z: .1. 5. .1 ...Lr....§n :- 1:. 31?); . . t .4. . ‘55»... .ysrw....r...3. i 5.3131...” 33m... wafish in axing}: . fin .... A-JL.‘. (I. fifi?) hens. .21... (g... . t... x‘. fii‘wlur 7| .i....,u..u.fi .34.... .. g . . .- ._ p : v.1 vii»... (gag! $3.3 3- v! .I- 1.. . A I . n A .. . 55m"? rar- Hair‘ I . r A. tbxfiiuthnukr ISL.“ Ana. .,.2~r§ihflhn¥ 2.. a . #1:“ 13.. ,v i. z. ~...I..I-.:o 11:? WESIS 1.00% This is to certify that the dissertation entitled UNCERTAINTY ASSESMENT AND VALIDATION OF PREDICTIVE MICROBIAL GROWTH MODELS presented by KARINA G. MARTINO has been accepted towards fulfillment of the requirements for the PhD. degree in Biosystems Engineean é éor Proéeuors Signature 7 7356 2am; Date MSU is an Ait'innative ActiorVEquai Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 p:/C|RC/DateDue.indd-p.1 UNCERTAINTY ASSESSMENT AND VALIDATION OF PREDICTIVE MICROBIAL GROWTH MODELS By Karina G. Martino A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Biosystems and Agricultural Engineering 2006 ABSTRACT UNCERTAINT Y ASSESSMENT AND VALIDATION OF PREDICTIVE MICROBIAL GROWTH MODELS By Karina G. Martino Microbial models enable a proactive approach, conveniently used by the food industry and risk assessors, to predict microbial food safety. However, the validity, reliability, and uncertainty of these models in application to real food products are rarely well known. Therefore, the overall goals of this study encompassed validation of predictive microbial growth models, assessment of the uncertainty related to those models, and deconstruction of the different errors that contribute to the total uncertainty of a microbial growth model. For illustration purposes, Listeria monacytogenes growth data from laboratory broth and meat and poultry products were used throughout. The primary and secondary models used in the US. Department of Agriculture — Agricultural Research Service (U SDA-ARS) Pathogen Modeling Program (PMP), a widely used tool by the food industry to estimate pathogen growth/survival/inactivation in food, were the principal models analyzed throughout this study. Robustness of the broth-based growth models was evaluated using a Robustness Index (RI). Inside the calibration domain of the PMP, the best R1 for application to meat products was 0.37; the worst was 3.96. Outside the domain, the best R1 was 0.40, and the worst was 1.22. Meat product type influenced the RI values (P<0.01). Two different microbial modeling procedures, using the broth-based data, were compared and validated against independent data for microbial growth in meat and poultry products. A global regression method yielded a lower root mean squared error, 0.95 log(CFU/ml) for aerobic and 1.21 log(CFU/ml) for anaerobic conditions, than did a two-step procedure, which yielded errors of 1.35 log(CFU/ml) for aerobic and 1.62 log(CFU/ml) for anaerobic conditions. Validating with data from meat and poultry, the global regression was more robust than the two-step procedure for 65% of the cases studied. However, the predictions were overestimated (fail-safe) in more cases for the two-step than for the global regression. In deconstructing the overall model error, the total uncertainty was assumed to be an aggregated contribution of errors due to organism, substrate, laboratory methodologies, replications, and primary and secondary regressions. The total uncertainties for aerobic and anaerobic conditions, with the PMP L. monocytogenes growth models, were 1.35 and 1.62 log(CFU/ml), respectively. The errors from the primary regression were 1.02 and 1.22 log(CFU/ml), for aerobic and anaerobic conditions, respectively. The errors from the secondary regression were 1.48 and 1.42 log(CFU/ml), for aerobic and anaerobic conditions respectively. The variability due to replications was 0.26 log(CFU/ml) for aerobic and 0.21 log(CFU/ml) for anaerobic conditions. Following the methodologies described here could lead to better informed and more reliable decisions, for ensuring food safety and for evaluating consumer risk. Cepyright by KARINA G. MARTINO 2006 To mfamily ACKNOWLEDGMENTS Funding for this study and for my degree completion came from the US. Department of Agriculture, Agricultural Research Service, cooperative agreement No. 58-1935-2-238, via the National Alliance for Food Safety and Security; the MSU Quantitative Biology and Modeling Initiative; and the MSU Graduate School Dissertation Completion Fellowship. My sincere appreciation goes to my major professor, Dr. Bradley Marks, for his endless support, encouragement, and motivation. I would also like to thank my committee members, Doctors D. Gilliland, K. Dolan, and E. Ryser; the members of our research team; and my friends. Finally a very special thanks to my beloved husband and daughter, and my family for all their support throughout this journey. TABLE OF CONTENTS LIST OF FIGURES ix LIST OF TABLES xii CHAPTER 1 - - _ - 1 INTRODUCTION .......................................................................................................... 1 1.1 STRUCTURE AND SCOPE OF THE DISSERTATION .................................... 1 1.2 IMPACT OF PREDICTIVE MICROBIOLOGY IN FOOD SAFETY ................ 2 1.3 JUSTIFICATION ................................................................................................. 4 1.4 OBJECTIVES ....................................................................................................... 5 CHAPTER 2 - -- 6 LITERATURE REVIEW ............................................................................................... 6 2.1 PREDICTIVE MICROBIOLOGY ....................................................................... 6 2.1.1 Primary growth models .................................................................................. 7 2.1.2 Secondary growth models ............................................................................ 10 2.1.3 Tertiary growth models ................................................................................ 12 2.3 GROWTH MODELS .......................................................................................... 15 2.4 MODEL LIMITATIONS .................................................................................... 17 CHAPTER 3 20 ROBUSTNESS OF MICROBIAL GROWTH MODELS ........................................... 20 3.1 SUMMARY ........................................................................................................ 20 3.2 INTRODUCTION .............................................................................................. 21 3.3 MATERIALS AND METHODS ........................................................................ 24 3.3.1 Data sources ................................................................................................. 24 3.3.2 Predictive models. ........................................................................................ 26 3.3.4 Robustness Index (RI) .................................................................................. 29 3.4 RESULTS AND DISCUSSION ......................................................................... 31 CHAPTER 4 40 EFFECT OF DIFFERENT MODELING PROCEDURES ON MICROBIAL GROWTH MODEL PERFORMANCE ....................................................................... 40 4.1 SUMMARY ........................................................................................................ 40 4.2 INTRODUCTION .............................................................................................. 41 4.3 MATERIALS AND METHODS ........................................................................ 44 4.3.2 Predictive models ......................................................................................... 45 4.3.3 Robustness Index (RI) .................................................................................. 49 4.4 RESULTS AND DISCUSSION ......................................................................... 50 CHAPTER 5 60 UNCERTAINTY ASSESSMENT IN BROTH-BASED MICROBIAL ...................... 60 GROWTH MODELS .................................................................................................... 60 5.1 BACKGROUND ................................................................................................ 60 5.2 METHODS ......................................................................................................... 63 vii 5.2.1 Data sources. ................................................................................................ 63 5.2.2 Error sources ................................................................................................ 63 5.2.3 Error calculations ......................................................................................... 64 5.2.4 Calculation of the prediction limits and parameter errors ........................... 66 5.3 RESULTS AND DISCUSSION ......................................................................... 68 5.3.1 Deconstruction of the model uncertainty ..................................................... 68 5.3.2 Prediction intervals and errors of the parameters ........................................ 71 CHAPTER 6 74 CONCLUSIONS AND FUTURE WORK ................................................................... 74 6.1 CONCLUSIONS ................................................................................................. 74 6.2 SUGGESTIONS FOR FUTURE WORK ........................................................... 77 APPENDIX A 80 COMPUTER PROGRAMS USED FOR DATA ANALYSIS AND DATA SOURCE ....................................................................................................................................... 80 APPENDIX B 83 BROTH-BASED AND MEAT-BASED DATA DESCRIPTION AND ORGANIZATION ........................................................................................................ 83 APPENDIX C 110 STANDARD ERROR ANALYSIS ............................................................................ 110 APPENDIX D 1 15 DJ COMPARISON OF EXPERIMENTAL VARIABILITY BETWEEN BROTH AND MEAT-BASED DATA ..................................................................................... 115 D2 STANDARD ERROR OF PREDICTION AND ROBUSTNESS INDEX VALUES OBTAINED AFTER NON-SIGNIFICANT TERMS WERE ELIMINATED ..................................................................................................................................... 120 APPENDIX E 121 SCRIPTS USED FOR NONLINEAR REGRESSION AND ..................................... 121 DATA ANALYSIS IN JMP ....................................................................................... 121 E1. SCRIPT USED FOR NONLINEAR REGRESSION. .................................... 121 E2. SCRIPT USED FOR NONLINEAR REGRESSION WITHOUT SECOND DERIVATIVE. ....................................................................................................... 122 E3. SCRIPT USED FOR NONLINEAR REGRESSION WITH SECOND DERIVATIVE. ....................................................................................................... 122 EA SCRIPT USED FOR REITERATIVE ANALYSIS. ....................................... 122 REFERENCES 123 viii LIST OF FIGURES F IGURE.1.1. Illustration of the impact that uncertainty in process calculations can have on product safety. ........................................................................................................ 5 FIGURE 2.1. Microbial growth curve. ............................................................................... 9 FIGURE 3.1. Comparison of the predicted (solid line) and actual (full squares) growth log counts fiom the data set (No. 13) resulting in the best RI value (0.37) inside the PMP model domain (95% confidence intervals, broken lines). ................................ 34 FIGURE 3.2. Comparison of the predicted (solid line) and actual (full squares) growth log counts from the data set (No. 23) resulting in the worst RI value (3.96) inside the PMP model domain (95% confidence intervals, broken lines) ................................. 34 FIGURE 3.3. Comparison of the predicted (solid line) and actual (full squares) growth log counts from the data set (No. 48) resulting in the best RI value (0.40) outside the PMP model domain (95% confidence intervals, broken lines) ................................. 38 FIGURE 3.4. Comparison of the predicted (solid line) and actual (full squares) growth log counts from the data set (No. 46) resulting in the worst RI value (1.22) outside the PMP model domain (95% confidence intervals, broken lines). .......................... 38 FIGURE 4.1. Observed versus predicted L. monocytogenes counts in broth fi'orn global regression, showing a randomly selected 10% of the total 3,680 data points and the 1:1 line (aerobic conditions). .................................................................................... 53 FIGURE 4.2. Observed versus predicted L. monocytogenes counts in broth from two-step regression, showing a randomly selected 10% of the total 3,680 data points and the 1:1 line (aerobic conditions). .................................................................................... 54 ix FIGURE 4.3. Robustness Index values of global regression applied to meat and poultry data. ........................................................................................................................... 57 FIGURE 4.4. Robustness Index values of two-step regression applied to meat and poultry data. ........................................................................................................................... 57 FIGURE 4.5. Relative error values of global regression applied to meat and poultry data. ................................................................................................................................... 58 FIGURE 4.6. Relative error values of two-step regression applied to meat and poultry data. ........................................................................................................................... 58 FIGURE 5.1. Confidence (small dashed lines) and prediction (wide dashed lines) intervals for global regression (data set No. 623, aerobic conditions, treatment No. 26: pH = 6, T =19°C, nitrite = 0 ppm, salt = 0 g/liter). Solid line: predicted curve; full squares: observed data. ....................................................................................... 71 FIGURE 5.2. Confidence (small dashed lines) and prediction (wide dashed lines) intervals for global regression (data set No. 646, aerobic condition, treatment No. 80: pH = 7, T = 19°C, nitrate = 0 ppm, salt = 25 g/liter). Solid line: predicted curve; full squares: observed data. ....................................................................................... 72 FIGURE A.l. Printed screen of JMP (SAS Institute Inc, Cary, NC. Version 4.0.4) formula box that contains the global model. ............................................................. 80 FIGURE A.2. Screen picture of PMP (US. Department of Agriculture, 2003b), which shows the growth curve for L. monocytogenes, the growth parameters, and the experimental variables. ............................................................................................. 81 FIGURE A.3. Screen picture of ComBase (US. Department of Agriculture, 2003a). Experimental conditions, microorganism, environment, and authors can be chosen, so related literature can be found. ............................................................................. 82 FIGURE C. 1 . Standard error (SE) versus time, treatment 1 for L. monocytogenes growth in broth (pH= 4.5, T= 19 °C, salF 0 g/l, and nitrite= 0 ppm) ................................. 114 xi LIST OF TABLES TABLE 3.1. References and keys in ComBase for meat and poultry data used in this study. ......................................................................................................................... 26 TABLE 3.2. Coefficient values for secondary models ..................................................... 27 TABLE 3.3. R1 values for conditions inside the PMP model domain .............................. 32 TABLE 3.4. ANOVA results for R1 vs. product/process variables .................................. 36 TABLE 3.5. Overall RI values for species inside PMP domain ....................................... 36 TABLE 3.6. R1 values for conditions outside the PMP model domain ............................ 37 TABLE 4.1. References and keys in ComBase for meat and poultry products used for model validation in this study. .................................................................................. 45 TABLE 4.2. Coefficient values of secondary models for L. monocytogenes growth, fitted to broth-based data via two-step regression. ............................................................. 52 TABLE 4.3. Coefiicient values computed after global regression for L. monocytogenes growth, fitted to broth-based data. ............................................................................ 53 TABLE 4.4. SEC (uncertainty) of broth-based L. monocytogenes growth predictions resulting from different modeling regression procedures. ........................................ 55 TABLE 4.5. R1 and RE values with experimental conditions (assumed aw = 0.997). ..... 56 TABLE 5.1. RMSE of the parameters B (h") and M (h) estimated from the secondary regression. ................................................................................................................. 65 TABLE 5.2. Relative contributions of the different sources of error to the total model uncertainty for aerobic and anaerobic conditions. .................................................... 68 TABLE 5.3. RMSE of the model parameters. ................................................................. 72 xii TABLE B.l. Keys to ComBase for aerobic (data set No. 386-938) and anaerobic (data set No. 1-385) conditions. .............................................................................................. 83 TABLE 82. No-growth broth-based data sets (L. monocytogenes) eliminated for anaerobic and aerobic conditions. ............................................................................. 91 TABLE B.3. B (h") and M (h) estimated ficm the primary regression for anaerobic conditions. ................................................................................................................. 92 TABLE B.4. B (h") and M (h) estimated fiom the primary regression for aerobic conditions. ................................................................................................................. 95 TABLE 35. Treatment (treat) and data set numbers for anaerobic conditions used to calculate error due to replication calculations ......................................................... 100 TABLE B.6. Treatment (treat) and data set numbers for aerobic conditions used to calculate error due to replication calculations ......................................................... 102 TABLE B.7. Experimental variables each treatment (aerobic conditions, (U .S. Department of Agriculture, 2003a)) ........................................................................ 105 TABLE B.8. Experimental variables in each treatment (anaerobic conditions, (U .S. Department of Agriculture, 2003a)) ........................................................................ 108 TABLE C. 1 . Effects tests for the experimental variables ............................................... 110 TABLE C.2. Effects test for the experimental variables with interactions. ................... 111 TABLE C.3. Data sets included in treatment No. 1 ........................................................ 112 TABLE D.1.1. Broth-based L. monogdogenes growth data. ......................................... 116 TABLE D.1.2. Meat-based L. monogdogenes growth data. .......................................... 118 xiii CHAPTERl INTRODUCTION 1.1 STRUCTURE AND SCOPE OF THE DISSERTATION The overall subject of this study was the influence of predictive microbiology on the food safety system. Chapter 1 is comprised of an introduction to this subject, followed by a description of the need and specific research objectives of this dissertation. In order to conduct a quantitative analysis, the growth of Listeria monocytogenes in broth was used as the case study for the dissertation. A general literature review, with respect to the basic topics that are covered in this study, is presented in Chapter 2, including an overview of predictive microbiology, L. monocytogenes, and growth models. This overview encompasses the basic concepts that were used throughout this study. Chapters 3, 4, and 5 are “stand-alone” manuscripts. Chapter 3 is a growth model validation study, which was published in the Journal of Food Protection (Martino et a1. , 2005). An introduction of the currently used validation methods is presented. The Robustness Index (RI) was applied in order to validate broth-based models against data collected from actual food products. The results quantified model robustness inside and outside their original domain. Chapter 4 is a paper that addresses model fitting procedures (submitted for publication in August 2006). This chapter analyzes how different fitting procedures affect the overall uncertainty of a growth model and its robustness when applied to a food system. Knowing the influence of the fitting methods on overall uncertainty of the model can help improve the accuracy of model predictions by choosing the methodology that gives lower prediction errors. Chapter 5 presents the deconstruction of model uncertainty by identifying and quantifying the different sources of error that contributed to it. These insights give a better understanding of how these errors can be quantified and segregated, so efforts to reduce them can be prioritized. Chapter 6 presents overall conclusions and recommendations for future work. 1.2 IMPACT OF PREDICTIVE MICROBIOLOGY IN FOOD SAFETY Current food safety tools used by food processors and risk assessors rely on predictive tools. These predictive tools (e.g., predictive microbial software programs) utilize models that describe the behavior of microorganisms under different physical or chemical conditions, such as temperature, pH, and water activity. An example of this kind of tool is the USDA-ARS Pathogen Modeling Program (PMP, (U .S. Department of Agriculture, 2003b)), which is a widely used too] in the food industry. Model predictions enable a proactive approach to avoid undesirable results or consequences (mainly human illness or death). They allow the prediction of microbial food safety or shelf life of products, the detection of critical parts of the production and distribution process, and the optimization of production and distribution chains (Zwietering et al., 1990). In general, in the food area, prediction comes from mathematical models that were developed from broth-based data; however, some tools are being updated with models developed using data from actual food systems. The food safety and food microbiology community is working to account for variables that influence growth or death of foodbome pathogens of concern. Unfortunately, the accuracy, or uncertainty of the predictions is often not well known. The predictive tools that are currently used in the food industry are still empirically managed. There is no systematic or standardized approach to develop a model, conduct a specific laboratory analysis for a particular microorganism, conduct statistical analysis, or determine the uncertainty of the outcomes of a particular model. Furthermore, regulatory agencies are putting increasing pressure on industries. For example, the USDA Food Safety and Inspection Service (F SIS, 2003), following several outbreaks, confirmed that it will maintain its “zero tolerance” policy with respect to L. monocytogenes in ready-to—eat meat and poultry products; no minimum lethality or maximum growth will be allowed, on a 25 gram sample, in any of these products (F SIS, 2003). Predictive tools represent a vital element in food processing, in order to enable rapid determination of potential pathogen growth. Therefore, validation of these models is a critical component of predictive microbiology; however, validation is usually done in terms of parameters (growth rates, lag phase duration, etc.), forgetting that the true measure of product safety is actual microbial counts, not model parameters. Once predicted values are calculated, their uncertainty must also be established in order to determine limits, and to ensure that these limits do not present unacceptable risk to consumers. In order to perform an accurate quantitative analysis of microbial growth, predictive microbiology needs to become a reliable tool, that is, a valid and systematic approach that can be directly used by the food industry, regulators, and/or risk assessors. Moreover, an increase in demand for predictive microbial software programs with application to food systems is expected (T amplin et al., 2004), which includes the use of predictive models for research, HACCP development, product formulation, and risk assessment. 1.3 JUSTIFICATION From the farm to the table, there are unavoidable risks to consumers; a very significant one is microbial contamination, either intentional or not, of the food system. Pathogens are present across the entire harvesting-processing—distribution chain; therefore, it is necessary to take a proactive approach to minimize/prevent their survival. Predictive tools enable this type of approach, and are especially useful for processors who must comply with government regulations. However, problems can arise if processors rely on these tools without questioning their validity. For example, food processors calculating microbial growth have no reliable estimate of uncertainty in those calculations; therefore, given normal process variability over time, and an unknown uncertainty in the calculations, processors may under- or over-process the product. Even though their prediction outcome is above the regulatory target, their uncertainty limits could extend below the target, which could represent a risk to the consumer (Fig. .1.1). However, if that processor had a tool that produced a reliable estimate of the uncertainty in the process survival or growth calculations, then the degree of over or under-processing could be based on real statistical information (prediction error + normal process variability), and the safety of the product could be better ensured (Fig. 1.1). Therefore, there is a need to improve microbial prediction tools in order to help food processors, academia, and regulatory agencies to better validate processes, conduct microbial risk assessments, and better assess the uncertainty behind these predictions. outcome :1: error (reported) E- outcome :t: error (unremrted) g. “-4 ---------------------- “d l- -------------------------- 8 5i ‘6 '6 "' ‘“ :3 Regulatory :: Regulatory g """""""""""""" target E- target a) b) operational time operational time FIGURE] .1. Illustration of the impact that uncertainty in process calculations can have on product safety. 1.4 OBJECTIVES A quantitative assessment of errors in predictive microbiology has not been conducted previously. Furthermore, acceptable limits of prediction have not been established, meaning that confidence of the actual prediction values have not been defined or calculated. Therefore, the overall goal of this study was to provide background information with respect to overall model uncertainty, in order to improve current tools used in predictive microbiology. To advance toward that goal, the specific objectives of this study were: 1. To validate L. monocytogenes broth-based growth models in terms of microbial counts. 2. To assess the performance of different fitting procedures in predictive microbiology. 3. To identify and quantify sources of error that contribute to microbial model uncertainty. 4. To demonstrate that microbial food safety limits should be represented by prediction intervals instead of confidence intervals. CHAPTER 2 LITERATURE REVIEW 2.1 PREDICTIVE MICROBIOLOGY Predictive food microbiology was defined by Schaffner and Labuza (Schaffner and Labuza, 1997) as the gathering of “the disciplines of food microbiology, engineering, and statistics to provide useful predictions about microbial behavior in food systems.” Currently, predictive microbiology is considered an essential element of modern food microbiology; furthermore, in the future, it could be accepted as a mature subdiscipline of microbiology (McMeekin and Ross, 2002). Microorganisms are primarily characterized by their adaptation to and exploitation of change. They can colonize almost every habitat on earth, such as brine ponds in the frozen wastes of polar regions, boiling water of hot springs, thermal volcanic vents, and the bottom of the deep ocean (Adams and Moss, 1995). A rich microflora of bacteria, yeasts and firngi can be found in structures such as leaves, fruits and roots, which could be used as raw ingredients for food processing. Therefore, assurance of food safety requires proactive and adaptive strategies. Generally, challenge tests are used to describe the relationship between pathogens and the influence of environmental conditions in their growth or decline. However, this traditional approach is typically expensive and slow, and requires specialized facilities and microbiological skills (Baranyi and Roberts, 1995). Therefore, with predictive microbiology, time and effort can be minimized by quickly giving the ranges of concern for a factor and thereby guiding the design of challenge tests, storage trials, and other conventional techniques to assess the probability of pathogen growth (Whiting, 1995). However, specific interactions between the microorganisms and their environment have to be known, the predictive models have to be validated, and their related uncertainty should be carefully assessed. Predictive microbiology mathematically describes, using microbial models, the growth or decline of foodbome microbes under specific environmental conditions, allowing the prediction of microbial food safety or shelf life of products, the detection of critical parts of the production and distribution process, and the optimization of production and distribution chains (Zwietering et al., 1990). Microbial models can be classified as primary, secondary, or tertiary (Whiting, 1995). Primary models describe how the number of microorganisms in a population changes with time under specific conditions. Secondary models relate the primary model parameters to environmental or intrinsic variables. Tertiary models combine primary and secondary models with a computer interface, providing a complete prediction tool. 2.1.1 Primary growth models Primary growth models can be classified as follows. van Gerwen and Zwietering (1998) stated that assuming first-order kinetics was the simplest way to describe microbial growth, such that: InN=lnN0+/.tt Eq. 2.1 where: In N = microbial counts at time t In N0 = initial microbial counts ,1: = growth rate t= time In contrast, the lag-exponential function includes the lag time (van Gerwen and Zwietering, 1998): 1nN=lnN0,fort§9§u ) 2503... . L ) 8234982.... .5 so... a, sea Bandits. can... enumerated meta... assent _naa igiusheflafitfiuooiogsnzanet. __aazme: .349 FIGURE A.l. Printed screen of JMP (SAS Institute Inc., Cary, NC. Version 4.0.4) formula box that contains the global model. 80 mm m.NN ON 05 9 fig OH ms m Wm o g l d. 2535.09 I mmrxtomvav-«O (IN/11:13)“ «53$ 2.5.5 53% 5 u».6MS.&S§: atogu a a! nigai .55 tax... 3:3?pr 50838.3... _I. _.. 7| 236 8... 39.5.08... . 1.3!... 8— in. :l 3:: 2: III; _u U: 3:! I n ,, 3 Agiizzusou 319:7! _lq 3...! en a: qB.ix_...l _u 1.. 3...! 6.9.2 3.5.3....» 800; L 880-: u» 2.8.59.5 ._ "5:09.932! __..;a_.:§...>..a: 2...... a. FIGURE A.2. Screen picture of PMP (US. Department of Agriculture, 2003b), ‘ which shows the growth curve for L. monocytogenes, the growth parameters, and the experimental variables. 81 eccecctc «€5.85... 5.3.25.15 .215... €25: 2: :c 2.25:; 535...: 2.. :3:- 2. 952...... .8 32 6:23:55 .8- sufioa! - .- utset-u on! 333-... 2...... 55:53 .3523 «2...... coiow O a 10 .8228 G environment, and authors can be , LL — 52.32.25 .. s 3 , n . o. 2.. 52.590 5. 520m , H ON— .mw. o o..=eweanh E3555 5.! 5! "Son 52. Ezom E02209 550m microorganism chosen, so related literature can be found. 9 22223.3. cSaom 803m L. 3:.t:,~ 23.5.. :— .. A begfi... >O0.0_nO¢U_<< u>:U.Ow¢L mom um(m<_(o Caz—EZOU ( a3 .v-«....GU €5.01 FIGURE A.3. Screen picture of ComBase (US. Department of Agriculture, ‘ H.838? usucafi. 528.2! 1965. ESQ 5.25.8.9 pQOQ:87, . 1 t 1 Axe—$50 .6 t I... can > . . . . 2.1.. a . . . tall! . A . .Ht IV‘UTVétu ”fl. “1.. ., . u E .9 51;. AW 3126; my”. file: \ w“... a TI 3% . 480° 5. at: 38» 3.5.8“. to.) you Jr. .829: 352:. .3355 032.55 2 2:333 fl 2003a). Experimental conditions 82 APPENDIX B BROTH-BASED AND MEAT-BASED DATA DESCRIPTION AND ORGANIZATION TABLE 8.]. Keys to ComBase for aerobic (data set No. 386-938) and anaerobic (data set No. 1-385) conditions. Key to Data set Key to Data set Key to Data set Key to Data set ComBase No. ComBase No. ComBase No. ComBase No. Ll_A_l 1 L15_A_1 33 L17_A_3 65 L21_A_l 97 L 1_A_2 2 L15_A_l l 34 L1 7_A__4 66 L21_A__2 98 Ll_A_3 3 L15_A_6 35 Ll7_A_5 67 L22_A_l 99 Ll_A_4 4 L15_C_12 36 L17_A__6 68 L22_A_ll 100 Ll_A_5 5 L15_C_2 37 Ll8_A_l 69 L22_A_l6 101 Ll_A_6 6 Ll 5_C_7 38 Ll8_A_2 70 L22_A_17 102 Ll_A_7 7 L15_D_l3 39 Ll8_A_3 7l L22_A_18 103 Ll_A_8 8 L15_D_3 40 L19_A_l 72 L22_A_6 104 L l _A_9 9 L15_D_8 41 L l 9_A_1 l 73 L22_C_12 105 L 10_A_l 10 L 15_F_14 42 L19_A_16 74 L22_C__2 106 L10_A_1 1 l l L15_F_4 43 L19_A_18 75 L22_C_7 107 L10_A_6 12 L15_F_9 44 L19_A__l9 76 L22_D_13 108 L10_C_12 l3 L15_G_10 45 L19_A_6 77 L22_D_3 109 L10_C_2 14 L1 5_G_15 46 L l 9_C_1 2 78 L22_D_8 1 10 L10_C_7 15 L15_G_5 47 L19_C_2 79 L22_F_14 111 L10_D_l 3 l6 L16_A_1 48 L l 9_C_7 80 L22_F__4 l 12 L10_D_3 17 Ll6_A_ll 49 L19_D_13 81 L22_F_9 113 L10_D_8 l 8 L16_A_6 50 L1 9_D__l 7 82 L22_G_10 1 l4 L10_F_14 l9 L16_C_12 51 L19__D_3 83 L22_G__15 1 15 L10_IF_4 20 L16_C_2 52 L19_D_8 84 L22_G_5 116 L10_F_9 21 L16_C_7 53 L19_F_14 85 L23_A_l l l 7 L10_G_10 22 L16_D_l3 54 L19_F_4 86 L24_A_l 1 1 8 L10_G_15 23 L16_D_3 55 Ll9_F_9 87 L24_D_2 119 L10_G_5 24 L16_D_8 56 L19_G_10 88 L24_F_3 120 L1 1_C_l 25 L16_F_14 57 L19_G_15 89 L25_D_l 121 L11_E_2 26 L16_F_4 58 L19_G_5 90 L25_D_10 122 L 12_C_l 27 L1 6_F_9 59 L2_A_l 91 L25_D_2 123 L12_E_2 28 L16_G_10 60 L2_A_2 92 L25_D_3 124 L13_C_1 29 L16_G_15 61 L2_A_3 93 L25_D_4 125 Ll 3_E_2 30 L16_G_5 62 L20_A_l 94 L2 5_D_5 126 L14_C_l 31 L17_A_1 63 L20_A_2 95 L25_D_6 127 L l 4_E_2 32 Ll LA_2 64 L20_A_3 96 L2 5_D_7 128 83 TABLE B.1. Continuation. Key to Data set Key to Data set Key to Data set Key to Data set ComBase No. ComBase No. ComBase No. ComBase No. L25_D_8 129 L3_A_1 162 L4_A_6 195 L55_A_l 228 L25_D_9 130 L3_A_11 163 L4_C_12 196 L56_A_1 229 L26_D_1 131 L3_A_6 164 L4_C_2 197 L57_A_1 230 L27_A_1 132 L3_C_12 165 L4_C_7 198 L58_A_l 231 L27_A_11 133 L3_C_2 166 L4_D_13 199 L59_B_1 232 L27_A_6 134 L3_C_7 167 L4_D_3 200 L6_A_1 233 L27_C_12 135 L3_D_l3 168 L4_D_8 201 L6_A_11 234 L27_C_2 136 L3_D_3 169 L4_F_l4 202 L6_A_6 235 L27_C_7 137 L3_D_8 170 L4_F_4 203 L6_C_12 236 L27_D_13 138 L3_F_14 171 L4_F_9 204 L6_C_2 237 L27_D_l6 139 L3_F_4 172 L4_G_10 205 L6_C_7 238 L27_D_3 140 L3_F_9 173 L4_G_15 206 L6_D_13 239 L27_D_8 141 L3_G_10 174 L4_G_5 207 L6_D_3 240 L27_F_14 142 L3_G_15 175 L40_A_1 208 L6_D_8 241 L27_G_5 143 L3_G_5 176 L41_A_1 209 L6_F_14 242 L28_A_l 144 L30_A_l 177 L42_A_1 210 L6_F__4 243 L28_A_11 145 L30_A_2 178 L43_A_l 211 L6_F_9 244 L28_A_6 146 L30_A_3 179 L44_A_l 212 L6_G_lO 245 L28_C_12 147 L31_C_l 180 L45_A_1 213 L6_G_15 246 L28_C_2 148 L31_E_2 181 L46_A_l 214 L6_G_5 247 L28_C_7 149 L32_C_l 182 L47__A_1 215 L60__A_1 248 L28_D_l3 150 L32_E_2 183 L48_A_1 216 L61_B_1 249 L28_D_3 151 L33_C_1 184 L49_A_1 217 L61_C_2 250 L28_D_8 152 L33_E_2 185 L5_D_1 218 L62_A_1 251 L28_F_14 153 L34_A_1 186 L5_D_2 219 L63_A_l 252 L28_F_4 154 L35__A_1 187 L5_D_3 220 L65_B_1 253 L28_F_9 155 L36_A_1 188 L50_A_1 221 L65_C_2 254 L28_G_10 156 L37_A_1 189 L51_A_1 222 L66_B_1 255 L28_G_15 157 L38_A_1 190 L52_A_l 223 L66_C_2 256 L28_G_5 158 L39_C_1 191 L52_A_2 224 L67_A_1 257 L29_A_1 159 L39_E_2 192 L52_A_3 225 L68_A_1 258 L29_A_2 160 L4_A_l 193 L53_A_1 226 L69_A_l 259 L29_A_3 161 L4_A_1 1 194 LS4_B_1 227 L69_A_1 1 260 84 TABLE B. 1 . Continuation. Keyto Dataset Keyto Dataset Keyto Dataset Keyto Dataset ComBase No. ComBase No. ComBase No. ComBase No. L69_A_16 261 L73_D_2 294 L85_D_8 327 L88_D_8 360 L69_A_6 262 L74_B_1 295 L85_F_l4 328 L88_F_14 361 L69_C_12 263 L75_A_1 296 L85_F_4 329 L88_F_4 362 L69_c_2 264 L76_F_l 297 L85_F_9 330 L88_F_9 363 L69_C_7 265 L77_A__l 298 L85_G_10 331 L88_G_10 364 L69_D_13 266 L78_A_1 299 L85_G_15 332 L88_G_15 365 L69_D_3 267 L78_A_2 300 L85_G_5 333 L88_G_5 366 L69_D_8 268 L78_A__3 301 L86_D_1 334 L89_A_1 367 L69_F_14 269 L78_A_4 302 L86_D_2 335 L9_A_1 368 L69_F_4 270 L78_A_5 303 L86_D_3 336 L9_A_1 1 369 L69_F_9 271 L78_A_6 304 L87_A_1 337 L9_A_6 370 L69_G_10 272 L78_A_7 305 L87_A_11 338 L9_C_12 371 L69_G_15 273 L78_A_8 306 L87_A_6 339 L9_c_2 372 L69_G_5 274 L78_A_9 307 L87_C_12 340 L9_C_7 373 L7_A_1 275 L79_A_l 308 L87_c_2 341 L9_D_13 374 L7_A_ll 276 L8_A_l 309 L87_c__7 342 L9_D_3 375 L7_A_6 277 L8_A_2 310 L87__D_13 343 L9_D_8 376 L7_c_12 278 L8_A_3 311 L87_D_3 344 L9_F_l4 377 L7_C_2 279 L80_F_l 312 L87_D_8 345 L9_F_4 378 L7_C_7 280 L81_A_1 313 L87_F_14 346 L9_F_9 379 L7_D_13 281 L82_F_1 314 L87_F_4 347 L9_G_10 380 L7_D_3 282 L83_A_1 315 L87_F_9 348 L9_G_15 381 L7_D_8 283 L83_A_2 316 L87_G__10 349 L9_G_5 382 L7__F__14 284 L84_A_1 317 L87_G_15 350 L90_F_1 383 L7_F_4 285 L85_A_l 318 L87_G_5 351 L91_A_1 384 L7_F_9 286 L85_A_11 319 L88_A_1 352 L92_F_l 385 L7_G_10 287 L85_A_16 320 L88_A_11 353 LM002_1 386 L7_G_15 288 L85__A_6 321 L88_A__6 354 LM002_2 387 L7_G_5 289 L85_c_12 322 L88_C_12 355 LM002_3 388 L70_B_l 290 L85_C_2 323 L88_C_2 356 LM002_4 389 L71_C_1 291 L85_C_7 324 L88_C_7 357 LM002_5 390 L72_A_1 292 L85_D_l3 325 L88_D_13 358 LM002_6 391 L73_c_1 293 L85_D_3 326 L88_D_3 359 LM003_1 392 85 Key to Data sefl ComBase No. TABLE B. l . Continuation. Keyto Dataset ComBase No. Keyto Dataset ComBase No. Key to Data set ComBase No. LM003_10 LM003_1 1 LM003_12 LM003_13 LM003_14 LM003_15 LM003_2 LM003_3 LM003_4 LM003_5 LM003_6 LM003_7 LM003_8 LM003_9 LM004_1 LM004_2 LM004_3 LM005_1 LM005_10 LM005_1 1 LM005_12 LM005_13 LM005_14 LM005_15 LM005_2 LM005_3 LM005_4 LM005_5 LM005_6 LM005_7 LM005_8 LM005_9 LM006_1 393 394 395 396 397 398 399 400 401 402 403 405 406 407 408 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 LM006_2 LM006_3 LM007_1 LM007_10 LM007_1 1 LM007_12 LM007_13 LM007_14 LM007_15 LM007_2 LM007_3 LM007_4 LM007_5 LM007_6 LM007_7 LM007 8 LM007_9 LM008_1 LM008_10 LM008_1 1 LM008_12 LM008_13 LM008_14 LM008_15 LM008_2 LM008_3 LM008_4 LM008_5 LM008_6 LM008_7 LM008_8 LM008_9 LM0091 426 427 428 429 430 43 1 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 45 l 452 453 454 455 456 457 458 LM009_10 LM009_1 1 LM009_12 LM009_13 LM009_14 LM009_15 LM009_2 LM009_3 LM009_4 LM009_5 LM009_6 LM009_7 LM009_8 LM009_9 LM010_1 LM010_2 LM010_3 LM01 1_1 LM01 1_10 LM01 1_1 1 LM01 1_12 LM01 1_13 LM01 1_14 LM01 1_15 LM01 1_2 LM01 1_3 LM01 1_4 LM01 1_5 LM01 1_6 LM01 1_7 LM01 1_8 LM01 1_9 LM012_1 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 LM012_10 LM012_1 1 LM012_12 LM012_13 LM012_14 LM012_15 LM012_16 LM012_17 LM012_18 LM012_19 LM012_2 LM012_20 LM012_21 LM012_22 LM012_23 LM012_24 LM012_25 LM012_26 LM012_27 LM012_3 LM012_4 LM012_5 LM012_6 LM012_7 LM012_8 LM012_9 LM013_1 LM013_2 LM013_3 LM013__4 LM014_1 LM014_2 LMO 14 g 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 51 1 512 513 514 515 516 517 518 519 520 521 522 523 524 86 TABLE B.1. Continuation. Keyto Dataset Keyto Dataset Keyto Dataset Keyto Data set ComBase No. ComBase No. ComBase No. ComBase No. LM014_4 525 LM018_4 558 LM024_1 591 LM030_2 624 LM015_1 526 LM018_5 559 LM024_2 592 LM031_1 625 LM015_2 527 LM018_6 560 LM025_1 593 LM031_2 626 LM015_3 528 LM018_7 561 LM025_2 594 LM032_1 627 LM015_4 529 LM018_8 562 LM026_1 595 LM032_2 628 LM016_1 530 LM018_9 563 LM026_2 596 LM033_1 629 LM01 6_2 53 1 LM019_1 564 LM026_3 597 LM033_2 630 LM016_3 532 LM019_10 565 LM026_4 598 LM034_1 631 LM016_4 533 LM019_1 l 566 LM027_1 599 LM034_2 632 LM017_1 534 LM019_12 567 LM027_10 600 LM035_1 633 LM017_10 535 LM019_13 568 LM027_1 1 601 LM035_2 634 LM017_1 l 5 36 LM019_14 569 LM027_12 602 LM036_1 635 LM017_12 537 LM019_15 570 LM027_13 603 LM036_2 636 LM017_13 538 LM019_16 571 LM027_14 604 LM036_3 637 LM017_14 539 LM019_17 572 LM027_15 605 LM036_4 638 LM017_15 540 LM019_18 573 LM027_16 606 LM037_1 639 LM017_2 541 LM019_19 574 LM027_17 607 LM03 7_2 640 LM017_3 542 LM019_2 575 LM027_18 608 LM037_3 641 LM017_4 543 LM019_3 576 LM027_19 609 LM038_1 642 LM017_5 544 LM019_4 577 LM027_2 610 LM039_1 643 LM01 7_6 545 LM019_5 578 LM027_20 61 l LM039_2 644 LM017_7 546 LM019_6 579 LM027_3 612 LM039_3 645 LM017_8 547 LM019_7 580 LM027_4 613 LM040_1 646 LM017_9 548 LM019_8 581 LM027_5 614 LM041_1 647 LM018_1 549 LM019_9 582 LM027_6 615 LM041_2 648 LM018_10 550 LM020_1 583 LM027_7 616 LM042__1 649 LM018_11 551 LM020_2 S84 LM027_8 617 LM043_1 650 LM018_12 552 LM021_1 585 LM027_9 618 LM043__2 651 LM018_13 553 LM021_2 586 LM028_1 619 LM044_1 652 LM018_14 554 LM022_1 587 LM028_2 620 LM044_2 653 LM018_15 555 LM022_2 588 LM029_1 621 LM045_1 654 LM018_2 556 LM023_1 589 LM029_2 622 LM045_2 655 LM01 8_3 5 57 LM023_2 590 LM03041 623 LM046_1 656 87 TABLE B. 1 . Continuation. Keyto named Keyto Dataset Keyto Dataset Keyto Dataset ComBase No. ComBase No. ComBase No. ComBase No. LM046_2 657 LM050_2 690 LM055_2 723 LM065_2 756 LM047_1 658 LM051_1 691 LM056_1 724 LM066_1 757 LM047_10 659 LM051_10 692 LM056_10 725 LM066_2 758 LM047_11 660 LM051_11 693 LM056_11 726 LM067_1 759 LM047_12 661 LM051_12 694 LM056_12 727 LM067_2 760 LM047_13 662 LM051_2 695 LM056_13 728 LM068_1 761 LM047_14 663 LM051_3 696 LM056__14 729 LM068_2 762 LM047_15 664 LM051_4 697 LM056_15 730 LM069_1 763 LM047_16 665 LM051_5 698 LM056_2 731 LM069_2 764 LM047_17 666 LM051_6 699 LM056_3 732 LM070_1 765 LM047_18 667 LM051_7 700 LM056_4 733 LM070_2 766 LM047_19 668 LM051_8 701 LM056_5 734 LM071_1 767 LM047_2 669 LM051_9 702 LM056_6 735 LM071_2 768 LM047_20 670 LM052_1 703 LM056_7 736 LM072_1 769 LM047_21 671 LM053_1 704 LM056_8 737 LM072_2 770 LM047_22 672 LM053_10 705 LM056__9 738 LM073_1 771 LM047_23 673 LM053_11 706 LM057_1 739 LM073_2 772 LM047_24 674 LM053_12 707 LM057_2 740 LM074_1 773 LM047_25 675 LM053_13 708 LM058_1 741 LM074_2 774 LM047_26 676 LM053_14 709 LM058_2 742 LM075_1 775 LM047_27 677 LM053_15 710 LM059_1 743 LM075_2 776 LM047_3 678 LM053_16 711 LM059_2 744 LM076_1 777 LM047_4 679 LM053_2 712 LM060_1 745 LM076_2 778 LM047_5 680 LM053_3 713 LM060_2 746 LM077_1 779 LM047_6 681 LM053_4 714 LM061_1 747 LM077_2 780 LM047_7 682 LM053_5 715 LM061_2 748 LM078_1 781 LM047_8 683 LM053_6 716 LM062_1 749 LM078_2 782 LM047_9 684 LM053_7 717 LM062_2 750 LM080_1 783 LM048_1 685 LM053_8 718 LM063_1 751 LM081_1 784 LM049_1 686 LM053_9 719 LM063_2 752 LM082_1 785 LM049_2 687 LM054_1 720 LM064_1 753 LM083_1 786 LM049_3 688 LM054_2 721 LM064_2 754 LM084_1 787 LM050_1 689 LM05 5_1 722 LM065 1 755 LM084_2 788 88 TABLE B.l. Continuation. Key to Data setl Key to Data set Key to Data set Key to Data set ComBase No. ComBase No. ComBase No. ComBase No. LM085_1 789 LM099_4 823 LM 1 13_5 857 LM127_14 891 LM085_2 790 LM099_5 824 LMl 13_6 858 LM127_15 892 LM086_1 791 LM099_6 825 LM113_7 859 LM127_16 893 LM087_1 792 LM099_7 826 LMl 13_8 860 LM127_2 894 LM088_1 793 LM099_8 827 LMl 13_9 861 LM127_3 895 LM089_1 794 LM099_9 828 LMl 14_l 862 LM127_4 896 LM089_2 795 LM100__I 829 LM 1 15_1 863 LM127_5 897 LM089_3 796 LM100_2 830 LMl 15_2 864 LM127_6 898 LM090_1 797 LM101_1 83 1 LMl 16_1 865 LM127_7 899 LMO90_2 798 LM101_2 832 LMl l6_2 866 LM127_8 900 LM091_1 799 LM102_1 833 LMl 17_1 867 LM127_9 901 LM091_2 800 LM102_2 834 LMl 17__2 868 LM128_1 902 LM092_1 801 LM103_1 835 LMl 18_1 869 LM128_2 903 LM093_1 802 LM103_2 836 LM118_2 870 LM129_1 904 LM093_2 803 LM104_1 837 LM119_1 871 LM129_2 905 LM094_1 804 LM104_2 838 LMl 19_2 872 LM129_3 906 LM094_2 805 LM105_1 839 LM120_1 873 LM130_1 907 LM095_1 806 LM105_2 840 LM120_2 874 LM130_10 908 LM095_2 807 LM106_1 841 LM121_1 875 LM130_1 1 909 LM096_1 808 LM107_1 842 LM121_2 876 LM130_12 910 LM096__2 809 LM108_1 843 LM122_1 877 LM130_13 911 LM097__1 810 LM108_2 844 LM122__2 878 LM130_14 912 LM097_2 81 1 LM109_1 845 LM123_1 879 LM130_15 913 LM098_1 812 LM109_2 846 LM123_2 880 LM130_2 914 LM099_1 813 L114] 10_1 847 LM124_1 881 LM130_3 915 LM099_10 814 LM110_2 848 LM124_2 882 LM130_4 916 LM099_11 815 LM111_1 849 LM125_1 883 LM130_5 917 LM099_12 816 um 1 1_2 850 LM125_2 884 LM130_6 918 LM099_13 817 LM 1 12_1 851 LM126_1 885 LM130_7 919 LM099_14 818 LMl 12_2 852 LM127_1 886 LM130_8 920 LM099_15 819 LMl 13_1 853 LM127_10 887 LM130_9 921 LM099_16 820 LM 1 13_2 854 LM127_1 1 888 LM13 1_1 922 LM099_2 821 LMl 13_3 855 LM127_12 889 LM13 1_2 923 LM099_3 822 LM] 13_4 856 LM12L1 3 890 LMl 32_1 924 89 TABLE B. l . Continuation. Key to Data set Key to Data set Key to Data set ComBase No. ComBase No. ComBase No. LM132_10 925 LM132_15 930 LM132_6 935 LM132_11 926 LM132_2 931 LM132_7 936 LM132_12 927 LM132_3 932 LM132_8 937 LM132_13 928 LM132_4 933 LM132_9 938 LM132_14 929 LM132_5 934 9O TABLE 82. No-growth broth-based data sets (L. monocytogenes) eliminated for anaerobic and aerobic conditions. Anaerobic I Aerobic Data set No 1 211 293 386 741 912 4 212 294 387 742 913 9 213 295 388 745 916 26 223 331 389 746 917 29 224 332 390 747 921 30 225 333 391 748 45 226 340 398 749 46 227 341 402 750 47 228 342 444 780 63 229 343 449 781 64 230 344 453 782 82 231 345 482 794 85 232 346 486 795 86 233 347 527 796 87 245 348 529 797 88 248 349 535 798 89 249 350 540 799 90 250 351 544 800 91 253 364 600 801 117 254 365 605 802 119 255 366 607 803 120 256 380 614 804 139 263 381 685 805 142 264 382 686 806 143 265 687 807 160 266 688 808 161 267 705 809 1 74 268 709 814 l 75 269 710 818 178 270 71 1 819 179 271 714 823 1 80 272 715 824 l 81 273 719 85 1 1 84 274 739 852 185 290 740 908 91 TABLE B.3. B (h'l) and M (h) estimated fi'om the primary regression for anaerobic conditions. Data set Data set Data set No. B M No. B M No. B M 2 0.016 1 82.517 41 0.046 43 .205 80 0.042 32.080 3 0.956 10.666 42 0.950 10.670 81 0.036 36.910 5 1.710 23.193 43 0.031 51.691 83 0.039 35.301 6 0.205 80. 1 77 44 0.045 39.534 84 0.028 47.227 7 0.106 302.736 48 3.060 23.094 92 0.016 183.557 8 0.484 201 .306 49 0.889 10.654 93 0.280 98.601 10 0.209 6.622 50 2.858 22.809 94 0.184 19.073 1 1 0.203 6.932 51 0.195 10.324 95 0.190 19.1 18 12 0.195 7.086 52 0.162 11.838 96 0.107 13.118 13 0.203 6.774 53 0.684 19.824 97 0.088 16.009 14 0.871 10.996 54 0.228 9.961 98 0.090 16.605 15 0.861 10.915 55 3.209 23.183 99 0.097 14.935 16 0.870 1 1.034 56 3.965 7.179 100 0.128 1 1.787 17 0.867 10.808 57 0.761 20.187 101 0.101 13.946 18 1.136 8.871 58 1.151 21.657 102 0.104 14.103 19 0.169 8.090 59 0.561 21.222 103 0.105 14.102 20 0.176 7.831 60 0.582 22.527 104 0.1 15 12.831 21 0.164 8.120 61 0.125 14.657 105 0.108 15.200 22 0.109 1 1.606 62 0.471 19.653 106 0.084 16.792 23 0.147 9.1 15 65 0.421 94.777 107 0.176 1 1.394 24 0.122 10.194 66 0.020 80.855 108 0.103 13.586 25 1.327 57.243 67 0.019 80.491 109 0.104 15.160 27 1 .062 6.968 68 0.020 76.174 1 10 0.074 19.583 28 l .093 7.052 69 0.921 45.057 1 1 1 0.097 14.779 31 1.990 7.127 70 0.117 29.015 112 0.103 14.170 32 1.500 7.350 71 0.097 29.061 1 13 1.643 6.394 33 0.260 17.849 72 0.109 13 .803 1 14 1.855 8.884 34 0.230 10.649 73 0.244 19.947 1 15 0.952 10.703 35 0.922 10.170 74 0.156 19.483 1 16 4.164 23.700 36 0.962 10.512 75 0.1 14 15.284 1 18 0.822 29.874 37 0.058 26.198 76 0.182 19.079 121 0.041 47.743 38 0.078 29.784 77 0.1 76 19.963 122 0.035 48.385 39 0.090 25.531 78 0.074 24.201 123 0.034 51.268 40 0.234 20.497 79 0.064 29.694 124 0.046 44.100 92 TABLE B.3. Continuation. Data set Data set Data set No. B M No. B M No. B M 125 0.027 59.629 164 1.115 9.545 206 0.912 8.184 126 0.041 47.975 165 0.177 11.823 207 3.904 16.487 127 0.040 46.321 166 7.804 7.105 208 0.024 57.146 128 0.036 48.095 167 0.514 20.642 209 0.023 56.600 129 0.042 48.345 168 0.933 10.175 210 0.022 61.343 130 0.039 41.167 169 0.096 13.451 214 0.975 20.753 131 1.929 47.204 170 0.148 13.157 215 0.978 10.863 132 0.085 21.158 171 0.986 9.934 216 0.014 129.406 133 0.087 19.229 172 2.501 23.648 217 0.017 85.001 134 0.094 21.453 173 0.970 9.981 218 0.1 19 13 .246 135 0.053 43.004 176 0.982 9.946 219 0.100 16.191 136 0.024 85.145 177 0.003 494.122 220 0.105 15.305 137 0.082 44.055 182 0.033 41.969 221 0.011 155.611 138 0.064 36.615 183 0.033 44.217 222 0.052 149.320 140 0.049 38.124 186 0.020 70.745 234 1.585 7.330 141 0.031 57.037 187 0.025 56.194 235 0.185 10.074 144 0.138 20.848 188 0.027 54.055 236 0.050 30.102 145 4.599 26.821 189 0.023 59.368 237 0.076 26.661 146 0.093 21.540 190 0.026 57.652 238 0.070 28.490 147 0.087 22.303 191 0.023 65.533 239 0.080 26.354 148 0.093 21 .884 192 0.065 72.028 240 0.067 27. 105 149 0.088 21.224 193 0.240 6.650 241 0.067 26.575 150 0.952 10.076 194 0.271 6.103 242 0.065 37.214 151 0.919 10.140 195 0.256 6.446 243 0.957 10.446 152 0.062 24.221 196 2.089 8.945 244 0.955 10.563 1 53 0.106 23 .297 197 0.281 6.122 246 0.063 55.242 154 0.141 25.824 198 1.744 8.570 247 1.013 11.762 155 0.641 29.639 199 0.274 6.066 251 0.011 183.021 1 56 0.549 23.887 200 0.300 6.304 252 0.005 296.848 157 0.605 24.053 201 0.264 6.1 14 257 0.010 232.661 158 0.181 23.577 202 1.833 8.829 258 0.005 477.574 159 0.003 494.198 203 0.249 6.174 259 0.353 48.701 162 0.291 7.092 204 0.243 6.287 260 25 .923 120.120 163 0.783 7.270 205 1 .372 7.744 261 0.989 10.697 93 TABLE B.3. Continuation. Data set Data set Data set No. B M No. B M No. B M 262 0.975 10.945 307 0.010 143.720 339 0.954 200.734 275 0.426 16.715 308 0.045 239.062 352 0.01 1 142.644 276 1.345 7.479 309 0.054 41.014 353 0.014 135.248 277 0.929 10.825 310 0.036 49.552 354 0.009 161.137 278 0.998 10.304 31 1 0.039 46.982 355 0.016 137.446 279 0.927 10.831 312 0.012 138.531 356 0.011 144.186 280 1.148 8.899 313 0.007 236.1 16 357 0.012 136.504 281 1.343 7.498 314 0.993 154.908 358 0.010 157.094 282 0.577 15.293 315 0.239 164.455 359 0.010 157.447 283 1.332 7.583 316 0.276 164.132 360 0.006 217.585 284 1.144 8.924 317 0.009 169.041 361 0.004 413.335 285 1.361 7.350 318 0.010 142.339 362 0.012 248.843 286 1.147 8.904 319 0.009 146.859 363 0.266 284.1 16 287 0.951 10.620 320 0.009 192.921 367 0.012 139.988 288 1.143 8.937 321 0.015 172.845 368 2.937 22.552 289 1.145 8.928 322 0.009 156.028 369 0.193 8.077 291 0.020 271.282 323 0.009 159.316 370 1.01 1 9.921 292 0.010 171.758 324 0.009 165.278 371 0.070 17.900 296 0.012 166.289 325 0.009 145.480 372 0.056 22.260 297 0.164 179.709 326 0.010 144.412 373 0.096 16.181 298 0.009 168.174 327 0.01 1 141.319 374 0.077 21.589 299 0.010 169.396 328 0.009 171.077 375 0.066 22.340 300 0.017 123.855 329 0.007 178.235 376 0.069 22.020 301 0.014 120.746 330 0.009 184.649 377 0.071 22.860 302 0.018 102.843 334 0.012 391.181 378 0.064 24.001 303 0.016 1 1 1.003 335 0.010 380.690 379 0.067 23.108 304 0.015 1 10.348 336 0.968 382.834 383 0.009 191.736 305 0.015 1 14.322 337 0.957 200.690 384 0.009 205.806 306 0.010 152.000 338 0.952 200.764 385 0.004 427.784 94 TABLE B.4. B (h") and M (h) estimated from the primary regression for aerobic conditions. Data set Data set Data set No. B M No. B M No. B M 392 0.280 5.993 428 0.865 1 1.083 465 0.41 1 19.463 393 0.109 24.392 429 1.079 9.793 466 0.3 14 18.451 394 0.901 5.834 430 0.344 7.414 467 0.467 19.811 395 0.226 6.573 43 1 0.284 7.343 468 0.396 17.928 396 0.213 6.960 432 0.282 7.145 469 0.631 21.198 397 2.5 10 9.275 433 0.268 7.759 470 0.548 20.685 399 1.155 8.857 434 2.805 22.617 471 0.418 18.915 400 0.220 7.418 435 0.266 7.485 472 0.119 13.124 401 1 .630 8.697 436 0.247 7.922 473 1 .239 24.686 403 1 .423 9.913 43 7 0.870 10.860 474 1 . 156 24.698 404 0.225 6.094 438 0.286 8.824 475 1.124 24.702 405 0.225 6.984 439 0.969 10.446 476 0.463 16.616 406 0.208 9.535 440 0.809 7.443 478 0.925 10.848 407 0.922 10.012 441 0.289 7.484 479 1.143 8.937 408 0.979 9.960 442 0.285 7.590 480 0.440 18.853 409 0.982 9.949 443 1.474 7.034 481 0.517 21.074 410 0.472 16.292 445 1.195 7.878 483 1.660 5.137 41 1 0.242 5.849 446 1 .037 7.892 484 1 .843 7.422 412 0.253 5.239 447 1.104 9.434 485 0.544 21.718 413 0.232 5.796 448 1.164 23.548 487 0.928 10.830 414 1.142 8.851 450 1.033 7.906 488 1.145 8.921 415 0.250 5.829 451 1.157 9.604 489 0.412 18.073 416 0.984 10.236 452 0.934 23.318 490 0.505 21.491 4 1 7 0.240 5.389 454 0.903 8.273 491 1 . 183 8.668 41 8 1.300 7.923 455 0.903 10.434 492 0.902 10.205 419 0.991 9.972 456 0.438 15.754 493 2.157 7.272 420 0.251 6.217 457 1.087 23.664 494 2.141 7.253 421 0.422 16.565 458 0.270 8.128 495 1.249 9.217 422 0.262 5.496 459 0.098 15.751 496 4.000 7.133 423 1.130 8.933 460 0.147 10.734 497 0.906 10.195 424 0.239 5.749 461 0.651 21.594 498 0.183 8.709 425 0.922 10.012 462 0.928 10.050 499 0.200 8.807 426 0.979 9.960 463 0.123 12.661 500 3.221 22.775 427 0.982 9.949 464 0.950 10.276 501 0.197 8.289 95 TABLE B.4. Continuation. Data set Data set Data set No. B M No. B M No. B M 502 1 .676 7.995 539 0.075 17.337 575 0.024 57 .438 503 0.199 8.237 541 0.267 10.737 576 0.060 41.956 504 0.195 8.232 542 0.234 9.891 577 0.050 41.660 505 2.392 22.359 543 0.059 19.965 578 0.007 206.641 506 0.877 10.822 545 0.247 10.542 579 0.008 223.769 507 0.205 7.526 546 0.312 10.347 580 0.007 229.171 508 1.555 8.858 547 0.220 10.994 581 1 .260 50.272 509 0.233 6.837 548 0.059 17.829 582 0.823 49.679 510 1.087 9.683 549 0.137 12.335 583 0.018 122.431 51 1 0.418 14.524 550 0.103 14.584 584 0.020 97.915 512 1.178 9.362 551 0.128 12.729 585 0.022 162.688 513 1.156 9.754 552 0.132 12.790 586 0.023 154.398 514 2.006 7.312 553 0.112 15.275 587 1.911 49.752 515 2.105 7.261 554 0.121 14.493 588 0.956 101.016 516 2.899 7.196 555 0.112 13.921 589 0.984 100.707 517 0.882 10.345 556 0.128 12.622 590 0.984 100.695 518 0.039 43.714 557 0.123 13.336 591 0.937 101.444 519 0.975 10.940 558 0.142 12.127 592 1.447 100.814 520 1.473 49.964 559 0.100 14.445 593 1.482 100.538 521 0.957 10.609 560 0.1 19 13.678 594 0.481 101.654 522 0.982 9.946 561 0.129 12.954 595 0.125 15.604 523 5.939 20.080 562 0.120 13.580 596 0.123 15.563 524 1.158 33.893 563 0.115 13.215 597 0.191 13.036 525 2.708 16.673 546 0.024 59.836 598 0.156 1 1.397 526 0.948 10.299 565 0.029 94.308 599 0.185 20.993 528 0.935 9.967 566 0.030 89.682 601 0.200 21.125 530 0.895 10.429 567 0.028 90.237 602 0.168 21.471 53 1 1.529 8.862 568 0.031 90.823 603 0.163 22.492 532 2.994 22.695 569 0.955 30.808 604 0.047 29.714 533 2.690 16.699 570 0.955 30.812 606 0.210 15.327 534 0.236 10.733 571 0.026 101.757 608 0.135 13.140 536 0.262 10.415 572 0.019 104.605 609 0.190 8.177 537 2.210 23.419 573 0.019 103.627 610 0.538 23.267 538 0.273 10.599 574 0.022 98.502 61 1 0.191 8.730 96 TABLE B.4. Continuation. Data set Data set Data set No. B M No. B M No. B M 612 0.114 22.521 647 0.096 23.616 681 0.096 18.908 613 0.046 30.887 648 0.101 23.974 682 0.095 21.094 615 0.147 20.920 649 0.090 27.089 683 0.106 20.548 616 0.177 22.075 650 0.053 32.597 684 0.106 21.326 617 0.124 22.082 651 0.062 30.938 689 0.095 22.623 618 0.048 27.651 652 0.054 35.564 690 0.094 22.883 619 0.090 22.241 653 0.052 31.600 691 0.091 25.817 620 0.088 21.319 654 0.091 18.297 692 0.049 30.625 621 0.054 26.517 655 0.097 19.038 693 0.069 28.162 622 0.064 25.864 656 0.105 14.385 694 0.060 31.361 623 0.064 31.213 657 0.090 17.792 695 0.063 31.651 624 0.062 31.636 658 0.107 20.765 696 0.080 26.272 625 0.072 27.744 659 0.436 23 .419 697 0.063 27.354 626 0.079 26.829 660 0.1 12 20.224 698 0.079 27.947 627 0.095 22.624 661 0.114 20.313 699 0.061 28.405 628 0.094 22.883 662 0.109 21.359 700 0.036 39.850 629 0.058 31.491 663 0.092 20.954 701 0.052 33.447 630 0.061 31.259 664 0.575 23.620 702 0.075 27.975 631 0.041 52.874 665 0.124 17.736 703 0.098 15.782 632 0.052 40.657 666 0.132 17.944 704 0.054 28.739 633 0.052 31.988 667 0.135 17.507 706 0.059 29.444 634 0.054 34.239 668 0.114 19.835 707 0.047 45.365 635 0.126 11.866 669 0.091 19.993 708 0.056 65.442 636 0.129 11.756 670 0.098 18.412 712 0.044 45.737 637 0.180 8.479 671 0.101 19.231 713 0.061 62.339 638 0.197 8.070 672 0.098 20.699 716 0.061 28.584 639 0.087 18.832 673 0.094 20.620 717 0.045 47.243 640 0.065 24.620 674 0.092 21 .029 718 0.090 59.420 641 0.071 24.617 675 0.074 21.066 720 0.052 31.988 642 0.091 19.003 676 0.084 22.582 721 0.054 34.239 643 0.094 22.543 677 0.080 22.745 722 0.059 21 .229 644 0.068 26.983 678 0.106 21.025 723 0.906 10.187 645 0.063 26.352 679 0.089 21.431 724 0.063 27.375 646 0.098 20.402 680 0.964 23.734 725 0.867 24.372 97 TABLE B.4. Continuation. Data set Data set Data set No. B M No. B M No. B M 726 0.073 29.178 770 0.019 75.165 829 0.011 173.799 727 0.068 26.773 771 0.676 121.559 830 0.013 169.092 728 0.061 27.959 772 0.022 65.201 83 1 0.007 206.964 729 0.064 29.057 773 0.022 76.079 832 0.009 204.1 1 1 730 0.594 24.515 774 0.020 64.748 833 0.009 400.774 731 0.063 26.304 775 0.019 90.197 834 0.006 383.934 732 0.069 26.91 1 776 0.020 88.856 835 0.009 213.803 733 0.072 28.891 777 0.977 71.195 836 0.009 213.626 734 0.637 24.390 778 0.036 62.503 837 0.012 171.105 735 0.061 21.279 779 0.021 87.858 838 0.013 171.990 736 0.063 28.365 783 0.033 48.043 839 0.006 235.330 737 0.096 26.562 784 0.024 57.570 840 0.006 239.583 738 0.063 29.973 785 0.024 56.813 841 0.008 228.468 743 0.892 104.334 7 86 0.022 61.451 842 0.01 1 158.868 744 0.030 648.047 787 0.057 30.320 843 0.005 253.157 751 0.951 10.739 788 0.033 61.952 844 0.007 229.541 752 0.020 75.468 789 0.040 43.258 845 0.007 212.71 1 753 1 .449 72.305 790 0.042 42.770 846 0.007 232.976 754 0.03 1 63.782 791 0.023 60.749 847 0.006 276.770 755 0.016 100.126 792 0.021 65.139 848 0.006 297.124 756 0.016 99.919 793 0.023 57.227 849 0.004 557.919 757 0.05 8 31.353 810 0.01 1 232.032 850 0.003 596.528 758 0.061 31.1 16 81 1 0.01 1 235.292 853 0.009 187.027 759 0.014 138.300 812 0.010 197.185 854 0.013 140.772 760 0.013 146.489 813 0.012 129.769 855 0.014 128.213 761 0.009 152.598 815 0.012 138.558 856 0.016 112.864 762 0.088 57.583 816 0.01 1 163.508 857 0.013 127.059 763 0.024 63 .408 817 0.007 257.826 858 0.013 123 .159 764 0.020 66.861 820 0.009 257.083 859 0.013 128.762 765 0.388 25.823 821 0.009 180.254 860 0.012 158.229 766 0.035 50.620 822 0.007 262.008 861 0.010 144.320 767 0.034 47.421 825 0.012 135.966 862 0.015 135.187 768 0.037 46.798 826 0.009 196.525 863 0.012 153.132 769 0.021 75.590 827 0.005 288.501 864 0.010 173.042 98 TABLE B.4. Continuation. Data set Data set No. B M No. B M 865 0.007 200.274 899 0.010 163.798 866 0.009 204.733 900 0.010 164.632 867 0.01 1 165.480 901 0.01 1 152.368 868 0.010 176.612 902 0.006 235.456 869 0.015 96.338 903 0.006 239.690 870 0.016 89.720 904 0.016 151.365 871 0.010 172.599 905 0.013 178.187 872 0.009 168.587 906 0.015 174.290 873 0.016 160.084 907 0.008 198.709 874 0.013 156.457 909 0.007 227.3 15 875 0.008 224.263 910 0.007 297.308 876 0.009 217.646 91 1 0.007 386.786 877 0.007 240.956 914 0.009 284.062 87 8 0.006 265.994 915 0.004 439.285 879 0.009 198.395 918 0.009 209.478 880 0.009 179.296 919 0.006 332.618 881 0.010 129.998 920 0.007 335.046 882 0.010 141.609 922 0.012 171.121 883 0.013 1 14.840 923 0.013 172.005 884 0.016 1 10.004 924 0.010 179.316 885 0.012 146.337 925 0.014 146.925 886 0.010 155.764 926 0.01 1 179.223 887 0.01 1 144.304 927 0.012 163.802 888 0.010 156.268 928 0.012 173.334 889 0.010 156.438 929 0.012 170.474 890 0.010 154.515 930 0.013 147.530 891 0.009 156.153 931 0.01 1 177.617 892 0.01 1 145.476 932 0.014 161.775 893 0.01 1 156.722 933 0.01 1 159.964 894 0.010 160.651 934 0.014 149.552 895 0.010 156.1 18 935 0.01 1 176.798 896 0.01 1 155.369 936 0.013 178.495 897 0.011 141.126 937 0.012 169.827 898 0.010 168.463 938 0.01 1 155.331 99 TABLE B.5. Treatment (treat) and data set numbers for anaerobic conditions used to calculate error due to replication calculations. Data TreatiDataset Treat Data Treat. Data Treat. Data Treat. setNo. No. No. No. setNo. No. setNo. No. No. No. 48 99 84 24 128 26 168 41 49 99 92 39 129 26 169 41 50 99 93 39 130 26 170 41 51 100 94 62 132 27 171 42 52 100 95 62 133 27 172 42 53 100 96 62 134 27 173 42 10 98 54 101 97 73 135 28 177 12 11 98 55 101 98 73 136 28 186 12 12 98 56 101 99 87 137 28 193 104 13 98 57 102 100 87 138 29 194 104 14 98 58 102 101 87 140 29 195 104 15 98 59 102 102 87 141 29 196 105 16 98 60 103 103 87 144 93 197 105 17 98 61 103 104 87 145 93 198 105 18 98 62 103 105 88 146 93 199 106 19 98 65 2 106 88 147 94 200 106 20 98 66 2 107 88 148 94 201 106 21 98 67 2 108 89 149 94 202 107 22 98 68 2 109 89 150 95 203 107 6 89 6 6 Ab-b-bah-h 23 98 69 1 10 151 95 204 107 24 98 70 l 1 1 90 152 95 205 108 33 35 71 112 153 96 206 108 34 35 72 22 l 13 90 154 96 207 108 96 97 8 35 35 73 22 114 91 155 214 54 36 36 74 22 115 91 156 215 54 37 36 75 22 116 91 157 97 218 44 38 36 76 22 121 26 158 97 219 44 39 37 77 22 122 26 162 39 220 44 40 37 78 23 123 26 163 39 221 1 18 41 37 79 23 124 26 164 39 222 1 18 42 38 80 23 125 26 165 40 234 45 43 38 81 24 126 26 166 40 235 45 44 38 83 24 127 26 167 40 236 46 100 TABLE B.5. Continuation. Data set Treat. Data set Treat. Data set Treat. No. No. No. No. No. No. 237 46 304 57 359 83 238 46 305 57 360 83 239 47 306 57 361 83 240 47 307 57 362 84 241 47 308 57 363 84 242 48 310 3 369 30 243 48 311 3 370 30 244 48 312 3 371 30 246 49 316 72 372 31 247 49 317 72 373 31 251 8 319 76 374 31 252 8 320 76 375 32 260 13 321 76 376 32 261 13 322 76 377 32 262 13 323 77 378 33 276 109 324 77 379 33 277 109 325 77 278 109 326 78 279 1 10 327 78 280 1 10 328 78 281 1 10 329 79 282 11 1 330 79 283 1 l 1 335 17 284 1 1 1 336 17 285 1 12 337 17 286 1 12 338 18 287 112 339 18 288 113 353 81 289 113 354 81 300 57 355 81 301 57 356 82 302 57 357 82 303 57 358 82 101 TABLE B.6. Treatment (treat) and data set numbers for aerobic conditions used to calculate error due to replication calculations. Data set Treat. Data Treat. Data Treat. Data set Treat. Data set Treat. No. No. set No. No. set No. No. No. No. No. No. 392 44 428 123 464 132 500 108 536 40 394 44 429 127 465 129 501 108 537 41 395 45 430 123 466 130 502 109 538 42 396 46 431 124 467 131 503 108 539 43 397 47 432 125 468 132 504 108 541 41 399 45 433 126 469 128 505 108 542 42 400 46 434 127 470 129 506 108 543 43 401 47 435 124 471 130 507 108 545 40 403 44 436 125 472 131 508 108 546 41 404 45 437 126 473 2 509 108 547 42 405 46 438 127 474 2 510 108 548 43 406 47 439 123 475 2 51 1 1 10 549 1 13 407 49 440 124 476 36 512 111 550 1 17 408 49 441 125 478 36 513 112 551 113 409 49 442 126 479 37 514 108 552 1 14 410 118 443 50 480 38 515 109 553 115 411 122 445 50 481 39 516 110 554 116 412 118 446 51 483 37 517 111 555 117 413 119 447 52 484 38 518 9 556 114 414 120 448 53 485 39 519 10 557 115 415 121 450 51 487 36 520 9 558 116 416 122 451 52 488 37 521 10 559 117 417 1 19 452 53 489 38 522 68 560 1 13 418 120 454 50 490 39 523 69 561 1 14 419 121 455 51 491 108 524 68 562 115 420 122 456 52 492 1 12 525 69 563 1 16 421 1 18 457 53 493 108 526 1 1 564 422 1 19 458 128 494 109 528 1 1 565 423 120 459 132 495 1 10 530 70 566 424 121 460 128 496 111 531 71 567 425 125 461 129 497 1 12 532 70 568 426 125 462 130 498 108 533 71 569 427 125 463 131 499 108 534 40 570 u—Ih—I—OI—II-dI—II—l 102 TABLE 86. Continuation. Data set Treat. Data Treat. Data Treat. Dataset Treat. Dataset Treat. No. No. set No. No. set No. No. No. No. No. No. 57 l 1 606 26 641 79 674 97 720 32 572 1 608 26 642 79 67 5 97 721 32 573 l 609 26 643 80 676 97 722 32 574 1 610 27 644 80 677 97 723 32 575 1 61 1 26 645 80 678 99 724 103 57 6 1 612 28 646 80 679 100 725 107 577 1 613 29 647 81 680 101 726 103 578 1 615 26 648 81 681 97 727 104 579 1 616 27 649 81 682 98 728 105 580 1 617 28 650 81 683 99 729 106 581 1 618 29 651 81 684 100 730 107 582 1 619 26 652 81 689 30 731 104 583 4 620 26 653 81 690 30 732 105 S84 4 621 26 654 83 691 31 733 106 585 4 622 26 655 83 692 31 734 107 586 4 623 26 656 83 693 3 1 735 103 587 5 624 26 657 83 694 31 736 104 588 5 625 26 658 97 695 3 l 737 105 589 5 626 26 659 101 696 3 1 738 106 590 5 627 30 660 97 697 31 743 3 591 6 628 30 661 98 698 31 744 3 592 6 629 30 662 99 699 3 1 751 23 593 6 630 30 663 100 700 31 752 23 594 6 631 26 664 101 701 31 753 24 595 8 632 26 665 97 702 3 1 7 54 24 596 8 633 26 666 97 704 32 755 24 597 8 634 26 667 97 707 32 7 56 24 598 8 635 67 668 97 708 33 757 24 599 26 636 67 669 98 712 33 758 24 601 26 637 67 670 97 713 34 759 25 602 27 638 67 671 97 716 32 760 25 603 28 639 79 672 97 717 33 761 25 604 29 640 79 673 97 718 34 762 25 103 TABLE B.6. Continuation. Dataset Treat. Data Treat. Data TreatPDatasetTreat. No. No. set No. No. setNo. No. No. No. 763 76 833 13 869 72 903 17 764 76 834 13 870 72 904 18 765 76 835 13 871 73 905 18 766 76 836 13 872 73 906 18 767 76 837 13 873 73 907 19 768 76 838 13 874 73 909 19 769 77 839 13 875 74 910 20 770 77 840 13 876 74 911 21 771 77 842 56 877 74 914 20 772 77 843 56 878 74 915 21 773 77 844 56 879 82 918 19 774 77 845 57 880 82 919 20 775 78 846 57 881 82 920 21 776 78 847 58 882 82 922 19 777 78 848 58 883 82 923 19 778 78 849 59 884 82 924 91 784 55 850 59 886 86 925 95 791 75 853 61 887 90 926 91 810 13 854 61 888 86 927 92 811 13 855 61 889 87 928 93 813 13 856 61 890 88 929 94 815 13 857 61 891 89 930 95 816 14 858 61 892 90 931 92 817 15 859 61 893 86 932 93 821 14 860 61 894 87 933 94 822 15 861 61 895 88 934 95 825 13 862 72 896 89 935 91 826 14 863 72 897 90 936 92 827 15 864 72 898 86 937 93 829 13 865 72 899 87 938 94 830 13 866 72 900 88 831 13 867 72 901 89 832 13 868 72 902 17 104 TABLE B.7. Experimental variables each treatment (aerobic conditions, (U .S. Department of Agriculture, 2003a)). pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of (an) (rpm) a... treat. (8") (ppm) data treat. Jomts Jomts 4.5 19 0 0 200 l 6 19 25 0 64 30 4.5 28 0 0 30 2 6 19 25 100 92 31 5 12 25 0 28 3 6 19 45 0 60 32 5 19 0 0 66 4 6 19 45 50 24 33 5 19 25 0 38 5 6 19 45 100 16 34 5 19 45 0 50 6 6 19 45 1000 7 35 5.25 10 15 50 7 7 6 28 0 0 12 36 5.25 19 0 0 32 8 6 28 0 50 12 37 5.25 28 15 50 14 9 6 28 0 100 12 38 5.25 28 15 150 17 10 6 28 0 200 12 39 5.25 28 35 50 15 1 1 6 28 45 0 24 40 5.5 5 0 0 7 12 6 28 45 50 22 41 6 5 0 0 151 13 6 28 45 100 24 42 6 5 0 50 21 14 6 28 45 200 21 43 6 5 0 100 21 15 6 37 0 0 16 44 6 5 0 200 7 16 6 37 0 50 17 45 6 5 25 0 18 17 6 37 0 100 18 46 6 5 25 100 24 18 6 37 0 200 18 47 6 5 45 0 36 19 6 37 0 1000 6 48 6 5 45 50 21 20 6 37 25 100 15 49 6 5 45 100 21 21 6 37 45 0 15 50 6 10 0 0 14 22 6 37 45 50 15 51 6 12 0 0 27 23 6 37 45 100 15 52 6 12 25 0 66 24 6 37 45 200 15 53 6 12 45 0 42 25 6.25 5 0 0 7 54 6 19 0 0 177 26 6.25 10 O 0 13 55 6 19 0 50 18 27 6.5 5 0 0 25 56 6 19 0 100 18 28 6.5 5 20 0 18 57 6 19 0 200 18 29 6.5 5 40 0 20 58 105 TABLE B.7. Continuation. pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of (8/1) (PP!!!) data treat. (8") (PP!!!) data twat- points points 6.5 5 60 0 26 59 7.5 5 0 100 24 88 6.5 10 0 0 13 60 7.5 5 0 200 24 89 6.75 5 0 0 75 61 7.5 5 0 1000 24 90 6.75 10 0 0 13 62 7.5 5 45 0 18 91 6.75 10 15 50 7 63 7.5 5 45 50 18 92 6.75 10 15 150 8 64 7.5 5 45 100 18 93 6.75 10 35 50 7 65 7.5 5 45 200 18 94 6.75 10 35 150 7 66 7.5 5 45 1000 15 95 6.75 19 0 0 32 67 7.5 10 0 0 13 96 6.75 28 15 50 13 68 7.5 19 0 0 1 14 97 6.75 28 15 150 16 69 7.5 19 0 50 15 98 6.75 28 35 50 14 70 7.5 19 0 100 15 99 6.75 28 35 150 15 71 7.5 19 0 200 15 100 7 5 0 0 84 72 7.5 19 0 1000 13 101 7 5 25 0 42 73 7.5 19 25 100 6 102 7 5 45 0 38 74 7.5 19 45 0 18 103 7 10 0 0 13 75 7.5 19 45 50 18 104 7 12 0 0 46 76 7.5 19 45 100 18 105 7 12 25 0 54 77 7.5 19 45 200 18 106 7 12 45 0 34 78 7.5 19 45 1000 18 107 7 19 0 0 38 79 7.5 28 0 0 90 108 7 19 25 0 39 80 7.5 28 0 50 18 109 7 19 45 0 68 81 7.5 28 O 100 18 110 7 2 5 0 0 46 82 7.5 28 0 200 18 111 72 19 0 0 34 83 7.5 28 0 1000 18 112 7.25 5 0 0 7 84 7.5 28 45 0 21 113 7.25 10 0 0 13 85 7.5 28 45 50 21 1 14 7.5 5 0 0 31 86 7.5 28 45 100 21 115 7.5 5 0 50 24 87 7.5 28 45 200 21 1 16 106 TABLE B.7. Continuation. pH T°C NaCl Nitrite No. of No. of pH T°C NaCl Nitrite No. of No. of (all) (ppm) aaa treat. (all) (ppm) data treat. pomts pomts 7.5 28 45 1000 21 117 7.5 37 25 100 33 125 7.5 37 0 0 17 118 7.5 37 25 200 18 126 7.5 37 0 50 17 119 7.5 37 25 1000 18 127 7.5 37 0 100 18 120 7.5 37 45 0 18 128 7.5 37 0 200 16 121 7.5 37 45 50 18 129 7.5 37 0 1000 17 122 7.5 37 45 100 17 130 7.5 37 25 0 18 123 7.5 37 45 200 18 131 7.5 37 25 50 18 124 7.5 37 45 1000 16 132 107 TABLE B.8. Experimental variables in each treatment (anaerobic conditions, (U .S. Department of Agriculture, 2003a)). pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of (8”) (Wm) data treat. (8") (13131“) data treat. pomts pomts 4.5 10 0 0 10 28 0 0 18 30 4.5 19 0 0 43 28 0 50 25 31 4.5 28 0 0 31 28 0 100 22 32 4.5 37 0 0 57 28 0 200 12 33 5.25 10 15 50 6 28 0 1000 9 34 5.25 19 0 0 30 28 45 0 16 35 “O“QO‘UI-BWNH 6 6 6 6 6 6 5.3 28 15 50 8 6 28 45 50 17 36 5.5 5 0 0 26 6 28 45 100 22 37 5.5 5 0 50 15 6 28 45 200 23 38 5.5 5 5 0 5 10 6 37 0 0 42 39 5 .5 5 25 0 14 11 6 37 0 50 16 40 5.5 10 0 0 23 12 6 37 0 100 17 41 6 5 0 0 19 13 6 37 0 200 14 42 6 5 0 25 10 14 6 37 0 1000 4 43 6 5 0 50 10 15 6 37 25 100 27 44 6 5 0 1000 5 16 6 37 45 0 16 45 6 5 25 100 26 17 6 37 45 50 26 46 6 5 45 0 16 18 6 37 45 100 28 47 6 5 45 25 7 19 6 37 45 200 24 48 6 5 45 1000 8 20 6 37 45 1000 20 49 6 10 0 0 13 21 6.25 5 0 0 6 50 6 19 0 0 53 22 6.25 10 0 0 13 51 6 19 0 50 29 23 6.5 5 0 0 7 52 6 l9 0 100 33 24 6.5 5 0 200 7 53 6 19 25 0 8 25 6.5 8 0 0 19 54 6 19 25 100 100 26 6.5 8 50 O 9 55 6 19 45 0 21 27 6.5 10 0 0 13 56 6 19 45 50 24 28 6.75 5 0 0 75 57 6 19 45 100 24 29 6.75 10 0 0 13 58 108 TABLE B.8. Continuation. pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of (8/1) (Ppm) data twat» (8") (mm!) data treat. points points 6.75 10 15 150 6 59 7.5 19 0 100 24 89 6.75 10 35 50 6 60 7.5 19 0 200 27 90 6.75 10 35 150 7 61 7.5 19 0 1000 27 91 6.75 19 0 0 30 62 7.5 19 25 100 7 92 6.75 28 35 50 7 63 7.5 19 45 0 24 93 6.75 28 35 150 7 64 7.5 19 45 50 24 94 6.8 28 15 50 7 65 7.5 19 45 100 18 95 6.8 28 15 150 6 66 7.5 19 45 200 18 96 7 5 0 0 11 67 7.5 19 45 1000 16 97 7 5 0 200 10 68 7.5 28 0 0 105 98 7 5 5 0 7 69 7.5 28 45 0 18 99 7 5 5 200 6 70 7.5 28 45 50 18 100 7 10 0 0 13 71 7.5 28 45 100 18 101 7.2 5 0 0 13 72 7.5 28 45 200 18 102 7.2 19 0 0 16 73 7.5 28 45 1000 21 103 7.25 5 0 0 8 74 7.5 37 0 0 19 104 7.25 10 0 0 13 75 7.5 37 0 50 21 105 7.5 5 0 0 31 76 7.5 37 0 100 20 106 7.5 5 0 50 24 77 7.5 37 0 200 21 107 7.5 5 0 100 24 78 7.5 37 0 1000 20 108 7.5 5 0 200 16 79 7.5 37 45 0 14 109 7.5 5 0 1000 9 80 7.5 37 45 50 15 110 7.5 5 45 0 24 81 7.5 37 45 100 15 111 7.5 5 45 50 24 82 7.5 37 45 200 15 112 7.5 5 45 100 24 83 7.5 37 45 1000 10 113 7.5 5 45 200 15 84 8 5 0 0 6 114 7.5 5 45 1000 9 85 8 5 0 200 10 115 7.5 10 0 0 13 86 8 5 5 0 14 116 7.5 19 0 0 51 87 8 8 0 0 8 117 7.5 19 0 50 21 88 8 8 50 0 19 118 109 APPENDIX C STANDARD ERROR ANALYSIS After the nonlinear regression was performed to the broth-based data, the asymptotic standard error (SE) of each data set was obtained as described in chapter 5, section 5.2.4. A trend or significant relationship between SE and experimental conditions (pH, temperature, salt, or nitrite), time, microbial counts, and treatments (specific combination of the experimental variables) was assessed (aerobic conditions). An analysis of variance for SE versus pH, temperature, salt, or nitrite, showed that, assuming there was no interaction between the variables, only pH had a significant influence on SE (Table C.1). TABLE C. 1 . Effects tests for the experimental variables. Variable P value pH 0.0017 T °C 0.1346 NaCl (g/L) 0.1952 Nitrite (ppm) 0.3796 An analysis of variances with the same variables, but including interactions showed that 1i and pit2 had a significant influence on SE (Table c2). 110 TABLE C.2. Effects test for the experimental variables with interactions. Source P value pH 0.15 16 T °C 0.1066 NaCl (g/L) 0.0741 Nitrite (ppm) 0.1889 pprH 0. 0215 pHx T °C 0.0677 T °C x T °C 0.0005 pHxNaCl (g/L) 0.3955 T °C xNaC1(g/L) 0.3137 NaCl (g/L) xNaC1(g/L) 0.5090 pHxNitrite (ppm) 0.4696 T °C xNitrite (ppm) 0.7862 NaCl (g/L) xNitrite (ppm) 0.9335 Nitrite (ppm) xNitrite (ppm) 0.3758 No significant relationship was found between treatment and SE, meaning that specific combination of the variables did not affect SE. The analysis to find the relationship between SE versus time and microbial counts was done separately because the experimental variables do not change within the same data set. Both time and microbial counts had a significant influence (P <0.0001) on the SE, for all treatments. To illustrate the relationship of SE with time and microbial counts, treatment No. 1 was chosen as an example, because of its high number of replications (19 data sets, table C.3). Additionally, it was found that SE had a unique trend as a function of time. SE slightly increased in value at the middle of the time period, decreasing at the beginning and end of the period (Fig. C.1). The same trend was found for all treatments. 111 TABLE C.3. Data sets included in treatment No. 1. Data Time Log SE Data Time Log SE Data Time Log SE No. (h) (CPU/ml) No. (b) (CFU/ml) No. (b) (CPU/ml) 564 0 1.97 1.1987 568 0 3.63 1.1965 573 0 3.26 1.197 564 3 1.92 1.1989 568 24 3.65 1.1973 573 24 3.31 1.1979 564 20 2.76 1.1998 568 48 3.74 1.1976 573 48 3.44 1.1981 564 24 2.76 1.2 568 72 4.48 1.1974 573 72 4.13 1.198 564 27 2.92 1.2001 568 96 5.43 1.1975 573 96 4.81 1.198 564 44 3.98 1.2003 568 168 7.69 1.2005 573 168 6.67 1.2014 564 48 4.21 1.2003 568 216 8.31 1.2026 573 216 7.66 1.2039 564 51 4.39 1.2003 568 264 8.26 1.2029 573 264 8.13 1.2041 564 69 5.44 1.2002 568 336 7.64 1.2004 573 336 7.8 1.2014 564 75 5.97 1.2001 569 0 3.56 1.1966 574 0 3.2 1.197 564 93 7.2 1.2002 569 24 3.57 1.1974 574 24 3.26 1.198 564 99 7.61 1.2003 569 48 3.56 1.1977 574 48 3.4 1.1982 564 121 8.39 1.2012 569 72 4.25 1.1975 574 72 4.1 1.1981 565 0 3.59 1.1966 569 96 5.24 1.1976 574 96 4.92 1.1981 565 24 3.6 1.1974 569 168 7.23 1.2006 574 168 6.8 1.2016 565 48 3.35 1.1976 569 216 8.21 1.2029 574 216 8.23 1.2041 565 72 4.6 1.1975 569 264 8.13 1.2031 574 264 8.15 1.2043 565 96 5.08 1.1975 569 336 7.7 1.2006 574 336 7.7 1.2015 565 168 7.63 1.2006 570 0 3.53 1.1967 575 0 2.01 1.1986 565 216 8 1.2028 570 24 3.55 1.1975 575 3 2.27 1.1988 565 264 8.32 1.203 570 48 3.49 1.1977 575 20 2.63 1.1998 565 336 7.64 1.2005 570 72 4.4 1.1976 575 24 2.69 1.1999 566 0 3.61 1.1966 570 96 5.07 1.1976 575 27 2.85 1.2 566 24 3.66 1.1974 570 168 7.15 1.2007 575 44 3.99 1.2003 566 48 3.74 1.1976 570 216 8.19 1.203 575 48 4.93 1.2003 566 72 4.6 1.1975 570 264 8.09 1.2032 575 51 4.4 1.2003 566 96 5.38 1.1975 570 336 7.84 1.2007 575 69 5.39 1.2001 566 168 7.68 1.2005 571 0 3.47 1.1967 575 75 5.9 1.2001 566 216 8.29 1.2027 571 24 3.49 1.1976 575 93 7.15 1.2001 566 264 8.14 1.203 571 48 3.55 1.1978 575 99 7.61 1.2002 566 336 7.64 1.2005 571 72 4.06 1.1977 575 121 8.35 1.2011 567 0 3.63 1.1965 571 96 4.87 1.1977 576 0 4.29 1.1958 567 24 3.55 1.1973 571 168 7.18 1.2009 576 3 4.06 1.1959 567 48 3.65 1.1976 571 216 8.15 1.2032 576 20 3.63 1.1964 567 72 4.54 1.1974 571 264 8.1 1.2034 576 24 4.93 1.1965 567 96 5.31 1.1975 571 336 7.77 1.2008 576 27 5.01 1.1965 567 168 7.61 1.2005 572 0 3.26 1.197 576 44 5.96 1.1966 567 216 6.96 1.2026 572 24 3.35 1.1979 576 48 6.24 1.1966 567 264 8.29 1.2029 572 48 . 3.4 1.1981 576 69 8 1.1966 567 336 7.72 1.2004 572 72 4.19 1.198 576 75 8.09 1.1965 572 96 4.76 1.198 576 93 8.54 1.1966 572 168 6.73 1.2014 576 99 8.58 1.1966 572 216 7.86 1.2039 576 121 8.25 1.1971 572 264 8.27 1.2041 572 336 7.88 1.2014 112 TABLE C.3. Continuation. Data Time Log s13 Data Time Log SB No. (b) (CFU/ml) No. (b) (CFU/ml) 577 0 3.97 1.1962 580 0 3.05 1.1972 577 3 4.02 1.1963 580 6 2.99 1.1975 577 20 3.55 1.1968 580 24 3.08 1.1982 577 24 4.74 1.19691 580 48 3.09 1.1985 577 27 4.96 1.1969 580 54 326 1.1984 577 44 5.92 1.1971 580 72 3.55 1.1983 577 48 5.94 1.1971 580 78 3.65 1.1983 577 69 7.77 1.197 580 96 3.73 1.1984 577 75 7.96 1.197 580 100 3.74 1.1984 577 93 8.52 1.197 580 192 4.6 1.2035 577 99 8.71 1.197 580 240 5.16 1.205 577 121 8.3 1.1975 580 336 7.16 1.2019 578 0 3.01 1.1973 580 408 7.77 1.1982 578 6 3.12 1.1976 580 504 8.16 1.1951 578 24 3.14 1.1983 581 0 3.61 1.1966 578 48 3.25 1.1985 581 24 3.67 1.1974 578 54 3.33 1.1985 581 48 3.55 1.1976 578 72 3.53 1.1984 581 72 4.1 1.1975 578 78 3.63 1.1984 581 96 4.51 1.1975 578 96 3.75 1.1984 581 168 6.97 1.2005 578 100 3.83 1.1985 581 216 8.2 1.2027 578 192 4.74 1.2036 581 264 8.31 1.203 578 240 5.33 1.2052 581 336 7.97 1.2005 578 336 7.54 1.202 582 0 3.58 1.1966 578 408 7.93 1.1983 582 24 3.54 1.1974 578 504 8.04 1.1951 582 48 3.64 1.1976 579 0 3.05 1.1972 582 72 4.06 1.1975 579 6 2.98 1.1975 582 96 4.89 1.1976 579 24 2.85 1.1982 582 168 7.39 1.2006 579 48 3.13 1.1985 582 216 8.3 1.2028 579 54 2.98 1.1984 582 264 8.35 1.2031 579 72 3.42 1.1983 582 336 7.76 1.2005 579 78 3.55 1.1983 579 96 3.64 1.1984 579 100 3.69 1.1984 579 192 4.63 1 .2035 579 240 4.99 1.205 579 336 7.1 1.2019 579 408 7.77 1.1982 579 504 7.94 1.1951 113 1.206 l—m—w— *mv ~ , - 4—4 1.204 -- c 8 1.202 . 1.2 . 1.198 SE, Log N (CF U/ml) 1.196 1.194 - Time (11) FIGURE C. 1 . Standard error (SE) versus time, treatment 1 for L. monocytogenes growth in broth (pH= 4.5, T= 19 °C, salt= 0 g/l, and nitrite= 0 ppm). 114 APPENDIX D D.l COMPARISON OF EXPERIMENTAL VARIABILITY BETWEEN BROTH AND MEAT-BASED DATA In order to perform this analysis on the same basis, broth and meat-based data that had the same number of treatments and the same number of replications within those treatments, were randomly selected. Three different treatments with two replications for each one were selected from the L. monocytogenes broth-based growth data, anaerobic conditions (Table D. 1 . 1). The experimental variability was calculated as described in Chapter 5, section 5.2.3, and was found to be 0.05 log(CFU/ml). L. monocytogenes growth data in cooked chicken were obtained fiom ComBase. Three different treatments with two replications for each one (anaerobic conditions) were selected (Table D.1.2). Again the experimental variability was calculated as described in Chapter 5, section 5.2.3, which was found to be 0.97 log(CFU/ml). The experimental variability due to replications was approximately 95% higher for the food-based data than for the broth-based data. 115 TABLE D.1.1. Broth-based L. monocytogenes growth data. Data set Time (h) Log Treat. No. pH T °C NaC1(g/1) Nitrite No. (CPU/ml) (ppm) 378 0 2.94 33 6 28 0 200 378 3 3.14 33 6 28 0 200 378 7 3.35 33 6 28 0 200 378 24 5.23 33 6 28 0 200 378 48 8.33 33 6 28 0 200 378 54 8.33 33 6 28 0 200 379 0 3.01 33 6 28 0 200 379 3 3.15 33 6 28 0 200 379 7 3.46 33 6 28 0 200 379 24 5.38 33 6 28 0 200 379 48 8.48 33 6 28 0 200 379 54 8.37 33 6 28 0 200 234 0 3.72 45 6 37 45 0 234 3 3.72 45 6 37 45 0 234 7 4.69 45 6 37 45 0 234 24 9.15 45 6 37 45 0 234 27 9.1 1 45 6 37 45 0 234 3 1 9.23 45 6 37 45 0 234 48 9.07 45 6 37 45 0 234 54.5 8.26 45 6 37 45 0 235 0 3.67 45 6 37 45 0 235 3 3.66 45 6 37 45 0 235 7 4.59 45 6 37 45 0 235 24 8.42 45 6 37 45 0 235 27 8.26 45 6 37 45 0 235 31 8.92 45 6 37 45 0 235 48 8.69 45 6 37 45 0 235 54.5 8.76 45 6 37 45 0 116 TABLE D.1.1. Continuation Data set Time (h) Log Treat. No. pH T °C NaCl (g/l) Nitrite No. (CPU/m1) (ppm) 246 0 3.64 49 6 37 45 1000 246 3 3.52 49 6 37 45 1000 246 7 3.56 49 6 37 45 1000 246 24 3.21 49 6 37 45 1000 246 27 3.22 49 6 37 45 1000 246 31 3.66 49 6 37 45 1000 246 48 4 49 6 37 45 1000 246 54.5 4.13 49 6 37 45 1000 246 72 4.53 49 6 37 45 1000 246 79 4.85 49 6 37 45 1000 247 0 3.63 49 6 37 45 1000 247 3 3.57 49 6 37 45 1000 247 7 3.48 49 6 37 45 1000 247 24 3.21 49 6 37 45 1000 247 27 3.42 49 6 37 45 1000 247 31 3.44 49 6 37 45 1000 247 48 4.03 49 6 37 45 1000 247 54.5 4.29 49 6 37 45 1000 247 72 5.11 49 6 37 45 1000 247 79 5.21 49 6 37 45 1000 117 TABLE D. 1 .2. Meat-based L. monocytogenes growth data. Key to Time (h) Log Treat. No. pH T °C NaCl (g/l) Nitrite ComBase (CFU/ml) (ppm) J232_Lm 0 2.5 1 3.5 6 5 0 1232_Lm 96 3.1 l 3.5 6 5 0 J232_Lm 168 3.4 1 3.5 6 5 0 1232_Lm 264 4.9 1 3.5 6 5 0 J232_Lm 360 5.9 1 3.5 6 5 0 .1232_Lm 432 6.7 1 3.5 6 5 0 .1232_Lm 552 8 1 3.5 6 5 0 J232_Lm 600 8.4 1 3.5 6 5 0 .1232_Lm 696 9.2 1 3.5 6 5 0 1232_Lm 768 9.6 1 3.5 6 5 0 1232LLm 840 9.4 1 3.5 6 5 0 .1233_Lm 0 2.5 l 3.5 6 5 0 1233_Lm 96 2.7 l 3.5 6 5 0 J233_Lm 168 2.7 1 3.5 6 5 0 J233_Lm 264 2.5 1 3.5 6 5 0 .1233_Lm 360 4 1 3.5 6 5 0 J233_Lm 432 4.9 1 3.5 6 5 0 1233_Lm 552 6.4 1 3.5 6 5 0 .1233_Lm 600 6.9 1 3.5 6 5 0 1233_Lm 696 7.8 l 3.5 6 5 0 J233_Lm 840 9 1 3.5 6 5 0 J234_Lm 0 2.5 2 6.5 6 5 0 1234_Lm 96 5 .5 2 6.5 6 5 0 .1234_Lm 168 7.4 2 6.5 6 5 0 .1234_Lm 264 10 2 6.5 6 5 0 .1234_Lm 336 10.3 2 6.5 6 5 0 JZ3S_Lm 0 2.7 2 6.5 6 5 0 J235_Lm 96 3.9 2 6.5 6 5 0 J235_Lm 168 6.5 2 6.5 6 5 0 J23 5_Lm 264 7.7 2 6.5 6 5 0 1235_Lm 336 9.8 2 6.5 6 5 0 .1235_Lm 432 9.8 2 6.5 6 5 0 1235_Lm 504 10 2 6.5 6 5 0 118 TABLE D. 1 .2. Continuation. Key to Time (h) Log Treat. No. pH T °C NaCl (g/l) Nitrite ComBase @U/ml) (ppm) .1236_Lm 0 2.5 3 10 6 5 0 .1236_Lm 72 4.2 3 10 6 5 0 .1236_Lm 120 6.4 3 10 6 5 0 J236_Lm 240 9.2 3 10 6 5 0 .1236_Lm 288 10.1 3 10 6 5 0 .1236_Lm 360 10.2 3 10 6 5 0 .123 7_Lm 0 2.4 3 10 6 5 0 .123 7_Lm 72 2.8 3 10 6 5 0 1237_Lm 120 4.5 3 10 6 5 0 .123 7_Lm 240 7.3 3 10 6 5 0 .123 7_Lm 264 9.1 3 10 6 5 0 1237_Lm 360 9.6 3 10 6 5 0 .123 7_Lm 480 9.5 3 10 6 5 0 119 D.2 STANDARD ERROR OF PREDICTION AND ROBUSTNESS 120 INDEX VALUES OBTAINED AFTER NON-SIGNIFICANT TERMS WERE ELINIINATED TABLE D.2 Without non- Without non- Aerobic srgnrficant terms srgnrficant terms SEP SEP Data No log(CFU/ml) log(CFU/ml) R1 R1 1 1.8920 1. 1821 1.4015 0.8956 2 1.8193 1.2326 1.3476 0.9338 3 2.1808 0.9916 1.6154 0. 7512 4 2.4599 1.3240 1.8221 1.0030 5 0.2097 0.7492 0.1553 0.5676 6 0.6434 0.981 1 0. 4766 0.7433 7 1.4425 0.6687 1.0685 0.5066 8 0. 7040 1.0798 0.5215 0.8180 9 0. 9086 1 .9229 0. 6 731 1 .4568 10 1.0226 1.2218 0. 7575 0.9256 11 1.1478 1.3936 0.8502 1.0558 12 1.9816 0.8186 1.4678 0.6202 13 1.0640 1.4165 0. 7882 1.0731 14 1.1691 1.4804 0.8660 1.1215 15 0.9486 0.8692 0.7027 0.6585 16 1.1806 1.0934 0.8745 0.8284 17 2.5245 2.5351 1.8700 1.9205 18 1.5938 1.6042 1. 1806 1.2153 19 1.1776 0. 7699 0.8723 0.5833 20 1.5308 1.0991 1.1339 0.8326 21 1.8256 1.0491 1.3523 0. 7948 22 3.0180 2.2340 2.2356 1.6924 23 3.0185 2.2407 2.2360 1.6975 APPENDIX E SCRIPTS USED FOR NONLINEAR REGRESSION AND DATA ANALYSIS IN JMP E. 1 . SCRIPT USED FOR NONLINEAR REGRESSION. This script was applied to each data set in order to perform nonlinear regression, with second derivative, and the results were given in a separate table: “ columnS << set formula (Parameter({B =1, M =10, C = 5}, C * Exp(-Exp(-B "‘ ( :Time - M)))));nlin=Non1inear(Y( :Name("Log(N/No)")), X( :Column 5), Second Deriv Method(1),finish, plot ( 1), save estimates); nParameters = n row(report(nlin)["Solution"] [table box(2)][1] << get as matrix); errorTable << add row(l); nRowsErrorTable = n row(errorTable); colSSE[nRowsErrorTab1e] = report(nlin)["Solution"] [table box(1)][1][1]; colDFE[nRowsErrorTab1e] = report(nlin)[”Solution"] [table box(1)][2][1]; colMSE[nRowsErrorTable] = report(nlin)["Solution"] [table box(1)] [3][1]; colRMSE[nRowsErrorTab1e] = report(nlin)[" Solution"] [table box(1)][4][1]; for(i = 1, j <= nParameters, jH, parameterTable << add row( 1 ); nRowsParamTable = n row(parameterTable); colParameter[nRowsParamTab1e] = report(nlin) [" Solution"][table b0X(2)][1]1j]; colEst[nRowsParamTable] = report(nlin)["Solution"][table box(2)][2][i]; colApproxStdErr[nRowsParamTab1e] = report(nlin)["Solution"] [table b01(0)] [311i]; colLowerCL[nRowsParamTable] = report(nlin)[" Solution"][table b0X(2)][4][i]; colUpperCL[nRowsParamTab1e] = report(nlin)["Solution"][table b0X(2)][5][i]); “- 121 E.2. SCRIPT USED FOR NONLINEAR REGRESSION WITHOUT SECOND DERIVATIVE. “col=new column ("Model"); col<. US. Department of Agriculture, A. R S., E.R.R.C. 2003b. Pathogen Modeling Program, Version 7.0. Accessed on 11/01/06. Available at . Valdramidis, V. P., N. Belaubre, R. Zuniga, A. M. Foster, M. Havet, A. H. Geeraerd, M. J. Swain, K. Bemerts, J. F. Van Impe, and A. Kondjoyan. (2005). "Development of predictive modelling approaches for surface temperature and associated microbiological inactivation during hot dry air decontamination." Int. J. Food Microbiol, 100, 261-274. Van Boekel, M. A. J. S. (1996). "Statistical aspects of kinetic modeling for food science problems." J. Food Sci, 61(3), 477-486. van Gerwen, S. J. C., and M. H. Zwietering. (1998). "Growth and inactivation models to be used in quantitative risk assessment." J. Food Prat, 61, 1541-1549. Whiting, R. C. (1995). "Microbial modeling in foods." Crit. Rev. Food Sci. Nutrit, 35(6), 467-494. Whiting, R. C., and L. K. Bagi. (2002). "Modeling the lag phase of Listeria monocytogenes." Int. J. Food Microbiol. , 73, 291-295. Wijtzes, T., P. J. McClure, M. H. Zwietering, and T. A. Roberts. (1993). "Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH, and temperature." Int. J. Food Microbiol, 18, 139-149. Zheng, J ., and H. C. Frey. (2004). "Quantification of variability and 1mcertainty using mixture distributions: evaluation of sample size, mixing weights, and separation between components." Risk Analysis, 24(3), 553-571. Zwietering, M. H., I. Jongenburger, F. M. Rombouts, and K. van't Riet. (1990). "Modeling of the bacterial growth curve." App. Environ. Microbiol, 56(6), 1875- 1 881 . 129 llllllllllilllllllllllfllflll