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ABSTRACT

NUMERICAL SIMULATION OF CELLULAR NATURAL CONVECTION

IN A WIDE POROUS BOX TO EVALUATE THERMODYNAMIC WAVENUMBER

PREDICTION THEORIES FOR AN INFINITE HORIZONTAL POROUS LAYER

By

Joseph Bayne Schroeder

When a layer of fluid or fluid-saturated porous media is heated from below so

that the temperature gradient exceeds a critical value, the fluid begins to

move in a cellular convective pattern, known as Rayleigh-Bénard convection,

which significantly increases the rate of heat transferred across the layer.

Theories to predict the size of the convective cells, which are characterized by

the wavenumber of convection because of their periodic nature, are still

unproven; and experimental measurements of the wavenumber have been

few. This work seeks to verify two thermodynamic theories to predict the

wavenumber of convection: one theory based on extremum of the rate of

entropy generation caused by both heat transfer and viscous fluid flow

through the medium, and another theory employing a stability functional

expressing the ”generalized excess entropy production," based on the non-

equilibrium thermodynamic theory of stability and fluctuations.

For this work numerical simulations are performed for a wide, horizontal,

rectangular enclosure filled with fluid and porous media. The modified Darcy-

Brinkman-Forchheimer momentum and continuum-model thermal energy
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equations are solved with a mixed Fourier-Galerkin and finite-difference

method. The nonlinearities in the momentum equation are transformed into

the Fourier space; and the equations are quasi-linearized about each diagonal

mode. The discretized equations are then solved by iteration, alternating the

velocity and temperature solutions. The stream function, Nusselt number,

entropy generation rate, and generalized excess entropy production

functional are calculated from the converged solutions in the discretized

Fourier space. The wavenumber of convection is then measured from the

variations in the flow velocity field.

Numerical solutions with successively wider boxes demonstrate Nusselt

number and wavenumber dependence on the porous media Rayleigh number

that approaches the infinite layer behavior in the central region of boxes with

aspect ratios of about 15 for Rayleigh numbers between 40 and 200. The

Brinkman and Forchheimer momentum terms are seen to only affect the

Nusselt number and wavenumber for extreme values. Similar numerical

simulations of an infinite horizontal layer were performed that employed the

entropy generation rate and generalized excess entropy production stability

functional theories to determine the wavenumber for the system.

Comparisons with the Nusselt number and wavenumber dependence on the

porous media Rayleigh number from the porous box simulations of this work

indicate the best agreement with the entropy generation rate theory.
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Chapter 1: Introduction

1.1 Description of Problem

This work is a numerical study of the behavior of Rayleigh-Bénard convection

in a porous medium. When a layer of porous media filled with fluid is heated

from below (and cooled above) with a temperature difference exceeding a

critical value, the fluid begins a cellular convective motion caused by

temperature-induced density gradients. This motion significantly enhances

the heat transfer rate across the layer. The characteristics of this motion,

however, are still not fully understood. In particular, there remains no proven

theory to predict the size of the convection cells. This size is typically

characterized by the wavenumber of convection: a non-dimensional

frequency, because of the periodic nature of the convection cells.

The theory employed in this work will use the second law of thermodynamics

in seeking to provide closure to the wavenumber question. Two

thermodynamic theories will examined:

1. That the rate of entropy generation from the combined effects of heat

transfer and of viscous fluid flow is minimized in the steady state,

and

2. A stability functional, ‘1’, related to the generalized excess entropy

production of the non-equilibrium thermodynamic theory of

fluctuations, is minimized at the stable steady state.
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In this work, non-linear numerical simulations will be performed for a wide

horizontal, rectangular enclosure filled with fluid-saturated porous media. The

momentum and energy equations describing the flow and temperature fields

will be solved, and from these solutions the heat transfer behavior and size of

the convective planform will be determined. Subsequent solutions will be

conducted by increasing the width of the box, until the behavior of the fluid in

the central region of the porous box approaches that of the infinite horizontal

layer. These results will then be compared with similar numerical simulations

of a horizontal porous layer, which require these thermodynamic theories to

determine the wavenumber to adequately mathematically describe and solve

the system. The results of both simulations will also be compared with

existing published experimental and numerical data.

The intended results of this study are:

1. To determine whether the thermodynamic theories adequately predict

the wavenumber of convection for Rayleigh-Bénard convection in a

porous medium.

2. To compare, and possibly reconcile the results of, two seemingly

distinct thermodynamic theories.

3. To generate additional wavenumber and heat transfer data for natural

convection in porous layers and enclosures, adding to the body of

knowledge in this area of heat transfer.
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4. To develop and employ novel numerical solutions for heat transfer and

non-linear flows in porous media.

1.2 Literature Review

The behavior of a layer of pure fluid or of a layer of fluid saturated porous

medium which undergoes convective motion when heated from below has

been one of the classic problems in fluid mechanics and heat transfer

research. The knowledge of the behavior of porous layers can be applied to

underground geothermal beds, horizontal layers of thermal insulation, and

nuclear reactor cores, to list just a few applications.

This section will begin with a review of principles of porous media flow

analysis relevant to this dissertation. Several review articles, handbooks, etc.

are available which more thoroughly cover flows in porous media, such as

Cheng (1978), Bejan (1987), Kaviany (1991), and Nield and Bejan (1998). A

review of the Rayleigh-Bénard problem in fluid layers will follow, and continue

with a review of research in the porous layer problem. There exists a vast

body of research in these areas, and the review here is only a sample of the

relevant work. A number of additional references which were gathered in the

course of this research are also listed in the Bibliography at the conclusion of

this document.
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1.2.1 Porous Media Flow Analysis

The study of flow through a porous medium is traditionally considered to

have begun with Darcy, who determined the empirical linear relationship

between the pressure gradient and the fluid flow rate, now called Darcy's

Law, for public fountains fed by underground pressure (Darcy 1856).

Darcy’s Law has its limitations. It fails to accurately describe the physics of the

flow under many situations, including rapid fluid flow rates, and does not

account for observed flow dependence on several additional parameters.

Flow variations depending on the particle size in the medium, characterized

by the Darcy number, are described by the Brinkman extension to Darcy’s

Law. This term also allows for a characterization of no-slip boundary

conditions at the solid boundaries, which would over-specify the Darcy Law

formulation. (Neale and Nader, 1974) The use of the Brinkman extension has

been often debated in the literature by Nield (1983, 1985, 1991, 1995).

A variation with fluid properties and inertial effects at higher flow velocities is

characterized by the Prandtl number, and is described by the Forchheimer

extension to Darcy's Law. A Prandtl number effect which accounts for the

inertial properties of the flowing fluid was presented by Somerton (1983), and

later modified by Georgiadis and Catton (1986), derived by order of

magnitude analysis from Navier-Stokes flow over parallel cylinders. This
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leads to inclusion of the Kozeny-Carman term, or Forchheimer inertial

extension to the momentum equations, to mathematically capture the effect

of the Prandtl number variations.

Jonsson and Catton (1987) performed experiments with various packing

media and fluids in a cylinder with variable heights to demonstrate the effect

of Prandtl number on natural convection in porous media. Effective thermal

conductivities and Forchheimer equation permeability values were also

measured. The use of values calculated from correlations was shown to have

deviated greatly from actual measurements, and it is suggested that the use

of these calculations to establish media properties could be cause for much

scatter of the results in the literature. Jonsson and Catton defined an

”effective Prandtl number" as the product of porous medium and Kozeny-

Carman numbers, based on the appearance of those parameters in the

Forchheimer-extended momentum equation. Their Nusselt number results

then exhibited good correlation along Prandtl number curves. Some scatter

about the curves was attributed to a Darcy number dependence, as well as

some experimental uncertainties. The data also compared favorably with

published results of Georgiadis and Catton (1986) and Combarnous and

Bories (1975). For effective Prandtl numbers greater than 0.1, the Nusselt

number results exhibited no Prandtl number dependence, and matched the

infinite Prandtl number case (exhibiting no inertial effects).
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Because the effective Prandtl number varies inversely with the layer thickness,

Jonsson and Catton determined that “...no matter how large the medium

Prandtl number is, there will always be a layer thickness that is large enough

that inertial effects will become important.” This effect of the layer thickness

does not apply to the case of Rayleigh-Bénard convection in a pure fluid,

however. This dependence on plate spacing, as well as medium Prandtl

number, is also suggested as a cause for scatter in published data which is so

much more pronounced in the porous media than in the pure fluids.

The Forchheimer extension has evolved in several forms. Often used as a

velocity-squared term, the more favored vector representation is the velocity

magnitude, multiplied by the velocity vector component. Genik (1998)

investigated both linear and non-linear flow in several different porous media

to determine the permeability and Forchheimer coefficients for non-linear

flows. The Forchheimer term was further modified to include a variable

exponent for the velocity magnitude factor. Genik performed parameter

studies for this exponent, and determined that the exponent should be

approximately 1.8, depending on the flow conditions.

1.2.2 Cellular Convection in Fluid Layers

One of the fundamental problems in the study of convection heat transfer has

been the characteristics of a layer of fluid which undergoes natural convective

motion when under a temperature gradient.
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The study of the stability of a layer of fluid under an adverse temperature

gradient — to determine the conditions which will initiate fluid motion —- began

with Lord Rayleigh (1916). Bénard (1900) had previously discovered a natural

cellular convective phenomenon in a fluid layer similarly heated from below.

However, the convective cells observed in these experiments were later

shown to have been caused by surface tension effects at the free surface, in

addition to the thermal gradient, as studied by Pearson (1958), Scriven and

Sternling (1964), Nield (1964), and Scanlon and Segel (1967). Yet the

phenomenon, which has become an essential part of the study of convective

heat transfer, continues to bear the names of both Rayleigh and Bénard.

Much work has been done on the issue of the stability of fluid in this

configuration, to determine the degree of the adverse temperature gradient,

characterized by the Rayleigh number, required to cause the fluid layer to

become unstable and undergo continuous motions. This issue of stability in a

fluid layer is explored in a full section of the book by Chandrasekhar (1961)

and also the two volumes by Joseph (1976).

The pattern configuration of the resulting pattern motion, termed the

convective planform, has been an issue of study, and the size of repeated cell

patterns, characterized by the wavenumber of convection, at Rayleigh

numbers above the critical value has been a fertile area of research.
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Willis, Deardorff, and Somerville (1972) measured the diameter of convection

cells from photographs of air, water, and silicone oil undergoing Rayleigh-

Bénard convection at supercritical Rayleigh numbers. They found that the

diameter "depends uniquely on [the Rayleigh number],” and that this variation

may explain the disagreements found with other heat transfer predictions

which use a fixed wavenumber of convection.

Seeking wavenumber data, Luijkx and Platten (1982) took experimental

measurements of Rayleigh-Bénard convection cells for Dow Corning 200

silicone oil in a thin fluid layer heated from below using a simple shadow

graph method. The wavelength of the cells were measured at several width-

to-height ratios near the critical Rayleigh numbers. Their results were

compared to three theories predicting behavior of the Rayleigh-Bénard cells:

infinite longitudinal rolls, finite transverse cells, and three-dimensional cells

The results of the experiments agree well with theory based on three-

dimensional perturbations, with differences attributed to measurement error

in the depth and the fact that the layer is actually finite, and therefore must

contain an integer number of cells. The measured temperature gradient in the

experiment also must have been slightly supercritical, so that the cells could

actually be observed to develop. The wavenumber was observed to decrease

with increased temperature gradient, and to decrease and then increase again

with increasing width (or width to height ratio). Based on the wavenumber
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results, the authors assumed that the cellular flow systems were actually

three-dimensional.

Three theories seem to have been used to attempt to predict the proper

wavenumber of convection.

1. Using the critical wavenumber which establishes at the onset of

convection.

2. Selecting the wavenumber that maximizes the heat transfer rate or

Nusselt number.

3. Using a stability functional associated with the ”generalized excess

entropy production rate” of the system, which seems to exhibit a linear

characteristic at preferred wavenumbers.

McDonough (1980), in his dissertation work, used the non-equilibrium

thermodynamic theory of Glansdorff and Prigogine (1971) to provide closure

in predicting the wavenumber for natural convection in an infinite horizontal

layer of fluid. This theory accounted the convection of the fluid with the usual

thermodynamic entropy production in a so-termed ”generalized excess

entropy production." A mixed Galerkin-finite difference numerical scheme

was used to solve the Navier-Stokes and thermal energy equations over a

one-cell period. Although a theoretical solution for wavenumber selection was

shown to be possible by minimizing the generalized excess entropy

production functional, McDonough instead approximated using an ”inflection
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point principle of generalized excess entropy production," based on the

emperically observed linearity of the generalized functional with the Rayleigh

number at stable states, in order to carry out the numerical calculations within

the constraints of the computers available in 1980.

Data have been published to describe the heat transfer behavior of the fluid in

the horizontal layer, typically reduced to a Nusselt number versus Rayleigh

number correlation.

Still an area of active research, Tian and Karayiannis (2000) recently carried

out a finely detailed experimental study of two-dimensional, low level

turbulence, natural convection in an air-filled vertical square cavity driven by

isothermal vertical walls at different temperatures, to be used for

computational code validation.

The inability to accurately prescribe the wavenumber of convection in

theoretical flow models has been suggested as one major difficulty in

accurately modeling the behavior of the natural convection in a horizontal

layer of fluid.

1.2.3 Cellular Convection in Porous Layers

Like the Rayleigh-Bénard problem in the fluid layer, cellular natural convection

in a fluid saturated porous medium has also been a topic of much research

10
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for the last 40 years or so. Many of the same issues surrounding the study of

fluid layers are material for horizontal layers of porous media.

Beck (1972) published a chart showing the flow planforms for flow in porous

media-filled enclosures heated from below, based on Darcy law theory at

varying aspect ratios. Beck showed that the energy theory for stability

predicts a critical Rayleigh number, Raw of 41:2 or greater, and the linear

stability theory predicts 3 R3,, of 4n2 or less, thus bounding and confirming

that value as necessary and sufficient for convective motion to begin and

continue for an enclosure or layer with solid, impermeable walls. Beck also

determined the stable mode of cellular convection: that the number of cells

across the length of the box and the direction of two-dimensional rolls or the

existence of three-dimensional cells, determining that the cells take shape in

the most square cross sections possible, and that two-dimensional rolls form

only when the box is ”thin" in the direction of the roll axis. Beck's results

confirm the results of Lapwood (1948) for the infinite horizontal layer, while

illustrating flaws in the use of the nonlinear momentum term by Lapwood and

others.

Jonsson and Catton (1987) also obtained wavenumber data for water in steel

spheres. The results showed two distinct wavenumber possibilities at each

Rayleigh number, though both produced the same Nusselt number. Most

data fell outside the Strauss stability envelope. It was suggested that the

11
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Prandtl number effect should shift this envelope. However, It is also

questionable whether the wavenumbers in the supposed two-dimensional

toroidal convective rolls in their experimental test cylinder would be directly

comparable with long cylindrical rolls in rectangularly bounded or infinitely

wide domains.

Beck's analysis has recently been extended by Wang (1999) for the case of an

enclosure with isothermal top and constant flux bottom. The pattern of mode

shapes are similar to the constant temperature bottom wall case, but with

different sizes: there are generally fewer rolls for a given box width, and the

critical Rayleigh numbers are generally much lower.

Several researchers have shown that the critical Rayleigh number can shift

under certain circumstances. Nield (1982), correcting an earlier work of

Saatjian (1980), derived the proper (non-Boussinesq) equations for the special

case of flow of an ideal gas through a porous medium, accounting the

pressure work done during volume changes in the fluid. This work

demonstrates conditions which shift the critical (porous media) Rayleigh

number above the usual value of 41:2. Other non-Boussinesq effects are

contrasted with the behavior of a Boussinesq liquid: the thermal expansivity

and specific heat decrease and viscosity increases with temperature, which

are all stabilizing effects for the ideal gas, also increasing the critical Rayleigh

number.

12



Rees (1997) showed that the critical Rayleigh number for onset of cellular

convection could also be increased above 411:2 when inertial effects, modeled

by the Forchheimer extension, are made more important by a pressure-driven

horizontal flow of the fluid through the layer. It was also suggested that this

effect could be used to experimentally evaluate the relative importance of the

Forchheimer extension under various flow conditions, by determining the

relative shift in the critical Rayleigh number.

Studies similar to those of the fluid layer have been performed to attempt to

determine the wavenumber of convection for the porous layer.

Somerton, McDonough, and Catton (1982) used the mixed finite difference-

Galerkin method to solve the Darcy momentum and energy equations for the

horizontal layer heated from below. To specify the wavenumber a stability

functional based on the Glansdorff and Prigogine (1971) theory of

nonequilibrium thermodynamics was used. It was found that at the preferred

wavenumbers this functional is linear with Rayleigh number, with good

correspondence to existing experimental data.

There has been much greater disparity in studies of the heat transfer

characteristic for the horizontal porous layer, including experimental data,

theoretical, and numerical predictions.

13
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Some early numerical flow and heat transfer resutls were obatined by Chan,

lvey, and Barry (1970) who solved the two-dimensional steady Darcy-

Brinkman equations with the Boussinesq-Oberbeck approximation using finite

differences for flow in a porous rectangular enclosure. A possible angle of

inclination was also included in the equations. Palm, Weber, and Kvernvold

(1972) used a power series expansion of the Rayleigh number to determine

the Nusselt number dependence for porous Rayleigh-Bénard convection

according to the Darcy flow model.

A study of the effect of the aspect ratio was conducted by Prasad and Kulacki

(1984), who used a Darcy’s Law numerical simulation of two-dimensional

natural convection cells in a wide and shallow rectangular enclosure with the

temperature gradient along the vertical walls. They found that multiple

convection cells occurred when the aspect ratio (depth to width) was less

than 0.9, but that only a single cell was established when the aspect ratio was

greater than unity. A further finding was that the various Nusselt number-

Rayleigh number curves could cross, depending on both the Rayleigh number

and the aspect ratio, and that the Nusselt number is not always maximized

under the established flow pattern.

An approach used to try and reconcile the divergence between numerical-

theoretical and experimental data was put forth by Prasad, Kulacki, and

Keyhani (1985). They proposed a model using an ”effective thermal

14
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conductivity," which would depend on the flow regime or Grashoff number.

This effective conductivity would tend toward the stagnant thermal

conductivity at low flow rates, when conduction through the solid matrix is

the path for more of the heat transfer. Under higher flow rates, however,

when most of the thermal energy is carried by fluid conduction, the effective

thermal conductivity would approach that of the pure fluid phase. This semi-

empirical approach succeeded in collapsing much of the data in the Darcian

flow regime, but requires iteration between the experimental results and a

predictive model to analyze the results and determine the proper value for the

effective thermal conductivity model.

Kladias and Prasad (1991) performed experiments using 16 different

combinations of fluid, solid materials, and particle sizes, in a rectangular

cavity heated from below. This variety allowed comparisons of trends by

isolating individual parameters: Rayleigh number, Darcy number,

Forchheimer number, and thermal conductivity ratio, in order to ”isolate and

fully characterize the contribution of the solid matrix properties." The

experimental data were compared to the authors' theoretical-numerical

results using a Darcy-Brinkman-Forchheimer (DBF) flow model and single

energy equation, with investigations including effects of varying porosity and

thermal conductivity caused by flow channeling near the walls and another

trial including dispersive effective thermal conductivity.

15



A clear Darcy number dependence was shown by Kladias and Prasad. As the

particle size was decreased, increasing the packing density and thereby

decreasing the permeability and the Darcy number, the Nusselt number was

decreased for the same Rayleigh number. A Prandtl number dependence was

also demonstrated using various fluids with the same solid materials and

particle sizes. Heat transfer increased with increasing (fluid-)Prandtl number.

This increase was greater with larger particle sizes, because of the reduced

contribution of the Forchhiemer inertial effects. Some increase in heat transfer

was attributable to the accompanying increase in thermal conductivity ratio,

which also explains the stronger Prandtl number effect observed in porous

media compared with convection in a pure fluid.

Kladias and Prasad emphasized the use of the Nusselt number and Rayleigh

number based on the fluid properties, rather than the commonly used

”effective" properties of the fluid-medium combination, in order to more

clearly show the divergence in the heat transfer results, and to illustrate the

dependence upon the porous matrix structure and its thermal properties.

Kladias and Prasad further reported their numerical results for comparison.

The authors found that multiple steady-state solutions could be achieved,

depending in the initial conditions supplied. To resolve their uncertainty in

determining the proper wavenumber (or number of convective rolls),

sinusoidal initial conditions were supplied based on the experimental

16
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measurements of temperature variations along the bottom and top walls, with

”zero initial conditions in the interior of the cavity.”

The DBF solutions (without wall channeling or dispersion) compared well with

the experiments only for low Da and Ra,, and were over 20% lower than

experimental Nusselt numbers at higher values. Wall channeling effects on

porosity and thermal conductivity were modeled with empirical correlations

chosen to match near-wall velocity measurements. Their results were much

closer in agreement with the experimental data, except for the results with

high conductivity solid matrix, which considerably under-predicted the heat

transfer. All theoretical DBF predictions with and without wall channeling

under-predicted the Nusselt number to varying degrees. The studies using a

dispersive thermal conductivity model seriously over-predicted the heat

transfer.

1.2.4 Entropy Generation Theories

The second law of thermodynamics holds the most promise for closure to the

wavenumber prediction problem.

Glansdorff and Prigogine (1971) extended the concept of a measure of

entropy to a ”generalized excess entropy,” which captures the motion of the

system in a description of the state of the non-equilibrium system undergoing

convective motion. The need for a wavenumber prediction to obtain closure

17



of the governing equations for the Rayleigh-Bénard problem was addressed

by considering the non-equilibrium thermodynamic theory of Glansdorff and

Prigogine, who defined a stability functional, termed the ”generalized excess

entropy production,” which could be used to predict the stable stationary

state of the system. This theory was used by Roberts (1966) to numerically

study the planform shape and behavior of Rayleigh-Bénard convection in a

pure fluid layer.

McDonough (1980) also followed the analysis of the theory of Glansdorff and

Prigogine for the fluid layer, but determined that the formal calculation to

minimize the stability functional was too computationally expensive. Instead,

a semi-empirical method was employed by determining that the functional

should be linear with the Rayleigh number when evaluated at the preferred

wavenumbers. This did result in wavenumbers which decrease with

increasing Rayleigh number, which was consistent with experimental results

and had not been achieved by previous numerical-theoretical schemes.

Somerton, McDonough, and Catton (1982) used McDonough’s approximation

of the Glansdorff and Progogine theory to predict the wavenumber for

Rayleigh-Bénard convection in the porous layer using a Darcy flow model.

The dissertation of Somerton (1982) also followed this wavenumber

prediction scheme for the two cases of porous layers heated from below and

those internally heated. Somerton also included the Brinkman term in the

18
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momentum equations to properly model the no-slip condition at the top and

bottom horizontal walls. Georgiadis and Catton (1986) continued the work in

the porous layer to include both the Brinkman and Forchheimer momentum

terms in the numerical solutions.

Bejan (1982) demonstrated another calculation of the entropy generation rate

for non-equilibrium systems, including fluids in viscous flows. That work has

led to the growing field of entropy generation minimization (EGM), a design

tool to optimize thermo-fluid systems by minimizing the amount of lost work.

It is further shown how natural systems tend to be ”self-optimizing" in the

same fashion, leading to a ”constructal theory" for self-organization in natural

systems.

Several recent studies have studied the entropy generation rate in natural

convection in porous media and in similar systems.

Demirel, et. al. (1997) analyzed the entropy generation rate for convection

heat transfer in a “packed duct," including maps of the entropy generation

rate throughout the duct.

Most recently, Baytas (2000) has analyzed the entropy generation resulting

from natural convection in a porous cavity tilted to various inclination angles.

The incompressible Darcy-Boussinesq equations (neglecting inertial and other

19
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nonlinear effects) were solved numerically for a square cavity. Entropy

generation results, calculated by Bejan’s method to include both heat transfer

and viscous contributions, show the distribution of entropy generation within

the cavity. These results are used to determine the ”optimal” angle to

minimize the entropy generation.

1.3 Scope of Dissertation

The work to be presented in this dissertation is the development of a

numerical simulation of Rayleigh-Bénard convection in a porous box, using a

Darcy-Brinkman-Forchheimer momentum model and single porous medium

thermal energy equation. When the box is made sufficiently wide, the

behavior in the central region is assumed to be the same as in an infinitely

wide porous layer. Results from this simulation model will be used to:

1. Compare the wavenumber of convection and resulting heat transfer

with similar results of a simulation of the porous layer which uses the

thermodynamic entropy generation theories to predict the

wavenumber.

2. Examine the effect of the Brinkman and Forchheimer extensions to

Darcy’s law on the heat transfer and wavenumber.

3. Examine the effect of the box width on the critical Rayleigh number for

convection in the porous enclosure.

20
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1.4 Outline of the Dissertation

This dissertation is divided into five main chapters. This introductory chapter

has served to introduce the problem under study (cellular natural convection

in a layer of porous media), and expose the body of work which precedes it.

The second chapter will document the assumptions and lay out the

development of the equations used in the numerical solution: the governing

conservation equations and associated boundary conditions, the entropy

generation rate equation, and the excess entropy production rate stability

functional. The third chapter details the implementation of the mixed Galerkin-

Finite Difference method used to numerically solve the governing equations.

The post-processing computations, such as calculation of the stream function

for flow visualization and calculations for the entropy generation rate and

excess entropy production rate stability functional, are developed, as well. In

the fourth chapter the flow, temperature, heat transfer, and wavenumber

results are presented, and used to evaluate results from the porous layer

simulation, which are based on alternate methods used to predict the

convective wavenumber. These methods include the maximization of the

entropy generation rate, and the minimization of the excess entropy

production rate stability functional. A final chapter summarizes the work

performed, the conclusions reached, and lists directions for further research

relating to this topic. Details of inner products used in the Galerkin equations

and the computation of the integral functions using the Galerkin variables are

described in several appendices.

21
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Chapter 2: Governing Equations

In this chapter the governing equations for the porous enclosure will be

introduced in basic dimensional form, non-dimensionalized, and reduced to

their working forms for the numerical solution. These will include the

conservation equations of mass, momentum, and thermal energy, which

describe the heat and fluid flow in the porous enclosure, and the equations

for entropy generation and for the generalized excess entropy production,

which are the measures used for the two thermodynamic wavenumber

prediction theories for cellular convection in the porous layer.

2.1 Assumptions

The assumptions made in the derivation of the working equations are listed

here for completeness, and to serve as a framework for the analysis which

follows:

I. The steady state condition will be assumed in the solution of the

momentum and energy equations. The time-dependent equations must

be considered in the analysis of entropy production rates, however.

ll. Two dimensional fluid and heat flows are assumed in the y- and 2-

directions.

lll. (Boussinesq-) lncompressible flow is assumed

lV. Isotropic materials with uniform properties (except Boussinesq

approximation for fluid density)

22
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VI.

VII.

VIII.

XI.

Xll.

Xlll.

XIV.

(Modified) Darcy-Brinkman-Forchheimer (DBF) momentum equation

models the flow in a porous medium

Boussinesq fluid approximation:

p=p0[1-fl(T*-TO*)] (2.1)

with reference temperature at cold wall temperature ( T0‘=TC‘ ),

Velocity represented by Darcian (or filtration) velocity integrated over

some local neighborhood:

tr:_. 1 _ t
u = 2 luf dA (2.2)

No-slip and impenetrable flow conditions at solid boundaries

Gravity acting in .2 direction ( g = — g1?)

No phase changes (de = c dT)

No internal heat generation in either the fluid or the porous matrix

Stationary solid phase of the porous medium

Fourier Law for heat conduction applies at interstitial level

Local Thermodynamic Equilibrium (LTE), which takes two forms. One is

between solid and fluid phases, implied by a single continuum-model

energy equation using a local volume average temperature and an

effective thermal conductivity of the fluid-solid medium pair. The

second is in the specification of a local entropy state value under non-

equilibrium conditions (see Sections 2.5.1 and 2.6)
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XV. Infinitely conductive top and bottom plates at constant, uniform

temperatures TC' and TH'.

XVI. Neglect viscous dissipation of mechanical energy into thermal energy,

but consider for second law analysis

2.2 Governing Conservation Equations

A diagram of the Rayleigh-Bénard system in a porous enclosure is shown in

Figure 2.1. Note that the dimensional quantities for the state variables

(position, velocity, pressure, temperature, and time) will be starred (with a

superscript asterisk) in this section, to distinguish from the dimensionless

values which will be developed in the subsequent section and will be used

throughout most of the remainder of this work.
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2.2.1 Mass Conservation (Continuity)

The conservation of mass equation for the porous system, beginning with

compressible and unsteady considerations, would read

:6 + v (pi-2*): o (2.3) 

with the notation {4* = u*z° + v*]' + w‘IE for the volume-averaged Darcian

velocity vector. By then assuming incompressible fluid flow (in the sense of

the Boussinesq assumption) the velocity becomes divergence-free.

.. an" 612* aw"
- -O (2.4)V-z‘i— *+ *+ *_

a} dz 6:?

  

2.2.2 Momentum Conservation

This analysis uses a modified Darcy-Brinkman-Forchheimer momentum

equation. The form chosen includes the time dependent term, an effective

viscosity for the porous medium in the Brinkman term, and a parametric

exponent in the Forchheimer term:

*

 

  

 

l d? e __ 2_:i- i_* B_* (n-l) *—

-£pa*-V(: +E§+MV u — Ku —£nu uJ—O (2.5)

(A) ) U (D) (E) (F)
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Note that the application of the Laplacian operator on a vector implies the

operation of the usual (scalar) Laplacian component-wise:

 

V2‘*- 072; é’zuI' é’zu‘l g.

u = *2 + *2 'l' *2 1

dc é) a}

52v!“ é‘zv* é‘zv* ..

+ &*2 + é)*2 + &*2 .]

azw" azw“ azw“ .
+ *2 + ,2 + ,2 k

at Q) a.-

 

(2.6)

 

Though much more complex than the linear Darcy law, each additional term

has a unique contribution in describing the physics of the flow. The respective

momentum terms represent:

(A)

(B)

(C)

(D)

(E)

(F)

Transient term — time rate of change of local fluid momentum.

Pressure gradient.

Hydrostatic gravitational body force.

Brinkman term — fluid-fluid shear. Also considered a "boundary" term,

since it accomplishes the effect of no-slip at a solid boundary.

Darcy term - viscous shear at the (interstitial) fluid-solid phase

boundaries. Also considered a diffusion law for flow caused by the

pressure potential.

Modified Forchheimer term — describes convective fluid inertial effects.

Note that the coefficient m must take units which balance the modified

exponentn.
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2.2.3 Conservation of Thermal Energy

For a Boussinesq-incompressible fluid in a porous medium without phase

changes or internal heat generation, a differential energy balance produces

the thermal energy energy equation (Bejan 1984, Ch10):

 

 

fl _* III 2 if! _

(pc)m a, +(fx)fuv -VTJ- kmvl T + fife _ o (2.7)

The terms in this equation represent physical processes of:

(G) Local (sensible) thermal energy storage in the porous medium,

considering both the fluid and the solid matrix. The effective thermal

storage capacity, (pc),,,, is typically a local volume-weighted average of

the properties of the solid and the fluid.

(H) Net convective transport of thermal energy by the fluid flowing through

the medium.

(I) Net conduction. heat flux, modeled by the Fourier law and characterized

by the effective km for the fluid-porous media system. The value of km,

though bounded by several models, must typically be determined by

experiment.

(J) Internal heating (dissipation) produced by work of viscous flow. This

term will be neglected for the solution of the flow and temperature

fields, but must be considered for the analysis of the entropy
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generation. The calculation of this term will be revisited in Section

2.5.1.

2.2.4 Boundary Conditions

Implementing the no-slip and impenetrable flow conditions at the top and

   

   

    

  

  

  

side walls:

11* ai- = 0 , 11* at: = 0 , 11* at: '-' 0 , * = 0

g :0 Z = L y =0 y*:W

III II! ill =l:

: : O : 0 :V zit—O O , V 2*:L , V y*=0 , y*=W 0 (28)

w*.=o,w*.=0,w*.=o "‘ =0
:: =0 " =L y =0 y*=W

The temperatures are specified on the top and bottom plates,

II: :r: 'l' 1!

T z¢=O=TH ; T Z*=L:TC (29)

and the right and left lateral walls are assumed adiabatic

5T" 07'"

= , = 0 (2 10)ill Ill .

é) y*_0 é; y*=W

Additional no-slip and impenetrable, and adiabatic conditions on the front and

back walls would also be assumed for a 3-D formulation.

2.3 Non-Dimensionalization and Scaling

The state variables are scaled in the parameters typical for convective

processes. This includes offsets for the pressure and temperature by

28



subtracting the hydrostatic pressure gradient and the reference cold

 

 

 

temperature:

* Ill *

x )2 z

x E —" ; E _ ; Z 5 —

L y L L

t*a
_ m

t: L2

PE K (P + pogz )

#f am

T“ - TC“ T" - TC"

T5 ut- ut- " at:

TH - TC AT

 

The length and time scales imply the proper scaling for the

non-dimensionalized velocities:

at:L
u: z—u ; v:

am

M
s
»

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

For convenience when substituting, also note the reverse of the definitions

  

* ,ua Ii: ,ua

P =P[ fKmJ-pogz =P[ me]_p0ng

T" = TAT" + TC“

29
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(2.18)



and the

length 5

Now we

equatio

2.3.1 N

SubstitL

produce

which re.

 



and the non-dimensionalization of the gradient operator corresponding to the

length scaling

t l 1.5 .3 Afl
V =—V=— '— '— k— 2.19

L Ll'ac+Jojiz+ a] ( )

Now we apply the scaling of the variables to each of the conservation

equations and boundary conditions.

2.3.1 Mass Conservation

Substituting the nondimensional variables into the continuity equation

produces

i921, iii, L911. 0 2 20
amo'icL amézL am&L- (')

which reduces to

V ‘-O-é—u-+é)—+—O:w— 221

u“ “a. d) a; l' )

2.3.2 Conservation of Momentum

Next substitute the nondimensional variables into the momentum equation

(2.5). Considering term-by-term :

(A) (employing the Boussinesq approximation):

1 012‘ 1 (am)(am) 0‘12 [poamzjgli

E grim—Z- 73:?01
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(B) Of

T

(C) (2

,1

(D) I

l

(E) -

lFl n

f

l?

Re-asser

KL l

lflfam/l

l"l

l‘ 5,1



(B) on the pressure term

1 ”fan:

VP" = —v P — LL l K l eoglz )]

pfam A

= VP- kl .1, l p...

 

 

 

(C) (again employing the Boussinesq approximation):

P3 = Poll’ fllT'. - To*)](- gig)

-p0g[l— fl(TAT* + T5“ - T0*)]IE

—p0g[1- 5(TAT“)]IE

2

(D) #mv lat—1* : flffifl(l) VZEEflfi) = [PA](ELa—'"]V2fi

 
(E) ———n* =l

(F) neglecting density variations (by Boussinesq again),

p (ii-1):: .00 (am)-("'l)(am)_

— u —' 7:“ u —' um - m L

fl(am)nlfii("- l)2}.

_*

  
  

m T

Re-assembling the momentum equation and multiplying every term by

KL

[ ] yields:

.uf am

 

 

  

L AT" .
— @% g-vmlx pog'g ]Tk+[-&"-](—%)V2i2-a

6]qu .uf am .uf L (2 22)

_ fllfljn y—lw-Uuzo

#f'" L .
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Now collecting terms in the following dimensionless groups:

 

 

 

 

Rayleigh number AT* L3

Ra a pogfl (2.23)
(”f am

Darc number

V Da 2 :2 (2.24)
L

porous media Rayleigh number p0 g[M TheL

Ram E Ra-Da E (2.25)

luf am

porous media Prandtl number vf ,uf

Prm a 5 (2.26)

am 100“»)

porous media viscosity ratio ,2:

0m 5 — (2.27)

”f

and a modified Forchheimer number (n- 2)

Fsm a filgfl] (2.28)
m

yields the non-dimensional momentum equation:

D d? . F JD ..

-—£—-VP+RamTk+DaamV2fi—fi——€m——€-Iiil(n ”a: o (2.29)
Pr," a

Prm   

2.3.3 Energy Equation

Again, substituting the non-dimensional forms into the energy equation,

neglecting the viscous dissipation, considering termwise :

 (Mm-f; = (paml-E'g) : (T*AT* . TC.)

(G) [(pc)mamAT*
*

5f

4;

5f

 _. L2
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Re-assembling and dividing through by L2 L2

defining the thermal storage capacity ratio

(p6)
em a ——’-"— (2.30)

(eclf

yields the dimensionless energy equation:

07

Qm-a—+ii-VT—V2T=O (2.31)

2.3.4 Boundary Conditions

The nondimensional variables exhibit the homogeneous no-slip and

impenetrable boundary conditions for the velocity, expressed as:

ulz=0 = 0 ; ulz=1= O ; uly:0 = O ; ulyz}, = 0

vlz=o = 0 : v|z=i = : v|y=o = 0 ; v|y=7 = 0 (2.32)

wlz=0 = O ; le=1= 0 ; Wl},=0 = 0 ; lez}, = 0

where the aspect ratio, y, has been defined

W
E _ 2.33r L I l
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The temperature boundary conditions are also simplified to

a" an

NF0=1; flfll=0; —l =0; -l =0 03m

03).”0 oyy=7

An illustration of the porous box system, as described in the non-dimensional

variables, appears in Figure 2.2.
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Figure 2.2 Non-Dimensionalized Porous Box Heated From Below



2.4 Reduction of the Mass and Momentum Equations

Taking the non-dimensionalized continuity and momentum equations, (2.21)

and (2.29), and thermal energy equation (2.31), and assuming steady, tvvo-

dimensional flow and heat transfer reduces to the four scalar equations:

(con inurty) é! & - ( - )

fl) 32V 52V _n_]

(y-momentum) - —+ B 7+ —2- - v - Mlul V = 0 (2-36)

6» a} a:

a... dwelt _ _ We] - RT (237,(z-momentum) 01' @2 012 w u w — — .

er 5r aZT 032T
(thermal energy) v— + w— - —— -— = (2.38)

a} 52 @2‘&2

making use of the definitions:

K #m
BE DaO' = ——

m L2 W (2.39)

F x/D

Ma Sm " (2.40)
Prm

R 5 Ram (2.41)

lfils v2+w2 (2-42)
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Next cross-differentiate the y-momentum equation with respect to z and the z-

momentum equation with respect to y to get:

322—5 83v 0'0"] fl £01,1-!)
—@&+ @2&+&3 — u v
 

32' dz

0

 
521) B[a3w 33w] av 03mm, ) at

a a“ w a
—%+ @3+@&2 -——"— M— =-R—"

(2.43)

(2.44)

Subtracting the terms of equation (2.43) from (2.44) eliminates the pressure

and produces the single combined momentum equation:

Bl- 53v _é‘3v+0"3w+ §3wj+fl_§v_

@201, 01,3 @3 @&2 d: é,

will

   

The horizontal velocity can be eliminated from the linear terms of the

equation by differentiating again with respect to y:

B[— 54v _ 54v +§4w+ 34w ]+ é’2v_§2w

@301, é’&3 @4 @2322 @3‘, @2

(92 _ 32 n-
+ 2330“" lv)-:67(Iiil 1w)

    

azr
=-R——2-

 

and using the following differentiated forms of the continuity equation:

 

 

 

54er a4... _O
@3& @2é2-

54v 54w

é»&3+§z4:0

0‘21} 52W_O

crazier

36

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)



Substituting then yields

Bgf+2é,20}2+&4 "@2'022

0’2 (lfiln-lv)_ 5’2 (lfiln—lw)] : Kill"

  +

(2.50)

 

020“" 37 _ a2

To further simplify, lump the nonlinear Forchheimer terms with the definition

 

 

52 _, ,,_ 52 g n_
Q(v,w) a [35:0le lv)— g-Z-(lul lw)] (2.51)

for the resulting form of the combined momentum equation:

a“ a4 a4 .92 52 m
B;+2@2&2+&4 --5)7-;7w+ MQ=-R—7 §.(252)

  

which is now a linear equation for w in terms of Q and T.

2.5 Entropy Generation Rate Equation

Since it is an irreversible heat transfer process, cellular natural convection will

continue to generate entropy and destroy available work. The processes

through which entropy is generated are both the transfer of heat across a

finite temperature gradient, and the viscous flow of fluid through the medium.

Although the viscous dissipation term is often neglected in the thermal

analysis for fluid and porous media flows, it must certainly be included in the

Second Law analysis of such flow systems. This is especially so for porous
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media flows, in which the viscous fluid flow is largely diffusive through the

pores of the medium.

2.5.1 Entropy Generation Rate Calculation for Porous Media Flow

The analysis of the entropy generation rate, Sig... will follow the development

set forth by Bejan (1982, Ch. 5, and 1984, Ch. 10), with adaptations for the

D-B-F nonlinear porous flow model used for this work.

Using an entropy flow balance of a differential element of the homogeneous

porous media model, the Second Law of Thermodynamics can be employed

to express the volumetric entropy generation rate at a point in the porous

medium as

 

S gen: *V-q-Tq-VT TP 4: (2.53)

where (j is the heat flux vector, and s is the local entropy state. The first and

second terms on the right-hand side account the net rate of entropy transfer

caused by convective and conductive heat transfer at the point, and the last

term measures the net accumulation of entropy at the location. Conservation

of mass has been assumed, balancing the in- and out-flows at the point.

Again, the starred quantities indicate the dimensional values of state

variables.
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A note should be made here about the use of the thermodynamic state of

”entropy" throughout a system undergoing natural convection. Such a

system is obviously not at equilibrium, as required by definitions of classical

thermodynamic properties. The requisite assumption is that of local

thermodynamic equilibrium (LTE). (Note that this assumption is also used,

with a different implication in the use of the single thermal energy equation in

Section 2.2.3.) The LTE assumption simply requires that ”the local entropy, s,

is the same function of the local macroscopic variables as at equilibrium

state." (Glansdorff and Prigogine 1971, p. 14)

Armed with the LTE assumption, the local entropy state can be related to the

local state variables in the solution: temperature and velocity. First, express a

First Law balance equation written at the point in terms of the internal energy,

e, and in the absence of internal heat generation:

De 4: ‘4:

met*=-V-ci-P (V-u )+#f¢ (2.54)
 

where (I) is the viscous dissipation function for the porous flow. Now

employing the material derivative of the Gibbs relation:

Ds p De P" me

.0 “— = — t - (2-55)

"’ DR 1"“ Dr pm T“ 01"

  

and the mass continuity statement

 

at: +pmV'u :0 (2-56)
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to combine equations (2.53), (2.55), and (2.56) as

e 1 _ at: #f

S gen=-;2—q-VT + T*(D (2.57)
 

The heat flux can be expressed using Fourier’s law,

a = — ka T“ (2.58)

To express the viscous dissipation function, (I) , we note that the rate of

thermal energy generated by viscous dissipation must be equal to the rate of

work done overcoming viscous forces, as expressed by the Darcy and

Brinkman terms of the steady state D-B-F force-momentum balance.

4: I“ at: at

We = a (7ft; - 2th 2a ) (2.59)

So the viscous dissipation can be written

  

  

*2 * Ill

¢=—n "’1‘ -V2fi
K ,Uf

.. i. 4. t (2.60)

1 *2 *2 #m *52V 52V *Oflzw 52W

z—V +w ‘—" 32+ *2 “V *2+ .2
K ("f d) a a) 02

  

The expression for the entropy generation rate under D-B-F flow becomes

 

2 l.. km at

S gen - T‘Z VT

 

  
- ”mi-2 .vza") (2.61)
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2.5.2 Non-Dimensionalization

Substituting the definitions of the dimensionless state variables yields

 

2

. k Ma... 1
s = ———’"IV 712 + [Ir-2P — B ii-V 2n l (2.62)

gen L2(T+ 192 [1121372] (T+ T) ( )

Or, expressing in the two-dimensional form, the local entropy generation rate

can be calculated

S... _ ___]£r1_(fl]2+(§f_)2

ge" — L2(T+ 2')2 a} 01'

,ufamfl 1 52v é‘zv 62w é‘zw

+ [KILZAT*)(T+ T){VZ + w2 - Blvl-é7+ g) + w[?+ Ell

where the absolute temperature has been non-dimensionalized with the

 

(2.63)

 

 

 

parameter, 1:, as

*

T

r: C...

AT

 (2.64)

Factoring the porous media Rayleigh number out of the coefficient of the

viscous flow term

 

 

”fam2]_[ ”fan: Mammal?)

KLZAT" pogflKLA T" L
1 (2.65)

= (Ramx “Miogflj
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suggests a scale factor for entropy generation rate in the remainder. Dividing

through by (W) yields the non-dimensional equation

 

  

 

j: v [ 2 — v2—] 2.66
ng HB[T+ {)2 I T|2+ Ram (T+ r) lul (u u) ( )

 
 

where the non-dimensional entropy generation rate is defined with the scale

factor

L .
S , l—ls (2.67)

g " ammgn g8"

and the buoyant heat transfer number on the conductive term is defined as

km

W (Z68)
H35

The total rate of entropy generation, G, (per unit depth) is then determined by

integrating S over the domain.
gen

1 7

G = l ngen dydz (2.69)

O 0

Also of interest is the irreversibility ratio: a ratio of the fluid flow irreversibility

to the heat transfer irreversibility (Bejan, 1984)

”faszC*

ka(A Til )2

 

¢ (2.70)
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2.6 Generalized Excess Entropy Production Rate Functional

The non-equilibrium thermodynamic theory of Glansdorff and Prigogine

(1971) presents a thermodynamic potential which would be minimized for

convective flow in the stationary state. The development here follows

Glansdorff and Progogine, and also the dissertations of McDonough (1980)

and of Somerton (1982), to develop a suitable expression for the generalized

excess entropy production functional, ‘I'.

To begin, define the "generalized" entropy as

_.*Zp_f 1

p... 27;,“

 
(2.71)

  

The starred quantities are, again, the dimensional quantities, which will

subsequently be replaced with non-dimensional expressions. The T);

represents the local, unperturbed temperature. The first term represents the

local specific entropy (per unit mass) of the averaged porous medium. The

second term represents the kinetic, or hydrodynamic contribution from the

fluid flow. Again, the assumption of local thermal equilibrium (LTE) must be

employed.

We shall next examine the perturbation about the steady condition, so that

the perturbed state equals the steady state plus the fluctuations or variation,
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e.g. T=T0‘+0T. Taking the second local variation (so 0x=6y=62l of the defined

functional yields the ”excess" quantity, given as

p 1 2
azr = 523- —f—|ai2* (2.72)

pm TO

 

since ii is an independent variable, 6227* a 0, and To‘ is constant with respect

to the variations.

Now under the condition of “local thermal equilibrium" (LTE), then 62s < 0

everywhere locally, assuming a stable local equilibrium (Glansdorff and

Progogine, 1971 ). Therefore

azr < 0 (2.76)

everywhere, as well. So we may also consider the second variation as a

Lyapunov stability functional, with the following condition for the steady

state I

Til 2r) 2 0 (2.77)

To evaluate this expression, we again look to the Gibbs relation.

de Pdv

dS = —; +T (2.78)

T T



Taking the second variation, 5 2s , and noting that e & v are independent with

respect to variations in 3, gives

5% = shale” 4%).» (2.79)

Applying Euler's Theorem on homogeneous functions for the independent

variations 6v and be in the time derivative gives the expression

In 1 owe) P" 5(a)

35:02.):le a: 5l‘Fl (2* ”'8‘”

  

which can be substituted into the stability criterion as

13 1 ae P" av )0 1 a

21.2.). (filament—(441.12
202 T a T a pm 270 61

But, by the Boussinesq incompressibility assumptions, we can assume that

 

2 O (2.81)

 

0v=0, and if no phase changes occur we have that 6e=cm 67’. Also employing

theidenfifies:

5(i] = - -—1—6*r* (2.82)

   

T To"2

and

.

new): are-arms)
d c? a”?

  

Substituting these identities reduces the stability criterion to

* *

—%a*é%l—%Fl;w*.ifrlzo (2.84)
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Next apply the non-dimensionalizations as before

L __* I am

am L AT

 

ii

and multiply by To'z, so

 — c,,,(AT* )2(a—m)67@— fl-(TOA T“ + TC*)[9’"—3]aii. 5W) 2 0 (2.85)

  

  

L2 a pm L4 o?

2

. . pm and . . .
Next multiplying by 2 .. and employing the dimensionless

pf am flfA T

numbers introduced in previous sections, yields the result

am)

a

a? D
- QmHBRamo'I‘d )- a (TO + T)&2°

61‘ Prm

  

2 0 (2.86)

Integrating over the domain {y 5 (0,7), 2 6 (0,1)} results in the global excess

entropy production rate functional, ‘1’,

 

 

17

67 D an 5
LI! a ll -0mHBRamaT§(5—)-—I—)r—a-(TO+ flan-fig?) dydzz 0 3(287)

00 m - 5
 

In order to evaluate ‘I’, we must evaluate the time derivatives. These

expressions come from the quasi-linearized first variations of the unsteady

momentum equation:

D & ~
E1257) = —V(6P) + Ramé'fk + [N 2(m) - m - M|n|("' "627 (2.88)
m

and energy balance equation:

QmSigT—L—avwrhvzwr) (2.89)
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Substituting and expanding the differential operators and dot products in

scalar form results in the expression

  
TH R 0160+ own _ awn amt) ‘

B am V @ W 01, 4’2 312

’ crap) as?) '
-§v—- __

a we

I)’ +Ram5w51'

w .=. H ( 6v[52(5v)+32(&)] \ )dydzzo (2.90)

- (To + r) 4,2 @2

+ slim”). 22(8)]

\ 82 82 1

_ — (1 - Mlz‘il("' l>)(av2 + M)

 

+B

 

  

    
From this expression, the value of ‘P can be computed from the solution of

the temperature, flow, and pressure fields as determined from the mass,

momentum, and energy conservation equations.
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Chapter 3: Numerical Solution Method

In this chapter the equations and routines are developed which enable the

solution of the Rayleigh-Bénard convection system in the horizontal porous

enclosure. The entropy measures are also computed, in order to facilitate

comparisons with the results from the porous layer, and to evaluate the

thermodynamic theories.

The numerical method employed is a mixture of Galerkin and finite-

differences. The Galerkin method with trigonometric/Fourier bases is used to

solve for the horizontal dependence in the temperature and flow fields. The

vertical variations are then discretized with a finite difference mesh. This

method was developed by McDonough (1980) for the Rayleigh-Bénard

convection problem in the pure fluid layer, and for the porous layer by

Somerton, McDonough, and Catton (1982) and Georgiadis and Catton (1986).

The method has been shown to be reasonably computationally efficient. It is

an extension of these works that will be used to produce data with which to

evaluate the thermodynamic wavenumber prediction theories .for the porous

layer. Therefore the same numerical technique is chosen for this dissertation

to solve in the porous box, in order to minimize differences which might arise

from the numerical method.
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3.1 Galerkin Forms of Governing Equations

3.1.1 Galerkin Ansatz

For the Galerkin basis functions, the following trigonometric half-wave

expansions for the velocities and temperature, have been chosen which

satisfy the specified essential or natural boundary conditions.

K

Vly’Z) = glelz) sinlaky) (3.1)

K

w(y,z)= Z Wk(z) sin(aky) (3.2)

k=l

K

T(y, z) = konk (Z) cos(aky)

K (3.3)

= T0(Z) + Z Tk(2) cos(aky)

k=l

where

7rk (3 4)

a E — .

k 7

The pressure is not needed for the momentum and energy solutions.

However, for post-calculations, is should be expanded with the cos a,, y basis

functions, to remain consistent with the velocity bases and boundary

conditions:

K

P(y,z) = 2 Pk (z) cos(aky) (3.5)

k: l
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3.1.2 Mass Continuity Equation

The Galerkin form of the mass conservation equation is obtained by first

substituting the expansions for v and w, equations (3.1) 8 (3.2), into the two-

dimensional, incompressible continuity equation (2.35). After substituting and

evaluating the partial derivatives termwise, the equation becomes

K

2 (Vkak cosaky+ W]; sinaky)= O (3.6)

k: 1

Note that the notation of functional dependence on 2 for the modal velocities

has been suppressed.

Next the inner product is formed with the pressure basis functions, cos a,,, y,

over the y-dimension from 0 to y

7 K

[1,210/ka cosaky+ W); sinaky)cosamydy= O (3.7)

0k :

Since the V, and Wk' factors of each term are functions of 2 only, the integrals

can be passed through the summation and evaluated termwise, as

k}:K(Vk aklo cosakycosamyafy+ W); I; sinakycosamydy) = 0 (3.8)

Then using the orthogonality of the cosines:

 

7 £7731 ifk=mandk¢0

(cos(aky) cos(amy)a§2 = (3.9)

0 O ifk¢mork=00rm=0
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and defining Am as the inner product of sine and cosine over multiples of the

half-wave interval:

 

 

7

Akm a (cos(aky)sin(amy)ajz

o

Vy( l 1 ) if(k-m)isodd

7r k+m k-m andm¢0 (3.10)

if k=m

: 1 0

or (k — m) is even

1— —1’"

Zl—J—l—l if k=0 and m at o
71' m

the continuity equation reduces to

K
a

431V“ ZAmkW) = 0 (3.11)

k=l

The Galerkin form of the continuity equation is used to recover the horizontal

velocity terms, Vm , from the W,,, terms determined from the solution of the

combined momentum equation.
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3.1.3 Galerkin form of the Momentum Equation

Into the combined momentum equation (2.52) the expansions for velocity and

temperature are substituted, assuming the derivatives can be evaluated term-

wise in the summations, which yields:

sin(aky)+ MQ

 

K

z[B(ak4 Wk —Zak2 Wk +ka')+ak2 Wk _Wk’

“1 (312)
K

= R2 ak2 Tk cos(aky)

k=l

Again, the notation of functional dependence on z for the modal velocities and

temperatures has been suppressed.

Now form the inner product of each side with the vertical velocity basis

functions, sin amy, over the domain of y, (0, y):

K

{2 [3(ak4 Wk - 201:2 Wk" + Wk'm)+ ak2 Wk - Wk" ]sin(aky)+ MQ}

k=1

C
‘
q
w

K (3.13)

R akz Tk cos(ak y) sin(amy)dy

k: l

- sin(amy)dy =

O
‘
-
—
.
V

Carrying out the integrals termwise and using the orthogonality of the sines:

7 31-4—7” ifk=mandk¢0
. . 2 2am

I s1n(aky)s1n(amy)dy = (3.14)

0 0 ifk¢mork=00rm=0

l



and the inner products of sine and cosine over multiples of the half-wave

interval, equation (3.10), produces the simplified Galerkin form of the

momentum equation:

g-[B(am4 Wm — 2am2 Wm" + Wm"")+ am2 Wm - Wm + MQm

K (3.15)

 

  
 

where the inner product with the nonlinear term is defined:

7 7

Q... a lesinamydy= g§[§(lnl"“v)- -%(lal""w)]sinamydy (3.16)

3.1.4 Expansion of the Nonlinear Forchheimer Momentum Term

To facilitate the Iinearization and computation of the nonlinear inner product

term, Q," , we first identify the nonlinear component, defining

n-l

775 lfiIn-I : V2 + (4)2]?
(3.17)

The expression Qm is integrated by parts, with the result of

7 7 0.,

0 - am {lo}

.-.,,,i(g(.)-grwl..s....
O

(77w)] cosamydy

 

I

3
,

e
l
m. a a ,

Qm = [51770- 5(W)]Slnamy

(3.18)

since the sine multiplying the first bracketed term vanishes at the boundaries.
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Next we integrate the second term by parts again to arrive at the form:

7 7

3(

—am (5(0)))cosamydy + [amnwcosamyK + am2 lnwsinamydy

7° y 0 (3.19)

-(-0:(77v))cosa ydy+ a 2 (nwsina ydy
am &( m m 0 m

0

The (1) w) term in the brackets also vanishes at both boundaries because of

the no-slip boundary conditions.

Now we modally expand r) in terms of the velocity basis functions as:

K

77(y,z)—) Z Hk(z)sinaky (3.20)

k=l

As will be shown, this will replace the need for quadrature integration of this

nonlinear term with the relatively efficient Fourier sine series expansion in the

solution procedure, and allow for improved Iinearization and convergence on

the solution of the modal equations.

We can now substitute this expansion (3.20) and the velocity expansions

(3-1) 30d (32) into the reduced expression for Qm

 

A 7 a K K

Qm = —am I; (Z Hk sinaky][2 V, sinalyflcosamydy

k=l l- 1

0 (3.21)
7 K K

+ am2 ([ Z Hk sinaky][2 W) sinaly] sinamydy

o k=1 [:1
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This expression may be simplified by combining the summations and

differentiating the z-partial termwise

7K

-”2"“leKZI:;(HkV1)sinaky sina1y cosamy] dy

0k: 11— I

7 K

+ am2 I 2 Z [(Hle)sinaky sinaly sinamyld)’

ok=ll=l

(3.22)

It is now apparent that the summations can be integrated termwise, with the

modal coefficients, which depend only on 2, passed outside of the integral.

This will produce the simplified form:

 

 

m = Z Z [- am(chVl + Hk V1,) Aklmfl) + amsz WI Aklm(0)] (3'23)

: =1

 

after defining the two trigonometric triple inner products as

7

Aklmm) E (sinaky sinaly sinamy dy

O

   

(1.)(11 1 1 J if (k+l+ m) (3.24)

_< 27! k- l+m k- l- m k+l+mJr k+l- m is odd

7 0 if(k+l+m)

. is even 
for k, l, and m = 1, 2, 3,

and

Aklmm a (sinaky sinaly cosamy dy

O

3.25
1 ifm=k-Iorm=l—k ( )

ifm=k+l

for k, I, andm = 1,2,3,

4

Z

4
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Thus, the expansion given by (3.20) has reduced need for quadrature

integration of the Forchheimer term to simple evaluation the triple products

(3.24) and (3.25).

3.1.5 Galerkin form of the Thermal Energy Equation

The Galerkin form of the thermal energy equation is obtained in much the

same fashion as the momentum equation. First the expansions (3.1) - (3.3)

are substituted into the thermal energy equation (2.38). Again carrying out the

partial derivatives termwise yields

K’ K .K K

[2 V1 sinaly][- Z ak Tk sinaky] + [Z Msinaly][Td + Z T); cosaky]

k:[:1 k=l [=1 1

K K (3.26)

+ Z akz Tk cosaky- T6’- 2 Té’cosaky = 0

k=l k-I

Further, combining the summations simplifies the expression to

K K

F+k21(ak2 Tk— T")cosaky + T6: W1 sinaly- T6’ = 0 (3.27)

k: 1:]

where the double summations of the advective terms are collected as

K K

F a Z 2 [(- ak V1 Tk sinaky+ W) T]; cosaky)sinaly] (3.28)

k=U=l

Next, for each equation for mode k, the inner product is formed with the

temperature basis functions, cos any.
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3.1.5.1 Mode Zero Equation

The special case of m = 0 (so cos any =1), is considered first. This will produce

the Galerkin equations for the mean-field temperature distribution, T0(z). The

inner product formed is

l’ K K

j F+ Z (a),2 7,, — Tk" )cosaky+ To' Z W, sinaly— To" dy = 0 (3.29)

0 k= 1 I: l

which reduces to

 

. ,K 2 .

F0+Toza—W1-7To =0

1:1 1

[odd

(3.30)

  
 

with the nonlinear advective product absorbed into the definition

7

aOley

0

k:

K

2
=1

K k7: ) K 2k]

= Z ( 7Vka+ Z k2)W1T/c
k=1 [:1 ak(12 -

(Ir-l) odd

l(- at V1 7k”: Sinakysinalydy + (W1 7,9107 °°.Saky8ina’ydy (3.31)

 

 

  b

3.1.5.2 Higher Mode Equations

Now we consider the inner products for the m=1, 2, 3 . . . mode cases:

K7 K

lF+2 (alt2 Tk ‘ Tk")cosaky+ 702 W] Sinaly— 76'] cosamydy = O(3.32)

0 k=1 [=1
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With the definition

7

Fm s l Fcosamydy (3.33)

0

the inner product of the cosines (3.9) and recalling the inner product of sine

and cosine (3.10), the energy equation reduces to

 

A

7! K

F... (4.2T... — nth T6 2 AmiWi = 0
+ —_

2am I: l

(l—m) odd

for m=1,2,3,

(3.34)

   

To further simplify, the nonlinear double summation term can be reduced to

7 K K

13m = (Z Z (- ak V, Tk sinakysinaly+ WIT]; cosakysinaly)cosamydy

o k: 11:1 (3 35)

K K '

= Z Z (' akVITk Aklm(l) + WIT/é Aklm(2))

k: 11: l

for m=1,2,3,

by using the triple inner product definition of AHm‘” from (3.25) and the

definition

7

Au," (2) a (cosaky sinaly cosamy dy

0

7 (3.36)
 

1 1 1 1 )

lull/”Hf k+l-m_ k—l+m- k-l—m if(k+l+m)isodd

0 if(k+ l+ m) is even

for k, I, and m=1,2,3,
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3.2 Modal Ouasi-Linearization

The fully non-linear form of the combined momentum equation, and therefore

the coupled energy equation, cannot be solved directly in a single pass, and

must be solved by iteration. The efficient scheme to be used is termed modal

quasi-Iinearization. It is similar to the ”full" Newton quasi-Iinearization

scheme, except that the equation corresponding to each Galerkin term, or

mode, is linearized only about its own corresponding modal coefficient term.

The remaining modal coefficients use the explicit value from the previous

iteration.

For the momentum equations, this requires that the W,,, term of Qm be

extracted from the non-linear summation. For convenience, the terms Q," and

~

Am are defined so that

Q... = a... + amw. 13.37)
with

~ K K K K

Qm = -a,,, Z Z {(17}: V1 + Hk Vz')Aklm(l)l+ am2 2 2 [Hit W1 Aklmm) (3 38)

k=ll=l k=l (=1 '
k¢m1¢m

and

K ( )
~ = 2 0

Am - am kE [Hk Akmm ] (3,39)

kodd
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Now the Wm term in equation (3.38) is moved to the left-hand side of the

Galerkin momentum equation, (3.15), while Q", is moved to the right-hand

side, yielding the equation

 

2 ~ N 1111

% [Bam4 + am2 + ; 1m] Wm — (2am2 +1)Wm + BWm

~ K (3.40)

= -MQm + R 2 at2 Akak

k=1

(k-m) odd

where the definitions of Am in equation (3.10), and ak from equation (3.4),

have been employed in the temperature term.

In the energy equations, the mode zero equation contains no To terms, so the

Iinearization is completed with a slight re-arrangement and relaxation of the

velocity terms on the coefficient and higher-mode terms in [3‘0 on the right-

hand side, with the result:

K 2 .
Z —W, Td— 7T": -F0 (3.41)

1=
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In the higher-mode energy equations, the Tm and T3,, terms are factored out of

the nonlinear term, Fm , and the remainder is defined in Fm as

A ~

K K

" amz VI Amlm(l)] Tm 1" [Z WlAmlmQ)] Tm (3'42)

 

Fm = Fm +

1:1 (=1

where

K K

Fm E Z Z l‘ at V1 Tk Aklmm + WI Tl Aklm(2)l (3.43)
k=l l=l

k¢ m]: m

Re-arranging the energy equation with the mode m terms for temperature and

its derivatives to the left-hand side and the remaining terms to the right

produces the linearized equation

K
K

(2:) amZ “((1012 VI Am1m(l)] Tm + [Z WIAmlm(2)J 7",), ’ (1)7};

2 1:1
1:1

2

K (3.44)

=TFm-T0 ZAmlW/l

1:1

(l-m)odd

The resulting finite difference equations, developed in the next sections, can

then be solved for each mode successively. This de-coupling of the equation

for each velocity and temperature term from each of the other modes

dramatically reduces the storage and processing requirements in the matrix

solutions. The coupling is maintained through repeated iterations, with a

check for convergence when the equations are sufficiently well-satisfied.
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3.3 Finite Difference Equations

The Galerkin forms of the momentum and thermal energy equations are now

reduced to K modal momentum equations and K+1 modal energy equations.

However, the modal coefficients, Wm and Tm, are each still functions of z, and

each equation represents an ordinary differential equation in 2. So next the z-

variations of each modal coefficient are discretized into N grid points, and the

corresponding derivatives are represented by second-order correct finite

differences.

3.3.1 Momentum Equation

The modal coefficients and their derivatives appearing in the quasi-linearized

momentum equation, (3.40), are replaced with the following second-order

correct finite difference forms: (Anderson, 1984)

Wm(z) _) ij (3.45)

n 1

Wm (z) —> 23mm, — 7-er + WWI) (3.46)

I!!! 1

Wm (z) T) F(Wm,i+2 T 4I’VmJH + 6Wm,i T 4I'VmJ-l + Wm,i-2) (3-47)

and the temperature coefficients

Tm(z) —> TW- (3.48)

and non-linear term expansion (which will be detailed in section 3.3.4)

Hm (Z) —) Hm,i (3.49)
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where

—1—- (3.50)h

N—l

and the additional subscripted i on each modal coefficient corresponds to the

index of the corresponding discretized node

z,~ = (i- I)h (3.51)

4

Substituting into (3.40), multiplying through by (Zh/y) , and collecting nodal

terms yields the finite difference equations for the central nodes,

COWm,i—2 + Cle,i-l + CZWm,i + C3Wm,i+l + C4Wm,i+2 = Fm,i (3.52)

with the resulting modal matrix coefficients

C0 = C4 5 B (3.53)

CI = C3 5 _(2Ba,,,2 +1)h2 - 48 (3.54)

_ 2 2 4 2 2 2 ~ 4
C2 = am (Bam + l)h + 2h (28am +1)+ 63+ 7 MAW/z (3.55)

This discretization produces a symmetric penta-diagonal system for each

modal momentum equation, which can be solved sequentially for each mode

value. A basic Gaussian elimination method is employed, adapted from the

code used by Roebers (1986), which takes advantage of the compactly

banded system.

The right-hand-side terms are calculated as

’

K
2 ..

Fm, a -;h4 R2 (aszkJAkm)— MQW- (3.56)

k=1
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which are computed from the T,” values from the previous iteration. Now the

discretizations of the linearized coefficient in the diagonal term, 2m,- , and of

the remainder on the right-hand side come directly from the discretization of

the modal variables:

K

mZZdHH,kiAkmm(0) (357)

(3.58)

The first derivatives appearing for H)“. and V“ are also calculated from the

values of the previous iteration using second-order correct finite differences,

with the central difference employed for the central locations, i=2 through

i=(N-1); and three-point forward or backward differences applied at the

bottom and top wall nodes.

The near-boundary terms require special handling, since the first and last

discretized momentum equations would refer to terms outside the domain.

The impermeable wall boundary condition requires a value of zero on the

boundary nodes,

Wm,l = Wm,N = 0 (3.59)



which also eliminates the need to solve the first and last node finite difference

for each mode. For a second boundary condition on each wall, as required by

the additional orders of differentiation, we look to the no-slip conditions for v

 

 

5'?"— = é"— : 0 (3.60)

6} Z: 0 d) z: I

combined with the continuity equation

0’12 011»

5 + E = 0 (3.61)

which yields a zero-slope condition for w at each wall

élv

dz

-2”.
= 0 (3.62)

2:0 52: 2:1
 

The discretization of these conditions is applied as the ”reflected node”

method for nodes adjacent to the boundaries.

Wm,0 T7 Wm,2 (3 63)

Wm,N+l 9 Wm,N—l '

The first and last nodal equations, corresponding to i=2 and i=N—1, are then

(C0 + C2)Wm,2 + C3Wm,3 + C4Wm,4 = Fm,2 (3.64)

COWm,N-3 + CIWm,N-2 + (C2+C4)Wm,N-i = Fm,N-l (355)
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3.3.2 Zeroth Mode Energy Equation

The zeroth mode energy equation is similarly discretized with the following

second-order correct finite difference forms: (Anderson, 1984)

70(2)» 70,, (3.66)

i 1

T0 (4')" ;(T0,i+1- Tor—1) (3-57)

" 1

T0 (20)" ZilTOJH ‘ 2T0,i + TO,i—l) (358)

which yields the tri-diagonal form:

BIT0,i-l + 192T0,i+ B3TO,i+l = ’hzfion' (359)

with the coefficients defined

W
 

 

K Ii
B E -h ’ -

' E1 a, 7 (3.70)

[odd

32 5 27 (3.71)

K W _

l r

B E +h ’ -

3 E a, 7 (3.72)

[odd

and the right-hand terms defined as

' 1

. K Wk K
FOJ = Z ‘ TVkJTkJ + Z AkIWl,iTk,i (3-73)

k=1 [:1

_ (Ir-l) odd  

The boundary node values are determined from the known temperature

boundary conditions,

T0,1=1 ; To,1v=0 (3.74)
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so the first and last nodal equations to be solved correspond to those

adjacent to the boundaries, expressed as

82 T02 + B3TO,i+l = -h2fi0,2 - B] (3.75)

BIT0,N-2 + 82T0,N_] = _h2fi0,N-l (3.76)

The resulting non-symmetric tri-diagonal system is then solved using a

common tri-diagonal solver, in this case adapted from Roebers (1986).

3.3.3 Modal Energy Equations

The energy equations in the higher Galerkin modes are discretized in the

same manner as in the zeroth mode equation, with the following second-

order correct finite difference forms: (Anderson, 1984)

Tm(z) _) TmJ (3.77)

I l

Tm (2,)» firm,” — Tm,,-_ l) (3.78)

n 1

Tm (Zi)—) 23(Tm,i+l " 2Tm,i 7" Tm,i—l) (3.79)

which yields the tri-diagonal form:

Bl,iTm,i-l + BZ,iTm,i + B3,iTm,i+l = ‘2h2Ym,i (3-80)
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with the coefficients defined

K

B)..- 412 Amzmlz’Wu — 7 (3.81)
1:]

K

82..- 7.2,. 2amZ(Vz,.-Amm0) +27 (382)
[=1

K

83,.- +172 Amzm(2’m,,- - 7 (3.83)
1:]

and the right-hand terms defined as

Ym, _--2h2

 

K

F...- + To,Z (ml/1.0] (3.84)
[:1

and

K K K

=2 [" “k Tk,i[ Z V1,iAklm(l)] + Ti,i[ Z WIJAklmmH (3.35)

k=l 1:1 1:1

k¢m

The discretized energy equations are more straightforward at the boundaries,

since the first and last equations only refer to the specified boundary

condition nodes. Since the applied temperature boundary conditions are

satisfied in the zeroth mode, the remaining modes should vanish at the top

and bottom walls, yielding the following equations corresponding to the

nodes adjacent to each wall:

822 Tm,2 + 332 Tm,3 = -2h2Ym’2 (3.86)

2

31,N-1Tm.N-2 + BZ,N— )Tm,N—1 = “2k Ym,N-1 (3-37)
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3.3.4 Expansion of the Nonlinear Term

As laid out in section 3.1.4, the nonlinear term (the velocity magnitude) in the

Forchheimer term of the momentum equation is represented as a series of

Fourier-Galerkin coefficients to facilitate the linearizations just employed.

These coefficients are calculated in a manner similar to the discrete Fourier

transform. First the field of velocity components and the corresponding

magnitude values are computed at a number of sample points, NV, across the

y-dimension. These are computed from the most recent guess or solution

values in the Ansatz, (3.1), (3.2), and (3.20). To get the calculation for the

expansion of 11, first form the inner product of (3.20) with the basis functions,

7 7

(77(y,z)sinamy dy = (H1, (2) sinakysinamy dy

0

 

o (3.88)

= £11142)

Now solving for H, and discretizing

Hk(z,-)—) H,” (3.89)

yields the calculation

2 NY

Hk.) = N 1 Z 7(y1,2.-)sin(akyz) (3.90)
Y ' 1:1

For additional computational efficiency, the sin(a,,y,) terms are computed

once in the setup of the program, and recalled from storage for the field value

recovery and nonlinear expansion calculations.
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3.4 Calculation to Recover Horizontal Velocity

After solving for the discretized vertical velocity modal components, Wk, the

corresponding horizontal velocity can be calculated using the Galerkin form of

the mass conservation equation (3.11). After applying the finite differences for

the z-derivatives, the V“ components are computed as

2 K .

VInJ = - — Z Wk,i Amk (3.90)
mflk-l

These components are calculated following the solution of the vertical

velocity components, m, during each iteration, for use in the subsequent

calculation of the right-hand inner products in the solution of the thermal

energy equation.

3.5 Post-Processing

After the iterations are converged, the post-processing requires calculation of

several quantities, including

0 pressure coefficients

- stream function

- Nusselt number

0 wavenumber

- entropy generation rate

- generalized excess entropy production functional
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3.5.1 Computing the Pressure

The Galerkin coefficients for the pressure field are necessary to compute the

global entropy generation rate, G, and the generalized excess entropy

production functional, ‘1’. These pressure coefficients are determined by

taking the y—momentum equation (2.36), substituting the Galerkin expansions

(3.1)-(3.3), (3.5), and (3.20), and forming the inner product with the sin any

basis functions, resulting in the equation

  

. K K -

7 Z akPk sinaky+ BX (- akZVk + Vk )sinaky

k=l k=l ,

j K K smamy dy = o (3.91)

0 — Z Hk sinaky] 2 V, sinaly]

_ k=l 1:1 _

which reduces to

mzr K K ( )

[Pm + B(- amZVm + V,;;)- VMITJ - M2 2 HleA 0 k1,, = 0 (3.92)

k=ll=l

This equation can be solved directly to compute the coefficients for pressure,

Pm , in terms of V", and H,.

K K

Pm = Vm + B(am2Vm - V,;;)+(;12—-)MZ Z HkV,A(O)k1m (3.93)

k=ll=1
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3.5.2 Stream Function Calculation

The stream function can be calculated from the velocity solution, and is useful

for visualizing the flow pattern. For the steady state flow, no fluid crosses the

streamlines, which are the contours of the stream function. Most fluid

mechanics and computational fluid dynamics texts describe the stream

function formulation of the governing equations, but do not describe the

method for computing the stream function directly from the known velocity.

The procedure taken in this work follows.

Beginning with the usual definition of the stream function, 1|), such that its

partial derivatives identically satisfy continuity.

.(.,.)(.=sg,wzg.)

Integrating the second condition (involving w) yields:

y

w = — )w dy+ f(z) (3.95)

0

wherefis some arbitrary function of 2.

Next differentiate with respect to z, with the result being equal to v, according

to the definition of III.

31/1 0% df
sz=-IEdJ)+—CIZ—

(3'96)



But invoking continuity again,

3’3- 9: 397{-0} (. )

so

v=+Iflajz+gfg

é) (3.98)

_ if:
—.v+dz

Thereforefmust be a constant, which can be set arbitrarily for the convenient

assignment of the stream function constants. Choosing the most convenient,

f = O (3.99)

leaves the value of I)! as

{/1: - wdy (3.100)

O
h
—
-
.

To compute this value across the flow field, we substitute the Galerkin Ansatz

and evaluate at each location

fldeysinak

 

(3.101)

  
1:1)(1- cosaky ’)

1
M
;

73



3.5.3 Nusselt Number Calculation

The average heat flux at the wall is represented by the Nusselt number,

defined as

at

_ E- ‘7 L

km Aft/Cm

 

Nu (3.102)

where the starred quantities again represent the dimensional quantities, and

1' represents the average heat flux at the wall. This can be calculated using

the Fourier law applied at the top or bottom wall, and averaged across the

width of the box, W.

4:

q‘:filf‘(:l ‘kmart

4:

dy (3.103)
 

 
wall

Applying the scaling scheme from section 2.3 results in the expression

_*- kmAT* 7g

q ' W 0&-  

dy (3.104)

wall

Substituting the Galerkin temperature expansion yields

.. kmA T"

W

 

dy

wall

sinaky‘g] (3-105)

7 a K
(0 22- TO +E1Tk cosaky

K 1 '

+ Z —Tk
wall k=lak

S
I )1

 

 

 
7T0

 

 wall
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When this expression is substituted back into the Nusselt number definition

and evaluated at the top and bottom walls, the elegant result obtains

Nulbotmm = —TO'(0) (3.106)

I

Nulmp = - To (1) (3.107)

3.5.4 Entropy Generation Rate

Hypothesized as a predictor of the steady-state situation in the infinite width

porous layer, the global entropy generation rate, G, represents the integral of

the rate of entropy generation, Sg,,,, over the entire domain {ye-(0,10, zE(0,1)}.

To calculate this value we begin by integrating equation (2.66):

  (Ti r)[lz7|2 - B(ii-V2z7)]}dydz

. (3.108)

 

  

fdydz

  

 

 

@2 &2 @2 &2

J 
1 (.2..2-.[.(6.e2_v)..(6w.6))

Assuming the temperature fluctuations are small in the y-direction, the (T+t)

coefficients are passed outside the y-integrals, with only the mode zero term,

(To+1.'). The integral is then broken down into six component terms, the
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Galerkin ansatz substituted and simplified using the inner product terms. The

value of G can then be directly computed from the Galerkin coefficients of the

velocity and temperature, with Simpson-rule integration across the z-

dimension, as

 

l
G— __

g—(T0+BT)2G

 

1

l+R(T0+ T)
(To + r)2

[02 - BG3]+ %[-—To—
 

(To + 1)
G6

 

dz

  

where the component terms, Gl G6 are defined and simplified as

61(2) 5

Gs (Z)

 

(9)2192)»
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(3.109)

(3.110)

(3.111)

(3.112)

(3.113)

 



and

(3.114)

K r2 (2

= 2(Vk +Wk )

k=l

N
I
V

Further details of the substitutions and simplifications can be found in

Appendix C.

3.5.5 Generalized Excess Entropy Production Functional '- '

The generalized excess entropy production functional, ‘1’, is also calculated by

integrating over the entire domain, as indicated in equation (2.90). As with the

calculation of G, the appropriate Galerkin expansion is substituted for the

velocity and temperature factors; the expression is simplified using the inner

product coefficients; and the expression is integrated across the z-direction

using a Simpson’s rule routine. Breaking the expression down into several

component terms of the integrand, the ‘1’ expression can be computed as

1

w = ([HBR(SI + S2)+ S3 - S4 + B(— 55 + S6)+ S7 - M58]dz (3.115)

0

with the component terms, SI 58 , defined as

7 6m) 0157)
S (2) a b7{v w—Jay

1 (J; a» + a}
 

(3.116)

K K K '

= Z Z 21- Aklm(l)VleTm T Aklm(2)Tk me

k=ll=lm=
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and

 

 

 
 

_ 7 (167) 2 0160 2

W = ([77) l g.» ) dy
K (3.117)

= 12(ak2Tk2 + Tk )

2k=1

7

53(2) 5 ({(TO + r)[5., 51;?) + 4:) 6p] - %w&}ay

0K (3.118)

: - 2 {:(:0(2+ r)akaPk + Z Akak[(To + 7),,1W + Ton ]}

k=l m: l

)=:[(T0+ T)W

(3.119)

K K

= (To + le Z Akaka

k=lm=l

7 a? 6v a? 6v 2 6w 2

SsMEl(To+r)[ 0;wa 0.121%) 1%)) )9
0 K (3.120)

=-%(T0+T)kzzl[a (Vk +Wk )+Vk +Wk :l

7’

S... (To [.432 86—3)]...
0 K (3.121)

= 1TToz—lleVk + WkaI

7

S7(z)== “To + r)(5v2 + (Swz)dy

0 (3.122)

2:



and,fina"y

7

53(2) 5 ((TO + t)lii|"' 1(6v2 + awz)dy

0 (3.123)
K K K

: (To + I); 12: Z Aklm(0)Hk(Vle + I’VIWM)

=1 =1 1m:

Further details of the derivations for each term are found in Appendix D.

3.6 Numerical Solution Algorithm

The following pseudo-code lays out the structure of the calculations involved

in the numerical solution routine for the velocity and temperature profiles in

the porous enclosure. In this context, the superscript-starred notation on the

discretized Galerkin coefficients indicates the solutions to the quasi-linearized

finite difference forms of the Galerkin momentum and thermal energy

conservation equations prior to updating the guess values. A Newton-iteration

damping factor, 6w or (ST, is then applied, as indicated in sequence steps 3 and

4, prior to updating the new guess values.

Also before updating the new guess values, convergence is evaluated by

searching for the maximum absolute value difference between the solution

values from the current iteration and the previous values. If any of the

difference values exceeds the convergence tolerance parameter, another

iteration is initiated.
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The numerical algorithm sequence follows:

0 - Initialize Program.& Set Parameters

Read values from input file

calculate Galerkin basis functions

calculate inner products A1m

calculate triple products Ahmmh Ifihf“, Ahmu’

1 - Make initial guesses for temperature and velocity fields

Tk , Wk, or read in from file

Calculate Vk from Wk

[ DO j=0 (until convergence...) ]

2 - Compute zeroth.mode (mean field) of Temperature

3 - Compute velocity solution

(check if Forchheimer extension is used)

0 compute Fourier sine expansion of the nonlinear

term nhi(y) into Fourier sine coefficients Hki

[ DO m=l to K ] ‘

0 Compute the nonlinear inner product C2,“,i from

Vk I wk I Hk,.il Aklmm)! Aklmm

Compute thermal RHS terms from 7k:

Assemble momentum matrix coefficients

Solve for Mm;

Update guess: W,“ = 6,, Wmf + (1- Saw“

check for pointwise convergence

[ END DO (m) ]

0 Calculate V61 from Whi (using Galerkin mass

continuity)

4 - Compute temperature solution

[ DO m=l to K ]

0 Compute energy inner product RHS Em, from

Vkl Wk! Tkl Aklmm: Aklmm

Assemble energy matrix coefficients.

Solve for flmf

Update guess: ng = éT‘flmf4 (1- 6T)flmi

check for pointwise convergence

[ END DO (m) ]

[ Increment j and REPEAT until converged ]
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5 Post-calculate

stream function

(display streamlines and temperatures)

pressure field

Nusselt number

excess entropy production rate, PSI

entropy generation rate, G
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Chapter 4: Results

The numerical simulation model solution method developed in the preceding

sections was implemented and carried out on a desktop PC digital computer.

The behavior of the solutions and results leading to the evaluation of the

wavenumber prediction are presented first, followed by a validation study to

evaluate satisfactory convergence with the numerical parameters.

4.1 Effect of Box Width

In order to establish the feasibility of the code solutions, and to examine the

behaviors as the box model is widened (as gamma is increased), the

sumulations were first run with the Forchhiemer term coefficient, M, initially

set to zero. This reduces to the linear case of Darcy flow, with the Brinkman

extension.

The numerical solutions for situations above the first critical Rayleigh number

exhibit the anticipated cellular convection pattern, with the size of the cells

increasing (corresponding to a decrease in the wavenumber) as the Rayleigh

number is increased, which is consistent with previous experimental and

theoretical results. The cellular patterns and the trends in cell size can be

observed in the streamline plots of Figures 4.1 - 4.3, 4.7 - 4.9, and 4.13 - 4.16.

The accompanying temperature fields are displaced from the uniform linear

temperature profile in patters consistent with the flow field, as seen in the
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isotherm plots in Figures 4.4 - 4.6, 4.10 - 4.12, and 4.17 - 4.20. The streamline

plots were generated from contours of the stream function field, which is

calculated from the Galerkin coefficients, Wk(z), according to equation (3.101).

The isotherm plots are generated from the contours of the temperature field

values, recovered using the Galerkin expansion (3.3). Note that these figures

are not to scale, as the aspect ratio, y, varies for each set. For a given box

size, one can observe the expansion of the cells as the Rayleigh number is

increased. For the small box, y=3, the central roll becomes wider and more

tilted with increasing Ram, pushing the small recirculating rolls into the

corners. For the y=8 box, we see that one roll widens with Ram, as the

adjacent roll narrows. The net effect, however, is for the cell, consisting of the

roll pair, to increase in width (wavelength), with a corresponding decrease in

the wavenumber. A sudden change in the roll shapes occurs around Ram of

90, and for Ram=100 we can see only 5 distinct rolls, instead of the 7

observed at Ram=50 and 75. For the widest box, with y=15, there is a similar

pattern. At this aspect ratio the planform shift occurs around Ram=70, with 13

rolls observed here at Ram=50 and only 11 rolls at Ram=75, 100, and 120. The

cells again show a widening with increasing Rayleigh number, as one roll

widens and the adjacent rolls become narrower. The slight tilting of the rolls

also becomes more pronounced as Rayleigh number increases, and the rolls

against the left and right walls are squeezed into the corners.
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Figure 4.3 Streamlines for Ram=100, y=3
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Figure 4.6 Isotherms for Ram=100, y=3
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Figure 4.9 Streamlines for Ram=100, y=8
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Figure 4.10 Isotherms for Ram=50, y=8
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Figure 4.11 Isotherms for Ram=75, y=8
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Figure 4.12 Isotherms for Ram=100, y=8
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Figure 4.16 Streamlines for Ram=120, y=15
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Figure 4.18 Isotherms for Ram=75, y=15
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4.1.1 Onset of Convection

One of the first effects of the side walls that is observed is that the side walls

of the box produce stabilizing effect, especially for the narrower boxes. In the

course of this study it was observed that the porous media Rayleigh number

required to initiate convective motion rises above the accepted critical value

for the infinite porous layer of 41tzz39.5. This trend is illustrated in Figure 4.21,

which contains a plot of the Rayleigh number bounds between which

convective motion began, over the range of aspect ratios simulated. The

initiation of convective motion was indicated by the Nusselt number

remaining at a constant 1.0 — indicating pure conduction - for Rayleigh

numbers up to the lower bound, and a Nusselt number greater than 1.0 at the

upper bound Rayleigh number. The values of the entropy generation rate, G,

and the generalized excess entropy production functional, ‘1’, also increased

by several orders of magnitude between these Rayleigh number values,

indicating the sudden presence of convective motion. From these results it is

observed that for simulations with an aspect ratio of 10 or wider, the critical

porous media Rayleigh number remains close to the 39.5 value, and remains

below 40.0 for aspect ratios wider than 12.
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Figure 4.21 Bounds of Critical Rayleigh Number for Convective Motion

4.1.2 Nusselt Number

The effect of the side walls is also seen in the resulting flow and heat transfer

behavior at Rayleigh numbers above critical. It is expected that the Nusselt

number maintains a constant value of 1.0 for Rayleigh numbers below the

first critical value, and that it will increase monotonically with further increases

in Rayleigh number. For the purposes of this study, it is also necessary to

determine the minimum aspect ratio above which the effect of the side walls

exhibit negligible influence on the Nusselt number. The effect of the side walls

on the heat transfer rate is illustrated in Figure 4.22, which shows the Nusselt

number - Rayleigh number correlation for simulations of successively wider
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boxes. in order to validate the results, published correlations are also

included from the correlation of Somerton (1983) to the data of Combarnous,

Ram(0.81)

N“: 14.12
for Prm > 11.8 (4-1)

and the simple result obtained by Bejan (1984) from a scaling analysis:

1 if Ram<40

Nu= Ram . (4-2)
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Figure 4.22 Heat Transfer For Linear Simulations
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The increase in Nu as Ram increases is immediately apparent. Further

inspection reveals that the initial Nu vs. Ra"n slope increases with increasing

aspect ratios. For a given Ram value, the Nusselt number increases

significantly with an increase in the box width, and appears to approach a

limiting value of an ”effectively infinite” width value in the range of y from 15

to 20.

4.1.3 Wavenumber Measurement Method

The question of how to evaluate the convection cell size in order to compute

the wavelength of convection required evaluating several possible methods.

While the Galerkin expansion coefficients are themselves a spectral result,

they occur only in integer increments, and characterize the flow in the entire

width of the box. On the other hand, the wavenumber varies to a fractional

degree, and characterizes the periodic cells. Several approaches were

considered.

1. Searching across the box for zeroes of the horizontal velocity

field component, v, which could identify the edges of a roll.

2. Searching across the box for zeroes of the vertical velocity field

component, w, which could identify the centers of a roll.

3. Searching across the box for local maxima and minima of the

vertical velocity field component, w, which could identify edges

of a roll.
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The first two methods were found to yield inconsistent results. The first

method failed as the rolls were found to tilt to the left or right, so the

anticipated verticality of the flow did not actually occur at the boundaries. In

the second method, flow zeroes were often not well defined by the numerical

results in the slow-moving eye of the cell.

The third method was chosen as most logical and had the most consistent

success in identifying roll boundaries. However, it was discovered that small

oscillations near the side walls and in the centers of the rolls were also

identified as local extrema, and incorrectly counted as roll boundaries. These

points were filtered out by requiring the flow velocity component to be

greater than 10% of the maximum value of w in the box in order to be

considered as a roll boundary. This eliminated the slight perturbations in the

flow found in the eyes of the cells, as well as small the recirculating regions

along the sides walls and corners of the box. In effect, the 10% level

established a (somewhat ad hoc) criterion for these smaller recirculations to

qualify as bona fide rolls.

In implementing the w-extremum search, the first differences of w at each

node along the horizontal mid-plane of the box were examined from left to

right. If the difference values were found to change sign, and the velocity

component exceeds the 10% threshold, the location of the minimum or

maximum was estimated by parabolic interpolation (Press, 1992).
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Once the roll boundaries are identified by the search, it remains to evaluate

the average wavenumber. This is accomplished by two measures, an overall

average wavelength, 10A , and a central average wavelength, Ac".

If only one roll was identified, the overall wavelength was assumed to be the

entire width of the box. If multiple rolls were counted, the overall average

wavelength is found by taking the distance between the left-most roll

boundary located and the right-most boundary that completed a number of

complete roll pairs, and dividing by the number of complete cells (two-roll

pairs) counted. Since the rolls typically occurred in odd numbers, centered in

the box, this measure was repeated between the right-most roll boundary

location and the second boundary location from the left. These two values are

then averaged together. This has the effect of un-weighting the measure of

the left-most and right-most rolls by half. The overall wavenumber, a0A is then

calculated as:

27x

a0A = TOA (4.3)

In order to minimize the retarding effect of the side walls, and to hopefully

better capture the behavior that would occur in the infinite width layer, the

central average wavelength, Act, , was computed by taking the distance

between the second roll boundary located and the location that completed a

number of complete roll-pair cells, but remaining at least one (typically two)

rolls away from the right side wall, and dividing by the number of roll-pairs

95

ll
-



counted over this distance. The central average wavenumber is then

computed

27:

actr : A (4.4)

ctr

 

4.1.4 Wavenumber Results

To evaluate differences between the two wavenumber measurement

 methods, and to look for convergence in the wavenumber with increasing

aspect ratios, both methods of wavenumber measurement were applied to

each simulation run. Values of the central wavenumber and overall

wavenumber are plotted in figures 4.23 and 4.24 with increasing Rayleigh

numbers for the range of aspect ratios studied from 2 to 25. These plots

clearly demonstrate the decrease of the wavenumber with increasing

Rayleigh number, which is consistent with the increasing cell widths

(wavelengths) seen in the streamline plots. We can see that the a vs. Ra"n

characteristics tend, in general, to converge as gamma increases.
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This trend is better observed in Figure 4.25, where the wavenumber vs.

gamma is plotted for several values of Ram. Here we can see that the overall

average wavenumber measure is consistently slightly higher than the central

measure. This is presumably caused by the smaller rolls near the walls which

are included in the overall average. Both measures are seen to be reasonably

close, within 10% at most, and averaging 2.6% difference. The Ram=50 values

show a clear trend toward convergence to a ”wide box" value of 3.0.

4.,

      

   
 

4 z e , ,

3.5

3 3
a:

co

8 2.5

c

If; 2 "‘A‘" Ra=50. central

.2 +Ra=50.0A

3 1.5 00" Ra=75. central 3

§ +Re=75.0A

'3' 1 --e~Ra-100.centrel

+Re-100,0A

0.5 u».- Ra=120. central

—e—Ra=120.0A

0. a +ALPAA.“+*11“‘;“‘ 4.

0 5 10 15 20 25

aspect ratio. 3!

Figure 4.25 Comparison of Overall and Central Average Wavenumbers

For the Ram=75, 100, and 120 values, it is interesting to note that they all

converge toward a common value at aspect ratios of 15 and wider, though all

continue to vary together in the same way with increasing aspect ratio. It is
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believed these jumps are caused by the sudden changes in the roll planform,

as the number or shape of the rolls in the box takes sudden changes.

4-2 Non-Linear Results

Next the non-linear parameters were varied to determine their effect on the

wavenumber and Nusselt number of the system. The non-linear cases were

run with a fixed gamma=15. Choices of the parameters for the Brinkman and

Forchheimer momentum terms, 8 and M, were based on the ranges identified

by Garcia (1991) for a wide range of physical cases of fluids, layer widths,

porous media solid materials, and particle sizes Those ranges, and the

Corresponding possible variations in M and B, are summarized in Table 4.1.

The range of B is assumed to be similar to the range of the Darcy number,

assuming the porous media viscosity ratio, cm, is of order one.

Table 4.1 Ranges for Non-Linear Parameters

 

 

 

 

 

 

    

Jiarameter Minimum Maximum

Efrcy number, Da 3X10'12 3X1045

Forchheimer Number, Fom 0.09 0.3
\

Porous Media Prandtl Number, Prm 10'3 1o“
\

Brinkman Coefficient, B = o,,, Da 3x10-12 3x106
\

F JD
Forchheimer Coefficient, M = 3%7—0 2.7x1o-17 0.52

m
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4.2.1 Forchheimer effect

Solutions were obtained for a range of Ram from onset of convection toward

180, as, the Forchheimer parameter, M, was successively increased, to

determine the effect, if any, of the Forchheimer term on the heat transfer rate

and wavenumber of convection. The resulting central average wavenumber

and Nusselt number variations with Ram are plotted in Figure 4.26 for several

values of M.
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Figure 4.26 Effect of the Forchheimer Parameter, M

It can be seen in the plot that departure from the linear (M=0) solution is not

observed for most of the range of Ra examined, until M approaches its

extreme upper limit. The Nusselt number appears relatively unaffected for

most of the range of parameters, exhibiting little change until the extreme
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case of M=0.02, where it there is at most a 9% reduction from the linear case

at Ram=80. There is some variation observed in the roll-shift wavenumber

transitions seen around Rayleigh numbers of 70, 150, and 190.

4.2.2 Brinkman Effect

Solutions were obtained for a range of Ram from onset of convection toward a

value of 180, as the Brinkman term parameter, 8, was successively increased,

to determine the effect, if any, of the Brinkman term on the heat transfer rate

and wavenumber of convection. The resulting central average wavenumber

and Nusselt number variations with Ram are plotted in Figure 4.27 for several
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Figure 4.27 Effect of the Brinkman Parameter, B
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Again, we see little influence of the Brinkman parameter on the wavenumber

or the Nusselt number for most of the range of B values, until the extreme

case of 8:104, which actually exceeds the predicted range of physically

realizable values. We can also notice some influence on the roll shift changes

in wavenumber around Rayleigh numbers of 70 and 190.

4.3 Comparisons with Wavenumber Prediction Theories

This section will compare results of the porous box simulation of this work

with data from simulation of the infinite porous layer. The porous layer

simulation is based on the same mixed Galerkin and finite difference method

that is employed in the porous box simulations. It is based on the dissertation

and subsequent work of Somerton (1982) and Somerton and Jimenez (1999).

In that code, four different methods are used to attempt to predict the

wavenumber needed to provide closure to the problem.

1. Constant wavenumber, 1t, from onset of convection

2. Maximization of the Nusselt number

3. Minimization of the generalized excess entropy production

stability functional, ‘1’

4. Maximization of the global rate of entropy generation, G

The porous layer simulation code was updated and revised to compute the

entropy generation rate and generalized excess entropy production stability
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functional in a manner consistent with the work presented in this dissertation.

Work from the porous layer simulation will be published in a separate paper.

The results, together with those from the porous box simulations, are

summarized in Table 4.2.

Table 4.2 Results from Porous Layer and Porous Box Simulations
 

  

 

            

Fixed Maximizing

Wavenumber Maxlmlzlng Nu Minimizing ‘I’ Entropy Pbox (M=0.Y=15)

Mia—“0"

Ram Nu a Nu a Nu a Nu a Nu actr am

48 1.369 3.142 1.370 3.154 1.295 2.585 1.354 2.882 1.311 2.859 2.925

60 1.780 3.142 1.783 3.264 1.516 2.163 1.709 2.638 1.631 2.667 2.746

75 2.193 3.142 2.201 3.269 1.701 1.888 2.010 2.388 1.859 2.206 2.283

90 2.547 3.142 2.577 3.540 1.966 1.847 2.268 2.275 2.145 2.207 2.263

110 2.968 3.142 3.034 3.845 2.269 1.816 2.505 2.092 2.473 2.225 2.254

130 3.354 3.142 3.464 4.025 2.495 1.750 2.740 1.996 2.720 2.223 2.240

150 3.718 3.142 3.872 4.227 2.709 1.697 2.968 1.924 2.945 2.226 2.215

170 4.075 3.142 4.265 4.417 2.994 1.708 3.213 1.881 3.144 2.218 2.209

190 4.435 3.142 4.645 4.594 3.262 1.708 3.434 1.827 3.322 2.949 2.757

2E 4.799 3.142 5.017 4.598 3.646 1 .782 3.688 1.809
 

The Nusselt number-Rayleigh number relationship from each method is

plotted in Figure 4.28. All of the methods employed correctly predict a trend of

increasing Nusselt number with increasing Rayleigh number. The results

follow generally over the prediction of Bejan (1984). All of the simulation

results lie below the correlation given by Somerton (1983) for the high porous

media Prandtl number case corresponding to M=0. This may be attributable to

the two-dimensional roll restriction, which corresponds to a box with depth
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less than its height, while the enclosure of the Combarnous experiments

correlated by Somerton was deeper, resulting in three-dimensional rolls.
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Figure 4.28 Nusselt Number Comparison for Wavenumber Prediction

Schemes

Let us now restrict discussion to comparisons between the porous layer and

porous box simulations. Clearly, the constant wavenumber and Nusselt

number maximization schemes over-predict the slope of the relationship, over-

predicting the heat transfer rate by as much as 34% and 40%, respectively, at

Ram: 190. Certainly a more accurate method is wanted for engineering

purposes. Both entropy-based measures yield much closer predictions of the

Nusselt number. Compared with the result from the porous box, the entropy
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generation rate method consistently over-predicts the Nusselt number by as

much as 8% at Ram=75 and by only 3% at Ram: 190. The stability functional

method consistently under-predicts the Nusselt number by as much as 9% at

Ram=75 and by only 2% at Ram=190.

The actual wavenumber predictions from each method are plotted against the

Rayleigh number in Figure 4.29. While the few published experimental results

and the porous box simulations tend to predict a decrease in the wavenumber

with increasing Rayleigh number, the constant wavenumber method, of

course, ignores this trend; and the Nusselt number maximization scheme

actually predicts an increase in the wavenumber. Again, both entropy-based

methods appear to more accurately predict the convective wavenumber. The

entropy generation rate method and porous box predictions are within 10% up

to Ram of 130, where the porous box simulations begin trending in the

opposite direction. The stability functional method demonstrates a trend very

similar to the entropy generation rate prediction, but predicts wavenumbers

consistently lower than any other method, as much as 21% lower than the

porous box simulation at Ram of 130, and as much as 21% lower than the

entropy generation prediction over the range of Rayleigh numbers examined.

Though the agreement in values produced by these methods do not exhibit

conclusive evidence, the agreement in the trends does appear to suggest the
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extremum of the entropy generation rate and of the generalized excess

entropy production functional as valid predictors, and the accuracy of their

resulting heat transfer predictions is very encouraging.
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4.4 Numerical Validation

The code for the simulation, PBox, was written in Fortran 95, using the

Compaq Visual Fortran 6.6c compiler and development environment,

operating under Microsoft Windows XP-Professional Edition. Modern Fortran

90/95 array operations were employed wherever feasible. All real variables

were stored and computed in double-precision (8 bytes). The Compaq Array

Visualizer v1.6 was used to produce the streamline and isotherm plots. The

code was executed on 3-GHz Intel Pentium-4 based Dell and MPC desktop

computers with 1.0 GB of RAM. Solution times were reasonably rapid.

Nonlinear solutions were achieved with 3000 iterations taking only a few

minutes or less, when using 40 Galerkin modes, 41 finite difference nodes for

each mode, and 501 horizontal samples for field calculations and the non-

linear term expansions. Excessive virtual memory swapping to disk was not

observed until the number of modes approached 60 during validation testing.

The criteria for convergence was a maximum change of 1.0E-5 in any of the

Wk, and Th, Galerkin mode coefficients after each iteration.

Anticipating that, at least at the onset of convection, the rolls would be

somewhat ”square" (Beck, 1972), it was desired that the maximum number of

Galerkin modes, K, be chosen at least twice the aspect ratio of the box, to

exceed twice the expected number of rolls. Thus, K=40 was used for the

simulations reported in the results.
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The number of finite difference nodes used in the solution, N=41, proved to

be workable within the computational memory requirements, allowed for

reasonably rapid solution times, and provided a reasonable resolution for post-

processing and human interpretation of the output. It is subsequently shown

here to be provide a satisfactorily accurate numerical solution, as well.

The number of sample points in the y-direction, NV, was set at 501. This

parameter controls the number of points at which the flow field is computed

from the Galerkin solution, and was chosen to achieve a fine resolution in the

wavenumber search of increments of 0.03 for a box with aspect ratio of 15.

Parabolic interpolation used to locate the roll boundaries between the

computed location further improved the precision of the wavenumber

computation. This parameter, NV, also affected the sampling input to the

discrete Fourier expansion used for the Forchheimer term, and well exceeded

the necessary sample rate of the K=40 modes.

To conclude that the numerical solution parameters used in the previous

results are sufficient, a validation study of the PBox code results was

performed to confirm convergence in the Nusselt number and wavenumber

results as the number of Galerkin modes, K, and the number of vertical finite

difference nodes, N, are increased. The maximum value of the vertical velocity

field component was also examined in order to evaluate the convergence of

the flow field solution. The runs were performed for the linear model with box
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of aspect ratio, y, of 15. The results are shown in Figures 4.30 through 4.35.

For the number of finite difference nodes, the results are plotted against the

finite difference step size parameter, h.

1

=—— 4.6h N_1 ( l

Note that the N of 41 nodes used in the simulations that were reported in the

results corresponds to h=0.025.

From the plots we can see that, for Ram=50 and Ram=80, the values converge

very well with the chosen numerical parameters. The Nusselt number,

wavenumber, and maximum velocity curves are all relatively flat for K greater

than 20, and for node spacings smaller than 0.05 (N=21). Note that at least 12

modes were required to allow the solution to model any convective motion,

and at least 16 modes were needed to properly capture the motion of all of the

rolls at this aspect ratio.

For Ram=120, it is seen that the values are convergent with the number of

Galerkin modes up to about 15, then become somewhat skittish. This suggests

that some caution should be used in the results at higher Rayleigh numbers. A

”change-over" in the number of and configuration of the rolls found in the

simulated flow field was observed in the simulation results in this

neighborhood. In th the validation study, the number of rolls (those exceeding

the 10% threshold) that were recorded for runs exceeding 15 modes ranged
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from 7 to 13. It is suspected that the flattening out of the wavenumber results

with increasing number is affected by this behavior, with the number of rolls

appearing in the numerically stable simulated flow field is affected by the

number of Galerkin-Fourier modes available in the expansion.

The Ram=120 solutions, like the Ram=50 and Ram=80 cases, were well

converged for all of the finite difference mesh sizes examined.
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Chapter 5: Conclusions and Recommendations

5.1 Summary of Contributions

In the work of this dissertation, a mixed Galerkin and finite difference

numerical solution was produced to provide numerical-experiment data for

the flow and heat transfer occurring in a wide porous box filled with fluid and

heated from below, for the purpose of measuring the wavenumber of

convection. The implementation in the program code, PBox, accurately

computes the flow and temperature fields, and the resulting Nusselt number

and convective wavenumber, and provides colored-graphical output to

visualize the streamlines and isotherms.

Two entropy-based measures, the global entropy generation rate, G, and the

generalized excess entropy production stability functional, ‘1’, were derived

for the case of the porous box, and formulated to be computed using the

mixed Galerkin and finite difference numerical solutions. Extrema of these

measures were used to determine the wavenumber of convection for the

solution of the infinite-width porous layer.
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5.2 Conclusions

Several of the conclusions that were resulting from this research are

summarized here.

1. The mixed Galerkin and finite difference numerical solution is an

effective method for computing the flow and temperature fields in a

system such as a porous box heated from below. It is reasonable

efficient in computation time and memory consumption, and can be

effectively implemented on an ordinary desktop computer with

accurate results.

For the numerical solution of the porous box, an aspect ratio of 15 is

wide enough for its central region to model the behavior of an infinite

porous layer for porous media Rayleigh numbers less than about 100.

For higher Rayleigh numbers, a wider box model may be necessary to

minimize the constraints of the side walls.

The Forchheimer and Brinkman terms of the momentum equation have

little effect on the Nusselt number and convective wavenumber of the

porous box solution at porous media Rayleigh numbers up to 200, for

all but the most extreme parameters describing physical porous flow

systems.

The extremum of global entropy generation rate, G, appears to be the

best available measure to predict the wavenumber of convection for an

infinite porous layer. It is computationally straight-forward, reasonably
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intuitive from a thermodynamic perspective, and its application enables

very accurate predictions of the heat transfer rate across the layer.

The generalized entropy production rate stability functional provides a

reasonable measure to predict the wavenumber of convection for an

infinite porous layer, and results based on the predicted wavenumbers

tend to under-predict the rate of heat transfer. However, the arguments

for computing the fluctuation components of the flow, pressure, and

temperature variables based on the higher-order terms of the Fourier-

Galerkin expansion are somewhat empirical.

5.3 Recommendations for Future Study

Although the results of this research provide significant contributions to the

study of natural convection in porous media and in enclosures, there exist

several areas for continued study, and for new directions based on these

conclusions.

1. The PBox routine should be used to study the behavior of the box with

wider aspect ratios to reduce the effects of the walls at Rayleigh

numbers between 100 and 200. This would likely require more Galerkin

modes to accurately model the additional rolls in the wider box.

Because of memory limitations in the PC, implementing this may

require employing one or more of the following options:

a. Porting the code to a higher-powered computing platform with

more system RAM, and possibly parallel-processors
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b. Adding additional physical RAM to the PC

c. Making more efficient use of memory in the PC, such as sparse

system solvers and allocatable arrays.

Refine the analysis of the onset of convection to more precise values

for the critical Rayleigh number, and the corresponding critical

wavenumber. Extend the study to the dependence not only of the side

walls, but of the Brinkman and Forchheimer momentum term

parameters, as well.

Visualization of the code results could be further enhanced by

employing quiver plots of the flow, and a ”heat-lines” plot of the heat

flux throughout the box (Bejan, 1984).

A study of the roll planform shifts that occur in the box across certain

Rayleigh numbers could be conducted, to see how the addition or

removal of the additional rolls correlates with the extrema in the

entropy generation rate and generalized excess entropy production

functional.

Additional physical situations can be identified that would require

additional information for closure in the model. Maximizing the rate of

entropy generation should prove to be a useful predictor of many other

natural phenomena.
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Appendix A:

Galerkin Inner Products of Sine and Cosine Bases

The inner products of the half-wave sine and cosine basis functions used in

the Galerkin expansions factor into many of the calculations and derivations

for the porous box solution. The inner product for each combination pair is

derived in this section.

We begin with the inner product of sine 8 sine, which is orthogonal, as

 

   
 

expected

7 7n

Isinaky sin amydy= —Isin kflsmmél d6

0 7’ 0

Z—j(—) if k=mandk¢ 0 (A1)

= 1

k 0 if k¢mork=Oorm=O

by recalling the definition

7dr

ak s — ; k = O,1,2,3... (A2)

7

and defining the substitution

= a_kX 1. 19’.
(9.. k 7 (A3)

to achieve the typical form on the right-hand side of equation (A1).
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The same procedure for the product of the cosines yields a similar result
 

7r

Icosakycosamyd = gjcoskficosméldfl

O O

l

(1M5) if k=mandk¢0
7r 2

(A4)

0 if k¢mork=00rm=0    
 

Now, for the product of sin and cosine,

7 7r

Icosakysinamy dy = Z- Icoskfisinmfl d6 (A5)

0 O
N

consider special cases individually.

If m=0, then the product and integral are obviously zero.

If k=0 and m¢0, then the integral of the sine term is

 

cos(m7t) _ 1: [1— (— 1w] (A.6)

m m

71'

IsiandB =

O

For the non-zero coefficient terms, the result depends on whether there is a

fill-wave of half-wave difference. Again referring to the integral tables yields

[(ZX—fl—J if (k—m) isodd
7’ 7, m2 _ k2

[coskesinmeda = < (A7)

0

 0 if k=mor(k-m) iseven
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Expanding the odd result in partial fractions, and combining the results:

 

7

Isinakysinamydy = <

0

  

 

:(kl-m k-1m)

--( I)“1

72'l m

0

l
if m=0 ork=m or (k—m) iseven

if (k-m) isoddandm¢ 0

if k=Oandm¢0

 
 

120

(AB)



Appendix B: Triple Inner Products

The Galerkin formulations for the thermal energy equation and nonlinear

momentum equation produce triple inner products of sine and cosine. Their

values are derived in this section.

Beginning with the triple-sine product:

Aklmm) a Isinakysinaly sinamy dy

O

(8.1)

71'

1 sin kasinlesinmada

0

1.

§

where the definitions of a, and the substitution for 6 are again as used in

Appendix A, eqns (AZ) and (A3). Now the sine product relation is applied

with the k and [terms

sin asinfl= %[cos(a- ,6) — cos(a+ ,8” (8.2)

to get

71'

AW“) = i [[cos(k - [)08inm6— cos(k + 1)9sinm9]d9 (3.3)

0

Next the cosine-sine product relation is employed

cosasinfl= %[sin(a+ ,6) - sin(a- ,6” (3-4)
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to reduce to simple integrable sine terms

(0) = 1,fl 8in(k - 1+ m)6- sin(k -1— m)6
A

d6
“"1 47! O - sin(k + 1+ m)9+ sin(k +1- mm] (3.5)

Recalling the elementary definite integral

7. 1 % if k odd

(sin/cc dx = - Zooskxlg = (8.6)

0 0 if k even

and noting that the factors (k-l+m), (k-l-m), (k+l+m), and (k+I-m) will all be either

odd or even at the same time, evaluating the integral for each term yields the

result

 

   

— ‘ - fk+l+ dd

(0) )2” k-l+m k-l—m k+1+m+k+l—m 1( m)o

AM" =
(3.7)

 
  0 if(k+l+ m) eveng

 

For the product of two sines and one cosine, we again begin by substituting 8

from equation (A3) and applying the sine product relation (8.2),

7

Aklmm s Isinakysinalycosamyajz

0 (8.8)
71'

= —”— ][cos(k - l)6cosm6- cos(k + l)6003m6]d6
27: 0

Now apply the definite integral

7’ 7r - _

(cosaxcosbx dx = /2 .lf a — b (8.9)

0 0 If a at b
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to yield the result

 

7/4 ifm=i(k-l)

-%' ifm=(k+l)

 

(1) =( 7

AW A ifm=0andk¢0and1¢0 (310’

o flk=0ml=0

0 otherwise  
 

Also required the product of two cosines and a sine. Applying the substitution

of 8 from equation (A3) and the sine-cosine product relation, (8.4), yields

7

Aklm(2) E (cosakysinalycosamy dy

0 (13.11)
7!

= 3’— )[sinuc + 1)9cosm6- sin(k - l)6cosm6]d6
272' 0

Again applying the sine-cosine product relation, (8.4), simplifies to

A (2) y T sin(k+l+m)6+ sin(k+l—m)6

“"1 ‘ 47:0 — sin(k— 1+ m)9+ sin(k— 1- m)6 (8.12)

And the definite sine integral, (8.6), again can be applied to evaluate the

expression as

 

  

_ - - 'fkl dd

2n k+l+m+k+l-m
k—[+m k-l-m 1(+ +m)o

Ame) = 1 (13.13)

   
) 0 if(k+l+m)even
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Appendix C:

Galerkin Integrals for Entropy Generation Rate

This section provides the details for the calculation of the total global entropy

generation rate, G, which represents the integral of the rate of entropy

generation, Sm, over the entire domain {ye(0,y), zE(0,1)}. Integrating SNa,

given by equation (2.66)

  

 

17

Ga Hsgendydz

00

1

film; 11.111215. [112-11mlldydz
00

, H3 072 072 1 (0.1)

l)’ (T+1)2 [—) (I???)

  

  

  
—OO +_1_ 1 2+ 2—B [221+fl]+ w(§2w+§2w]

( R(T+T)v w véfl 01.2 @2 01,2

8y assuming that the temperature fluctuations are small in the y-direction, the

 

(T+t) coefficients are passed outside the y-integrals, with only the mode zero

term, (Tow) - which depends only on 2, remaining. The integral is then broken

down into six component terms, Gl G6 ; the Galerkin ansatz are substituted;

and the component integrals are simplified using the inner product terms.
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The first component term, GI , contains the conduction heat flux terms.

(($162))
K

_;_2 (aszkz + T152) ((3.2)

k I

’1
0

61(2)

K 2 K 2

[Z-aka sinaky] +[Z Tk' cosaky] dy

k=l k=l

where the final step utilizes the orthogonality of the sine and cosine in the

squared terms, as given by equations (3.9) and (3.14).

The G2 term contains the velocity magnitude.

7 7 K 7- K 2

62(2) 5 [(122 + W2)dy= I [2 VIC sinaky] + [ 2 Wk sinaky] dy

o 0 k2] k=l (C.3)

K

=1

The Brinkman terms with second y-derivatives are collected in G3.

7 v .3211
03(2); (J; 1133+ w? dy

7 K K K K
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K

.—. -22: Z ak2(Vk2 + M?)
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Now, for the Brinkman terms with second z-derivatives, we shall first define

the integral, G, (which does not appear in the final computation), as the

double-integral form

 

l7

GEHUO 1+T)[v£21+wi—:fijdydz ((3.5)

00(

Next we reverse the order of integration and integrate by parts, to reduce the

order of z-differentiation.
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G E
_ _ _

)dz d
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Note that the first terms in the square brackets vanish where evaluated at the

top and bottom wall boundaries. The remaining integral can now be

expressed with the order of integration restored as
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Next, the two y-integral terms within G4 can be addressed as the separate

components, GS and G6, as

.1..§(._.._).

 

7 K K
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I
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Each of the component integrals, G,, G, G3. Gs. and G(, can then be directly

computed from the Galerkin coefficients of the velocity and temperature.

Re-assembling these components enables G to be computed with Simpson-

rule integration across the z-dimension as

 

4(02 _ 3031.2 J97. 1

+ T) R (To + T)
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Appendix D:

Galerkin Integrals for Entropy Generation Rate

This section provides the details for the calculation of the generalized excess

entropy production functional, ‘1’, which calculated by integrating over the

entire domain, as indicated in equation (2.90).
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L -.    

To compute ‘1’ from the Galerkin solution, the appropriate Galerkin

expansions are substituted for the velocity and temperature factors, and the

expression is simplified using the inner product coefficients.
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We begin simplifying by first considering the conduction terms, and

integrating by parts to reduce the order of the derivatives
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where the y-derivatives evaluated at the left and right boundaries vanish

because of the adiabatic boundary conditions, and the the z-derivatives

evaluated at the top and bottom walls cancel each other out because of the

steady-state thermal energy balance.

In a similar fashion, we address the z-component of the pressure term

fifio + r)[6w%sfl]dydz = HUD + r)5wéPlg=l - (igKTO + 061421679512] dy

(D.3)
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and the z-derivatives in the Brinkman terms
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 62  

where the velocity variations evaluated at the boundaries all vanish because

of the boundary conditions.

Now ‘I’ may be re-expressed as

H.R.m1.1o161__) La)1,11a_;r)12.(5§2)2
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To evaluate ‘P from the Galerkin solutions, the temperature variation, 6T, is

assumed to be the higher modes (1 through K) of the expansion, which

represent the fluctuations about the ”mean field” profile given by the zeroth

mode.

K

éT—> Z Tk cosaky (D.6)

k=I

The velocity variations, 6v and (SW, are assumed to be the modes 1 through K

of the corresponding expansions, representing the fluctuations about the

quiescent state.

K

512—) Z Vk sinaky (13.7)

k=l

K

6141—) 2 Wk sinaky (0.8)

k=l

Now the appropriate expansions are substituted for the temperature and

velocity terms and fluctuations, and simplified. For computational
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manageability, the integral in equation (D.5) is broken into component terms,

S, S8. The first two are the heat transfer terms, defined as

7 5(1)?) (1.57)]
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using the orthogonal property of the sines (3.14) and cosines (3.9).
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Next we simplify the pressure terms
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The buoyancy term is simplified as
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The Brinkman terms are simplified in components S5 and 8., defined as

32(fv)+ 6w

7

55(2) 5 I(T0 + T

0

V

(T0+ 1'II

O
C
—
s
V

1

(z:

 
')2-/(T0+T

  

1.1.1

 12)-(2211
K

2— am2 Vm sin amy

133

212112
02

 
2

y]

K K

+[Zlesinaky]l[22=- am2mV sinamy] c132

k= m- 1

K K 1

~21Vk sinaky 'ZWk sinak

k: k=l

K 12 12

)M[(sz +sz )+V,, +Wk 1

k=l

(D.13)



and
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The Darcy term is included in the S7 component, defined as
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And, finally, the Forchhiemer term appears in S8, given as
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by again employing the nonlinear term expansion from equation (3.20),
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From these simplified components, the generalized excess entropy

production rate functional can be computed as

l

q! = HHBR(Sl + Sz)+ S3 - S4 + 3(- S5 + S6)+ S7 - M58]dz (0.18)

0

with the integration across the z-direction evaluated numerically using a

Simpson's rule routine.

135



Bibliography

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, Computational

Fluid Mechanics and Heat Transfer, Taylor 8 Francis.

Arnold, J. N., Catton, |., and Edwards, D. K., 1976, "Experimental Investigation

Of Natural Convection In Inclined Rectangular Regions Of Differing Aspect

Ratios,” J. Heat Transfer 98, 67-71.

Bau, H. H., and Torrance, K. E., 1982, ”Low Rayleigh Number Thermal

Convection in a Vertical Cylinder Filled with Porous Materials and Heated from

Below,” J. Heat Transfer, 104, 166-172.

Baytas, A. C., 2000, ”Entropy Generation for Natural Convection in an Inclined

Porous Cavity," Int J. Heat and Mass Transfer, 43, 2089-2099.

Beavers, G. S. and Joseph, D. D., 1967, ”Boundary Conditions at a Naturally

Permeable Wall," J. Fluid Mechanics, part 1, 30, 197-207.

Beck, J. L., 1972, ”Convection in a Box of Porous Material Saturated with

Fluid,” Physics of Fluids, 15, No. 8, 1377-1383.

Bejan, A., 1979, “A Study of Entropy Generation in Fundamental Convective

Heat Transfer,” J. Heat Transfer 101, 718.

Bejan, A., 1979, in S. Kakac, R. K. Shah, Aung (eds) Handbook of Single

Phase Convective Heat Transfer, Ch 16. Wiley, New York.

Bejan, A., 1982, Entropy Generation Through Heat and Fluid Flow, Wiley, New

York.

Bejan, A., 1984, Convection Heat Transfer, Wiley, New York.

Bejan, A., 1987, ”Convective Heat Transfer in Porous Media," Handbook of

Single-Phase Convective Heat Transfer, ed. Kakag, S., Shah, R., and Aung,

W., Ch. 16, 16-1-34, Wiley, New York.

Bejan, A., 1996, ”Entropy-generation minimization: The new thermodynamics

of finite-size devices and finite-time processes," J. Applied Physics, 79, No. 3,

1191-1218.

Bejan, A. and Almogbel, M., 2000, ”Constructal T-Shaped Fins," lntJ. Heat

and Mass Transfer, 43, 2101-2115.

136



Bénard, H., 1900, ”Les Toubillons Cellulaires dans une Nappe Liquide,” Revue

General des Science et Appliques, Vol. 12, 1261-1271, 1309-1328.

Bories, S. A., and Combarnous, M. A., 1973, ”Natural convection in a sloping

porous layer," J. Fluid Mechanics, 57, part 1, 63-79.

Borkowska-Pawlak, B. and Korylewski, W., 1985, "Cell-Pattern Sensitivity to

Box Configuration in a Saturated Porous Medium,” J. Fluid Mechanics, Vol

150, 169-181.

Busse, F. H., and Joseph, D. D., 1972, ”Bounds for Heat Transport in a Porous

Layer," J. Fluid Mechanics, vol. 54, 521-543.

Caldwell, D. R., 1970, ”Non-Linear Effects in a Rayleigh-Bénard Experiment,”

J. Fluid Mechanics, Vol 42, 161-175.

Callen, H. B., 1960, Thermodynamics, Wiley, New York.

Catton, I. and Edwards, D. K., 1967, ”Effect Of Side Walls On Natural

Convection Between Horizontal Plates Heated From Below,” J. Heat Transfer

89, 295-299.

Carton, |., 1970, ”Convection in a Closed Rectangular Region: The Onset Of

Motion," J. Heat Transfer 92, 186-188.

Catton, |.,1988, "Wavenumber Selection in Bénard Convection,” J. Heat

Transfer, 110, 1154-1165.

Chan, B. K. C., lvey, C. M., and Barry, J. M., 1970, ”Natural Convection in

Enclosed Porous Media With Rectangular Boundaries,” J. Heat Transfer, 92,

21-27.

Chan, Y. T. and Banerjee, S. 1981, ”Analysis of Transient Three-Dimensional

Natural Convection in Porous Media,” J. Heat Transfer, 103, 242-248.

Chandrasekhar S., 1961 , Hydrodynamic and Hydromagnetic Stability, Oxford,

London.

Cheng, P., 1978, ”Heat Transfer in Geothermal Systems,” Advances in Heat

Transfer, Vol. 14, 1-105.

Close, D. J., Symons, J. G., and White, R. F., 1985, ”Convective Heat Transfer

in Shallow, Gas-filled Porous Media: Experimental Investigation," Int. J. Heat

Mass Transfer, Vol. 28, No. 12, 2371-2378.

137



Combarnous, M. A., and Bories, S. A., 1975, ”Hydrothermal Convection in

Saturated Porous Media," Advances in Hydroscience, Vol. 10, . 231-307.

Darcy, H., 1856, Les Fontaines Publiques de la Villa de Dijon, Victor Dalmont,

Paris.

Davis, S. H., 1967, ”Convection in a Box: Linear Theory," J. Fluid Mechanics,

30, 465-478.

Demirel, Y., Al-Ali, H. H., and Abu-AI-Saud, 1997, ”Entropy Generation of

Convection Heat Transfer in an Asymmetrically Heated Packed Duct," Int.

Comm. Heat and Mass Transfer, Vol. 24, No. 3, . 381-390.

de Vahl Davis, G., 1968, ”Laminar natural convection in an enclosed

rectangular cavity," Int. J. Heat Mass Transfer 11, 1675-1693.

Elder, J. W., 1966, ”Numerical Experiments with Free Convection in 3 Vertical

Slot," J. Fluid Mechanics 24, part 4, 823-843.

Elder, J. W., 1967, ”Steady free convection in a porous medium heated from

below," J. Fluid Mechanics, 27, part 1, 29-48.

Elder, J. W., 1967, "Transient convection in a porous medium," J. Fluid

Mechanics, 27, part 3, 609-623.

Ergun, S., 1952, ”Fluid Flow through Packed Columns,” Chemical Engineering

Progress, 48, No. 2, 89-96.

Finlayson, B. A., 1968, ”The Galerkin Method Applied to Convective Instability

Problems," J. Fluid Mechanics, Vol 33, 201-208.

Garcia, L., 1991, "A Theoretical and Computational Study of the Rayleigh-

Benard Convection Problem in a Porous Medium Considering the

Forchheimer Term and the Absence of Local Thermal Equilibrium," proposal

for Ph. D. Dissertation, Department of Mechanical Engineering, Michigan

State University, East Lansing MI.

Genik, L. J., 1998, ”A Computational Approach to Simultaneous

Two-dimensional Heat And Mass Transfer in 3 Heat Generating Porous

Media," Ph. D. Dissertation, Department of Mechanical Engineering, Michigan

State University, East Lansing MI.

Georgiadis, J. G. and Catton, |., 1985, ”Free Convective Motion in an infinite

Vertical Porous Slot: the Non-Darcian Regime,” Int. J. Heat Mass Transfer,

Vol. 28, No. 12, 2389-2392.

138



Georgiadis, J. G. and Catton, l., 1986, ”Prandtl Number Effect on Benard

Convection in Porous Media,” J. Heat Transfer, Vol.108, . 284-290.

Georgiadis, J. G. and Catton, |., 1988, ”An Effective Equation Governing

Conductive Transport in Porous Media," J. Heat Transfer, 110, 635-641.

Georgiadis, J. G. and Catton, |., 1988, ”Dispersion in cellular thermal

convection in porous layers," lntJ. Heat and Mass Transfer, 31, No. 5,

1081-1091.

Georgiadis, J. G., 1988, ”Natural Convection in Porous Media with Anisotropic

Dispersive Thermal Conductivity," Natural Convection in Enclosures - 1988,

presented at the Winter Ann. Mtg. of the A. S. M. E. in Chicago. [OC 330.A43

1988]

Glansdorff, P., and Progogine, |., 1971, Thermodynamic Theory of Structure,

Stability, and Fluctuations, Wiley-lnterscience, London.

Givler, R. C. and Altobelli, S. A., 1994, ”A Determination of the Effective

Viscosity for the Brinkman-Forchheimer Flow Model,” J. Fluid Mechanics 258,

355-370.

Gray, D. D. and Giorgini, A. 1976, "The Validity of the Boussinesq

Approximation for Liquids and Gases," Int. J. Heat Mass Transfer, 19, 545-

551.

Holst, P. H. and Aziz, K., 1972, ”Transient Three-Dimensional Natural

Convection in Confined Porous Media," lntJ. Heat and Mass Transfer, 15,

73-90.

Home, R. N. and O'Sullivan, M. J., 1974, ”Oscillatory convection in a porous

medium heated from below," J. Fluid Mechanics 66, part 2, 339-352.

Home, R. N., 1978, ”Three-Dimensional Natural Convection in a Confined

Porous Medium Heated from Below," ASME Paper number 78—HT-56,

presented at the AlAA-ASME Thermophysics and Heat Transfer Conference in

Palo Alto, CA, May 1978.

Hsiao, K. and Advani, S. G., 1999, "A theory to describe heat transfer during

laminar incompressible flow of a fluid in a periodic porous media," Physics of

Fluids, 11, No. 7, 1738-1748.

Hsu, C. T., Cheng, P., and Wong, K. W., 1994, "Modified Zehner-Schlunder

Models for Stagnant Thermal Conductivity of Porous Media," Int. J. Heat

Mass Transfer, 37, No. 17, 2751-2759.

139



Hsu, C. T., Cheng, P., and Wong, K. W., 1995, "A Lumped Parameter Model

for Stagnant Thermal Conductivity of Spatially Periodic Porous Media," J.

Heat Transfer 117, 264-269.

Jiménez-lslas, H., L6pez-lsunza, F., and J. A. Ochoa-Tapia, 1999, "Natural

convection in a cylindrical porous cavity with internal heat source: a

numerical study with Brinkman-extended Darcy model," Int J. Heat and Mass

Transfer, 42, 4186-4195.

Jonsson, T. and Catton, |., 1987, "Prandtl Number Dependence of Natural

Convection in Porous Media," J Heat Transfer, 109, 371-377.

Joseph, D. D., 1976, Stability of Fluid Motions, Part II, Springer Tracts in

Natural Philosophy, Vol 28, Springer-Verlag, Berlin.

Katto, Y. and Masouka, T., 1967, ”Criterion for the Onset of Convective Flow

in a Fluid in a Porous Medium," Int. J. Heat Mass Transfer 10, 297-309.

Kaviany, M., 1984, ”Thermal Convective Instabilities in a Porous Medium," J.

Heat Transfer 106, 137-142.

Kaviany, M., 1984, "Onset of Thermal Convection in a saturated Porous

Medium: Experiment and Analysis," Int. J. Heat and Mass Transfer, 27, No.

11, 2101-2110.

Kaviany, M., 1991, Principles of Heat Transfer in Porous Media, Springer-

Verlag, New York.

Kladias, N. and Prasad, V., 1989, "Natural Convection in Horizontal Porous

Layers: Effects of Darcy and Prandtl Numbers," J. Heat Transfer 111, No. 4,

926-935.

Kladias, N. and Prasad, V., 1990, "Flow Transitions in Buoyancy-Induced

Non-Darcy Convection in a Porous Medium Heated from Below,"

J. Heat Transfer 112, No. 3, 675-684.

Kladias, N. and Prasad, V., 1991, "Experimental Verification of Darcy-

Brinkman-Forchheimer Flow Model for Natural Convection in Porous Media,”

J. Thermophysics and Heat Transfer, 5, No. 4, . 560-576, 1991.

Kondepudi, D., and Prigogine, 1., Modern Thermodynamics: From Heat

Engines to Dissipative Structures, Wiley, Chicester UK.

Krishnamurti, R., 1968, "Finite Amplitude Convection with Changing Mean

Temperature. Part 1. Theory," J. Fluid Mechanics, vol. 33, 445-455.

140



— ". . . Part 2. An Experimental Test of the Theory,” J. Fluid Mechanics, vol.

33, 457-463.

Krishnamurti, R., 1970, "On the Transition to Turbulent Convection. Part 1.

The Transition from Two- to Three-Dimensional Flow," J. Fluid Mechanics,

Vol 42, 295-.

— ". . . Part 2. The Transition to Time-Dependent Flow," J. Fluid Mechanics,

Vol42, 309-.

Lage, J. L., Bejan, A., and Georgiadis, J., 1991, "On the effect of the Prandtl

Number on the Onset of Bénard Convection,” Int J. Heat and Fluid Flow 12,

No. 2, 184-188.

Lage, J. L., 1992, "Comparison Between the Forchheimer and the Convective

Inertia Terms for Bénard Convection within a Fluid Saturated Porous

Medium," Fundamentals of Heat Transfer in Porous Media, A. S. M. E.

HTD-193, 49-55.

Lai, F. C. and Kulacki, F. A., 1991, "Experimental study of Free and Mixed

Convection in Horizontal Porous Layers Locally Heated from Below,"

Int. J. Heat Mass Transfer, 34, No. 2, 525-541.

Lauriat, G. and Prasad, V., 1987, "Natural Convection in a Vertical Porous

Cavity: a Numerical Study for Brinkman-Extended Darcy Formulation," J.

Heat Transfer, 109, 688-696.

Lapwood, E. R., 1948, "Convection of Fluid in a Porous Medium," Proc.

Cambridge Philosophical Society, vol 44, . 508- .

Luijkx, J. M. and Flatten, J. K., 1982, "Precise Measurements of the

Wavelength at the Onset of Rayleigh-Bénard Convection in a Long

Rectangular Duct," Int. J. Heat Mass Transfer, Vol 25, No 8, 1252-1254.

Malkus, W. V. R., and Veronis, G., 1958, "Finite Amplitude Cellular

Convection," J. Fluid Mechanics, vol. 4, 225-.

Masuoka, T., 1972, "Heat Transfer by Free Convection in a Porous Layer

Heated from Below," Heat Transfer — Japanese Research, 1, No. 1, 39-45.

Matheron, G. and de Marsily, G., 1980, "Is Transport in Porous Media Always

Diffusive? A Counterexample," Water Resources Research, Vol. 16, No. 5,

901-917.

141



McDonough, J. M., 1980, The Rayleigh-Bénard Problem on a Horizontally

Unbounded Domain: Determination of the Wavenumber of Convection,

Ph. D. Dissertation, University of California, Los Angeles.

McDonough, J. M. and Catton, l., 1982, "A Mixed Finite Difference-Galerkin

Procedure for Two-Dimensional Convection in 3 Square Box," Int. J. Heat

Mass Transfer, Vol 25, No 8, 1137-1146.

Neale G. and Nader, W., 1974, "Practical Significance of Brinkman’s Extension

of Darcy's Law: Coupled Parallel Flows within a Channel and a Bounding

Porous Medium," Canadian J. Chemical Engineering, 52, 475-478.

Nield, D. A., 1964, "Surface Tension and Buoyancy Effects in Cellular

Convection,” J. Fluid Mechanics, Vol 19, 341-352.

Nield, D. A., 1982, "Onset of Convection in a Porous Layer Saturated by an

Ideal Gas" Int. J. Heat Mass Transfer, Vol. 25, No. 10, 1605-1606.

Nield, D. A., 1983, "The Boundary Correction for the Rayleigh-Darcy Problem:

Limitations of the Brinkman Equation," J. Fluid Mechanics, Vol 128, 37-46.

Nield, D. A., 1985, Corrigendium to "The Boundary Correction for the

Rayleigh-Darcy Problem: Limitations of the Brinkman Equation," J. Fluid

Mechanics, Vol 150, 503.

Nield, D. A., 1991, "The Limitations of the Brinkman-Forchheimer Equation in

Modeling Flow in 3 Saturated Porous Medium and at an Interface,” Int. J. Heat

and Fluid Flow 12, No. 3, 269-272.

Nield, D. A., 1995, Discussion of papers by K. Vafai and P. C. Huang, J. Heat

Transfer, Vol. 117, 554-555.

Nield, D. A. and Bejan, A., 1998, Convection in Porous Media, Springer-

Verlag, New York.

Palm, E., Weber, J. E., and Kvernvold, O., 1972, "On steady convection in a

porous medium," J. Fluid Mechanics 54, part 1, 153-161.

Pearson, J. R. A., 1958, "On Convection Cells Induced by Surface Tension,"

J. Fluid Mechanics, Vol 4, 489-500.

Pedlosky, J. 1987, Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New

York.

142



Prasad, V. and Kulacki, F. A., 1987, "Natural Convection in Horizontal Porous

Layers With Localized Heating From Below," J. Heat Transfer, 109, 795-798.

Prasad, V. and Kulacki, F. A., 1984, "Convective Heat Transfer in a Rectangular

Porous Cavity --- Effect of Aspect Ratio on Flow Structure and Heat Transfer,"

J. Heat Transfer, 106, 158-165.

Prasad, V., Kulacki, F. A., and Keyhani, M., 1985, "Natural Convection in

Porous Media," J. Fluid Mechanics, Vol 150, 89-119.

Prasad, V., Kladias, N., Bandyopadhaya, A., and Tian, O.,1989, "Evaluation of

Correlations for Stagnant Thermal Conductivity of Liquid-Saturated Porous

Beds of Spheres," Int. J. Heat Mass Transfer, 32, No. 9, 1793-1796.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992,

Numerical Recipies in FORTRAN: The Art of Scientific Computing, 2"d ed,

Cambridge, New York.

Rayleigh, Lord, 1916, "On Convection Currents in 3 Horizontal Layer of Fluid

when the Higher Temperature is on the Under Side," Philosophical Magazine,

Vol. 6, No.32, 529-546.

Rees, D. A., 1997, "The Effect of Inertia on the Onset of Mixed Convection in a

Porous Layer Heated from Below," Int. Comm. Heat and Mass Transfer,

Vol. 24, No. 2, 277-283.

Roberts, P. H., 1966, "On Non-Linear Bénard Convection," in Non-Equilibrium

Thermodynamics, Variational Techniques, and Stability: Proceedings of 3

Symposium held at the University of Chicago, May 77-19, 1965, Ed. by

Donnelly, R., et. al., University of Chicago Press, Chicago.

Roberts, P. H., 1967, "Convection in horizontal layers with internal heat

generation. Theory," J. Fluid Mechanics, 30, part 1, 33-49.

Roebers, J., 1986, "Computer Simulation of a Natural Convection Driven,

Porous Media Chemical Reactor," Diplomarbeit, RWTH Aachen, Germany,

work performed in Department of Mechanical Enginereing, Michigan State

University, East Lansing MI.

Rubin, H. 1975, "On the Analysis of Cellular Convection in Porous Media," Int

J. Heat and Mass Transfer, 18, 1483-1486.

Rudraiah, N., Veerappa, B., and Balachandra Rao, 8. 1982, "Convection in a

Fluid-Saturated Porous Layer with Non-Uniform Temperature Gradient," Int J.

Heat and Mass Transfer 25, No. 8, 1147-1156.

143



Saatjian, E., ”Natural Convection in a Porous Layer Saturated with

Compressible Ideal Gas," Int J. Heat and Mass Transfer, Vol. 23, 1681-1683.

[also see response by Nield, 1982]

San, J. Y., Worek, W. M., and Lavan, Z., 1987, "Entropy generation in

combined heat and mass transfer," Int J. Heat and Mass Transfer, 30, No. 7,

1359-1369.

San, J. Y., Worek, W. M., and Lavan, Z., 1987, "Entropy Generation in

Convective Heat Transfer and Isothermal Convective Mass Transfer," J. Heat

Transfer, 109, 647-652.

Scanlon, J. W. and Segel, L. A., 1967, "Finite Amplitude Cellular Convection

Induced by Surface Tension," J. Fluid Mechanics, 30, part 1, 149-162.

Scriven, L. E. and Sternling, C. V., 1964, "On Cellular Convection Driven by

Surface-Tension Gradients: Effects of Mean Surface Tension and Surface

Viscosity," J. Fluid Mechanics, Vol 19, 321-340.

Seki, N., Fukusako, S., and Inaba, H., 1978, "Heat Transfer in a Confined

Rectangular Cavity Packed with Porous Media," Int. J. Heat Mass Transfer, 21,

No. 7, 985-989.

Singh, P., 1976, "The Application of the Governing Principle of Dissipative

Processes to Bénard Convection," Int J. Heat and Mass Transfer, 19, 581-588.

Slattery, J. C., 1967, "Flow of Viscoelastic Fluids Through Porous Media,”

AlChE Journal, 13, No. 6, 1066-1071.

Slattery, J. C., 1969, "Single-Phase Flow Through Porous Media,” AlChE

Journal, 15, No. 6, 866-872.

Somerton, C. W., and Catton, l. 1982, "On the Thermal Instability of

Superposed Porous and Fluid Layers," J. Heat Transfer, 104, 160-165.

Somerton, C. W., 1982, Natural Convection and Boiling in Porous Media,

Ph. D. Dissertation, University of California, Los Angeles.

Somerton, C. W., McDonough, J. M., and Catton, l., 1982, "Natural

Convection in Porous Media: A Mixed Finite Difference-Galerkin Solution with

Wavenumber Predictions," Proc. Vll Int Heat Transfer Conference, paper

NC40, A.S.M.E.

Somerton, C. W., 1983, "The Prandtl Number Effect in Porous Layer

Convection," Applied Scientific Research, Vol 40, 333—344.

144



Somerton, C. W., and Jimenez, J., 1999, Independent Study Project, Dept. of

Mechanical Engineering, Michigan State University, East Lansing.

Stork, K., and Muller, U., 1972, "Convection in Boxes: Experiments," J. Fluid

Mechanics, vol. 54, 599-611.

Tian, Y. S., and Karayiannis, T. G., 2000, "Low Turbulence Natural Convection

in an Air Filled Square Cavity, Part I: the Thermal and Fluid Flow Fields,"

Int J. Heat and Mass Transfer, 43, 849-866.

Turner, J. S., 1968, "The Behaviour of a Stable Salinity Gradient Heated from

Below," J. Fluid Mechanics, vol. 33, 183-200.

Vaifai, K., and Kim, S., 1995, "On the Limitations of the Brinkman-Forchheimer

Extended Darcy Equation," Int. J. Heat and Fluid Flow 16, 11-15.

Wang, C. Y., 1994, "Thermal Convective Instability of 3 Horizontal Saturated

Porous Layer with a Segment of lnhomogeneity," Applied Scientific Research,

52, 147-160.

Wang, C. Y., 1999 "Onset of Convection in a Fluid-saturated Rectangular Box,

Bottom Heated by Constant Flux,” Physics of Fluids, Vol 11, No 6, 1673-1675.

Weber, J. E., 1974, "Convection in a Porous Medium with Horizontal and

Vertical Temperature Gradients," lntJ. Heat and Mass Transfer, 17, 241-248.

Willis, G., Deardorff, J. W., and Somerville, R. C. J., 1972, "Roll-Diameter

Dependence in Rayleigh Convection and Its Effect Upon the Heat Flux,"

J. Fluid Mechanics, Vol 54, 351-367.

Wooding, R. A., 1957, "Steady state free convection of liquid in a saturated

permeable medium," J. Fluid Mechanics, 2, 273-285.

Wooding, R. A., 1963, "Convection in a saturated porous medium at large

Rayleigh number or Péclet number," J. Fluid Mechanics, 15, part 4, 527-544.

145



  llllllllfllllllllljlllllIlijllllll


