learn a linear distance metric from pairwise

constraints [210], and some of them are designed exclusively for image annotation [93, 200,

202]. Recently, a number of nonlinear DML approaches have been developed to handle

nonlinear and multimodal patterns. They are usually classified into two categories, boosting

based approaches [73, 74, 172] and kernel based approaches, depending on how the nonlinear

mapping is constructed. Many KML algorithms, such as Kernel DCA [78], KLMCA [187]

and Kernel ITML [39], directly extend their linear counterparts to KML using the kernel

trick. To handle the high dimensionality challenge in KML, a common approach is to apply

dimensionality reduction before learning the metric [26, 187]. Although these studies show

dimensionality reduction helps alleviate the overfitting risk in KML, no theoretical support

is provided.

3.3 Annotate Images by Regression based Kernel Met-

ric Learning (RKML)

To begin, let X = (x1, . . . ,xn)
> be a set of training instances, where xi 2 Rd is a d-

dimensional instance. Let m be the number of classes, and Y = (y1, . . . ,yn)
> be the class

assignments of the training instances, where yi 2 {0, 1}m with yi,j = 1 if xi is assigned to

class j and zero, otherwise. In image annotation, each image can be assigned to multiple

classes, and thus each vector yi may contain multiple ones. Let

(x,x0) : Rd ⇥ Rd 7! R

be a kernel function, and H be the corresponding Reproduced Kernel Hilbert Space.
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Without a metric, the similarity between two instances xa and xb could be assessed by

the kernel function as

h(xa, ·),(xb, ·)iH = (xa,xb).

Similar to linear distance metric learning algorithms, we modify the similarity measure with

kernel distance metric as

(xa,xb) = h(xa, ·), T [(xb, ·)]iH ,

where T : H 7! H is a linear operator learned from the training examples. The objective

of kernel metric learning is to learn a PSD linear operator T that is consistent with the image

tag assignments of training examples. Note that this is di↵erent from similarity learning [25]

because in distance metric learning we require T to be PSD.

3.3.1 Regression based Kernel Metric Learning

The proposed RKML is a kernel metric learning algorithm based on the regression technique.

Let si,j 2 R be the similarity measure between two images xi and xj based on their anno-

tations yi and yj . We note that si,j is a real-valued measurement, which is di↵erent from

the conventional studies of distance metric learning that only consider a binary relationship

between two instances. The discussion of si,j will be delayed to Section 3.6.1. We adopt a

regression model to learn a kernel distance metric consistent with the similarity measure si,j

by solving the optimization problem:

bT = argmin
T⌫0

n
X

i,j=1

1

2

�

si,j � h(xi, ·), T [(xj , ·)]iH

�2 .
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Following the representer theorem of kernel learning [170], it is su�cient to assume that

bT only operates in the subspace spanned by (xi, ·), i = 1, . . . , n, leading to the following

definition for bT :

bT [f ](·) =
n
X

i,j=1

(xi, ·)Ai,jf(xj), (3.1)

where A 2 Rn⇥n is a PSD matrix. Using (3.1), we can change the optimization problem for

bT into an optimization problem for A as follows:

min
A⌫0

L(A) = 1
2 |S �KAK>|2F , (3.2)

where K = [(xi,xj)]n⇥n is the kernel matrix and S = [si,j ]n⇥n includes all the pairwise

semantic similarities between any two training images, and | · |F represents the Frobenius

norm of a matrix.

It is straightforward to verify that

A = K†SK†

is an optimal solution to (3.2), where K† stands for the pseudo inverse of K. Note that when

the semantic similarity matrix S is PSD, A will also be PSD, thus no additional projection

is needed to enforce the linear operator bT to be PSD. To avoid overfitting, we replace K

with Kr, the best rank r approximation of K, and express A as

A = K�1r SK�1r . (3.3)
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Evidently, the rank r makes the tradeo↵ between bias and variance in estimating A: the

larger the rank r, the lower the bias and higher the variance. This will become clearer in

our theoretical analysis in Section 3.4.

3.3.2 Extension to Image Feature Dimension Reduction

Using the learned linear operator bT , the similarity between any two data instances xa and

xb is given by

(xa,xb) =
n
X

i,j=1

(xa,xi)(xb,xj)Ai,j

= �(xa)
>A�(xb) =

h

A1/2�(xa)
i> h

A1/2�(xb)
i

,

where �(x) : Rd 7! Rn is given by �(x) = [(x,x1), . . . , (x,xn)]
>. Thus, the proposed

RKML algorithm maps a vector of d dimensions into one with at most m dimensions, i.e.,

the length of tag dictionary. More justification about the dimension reduction details can

be referred to Section 3.6.1.

3.4 Theoretical Guarantee of RKML

We will show that the linear operator learned by the proposed algorithm is stochastically

consistent, i.e., the linear operator learned from finite samples provides a good approximation

to the optimal one learned from an infinite number of samples. To simplify our analysis, we

assume that the semantic similarity measure si,j = y>i yj 1.

1We note that our analysis can be easily extended to the case when si,j = ŷ>i ŷj , where ŷi is a deter-
ministic transformation of yi.
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Define the optimal linear operator T⇤ that minimizes the expected loss as follows,

min
T 0

E(xa,xb,ya,yb)



⇣

y>a yb � h(xa, ·), T 0[(xb, ·)]iH

⌘2
�

.

Let T⇤(r) be the best rank-r approximation of T⇤, and bT be the linear operator constructed

by A given in (3.3). We will show that under appropriate conditions,

|T⇤ � bT |⇤

is relatively small, where | · |⇤ measures the spectral norm.

Let gk(·) be the prediction function for the k-th class, i.e., yi,k = gk(xi). We make the

following assumption for gk(·) in our analysis:

A1 : gk(·) 2 H, k = 1, . . . ,m.

Assumption A1 essentially assumes that it is possible to accurately learn the prediction

function gk(·) given su�ciently large number of training examples. We also note that as-

sumption A1 holds if gk(·) is a smooth function and (·, ·) is a universal kernel [146]. The

following theorem shows that under assumption A1, with a high probability, the di↵erence

between T⇤ and bT will be small, provided n is su�ciently large.

Theorem 3.1. Assume A1 holds, and (x,x)  1 for any x. Let r < n be a fixed rank,

and �1, . . . ,�n be the eigenvalues of kernel matrix K/n ranked in the descending order.

For a fixed failure probability � 2 (0, 1), we assume n is large enough such that

�r � �r+1 +
8p
n
ln(1/�). (3.4)
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Then, with a probability 1� �, we have

|bT � T⇤(r)|⇤  ",

where | · |⇤ is the spectral norm of a linear operator and " is given by

" =
8 ln(1/�)/

p
n

�r � �r+1 � 8 ln(1/�)/
p
n
.

The detailed proof of Theorem 3.1 can be found in Section 3.5.1.

3.4.1 Analysis of the Low Rank Approximation A↵ects to RKML

Using the result from Theorem 3.1, we can analyze how rank r a↵ects |bT�T⇤|⇤, the di↵erence

between the estimated linear operator and the optimal one represented in spectral norm. We

have

|bT � T⇤|⇤  |bT � T⇤(r)|⇤ + |T⇤ � T⇤(r)|⇤.

As indicated by Theorem 3.1,

|bT � T⇤(r)|⇤  O

✓

1p
n(�r � �r+1)

◆

,

provided

�r � �r+1 +
16 ln(1/�)p

n
.

By choosing a small r, we would expect a large �r � �r+1 and consequentially a small

|bT � T⇤(r)|⇤, implying a small variance in approximating T⇤(r). On the other hand, as the

r goes smaller, the |T⇤ � T⇤(r)|⇤ becomes larger, implying a large bias in approximating T⇤.
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Thus, rank r essentially makes the tradeo↵ between the bias and variance in the estimation

of the optimal linear operator T⇤.

3.5 Proofs of Error Bounds

In this section, we give out the proofs of the main theorems proposed in Section 3.4.

3.5.1 Proof of Theorem 3.1

We here give the sketch of the proof and refer the readers to Section A.1 for more detailed

analysis. We first rewrite T into the following form using the expression of A in (3.3)

bT [f ](·) =
m
X

k=1

bhk(·)hbhk(·), f(·)iH ,

where

bhk(·) =
n
X

i=1

(xi, ·)[K�1r yk]i,

and yk 2 Rn is the k-th column vector of matrix Y .

Using the definition of gk(·) and assumption A1, as well as the reproducing property of

kernel function [170], we have

yi,k = gk(xi) = hgk(·),(xi, ·)iH .

Based on these preparations, we develop the following theorem for bhk(·).
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Theorem 3.2. Under assumption A1, we have

bhk(·) =
r
X

i=1

b'i(·)hb'i(·), gk(·)iH ,

where b'i(·), i = 1, . . . , r are the first r eigenfunctions of the linear operator

Ln[f ] =
1

n

n
X

i=1

(xi, ·)f(xi).

The proof of Theorem 3.2 can be referred to Section A.1.1.

Using similar analysis as Theorem 3.2, we can express T⇤ as

T⇤[f ] =
m
X

k=1

hk(·)hhk(·), f(·)i,

where

hk(·) =
r
X

i=1

'i(·)h'i(·), gk(·)iH ,

and it is the projection of prediction function gk(·) into the subspace spanned by {'i}ri=1.

Here 'i(·), i = 1, . . . , r are the first r eigenfunctions of the integral operator

L[f ] = Ex [(x, ·)f(x)] .

Therefore the following theorems bound |bT�T⇤|⇤ and |L�Ln|⇤ by the following two theorems,

respectively.

Theorem 3.3. Let �r and �r+1 be the r-th and r + 1-th eigenvalues of kernel matrix K.
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For a fixed failure probability � 2 (0, 1), assume

�r � �r+1

n
> |L� Ln|⇤,

where | · |⇤ measures the spectral norm of a linear operator. Then, with a probability 1 � �,

we have

max
f2H

k(bT � T⇤)[f ]kH  �kT⇤[f ]kH ,

where � is given by

� =
2kL� Lnk2

(�r � �r+1)/n� kL� Lnk2
.

The proof of Theorem 3.3 can be referred to Section A.1.2.

Theorem 3.4. [175] Assume (x,x)  1. With a probability 1� �, we have

kL� LnkHS 
4 ln(1/�)p

n
.

Theorem 3.1 follows immediately from Theorem 3.4 and 3.3.

3.6 Implementation

Regarding implementation, we have two important issues to address: (1) how to appropri-

ately measure the semantic similarity si,j , and (2) how to e�ciently compute Kr, the best

rank r approximation of K, without computing the full kernel matrix K. The second issue

is particularly important for applying the proposed algorithm to large datasets consisted of

millions of annotated images. Below, we will discuss these two issues separately.
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3.6.1 Computing Semantic Similarity si,j

The most straightforward approach is to measure the semantic similarity as si,j = y>i yj . We

improve upon this approach by incorporating the log-entropy weighting scheme [117] which

has been used for document retrieval. It computes the weighted class assignment ỹi,j as

ỹi,j =

 

1 +
n
X

k

pk,j log pk,j
log n

!

· log(yi,j + 1), (3.5)

where pk,j = yk,j/
Pn

i yi,j . We apply Latent Semantic Analysis (LSA) [117] to further

enhance the estimation of semantic similarity, which allows us to remove the noise and cor-

relation in/between annotations. Let Ỹ = [ỹi,j ]n⇥m include the weighted class assignments

for all the training images, and Ŷ 2 Rn⇥m0 include the first m0 singular vectors of Ỹ with

each of its row L2-normalized by 1. This operation projects Ỹ onto a space of reduced

dimensionality m0, and this space representation has been empirically shown to capture to

some degree the semantic relationship across annotations corpus [147]. We then compute

the semantic similarity as

S = Ŷ Ŷ >.

3.6.2 E�ciently Computing Kr by Random Projection

The proposed RKML algorithm requires computing the full kernel matrix K and its top r

singular vectors. Since the cost of computing K is O(n2), it will be expensive when the

number of training instances n is large. We can improve the computational e�ciency by

exploiting the Nyström method [43] to approximate Kr. To this end, we randomly sample

ns < n instances from the collection of n training examples, denoted by bx1, . . . , bxns , then
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compute the rectangle matrix Kb 2 Rn⇥ns , and approximate Kr by

K̃r = Kb[Ks
r ]
�1[Kb]>, (3.6)

where Ks
r is the best rank r approximation of Ks = [(bxi, bxj)]ns⇥ns , the kernel matrix for

the sampled data. According to [32], with a high probability, we have

kK̃r �Krk2  O

✓

1p
ns

◆

,

implying that K̃r is an accurate approximation of Kr provided the number of samples ns is

su�ciently large. This is also supported by our empirical study, i.e., kernel matrix K can

be well approximated by the Nytröm method when ns is a few thousands. According to our

implementation, we observe that further approximating Kb in (3.6) to rank r usually yields

more accurate prediction for tags. Thus, our final approximation of Kr is given by

K̂r = Kb
r [K

s
r ]
�1[Kb

r ]
>.

3.6.3 Application of RKML to Image Annotation

Given the learned kernel metric bT , the similarity between the query image x and the images

in gallery G could be computed as follows:

S(x,G) =
n
X

i=1

h(x, ·), bT [(xGi ·)]i = kx ⇤ A ⇤KG
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where KG = [�(x1), · · · ,�(xn)]>, and kx = �(x). Consequently we conduct the estimated

similarity and obtain the neighbor list of x asNx = {xNi |S(x,xNi ) > S(x,xj), 8i 2 [1, k], j 2

[1, n],xj 6= xNi }.

Thus the relevance of keywords for x can be estimated over Nx by either majority voting,

or weighted voting, i.e.,

by =
k
X

i=1

h(x, ·), bT [(xNi ·)]iyNi = kxAKN ỸN (3.7)

The keywords with the t-largest relevance scores will be regarded as the annotation for the

test image. Algorithm 1 summarizes the key steps of the image annotation algorithm using

RKML.

Algorithm 1 Automatic Image Annotation with RKML
Input:

• Training images: X 2 Rn⇥d, labels Y 2 Rn⇥m
• Testing images: Xq 2 Rnq⇥d
• Parameters: smooth parameter � and approximation rank r.

1: Randomly sample r images bx1, . . . , bxr from the training set
2: Compute kernel matrices Kg = [(xi, bxj)]n⇥r and bK = [(bxi, bxj)]r⇥r

3: Compute singular value decomposition: V ⇤V T = Kb

4: Select the r largest singular values �i 2 ⇤r and their corresponding right-singular vectors
ui 2 Ur

5: Kernel metric: A =
Pr

i uiu
T
i /(�

2
i + �)

6: Relevance score matrix: Tq = KqA(KT
g Tg)(T T

g Tg)
7: Output: Matrix of tag relevance score Tq 2 Rnq⇥m

Figure 3.2 highlights the key components of a kernel metric learning algorithm based

framework for image annotation. It first constructs a Reproduced Kernel Hilbert Space

(RKHS) H based on either the whole set or a subset of images that are randomly sam-

pled from the training image set. It then maps the training images to H, and learns a kernel

distance metric A from the mapped images. Given a test image I, it first maps I to H,
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Figure 3.2: The proposed kernel metric learning scheme, i.e., RKML, for automatic image
annotation.

and measures the similarities between I and all the training images in H using the learned

distance metric A. Based on the occurrence of keywords in the subset of training images

that share the largest similarities with I, it estimates relevance scores for each keyword and

returns the ones with the largest scores as the predicted annotation tags.

3.7 Experiments

3.7.1 Datasets and Experimental Setup

Three benchmark datasets for image annotation are used in our study and their statistics are

summarized in Table 3.1. For both ESP Game and IAPR TC12 datasets2, a bag-of-words

2The visual features and tags of both the datasets were obtained from [67] http://lear.inrialpes.

fr/people/guillaumin/data.php.
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model based on densely sampled SIFT descriptors is used to represent the visual content.

Flickr1M dataset [202] is comprised of more than one million images crawled from the Flickr

website that are annotated by more than 700, 000 keywords. Since most keywords are only

associated with a small number of images, we only keep the 1, 000 most popular ones. We

follow [200, 202] and represent each image with following features: grid color moment, local

binary pattern, Gabor wavelet texture, and edge direction histogram.

ESP Game IAPR TC12 Flickr1M

No. of Images 20,768 19,627 999,764
Dimensionality 1000 1000 291
Vocabulary size 268 291 1,000
Tags per image 4.69/15 5.72/23 5.98/202
Images per tag 363/5,059 386/5,534 5,976/76,531

Table 3.1: Statistics for the datasets used in the experiments. The bottom two rows are
given in the format mean/maximum.

We randomly select 90% of images from each dataset as training and use the remaining

10% for testing. Given a test image, we first identify the k most visually similar images from

the training set using the learned distance metric, and then rank the tags by a majority vote

over the k nearest neighbors, where k is chosen by cross-validation.

An RBF kernel is used in our study for all KML algorithms. In RKML we set ns = 5, 000

and m0 = 0.38m based on our experience, and determine the kernel width and rank r by

cross-validation. Parameters for the baselines are directly set to their default values suggested

by the original authors. Besides, annotation based on the Euclidean distance, denoted by

Euclid, is used as a reference in our comparison. Since most DMLs are developed against

must-links and cannot-links, we apply the procedure described in [200] to generate the binary

constraints by performing a probabilistic clustering over the images based on their tags. More

details of this procedure can be found in [200].

56



We evaluate the annotation accuracy by the average precision for the top ranked image

tags. Following [201, 202], we first compute the precision for each test image by comparing

the top 10 annotated tags with the ground truth, and then take the average over the test set.

Average recall and F1 score are reported in the supplementary document. The computational

e�ciency is measured by the running time3. Both the mean and standard deviation of

evaluation metrics over 20 experimental trials are reported in this paper.

3.7.2 Comparison with State-of-the-art distance metric learning

(DML) and Image Annotation Algorithms

3.7.2.1 Comparison to nonlinear DML algorithms

We first compare the proposed RKML4 algorithm to six state-of-the-art kernel distance

metric learning methods: (1) Kernel PCA (KPCA) [169], (2) Generalized discriminant anal-

ysis (GDA) [6], (3) Kernel discriminative component analysis (KDCA) [78], (4) Kernel local

Fisher discriminant analysis (KLFDA) [182], (5) Kernel information theoretic based metric

learning (KITML) [39], and (6) Metric learning for kernel regression (MLKR) [199]. We also

include three boosting DML algorithms, i.e., Distance Boost (DBoost) [73], Kernel Boost

(KBoost) [74], and metric learning with boosting (BoostM ) [172], for comparison.

Figure 3.3, 3.4 and 3.5 show the average precision, average recall and average F1 score,

respectively, of the top t annotated tags obtained by nonlinear distance metric learning

(DML) baselines and the proposed RKML. Surprisingly, we observe that most of the nonlin-

ear DML algorithms are only able to yield performance similar to that based on the Euclidean

3All the codes are downloaded from the authors’ websites, and run in Matlab on the AMD 2 core @2.7GHz
and 64 GB RAM machine.

4Without specific notification, RKML stands for the proposed RKML algorithm with Nyström approxi-
mation. And its source code can be found in http://www.cse.msu.edu/~fengzhey/research/rkml.html.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.3: Average precision for the top t annotated tags using nonlinear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.4: Average recall for the top t annotated tags using nonlinear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.5: Average F1 score for the top t annotated tags using nonlinear distance metrics.

distance, and more disturbingly, some of the nonlinear DML algorithms even perform sig-

nificantly worse than the Euclidean distance. On the other hand, the proposed algorithm

performs significantly better than the Euclidean distance for almost all cases. Relevant

analysis of this phenomena is provided in Section 3.7.3.3.
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3.7.2.2 Comparison to linear DML algorithms

We compare our RKML to seven state-of-the-art linear distance metric learning algo-

rithms, including Relevant component analysis (RCA) [3], Discriminative component analysis

(DCA) [78], Large margin nearest neighbor classifier (LMNN) [196], Local Fisher discrimi-

nant analysis (LFDA) [182], Information theoretic based metric learning (ITML) [39], Prob-

abilistic RCA (pRCA) [200], and Logistic discriminant-based metric learning (LDML) [68].

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.6: Average precision for the top t annotated tags using linear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.7: Average recall for the top t annotated tags using linear distance metrics.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.8: Average F1 score for the top t annotated tags using linear distance metrics.

Figure 3.6, 3.7 and 3.8 show the average annotation precision, average recall and average
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F1 score, respectively, for the linear distance metric learning (DML) baselines. Similar to

KML, we observe that even the best linear DML algorithm is only slightly better than the

Euclidean distance, while RKML significantly outperforms all linear DML baselines. Again,

we believe that the failure of linear DML is likely due to the binary constraints generated

from image annotations, which is explained in Section 3.7.3.3.

3.7.2.3 Comparison with State-of-the-art Image Annotation Methods

Additionally, we compare RKML algorithm to several state-of-the-art image annotation mod-

els including: (1) Two versions of the TagProp method [67], using either rank-based weights

(TP-R) or distance-based weights (TP-D), (2) TagRelevance (tRel) [123] based on the idea

of neighbor voting, (3) 1-vs-1 SVM classification, using either linear (SVML) or RBF kernel

(SVMK ) classifiers5. We include Pop as a comparison reference which simply ranks tags

based on their occurring frequency in the training set.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.9: Annotation performance in terms of AP@t with di↵erent annotation models.

Figure 3.9, 3.10 and 3.11 show the comparison of average precision, average recall and

average F1 score that obtained by di↵erent image annotation models, respectively. It is not

surprising to observe that most annotation methods significantly outperform Pop, while the

proposed RMKL method outperforms all the state-of-the-art image annotation methods on

5SVM methods were unable to perform over Flickr 1M due to its large size and high computational cost,
and the results of SVM methods are excluded.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.10: Average recall for the top t annotated tags using di↵erent annotation models.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.11: Average F1 score for the top t annotated tags using di↵erent annotation models.

IAPR TC12 and ESP Game datasets, and only performs slightly worse than TP-D on the

Flickr 1M dataset.

3.7.2.4 Comparison of Annotation Results on Exemplar Images

In order to straightforwardly compare the empirical performance of image annotation be-

tween various linear and kernel distance metric learning algorithms as well as image an-

notation approaches, we include the comparison of annotation results on certain images in

Table 3.2, which shows the annotations of exemplar images by di↵erent DML and image

annotation algorithms.
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Ground Euclid DCA LMNN LDML DBoost BoostM KBoost KLDA KPCA KDCA KLFDA MLKR TP-R TP-D RKML

fog mountainmountainmountainmountainmountain mountain mountain mountain tree mountain mountain mountain mountain mountain mountain

front wall wall wall wall wall tourist wall range sky wall range wall man man terrace

mountain terrace tree fog terrace terrace front terrace wall front terrace terrace terrace fog wall wall

range fog cloud terrace woman cloud wall cloud cloud man fog wall cloud wall tree range

ruin range terrace tourist cloud fog woman range sky wall range grey man tree people ruin

terrace cloud tourist woman range range group sky terrace house cloud ruin woman terrace woman fog

tourist tree fog tree fog ruin range tree fog mountain hill sky range slope front slope

wall ruin people forest man sky man man people people man fog tree summit tourist sky

building sky sky sky sky sky people sky sky sky sky sky sky sky sky meadow

front tree tree tree tree sea sky tree cloud tree tree tree tree tree tree sky

hill cloud building meadow cloud cloud man cloud house wall sea building cloud wall house tree

meadow building man building building beach mountain building tree front beach people mountain ruin cloud building

ruin house house cloud house rock tree bush hill mountain bush square house slope front hill

sky hill front bush people meadow front meadow mountain people cloud column man meadow meadow wall

tree people cloud landscape bush tree bush sea building man meadow flag meadow building man terrace

wall bush meadow ruin hill coast rock house sea house house front people house people front

bike road man sky road tree man sky tree tree sky sky road landscape tree road

cycling man wall bush man sky sky snow sky sky snow tree man man sky sky

cyclist cyclist desert man cyclist short rock tree meadow front cycling landscape cyclist grass man landscape

helmet jersey front road helmet jersey people building man wall cyclist rock helmet sea front cyclist

jersey short sky tree jersey meadow tree front cyclist man man bush jersey tree road short

landscape bike floor bike short sock bush people landscape people short building short cactus wall bike

mountain cycling road car cycling lawn landscape cloud road house bike cloud sky road bush cycling

road helmet tree cycling sky man cli↵ man rock mountain front front cycling sky meadow jersey

short car tourist cyclist bike spectator front street cloud woman helmet grass bike rock people helmet

door building wall building building front building house building sky front house building house house door

house front table street table house tree building front tree house sky house window window house

palm house woman balcony house window sky window window front building tree table street street sky

roof table front people front building house front house people window hill wall sky sky window

sky window window square wall wall street door sky house door landscape front door tree palm

tree square classroom tree woman sky people balcony wall man wall meadow man tree door tree

window woman man window man column tower entrance door mountain flag roof window palm palm building

wall door building front square entrance car wall column building man snow woman man tile street

car sky tree tree people sky sky man sky sky people fog people tree people sky

fence people building building sky front building sea people tree man sky sky sky tree spectator

grandstand tree front sky tree building tree sky cloud wall tree wall tree front sky tree

house man people front house people people woman boat front sky man man building man fence

sky woman man car front square man tree man man fence mountain front cloud front front

palm house sky house man tower house beach sea cloud woman slope house river house car

spectator car car meadow square tree front cloud tree mountain bank beach woman boat building grandstand

tree building fence palm woman man car water beach house car bed square people woman people

bed wall wall wall wall bed wall wall wall sky wall bed wall woman wall wall

blanket table table woman table wall room room window tree room wall table wall woman bed

curtain room room door room room bed bed room mountain bed room room front table room

front window woman table front curtain table table bed cloud table table front door man window

room curtain front man window window window window curtain wall curtain wood man man room curtain

wall woman window room bed table wood wood table rock window bedcover woman table front wood

window bed bed bed woman wood curtain curtain wood front wood bedside window house window table

wood door door building curtain lamp lamp door front house door curtain bed room bed front

building sky tree tree sky sky sky sky sky tree sky sky sky sky sky sky

cloud cloud man road front cloud tree tree cloud man tree mountain front cloud tree tree

front front car front cloud sea mountain building tree wall cyclist tree tree front cloud cloud

hill tree cyclist man tree man hill sea mountain sky front desert cloud tree man building

meadow man cycling mountain road landscape tourist beach beach woman man grey road car front meadow

monument road short sky man meadow front house man front mountain hill man park mountain hill

sky mountain building car mountain beach house front house house people landscape mountain man road mountain

tree car sky cloud people tree landscape city meadow mountain road snow hill shop house front

Table 3.2: Examples of annotation results generated by 14 baselines and the proposed RKML. The annotated tags are ranked
based on the estimated relevance score in descending order, and the correct ones are highlighted in blue bold font. Note the
ground truth annotations in the 2-nd column do not always include all relevant tags (e.g., “people” for the 5-th image), and
sometimes contain polysemes (e.g., “palm” for the 4-th and 5-th images) and controversial tags (e.g., “front”).



3.7.2.5 E�ciency Evaluation

TIME DCA LMNN ITML LDML DBoost BoostM RKML
IAPR TC12 1.5e4 1.4e4 4.2e4 4.2e5 1.7e4 1.1e6 4.6e2
ESP Game 2.3e4 1.7e4 5.8e4 5.5e5 4.3e4 1.2e6 1.3e3
Flickr 1M 8.1e4 6.0e4 3.0e4 5.2e5 1.2e4 3.2e5 3.4e3

TIME KPCA GDA KDCA KLFDA KITML MLKR RKML
IAPR TC12 2.8e4 4.8e4 2.2e4 8.8e4 5.3e4 2.2e3 4.6e2
ESP Game 3.3e4 5.4e4 3.7e4 3.2e5 6.8e4 3.5e4 1.3e3
Flickr 1M 7.3e3 3.3e4 1.3e5 1.0e5 3.7e6 7.9e3 3.4e3

Table 3.3: Comparison of running time (s) for several di↵erent metric learning algorithms.

TIME TP-R TP-D tRel SVML SVMK RKML
IAPR TC12 9.1e2 4.6e2 1.0e1 2.5e3 4.0e5 4.8e2
ESP Game 2.7e2 1.5e2 1.5e1 1.6e2 8.9e4 1.3e3
Flickr 1M 1.6e5 9.9e4 5.7e3 - - 3.4e3

Table 3.4: Running time (s) for image annotation. SVMmethods Flickr 1M are not included
due to their high computational costs.

Table 3.3 summarizes the running time of di↵erent DML algorithms. We observe that

RKML is significantly more e�cient than any DML baseline. Table 3.4 compares the ef-

ficiency of di↵erent baselines for annotation, where the running time includes the time for

both learning a distance metric and predicting image tags. We observe that compared to the

other annotation methods, the proposed RKML algorithm is particularly e�cient for large

datasets (i.e., Flickr 1M), making it suitable for large-scale image annotation.

3.7.3 A↵ects of Di↵erent Experimental and Parameter Setup

3.7.3.1 Sensitivity to Parameters

In this section, we analyze the sensitivity to parameters in RKML, including rank r, m0,

the number of retained eigenvectors when estimating the semantic similarity, and ns, the
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number of sampled images used for Nyström approximation.

(a) IAPR TC12 (b) ESP Game

Figure 3.12: Average Precision for the first tag predicted by RKML using di↵erent values
of rank r. To make the overfitting e↵ect clearer, we turn o↵ the Nyström approximation
for IAPR TC12 and ESP Game datasets. Flickr 1M dataset is not included due to its large
size (n = 999, 764). The overfitting only occurs when r approximates to the total number of
images, but it is infeasible to apply such a large r in Flickr 1M dataset.

We examine the role of rank r in the proposed algorithm by evaluating the prediction

accuracy with varied r on the IAPRTC 12 and ESP Game datasets for both training and

testing images. To make it clear, we turn o↵ the Nyström approximation used by RMKL in

this experiment. We observe in Figure 3.12 that while the average accuracy of test images

initially improves significantly with increasing rank r, it becomes saturated after certain rank.

On the other hand, the prediction accuracy of training data increases almost linearly with

respect to the rank, and becomes almost 1 for very large r, a clear indication of overfitting

training data.

We also examine the sensitivity of the other parameters used by the proposed RKML

algorithm, including m0, the number of retained eigenvectors of Ỹ , and ns, the number of

sampled images used for Nyström approximation). Figure 3.13 and 3.14 show the image

annotation performance in terms of varied m0 and ns, respectively. Overall, we found that

our algorithm is insensitive to the values of these parameters over a wide range, which

facilitate the selection of these parameters in real-world application.
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(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.13: Average Precision for the top t tags predicted by RKML using di↵erent values
of m0, the number of retained eigenvectors when estimating the semantic similarity.

(a) IAPR TC12 (b) ESP Game (c) Flickr 1M

Figure 3.14: Average Precision for the top t tags predicted by RKML using di↵erent values
of ns, the number of sampled images used for Nyström approximation. In (c), ns couldn’t
be set too large due to the dataset size.

3.7.3.2 Advantages of Kernel Trick and Nyström Approximation

Since none of the baseline algorithms, neither linear nor nonlinear DML, is able to signifi-

cantly outperform the Euclidean distance, it remains unclear if kernel DML is advantageous

to a linear DML. To examine this point, we implement the linear version of RKML, de-

noted by RLML. Table 3.5, 3.6 and 3.7 show the comparison of performance between RLML

and RKML on three datasets. It is clear that RKML significantly outperforms its linear

counterpart RLML, verifying the advantage of using kernel trick in distance metric learning.

However, although the kernel trick considerably improves the image annotation accuracy,
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AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=8 t=10

RKML 55 ± 1.2 48 ± 0.9 44 ± 0.6 41 ± 0.8 37 ± 0.6 35 ± 0.5 31 ± 0.5 28 ± 0.4
RLML 52 ± 1.3 46 ± 1.2 42 ± 1.0 38 ± 0.8 35 ± 0.7 33 ± 0.6 29 ± 0.5 26 ± 0.4
RKMLO 57 ± 0.9 51 ± 0.6 46 ± 0.7 43 ± 0.6 39 ± 0.6 37 ± 0.5 32 ± 0.5 29 ± 0.4
RKMLH 49 ± 1.1 44 ± 0.9 39 ± 0.9 36 ± 0.7 33 ± 0.7 31 ± 0.7 27 ± 0.6 24 ± 0.5

Table 3.5: Comparison of various extensions of RKML in terms of AP@t on IAPR TC12
dataset. RLML is the linear version of RKML, RKMLO is the original version without
Nyström approximation, and RKMLH runs RKML using binary constraints.

AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=8 t=10

RKML 40 ± 1.1 35 ± 0.5 32 ± 0.4 29 ± 0.5 27 ± 0.4 25 ± 0.4 22 ± 0.4 20 ± 0.4
RLML 36 ± 0.8 31 ± 0.7 28 ± 0.7 26 ± 0.7 24 ± 0.5 22 ± 0.4 20 ± 0.4 18 ± 0.4
RKMLO 44 ± 0.8 39 ± 0.6 35 ± 0.5 32 ± 0.4 29 ± 0.4 27 ± 0.4 24 ± 0.3 21 ± 0.3
RKMLH 34 ± 1.0 30 ± 0.5 28 ± 0.5 26 ± 0.4 24 ± 0.4 22 ± 0.3 20 ± 0.3 18 ± 0.3

Table 3.6: Comparison of the extensions of RKML in terms of AP@t on ESP Game dataset.

AP@t(%) t=1 t=2 t=3 t=4 t=5 t=6 t=8 t=10

RKML 24 ± 0.1 21 ± 0.2 18 ± 0.1 17 ± 0.2 15 ± 0.2 14 ± 0.1 13 ± 0.2 12 ± 0.1
RLML 13 ± 0.3 12 ± 0.2 11 ± 0.2 11 ± 0.1 10 ± 0.06 10 ± 0.05 9.0 ± 0.05 8.0 ± 0.08
RKMLH 20 ± 0.2 18 ± 0.1 16 ± 0.2 15 ± 0.2 14 ± 0.2 13 ± 0.1 11 ± 0.1 10 ± 0.1

Table 3.7: Comparison of the extensions of RKML in terms of AP@t on Flickr 1M dataset.
RKMLO is excluded since the dataset is too large to do the computation on the full kernel.

it also inevitably leads to high even prohibitive computational cost. So the Nyström approxi-

mation is proposed to solve this problem, which makes a trade-o↵ between the computational

cost and annotation accuracy. To verify the e↵ectiveness of the Nyström approximation, we

implement the RKML by turning o↵ the Nyström approximation and directly do all com-

putation on the full kernel, and this method is denoted by RKMLO. Table 3.5, 3.6 and 3.7

compare the annotation performance of RKML and RKMLO, where we observe that RKML

performs slightly worse than RKMLO. This phenomenon indicates that RKML makes a good

compromise between the e↵ectiveness and computational cost, by making tolerant sacrifice

on annotation e↵ectiveness to get rid of the great computational burden.

66



3.7.3.3 Analysis on Binary Constraints and Their Various Generation Ways

We observe in Section 3.7.2 that most baseline metric learning algorithms, either linear or

kernel ones, perform worse than the Euclidean distance. We attribute this failure mostly to

the binary constraints. As described before, all baseline distance metric learning algorithms

require converting image annotations into binary constraints in image annotation tasks,

which does not make full use of the annotation information. To verify this point, we run

RKML with similarity measure si,j computed from the binary constraints that are generated

for the baseline distance metric learning algorithms, and denote this method by RKMLH.

We observe in Table 3.5, 3.6 and 3.7 that RKMLH performs significantly worse than RMKL

which directly uses the real-valued similarity measures, confirming the significance of using

real-valued similarities for distance metric learning in automatic image annotation.

AP@t(%) t=1 t=4 t=7 t=10

Method 1 20.7 ± 0.2 15.3 ± 0.2 12.4 ± 0.12 10.6 ± 0.10
Method 2 20.6 ± 0.3 15.2 ± 0.2 12.4 ± 0.11 10.6 ± 0.09
Method 3 20.8 ± 0.2 15.4 ± 0.1 12.5 ± 0.05 10.7 ± 0.04
Method 4 19.7 ± 0.2 14.6 ± 0.1 11.9 ± 0.06 10.2 ± 0.06
Method 5 21.3 ± 0.4 15.9 ± 0.3 12.8 ± 0.20 11.0 ± 0.14

Table 3.8: Comparison of di↵erent methods of generating binary constraints that are applied
in baseline distance metric learning algorithm LMNN for the top t annotated tags on the
Flickr1M dataset. Method 1 clusters the space of keywords, method 2 considers the class
assignments as binary constraints, method 3 clusters the space of keywords using hierarchical
clustering algorithms, method 4 clusters the space of keywords together with the visual
features, and method 5 considers images sharing more than 4 keywords as similar and images
sharing no keyword as dissimilar.

Since most DML algorithms were designed for binary constraints, we tried to improve

the performance of standard DML algorithms by experimenting with di↵erent methods for

generating binary constraints. They are listed as follows: (1) Clustering the space of key-
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words, (2) Generating binary constraints from classification labels6, (3) Clustering the space

of keywords using hierarchical clustering algorithms, (4) Clustering the space of keywords

together with the visual features, and (5) Generating binary constraints based on the number

of common keywords, i.e., images sharing more than 4 keywords are considered as similar

and images sharing no keywords are considered as dissimilar. Note the last one is applicable

in LMNN, but not applicable in many other DML algorithms. For example, RCA [3] and

DCA [78] divide image set into groups where images within a group are considered as similar

and images from di↵erent groups are considered as dissimilar; but this method is not able to

generate such groups. We observe that these methods yield essentially the same performance

reported in our study, as shown in Table 3.8.

3.7.3.4 Comparison of the Design Choices of Semantic Similarity Measure

To obtain the numeric constraints on the annotated tag, besides log-entropy, we further

explore other weighting schemes. And besides clustering using a topic model, we also exper-

iment other binary constraint generation methods.

Binary li,j = 1 if tag i exists in image j, or else 0.
Term Frequency li,j = tfi,j , the occurrences counts of

(TF) tag j in image i.
Log li,j = log(tfi,j + 1)

Table 3.9: Local weighting functions.

We examine the choice of semantic similarity by evaluating the prediction accuracy with

varied definition of ỹi,j in Equation (5). ỹi,j is actually the product of a local tag weight

li,j that describes the relative occurrence of tag j in image i , and a global weight gj that

6Flickr1M dataset also includes class assignment labels which is usually used for classification. ESP Game
and IAPR TC12 do not have classification labels.
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Binary gj = 1

Normal gj = 1/
q

Pn
i tf

2
i,j

Idf gj = log2
n

1+dfj

Entropy gj = 1 +
Pn

i
pi,j log pi,j

logn , where pi,j =
tfi,jPn
i tfi,j

Table 3.10: Global weighting functions.

describes the relative occurrence of tag j within the entire tag collection. The examined

weighting functions [10] are defined as follows in Table 3.9 and 3.10.

AP@t(%) t=1 t=4 t=7 t=10

Binary-Binary 56 ± 1.01 41 ± 0.57 33 ± 0.49 28 ± 0.45
Binary-Normal 53 ± 1.28 39 ± 0.62 32 ± 0.54 28 ± 0.44

Cosine 56 ± 1.19 41 ± 0.61 33 ± 0.52 28 ± 0.47
TF-IDF 55 ± 1.12 41 ± 0.57 33 ± 0.50 28 ± 0.44
Log-IDF 55 ± 1.12 41 ± 0.57 33 ± 0.50 28 ± 0.44

Log-Entropy 55 ± 1.10 41 ± 0.57 33 ± 0.49 28 ± 0.45

Table 3.11: Comparison of extensions of RKML with di↵erent design choices of semantic
similarity for the top t annotated tags on the IAPR TC12 dataset. The leftmost column lists
the di↵erent weighting methods, where the name before ”-” denotes the local weights shown
in Table 3.9 and the name behind ”-” indicates the global weights shown in Table 3.10.
”Cosine” represents the cosine similarity between tag vectors of two images.

Table 3.11 shows that di↵erent semantic similarity measures, either TF-IDF based weight-

ing or the popular cosine similarity, provide essentially similar performances. We hence adopt

the Log-Entropy weighting scheme in our experiments.

3.8 Summary

In this section, we propose a robust and e�cient algorithm RKML for kernel metric learning.

The proposed method addresses (i) high computational cost by avoiding the projection into

PSD cone, (ii) limitation of binary constraints in tags by adopting a real-valued similarity

measure, and as well as (iii) the overfitting problem by appropriately regularizing the rank of
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the learned kernel metric. Experiments with large-scale image annotation demonstrate the

e↵ectiveness and e�ciency of the proposed RKML algorithm by comparing it to the state-

of-the-art approaches for distance metric learning and image annotation. In the future, we

plan to improve the annotation performance by developing a more robust semantic similarity

measure.
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Chapter 4

Image Tag Matrix Completion by

Noisy Matrix Recovery

In this Section, we propose an Image Tag Completion by Noisy Matrix Recovery (TCMR)

algorithm, which is able to simultaneously recover the missing tags and remove or down

weight the noisy tags that are irrelevant to the visual content of images. In particular, this

algorithm is designed for image tag completion, but actually it is not exclusive to image tag

completion but also works pretty well for relevant image tagging tasks including image tag

refinement and image tag re-ranking.

The rest of the chapter is arranged as follows. Section 4.1 motivates the problem and

states main intuition behind the proposed algorithm, and as well as setups the notations.

Section 4.3 introduces the detailed description of noisy matrix recovery, and extends it to

the proposed TCMR algorithm. The theoretical properties and guarantee, i.e., the bounds

of error between the recovered tag matrix and its statistical optimal one, is given in Sec-

tion 4.4, and the omitted proofs are deferred to Section 4.5. Section 4.6 presents the detailed

implementation issues, and describes the proposed framework that incorporates image con-

tent consistency into the matrix completion based topic model through a graph Laplacian.

Section 4.7 describes the intensive experimental setup, results and analysis. Section 4.8 con-

cludes the chapter with future directions and Section 4.2 reviews the closely related works.
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4.1 Motivation and Setup

It is apparent that di↵erent semantic tags have di↵erent biased significance in describing

a topic that is determined by the image contents, and the tags associated with the same

topic usually have a strong dependency on each other, which can be exploited to improve

the annotation or tag completion performance.

The proposed TCMR algorithm addresses the incomplete and noisy tag problems by

attempting to e�ciently recover the missing tags and remove or down weight the noisy tags

simultaneously. The inspiration and underlying concept behind the TCMR algorithm is the

connection between the following two assumptions.

• Idea of Language Model. Since the tags are generated from the user’s description

of an image, each tag vector can be viewed as a mixture of topics and each topic

follows a multinomial distribution over the vocabulary [12, 108, 206]. Note that the

number of observed tags for each image is limited, while the number of parameters of

the multinomial distribution to be estimated is significantly larger than the number of

observed tags.

• Low Rank Matrix Recovery. Observed tags of any image can be assumed to

sample from a mixture of a small number of multinomial distributions, which can be

interpreted equivalently that the recovered tag matrix has to be of low rank.

With the connection of these two assumptions, the proposed TCMR algorithm enforces

the recovered matrix to be low rank. Through an appropriate nuclear norm regularizer,

it is able to e↵ectively capture the interactions among di↵erent tag information, both tag

keywords (column-wise) and tag vectors between di↵erent images (row-wise), which turns

out to be the key in filling out missing tags and down weighting noisy ones [19, 136, 184].
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Unlike in most matrix completion problems where the observed matrix entries are sampled

uniformly at random from a given matrix [19, 20], each tag entry in our problem setting is

sampled from an unknown multinomial distribution, making the standard least square loss

and absolute loss inappropriate. Hence a maximum likelihood estimator is used in this work

to ensure the learned tag probability matrix to be consistent with the observed tags, and

this strategy also adds more complexity to both optimization and analysis as well.

It is noticed that although low rank matrix recovery is closely related to topic model that

has been applied to many image tag related problems [108, 206, 221], most existing topic

models [11] need to solve a non-convex optimization problem, which may cause the failure

in finding the global optimum and turns out to be a big challenge in matrix completion

problem [20, 21]. To address this limitation, TCMR proposes to solve a convex optimization

problem which ensures to e�ciently converge to an optimal solution.

Besides, theoretical support is provided to show that under favorable conditions, TCMR

is guaranteed to recover most of the missing tags even when the user-provided tags are

noisy, and that is novel among the existing studies for tag completion [126, 134, 201, 226].

Additionally, TCMR improves the tagging performance by exploiting the dependencies be-

tween image features and tags via a graph Laplacian [224, 226], which reduces the impact

of incomplete and noisy tags by assigning high weights to tags that are consistent with the

image visual contents, and low weights to those which are not, particularly under extreme

cases. Furthermore, the empirical evaluation on tag re-ranking and tag refinement tasks

demonstrates that TCMR is generally applicable and e↵ective to other image tagging tasks.

Figure 4.1 highlights the key components of the proposed image tag completion algorithm

by noisy matrix recovery. On the one hand, it ameliorates the tag confidence score by

enforcing the tag matrix to be low rank. This strategy takes the advantage of both the
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Figure 4.1: The scheme of the proposed noisy tag matrix recovery framework, i.e., TCMR,
for image tag completion. The low rank matrix recovery component in the upper right box
exploits the tag-tag correlation, and the graph Laplacian component in the bottom left takes
into account of the tag-content correlation.

row-wise and column-wise interactions within the tag matrix, i.e., the dependencies among

tag words and correlations of tag information between images. On the other hand, a graph

Laplacian is constructed based on the visual features of images, where each node represents an

image and each edge is weighted based on the distance between its connected images. Then

the tag vector of an image is modified based on the weighted majority voting results among

its connected neighbors. These two components conjoin together in a convex optimization

framework and finally modify the tag confidence score matrix.
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4.2 Related Work

There are only a few studies fitting the category of image tag completion with both

incomplete and noisy tags. [226] proposes a data-driven framework for tag ranking that

optimizes the correlation between visual cues and assigned tags. [129] removes the noisy

tags based on the visual and semantic similarities, and expands the observed tags with their

synonyms and hypernyms using WordNet. [201] proposes to search for the optimal tag

matrix that is consistent with both observed tags and visual similarity. [134] formulates tag

completion into a non-negative data factorization problem. [126] exploits sparse learning

techniques to reconstruct the tag matrix. None of these studies provides any theoretical

guarantee for their approaches. Matrix decomposition is adopted in [15, 149, 224] to handle

both missing and noisy tags. The key limitation of these approaches is that they require a full

observed matrix with a small number of errors, making it inappropriate for tag completion.

Low rank matrix recovery has been applied in many applications [19, 149], including

visual recovery [136, 149], multilabel classification [15], tag refinement [224], etc. Since the

function of matrix rank is non-convex, a popular approach is to replace it with the nuclear

norm, the tightest convex relaxation for matrix rank [19, 20, 224]. Using the nuclear norm

regularization, it is possible to accurately recover a low rank matrix from a small fraction of its

entries [20] even if they are corrupted with noise [19, 57]. Various algorithms [57, 94, 149, 224]

have been developed to solve the related optimization problem. Instead of the `1-norm

loss [57, 224], squared loss [184] and max-margin factorization model [136] used in most

studies on matrix completion/recovery, a maximum likelihood estimation is used in our

work to recover the underlying tag matrix.
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4.3 Tag Completion by Noisy Matrix Recovery (TCMR)

In this section, we describe a noisy matrix recovery framework for tag completion. And

before presenting our algorithm and analysis, we first introduce the notations that will be

used throughout this paper. We useQ⇤,i to represent the i-th column of matrixQ, |Q|F , |Q|tr
and |Q|⇤ to represent the Frobenius norm, nuclear (trace) norm and spectral norm of matrix

Q, respectively. |Q|1 is used to represent the `1 norm of matrix Q, i.e., |Q|1 =
P

i,j |Qi,j |,

and |v|1 is used to represent the infinity norm of vector v, i.e., |v|1 = maxi |vi|. We also

use ei 2 {0, 1}n to represent the i-th canonical basis for Rn, and 1 2 Rm to represent a

m-dimensional vector with all its entries being 1.

To begin, let m be the number of unique tags, and D = {d1, · · · ,dn} be a collection of n

tagged images, where di = (di,1, · · · , di,m) is the tag vector for the i-th image with di,j = 1

when tag j is assigned to the image and zero, otherwise. For the simplicity of analysis, in

this study, we assume that all the images have the same number of assigned tags, denoted

by m⇤ 1. When di↵erent number of tags are observed, we can apply a simple weighting

technique [150] to handle the variation in the number of tags.

Our development is based on the simple observation that the essential goal of topic model

is to approximate an observed tag probability matrix by a low rank matrix (or more precisely,

the product of two low rank matrices). It is this observation that motivates us to connect

topic (probabilistic) model with low rank matrix completion.

1Note this assumption is only for the convenience of analysis, and does not a↵ect the algorithm.
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4.3.1 Noisy Matrix Recovery

Following the idea of language models [11, 12, 225], we assume that all the observed tags

in each image are drawn independently from a fixed but unknown multinomial distribution.

Let pi = (pi,1, · · · , pi,m) be the multinomial distribution used to generate tags in di. We

use P = (p1, · · · ,pn) to represent the multinomial distributions for all the images. Our goal

is to accurately recover the multinomial distribution P from a limited number of observed

tags in D. In general, this is impossible since the number of parameters to be estimated is

significantly larger than the number of observed tags. To address this challenge, we follow

the key assumption behind most topic models [184, 224], i.e. tags of any image are sampled

from a mixture of a small number of multinomial distributions. A direct implication of this

assumption is that matrix P has to be of low rank, the foundation for the theory of low rank

matrix recovery [20].

The proposed approach combines the idea of maximum likelihood estimation, a common

approach for topic model, and the theory of low rank matrix recovery. It aims to recover the

multinomial probability matrix P by solving the following optimization problem

min
Q2�

L(Q) := �
n
X

i=1

m
X

j=1

di,j
m⇤

logQi,j

| {z }

:=E1

+ " rank(Q)
| {z }

:=E2

, (4.1)

where domain � is defined as

� = {Q 2 (0, 1)m⇥n : Qi,⇤1> = 1, i 2 [1, n]}, (4.2)

and " is a regularization parameter. We denote by Q̂ the optimal solution to (4.1). Term
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E1 in (4.1) ensures the learned probability matrix Q̂ to be consistent with the observed tag

matrix, and term E2 ensures that Q̂ is of low rank, which indicates that all tags of an image

are sampled from a mixture of a small number of multinomial distributions.

We note that unlike standard matrix completion theory [20, 61] where observed entries are

sampled uniformly at random from a given matrix, in our model as well as other topic model,

each observed tag is sampled from an unknown multinomial distribution. This di↵erence

makes the common least square loss and absolute loss inappropriate.

However, the function of matrix rank in (4.1) is non-convex and non-di↵erentiable, which

poses a problem in the optimization procedure. Therefore, we replace the rank function

with the nuclear norm, the tightest convex envelope of the matrix rank function [19, 20, 21].

The nuclear norm of a matrix Q is defined as the sum of singular values of Q. With the

nuclear norm regularization, it is possible to accurately recover a low rank matrix from a

small fraction of its entries [20, 21, 161] even if they are corrupted with noise [19, 57, 100,

107], which exactly fits the missing and noisy tag situation. Consequently, the optimization

problem in (4.1) becomes

min
Q2�

L(Q) = �
n
X

i=1

m
X

j=1

di,j
m⇤

logQi,j + " |Q|tr, (4.3)

and the domain � is still defined the same as in 4.2.

In (4.3) the sparsity of the recovered matrix Q̂ is introduced by the nuclear norm. Nuclear

norm regularizer enforces the matrix completion to favor the interactions between rows

and columns to find a global solution [14], which is in contrast to Frobenius and `1 norm

regularizers that deal with each entry in the matrix independently.
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4.3.2 Incorporating Irrelevant Tags into Noisy Matrix Recovery

Regarding the fact that the initially unobserved tags are with a small probability relevant

to the associated image, we also maximize the likelihood of their irrelevance, so the loss

functions in both (4.1) and (4.3) are thus updated, and the optimization problem becomes

min
Q2�

L(Q) = �
n,m
X

i,j=1



di,j
m⇤

logQi,j +
1� di,j
m�m⇤

log(1�Qi,j)

�

+ " |Q|tr, (4.4)

where domain � remains to be 4.2.

4.4 Theoretical Guarantee of RKML

The following theorem bounds the di↵erence between P , the recovered tag matrix by TCMR,

and the optimal recovered probability matrix Q̂.

Theorem 4.1. Let r be the rank of matrix P , and N be the total number of observed tags.

Let Q̂ be the optimal solution to (4.3). Assume N � ⌦(n log(n+m)), and denote by µ� and

µ+ the lower and upper bounds for the probabilities in P.

Then we have, with a high probability

1

n
|Q̂� P |1  O

✓

rn✓2 log(n+m)

N

◆

, (4.5)

where

✓2 :=
µ+|P1|1

nµ2�
 µ2+

µ2�
.

A sketch of the proof is provided in Section 4.5.4.
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It is clear that the recovery error is O(rn log(n+m)/N), implying that the tag matrix can

be accurately recovered when N � ⌦(rn log(n +m)). This is consistent with the standard

results in matrix completion [107] and low rank matrix recovery [106]. The impact of low rank

assumption is analyzed in Section 4.4.1. However, in stead of square loss used in standard

matrix completion theory, we adopt maximum likelihood loss function in our model, which

leads to additional challenges in analyzing the recovery property for our model.

4.4.1 Impact of Low Rank Assumption on Recovery Error

In order to see the impact of low rank assumption, let us consider the maximum likeli-

hood estimation of multinomial distribution. Since tags for di↵erent images are sampled

independently, we only need to consider one image at each time. Let p be the underlying

multinomial distribution to be estimated, and let d be the image tag vector comprised of m⇤

words sampled from p. We estimate p by the simple maximum likelihood estimation, i.e.,

min
p2[µ�,µ+]m:p>1=1

�
n
X

i=1

di log pi, (4.6)

where m is the number of unique tags, n is the number of images, µ� and µ+ are the lower

and upper bounds for the probabilities in matrix P = (p1, · · · ,pn).

Theorem 4.2. Define z as

z =
d

m⇤
� p.

Let q̂ be the optimal solution to (4.6). Then

|p� q̂|1 
µ2+
µ2�

|z|22.
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And to bound |z|2, we need the following concentration inequality for vectors.

Theorem 4.3. With a probability 1� 2e�t,

|z|2 
s

t+ logm

µ�m⇤
|p|2.

Following the concentration inequality for vectors in Theorem 4.3, we bound |z|2. Then

by combining Theorems 4.2 and 4.3, we have, with a probability 1� 2e�t,

|p� q̂|1 
µ2+|p|22
µ4�

2(t+ logm)

m⇤

By applying the above result to matrix P and taking the union bound, we have, with

probability 1� e�t,

1

n
|P � Q̂|1 

µ2+
µ4�

max
1in |pi|

2
2
2n(t+ logm+ log n)

N
. (4.7)

We now compare the bound in (4.7) to that in (4.5). It is easy to verify that |pi|22/µ2� � m

for any pi. Hence, the net e↵ect of the bound in (4.5) is to replace m with r, which is exactly

the impact of low rank assumption.

4.5 Proofs of Error Bounds

In this section, we give out the proofs of the main theorems proposed in Section 4.4.
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4.5.1 Proof of Theorem 4.1

Proof. Define matrix M as

M :=
n
X

i=1

✓

1

m⇤
di � pi

◆

e>i =
n
X

i=1

1

m⇤
die
>
i � P, (4.8)

where ei 2 {0, 1}n is the canonical base for Rn. Since the occurrence of each tag in di is

sampled according to the underlying multinomial distribution pi, it is easy to verify that

E[M ] = 0.

Before presenting our analysis, we need two supporting lemmas that are important to

our analysis. The detailed proofs of these lemmas are provided in Section A.2.

Lemma 4.4. Let P 2 � and Q 2 � be two probability matrices. We have

n
X

i=1

m
X

j=1

|Pi,j �Qi,j |2
Qi,j

�
n
X

i=1

m
X

j=1

|Pi,j �Qi,j | = |P �Q|1.

Lemma 4.5. ([107]) Let Z1, · · · , Zn be independent random matrices with dimension m1⇥

m2 that satisfy E[Zi] = 0 and |Zi|⇤  U almost surely for some constant U , and all i =

1, · · · , n. Define

�Z = max

(

�

�

�

�

�

1

n

n
X

i=1

E[ZiZ
>
i ]

�

�

�

�

�

⇤
,

�

�

�

�

�

1

n

n
X

i=1

E[Z>i Zi]

�

�

�

�

�

⇤

)

.
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Then, for all t > 0, with a probability 1� e�t, we have

�

�

�

�

�

1

n

n
X

i=1

Zi

�

�

�

�

�

⇤
 2max

(

�Z

r

t+ log(m1 +m2)

n
, U

t+ log(m1 +m2)

n

)

.

The following theorem is the key to our analysis. It shows that the estimation error

|P � Q|1, measured by `1 norm, will be small when P can be well approximated by a low

rank matrix.

Theorem 4.6. Let Q̂ be the optimal solution to (4.3). If

" � 1

µ�
|M |⇤,

where M is defined in (4.8), then

|Q̂� P |1  min
Q2�

(

|Q� P |2F
µ�

+ 16"2µ+rank(Q)

)

.

To utilize Theorem 4.6 for bounding the di↵erence between P and Q̂, we need to bound

|M |⇤. The theorem below bounds |M |⇤ by using Lemma 4.5.

Theorem 4.7. Define � as

� :=
2

µ�
max

8

<

:

t+ log(m+ n)

m⇤
,

s

max(1, |P1|1)
t+ log(n+m)

m⇤

9

=

;

. (4.9)

Then with a probability 1� e�t, we have

|M |⇤  �µ�.
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Combining Theorems 4.6 and 4.7, we have the following result for recovering the proba-

bility matrix P .

Corollary 4.8. Set " = �. With a probability at least 1� e�t, we have

|Q̂� P |1  min
Q2�

(

|Q� P |2F
µ�

+ 16�2µ+rank(Q)

)

.

Furthermore, let P̂ be the best rank-r approximation of P . We have, with a probability 1�e�t

|Q̂� P̂ |1 
|P � P̂ |2F

µ�
+ 16�2µ+r.

We now come to the proof of Theorem 4.1. When the rank of P is r, using Corollary 4.8,

we have, with a high probability,

|Q̂� P |1  16�2µ+r.

If |P1|1 � 1 and m⇤ � O(log(m+ n)), we have

� = O

0

@

1

µ�

s

|P1|1 log(n+m)

m⇤

1

A

and therefore, with a high probability, we have

1

n
|Q̂� P |1  O

 

r log(n+m)

m⇤
µ+|P1|1

µ2�

!

 O

 

rn log(n+m)

N

µ+|P1|1
nµ2�

!

.

where N is the number of observed tags. This immediately implies Theorem 4.1.
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4.5.2 Proof of Theorem 4.2

Proof. Following the same analysis as that for Theorem 4.6 whose proof is provided in

Section 4.5.4, we have

m
X

i=1

(pi � q̂i)
2

q̂i


m
X

i=1

zi
q̂i
(pi � q̂i).

Using the fact q̂i 2 [µ�, µ+], we have

|pi � q̂i|22 
µ+
µ�

|z|2|p� q̂|2,

and therefore

|pi � q̂|2 
µ+
µ�

|z|2.

We finally complete the proof by using the fact

m
X

i=1

(pi � q̂i)
2

q̂i
� |p� q̂|1.
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4.5.3 Proof of Theorem 4.3

Proof. We will use the Cherno↵ bound, i.e. X1, · · · , Xm⇤ be independent draws from a

Bernoulli distribution with P(X = 1) = µ. We have

P
 

1

m⇤

m⇤
X

i=1

Xi � (1 + �)µ

!

 exp

✓

��2µm⇤
3

◆

,

P
 

1

m⇤

m⇤
X

i=1

Xi  (1� �)µ

!

 exp

✓

��2µm⇤
2

◆

.

Using the Cherno↵ bound, we have, with a probability 1� 2 exp(��2µm⇤/2)

|X � µ|2  �2µ2.

By taking the union bound, we have, with a probability 1� 2e�t

|z|2 
s

t+ logm

µ�m⇤
|p|2.

4.5.4 Proof of Theorem 4.6

Proof. We consider any solution Q 2 �. Since Q̂ is the optimal solution to Eq (4.3), we

have hrL(Q̂), Q̂�Qi  0, i.e.

� 1

m⇤

n
X

i=1

m
X

j=1

di,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

+ "h@|Q̂|tr, Q̂�Qi  0,
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where @|Q̂|tr is a subgradient of |Q̂|tr. Using the fact that

h@|Q̂|tr � @|Q|tr, Q̂�Qi � 0,

we can replace h@|Q̂|tr, Q̂�Qi with h@|Q|tr, Q̂�Qi, which results in the following inequality

� 1

m⇤

n
X

i=1

m
X

j=1

di,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

+ "h@|Q|tr, Q̂�Qi  0.

Define Zi,j = (Q̂i,j �Qi,j)/Q̂i,j . We have

� 1

m⇤

n
X

i=1

m
X

j=1

di,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

= � 1

m⇤

n
X

i=1

hdie>i , Zi = �hP,Zi � hM,Zi.

Thus the bound in Eq (4.5) is modified as

�
n
X

i=1

m
X

j=1

Pi,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

+ "h@|Q|tr, Q̂�Qi 
n
X

i=1

m
X

j=1

Mi,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

.

Since

�
m
X

j=1

Pi,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

= �
m
X

j=1

1

Q̂i,j

⇣

Pi,j � Q̂i,j

⌘⇣

Q̂i,j �Qi,j

⌘

.

we have

�
m
X

j=1

Pi,j

Q̂i,j

⇣

Q̂i,j �Qi,j

⌘

=
n
X

i=1

m
X

j=1

(Q̂i,j � Pi,j)
2

2Q̂i,j

+
(Q̂i,j �Qi,j)

2

2Q̂i,j

� (Qi,j � Pi,j)
2

2Q̂i,j

.

Define matrix B 2 Rn⇥m as Bi,j = Mi,j/Q̂i,j . Using the fact Q̂i,j 2 [µ�, µ+] and result
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from Lemma 4.4, we have

1

2
|P � Q̂|1 +

|Q̂�Q|2F
2µ+

+ "h@|Q|tr, Q̂�Qi  |M |⇤
µ�

|Q̂�Q|tr +
|P �Q|2F

2µ�
.

We write the Singular value decomposition of Q as

Q =
r
X

i=1

�iuiv
>
i , (4.10)

where r is the rank of Q, �i is the i-th singular value of Q, and (ui,vi) are the left and right

singular vectors of Q. Let U? 2 Rn⇥(n�r) and V? 2 Rm⇥(m�r) be the orthogonal bases

complementary to U and V , respectively. Define the linear operators PQ and P?Q as

PQ(Z) = UU>Z + ZV V > � UU>ZV V >, P?Q(Z) = Z � PQ(Z).

According to (4.10), the subgradient @|Q|tr is given by the set W

W =
n

UV > + U?WV? : W 2 R(n�r)⇥(m�r), |W |⇤ = 1
o

.

Thus by choosing an appropriate matrix W for the subgradient @|Qtr|, we have

h@|Q|tr, Q̂�Qi � �|PQ(Q̂�Q)|tr + |P?Q(Q̂�Q)|tr

and therefore

1

2
|P � Q̂|1 +

|Q̂�Q|2F
2µ+

+ "|P?Q(Q̂�Q)|tr  "|PQ(Q̂�Q)|tr + |M |⇤
µ�

|Q̂�Q|tr +
|P �Q|2F

2µ�
.
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Using the fact

" � 1

µ�
|M |⇤,

we have

|P � Q̂|1 +
|Q̂�Q|2F

µ+
 4"|PQ(Q̂�Q)|tr +

|P �Q|2F
µ�

.

We consider two cases. In the first case, we assume

|P � Q̂|1 
1

µ�
|P �Q|2F ,

in which the bound in theorem trivially holds. In the second case, we have the opposite

|P � Q̂|1 >
1

µ�
|P �Q|2F ,

which implies

|Q̂�Q|2F
µ+

 4"|PQ(Q̂�Q)|tr,

and therefore

|PQ(Q̂�Q)|tr  4"rµ+.

We complete the proof by plugging the above bound.
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4.6 Implementation

In this section, we present two auxiliary techniques to improve the tag completion perfor-

mance. We incorporate the visual features to improve the tag accuracy and use an extended

gradient method to solve the optimization problem e�ciently.

4.6.1 Incorporating Visual Features

The limitation of the noisy matrix recovery method in (4.4) is that it does not take advantage

of the visual contents of the images, an important hint for accurate tag prediction. So we

next modify (4.4) to incorporate the visual features. Here we introduce two common methods

to integrate the visual features, including introducing the Graph Laplacian to the objective

function in (4.4) and a linear combination of the recovered matrix P and the majority voting

results among nearest neighbors.

4.6.1.1 Graph Laplacian Method

Let X = (x1, · · · ,xn)> include the visual features of all images, where vector xi 2 Rd

represents the visual content of the ith image. Let W = [wi,j ]n⇥n be the pairwise similarity

matrix, where wi,j is the visual similarity between images xi and xj , i.e.,

wi,j =

8

>

>

>

<

>

>

>

:

exp



�d(xi,xj)
2

�2

�

if j 2 Nk(i) or i 2 Nk(j);

0 otherwise,

(4.11)

whereNk(i) denotes the index set for the k nearest neighbors of the ith image, k is empirically

set to k = 0.001n, d(xi,xj) represents the distance between xi and xj , and � is the average

distance. We adopt �-distance if xi is histogram features and Euclidean distance, otherwise.
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Using matrix W , we can measure the consistency between the estimated tag probability

matrix Q and visual similarities by

n
X

i,j=1

Wi,j |Q⇤,i �Q⇤,j |2 = Tr(Q>LQ), (4.12)

where

L = diag(W>1)�W (4.13)

and L is exactly the graph Laplacian defined in [202, 224]. By minimizing Tr(Q>LQ), we

ensure that the recovered probability matrix Q to be consistent with visual features, i.e.,

similar images share similar tags.

Finally by combining the noisy matrix recovery component with the component of visual

features, we recover the tag probability matrix Q by solving the following optimization

problem

min
Q2�

�
n,m
X

i,j=1



di,j
m⇤

logQi,j +
1� di,j
m�m⇤

log(1�Qi,j)

�

+
↵

n
Tr(QTLQ) + �|Q|tr, (4.14)

where � is defined in 4.2, and both ↵ and � are regularization parameters.

By minimizing the objective function above, we are able to simultaneously fill out the

missing tags and filter out/down weight the noisy tags. Figure 4.1 shows the framework of

the whole algorithm described in 4.14, which includes the two principle components: the

low rank noisy matrix recovery component reflecting the tag-tag correlation, and the graph

Laplacian component exploring the image-tag dependencies.
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4.6.1.2 Linear Reconstruction Approach

Although we incorporate the visual consistency in the proposed model with Graph Laplacian

as explained in Section 4.6.1.1, TCMR mainly explores the statistic correlation between tags.

As it is significantly obvious that visually similar images usually share similar semantic

tags, we further emphasize the role of visual contents with an additional weighted linear

reconstruction strategy following [126], which is simple yet empirically demonstrated to be

e↵ective

⌦ = �T + (1� �)R, (4.15)

where ⌦ is the expected final result, � is a weighting parameter in [0, 1], T is the normalized

completion result of TCMR in (4.4), and R is the normalized tagging result generated by

a majority voting strategy among the nearest neighbors of the images, or any other visual

feature based image annotation results.

4.6.2 E�cient Solution of the Proposed Algorithm

We incorporate several heuristics to improve the computational e�ciency. First, we adopt

one projection paradigm that has been successfully applied to metric learning [39]. The

key idea is to ignore the domain constraint Q 2 � during the iteration, and only project

the solution Q into � at the end of optimization. As a result, we only need to solve an

unconstrained optimization problem. Secondly, we adopt the extended gradient method

in [94]. To this end, we rewrite the objective function in (4.4) or (4.14) as L(Q) = f(Q) +

"|Q|tr. Then given the current solution Qk�1, we update the solution Qk by solving the
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following optimization problem

argmin
Q

Ptk(Q,Qk�1) =
1

2

�

�

�

�

Q�
✓

Qk�1 �
1

tk
rf(Qk�1)

◆

�

�

�

�

2

F
+

"

tk
|Q|tr. (4.16)

where tk is the step size for the kth iteration. The detailed algorithm for solving the uncon-

strained version of the objective functions can be found in [94].

4.6.3 Pseudo-code of TCMR

TCMR solves a semi-supervised learning problem and it modifies the tag confidence scores

based on the initial binary tag matrix. Unlike the traditional image annotation algorithms,

e.g., RKML proposed in Chapter 3 that consists of training and testing phase, TCMR

does the learning on the whole dataset and results in an updated tag matrix. Algorithm 2

summarizes the main steps of TCMR. To obtain the final tags for an image in the tag

completion setting, we return the tags with top score as the final tags of an image.

4.7 Experiments

4.7.1 Datasets and Experimental Setup

Four benchmark datasets are used to evaluate our proposed algorithm. ESP Game dataset

was collected for a collaborative image labeling task and consists of images including logos,

drawings and personal photos. IAPR TC12 dataset consists of images of actions, landscapes,

animals and many other contemporary life, and its tags are extracted from the text captions

accompanying each image. Both Mir Flickr and NUS-WIDE datasets [33] include images
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Algorithm 2 Image Tag Completion by Noisy Matrix Recovery
Input:

• Visual features of the whole image dataset: X 2 Rn⇥d
• Binary tag matrix: labels D 2 Rn⇥m
• Regularization parameters ↵ and �
• Initial Lipschitz constant t0, its increasing parameter � and k  0

1: Compute the Laplacian matrix L based on X according to (4.12) and (4.13).
2: Initialize Q0 and let all entries equal to 0.5.
3: while not converged do
4: k  k + 1,
5: C = Qk�1 � 1

tk�1

rf(Qk�1),

6: Compute singular value decomposition: U⌃V T = C,
7: tk  tk�1/�.
8: repeat
9: tk = �tk,
10: eQ = U⌃kV

T , where ⌃k is diagonal with (⌃k)ii = max(0,⌃ii � �
tk
).

11: until F ( eQ) (4.4 or 4.14) <= Ptk(
eQ,Qk�1) (4.16)

12: Qk  eQ.
13: end while
14: Q Qk.
15: Output: Matrix of tag relevance score Q 2 Rn⇥m.

crawled from Flickr 2, together with users provided tags. ImageNet 3 is an image dataset

organized according to the WordNet hierarchy, which contains more than 20K concepts 4.

ESP Game and IAPR TC12 are collaboratively human labeled and thus relatively clean,

while Mir Flickr and NUS-WIDE are automatically crawled from social media and hence

pretty noisy. Besides, with the WordNet hierarchy, ImageNet is able to o↵er tens of millions

of cleanly sorted images for most of the provided concepts. A bag-of-words model based

on densely sampled SIFT descriptors is used to represent the visual content in Mir Flickr,

ESP Game, IAPR TC12 and ImageNet datasets5 6. In NUS-WIDE dataset, visual content

2
https://www.flickr.com/.

3
http://www.image-net.org/

4The list of ImageNet concepts could be referred to http://www.image-net.org/archive/words.txt.
5The features were obtained from http://lear.inrialpes.fr/people/guillaumin/data.php. More

detailed description about Mir Flickr, ESP Game and IAPR TC12 can also be found in [67, 69].
6ImageNet o↵ers a 1.2M subset of images with SIFT feature, which can be downloaded through http:

//www.image-net.org/download-features.php.
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are represented by six low-level features, including color information, edge distribution and

wavelet texture [33].

To evaluate the proposed approach for tag completion, we divide the original tag matrix

Y into two parts: the observed tag matrix (i.e. training set) D and the left as evaluation

ground truth (i.e. testing set). We create the observed tag matrix by randomly sampling

a subset of tags from D for each image. To guarantee that the evaluation is meaningful,

we ensure that each image has at least one evaluation tag by filtering out images with too

few tags and tags associated with only a few images. Detailed statistics about the refined

datasets are listed in Table 4.7.1. All the hyper parameter values used in TCMR, e.g. ", ↵,

�, and the parameter values in the baselines are determined by cross-validation.

ESP Game IAPR TC12 MirFlickr NUS-WIDE ImageNet

Number of Imgs 10,450 12,985 5,231 20,968 1,253,679
Feature dimension 1000 1000 1000 500 1000
Vocabulary size 265 291 372 420 1,625
Average tags/img 6.41 7.07 5.82 10.4 27.54
Min/max tags/img 5/15 5/23 4/43 9/15 5/125
Average imgs/tag 253.0 315.5 81.9 519.6 4751
Min/max imgs/tag 16/3,439 14/4,752 10/781 78/5,058 300/25,361

Num of observed tags⇤ 4 4 3 4 4

Table 4.1: Statistics for the refined datasets. ⇤ indicates the number of observed tags when
training the TCMR model throughout the experimental section if no specific explanation.

Following [126], we evaluate the tag completion accuracy by the average precision @N

(AP@N). It measures the average percentage of the top N recovered tags that are correct.

Note that a tag is correctly recovered if it is included in the original tag matrix Y but not

observed in D. We also use average recall (AR@N) to measure the percentage of correct

tags that are recovered by a computational algorithm out of all ground truth tags, and

coverage (C@N) to measure the percentage of images with at last one correctly recovered
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tag. Both the mean and standard deviation of evaluation metrics over 20 experimental trials

are reported in this paper.

4.7.2 Comparison to state-of-the-art Tag Completion Methods

We first compare our TCMR algorithm7 8 proposed by (4.14) to several state-of-the-art tag

completion approaches: 1) LRES [224], tag refinement towards low-rank, content-tag prior

and error sparsity, 2) TMC [201] that searches for the optimal tag matrix consistent with

both the observed tags and visual similarity, 3) MC-1 [15] which applies low rank matrix

completion to the concatenation of visual features and assigned tags, 4) FastTag [28] that

co-regularizes two simple linear mappings in a joint convex loss function, 5) LSR [126] that

optimally reconstructs each image and each tag with remaining ones under constraints of

sparsity. We also compare the proposed approach with three state-of-the-art image anno-

tation algorithms that are designed for clean tags: 6) TagProp [67], 7)RKML [52], a kernel

metric learning algorithm, and 8) vKNN [123], a nearest neighbor voting algorithm. Since

most of them are originally designed for image annotation, we train the model using the ob-

served tags first over the whole gallery, and then apply the models to the gallery to update

the tag matrix.

Figure 4.2 shows the image tag completion results on the IAPR TC12 dataset measured

by AP@N , AR@N and C@N , respectively. Figure 4.3 show the tag completion performance

on the left three datasets; where the rows represent di↵erent evaluation measures and the

columns indicate di↵erent datasets. We observe that overall, the proposed TCMR and LSR

7Note that if without notification, TCMR stands for the algorithm proposed in (4.14), and TCMR-lr
stands for the one proposed in 4.15.

8The source code of TCMR can be downloaded from our website http://www.cse.msu.edu/
~

fengzhey/

downloads/src/tcmr.zip.
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Figure 4.2: Comparison of tag completion performance between TCMR and state-of-the-art
baselines on IAPR TC12 dataset.
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Figure 4.3: Comparison of tag completion performance between TCMR and state-of-the-art
baselines on other datasets including Mir Flickr, ESP Game and NUS-WIDE.

yield significantly better performance than the other approaches in comparison. TCMR

performs significantly better than LSR in terms of C@N , as well as the other methods. In

particular, TCMR recovers at least one correct tag out of the top six predicted tags for 80%
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of the images while the other approaches are only able to recover at least one correct tag

for less than 50% of the images, indicating that the proposed algorithm is more e↵ective in

recovering relevant tags for a wide range of images, an important property for image tag

completion algorithm. We also observe that TCMR performs slightly better than LSR in

terms of AP@N when the number of predicted tags N is small.

4.7.2.1 E�ciency Evaluation

LRES TMC MC-1 FastTag LSR TagProp RKML TCMR

MirFlickr 5.6e2 4.7e3 8.6e2 1.4e3 6.2e3 2.5e2 3.0e2 1.3e2
ESP Game 3.4e2 5.8e3 1.0e3 8.6e2 1.3e4 6.7e2 1.3e3 3.5e2
IAPR TC12 5.2e2 1.2e4 1.7e3 1.6e3 1.6e4 1.1e3 1.5e3 5.2e2
NUS-WIDE 6.8e3 2.9e4 1.8e3 2.6e3 2.8e4 1.5e3 3.8e3 1.2e3

Table 4.2: Running time (seconds) for tag completion baselines. All algorithms are run in
Matlab on an AMD 4-core @2.7GHz and 64GB RAM machine.

Table 4.7.2.1 summarizes the running time of all algorithms in comparison. We observe

that although TCMR is not as e�cient as several baselines, it is more e�cient than LSR

which yields similar performance as TCMR in multiple cases. The high computational cost

of LSR is due to the fact that it has to train a di↵erent model for each instance, which does

not scale well to large datasets.

4.7.3 Analysis of Algorithm Design

4.7.3.1 Evaluation of Noisy Matrix Recovery without Visual Features

The key component of the proposed approach is a noisy matrix recovery framework. To

independently evaluate the e↵ectiveness of noisy matrix recovery component proposed in

this work, we simplify TCMR by ignoring the Graph Laplacian component according to 4.4
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and compare it (denoted as TCMR0) to several baseline approaches for matrix completion

that do not take into account visual features: (1) Freq, which assigns the most frequent

tags to all the images, (2) LSA [147], Latent Semantic Analysis, (3) tKNN, majority voting

among the nearest neighbors in the tag space, (4) LDA [12], (5) LRES0 [224], a version of

LRES algorithm without using visual features, and (6) pLSA, probabilistic LSA.
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Figure 4.4: Comparison of di↵erent topic models and matrix completion algorithms without
taking into account the visual feature. The top row is evaluated by AP@N , the middle row
is by AR@N , and the bottom row is by C@N .

Figure 4.4 compares the tag completion performance of algorithms without visual fea-

tures. We observe that the proposed noisy matrix recovery algorithm performs significantly

better than the other baseline methods, implying that it can successfully capture the impor-

tant dependency among tags. We also observe that a simple tKNN algorithm works better

than the topical models (LSA, LDA and pLSA), suggesting that directly applying a topical

model may not be appropriate for the tag completion problem.
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Figures 4.2, 4.3 and 4.4 show that TMC and RKML perform much worse than the other

algorithms in comparison, while LSA and tKNN perform quite well. Accordingly, we exclude

TMC and RKML, and include LSA and tKNN in the following evaluation cases.

4.7.3.2 Analysis of Scalability

Scalability is a crucial problem ubiquitously presenting in Machine Learning and Computer

Vision domains including tag completion, annotation, image understanding, etc. In order

to identify how the proposed TCMR algorithm is sensitive to the data size, we conduct

the comparison experiments on a sequence of subsets of ImageNet dataset whose scales

varies from 4, 000 to 1, 000, 000. Since the maximum data size is up to 1M , some baseline

algorithms compared in Section 4.7.2 are unable to implement due to the e�ciency issue,

so in this Section we only compare the proposed TCMR method with a few fast algorithms

including (1) Freq, which assigns the most frequent tags to all the images, (2) LSA [147],

Latent Semantic Analysis, (3) t-KNN, majority voting among the nearest neighbors in the

tag space, and (4) v-KNN [123], a nearest neighbor voting algorithm based on the visual

similarity. Since the computation of Graph Laplacian is extremely expensive over large-scale

data, we replace it with more e�cient strategy. We use TCMR to represent the algorithm

proposed in 4.4, and TCMRV to denote its extension that incorporates the visual information

by linear reconstruction following Section 4.6.1.2.

Figure 4.5 evaluates the scalability in terms of tag completion accuracy. We observe that

for most methods, as the data size increases, the average precision accordingly increases.

However, compared to t-KNN, TCMR based algorithms have a much impressive performance

when the dataset is small (less than 63K), indicating that TCMR is much more capable to

recover the tag information with fewer samples. And when the data size exceeds 63K, the
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Figure 4.5: Scalability analysis over large-scale dataset ImageNet in terms of tagging preci-
sion. Metric AP@N is used for evaluation. The size of evaluated subset N varies from 4K
to 1M .

accuracy curve tends to be matured and the performance moderately improves as the data

size increases, implying that though there is a large redundancy as the data set enlarges, it

is still helpful to explore large-scale dataset.
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Figure 4.6: Scalability analysis over large-scale dataset ImageNet in terms of implementation
time (log10(seconds)). The size of evaluated subset N varies from 4K to 1M .

Figure 4.6 shows that all the algorithms in comparison show similar scalability in terms

of the data size, i.e., the time costed for implementation increases exponentially as the data
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size increases.

4.7.3.3 Evaluation on Various Types of Regularizer

We attribute the success of the proposed TCMR algorithm mostly to the nuclear norm

regularizer that simultaneously explores the interaction between both images and tags. To

verify this point, we conduct experiments that replace the nuclear norm regularizer |Q|tr
in (4.14) with `1 norm |Q|1 or Frobenius norm |Q|F regularizers. After that, since neither

newly constructed optimization problem has a closed form solution, we use gradient descent

method [177, 188] to solve both the non-smooth `1 and Frobenius norm optimization problem.

Regularizer `1 Frobenius Nuclear
AP@1 AP@3 time AP@1 AP@3 time AP@1 AP@3 time

MirFlickr 8.1 ± 0.3 5.7 ± 0.1 5.7e2 8.7 ± 0.3 6.4 ± 0.2 3.8e1 28 ± 0.6 19 ± 0.4 1.3e2
ESP Game 18 ± 0.3 13 ± 0.2 6.5e2 19 ± 0.4 14 ± 0.2 2.3e2 37 ± 0.5 25 ± 0.1 3.5e2
IAPR TC12 37 ± 0.3 27 ± 0.1 5.7e2 37 ± 0.3 27 ± 0.1 2.2e2 47 ± 0.3 33 ± 0.3 5.2e2
NUS-WIDE 17 ± 0.4 14 ± 0.2 3.9e3 17 ± 0.4 14 ± 0.2 2.1e2 48 ± 0.2 39 ± 0.2 1.2e3

Table 4.3: Comparison of tag completion performance between TCMR and its counterparts
with di↵erent regularizers, evaluated by accuracy (%) and e�ciency/running time (s).

Table 4.7.3.3 summarizes both the accuracy and e�ciency performances of TCMR and

its counterparts with the other types of regularizer. From it, we observe that `1 norm and

Frobenius norm regularization give sparse estimates and greatly reduce the computation

time, especially on large scale datasets. However, the nuclear norm overwhelmingly outper-

forms its counterparts since it enforces both the row-wise and column-wise interaction of the

tag matrix, while `1 and Frobenius norms treat each entry independently.
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4.7.3.4 Evaluation on Various Loss Functions

Besides, we also compare the proposed maximum likelihood loss function with a couple of

popular loss functions in matrix completion work [167], including the absolute (`1 norm)

loss, least square (Frobenius norm) loss, hinge loss and logistic loss.

Loss functions [1] [2] [3] [4] [5]
AP@1 AP@3 AP@1 AP@3 AP@1 AP@3 AP@1 AP@3 AP@1 AP@3

MirFlickr 22.8 15.1 28.1 18.7 25.5 17.0 28.2 18.7 28.3 18.8
ESP Game 31.1 22.4 37.0 24.8 31.9 22.8 37.0 24.7 37.1 24.9
IAPR TC12 43.6 32.2 45.7 33.3 44.9 32.9 45.9 32.8 47.4 33.5
NUS-WIDE 39.1 32.8 45.9 36.3 43.3 34.8 47.0 37.4 48.3 38.6

Table 4.4: Comparison of tag completion accuracy (%) between TCMR and its counterparts
with di↵erent loss functions. Standard deviation is omitted for simplicity. [1] to [5] represent
absolute, least square, hinge, logistic and maximum likelihood loss functions, respectively.

Loss function Absolute Least square Hinge Logistic Likelihood

MirFlickr 3.65e+01 6.84e+03 8.09e+02 7.53e+03 1.26e+02
ESP Game 3.52e+01 1.82e+03 5.29e+02 5.98e+03 3.50e+02
IAPR TC12 9.10e+01 5.83e+03 8.35e+03 1.47e+04 5.16e+02
NUS-WIDE 1.38e+02 2.21e+04 2.76e+03 2.06e+04 1.22e+03

Table 4.5: Comparison of tag completion e�ciency (running time in second) between TCMR
and its counterparts with di↵erent loss functions.

Table 4.4 and 4.5 show the tag completion performance of TCMR and its counterparts

with di↵erent loss functions in terms of accuracy and e�ciency. We observe that from

the viewpoint of tag completion accuracy, the proposed maximum likelihood loss function

significantly outperform the other loss functions, especially when the size of the dataset is

large. From the viewpoint of e�ciency, absolute loss and hinge loss are much faster than

the other three ones, but their tag completion accuracies are significantly worse. Logistic

loss function performs a bit worse than maximum likelihood loss, it however takes pretty
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Algorithm TCMR-lr TCMR
AP@1 AP@3 time (s) AP@1 AP@3 time (s)

MirFlickr 26.4 ± 0.4 17.4 ± 0.3 9.7e+1 28.3 ± 0.6 18.8 ± 0.4 1.3e+2
ESP Game 37.6 ± 0.4 25.0 ± 0.1 2.1e+2 37.1 ± 0.5 24.9 ± 0.1 3.5e+2
IAPR TC12 47.3 ± 0.5 33.6 ± 0.2 2.7e+2 47.4 ± 0.3 33.5 ± 0.3 5.2e+2
NUS-WIDE 48.3 ± 0.3 39.0 ± 0.2 1.9e+2 48.3 ± 0.2 38.6 ± 0.2 1.2e+3

Table 4.6: Performance comparison of TCMR and TCMR-lr, in terms of both accuracy (%)
and running time (s).

much more computation time, which demonstrates that proposed maximum likelihood loss

function is the optimal solution which makes a good compromise between the accuracy and

e�ciency.

From Section 4.7.3.4 and 4.7.3.3 we can easily see the reasons why we choose the combi-

nation of maximum likelihood loss and nuclear norm regularizer, which yields superior tag

completion accuracy yet remains e�cient in computation.

4.7.3.5 E�cient Extension of TCMR by Linear Reconstruction

We use TCMR-lr to represent the algorithm proposed in (4.15), which reconstructs the

tag matrix by linearly combining the noisy matrix recovery results and the nearest neighbor

voting results. The e�ciency bottleneck of TCMR and TCMR-lr is to solve the optimization

problems in (4.4) and (4.14) that consist of the nuclear norm. However, (4.4) is much faster

because the computation of term (4.12) and its gradient is quite time consuming, which

reduces the updating speed in (4.16). Table 4.6 shows that under the same experimental

setup, TCMR-lr achieves similar tag completion accuracy as TCMR while it takes much less

computational time.

From Table 4.6, we observe that TCMR-lr achieves almost similar tag completion per-

formance as TCMR in terms of accuracy, under proper conditions with su�cient tag and
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IAPR TC12 NUS-WIDE
Noise ratio 0.7 0.9 0.2 0.3 0.5 0.7 0.9

TCMR-lr 27 ± 0.6 6.8 ± 0.5 28 ± 0.4 25 ± 0.2 16 ± 0.1 8.2 ± 0.1 1.5 ± 0.1
TCMR 28 ± 0.7 19 ± 1.4 29 ± 0.2 26 ± 0.2 18 ± 0.1 9.7 ± 0.1 5.1 ± 1.0

Table 4.7: Performance comparison of TCMR and TCMR-lr when the observed tags are
severely noisy. AP@1 is used for evaluation.

moderate noise level. The essential ideas behind these two TCMR implementations are the

same, which enjoy both the topic model based noisy matrix recovery component and the

visually nearest neighbor voting scheme. Besides, TCMR-lr is much faster than TCMR.

Moreover, as the size of dataset increases, the gap between their accuracy reduces. So for

large datasets, we can definitely use TCMR-lr to replace TCMR to speed up the optimization

while do not hurt the tag completion accuracy.

Table 4.7 shows the comparison of TCMR-lr and TCMR when they perform significantly

di↵erent. The experimental setup is described in Section 4.7.4.2. Since TCMR-lr takes

the linear combination of two tag matrices from sub-steps, it su↵ers more under extreme

cases when the observed tags are severely corrupted with noise. This is because the interac-

tion/relationship of the two sub-steps are ignored, which prevents finding the global optimal

solution for the whole tag completion procedure. So only under certain circumstances with

moderate number of noisy observed tag entries, TCMR-lr is a good alternative of TCMR

which is able to save much computation time; and when there is too much noise, TCMR is

still highly recommended.
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4.7.4 E↵ects on Missing and Noisy Tags

4.7.4.1 Sensitivity to the Number of Observed Tags

We also examine the sensitivity of the proposed TCMR to the number of initially observed

tags by comparing it to the baseline algorithms on IAPR TC12 and NUS-WIDE datasets.

To make a meaningful evaluation, we only keep images with 6 or more tags for IAPR TC12

dataset, and images with 9 or more tags for NUS-WIDE dataset. As before, we divide the

tags into testing and training sets, and randomly sample m⇤ tags for each image from the

training tag set to create the partially observed tag matrix, where the number of sampled

tags m⇤ is varied. We evaluate the tag completion performance on the testing tag sets.
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Figure 4.7: Tag completion performance with varied number of observed tags, evaluated by
AP@3 (top row) and AP@5 (bottom row). IAPR TC12 is a clean and complete dataset
while NUS-WIDE contains missing and noisy tags.

Figure 4.7 shows the influence of the number of partially observed tags to the final tag

completion performance measured by AP@3 and AR@5. We observe that the performance

of all algorithms improves with increasing number of observed tags. We also observe that
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when the number of observed tags is 3 or larger, TCMR and LSR perform significantly better

than the other baseline approaches. When the number of observed tags is small (i.e. 1 or

2), TCMR performs significantly better than LSR, indicating that the proposed algorithm

is noticeably e↵ective even when the number of observed tags is small.

Besides, some algorithms (TCMR, LSR, MC-1, tKNN and LSA) perform similar on

both IAPR TC12 and NUS-WIDE dataset, i.e., the tag completion performance increases

gradually as the number of observed tags increases. However, under the same experimental

setting, the other algorithms (LRES, FastTag, TagProp and vKNN) improve significantly on

IAPR TC12 dataset but improve slightly on NUS-WIDE. This might because IAPR TC12

is a clean dataset containing substantially complete while NUS-WIDE is a raw dataset

consisting of pretty incomplete and noisy tags. This phenomenon indicates that the first

group of algorithms is capable to explore the valid observed tag information even when they

come with noise, , i.e., they somehow explores the interaction between images or tags to

dilute the impact of noisy tags.

4.7.4.2 Sensitivity to Noise

To evaluate the sensitivity to noise, we conduct experiments with noisy observed tags on

datasets IAPR TC12 and NUS-WIDE. To generate noisy tags, we replace some of the sam-

pled tags with the incorrect ones that are chosen uniformly at random from the vocabulary.

The percentage of noisy tags among the total observed ones in the whole gallery is varied

from 0 to 0.9. To ensure there are a su�cient number of noisy tags as well as su�cient

number of images, we set m⇤, the number of sampled tags, to be 8 for NUS-WIDE dataset

and to be 4 for IAPR TC12 dataset in this experiment.

Figure. 4.8 shows the tag completion performance for di↵erent algorithms using noisy
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Figure 4.8: Comparison of tag completion performance (AP@3)using noisy observed tags.

observed tags. It is not surprising to observe that the performance of all algorithms in

comparison degrades with increasing amounts of noise. We also observe that LSR seems to be

significantly sensitive to the noise in the observed tags than the proposed TCMR algorithm.

In particular, we find that TCMR outperforms LSR significantly when the percentage of

noisy tags is large. The contrast is particularly obvious for the IAPR TC12 dataset, where

LSR starts to perform worse than several other baselines when the noise level is above 50%.

Besides, all algorithms reduce their performance dramatically as the noise level increases from

70% to 90%. This is not surprising because at the 90% noise level, a number of images do not

have accurate observed tags for training the model, especially for the NUS-WIDE dataset

whose originally assigned tags are pretty noisy. However, the proposed TCMR algorithm

is overwhelmingly better in this case, especially on IAPR TC12, indicating that it is more

powerful in recovering expected tags from severely noisy tagged images. Table 4.8 shows the

tag completion results of exemplar images by di↵erent algorithms, where both partially true

and noisy tags are observed.

4.7.5 E↵ects on Other Tag-relevant Applications

To evaluate the robustness of the proposed TCMR algorithm on image tagging tasks, we

compare it to the baseline algorithms on tag ranking and tag refinement tasks. Compared
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with tag completion, these two tasks require more initially observed tags. Besides, among

the four used datasets, only NUS-WIDE has manually annotated tags, which are regarded as

the true relevant tags in the evaluation phase. So in order to make the evaluation statistically

meaningful, we do the evaluation on NUS-WIDE with the number of observed tags increased

from m⇤ = 4 to m⇤ = 8.

We first randomly sample m⇤ tags for each image to create the training tag set Ttr. And

then the observed tag matrix is generated from Ttr by randomly adding certain number of

noisy tags while removing the same number of originally associated tags for each image. The

percentage of noisy tags out of total observed tags varies from 0 to 0.9. Denote the total

initially assigned tags as set Tk, and the manually labeled tag set of NUS-WIDE as Tf . The

tagging performances for tag ranking and tag refinement tasks are evaluated on testing set

Tk and Tf , respectively.
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Figure 4.9: Comparison between TCMR and baseline algorithms with varied percentage of
noisy tags in terms of other two tag relevant applications, including tag ranking and tag
refinement. The counterpart performance of tag completion can be referred to Figure4.8(b).

Figures 4.8(b) and 4.9 show the impact of noisy tags to the final accuracy for these

three tasks, including tag completion, tag ranking and tag refinement, measured by AP@3,

AP@10 and AP@3, respectively. We observe that the performance of all algorithms degrades

with increasing noise percentage. We also observe that when the noise percentage is low,

although some baselines yield similar performance as TCMR for certain tasks(i.e, LSR for
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tag completion, MC-1 for tag ranking and tKNN for tag refinement), TCMR significantly

outperforms them on other tasks, which means TCMR is more robust to incomplete and

noisy tags than the baseline algorithms on these three image tagging tasks.

4.8 Summary

In this section, we have proposed a robust yet e�cient image tag completion algorithm

(TCMR), which is capable of simultaneously fill in the missing tags and remove/down weight

the noisy tags. TCMR introduces a noisy matrix recovery procedure that captures the

underlying interaction among tags by enforcing the recovered tag matrix to be of low rank.

Besides, a graph Laplacian based on the image visual features is also incorporated to ensure

the recovered tag matrix is consistent with the visual contents of images. Experiments

over five di↵erent scaled image datasets with size up to 1M demonstrate the e↵ectiveness

and e�ciency of the proposed TCMR algorithm by comparing it to state-of-the-art tag

completion approaches. In the future, we plan to improve the tag completion performance

by incorporating the visual features more e↵ectively, and adopting more e�cient nuclear

norm optimization procedure.
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building, front, boy, cap, hair, bank, bush, balcony, door, bed, brick, church, llama,
Ground group, people, house, power, helmet, entrance, car, curtain, leg, meadow, range,

palm, lawn, pole, roof, sky, jacket, life, flag, front, man, short, mountain,
truth tree, square, shirt, sweater, people, river, lamp, house, sweater, roof, tourist,

statue terrain, tree rock, tree sky, window wall, woman tower, train
Observ- lawn, people, cap, terrain, life, river balcony, car, curtain, wall, church, range,
ed tags square, cloud sky, meadow tree, llama window, water floor, team train, lawn

LSER

people, bike, terrain, sky, tree, river, entrance, car, woman, wall, wall, tourist,
wall, cloud, hair, sweater, life, helmet, front, balcony, table, room, people, house,
square, roof, mountain, rock, woman water, window, hand, curtain, range, lawn,

tree, house, wall, meadow, llama, jacket, building, people, floor, team, church, train,
lawn, palm cap, trouser gravel, people harbour, sky person, front grave, child

MC-1

people, square, sky, meadow, tree, river, window, car, wall, curtain, range, lawn,
cloud, lawn, terrain, cap, life, man, balcony, water, floor, team, church, train,
tree, sky, wall, mountain, llama, wall, man, front, window, room, front, mountain,
building, man, house, people, front building, wall, man, table, wall, people,
front, wall woman, hair mountain, sky house, woman front, bed tourist, man

FastTag

tree, tourist, wall, boy, life, mountain, building, front, wall, room, tourist, front,
footpath, shirt, desk, meadow, people, front, house, car, table, window, wall, mountain,
river, group, mountain, girl, tourist, railing, grey, window, bed, curtain, classroom, house,
woman, tile hair, tee-shirt, river, llama, rail, balcony, hand, night, body, fjord,
people plane, fence tree, wall street, photo cup, towel square, tile

LSR

sky, square, house, sky, bank, jacket, front, building, wall, room, mountain, view,
building, hill, boy, grey, river, helmet, house, wall, window, front, tower, woman,

people, tree, jacket, tree, bush, tourist, sky, cli↵, uniform, bed, people, roof,
house, lawn, terrain, cloud, boat, mountain, door, window, table, jersey, square, street,
street, cloud landscape tree, people street, man short, round snow, park

TagProp

people, tree, wall, woman, people, tree, wall, front, front, woman, people, wall,
square, man, sky, front, woman, front, man, building, wall, table, tourist, mountain,

house, front, sweater, hair, man, rock, woman, table, man, house, front, man,
wall, tourist, mountain, wall, river, people, house, room, people, table, woman,
man, woman table, desert sky, mountain sky, entrance tree, window tree, square

vKNN

tree, wall, sweater, desert, people, tree, front, building, room, woman, tourist, people,
house, sky, landscape, helmet, front, people, house, table, front, wall, table,

people, sky, terrain, hair, river, bush, entrance, sky, house, wall, house, square,
woman, bike, mountain, wall, woman, life, wall, balcony, man, chair, mountain, tree,
front, square cloud, front sky, man tree, window window, child hill, lawn

LSA

people, cloud, sky, meadow, tree, bush, car, window, wall, room, mountain, building,
square, roof, cloud, hair, lake, palm, street, house, table, bed, range, people,

group, meadow, roof, road, meadow, river, building, room, window, hair, snow, tree,
building, tower, short, tree, tourist, slope, lamp, front, girl, wood, house, street,

landscape woman, boy building, grass bed, bush boy, curtain city, wall

tKNN

people, square, sky, meadow, tree, river, window, car, wall, floor, range, church,
cloud, lawn, terrain, cap, life, bush, balcony, wall, curtain, room, mountain, view,
sky, tree, people, cloud, house, sky, house, front, bed, front, lawn, train,

mountain, street, hill, mountain, building, man, building, bed, window, girl, front, snow,
building road, tree people, bank room, curtain team, brick landscape, column

TCMR

people, square, sky, terrain, tree, river, car, window, wall, floor, range, lawn,
lawn, sky, cap, boy, hill, life, boat, balcony, door, curtain, bed, church, train,
building, house, hair, jacket, bank, building, wall, brick, room, mountain, people,
tree, cloud, landscape, llama, helmet, front, house, window, front, tower, square,
street, palm sweater, cloud rock, mountain water, sky table, team, view, street

Table 4.8: Examples of tag completion results generated by some baseline algorithms and
the proposed TCMR. The observed tags in red italic font are noisy tags, and others are
randomly sampled from the ground truth tags. The completed tags are ranked based on the
recovered scores in descending order, and the correct ones are highlighted in blue bold font.
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Chapter 5

Summary and Conclusions

In this dissertation, we designed two algorithms for image tag completion on large scale

datasets where the observed tags might be incomplete and corrupted with noise. The pro-

posed algorithms, namely, RKML and TCMR, achieve the ultimate task around two ques-

tions including

• How can we find better neighbors (visually similar images) for a given image?

• How can we maximally exploit the hints behind the given tags?

5.1 Contributions

This dissertation mainly answers the two questions raised above by proposing specific algo-

rithms as follows, giving theoretical guarantees and providing empirical comparisons with

state-of-the-art baseline algorithms.

5.1.1 Image Annotation by Kernel Metric Learning

The RKML (short for Regression based Kernel Metric Learning) algorithm presented

in Chapter 3 is a distance metric learning algorithm designed for search based image anno-

tation. It answers the first question and addresses a couple of challenges commonly existing

in kernel metric learning, in terms of both theory and real-world application. The main
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contributions of the proposed RKML can be concluded as follows.

• Provide a kernel metric learning with theoretical guarantee. We demonstrate

the robustness of RKML in the high dimensional kernel space by proving the theoretical

guarantees of the learned kernel metric for the first time.

• E�cient metric computation. The PSD property is automatically guaranteed by

the special property of regression and thus no need to take extra projections, and

Nyström approximation [43] is applied to avoid the direct computation based on the

full kernel. Those actions greatly improve the metric computational e�ciency.

• E↵ective metric for image annotation. The notorious overfitting risk is alleviated

by a rank regularizer of the learned kernel metric. Besides, image tags are directly

utilized to compute numeric semantic similarities, which make better use of the tag

information and substantially promote the image annotation performance.

5.1.2 Image Tag Completion by Noisy Matrix Recovery

The TCMR ( short for tag completion by noisy matrix recovery) algorithm presented

in Chapter 4 is a noisy matrix completion based algorithm designed for image tag completion

problem. It answers the second question raised at the beginning of this chapter and addresses

the challenges of applying noisy matrix completion theory to practical image tag completion

tasks. The main contributions of the proposed TCMR are summarized as follows.

• Incorporate noisy matrix recovery theory to image tag completion with

theoretical guarantees. Low rank noisy matrix recovery is achieved by nuclear

norm with minimization, leading to the success in filling out missing tags while down-

weighting noisy ones. Both theoretical support and empirical evaluation are provided.
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• Propose a convex optimization problem based on topic model. Although

inspired by the idea of topic models, unlike them the proposed TCMR solves a convex

optimization problem, leading to a more e�cient optimization procedure and avoiding

the estimation of a bunch of hyper-parameters.

• Exploit fully the image visual contents. TCMR improves the tag completion

performance by exploiting the statistical dependence between image features and tags

via a graph Laplacian [224, 226], which reduces the impact of incomplete and noisy

tags by keeping the recovered tag matrix consistent with image visual features.

• Apply to multiple tag relevant tasks. TCMR has been successfully applied to

multiple tag relevant tasks including tag completion, tag ranking and tag refinement

under the defective scenario. Extensive experiments on benchmark datasets show that

TCMR is more robust to incomplete and noisy tags than the baseline algorithms on

these three image tagging tasks.

5.2 Future Work

The studies presented in the thesis lead to several important research questions, which

we plan to investigate in the coming months and will appear in the final version of the

dissertation.

• Improve the e�ciency of TCMR on large scale datasets. Although TCMR has

a quite good tag completion performance in terms of both e↵ectiveness and e�ciency,

it is currently not able to well deal with large scale datasets due to the computational

cost. The bottleneck is the nuclear norm optimization. The state-of-the-art solution
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to optimize the nuclear norm is iterative schemes, where each iteration involves a SVD

decomposition and it usually takes more than 100 iterations to converge for a 1M⇥2K

matrix. Through our experiments, we found that when the data size is su�cient large (

larger than 60K ), as the data size increases, the tag completion performance improves

marginally and insignificantly, which indicates there is much redundant information.

By taking advantage of this point, it is possible to integrate the underlying idea of

RKML, random sampling, to optimize the nuclear norm solution in large-scale problem.

• Apply numeric tag information. Currently, both RKML and TCMR are using

binary tag information. However there actually are much numeric tag information

that reflects the confidence score when assigning a tag to an image, where missing

tags are usually with small scores and noisy tags are mainly with the ambiguous ones.

So we next plan to explore this more specific information to improve our image tag

completion algorithms.

• Explore a distance metric learning adaptive to incomplete and noisy tags.

Distance metrics are usually learned from supervised information that is assumed to

be perfect in traditional problems like classification and clustering. However, in image

tagging problem, this assumption is no longer true. Each image can be associated with

multiple tags, and among them some are incorrect or irrelevant to the visual content.

And also some tag associations might be missing for some reasons. In this situation,

how obtain a valid and e↵ective distance metric turns to be meaningful and profitable.

So we plan to extend our work of RKML and make it adaptive to images with missing

and noisy tags. Matrix completion technique will be used to supplementary capture

the tag-tag correlation.
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• Introduce deep convolutional neural network. As currently most hottest topic in

Machine Learning and Computer Vision, deep convolutional neural network has been

proved to be e�cient and significantly e↵ective by vast literature [34, 35, 109, 121]. In

the following years, I plan to explore more about the deep learning and try to apply it

to image tagging problems

5.3 Conclusions

This dissertation answers the two questions raised in the beginning of this chapter by pre-

senting two new image tag completion algorithms for large scale datasets where the observed

tags might be incomplete and noisy. To assign appropriate tags to each image, two e↵ective

and e�cient image tagging models are embedded into the proposed algorithms, including

kernel metric learning among images and image tag completion by noisy matrix recovery.

The concluded research makes significant contributions to (i) the theoretical foundations

of exploring the image-image correlation and tag-tag interaction, (ii) the challenges of kernel

metric learning, (iii) the di�culty of coupling topic model and noisy matrix recovery, and

(iv) the empirical applications and implementations to large scale image data. Algorithms

presented here advance the state-of-the-art of image annotation and image tag completion

works. Several future research directions of new image tagging relevant algorithms are also

identified.
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Appendix

Technical Backgrounds

A.1 Low Rank Matrix Approximation

In this appendix, we give the proofs of the detailed supporting theorems of low rank matrix

approximation for Section 3.5.

A.1.1 Proof of Theorem 3.2

Proof. Let (�i,ui), i = 1, . . . , n be the eigenvalues and eigenvectors of K. Define U =

(u1, . . . ,un). According to [175], the eigenfunctions of Ln is given by

b'i(·) =
1p
�i

n
X

j=1

Uj,i(xj , ·).

We therefore have

r
X

i=1

b'i(·)hb'i(·), gk(·)iH

=
r
X

i=1

n
X

a,b=1

1

�i
(xa, ·)h(xb, ·), gk(·)iHUa,iUb,i

=
r
X

i=1

X

a=1

(xa, ·) 1
�i

Ua,iUb,iYb,k =
r
X

i=1

X

a=1

(xa, ·) 1
�i
Ua,iU

>⇤,iyk

=
n
X

a=1

(xa, ·)[Ur⌃
�1
r Ury

k]i =
n
X

a=1

(xa, ·)[K�1r yk]i.
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A.1.2 Proof of Theorem 3.3

Proof. Define a linear operator G as

G[f ] =
m
X

k=1

gk(·)hgk, fiH .

Define two projection operator bP and P as

bP [f ] =
r
X

i=1

b'i(·)hb'i(·), f(·)iH , P [f ] =
r
X

i=1

'i(·)h'i(·), f(·)iH .

Using G, bP and P , we write bT and T⇤ as

bT = bPG bP , T⇤ = PGP.

Using the sin⇥ theorem [181], we have

| bP � P |  |L� Ln|2
�r(Ln)� �r+1(L)

.

Since �r(Ln) = �r/n, and �r+1(L)  �r+1(Ln) + |L� Ln|2, we have

| bP � P |  |L� Ln|2
(�r � �r+1)/n� |L� Ln|2

.
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We complete the proof by using the fact

|(bT � T )[f ]|H  |( bP � P )G bP [f ]|H + |PG( bP � P )[f ]|H .

A.2 Matrix Completion

In this appendix, we give the proofs of the two supporting lemmas that are used to bound

the matrix recovery error for Section 4.5.

A.2.1 Proof of Lemma 4.4

Proof. We have

n
X

i=1

m
X

j=1

|Pi,j �Qi,j |2
Qi,j

=
n
X

i=1

0

@

m
X

j=1

|Pi,j �Qi,j |2
Qi,j

1

A

0

@

j
X

i=1

Qi,j

1

A

�
n
X

i=1

m
X

j=1

|Pi,j �Qi,j |
p

Qi,j

q

Qi,j = |P �Q|1.

A.2.2 Proof of Lemma 4.5

Proof. To facilitate our analysis, we rewrite each di as

di =
m⇤
X

j=1

dji ,
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where dji is the image tag vector corresponding to the j-th word sampling for the tag vector

of the i-th image. To utilize Lemma 4.5, we define Zi,j as

Zi =
⇣

dji � pi
⌘

e>i ,

and therefore

M =
1

m⇤

n
X

i=1

m⇤
X

j=1

Zi,j .

To bound U in Lemma 4.5, we have
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2
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We complete the proof by plugging the bounds for U and �Z .
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