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ABSTRACT

LARGE DIMENSION AND SMALL SAMPLE SIZE

PROBLEMS: CLASSIFICATION, GENE

SELECTION AND ASYMPTOTICS

By

Jun Luo

Classification of patient samples is an important aspect of cancer diagnosis and treatment.

The support vector machine (SVM) and penalized logistic regression (PLR) have been

successfully applied to microarray cancer diagnosis problems. The two methods treat equal

penalty on each loss. That may lead to misclassification on unbalanced data. So we propose

V-ridge regression (ll-RR), which puts a generalized weight on the loss of each sample and

optimizes the weight. vector by the model itself, as an alternative method to the SVM and

PLR for classification in microarray cancer diagnosis. Often a primary goal in microarray

analysis is to identify the genes which are most responsible for classification in microarray.

Two gene selection methods are considered, univariate ranking (UR) and recursive feature

elimination (RFE)

Simulation on the well known leukemia data and breast cancer prognosis data indicates

that V—RR combined with either UR or REF tends to select less significant genes than other

methods. Meanwhile, V-RR performs superior to SVM and PLR with a lower rate in both

cross—validation error and test error.

One of the weaknesses of the SVM is that given a tumor sample, it only predicts a cancer

class label but does not provide any estimation of the underlying probability. The penalized

logistic regression has the advantage of additionally providing an estimate of the underlying

probability of being assigned to each class, but in fact it does not offer any estimate for the



probability of the outcome class, conditional on an individual gene variable. We propose

the conditional logistic regression (CLR) model, which is an alternative for the microarray

cancer diagnosis classification, for the underlying probability of the response given any gene

variable. In addition, since a primary goal in microarray cancer diagnosis is gene selection,

we propose a new method called modified univariate ranking (MUR) as a new choice for

dimension reduction.

We show that when applied to a microarray data for classification, CLR performs similarly

to SVM, PLR and BMA, but CLR has the advantage of providing the probability of the

outcome class, conditional on any individual gene variable. Empirical results on leukemia

and breast cancer data indicate that the CLR method combined with one gene selection

method (MUR, BSS/VVSS or RFE) tends to perform superior on both CV—error and test

error rate.

Microarray data typically have very high dimension p and much smaller sample size n.

Classical asymptotic theory deals with p fixed and 72. goes to infinity, which is no longer

appropriate for microarray data analysis. There are discussions in the literature about the

behavior of estimations when both p and n tend to infinity, but very few dealing with 77.

fixed and p tends to infinity. The latter situation seems more relevant to microarray data

in practice. Here we outline and describe the asymptotical behavior of ridge regression

estimations when sample size n is fixed and dimension p tends to infinity. Given certain

data, mean squared error consistency is established under certain regularity conditions.

When there are only finite number of important genes that are actually related to the

outcome, we propose a variable screening method to eliminate genes which are unrelated

to the outcome and prove the asymptotic consistency of the procedure. After screening,

the dimension-reduced microarray data can be further analyzed via a well-known variable

selection method such as AIC and BIC. Some simulation results for testing the performance

of the screening method are also presented.
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CHAPTER 1

Introduction

The aim of the dissertation is to provide an up to date review of some different approaches to

classification (mainly machine learning methods), propose two new methods of classification,

compare their performance on some challenging data sets, and draw conclusions on their

applicability to realistic microarray problems.

The task of classification occurs in a wide range of human activity. At its broadest, the

term could cover any context in which some decision or forecast is made on the basis of

currently available information, and a classification procedure is then some formal method

for repeatedly making such judgements in new situations. In this dissertation we shall

consider a more restricted interpretation. We shall assume that the problem concerns the

construction of a procedure that will be applied to a continuing sequence of cases, in which

each new case must be assigned to one of a set of predefined classes on the basis of observed

attributes or features. The construction of a classification procedure from a set of data for

which the true classes are known has also been variously termed as pattern recognition,

discrimination, or supervised learning (in order to distinguish it. from unsupervised learning

or clustering in which the classes are inferred from the data).

Microarray experiments raise numerous statistical questions in image analysis, experi-

mental design, cluster and discriminant analysis, and multiple hypothesis testing. Here we

focus on the classification of tumors using gene expression data. Three main types of sta-

tistical problems are associated with tumor classification: (1) identification of new tumor

classes using gene expression profiles, cluster analysis/unsupervised learning; (2) classifica-



tion of malignancies into known classes, discriminant analysis/supervised learning; and (3)

identification of ”marker” genes that characterize the different tumor classes, called variable

selection. In a two class microarray classification problem, we are given a training data set

(131,311) ...... (3:7,, y“), where the input :13,- is a p-vector corresponding to the gene expression

values of the ith experiment (or samples), gr,- = (2:21, ..., rip), see Eisen (1998), Getz (2000),

Slonim (2000), Yang (2001), van’t Veer (2002) and Chen and Chen (2003). The output 3;,-

is a binary class label and assumed taking values in {—1,+1}, see Xiong (2000) and Yeung

(2001). The problem of interest is to find a classification rule from the training data, so

that we can actually assign a class label from {—1, +1} when given a new sample .7: with p

gene expression measurements.

Data from these new types of experiments present a ”large p, small 7:.” problem; that

is, a very large number of variables (genes) relative to the number of observations (tumor

samples). In statistics when the number of variables is much larger than the number of

samples, one is said to be facing the problem of the so called ”curse of dimensionality”, and

the function estimated (in here, it is classifier of the microarray data) may be over-fitting

(i.e.very high accuracy in fitting the training Samples but very low accuracy in assigning

labels for the test data). This problem is mitigated by using some gene selection methods

and making sure the classifier is smooth. So that the new samples similar to those in the

training set will be labeled similarly.

Machine learning is a scientific field that addresses the question of how to program systems

to automatically learn and to improve with experience. Vapnik (1995) successfully invented

the application of machine learning methods (called support vector machine or SVM) to

two class classification problems. As a consequence, SVM has been applied for classification

in cancer microarray data. Besides SVM, past publications on cancer classification using

gene expression data have focused mainly on the cluster analysis of both tumor samples and

genes and include applications of hierarchical clustering (Alon et at. (1999) and Perou et

al. ( 1999)) and partitioning methods such as self-organizing maps ( Golub (1999)). Dudoit

et al. (2002) compared the performance of a bunch of different discrimination methods

for the classification of tumors based on gene expression profiles. These methods include

traditional ones, such as nearest-neighbor and linear discriminant analysis, as well as more



modern ones, such as classification trees, bagging and boosting.

Statistical approaches are generally characterized by having an explicit underlying prob-

ability model, which provides a probability of being in each class. In addition, it is usually

assumed that the techniques will be used by statisticians, and hence some human interven-

tion is assumed with regard to variable selection and transformation, and overall structuring

of the problem. Unfortunately, SVM does not offer any underlying probability in the classi-

fication. Zhu (2004) proposed penalized logistic regression (PLR) for classification in cancer

microarray and an estimator of the underlying probability.

But neither SVM nor PLR can avoid the misclassification on unbalanced data set: the

larger the training sample size for one class, the smaller its corresponding classification error

rate. The main cause is that the penalty of misclassification is taken to be the same for

each training sample. Wang and Yang (2004) used weighted support vector machine on the

prediction of membrane protein types. Inspired by this, we proposed a new non-parametric

classification method called V-ridge regression ( u-RR), where each sample contributes dif-

ferently. Since SVM, PLR and any discriminant methods do not study the conditional

probability of the outcome, conditional upon each gene expression level, our conditional lo—

gistic regression is indeed very useful in classification and providing underlying distribution.

The detailed work is in chapter 2 and 3.

DNA microarrays now permit scientists to screen thousands of genes simultaneously and

determine whether these genes are active, hyperactive or silent in normal or cancerous

tissue. Because these new microarray devices generate bewildering amounts of raw data, new

analytical methods must be developed to sort out whether cancer tissues have distinctive

features. In this dissertation, we address the problem of selection of a small subset of

genes from broad patterns of gene expression data, recorded on DNA microarrays. Using

available training examples from cancer and normal patients, we build a classifier suitable

for genetic diagnosis, as well as drug discovery. Previous attempts to address gene selection

in cancer microarray are listed in chapter 5, including correlation techniques and pairwise

selection. A new method for gene selection based on univariate ranking method is also

proposed. We demonstrate experimentally that the genes selected by this technique yield

better classification performance and are biologically relevant to cancer. These findings



are consistent with the published results in the literature. In contrast with the published

methods, our method eliminates gene redundancy automatically and yields better and more

compact gene subsets. Simulations are done with well-known golden standard data sets

Leukemia and Breast Cancer Prognosis data. For gene selection in asymptotic case, existing

statistical methods deal with a single gene at a time (see Chen et al. (2003) ), or deal with

the case in which the sample size n -—> 00 (see Shae (2006)). Chapter 4 describes insight

for the analysis of microarray data with the more realistic case that sample size is fixed and

the dimension of variables p —» 00.

1.1 Standard SVM for 2-class classification

The original SVM was motivated by the idea of maximizing the distance between the separa-

tion hyperplane and the closest point in the training samples, also of making the prediction

function as smooth as possible. See Vapnik (1995, 1998, 2001 and 2002), Ripley (1996),

Bradley (1998), Allwein (2000), Mukherjee (2000), Scholkopf (2000) and Evgeniou (2000).

Discriminant methods have been used for classification in cancer microarray data, see Du-

doit (2002). Based on the n training data ($1,311) ....... (rn, yn), where I,- is a p-vector in the

dot product space (through the chapter, we will focus on the linear separation hyperplane

and use 11:,- as the basis function), y,- is the label from {+1, —1} for the ith sample. The

classification rule is given by:

f(1:) = sign(< 112,1: > +b). (1.1)

To address the classifier for the microarray data with maximal margin distance, some sta-

tistical methods have been applied. Throughout the dissertation, < any > is the inner

product of the two vectors x and y.

For a two class classification problem, the linear SVM fits a model f (3:) =< w, x,- > +b,

where w and b are such that

. 1 9 H
mm — w ‘ + C ] , 1.2,5 [2H “2 Z} < )

subject to the condition

y,(< 10,13 > +b)21—£,-, £1- 2 0, for all i=1,2,...,n, (1.3)
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where {£3 is the soft margin which allows the possibility of violation on the distance con-

straint for non-separable data (i.e. when (,7 > 1,\7’z' = 1,2, ....,n) This new formulation

trades off two goals of finding a hyperplane with large margin (minimizing llwll) and finding

a hyperplane that separates the data well (minimizing the loss). And the constant C > 0

controls the trade-off. In practice, C is determined by cross validation. The classifier is

given by f(r) = sign(< 10,3: > +b). The above set-up is called C-SVM.

Ideally, we are interested in the number of nonzero 5,, as that is the count of errors

made by our classifier on the set of training examples. This count is the L0 norm, and

is discontinuous and non-convex. We would like to stay close to L0, while maintaining

convexity. We take the Lagrangian in the usual manner:

L(w,€,b,a,i3) = $11]er 0251' + Zaill " 52' - yi($iw + ’0] — 2315i . (1-4)

i=1 i=1 {:1

To find the dual form of the problem, we first need to minimize L(w, 5, b, a) with respect to

111,6 and b (for fixed a and fl), i.e. minw,§,b L(w, 5, b, (1,6). Since the Lagrangian function is

linear in a and 6, we can not set the gradient with respect to a and [3 to zero. We obtain

the following dual optimization problem:

n 1 TI.

Incax [g -—5 ”2:1 yiyjaiaj < 12,-,;rj > ], (1.5)

subject to the constraint 0 S a g C, 2,11 my,- 2 0. The introduction of the box constraint

on a, is necessary to ensure that the Lagrangian will be bounded (i.e., that we can not drive

the cost to —oo). This will occur in the case in which (C — ai) is negative and 5,- goes to

co, the summed expression 2?:1(C — 01,-)5, goes to —00. The box constraint prevents this

from happening.

The dual still has a quadratic objective, and differs from the optimal margin classifier

only in the introduction of the box constraint. Indeed, we can still use to = 2:le oil-$231,- to

give us the optimal value of w in terms of the optimal value of a. We must also verify that

the KKT dual-complementary conditions are still satisfied in this optimization problem:

a, = 0 =2 yi[:c;w + b]21,

(12-: C => y.,-[:I;,’,-w + b] S 1,

0 < a, < C => y,-[;1,‘;'w + b] =1.



As before, a,- will be nonzero only for the support vectors, where the set of support vectors

now includes all data points on the margin boundary as well as those on the wrong side of

the margin boundary.

Most often, one uses the regularized optimization problem which is so called standard

Lg-norm SVM:

71

min [2(1— y,(< u.r,:1:,-> +1»), + Alla/jg] (1.6)

“”b i=1

where /\ 2 0 is a tuning parameter, and the classifier is defined in (1.1). Model (1.2) and

(1.3) is basically equivalent to (1.6) in the sense that for any given C > 0, there exists a

A = 1 / (2C) so that these two models share the same optimal value w, b, i.e. we will get

the exactly same classification rule. Note that (1.6) has the form loss and penalty, and A

is the tuning parameter that controls the trade-off between the loss and penalty. The loss

(1 — yf)+ is called the hinge loss, and the Lg-norm penalty is called the ridge penalty.

1 .2 V-SVM formulation

lVIotivated by the idea of maximizing the margin, another approach to get the classifier is

considering

_ 1 2 12

1533;;, [gllwllz + C<—up + Muzzle-fl . no

subject to the constraint

y,(< 11),:121' > +b) 2 p — 5,, 5,- 2 0, p Z 0, for all i=1,2,...n, (1.8)

where C > 0 and z/ 6 [0,1] are parameters. To understand the role of p, note that for

E = 0nx1,the constraint simply means the two classes are separated by the margin p/lel.

The classifier for (1.7) is defined in (1.1). Applying the Lagrangian dual variable method on

model (1.8), it turns out that C in (1.7) does not matter at all and (1.7) obtains the same

decision function as

, 1 2 1 " ]
_ I‘ — l/ —— '

10921.53%) [QHH “2 p + n £1 £2 ( )



under the constraint (1.8), V is a parameter in [0,1]. Model (1.9) is known as u-SVM, which

is proposed by Scholkopf, Smola, Williamson, and Bartlett (2000) for classification. The

relationship between SVM and V-SVM with 2-norm penalty is analyzed below. We leave

the comparison with l-norm to the feature selection section.

The V-SVM possesses some additional properties than C-SVM besides that both methods

provide the classifier using the training data. For example, V-SVM has the advantage of

using a parameter u on controlling the number of support vectors and the fraction of training

errors.

1 .3 Equivalence proof

Generally (1.6) and (1.8) and (1.9) are two different problems with the same optimal solution

set.

Theorem 1. In model (1.8) with constraint (1.9), for any given u 6 [0,1] with optimal

solution 5 > 0, we conclude (1.8) and (1.9) has the same classifier as (1.6) with A = 715/2.

Proof. Focus on model ( 1.6), suppose there are flab such that

... 1 n

(a b) = argggg [,kui — 225+ 1/n gt] ,

subject to the condition

y,(< 10,115 > +0) 2 fi- fpéi 2 0,fOI‘ all i=1,2,...,n.

Now we do the following transformation of variables:

Then the classifier for (1.8) and (1.9) becomes

f(x) = sign(< Ew’,:1: >) + pi), = sign(< w', :1: >) + b’.

Recall (w' , b’) satisfies

Tl

I I . ~2 2 ~ ~

w ,b = (117‘ mm [1 2, w . -—1/ + n .],
( g'w,b,£,- //> H “2 p p/ 2 £1

i=1



subject to the condition

yi(< 10,13 > +b)21— 5,, f,- 2 0, for all i=1,2,...,n.

The above optimization problem is the same as

subject to the condition

yt(< w’,:v.- > +b’) 2 1— 5;, g;- 2 0, for all i=1,2,...,n.

That is model (1.6) with A = 715/2, so the classifier is f(.r) = sign(< w’, :t: > +b’). Obviously

we get the same decision function from the two models under the condition 5 > 0.

1.4 Ll-norm Support Vector Machine

The standard 2-norm SVM is known for its good performance in two-class classification.

Hastie (2004) studied the regularization path for SVMs. In the section, we talk about 1-

norm SVM. 1-norm SVM has some advantage over the standard 2-norm SVM, especially

l-norm SVM functions as one variable selection method and a classification method.

In standart 2—class classification problems, we are given a set of training data

(231,312), ..., (3:7,,yn), where the input r,- E R”, and the output y,- E {1, —1} is binary. We

wish to find a classification rule from the training data, so that when given a new input at,

we can assign a class y from {1, —1} to it. To handle this problem, l-norm support vector

machine (l-norm SVM) was considered:

71 q

3113211 — we + gamma . (1.10)

0‘ i=1 j=1

subject to the condition |]/3]|1 = [131] + + [31] S s, where D = 111(13),...,hq(17) is a

dictionary of basis functions, and s is a tuning parameter. The solution is denotes as [30(3)

and 6(3); the fitted model is

q

[(JI) = [1’30 + Z )3th (.7?) .

i=1



A

The classification rule is given by 31977]f (27)]

The 1-norm SVM has been successfully used in classification problem for cancer microar-

ray data. To get a good fitted model f(a:) that performs well on future data, we also need

to select an appropriate tuning parameter s. In practice, people usually pre—specify a finite

set of values of s that covers a wide range, then either use a separate validation data set or

use cross-validation to select a value for s that gives the best performance among the given

set. In Zhu (2004), the chapter illustrates that the solution path [3(3) is piece-wise linear

as a function of s (in the 1?." space); it also proposes an efficient algorithm to compute the

exact whole solution path {6(5), 0 S s S 00}, hence help us understand how the solution

changes with s and facilitate the adaptive selection of the tuning parameter 3. Under some

mild assumptions, Zhu showed that the computational cost to compute the whole solution

path 6(3) is 0(nq min(n, q)2) in the worst case and 0(nq) in the best case.

l-norm SVM replaces the ridge penalty in 2—norm SVM with the L1-norm penalty on 5,

i.e., the lasso penalty (See Tibshirani 1996), and considers the optimization below:

17. q

3513 [g1 — act + Zap-(avail. + Allfilli], (1.11)
_ 3-1

which is equivalent Lagrangian version of the constrained optimization problem. The lasso

penalty was first proposed by Tibshirani (1996) for regression problems, where the response

y is continuous rather than categorical. It has also been used in Bradley (1998) for clas-

sification problems under the framework of SVMs. Knight (2000) and Pa (2004) studied

the asymptotics for lasso-type estimators. Similar to the ridge penalty, the lasso penalty

also shrinks the fitted coefficients B’s towards zero, hence 1-norm SVM also benefits from

the reduction in fitted coefficients’ variances. Another property of the lasso penalty is that

because of the L1 nature of the penalty, making A sufficiently large, or equivalently s suf-

ficiently small, will cause some of the coefficients fij’s to be exactly zero. Thus the lasso

penalty does a kind of continuous feature selection, while this is not the case for the ridge

penalty in 2-norm SVM, where none of the 53’s will be equal to zero.

10



CHAPTER 2

Classification and Gene selection of

Cancer Microarrays by u—Ridge

Regression

There has been a recent explosion in the use of microarray data for classification in a variety

of diagnostic areas, see Golub (1999) and Hastie (1998). The prediction of the diagnostic

category of a tissue sample from its expression array phenotype given the availability of

similar data from tissues in classified categories is known as classification or supervised

learning. In the context of gene expression data, for example, different tumor types (Golub

et al. 1999; Ramaswamy et al. 2001), response to therapy (van’t Veer et al. 2003). A

challenge in predicting the diagnostic categories using microarray data is that the number

of genes is much greater than the number of tissue samples available, and we assume only

a subset of genes is relevant in distinguishing different classes. Selection of relevant genes

for classification is known as feature selection, which is a primary goal in microarray data

analysis. A small set of relevant genes is essential for the development of inexpensive

diagnostic tests.

The support vector machine (SVM) is one of the leading methods that has been suc-

cessfully applied to classification of the cancer diagnosis (Lee & Lee 2002, Mukherjee et ul.

1999, and Ramaswamy et al. 2001). In two-class classification, the linear SVM fits a model
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f(1:) 2 b0 + 131><pbpx1 that minimizes

2(1— yucca» + glitz.
i=1

The classification decision is then made according to sign[f(1)] Inspired by the gene

variable selection, Zhu (2003) proposed a Ll-norm SVM using lasso penalty. The model

can select variables by shrinking the coefficients toward 0 and actually setting some of them

to be exactly 0.

Besides the non-parametric classification methods, Zhu (2004) proposed a penalized lo-

gistic regression (PLR) model and addressed the estimator of probability of interest p(:r),

where the p(x) = P(Class = +1|X = 1:) is the conditional probability of a point being in

class {+1}, given the gene expression measurements x. PLR performs comparably to SVM

in classification besides providing an estimator of the underlying probability. However, these

three classification methods may lead to misclassification on unbalanced data due to equal

penalty on the loss of each sample. Wang and Yang (2004) proposed a weighted SVM to

deal with classification on unbalanced data. They tried to put a constant weight on the loss

of samples from class {+1} and another constant weight on the loss of samples from class

{—1} so that the classifier will not benefit the class with more training samples.

It is possible that each sample contributes differently to the final classification rule. To

capture the characteristic, in the thesis, we propose a new Optimization method called u-

ridge regression (ll-RR) method. It can optimize the generalized weight for each training

sample instead of putting a pre—identified constant weight. We define an upper bound of

the weight so that the model is very flexible and obtain the best performance on a new gene

expression data set. We also give a new and efficient computational insight for computing

coefficients and constant in the model.

Besides predicting the correct cancer class for a given tumor sample, a primary challenge

in microarray cancer diagnosis is to identify the relevant genes with contribute most to the

outcome. We apply three gene selection methods here, univariate ranking (UR) (Dudoit et

al. 2002, Golub et al. 1999 and Zhu 2005) and recursive feature elimination (RFE) (Guyon

et al. 2002). The comparison of SVM, PLR and u-RR with external gene selection methods

are done with two frequently studied microarray data sets: leukemia introduced by Golub

12



et al. (1999) and breast cancer prognosis data which appeared on Nature in 2002 by van’t

Veer et (11..

Our simulation results 011 the real data sets indicates u-RR with RFE tends to select

less genes with exceptional error rates than SVM, PLR and BMA. More detailed report of

simulation appears in section 2.3. The formulation of u—RR, the description of UR, RFE

and computation are described in section 2.2.

2. 1 Approach

2.1.1 V—Ridge Regression

VVeighted-SVM has been discussed for unbalanced 2-class classification problem. See Chew

(2001). He puts a common weight on all training samples from one class and puts another

common weight on the rest of training samples. In Wahba et al. (2005), the technical

report states a modified penalized likelihood for weighted data. Basically, each simulated

multivariate data point has two associated weights. In this section, we propose a new model

with a generalized weight, which may be negative, on the loss of each sample, and try to

extract the best classifier among all the weighted models. ‘

When we use a linear classifier in a two—class microarray data classification problem, to

assign the most likely group to the samples in test data, we come up with the idea of putting

a penalty on the influence of each gene. This is one way to lower misclassification, since

those samples which have very similar gene expression values will be labeled similarly. In

another words, if the label of one training sample :51 is yl E {—1,+1}, and there is a test

sample 2:2 which is very close to $1 in Euclidian distance sense. So 2:2 is more likely from

class yl as 2:1. Therefore, we hope the inner product | < w, (1:1 —— (1:2) > I will be as small as

possible. Roughly speaking, we may control Hail]2 so that the samples in test data will be

assigned to the same group as these similar sample tissues in training data. The standard

SVM puts the same weight on the loss of each training sample. Here, we put a generalized

weight on the loss of each sample and regard the weights as unknown parameters. Consider

13



the optimization problem below:

Tl-

max min [Zt,(< 111,55, > —y,-) + AlleE] , (2.1)
t 11)
IX” 1:1

subject to the condition

72

§:a=a oguga 12a udga VL=LZMn. @2)

i=1

Each t,- can be understood as the generalized weight for the loss function of the ith sample.

The max — min forces each loss to approach 0. Since our optimization is actually a modi-

fication of the dual form of ridge regression, we name (2.1) and (2.2) as V-ridge regression

model (ll-RR). The constraint 221:1 t,- = 0 is a regularized condition. The parameters A

and V are to be chosen. In practice, they are determined by cross-validation. We clearly

state the selection process in section 2.2.

The classification function for V-RR is given by f(:1:) = stgn(< 10,51: > +b) for the choice

of A and v, where b is a constant.

2.1.2 Quadratic Programming

As is well-known, the microarray data typically has small sample size it but large dimension

of gene variables p (in the thousands). In the model we proposed above, one of the important

roles of the vector t is reducing the number of parameters from p + 1 to n + 1, which

makes the optimization feasible. The objective function L(w,b,t) = 2;, t,-(< 112,321 >

) + b — y,) + Allwllg is convex for w,b when the vector t is fixed. For any given t1Xn

satisfying the constraints, notice that the value of b is not a function of t. In fact, any value

of b will not change the optimal solution for the whole optimization problem (2.1) and (2.2).

So we propose a rule to get the value of b in section 2.3. To reduce the computation, we

simplify the part minwab L(w, b, t) by getting the score equation for to, whose expression is

given by

8L(w,b,t) = 0.

(911)

That leads to n

2mu+§:uflp=0. (an

i—l
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Therefore, the optimization problem becomes searching for the weight vector which

Tl

max [— Auwné — Z ta] . (24)
2'21

tlxn

subject to the condition

n

Xi, = 0, |t,| s 2), Vi = 1,2,...,n.

i=1

Plug (2.3) into (2.4), then we have

. 1 n n n

mtln [24-A- Z2 title < 172', 13k > + Ztiyi] , (2.5)

i=1i=1k=1

subject to the condition

n

Xi, = 0, |t,:| g u, V'i=1,2,...n. (2.6)

i=1

Once A and u are determined, this is a standard quadratic programming problem, where t

is a 1 x n vector with typically small n value. Lately there is a contributed package in R,

Kernlab, which can make the computation even easier.

2.1.3 Computation of w and b

For any chosen values of A and V, w is given by the expression to = —t1x,,.r,,xp/2A. Obvi-

ously, the optimization (2.5) and (2.6) does not provide the optimal solution of b. Thinking

of the fact that b is playing a role for samples with y,- = +1 and < 112, cc,- > being less than 1,

or for samples with y,- = —1 and < w, :17,- > being greater than —1, we consider two groups

of samples,

Sl={261,2,...,n]yi= +1}, 52 ={i€1,2,...,n|yi= —1}.

There exists a constant that is just large enough for all samples from group S1 being correctly

classified, and there exists another constant that is just small enough for samples from group

52 being correctly classified. For a new sample to be fairly classified, we define b as the

average value of the two constants. That is

b = (— min < aux,- > — max < 215$,- >)/2 . (2.7)

i651 1682

This b can avoid the over-fitting on the training data. Actually it works very well on two

real gene expression data sets.
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2. 1.4 Feature selection

Besides predicting the correct cancer class for a given tumor sample, another primary chal-

lenge in microarray cancer diagnosis is to identify the relevant genes which contribute the

most to the classification. Among all external gene selection methods, univariate ranking

(UR) and recursive feature elimination (RFE) are the most often used. Golub et at. (1999)

first introduced UR for each gene in the two class classification problem. The criterion is

defined as:

T+—T—

3j =#— , (28)

where T;- + and 0; indicate the average and standard deviation of the gene expression

values of gene j for all samples from class +1. Similarly, ?r‘; ‘ and or; indicate the average

and standard deviation of the gene expression values of gene j for all samples from class

{—1}. Genes that give the most positive values are supposed to be most correlated with

class {+1}, and genes that give the most negative values are supposed to be most correlated

with class {—1}. This ranking criteria implicitly assumes orthogonality among the genes,

because each 33- is computed with information about a single gene and does not take into

account mutual information between genes. Later on Dudoit et al. (2002) used the ratio

of between-group to within-group sum of squares (BSS/WSS) to determine the initial gene

order for the multi-class case.

Opposite to the ranking method, RFE recursively removes genes based upon the absolute

magnitude of the hyperplane elements. For the linear kernel, given microarray data with p

genes per sample, a classification method will output to, which is a vector with p components,

each corresponding to a particular gene. The absolute magnitude of each element [10]]

determines its importance in classifying a sample. The idea behind RFE is to eliminate

elements of to that have small magnitude. This screening procedure is iterative until a

desired number of genes is obtained.
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2.2 Results

In this section, we fit V-RR to leukemia data set (Golub et al. (1999)) and breast cancer

prognosis data set (van’t Veer et al. (2002)). UR and RFE are applied to reduce the number

of genes at each step. For the UR method, we first use (2.8) to compute sj for all genes and

rank the genes in the descending order of [3]]. Then we apply an iterative procedure that

goes as following: start with fitting V—RR using all current genes, next remove 10% of the

genes in the model that are at the bottom 10% of the ranking, then refit the model with

the remaining genes, and iterate. For the RFE applied in V-RR, according to the recursive

procedure, at the kth step of the iteration, we fit the model with the remaining kp genes,

kp

fk(1:) =< 10,110 > +bk = bk + Zaijrj ,

j=1

and eliminate the genes with the overall smallest 10% [111]] values. So at each step of RFE

we may eliminate different number of genes. Notice that once the gene is removed from the

model, it will never come back to the model again. So the parameters used in the RFE at

the very beginning have a significant influence on the whole procedure of keeping genes at

each step. The number of genes in the final model is selected by cross-validation and the

performance of the final model is evaluated on the test samples.

Before applying V-RR, we standardize each sample as is usually done in microarray studies,

see Dudoit et al. (2002) and Guyon et al. (2002), so that the mean and standard deviation

of the expression levels are 0 and 1, respectively.

2.2.1 Choosing A and V

We randomly divide the training data into 10 groups. At each step we use one group as the

cross-validation dataset and the other 9 groups are used as training data where the classifier

comes from. So each sample in the training data will be regarded as cross—validation set for

only one time and will be used as training data 9 times. The RFE method is more sensitive

to the parameters, so we determine (A, V) by applying RFE and use the same parameter

setting in UR. When searching for A and V used in the final model of V-RR, we follow

the rule below: among the chosen A and V which result in the minimal 10-fold CV—error

17



Table 2.1. Parameter selection.

 

 

A V CW RFE UR

25 0.1 2/38 37 41

0.3 3/38

0.5 4/38

0.7 3/38

0.9 2/38 20 42

100 0.1 2/38 43 35

0.3 2/38 30 40

0.5 3/38

0.7 2/38 26 40

0.9 3/38

200 0.1 4/38

0.3 2/38 47 34

0.5 2/38 37 41

0.7 4/38

0.9 3/38       
on the whole training data without gene selection, we want the parameters with minimal

summation of the CV-error across all iterations in gene elimination.

l

()‘v V) : argarg("‘i'1A20.ng/gl CV1)(min k: 1VIisck) ?

=1

where l is total number of iterations, CV1 means the 10-fold CV—error using all genes in the

training data, and Mz'sc,c means the number of misclassificati'on based on cross-validation at

the kth iteration. We care about the CV-error without gene selection due to the disadvantage

of RFE method. If the parameters do not perform well at the beginning, there is a bigger

chance that it will not do a good job in the gene elimination procedure. In each iteration,

we can update the V value to fit the data with remaining genes. Through this parameter

selection, we can confidently claim that the parameters A and V work generally well at each

step. In practice, however, we can not try all possible values of A and V. Table 1 shows

the numerical parameter selection process for the leukemia data based on 12 results. The

minimal summation of the CV—error happens at initial value A = 25 and V = 0.9, hence

(25, 0.9) are chosen as the regularization parameters in V-RR model to fit the entire training

data. Recall that we can adjust the V value later on.

In Table 2.1, RFE column is the total number of 10—fold misclassifications across all

iterations in gene elimination using RFE. Similarly, UR column is the total number of

10—fold misclassifications across all iterations in gene elimination using UR.
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Table 2.2. Comparison of leukemia classification methods

 

      

 

 

MetIocT 10-fold CV-error Test error m

SVM UR 2/38 3/34 22

PLR UR 2/38 3/34 16

V-RR UR 0/38 2/34 7

SVM RFE 2/38 1/34 31

PLR RFE 2/38 1/34 26

V-RR RFE 0/38 0/34 11

Table 2.3. Published results of leukemia classification methods

Method 10%ld CV-error Test error m

Golub et al 3/38 4/34 50

Tibshirani et al 2/38 2/34 21

L1 norm SVM 2/38 2/34 17      

2.2.2 Leukemia data

Leukemia (Golub et al. 1999) consists of 38 training samples and 34 test samples of two

types of acute leukemias, acute myeloid leukemia (AML) and acute lymphoblastic leukemia

(ALL). Each sample contains 7129 gene expression levels. 10-fold cross validation is used

as a criterion to determine parameters A and V. As in table 2.1, A = 25 and V = 0.9 are

used in the V-RR model and the performance of the classifier is evaluated on the test data.

For the classification method SVM and PLR, we follow the results from Zhu (2004). We

can see that when using the same set of genes (i.e. using UR), V-RR yields less significant

genes with reduced CV-error and test error than SVM and PLR. When using RFE, V-RR

performs the best with least relevant genes and smallest CV-error and test error among the

three listed methods. V-RR with UR obtained a more manageable set of genes than V-RR

with RFE, at the cost of one more test error (which increases the test error from 0 to 1).

The minimal cross-validation error for V-RR occurs at 7 genes and 11 genes in the UR and

RFE, respectively. The list of the 7 genes chosen by V-RR UR are identified as 1745, 1834,

2020, 2288, 3320, 4847 and 5772. The list of 11 genes chosen by V-RR RFE are identified as

numbers 1249, 1779, 1796, 1834, 1846, 1882, 2288, 2402, 4847, 5039 and 5950. The results

of Golub et at. (1999), Tibshirani et al. (2002) and Zhu (2003) are summarized in Table

2.3. m is the number of selected genes.

In Table 2.2, V-RR sacrifice two test errors by eliminating 4 genes. It is not necessary

that the 7 genes selected by V—RR with UR are all in the set. of 11 genes selected by V-RR

with RFE.
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Table 2.4. Comparison of breast cancer classification methods.

 

   

Method Test error m

Van’t Veer et al. 2/19 70

Yeung 3/ 19 6

V-RR RFE 2/ 19 2

V-RR UR 4/ 19 2  

2.2.3 Breast cancer prognosis data

The breast cancer prognosis data (van’t Veer et al. (2002) and Shieh (2004)) consists

of 97 primary breast tumor samples hybridized to cDNA arrays consisting of 24481 gene

expression levels. The two categories are: the good prognosis group (patients who remained

disease free for at least 5 years) and the poor prognosis group (patients who developed

distant metastases within 5 years). We picked 4918 significantly regulated genes (at least a

2-fold difference and p—value < 0.01 in more than 3 samples) among 24481 genes. We further

removed two samples with missing values at the 4918 gene expression levels. Therefore, the

breast cancer prognosis datga in this chapter consists of 76 training samples and 19 test

samples across 4918 genes.

When we apply the V-RR with RFE to the 76 training samples each with 4918 genes, a

cross-validation set formed by 4 samples from the good group and 3 samples from the poor

group was randomly taken from the training data to determine the tuning parameters.

For each A value, we choose that V E (0.1) which leads to the smallest CV-error rate and

evaluate the performance of the classifier on the test samples. Due to the randomness of

the cross validation set, we repeated the programming 10 times for each pair of A and V,

and take the average of number of misclassifications across the 10 simulations. The average

number of misclassifications at the kth iteration in gene selection was used as M630;, in the

parameter selection criterion. Then our V-RR method is trained on all 76 training samples

to get the classifier. When applying RFE for gene selection, we found out that any A > 5 will

provide the same gene selection result. Genes identified as 1865 and 2294 are selected with

2 classification error on the test data. The result varies as A decreases from 5. We compare

the published results of Van’t Veer et al. (2002) and BMA Yeung (2004), to our selected

genes and the corresponding classification errors. The comparison is summed up in table 2.4.
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There is only one gene expression level identified as AL080059 in the above 4 sets of

selected genes.

2.3 Discussion

Among all the above classification methods with UR, V—RR found 7 genes that distinguished

acute myeloid leukemia (AML) from acute lymphoblastic leukemia (ALL) with a lower error

rate than SVM and PLR employed in Zhu (2004). That is to say, V-RR can reduce the test

error with even smaller set of genes. This may imply the weights used in V-RR capture the

interactions among genes better than SVM and PLR models.

Comparing the results of classification methods with RFE, we found that V-RR dramat-

ically improves all three criterion: CV-error, test error and number of genes, based on the

existing gene selection results on leukemia and breast cancer prognosis data. Combined

with either UR or RFE, V-RR obtained a smaller set of related genes without any cost of

CV-error and test error.

We can tell from Table 2.2 that V—RR with UR tends to select less (or same amount

of) genes than V-RR with RFE, but UR leads to a higher test error. It is a trade—off.

Through the simulation, we can tell that RFE is more sensitive to the values of regularization

parameters than UR. So more attention should be focused in choosing the parameters in

RFE than in UR. The set of genes chosen by V-RR with UR in leukemia data has 3 genes in

common with the set of genes chosen by V-RR with RFE. In breast cancer prognosis data,

they have one common selected gene named AL080059, which is also in the list of van’t

Veer et al. (2002) and Yeung (2004).

It is also worth to note that in the simulation, we can update the regularization parameters

to get the picture of the overall performance at all iteration steps rather than keep the

best performing parameters at an individual iteration step, as we did in the breast cancer

prognosis data. However, we can not try out all A values. In our approach, the summation

of the misclassifications over all steps is one criterion for the parameters, so the model with

the chosen parameter A guarantees a good overall performance on the cross-validation data,

which is consistent with our simulation results in the leukemia data and breast cancer data.
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Here we propose a new method inspired by ridge regression for the two class classification.

In going from the two class to the multi-class classification, the one-vs-rest scheme is often

used: given K classes, the problem is divided into a series of K one-vs-rest problems, and

each one-vs—rest problem is addressed by a different class—specific V-RR classifier; then a new

sample takes the class corresponding to the classifier with largest real valued output. This

is one approach for the multi-class classification. But how to extend the V-RR directly to

multi-class case with less work is called for and I am working on it. For general information

about multi-class classification, see Dietterich (1991), Ramaswamy (1998) and Lee and Lee

(2002)

2.4 Conclusion

We have proposed a V-ridge regression (V—RR) model for the two class microarray cancer

diagnosis classification. The simulation results on the real leukemia data and breast cancer

data show that when using the same set of genes (using UR), V-RR identifies less significant

genes with smaller CV-error and test error than SVM and PLR. When using the recursive

feature elimination method to select relevant genes, V-RR works perfect on leukemia data

with 0 CV—error and 0 test error, and it gains comparable test error on breast cancer data.

What is more, V-RR with RFE selects less genes than SVM, PLR, and other published

results. This good property makes the set of chosen genes more manageable. Therefore, we

claim V-RR is a good classification method for two class microarray data.
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CHAPTER 3

Density Curve Estimation and

Classification of Microarray by

Conditional Logistic Regression

hdodel

' The support vector machine (SVM) has been successfully applied to microarray cancer

diagnosis problems. Khan (2001) proposed a classification method using gene expression

profiling and artificial neural networks. However, one weakness of the SVM and Khan is

that given a tumor sample, it only predicts a cancer class label but does not provide any

estimate of the underlying probability. The penalized logistic regression has the advantage

of additionally providing an estimate of the underlying probability of being assigned to a

class, but it does not offer any estimate for the probability of the class 3; conditional on

an individual gene variable. We propose the conditional logistic regression (CLR) model,

which is an alternative for the microarray cancer diagnosis classification, for the underlying

probability of the response given any gene variable. Meanwhile, since the gene selection

purpose as a primary goal in microarray cancer diagnosis, we propose a new method called

modified univariate ranking (MUR) as a new choice for dimension reduction.

We show that when applied on a microarray data for classification, CLR performs compa-

rable to those classification methods, e.g. SVM, PLR and BMA, but CLR has the advantage
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of providing the probability of the class y conditional on any individual gene variable. Em-

pirical results on Leukemia and Breast Cancer data indicate the CLR combined with one

of the gene selection methods (MUR,BSS/WSS or RFE) tends to perform superior to SVM

and PLR on both CV—error and test error rate.

The support vector machine (SVM) is one of the leading methods that has been success-

fully applied to classification of the cancer diagnosis. See Lee & Lee (2002), Mukherjee et

al. (1999), and Ramaswamy et al. (2001). In two-class classification, the linear SVM fits a

model f (:17) = b0 + xlprpxl that minimizes

n

20 — y.f(x.)>+ +3111]? .
i=1

The classification decision is then made according to sign[f (1:)] However, one weak-

ness of the SVM is that it only estimates sign[p(:1:) — 0.5], but doesn’t offer the the

probability of interest p(:1:) or 112(3), where the p(:r) = P(Class = IIX = :13) is the

conditional probability of a point being in class 1 given the gene measurements :13, and

p,(.1:) = P(Class = 1|ith gene expression level). Recently, Zhu (2005) proposed a penalized

logistic regression (PLR) classifier and the underlying probability p(:1:), but it still lacks the

investigation on the estimation of pi(:r.).

In this chapter, we use CLR model to get an insight of the p,-(a:) and take the p,(:1:) into

consideration for classifier. The classification rule is given by sign[n§I—{~:—)b — a], where a is

a cut-off value depending on the gene variables used in CLR. The CLR not only performs

as well as SVM, PLR and BMA in two-class classification, but can provide an estimate of

the probability of interest p,(a:). -

Maximum likelihood and the Newton-Raphson algorithm is the traditional way to solve

CLR numerically. However, the computation in microarray data is tedious. Instead, we

use a sequential minimal optimization (SMO) algorithm (Platt ( 1998)) to solve CLR in this

chapter. SMO was first proposed in Keerthi et al. (2002) for PLR model for two-class

classification; we modify it to be applicable to the CLR model.

Besides predicting the correct cancer class for a given tumor sample, a primary challenge

in microarray cancer diagnosis is to identify the relevant genes that contribute most to the

outcome. We apply three gene selection methods here, univariate ranking (UR) (Dudoit et
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al. (2002), Golub et al. (1999) and Zhu (2004)), recursive feature elimination (RFE) (Guyon

et al. (2002)), and the ratio of between-group to within-group sum of squares (BSS/WSS)

(Dudoit et al. (2002)). Furthermore, we propose a modified univariate ranking (MUR) to

improve the classification performance and eliminate genes. The comparison of SVM, PLR

and CLR with some external gene selection method are done with two frequently studied

microarray data sets.

Our simulation results on the real data sets indicates CLR with MUR tends to select

less genes with exceptional error rates than SVM, PLR and BMA with some gene selection

method. More detailed report of simulation is in section 3.2. The formulation of CLR, the

description of UR, RFE, BSS/WSS and MUR, and the cut-off value are described in section

3.1.

3.1 Approach

In standard two class classification problems, we are given a set of training data (ethyl),

(11:2, yg), ..., ($71,317,), where the input :13,- = (513“,513i2, ..., rip), the output y, is qualitative and

assumes values in {+1, —1}. We wish to find a classification rule from the training data, so

that when given a new input :1:_, we can assign a class label from {+1, —1} to it. Meanwhile,

we wish to understand more on the relationship between the binary response and each gene

variable. The relationship is defined by the probability of y conditional on :1:_j with logistic

regression model. A statistic based on the conditional probability is accompanying a tissues

sample and is used as our cut-off value for classification.

3.1.1 Conditional Logistic Regression Formulation

Usually it is assumed that the training data are an independently and identically distributed

sample from an unknown probability distribution. To estimate the curves of the conditional

probability, we think of the parametric approach and use the most prominent logistic models,

which has the form

1

1+ exp—311.1031) ,

 

P(yl$.1) =
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P = ,
(yl$.2) 1+ exp—yf2(f-2)

1

1 + exp-90’0”?) ’

 

P(yl17.p) =

where :roj represents the jth gene expression level of the tissues sample 13,, and fj(:r) =

bjO + bjlx, j = 1,2, ...,p.

Logistic regression models are usually fit by maximum likelihood. Given the training set,

the negative log-likelihood is

n P n p

- Z 2108 P(3/ = yil$1jl = Z 2108(1+ exp—yifj(xfj))-

i=1 j=1 i=1 j=1

We hope Two similar gene expression value measured on a same gene variable would lead

to very close conditional probability. Therefore, the coefficients bjl for each gene variable

are better to be reasonably small. Additionally, to avoid the special case in which some

optimal bjl’s will be infinite, we consider the negative log-likelihood with the L—2 penalty

term, which is

min [02210541 +eXp91f)”13) )4—21121]. (3.1)

(’10; bil 1:1 j: 1

With the gene expression arrays, it is typically that p >> 11. Notice we have 2p pa-

rameters in the Optimization. Since p is often in thousands, and motivated by the logistic

assumption, we come up with SMO algorithm.

3.1.2 Algorithm

The spirit of the conditional logistic regression SMO algorithm follows the two class SMO

algorithm for penalized logistic regression by Keerthi et al. (2002). We extend the algorithm

to our case.

To minimize (3.1), we rewrite it as

n 1)

min [:- 32:11?1+ szgféztjl] , (3-2)

”JObfl i=1j=1

subject to the conditions

51) = -y1(bj0 + (51331)) a (3-3)
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116,-) = 10g<1+ e511). w. J. (3.4)

where C is the regularization parameter. The Lagrangian dual form for the problem is

1 P

T§Zb121+CZZQ(€2'J) +2200]”521' %(bJ0+bleij)l

j=1 1=1 j=1 1=1 j=1

where the a,j’s are the Lagrangian dual multipliers. By the KKT optimality conditions, we

have

3L

 

Ob-jl 29111-20131"y1lx1j :0 V]:

BL ” ,

5186::02](_y2)=07 VJ)

1=1

(9L

=C I —01--=0, V1, ,,3613' 9(51J) 1] .7

so that bjl and {U can be expressed as function of the a,j’s, which is

1

bj1__ Zaijfhxzj , 613': (9”) (OCj)

1: 1

Define 6 = %-Z and C(15) = 66,13- — g(§,jj), so obviously

C(15) = 610g(5)+(1— 6)log(1— 6).

Therefore,

CG 5852]. 81
6?: +€1j_9(€1j)7%j

 

= (914(6).

So the dual form of optimization problem (3.2), (3.3) and (3.4) becomes

max[——Z,— 0220(35] (3.5)

1=1j=1

subject to the condition

71

26%,- = 0, Vj = 1,2,...,p, (3.6)

where bjl = 221:1 a,jy,-:1:,-j, Vj = 1, 2, ...,p. Rewrite the above in the dual form, which is

p n

ncingminL=-2—J12b21+CZZG(%go.jar},ji/,.

(1

U 1=1j=1
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Denote

TI.

F1]": 313325 = 1313' Zaijymfij, Hij— Fij + 15010—20),

1:1

by KKT conditions, we have

87:

(90,-,-

 

I aij

= y-1F1j+G(—C—)—</>jyi

= (H1j”¢j)yi

= 0, V1,]:

So the optimal solution vector 01 = ((111, ...,a'n1,....,alp, ...,anp)' has to satisfyH =05),

V1: 1,2,...,n, and for each j =1,2,...,p. That is to say, if we denote

211190): arg mZa'X Hija 2(0111(3) = my main H1J'1 Vj,

we must have

Hapon = Human, V37 (37)

For somej E 1, 2, ...,p, suppose (11,12) satisfies H,“ 31$ H,2j, we define

tj ~ tj .. . . . . v
(1in =a,1j +—=, 61,2,- =a,2j—+-, C1,;j =01”, V27511,22,Vj, (3.8)

3111 912

and let

1110)) = (1)159) ,

where hj = #21 + 0:121 C(%Z). Therefore,

 

1 a. .

111,033) = E1j+—G'(az—Lj)-F12j-—GI( 22J)
3111 C yiz C

H111 — Hi2J' ,

where H,1 ,- and Higj are evaluated at 52. Since H,1j— H,2j aé 0 at t,-— 0 for some J', a

decrease in 1/J is possible by choosing tj suitably away from 0.

Through the procedure, we can tell that bjo-— —gbj, VJ’ = 1, 2,. , p. Therefore, at

the optimal solution a, we have —bj0 = HiupUlJ' = Hflowmj’ W = 1,2,-“JD. Since, in

numerical solution, it is usually not possible to achieve optimality exactly, there is a need to
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define approximate optimality conditions. We denote T as our upper bound for how much

we can put up with. The exact KKT condition can be replace by

H
211])(Jlj _ Hzlow(j)j S T .

 

H. , V. .+H. ’. .

As a consequence, we may define -—b10 = "‘1’“ )3 2 110100)]

The SMO algorithm can now be described as following:

1. Choose 010 = (031,612, ..., a,,,)’ satisfying conditions (3.6). One possible initial vector is

C . . .

a,j= -m—1, 1w1th y,=+1, VJ,

C . . .

a,j=;n3,1w1thy,=-1, VJ,

where m1 and 1112 denote the number of training examples in {+1} and {—1}, respectively.

Set 1 = 1.

2. If c13- satisfies (3.7) for some j E {1,2,...,p} , step. If (3.7) does not hold for any

jE {1,2,...,p} , let

i"? t”?

1*- : arcrmin ’1 't..- of“ . .= (if - -— —J— 11f+1 . .= 017.. . . —J— . 3.9
J O I“ J) ’ 1101110)] 11011.1(] )1 y?) , ( “WU” “WU” ( )

~01”

ylup

3. Update (IS-+1 according to the above formulation. If necessary, go back to step 2.

As stated in Keerthi (2002), the value of C should not be large. For our simulated

microarray data sets, when C > 0.5, the initial value of a is out of the domain of log function.

‘Hz' (DJ-”2'2.- (1): n . .
Recall that bjo = low 2 P and bjl = 2,21 a,jy,:r,-j, so the probability path of

l

“9(bj0+bjlx.j)

 

 class y conditional on the jth gene expression level :roj is P(y]:1:,j) =

1+exp

3.1.3 Feature Selection

Besides predicting the correct cancer class for a new tumor sample, another challenge in

microarray cancer diagnosis is to identify the relevant genes which contribute the most to

the classification. In our study, we used the ratio of between-group to within-group sum

of squares (BSS/WSS) (Dudoit et al. (2002)) and recursive feature elimination (RFE) to

determine the initial gene order.

About the BSS/WSS, intuitively, genes with relatively large variation between classes and

relatively small variation within classes are the most likely candidates for relevant genes.
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BSS/WSS is a univariate gene selection method in which genes with large BSS/WSS ratios

are good candidate relevant genes. For a gene J', let D,-J' denote the expression level of gene

j under sample 1, Dkj denote the average expression level of gene j over samples in class

is 6 {+1, —1}, and DJ denote the average expression level of gene J' over all samples. The

BSS/WSS ratio for gene j is defined as

BSS(j) _ 21 2:1: 1(yz' = ‘0ka " 5.1)2 (3.10)

W580) ‘ 2:.- 21 1(111 = 61(1):,- — 51,-)? '

We compute the BSS/WSS ratio for each of the p genes and order the genes in descending

order of the BSS/WSS ratio.

 

The gene selection method RFE depends on the classification method. We rank the genes

in descending order of the absolute value of bjl. The coefficient bjl reflects how the change

on gene j expression level will affect the conditional probability. The bigger the lbjll, the

more effective the gene j is to influence the assignment of class. Therefore, gene j is more

possible to be a relevant gene for the classification.

Aiming at gene selection, we apply BSS/WSS and RFE. As another choice, we propose

a new-univariate gene ranking method in terms of their classification performance, called

modified univariate ranking (MUR). The criterion is defined as:

_1Jlx—j+—17‘I+(1—J)Iaf—ogl

pj- .1. _

0]. +0]-

 , (3.11)

where 6 6 [0,1], 1",]; and 0;? indicate the average and standard deviation of the gene ex—

pression levels of gene j for all samples of class k 6 {+1, —1}. Our ranking statistics is

motivated by the univariate ranking statistics

Ie+-a1
+ _

aj +0]-

 
83':

It was introduced by Dudoit et al. (2002). The sj mainly takes care of the location difference

between the two class for any gene J' and can not detect any difference when the mean of the

two classes are equal but the standard deviations are totally different. However, .9, considers

both the location and scale difference even when one difference is hard to detect. Through

our simulation study, we conclude that pj fits some data, including Leukemia data, better

than UR and BSS/WSS in selecting groups of genes for classification.
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3.1.4 Cut-off statistics (1,,

The probability path of class y conditional 011 the jth gene expression value :11]- IS

I

ylbj0+bj11’.j) '

 

P(yl$.j) = _

1 + exp

Outline of up with iterative RFE for gene selection:

0 Input: training set D with p genes and 11 samples

0 Pre-processing step: use all genes for classification and rank p genes by the value of

lbjll-

0 Determine am: at jth iteration step, let qj denote the ordered list consisting of m =

p x 90%j'1 top ranked genes. We compute the statistics

Hquj 130/ = +1livz'j)

7?: =

2 lljeqj PU} = —1l$ij)

for each tissue sample in the training set, 1 = 1, 2, ..., n.

 

Our classification rule is based on the comparison of the 17, value and a cut-off value

am: assign a new sample x, with gene expression values 17,-, J' = 1,2, ...,p to class

{+1} if 1)_ > am and assign :r_ to {—1} otherwise. Consider two groups of indices,

C1={161,...,71]y,= +1}, C2 = {1 E 1, ...,11.[y,- = —1}.

Ideally, we wish n'1ax,,-E(;217,- < mimegl 77,- so that the cut-off value am which can

classify all training samples to the right class exists. In practice, we can find a value

am such that there will be least misclassification on the training set. The classifier

17, > am is applied on the test samples and the performance of the selected m genes

is evaluated by the test error.

0 Iterate the the previous steps until 111 = 1.

Output: the probability distribution of the class 3; conditional on each gene variable, selected

genes at each iteration (qm) associated with the cut-off value am, training error(cv-error if

cross-validation is done) and test error.

When apply the BSS/WSS to select am, we rank all p genes by the BSS(j)/WSS(j),

so we change the gene set qm at each iteration. Everything else is exactly the same as the

steps for RFE.
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Table 3.1. Comparison of classification methods for breast cancer prognosis data.

 

method trainfi error Test error 111.

van’t Veer et a1 15/76 2/19 70

BAM 16/76 3/19 6

CLR MUR(6 = 0.8) 16/76 3/19 1

CLR UR 16/76 3/19 1

CLR BSS/WSS 16/76 3/19 1

CLR RFE 16/76 3/19 1      
Table 3.2. Output of CLR on breast cancer data.

 

   

b ‘0 b '1

AL080059 0.613 -1193
  

3.2 Results

3.2.1 Breast cancer prognosis data

Refer to the description of breast cancer prognosis data in section 2.2.3. Using all 4918

genes and C = 0.3, our CLR algorithm provides the the probability distribution of the class

y conditional 011 each individual gene variable. For the breast cancer diagnosis data, we use

all 76 training samples and get the ratio statistic corresponding to each sample. Our am

to determine the classifier for different set of selected gene is the one which separates the

training samples with the lowest error rate. If in the case there are several such am values,

we choose their median for the classifier.

Our iterative CLR algorithm combined with BSS/WSS or RFE produced 3 classification

errors out of 19 test samples with 1 selected gene, AL080059. van’t Veer et al. (2002)

reported 2 classification errors on the test set using 70 relevant genes. Yeung et al. (2005)

reported 3 classification errors out of 19 test samples using 6 selected genes. Furthermore,

our selected gene, AL080059, is the only common gene in the 70 selected gene set by van‘t

Veer and 6 selected gene set by Yeung. By applying our CLR method for classification, the

single AL080059 performs similarly to those two sets of genes. The gene AL080059 is ranked

top 1 by BSS/WSS and it has the biggest absolute value of the coefficient bfl. To some

degree, the result confirms the consistency of CLR in the sense that top rank BSS/WSS

gene also has a top rank coefficient as we wish.

The result in Table 3.1 and Table 3.2 is from C = 0.3, 0.1 = 1.29. The selected gene by

CLR with MUR, UR, BSS/WSS or RFE is the gene identified as AL080059 which is also
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Table 3.3. Comparison of CLR on leukemia data.

 

 

LIethod training error Test error No.of genes

CLR MUR 0/38 1/34 6

CLR UR 0/38 2/34 8

CLR BSS/WSS 0/38 1/34 9

CLR RFE 0/38 1/38 9    
 

Table 3.4. Comparison of leukemia classification methods.

 

 

Method CV—error Wt error No. 0T genes

Golub et al. 3/38 4/34 50

Tibshirani et al. 2/38 2/34 21

SVM RFE 2/38 1/34 31

PLR RFE 2/38 1/34 26    
 

one of the 70 selected genes by van’t Veer et at. (2002) and one of the 6 chosen genes by

Yeung et al. (2005).

3.2.2 Leukemia data

This data set consists of 38 training samples and 34 test samples of the two types of acute

leukemia, acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) (Golub

et al. (1999)). Each sample is a vector of 7129 genes. The C value is limited by 0.2 due to

the domain of log function. The performance of the classifier is evaluated on the test tissue

samples. 0

C = 0.1 is used in the simulation for results in Table 3.3.

The results of Golub et al. (1999), Tibshirani et al. (2002), SVM with RFE and PLR

with RFE are summarized in Table 3.4.

The CV-error in Table 3.4 is for 10-fold cross-validation error.

The result in Table 3.5 is with C=0.1, am=0.37 x 36.

The result in Table 3.6 is for C=0.1, am = 0.34 x (39).

Table 3.5. Parameters for the chosen genes in the final classifier from CLR MUR.

 

1834 1882 2288 2642 4847 5772

bjo 0.96 0.95 0.96 0.97 0.97 0.99

bjl -0.72 -0.67 -0.69 0.56 —0.78 0.68
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Table 3.6. Parameters for the selected genes in the final classifier from CLR RFE.

 

          

461 745 1834 2020 3320 3847 4196 4847 5039

bjo 0.99 0.97 0.96 1.00 0.99 0.99 0.98 0.97 0.97

bjl -0.73 -0.73 -0.72 -0.79 -0.79 -0.73 -0.71 -0.78 -0.75
 

 

3.3 Conclusion

We have proposed a CLR for the 2—class microarray cancer diagnosis classification problem.

Besides doing classification, CLR can offer an estimate of the conditional density p,(:1:,).

The simulation results on the real leukemia data and breast cancer prognosis data show

that when using the same set of genes, CLR identifies less significant genes with smaller

error rate than SVM and PLR. When using the modified univariate ranking method to

 

select relevant genes for leukemia classification, CLR provides 0 10-fold CV-error and 1 test

error. Moreover, it removes more genes than SVM and PLR, which makes the set of chosen

genes more manageable. Therefore, we think CLR is a good classification method for two

class microarray cancer data and it can estimate the underlying distribution.
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CHAPTER 4

Asymptotics and Variable Screening

for Microarrays with Fixed Small

Sample Size and Large Dimension

DNA microarray is a new and promising biotechnology which allows the monitoring of

expression levels for thousands of genes simultaneously. Microarray is being applied more

and more often in biological and medical research to address a wide range of problems,

including identifying a set of candidate genes that are most likely related to the outcome

in the experiment. Statistical considerations are frequently to the fore in the analysis of

microarray data, as researchers shift through massive amounts of data and adjust various

sources of variability in order to identify the most important genes among the many which

are measured. However, there are many more candidate genes in microarrays than the

number of available samples in almost all studies, which leads to the improper application

of traditional statistical technology. Some existing statistical methods deal with a single

gene at a time (see Chen et al. (2003) ), or deal with the casein which the sample size n —~> 00

(see Shao (2006)). The present chapter describes insight for the analysis of microarray data

with the more realistic case that sample size is fixed and the dimension of variables p —-> 00.

By applying any type of shrinkage estimation to a linear model, we have more clues in

interpreting the effects of the predictors. For example, the best subset selection of size it

method, which shrinks the coefficients by setting some coefficients to be exactly zero and



makes it much easier to interpret the data. In another words, it identifies the important

variables for the outcome. This process is discrete since the genes are either retained or

dropped, so that the obtained result after variable selection might be extremely unstable.

For another type of shrinkage estimations, lasso estimation (see Zhu (2003 and 2004) and

Tibshirani (1999)), could be a very good choice. Fu and Knight proved that the Lasso

estimation is consistent when the regularization parameter over the sample size tends to 0

as sample size increases to infinity and the number of predictors p is fixed. But the condition

doesn’t hold in real microarray data, and it is hardly appropriate to consider asymptotic

methods for n —+ 00 when in reality the sample size 11 is fixed.

In practice, it is often true that a given outcome of interest is affected significantly by

only a few genes among the large number of candidate genes, and the rest of the genes

are approximately irrelevant to the outcome. Under such an idea, our task is to identify

these important genes based on the sampled data. This is actually a variable selection

problem. In the current statistical literature, however, there is no established variable

selection procedure that can deal with a variable selection problem with number of variables

p ..., 00 while sample size n is fixed. Zheng and Loh (1997) conSidered linear model selection

with high-dimensional covariates, but they assumed that the dimension of the covariates

over the sample size tends to 0 as the sample size increases to infinity.

In this chapter, we use ridge regression estimation (see Hoerl and Kennard (1970), which

shrinks the coefficients but does not set any of those to be exactly 0. The problem considered

concerns the asymptotic properties of microarray data with fixed sample size n and very

large dimension of gene variables. Furthermore, we propose a variable screening method

to eliminate the insignificant candidate genes and prove its consistency. The shrinkage

procedure of ridge regression is continuous, therefore it is quite stable. After screening out

the genes, if necessary, we may apply an established variable selection method, such as AIC

and BIC, to select a final set of genes and fit a linear model which interprets the relationship

between the predictors and the outcome in a concise way.

Mean squared error (MSE) consistency of the ridge regression

estimators, as dimension p —-+ co and sample size is fixed, is proved in section 4.1. The

variable screening method is described in section 2. Finally, a simulation study is presented
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in section 4.3 to investigate the performance of the variable screening method.

4.1 Mean Squared Error Consistency

Consider the model Y = X6 + 5, where E(5) = 0 and Var(s) = 0317,, X is a n x p matrix

and 6 is a p x 1 vector. Apply ridge regression method to obtain the estimator of 6, i.e.

mmw — X1370: — X13), (4.1)

subject to the condition

According to Fu (2004), this is equivalent to the Lg-norm SVM model

P

ngn (Y — x6)’(Y — X6) + 6,,Z 62., (4.2)

j=1

where hp is a regularization parameter. The equivalence is in the sense that for any positive

constant tp, there exists a positive constant hp such that model (4.1) and the model (4.2)

share the same optimal solution 6, so we can stay focused on’the model (4.2). The convex

objective function makes it feasible to get the optimal solution at

6 = (x’x + 6,1,)“1x’x. (4.3)

Throughout the chapter, X is the gene expression data and Y is the outcome vector for

the 11. samples. In this section, we will discuss the MSE consistency of 6 when n is fixed while

p —> 00. Due to the fact p is involved in the dimension of X, we will state the conditions on

components of X as dimension p —> oo.

Assumption A. There exists a constant 0 S 15 < 0.5 such that each component of X is

1—26
h.

001g). 0,, = 0(1), 5% = 0(1) and —fl§—— = 0(1) as p —+ 00.

Theorem 1. Under Assumption A, we claim that maleSp var(6,) —+ 0, as p —> oo.

37



Proof.

I
D
)

V,“ ) = (x'x+h,,1,,)-lx’a,2,X(x’x+h,,1,,)"1

2 I I I
11. XX _XXXX

—,,”< h 11.11,, (, +1,)
P 'P P P

   

   

  

   

 

2 I I I

0 X X X X X X

= it 1)-1_( 1)-1( +I>“ll
hp hp 1) hp P hp P

2 I I

‘71) X X -—1 X X 2 —1
= — I — I

’71)“ hp + P) (( p P) ) l

2 I I I I
Up X X _1 X XX X X X _1

= — I. — — I 2 .
hp [( hp + P) ( hp hp P + hp ) l

So we have

uar(6) _1 _1

= A — B

if: ,p

where A: 23;; + [p and B: XhJ——;:—— + 1,, + 277—. Because each component ofX7%

. lily-26 . . . x’xx’X

18 0(1) and —1——p = 0(1) (wh1ch implies (71p—71p— + 1,, + 27%)1= 0(1),,xp) under

assumption A, we have

 

 

V3361)

0'2 H1
EB

p

as p —-> 00. Further,

v ‘ .

]] ("é/3) — 1,,“ = sup Ia’A‘la — a’a — a’BTlal

0‘ Ilall=1,5

So n1ax1S,S,,var(6,-) —> 0, as p —-> 00.

For the analysis of bias vector, we need the below two assumptions.

Assumption B. There are only p0 components of 6 which are nonzero (p0 doesn’t depend

on p). Furthermore, 6 is in the linear space generated by the rows of X’X for sufficiently

large p, i.e., there is a vector bpxl such that 6 = X’Xb when p is large enough.

As p ——> 00, n is fixed throughout the chapter. X'X has at most 11 positive eigenvalues.

Let A,,, be the ith nonzero eigenvalue of X’X , 1 = 1, 2, ..., 71. Without loss of generality, we
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assume A,,, > 0.

Assumption C. Assume there is a sequence of positive numbers 5,) —> 00 such that 11,, =

0(6p). Moreover, there exists a finite positive constant c such that A,,, 2 65,, for all 1 =

1, 2, ..., 71. (Normally we can set the {p = p ). The constant C does not depend on p.

Theorem 2. Under the assumptions B and C, we have many-S, bias(6,~) —> 0, as p ——> 00.

Proof. When p is large enough, let F be an orthogonal matrix such that

Am 0nx1p—n)
r’x’xr :—

0(p—n>xn 0(p—n)x(p—n>
PXP

where Anxn is a diagonal matrix with elements A,p,1 = 1, 2, ..., n, then it follows that

A

6166(6) = 15(6) — 6

= (x’x + hplprlx’xa — 6

 
X’X _

P

F’X’XI‘ _

= -IF( h Iplrll 1+3

P

F’X’XI‘ __

z _r( h. [1,) 11713

P

a —rcr’,13,

_ r’x’xr —1 - -. . . . ,. , ., . _ , h;
where C — (T + 1p) 18 a diagonal matrix w1th first 11 diagonal elements W,

1 = 1, 2, ...,11, and the rest p — 71 diagonal elements all equal to 1. Under assumption B,

D6 = F'X’XFF’b

= Anxn 0n><(p—n) Flb

0(p—n>xn 0(p—n)><(p—n>

Notice F’6 is a p x 1 vector and the only possible nonzero components are some of its first

11 components. By the assumption that only p0 components of 6 are nonzero, we know the

first 11 components of F’6 are finite. Since A,,, 2 cép for all 1 = 1,2, ...,n, and we obtain

A

I”

that n1ax13,3,,h,p/(hp + A,,,) = 0(hp/Ep) = 0(1) . So maleSP bias(6,) ——> 0 .

From the above fact the following result is also of interest.

Lemma 1. Under conditions A, B and C, we have the estimation 6,- is MSE consistent for
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[3, for all ’i = 1,2,...,p, asp—>00,

Proof. MSE(6,-) = E(3, — 6,)2 = var(6,) + biasQ(,6,) —» 0 when both terms approach 0 as

p—>oo.

4.2 Variable Screening Procedure

Let (1,, be a sequence of positive numbers satisfying (1,, —> 0 as p ——> 00. For each p value, we

screen out the ith gene if and only if |6,| S (1p. Therefore, after screening out procedure,

only genes associated with L3,] > up are remained in the model as predictors. The sequence

(1,, acts as a filter in the process and eliminates genes with relative small coefficients. We

will prove the consistency of the procedure when there are only finite components of 6 are

DOHZGI'O.

Theorem 3. Suppose that assumptions A, B and C hold. There are only finite nonzero gene

I2k<OO
expression measurements in each sample as p increases to 00. We also assume Ele,

. h .

for an inte er k such that , = ' —B— 2}” = 0 1 , for all 1 = 1,2....,n. Oneg W P(Sc,,a,,l ( l . (

example of a choice is (5 = 0.4, k = 20, 15,) = p, 11,, = 1:1]:1/4, up = C2])_1/9 , where (:23 are

positive constants.) Then the variable screening method is consistent. in the sense that

’ lim P(All genes related to Y are remained) = 1 ,

[9"00

lim P(all genes unrelated to Y are screened out) = 1 . (4.4)

—’00

Proof. Statement (4.4) is equivalent to

plingo P([6,] > a}, for all i with 6, 75 0) = 1 , (4.5)

plingc P(],6,] S (1,, for all i with 6, = 0) = 1 . (4.6)

Assumptions A, B and C guarantee that 6, is MSE consistent for 6,, which implies for any

6 > 0,

plggo 13(11- - 11-1 > .) = 0.

Since 6, 72$ 0 and up = 0(1), we have

page P(li31l > 01)) =1'
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That is equivalent to say

lim P(|6,-| S (1.1)) = 0.

P—’00

Therefore,

P “Bil > up for all i with 6, 7A 0)

= 1 — P(there exists at least one i satisfying |6i| 3 up among all i with 32. ¢ 0)

2 1— Z 19031! 3 up).

{l. all i With fifiéO}

There are only finite components of 6 are nonzero, and this finishes the proof for (4.5).

If ,6, = 0,

a — 13(3) = (x’x + hplprlx’mfi + 5) — (x'x + hprprlx'xp

.—. (X’X +h,,1,,)-lx’s

= Bpx'nE-nxlv

where

B = (X'X+hp1p)‘1X’

1 X’X 1 X’
= -—-x — 1 — x—

hllf‘s (hp p) hf,

l

= (O( 1_5))pxn

hp

 

 

 

2 El6l2k

Pea-I > up) 3 J,
a-

P

_ Elbias(6,-) + mlgk

agk

< 22k—1lbi88(.131)|2k + Elm|2k
_ 9k °

a~

p

. . . . . . * h

From the discusswn 1n the prev1ous section: b1as(6,;) = O(—E ).

f
r
»

'
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Consequently,

P(|6,'| > tip for at least one 2' S p with 6,: = 0) g 2 P(|6,-| > up)

{izall i with 62:0}

S PP(|61| > ap)

= 0(p(§§—p>2k>+0<(——1-_—§—),—,>.
(1p '

For the given choice of (hp, 6p, ap) in the Theorem 3, both 0() terms in the above expression

are 0(1), which establishes result (4.6) and completes the proof.

The next result establishes the consistency of the variable screening method replacing

the moment condition on 5, constraint on X and hp by the normality assumption on the

residual.

Theorem 4. Suppose the assumptions A-C hold. 5 is normally distributed. Additionally,

, h ) hpa2/02

ap, hp and {p are chosen in the way that 0.1) = 0(1), 5% = 0(ap) and 735—52 —-> 00. Then

the result (4.4) holds.

Proof. Again, (4.4) is equivalent to (4.5) and (4.6). The proof of (4 5) is exactly the same

as that in the proof of Theorem 3. It remains to show (4.6).

If 6,- : 0, under the normality assumption on 5, 61 is normally distributed for each 1'. So

Pllfiil > 0p) = P(6,' > (3.1,) + 13(32. < _ap)_ A

: (“Mad/31') - up) + (w —bia.s(6E-) — 01p

Sd(:8i)
Sd(,82')

where (I) is the standard normal distribution function. In theorem 2, we proved that

  

),

bias(6,-) = 0(hp/ép) for all 1' = 1, 2, ...,p. From the condition that [IE—1112 = 0(ap), the bias part

is 0(ap). In Theorem 1, we have fl—B—l—l ——+ 1 for all 1 = 1, 2, ...,p, which tells us

It S
F

iblaS(sz)-a2

sd(6.,-)

1 {hpap

0p

For a large enough p value, there exists a positive constant t E (0, 1) so that

 

P(|6,| > up) 3 2¢>(—t,/@ap/ap).

hpa2/02

By assumption —+ 00, we have t h. a. a Z 2qlog(§ ) for a large enough p
095p P P P I

value, where q is a constant such that p/{fi = 0(1).
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2

Now we apply the inequality 2<I>(—:r) S 6“” /2 for any :1: 2 1. The probability of interest

becomes

Pllfiil > ap) : 2<I>(—\/2qlog€p) s. e‘qlog‘fpl = 65".

It follows that

l
/
\

P(|6,-| > ap for at least one i with 6,; = 0) Z P(|6,-| > up)

all I With 62:20

17/6}; -* 0.

lim Pal/31! 3 cap for all i with ,3,- = 0) = 1.
P—’00

l
/
\

That finishes the proof for (4.6).

4.3 Simulation Result

A simulation study was carried out to investigate the performance of the proposed variable

screening method with fixed 11 and increasing p to study the asymptotic effect. We consider

two sets of p: p = 360 and p = 600 with same 11 = 60 to evaluate the MSE consistency.

For the variable selection part, we consider two sets of p: p = 360 and p = 1200. Since the

convergent rate can also be influenced by the variability of the residual 5 as in Theorem 1,

‘1/9 combinedwe consider two values of the standard deviation of error : or = 1 and a = p

with each p for simulation. We assume only the first 5 among all candidate genes are related

to Y (p0 = 5).

A flowchart for generating microarray data X is shown as the figure 4.1. Our 71 samples

are from multi normal N(p0'21n, In) .

In each of 1000 simulation runs, y, was generated according to y,- = 33,6 +521, 1 = 1, 2, ..., n,

where 5:5 were independently generated from N(0, 02).

In table 3.1, we report MSE for the first 10 genes. The convergent tendency is quite clear.

For distinguished nonzero 6,- values, the MSE convergent rate is slower than that of the 6’s

which are zero. In the simulation, the variability of the error doesn’t significantly affect the

MSE convergent. rate.
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Figure 4.1. Flowchart of data generation



 

 

 



In Table 4.2, each simulation was applied to the generated data X and the true 6 vector

with nonzero components are quite close to 0. We carry out the simulation with hp = p025,

up = p_1/11. Those two parameters are chosen to satisfy the conditions in Theorem 4.

The results in Table 4.2 for small coefficients indicate that the proposed variable screening

method can just leave out the unrelated gene variables gradually. The consistency of the

screening method is strongly supported through the simulation study.

To show that the screening method is stable no matter how big or how small the nonzero

components of 6 are, we provide the simulation result for big nonzero 6,- in Table 4.3, where

each simulation was applied to the generated data X with hp = p025, a7, = p"1/11 x 11.

The results in Table 4.3 are unbelievably perfect even for small p and large variability of

the residual. The reason lies in the MSE consistency of the estimations.

Table 4.2 and 4.3 report the performance of the variable screening method in terms

of two measures with results for f1, f2, g1, g2, hl and h2. Note it is possible that after

screening, some of the 5 variables related to Y are not selected although the number of

remaining variables is 5 or larger.



Table 4.1. Simulation results for MSE consistence based on 1,000 runs (x fixed), hp = p

n = 60, X is from the flowchart

0.25

7

 

             

a p I 2 3 T 5 6 f 8 9 10

1 360 m1 0.281 0.747 0.129 0.317 0.204 0.022 0.019 0.103 0.025 0.084

600 0.095 0.263 0.116 0.168 0.149 0.048 0.027 0.016 0.017 0.024

p-1/9 360 0.242 0.466 0.354 0.265 0.084 0.006 0.032 0.017 0.076 0.008

600 0.146 0.272 0.251 0.181 0.019 0.022 0.008 0.016 0.015 0.003

1 360 m2 59.04 43.49 85.82 31.96 97.82 0.419 0.164 23.58 0.032 0.144

600 17.11 27.75 40.77 12.91 34.21 0.013 0.424 5.763 0.097 3.638

p-1/9 360 38.89 84.19 63.94 81.19 40.76 15.23 1.782 2.832 1.046 2.802

600 24.11 65.20 38.55 53.41 27.65 11.90 0.003 0.890 0.376 1.642
 

ml = MSE of the first 10 gene variables with 6 = (1.4, —2.5, 1.8, —1.7, 1.2, 0, 0, ...,0)’

m2 = MSE of the first 10 gene variables with 6 = (21.4, —22.5, 21.8, —21.7, 21.2, 0, 0, ..., 0)’
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Table 4.2. Simulation results for close-to-O nonzero 6,- values based on 1,000 runs (x fixed)

 

a n p S 3 4 5 6 7 B g 2 10

1 60 360 11 0 14 833 137 16 0 0 0

r2 0 14 833 137 16 0 0 0

gl 0 15 881 97 7 0 0 0

g2 0 15 880 97 7 0 0 0

hl 0 15 921 62 2 0 0 0

h2 0 15 920 62 2 0 0 0

1200 11 0 73 891 36 0 0 0 0

f2 0 73 887 36 0 0 0 0

gl 0 75 896 29 0 0 0 0

g2 0 75 896 29 0 0 0 0

h1 0 76 904 20 0 0 0 0

h2 0 76 904 20 0 0 0 0

p-1/9 360 1’1 0 3 835 162 0 0 0 0

r2 0 3 833 162 0 0 0 0

gl 0 4 944 52 0 0 0 o

g2 0 4 944 52 0 0 0 0

hl 0 5 982 13 0 0 0 0

h2 0 5 982 13 0 0 0 0

1200 r1 0 0 1000 0 0 0 0 0

12 o 0 1000 0 0 0 0 0

gl 0 0 1000 0 0 0 0 0

g2 0 0 1000 0 0 0 0 0

hl 0 0 1000 0 0 0 0 0

112 0 0 1000 0 0 0 0 0   
Table 4.2 is simulated with 6 = (1.4,—2.5,1.8,—1.7,1.2,0,0,...,0)’, 5,, = p025, up =

p-l/ll, p0 = 5_

f1=frequencies of the number of remaining variables after screening

f2=frequencies of including all 5 relevant variables after screening

g1=frequencies of the number of remaining variables after screening and AIC

g2=frequencies of including all 5 relevant variables after screening and AIC

h1= frequencies of the number of remaining variables after screening and BIC

h2=frequencies of including all 5 relevant variables after screening and BIC

f1, 12, g1, g2, h1 and h2 are frequencies of including only variables related to Y when

the remaining number of variables is less than 5
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Table 4.3. Simulation results for distinguished nonzero 6,- values based on 1,000 runs (x

fixed)

 

 

071p £3456789§10

1 60 360 n 0 01000 0 0 0

1200100000000

g100100000000

g200100000000

5100100000000

5200100000000

120011 0 01000 0 0 0 0 0

1200100000000

g100100000000

g200100000000

5100100000000

5200100000000

p-1/9 360 11 0 01000 0 0 0 0 0

r200100000000

g100100000000

g200100000000

5100100000000

5200100000000

120011 0 01000 0 0 0 0 0

1200100000000

g100100000000

g200100000000

5100100000000

5200100000000              
The above table is obtained with hp = p025, ap = 11 X p‘l/ll, p0 = 5, 6 =

(21.4,-225,218, —21.7,21.2,0,0,...,0)'. f1, f2, g1, g2, 11] and 112 are the same as those

in Table 4.2.

4.4 Conclusions and Discussions

The established asymptotic result shows that for a fixed sample size 71., the proposed variable

screening method has some good properties when the dimension p is sufficiently large. It

has perfect performance when the genes which are related to the outcome have significant

influence on the outcome. For applications, we need to carry out some sensitivity analysis

on the gene expression data set X to check those regularity conditions, and to determine (1;,

and hp in the variable screening procedure. More research in how to reduce the requirements

on X is called for.

The use of ridge regression is a crucial part for the estimations being MSE consistent of

the true parameters and for the proposed variable screening method. Since ridge regression

is a type of shrinkage estimation, the use of other SVM estimations might also produce a
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good screening method. For example, the L1 norm SVM estimation (or lasso estimation).

However, the path of lasso estimation doesn’t have a clear mathematical expression (Tib-

shirani (1996)). While ridge regression is much more easier in practice to get the properties

of the estimations because of the known solution (Saunders and Gammerman (1998)).

Penalized linear models are considered for Y and X in this chapter. In general, the

regression function between Y and X may be not strictly linear. When there exists a kernel

transformation function k(.) and it is linear for Y and K(X) in the feature space, our

results for the MSE consistency and the consistency of the screening method can both be

extended to the feature space for new variables. In the present chapter, our proofs and

simulations are for fixed design matrix. More theoretical and numerical work for random

design matrix is necessary.
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CHAPTER 5

Gene Selection Methods for

Microarray Data

It is important to know which genes are most relevant to the binary classification task and

select these genes for a variety of reasonszremovingnoisy or irrelevant genes might improve

the performance of the classifier,a candidate list of important genes can be used to further

understand the biology of the disease and design further experiments,and clinical device

recording on the order of tens of genes is much more economical and practical than one

requiring thousands of genes.

The gene selection problem is an example of what is called feature selection in machine

learning. Gibbs sampling (George (1993)) was used as one variable selection method. In

the context of classification, feature selection methods fall into two categories filter meth-

ods and wrapper methods. Filter methods select features according to criteria that are

independent of those criteria that the classifier optimizes. On the other hand, wrapper

methods use the same or similar criteria as the classifier. We will discuss five feature

selection approaches: univariate ranking (UR, Golub et al., 2000), recursive feature elimi-

nation (RFE, Guyon et al., 2002), ratio of between—group sum of squares to within-group

sum of squares (BSS/WSS,reference), clustering (Sengupta (2003)), and pairwise ranking

(Jonassen (2002)). They are either filter methods or wrapper methods. There are other

biological methods for gene selection, see Dudoit. (2000), Chow (2001), Kim (2002) and

Jaeger (2003).
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5. 1 Univariate Ranking

Univariate ranking method is also called signal-to—noise or P-metric. It defines a statistic

Sj for each gene variable j and assign a rank according to the value of statistic. Sj totally

depends on the gene expression data. For each gene, we compute the following statistic:

 
S» ____ n+0) - 14—01

J 0+0) “fa—(J)

where 11+(j) and 11_(j ) are the means of the classes +1 and —1 for the jth gene. Similarly,

U+(j ) and 0.. (j) are the standard deviations for the two classes for the jth gene. Genes that

give the most positive values are most correlated with class +1, and genes that give the most

negative values are most correlated with class —1. One selects the most positive m/2 genes

and the most negative 771/2 genes, and then uses this reduced dataset for classification. A

basic question that arises for all feature selection algorithm is how many genes the classifier

should use. One approach to answer this question is using hypothesis and permutation

testing (Golub et al. (1999)). The null hypothesis is that the UR statistic for each gene

computed on the training set comes from the same distribution as thatfor a random data

set. A random data set is the training set with its labels randomly permuted.

In detail, the permutation test procedure for the UR statistic is as follows:

(1) Generate the statistic for all genes using the actual class label and sort the genes

accordingly.

(2) Generate 100 or more random permutations of the class labels. For each case of

randomized class labels, generate the statistics for all genes and sort the genes accordingly.

(3) Build a histogram from the randomly permuted statistics using various numbers of

genes. We call this number k. For each value of k, determine different percentiles (1%, 5%,

50% etc.) of the corresponding histogram.

(4) Compare the actual signal-to-noise scores with the different significance levels obtained

for the histograms of permuted class labels for each value of k. See the figure for an

illustration.

The solid curve is the UR statistic rank ordered computed on the training set. The three

dashed lines are the 5th, 50th, and 95th percentiles of the same rank ordered statistic as
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computed from the random data. The number of statistical genes is designated as the value

of k, where the solid curve crosses the 5”" percentile curve.

5.2 Recursive Feature Elimination

The method recursively removes features based upon the absolute magnitude of the hyper-

plane elements. We first outline the approach for linear SVMs. Given microarray data with

71 genes per sample, the SVM outputs the normal to the hyperplane, to, which is a vec-

tor with 71 components, each corresponding to the expression of a particular gene. Loosely

speaking, assuming that the expression values of each gene have similar ranges, the absolute

magnitude of each element in 112 determines its importance in classifying a sample, since the

following equation holds:

71

f(.7:) :11; x z+b= 2111,17,- +b.

1:1

The idea behind RFE is to eliminate elements of to that have small magnitude, since they

don’t contribute much in the classification function. The SVM is trained with all genes;

then we compute the following statistic for each gene:

5(1) = le|

Where in]- is the value of the jth element of 10. We then sort S from largest to smallest value

and we remove the genes corresponding to the indices that fall in the bottom 10% of the

sorted list S . The SVM is retrained on this smaller gene expression set, and the procedure

is repeated until a desired number of genes, m, is obtained. When a nonlinear SVM is used,

the idea is to remove those features that affect the margin the least, since maximizing the

margin is the objective of the SVM (Papageorgiou et al. (1998)). The nonlinear SVM has

a solution of the following form:

I

f(:r) = ZQKUWW) + 1).

i=1

Let M denote the margin. Then we obtain Equation below:

1 l l l

. ,
2

E = Z cpc,-Ii(;rp,:rr) =< Zc,¢(.r,),:cj6§(.rj) >= lel .

1 =p.r=1 1': j 1
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So for each gene 3', we compute to which extent the margin changes using the following

statistic:

8(1/M)

S(J)=l———l. (5-1)
3(le

where asj is the jth element of a vector of expression values 2:, We then sort S from the

largest to the smallest value, and we remove the genes corresponding to the indices that fall

in the bottom 10% of the sorted list S. The SVM is retrained and the procedure is repeated

just as the linear case.

5.3 Ratio of Between-group sum of squares to Within-

group sum of squares

The ratio of between-group to within-group sum of squares (BSS/WSS) was first introduced

by Dudoit et al. (2002). About the BSS/WSS,intuitively, genes with relatively large vari-

ation between classes and relatively small variation within classes are likely candidates as

relevant genes. BSS/WSS is a univariate gene selection method in which genes with large

BSS/WSS ratios are good candidate relevant genes. For a gene j, let D,j denote the expres-

sion level of gene j under sample i, Ekj denote the average expression level of gene j over

samples in class 16 E {+1, -l}, and E,j denote the average expression level of gene j over

all samples. The BSS/WSS ratio for gene 3' is defined as

335(1) _ 2121810127 = “(D—k)“ — 17.62

W550) — 2.211012- = k)(Dij - 55332

We compute the BSS/WSS ratio for each of the p genes and order the genes in descending

 (5.2)

order of the BSS/WSS ratio.

5.4 Clustering method

Given a series of microarray experiments for a specific tissue under different conditions we

want to find the genes most likely differentially expressed under these conditions. In another

words, we want to find the genes that best explain the effects of these conditions. This task

is also called feature selection, a commonly addressed problem in machine learning, where



 

 

 



one has class-labeled data and wants to figure out which features best discriminate among

the classes. If the genes are the features describing the cell, the problem is to select the

features that have the biggest impact on describing the results and to drop the features

with little or no effect. These features can then be used to classify unknown data. Noisy

or irrelevant attributes make the classification task more complicated, as they can contain

random correlation. Therefore we want to filter out these features. Typically, informative

genes are selected according to a test statistic or p-value rank according to a statistical test

such as the t-test. The problem here is that we might end up with many highly correlated

genes. Besides being an additional computational burden, it also can skew the results and

lead to misclassifications. Additionally, if there is a limit on the number of genes to choose

we might not be able to include all informative genes. Our approach is to first find similar

genes, group them and then select informative genes from these groups to avoid redundancy,

appeared in Gaeger (2003).

In order to increase the classification performance we propose to use more uncorrelated

genes instead of just the top genes. By just using the 16 best ranking genes according to a test-

statistic we would select highly correlated genes. Correlation can be a hint that the two genes

belong to the same pathway, are co-expressed or are coming from the same chromosome.

In general we expect high correlation to have a meaningful biological explanation. If, e.g.,

genes A and B are in the same pathway it could be that they have similar regulation and

therefore similar expression profiles. If gene A has a good test score it is highly likely that

gene B will, as well. Hence a typical feature selection scheme is likely to include both genes

in a classifier, yet the pair of genes provides little additional information than either gene

alone. Of course we could just select more genes in order to capture all relevant genes. But

not only would more genes involve higher computational complexity for classification but

it also can skew the result if we have a lot more genes from one pathway. Furthermore

if there are several pathways involved in the perturbation but one pathway has the main

influence, we will probably select all genes from this pathway. If we then have a limit for

the number of genes we might end up with genes only from this pathway. If many genes

are highly correlated we could describe this pathway with fewer genes and reach the same

precision. Additionally, we could replace correlated genes from this pathway by genes from
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other pathways and possibly increase the prediction accuracy. The same issue might be

true when selecting a lot of genes as well, but it is more compelling when we have a limited

budget of genes and can only select a few genes.

Our method for gene selection will therefore be to pre—filter the gene set and drop genes

that are very similar. For the remaining genes we will apply a common test statistic and

pull out the highest-ranking genes. One way to find correlated genes would be to calculate

the correlation between all genes. Here we have two options:

(1) Select from the best genes (according to a test statistic) that have a pair-wise corre—

lation below a certain threshold.

(2) The k-th selected gene is the gene with highest p—value among all genes whose corre-

lation with each of the first It — 1 is below the specified threshold.

Option (1) and option (2) are called ”correlation method”. Another approach is called

“clustering method”. Our idea is to cluster the genes, and then select one or more repre-

sentative genes from each cluster. The cluster quality is assessed by looking at the average

membership probability of its elements. An element belongs to the cluster to which it has

the highest membership probability. A higher cluster quality means how dispersion, and the

closer the quality gets to 0, the more scattered the cluster becomes. It would be favorable

to take more genes from a cluster of bad quality than from a cluster with good quality.

The drawback is that a cluster might represent a pathway that is totally unrelated to the

discrimination we look for. So we mask out and exclude clusters that have an average bad

test statistic p-value.

5.5 Pairwise Ranking Method

DLD and FLD are two discriminant methods for which a discriminant axis a is computed

on the basis of the available training data. The prediction using axis a is to assign to class

+1 if a’(:c — Lil—”#2) > 0, where 111 and 112 are the means of class +1 and —1, respectively.

DLD axis is a = S_1(/11 — 112), where S is the diagonal variance matrix whose elements are

the common variance estimate

2 (n1 -— Maggi + (712 — ”03.92:

0':

92 711-1-712-2
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We evaluate a gene pair by computing the projected coordinates of each experiment on

the DLD axis using only these two genes. We then take the two sample t-statistic on the

projected points as the pair score. In the exhaustive method, we sort the score of all pairs

and select the top-ranked disjoint pairs. Assume the pair (9,, 9]) ranks top 1, then all pairs

containing 9,- or 93- are removed from the list. In the greedy pairs method, we select the

individual gene, g,, with the highest t-score, and find the gene 93- that maximize the pair

t-score. Then 9,, gj are removed from the gene set and the procedure is repeated on the

remaining set until we have selected the desired number of genes. See B0 (2002).
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