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ABSTRACT

UNCERTAINTY ASSESSMENT AND VALIDATION OF PREDICTIVE

MICROBIAL GROWTH MODELS

By

Karina G. Martino

Microbial models enable a proactive approach, conveniently used by the food

industry and risk assessors, to predict microbial food safety. However, the validity,

reliability, and uncertainty of these models in application to real food products are rarely

well known. Therefore, the overall goals of this study encompassed validation of

predictive microbial growth models, assessment of the uncertainty related to those

models, and deconstruction of the different errors that contribute to the total uncertainty

of a microbial growth model.

For illustration purposes, Listeria monacytogenes growth data from laboratory

broth and meat and poultry products were used throughout. The primary and secondary

models used in the US. Department of Agriculture — Agricultural Research Service

(USDA-ARS) Pathogen Modeling Program (PMP), a widely used tool by the food

industry to estimate pathogen growth/survival/inactivation in food, were the principal

models analyzed throughout this study.

Robustness of the broth-based growth models was evaluated using a Robustness

Index (RI). Inside the calibration domain of the PMP, the best R1 for application to meat

products was 0.37; the worst was 3.96. Outside the domain, the best R1 was 0.40, and the

worst was 1.22. Meat product type influenced the RI values (P<0.01).

Two different microbial modeling procedures, using the broth-based data, were

compared and validated against independent data for microbial growth in meat and



poultry products. A global regression method yielded a lower root mean squared error,

0.95 log(CFU/ml) for aerobic and 1.21 log(CFU/ml) for anaerobic conditions, than did a

two-step procedure, which yielded errors of 1.35 log(CFU/ml) for aerobic and 1.62

log(CFU/ml) for anaerobic conditions. Validating with data from meat and poultry, the

global regression was more robust than the two-step procedure for 65% of the cases

studied. However, the predictions were overestimated (fail-safe) in more cases for the

two-step than for the global regression.

In deconstructing the overall model error, the total uncertainty was assumed to be

an aggregated contribution of errors due to organism, substrate, laboratory

methodologies, replications, and primary and secondary regressions. The total

uncertainties for aerobic and anaerobic conditions, with the PMP L. monocytogenes

growth models, were 1.35 and 1.62 log(CFU/ml), respectively. The errors from the

primary regression were 1.02 and 1.22 log(CFU/ml), for aerobic and anaerobic

conditions, respectively. The errors from the secondary regression were 1.48 and 1.42

log(CFU/ml), for aerobic and anaerobic conditions respectively. The variability due to

replications was 0.26 log(CFU/ml) for aerobic and 0.21 log(CFU/ml) for anaerobic

conditions.

Following the methodologies described here could lead to better informed and

more reliable decisions, for ensuring food safety and for evaluating consumer risk.
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CHAPTERl

INTRODUCTION

1.1 STRUCTURE AND SCOPE OF THE DISSERTATION

The overall subject of this study was the influence of predictive microbiology on the

food safety system. Chapter 1 is comprised of an introduction to this subject, followed by

a description of the need and specific research objectives of this dissertation. In order to

conduct a quantitative analysis, the growth of Listeria monocytogenes in broth was used

as the case study for the dissertation.

A general literature review, with respect to the basic topics that are covered in this

study, is presented in Chapter 2, including an overview of predictive microbiology, L.

monocytogenes, and growth models. This overview encompasses the basic concepts that

were used throughout this study.

Chapters 3, 4, and 5 are “stand-alone” manuscripts. Chapter 3 is a growth model

validation study, which was published in the Journal ofFood Protection (Martino et a1. ,

2005). An introduction of the currently used validation methods is presented. The

Robustness Index (RI) was applied in order to validate broth-based models against data

collected from actual food products. The results quantified model robustness inside and

outside their original domain.

Chapter 4 is a paper that addresses model fitting procedures (submitted for

publication in August 2006). This chapter analyzes how different fitting procedures affect

the overall uncertainty of a growth model and its robustness when applied to a food

system. Knowing the influence of the fitting methods on overall uncertainty of the model

can help improve the accuracy of model predictions by choosing the methodology that



gives lower prediction errors.

Chapter 5 presents the deconstruction of model uncertainty by identifying and

quantifying the different sources of error that contributed to it. These insights give a

better understanding of how these errors can be quantified and segregated, so efforts to

reduce them can be prioritized.

Chapter 6 presents overall conclusions and recommendations for future work.

1.2 IMPACT OF PREDICTIVE MICROBIOLOGY IN FOOD SAFETY

Current food safety tools used by food processors and risk assessors rely on

predictive tools. These predictive tools (e.g., predictive microbial software programs)

utilize models that describe the behavior of microorganisms under different physical or

chemical conditions, such as temperature, pH, and water activity. An example of this

kind of tool is the USDA-ARS Pathogen Modeling Program (PMP, (U.S. Department of

Agriculture, 2003b)), which is a widely used too] in the food industry. Model predictions

enable a proactive approach to avoid undesirable results or consequences (mainly human

illness or death). They allow the prediction of microbial food safety or shelf life of

products, the detection of critical parts of the production and distribution process, and the

optimization ofproduction and distribution chains (Zwietering et al., 1990). In general, in

the food area, prediction comes from mathematical models that were developed from

broth-based data; however, some tools are being updated with models developed using

data from actual food systems. The food safety and food microbiology community is

working to account for variables that influence growth or death of foodbome pathogens

of concern. Unfortunately, the accuracy, or uncertainty of the predictions is often not well



known.

The predictive tools that are currently used in the food industry are still empirically

managed. There is no systematic or standardized approach to develop a model, conduct a

specific laboratory analysis for a particular microorganism, conduct statistical analysis, or

determine the uncertainty ofthe outcomes ofa particular model.

Furthermore, regulatory agencies are putting increasing pressure on industries. For

example, the USDA Food Safety and Inspection Service (FSIS, 2003), following several

outbreaks, confirmed that it will maintain its “zero tolerance” policy with respect to L.

monocytogenes in ready-to—eat meat and poultry products; no minimum lethality or

maximum growth will be allowed, on a 25 gram sample, in any of these products (FSIS,

2003). Predictive tools represent a vital element in food processing, in order to enable

rapid determination ofpotential pathogen growth.

Therefore, validation of these models is a critical component of predictive

microbiology; however, validation is usually done in terms of parameters (growth rates,

lag phase duration, etc.), forgetting that the true measure of product safety is actual

microbial counts, not model parameters. Once predicted values are calculated, their

uncertainty must also be established in order to determine limits, and to ensure that these

limits do not present unacceptable risk to consumers.

In order to perform an accurate quantitative analysis of microbial growth, predictive

microbiology needs to become a reliable tool, that is, a valid and systematic approach that

can be directly used by the food industry, regulators, and/or risk assessors. Moreover, an

increase in demand for predictive microbial software programs with application to food

systems is expected (Tamplin et al., 2004), which includes the use of predictive models



for research, HACCP development, product formulation, and risk assessment.

1.3 JUSTIFICATION

From the farm to the table, there are unavoidable risks to consumers; a very

significant one is microbial contamination, either intentional or not, ofthe food system.

Pathogens are present across the entire harvesting-processing—distribution chain;

therefore, it is necessary to take a proactive approach to minimize/prevent their survival.

Predictive tools enable this type of approach, and are especially useful for processors who

must comply with government regulations. However, problems can arise if processors

rely on these tools without questioning their validity.

For example, food processors calculating microbial growth have no reliable estimate

of uncertainty in those calculations; therefore, given normal process variability over time,

and an unknown uncertainty in the calculations, processors may under- or over-process

the product. Even though their prediction outcome is above the regulatory target, their

uncertainty limits could extend below the target, which could represent a risk to the

consumer (Fig. .1.1). However, if that processor had a tool that produced a reliable

estimate of the uncertainty in the process survival or growth calculations, then the degree

of over or under-processing could be based on real statistical information (prediction

error + normal process variability), and the safety of the product could be better ensured

(Fig. 1.1).

Therefore, there is a need to improve microbial prediction tools in order to help food

processors, academia, and regulatory agencies to better validate processes, conduct

microbial risk assessments, and better assess the uncertainty behind these predictions.
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FIGURE.1.1. Illustration ofthe impact that uncertainty in process calculations can

have on product safety.

1.4 OBJECTIVES

A quantitative assessment of errors in predictive microbiology has not been

conducted previously. Furthermore, acceptable limits of prediction have not been

established, meaning that confidence of the actual prediction values have not been

defined or calculated. Therefore, the overall goal of this study was to provide background

information with respect to overall model uncertainty, in order to improve current tools

used in predictive microbiology.

To advance toward that goal, the specific objectives ofthis study were:

1. To validate L. monocytogenes broth-based growth models in terms of microbial

counts.

2. To assess the performance of different fitting procedures in predictive

microbiology.

3. To identify and quantify sources of error that contribute to microbial model

uncertainty.

4. To demonstrate that microbial food safety limits should be represented by

prediction intervals instead ofconfidence intervals.



CHAPTER 2

LITERATURE REVIEW

2.1 PREDICTIVE MICROBIOLOGY

Predictive food microbiology was defined by Schaffner and Labuza (Schaffner

and Labuza, 1997) as the gathering of “the disciplines of food microbiology, engineering,

and statistics to provide useful predictions about microbial behavior in food systems.”

Currently, predictive microbiology is considered an essential element of modern food

microbiology; furthermore, in the future, it could be accepted as a mature subdiscipline of

microbiology (McMeekin and Ross, 2002).

Microorganisms are primarily characterized by their adaptation to and

exploitation of change. They can colonize almost every habitat on earth, such as brine

ponds in the frozen wastes of polar regions, boiling water ofhot springs, thermal volcanic

vents, and the bottom of the deep ocean (Adams and Moss, 1995). A rich microflora of

bacteria, yeasts and firngi can be found in structures such as leaves, fruits and roots,

which could be used as raw ingredients for food processing. Therefore, assurance of food

safety requires proactive and adaptive strategies. Generally, challenge tests are used to

describe the relationship between pathogens and the influence of environmental

conditions in their growth or decline. However, this traditional approach is typically

expensive and slow, and requires specialized facilities and microbiological skills

(Baranyi and Roberts, 1995). Therefore, with predictive microbiology, time and effort

can be minimized by quickly giving the ranges of concern for a factor and thereby

guiding the design of challenge tests, storage trials, and other conventional techniques to

assess the probability of pathogen growth (Whiting, 1995). However, specific



interactions between the microorganisms and their environment have to be known, the

predictive models have to be validated, and their related uncertainty should be carefully

assessed.

Predictive microbiology mathematically describes, using microbial models, the

growth or decline of foodbome microbes under specific environmental conditions,

allowing the prediction of microbial food safety or shelf life of products, the detection of

critical parts of the production and distribution process, and the optimization of

production and distribution chains (Zwietering et al., 1990).

Microbial models can be classified as primary, secondary, or tertiary (Whiting,

1995). Primary models describe how the number of microorganisms in a population

changes with time under specific conditions. Secondary models relate the primary model

parameters to environmental or intrinsic variables. Tertiary models combine primary and

secondary models with a computer interface, providing a complete prediction tool.

2.1.1 Primary growth models

Primary growth models can be classified as follows.

van Gerwen and Zwietering (1998) stated that assuming first-order kinetics was

the simplest way to describe microbial growth, such that:

InN=lnN0+/,tt Eq. 2.1

where:

In N = microbial counts at time t

In N0 = initial microbial counts

,1: = growth rate



t= time

In contrast, the lag-exponential function includes the lag time (van Gerwen and

Zwietering, 1998):

1nN=lnN0,fort</t Eq. 2.2

lnN=lnN0+,u(t—,1),fortzl Eq.2.3

it=lagtime

The growth curve also can be empirically described by several sigrnoidal

functions, such as logistic (eq. 2.4), Gompertz (eq. 2.5), or Richards, Schnute, and

Stannard (van Gerwen and Zwietering, 1998).

 

a

lnN = lnN + . 2.4

0 [1 + exp(b — cx)] Eq

where a, b, and c are fit parameters.

0r,

lnN=lnN0 +Aexp{-exp|:flga;—xi(l—t)+l]} Eq. 2.5

where:

,umax= maximum specific growth rate (h'l)

A = maximum level of increase: ln(Nw/No)

A typical bacterial growth curve is shown in Figure 2.1.
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FIGURE 2.1. Microbial growth curve.

In the lag-phase, there is no apparent growth, while the inoculum adjusts to the

new environment, synthesizes the enzymes required for its exploitation, and repairs any

lesions resulting from earlier injury (e.g., freezing, drying, heating) (Adams and Moss,

1995). The next phase, the exponential or logarithmic, is characterized by an increase in

cell numbers; the slope corresponds to the organism’s specific grth rate, p, which

depends on the experimental conditions. When key nutrients become depleted (afier the

exponential growth), or inhibitory metabolites accumulate, the culture moves to the

stationary phase (Adams and Moss, 1995).

There are two levels of detail that can be used, depending on the necessity, for

microbial growth estimation (van Gerwen and Zwietering, 1998). For rough risk

assessments (level 1), orders of magnitude for growth can be estimated easily using

equation 1. Neglecting it results in fail-safe predictions, and stationary growth is

generally not relevant in risk assessments. However, if growth is one of the main

determinants of risk (level 2), the description of the entire growth curve (equation 5, for



example) would be useful.

2.1.2 Secondary growth models

The three approaches most frequently used with secondary growth models are the

response surface model (regression equation that is fitted using standard regression

techniques, which may contain linear, quadratic, cubic, or reciprocal terms and includes

interaction or cross product terms, (Whiting, 1995)), the Arrhenius relationship

(logarithm of the rate versus the reciprocal of the temperature (K)), and the square root

model.

The square root model (eq. 2.6) is a simple empirical model suggested by

Ratkowsky et a1. (1982), in which the data (experimental growth rate) were transformed,

by taking their square root, to stabilize their variance (making the variance of the

distribution independent of its mean, and close to normal distribution, (Ratkowsky,

2004)). This model and its numerous expansions are called square-root-type, Ratkowsky-

type, or Béleradek-type models (Ross and Dalgaard, 2004).

pm =bx(T—Tmin) Eq. 2.6

where:

b = constant

T= temperature

Tmin = parameter, a theoretical minimum temperature for growth.

Growth rates of microorganisms are described less appropriately by the

Arrhenius-type equations than by square-root-type models (Ross and Dalgaard, 2004).
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However, the Arrhenius-type models remain useful as secondary kinetic models for less

extensive ranges of storage temperatures. The empirical .Arrhenius-van’t Hoff

relationship is (Ross and Dalgaard, 2004):

E

rate = Aexp[— 72%] Eq. 2.7

where:

A = constant

Ea = activation energy

R = the gas constant (8.314 J/K/mol)

T = temperature in Kelvin

The most common secondary models applied within predictive microbiology are

the polynomial models. They are relatively easy to fit to experimental data by multiple

linear regression, and they allow virtually any of the environmental variables and their

interactions to be taken into account (Ross and Dalgaard, 2004); however, higher order

polynomial models (e.g., cubic or quadratic) have been criticized for being too flexible

and for attempting to model, rather than eliminate, experimental error; furthermore, these

models also include coefficients with no biological interpretation (Baranyi et al. , 1996b;

Ross and Dalgaard, 2004). Fmthermore, because of their flexibility, they should only be

used to provide predictions by interpolation(Baranyi et al., 1996a; Baranyi et al. , 1996b).

A quadratic equation is an illustration of such polynomial models:

lny = £1 + ,6le + [33x2 + 64x3 + flsxlxz + [36.1ch3

Eq. 2.8

+ fl7x2x3 + fl8x12 + [99x3 + 13101:? + e
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where:

1n y = natural logarithm of the modeled growth responses (y = umax, lag time, or

maximum population density [MPD]).

1?,- (i = I, 10) = coefficients to be estimated.

x1, x2, x3 = environmental variables (e.g., temperature, pH, salt)

e = random error

2.1.3 Tertiary growth models

In tertiary models, environmental values of interest are entered into secondary

models to obtain specific parameter values for the primary model. The primary model is

then solved for increasing periods of time to obtain the growth or inactivation curve

expected fiom that combination of environmental values. The primary and secondary

models are used in conjunction with spreadsheets or other software programs, which

avoids the reentering of equations, takes advantage of graphics capabilities of the

software, and allows performance of other calculations. Tertiary systems vary in

complexity from an equation on a spreadsheet to expert systems or risk assessment

simulations (Doyle et al., 2001).

An example of the tertiary model is the USDA Pathogen Modeling Program

(PMP, (U.S. Department of Agriculture, 2003b)). The PMP (Fig. A2) is a free software

package of microbial models that describes growth, survival, inactivation, or toxin

production of several pathogens, under various conditions defined by the user. Depending

on the specific model, environmental inputs include atmosphere (aerobic or anaerobic),

temperature, pH, water activity, ionizing radiation, varying concentrations of lactic acid,
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sodium chloride, nitrite, and sodium pyrophosphate, or all of these. Lag phase duration,

generation time, and time are displayed either in hours or days. Growth/inactivation

curves are displayed in both graphical and tabular formats, with their respective

confidence intervals. In addition, the PMP contains dynamic temperature models for the

growth of Clostridium perfi'ingens and Clostridium botulinum (McKellar and Lu, 2004;

Tamplin et al., 2004; Whiting, 1995).

Once these predictive tools are validated and tested, they can be used in a variety

of ways. For example, quantitative risk assessment for the fate of pathogens in food

products relies on predictive models for growth, survival, and inactivation, in order to

determine strategies to improve food safety. In the same way, predictive microbiology

assists in identifying hazards and critical control points, and in specifying limits for

corrective actions in the formulation of hazard analysis critical control point (HACCP)

plans (McMeekin and Ross, 2002). Furthermore, the consequences of reformulating a

food product can be evaluated. Alternative formulations can be evaluated using models,

the influence of different factors can be obtained, and formulations with similar or

enhanced resistance to growth can be identified (Whiting, 1995).

Computer technology and advances in computational power make predictive

microbiology readily available for the ultimate user. However, this user (i.e., a food

processor) generally operates these tools “as is”, confident that the elements provided

were already validated and tested, because he/she does not have the time, facilities, or

knowledge to corroborate the validity of that too]. Therefore, it is necessary to improve

currently available tools, to avoid unknown predictions that could lead to dangerous

outcomes, causing an increasing risk for consumers.
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2.2 LISTERIA MONOCYTOGENES

Listeria is a small, regular Gram-positive rod with round ends. The genus Listeria

contains six species: L. monocytogenes, L. ivanovii, L. innocua, L. welshimert', L.

seeligeri, and L. grayi (Ryser and Marth, 1999).

L. monocytogenes, in particular, represents a threat to the food industry, due to its

resistance (it can survive adverse environmental conditions), its ability to colonize,

multiply, and persist on processing equipment, and its ability to multiply at refrigeration

temperatures. It can be found in soil, water, and in plant material. L. monocytogenes also

has been recognized as a human pathogen since 1929, and in 2000 the Centers for

Disease Control and Prevention (CDC) reported that of all the foodbome illnesses tracked

by CDC, L. monocytogenes had the second highest case fatality rate (21%) and the

highest hospitalization rate (90.5%) (U. S. Department of Health and Human Service,

2003). This disease usually occurs in high-risk groups, including pregnant women,

neonates, and immunocompromised adults (Ryser and Marth, 1999; U. S. Department of

Health and Human Service, 2003).

Foodbome listeriosis outbreaks could be dated back to 1914, even before Murray

isolated it in 1926 (Ryser and Marth, 1999). Vehicles of infection, reported since 1949,

can range from raw milk, sour milk, cream, pork, raw vegetables, shellfish, raw eggs,

processed meats or pate, sweet corn, cheese, to rice salad (Ryser and Marth, 1999). These

foods are usually preserved by refrigeration and offer an appropriate environment for the

multiplication of L. monocytogenes during manufacturing, aging, transportation, and

storage.

Accurate prediction via mathematical models is becoming more important, not

14



only for risk assessors, but also for food processors, to evaluate the production-

processing-consumption chain for food products that can be suitable substrates for L.

monocytogenes growth. There are several models currently used to predict L.

monocytogenes growth, which were developed either fiom broth-based data or actual

food systems. A description ofsome ofthe more widely used models follows.

2.3 GROWTH MODELS

The most fiequently used primary growth models are the Gompertz (modified

model, eq. 2.7, (Gibson et al., 1987)) and Baranyi equations (eq. 2.8, (Doyle et al., 2001))

the first being a sigmoidal relationship, and the second being based in part on the concept

that the rate of bacterial growth is controlled by the rate of a “bottleneck” biochemical

reaction.

l-Blt-Mil
L(t) = A + Ce—e Eq. 2.9

where:

L(t) = log counts ofbacteria at time t (log(CFU/ml))

A = Asymptotic log count of bacteria as t decreases indefinitely (log(CFU/ml))

C = Asymptotic, incremental increase in log count ofbacteria as t increases

indefinitely (log(CFU/ml))

M= Time at which the absolute growth rate is maximum (h)

B = Relative growth rate at M (1/h)

t = time (h)

and,
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Y, = Y0 + pmax A(t) - ln{1 + [exp(,umaxa(t) -— l) exp(YIlrmlx —— Y0 )]} Eq. 2.10

where:

Y,, Y 0, I’max = log cell concentration (log(CFU/ml)) at time t, at inoculation, and

at maximum cell density (stationary phase), respectively.

,umax = maximum specific growth rate (l/h)

A(t) = integral of the adjustment function cr(t).

Several authors compared the performance of these two models, plus some other

models, applied to different microorganisms (Baty and Delignette-Muller, 2004;

Buchanan et al., 1997; Juneja et al., 1999). For example, Baty et al. (2004) found that

the Gompertz model seems to be influenced more by the quality of the data set than is the

Baranyi model. They also concluded that the Baranyi model provided the best fit for the

majority of their data and gave reasonably precise estimates of the lag time. Another

study also found that the Gompertz equation can overestimate the model parameters,

which could bias the comparison with a diflerent model (Membre et aI. , 2004).

There are a numerous studies on secondary models (Augustin et al., 1999;

Augustin et al., 2000; Buchanan and Phillips, 1990; Buchanan et al., 1989; Cheroutre-

Vialette et al., 1998; Dalgaard and Jorgensen, 1998; Delignette-Muller et al., 1995;

Farber et al., 1996; Fernandez et al., 1997; George et al., 1996; Whiting and Bagi, 2002;

Wijtzes et al., 1993), which include square-root, polynomial, Arrhenius, etc., applied to

L. monocytogenes. These studies focused mainly on how the lag phase and/or growth rate

is influenced by pH, water activity, carbon dioxide, lactic and acetic acids, salt, nitrite,

and/or temperature. These parameters are important mainly because they give an estimate
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of the shelf life (how long a product will last under its storage conditions without L.

monocytogenes growing) of food products.

L. monocytogenes is a pathogen that has one of the highest rates of mortality;

fortunately, predictive microbiology is becoming a very significant tool to limit risks

associated to this pathogen. Research done so far has extensively focused on the

influence of experimental conditions on growth parameters, most of them in broth

(Augustin et al., 1999; Augustin et al., 2000; Breand et al., 1999; Buchanan and Phillips,

1990; Buchanan et al., 1989; Comu et al., 2002; Delignette-Muller et al., 1995; Farber et

al., 1996; Fernandez et al., 1997; George et al., 1996; Whiting and Bagi, 2002; Wijtzes et

al., 1993), and some in food systems (Bovill et al., 2000; Cheroutre-Vialette et al., 1998;

Dalgaard and Jorgensen, 1998). However, to be confident about the results that users are

currently getting from models, more research is needed on validation of these models, in

terms of actual microbial counts; the previous cited literature only focused on validation

of models for growth parameters. Moreover, an overall assessment of the accuracy and

uncertainty of these predictions will further contribute to the true estimates of either

growth or inactivation ofthis foodbome pathogen.

2.4 MODEL LIMITATIONS

Models in general have inevitable limitations, either statistical or biological, that

need to be addressed before they are applied. For instance, these limitations could be the

inherent uncertainty of the model itself, the lack of fit of the model to a specific data, the

type of fitting, and the domain in which the model was developed.

Before analyzing a model, it is important to understand that the growth process is
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both variable and uncertain. Growth is variable, because the growth curve of one

population will never be exactly the same as that of another population, not even for the

same strain under identical circumstances; this variability is reflected by a spread of

values for any particular property of the individuals that make up the population (Barker

et al., 2005; Nauta, 2000). Growth is uncertain, because growth progress will never be

exactly known; microbiological measurements used to construct the growth curve will

always be somehow imperfect (Nauta, 2000). Both uncertainty and variability greatly

influence the performance ofa model.

The goal is to use the simplest model that describes the response of an organism

to a specific food system. Ideally, the model should give parameters that help to

understand the system and design new experiments. Linear and nonlinear regressions can

be used to fit a mathematical model to the data in order to determine the best-fit values of

the model parameters (Motulsky and Christopoulus, 2004). Reliable prediction of risk

can be made by incorporating uncertainty in the predictions; in order to do that, the

accountability of its limits is necessary. Various methods can be used to characterize

uncertainty in statistics, such as the mean or standard deviation, including analytical

solutions and numerical solutions. Some transformations are used to homogenize the

variances for fitting the models, so normal distribution can be attained. Although the

process of reparameterization can be controversial, it makes variances more uniform and

normally distributed and makes the parameters more interpretable (Ross and McMeekin,

2003; Whiting, 1995; Zheng and Frey, 2004).

When using nonlinear regression to fit a model to raw data, resulting confidence

and prediction intervals are only approximations. When a model is nonlinear in the
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parameters, no explicit analytical solutions are available for the parameters or the

confidence intervals, and a solution must be found by linear approximation; meaning,

iteratively, starting from initial values supplied by the analyst, or estimated by the

computer program. Determination of the prediction limits is difficult; however the easiest

method is to use asymptotic standard errors (SE), which are found fiom the matrix of

variances and covariances of the parameters (Van Boekel, 1996). Once the SE is

calculated, the confidence intervals can be computed using the t-parameter for a

confidence level (1-0.5a) and degrees of fieedom v = n-p, where n is the number of data

points andp is the number ofparameters. The Monte Carlo method is considered the best

method (Motulsky and Christopoulus, 2004; Van Boekel, 1996), in which synthetic data

are produced based on the model function and the obtained parameters, but with addition

of random errors. The synthetic data set is then analyzed again with the same model

function to obtain new parameter estimates. Doing this many times yields a distribution

of parameter values, from which a confidence interval of the parameter and/or the

dependent variable can be formd.

Besides the uncertainty, lack of fit, and type of fitting of a model, the domain of

the model has to be clearly specified, meaning, what microorganisms, what factors, the

ranges of each factor, and what combination of factors give valid answers (biological

limitations); otherwise, cautious interpretation of the predictions is required (Whiting,

1995). The overall uncertainty of a model accounts for both the statistical and biological

limitations. Therefore, its assessment and understanding, either inside or outside the

model domain, would contribute to the improvement of risk and food safety predictions.
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CHAPTER 3

ROBUSTNESS OF MICROBIAL GROWTH MODELS

3.1 SUMMARY

Given the importance of Listeria monocytogenes as a risk factor in meat and

poultry products, there is a need to evaluate the relative robustness of predictive growth

models applied to meat products. The US. Department of Agriculture — Agricultural

Research Service (USDA-ARS) Pathogen Modeling Program (PMP) is a tool widely

used by the food industry to estimate pathogen growth/survival/inactivation in food.

However, the robustness of the PMP broth-based L. monocytogenes growth model in

meat and poultry application has not been specifically evaluated. In the present study, this

model was evaluated against independent data in terms of predicted microbial counts

covering a range of conditions inside and outside the original model domain. The

Robustness Index (R1) was calculated as the ratio of the standard error of prediction, SEP

(root mean square error [RMSE] of the model against an independent data set not used to

create the model), to the standard error of calibration, SEC (RMSE of the model against

the data set used to create the model). Inside the calibration domain of the PMP, the best

R1 for application to meat products was 0.37; the worst was 3.96. Outside the domain, the

best R1 was 0.40, and the worst was 1.22. Product type influenced the RI values

(P<0.01). In general, the results indicated that broth-based predictive models should be

validated against independent data in the domain of interest; otherwise, significant

predictive errors can occur.

This paper was published in the Journal of Food Protection ((Martino et a1. ,

2005).
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3.2 INTRODUCTION

Quantitative risk assessments for the fate of pathogens in food products depend

heavily on the validity of predictive models for pathogen growth, survival, and

inactivation. An accurate prediction may have to consider whether a model is easy to use

(the simplest one for a given purpose and data quality), whether it is robust and accurate

(it must reflect reality), and whether it is validated against independent data sets

(Ratkowsky, 2004). The validation or performance evaluation of a model can also be

referred to as the robustness ofthe model (Campos et al. , 2004). The robustness indicates

how well a model predicts future independent results across a wide domain of conditions.

However, experimental data and associated models are rarely available to account for all

of the relevant variables and range of conditions for a specific pathogen, product, and

process being analyzed. Therefore, a risk assessment might extrapolate the predictive

models, either in terms of the process parameters (e.g., temperature) or product

parameters (e.g., fat content). Even though this practice is fundamentally undesirable, it

might be the only means to completing a risk assessment for a given product/system;

therefore, it is desirable and necessary to fully understand the implications of this

practice.

In particular, given the importance of Listeria monocytogenes as a risk factor in

meat and poultry products, there is a need to evaluate the relative robustness of predictive

microbial growth models for this specific pathogen. Previous research has shown that

product/process variables (e.g., pH, water activity) significantly affect L. monocytogenes

response (Cheroutre-Vialette et al. , 1998). However, knowing that an effect exists is not

sufficient to account for that effect quantitatively in predictive models. Some previous
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studies only reported descriptive models (meaning that experimental data are generated

and a model is fit to those data), which described the combined effect oftemperature, pH,

water activity, and C02 concentrations (Farber et al., 1996; Wijtzes et al., 1993). Other

investigators compared their mathematical models (of the effect of C02, pH, temperature,

NaCl, organic acids and modified atmospheres) against independent data sets (Buchanan

and Phillips, 1990; Fernandez et al. , 1997; George et al. , 1996). Unfortunately, they made

only qualitative comparisons between observed and predicted values and did not present

a quantitative validation for their models.

On the other hand, Ross (Ross, 1996) presented the bias and accuracy factors as

indices to evaluate the performance of predictive models in food microbiology, in terms

of growth parameters (i.e., growth rates, lag phase duration). The bias factor is an overall

average of the ratio of discrete model predictions to observations and assesses whether or

not the model is “fail-safe”, “fail-dangerous”, or perfect. The accuracy factor is similar to

the bias factor, except that it is the absolute value of the ratio of predictions to

observation, thus providing an accumulated measure of overall model accuracy.

However, these factors have only been used to evaluate the performance of secondary

models in predicting growth parameters; actual log counts (fiom primary + secondary

models) were not considered.

The true measure of product safety is actual microbial counts, not model

parameters. Campos et al. (Campos et al. , 2004) introduced a new methodology to

evaluate the robustness of a microbial growth model in terms of microbial counts. The

robustness index (R1) was defined as the ratio ofthe standard error of prediction (SEP) to

the standard error of calibration (SEC). The SEC and SEP are the root mean squared
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errors (RMSE) calculated from the original and independent data sets, respectively. The

RMSE is one of the most useful and informative measures of the goodness-of—fit against

the model prediction for linear and nonlinear regressions. Moreover, it is a way to

estimate the discrepancy between the observed and predicted data, which reflects whether

a model truly fits the data well (Lammerding and McKcllar, 2004). A robust model will

have an R1 value near or less than 1, meaning that the overall performance of a microbial

model tested against an independent data set is within the expected error (SEC) of the

model. Campos et al. (2004) also stated that the RI value alone does not tell whether

observed values are above or below the predicted values; the mean relative error (RE) is

used with the R1 in order to provide this information.

The US. Department of Agriculture (USDA) -— Agricultural Research Service

(ARS) Pathogen Modeling Program (PMP, (2003b) and the UK. Food MicroModel are

tools used by the food industry to estimate pathogen growth/survival/inactivation in food.

The majority of these models were developed from pure-culture, broth-based data.

Because these models are based on pure-culture systems containing high level of

nutrients and no competitive microbial flora, they are generally assumed to provide

conservative estimates ofpathogen growth.

Several authors have considered the performance of the PMP and other microbial

growth models. For instance, te Gifl‘el and Zwietering (1999) evaluated the prediction of

L. monocytogenes growth rates in foods, including meat, by general models (e.g.,

Gamma-concept, PMP, Food MicroModel) and by specific models (e.g., modified

Arrhenius equation, third-order polynomial model, quadratic equation, etc.). They tested

these models against independent data sets and validated the models by graphical
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comparison and mathematical/statistical comparison (mean squared error, regression

coefficient, bias and accuracy factors). They recommended the use of a set of criteria to

evaluate the performance of models, because the use of one criterion may fail to reveal

some forms of systematic deviation between observed and predicted behavior. Again, the

prior study evaluated the performance of only a secondary model; actual log count

predictions were not evaluated.

Additionally, the evaluation of the models mentioned here did not include data

outside their original domain, which is critically important if they are to be applied to

broader risk analyses for foodbome pathogens in ready-to—eat food products.

Furthermore, the prior studies only evaluated secondary models for growth parameters

(i.e., growth rate, generation time, lag phase duration). They did not evaluate the

robustness of the complete model (primary + secondary), which predicts the actual

growth values, and gives the complete behavior (lag phase, exponential growth, and

stationary phase) ofthe pathogen of interest.

Therefore, the objective of the present study was to evaluate the robustness,

against independent data, of the PMP broth-based growth model for L. monocytogenes in

meat and poultry products, in terms of predicted microbial counts covering a range of

conditions inside and outside the original model domain.

3.3 MATERIALS AND METHODS

3.3.1 Data sources

ComBase ((Baranyi and Tamplin, 2004; US. Department of Agriculture, 2003a),

Fig. A.3) was used as the main source ofindependent data sets. ComBase pro-distribution
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version 2002, was searched for all records that included microbial counts with organism:

“L. monocytogenes/innocua”, and broth or food category: meat or meat products. In total,

65 data sets were found; 41 were within the domain of the PMP L. monocytogenes

growth model, and 24 were outside the domain ofthe model (Table 3.1).

The original data sets used to develop the PMP broth-basedl L. monocytogenes

growth model were also obtained from ComBase «US. Department of Agriculture,

2003a), source: “Buchanan_90”, organism: “L. monocytogenes/innocua ”, environment:

“culture medium”, pH: “0.1 to 14”, temperature: “-25 to 120”, and aw: “0.01 to 1”). These

data sets were assumed to be the original ones used in the PMP, because they were in the

same range of experimental conditions (pH: 4.5-7.5, nitrite: 50-1000 ppm, salt: 15-50 g/l,

and temperature: 5-37 °C), and had a similar number of data sets (385 for anaerobic, and

553 for aerobic). The no-growth data were eliminated (Buchanan and Phillips, 1990;

Buchanan et al., 1989). The remaining data sets (aw: 291, “points: 2,302 for anaerobic,

and ”sets: 476, “points: 3,680 for aerobic) were used to calculate the SEC of the PMP

growth model.

 

' “Inoculum: Strains were maintained in BHI broth at 4° C and transferred monthly. Procedure:

The test medium was 50 ml TPB in a 250 ml Erlenmeyer flask (aerobic) or a 250 trypsinizing

flask fitted with a side arrn (anaerobic, nitrogen flushed). Flasks were inoculated with 0.5 ml ofa

24 h culture, shaken at 150 rpm. Enumeration: aliquots were plated on Tryptose Phosphate agar,

and incubated for 24 h at 37 C”, from Buchanan and Phillips (1990).
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TABLE 3.]. References and keys in ComBase for meat and poultry data used in this

 

 

 

study.

Data set Key (ComBase) Product type Reference

No.

1-6 1206_Lm to .1211_Lm Ground Beef (Nissen et al., 2000)

7-12 JZ32_Lm to J237_Lm Cooked Chicken (Barakat and Harris,

1999)

13 M007 Pate (Bovill er al., 2000)

14-18 M200_LM to M204_LM Cooked Pork (Fang andLin, I994)

19 M263_LM Precooked Beef (Cooksey et al., I993)

20-24 M263_Lma to M263_Lme Precooked Beef (Cooksey et al., I993)

25-26 M656_LM to M657_Lm Cooked Beefw/ Gravy (Grant er al., I993)

27-28 M660_Lm to M661_Lm Cooked Beefw/ Gravy (Grant er al., 1993)

29 M921_LM Home-style salad (chicken with (Erickson et al., 1993)

no mayonnaise added)

'30 M921_LMa Home-style chicken salad (Erickson et al., 1993)

31 M921__LMb Home-style salad (real (Erickson et al., 1993)

mayonnaise + chicken)

32 M921_LMd Home-style salad (reduced (Erickson er al., 1993)

calorie mayonnaise + chicken)

33 M921_LMg Home-style salad (real (Erickson et al., I993)

mayonnaise + chicken)

34 M921_Lmi Home-style salad (reduced (Erickson et al., 1993)

calorie mayonnaise + chicken)

35 SL1 13 Turkey (Mano et al., 1995)

36 SL1 18 Turkey (Mano et al., 1995)

37 SL123 Turkey (Mano er al., I995)

38-41 SL59 to SL62 Pork (Mano et al., 1995)

42-52 M122_133 to M122_144 Pate or ham (Mano et al., 1995)

54-65 M122_37 to M122_48 Pate or ham (Mano et al., I995)

3.3.2 Predictive models.

The robustness of the broth-based L. monocytogenes growth models (aerobic and

anaerobic) in PMP version 7.0 ((U.S. Department of Agriculture, 2003b) was determined

by testing the model predictions against the independent data sets. Because the PMP, as it

is distributed, cannot run outside the calibration domain, the secondary models used to
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calculate generation time (GT) and lag phase duration (LPD) within the PMP domain

(Table 3.2) were implemented in a spreadsheet (source: A. Pickard, USDA-ARS Eastern

Regional Center), to generate predictions for the data sets that were outside the original

domain.

TABLE 3.2. Coefficient values for secondary models

 

 

Aerobic Anaerobic

Variable Ln GT Ln LPD Ln GT Ln LPD

1m 21.45832 26.86796 13.51036 19.82645

T -0.26798 -021535 -0.10334 -0.20281

pH -5.29657 -6.5596 -3.34632 4.34946

NaCl 0.012824 0.051605 0.042326 0.031356

N02 0.020202 0.019974 0.021956 0.024464

1"po 0.00757 0.003684 -0.01424 -0.0032

TxNaCl 7.945-06 0.000223 -3.55-05 7.065-05

TxNOz -5.15-07 1.935-05 4.83E—06 1.625-05

pHxNaCl -0.00137 6.00686 -0.0036 -0.00181

pHxNOz -0.00278 -0.0028 -0.00282 -0.00321

NaClxNOz 5.28E—06 -3.75-06 4.14E-06 -2.75-06

T2 0.002666 0.001918 0.002725 0.003123

sz 0.384181 0.487334 0.262941 0.310527

NaClz 0.000122 0.000102 -0.00027 2.6505

N022 5.91507 7.365-07 -8.65-07 -4.8F.-07
 

The primary model was the Gompertz equation:

L(t) =A+Ce'e

where:

L(t) = log counts of bacteria at time t (log (CFU/ml))

[‘31er}
Eq. 3.1

A = Asymptotic log count of bacteria as t decreases indefinitely (log (CFU/ml))

C = Asymptotic log count of bacteria as t increases indefinitely (log (CFU/ml))
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M= Time at which the absolute growth rate is maximum (h)

B = Relative growth rate at M (l/h)

t = time (h),

and where (Buchanan and Phillips, 1990):

 B = “’ng Eq. 3.2
GT-C

M = LPD+-11} Eq. 3.3

Using the Gompertz primary model and the response surface secondary model

from the PMP, log counts were predicted for conditions and times matching every

experimental data point from the described data sources, given the initial log counts for

the respective experimental growth curve.

Confidence intervals2 (95%) were generated based on the following equation

(adapted fiom (Neter et al. , 1992)):

C1 = yj r (zXSEC) Eq. 3.4

where:

C] = confidence interval

5)}. = Predicted value ofj‘h data point (log (CFU/ml))

z = 2(1-(1/2), o=0.05

SEC = Standard error of calibration (formula below)

 

2 For the subsequent chapters (4 and 5) these confidence intervals were more accurately described

as “prediction intervals”, given that SEC is the root mean squared error between the observed

values and the actual predicted values, not the mean responses.
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3 .3 .4 Robustness Index (RI)

The R1 for the PMP broth-based L. monocytogenes growth model was calculated

based on the following equation (Campos et al. , 2004):

R1_ SEP
__ 5 .35
SEC q

where:

SEC = Standard error of calibration3

Fin-9.?
= '-‘ Eq. 3.6

 

 

n

where:

9,. = Predicted value of i'h data point (log(CFU/ml))

yi = Observed value ofthe i"‘ data point fiom the original data sets used to

develop the model (log(CFU/ml)), assuming 1 CFU/ml = 1 CFU/g

n = number ofobserved data points fiom the original data set

and

SEP = Standard error of prediction

 

 
= Eq. 3.7

where:

 

3 In the following chapters, the denominator for SEC is more accurately represented as n-p, where

p = number ofparameters ofthe model. For this section p=2 and n~3000, so the final outcome

was not significantly affected.
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j»j = Predicted value ofjtil data point (log(CFU/g))

yj = Observed value of the j‘h data point from an independent data set

(log(CFU/g», assuming 1 CFU/ml = 1 CFU/g

n = number ofobserved data points from an independent data set

The overall R1 for each product type was calculated using the combined observed

data from all independent sources:

11

kélbk 4"?

'1

R1 = . 3.8

SEC Eq

 

 

 

where:

52k = Predicted value ofkm data point (log(CFU/g))

yk = Observed value ofthe k"I data point fiom all independent data sets

corresponding to each product type (log(CFU/g)), assuming 1 CFU/ml

= 1 CFU/g,

n = total number ofobserved data points from all independent data sets

corresponding to each meat product type

Additionally, the mean relative error (RE) was calculated based on the following

formula (Campos et al. , 2004):

A

 

fi J’j-J’j

j=l I’j

RE: Eq.3.9

n
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where,

if = Predicted value ofj‘11 data point (log(CFU/g))

yj 2 Observed value ofthe jib data point from an independent data set

(log(CFU/g)), assuming 1 CFU/ml = l CFU/g

n = number of data points

To evaluate whether any of the product/process variables affected the RI, an

analysis of variance (ANOVA) was conducted using JMP (SAS Institute Inc., Cary, NC.

Version 4.0.4).

3.4 RESULTS AND DISCUSSION

The SEC values for the PMP growth models for anaerobic and aerobic conditions

were 1.49 log(CFU/ml) and 1.15 log(CFU/ml), respectively. This means that the model

accuracy was :l:1.32 log(CFU/ml) accuracy, on average, for the broth-based data for both

atmospheric conditions.

The RI values for all the meat and poultry products that were inside the PMP

domain were between 0.37 and 3.96 (Table 3.3). The mean relative error shows that the

PMP growth model over-predicted (i.e., fail-safe) the log counts for 85% ofthe cases.

For the data set yielding the best RI value (Fig. 3.1), predicted and actual log

counts were within the confidence levels, which implies that the model performed better

than expected. On the other hand, for the data set yielding the worst RI value (Fig. 3.2),

the actual log counts were outside the confidence bands predicted. This particular data set

presented no growth in the total period that was studied.
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TABLE 3.3. R1 values for conditions inside the PMP model domain

 

 

Data set Product type Temp (°C) H a a b Atmosphere RI Mean

No. p w Relative

Error (RE)

1 Ground Beef 4 5.8 0.997 Anaerobic 2.44 -0.33

2 Ground Beef 4 5.8 0.997 Aerobic 2.21 -0.27

3 Ground Beef 4 5.8 0.997 Aerobic 2.18 -025

4 Ground Beef 10 5.8 0.997 Anaerobic 2.57 -0.39

5 Ground Beef 10 5.8 0.997 Aerobic 2.65 -0.25

6 Ground Beef 10 5.8 0.997 Aerobic 2.52 028

7 Cooked Chicken 3.5 6 0.997 Anaerobic 1.15 -O. 16

8 Cooked Chicken 3.5 6 0.997 Anaerobic 2.10 -0.32

9 Cooked Chicken 6.5 6 0.997 Anaerobic 0.45 0.02

10 Cooked Chicken 6.5 6 0.997 Anaerobic 0.78 —0.07

1 1 Cooked Chicken 10 6 0.997 Anaerobic 0.98 -0.08

12 Cooked Chicken 10 6 0.997 Anaerobic 1.52 -0.18

13 Pate 6.8 5.6 0.997 Aerobic 0.37 -0.03

14 Cooked Pork 4 6.3 0.997 Anaerobic 1.40 -0.21

15 Cooked Pork 4 6.2 0.997 Aerobic 1.20 -0.15

16 Cooked Pork 20 6.3 0.997 Anaerobic 0.95 -0.12

17 Cooked Pork 20 6.2 0.997 Aerobic 1.41 -0.14

18 Cooked Pork 20 6.3 0.997 Aerobic 0.66 -0.07

19 Precooked Beef 4 6 0.997 V C 1.40 -0.16
acuum

20 Precooked Beef 4 6 0.997 V c 0.41 -0.04
acuum

21 Precooked Beef 4 6 0.997 V C 2.76 040
acuum

22 Precooked Beef 4 6 0.997 Vacuum 1.94 -0.27

c23 Precooked Beef 4 6 0.997 Vacuum 3.96 -0.58

c24 Precooked Beef 4 6 0.997 Vacuum 2.36 -0.34

25 Cooked Beefw/ Gravy 5 6 0.997 Aerobic 0.48 0.06

26 Cooked Beefw/ Gravy 10 6 0.997 Aerobic 0.93 -0.08

27 Cooked Beefw/ Gravy 5 6 0.997 Aerobic 1.41 -0.26

28 Cooked Beefw/ Gravy 10 6 0.997 Aerobic 1.95 -0.24

29 Home-style salad 4 6 0.997 Aerobic 0.53 0.11

(chicken with no

mayonnaise added)
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TABLE 3.3. Continuation.

 

 

Data Product type Temp pH a 3w b Atmosphere RI Mean

set No. (°C) Relative

Error(RE)

30 Home-style chicken 4 6 0.997 Aerobic 0.56 0.08

salad

31 Home-style salad 4 6 0.997 Aerobic 1.29 -0.23

(real mayonnaise +

chicken)

32 Home-style salad 4 6 0.997 Aerobic 1.47 -0.27

(reduced calorie

mayonnaise +

chicken)

33 Home-style salad 12.8 5 0.997 Aerobic 2.08 0.52

(real mayonnaise +

chicken)

34 Home-style salad 12.8 5 0.997 Aerobic 1.28 0.31

(reduced calorie

mayonnaise +

chicken)

35 Turkey 7 6 0.99 Anaerobic 1 . 16 -0. 19

36 Turkey 7 6 0.99 Aerobic 1.52 -0.19

37 Turkey 7 6 0.99 Aerobic 1 .78 -0.21

38 Pork 7 6 0.99 Aerobic 2.45 -0.30

39 Pork 7 6 0.99 Anaerobic 2.87 -0.45

40 Pork 7 6 0.99 Aerobic 3.45 -0.41

41 Pork 7 6 0.99 Aerobic 3.44 -0.40
 

a Assumed values for data sets 7-12.

b Assumed values for data sets 1-34.

0 Assumed anaerobic for calculations
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FIGURE 3.1. Comparison of the predicted (solid line) and actual (full squares)

growth log counts from the data set (No. 13) resulting in the best RI value (0.37) inside

the PMP model domain (95% confidence intervals, broken lines).
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FIGURE 3.2. Comparison of the predicted (solid line) and actual (full squares)

growth log counts from the data set (No. 23) resulting in the worst RI value (3.96) inside

the PMP model domain (95% confidence intervals, broken lines).
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Among the variables tested, only product type affected the RI value (Table 3.4)4.

Therefore, the data were grouped into classes of similar product type, and an overall

performance (RI) was calculated for each group (Table 3.5). The RI values between 0 and

2 (i.e., pate, cooked chicken, cooked pork and turkey) indicated satisfactory robustness

for the PMP in the application. RI=2 is an arbitrary criterion; it means that the actual log

counts were generally within the range described by standard error of calibration (SEC)

of the model. The RI values above 2 (i.e., pork, ground beef, and precooked beef) suggest

that actual log counts are more likely to fall outside the confidence limits ofthe model for

this particular type of meat, and under these specific conditions, the model did not

perform as expected. The differences in RI values might be due to the variability of the

laboratory methods. For each product type, and even within the same product type, it is

possible to find different inoculation and enumeration methods; different treatment or

sample preparation; and different L. monocytogenes strains. All of these variables

affected the error in the prediction. Controlling or coordinating the challenge tests could

decrease the effects of those variables on the uncertainty of the model; however, these

data sets represent the current state-of-data in this domain.

 

‘ In order to make a fair comparison (based on meat data) the chicken salad data were not

included.
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TABLE 3.4. ANOVA results for R1 vs. product/process variables

 

 

Variable P value

Product type 0.0004

pH 0.1484

Temp 0.0975

Atmospherea 0.2856

 

a Atmosphere: aerobic or anaerobic

TABLE 3.5. Overall RI values for species inside PMP domain.

 

Product Atmosphere R1

We

Ground Anaerobic 2.20

beef

Aerobic 3.10

Cooked Anaerobic l .25

 

 

 

 

 

Chicken

Pate Aerobic 0.30

Cooked Anaerobic 1.10

Pork

Aerobic 1 .08

Precooked Vacuum 2.40

Beef

Turkey Anaerobic 1 .07

Aerobic l .63
 

Pork Anaerobic 2.80

Aerobic 3.40
 

For data sets under experimental conditions outside the PMP domain (i.e., low

temperature), RI values were between 0.40 and 1.22 (Table 3.6). Again, for these data

sets, the PMP growth model over-predicted (i.e., fail-safe) the log counts for the majority

of the cases (83%). The ANOVA of these data showed no significant influence of the

experimental conditions on the RI values, probably due to lack of variation in those
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variables. As was the case for data within the model domain, for the best RI value, actual

and predicted log counts fell within the confidence intervals (Fig. 3.3). For the data set

yielding the worst RI value, the PMP growth model still performed as expected; most of

the actual log counts fell within its confidence bands (Fig. 3.4), because the R1 was still

~1.20. It should be noted that this evaluation ofthe model performance in an extrapolated

domain was very limited, both in terms of the number and domain of the data.

Extrapolation of predictive microbial models is always undesirable and not

recommended; however, the R1 is one possible method for evaluating the performance of

models both within and outside the original calibration domain.

TABLE 3.6. R1 values for conditions outside the PMP model domain.

 

 

Data set Produt type pH Temp A Nitrite Salt (%) RI Mean

No. (°C) w (ppm) Relative

Error (RE)

42 Pate or ham 6.2 2 0.991 81.2 1.6 0.78 .0,03

43 Pate or ham 62 2 0.991 81.2 1.6 0.93 -0.05

44 Pate or ham 6.2 2 0.991 81.2 1.6 0.70 -0.07

45 Pate or ham 6.2 2 0.991 81.2 1.6 0.70 -0.06

46 Pate or ham 6.2 2 0.991 81.2 1.6 0.91 .0,] 1

47 Pateorham 6.2 2 0.991 81.2 1.6 1.22 .0,10

48 Pate or ham 6.2 0 0.991 81.2 1.6 1.15 —0.03

49 Pate or ham 6.2 0 0.991 81.2 1.6 0.40 -0.06

50 Pate or ham 6.2 0 0.991 81.2 1.6 0.69 .009

51 Pate or ham 6.2 0 0.991 812 1.6 0.85 -0. 10

52 Fate or ham 6.2 0 0.991 81.2 1.6 0.69 -0.10

53 Pate or ham 6.2 0 0.991 81.2 1.6 0.81 .o, 14

54 Pate or ham 6.3 2 0.989 103 2.0 1.10 .0,03

55 Pate or ham 6.3 2 0.989 103 2.0 0.70 0,01

56 Pate or ham 6.3 2 0.989 103 2.0 0.78 -0.05

57 Pate or ham 6.3 2 0.989 103 2.0 0.57 .004

58 Pate or ham 6.3 2 0.989 103 2.0 0.87 .007

59 Pate or ham 6.3 2 0.989 103 2.0 0.93 -0.02

60 Pate or ham 6.3 0 0.989 103 2.0 0.47 002

61 Pate or ham 6.3 0 0.989 103 2.0 0.62 0,00

62 Pate or ham 6.3 0 0.989 103 2.0 0.85 0,07

63 Pate or ham 6.3 0 0.989 103 2.0 0.70 0.07

64 Pate or ham 6.3 0 0.989 103 2.0 0.86 -0.11

65 Pate or ham 6.3 0 0.989 103 2.0 0.97 .007
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FIGURE 3.3. Comparison of the predicted (solid line) and actual (full squares)

growth log counts fiom the data set (No. 48) resulting in the best RI value (0.40) outside

the PMP model domain (95% confidence intervals, broken lines).
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FIGURE 3.4. Comparison of the predicted (solid line) and actual (full squares)

growth log counts from the data set (No. 46) resulting in the worst RI value (1.22) outside

the PMP model domain (95% confidence intervals, broken lines).

To avoid dangerous errors when utilizing growth models for risk assessment (or

other application), predictive models should be validated against independent data

relevant to the application. In prior studies, the broth-based PMP growth model for E.

coli 0157:H7 under-predicted (i.e., fail-dangerous) microbial counts when compared to
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data in ground beef (Campos etal., 2004; Tamplin M., 2005; Tamplin, 2002; Tamplin et

al. , 2005). Similar results were reported in the PMP for the Clostridium perfiingens

growth model against data from broth (Smith and Schaffner, 2004). In the present study,

the broth-based PMP growth model for L. monocytogenes performed reasonably well

overall for meat and poultry products, both inside and outside its original domain. In

other words, it is a robust model for growth predictions that can be applied to meat and

poultry products. Moreover, in some cases the model performed better than expected

(RI~ 0-1). In general, microbial counts for L. monocytogenes were over-predicted by the

PMP growth model. However, the data outside the model domain were limited to a very

small range (i.e., low temperature, and just one product type); future work should further

evaluate models in a broader domain of extrapolation and/or generate more experimental

data to widen the validated domain ofpredictive models.
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CHAPTER 4

EFFECT OF DIFFERENT MODELING PROCEDURES ON MICROBIAL

GROWTH MODEL PERFORMANCE

4.1 SUMMARY

Two different microbial modeling procedures were compared and validated

against independent data for microbial growth. The most generally used method is two

consecutive regressions: growth parameters are estimated from a primary regression of

microbial counts, and then a secondary regression relates the growth parameters to

experimental conditions. A global regression is an alternative method, in which the

primary and secondary models are combined, giving a direct relationship between

experimental factors and microbial counts. The Gompertz equation was the primary

model, and a response surface model was the secondary model. Independent data from

meat and poultry products were used to validate the modeling procedures. The global

regression yielded the lower standard errors of calibration (SEC), 0.95 log(CFU/ml) for

aerobic and 1.21 log(CFU/ml) for anaerobic conditions. The two-step procedure yielded

errors of 1.35 log(CFU/ml) for aerobic and 1.62 log(CFU/ml) for anaerobic conditions.

For food products, the global regression was more robust than the two-step procedure for

65% of the cases studied. Robustness Index (RI) values for the global regression ranged

fiom 0.27 (performed better than expected) to 2.60. For the two-step method, RI values

ranged from 0.42 to 3.88. The predictions were overestimated (fail-safe) in more than

50% ofthe cases using the global regression, and in more than 70% ofthe cases using the

two-step regression. Overall, the global regression performed better compared to the two-

step procedure, for this specific application.
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4.2 INTRODUCTION

In general, predictive microbiology models are fitted to observed data in a two-

step regression process (Baranyi et al., 1999; Baty and Delignette-Muller, 2004;

Buchanan et al., 1989; Dalgaard and Jorgensen, 1998; Delignette-Muller et al., 1995; te

Giffel and Zwietering, 1999): l) The first step is to fit a primary growth model to

observed experimental data, which yields estimated parameters, and 2) The second step is

to independently fit a secondary model to each of these estimated parameters, as a

function of experimental factors (e.g., temperature, pH, water activity, or nitrite). These

two steps are usually not linked, and inherent 1mcertainty associated with the primary

model is subsequently neglected. The lack of fit to an individual growth curve is not

considered in the secondary model, and all parameters estimated fiom observed values

are generally given the same weight in the second step, regardless of the goodness of fit

of the primary mode], potentially leading to poor estimates of the parameters (Pouillot et

al. , 2003).

The Pathogen Modeling Program (U.S. Department of Agriculture, 2003b)) is a

widely used tool in the food industry. This program (PMP) uses models developed via the

two-step procedure to estimate, for example, the growth of Listeria monocytogenes. Its

primary model is the Gompertz equation, and its secondary model is a response surface

model. The L. monocytogenes growth models behind the PMP are based on the work of

Buchanan et a1. (1990), who evaluated the influences that several experimental conditions

(pH, temperature, salt, and nitrite) have on L. monocytogenes growth.

In 2001, Claeys et al. (2001) studied the kinetics of hydroxymethylfurfural,

lactulose, and furoxine formation using global and the two-step regression methods. They
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agreed with Pouillot et al. (2003), regarding the two-step procedure; errors of the first

regression influenced the exactness of the second regression, resulting in less accuracy

and precision of the estimated parameters. By doing a global fit, the data set is considered

as a whole, increasing the number of degrees of freedom and decreasing the confidence

intervals for the model parameters. However, Claeys et al. (2001) concluded that when

calculating kinetic parameters using both two-step linear (zeroth order reaction, and

Arrhenius equation) and one-step nonlinear regression approaches, the results were

comparable, superiority of either method was not clear, and the performance of a specific

regression approach depends on the data set to which it is applied. However, these

conclusions were based on zero“ order chemical kinetics, so the analysis may not

necessarily be relevant to microbiological responses that follow first order or some other

nonlinear behavior.

Few predictive microbiology studies have focused on the use of a one-step

(global) method. Breand et a1. (1999) used a primary model describing the lag time

duration as a function of two different parameters related to stress temperature and

duration. By replacing the two parameters with their corresponding secondary models,

the lag time was directly related to stress temperature and duration. They found that the

precision ofthe parameters improved with the global regression.

Membre et al. (2004) combined primary and secondary models that directly

related the growth of L. monocytogenes to cooling temperature, simulating post-process

contamination of packaged pork meats. Optimal growth rate was one of the parameters

estimated fiom this regression, which was the main focus of the study. By using global

regression, they lowered the bias factor of the growth rate compared to PMP results
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(~40% lower).

In order to predict microbial inactivation under dynamic conditions (dynamic

temperature profiles mimicking hot air treatments on a fully wetted and on a lean meat

product), Valdramidis et al. (2005) used the global approach. They used the Bigelow

model as their secondary model, which relates the specific inactivation rate to

temperature. The model parameters (Dref, z, and Tref) were estimated by one-step

regression. The authors mainly focused on the description of microbial inactivation under

dynamic conditions. In a different study, Fernandez et al. (2002) reported the joint effect

of pH and temperature on thermal resistance of Bacillus cereus in vegetable substrate,

using the Weibull distribution. The parameters were described as a function of

experimental conditions using Arrhenius-type relationships, which were replaced into the

Weibull model. They concluded that the one-step analysis increased the precision of the

estimated parameters, because it avoided estimation of intermediate parameters and used

all the raw data. However, validation or comparison of this approach versus the two-step

approach was not considered in either ofthese studies.

The previous literature (Breand et al., 1999; Fernandez et al., 2002; Membre et

al., 2004; Valdramidis et al., 2005) that studied the global regression procedure focused

on the estimation of model parameters, and evaluated different models that used the two-

step modeling procedure. To our knowledge, no published studies have directly

compared global versus two-step modeling procedures in terms of microbial counts.

Therefore, the objective of this study was to compare different fitting procedures applied

to broth-based growth models for L. monocytogenes, and validate them using

independent data from meat and poultry products.
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4.3 MATERIALS AND METHODS

4.3.1 Data sources

Broth-based L. monocytogenes growth data sets were obtained fiom ComBase

(U.S. Department of Agriculture, 2003a), using source: “Buchanan_90”, organism: “L.

monocytogenes/innocua ”, environment: “culture medium”, pH: “0.1 to 14”, temperature:

“-25 to 120”, and aw: “0.01 to 1”. In total, 385 data sets for anaerobic conditions and 553

for aerobic conditions were found (Table B.1). The no-growth data were eliminated

(Buchanan and Phillips, 1990; Buchanan et al., 1989)(Table B2). The remaining data

sets (nsets= 291 , “points: 2,302 for anaerobic, and nsets= 476, npoims= 3,680 for aerobic)

were considered for this study. The number of data points within each growth curve

ranged from 4 to 19 for anaerobic conditions, and 4 to 21 for aerobic conditions.

To validate these fitting procedures, independent data (nsets= 23, npoims= 174)

from meat and poultry products were used (pH range: 5—6.3, and temperature range: 4-20

°C). The number of data points within each growth curve was between 3 and 15 points.

These data sets were obtained from a pre-distlibution version of ComBase 2002 (U.S.

Department of Agriculture, 2003a), and all records found using the above search criteria

were included; keywords and references are reported in Table 4.1.



TABLE 4.1. References and keys in ComBase for meat and poultry products used for

 

 

 

model validation in this study.

Data set No. Key (ComBase) Product type Reference

1-4 J207_Lm, 1208_Lm, Ground Beef (Nissan et

1210_Lm, and 1211_Lm al., 2000)

5 M007 Pate (Bovill et

al., 2000)

6-8 M201_LM, M203_LM, Cooked Pork (Fang and

and M204_LM Lin, 1994)

9-10 M656_LM to M657_Lm Cooked Beefw/ Gravy (Grant et

al., I993)

1 l M660_LM Cooked Beefw/ Gravy (Grant et

al., 1993)

12 M661_Lm Cooked Beefw/ Gravy (Grant et

al., I993)

13 M921_LM Home-style salad (chicken (Erickson

with no mayonnaise added) et al.,

I993)

14 M921_LMa Home-style chicken salad (Erickson

et al.,

I993)

15 M921_LMb Home-style salad (real (Erickson

mayonnaise + chicken) et al.,

I993)

16 M921_LMd Home-style salad (reduced (Erickson

calorie mayonnaise + chicken) er al.,

. I993)

17 M921_LMg Home—style salad (real (Erickson

mayonnaise + chicken) et al.,

1993)-

18 M921_LMi Home-style salad (reduced (Erickson

calorie mayonnaise + chicken) et al.,

I993)

19 SL1 18 Turkey (Mano et

al., 1995)

20 SL123 Turkey (Mano et

al., I995)

21-23 SL59, SL61, and SL62 Pork (Mano et

al., 1995)

4.3.2 Predictive models

The total uncertainty was calculated based on the root mean squared error

(RMSE) between the observed and predicted log counts, identified as the standard error

of calibration, SEC (eq. 4.1).
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SEC = Standard error of calibration

Etta-if
___ I-l

Eq.4.1

n-p

 

 

where:

52,. = Predicted value of ith data point (log(CFU/ml))

yi = Observed value ofthe im data point fi'om the original data sets used to

fit the model (log(CFU/ml)), assuming 1 CFU/ml = 1 CFU/g

n = number ofobserved data points fiorn the original data set

p = number ofparameters

The two-step fitting procedure was as follows: first, the growth curves were fitted

to the Gompertz equation (eq. 4.2), and growth parameters were obtained (B and M,

(Martino et al., 2005)).

—B t—M

L(t) = A + Ce‘e[ H Eq. 4.2

where:

L(t) = log counts ofbacteria at time t (log(CFU/ml)), ii

A = Asymptotic log count of bacteria as t decreases indefinitely (log(CFU/ml))

= No

C = Asymptotic, incremental increase in log count ofbacteria as t increases

indefinitely (log(CFU/ml)) = N.Jo - No

M= Time at which the absolute growth rate is maximum (h)
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B = Relative growth rate at M (1/11)

t = time (11)

N0 = initial microbial concentration (log(CFU/m1)), at t = 0

Furthermore, N00 was not estimated as a parameter; instead, the N00 values were

assumed to be the same fixed values as reported by Buchanan and Phillips (1990). For

aerobic conditions, N00 was 9.57 log(CFU/ml), and for anaerobic conditions, N00 was

9.32 log(CFU/ml). The initial concentration (No) was a single fixed value for each data

set (i.e., the reported count 3 t = 0).

Then, response surface models (eq. 4.3) were fitted to the natural logarithms (In)

of the B and M parameters, as functions of experimental factors (pH, temperature, salt,

and nitrite) via multiple linear regression. The secondary models were then used to

calculate B and M for each combination of experimental factors. These B and M

parameters were then replaced in equation 2, and microbial counts were computed. The

observed data (yi, broth-based) and the predicted value (9,, from 2-step) were replaced in

equation 1, and the total uncertainty was calculated.

1n BorlnM =131 + [3sz +p3r + B4NaCl+BSN + 136ml2 .-

137(r x pH) + psrz + [39(NaC1x pH) +

[310(NaClx r) +011NaC12 + 612(Nx pI-I) +

013(Nx n+014meaC1)+p15N2

Eq. 4.3

where:

3,. = coefficients
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T = temperature (°C)

NaCl = salt (g/liter)

N = nitrite (ppm)

The global model was the combination ofthe Gompertz equation and the response

surface models. Parameters B and M in equation 4.2 were replaced by the response

surface model (eq. 4.3), and a global regression was performed (Fig. A.1). The observed

data (yi, broth-based) and the log predictions fi'om the global regression (9i) were

replaced in equation 4.1, and the total uncertainty was calculated.

To calculate the uncertainty resulting fiom the primary regression itself

(calibration of the regression), first the Gompertz equation (eq. 4.2) was fitted to each

growth curve, and the parameters B and M were obtained fiom each individual

regression. The fitting procedure converged for most of the data sets using an

optimization algorithm that included “second derivatives method” (Newton-Raphson

method, it uses second derivatives as well as first derivatives in the iteration method to

find a solution); for the cases where this procedure did not converge, a procedure without

using “second derivatives meth ” always converged (Scripts used in JMP for the

nonlinear regression can be found in appendix E). For aerobic conditions, 476 pairs ofthe

parameters B and M were obtained (Table BA), and for anaerobic conditions, 291 pairs

were obtained (Table 8.3). Second, each pair of parameters (obtained fiom the primary

regression) was replaced in equation 4.2, and predicted microbial counts were computed

for each individual growth curve. The difference fi'om the previous procedures is that the

obtained parameters were neither fitted to the response surface model (as a function of
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the experimental conditions) nor replaced in the primary model by their respective

secondary models. Rather, the values obtained from each individual regression were

directly used in the primary model, and rrricrobial counts were calculated independently

for each growth curve. The observed data (yi, broth-based) and the predicted values (9i)

were replaced in equation 4.1, and the total uncertainty was calculated.

All the statistical analyses and nonlinear regressions were performed using JMP

IN (SAS Institute Inc., Cary, NC. Version 5.1.2).

4.3.3 Robustness Index (RI)

The predictions fiom the two-step and global procedures were validated using the

RI (Martino et al., 2005), based on:

_ SEP

SEC
Eq. 4.4

where,

SEC = Standard error of calibration. The SEC used in these calculations was the

one obtained from either the two-step or global regression.

SEP = Standard error of prediction

n A

1% (Yj ‘ 3’j )2

:
Eq. 4.5

n

 

 

where:

j»j = Predicted value ofjtll data point (log(CFU/g)), from either two-step

or global regression
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yj = Observed value ofthe jth data point from an independent data set

(log(CFU/g)), assuming 1 CFU/ml =1 CFU/g

n = number ofobserved data points from an independent data set (from 3 to 15)

Additionally, the mean relative error (RE), which determines if the predictions are

over/under estimated, was calculated based on the following formula (Martino et al. ,

2005):

n y ° ‘5’ °
J J

E ___.

j=1 yj

= Eq. 4.6

n

 

where,

j)j = Predicted value ofj“I data point (log(CFU/g)), fiom either two-step or

global regression.

yJ. = Observed value ofthe j'” data point from an independent data set

(log(CFU/g». assuming 1 CFU/ml =1 CFU/g

n = number ofdata points (from 3 to 15)

4.4 RESULTS AND DISCUSSION

Evaluation of the main effects and interactions among the experimental

conditions, based on P values (Table 4.2), showed the following: temperature showed a

significant influence (P < 0.05) in all cases (for both parameters and for both atmospheric

conditions); salt and nitrite were only significant for the M parameter estimation, for both

atmospheric conditions; pH was significant for all models, except aerobic In B. In the
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case of the B parameter (aerobic), the P values for the interactions ranged from <0.0001

to 0.9200, with r x pH, r2, NaCl x pH, NaClz, and N x pH having a significant

influence. For the M parameter (aerobic), the P value for the interactions ranged fiom

<0.0001 to 0.6590, with sz, T x pH, T2, N x pH, and N x T having a significant

influence. For the anaerobic condition, P values for the interactions for the B parameter

ranged from 0.0013 to 0.6630, with T x pH being the only second order term having

significant influence; for the M parameter, P values ranged from <0.0001 to 0.8800, with

sz, T2, T x pH, and N2 having a significant influence. The coefficient values for the

secondary model are presented in Table 4.2 for the two-step regression, and Table 4.3 for

the global regression. Even though some of the terms were not significant (or = 0.05), all

terms were included in the model, because they all were included in the PMP, which was

the case study of this research Therefore, comparisons and analyses needed to use the

same model as is used in the PMP.

However, when the non-significant terms fi'om the secondary models (Table D2)

were eliminated, the SEP values decreased for 56% of the data sets. The SEP values

increased in 44% of the cases, which directly affected the RI values. However, an overall

SEP (including all the data for meat and poultry products, aerobic conditions) decreased

fiom 1.78 (when including all terms) to 1.40 (when excluding the non-significant terms),

indicating that the reduced model actually was slightly more robust than the complete

model for these cases.

Overall, the global regression (Fig. 4.1) predicted the broth-based data better than

the two-step (Fig. 4.2) procedure did, for both aerobic and anaerobic conditions.
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to broth-based data via two-step regression.

TABLE 4.2. Coefficient values of secondary models for L. monocytogenes growth, fitted

 

 

 

 

Variable In B P value In M P value

[in h") (In h)

Aerobic

Intercept I31 -5.015+00 <.0001 6.42E+00 <.0001

pH I32 5.90502 0.3470 -2.26E-01 <.0001

T(°C) B; 1.44501 <.0001 0.08501 <.0001

Nac1(g/l) B4 1.69503 0.5590 7.72503 <.0001

Nitrite (ppm) 05 -5.75504 0.4210 6.07504 0.0446

(pH-6.58876)x(pH-6.58876) Br, 0.95502 0.7510 2.63501 <.0001

(T-19.3929)x(pH-6.58876) I37 4.68502 0.0048 8.96E—03 0.0004

(519.3929) x (12193929) [33 0.59503 <.0001 2.85503 <.0001

(NaCl-17.5525) x (pH-6.58876) B9 0.55502 <.0001 542504 0.6590

(NaC1-17.5525) tin-19.3929) I310 -2.56E-04 0.1950 9.65505 0.2470

(NaCl-l7.5525)x(NaCl-l7.5525) Bit 0.53504 0.0025 1.15504 02070

(Nitrite-103.151)x(pH-6.58876) 1312 1.40503 0.0016 -4.83E—04 0.0099

(Nitrite-103.151)x(T-l9.3929) 1313 -2.10505 0.1920 1.38505 0.0433

(Nitrite-103.151)x(NaCl-17.5525) B14 7.40E-06 0.4060 -5.00506 0.1600

(Nitrite-103.151)xQIitrite-103JSI) [315 -9.24E-08 0.9200 2.54507 0.5120

Anaerobic

Intercept 131 -6.105+00 <.0001 6.7IE+00 <.0001

pH 32 3.49501 0.0027 0.32501 <.0001

T(°C) B3 9.13502 <.0001 -7.88E-02 <.0001

Nac1(g/I) Be 6.33503 0.3450 9.92503 0.0003

Nitrite (ppm) 05 0.70503 0.1670 1.15503 0.0215

(pH-6.66621)x(p1-I-6.66621) 36 -1.46501 02300 1.95501 <.0001

(T-21.269)x(pH-6.66621) I37 2.89502 0.0013 -1.62E-02 <.0001

(T-21.269) x (T-2l.269) Br -5.56E-04 0.4640 2.90503 <.0001

(NaCl-18.1724) x (pH-6.66621) I39 7.86503 0.1590 3.22503 0.1550

(NaCl-18.1724)x(T-21.269) Bio -1.88504 0.5890 2.10505 0.8800

(Ned-18.1724)x(NaC1-18.1724) Bu -2.69E-04 0.6630 0.74504 0.1370

(Nitrite-142.759)x(pH-6.66621) 13.2 5205-04 0.2790 4.35505 0.8230

(Nitrite-142.759)x(r-21.269) 1313 0.50505 0.5960 2.03505 0.0753

(Nitrite-142.759)x(NaCl-l8.1724) 1314 -l.60505 0.2510 -2.00E-06 0.7100

QIitrite-142.759)x(Nitrite-142.759L515 2.50506 0.1300 -l.00506 0.0353
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TABLE 4.3. Coefficient values computed after global regression for L. monocytogenes

 

 

   

 

growth, fitted to broth-based data.

Aerobic Anaerobic

Variable In B In M In B In M

(In ’13 (bill (In h'1) (1" h)

31 Int 0.195+01 2.925+01 0265+01 1.905+01

32 pH 7.335+00 -6.76E+00 l.845+00 -4.l35+00

[33 r 2.80501 2.65501 1.32501 -7.58E-02

B4 NaCl 2.00502 3.93502 9.07504 5.16502

[35 N 2.00502 1.33502 2.89502 1.36502

[36 pli2 -5.06E-01 4.93501 023501 321501

B7 1*po 0.10502 5.57503 2.18502 2.53502

Ba 1‘2 2.18503 2.84503 0.45503 4.13503

Bo pHxNaCl 1.37503 0.89503 0.85503 0.30503

Bio TxNaCl 4.14504 0.69505 7.98504 0.28504

Bit NaC12 0.57504 1.06504 2.93504 0.74504

1312 pHxN 2.69503 0.82503 3.72503 0.56503

1313 TxN 1.76505 3.56506 2.05504 0.25505

1114 NaClxN -9.48E-06 025507 0.14505 0.07506

fits N2 0.63506 3.15507 0.97507 2.42507

12 A - a — —— -— - a —— — -

f" 10 l

E’- s l

i I

E“ 4“ l

0 . . 0.?  
Log Nobs (CFU/ml)

FIGURE 4.1. Observed versus predicted L. monocytogenes cormts in broth fiom

global regression, showing a randomly selected 10% ofthe total 3,680 data points and the

1:1 line (aerobic conditions).
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FIGURE 4.2. Observed versus predicted L monocytogenes counts in broth from

two-step regression, showing a randomly selected 10% of the total 3,680 data points and

the 1:1 line (aerobic conditions).

Uncertainty of the model from the global regression was smaller than that fi'om

the two-step regression by approximately 30% for both atmospheric conditions (Table

4.4). Compared to the SEC ofthe primary regression itself (i.e., no secondary model), the

two-step regression gave higher values, by ~25% for both atmospheric conditions. In the

global regression case, the SEC values did not differ considerably from the primary

regression itself, only 1% for anaerobic and 7% for aerobic; in this case, the global

regression had lower uncertainty than the primary regression itself.
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TABLE 4.4. SEC (uncertainty) ofbroth-based L. monocytogenes growth predictions

resulting from different modeling regression procedures.

Log(CFU/ml)

Aerobic Anaerobic

Primary regression (no secondary model) 1.02 1.22

2-step 1.35 1.62

Global 0.95 1.21

 

 

 

These results reflect how the secondary regression in the two-step procedure can

affect the overall performance of a model, in this case by increasing the uncertainty

related to that model. Not only is uncertainty from the primary regression affecting the

results, but the uncertainty related to the secondary regression also contributes to the

overall error. On the other hand, by doing a global regression, the data set is considered

as a whole, increasing the degrees of freedom, and making the confidence intervals of the

parameters smaller (Claeys et al., 2001); the estimation of intermediate parameters and

giving the same weight to each data set used to estimate the parameters are avoided

(Claeys et al., 2001; Pouillot et al., 2003).

Validation of these procedures was done using aerobic meat and poultry data. In

65% ofthe cases studied (Table 4.5), the global regression was more robust, compared to

the two-step procedure, meaning that the global approach performed as expected, with

respect to the model calibration, in the majority ofthe cases.

RI values for the global regression ranged fiom 0.27 (performed better than

expected) to 2.60. In approximately 80% ofthe cases, RI values were lower than 2.0 (Fig.

4.3). For the two-step method, RI values ranged fiom 0.42 to 3.88, with almost 60% of

the cases yielding RI values lower than 2 (Fig. 4.4). An RI less than 2.0 indicates that the

model was reasonably robust, with errors less than double that expected, based on the
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original model fitting (Martino et al., 2005).

TABLE 4.5. R1 and RE values with experimental conditions (assumed aW = 0.997).

 

Data set No RIJlobal RE global RI 2-step RE 2— pH T °C

1 1.03 0.21 2.49 —0.24 4 5.8

2 I 0.19 2.46 -0.23 4 5.8

3 0.27 0.01 2.65 -0.2 10 5.8

4 0.46 0.07 2.85 -0.24 10 5.8

5 0.6 -0.07 0.42 0.03 6.8 5.6

6 1.62 -0.23 1.35 -0.07 4 6.2

7 0. 72 0 1.59 -0.13 20 6.2

8 1.35 —0.1 1 0.74 -0.06 20 6.3

9 2.6 -0.61 0.54 0.16 5 6

10 2.54 -0.38 1.05 -0.04 10 6

11 1.91 —0.18 1.59 —0.2 5 6

12 1.65 -0.14 2.2 -0.23 10 6

13 1.71 -0.33 0.6 0.18 4 6

14 1.78 -0.33 0.63 0.17 4 6

15 0.72 0.12 1.45 -0.18 4 6

16 0.92 0.16 1.66 -0.22 4 6

17 2.18 -0.42 2.35 0.57 12.8 5

18 1.28 «0.23 1.44 0.35 12.8 5

19 0.87 0.11 1.71 -0.14 7 6

20 1.19 0.14 2.01 -0.17 7 6

21 1.38 0.2 2.76 -0.23 7 6

22 2.51 0.33 3.89 —0.35 7 6

23 2.51 0.33 3.88 —0.35 7 6     
The predictions were overestimated (fail-safe) in more than 50% of the cases

using the global regression (Fig. 4.5). On the other hand, for the two-step regression,

predictions were overestimated in more than 70% ofthe cases (Fig. 4.6). Even though the

global regression represents a more robust procedure, the two-step regression is on the

fail-safe side of the curve in the majority of the cases, for these particular types of

products.
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FIGURE 4.3. Robustness Index values of global regression applied to meat and

poultry data.
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FIGURE 4.4. Robustness Index values of two—step regression applied to meat and

poultry data.
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FIGURE 4.5. Relative error values of global regression applied to meat and

poultry data.
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FIGURE 4.6. Relative error values of two-step regression applied to meat and

poultry data.
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When a model is considered, it is important not only to validate it against

independent data (related to the specific application), but also to assess the modeling

procedure used to obtain the predicted values. For L monocytogenes, the broth-based

growth model uncertainty is lowered by using a global regression, instead of applying the

generally used method of two consecutive regressions, one to fit the raw data, and the

second to fit the parameters to experimental conditions. By doing a one-step regression,

the parameters can still be described as a frmction of the experimental factors (in this

study: pH, temperature, salt, and nitrite).

In conclusion, in order to improve microbial growth (or inactivation) predictions,

an overall knowledge of the model is needed, meaning its performance related to the

application, and the best fitting procedure. In the present study, an approximation of the

total uncertainty of different modeling procedures was estimated, and a global regression

yielded a lower error than did the two-step regression. The Gompertz equation was used

as a primary model and the response surface models as secondary models; however, this

procedure can be applied to any combination ofprimary and secondary models.
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CHAPTER 5

UNCERTAINTY ASSESSMENT IN BROTH-BASED MICROBIAL

GROWTH MODELS

5.1 BACKGROUND

Uncertainty and variability of model parameters are increasingly important in

several fields of risk analysis. Uncertainty is defined as the lack of perfect knowledge of

the parameter value, and variability is the true population heterogeneity that is a

consequence of the physical system. For example, some authors have quantified

microbial growth variability among strains of a single species (Delignette-Muller, 2000).

They found that biological variability has a great impact on the accuracy of the results

and should not be systematically neglected.

Baranyi and Roberts (1995) described five different types of errors in predictive

growth models: (a) the assumption that a bacterial population is homogeneous

(homogeneity error), (b) the restriction of bacterial responses only to a few experimental

factors, for instance, pH, salt, temperature, etc. (completeness error), (e) the error due to

parameter estimations (model fimction error), and (d) the error due to laboratory

replications (measurement error). The fifth error mentioned is the one due to fitting the

model to the observed data (numerical procedure error). An example application was

presented for growth parameters (maximum growth rate and generation time) based on

broth-based data, where homogeneity, completeness, and numerical procedure errors

were neglected, and only experimental and model function errors were considered. They

stated that in real food systems, that are varied and complex structures, “the microbial
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response is biochemically complex”; therefore, detailed information (cell distribution,

heterogeneity, microbial population, etc.) is rarely available, too difficult, or too costly to

acquire. Consequently, certain assumptions and simplifications must be made, that affect

the uncertainty and variability of the predictions. For example, Pouillot et al. (2003)

applied the Bayesian inference to quantify growth parameter 1mcertainty and growth

variability between strains(Pouillot et al., 2003); however, due to the nature of their data

(collected fiom published literature), the physiological state of the strain, the exact nature

of the isolate used and the counting method, were not considered, which can significantly

influence the overall uncertainty oftheir results.

Users of predictive models should understand how various sources of uncertainty

and variability contribute to potential predictive errors. These sources can ultimately

underestimate and/or overestimate total uncertainty of a model, which can lead to

significant problems in commercial food processing applications. If uncertainty is

underestimated, processes might be designed or operated in a way that results in

unacceptable risk to consumers. In contrast, if uncertainty is overestimated, processes

will be over—designed, resulting in unnecessary expenditure of energy and/or a decrease

in the quality and nutritional value of food products.

For example, the uncertainty of microbial growth models found in computer

programs (e.g., Pathogen Modeling Program, PMP) is typically represented by 95%

confidence intervals (CI, obtained fiom the 95% CI of the growth parameters (Juneja et

al., 1999; US. Department of Agriculture, 2003b)). However, these intervals reflect only

the uncertainty of the mean response and are based only on the secondary regression,

neglecting uncertainty of the actual predicted values, uncertainty fiom the primary
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regression, and experimental variability.

In contrast, if prediction intervals are used, uncertainty of the curve itself, scatter

of the data around the curve (Motulsky and Christopoulus, 2004), and total uncertainty

related to that model and data are reported. Furthermore, using this simultaneous

confidence intervals method (confidence intervals of the parameters used to calculate

confidence intervals of the prediction), the actual 95% confidence intervals for the

microbial counts end up to be ~ 90% confidence interval of the mean response (Neter et

aL,1992)

Determination of confidence and prediction intervals in nonlinear regression can

be difficult, and these could be underestimated by a factor of 2-3 (Dolan et al., 2006; Van

Boekel, 1996). Dolan et al. (2006) proposed a technique to be used in nonlinear

regression to estimate confidence and prediction intervals, which is among the first

reported methodologies for the prediction intervals applied to actual survival of

microorganisms, not just the model parameters.

Quantitative microbial risk assessors, food processors, and food regulators should

utilize knowledge of the total uncertainty behind a model, in terms of prediction intervals

of the actual predicted value, in order to improve ultimate estimates of risk. Moreover,

once sources of errors are identified and quantified, they can be prioritized and targeted

to reduce uncertainty.

Therefore, the objective this part of the study was to assess sources of uncertainty

and variability in broth-based growth models, applied to L. monocytogenes, to better

understand how the data, model, parameters, and methodologies contribute to the total

uncertainty of a model.
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5.2 METHODS

5.2.1 Data sources.

The same data sets described in Chapter 4, section 4.3.1 were used.

Additionally, the data sets were also classified based on the treatment (pH,

temperature, salt, and nitrite). For aerobic conditions, 132 different treatments were

identified (Tables B6, B7); 19 treatments that were not replicated were excluded from

the analyses. There were 118 different anaerobic treatments (Tables B5, B8); 44

unreplicated treatments were excluded from the analyses.

5.2.2 Error sources

Total uncertainty was assumed to be an aggregated contribution of the

uncertainties due to the primary and secondary regressions, and variability due to

replications, substrate, organism, and laboratory methodologies, conceptually represented

as:

8Total = f(aorganism ’ 8substrate ’ 8111b methods ’ sreplic’8primary model’ 8secondary model’ 8random I

where:

6mm]: Total uncertainty

Spfimary model: Error fiom the primary regression

Esmndary model: Error from the secondary regression

Sorganism = Error due to variability in microorganisms or strains

Ssubstrate = Error due to variability in substrate
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Slab methods = Error due to different laboratory methodologies

Sreplic = Error due to replications

Brandon, = Random error

For this study, the errors due to organisms (Seganism), substrate (Swim-ate), and

laboratory methodologies (slab methods) were neglected, because the same

microorganism, substrate, and methodology were used for all of the data, and the data

were all generated in a single laboratory.

5.2.3 Error calculations

All statistical analyses and nonlinear regressions were performed using JMP IN

(SAS Institute Inc., Cary, NC. Version 5.1.2).

Total uncertainty (smell) was calculated based on the root mean squared error

(RMSE) between the observed and predicted log counts, identified as the standard error

of calibration, SEC (reported in Chapter 4, equation 1). In order to obtain the predicted

microbial counts, the two-step procedure described in Chapter 4, section 4.3.2 was

followed.

To quantify the contribution from the secondary regression (tise(-,(,ndm-y model): the

upper and lower limits of the primary models parameters (UPIBM, and LPIBM) were

computed using equation 5.1 (adapted from (Neter et al., 1992)). The RMSE for both

parameters was obtained fiom the secondary regression (Table 5.1). Then, the upper and

lower limits of the log predictions (UPI, and LPI) were calculated (with equation 4.2,
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Chapter 4), using the upper and lower values of the parameters B and M (obtained from

equations 5.1 and 5.2). Having the upper and lower limits of the log count predictions,

the error from the secondary regression (swam model) in terms of microbial count

was calculated with equation 5.3.

TABLE 5.1. RMSE ofthe parameters B (h!) and M (h) estimated from the secondary

 

 

regression.

RMSE fiom secondary

regression

B M

Aerobic 1.6 1.4

Anaerobic 4.1 1.8

UPIB,M=5’J.+(ZXRMSEB.M) Eq.5.1

LPIBM =jzj-szRMSEBM) Eq.5.2

where:

)3j : predicted B or M

UPIB,M: Upper prediction limit for B or M

LPIB,M: Lower prediction limit for B or M

2 = z(1-01/2), 01:0.05

RMSEB,M = root mean squared error estimated fiom secondary regression, for B

orM

Subsequently,
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_ UPI — LPI
a . __
secondary regressron z x 2

Eq. 5.3

where,

UPI= Upper prediction limit for log(CFU/rnl)

LPI= Lower prediction limit for log(CFU/ml)

To quantify the error contribution from the primary regression (8!,de model),

the method described in Chapter 4, section 4.3.2, was followed (calibration of

regression), in which the B and M parameters estimated fi'om the primary regression were

directly replaced in the Gompertz equation to calculate the log predictions (without using

secondary models).

The error due to replications (areplic) was computed as follows. A two-way

ANOVA (factors: time and treatment, general linear model, and 2-factor factorial design)

was performed on the whole set of treatments, using JMP. Effects between factors were

neglected, and the error from replications was then obtained (represented in JMP by

“pure error”).

5.2.4 Calculation ofthe prediction limits and parameter errors

The asymptotic (or approximate) standard error (SE) accounts for uncertainty in

both parameter estimates and error in the model. It was calculated from the variance-

covariance matrix associated with the parameter estimates, the composition of the partial

derivatives of the model with respect to each parameter, and the estimate of error

variance, represented in JMP by SQRT(VecQuadratic(matrix1, vector])+mse (JMP,
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2006). The diagonal elements of the variance-covariance matrix represent the asymptotic

SE, and the off-diagonal elements represent covariance between parameters (Van Boekel,

1996).

This SE is used to calculate the prediction limit values for an individual predicted

value, adding the variance of the error term to the variance of prediction involving the

estimates, to form the interval. A specific SE corresponds to each data point, which is

used to construct the prediction intervals (JMP, 2006).

To calculate the confidence intervals, the SE accounts for all of the uncertainty in

the parameter estimates, but does not account for the uncertainty in predicting individual

responses (Neter et al. , 1992). The SE for the confidence intervals is calculated from the

covariance matrix associated with the parameter estimates, and the composition of the

partial derivatives of the model with respect to each parameter. The command in JMP is

Sqrt(VecQuadratic(matrixI,vectorl, (JMP, 2006)).

An illustration of how the specific SE of each data point varies with time, and

how SE of each data set varies with pH, temperature, nitrite, and salt is presented in

appendix C.

The uncertainty of the parameters was also calculated using the RMSE between

the B and M parameters estimated from the primary regression (observed values), and the

predicted values, which were obtained fiom the response surface model (Chapter 4,

equation 4.3, and the coefficients from Table 4.2) for the two-step procedure. For the

global procedure, the coefficients from Table 4.3 were replaced in equation 4.3 (Chapter

4), the B and M parameters were computed.
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5.3 RESULTS AND DISCUSSION

5.3.1 Deconstruction of the model uncertainty

Although the total uncertainty for anaerobic conditions was almost 20% higher

than for aerobic conditions (Table 5.2), the relative contributions of the various

components of the total uncertainty were fairly consistent across the two conditions. The

largest contribution to the total uncertainty came from the secondary regression

uncertainty (1.48 log(CFU/ml) for aerobic, and 1.42 log(CFU/ml) for anaerobic).

Experimental variability was the smallest component (0.26 log(CFU/ml) for aerobic, and

0.21 log(CFU/ml) for anaerobic). The uncertainty due to the primary regression also had

a high relative contribution to the total uncertainty (1.02 log(CFU/ml) for aerobic, and

1.22 log(CFU/ml) for anaerobic). As stated at the beginning of section 5.2.2, even though

these errors represent the aggregated contribution to the total uncertainty, they cannot be

directly added (Neter et al. , 1992), so the numbers calculated in this section represent

how much each source is contributing to the total uncertainty, separately and

independently.

TABLE 5.2. Relative contributions ofthe different sources of error to the total model

uncertainty for aerobic and anaerobic conditions.

 

 

2g (CFU/ml)

Errors Aerobic Anaerobic

8total 1.35 1.62

t’zprimary regression 1.02 1.22

8secondary regression 1.48 1.42

8replic 0.26 0.21
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When experiments are conducted under controlled conditions (microorganisms,

substrate, temperature, etc.), variability due to experiments is assumed to have less effect

on the overall uncertainty of a model, as was found in this study. However, when

experiments are run with food matrices, larger contribution of the experimental

variability could be expected. A test ofthis is presented in appendix D.1.

Uncertainty due to the primary regression is assumed to contain not only the error

of the regression itself, but also, the variability that comes with the data (in this study:

Steppe). For this particular study, error due to the primary regression was smaller than

error due to the secondary regression. When food matrices are considered, the results

could be the opposite, because of the natural variability of food matrices and how

microorganisms react to these systems. However, given the experimental control for the

data used here, this error did not have a great impact on the primary regression

uncertainty.

The uncertainty due to the secondary regression had the largest contribution to the

overall uncertainty, probably because the response surface model that was fitted to the

parameters, as a function of the experimental conditions, was not the model with the best

performance for this specific application, meaning that a more robust model could lead to

a smaller uncertainty.

These results demonstrated that the impact that the various sources of error had on

the total uncertainty of a model cannot be ignored. This assessment of the relative

magnitude of the various sources of uncertainty can help prioritize efforts to minimize

uncertainty in model development, by choosing a different model, redesigning the

experimental methodology, and/or improving the statistical analyses.
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For example, if two-step regression is used, different secondary models should be

tested to determine which yields the smallest secondary model uncertainty.

Alternatively, a global regression (combining primary and secondary models, giving a

direct relationship between experimental factors and microbial counts) might be advised.

By doing a global regression, only the error due to this regression contributes to total

uncertainty, avoiding errors due to the addition of more parameters (Fernandez et al. ,

2002), and avoiding giving the same weight to each data set used to estimate the

parameters (Pouillot et al. , 2003). In Chapter 4, it was found that by performing a global

regression instead of a two-step regression, the total uncertainty was reduced ~30%, with

respect to predicted microbial counts. Another study showed that by fitting the response

surface model to the natural logarithms (In) ofthe parameter, uncertainty of the estimated

parameter increased by 20%, compared to the error estimated fiom the primary fit

(Baranyi and Roberts, 1995).

Experimental variability could greatly depend on personnel, which is controllable

to some degree, through training and management. Furthermore, other factors can

contribute to this error, including the materials and equipments used for the experiments,

laboratory/ambient conditions, etc. All these factors, either together or separately, can be

controlled to minimize the error due to experiments.

Uncertainty from the primary regression gave an idea of how well the primary

model represented the growth pattern ofthe experimental data. This uncertainty would be

affected by the particular choice of primary model, assuming that one model form would

fit a given data set better than another.
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5.3.2 Prediction intervals and errors ofthe parameters

Two examples of PI versus C1 are shown in Figures 5.1 and 5.2. Even though the

model fitted the data better on Figure 5.2, prediction intervals in both cases still contain

most of the data. However, this was not the case for the confidence intervals; in both

cases, the majority ofthe data were outside the limits.
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FIGURE 5.1. Confidence (small dashed lines) and prediction (wide dashed lines)

intervals for global regression (data set No. 623, aerobic conditions, treatment No. 26: pH

= 6, T =19°C, nitrite = 0 ppm, salt = 0 g/liter). Solid line: predicted curve; full squares:

observed data.
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FIGURE 5.2. Confidence (small dashed lines) and prediction (wide dashed lines)

intervals for global regression (data set No. 646, aerobic condition, treatment No. 80: pH

= 7, T = 19°C, nitrate = 0 ppm, salt = 25 g/liter). Solid line: predicted curve; full squares:

observed data.

The natural logarithm of B and M calculated with the coefficients obtained fiom

the global regression gave higher RMSEs, for both atmospheric conditions, than did the

values calculated from the response surface model on the two-step regression (Table 5.3).

TABLE 5.3. RMSE ofthe model parameters.

RMSE

Aerobic Anaerobic

In B In M In B In M

(In 1Q (1n h) (1n 11") (In h)

Global 1.58 0.48 2.14 0.77

2-step 0.91 0.38 1.42 0.59

For In B, aerobic conditions, the global regression values had ~42% higher error

compared to the two-step regression. For anaerobic conditions, it was ~33% higher.

For In M, aerobic and anaerobic conditions, the global regression had ~20%

higher error for the global regression compared to the two-step regression.
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These values showed that the methodologies used for model development do not

always have the same impact on the results. For instance, in terms of microbial counts,

the global regression performed better than the two-step regression; however, in terms of

model parameters (e.g., B, and M), the two-step procedure gave a lower prediction error.

To conclude, by assessing the different sources of error that might contribute to

the total uncertainty of a model, a better understanding of the model and the data used to

pararneterize it is also attained. Therefore, the techniques illustrated here can lead to

improvement ofa model, by reducing uncertainty, and/or improving the way that a model

is utilized for process validation or risk analysis.
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CHAPTER6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

1. The growth models used in the Pathogen Modeling Program (PMP) for L.

monocytogenes (aerobic and anaerobic conditions) were validated, inside and

outside their domain with growth data from meat and poultry products, and an

acceptable robustness for this specific application was established. A Robustness

Index (RI) between 0 and 2.0 indicated satisfactory robustness for the PMP

growth models. RI values above 2.0 suggested that the model did not perform as

expected. The type of food product (e.g., pété, cooked chicken, turkey)

significantly affected (P < 0.05) RI values. The standard errors of calibration for

the growth models used in the PMP were i 1.30 log(CFU/ml), on average, for the

broth-based data. Inside the model domain, RI values for the meat and poultry

products were between 0.37 and 3.96; the model overestimated the log counts for

85% of the cases. Outside the model domain, RI values were between 0.40 and

1.22. In most cases (83%), the log counts were overestimated. Overall, for meat

and poultry products, both inside and outside the model domain, the PMP growth

models for L. monocytogenes were robust models, although they were developed

fiom broth-based data.

The uncertainty related to the global (one-step) regression, in terms of microbial

counts, was almost 30% smaller than from two-step regression for both
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atmospheric conditions. For the primary regression itself (using B and M

estimated from the primary regression, instead of those calculated from the

secondary regression), the standard error of calibration (SEC) was about 25%

smaller than when using the two-step regression. By doing a global regression,

instead oftwo consecutive regressions, the process avoids giving the same weight

to each data set used to estimate the parameters. Moreover, with the global

regression, the data set is considered as a whole, increasing the degrees of

freedom, which makes the confidence intervals smaller. When validating against

data fiom food products (meat and poultry), global regression gave more robust

results, compared to two-step regression. RI values for global regression ranged

from 0.27 to 2.60; in 80% of the cases, RI values were lower than 2.0. R1 values

for the two-step regression ranged from 0.42 to 3.88, with ~60% of the cases

yielding RI values lower than 2.0. The predictions of microbial counts were

overestimated in more than 50% of the cases using the global regression, and in

more than 70% of the cases using the two-step regression. For this particular type

of food product, global regression represented a more robust procedure; however,

the two-step regression was on the fail-safe side ofthe curve in the majority of the

cases. However, for the primary model parameters (B and M), global regression

results gave higher errors compared to those generated fiom the two-step

regression, for both atmospheric conditions. When assessing model performance,

it is important to consider both the model form and the fitting procedure.
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3. The sources of errors that contributed to the total uncertainty of a bacterial growth

model were identified and quantified. The overall uncertainty of a model was

assumed to be the result of the relative contributions of the error due to

experimental variability, error due to primary regression, and error due to

secondary regression. For the L. monocytogenes broth-based data, the secondary

regression had the highest relative contribution, followed by the primary

regression uncertainty, and the experimental variability. The lower relative

contribution of the experimental variability might be due to controlled

experimental conditions (microorganisms, laboratory procedures, and substrate

did not change). On the other hand, the secondary regression uncertainty had the

higher relative contribution, possibly due to lack of a good fit for the secondary

model. Choosing a secondary model that better fits the data could possibly lower

this contribution. The experimental variability was assumed to form part of the

primary regression uncertainty. In this study, its contribution did not greatly affect

the error due to the primary regression; different results might be expected for

models developed fiom microbial data in food products.

4. When the true risk to the consumers, based on food safety, is assessed by the food

industry, the uncertainty of the actual predicted value should be reported. It is

common to find in the literature the uncertainty reported as confidence intervals

of the mean prediction, not the individual prediction. However, by reporting the

prediction intervals of the predicted values, the uncertainty of an individual

outcome is known, and the risk related to the specific prediction can be assessed.
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For example, for a processor of liquid eggs, it is important to know whether each

individual package is safe (environmental conditions are controlled, so

Salmonella growth is inhibited); only predicting that the mean package is safe is

not sufficient control. Therefore, it is important that predictive microbial tools

predict the risk limits for each specific package/serving that is processed.

6.2 SUGGESTIONS FOR FUTURE WORK

1. First, a simple summation of sources of error was assumed to be the total

uncertainty of the model; however, later it was found that direct summation of

errors is not statistically possible. The purpose at the beginning of the study was

to quantify the direct contribution of each error to total uncertainty. The relative

contribution of each error was assessed; however, assessment of the exact

contribution of each error to total uncertainty ofa model is still needed.

The magnitude of each source of error varies with time, which could be explained

with the growth curve. For example, during the lag phase duration, only error due

to experimental variability was assumed to affect overall uncertainty; during

exponential growth, errors due to primary and secondary regression were assumed

to affect total uncertainty. Then, during the stationary phase, once again the

experimental variability was assumed to affect overall uncertainty. These

assumptions could be explained with the variation ofthe asymptotic SE with time.

This variation was small at the beginning and end of the curve, and slightly

increased in the middle. However, this trend needs more analysis in order to
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specifically quantify and confirm that the changes in magnitude of the different

error sources vary with the different phases ofthe growth curves.

. In the present study, the relative contribution of errors to the model uncertainty

based on broth-based data was assessed. Further analysis of the relative

contribution of errors to model uncertainty based on data fiom food products is

still needed.

. For the same data used in this study, evaluation of different secondary models and

the impact on the secondary regression uncertainty, and later the total uncertainty,

would be interesting.

. Development of a “model diagnostic tool” would be interesting and very useful

for academia and government. For example, assume ground beef data had been

collected from a laboratory, and a model to describe the growth of E. coli is

needed. The data sets could be downloaded to the software, including all the

experimental variables; then the primary and secondary models could be chosen,

the software runs the models, and calculates the relative contribution of each error

and the total uncertainty. From the results, it would be possible to evaluate and

compare model performance, so informed decisions could be made. Such

decisions could involve model choice (primary or secondary), subsequent

experimental design, data collection methodology, or number of replications.

Once these changes are done, accuracy of the predictions could be improved, and

78



the uncertainty related to those predictions could be decreased.

79



80

4.0.4) formula box that contains the global model.

FIGURE A.1. Printed screen of JMP (SAS Institute Inc., Cary, NC. Version
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experimental variables.

FIGURE A.2. Screen picture of PMP (US. Department of Agriculture, 2003b),

‘ which shows the growth curve for L. monocytogenes, the growth parameters, and the
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APPENDIX B

BROTH-BASED AND MEAT-BASED DATA DESCRIPTION AND

ORGANIZATION

TABLE 8.]. Keys to ComBase for aerobic (data set No. 386-938) and anaerobic (data set

No. 1-385) conditions.

 

Key to Data set Key to Data set Key to Data set Key to Data set

ComBase No. ComBase No. ComBase No. ComBase No.

L1_A_1 1 L15_A_1 33 L17_A_3 65 L21_A_l 97

L1_A_2 2 L15_A_l l 34 L17_A__4 66 L21_A__2 98

L1_A_3 3 L15_A_6 35 L17_A_5 67 L22_A_1 99

L1_A_4 4 L15_C_12 36 L17_A__6 68 L22_A_11 100

L1_A_5 5 L15_C_2 37 Ll8_A_1 69 L22_A_16 101

L1_A_6 6 L15_C_7 38 Ll8_A_2 70 L22_A_17 102

L1_A_7 7 L15_D_13 39 Ll8_A_3 71 L22_A_18 103

L1_A_8 8 L15_D_3 40 L19_A_l 72 L22_A_6 104

L1_A_9 9 L15_D_8 41 L19_A_1 l 73 L22_C_12 105

L10_A_1 10 L15_F_14 42 L19_A_16 74 L22_C_2 106

L10_A_1 1 l 1 L15_F_4 43 L19_A_18 75 L22_C_7 107

L10_A_6 12 L15_F_9 44 L19_A__l9 76 L22_D_13 108

L10_C_12 l3 L15_G_10 45 L19_A_6 77 L22_D_3 109

L10_C_2 14 L15_G_15 46 L19_C_12 78 L22_D_8 1 10

L10_C_7 15 L15_G_5 47 L19_C_2 79 L22_F_14 111

L10_D_l 3 16 L16_A_1 48 L19_C_7 80 L22_F__4 l 12

L10_D_3 17 L16_A_11 49 L19_D_l3 81 L22_F_9 113

L10_D_8 l 8 L16_A_6 50 L19_D__17 82 L22_G_10 1 l4

L10_F_14 l9 L16_C_12 51 L19_D_3 83 L22_G__15 1 15

L10_1F_4 20 L16_C_2 52 L19_D_8 84 L22_G_5 116

L10_F_9 21 L16_C_7 53 L19_F_14 85 L23_A_l 1 l 7

L10_G_10 22 L16_D_13 54 L19_F_4 86 L24_A_1 1 1 8

L10_G_15 23 L16_D_3 55 L19_F_9 87 L24_D_2 119

L10_G_5 24 L16_D_8 56 L19_G_10 88 L24_F_3 120

L1 1_C_1 25 L16_F_14 57 L19_G_15 89 L25_D_1 121

L11_E_2 26 L16_F_4 58 L19_G_5 90 L25_D_10 122

L12_C_1 27 L16_F_9 59 L2_A_l 91 L25_D_2 123

L12_E_2 28 L16_G_10 60 L2_A_2 92 L25_D_3 124

L13_C_1 29 L16_G_15 61 L2_A_3 93 L25_D_4 125

L13_E_2 30 L16_G_5 62 L20_A_l 94 L25_D_5 126

L14_C_1 31 L17_A_1 63 L20_A_2 95 L25_D_6 127

L14_E_2 32 L1 LA_2 64 L20_A_3 96 L25_D_7 128   
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TABLE B.1. Continuation.

 

Key to Data set Key to Data set Key to Data set Key to Data set

ComBase No. ComBase No. ComBase No. ComBase No.

L25_D_8 129 L3_A_l 162 L4_A_6 195 L55_A_1 228

L25_D_9 130 L3_A_11 163 L4_C_12 196 L56_A_1 229

L26_D_1 131 L3_A_6 164 L4_C_2 197 L57_A_1 230

L27_A_1 132 L3_C_12 165 L4_C_7 198 L58_A_l 231

L27_A_11 133 L3_C_2 166 L4_D_l3 199 L59_B_1 232

L27_A_6 134 L3_C_7 167 L4_D_3 200 L6_A_1 233

L27_C_12 135 L3_D_l3 168 L4_D_8 201 L6_A_ll 234

L27_C_2 136 L3_D_3 169 L4_F_14 202 L6_A_6 235

L27_C_7 137 L3_D_8 170 L4_F_4 203 L6_C_12 236

L27_D_13 138 L3_F_14 171 L4_F_9 204 L6_C_2 237

L27_D_16 139 L3_F_4 172 L4_G_10 205 L6_C_7 238

L27_D_3 140 L3_F_9 173 L4_G_15 206 L6_D_13 239

L27_D_8 141 L3_G_10 174 L4_G_5 207 L6_D_3 240

L27_F_l4 142 L3_G_15 175 L40_A_1 208 L6_D_8 241

L27_G_5 143 L3_G_5 176 L41_A_1 209 L6_F_l4 242

L28_A_l 144 L30_A_1 177 L42_A_1 210 L6_F__4 243

L28_A_11 145 L30_A_2 178 L43_A_I 211 L6_F_9 244

L28_A_6 146 L30_A_3 179 L44_A_1 212 L6_G_lO 245

L28_C_12 147 L31_C_1 180 L45_A_1 213 L6_G_lS 246

L28_C_2 148 L31_E_2 181 L46_A_l 214 L6_G_5 247

L28_C_7 149 L32_C_l 182 L47__A_1 215 L60__A_l 248

L28_D_13 150 L32_E_2 183 L48_A_1 216 L61_B_1 249

L28_D_3 151 L33_C_1 184 L49_A_1 217 L61_C_2 250

L28_D_8 152 L33_E_2 185 L5_D_l 218 L62_A_1 251

L28_F_14 153 L34_A_1 186 L5_D_2 219 L63_A_l 252

L28_F_4 154 L35__A_1 187 L5_D_3 220 L65_B_1 253

L28_F_9 155 L36_A_1 188 L50_A_1 221 L65_C_2 254

L28_G_10 156 L37_A_1 189 L51_A_1 222 L66_B_1 255

L28_C_15 157 L38_A_1 190 L52_A_l 223 L66_C_2 256

L28_G_5 158 L39_C_1 191 L52_A_2 224 L67_A_1 257

L29_A_1 159 L39_E_2 192 L52_A_3 225 L68_A_1 258

L29_A_2 160 L4_A_1 193 L53_A_1 226 L69_A_l 259

L29_A_3 161 L4_A_1 1 194 L54_B_1 227 L69_A_1 1 260   
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TABLE B. 1 . Continuation.

Keyto Dataset Keyto Dataset Keyto Dataset Keyto Dataset

ComBase No. ComBase No. ComBase No. ComBase No.
 

L69_A_16 261 L73_D_2 294 L85_D_8 327 L88_D_8 360

L69_A_6 262 L74_B_1 295 L85_F_l4 328 L88_F_14 361

L69_C_12 263 L75_A_1 296 L85_F_4 329 L88_F_4 362

L69_c_2 264 L76_F_1 297 L85_F_9 33o L88_F_9 363

L69_C_7 265 L77_A__l 298 L85_G_10 331 L88_G_10 364

L69_D_13 266 L78_A_l 299 L85_G_15 332 L88_G_15 365

L69_D_3 267 L78_A_2 300 L85_G_5 333 L88_G_s 366

L69_D_8 268 L78_A__3 301 L86_D_1 334 L89_A_1 367

L69_F_14 269 L78_A_4 302 L86_D_2 335 L9_A_1 368

L69_F_4 270 L78_A_5 303 L86_D_3 336 L9_A_1 1 369

L69_F_9 271 L78_A_6 304 L87_A_l 337 L9_A_6 370

L69_G_10 272 L78_A_7 305 L87_A_11 338 L9_C_12 371

L69_G_15 273 L78_A_8 306 L87_A_6 339 L9_c_2 372

L69_G_5 274 L78_A_9 307 L87_C_12 340 L9_C_7 373

L7_A_1 275 L79_A_l 308 L87_C_2 341 L9_D_13 374

L7_A_11 276 L8_A_l 309 L87_c__7 342 L9_D_3 375

L7_A_6 277 L8_A_2 310 L87__D_13 343 L9_D_8 376

L7_C_12 278 L8_A_3 311 L87_D_3 344 L9_F_l4 377

L7_C_2 279 L80_F_l 312 L87_D_8 345 L9_F_4 378

L7_C_7 280 L81_A_1 313 L87_F_14 346 L9_F_9 379

L7_D_13 281 L82_F_1 314 L87_F_4 347 L9_G_10 380

L7_D_3 282 L83_A_1 315 L87_F_9 348 L9_G_15 381

L7_D_8 283 L83_A_2 316 L87_G__10 349 L9_G_5 382

L7__F__14 284 L84_A_1 317 L87_G_15 350 L90_F_l 383

L7_F_4 285 L85_A_1 318 L87_G_5 351 L91_A_1 384

L7_F_9 286 L85_A_11 319 L88_A_1 352 L92_F_l 385

L7_G_10 287 L85_A_16 320 L88_A_11 353 LM002_1 386

L7_G_15 288 L85__A_6 321 L88_A__6 354 LM002_2 387

L7_G_5 289 L85_c_12 322 L88_C_12 355 LM002_3 388

L70_B_l 290 L85_C_2 323 L88_C_2 356 LM002_4 389

L71_C_l 291 L85_C_7 324 L88_C_7 357 LM002_5 390

L72_A_1 292 L85_D_l3 325 L88_D_13 358 LM002_6 391

L73_c_1 293 L85_D_3 326 L88_D_3 359 LM003_1 392    
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Key to Data sefl

ComBase No.

TABLE B. l . Continuation.

Keyto Dataset

ComBase No.

Keyto Dataset

ComBase No.

Key to Data set

ComBase No.
 

LM003_10

LM003_1 1

LM003_12

LM003_13

LM003_14

LM003_15

LM003_2

LM003_3

LM003_4

LM003_5

LM003_6

LM003_7

LM003_8

LM003_9

LM004_1

LM004_2

LM004_3

LM005_1

LM005_10

LM005_1 1

LM005_12

LM005_13

LM005_14

LM005_15

LM005_2

LM005_3

LM005_4

LM005_5

LM005_6

LM005_7

LM005_8

LM005_9

LM006_1

393

394

395

396

397

398

399

400

401

402

403

405

406

407

408

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425  

LM006_2

LM006_3

LM007_1

LM007_10

LM007_1 1

LM007_12

LM007_13

LM007_14

LM007_15

LM007_2

LM007_3

LM007_4

LM007_5

LM007_6

LM007_7

LM007 8

LM007_9

LM008_1

LM008_10

LM008_1 1

LM008_12

LM008_13

LM008_14

LM008_15

LM008_2

LM008_3

LM008_4

LM008_5

LM008_6

LM008_7

LM008_8

LM008_9

LM009,1

426

427

428

429

430

43 1

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

45 l

452

453

454

455

456

457

458  

LM009_10

LM009_1 1

LM009_12

LM009_13

LM009_14

LM009_15

LM009_2

LM009_3

LM009_4

LM009_5

LM009_6

LM009_7

LM009_8

LM009_9

LM010_1

LM010_2

LM010_3

LM01 1_1

LM01 1_10

LM01 1_1 1

LM01 1_12

LM01 1_13

LM01 1_14

LM01 1_15

LM01 1_2

LM01 1_3

LM01 1_4

LM01 1_5

LM01 1_6

LM01 1_7

LM01 1_8

LM01 1_9

LM012_1

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491  

LM012_10

LM012_1 1

LM012_12

LM012_13

LM012_14

LM012_15

LM012_16

LM012_17

LM012_18

LM012_19

LM012_2

LM012_20

LM012_21

LM012_22

LM012_23

LM012_24

LM012_25

LM012_26

LM012_27

LM012_3

LM012_4

LM012_5

LM012_6

LM012_7

LM012_8

LM012_9

LM013_1

LM013_2

LM013_3

LM013__4

LM014_1

LM014_2

LMO14g

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

51 1

512

513

514

515

516

517

518

519

520

521

522

523

524
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TABLE B.1. Continuation.

 

Keyto Dataset Keyto Dataset Keyto Dataset Keyto Data set

ComBase No. ComBase No. ComBase No. ComBase No.

LM014_4 525 LM018_4 558 LM024_1 591 LM030_2 624

LM015_1 526 LM018_5 559 LM024_2 592 LM031_1 625

LM015_2 527 LM018_6 560 LM025_1 593 LM031_2 626

LM015_3 528 LM018_7 561 LM025_2 594 LM032_1 627

LM015_4 529 LM018_8 562 LM026_1 595 LM032_2 628

LM016_1 530 LM018_9 563 LM026_2 596 LM033_1 629

LM01 6_2 53 1 LM019_1 564 LM026_3 597 LM033_2 630

LM016_3 532 LM019_10 565 LM026_4 598 LM034_1 631

LM016_4 533 LM019_1 1 566 LM027_1 599 LM034_2 632

LM017_1 534 LM019_12 567 LM027_10 600 LM035_1 633

LM017_10 535 LM019_13 568 LM027_1 1 601 LM035_2 634

LM017_1 1 536 LM019_14 569 LM027_12 602 LM036_1 635

LM017_12 537 LM019_15 570 LM027_13 603 LM036_2 636

LM017_13 538 LM019_16 571 LM027_14 604 LM036_3 637

LM017_14 539 LM019_17 572 LM027_15 605 LM036_4 638

LM017_15 540 LM019_18 573 LM027_16 606 LM037_1 639

LM017_2 541 LM019_19 574 LM027_17 607 LM037_2 640

LM017_3 542 LM019_2 575 LM027_18 608 LM037_3 641

LM017_4 543 LM019_3 576 LM027_19 609 LM038_1 642

LM017_5 544 LM019_4 577 LM027_2 610 LM039_1 643

LM01 7_6 545 LM019_5 578 LM027_20 61 1 LM039_2 644

LM017_7 546 LM019_6 579 LM027_3 612 LM039_3 645

LM017_8 547 LM019_7 580 LM027_4 613 LM040_1 646

LM017_9 548 LM019_8 581 LM027_5 614 LM041_1 647

LM018_1 549 LM019_9 582 LM027_6 615 LM041_2 648

LM018_10 550 LM020_1 583 LM027_7 616 LM042__1 649

LM018_11 551 LM020_2 584 LM027_8 617 LM043_1 650

LM018_12 552 LM021_1 585 LM027_9 618 LM043__2 651

LM018_13 553 LM021_2 586 LM028_1 619 LM044_1 652

LM018_14 554 LM022_1 587 LM028_2 620 LM044_2 653

LM018_15 555 LM022_2 588 LM029_1 621 LM045_1 654

LM018_2 556 LM023_1 589 LM029_2 622 LM045_2 655

LM01 8_3 557 LM023_2 590 LM03041 623 LM046_1 656   
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TABLE B. 1 . Continuation.

 

Keyto named Keyto Dataset Keyto Dataset Keyto Dataset

ComBase No. ComBase No. ComBase No. ComBase No.

LM046_2 657 LM050_2 69o LM055_2 723 LM065_2 756

LM047_1 658 LM051_1 691 LM056_1 724 LM066_1 757

LM047_10 659 LM051_10 692 LM056_10 725 LM066_2 758

LM047_11 660 LM051_11 693 LM056_11 726 LM067_1 759

LM047_12 661 LM051_12 694 LM056_12 727 LM067_2 760

LM047_13 662 LM051_2 695 LM056_13 728 LM068_1 761

LM047_14 663 LM051_3 696 LM056__14 729 LMO68_2 762

LM047_15 664 LM051_4 697 LM056_15 730 LM069_1 763

LM047_16 665 LM051_5 698 LM056_2 731 LM069_2 764

LM047_17 666 LM051_6 699 LM056_3 732 LM070_1 765

LM047_18 667 LM051_7 700 LM056_4 733 LM070_2 766

LM047_19 668 LM051_8 701 LM056_5 734 LM071_1 767

LM047_2 669 LM051_9 702 LM056_6 735 LM071_2 768

LM047_20 670 LM052_1 703 LM056_7 736 LM072_1 769

LM047_21 671 LM053_1 704 LM056_8 737 LM072_2 77o

LM047_22 672 LM053_10 705 LM056__9 738 LM073_1 771

LM047_23 673 LM053_11 706 LM057_1 739 LM073_2 772

LM047_24 674 LM053_12 707 LM057_2 740 LM074_1 773

LM047_25 675 LM053_13 708 LM058_1 741 LM074_2 774

LM047_26 676 LM053_14 709 LM058_2 742 LM075_1 775

LM047_27 677 LM053_15 71o LM059_1 743 LM075_2 776

LM047_3 678 LM053_16 711 LM059_2 744 LM076_1 777

LM047_4 679 LM053_2 712 LM060_1 745 LM076_2 778

LM047_5 680 LM053_3 713 LM060_2 746 LM077_1 779

LM047_6 681 LM053_4 714 LM061_1 747 LM077_2 780

LM047_7 682 LM053_5 715 LM061_2 748 LM078_1 781

LM047_8 683 LM053_6 716 LM062_1 749 LM078_2 782

LM047_9 684 LM053_7 717 LM062_2 750 LM080_1 783

LM048_1 685 LM053_8 718 LM063_1 751 LM081_1 784

LM049_1 686 LM053_9 719 LM063_2 752 LM082_1 785

LM049_2 687 LM054_1 720 LM064_1 753 LM083_1 786

LM049_3 688 LM054_2 721 LM064_2 754 LM084_1 787

LM050_1 689 LM055_1 722 LM065 1 755 LM084_2 788    
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TABLE B.l. Continuation.

 

Key to Data setl Key to Data set Key to Data set Key to Data set

ComBase No. ComBase No. ComBase No. ComBase No.

LM085_1 789 LM099_4 823 LM1 l3_5 857 LM127_14 891

LM085_2 790 LM099_5 824 LMl l3_6 858 LM127_15 892

LM086_1 791 LM099_6 825 LM113_7 859 LM127_16 893

LM087_1 792 LM099_7 826 LMl 13_8 860 LM127_2 894

LM088_1 793 LM099_8 827 LMl l3_9 861 LM127_3 895

LM089_1 794 LM099_9 828 LM] 14_l 862 LM127_4 896

LM089_2 795 LM100__1 829 LM1 15_1 863 LM127_5 897

LM089_3 796 LM100_2 830 LMl 15_2 864 LM127_6 898

LM090_1 797 LM101_1 83 1 LMl 16_1 865 LM127_7 899

LM090_2 798 LM101_2 832 LMl 16_2 866 LM127_8 900

LM091_1 799 LM102_1 833 LMl 17_1 867 LM127_9 901

LM091_2 800 LM102_2 834 LMl 17__2 868 LM128_1 902

LM092_1 801 LM103_1 835 LMl 18_1 869 LM128_2 903

LM093_1 802 LM103_2 836 LM118_2 870 LM129_1 904

LM093_2 803 LM104_1 837 LM119_1 871 LM129_2 905

LM094_1 804 LM104_2 838 LMl 19_2 872 LM129_3 906

LM094_2 805 LM105_1 839 LM120_1 873 LM130_1 907

LM095_1 806 LM105_2 840 LM120_2 874 LM130_10 908

LM095_2 807 LM106_1 841 LM121_1 875 LM130_1 1 909

LM096_1 808 LM107_1 842 LM121_2 876 LM130_12 910

LM096__2 809 LM108_1 843 LM122_1 877 LM130_13 911

LM097__1 810 LM108_2 844 LM122__2 878 LM130_14 912

LM097_2 81 1 LM109_1 845 LM123_1 879 LM130_15 913

LM098_1 812 LM109_2 846 LM123_2 880 LM130_2 914

LM099_1 813 LM] 10_1 847 LM124_1 881 LM130_3 915

LM099_10 814 LM110_2 848 LM124_2 882 LM130_4 916

LM099_11 815 LM111_1 849 LM125_1 883 LM130_5 917

LM099_12 816 LM] 1 1_2 850 LM125_2 884 LM130_6 918

LM099_13 817 LM1 12_1 851 LM126_1 885 LM130_7 919

LM099_14 818 LMl 12_2 852 LM127_1 886 LM130_8 920

LM099_15 819 LMl l3_1 853 LM127_10 887 LM130_9 921

LM099_16 820 LM1 l3_2 854 LM127_1 1 888 LM13 1_1 922

LM099_2 821 LMl 13_3 855 LM127_12 889 LM13 1_2 923

LM099_3 822 LM] l3_4 856 LM12L1 3 890 LMl 32_1 924    
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TABLE B. 1 . Continuation.

Key to Data set Key to Data set Key to Data set

ComBase No. ComBase No. ComBase No.
 

LM132_10 925 LM132_15 930 LM132_6 935

LM132_11 926 LM132_2 931 LM132_7 936

LM132_12 927 LM132_3 932 LM132_8 937

LM132_13 928 LM132_4 933 LM132_9 938

LM132_14 929 LM132_5 934   
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TABLE 82. No-growth broth-based data sets (L. monocytogenes) eliminated for

anaerobic and aerobic conditions.

Anaerobic I Aerobic

Data set No

1 211 293 386 741 912

4 212 294 387 742 913

9 213 295 388 745 916

26 223 331 389 746 917

29 224 332 390 747 921

30 225 333 391 748

45 226 340 398 749

46 227 341 402 750

47 228 342 444 780

63 229 343 449 781

64 230 344 453 782

82 231 345 482 794

85 232 346 486 795

86 233 347 527 796

87 245 348 529 797

88 248 349 535 798

89 249 350 540 799

90 250 351 544 800

91 253 364 600 801

117 254 365 605 802

119 255 366 607 803

120 256 380 614 804

139 263 381 685 805

142 264 382 686 806

 

 

 
143 265 687 807

160 266 688 808

161 267 705 809

1 74 268 709 814

1 75 269 710 818

178 270 71 1 819

179 271 714 823

1 80 272 715 824

l 81 273 719 85 1

l 84 274 739 852

185 290 740 908 
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TABLE B.3. B (h'l) and M (h) estimated fi'om the primary regression for anaerobic

 

conditions.

Data set Data set Data set

No. B M No. B M No. B M

2 0.016 1 82.517 41 0.046 43.205 80 0.042 32.080

3 0.956 10.666 42 0.950 10.670 81 0.036 36.910

5 1.710 23.193 43 0.031 51.691 83 0.039 35.301

6 0.205 80. l 77 44 0.045 39.534 84 0.028 47.227

7 0.106 302.736 48 3.060 23.094 92 0.016 183.557

8 0.484 201 .306 49 0.889 10.654 93 0.280 98.601

10 0.209 6.622 50 2.858 22.809 94 0.184 19.073

1 1 0.203 6.932 51 0.195 10.324 95 0.190 19.1 18

12 0.195 7.086 52 0.162 11.838 96 0.107 13.118

13 0.203 6.774 53 0.684 19.824 97 0.088 16.009

14 0.871 10.996 54 0.228 9.961 98 0.090 16.605

15 0.861 10.915 55 3.209 23.183 99 0.097 14.935

16 0.870 1 1.034 56 3.965 7.179 100 0.128 1 1.787

17 0.867 10.808 57 0.761 20.187 101 0.101 13.946

18 1.136 8.871 58 1.151 21.657 102 0.104 14.103

19 0.169 8.090 59 0.561 21.222 103 0.105 14.102

20 0.176 7.831 60 0.582 22.527 104 0.1 15 12.831

21 0.164 8.120 61 0.125 14.657 105 0.108 15.200

22 0.109 1 1.606 62 0.471 19.653 106 0.084 16.792

23 0.147 9.1 15 65 0.421 94.777 107 0.176 1 1.394

24 0.122 10.194 66 0.020 80.855 108 0.103 13.586

25 1.327 57.243 67 0.019 80.491 109 0.104 15.160

27 1 .062 6.968 68 0.020 76.174 1 10 0.074 19.583

28 1 .093 7.052 69 0.921 45.057 1 1 1 0.097 14.779

31 1.990 7.127 70 0.117 29.015 112 0.103 14.170

32 1.500 7.350 71 0.097 29.061 1 13 1.643 6.394

33 0.260 17.849 72 0.109 13 .803 1 14 1.855 8.884

34 0.230 10.649 73 0.244 19.947 1 15 0.952 10.703

35 0.922 10.170 74 0.156 19.483 1 16 4.164 23.700

36 0.962 10.512 75 0.1 14 15.284 1 18 0.822 29.874

37 0.058 26.198 76 0.182 19.079 121 0.041 47.743

38 0.078 29.784 77 0.1 76 19.963 122 0.035 48.385

39 0.090 25.531 78 0.074 24.201 123 0.034 51.268

40 0.234 20.497 79 0.064 29.694 124 0.046 44.100   
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TABLE B.3. Continuation.

 

  

Data set Data set Data set

No. B M No. B M No. B M

125 0.027 59.629 164 1.115 9.545 206 0.912 8.184

126 0.041 47.975 165 0.177 11.823 207 3.904 16.487

127 0.040 46.321 166 7.804 7.105 208 0.024 57.146

128 0.036 48.095 167 0.514 20.642 209 0.023 56.600

129 0.042 48.345 168 0.933 10.175 210 0.022 61.343

130 0.039 41.167 169 0.096 13.451 214 0.975 20.753

131 1.929 47.204 170 0.148 13.157 215 0.978 10.863

132 0.085 21.158 171 0.986 9.934 216 0.014 129.406

133 0.087 19.229 172 2.501 23.648 217 0.017 85.001

134 0.094 21.453 173 0.970 9.981 218 0.1 19 13.246

135 0.053 43.004 176 0.982 9.946 219 0.100 16.191

136 0.024 85.145 177 0.003 494.122 220 0.105 15.305

137 0.082 44.055 182 0.033 41.969 221 0.011 155.611

138 0.064 36.615 183 0.033 44.217 222 0.052 149.320

140 0.049 38.124 186 0.020 70.745 234 1.585 7.330

141 0.031 57.037 187 0.025 56.194 235 0.185 10.074

144 0.138 20.848 188 0.027 54.055 236 0.050 30.102

145 4.599 26.821 189 0.023 59.368 237 0.076 26.661

146 0.093 21.540 190 0.026 57.652 238 0.070 28.490

147 0.087 22.303 191 0.023 65.533 239 0.080 26.354

148 0.093 21 .884 192 0.065 72.028 240 0.067 27. 105

149 0.088 21.224 193 0.240 6.650 241 0.067 26.575

150 0.952 10.076 194 0.271 6.103 242 0.065 37.214

151 0.919 10.140 195 0.256 6.446 243 0.957 10.446

152 0.062 24.221 196 2.089 8.945 244 0.955 10.563

1 53 0.106 23.297 197 0.281 6.122 246 0.063 55.242

154 0.141 25.824 198 1.744 8.570 247 1.013 11.762

155 0.641 29.639 199 0.274 6.066 251 0.011 183.021

1 56 0.549 23.887 200 0.300 6.304 252 0.005 296.848

157 0.605 24.053 201 0.264 6.1 14 257 0.010 232.661

158 0.181 23.577 202 1.833 8.829 258 0.005 477.574

159 0.003 494.198 203 0.249 6.174 259 0.353 48.701

162 0.291 7.092 204 0.243 6.287 260 25.923 120.120

163 0.783 7.270 205 1 .372 7.744 261 0.989 10.697
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TABLE B.3. Continuation.

 

Data set Data set Data set

No. B M No. B M No. B M

262 0.975 10.945 307 0.010 143.720 339 0.954 200.734

275 0.426 16.715 308 0.045 239.062 352 0.01 1 142.644

276 1.345 7.479 309 0.054 41.014 353 0.014 135.248

277 0.929 10.825 310 0.036 49.552 354 0.009 161.137

278 0.998 10.304 31 1 0.039 46.982 355 0.016 137.446

279 0.927 10.831 312 0.012 138.531 356 0.011 144.186

280 1.148 8.899 313 0.007 236.1 16 357 0.012 136.504

281 1.343 7.498 314 0.993 154.908 358 0.010 157.094

282 0.577 15.293 315 0.239 164.455 359 0.010 157.447

283 1.332 7.583 316 0.276 164.132 360 0.006 217.585

284 1.144 8.924 317 0.009 169.041 361 0.004 413.335

285 1.361 7.350 318 0.010 142.339 362 0.012 248.843

286 1.147 8.904 319 0.009 146.859 363 0.266 284.1 16

287 0.951 10.620 320 0.009 192.921 367 0.012 139.988

288 1.143 8.937 321 0.015 172.845 368 2.937 22.552

289 1.145 8.928 322 0.009 156.028 369 0.193 8.077

291 0.020 271.282 323 0.009 159.316 370 1.01 1 9.921

292 0.010 171.758 324 0.009 165.278 371 0.070 17.900

296 0.012 166.289 325 0.009 145.480 372 0.056 22.260

297 0.164 179.709 326 0.010 144.412 373 0.096 16.181

298 0.009 168.174 327 0.01 1 141.319 374 0.077 21.589

299 0.010 169.396 328 0.009 171.077 375 0.066 22.340

300 0.017 123.855 329 0.007 178.235 376 0.069 22.020

301 0.014 120.746 330 0.009 184.649 377 0.071 22.860

302 0.018 102.843 334 0.012 391.181 378 0.064 24.001

303 0.016 1 1 1.003 335 0.010 380.690 379 0.067 23.108

304 0.015 1 10.348 336 0.968 382.834 383 0.009 191.736

305 0.015 1 14.322 337 0.957 200.690 384 0.009 205.806

306 0.010 152.000 338 0.952 200.764 385 0.004 427.784   
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TABLE B.4. B (h") and M (h) estimated from the primary regression for aerobic

 

  

conditions.

Data set Data set Data set

No. B M No. B M No. B M

392 0.280 5.993 428 0.865 1 1.083 465 0.41 1 19.463

393 0.109 24.392 429 1.079 9.793 466 0.3 14 18.451

394 0.901 5.834 430 0.344 7.414 467 0.467 19.811

395 0.226 6.573 43 1 0.284 7.343 468 0.396 17.928

396 0.213 6.960 432 0.282 7.145 469 0.631 21.198

397 2.5 10 9.275 433 0.268 7.759 470 0.548 20.685

399 1.155 8.857 434 2.805 22.617 471 0.418 18.915

400 0.220 7.418 435 0.266 7.485 472 0.119 13.124

401 1 .630 8.697 436 0.247 7.922 473 1 .239 24.686

403 1 .423 9.913 437 0.870 10.860 474 1 . 156 24.698

404 0.225 6.094 438 0.286 8.824 475 1.124 24.702

405 0.225 6.984 439 0.969 10.446 476 0.463 16.616

406 0.208 9.535 440 0.809 7.443 478 0.925 10.848

407 0.922 10.012 441 0.289 7.484 479 1.143 8.937

408 0.979 9.960 442 0.285 7.590 480 0.440 18.853

409 0.982 9.949 443 1.474 7.034 481 0.517 21.074

410 0.472 16.292 445 1.195 7.878 483 1.660 5.137

41 1 0.242 5.849 446 1 .037 7.892 484 1 .843 7.422

412 0.253 5.239 447 1.104 9.434 485 0.544 21.718

413 0.232 5.796 448 1.164 23.548 487 0.928 10.830

414 1.142 8.851 450 1.033 7.906 488 1.145 8.921

415 0.250 5.829 451 1.157 9.604 489 0.412 18.073

416 0.984 10.236 452 0.934 23.318 490 0.505 21.491

4 1 7 0.240 5.389 454 0.903 8.273 491 1 . 183 8.668

41 8 1.300 7.923 455 0.903 10.434 492 0.902 10.205

419 0.991 9.972 456 0.438 15.754 493 2.157 7.272

420 0.251 6.217 457 1.087 23.664 494 2.141 7.253

421 0.422 16.565 458 0.270 8.128 495 1.249 9.217

422 0.262 5.496 459 0.098 15.751 496 4.000 7.133

423 1.130 8.933 460 0.147 10.734 497 0.906 10.195

424 0.239 5.749 461 0.651 21.594 498 0.183 8.709

425 0.922 10.012 462 0.928 10.050 499 0.200 8.807

426 0.979 9.960 463 0.123 12.661 500 3.221 22.775

427 0.982 9.949 464 0.950 10.276 501 0.197 8.289
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TABLE B.4. Continuation.

 

Data set Data set Data set

No. B M No. B M No. B M

502 1 .676 7.995 539 0.075 17.337 575 0.024 57.438

503 0.199 8.237 541 0.267 10.737 576 0.060 41.956

504 0.195 8.232 542 0.234 9.891 577 0.050 41.660

505 2.392 22.359 543 0.059 19.965 578 0.007 206.641

506 0.877 10.822 545 0.247 10.542 579 0.008 223.769

507 0.205 7.526 546 0.312 10.347 580 0.007 229.171

508 1.555 8.858 547 0.220 10.994 581 1 .260 50.272

509 0.233 6.837 548 0.059 17.829 582 0.823 49.679

510 1.087 9.683 549 0.137 12.335 583 0.018 122.431

51 1 0.418 14.524 550 0.103 14.584 584 0.020 97.915

512 1.178 9.362 551 0.128 12.729 585 0.022 162.688

513 1.156 9.754 552 0.132 12.790 586 0.023 154.398

514 2.006 7.312 553 0.112 15.275 587 1.911 49.752

515 2.105 7.261 554 0.121 14.493 588 0.956 101.016

516 2.899 7.196 555 0.112 13.921 589 0.984 100.707

517 0.882 10.345 556 0.128 12.622 590 0.984 100.695

518 0.039 43.714 557 0.123 13.336 591 0.937 101.444

519 0.975 10.940 558 0.142 12.127 592 1.447 100.814

520 1.473 49.964 559 0.100 14.445 593 1.482 100.538

521 0.957 10.609 560 0.1 19 13.678 594 0.481 101.654

522 0.982 9.946 561 0.129 12.954 595 0.125 15.604

523 5.939 20.080 562 0.120 13.580 596 0.123 15.563

524 1.158 33.893 563 0.115 13.215 597 0.191 13.036

525 2.708 16.673 546 0.024 59.836 598 0.156 1 1.397

526 0.948 10.299 565 0.029 94.308 599 0.185 20.993

528 0.935 9.967 566 0.030 89.682 601 0.200 21.125

530 0.895 10.429 567 0.028 90.237 602 0.168 21.471

53 1 1.529 8.862 568 0.031 90.823 603 0.163 22.492

532 2.994 22.695 569 0.955 30.808 604 0.047 29.714

533 2.690 16.699 570 0.955 30.812 606 0.210 15.327

534 0.236 10.733 571 0.026 101.757 608 0.135 13.140

536 0.262 10.415 572 0.019 104.605 609 0.190 8.177

537 2.210 23.419 573 0.019 103.627 610 0.538 23.267

538 0.273 10.599 574 0.022 98.502 61 1 0.191 8.730   
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TABLE B.4. Continuation.

 

Data set Data set Data set

No. B M No. B M No. B M

612 0.114 22.521 647 0.096 23.616 681 0.096 18.908

613 0.046 30.887 648 0.101 23.974 682 0.095 21.094

615 0.147 20.920 649 0.090 27.089 683 0.106 20.548

616 0.177 22.075 650 0.053 32.597 684 0.106 21.326

617 0.124 22.082 651 0.062 30.938 689 0.095 22.623

618 0.048 27.651 652 0.054 35.564 690 0.094 22.883

619 0.090 22.241 653 0.052 31.600 691 0.091 25.817

620 0.088 21.319 654 0.091 18.297 692 0.049 30.625

621 0.054 26.517 655 0.097 19.038 693 0.069 28.162

622 0.064 25.864 656 0.105 14.385 694 0.060 31.361

623 0.064 31.213 657 0.090 17.792 695 0.063 31.651

624 0.062 31.636 658 0.107 20.765 696 0.080 26.272

625 0.072 27.744 659 0.436 23.419 697 0.063 27.354

626 0.079 26.829 660 0.1 12 20.224 698 0.079 27.947

627 0.095 22.624 661 0.114 20.313 699 0.061 28.405

628 0.094 22.883 662 0.109 21.359 700 0.036 39.850

629 0.058 31.491 663 0.092 20.954 701 0.052 33.447

630 0.061 31.259 664 0.575 23.620 702 0.075 27.975

631 0.041 52.874 665 0.124 17.736 703 0.098 15.782

632 0.052 40.657 666 0.132 17.944 704 0.054 28.739

633 0.052 31.988 667 0.135 17.507 706 0.059 29.444

634 0.054 34.239 668 0.114 19.835 707 0.047 45.365

635 0.126 11.866 669 0.091 19.993 708 0.056 65.442

636 0.129 11.756 670 0.098 18.412 712 0.044 45.737

637 0.180 8.479 671 0.101 19.231 713 0.061 62.339

638 0.197 8.070 672 0.098 20.699 716 0.061 28.584

639 0.087 18.832 673 0.094 20.620 717 0.045 47.243

640 0.065 24.620 674 0.092 21 .029 718 0.090 59.420

641 0.071 24.617 675 0.074 21.066 720 0.052 31.988

642 0.091 19.003 676 0.084 22.582 721 0.054 34.239

643 0.094 22.543 677 0.080 22.745 722 0.059 21 .229

644 0.068 26.983 678 0.106 21.025 723 0.906 10.187

645 0.063 26.352 679 0.089 21.431 724 0.063 27.375

646 0.098 20.402 680 0.964 23.734 725 0.867 24.372   
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TABLE B.4. Continuation.

 

Data set Data set Data set

No. B M No. B M No. B M

726 0.073 29.178 770 0.019 75.165 829 0.011 173.799

727 0.068 26.773 771 0.676 121.559 830 0.013 169.092

728 0.061 27.959 772 0.022 65.201 83 1 0.007 206.964

729 0.064 29.057 773 0.022 76.079 832 0.009 204.1 1 1

730 0.594 24.515 774 0.020 64.748 833 0.009 400.774

731 0.063 26.304 775 0.019 90.197 834 0.006 383.934

732 0.069 26.91 1 776 0.020 88.856 835 0.009 213.803

733 0.072 28.891 777 0.977 71.195 836 0.009 213.626

734 0.637 24.390 778 0.036 62.503 837 0.012 171.105

735 0.061 21.279 779 0.021 87.858 838 0.013 171.990

736 0.063 28.365 783 0.033 48.043 839 0.006 235.330

737 0.096 26.562 784 0.024 57.570 840 0.006 239.583

738 0.063 29.973 785 0.024 56.813 841 0.008 228.468

743 0.892 104.334 786 0.022 61.451 842 0.01 1 158.868

744 0.030 648.047 787 0.057 30.320 843 0.005 253.157

751 0.951 10.739 788 0.033 61.952 844 0.007 229.541

752 0.020 75.468 789 0.040 43.258 845 0.007 212.71 1

753 1 .449 72.305 790 0.042 42.770 846 0.007 232.976

754 0.03 1 63.782 791 0.023 60.749 847 0.006 276.770

755 0.016 100.126 792 0.021 65.139 848 0.006 297.124

756 0.016 99.919 793 0.023 57.227 849 0.004 557.919

757 0.058 31.353 810 0.01 1 232.032 850 0.003 596.528

758 0.061 31.1 16 81 1 0.01 1 235.292 853 0.009 187.027

759 0.014 138.300 812 0.010 197.185 854 0.013 140.772

760 0.013 146.489 813 0.012 129.769 855 0.014 128.213

761 0.009 152.598 815 0.012 138.558 856 0.016 112.864

762 0.088 57.583 816 0.01 1 163.508 857 0.013 127.059

763 0.024 63.408 817 0.007 257.826 858 0.013 123.159

764 0.020 66.861 820 0.009 257.083 859 0.013 128.762

765 0.388 25.823 821 0.009 180.254 860 0.012 158.229

766 0.035 50.620 822 0.007 262.008 861 0.010 144.320

767 0.034 47.421 825 0.012 135.966 862 0.015 135.187

768 0.037 46.798 826 0.009 196.525 863 0.012 153.132

769 0.021 75.590 827 0.005 288.501 864 0.010 173.042   
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TABLE B.4. Continuation.

 

 

Data set Data set

No. B M No. B M

865 0.007 200.274 899 0.010 163.798

866 0.009 204.733 900 0.010 164.632

867 0.01 1 165.480 901 0.01 1 152.368

868 0.010 176.612 902 0.006 235.456

869 0.015 96.338 903 0.006 239.690

870 0.016 89.720 904 0.016 151.365

871 0.010 172.599 905 0.013 178.187

872 0.009 168.587 906 0.015 174.290

873 0.016 160.084 907 0.008 198.709

874 0.013 156.457 909 0.007 227.3 15

875 0.008 224.263 910 0.007 297.308

876 0.009 217.646 91 1 0.007 386.786

877 0.007 240.956 914 0.009 284.062

878 0.006 265.994 915 0.004 439.285

879 0.009 198.395 918 0.009 209.478

880 0.009 179.296 919 0.006 332.618

881 0.010 129.998 920 0.007 335.046

882 0.010 141.609 922 0.012 171.121

883 0.013 1 14.840 923 0.013 172.005

884 0.016 1 10.004 924 0.010 179.316

885 0.012 146.337 925 0.014 146.925

886 0.010 155.764 926 0.01 1 179.223

887 0.01 1 144.304 927 0.012 163.802

888 0.010 156.268 928 0.012 173.334

889 0.010 156.438 929 0.012 170.474

890 0.010 154.515 930 0.013 147.530

891 0.009 156.153 931 0.01 1 177.617

892 0.01 1 145.476 932 0.014 161.775

893 0.01 1 156.722 933 0.01 1 159.964

894 0.010 160.651 934 0.014 149.552

895 0.010 156.1 18 935 0.01 1 176.798

896 0.01 1 155.369 936 0.013 178.495

897 0.011 141.126 937 0.012 169.827

898 0.010 168.463 938 0.01 1 155.331
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TABLE B.5. Treatment (treat) and data set numbers for anaerobic conditions used to

calculate error due to replication calculations.

Data Treatbataset Treat. Data Treat. Data Treat. Data Treat.

setNo. No. No. No. setNo. No. setNo. No. No. No.

48 99 84 24 128 26 168 41

49 99 92 39 129 26 169 41

50 99 93 39 130 26 170 41

51 100 94 62 132 27 171 42

52 100 95 62 133 27 172 42

53 100 96 62 134 27 173 42

10 98 54 101 97 73 135 28 177 12

11 98 55 101 98 73 136 28 186 12

12 98 56 101 99 87 137 28 193 104

13 98 57 102 100 87 138 29 194 104

14 98 58 102 101 87 140 29 195 104

15 98 59 102 102 87 141 29 196 105

16 98 60 103 103 87 144 93 197 105

17 98 61 103 104 87 145 93 198 105

18 98 62 103 105 88 146 93 199 106

19 98 65 2 106 88 147 94 200 106

20 98 66 2 107 88 148 94 201 106

21 98 67 2 108 89 149 94 202 107

22 98 68 2 109 89 150 95 203 107

6 89

6

6

 

A
b
-
b
-
b
a
h
-
h

23 98 69 1 10 151 95 204 107

24 98 70 1 1 1 90 152 95 205 108

33 35 71 112 153 96 206 108

34 35 72 22 1 13 90 154 96 207 108

96

97

8

35 35 73 22 114 91 155 214 54

36 36 74 22 115 91 156 215 54

37 36 75 22 116 91 157 97 218 44

38 36 76 22 121 26 158 97 219 44

39 37 77 22 122 26 162 39 220 44

40 37 78 23 123 26 163 39 221 1 18

41 37 79 23 124 26 164 39 222 1 18

42 38 80 23 125 26 165 40 234 45

43 38 81 24 126 26 166 40 235 45

44 38 83 24 127 26 167 40 236 46     
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TABLE B.5. Continuation.

Data set Treat. Data set Treat. Data set Treat.

No. No. No. No. No. No.
 

237 46 304 57 359 83

238 46 305 57 360 83

239 47 306 57 361 83

240 47 307 57 362 84

241 47 308 57 363 84

242 48 310 3 369 30

243 48 311 3 370 30

244 48 312 3 371 30

246 49 316 72 372 31

247 49 317 72 373 31

251 8 319 76 374 31

252 8 320 76 375 32

260 13 321 76 376 32

261 13 322 76 377 32

262 13 323 77 378 33

276 109 324 77 379 33

277 109 325 77

278 109 326 78

279 1 10 327 78

280 1 10 328 78

281 1 10 329 79

282 11 1 330 79

283 1 1 1 335 17

284 1 1 1 336 17

285 1 12 337 17

286 1 12 338 18

287 112 339 18

288 113 353 81

289 113 354 81

300 57 355 81

301 57 356 82

302 57 357 82

303 57 358 82   
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TABLE B.6. Treatment (treat) and data set numbers for aerobic conditions used to

calculate error due to replication calculations.

Data set Treat. Data Treat. Data Treat. Data set Treat. Data set Treat.

No. No. set No. No. set No. No. No. No. No. No.

392 44 428 123 464 132 500 108 536 40

394 44 429 127 465 129 501 108 537 41

395 45 430 123 466 130 502 109 538 42

396 46 431 124 467 131 503 108 539 43

397 47 432 125 468 132 504 108 541 41

399 45 433 126 469 128 505 108 542 42

400 46 434 127 470 129 506 108 543 43

401 47 435 124 471 130 507 108 545 40

403 44 436 125 472 131 508 108 546 41

404 45 437 126 473 2 509 108 547 42

405 46 438 127 474 2 510 108 548 43

406 47 439 123 475 2 51 1 1 10 549 1 13

407 49 440 124 476 36 512 111 550 1 17

408 49 441 125 478 36 513 112 551 113

409 49 442 126 479 37 514 108 552 1 14

410 118 443 50 480 38 515 109 553 115

411 122 445 50 481 39 516 110 554 116

412 118 446 51 483 37 517 111 555 117

413 119 447 52 484 38 518 9 556 114

414 120 448 53 485 39 519 10 557 115

415 121 450 51 487 36 520 9 558 116

416 122 451 52 488 37 521 10 559 117

417 1 19 452 53 489 38 522 68 560 1 13

418 120 454 50 490 39 523 69 561 1 14

419 121 455 51 491 108 524 68 562 115

420 122 456 52 492 1 12 525 69 563 1 16

421 1 18 457 53 493 108 526 1 1 564

422 1 19 458 128 494 109 528 1 1 565

423 120 459 132 495 1 10 530 70 566

424 121 460 128 496 111 531 71 567

425 125 461 129 497 1 12 532 70 568

426 125 462 130 498 108 533 71 569

427 125 463 131 499 108 534 40 570
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TABLE B.6. Continuation.

 

Data set Treat. Data Treat. Data Treat. Dataset Treat. Dataset Treat.

No. No. set No. No. set No. No. No. No. No. No.

57 1 1 606 26 641 79 674 97 720 32

572 1 608 26 642 79 675 97 721 32

573 1 609 26 643 80 676 97 722 32

574 1 610 27 644 80 677 97 723 32

575 1 61 1 26 645 80 678 99 724 103

576 1 612 28 646 80 679 100 725 107

577 1 613 29 647 81 680 101 726 103

578 1 615 26 648 81 681 97 727 104

579 1 616 27 649 81 682 98 728 105

580 1 617 28 650 81 683 99 729 106

581 1 618 29 651 81 684 100 730 107

582 1 619 26 652 81 689 30 731 104

583 4 620 26 653 81 690 30 732 105

S84 4 621 26 654 83 691 31 733 106

585 4 622 26 655 83 692 31 734 107

586 4 623 26 656 83 693 3 1 735 103

587 5 624 26 657 83 694 31 736 104

588 5 625 26 658 97 695 3 1 737 105

589 5 626 26 659 101 696 3 1 738 106

590 5 627 30 660 97 697 31 743 3

591 6 628 30 661 98 698 31 744 3

592 6 629 30 662 99 699 3 1 751 23

593 6 630 30 663 100 700 31 752 23

594 6 631 26 664 101 701 31 753 24

595 8 632 26 665 97 702 3 1 754 24

596 8 633 26 666 97 704 32 755 24

597 8 634 26 667 97 707 32 756 24

598 8 635 67 668 97 708 33 757 24

599 26 636 67 669 98 712 33 758 24

601 26 637 67 670 97 713 34 759 25

602 27 638 67 671 97 716 32 760 25

603 28 639 79 672 97 717 33 761 25

604 29 640 79 673 97 718 34 762 25     
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TABLE B.6. Continuation.

Dataset Treat. Data Treat. Data TreatlDatasetTreat.

No. No. set No. No. setNo. No. No. No.
 

763 76 833 13 869 72 903 17

764 76 834 13 870 72 904 18

765 76 835 13 871 73 905 18

766 76 836 13 872 73 906 18

767 76 837 13 873 73 907 19

768 76 838 13 874 73 909 19

769 77 839 13 875 74 910 20

770 77 840 13 876 74 911 21

771 77 842 56 877 74 914 20

772 77 843 56 878 74 915 21

773 77 844 56 879 82 918 19

774 77 845 57 880 82 919 20

775 78 846 57 881 82 920 21

776 78 847 58 882 82 922 19

777 78 848 58 883 82 923 19

778 78 849 59 884 82 924 91

784 55 850 59 886 86 925 95

791 75 853 61 887 90 926 91

810 13 854 61 888 86 927 92

811 13 855 61 889 87 928 93

813 13 856 61 890 88 929 94

815 13 857 61 891 89 930 95

816 14 858 61 892 90 931 92

817 15 859 61 893 86 932 93

821 14 860 61 894 87 933 94

822 15 861 61 895 88 934 95

825 13 862 72 896 89 935 91

826 14 863 72 897 90 936 92

827 15 864 72 898 86 937 93

829 13 865 72 899 87 938 94

830 13 866 72 900 88

831 13 867 72 901 89

832 13 868 72 902 17    
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TABLE B.7. Experimental variables each treatment (aerobic conditions, (U.S.

 

Department ofAgriculture, 2003a)).

p11 T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of

(an) (ppm) data treat. (8") (ppm) data treat.
Jomts Jomts

4.5 19 0 0 200 l 6 19 25 0 64 30

4.5 28 0 0 30 2 6 19 25 100 92 31

5 12 25 0 28 3 6 19 45 0 60 32

5 19 0 0 66 4 6 19 45 50 24 33

5 19 25 0 38 5 6 19 45 100 16 34

5 19 45 0 50 6 6 19 45 1000 7 35

5.25 10 15 50 7 7 6 28 0 0 12 36

5.25 19 0 0 32 8 6 28 0 50 12 37

5.25 28 15 50 14 9 6 28 0 100 12 38

5.25 28 15 150 17 10 6 28 0 200 12 39

5.25 28 35 50 15 1 1 6 28 45 0 24 40

5.5 5 0 0 7 12 6 28 45 50 22 41

6 5 0 0 151 13 6 28 45 100 24 42

6 5 0 50 21 14 6 28 45 200 21 43

6 5 0 100 21 15 6 37 0 0 16 44

6 5 0 200 7 16 6 37 0 50 17 45

6 5 25 0 18 17 6 37 0 100 18 46

6 5 25 100 24 18 6 37 0 200 18 47

6 5 45 0 36 19 6 37 0 1000 6 48

6 5 45 50 21 20 6 37 25 100 15 49

6 5 45 100 21 21 6 37 45 0 15 50

6 10 0 0 14 22 6 37 45 50 15 51

6 12 0 0 27 23 6 37 45 100 15 52

6 12 25 0 66 24 6 37 45 200 15 53

6 12 45 0 42 25 6.25 5 0 0 7 54

6 19 0 0 177 26 6.25 10 0 0 13 55

6 19 0 50 18 27 6.5 5 0 0 25 56

6 19 0 100 18 28 6.5 5 20 0 18 57

6 19 0 200 18 29 6.5 5 40 0 20 58 
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TABLE B.7. Continuation.

 

pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of

(8/1) (PP!!!) data treat. (8") (PP!!!) data twat-

points points

6.5 5 60 0 26 59 7.5 5 0 100 24 88

6.5 10 0 0 13 60 7.5 5 0 200 24 89

6.75 5 0 0 75 61 7.5 5 0 1000 24 90

6.75 10 0 0 13 62 7.5 5 45 0 18 91

6.75 10 15 50 7 63 7.5 5 45 50 18 92

6.75 10 15 150 8 64 7.5 5 45 100 18 93

6.75 10 35 50 7 65 7.5 5 45 200 18 94

6.75 10 35 150 7 66 7.5 5 45 1000 15 95

6.75 19 0 0 32 67 7.5 10 0 0 13 96

6.75 28 15 50 13 68 7.5 19 0 0 1 14 97

6.75 28 15 150 16 69 7.5 19 0 50 15 98

6.75 28 35 50 14 70 7.5 19 0 100 15 99

6.75 28 35 150 15 71 7.5 19 0 200 15 100

7 5 0 0 84 72 7.5 19 0 1000 13 101

7 5 25 0 42 73 7.5 19 25 100 6 102

7 5 45 0 38 74 7.5 19 45 0 18 103

7 10 0 0 13 75 7.5 19 45 50 18 104

7 12 0 0 46 76 7.5 19 45 100 18 105

7 12 25 0 54 77 7.5 19 45 200 18 106

7 12 45 0 34 78 7.5 19 45 1000 18 107

7 19 0 0 38 79 7.5 28 0 0 90 108

7 19 25 0 39 80 7.5 28 0 50 18 109

7 19 45 0 68 81 7.5 28 0 100 18 110

7 2 5 0 0 46 82 7.5 28 0 200 18 111

72 19 0 0 34 83 7.5 28 0 1000 18 112

7.25 5 0 0 7 84 7.5 28 45 0 21 113

7.25 10 0 0 13 85 7.5 28 45 50 21 1 14

7.5 5 0 0 31 86 7.5 28 45 100 21 115

7.5 5 0 50 24 87 7.5 28 45 200 21 1 16  
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TABLE B.7. Continuation.

 

pH T°C NaCl Nitrite No. of No. of pH T°C NaCl Nitrite No. of No. of

(all) (ppm) dma treat (8“) (ppm) data treat.
pornts pornts

7.5 28 45 1000 21 117 7.5 37 25 100 33 125

7.5 37 0 0 17 118 7.5 37 25 200 18 126

7.5 37 0 50 17 119 7.5 37 25 1000 18 127

7.5 37 0 100 18 120 7.5 37 45 0 18 128

7.5 37 0 200 16 121 7.5 37 45 50 18 129

7.5 37 0 1000 17 122 7.5 37 45 100 17 130

7.5 37 25 0 18 123 7.5 37 45 200 18 131

7.5 37 25 50 18 124 7.5 37 45 1000 16 132 
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TABLE 88. Experimental variables in each treatment (anaerobic conditions, (U.S.

Department of Agriculture, 2003a)).

 

pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of

 

(8”) (Wm) data treat. (8") (13131“) data treat.

pornts pornts

4.5 10 0 0 10 28 0 0 18 30

4.5 19 0 0 43 28 0 50 25 31

4.5 28 0 0 31 28 0 100 22 32

4.5 37 0 0 57 28 O 200 12 33

5.25 10 15 50 6 28 0 1000 9 34

5.25 19 0 0 30 28 45 0 16 35

“
O
“
Q
O
‘
U
I
-
B
W
N
H

6

6

6

6

6

6

5.3 28 15 50 8 6 28 45 50 17 36

5.5 5 0 0 26 6 28 45 100 22 37

5.5 5 0 50 15 6 28 45 200 23 38

5.5 5 5 0 5 10 6 37 0 0 42 39

5 .5 5 25 0 14 11 6 37 0 50 16 40

5.5 10 0 0 23 12 6 37 0 100 17 41

6 5 0 0 19 13 6 37 0 200 14 42

6 5 0 25 10 14 6 37 0 1000 4 43

6 5 0 50 10 15 6 37 25 100 27 44

6 5 0 1000 5 16 6 37 45 0 16 45

6 5 25 100 26 17 6 37 45 50 26 46

6 5 45 0 16 18 6 37 45 100 28 47

6 5 45 25 7 19 6 37 45 200 24 48

6 5 45 1000 8 20 6 37 45 1000 20 49

6 10 0 0 13 21 6.25 5 0 0 6 50

6 19 0 0 53 22 6.25 10 0 0 13 51

6 19 0 50 29 23 6.5 5 0 0 7 52

6 l9 0 100 33 24 6.5 5 0 200 7 53

6 19 25 0 8 25 6.5 8 0 0 19 54

6 19 25 100 100 26 6.5 8 50 O 9 55

6 19 45 0 21 27 6.5 10 0 0 13 56

6 19 45 50 24 28 6.75 5 0 0 75 57

6 19 45 100 24 29 6.75 10 0 0 13 58 
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TABLE B.8. Continuation.

 

 

pH T °C NaCl Nitrite No. of No. of pH T °C NaCl Nitrite No. of No. of

(8“) (rpm) data twat» (8") (mm!) data treat.

points points

6.75 10 15 150 6 59 7.5 19 0 100 24 89

6.75 10 35 50 6 60 7.5 19 0 200 27 90

6.75 10 35 150 7 61 7.5 19 0 1000 27 91

6.75 19 0 0 30 62 7.5 19 25 100 7 92

6.75 28 35 50 7 63 7.5 19 45 0 24 93

6.75 28 35 150 7 64 7.5 19 45 50 24 94

6.8 28 15 50 7 65 7.5 19 45 100 18 95

6.8 28 15 150 6 66 7.5 19 45 200 18 96

7 5 0 0 11 67 7.5 19 45 1000 16 97

7 5 0 200 10 68 7.5 28 0 0 105 98

7 5 5 0 7 69 7.5 28 45 0 18 99

7 5 5 200 6 70 7.5 28 45 50 18 100

7 10 0 0 13 71 7.5 28 45 100 18 101

7.2 5 0 0 13 72 7.5 28 45 200 18 102

7.2 19 0 0 16 73 7.5 28 45 1000 21 103

7.25 5 0 0 8 74 7.5 37 0 0 19 104

7.25 10 0 0 13 75 7.5 37 0 50 21 105

7.5 5 0 0 31 76 7.5 37 0 100 20 106

7.5 5 0 50 24 77 7.5 37 0 200 21 107

7.5 5 0 100 24 78 7.5 37 0 1000 20 108

7.5 5 0 200 16 79 7.5 37 45 0 14 109

7.5 5 0 1000 9 80 7.5 37 45 50 15 110

7.5 5 45 0 24 81 7.5 37 45 100 15 111

7.5 5 45 50 24 82 7.5 37 45 200 15 112

7.5 5 45 100 24 83 7.5 37 45 1000 10 113

7.5 5 45 200 15 84 8 5 0 0 6 114

7.5 5 45 1000 9 85 8 5 0 200 10 115

7.5 10 0 0 13 86 8 5 5 0 14 116

7.5 19 0 0 51 87 8 8 0 o 8 117

7.5 19 0 50 21 88 8 8 50 0 19 118  
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APPENDIX C

STANDARD ERROR ANALYSIS

After the nonlinear regression was performed to the broth-based data, the

asymptotic standard error (SE) of each data set was obtained as described in chapter 5,

section 5.2.4. A trend or significant relationship between SE and experimental conditions

(pH, temperature, salt, or nitrite), time, microbial counts, and treatments (specific

combination ofthe experimental variables) was assessed (aerobic conditions).

An analysis of variance for SE versus pH, temperature, salt, or nitrite, showed

that, assuming there was no interaction between the variables, only pH had a significant

influence on SE (Table C.1).

TABLE C. 1 . Effects tests for the experimental variables.

 

Variable P value

pH 0.0017

T °C 0.1346

NaCl (g/L) 0.1952

Nitrite (ppm) 0.3796

An analysis ofvariances with the same variables, but including interactions

showed that 13 and p112 had a significant influence on SE (Table c2).
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TABLE C.2. Effects test for the experimental variables with interactions.

 

Source P value

pH 0.15 16

T °C 0.1066

NaCl (g/L) 0.0741

Nitrite (ppm) 0.1889

pprH 0. 0215

pHx T °C 0.0677

T °C x T °C 0.0005

pHxNaCl (g/L) 0.3955

T °C xNaC1(g/L) 0.3137

NaCl (g/L) xNaC1(g/L) 0.5090

pHxNitrite (ppm) 0.4696

T °C xNitrite (ppm) 0.7862

NaCl (g/L) xNitrite (ppm) 0.9335

Nitrite (ppm) xNitrite (ppm) 0.3758
 

No significant relationship was found between treatment and SE, meaning that

specific combination ofthe variables did not affect SE.

The analysis to find the relationship between SE versus time and microbial counts

was done separately because the experimental variables do not change within the same

data set.

Both time and microbial counts had a significant influence (P <0.0001) on the SE,

for all treatments.

To illustrate the relationship of SE with time and microbial counts, treatment No.

1 was chosen as an example, because of its high number of replications (19 data sets,

table C.3).

Additionally, it was found that SE had a unique trend as a function of time. SE

slightly increased in value at the middle of the time period, decreasing at the beginning

and end ofthe period (Fig. C.1). The same trend was found for all treatments.
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TABLE C.3. Data sets included in treatment No. 1.

 

Data Time Log SE Data Time Log SE Data Time Log SE

 

No. (b) (CPU/ml) No. (b) (CFU/ml) No. (b) (CPU/ml)

564 0 1.97 1.1987 568 0 3.63 1.1965 573 0 3.26 1.197

564 3 1.92 1.1989 568 24 3.65 1.1973 573 24 3.31 1.1979

564 20 2.76 1.1998 568 48 3.74 1.1976 573 48 3.44 1.1981

564 24 2.76 1.2 568 72 4.48 1.1974 573 72 4.13 1.198

564 27 2.92 1.2001 568 96 5.43 1.1975 573 96 4.81 1.198

564 44 3.98 1.2003 568 168 7.69 1.2005 573 168 6.67 1.2014

564 48 4.21 1.2003 568 216 8.31 1.2026 573 216 7.66 1.2039

564 51 4.39 1.2003 568 264 8.26 1.2029 573 264 8.13 1.2041

564 69 5.44 1.2002 568 336 7.64 1.2004 573 336 7.8 1.2014
 

564 75 5.97 1.2001 569 0 3.56 1.1966 574 0 3.2 1.197

564 93 7.2 1.2002 569 24 3.57 1.1974 574 24 3.26 1.198

564 99 7.61 1.2003 569 48 3.56 1.1977 574 48 3.4 1.1982

564 121 8.39 1.2012 569 72 4.25 1.1975 574 72 4.1 1.1981
 

565 0 3.59 1.1966 569 96 5.24 1.1976 574 96 4.92 1.1981

565 24 3.6 1.1974 569 168 7.23 1.2006 574 168 6.8 1.2016

565 48 3.35 1.1976 569 216 8.21 1.2029 574 216 8.23 1.2041

565 72 4.6 1.1975 569 264 8.13 1.2031 574 264 8.15 1.2043

565 96 5.08 1.1975 569 336 7.7 1.2006 574 336 7.7 1.2015
 

565 168 7.63 1.2006 570 0 3.53 1.1967 575 0 2.01 1.1986

565 216 8 1.2028 570 24 3.55 1.1975 575 3 2.27 1.1988

565 264 8.32 1.203 570 48 3.49 1.1977 575 20 2.63 1.1998

565 336 7.64 1.2005 570 72 4.4 1.1976 575 24 2.69 1.1999
 

566 0 3.61 1.1966 570 96 5.07 1.1976 575 27 2.85 1.2

566 24 3.66 1.1974 570 168 7.15 1.2007 575 44 3.99 1.2003

566 48 3.74 1.1976 570 216 8.19 1.203 575 48 4.93 1.2003

566 72 4.6 1.1975 570 264 8.09 1.2032 575 51 4.4 1.2003

566 96 5.38 1.1975 570 336 7.84 1.2007 575 69 5.39 1.2001

566 168 7.68 1.2005 571 0 3.47 1.1967 575 75 5.9 1.2001

566 216 8.29 1.2027 571 24 3.49 1.1976 575 93 7.15 1.2001

566 264 8.14 1.203 571 48 3.55 1.1978 575 99 7.61 1.2002

566 336 7.64 1.2005 571 72 4.06 1.1977 575 121 8.35 1.2011

 

 
 

567 0 3.63 1.1965 571 96 4.87 1.1977 576 0 4.29 1.1958

567 24 3.55 1.1973 571 168 7.18 1.2009 576 3 4.06 1.1959

567 48 3.65 1.1976 571 216 8.15 1.2032 576 20 3.63 1.1964

567 72 4.54 1.1974 571 264 8.1 1.2034 576 24 4.93 1.1965

567 96 5.31 1.1975 571 336 7.77 1.2008 576 27 5.01 1.1965

567 168 7.61 1.2005 572 0 3.26 1.197 576 44 5.96 1.1966

567 216 6.96 1.2026 572 24 3.35 1.1979 576 48 6.24 1.1966

567 264 8.29 1.2029 572 48 . 3.4 1.1981 576 69 8 1.1966

567 336 7.72 1.2004 572 72 4.19 1.198 576 75 8.09 1.1965

 

 

572 96 4.76 1.198 576 93 8.54 1.1966

572 168 6.73 1.2014 576 99 8.58 1.1966

572 216 7.86 1.2039 576 121 8.25 1.1971
 

572 264 8.27 1.2041

572 336 7.88 1.2014   
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TABLE C.3. Continuation.

 

Data Time Log SE Data Time Log SB

No. (b) (CFU/ml) No. (h) (CFU/ml)
 

577 o 3.97 1.1962 580 o 3.05 1.1972

577 3 4.02 1.1963 580 6 2.99 1.1975

577 20 3.55 1.1968 580 24 3.08 1.1982

577 24 4.74 1.19691 580 48 3.09 1.1985

577 27 4.96 1.1969 580 54 326 1.1984

577 44 5.92 1.1971 580 72 3.55 1.1983

577 48 5.94 1.1971 580 78 3.65 1.1983

577 69 7.77 1.197 580 96 3.73 1.1984

577 75 7.96 1.197 580 100 3.74 1.1984

577 93 8.52 1.197 580 192 4.6 1.2035

577 99 8.71 1.197 580 240 5.16 1.205

577 121 8.3 1.1975 580 336 7.16 1.2019
 

578 0 3.01 1.1973 580 408 7.77 1.1982

578 6 3.12 1.1976 580 504 8.16 1.1951
 

578 24 3.14 1.1983 581 0 3.61 1.1966

578 48 3.25 1.1985 581 24 3.67 1.1974

578 54 3.33 1.1985 581 48 3.55 1.1976

578 72 3.53 1.1984 581 72 4.1 1.1975

578 78 3.63 1.1984 581 96 4.51 1.1975

578 96 3.75 1.1984 581 168 6.97 1.2005

578 100 3.83 1.1985 581 216 8.2 1.2027

578 192 4.74 1.2036 581 264 8.31 1.203

578 240 5.33 1.2052 581 336 7.97 1.2005
 

578 336 7.54 1.202 582 0 3.58 1.1966

578 408 7.93 1.1983 582 24 3.54 1.1974

578 504 8.04 1.1951 582 48 3.64 1.1976
 

579 0 3.05 1.1972 582 72 4.06 1.1975

579 6 2.98 1.1975 582 96 4.89 1.1976

579 24 2.85 1.1982 582 168 7.39 1.2006

579 48 3.13 1.1985 582 216 8.3 1.2028

579 54 2.98 1.1984 582 264 8.35 1.2031

579 72 3.42 1.1983 582 336 7.76 1.2005
 

579 78 3.55 1.1983

579 96 3.64 1.1984

579 100 3.69 1.1984

579 192 4.63 1 .2035

579 240 4.99 1.205

579 336 7.1 1.2019

579 408 7.77 1.1982

579 504 7.94 1.1951   
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FIGURE C. 1 . Standard error (SE) versus time, treatment 1 for L. monocytogenes

growth in broth (pH= 4.5, T= 19 °C, sa1t= 0 g/l, and nitrite= 0 ppm).
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APPENDIX D

D.l COMPARISON OF EXPERIMENTAL VARIABILITY BETWEEN BROTH

AND MEAT-BASED DATA

In order to perform this analysis on the same basis, broth and meat-based data that

had the same number of treatments and the same number of replications within those

treatments, were randomly selected.

Three different treatments with two replications for each one were selected from

the L. monocytogenes broth-based growth data, anaerobic conditions (Table D. 1 . 1). The

experimental variability was calculated as described in Chapter 5, section 5.2.3, and was

found to be 0.05 log(CFU/ml).

L. monocytogenes growth data in cooked chicken were obtained fiom ComBase.

Three different treatments with two replications for each one (anaerobic conditions) were

selected (Table D.1.2). Again the experimental variability was calculated as described in

Chapter 5, section 5.2.3, which was found to be 0.97 log(CFU/ml).

The experimental variability due to replications was approximately 95% higher

for the food-based data than for the broth-based data.
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TABLE D.1.1. Broth-based L. monocytogenes growth data.

Data set Time (h) Log Treat. No. pH T °C NaC1(g/1) Nitrite

 

 

 

 

No. (CPU/ml) (ppm)

378 0 2.94 33 6 28 0 200

378 3 3.14 33 6 28 0 200

378 7 3.35 33 6 28 0 200

378 24 5.23 33 6 28 0 200

378 48 8.33 33 6 28 0 200

378 54 8.33 33 6 28 0 200

379 0 3.01 33 6 28 0 200

379 3 3.15 33 6 28 0 200

379 7 3.46 33 6 28 0 200

379 24 5.38 33 6 28 0 200

379 48 8.48 33 6 28 0 200

379 54 8.37 33 6 28 0 200

234 0 3.72 45 6 37 45 0

234 3 3.72 45 6 37 45 0

234 7 4.69 45 6 37 45 0

234 24 9.15 45 6 37 45 0

234 27 9.1 1 45 6 37 45 0

234 3 1 9.23 45 6 37 45 0

234 48 9.07 45 6 37 45 0

234 54.5 8.26 45 6 37 45 0

235 0 3.67 45 6 37 45 0

235 3 3.66 45 6 37 45 0

235 7 4.59 45 6 37 45 0

235 24 8.42 45 6 37 45 0

235 27 8.26 45 6 37 45 0

235 31 8.92 45 6 37 45 0

235 48 8.69 45 6 37 45 0

235 54.5 8.76 45 6 37 45 0
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TABLE D.l.1. Continuation

 

 

Data set Time (h) Log Treat. No. pH T °C NaCl (g/l) Nitrite

No. (CPU/ml) (ppm)

246 0 3.64 49 6 37 45 1000

246 3 3.52 49 6 37 45 1000

246 7 3.56 49 6 37 45 1000

246 24 3.21 49 6 37 45 1000

246 27 3.22 49 6 37 45 1000

246 31 3.66 49 6 37 45 1000

246 48 4 49 6 37 45 1000

246 54.5 4.13 49 6 37 45 1000

246 72 4.53 49 6 37 45 1000

246 79 4.85 49 6 37 45 1000

247 0 3.63 49 6 37 45 1000

247 3 3.57 49 6 37 45 1000

247 7 3.48 49 6 37 45 1000

247 24 3.21 49 6 37 45 1000

247 27 3.42 49 6 37 45 1000

247 31 3.44 49 6 37 45 1000

247 48 4.03 49 6 37 45 1000

247 54.5 4.29 49 6 37 45 1000

247 72 5.11 49 6 37 45 1000

247 79 5.21 49 6 37 45 1000
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TABLE D. 1 .2. Meat-based L. monocytogenes growth data.

 

 

 

 

Key to Time (h) Log Treat. No. pH T °C NaCl (g/l) Nitrite

ComBase (CPU/ml) (ppm)

J232_Lm 0 2.5 1 3.5 6 5 0

1232_Lm 96 3.1 l 3.5 6 5 0

J232_Lm 168 3.4 1 3.5 6 5 0

1232_Lm 264 4.9 1 3.5 6 5 0

J232_Lm 360 5.9 1 3.5 6 5 0

.1232_Lm 432 6.7 1 3.5 6 5 0

.1232_Lm 552 8 1 3.5 6 5 0

J232_Lm 600 8.4 1 3.5 6 5 0

.1232_Lm 696 9.2 1 3.5 6 5 0

1232_Lm 768 9.6 1 3.5 6 5 0

1232LLm 840 9.4 1 3.5 6 5 0

.1233_Lm 0 2.5 1 3.5 6 5 0

1233_Lm 96 2.7 1 3.5 6 5 0

J233_Lm 168 2.7 1 3.5 6 5 0

J233_Lm 264 2.5 1 3.5 6 5 0

.1233_Lm 360 4 1 3.5 6 5 0

J233_Lm 432 4.9 1 3.5 6 5 0

1233_Lm 552 6.4 1 3.5 6 5 0

.1233_Lm 600 6.9 1 3.5 6 5 0

1233_Lm 696 7.8 1 3.5 6 5 0

J233_Lm 840 9 1 3.5 6 5 0

J234_Lm 0 2.5 2 6.5 6 5 0

1234_Lm 96 5.5 2 6.5 6 5 0

.1234_Lm 168 7.4 2 6.5 6 5 0

.1234_Lm 264 10 2 6.5 6 5 0

.1234_Lm 336 10.3 2 6.5 6 5 0

1235_Lm 0 2.7 2 6.5 6 5 0

J235_Lm 96 3.9 2 6.5 6 5 0

J235_Lm 168 6.5 2 6.5 6 5 0

1235_Lm 264 7.7 2 6.5 6 5 0

1235_Lm 336 9.8 2 6.5 6 5 0

.1235_Lm 432 9.8 2 6.5 6 5 0

1235_Lm 504 10 2 6.5 6 5 0
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TABLE D. 1 .2. Continuation.

 

 

Key to Time (h) Log Treat. No. pH T °C NaCl (g/1) Nitrite

ComBase @U/ml) (ppm)

.1236_Lm 0 2.5 3 10 6 5 0

.1236_Lm 72 4.2 3 10 6 5 0

.1236_Lm 120 6.4 3 10 6 5 O

J236_Lm 240 9.2 3 10 6 5 0

.1236_Lm 288 10.1 3 10 6 5 O

.1236_Lm 360 10.2 3 10 6 5 0

.1237_Lm 0 2.4 3 10 6 5 0

.1237_Lm 72 2.8 3 10 6 5 0

1237_Lm 120 4.5 3 10 6 5 0

.1237_Lm 240 7.3 3 10 6 5 0

.1237_Lm 264 9.1 3 10 6 5 0

1237_Lm 360 9.6 3 10 6 5 0

.1237_Lm 480 9.5 3 10 6 5 0
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D.2 STANDARD ERROR OF PREDICTION AND ROBUSTNESS
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INDEX

VALUES OBTAINED AFTER NON-SIGNIFICANT TERMS WERE

ELINIINATED

TABLE D.2

Without non- Without non-

Aerobic Significant terms Significant terms

SEP SEP

Data No log(CFU/ml) log(CFU/ml) R1 R1

1 1.8920 1. 1821 1.4015 0.8956

2 1.8193 1.2326 1.3476 0.9338

3 2.1808 0.9916 1.6154 0. 7512

4 2.4599 1.3240 1.8221 1.0030

5 0.2097 0.7492 0.1553 0.5676

6 0.6434 0.981 1 0. 4766 0.7433

7 1.4425 0.6687 1.0685 0.5066

8 0. 7040 1.0798 0.5215 0.8180

9 0. 9086 1 .9229 0.6731 1 .4568

10 1.0226 1.2218 0. 7575 0.9256

11 1.1478 1.3936 0.8502 1.0558

12 1.9816 0.8186 1.4678 0.6202

13 1.0640 1.4165 0. 7882 1.0731

14 1.1691 1.4804 0.8660 1.1215

15 0.9486 0.8692 0.7027 0.6585

16 1.1806 1.0934 0.8745 0.8284

17 2.5245 2.5351 1.8700 1.9205

18 1.5938 1.6042 1. 1806 1.2153

19 1.1776 0. 7699 0.8723 0.5833

20 1.5308 1.0991 1.1339 0.8326

21 1.8256 1.0491 1.3523 0. 7948

22 3.0180 2.2340 2.2356 1.6924

23 3.0185 2.2407 2.2360 1.6975



 

 

 



APPENDIX E

SCRIPTS USED FOR NONLINEAR REGRESSION AND

DATA ANALYSIS IN JMP

13.1. SCRIPT USED FORNONLINEAR REGRESSION.

This script was applied to each data set in order to perform nonlinear regression,

with second derivative, and the results were given in a separate table:

“ column5 << set formula (Parameter({B =1, M =10, C = 5}, C * Exp(-Exp(-B "‘

( :Time - M)))));nlin=Non1inear(Y( :Name("Log(N/No)")), X( :Column 5), Second Deriv

Method(1),finish, plot (1), save estimates);

nParameters = n row(report(nlin)["So1ution"] [table box(2)][l] << get as matrix);

errorTable << add row(l);

nRowsErrorTable = n row(errorTab1e);

colSSE[nRowsErrorTab1e] = report(n1in)["Solution"][table box(1)][1][1];

colDFE[nRowsErrorTable] = report(n1in)[”Solution"][table box(1)][2][1];

colMSE[nRowsErrorTable] = report(n1in)["Solution"][table box(1)][3][1];

colRMSE[nRowsErrorTab1e] = report(n1in)["Solution"][table box(1)][4][1];

for(i = 1, j <= nParameters, jH,

parameterTable << add row( 1 );

nRowsParamTable = n row(parameterTable);

colParameter[nRowsParamTable] = report(n1in)["Solution"][table

b0X(2)][1]li];

eolEst[nRowsParamTable] = report(n1in)["Solution"][table box(2)][2][i];

colApproxStdErr[nRowsParamTable] = report(n1in)["Solution"][table

b01(0)][3111];

colLowerCL[nRowsParamTable] = report(n1in)["Solution"][table

b0X(2)][4][i];

colUpperCL[nRowsParamTab1e] = report(nlin)["Solution"][table

b0X(2)][5][il); “-
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E.2. SCRIPT USED FOR NONLINEAR REGRESSION WITHOUT SECOND

DERIVATIVE.

“col=new column ("Model"); col<<set formula (Parameter({B = 0.009, M = 80},

:Log C[l] + (9.57 - :Log C[1]) “‘ Exp(—Exp(-B " ( :Name("Time (11)") - M)))))”.

E.3. SCRIPT USED FOR NONLINEAR REGRESSION WITH SECOND

DERIVATIVE.

“col=new column ("Model"); col<<set formula (Parameter({B = 0.02, M = 114},

:Log C[l] + (9.57 - :Log C[1]) “ Exp(-Exp(-B “' ( :Name("Time (11)") - M)))));

Nonlinear(Y( :Log C), X( :Model), Second Deriv Method(1));”.

E.4 SCRIPT USED FOR REITERATIVE ANALYSIS.

“for (i=1, i<=9, i++, column5 << set formula (Parameter({B = 0.02, M = 114, C =

5}, C * Exp(-Exp(-B "‘ ( :Time - M)))));n1in=Non1inear(Y( :Name("Log(N/No)")), X(

:Column 5), Second Deriv Method(1),finish, plot (1), save estimates;report (nlin)

["Solution"][table box (1)] << make into data table; report (nlin) ("Solution"][table box

(2)] << make into data table));”.
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