

.
2
.

.
5
3
.
.
.
.
L

t
a
t
.
:
3
;

4,.

3
.
.
n
}

.
.

<
.
.

w .. n
.

n h

.
n u m .

L
i
l
-
V
)
.

:
.
.
.
:
.
:
I
,

«
7
.
.

uuangunv‘il 3‘}mummMu

W
i
t
t
5
i
:

.
2

3
9
.
.
.
}
:

"Mun?"gm

*l'
am!!! "0'1

..
.
.
1
1
1
:
;

u
'
4
1
”
?
$
4
3
3
“
?

This is to certify that the

dissertation entitled

DESIGN AND EVALUATION OF ADAPTIVE SOFI'WARE

FOR MOBILE COMPUTING SYSTEMS

presented by

ZHINAN ZHOU

has been accepted towards fulfillment

of the requirements for the

Ph. D. degree in Computer Science

at}
Major Professor’s Signature \

7,12. 7 j/ o 9»

Date

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

2/05 p:/ClRC/DateDue.indd-p.1

DESIGN AND EVALUATION OF ADAPTIVE SOFTWARE FOR

MOBILE COMPUTING SYSTEMS

By

Zhinan Zhou

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2006

ABSTRACT

DESIGN AND EVALUATION OF ADAPTIVE SOFTWARE FOR MOBILE

COMPUTING SYSTEMS

By

Zhinan Zhou

Increasingly, software must adapt to a changing environment during execution. One of

the key driving forces behind the need for adaptation is the advent of the “Mobile Internet,”

where software on portable computing devices must adapt to several, potentially conflict-

ing, concerns, including quality of service, security, and energy consumption. Moreover,

mobile systems often comprise multiple heterogeneous applications, each of which might

support different types of adaptation. Such situations motivate the need for comprehensive

approaches to designing adaptive'mobile systems, in which multiple software components,

possibly at different system layers, collaborate to achieve overall system goals. In this

dissertation, we investigate software adaptation for mobile computing.

Composing a single adaptive system from existing adaptive/non-adaptive applications

requires an adaptation infrastructure to orchestrate the behavior of adaptive systems and

guide the collaboration among system participating applications. We propose a new con-

cept called expressive orchestration, which refers to the techniques that enable system de-

signers to Specify the system requirements, generate infrastructure for interaction among

participating applications, and codify logic for the run-time management of the system.

This dissertation addresses three aspects of design and evaluation of adaptive software for

mobile computing systems.

First, we evaluate the tradeoffs that exist among concerns (such as energy consumption

and quality of service) in mobile devices. Understanding these tradeoffs is a precursor

to designing adaptive systems. This investigation, which includes experimentation on a

mobile computing testbed, has produced several results that are directly applied to other

aspects of this research.

Second, we investigate the use of message—based communication to facilitate the in-

tegration and collaboration of adaptive/non-adaptive applications. As a proof of concept,

we develop COCA (COmposing Collaborative Adaptation), an infrastructure for collab-

orative adaptation in composite systems. COCA provides a set of development utilities

to aid system designers in specifying system configuration and adaptation logic, as well

as automatically generating the corresponding code. In addition, COCA provides a set of

run-time utilities to enforce the collaborative adaptation execution. The methods used in

COCA are general and can be extended to other distributed computing models that require

collaborative adaptation.

Third, we propose ASSL (Autonomic Service Specification Language), an XML-based

approach to Specifying and realizing adaptation in distributed service-oriented systems. Fo-

cusing on system integration, configuration, and run-time interaction management, ASSL

is an extension of COCA that provides a unified platform to describe and support interac-

tions among different parties in the development and execution of autonomic systems.

Combined, these contributions provide the research and development communities with

a better understanding of the opportunities for adaptation in mobile system and the means

to realize such systems from existing, non-adaptive software components.

To my dear wife, Xu, and my lovely son, Vincent.

Thank you for encouragement, support, and love!

ACKNOWLEDGMENTS'

My advisor and guidance committee chairperson, Dr. Philip K. McKinley, supervised this

work and guided me through this research area. I would like to express my thanks to him

for his invaluable advice and the unlimited time he spent to correct my mistakes. Other

members of my guidance committee, Dr. Betty H.C. Cheng, Dr. Sandeep Kulkarni, and

Dr. Jonathan I. Hall, were always available for all my questions. I would like to thank

them for their help and contributions to this work. I am grateful to my colleagues in the

Software Engineering and Network Systems Laboratory and in the Computer Science and

Engineering Department of Michigan State University for the insightful discussions we

had during the course of this research. Especially, I am very thankful to Dr. Seyed Masoud

Sadjadi, Ji Zhang, Zhenxiao Yang. Farshad Samimi, Dr. Chiping Tang, Dr. Peng Ge, Eric

Kasten, Dave Knoester, and Min Deng.

Last but not least, I would like to thank my family: my wife, Xu, who encouraged me to

start this Ph.D. program; my son, Vincent, who motivated me to graduate; and my parents,

parents-in-law, and other family members. who have always been there for me.

IThis work has been supported in part by the US. Department of the Navy. Office of Naval Research

under Grant No. N000l4-0l-l-0744, and in part by National Science Foundation grants CCR-99l2407.

BIA-0000433. BIA-0130724. and [TR-03 I 3 I42.

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 INTRODUCTION 1

2 BACKGROUND AND RELATED WORK 7

2.] Adaptive Mobile Computing Systems 7

2.2 Reducing Energy Consumption 8

2.2.] Hard Disk 1 1

2.2.2 Processor 14

2.2.3 Display 16

2.2.4 Wireless Network Interface 17

2.3 Collaborative Adaptation 19

2.4 Specifying Adaptation 24

2.4.1 ADL 25

2.4.2 Policy 26

2.4.3 Contract 27

2.5 Toward Expressive Orchestration 29

3 EMPIRICAL ASSESSMENT 31

3. 1 Introduction 3 1

3.2 Related Work 33

3.2.1 Power Saving Modes 33

3.2.2 Energy Consumption vs. Error Control 36

3.2.3 Energy-Aware Adaptation for Mobile Systems 37

3.3 Experimental Environment 38

3.4 Software Architecture 41

3 .4. l MetaSockets 41

3.4.2 Block-Oriented FEC Encoder/Decoder 42

3.4.3 GSM-Oriented FEC Encoder/Decoder 44

3.4.4 Audio Streaming Application 45

3.5 Experiments and Results 46

3.5.1 Packet Loss Characteristics 47

3.5.2 Effect of n, k Values 48

3.5.3 Effect of Power Saving Mode 51

3.5.4 Effect of GSM Coding 55

3.6 QoS Assessment 57

3.6.1 Packet Delivery Rate 57

3.6.2 Delay 62

3.6.3 Bandwidth 62

3.6.4 Audio Quality 63

vi

3.7 Toward Dynamic Adaptation 65

3.8 Conclusions 68

4 REALIZING COLLABORATIVE ADAPTATION FOR MOBILE SYSTEMS 70

4.1 Introduction 70

4.2 Background and Related Work 73

4.3 COCA Overview 78

4.3.1 Bridging Existing Applications 78

4.3.2 COCA Architecture 80

4.4 The A12 Communication Infrastructure and the A12 Protocol 82

4.4.1 Supporting Communication among Compositional Components 82

4.4.2 Adaptive Message Protocol 86

4.5 Case Study Application: Mobile Multimedia Conferencing 89

4.6 COCA Specification Documents 93

4.6.1 Composing and Checking COCA Specification Documents 94

4.6.2 Translating COCA Specification to Code 99

4.6.3 Enforcing COCA Adaptation 101

4.7 Demonstration 1 02

4.8 Conclusions 106

5 ORCHESTRATING DISTRIBUTED AUTONOMIC COMMUNICATION

SERVICES 107

5.1 Introduction 108

5.2 Background and Related Work l 12

5.2.1 Autonomic Computing 1 13

5.2.2 Service-Oriented Architecture for Autonomic Computing 1 14

5.2.3 Service Clouds Infrastructure 1 16

5.2.4 Architecture Description Languages l 18

5.3 A Running Example 121

5.4 Autonomic Service Specification Language 124

5.4.1 Introduction 124

5.4.2 ASSL Core Schemas 127

5.4.3 ASSL Extension Schemas 131

5.5 Empirical Results: Autonomic Services Specification, Binding, and Interaction 135

5.5.1 Service Specification and Transparent Shaping 138

5.5.2 Service Binding 145

5.5.3 Run-Time Service-Application Interaction 150

5.6 Conclusions 153

6 CONCLUSIONS AND FUTURE RESEARCH 156

6.1 Summary of Contributions 157

6.2 Future Research 158

6.2.1 Modeling Adaptive Systems with Patterns 158

6.2.2 Contract-Based QoS Specification 159

vii

BIBLIOGRAPHY 162

viii

2.1

2.2

2.3

3.1

3.2

3.3

4.1

LIST OF TABLES

Categories of energy-related software problems on the OS level [1]. 10

Hard disk operation modes [2]........................... 12

Wireless communication devices operation modes. 17

iPAQ execution modes............................... 49

Loss rate comparison of different FEC codes. 6]

Delay comparison of different FEC codes.................... 61

The system architecture description of the adaptive conferencing system. 90

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.12

3.13

3.14

3.15

LIST OF FIGURES

Market data for the portable computing devices by 2005 [3]. 8

Approximate performance/capacity growth of major laptop components [4]. . . 9

Odyssey architecture [5]. 20

The GRACE approach [6]. 22

Overview of the GRACE-2 cross—layer adaptation architecture [7]. 23

Testbed configuration. 40

Structure of a MetaSocket. 42

Operation of block erasure code. 43

Different ways of using GSM encoding on a packet stream............ 44

Software component interaction. 46

Burst error distribution (experiments and simulation). 48

Baseline energy consumption tests......................... 50

Baseline experiments................................ 52

Sample trace of packet arrival pattern in power saving mode. 54

Energy savings through periodic sleep....................... 56

Energy consumption for FEC and GSM. 57

Loss rate after FEC decoding. 58

Effect of sleep mode on loss rate.......................... 60

Audio quality assessment. 64

Adaptation between energy and QOS. 67

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Bridging an existing application to work with COCA............... 79

COCA architecture and operation. 81

The 1112 XML message format........................... 83

Passing messages in 1112. 86

An example of components used in the case study................. 91

Physical configuration of the case study system.................. 92

Class diagram of the mobile multimedia conferencing system. 93

Data flow diagram for processing the COCA Specification document....... 95

COCA specification document........................... 96

Excepts of an example COCA specification document: (left) architecture de-

scription of ASA; (right) policy description of ASA.............. 98

Code generated from the example COCA specification document: (left) glue

code for bridging ASA to COCA; (right) rules for governing ASA adaptation. 100

Trace of a COCA-based adaptive multimedia conferencing system........ 104

Interactions among different parties involved in the autonomic system devel-

opment. 1 10

Conceptual view of the Service Clouds infrastructure............... 117

The experimental testbed and example scenario.................. 122

Conceptual view of the the use of ASSL...................... 126

An example of an SSD shown in the SSD console................. 128

The SSD instance schema. 129

The information section schema. 129

An example of extending the information section schema............. 130

The binding section schema. 130

xi

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

The interaction section schema........................... 132

The information related types. 133

The QoS related types. 134

The interaction related types. 135

Class diagram of the video streaming application and the Service Clouds in-

frastructure. 1 36

Data flow diagram for processing the SSD..................... 139

An example SSD information section for the application app.fecc. 141

An example of “glue code” skeleton generated for the application app.fecc to

use the dynamic proxy instantiation service. 142

Interactive activities for transparently shaping applications............ 143

Interactive activities for service instantiation and termination........... 144

An example SSD information section for FEC services.............. 144

An example SSD binding section for UDP relay services............. 146

Interactive activities for binding with the UDP relay service. 146

An example execution script for booting the Service Clouds infrastructure. . . . 147

An example execution script for binding UDP relay services. 148

An example SSD binding section for robust pervasive streaming services. . . . 149

Interactive activities for binding with the robust pervasive streaming service. . . 150

Interactive activities for run-time service-application interaction. 152

An example SSD interaction section for compensating for the network packet

loss. 153

An example of “glue code” skeleton generated for the FEC service sev.fec to

react the adaptation request of compensating for the network packet loss. . . 154

Packet loss rate at the mobile node M1. 155

xii

Chapter 1

INTRODUCTION

Increasingly, software must adapt to a changing environment during execution. One of

several driving forces behind the need for adaptation is the advent of the “Mobile Internet,”

where software on portable computing devices must adapt to several, potentially conflict~

ing, concerns, including quality of service (QOS), security, and energy consumption. For

example, achieving an acceptable quality of service on a video stream might reduce the

lifetime of a battery-powered device to an unacceptably low level.

While some types of adaptation can be realized in individual standalone applications,

other situations require coordinated responses from multiple components1 within a com-

posite system running either on a Single platform or distributed across multiple platforms.

For example, a communication application transmitting a video stream between two nodes

might be able to mitigate high channel loss rates by simply increasing the level of for—

ward error correction (FEC) on a wireless channel. However, if the stream is part of a

lHere. we use the term component loosely. referring to standalone applications as well as software mod-

ules developed and deployed by third parties.

teleconferencing system, then above a certain loss rate, it may be preferable to reconfig-

ure the entire system, for example, by switching from an audio/video configuration to an

audio-only system. Such situations motivate the need for comprehensive approaches to

adaptation, where an adaptive system comprises multiple adaptive/non-adaptive compo-

nents, possibly spanning multiple system layers, that collaborate to achieve overall system

goals. In recent years, several cross-layer (and collaborative) adaptation frameworks have

been proposed; examples include Odyssey [8], DEOS [9], Chisel [10], and GRACE [6]. In

these systems, collaboration is realized either by constructing applications within a com-

mon framework [6, 8, 9], or by transparently augmenting applications with interfaces to

such a framework [10].

In a distributed system, however, the collaboration problem is further exacerbated. 1n-

teractions need to take place across a network among heterogenous platforms and appli-

cations. Moreover, many adaptive computing systems are constructed from pre—existing

and otherwise independent applications running on separate nodes. This trend poses three

important challenges to the design of adaptive systems. First, the individual applications

might have different adaptation policies that produce competition for limited system re-

sources and conflicts in satisfying overall system needs. Second, even if they are compat-

ible in behavior, the applications might have been developed by different organizations,

using different languages and/or different middleware platforms, and using different (and

likely incompatible) approaches to adaptation. Third, system-wide adaptations require

some means to specify and coordinate the collaboration among different applications.

We contend that supporting collaborative adaptation among existing adaptive/non-

adaptive components should be based on a model that (1) requires little or no modifica-

tion of existing applications; (2) can be easily extended to accommodate new platforms

and services; and (3) leverages existing middleware services whenever possible. To ex-

plore the issues involved in realizing such a model, this dissertation proposes expressive

orchestration, a new concept which refers to techniques that enable system designers to

construct distributed adaptive systems by specifying system requirements, managing the

interaction among system participating components, and codifying the necessary adapta-

tion logic. Here, we focus on providing a framework for the design, development, and

run-time management of adaptive mobile computing systems. Moreover, we also provide

an adaptation infrastructure to support collaborative adaptation among components that

were not necessarily designed to interoperate.

Thesis Statement. By providing a means to specify the system composition and config-

uration, manage the interaction between system components, and codifi' the adaptation

logic, expressive orchestration oflers an effective solution to the design, development, and

run-time management ofadaptive mobile systems. Expressive orchestration can be applied

to individual applications, composite systems, andfully distributed systems.

The major contributions of this dissertation are summarized as follows.

1. We evaluate tradeoffs that exist among concerns in mobile systems, focusing pri—

marily on energy consumption and quality of service (QoS). The results of these

experiments can be used as a basis for developing adaptive software to manage these

tradeoffs in the presence of highly dynamic wireless environments. As a case study,

we evaluate the energy consumption of forward error correction (FEC) as used to im-

prove QOS on wireless devices, where encoded audio streams are multicast to multi-

ple mobile computers. Our results quantify the tradeoff between improved QOS, due

to FEC, and additional energy consumption, delay, and bandwidth usage caused by

reception and decoding of redundant packets.

. Using the above results, we investigate the use of message-based communication to

facilitate the integration and collaboration of adaptive and non-adaptive components.

As a proof of concept, we develop COCA (COmposing Collaborative Adaptation),

an infrastructure for collaborative adaptation among components that were not nec-

essarily designed to interoperate in the composite systems. COCA provides a set

of development utilities to aid system designers in specifying system configurations

and adaptation logic, as well as automatically generating the corresponding code to

realize collaborative adaptation among existing components. COCA also provides a

set of run—time utilities to enforce the collaborative adaptation execution, and a Web

services infrastructure to support the corresponding interaction among components.

The methods used in COCA are general and can be extended to other distributed

computing models that require collaborative adaptation.

. We investigate specification techniques that can help design, development, deploy-

ment, and management Of distributed service-oriented autonomic systems. We pro-

pose ASSL (Autonomic Service Specification Language), an XML-based technique

that enables specification of an autonomic distributed system, focusing on system

integration, configuration, and run-time interaction management. ASSL is an exten-

sion Of COCA that provides a unified platform to describe and support interactions

among different parties in the development and execution of autonomic systems. We

apply ASSL in a service—oriented infrastructure, called Service Clouds, providing

interactive design support and run-time adaptation management.

This research is part of an Office of Naval Research sponsored project called RAPID-

ware [11], which addresses design of adaptive middleware to support interactive applica-

tions in dynamic, heterogeneous environments. Several results of this research have already

been published or are planned for publication. First, we have completed our Study of the

basic adaptation characteristics and how to manage those tradeoffs in an individual adap-

tive system. This work is published in [12—14]. Based on these preliminary results, we

have published a paper [15] about the formal specification of timing properties in adap-

tation. Second, two papers have been published, describing message-oriented adaptation

mechanisms [16] and the COCA framework [17]. Finally, we have applied the expressive

orchestration concept to a fully distributed, service-oriented mobile computing environ-

ment and are currently preparing a paper on ASSL for publication.

The remainder of this dissertation is organized as follows. Chapter 2 provides back-

ground on mobile adaptation techniques, surveys collaborative adaptation in mobile com-

puting, and motivates the need for our research. Chapter 3 introduces a test bed for the study

of adaptation characteristics, provides the experimental results for understanding tradeoffs

in adaptation behaviors and logics, and demonstrates the potential of implementing dy-

namic adaptation through rule—based management. Chapter 4 introduces the COCA frame—

work and describes a case study that demonstrates the use of COCA to realize an adaptive

mobile multimedia conferencing system constructed from legacy components. In Chap-

ter 5, we introduce ASSL and Show how it can be used to orchestrate adaptive services

atop the distributed Service Clouds infrastructure. Finally, Chapter 6 offers conclusions

and discusses future research directions.

Chapter 2

BACKGROUND AND RELATED

WORK

2.1 Adaptive Mobile Computing Systems

Interest in adaptive computing systems has grown dramatically in the several few

years [18], driven primarily by two ongoing revolutions: ubiquitous computing, which

removes traditional boundaries for how, when, and where humans and computers interact;

and autonomic computing, which refers to the ability of systems to manage and protect

their own resources with only high-level human guidance.

1n the past decade, the number of mobile computing devices has grown dramatically,

as shown in the Figure 2.1 [3]. This increase is driven primarily by the rapid growth in

the use Of the Internet and the wide deployment of wireless networks. The need for adap-

tation for mobile systems arises in part because conditions in wireless environments are

highly variable, and available computing resources are strictly limited. Hence. the software

on mobile computing devices must balance several. potentially conflicting, concerns, in-

cluding quality of service, security. and energy consumption. In this chapter, we explore

the issues involved in adaptation for mobile computing and discuss key Issues in proposed

approaches to adaptation.

Market data for notebooks and PDAs

70 t ' ‘ ' fag A?»

60 t”, k 1

50 [/ ”WT :-

Market 401,; . ._.- r-
#

S ment 1’
1 ,

' ‘ N k
(W TAM Set) 30 'rfi

‘. Oteboo

million unit 1 . . "DA

20 ~

Figure 2.1: Market data for the portable computing devices by 2005 [3].

2.2 Reducing Energy Consumption

A characteristic that distinguishes mobile computing system from many other types of

systems is the need to minimize energy consumption. Advances in rechargeable battery

technologies have not kept pace with the development of other hardware components (for

comparison, see Figure 2.2). Unlike other system resources. such as memory, energy that

has already been consumed cannot be “released” and “reallocated.” This property motivates

both the need to increase energy efficiency (more work per unit of consumed energy) and

the need to extend battery lifetime (work longer under a given load).

16): A

14x

12:

10!

8

a

2.
2 8X

8.
E 6):

O

3

E

a 4x

2

2
Q

E
._ 2x '

1x/
Emory (Enefgy SEOM)

0 1 2 3 4 5 6 7

Time (Years)

Figure 2.2: Approximate performance/capacity growth of major laptop components [4].

Many adaptive energy management strategies reduce the energy consumption of hard-

ware components by way of the operating system. We can group the adaptive software

control issues at the operating system level as shown in Table 2.1: transition, load-change,

and adaptation [1]. Almost all subsystems (CPU, wireless interface, hard disk, display and

so on) can achieve energy savings by adopting one or more of these strategies. For exam-

ple, the operating system may use the transition strategy by slowing down the CPU speed

when the computational load is low, producing a corresponding reduction in the voltage

needed by the CPU. Similarly, displays usually have one or more low-power modes. On

the other hand, the load-change strategy can be used to reduce energy consumption of a

Table 2.1: Categories of energy-related software problems on the OS level [1].

Category Description

Transition When should a component switch between available execution modes?

Load-change How can the load on a component be modified so that it can be put in low-power

modes more often?

Adaptation How can software permit novel, energy-saving uses of components?

wireless interface by compressing the transmitting data; doing so can reduce the packet

size and thus reduce the communication activity on the wireless client. An example of an

adaptation strategy is to use the wireless network as the replacement for hard disk: offload-

ing storage to a fixed workstation results in energy savings on the hard disk, which is also

a major energy consumer. We emphasize that these strategies are not mutually exclusive,

but can be used in combination. Furthermore, each strategy has its own advantages and

disadvantages, so tradeoffs need to be considered in their selection. Next, let us examine

how these strategies have been used to conserve energy via hard disk, CPU, display, and

wireless network interface.

The two main strategies here are to put devices into sleep mode (e.g., hard disk and

wireless network interface) and to reduce output power (e.g., CPU and display). A key

to the effectiveness of both strategies is the inactivity threshold. Numerous prediction

algorithms have been proposed for both fixed and adaptive thresholds. A fixed inactiv-

ity threshold method is simple to implement. If the device is inactive for the threshold

time, it is assumed that there will be no activity in the near future and the device can be

switched into low power mode. An adaptive inactivity threshold method, however, attempts

to adjust the threshold according to the device usage pattern distribution. Tradeoffs exist

among these strategies. Switching devices into low power mode always introduces delays,

10

which can inconvenience the user and potentially harm the application, such as those with

real-time requirements. Moreover, low power mode can sometimes introduce new energy

consumption that cancels part of the energy savings.

2.2.1 Hard Disk

Depending on the rotation speed, buffer size and disk usage pattern, the hard disk typ-

ically consumes 15-30% [19] of the total energy in a mobile computer. Although the

power/MByte ratio, which represents the energy efficiency of a hard disk, has fallen with

technology advances, the absolute energy consumed by a typical hard disk has remained

approximately constant. Many researchers have investigated how to achieve energy savings

by spinning down the hard disk during periods of inactivity [19—24], while others [25,26]

have proposed reducing energy consumption through remote execution. We review each

method below. V

Table 2.2 lists five hard disk operation modes in order of decreasing energy consump-

tion. Li et a1. [27] showed that Spinning down the disk after idling a few seconds can save

about 90% of the energy compared to never spinning down. However, there exist tradeoffs

in this approach. First, hard disks are mechanical devices, so frequent spin-up/spin-down

may cause hardware failure (normally, a hard disk has spin-up/spin-down life of 40,000-

60.000 cycles) [27]. Second, the disk will use considerable time and energy in the startup

mode. If this consumed energy is greater than the energy saved by spinning down the

motor, the overall energy consumption may increase rather than decrease. Third, spinning

down the motor will introduce some delays, since the motor must return to full speed to

satisfy the next disk request.

Table 2.2: Hard disk operation modes [2].

Mode Description

Startup the motor accelerated from rest to rated speed

Active seeking, reading, or writing

Idle not seeking, reading or writing, but the motor is still spinning

Standby the motor is not spinning and the heads are parked, but the controller electronics

are active

Sleep the host interface is off except for a logic circuit to sense a reset signal

How to select an inactivity threshold, either fixed or dynamic, before which the hard

disk can enter the sleep mode, is a key problem in hard disk mode transition. Most man-

ufacturers suggest a fixed inactivity threshold of 3-5 minutes. But some researchers have

found that a more fine-grained approach (as low as 1-10 seconds) can save more energy

than a coarse-grained approach [24, 27]. Since this “fixed inactivity threshold” method is

Simple to implement, it is the most widely used at present, even though the corresponding

energy savings is limited. If the hard disk is inactive for the threshold time, it is assumed

that there will be no disk accesses in the near future and the motor is spun down until next

read/write request. If the threshold is too low, the user may experience the spin-up delay

too often; if the threshold is too high, the energy savings will be small since the motor

remains spinning most of the time. Li et al. showed that the optimal threshold is about

6 seconds [27], which means if there is no disk activity for greater than 6 seconds, then

spinning down the disk will save energy.

In most cases, the hard disk access patterns change with time, and thus a fixed inactiv-

ity threshold may be insufficient. An adaptive inactivity threshold attempts to adjust the

threshold according to the access pattern distribution [21]: undesirable spin-up delays in-

12

dicate that the threshold is too short and should be increased; if the delays are acceptable,

the threshold is long enough and can possibly be decreased. It is worth pointing out that

many parameters affect the performance (e.g., how to increase/decrease the threshold and

by how much, limits to the maximum/minimum threshold, etc), and no single set of param-

eters accommodates all workloads. Therefore, to our knowledge this approach has not yet

been incorporated into products.

Another way to reduce the energy consumption of a hard disk is to modify its workload.

Such modification is usually effected by changing the configuration or usage of the cache

above it. Li et a1. [27] found that increasing cache size can produce a large reduction in

energy consumption. In that study, using a 1 MB cache reduced energy consumption by

50% compared to using no cache, but further increases in cache size had a smaller effect on

energy consumption, presumably because cache hit ratio increases slowly with increased

cache size [28].

Finally, offloading storage through a wireless network can also be considered as an

adaptation strategy in hard disk energy management. The advantage of this strategy is

that the wired storage device can be large and power-hungry without affecting the weight

and energy consumption of the portable device. Disadvantages include increased energy

consumption by the wireless communication system, increased use of the limited wireless

bandwidth, and higher latency for file system accesses. Rudenko et a1. [25] proposed a

model that performs all processing on a wired server. In this model, the portable device

is merely a terminal that transmits and receives low-level I/O information, so that the en-

ergy for general processing and storage is consumed by the wired server instead of the

mobile device. In this way, portable storage and CPU energy consumption is traded for

13

high processing request latency, network bandwidth consumption, and additional energy

consumption at the wireless network interface.

2.2.2 Processor

The energy consumed by the CPU is directly related to the CPU clock frequency and supply

voltage, which can be controlled and adjusted at run time. The basic method for reducing

the CPU energy consumption is to lower the supply power, which results in Slowing down

the CPU clock. The amount of power P used by a CMOS circuit can be given as P oc

CV"2 f, where C is load capacitance, V is the power-supply voltage, and f is the clock

frequency. The time t for the CPU to finish a task is inversely proportional to the clock

frequency as t cc 1 /f . Because the total energy E consumed for the CPU to complete a

task is E 2 P x t, it indicates that the total energy E is proportional to the square of the

voltage V: E cc CV2. Hence even a small decrease in CPU supply voltage can produce a

large decrease in the total energy consumed by the system.

Most researchers investigating this problem [29—33] focus on how to schedule CPU

usage to achieve the maximal energy savings by reducing CPU idle time or trading en-

ergy savings for acceptable performance. A primary strategy to adjust the CPU speed is to

“stretch” activities from busy periods into subsequent adjacent idle periods, thereby balanc-

ing CPU usage between periodic bursts of high CPU utilization and the remaining periods

of idle time [29]. For example, when the CPU is running at the full speed, it may take

0.001 second to respond a user’s command followed by an idle period. However, if the

CPU is running at one-tenth Speed, the same task can be completed in 0.01 second without

inconveniencing the user while the corresponding energy consumption will decrease. One

approach to examine the CPU utilization is to divide CPU time into fine-grained windows

(e.g., 50 ms), and at the beginning of each window, examine the CPU utilization of previ-

ous windows. Under the assumption that the CPU utilization of adjacent windows will be

similar, if the utilization is high, the CPU speed will be increased; if the utilization is low,

the CPU speed will be decreased. The performance of this method is highly dependent

on the design of the prediction algorithm, which predicts the near term CPU utilization.

Govil et a1. [30] proposed several prediction algorithms according to different utilization

patterns. For example, one prediction algorithm looks up the last twelve utilization values.

The three most recent values constitute the short-term past while the remaining nine values

constitute the long—term past. The prediction for the coming utilization is then a weighed

sum ofthese twelve values.

The lowest CPU energy consumption comes with the lowest possible CPU speed, how-

ever, slowing down the CPU speed achieves energy savings at the expense of performance.

Furthermore, reducing CPU performance may cause an increase in the energy consumption

of other components, since they may need to remain active longer. For example, reducing

CPU speed may result in the slowdown of the processing of incoming/outgoing packets

in a wireless mobile device, which may increase the active time of WNIC and consume

more energy. Another problem with switching the processor speed is that the system will

experience more frequent changes in temperature [34], which may increase the stress at the

chip interface and reduce the CPU reliability.

15

2.2.3 Display

The display subsystem is the largest energy consumer in a stand-alone mobile computer [4],

and approximately 80% of the energy consumed by the display subsystem is for the back-

light [35]. Because the energy consumed by the backlight is roughly proportional to the

luminance delivered, one general strategy is to reduce the backlight brightness level or turn

off the backlight entirely when it is not needed [2]. Switching from color to monochrome

or reducing the update frequency can also reduce the energy consumption of display sub-

system [2]. A simple approach is to turn down or off the backlight and display after an idle

period without any user input. The rationale is that since if the user has not performed any

input recently, he or she may not be looking at the screen any longer [1]. A variation on

this strategy is not to turn off the backlight immediately, but rather to dim it progressively.

If the user is indeed looking at the screen, he or she has the option to restore the backlight

back by prompting the system.

In addition, different display patterns have different loads on the display subsystem.

For example, most LCDS are naturally white, which means that the display pixels are white

when they are unselected and black when they are selected, so lighter color consumes

less energy [36]. Furthermore, lighter color looks brighter, and thus encourages the user

to use dimmer backlight. According to these characteristics, software may be designed

to dynamically increase or decrease the display brightness to satisfy the user’s activity

requirements. lyer et al. found that darkening the unused windows and simplifying the

display contents can reduce the system energy consumption while not affecting the user’s

normal activities [37].

Table 2.3: Wireless communication devices operation modes.

Mode Description

Transmit transmitting data

Receive receiving data

Idle is neither sending or receiving but scanning for a valid signal, which is like the

receive mode

Sleep the transceiver circuitry is powered down except for some small timing parts which

allows for a fast bring-up

Off completely switched off

2.2.4 Wireless Network Interface

Lastly, let us consider the wireless network interface card (WNIC), which makes mobility

possible, but is also a major consumer of energy. Wireless communication devices typically

have five operation modes, as listed in Table 2.3. The main difference between idle and off

mode is the presence of the WNIC. In idle mode, the WNIC continually listens to the

network and exchanges control messages (e.g., beacon messages) with the access point

or other mobile hosts. Furthermore, in idle mode, the system has to process incoming

traffic and maintain the data exchange between the network interface and the Operating

system. Hence, the difference in energy consumption between idle mode and off mode can

be considered as the energy needed by the system to maintain network connection.

Transition strategies for wireless communication devices entering Sleep mode are sim—

ilar to those for hard disks, so like solutions can be applied. However, two features of

WNICS suggest different approaches to determining the inactivity threshold selection.

First, the energy needed to put the WNIC into sleep mode and to reawaken it is very small.

Second, it is necessary for the WNIC to exit sleep mode periodically in order to maintain

its connection with the access point or other peer hosts [1]. One proposed strategy is to

17

monitor the host’s network activities (e.g., HTTP, SMTP, FTP, etc), and if there is no sig-

nificant network traffic during the threshold period, it implies that the user may be in the

think time (e.g., browsing the contents of the web page) and the WNIC can be put into sleep

mode until the user sends a connection request (e.g., a HTTP request) again [38].

An alternative approach to reducing energy consumption is to reduce the load (e.g.,

packet number, packet Size, or both) on wireless interface. Xu et a1. [39] investigated

the tradeoff between (1) compressing transmitting data, which can reduce the packet Size

and thus reducing the transmission time, and (2) the corresponding computation workload,

which increases CPU energy consumption. Another strategy is to reduce or stop the data

transmission when the wireless channel is temporarily poor, i.e. the packet loss rate is

high [40], so as to reduce packet retransmissions.

Communication and computation are two main sources of energy consumption in wire-

less networks. Besides the energy saving mechanisms provided by the IEEE 802.11 pro-

tocol, error control schemes and compression techniques can reduce energy consumption

by avoiding unnecessary processing and reducing the amount of data traffic. However, it is

important to consider tradeoffs. First, compression can reduce traffic, but compressor selec-

tion would increase energy consumption instead of saving energy due to the extended idle

time during decompression. Second, switching WNIC into sleep mode can conserve en-

ergy but also introduces delays that reduce quality of service. Third, forward error control

can reduce retransmissions, but the computational load of encoding/decoding redundant

packets is not negligible. These issues are addressed in Chapter 3.

2.3 Collaborative Adaptation

As we have seen, different parts of a mobile system can be adapted individually in or-

der to conserve energy. However, these techniques might be in conflict with other sys-

tem goals, for example, maximizing quality of service. Numerous frameworks have been

proposed to address the need for a coordinated, system-wide approach to software adapta-

tion [5—10, 29,41—54]. Supporting adaptation usually involves intercepting and redirecting

interactions among software entities: encapsulating these actions within a particular system

layer provides transparency to higher and lower layers. Several projects address adaptation

at the operating system level [55, 56]. Many others place adaptive behavior in middleware

which, in addition to its traditional role in hiding resource distribution and platform hetero-

geneity, can be used to address concerns such as quality of service, energy management,

fault tolerance, and security policy [45, 57-65]. Finally, several projects focus on dynamic

recomposition within the application itself, either directly by using a language that sup-

ports recomposition [66,67] or indirectly by modifying code as it is loaded by a virtual ma-

chine [68], or dynamically weaving new behavior into running programs [45,69—72]. Here,

we review several projects targeted primarily or exclusively at mobile systems [6, 8,9, 73].

Odyssey. Because mobile hosts are resource-poor relative to static hosts and rely on a

finite energy source, it is suggested that the client—server architecture is desirable [47].

In this kind of architecture, servers are the home of data and clients retrieve data from

servers [48]. Odyssey [8], developed at Carnegie Mellon University. is a relatively early

cross-layer framework, supporting interaction between the operating system and applica-

tions to meet user-specified goals for battery duration. In Odyssey, the role of the operating

19

system is to sense the external environment (such as network connectivity and physical

local changes), and monitor and allocate resource (such as network bandwidth, disk space,

battery power, etc); in contrast, the role of individual applications is adapting to the chang-

ing environment with the information and resource provided by the operating system. In

this way, a well-defined collaborative partnership between the operating system and indi-

vidual applications is established [48].

Odyssey

Video

warden

. Web

Odyssey runttme warden

‘\] Upcalls]'//v

tsop,

request
Interceptor

Application

V
i
c
e
r
o
y

Kernel

Figure 2.3: Odyssey architecture [5].

The architecture of Odyssey is shown as Figure 2.3. Although it is implemented in

user space, it could be thought of as part of the operating system and implemented di-

rectly in the kernel or as a middleware [8]. The adaption in Odyssey is trading fidelity,

which is defined as the degree to which a presented item matches the reference copy, for

performance. When an application chooses a fidelity, it issues a resource request, which

is forwarded by the interceptor to the viceroy. The viceroy is responsible for monitoring

the availability of system resources. Once the viceroy receives a resource request, it com-

pares the resource’s current availability with any established window of tolerance (since

the adaptation only takes place when certain range of changes happens). If a resource is

out of the window bounds, each affected application is notified via an upcall, and then the

20

application responds to the notification by changing the fidelity of the data. These changes

are done through wardens, which are responsible for all operations on data items of their

type and communications between the clients and servers.

Based on the assumption that lowering data fidelity yield significant energy savings,

Flinn et al. [49] used Odyssey to trade data quality for energy savings. With the help of

PowerScope [50], an energy profiling tool that maps energy consumption to specific soft-

ware components, Odyssey can calculate residual energy. When predicted demand exceeds

residual energy, Odyssey issues upcalls so that applications can adapt themselves to reduce

energy usage by decreasing the data fidelity. For example, a media player application can

request the low-quality black-white media data instead of the high-quality colorful copy

to conserve energy. When multiple applications are requesting the same resource concur-

rently, Odyssey allocates the resource according to user-defined priorities, i.e. always tries

to degrade a lower-priority application before degrading a higher-priority one. Flynn citere-

duce.energy.office extended this concept in the design of Puppeteer, a proxy-based system

that dynamically adjusts fidelity of documents delivered to mobile systems.

GRACE. Most existing energy-aware adaptation techniques utilize the OS to facilitate

application adaptation or focus on adapting in a single layer (network layer or applica-

tion layer) at a time. The goal of the Global Resource Adaptation through CoopEration

(GRACE) [6] project at the University of Illinois at Urbana—Champaign is to develop an in-

tegrated cross-layer adaptive system to maximize user satisfaction within the constraints of

energy. time, and bandwidth. To achieve this system design goal, hardware and all software

layers cooperatively adapt to the changing system resources and application demands. As

21

shown in Figure 2.4, all parts of the existing system cooperatively adapt as a community

and achieve a globally optimal utilization of resources.

Figure 2.4: The GRACE approach [6].

GRACE introduces the concepts of combination of global and local adaptation. The

target of global adaptation is large and long-term changes while the local adaptation re-

acts to small and temporary variations. So the global adaptation is a negotiation among

different applications for resources. Once the resources have been allocated fairly to all

applications, different system layers can adapt locally as long as they do not exceed the

provided reservations.

Figure 2.5 shows the architecture of GRACE-2 framework, the latest GRACE proto-

type. GRACE-Z supports application QoS under CPU and energy constraints via coor-

dinated adaptation in cross layers (hardware, 08 and application). Specifically, the global

controller resides in the OS layer and has full access to the system states (e.g., task resource

demands, energy availability, etc). According to task utilities, CPU demands observed by

the CPU monitor, and energy availability observed by the battery monitor, the global con-

troller mediates task QoS levels, CPU processing allocations, and CPU frequency to meet

the QoS and energy requirement. The global controller interacts with different adaptors

22

which reside in different layers to adjusts their tasks which achieves in cross—layer adap-

tation. For example, the CPU adaptor in hardware layer dynamically adjusts the CPU

frequency to save energy using dynamic voltage scaling (DVS) [29]. The OS scheduler

in OS layer adjusts task CPU allocation to deliver a soft real—time performance guaran-

tee. When the hardware and OS layer adaptation cannot meet current task requirement, the

application adaptor is evoked to adjust its task to the QOS level configured by the global

controller at the application layer. GRACE has been used to develop ReCalendar [52],

which allow users to arrange application activities and request energy reservation via CPU

frequency/voltage adaptation and soft real-time scheduling.

Application

LMonitor I Adaptor l] Predictor]

a co fl next frame’s

pp n 9 resource demands

status: frequency

energy; Per-app Controller 1

{ miss, L

O overrun allocated time, long-term ,3 D

E bandwidth resource demands C 0-

a) l, ‘23 0

Z

] Global Controller]

L . cycles 5

.2 bandwidth allocated time. bandwidth, energy usage a

t: l

0 ‘8

2] Monitor I ‘3
 OS Scheduler "equency

Figure 2.5: Overview of the GRACE-2 cross-layer adaptation architecture [7].

PADS. The goal of the Power Aware Distributed Systems (PADS) project [73] is to pro-

vide a framework for assessing of power—aware design strategies in sensor network environ-

23

ments. The project also investigates strategies for intra-node power-aware management and

network-wide power-aware management that realize the tradeoffs between quality and en-

ergy [73]. One key area of study in PADS is power-aware resource scheduling in real-time

operating system (RTOS), which yields an adaptive tradeoff between energy consumption

and system fidelity/quality [74]. The basic approach is to exploit slack time in the use of

a device by shutting it down, or operating it at a lower-power or lower-speed setting. In

many systems, even if all task instances run for their worst case execution time (WCET),

the CPU utilization is often far lower than 100% and thus generates idle intervals (slack).

This slack time can be exploited to reduce energy consumption by slowing down the CPU

and operating at a lower voltage, extending the task execution time to its WCET.

2.4 Specifying Adaptation

From aforementioned example adaptive systems, we know that adaptive computing is a

promising but also challenging computing model, and it is extremely difficult to build adap-

tive systems from scratch. In order to simplify adaptive system design and management,

the implementation of adaptive functionalities often relies on the collaboration among in-

dividual components. The relationship among components must be based on agreement,

in which a component can precisely specify its service to other components and the in-

teractions with other components. To validate the agreement, a component must not only

understand and abide the terms of its agreement, but also be capable of negotiating to es-

tablish agreements. With the help of these expressive and functional agreements, it might

be possible to change the system administration from passive monitoring and human based

24

intervention to active management that requires only high-level human guidance.

In the past several years, numerous approaches have been proposed to specify soft-

ware composition and govern software adaptation. Examples include QOS specification

and contract [75—79], adaptive QOS control and management [80—86], software architec-

ture approaches to adaptation [87—90], and policy-oriented adaptation [91—94]. In this

dissertation, the concept of expressive orchestration is most closely related to three classes

of projects: those that use architecture description languages (ADLS) to describe how an

adaptive system is composted [53. 54, 87—90], those that use a policy-oriented approach to

guide the adaptation process during execution [10, 60, 79, 91—99], and those that use the

concept of contract [100, 101] to specify and manage the collaborative relationship among

components and guide their interactive behaviors.

2.4.1 ADL

Architectural Description Languages (ADLS) are notations for expressing and representing

architectural designs and styles. They describe the high level structure of a system in terms

of components and component interactions. Using an ADL, a system developer can specify

the system functional composition through component selection, and attach to it particular

module interaction contracts. ADLS are useful in enabling component reuse and product

line development, formalizing component relationships and tailoring related components to

specific application domain. Wright [102] is an ADL that focuses on formally specifying

protocols of interaction among components in an architecture. Darwin [103] is intended to

be a general purpose notation for specifying the structure of distributed systems composed

from diverse components using different interaction mechanisms. It divides the description

of structure between computation and interaction in order to provide a clear separation of

concerns. Darwin allows distributed programs to be specified as a hierarchic construction

of components, and components interact by assessing services. Each inter-component in-

teraction is represented by a binding between a required service and provided services. The

ADLS are now adapted to XML. The XML-based ADL, xADL 2.0 [104], clearly defines a

structural instance schema, describing the topological organization of components.

2.4.2 Policy

The concept of “policy” is being widely used in enterprizes for defining strategies for qual-

ity of service management, storage backup, system configuration as well as security au-

thorization and management [105]. Policies and QOS specifications are Often specified at

design time and enforced at run time. However, most of them also provide run-time modi-

fication mechanism which brings dynamic specification support.

QML [95] is a quality of service modeling language designed by HP laboratories, and

it can be used to construct QOS-based quantitative specifications, allowing users to spec-

ify non-functional aspects of services separate from the interface definition. QML is a

general-purpose QOS specification language capable of dealing with any QOS aspects (e. g.,

reliability, availability, performance, security, and timing) and any application domains.

QML allows detailed descriptions of the QOS associated with operations, attributes, and

operation parameters of interfaces. This level of detail is essential to clearly specify and

divide the responsibilities among service clients and service implementations.

26

2.4.3 Contract

Contract-based techniques have been widely used in the research of software engineering,

programming language. and distributed systems. The concept of “contract” can be consid-

ered as the extension and combination of the concept of ADL and policy. Beugnard et a1.

defined a general model of software contracts [100]. According to their definition, there

are four classes of contracts in the software component world according to increasingly ne-

gotiable properties: basic or syntactic, behavioral, synchronization, and quantitative. Basic

contracts are normally implemented in Interface Definition Languages (IDLS) and 0-0

languages, Specifying the input/output parameters, operations, and possible exceptions of

a component. Behavioral contracts specify precisely the effect of operation executions,

and behavioral contracts are designed to restrict the conditions of operations and express

the outcomes of executions. Synchronization contracts Show concrete and specific ways in

which the component serves its clients. Specifically, it is important for the system devel-

oper to describe the relations among component elements and how they interact with each

other. Quantitative contracts quantify the expected behaviors of a component and provide

the means to negotiate the offered services. Quantitative contracts also encapsulate the cus-

tomer expectation of quality of service to the service provider. In the rest of this section,

we briefly review examples about each class of contract.

An Interface Definition Language (IDL) is a formal language used to define object

interfaces independent of the programming language used to implement the those methods.

Many software vendors use IDL to enable distributed computing architectures, for example,

OMG IDL and Microsoft WIDL. An intuitive property of IDL is that the interface definition

27

is independent of hardware, operating system, and programming language. The interface

to a class of objects contains the information that a caller must know to use an object,

specifically, the names of its attributes and the signatures of its methods. An IDL does not

contain any mechanism for specifying computational details.

Behavioral contracts are designed to restrict the operation conditions and express the

execution outcomes. Design by contract is the collaboration-level specification and design

approach [101], and it is supported in the Eiffel language [106]. It views each interaction

between two objects as a legal contract between a service client and a service provider.

Each such contract documents the respective obligations and benefits of each party, and

the obligations of one party result in benefits for the other party. An operation’s behavior

is specified by boolean assertions, called pre- and post-conditions. Each contract Specifies

the following important aspects of behavioral compositions. Firstly, the contract identifies

the participants and their contractual obligations. Contractual obligations includes type

obligations (supporting certain variables and external interfaces) and causal obligations

(performing an ordered sequence of actions by requests and making certain conditions

true). Secondly, the contract defines invariants that participants cooperate to maintain.

Lastly, the contract specifies pre-conditions on participants to establish the contract and

the methods which instantiate the contract. Besides these building blocks, contracts also

provide constructs for the refinement and inclusion of behavior defined in other contracts.

Coordination contracts [107] are modeling primitives that facilitate the evolution of

software systems by encapsulating the coordination aspects, i.e., the way components in—

teract. A coordination contract fulfils a role similar to that of a connector in ADLS, and it

consists of a prescription of coordination effects that will be superposed on a collection of

28

partners. The use of coordination contracts encourages the separation of computation from

coordination aspects.

One of the most extensive examples of quantitative contracts is Quality Objects

(QuO) [60] developed by BBN, which provides an adaptable framework to support QOS

in CORBA applications. QuO use Aspect-Oriented approach to weaves QOS aspects, re—

ferred to as qoskets, into the applications at compile time by wrapping stubs and skeletons

with specialized delegates, which intercept requests and replies for possible modifications.

QuO extends the CORBA functional IDLS with a QOS Description Language (QDL) con-

sisting of three sub-languages, the Contract Description Language (CDL), the Structure

Description Language (SDL), and the Resource Description Language (RDL). CDL is used

for specifying a QOS contract, which consists of four major components: a set of nested

regions, each representing a possible state of QOS; transitions for each level of regions,

specifying behavior to trigger when the active region changes; system condition objects,

gathering run-time information for measuring and controlling QOS; and callbacks, notify-

ing the client or object. While CDL is used for describing the QOS contract between a

client and an object, SDL allows programmers to specify the structural aspects of the QoS

application, including adaptation alternatives and strategies based on the QOS measured in

the system.

2.5 Toward Expressive Orchestration

The concept of expressive orchestration is intended to provide a comprehensive develop-

ment toolkit and infrastructure to specify the system requirement, facilitate the system inte-

29

gration and configuration process, and manage the run-time collaborative adaptation. Ulti-

mately, the high-level expressive specification (compositional architecture, possible states

of operation, and actions recommended with respect to the state transitions) can be used

to orchestrate the behaviors of possibly incompatible and potentially conflicting compo-

nents. In the next chapter, however, we focus on a preliminary step, understanding the

basic adaptation behaviors and logics.

30

Chapter 3

EMPIRICAL ASSESSMENT

3.1 Introduction

While wireless communication brings mobility to the user, the network subsystem is also

one of the largest consumers of energy in a mobile device. This problem is exacerbated '

in noisy environments, where error control strategies generate additional network traffic.

Traditional error control methods are based on retransmissions of lost packets, while oth—

ers involve forward error correction (FEC) [108]. FEC introduces redundancy in the data

stream in the form of parity packets, enabling recovery of lost packets at the receiver with-

out retransmissions. FEC is particularly well-suited for use with interactive, real-time com-

munication streams, where waiting for retransmissions introduces unacceptable delay and

jitter. However, transmitting and receiving parity packets consumes additional energy.

In this chapter, we investigate the relationship between quality of service (QOS) and

energy consumption characteristics when FEC is used in communication with wireless de-

vices. The work is experimental and focuses on FEC support for interactive audio multicas-

3l

ting to handheld computers and laptops in wireless local area networks (WLANS). In this

study, we focus on WLANs that extend wired LANs, that is, they are used in infrastructure

mode. One dimension of our ongoing work addresses energy management and QOS in mo-

bile ad hoc networks. Two FEC protocols are investigated, one using block erasure codes

and the other using the GSM 06.10 encoding algorithm for cellular telephones [109].

The main contributions of this chapter are threefold. First, the study helps to quantify

the tradeoff between improved packet delivery rate, due to FEC, and additional energy

consumption caused by receiving and decoding redundant packets. Second, we assess the

effectiveness of periodically putting the wireless network interface card (WNIC) into sleep

mode to save energy while satisfying QOS requirements. Third, we demonstrate how these

results can be used as a basis for the development of adaptive software mechanisms that

“manage” the energy consumption in the presence of highly dynamic environments.

The remainder of this chapter is organized as follows. Section 3.2 provides the back-

ground and related work. In Sections 3.3 and 3.4, respectively, we describe the experi-

mental environment and software configuration used in this study. Section 3.5 describes

experiments to evaluate energy consumption characteristics under different FEC configu-

rations. In Section 3.6, we assess the quality of audio communication using various FEC

protocols and parameters. Section 3.7 shows how an adaptive software framework can

respond dynamically to changes in the environment. Conclusions are given in Section 3.8.

3.2 Related Work

Before describing our experimental study, let us first review other research aimed at reduc~

ing the energy consumption associated with the communication subsystem. We focus on

three general issues: (1) use of a power-save mode, (2) the energy consumption character-

istics of error control protocols, and (3) energy-aware adaptation.

3.2.1 Power Saving Modes

The sources of energy consumption in wireless communication can be classified into two

categories: communication related and computation related [110]. Correspondingly, two

basic principles to achieve energy savings are (l) avoiding unnecessary network activi-

ties, and (2) reducing the amount of data traffic. Researchers have investigated the main

cause of unnecessary energy consumption and the corresponding energy saving mecha-

nisms in a wireless [1 10]. For example, Packet collisions produces retransmissions in reli-

able protocols (e.g., TCP/IP), and retransmissions lead to unnecessary energy consumption

and possibly unbounded delays. Hence, reducing collisions can reduce energy consump-

tion [1 l 1]. Switching from transmit to receive mode and vice versa also consumes addi-

tional energy [112], so if possible. a mobile device should be allocated contiguous slots

for transmission or reception so as minimize this effect. Moreover, poor channel condi-

tions generate high error rates, and the energy used to process and transmit that will later

be lost, is wasted. Hence, avoiding transmission while the channel quality is poor, or

adopting effective error control schemes, can save energy. Finally, significant energy is

consumed at a mobile host when it either transmits a packet or when it receives a packet,

33

and a transmission from one host to another is potentially overheard by all the neighbors

of the transmitting host. So all these overbearing nodes consume energy even though the

transmission is not directed to them [1 13, 114]. Periodically putting the mobile hosts into

sleep modes can avoid overbearing problems.

Researchers at the Technical University of Berlin [112] further investigated the en-

ergy consumption of an IEEE 802.11 WLAN interface card under different working modes

(idle, Sleep, receive, transmit) and wireless network conditions. They found that the energy

consumed by the WNIC is significantly affected by the data rate, transmission power and

packet size. In particular, the energy consumed per bit of data successfully transmitted over

the medium decreases as the packet size and data rate increased.

The power management mechanism is one of the most complicated parts of wireless

protOcols such as the IEEE 802.11 standard [1 15]. The primary power saving mechanism

in the IEEE 802.11 protocol is to switch a mobile station into Power Save (PS) mode,

iwhich enables mobile stations, in either an infrastructure network or in an ad-hoc network,

to save energy by periodically turning off the WNIC transmitter and receiver. All stations

(STAS) in PS mode are synchronized to wake up at the same time. At this time, the sender

announces whether there are buffered frames. a.k.a MSDU (MAC service data unit), for

the receiver (when the receiver is in the Sleep mode, the sender buffers all frames destined

to the sleeping receiver). A station that receives such an announcement will remain awake

until the buffered frames are delivered. It is easy for infrastructure networks to implement

this mechanism, since the Access Point (AP) is able to buffer packets and synchronize all

mobile stations. However, in ad-hoc networks, the situation is more complicated because

of the absence of a trusted synchronization authority.

34

In addition, periodic sleep has been proposed in the design of energy-efficient MAC

protocols for wireless networks. For example, PAMAS [l 13] puts a host into sleep mode

during transmissions of other hosts and schedules the wake-up process with the help of an

extra so-called wake-up radio, which operates on a different frequency than the radio used

for communication and consumes much less energy. Inspired by PAMAS, S-MAC [114]

uses Single-frequency signaling and divides the time into fairly large frames. Each frame

has two parts: a sleep part in which a node turns off its radio, and an active part in which

a host can communicate with other nodes and send out messages buffered during the sleep

part. Because all messages are sent out at a burst, instead of being “spread out” over

the whole frame, energy wasted on idle listening is reduced. Different from the fixed ac-

tive/sleep duty cycle in S-MAC, T—MAC [116] introduces an adaptive duty cycle in which

the active part is ended dynamically. This modification not only further reduces the en-

ergy wasted on idle listening, but also outperforms S—MAC in the scenario with variable

load. Unlike contention-based protocols, TDMA protocols have a natural advantage of

energy conservation [1 17], because the duty cycle of the radio is reduced and there is no

contention-introduced overhead and collisions. ER-MAC [1 18] is a TDMA-based proto-

col, but also uses the periodic listen and sleep mechanism introduced in S—MAC in a way of

using energy-criticality to determine the host duty cycle. In our experiments, we investigate

the feasibility and effect of periodic sleep during real-time audio Streaming.

3.2.2 Energy Consumption vs. Error Control

As discussed earlier, retransmissions in a wireless channel always lead to unnecessary en—

ergy consumption and possibly unbounded delay, so a possible way to reduce the energy

consumption is to reduce the retransmissions. Three main approaches to error control have

been used in wireless packet networks [1 19, 120]: retransmission based ARQ (Automatic

Repeat reQuest) [121—123], pure FEC (Forward Error Correction) [124, 125] and hybrid

FEC—ARQ [126, 127].

Error control schemes are effective for loss recovery, however, the overall quality of

service is determined by the combination of packet loss, delay and perceptual quality. Re-

cent works Show that performance gains can be expected by coupling of the delay-oriented

adaptation and the error control schemes. Rosenberg et al. [128] investigated the problem

of the delay introduced by FEC. They pointed out that waiting for all the redundant in-

formation is inappropriate when network loss rate is low and proposed a number of new

algorithms to implement packet buffers and absorb delays observed by users. On the other

hand, Dempsey et al. [123] proposed S-ARQ, which performs timely retransmission of lost

packets by controlling the playback time for the first packet in each “talkspurt.”

Lettieri et al. [129] used theoretical analysis and simulation to compare how different

error control strategies (FEC, ARQ, and hybrids) affect energy consumption in wireless

networks. The comparison is based on the mean power consumed versus the actual compu-

tational load and the delay introduced for different methods. The FEC cost is independent

of the channel condition and “pre-paid,” but in return, FEC can reduce the probability of

retransmission. ARQ has good performance when the channel is clear, but as the loss rate

36

increases, ARQ retransmissions adversely affect energy consumption. From the results of

their study, the authors argue that the system should be able to select an energy-efficient

error control Strategy according to QOS requirements, channel quality and packet size. It

is likely that no single method can fit all the environment requirements, so a combination

of different schemes may be needed. Havinga [130] conducted an extensive experimental

study of both ARQ and block-based FEC in a WaveLAN network. Havinga found that

receiving of parity packets by the WNIC is a major consumer of energy, relative to the en-

coding/decoding work of the processor. Our results confirm this observation and quantify

the tradeoff between energy consumption and QOS for FEC-based error control.

3.2.3 Energy-Aware Adaptation for Mobile Systems

The need for adaptive energy management extends beyond communication protocols. An

energy-aware system should respond effectively and dynamically to the changing condi-

tions. Specifically, these decisions involve the state of various hardware components, the

operating system, and the currently running applications. To achieve this level of adap-

tation, a collaborative relationship between different parts of the system (e.g., operating

system, middleware, and application) Should be established. Thus, the application should

be able to gather real-time information about system resources and the environment, select

proper tradeoffs between energy consumption and other system requirements, and finally

modify the subsystem behavior dynamically to conserve energy. Several recent projects

have addressed adaptive energy management.

Generally, most energy-aware adaptations are cross-layer adaptation, which means dif-

37

ferent layers of a system (application, middleware, operating system, and hardware) co-

ordinate and cooperate each other to achieve system wide energy efficiency. According

to where the energy-aware adaptation behavior takes place, we can categorize energy-

aware adaptations into hardware and operating system layer-specific adaptation, application

layer-specific adaptation, and multiple-layer adaptation. In hardware and operation system

adaptation [9, 73, 74, 131—136], adaptation actions generally change the hardware runtime

parameters, such as hard disk rotation, CPU speed, and display backlight, etc., by way

of interaction between operating system and hardware components. In application layer

adaptation [8, 47-50, 137—139], the application itself changes its behavior or processing

data without affecting the system configuration and runtime parameters. For example, an

mobile application can offload its computation tasks to a wired host and retrieve the results

after the processing complete to save energy. For the multiple-layer adaptation [6, 29, 52],

if any single layer adaptation cannot satisfy the energy requirement, adaptations in other _

layers may be invoked to further reduce energy consumption and help to achieve energy

saving goal.

3.3 Experimental Environment

This study was conducted on a mobile computing testbed that includes various types of

devices: laptop computers, iPAQ handheld systems, and Xybernaut Mobile Assistant V

wearable computers. These systems communicate via an lleps 802.11b WLAN. The

local wireless cell is also connected to a multi-cell WLAN that covers many areas of the

Michigan State University Engineering Building and its courtyard. To monitor the wireless

38

traffic and help interpret experimental performance results, we execute the WildPackets

Airopeek network analyzer on a laptop in the wireless cell.

The interconnection of the systems is depicted in Figure 3.1(a). A live audio stream is

multicast from a wired desktop computer to multiple mobile devices via the WLAN. Effec-

tively, the receivers are used as multicast-capable Internet “phones” participating a confer-

encing application. Most experiments in this research used iPAQs as receivers. Each iPAQ

is a model H3650 or H3870, with a 206 MHz StrongARM processor and 64 MB memory.

Each is configured with the Familiar Linux distribution and Blackdown Java [140], and

each system has a dual-slot expansion pack to support a PCMCIA wireless card (Cisco

Aironet 350 Series) and an IBM 1.0 GB Microdrive. In some experiments we used laptop

computers, each with a 2.0 GHz P4 processor and 1.0 GB memory, running RedHat 9.0

Linux.

A key aspect of the experimental environment involves measurement of energy con—

sumption. Such mechanisms are specific to the particular battery configuration on a given

system. For example, the iPAQ main unit and the expansion pack have separate batteries

that operate independently, unless the voltage value of the main unit battery becomes lower

than that of the external battery. In this situation, the main unit battery will draw power

from external battery through an activated internal trickle charge until the voltage value

exceeds that of the external battery. However, the external battery will never draw power

from the main unit [141].

We measure energy consumption using both a hardware method, which is more accu-

rate, as well as a software method, which is the only option in a deployed mobile system

that needs to adapt its behavior based on the current state. For the former case, we remove

39

, _)7 L
/ '3‘“ I z ‘

‘ Audio Stream - , ’ ’ 3

_ _ #IV- ‘ — ~ ~ ’ 5

ml
Wired Access Wireless

Sender Point Receivers

(a) physical experimental configuration

(b) multimeter and power supply connected to iPAQ

Figure 3.1: Testbed configuration.

the system batteries and use a power supply (Elenco Model XP-760) to power the system.

We use an Agilent 3458A multimeter to measure the current drawn from the power supply.

Figure 3. l (b) shows a photograph of the lab environment; the multimeter in the center. and

the power supply on the right, are connected to the iPAQ held by the user. Because the

iPAQ main unit and the expansion pack can share power, this configuration supplies power

to both the iPAQ main unit and the expansion pack. For software measurements in Linux,

we record the drop in battery voltage or capacity provided by the APM (Advanced Power

Management) through the /proc file system. Specifically, a program reads from lproc/apm

40

five times per minute, and uses the mean of these Samples to represent the voltage or ca-

pacity drop in one minute. AS noted, this measurement includes only the main unit battery,

which can draw power from the expansion pack battery. As we shall see later, however,

the expansion pack battery drain much faster than the main battery under communication-

intensive scenarios.

3.4 Software Architecture

3.4.1 MetaSockets

Our experiments make use of MetaSockets [142], which are adaptable communication com-

ponents that we developed earlier. MetaSockets (short for metamorphic sockets) can be

used in place of regular Java sockets, providing the same imperative functionality, includ-

ing methods for sending and receiving data. However, their internal structure and behavior

can be adapted at run time in response to changes in their environment.

MetaSockets are implemented in Adaptive Java [143], an extension to Java that supports

run-time modifications to components using computational reflection. Although using a

Java-based language (Adaptive Java is source-to-source compiled into Java) introduces

some processing overhead, its support for dynamic loading of code is very useful to our

investigation of adaptive software. Moreover, even our modest 206 MHz iPAQs can support

real-time audio streaming in Java. Figure 3.2 illustrates the internal architecture of the

particular type of MetaSocket used in this study. Packets are passed through a pipeline of

Filter components, each of which processes the packets. Example filter services include:

41

auditing traffic and usage patterns, transcoding data streams into lower-bandwidth versions,

encrypting and decrypting data, and implementing forward error correction (FEC) to make

data Streams more resilient to packet loss. Figure 3.2 shows that the MetaSocket also

supports special types of methods to insert and remove filters, as well as retrieve their

status. Details of MetaSocket architecture and operation can be found in [142].

MetaSocket Component

.InsertFilter

. RemoveFilter

AGetStatus

 Socket

filter with thread

and buffer

Figure 3.2: Structure of a MetaSocket.

3.4.2 Block-Oriented FEC Encoder/Decoder

In this study, we first evaluate the energy consumption characteristics of a particular FEC

method based on (n. I.) block erasure codes. which were popularized by Rizzo [108] and

are now used in many wired and wireless distributed systems. Figure 3.3 depicts the basic

operation of these codes. An encoder converts ls? source packets into 71 encoded packets,

such that any A: of the n encoded packets can be used to reconstruct the k source pack-

42

ets [108]. In this research, we use only systematic codes, which means that the first k of

the 'II encoded packets are identical to the k source packets. We refer to the first Ir packets

as data packets, and the remaining n. — k packets as parity packets. Each set of n encoded

packets is referred to as a group.

The advantage of using block erasure codes for multicasting is that a single par—

ity packet can be used to correct independent single-packet losses among different re-

ceivers [108]. We implemented MetaSocket filters for block-oriented FEC encoding and

decoding using an open-source Java implementation of Rizzo’s C library. In the remainder

of the research, we will refer to the block—oriented FEC simply as “FEC (n, k)”

ENCODED RECEIVED

DATA

E; RECONSTRUCTED

, DATA

Figure 3.3: Operation of block erasure code.

While block—oriented FEC approaches are effective in improving the quality of interac-

tive audio streams on wireless networks [144]. the group sizes must be relatively small in

order to reduce playback delays. In our studies, we typically use (n, k) values of (6,4) or

(8,4). Hence, the overhead in terms of parity packets is relatively high.

43

3.4.3 GSM-Oriented FEC Encoder/Decoder

An alternative approach with lower delay and lower overhead is signal processing based

FEC (SFEC) [127, 145], in which a lossy, compressed encoding of each packet i is piggy-

backed onto one or more subsequent packets. If packet i is lost, but one of the encodings

of packet i arrives at the receiver, then at least a lower quality version of the packet can

be played to the listener. The parameter 6 is the offset between the original packet and its

compressed version. Figure 3.4 shows two different examples, one with 6 = 1 and the

other with 6 = 2. As mentioned, it is also possible to place multiple encodings of the same

packet in the subsequent stream, for example, using both 91 = 1 and 62 = 3.

Data Flow A

Ah

mm ‘dI I .-_____J l-

31+] di+2 81 (11+! gr] ‘1: 8:2 dz]

(a) GSM encoding with 6 2 1

Data Flow

(b) GSM encoding with (i = 2

Figure 3.4: Different ways of using GSM encoding on a packet stream.

We use GSM 06.10 encoding [109] for generating the redundant copies of packets. Al-

though GSM is a CPU-intensive coding algorithm [145]. the bandwidth overhead is very

small. Specifically, the GSM encoding creates only 33 bytes for a PCM-encoded packet

44

containing up to 320 bytes (160 samples in our experiments). We use the Tritonus Java

version of the GSM codec , a freeware package available under GNU public license. Un-

fortunately, this Java version is unable to satisfy real-time audio encoding and decoding

requirements on iPAQS with low processing power, so all the GSM-related experiments

were conducted on laptop computers. In the remainder of the research, we will refer to the

GSM-oriented FEC simply as “GSM (6, c),” which means copies of the coded packet p are

placed in c successive packets, beginning 6 packets after p.

3.4.4 Audio Streaming Application

To investigate adaptation in interactive audio communication, we developed an audio

streaming application (ASA), depicted in Figure 3.5. ASA uses MetaSockets instead of

regular Java sockets, enabling dynamic insertion and removal of FEC filter pairs, as well as

filters to measure and report packet loss characteristics. As shown, the ASA comprises two

main parts. On the sending station, typically a desktop computer, the Recorder reads live

audio data from a system’s microphone. The Recorder multicasts this data to the receivers

via a MetaSocket. If the MetaSocket is configured to introduce FEC on the data stream,

it invokes an FEC encoder and transmits the modified audio stream on the network. On

each receiving node, the stream arrives on a MetaSocket, where it is decoded as necessary,

and delivered to the Player component. When executing on an iPAQ, the Player delivers

the stream to the speaker using the Java Native Interface (JNI), necessary due to a known

problem with audio in Blackdown Java [140].

45

/SneakerP13 in_ \/ Micro hone Samulin I

Audio Stream ’ ’ 7' r 7‘ Audio Stream

. 79 (All
’ea

Figure 3.5: Software component interaction.

3.5 Experiments and Results

We first conducted a set of baseline experiments designed to evaluate the effect of

FEC/GSM parameter values on energy consumption. For interactive audio streams, the

values of k and 6 must be relatively small to limit the playback delay to an acceptable level.

For example, in many of our experiments we used 8—bit samples and placed 200 samples,

or 25 milliseconds of audio, in each packet. If an FEC (8, 4) code is used and the first

data packet of a group is lost, then at least 75 milliseconds additional delay will be intro-

duced between the last packet arrival of the preceding group and playing the (decoded) data

packet. Therefore, in most experiments we set k = 2 or k = 4, although in some cases we

used k = 8 for comparison purposes.

46

3.5.1 Packet Loss Characteristics

How to set parameters 12. and c depends on packet loss rate and burst error characteristics.

The 802.1 lb MAC layer provides neither RTS/CTS signaling nor link-level acknowledge-

ments for multicast frames, as it does for unicast frames. Hence, the loss rate for multicast

frames can be considerably higher than that for unicast frames [146]. Most error bursts

in WLANs are short. Figure 3.6 illustrates a typical example of this behavior. We plot

the overall distribution of packet burst error length that occurred during three traces of au-

dio packets, as recorded by a receiving computer near the room where our wireless access

point is located. The average packet loss rate, across the three traces, was 17%. Also

plotted in the figure is the distribution produced by a simulation using a two-state Markov

model [147], which is widely used to model losses in wireless networks.

Two characteristics of Figure 3.6 are important to this study. First, while some large

bursts occur, the vast majority are under 4 packets long, and most “burst” errors comprise a

single packet loss. Such results are encouraging because they imply that a relatively small

amount of FEC information is likely to correct most errors, that is, n — k: or c can be small.

Second, we note that the simulation is reasonably accurate in modeling the loss distribu-

tion. Being able to reproduce environmental conditions is notoriously difficult in wireless

networks [148], so simulating losses provides a way to test different protocols and param-

eter values under the same loss conditions. Therefore, many of the experiments described

in this section and in Section 3.6 use iPAQS and laptops located near the access point, but

with emulated packet losses produced by a two-state Markov model and a specified overall

loss rate. The results given in Section 3.7, however, were collected under real packet loss

47

conditions.

Burst Error Distribution

(loss rate =, 17%)

800/0 "" ‘ " "

70% r

60% 44

50% A“

40°/o is —-— "~— —‘ *H' ,__-_L___-L__L__-.- "—r‘—*“ __m,. *4

30% or

ZOO/o "]

10% 44

0% r

12 3 4 5 6 7 8 91011121314151617181920

burstlength

:13 real network loss I simulated network loss]

Figure 3.6: Burst error distribution (experiments and simulation).

3.5.2 Effect of n, k: Values

In the first set of experiments. we tested iPAQ receivers in three different execution modes:

idle, standby, and working, listed in Table 3.1. The main difference between idle and

Standby mode is the presence of the WNIC. 1n standby mode, the WNIC continually listens

to the network and exchanges control messages with the access point. The system has to

process incoming traffic and maintain communication between the network interface and

the operating system. Hence, the difference in energy consumption between idle mode and

standby mode can be considered as the energy needed to remain connected to the network.

In working mode, the WNIC operates in constantly awake mode (CAM), as opposed to a

power saving mode discussed later. In CAM, the WNIC is always listening to the channel.

During the experiments, we executed only the ASA application and a very simple power-

48

Table 3.1: iPAQ execution modes.

Mode Description

Idle Only the system processes are executing; no application; WNIC is not inserted.

Standby Only the system processes are executing; no application; WNIC is inserted and

Operating in CAM.

Working The ASA application is running. The iPAQ receives a continuous stream of audio

(data and parity) packets on its WNIC, invokes FEC decoder as needed, and delivers

decoded data to application.

sampling program on each iPAQ; we also shut down the backlight to minimize its effect

on energy consumption. We varied the (n, k) FEC parameters, as discussed below. Each

experiment was conducted three times, and the mean values are reported.

First, we investigate the energy consumption characteristics of block-oriented FEC un-

der the real packet loss conditions. Figure 3.7(a) plots the results of using software to

measure the voltage drop (an important variable to represent energy usage) as the iPAQ ext-

ecuted for 30 minutes in different modes. These experiments were conducted near the room

containing the wireless access point, where the (actual) packet loss rate is approximately

4%. In this experiment, we set k = 4 and evaluate the energy consumption at the receiver

side with different "ll values: 4, 8, and 16. Increasing the value of it causes the voltage level

of the battery to decrease faster. The drop is due to receiving and processing additional

parity packets (by the WNIC, the operating system, and application software) and, when

needed, invoking the FEC decoder. Figure 3.7(b) shows the results using the multimeter

to measure energy consumption on the device. The results are commensurate with those

in Figure 3.7(a); the more voltage drops in Figure 3.7(a) correspond to the higher energy

consumption in Figure 3.7(b) (although as we mentioned earlier, the hardware approach

measures the total energy consumption of the system, including the expansion battery of

49

d
e
c
r
e
a
s
e
d
v
o
l
t
a
g
e
(
m
V
)

p
o
w
e
r
c
o
n
s
u
m
p
t
i
o
n

(
J
)

-100

-120

7000

6000 -

5000

4000 .

3000

2000

1000 .

Base Line Test (Software Approach)

(indoor enviroment, network loss rate = 4%)

5 IO 15 20 25

time (minutes)

..._ Idle -- standby --.- FEC (4,4) «I: FEC (8,4) -o-i=i2c (16.4)]

(a) software measurement

Base Line Test (Hardware Approach)

(indoor environment, network loss rate = 4%)

30

time (minutes)

+.§‘i’1§3fl," F59.WM,””'59 (15,41

(b) hardware measurement

Figure 3.7: Baseline energy consumption tests.

50

iPAQ).

Figure 3.8(a) Shows voltage drop for different (n, k) values under emulated loss condi-

tions, with a mean packet loss rate of 38%. As shown in the figure, the curves are grouped

approximately according to the (in/Ar) ratio: the curves for the (16.8), (8.4) and (4,2)

cases, where n/k = 2, are relatively close together, as are the curves for the (32, 8), (16, 4)

and (8, 2) cases, where 72/19 = 4. This result indicates that the total number of incom-

ing (data and parity) packets dominates the energy consumption, at least on the main unit.

Other factors, such as how often the FEC decoder is invoked, appear to be less important.

This conclusion is supported by Figure 3.8(b), which plots the percentage of time that

the FEC decoder is invoked for different (n, k) pairs, under the same packet loss conditions.

The probability of invoking the decoder depends primarily on the value of is, rather than

the (ii/At) ratio, and we see that the curves are grouped in that manner. However, despite

the fact that FEC decoding is computationally intensive, Figure 3.8(a) shows that decoding

has little effect on the overall behavior of the voltage drop curves, which are linear in the

number of incoming packets.

3.5.3 Effect of Power Saving Mode

Adjusting block-oriented FEC parameters, n. and k, is not the the only way to manage

the energy consumption. The IEEE 802.11 Specification also provides a power saving

(PS) mode. which can be used to switch the WNIC periodically between “sleep” state and

“active” state, in order to conserve energy. In the sleep state, power is shut off to most parts

of the WNIC, except the timing circuit. For 802.11 WLANs operated in infrastructure

51

Relationship between Power Consumption and (n/k) Ratio

(simulated network loss rate = 38%)

0 5 10 15 20 25 3O

d
e
c
r
e
a
s
e
d
v
o
l
t
a
g
e
(
m
V
)

6
:
O

-100 1

-1 20

time (minutes)

:FEC (4,;)_jf-f—_Fis_cfi(_8_,4)_~:~gi=ec (16,8) ->f-FEC (8,2) -o-Fec (16,4) +FEC (32,8)

(a) energy consumption

FEC Decoder Called

(simulated network loss rate = 38%)

F
E
C
d
e
c
o
d
e
r
c
a
l
l
e
d

400/0 1 g L

0 5 10 20 25 3015

tlrne (minutes)

EEC (4,2)”:- F_E_C (8,4) rig-m (16,8) 7+- FEC (8,2) -)l(-FEC (16,4) -o-Fec (32,8)]

(b) decoder invocations

Figure 3.8: Baseline experiments.

52

mode, the access point (AP) buffers frames destined for hosts in PS mode. All PS hosts

are synchronized by the beacon from the AP. Each PS host will wake up to listen to the

beacon, which contains a delivery traffic indicator message (DTIM). The DTIM identifies

those PS hosts for which buffered frames are waiting to be delivered. Those identified

nodes will remain awake until the next beacon. After the AP transmits the DTIM message,

it transmits any buffered data. Other researchers [149] have investigated how to exploit

the 802.11 PS mode, for example, to support energy efficient routing in mobile ad-hoc

networks (MANETS). To our knowledge, however, the interaction between 802.11 PS

mode and FEC in streaming audio has not been studied previously.

Our first step in understanding how PS mode affects block-oriented FEC audio streams

is to observe the traffic pattern created when buffered frames are transmitted by the AP.

Those frames are delivered after the DTIM, and the interval between DTIMS is a multiple

of the beacon period (100 msec). In the default AP configuration, the DTIM interval is set

to 2, which equates to the AP transmitting buffered data every 200 msec. In the following

experiments, we set the DTIM to l, 2, and 4, respectively, and used our wireless network

analyzer to monitor the channel and trace the traffic patterns during the transmission.

Figure 3.9 shows a sample of the results, where the AP forwards buffered multicast

frames to a single iPAQ in PS mode. The block-oriented FEC parameters in this trace

are (8, 4), and the packet size is 200 bytes. The AP transmits the buffered data only after

each DTIM, so the number of audio packets transmitted as a “groups” increases with the

DTIM interval. The result is a “stairstep” pattern, where each step comprises the packet

transmissions following a DTIM. The packets sent between groups are apparently beacon

packets. We observe that the number of packets sent between DTIMs varies. The number

53

Data Transmission Pattern in Power Saving Mode

(FEC n=8, k=4)

1800 — ,, , W -. - -. ___

1600

1400

1200

-—DTIM=1

—-ormi=2

—-oriM54

1 000

800 «

600 ‘

400 ;

a
b
s
o
l
u
t
e
t
i
m
e
o
f
e
a
c
h
p
a
c
k
e
t
(
m
s
e
c
)

200
O I I VIIIIII I I I II [11111 I I I I I'II -I I I I ‘I

1 10 19 28 37 46 55 64 73 82 91 100109118127135

packet number

Figure 3.9: Sample trace of packet arrival pattern in power saving mode.

of packets depends on how many FEC groups are sent during each DTIM interval and the

spacing between packets relative to the beacon at the AP. For example, if DTIM = 2, then

every 200 msec the AP transmits 16 buffered packets.

Next, let us assess the energy savings. Figure 3.10(a) plots the voltage drop over a

half-hour experiment, as measured by software, for two different FEC parameters. Use

of periodic sleep provides a noticeable, albeit somewhat modest, energy savings on the

main unit. However, Figure 3.10(b), which Shows energy consumption as measured by

hardware, provides a more complete representation of the situation. Power saving mode

combined with a (16, 4) code reduces energy consumption by 42% compared to a (16,4)

code without PS mode, and by 37% compared to the (8,4) code. This result indicates that

much of the energy being saved is from the battery in the iPAQ expansion pack, rather than

from the battery in the main unit. Since the main unit can draw power from the expansion

pack, but not vice versa, the expansion pack battery can drain completely before that of the

54

main unit, leaving the iPAQ operational but disconnected from the network. Indeed, the

use of PS mode not only reduces energy consumption, but in doing so, also makes practical

use of FEC codes with higher n/k ratios. The effect of PS mode on delay is discussed in

Section 3.6.

3.5.4 Effect of GSM Coding

From observing the energy consumption characteristics of block-oriented FEC, we con-

clude that the total number of incoming packets dominates the energy consumption. In

contrast, the piggyback method in GSM does not increase the total number of transmitted

packets. Therefore, we might expect better energy performance with GSM. This hypothesis

is supported by Figure 3.1 1, which compares the estimated battery lifetime under various

FEC configurations. All the GSM configurations are significantly more energy-efficient

than block—oriented FEC.

Of course, reporting energy consumption tells only part of the Story. Other factors, such

as bandwidth usage, packet delivery rate, and delay, must also be considered in assessing

audio streaming communication. Considering the examples illustrated in this section, the

use of FEC introduces bandwidth overhead that depends on the values of n, k, 6, and c.

Given the same packet size, GSM not only is more energy-efficient, but also consumes

much less bandwidth. However, in the next section we will see that these savings have

a clear effect on QOS and that packet loss rate is not always the most important factor in

determining QOS.

55

Improve the Energy Saving through Periodic Sleep

(simulated network loss rate = 38%)

0 5 10 15 20 25 30

0 a 1 l 1 r

.20 -.

-40 _.

-60 __

-80

d
e
c
r
e
a
s
e
d
v
o
l
t
a
g
e
(
m
V
)

-100 A...

 —120 -— _._-—

7 W , time (minutes)

[:0- FECfi(8,4) no sleepN-l- FEC_(:I§_,M10 sleep re“ FEC (16,4) 100 msec sleep]

(a) main unit (software measurement)

Improve the Energy Saving through Periodic Sleep

(simulated network loss rate = 38%)

7000 ., -

FEC (16,4) no sleep

6000 - FEC (8.4) no sleep

5000

. EC (16,4) 100 msec
4000 sleep

3000

2000

e
n
e
r
g
y
c
o
n
s
u
m
p
t
i
o
n

(
J
)

1000

E FEC (8,4) no sleep I FEC (16,4) no sleep EIFEC (16,4) 100 msec sleep

(b) entire system (hardware measurement)

Figure 3.10: Energy savings through periodic sleep.

56

Estimated Total Battery Life

235 A

230 ‘

225 '

220 e

215 ~

210 -

205 -

200 e

195 i

190

185 .

180 —

m
i
n
u
t
e
s

EFEC (4,4) I FEC (8,4) 13 FE?(12,4) 1: FEC (16,4)iGsTi/i (1,1)?

EGSM (1, 2) IGSM (1,3) EIGSM (2,1) IGSM (2, 2) IGSM (2,3) I

DEER/1&1 PM?) LGSM<313> 2,]

Figure 3.1]: Energy consumption for FEC and GSM.

3.6 QoS Assessment

3.6.1 Packet Delivery Rate

Figures 3.12(a) shows the loss rate as perceived by the receiving application, that is, after

block-oriented FEC decoding, for different (n, k) settings. The mean network loss rate is

38%. As expected, codes with higher n/k ratios are more effective in correcting losses.

Among codes with the same 71/}; ratio, loss rate decreases as it increases. For example,

the (32. 8) code results in a lower packet loss rate than the (8. 2) code, even though the two

codes consume approximately the same amount of energy. Both codes do well in correcting

single packet losses and short burst errors, but the (32. 8) code can handle any burst error

57

Loss Rate after FEC Decoder

(simulated network loss rate = 38%)

30 _ _ .2 _ .2 ‘*‘_ _._,L. . , ... __ __ ._!_

l
o
s
s
r
a
t
e
(
%
)

tlme (minutes)

*Fec'(4,2) —- ngc’ (8.43 ~ FEC (16,8) +Fec (8,2) ets-reopen)ffigaj

(a) simulated packet loss rate = 38%

Loss Rate after FEC Decoder

(simulated network loss rate = 61%)

l
o
s
s
r
a
t
e
(
%
)

(
a
)

O

tlme (mlnutes)

Eo- Fec153-?»£3155);jgc(16,8) -iig- FEC (8,2):XLE: (18,4) {- FEC (32.8)

(b) simulated packet loss rate = 6191’

Figure 3.12: Loss rate after FEC decoding.

58

of 24 or fewer packets. However, we need to decrease the packet size to compensate for

the jitter introduced by the large value of 1:.

On the other hand, in some high-loss situations, a smaller value of 'n can produce better

results. For example, let us consider the results in Figure 3.12(b), where the mean loss

rate is very high, 61%. When n/k = 4, a larger a value produces a lower loss rate, as in

Figure 3.12(a). However, when it / 1.: = 2, a smaller 71 value is more effective than a larger

one. Effectively, since at least half a group’s packets must arrive in order to recover the

data, and since errors are bursty, a smaller group size is more likely to achieve this goal.

For example, consider four groups using a (4, 2) code, compared to one group of the (16, 8)

code. Although the number of packets is the same for each, because the loss rate is 61%,

on average they will both lose 10 packets. The (16, 8) code can not recover such a loss,

but due to the short burst length, in some cases, the (4, 2) can recover one or more groups,

yielding a higher packet reception rate.

Next, let us consider the combination of PS mode and block-oriented FEC. The re-

sults presented in Section 3.5 confirmed that a lower 71/}; ratio consumes less energy than

a higher ratio. However, in some situations a low 71/}; ratio FEC cannot meet QOS ex-

pectations due to high loss at the network layer, and a higher n/k ratio FEC is needed.

Figure 3.13 Shows that using a (16.4) code, with and without a periodic sleep of 100 msec,

is very effective in reducing losses, compared to an (8,4) code. Specifically, the loss rate

drops from near 20% to only 3%.

We tested the GSM-oriented FEC by setting 6 to different values and using 1, 2 and 3

copies of the encoded data. Table 3.2 shows that using multiple copies produces a clear

advantage in terms of packet delivery rate. However, the loss recovery performance for

59

Loss Rate after FEC Decoder

(simulated network loss rate = 38%)

25 4— - ._ - «~————~ -~ ~ 3

l
o
s
s
r
a
t
e
(
%
)

time (mlnutes)

l-o-Fec (8,4) no sleep 4»— Féc (16,4) no sleep --l=ec (16,4) 100 inset: sleep-

Figure 3. I 3: Effect of sleep mode on loss rate.

different GSM parameters highly depends on the actual loss distribution. For example, the

loss rates of GSM (l, l), GSM (2, l) and GSM (3, 1) are not monotonically decreasing as

expected.

60

61

T
a
b
l
e

3
.
2
:
L
o
s
s

r
a
t
e
c
o
m
p
a
r
i
s
o
n
o
f
d
i
f
f
e
r
e
n
t
F
E
C

c
o
d
e
s
.

C
o
d
e

R
a
w

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

F
E
C

F
E
C

F
E
C

(
1
.
1
)

(
1
.
2
)

(
1
.
3
)

(
2
.
1
)

(
2
.
2
)

(
2
.
3
)

(
3
.
1
)

(
3
.
2
)

(
3
.
3
)

(
4
.
4
)

(
6
.
4
)

(
8
.
4
)

1
1
.
0
5

6
.
2
8

3
.
5
3

1
3
.
8
8

6
.
8

3
.
7
8

1
0
.
2
7

4
.
8

2
.
7
5

2
8
.
2
0

1
6
.
2
9

9
.
1
6

00

N

a“:

T
a
b
l
e

3
.
3
:
D
e
l
a
y
c
o
m
p
a
r
i
s
o
n
o
f
d
i
f
f
e
r
e
n
t
F
E
C

c
o
d
e
s
.

C
o
d
e

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

G
S
M

F
E
C

F
E
C

F
E
C

(
1
.
1
)

(
1
.
2
)

(
1
.
3
)

(
2
.
1
)

(
2
.
2
)

(
2
.
3
)

(
3
.
1
)

(
3
.
2
)

(
3
.
3
)

(
4
.
4
)

(
6
.
4
)

(
8
.
4
)

D
e
l
a
y
(
m
s
e
c
)

1
9
.
9
5

3
9
.
9
5

5
9
.
9

4
0
.
8
3

6
0
.
3
7

8
0
.
1
0

6
2
.
5
5

8
2
.
5
2

1
0
2
.
8
7

1
7
.
7
9

3
7
.
7
3

5
2
.
3
3

3.6.2 Delay

Another factor important to real-time communication is the additional delay introduced

into the packet stream. Table 3.3 calculates the worst case delay introduced by different

FEC codes to wait for the encoded packets. For example, considering FEC (8, 4) and GSM

(3, 1), if the first data packet is lost, then the receiver will need to wait for at least 3 packets

until the first parity packet or piggybacked packet arrives to recover the loss. In order

to satisfy the real-time audio requirement, the delay should not exceed 150 msec [128].

Table 3.3 shows that all these codes satisfy this requirement.

Although use of the PS mode introduces delay, we note that most of the delay can be

hidden by the use of FEC. For example, considering FEC (8, 4), if each packet contains

25 msec of audio data. then the 75 msec delay incurred while waiting for data buffered at

the AP is largely subsumed by the (possible) delay incurred by waiting for parity packets.

Specifically, if the first data packet of a group is lost, then the receiver will need to wait

for at least 100 msec until the first parity packet arrives and it can decode and play the

data. On an 1 1 Mbps network, the transmission time for the packet is only about 0.3 msec,

so sleeping for 100 msec, then retrieving both data and parity packets, actually introduces

only a small delay.

3.6.3 Bandwidth

Use of FEC introduces bandwidth overhead that depends on the values of n, k, 6, and c.

Considering the FEC (8. 4) and GSM (3, l) illustrated in Table 3.2 and Table 3.3, which

has close loss rate and delay, if the size of the data packets is 320 bytes, then the overhead

62

for FEC (8, 4) is approximately 100 percent since this code doubles the number of packets

transmitted; and the overhead for GSM (3, 1) is 10 percent since this method introduces

only payload bytes, but no new packets. Based on aforementioned energy consumption

and bandwidth comparison, we conclude that the GSM—oriented FEC is not only more

energy-efficient but also less bandwidth consuming than the block-oriented FEC.

3.6.4 Audio Quality

Although packet delivery rate, delay, and bandwidth are important objective factors to eval-

uate the QOS, the most important factor is how the played audio stream sounds to the human

ear. Since, the assessment of audio quality by individuals is inherently subjective, we need

an objective method. Perceptual Evaluation of Speech Quality (PESQ), defined by ITU-T

recommendation P .862 [150], is used to determine voice quality in the telecommunication

networks. The PESQ score is mapped to a MOS (Mean Opinion Score) like scale, a single

number in the range from -0.5 to 4.5.

Figures 3.14(a) and 3.14(b) use PESQ to compared the audio quality of FEC (8, 4)

and GSM (3, 3), which achieves the highest packet delivery rate among the block-oriented

and GSM-oriented codes respectively. Although GSM (3, 3) has a higher packet deliv-

ery rate under different simulated network loss rates, its PESQ score is lower since the

recovered packets are generated from the highly compressed, lossy encodings. Consider-

ing that PESQ score of 2.0 and above corresponds to acceptable audio quality [151] and

Figure 3.14(c) shows that approximately 20% of the audio data is GSM-quality, we can

conclude that GSM-oriented FEC is still suitable for voice communication over wireless

63

a
p
p
l
i
c
a
t
i
o
n
l
o
s
s
r
a
t
e
(
%
)

P
E
S
Q
s
c
o
r
e

p
e
r
c
e
n
t
a
g
e
(
%
)

N
0
)

0
0

10

0

(a) Network Loss Rate vs. Application Loss Rate

'3- FAECIBE 185711133)—

0 5 1 o 1 5 20 25 30 35

network loss rate (%)

(b) Network Loss Rate vs. PESQ Score

(best audlo quallty: PESO=4.5, worst audlo quallty: PEso=-0.5)

l-o- FEC (8,4) -- GSM (3,3)]

0 5 10 15 20 25 30 35 40

network loss rate (%)

(c) GSM Recovery Rate

fl I l—_ l

I i

I r
l
.

l
l

i

1
l

i
'L '3\ ’L\ 'D '5)

\-\ ‘\- \ ~ ’5“ '5 ’5

(3,-3‘8 \ \0‘5‘3 \ Gray!) \ 0953:“ 059a C99“\ \65‘3\ 05‘s} \ 06¢\

DGSMEEILIiIxavya !,or_59i,na.| 9251',in audigi

Figure 3.14: Audio quality assessment.

64

networks. However, in situations where a higher quality audio stream is needed, block-

oriented FEC may be worth the additional costs in bandwidth and energy.

From above energy consumption characteristics and QOS assessment analysis, we can

build a basis for tradeoffs between energy consumption and QOS. When a user encounters

the decision on the selection of FEC configuration under energy constraints, these trade-

offs and user preferences play very important roles in the decision making process. If the

user has critical QOS requirement, block-oriented FEC is more effective; otherwise, GSM-

oriented FEC is a good candidate since it is apparently more energy-efficient. When using

block-oriented FEC, higher (ii/k) ratio is more efficient to recover loss but consumes more

energy, however, PS mode can help a lot in energy saving; lower (n/k') ratio is energy

efficient but error-prone, however, higher It and k can help in increasing packet delivery

rate .

3.7 Toward Dynamic Adaptation

Experimental results such as those presented above can be used to develop rules for dy-

namic adaptation in mobile computers. Although this aspect of our project is ongoing, we

present a sample of the results here. We have conducted a series of experiments in which

we used MetaSockets to provide adaptive error control for interactive audio streaming.

In our implementation, two MetaSocket filters, SendNetLossDetector and Rechet-

LossDetector, cooperate to monitor the raw loss rate of the wireless channel. Similarly, the

SendAppLossDetector and RechppLossDetector filters are used to monitor the packet

loss rate as observed by the application, which may be lower than the raw packet loss rate

65

due to the use of FEC. At present, a small set of rules is used by a decision maker (DM)

component to govern changes in filter configuration. For example, if the loss rate Observed

by the application rises above a specified threshold, then the DM can decide to insert an

FEC filter in the pipeline or modify the (71. 1.) parameters of an existing FEC filter. On the

other hand, if the raw packet loss rate on the channel drops below a lower threshold, then

the level of redundancy may be decreased, or the FEC filter may be removed entirely.

Figure 3.15(a) Shows a trace of an experiment using the ASA described earlier, running

in ad hoc mode. A stationary user speaks into a laptop microphone, while another user

listens on an iPAQ as he moves among locations in the wireless cell. In this particular test,

the iPAQ user remains in a low packet loss area for approximately 30 minutes, moves to a

high packet loss area for another 40 minutes, moves back to the low packet loss location for

another 30 minutes, then reenters the high packet loss location. He remains there until the

iPAQ’s external battery drains and the WNIC is disconnected. In this experiment, the up-

per threshold for the RechppLossDetector to generate an UnAcceptableLossRateEvent

is 20%, and the lower threshold for the RechetLossDetector to generate an Accept-

ableLossRateEvent is 5%. As shown in Figure 3.15(a), the FEC (4,2) code is effective in

reducing the packet loss rate as observed by the application.

Figure 3.15(b) plots the remaining battery capacity as measured during the above exper-

iment. The overlaid slope curve clearly shows the changes in battery capacity expectancy.

Depending on conditions or the criticality of some other applications, if this slope indi-

cated that the remaining battery capacity is not enough to keep FEC working. another

rule might dictate a change in FEC parameters or removal of the FEC filter (as the 174th

minutes Shown in Figure 3.15(a)) to maintain the communication even though the QOS de-

66

l
o
s
s
r
a
t
e
(
%
)

N
(
A
)

A
U
1

G
)

\
I

o
n

O
O

O
O

O
O

O

_
A

O

o .

Automatic Insertion/Removal of FEC (4, 2)

I

1 11 21 31 41 51 61 71 81

*Network Loss Rate

1 *Appllcatlon Loss Rate;

 . ,L‘ifi_-

91 101 111 121 131 141 151 161

total battery life time (minutes)

(a) MetaSocket packet loss behavior with dynamic FEC filter insertion and removal

1200

r
e
m
a
l
n
l
n
g
b
a
t
t
e
r
y
c
a
p
a
c
i
t
y
(
m
A
h
)

200

400

Energy Consumption

1400 2., —/ , ~ - W,

-- Non-Adaptive Soft

1000 + Adaptive Software

 0 _

ware (FEC ls always On)

1112131415161 91 10111112113114115116171 81

total battery life time (mlnutes)

(b) trace of energy consumption during experiment (software measurement)

Figure 3. I 5: Adaptation between energy and QOS.

67

creased. Figure 3.15(b) also compares the energy performance of non-adaptive software

versus adaptive software. If the audio streaming application is not adaptable, the FEC filter

has to be present all the time, resulting in energy waste when the network condition is good.

Contrarily, adaptive software can change the FEC configuration dynamically according to

available energy resource and user preference, taking advantage of the tradeoffs between

energy consumption and QOS. As a result, the adaptive version extends the battery lifetime

by approximately 27 minutes.

3.8 Conclusions

In this chapter, we evaluate the energy consumption of forward error correction on wireless

devices, where encoded audio streams are multicast to multiple mobile computers. Our

results quantify the tradeoff between improved packet delivery rate, due to FEC, and ad-

ditional energy consumption, delay, bandwidth usage caused by receipt and decoding of

redundant packets. We also study the impact of the 802.1 1 power saving mode on sys-

tem energy consumption and compared two different FEC approaches. These results are

promising and indicate that significant savings are possible through appropriate adaptive

management of system resources. In the remaining research, we use these studies as a

basis for the development of adaptive software mechanisms that attempt to manage these

tradeoffs in the presence of highly dynamic wireless environments.

From the experience of understanding the basic adaptation characteristics, we know

that an adaptive system often consists of three basic functional units: sensing unit, decision

making unit, and execution unit. Thus, achieving acceptable quality of service in highly

68

dynamic computing environments requires not only adaptation and reconfiguration of in-

dividual components of the composite system, but also collaboration among these com-

ponents. To address the integration and collaboration of adaptive computing components,

in the next chapter we propose COCA, a message—based collaborative adaptation infras-

tructure. COCA provides a set of development utilities and run-time utilities that enable

different legacy components to be integrated into an adaptive system.

69

Chapter 4

REALIZING COLLABORATIVE

ADAPTATION FOR MOBILE

SYSTEMS

4.1 Introduction

Software runs in a changing environment. Some types of changes might be anticipated,

such as those associated with battery lifetime, CPU load, memory usage, or available net-

work bandwidth. Other changes, such as new security threats, might be unknown at devel—

opment time. One approach to addressing unanticipated adaptation is to take the system

off-line, modify it, and then restart the system. However, some software, such as that used

to manage critical infrastructures (e.g., financial networks and power grids) cannot afford

downtime for reconfiguration. In other cases, such as sensor networks used to monitor

remote geographic locations, the system may be physically inaccessible. Compositional

70

adaptation techniques address this problem by enabling software to change its structure

and behavior dynamically in response to external conditions [18, 152].

In recent years, adaptive behavior has been investigated for different parts of the com-

puting environment. Many approaches introduce adaptive behavior in middleware [45,

57,58,60, 61, 63—65, 153, 154], exploiting information hiding to enhance portability while

taking into account application-specific requirements and constraints. Finally, some ap-

proaches integrate context-awareness into the application itself, either explicitly in the ap-

plication business code [155] or by “weaving” new behaviors transparently into the appli-

cation at compile- or run-time [71, 156—158].

Supporting adaptation in individual parts of the system can address many aspects of

dynamic execution environments. However, some situations require coordinated responses

from multiple system components. Even a relatively simple multimedia conferencing ap-

plication for mobile users might need to balance quality of service against other concerns,

such as energy consumption, security, and fault tolerance. This need has fueled increasing

interests in more holistic approaches to adaptation, where an adaptive system comprises

multiple adaptive components, possibly spanning multiple system layers, that collaborate

to achieve overall system goals. Example cross-layer (and collaborative) adaptation frame-

works include Odyssey [8], GRACE [6], DEOS [9], and Chisel [10]. In these systems,

collaboration is realized by either constructing components specifically for integration in

the common framework [6, 8.9], or by transparently augmenting components with inter-

faces to the framework [10].

Increasingly, however, many distributed computing systems are constructed from pre-

existing and relatively independent components. For example, a conferencing system might

71

integrate existing components for streaming audio and video, displaying images and graph-

ics, and managing access to a shared whiteboard. This trend poses three important chal-

lenges to the design of adaptive systems. First, the individual components might not sup-

port adaptive behavior at all, or might not support the type of adaptation needed in the

target environment. Second, even if they are individually adaptive, the components might

have been developed by different organizations, using different languages and/or different

middleware platforms, and using different (and likely incompatible) approaches to adapta-

tion. Third, some method is needed to specify and coordinate the collaboration among the

components in order to realize system-wide adaptations.

The first two problems can be addressed using a variety of techniques that enable new

behavior to be woven into existing components transparently with respect to the original

code [159—163]. Our group has previously developed a set of such techniques, called trans—

parent shaping [159], to enable collaborative adaptation in composite systems [160, 164].

In this chapter, we focus on the third problem. In coordinating adaptation among com-

ponents, it is desirable that the system be to some extent autonomic, that is, capable of

self-management with only limited human guidance [I65]. Ultimately, we would like sys-

tems to be capable of learning how to adapt to changing situations. In this work, however,

we focus on an intermediate step, the use of message-based communication to guide collab-

orative adaptation. Our focus here is on providing an infrastructure to support collaborative

adaptation among components that were not necessarily designed to interoperate.

We propose COCA (COmposing Collaborative Adaptation), an infrastructure for col-

laborative adaptation in composite systems. The main contributions of this work are three-

fold. First, COCA provides a set of development utilities to aid system designers in spec-

72

ifying system architecture and adaptation policy, and automatically generating the corre-

sponding code to realize collaborative adaptation among existing components. Second,

COCA provides a set of run-time utilities to enforce the collaborative adaptation execu-

tion. Third, COCA provides a Web services infrastructure to support the corresponding

interaction among components.

The remainder of this chapter is organized as follows. We briefly introduce the back-

ground of this research in Section 4.2. Section 4.3 provides an overview of the architecture

and operation of COCA. In Section 4.4, we review M2 [164], a communication protocol

used to realize interaction among COCA clients and components of the COCA infrastruc-

ture. To help illustrate various aspects of COCA, we use a running example on the use

of COCA to construct an adaptive multimedia conferencing system from legacy applica-

tions; we describe the composition of this system in Section 4.5. Section 4.6 discusses the

details of COCA specifications, including their structure and the set of tools used to con-

struct them, translate them into code and enforce them during execution. In Section 4.7, we

present experimental results demonstrating the ability of the COCA-enabled conferencing

system to detect and respond to changing conditions. Conclusions are given in Section 4.8.

4.2 Background and Related Work

COCA is most closely related to two classes of projects that use contracts in QOS adapta-

tion: those that use architecture description languages (ADLS) to describe how components

in an adaptive system interact with one another [53.54.87-90]. and those that use a policy-

oriented approach to guide the adaptation process during execution [10,60, 79,91-99].

Quality Objects (QuO) [60] is a mature project at BBN Technologies that provides sup-

port for QOS adaptation in CORBA applications. QuO enables weaving of QoS aspects,

referred to as qoskets, into the applications at compile time by wrapping Stubs and skeletons

with specialized delegates, which intercept requests and replies for possible modification.

COCA complements such functionality by enabling collaborative adaptation among com-

ponents designed for different platforms. A suite of tools, discussed later, is used to “shape”

existing applications so that they can interact with the COCA infrastructure. Indeed, QuO

applications could be plugged into a COCA framework very easily by simply defining the

appropriate qoskets for such interaction.

To dynamically reconcile QOS conflicts among components at run-time, GluerS [79]

provides a mediation mechanism to support the dynamic management of QOS features

- between two components. GluerS policy mediators (GPMS) are added to each component

and cooperate to configuration QOS features and policies for run-time adaptation. The

GPM on each end oversees the configuration of QOS features at that end and evaluates

policy based on runtime conditions; it then communicates with its counterpart GPM at the

other end to compute an intersection of their policies to find a composition agreeable to

both ends. If the compatible QOS feature composition cannot be found, the interoperation

between these two components is refused to prevent malicious operation. The police is

described in GluerS policy language (GPL), a declarative language used in GluerS

for specifying the QOS feature preferences. As an extension to the Web Services Policy

approach [166], GluerS addresses the interaction between Web services providers and

requesters. In contrast, COCA supports policy-based collaboration between general service

providers and requesters, which could be individual software applications, middleware or

74

Web services.

The Contract-based Adaptive Software Architecture (CASA) framework [167—169] ad—

dresses enabling the development and operation of adaptive applications in the way of pro-

viding “resource awareness” and “dynamic adaptability” to the applications. To achieve

the system-wide adaptation, each application runs on an instance of the CASA run-time

system, which consists of the Contract-based Adaptation System (carrying out dynamic

adaptation on behalf of its associated application), the Resource Manager (monitoring the

value and availability of resources), and the Contract Enforcement System (comparing

the application resource requirement with the available resource, and selecting appropri-

ate configuration according the pre-defined contract). The adaptability provided by CASA

is based on component recomposition, which requires each application to provide various

sets of components to constitute the application. However, different applications Should

be free to adopt their own adaptation techniques. In the contrast, the implementation and

run-time management of COCA is set up with respect to the original code and adaptation

techniques of the compositional applications. Furthermore, the contract used in CASA is

policies similar to that used in QuO. It only defines different operation “zones” in response

to different change environments, and it does not provide formal reasoning mechanism and

enforcement support as COCA.

Rainbow [53] addresses architecture-based self-adaptation issues by providing a

reusable infrastructure. The reusable infrastructure here is based on the “external mod-

els,” which separates concerns of problem detection and resolution from the system that

is being adapted. In this way, the general infrastructures provided by Rainbow can be

easily reused by different systems that have the similar adaptation requirements. At this

75

point, COCA and Rainbow adopts the same concept of enabling adaptation functionalities

in a legacy system. The reusable Rainbow units include: (1) system-layer infrastructure

which measures and probes various system states for problem detection; (2) architecture-

Iayer infrastructure which aggregates the information from the system-layer infrastructure

and makes the adaptation decision; (3) translation infrastructure which maps the system

model to the concrete implementation; (4) system-specific adaptation knowledge which

can be used to guide the system adaptation. Unlike COCA, which provides an adaptation

infrastructure to serve the collaborative adaptation among various elements, Rainbow is

inherently centralized, focusing on the adaptations within a single Rainbow instance. This

inherent characteristic determines that the “reuse” of Rainbow infrastructure is conditional:

only when two Rainbow instances has the same concerns, can they share/reuse the existing

implementations of all or partial infrastructures. For example, when two systems share the

concerns about the system bandwidth usage, they can Share the system—layer infrastructure.

However, if one system cares about the bandwidth while the other one is interested in the

CPU usage, their system-layer infrastructures cannot be reused by each other. Thus, the

reusable infrastructures proposed by Rainbow are system specific and may be used more in

system modeling rather than real system construction.

The Chisel project [10] provides an open framework for dynamic adaptation that lever-

ages the advantages of existing commonly—used middleware while supporting collaboration

among elements in a distributed system. To support dynamic adaptation behavior, Chisel

uses lguanaJ meta types [45], which provide a mechanism to associate non-functional be-

haviors to base-level objects and classes, as the adaptation mechanism. Based on this re-

flective programming model, the particular aspects of a service object can be decomposed

76

into multiple possible behaviors, and the service object can be adapted at run time as the

execution environment, user context, and application context changes. To support collab-

oration among adaptive applications and service objects, Chisel uses a policy-based ap-

proach to control the dynamic adaptation behaviors by incorporating user and application

specific semantic knowledge and intelligence. However, the policy-based control provided

by Chisel lacks reasoning capability so that it might difficult for the application to deal

with complicated decision making process. COCA, however, adopts Jess rule base engine

as the decision maker for the adaptation enforcement service, which provides the effective

adaptation reasoning.

In summary, the related approaches described above have been shown to be effective

in solving specific adaptation problems. However, most of these systems either target a

specific middleware platform or require components to be designed explicitly to interact

with an adaptation infrastructure. By using a suite of tools to transparently weave COCA

interfaces into existing applications, in language- or platform-specific ways, COCA is not

constrained in this manner. Indeed, COCA complements many other approaches because

it can easily integrate applications designed for other adaptation infrastructures. Finally,

since COCA not only facilitates application integration by generating “glue code,” but also

generates rules to govern the adaptation process during execution, it provides a significant

step toward automating the construction of the decision structure for adaptive systems.

77

4.3 COCA Overview

In this section, we provide an overview of the COCA architecture and its operation. We

first discuss the process of bridging, in which an existing (legacy) component is tailored to

interact with the COCA infrastructure. And then, we introduce the general architecture and

key components of COCA infrastructure.

4.3.1 Bridging Existing Applications

The COCA infrastructure is based on Web services, which provide a standardized way

to integrate applications over the Internet by means of XML, SOAP, WSDL and UDDI.

Adaptation services clients are adaptive components that collaborate through the COCA

infrastructure. Of course, many legacy components considered for integration in an adap-

tive system may not support a Web services interface. We use the term bridging to refer to

the process of weaving a Web services interface for COCA-related communication into an

existing component. The interface supports a COCA protocol called 1112, discussed later in

Section 4.4.

Figure 4.1(a) shows the bridging process, which produces a COCA-ready component.

Figure 4.1(b) shows a collection of four bridged components, interacting via the COCA

adaptation infrastructure. The COCA interface enables a bridged component to (1) report

events of interest to COCA, and (2) make its local adaptation mechanisms accessible to the

COCA infrastructure. One could modify the component manually to support such func-

tionality, but a better approach is to weave in the communication interface transparently

with respect to the existing business code. The mechanism(s) used on a particular compo-

78

nent depends on the characteristics of the component, including the programming language

and any middleware platform used in its implementation.

_————-~

~
—
_
-
—
—
—
—
-
—
’

I l

l . ‘ I I _ I : :

: busrness :, _________J adaptation :..

, ' | ' . | I

: function :: adaptation :: logic Li.

5........1K-Jayafaaa_ll ’,,-_1 ,

bridging

——-—-—-—-—‘

--------- ‘o I -

. [LuiefietilguJI adaptation

busmess : ,— ------.--—~ I .

. .: adaptation [I logic

function ., . .] ,-—-

. _________I__uned29§__i ~~~~~~

C OLA-Ready Component 1 ------------------- 1 COCA-Ready Component

__________ ,-_--_2_--__

. "_-_SL‘JI_\IIIL_ J: adaptation
business ; ,4 ~~~~~~~~~~ I .

. .: adaptation [i logic
function ., . .: ,_-

. _________ '__Ln_ls‘[lii§Q_-i ————— —"

mlcnabled communication interface] [IVE-enabled communication interface]

’ (

direct messagmgT {Web services access direct messagingT TWeb services access

[COCA Adaptation Infrastructure

direct messaging] lweb services access direct messaging Web services access

0

[biz-enabled communication interfaceJ [NF-enabled communication interface]

(TWA-Ready Component COCA-Ready Component

(b) communication with COCA infrastructure

Figure 4.1: Bridging an existing application to work with COCA.

In the past few years. our group has developed several techniques that can be used to

implement bridging. These techniques are referred to collectively as transparent shap-

ing [159]. Although primarily intended to enable new adaptive behavior to be added to

79

individual components, transparent shaping also provides a means to enable existing adap-

tive components to interact with COCA adaptation infrastructure. In this case, the new

“adaptive” behavior is the support for COCA-related operations. Transparent shaping tools

developed by our group include TRAP/J [69], a generator framework that enables auto-

matic generation of the necessary aspects; TRAP/C++ [170], a C++ version of TRAP that

uses OpenC++ instead of AOP to define adaptation hooks; and ACT [65], a framework that

uses CORBA portable interceptors to support transparent adaptability and interoperability

of CORBA applications. In addition, frameworks such as Iguana] [45] and QuO [60], de-

signed to add new behavior to existing applications, can also be used to implement bridging

in COCA.

4.3.2 COCA Architecture

Figure 4.2 shows an example of the COCA architecture. This example includes only a

minimal set of adaptation-related services supported by COCA; additional services can be

added easily. Included in Figure 4.2 are a Messaging Service, a Naming Service, a Specifi-

cation Processing Service and an Adaptation Enforcement Service. The COCA Messaging

Service provides a message interchange center for the entire system. The COCA Naming

Service provides a tree-like directory for component references. The COCA Specification

Processing Service maintains high-level specifications of system goals and constraints, and

maps these specifications onto low-level behaviors of each system component. The COCA

Adaptation Enforcement Service is a rule engine that provides formal reasoning support

for checking conditions and Selecting corresponding actions. The Specification Processing

80

and Adaptation Enforcement Services are discussed further in Section 4.6.

Adaptation Services Clients I \\\

t \ --'19‘i‘39~i_.

adaptation

business ada tation local - logic

function adapts . p adaptation

F""" interface --------

"_“ l interprets :

- - . global .

[commumcatronrnterface]'-—--——~,

adaptation

direct messaging? TWeb services access

fOCA Adaptation Infrastructure . Run-time Service

[Messaging Service }[e_a_8991_l1g___|

A

I
. . , _______ . .

[Naming Servrce messaging {Adaptation Enforcement Servrce]

D ' n-time Service

\ [Specification Processing Service] esrg

------------------------ > s

message propagation communication mechanism

Figure 4.2: COCA architecture and operation.

Figure 4.2 also depicts message propagation in a COCA-based system. When the sens-

ing unit of a system component detects a run-time environment change that could trigger

system adaptation, it first notifies the local adaptation decision maker. This component

(if there is one) decides whether it can handle the adaptation locally. If not, it passes the

adaptation request to the COCA Adaptation Enforcement Service, which manages the in-

teractions and collaborations among adaptive components, thereby implementing global

adaptation. All these decision making processes and adaptations are governed by policies,

as described in subsequent sections. The selected adaptation action will be sent to the tar-

et com orients b means of M2, a collaborative ada tation rotocol we develo ed in a
g P y P P P

81

preliminary study [164].

4.4 The M2 Communication Infrastructure and the

M2 Protocol

4.4.1 Supporting Communication among Compositional Components

COCA components communicate with one another through M2-based messages, and

wraps .112communication infrastructure with a Web services interface. M2 uses two types

of techniques to deliver messages among components in an adaptive system. First, M2

supports existing distributed middleware platforms: CORBA, .NET, and Java RMI. This

approach enables .412 to take full advantages of existing distributed middleware techniques

and avoids a lot of trivial details such as marshaling/unmarshaling, type safety, etc. Sec-

ond, some resource-constrained mobile computing devices cannot afford or do not support

the aforementioned distributed middleware platforms. For those devices, M2 propagates

messages directly through TCP/IP support from the operating system. Depending on sys-

tem configurations, 1112 in an adaptive system may support a subset of the aforementioned

communication techniques. For example, a copy of 1112 middleware on a Linux laptop may

support CORBA-, Java RMl-, and TCP/lP-based message delivery.

In order to send and receive messages, the source component has to be able to locate the

target component. ll]? defines a hierarchical universe to solve this problem. The entire M2

universe comprises a set of sites, each of which contains multiple adaptive components.

Components here can be adaptive applications that achieve system functions, platform bro-

82

kers that gets context information from and reconfigure platforms such as operating systems

and middleware, services that coordinate other adaptive components, and 1112 itself. In this

universe, as shown in the upper portion of Figure 4.3, 111'2 defines its own hierarchical ad-

dressing mechanism to locate each individual component, including, the communication

protocol used by this component (e. g., m2c for 1112 over CORBA, m2r for 1112 over Java

RMI, m2m for M2 over .NET, m2m for .112 over TCP/IP), the location of the component

(i.e., IP address and corresponding port number), path of this component on the site in—

cluding type of the component (i.e., app for applications, pit for platform brokers, sev

for adaptation service components, or msq for .7112 itself), and the name of the compo-

nent. For example, m2r : / /copland . cse .msu . edu : lO99/app/audio is the M2

universal address for an application (app) named audio. This application runs on host

copland . cse . msu . edu, listening to port 1099 (rmiregistry port). This component

uses Java RM] to communicate with other components.

l URL-Based Element ID Format:

2 comm_protocrol : / /host :port /pat h__of_component

3 comm_protocol is m2mlm2rlm2clm2n

4

5 XML-based Message Format:

6 <msg name= msg imme>

7 <50urce> source'id<.r'source>

8 <target> target'ld--‘.x‘tarqet>

9 <1: imest amp> timesmmps’ ./t: imest amp>

10 (paramslr

11 <pa I am name = " param name" >

1 2 < t ype > param type< ./ t ype >

13 <va 1 tie poram value“. / va 1 ue>

14 <fparam>

15

16 </pa rams.»

l7 </mSg>
Figure 4.3: The .1112 XML message format.

As shown in the lower portion Of Figure 4.3. an .112 message contains five fields: name,

83

source, target, time-stamp, and params. The name field indicates the name of this message.

The source and target fields are the unique universal addresses as described above. The

time-stamp field indicates when this message was created. The variable-length params

field indicates the parameters of this message.

In order to pass messages, M2 has a set of message routers that listen to specific ports

(depending on the communication techniques supported, for example, Java RMI message

router may listen to port 1099), collect, and distribute messages between various compo-

nents. 1112 administrator designates these port numbers when M2 starts. Each component

is equipped with a message gateway to send and receive messages for the component.

Currently there are four types of message gateways: CORBA message gateways that com-

municate with the CORBA message router in M2; Java RMI message gateways that com-

municate with the RMI message router in 1112; .NET message gateways that communicate

with the .NET message router in 1112; and TCP/IP message gateways that communicate

with the TCP/IP message router in 1112. The message gateways represent their corre-

sponding local elements, communicate with the message router in M2 middleware, and

exchange messages with other components. In order to deliver messages across different

distributed platforms, there is a inter-communication protocol router (ICPR) that exchanges

messages among the CORBA message router, RMI message router, .NET message router,

and TCP/IP message router. For example, if the RMI message router gets a message from

one of the message gateways and the target element of that message uses CORBA instead

of RMI, it forwards this message to the the ICPR and the ICPR forwards this message to

the CORBA message router, and the CORBA message router delivers this message to its

target which supports CORBA.

84

The message gateways, message routers, and the ICPRS coordinate and deliver mes-

sages across the system. As shown in Figure 4.4, each time the message gateway receives

a message from the local component, it forwards it directly to its corresponding message

router (lines 1-4). When a message router gets messages from its corresponding gateways

or from the ICPR, it unwraps the message (lines 5-6). The message router first checks the

communication protocol used by the target component. If the target component uses the

same communication protocol as the source component (line 7), then the message router

checks the location of the target component (line 8). If the target is a local component

(line 9), then the message router forwards the message to the message gateway of the target

component (lines 10-1 1); if the target component is on a remote adaptive system that has

a different message router, then the message is forwarded to the corresponding message

router (lines 12-14). If the target of this message is using a different communication pro-

tocol as this message router and the source component, the message router forwards this

message to the ICPR and the ICPR dispatches the message to the corresponding message

router that supports the communication protocol the target component uses (lines 15-20).

The target component then gets the message from its gateway and processes the message.

In 1112, we do not constrain how components are attached to their corresponding gateways.

One possible implementation is through the observer design pattern [171], where the com-

ponent works as an observer of the message gateway. When new messages arrive, the

message gateway notifies the component as defined by the observer pattern.

85

(
D
Q
O
\
U
I
-
D
W
N
O
-
‘

N
N
P
—
‘
I
—
‘
h
—
‘
H
H
D
—
‘
t
—
‘
I
—
‘
I
—
‘
H

H
O
Q
w
O
m
M
A
w
N
I
—
I
O
K
O

1. An adaptive component sends a message to its local message gateway; 2. The local

message gateway forwards the message to the local

message router with the same communication protocol (CORBA,

.NET, RMI, or TCPglpl;

3. The message router checks the communication protocol of the target

of this message;

if(target uses the same protocol)(

check the target host address;

if(target is on local host)(

send this message to the target message gateway;

the target gateway forwards the message to the target element;

lelsel

send this message to the remote message router;

I

)else{

//target uses a different communication protocol

forward the message to inter-comm protocol router (ICPR);

the ICPR checks the target comm-protocol;

the ICPR forwards the message to corresponding message router;

I

4. Message successfully passed from source to target
Figure 4.4: Passing messages in 1112.

4.4.2 Adaptive Message Protocol

Using the previously described message passing mechanism, we defined a message proto-

col to support the collaboration among adaptive components in an adaptive system. This

message protocol defines messages used for handling the responses of an adaptive compo-

nent upon receiving a message and performing specific actions for dynamic adaptation.

Four categories of messages are defined. The first category is system topology and

adaptive component interface messages. The topology of an adaptive system is important

information to dynamic adaptation. For example, the decision making component has to

know which adaptive components are currently connected in the system (system topology),

what kind of context information can be extracted from them, and how they can be recon-

figured (via adaptation interfaces). The second category of messages handles the context

acquisition and propagation. In order to achieve dynamic adaptation, adaptive components

86

need to obtain system-wide run-time context information. This category of messages ob-

tains context information, and sends context information to interested components. The

third category is the system reconfiguration messages that are used to achieve dynamic

adaptation. The last category contains miscellaneous messages that serve all other pur-

poses such as status updates. Each of these categories is described in further detail below.

System topology and component interface messages are used to pass system topol-

ogy and component interface information among components. The system topology con-

tains information about which components are currently in the adaptive system. Compo-

nent interface includes two types of information: what kind of context information each

component can retrieve and what kind of reconfiguration commands an adaptive compo-

nent supports. A connection message (conn) is used by a source component to notify

the target component that the system topology or element interface related to the specified

name has changed. A disconnection message (disconn) is used by the source compo-

nent to notify the target component that the system topology or the component interfaces

related to the specified name has changed. Register messages (reg) are used by a source

component to notify M2 that it is interested in the topology of the adaptive system.

The M2 collaboration protocol requires each component to send conn messages when

connecting into the adaptive system and to send disconn messages when leaving the

adaptive system so that interested component can maintain the system topology and use

the topology information for adaptation purposes. Once a component registers its interest

in system topology and component interface, a copy of system topology and component in-

terface related message will be forwarded to this component so that it will have a complete

view of the current topology of the adaptive system: which components are in the adaptive

87

system, what kind of context information can be retrieved from which component, and how

components can be reconfigured.

Context acquisition and dispatching messages are used to pass context information

among various components. A context acquisition message (get) is used by a source

component to request the value of the context variable with the given name parameter from

the target component. A context dispatching message (put) is used by a source component

to send the value of the context variable to the target component. Register messages (reg)

are used by a source component to notify the target component with its interest in the

particular context variable.

The M2 collaboration protocol requires the target component of a get message to

send the value of the context variable on receiving a get message from a source compo-

nent. Once a component registers its interest in a context variable, this component shall be

notified when the value of that context variable changes.

Component reconfiguration messages are used to notify another component in the

adaptive system to perform a specific adaptive action. A component reconfiguration mes-

sage (recon f) is used by a source component to request the target component to perform

a reconfiguration action with the given name and argument parameters.

The M2 collaboration protocol requires that an adaptive component perform the speci-

fied adaptive action once receiving a recon f message.

Miscellaneous messages include messages that serve all other purposes such as status

updates. A notification message (not i fy) is used by a source component to convey some

information to the target component, such as reconfiguration result, etc.

The message protocol described above defines the rights and responsibilities of individ-

88

ual components and regulates their behavior if they are connected through the M2 commu-

nication infrastructure.

4.5 Case Study Application: Mobile Multimedia Confer-

encing

To evaluate COCA, we have used it to support collaborative adaptation in a multimedia

conferencing system comprising video, audio, and textual caption components. In this sec-

tion we review the main components of the system and how they can be adapted individu-

ally. In Section 4.6, we use this system to help demonstrate (1) how to compose a COCA

specification document that characterizes the structure and adaptation logic of an adaptive

system; (2) how to use the COCA specification document to create the adaptive system; and

(3) how COCA adaptation services realize the desired behavior of the adaptive system. In

Section 4.7, we demonstrate the results of experiments with the COCA-enhanced system.

The conferencing system comprises three existing applications, which interact via the

COCA adaptation services. Table 4.] summarizes the adaptive behaviors of the three ap-

plications. The first, Vplayer, is a Java application developed using Sun Microsystems

JMStudio. Vplayer transmits video and audio streams over the network and can be adapted

in two ways: (I) changing the frame rate of the video stream, and (2) switching the video

stream off (audio-only mode) or on (audio-video mode). Vplayer is also equipped with a

network detector for sensing the network connection changes.

The second component, ASA, is a Java audio streaming application developed atop

89

Table 4.1: The system architecture description of the adaptive conferencing system.

Component Interface Action Constraint

Vplayer changeFR change the transmission LAN and video is ON

frame rate

audioOnly turn off the video transmis- video is ON

sion and switch to ASA

ASA insertFEC insert a FEC facility to reduce WLAN and FEC synchro-

the loss rate nization

caption turn off the audio transmis- audio is ON

sion and switch to Echo

Echo insertFEC insert a FEC facility to reduce

the loss rate
MetaSockets [172], which are adaptable sockets whose behavior can be changed dynam-

ically by reconfiguring a chain of packet filters. For example, MetaSocket filters can be

used to dynamically change the quality of transmitted streams through techniques such

as forward error correction, encryption, and compression. In our study, we use the in-

sertion/removal of FEC filters to accommodate variable packet loss rate 'on the wireless

channel. ASA is equipped with a detector for sensing the observed packet loss rate. Fig-

ure 4.5 depicts the configuration of the ASA application, including control flow used to

realize adaptive behavior. When the loss rate detector observes a high packet loss rate, it

will send a event message to the Adaptation Enforcement Service through the A12 commu-

nication interface, triggering a global adaptation (no local adaptation in this case). Once an

adaptation decision is made, the corresponding messages will be propagated to ASA, where

they are interpreted as concrete adaptation commands, and producing the corresponding ac-

tions.

The third component, Echo, is a “closed caption” tool that converts speech to text

and transmits it over the network. Echo uses the CMU Sphinx Speech Recognition En-

90

KKSA Application \

‘adapts [insertFEC J“:

audio I

. I
streaming .ECEEQ caption __ 1| [loss rate detector]

l

, ifires events I

¥____/ interprets ' '
1

I

u . '

I

K [communication interface]‘-——--‘ J

adaptation messages from I I event messages to Adaptation

Adaptation Enforcement Service : i Enforcement SCI‘VICC

Figure 4.5: An example of components used in the case study.

gine [173] to recognize the speech from a microphone at the sender, and uses the FreeTTS

speech synthesizer [174] to reconstruct the speech at the receiver, while also displaying the

text. In order to reduce bandwidth consumption, or to make communication more tolerant

of high packet loss rates. the Echo application can be used to replace the ASA application.

(Live audio is converted to text, sent across the network, and synthesized back into speech.)

Moreover, the Echo application itself can be adapted by adding or removing FEC on the

text stream.

Figure 4.6 shows the physical configuration used in our experiments, and Figure 4.7

shows the class diagram of the components in this mobile multimedia conferencing system.

The environment contains a collection of servers and a collection of clients, running on a

100 Mbps wired LAN and a 802.] lb wireless LAN, respectively. For simplicity, we used

one Windows desktop and one Windows laptop to represent the whole connection in the

case study we will discuss in Section 4.7. The client/server parts of the above three adaptive

components (Vplayer, ASA, and Echo) are running on the corresponding client/server sub-

system, creating a multicast conferencing system. This multimedia conferencing system

9]

will automatically adapt its behavior in response to the changing bandwidth usage and

QoS requirements. Specifically, a client will transmit collected information at the highest

quality possible. When the channel conditions are good, both the video and audio stream

will be used for interactive communication. When the packet loss rate becomes too high.

however, video quality will be poor, so only the audio stream will be transmitted, with FEC

applied to the stream as necessary. If the packet loss rate increases further and strong error

correction coding is unaffordable, Echo will be activated and the textual version of the

speech, with strong error correction coding, will be used to replace the audio stream. When

the channel conditions improve, these actions will be reversed. The interactive adaptation

is supported by the COCA adaptation infrastructure, which comprises Messaging Service,

Naming Service, and Adaptation Enforcement Service.

802.1 lb

WLAN

_’ data flow """""* message flow

Figure 4.6: Physical configuration of the case study system.

92

1

[1]. Adaptive Conferencing System Uses > COCA Adaptation Infrastructure

Vplayer

O. .' 0. .‘

1 1 1 1 1

f 1 1 l 1 L

1 ‘ 1..n

l l ASA Echo Messaging Service Naming Service

Vplayer - server Vplayer - client

1 in l 1 1 I n ‘

I L

ASA - server ASA . client Echo - server Echo- client Adaptation Enforcement Service

Figure 4.7: Class diagram of the mobile multimedia conferencing system.

4.6 COCA Specification Documents

Using the COCA framework to construct and execute an adaptive application centers

around a COCA specification document, whose processing data flow is shown in Figure 4.8.

At design time, the application developer uses the Specification Document Composer to

write the COCA specification document, describing the system architecture and policies to

govern adaptation. The processing of the CSD involves following steps:

Step 1: The developer uses the Specification Checker to validate the correctness of the

specification content.

Step 2 and Step 3: The Specification Compiler is used to automatically generate “glue

code” skeletons and adaptation rules from the architecture description and the policy

description, respectively.

Step 4: In our current implementation, we use Aspect] [71] to transparently shape the

application by weaving in COCA communication interfaces (hook points). Thus,

the application developer should complete the “glue code” Aspects by mapping the

93

concrete implementation for adaptation with the COCA message processing logic,

and use Aspect] compiler to re-compile the business code with the final Aspects to

produce COCA-ready code. The end user can then directly execute the COCA-ready

code.

Step 5: The generated adaptation rules will be fed into the the Adaptation Enforcement

Service, which is the front-end of the Jess rule engine. During execution, the Adap-

tation Enforcement Service monitors the run-time environment and cam'es out the

adaptive behavior according to the events-actions list derived from the adaptation

rules.

In this section, we describe each of these activities in detail, using the conferencing system

as a running example.

4.6.1 Composing and Checking COCA Specification Documents

A COCA specification document is an XML file to store the necessary specification in-

formation. One of the main benefits of using XML as the basis for COCA specification

documents is the abundance of development tools available for constructing, manipulat-

ing and checking XML documents. In our COCA prototype, for example, we instantiated

the Specification Documents Composer by combining XML Designer in Microsoft Visual

Studio .NET [175] and Altova XML Spy [176]. These tools enable the developer to easily

create a well-formed specification documents and validate them. As shown in Figure 4.9,

a COCA specification document comprises two main parts: the architecture description

(used for constructing an adaptive computing system at design time) and the policy de-

94

Application

Developer

_ COCA Specification

7 Document (CSD)

Concrete implementation for

adaptation interfaces

Business Code

\‘SWCV

“glue code" Aspects, _

COCA message processing logic

 Step 4:

Map concrete

implementation

to “glue code"

5.-

Step 1: Validate

specification

content

Step 2: Generate

"glue code”

skeletons

 Hook points

Adaptive actions

CSD

Architecture description

Final Aspects for “glue code"—;

AspectJ Compiler

COCA-ready code

Policy descriptio

Execute code

Step 3:

Generate

daptation rule

Adaptation rules

Step 5: Feed into

Adaptation

Eniorcement

Service

Eventsvactions list

Jess rule

engine

I
Events

Figure 4.8: Data flow diagram for processing the COCA specification document.

scription (used for governing the adaptation behaviors of an adaptive computing system at

run time). To handle the possible conflicts between adaptation rules in the policy descrip-

tion, developers can assign different priorities to different rules; the rules with the higher

priorities will be used when conflicts occur.

Another purpose of using XML is that the specified information can adhere to a par-

ticular set of structural rules and data constraints, ensuring the syntax correctness of the

specification documents. However, XML cannot ensure the logical and functional correct-

95

(‘OCAContractDoc

‘ how] [why J

—H

[goal J L when]

r—'—l

[event] [what]

[priority

target]

operation

flCllOl'l

condition

Figure 4.9: COCA specification document.

ness of the contents in the specification documents. Thus, an external, semantically-aware

Specification Checker is needed. For example, as shown in Figure 4.10 (left), the com—

ponent of app.asal needs to be equipped with a communication interface for exchanging

messages with other components. Transparent shaping can be used to weave this commu-

nication interface into ASA without modifying the original source code. To do so, a hook

point (usually the main file of the application) needs to be provided in the specification

documents. The Specification Checker checks the correctness of this information in the

specification documents, in this example, whether file Microphone.java exists or not. In

our current implementation, besides verifying such compositional information, the Speci-

fication Checker also checks the consistency of the adaptation interfaces and the possible

adaptation actions.

The architecture description addresses two main questions regarding adaptation: Who

are the software components involved in the adaptation? How do they interact with one

96

another, that is, through which interfaces? This part of the specification document is used in

bridging at design time to generate “glue code” that enables existing components to interact

with one another for the purpose of adaptation. The who description includes information

such as the component name (used to identify the component), communication information

(used for message to interchange with other components) and the development language

(used to decide the suitable means to generate glue code). The how description exposes the

interfaces through which the individual components can adjust their behavior to achieve

the desired adaptation.

Figure 4.10 (left) shows the architecture description of the ASA application we used

in the case study. This server side ASA application is identified as apposal in the con-

ferencing system, and it exchanges A12 collaborative adaptation messages through a speci-

fied communication port. This topology information can be accessed by other components

through COCA Naming Service. The component app.asa1 has one reconfigurable interface

InsertFilter, which can insert a FEC facility to reduce the observed packet loss rate. This

reconfigurable interface can be considered as an adaptation service provided by app.asal,

and other components in the system can invoke this adaptation service by sending an M2

reconfiguration message to app.asa1.

The policy description defines the conditions under which the system should adjust its

behavior and the corresponding concrete actions. Specifically, the why element groups con-

crete adaptation activities of the adaptive system in response to the runtime environment;

the when element identifies the events that will trigger the adaptations: the what element

defines an action list that will guide the system behavior in response to the trigger events;

and the where element specifies any constraints that validate the policy rules.

97

1 ... 1 ...

2 (architect) 2 <policy>

3 <architectInstance> 3 <policyInstance>

4 <who elementName=app.asa1> 4 <why>

5 <elementType> 5 <goal>

6 app 6 reduce high loss rate

7 </elementType> 7 </goal>

8 <hostAddress> 8 <when>

9 copland.cse.msu.edu 9 <event>

10 </hostAddress> 10 high_1oss_rate_alert

11 <hostCommPort> ll </event>

12 8888 12 <what>

13 </hostCommPort> l3 <priority>

14 <developLanguage> 14 3

15 Java 15 </priority>

16 </developLanguage> 16 <target>

17 <mainFile> 17 app.asa1

18 Microphone.java 18 </target>

19 </mainFile> 19 (action)

20 </who> 20 InsertFilter

21 <how interfaceNumber=2> 21 </action>

22 <interfaceInstance 22 <operation>

23 interfaceName=InsertFi1ter 23 FECEncoder

24 type=reconfiguration 24 </operation>

25 parameterNumber=2> 25 <where>

26 <interfaceParameter 26 <condition>

27 parameterName=FilterName 27 ifFECSynchronized=Yes

28 parameterType=string> 28 </Condition>

29 </interfaceParameter> 29 </where>

3O 30 </what>

31 </interfacelnstance> 31 ...

32 ... 32 </when>

33 </how> 33 ...

34 ... 34 </why>

35 </architectInstance> 35 </policyInstance>

36 ... 36 ...

37 </architect> 37 </policy>
Figure 4.10: Excepts of an example COCA specification document: (left) architecture

description of ASA; (right) policy description of ASA.

Figure 4.]0 (right) shows the policy description of the ASA application. When the

conferencing system experiences high network loss rate, a high-loss_rate_alert will be gen-

erated, and the COCA Adaptation Enforcement Service will be notified. Since the policy

agreement states that the conferencing system must adapt its behavior in response to the

such an event, the COCA Adaptation Enforcement Service will select from the action list

the matching adaptation action with the highest priority. If the InsertFilter adaptation of

app.asa1 is selected, its pre-condition (ifFECSynchronized) must be checked and satisfied

before a reconfiguration message is sent to app.asa1].

98

4.6.2 Translating COCA Specification to Code

An important feature of COCA is its support for automatically translating 3 COCA specifi-

cation to code. Such automation is intended not only to lessen the workload on developers,

but also to improve the quality of the software by introducing fewer bugs. The Specifi-

cation Compiler is a code generation tool that produces various parts of the system from

corresponding parts of the specification documents. Example products include: commu-

nication interface code and (if needed) an adaptive code skeleton woven into legacy com-

ponents, execution scripts for decision-making by the Adaptation Enforcement Service,

and various configuration files. In our prototype, the Specification Compiler includes two

main sub-components: the Bridge Generator and the Rule Generator, which translate the

architecture description and policy description, respectively.

Figure 4.1] shows the generated code that corresponds to the specification in Fig-

ure 4.10. Figure 4.11 (left) gives the glue code produced by the Bridge Generator for

connecting existing ASA application to the COCA infrastructure. Besides mapping the

architecture description onto a concrete implementation that weaves communication inter—

faces into existing legacy components, the translating process also generates a code skele-

ton for weaving new adaptation behavior into the system. The developer can later fill in

concrete implementations into this skeleton, if needed.

Figure 4.1 1 (right) shows the translated policy description of app.asa1, as produced by

the Rule Generator. In our prototype, we used the Jess rule engine [177] as the basis in the

Adaptation Enforcement Service. Hence, the policy descriptions are transformed to Jess

scripts, which are managed at run time by the Adaptation Enforcement Service. A Jess

99

1 public aspect Bridging_Microphone { 1 ...

2 // listen to the COCA messages 2 (deffunction insertFEC ()

3 declare parents: Microphone 3 (store msgName "reconf")

4 implements Observer; 4 (store targetName "app/asal")

5 // connects to the COCA 5 (store msgParams

6 // infrastructure 6 "name=/app/asa1/cmd/

7 after() returningiMicrophone mjc): 7 InsertFilter&cmdargs=FilterName:

8 calliMicrophone.new(..)) { 8 strinngECEncoder")

9 // register topology information 9)

10 // defined by who description 10 (deffunction ifFECSynchronize ()

11 MadaptHelper.connRemote(11 (store msgName "reconf")

12 "app.asa1", 12 (store targetName "app/asal")

13 "copland.cse.msu.edu"13 (store msgParams

14 8888); 14 "name=/app/asa1/cmd/

15 Mngateway.getInstance() 15 IFFECSynchronize&cmdargs=Status:

16 .addObservertmjc); l6 strinnges")

17 // register reconfiguration 17)

18 // interfaces defined by 18 ...

l9 // how description 19 (defrule reduce_loss_rate_condition

20 Reconmed reconmed = 20 (declare (salience 3))

21 new Reconmed(”"); 21 ?adaptFact <—

22 reconmed.setCmdName(22 (high_loss_rate_alert)

23 "InsertFilter"); 23 =>

24 reconmed.addedArg(24 (ifFECSynchronize)

25 "FilterName", 25)

26 "string"); 26 (defrule reducenloss_rate

27 MadaptHelper.conn(reconmed); 27 (declare (salience 2))

28 reconmed.clearCmdArgs(); 28 ?adaptFact <-

29 } 29 (high_1oss_rate_alert)

30 // process reconfiguration message 30 ?whereFact <-

31 public Microphone.update(31 (ifFECSynchronize_Yes)

32 Observable argO, 32 =>

33 Object argl) { 33 (insertFEC)

34 if(arg1 is a InsertFilter msg) 34 (retract ?adaptFact)

35 insert FEC facilities 35 (retract ?whereFact)

36 process other messages } 36)

37 } 37

Figure 4.11: Code generated from the example COCA specification document: (left) glue

code for bridging ASA to COCA; (right) rules for governing ASA adaptation.

rule is similar to an if...then statement in a procedural language, however, Jess rules are

executed whenever their if parts (LHSs) are satisfied, instead of at a specific time and in a

specific order as they were programmed. Due to this characteristic, the information of the

when element in the policy description is used to define the LHS events and conditions of a

rule, while the information of the what element is used to define RHS actions of a rule. The

where element defines pre-conditions and constraints under which the policies are valid

and enforced, and is often combined with other LHS events and conditions. For example,

to ensure software consistency during adaptation [178], when a high_loss_rate_alert event

100

message is sent to the Adaptation Enforcement Service by ASA, the condition of the rule

reduce_Ioss_rare_condition is satisfied so that the corresponding action of checking the pre-

condition for inserting the FEC facility is selected. Upon receiving this action command,

ASA will check if the FEC facility is ready for use and respond to the Adaptation En-

forcement Service with an event message ifFECSynchronize-Yes. Since the two conditions

of rule reduce_loss_rate are now both satisfied, the adaptation action of inserting the FEC

facility will be invoked by sending a reconfiguration message to ASA.

4.6.3 Enforcing COCA Adaptation

The main responsibility of the Adaptation Enforcement Service is to interpret the policies

in the COCA specification and guide the system behavior according to the dynamic runtime

environment and the corresponding policies. In general, the implementation of the COCA

Adaptation Enforcement Service could be based on any reasoning engine that is able to

connect to the COCA infrastructure through :lIQ-enabled communication interface. In our

implementation, we used the Jess rule engine as the enforcement processor. Jess decides on

actions using information supplied in the form of declarative rules. As mentioned above,

the Rule Generator part of the Specification Compiler generates Jess rule scripts from the

policy description defined in the COCA specification document, and feeds the generated

rule scripts to the Jess engine for processing and decision making. Jess maintains a collec-

tion of knowledge units called facts. and Jess rules define actions based on the contents of

one or more facts.

Once an adaptation action is selected, the corresponding operation commands will be

101

sent to the target components using III2 collaborative adaptation messages. For example,

when the loss rate detector in the app.asa1 detects a high packet loss in the network, it fires

a high_loss_rate_alert event to notify the Adaptation Enforcement Service. Upon receiving

this notification, a high_loss_rate.alerr fact will be declared. The Adaptation Enforcement

Service will select the adaptation action with the highest priority in the action list. If the

adaptation policy needs to be modified at run time, system developers simply need to re-

generate Jess scripts with the Rule Generator and feed them to the Jess engine.

4.7 Demonstration

Having shown how a COCA specification document can be used to introduce adaptive be-

havior to a distributed system, in this section we demonstrate the operation of our COCA-

based conferencing system in a wireless environment. We used the Specification Compiler

to produce glue code and adaptation rules for the application, as described in Section 4.6.

We then compiled individual components using their respective compilers, and ran experi-

ments using the physical configuration shown in Figure 4.6. Wireless networks are notori-

ous for making it difficult to conduct repeatable experiments. To address this problem, we

used a packet loss emulator to drop packets according to a packet loss model [179]. In an

earlier study [12], we demonstrated the high accuracy of this model.

The initialization of the conferencing system proceeds as follows. We first start the

Vplayer application and then the ASA application. Once each application starts, it regis-

ters itself with the Naming Service, which is part of the COCA infrastructure running on a

separate Web Server. The adaptation goal of the system is set by defining appropriate poli-

102

cies in the COCA specification documents. In this case study, we want the conferencing

system to adapt its behaviors according to network channel conditions (a loss rate sensor

will fire Iow_loss_rate_alert, high_loss_rate_alert, and extreme_loss_rate_alerr events based

on observed packet loss rate of lower than 20%, 20%-40%, and higher than 40%, respec-

tively), so we can specify the actions to be taken in response to different events (e.g. we

give the ASA adaptation rules in response to the high_loss-_rate_alert event in Figure 4.10

(right)). For each individual event, there may be several matching actions and the selection

among these actions is based on their priorities.

Figure 4.12 shows a trace of an experiment in which we set the conferencing system

goal to autonomically provide suitable quality of service on interactive communication ac-

cording to the environment changes. The plot shows both the (emulated) packet loss rate on

the network, as well as the packet loss rate observed by the system after FEC error control

is applied. This particular trace represents the following scenario: a conference participant

with a laptop computer remains close to the wireless access point for approximately 30

seconds, then begins walking, arriving at location of high packet loss (approximately 30%)

at time 60. He remains there for approximately 60 seconds, then walks to a location of

extremely high packet loss (50%) remains there for another 60 seconds, and finally returns

to a location of relatively low packet loss (10%).

At the beginning of the experiment, and as the user begins walking, the network packet

loss rate and the application packet loss rate are identical, since FEC is not applied to the

data stream, which comprises both audio and video. When the client system enters the area

of high loss rate at time 60, the platform loss rate sensor detects the increase in network

packet loss rate (approximately 30%) and notifies the Adaptation Enforcement Service of

103

QOS-Oriented Adaptation In An Adaptive Conferencing System

50 video streaming and

audio sirearning
video streaming and

audio streaming

L
0
8
8

r
a
t
e
(
%
)

10i;_ .33 FW;&.,1¥§ Li?!A}!!! , “11"" '5qu

0 20 40 60 80 100 120 140 160 180 200 220 240

Time (seconds)

+7Networkr loss rate +. Application loss rate“

4.1 :Mia car on the lower @111:qu

” More: a horse In the tulront i

O.»
1

frame rate = 10 fps PCM (8000.8.mono) + FEC (8.4) FEC (20.2) frame rate = 10 fps

Figure 4.12: Trace of a COCA—based adaptive multimedia conferencing system.

a high_loss_rate_alert event. Once the Adaptation Enforcement Service receives this event,

it consults the Jess rule base shown in Figure 4.11 (right) and selects the highest prior-

ity adaptation rule whose conditions are satisfied. This results in pausing of the Vplayer

application (highest priority) and switching to audio-only mode using ASA. Shortly there—

after, since the loss rate is still high (30%), the loss rate detector of the ASA application

fires another high_Ioss_rate_alert event. Since the possible adaptation may involve inter-

actions between ASA and other components, this event is propagated to the Adaptation

Enforcement Service via the Mngateway communication interface of the ASA applica—

tion, shown in Figure 4.1 1 (left). Since inserting FEC facility can reduce the loss rate in

this case study, the Adaptation Enforcement Service first checks whether the pre-condition

104

(ifFECSynchronized) is satisfied or not. If so, it sends a insertFEC reconfiguration message

to the ASA application through the Messaging Service. Before the reconfiguration message

is sent to the target component, the physical topology information of the target component

is retrieved from the Naming Service and embedded in the message body. Once the ASA

application receives the message, it inserts the FEC filter into the MetaSocket used to trans-

mit the stream.

So far, the scenario of a complete message propagation and adaptation policy enforce-

ment cycle was demonstrated. However, since the FEC facility will increase the bandwidth

usage, perhaps beyond that available, there is a constraint in the selection of FEC parame-

ters. Therefore, when the network loss rate is too high, limited FEC capacity cannot meet

the QoS requirement. For example, when the client system enters an extremely high packet

loss (50%) location, the FEC (8,4) coding for audio stream is not sufficient to correct the

error, but stronger FEC coding will consume much more bandwidth and introduce jitter.

Therefore, at time 130, the Adaptation Enforcement Service decides to switch conferenc-

ing system from the ASA application to the Echo application, which consumes much lower

bandwidth consumption and thus imposes less constraint in the selection of FEC param-

eters. When the client system returns to a location with good network conditions, the

Adaptation Enforcement Service is notified of a low_loss-rate_alert event, which results in

resuming the Vplayer and ASA components.

105

4.8 Conclusions

In this chapter, we introduce COCA, a collaborative adaptation infrastructure for mobile

computing systems. We describe how to compose a COCA specification document, which

describes both architectural information as well as adaptation logic. By translating these

parts, respectively, into communication interface glue code and rules to guide adaptive

behavior, COCA enables the construction of adaptive mobile systems from non-adaptive

legacy components. We apply COCA to a composite multimedia conferencing system,

enabling it to adapt to changing network conditions in multiple, coordinated ways.

The methods used in COCA are general and can be extended to other distributed com—

puting models that require collaborative adaptation. In this chapter, we introduce the use

of COCA to realize an adaptive mobile system from a collection of legacy applications. In

the next chapter, we will demonstrate how COCA cooperate with other distributed comput-

ing frameworks to construct autonomic communication services and support collaborative

adaptation in a fully distributed computing environment. We will also introduce how to

generalize the COCA specification and facilitate the process of specifying and managing

this type of specification.

106

Chapter 5

ORCHESTRATING DISTRIBUTED

’ AUTONOMIC COMMUNICATION

SERVICES

Autonomic computing refers to self-managed systems that require only high-level hu-

man guidance. The evolution of autonomic computing systems will be a long—term pro-

cess [165]. When the system self-management capability improves, the interaction between

humans and systems will progressively decrease. As automation technologies mature and

humans gain more confidence in them, autonomic systems can independently make low-

level decisions and take appropriate actions. Currently, however, human interaction with

such systems is still necessary. As we have seen, the implementation of autonomic system

functionality often relies on collaboration among individual components. In the previous

chapter, we demonstrated the use of COCA to integrate several legacy components into an

107

adaptive system. In this chapter, we extend expressive orchestration to distributed, service-

oriented architectures, facilitating the development of autonomic computing systems based

on external services.

5.1 Introduction

Future autonomic systems are likely to be large-scale information systems implemented

atop heterogeneous hardware platforms, operating systems, programming languages, and

networking protocols. The architecture of an autonomic system needs to address this het-

erogeneity in the run-time environment, as well as the interoperability among components.

One of the great challenges in building autonomic systems is to manage their components

correctly and effectively [180]. Techniques such as COCA are intended to aid this process

by providing developers with the tools needed to realize collaborative adaptation among

software components.

However, building autonomic systems will also be a collaborative effort between differ-

ent developers and organizations. Thus the development process should involve different

roles and separate concerns. Different interested parties may require different views of the

system architecture, configuration, and run-time management. Specifically, application de-

velopers focus on implementing the business logic of individual components, adaptation

developers put effort into making individual components autonomic, and system develop-

ers work on integrating individual components into an autonomic system. When autonomic

systems are constructed as collections of interacting components (or services), it is neces-

sary that the behaviors of individual components and the interaction among these compo-

108

nents be specified precisely for later integration, configuration, and run-time management.

Moreover, developing large scale service-oriented autonomic systems will require a means

to enable developers in different organizations to specify and realize these interactions.

Thus, application developers should have the means to specify the behaviors of individ-

ual components and deliver the corresponding specifications to adaptation developers. The

same routine should also be applied between adaptation developers and system developers.

Furthermore, from the view of integration, the life cycle of these interactions should start

from the design time of individual components and continue through the evolution of the

entire system. Thus, a comprehensive specification model is needed in business code and

“glue code” development. system integration, run-time management, and system evolution.

Figure 5.1 depicts a scenario in which different parties involved in an autonomic sys-

tem development need to collaborate. Given a collection of applications and autonomic

services needed to build an autonomic system, the system developer/administrator has the

most complete knowledge about each part of the system and acts as the coordinator who is

responsible for orchestrating system integration, providing instructions to other parties for

shaping applications, setting up service paths, and binding services. To oversee these tasks,

the system developer/administrator needs inputs from the application developer, the service

developer/administrator, and the end users to specify the high-level system compositions

and map these specifications onto low-level behaviors of each component. The collected

information includes application-specific information (e.g., programming language, recon-

figuration interfaces, etc.), the service—specific information (e.g., service configuration, ser-

vice interfaces, service topology, policies, etc.), and the user preferences and requirements.

Unfortunately, in most cases, different parties involved in building an autonomic system

109

lack a unified platform and infrastructure to enable such collaboration. Such a unified plat-

form and infrastructure would facilitate rapid prototyping, system development, run-time

management, and maintenance. The lack of such a platform will certainly hinder the de-

velopment of autonomic systems.

System Developer/Administrator Application Developer

Provides application-specific

Information: programming lang

r reconfiguration interfaces. etc.

'Orchcsuatcs system integration

dnl’omrationofosr shaping

the applica

'lnformation0for

instantiating the services

-lnfor1nation for the

~Co|lects information and provides instruction

~Gencratcd glue

code for using

underlying services

'Gcnerated

adaptation code

skeleton

'Sets up service paths and binding services

-Managcs and maintains run-time interactive

activities

1

service configuration

-lnformatitron for run--u'me

OBusiness code Interactive management

(icnerated gluc

code for interacting

with applications

°Gcncnrred service

execution script

files

 Provides user preferences.

requirements. etc.

Provides service-specific information;

service configuration. service interfaces.

service topology. policrcs. etc.

'System

execution

instructions

ervtce

uEnd Useri%yy

'9)

Figure 5.1: Interactions among different parties involved in the autonomic system develop—

ment.

To address these needs, we propose ASSL (Autonomic Service Specification

Language), an XML-based technique for specifying distributed, service-oriented auto-

nomic systems, focusing on integration, configuration, and run-time interaction manage-

ment. ASSL extends COCA to provide a unified platform to support the development and

execution of distributed autonomic systems developed by multiple organizations. The re-

sulting composite specifications not only facilitate system integration, but also can be used

110

in the later control of the system workflow. The possible outputs of the scenario depicted in

Figure 5.1 may include the generated “glue code” for the applications to use the underlying

services, the generated adaptation code skeleton for the application developer to introduce

adaptive functionalities to the legacy non-adaptive applications, the generated “glue code”

for the services to interact with applications, the generated service execution script files,

and the system execution instructions for the end users. Given that the unnecessary de-

tails are abstracted away, the methodology adopted by ASSL can substantially lessen the

number of upstream system errors passed downstream at the source code level.

This work is a part of the Service Clouds framework [181], which attempts to pro-

vide a framework that enables rapid but reliable design, development, and deployment of

service—oriented autonomic systems. Generally, the Service Clouds framework includes:

(1) The Service Clouds infrastructure, which provides the necessary service components

in a service-oriented autonomic computing architecture, and provides the concrete service

implementation mechanisms. (2) The Service Graphs model provides a means to abstract

autonomic systems based on layered graphs, which represent the connectivity of distributed

entities using multiple layers of abstraction. (3) The ASSL specification and development

toolkit. ASSL attempts to provide an abstract and succinct means of capturing and express-

ing the logic behind collaborative processes related to the development and management

of autonomic systems. ASSL intends to serve two objectives: to serve as a source, based

on the Service Clouds infrastructure, for constructing a running system and setting up an

execution environment; and to serve as a target for the high level Service Graphs model.

In a case study, which is conducted using the Service Clouds infrastructure and executed

on the PlanetLab distributed computing testbed, we demonstrate the utility of ASSL in the

111

composition, deployment, configuration, and management of distributed autonomic com-

munication services.

The remainder of this chapter is organized as follows. We briefly introduce the back—

ground for this work in Section 5.2. To help illustrate various aspects of ASSL, we intro-

duce an autonomic video streaming service in Section 5.3 as an example application. Sec-

tion 5.4 discusses the detail use of ASSL for service specifications, service binding, and

interactive management. Section 5.5 presents the empirical results obtained from building

a video streaming service with ASSL. Conclusions are given in Section 5.6.

5.2 Background and Related Work

Since this work is conducted in the autonomic computing domain, we firstly introduce the

background of autonomic computing in Section 5.2.1 and the service-oriented architecture

to support autonomic computing in Section 5.2.2. As we have stated that this work is a part

of the Service Clouds framework, in Section 5.2.3 we describe the architecture design of the

Service Clouds infrastructure. Similar to the existing Architecture Description Languages

(ADLS), ASSL can be used to specify the interaction between the compositional software

components of an autonomic system in the solution space. Moreover, ASSL can be also

used to specify the extra-functional properties that go beyond the structural behavior of the

system, which are necessary for system integration, configuration, and run-time interaction

management. In Section 5.2.4, we survey the existing ADLS, focusing on their contents

and representations.

112

5.2.1 Autonomic Computing

An architectural approach to building an autonomic computing system has been proposed

by White et al. [182]. In order to simplify system management, the implementation of sys-

tem functionalities in an autonomic computing system relies mostly on the collaboration

among the individual autonomic elements. Thus an autonomic element itself must also be

self-sustaining, which means that it must handle, as far as possible, all problems locally.

The relationships among autonomic elements are based upon agreements, in which an e1-

ement can describe its service to other elements. To validate the agreement, an autonomic

element must not only understand and abide by the terms of its existing agreements, but

also be capable of negotiating new agreements. The autonomic elements can collaborate

to implement autonomic computing functionality by establishing and maintaining relation-

ships, providing services, and receiving directives.

In addition, the autonomic elements must also implement additional interfaces to

achieve interoperability in the system. These interfaces include: monitoring and testing

interfaces, which expose the run-time status of an element to any other element interested

in it; life cycle interfaces, which enable administrative elements to determine and change

the life cycle state of an element; policy interfaces, which can be used to determine the

current policies of an element and send new policies to the element; and negotiation and

binding interfaces, which allow elements to establish relationships by sending or receiving

requests for services between each other.

Finally, an autonomic system requires infrastructure elements that support the operation

of the autonomic system as a whole. For example, a registry helps elements to broadcast

113

their services and establish relationships with other elements. A sentinel provides monitor-

ing services to other elements. An aggregator combines two or more elements to provide

improved services to other elements. A broker facilitates elements to express their demands

and locate the required services. A negotiator assists elements with complex negotiations

to establish stable relationships and solve conflicts. All these infrastructure elements facili-

tate the interactions among autonomic elements. Together, the autonomic elements and the

infrastructure elements cooperate to implement the system functionalities.

In general, White et a1. argue that to build an autonomic system, we should be able

to map desired system-wide behaviors to a set of behavioral actions and interaction rules

embedded within the individual elements. This mapping process is not a simple collection

of local behaviors from individual elements; rather, it should be a mixture result from

effective negotiations among the autonomic elements.

5.2.2 Service-Oriented Architecture for Autonomic Computing

Since autonomic systems will be interactive collections of autonomic elements and infras-

tructure elements, a distributed, service—oriented architecture needs to accurately support

the interaction among elements. The OASIS SOA Reference Model group [183] defines

Service Oriented Architecture (SOA) as “Service Oriented Architecture is a paradigm for

organizing and utilizing distributed capabilities that may be under the control of differ—

ent ownership domains. It provides a uniform means to offer, discover, interact with and

use capabilities to produce desired effects consistent with measurable preconditions and

expectations.” SOA allows individual elements to hide their implementation details and

114

expose a consistent interface for communication, thus the interaction and collaboration can

be achieved through negotiation between service providers and service requesters.

The service-oriented architecture is hierarchical. An autonomic element will typically

consist of one or more managed elements coupled with a single autonomic agent. An auto-

nomic agent is an aggregator that controls and represents the coupled autonomic elements.

At the highest level, the managed element could be a hardware resource, an application

service, or even an individual business.

There are two types of autonomic agents: business agent and infrastructure agent. The

business agent is responsible for capturing and encapsulating the business logic of a col-

lection of autonomic elements to implement one system functionality. The infrastructure

agent is responsible for integrating those infrastructure elements which provide system-

wide autonomic related functionalities, such as registry, monitoring, negotiation, and deci-

sion making. Since the functionalities provided by these infrastructure elements cross-cut

the needs of other autonomic elements, it would relieve application developers’ workload

if the services from these infrastructure elements were available for use and they did not

need to re-invent and re-develop these utilities. Moreover, it would be helpful if developers

could leverage existing techniques and products provided by other vendors. With the inte-

grated management of autonomic agents, the managed elements could reside in the same

host, or be fully distributed across the Internet.

The emergence of Web services helps to address many of these integration problems,

due to its loose-coupling nature and wide support among software vendors. Web services

describe a standardized way of integrating applications using the XML [184], SOAP [185],

WSDL [186], and UDDI [187] open standards over the Internet. Here, XML is used to

115

tag the data; SOAP is used to transfer the data between a service provider and a service

requester; WSDL is an XML document for describing the available services; and UDDI

is used for publishing and locating the available services. Because all communication is

in XML, Web services technology is independent of platform, operating system, program-

ming language, middleware, and networking protocol. Web services allow applications to

be integrated through message interchange, so the system developers only need to focus on

service semantics description and organization without worrying about the intimate knowl-

edge underlying each application. Furthermore, we can use Transparent Shaping tools to

expose legacy applications to Web services. All these techniques facilitate the integration

and the development of autonomic systems.

5.2.3 Service Clouds Infrastructure

Our study of ASSL is conducted with the support of a service-oriented infrastructure, Ser-

vice Clouds infrastructure [181], which provides autonomic communication services to

mobile devices. Figure 5.2 shows a conceptual view of the Service Clouds infrastructure.

This infrastructure creates and terminates distributed overlay services at run time through

a collection of hosts. In this view, deep service clouds comprise hosts on an Internet over-

lay network (such as wired nodes on the PlanetLab testbed), and mobile service clouds

comprise hosts close to the wireless edge. The federation of clouds cooperates to provide

autonomic communication services.

The Service Clouds infrastructure enables dynamic composition, instantiation, and re-

configuration of services on an overlay network. For example, when a mobile user uses his

116

 Service Clouds

Federation

Mobile User

--
-- .

-9 .
s-—

‘--

 City/Airport Hotspots possible stream

(ISP operated) redirection based

high speed

..... ’ ydam transfer

, ,' \

 Distributed

Overlay Service
 overlay Node

," University/Corporate . ,

Mobile Service Cloud Campus . '

(Internet Wireless Edge) Deep Service Cloud

(Internet Overlay)

Figure 5.2: Conceptual view of the Service Clouds infrastructure.

PDA to view a video stream from a video server, he may move from one hotspot to another

hotspot, and his IP address may change from time to time. In such a scenario, how can the

communication infrastructure ensure that the mobile user can receive a continuous video

stream? The solution provided by Service Clouds is to deploy autonomic communication

services at the edge of the wired Internet, in support of wireless devices. These autonomic

communication services are self-managed, and they can monitor user behaviors and adjust

the services and resources dynamically to provide the best services to mobile users. The

idea behind the implementation is similar to the concept of DNS and DHCP services in the

traditional Internet, but focuses on QoS support of wireless communication. The Service

Clouds infrastructure is primarily intended to facilitate rapid prototyping and deployment

ll7

of autonomic communication services. Examples of such services include communication

path resiliency, improvement of TCP throughput, and fault-tolerance streaming at the wire-

less edge [181], as well the example presented in Section 5.3 on supporting multicasting

and user mobility.

The Service Clouds infrastructure is a typical service-oriented infrastructure that sup-

ports autonomic computing. As the complexity and scale of service-oriented systems con-

tinue to grow, they become increasingly difficult to administrate and manage. At the same

time, service deployment technologies (e.g., Nixes [188], SmartFrog [189], Radia [190],

etc.) are still based on the low-level scripts and configuration files with minimal ability to

express dependencies, document configurations, and verify setups. ASSL provides a means

to describe more complex autonomic behavior in service-oriented environments. Specifi-

Cally, ASSL can be used to specify and support the interactions among the compositional

components and the interested parties in three levels: component-component interaction in

the application level, component-service interaction in the system level, and service-service

interaction in the service level.

5.2.4 Architecture Description Languages

Architecture description languages (ADLS) represent a language-based design methodol-

ogy, which are used to define and model system architecture prior to system implemen-

tation. According to Vestal [191], an ADL for software applications “focuses on the

high-level structure of the overall application rather than the implementation details of

any specific source module.” There are several ADLs, such as Acme [192], Rapide [193],

118

MetaH [194], C2 [195], xADL [104], Darwin [103], and Wright [102]. In general these

ADLs differ from requirement languages because they are rooted in the solution space,

whereas requirements describe problem spaces. Moreover, ADLs also differ from program-

ming languages because ADLs do not bind architectural abstractions to specific solutions.

Medvidovic and Taylor [90] summarized that the essential building blocks of an ADL

include components, connectors, and architectural configurations. Components are units

of computation or data stores while connectors are architectural building blocks used to

model interactions among components and rules that govern those interactions. Architec-

tural configurations that are also known as topologies are connected graphs of components

and connectors that describe architectural structure. Addressing the structural properties

of a composite system, most existing ADLs provide computational models of constructing

such a system and deal with the ways components interact. Thus in principle ADLs con-

centrate on the functional behavior, and can be used to specify how to compose systems

from smaller parts so that the interactive result meets system requirements. In addition

to the structural properties, Shaw and Garlan [196] indicated that other extra-functional

properties, such as performance, reliability, security, capacity, environmental assumption,

and so on are also (or even more) important. Unfortunately, however, existing ADLs have

not been applied to address these aspects. Moreover, challenges remain in finding formal

systems to handle and reason about these properties that go beyond the structural behavior

of the system.

Like other requirements languages and modeling languages, to aid understanding and

communication about a software system among different interested parties is one of key

roles of an explicit representation of an architecture [90]. Many ADLs provide formal syn-

119

tax and semantics, powerful analysis, model checkers, and so on. The formal notations

for ADLs are useful both for system construction as well as verification support. On the

other hand, it is also important that architectural descriptions be simple and understand-

able, with well understood, but not necessarily formally defined, semantics. The notations

for ADLs fall into the following categories [197]: graph-based approaches, process al-

gebra approaches, logic-based approaches, code-oriented approaches. Graphs are natural

approaches to represent the software architecture and the relationship between the com-

positional components. Example graph-based approaches include Multiset [198], Hyper-

graph [199], Distributed [200], COMMUNITY [201], and CHAM [202]. To study concur-

rent systems, process algebras are commonly used by specifying and verifying concurrent

systems with algebras and calculi. Commonly used process algebras include the Calculus

of Communicating Systems (CCS), Communicating Sequential Processes (CSP), and the

n-calculus. Dynamic Wright [102], Darwin [103], LEDA [203], PiLar [204] are typical

ADLs that adopt process algebra approaches. First-order logic and temporal logic are also

used as a formal basis for software architecture specification, especially for those dynamic

software architectures. Example logic-based approaches include Aguirre-Maibaum [205]

and ZCL [206]. There are some approaches exist that do not have a formal semantics based

on graph theory, process algebra, or logic; however, these code-oriented approaches often

provide code synthesis tools to support component-based development by utilisers archi-

tecture definitions as the development framework. For example, Rapide’s [193] compiler

generates executable simulations of Rapid architectures. xADL [104] (formerly C2 [195]),

on the other hand, provides a tool (Apigen) that generates implementation API from an ar-

chitecture model, providing completion guidelines for developers. From the point of view

120

of rapid prototyping, the code-oriented approaches are more suitable for facilitating the

system integration and development.

5.3 A Running Example

To evaluate our approach to specifying the interactive behaviors between service providers

and service clients, we have conducted an experimental study to demonstrate the autonomic

communication services specification, binding, and interaction. We will also use this ex-

ample application to help describe ASSL. In this example, mobile client nodes receive a

multimedia stream (e.g., in an interactive video conference or in a live video broadcast)

from a video server. In this case, the infrastructure fulfills the following requirements.

First, stream delivery should not be interrupted when a user relocates and connects to a

new network domain, gaining a new IP address. Second, the quality of the received stream

must remain acceptable as a wireless link experiences packet loss.

Figure 5.3 shows the configuration used in the experiments: three PlanetLab nodes

in a deep service cloud, two workstations in a mobile service cloud on the Michigan State

University intranet, and two Windows laptops to request a video stream from a video server

on the Internet. Subnet A is a wired LAN and subnet B is wireless. The middleware

software (SC Enabler) on a client connects to a Service Gateway node (N1) and requests

the desired service. Gateway nodes are the entry points to the Service Clouds infrastructure.

They accept requests for connection to the Service Clouds infrastructure and designate a

primary proxy to coordinate the requested service. Upon receiving the request, the gateway

identifies a node to act as the primary proxy (N4), and informs the client of the selection.

12]

The primary proxy receives detailed requests of the desired service, sets up a service path,

and coordinates monitoring and automatic reconfiguration of the service path during the

communication.

Deep Service Cloud,

PlanetLab

A

Service Gateway

"fljnlllticast

S
u
b
n
e
t
A

Mobile Service Cloud 5

Michi an State Universit Cam us

S
u
b
n
e
t
B

Figure 5.3: The experimental testbed and example scenario.

Besides the primary proxy in subnet A, there are several transient proxies in subnet B.

In this example, the transient proxy deploys two functionalities: multicasting and forward

error correction (FEC). Since multicasting is not readily available on the Internet (deep

service cloud), the stream is unicasted toward the wireless edge, where the transient proxy

multicasts it towards the wireless clients. Moreover, to maintain the quality of the video

stream (especially since unlike unicast UDP packets, there is no MAC-layer retransmission

for multicast packets on wireless link), the transient proxy applies FEC on the stream when

a wireless client detects high packet loss.

In addition to providing multicast and QoS streaming, the mobile service cloud supports

continuous streaming by the dynamic instantiation of the transient proxies, while users

roam among different subnets. For example. when user M1 moves from subnet A to subnet

122

B, the SC Enabler on the client detects the change of IP address and notifies the primary

proxy (N4). The primary proxy checks the current service path and notices that the video is

not being streamed in subnet B. Thus, it extends the service path by constructing a path that

delivers the stream to the new subnet B. This service path extension instantiates a transient

proxy (on W2) for the new domain and unicasts a copy of the stream already received at N4

towards W2, where the proxy multicasts it in subnet B. On the other hand, if a user joins a

subnet where the stream is already being multicast, no service path extension is required.

The running example scenario is depicted in Figure 5.3, which depicts three situations.

At the beginning, user M1 on the wired subnet A requests to receive a video from the

video server. Accordingly, the SC Enabler on the client sends a service request to the

gateway node N], which chooses N4 as the primary proxy and informs the client. Thus,

the client software sends a primary proxy service request to N4, which constructs a service

path comprised of UDP relays on itself and a unicast-to-multicast proxy on W] . Next,

another user M2 requests the same video on the wired subnet A. Since the video is already

being multicast to the subnet A, the Service Clouds infrastructure simply assigns the same

primary proxy to M2 and configures it to receive the same video as user MI. Finally, user

M1 walks away and switches from the wired connection on the subnet A to the wireless

connection on the subnet B. The SC Enabler detects this roaming between the subnets

because the IP address of the laptop changes when it joins a new subnet. At this point,

a dynamic service path extension, as explained earlier, makes the stream available in the

subnet B via a proxy on W2. Moreover, since the connection to W2 is wireless, if packet

loss rate becomes intolerable, the transient proxy provides the FEC service to compensate

for the packet loss.

5.4 Autonomic Service Specification Language

5.4.1 Introduction

When we incorporate a software component into a service-oriented infrastructure (e.g.,

Service Clouds infrastructure) to construct an autonomic system, we need to support the

interactions between the application and the underlying autonomic services. The interac-

tions may occur at system composition time, service deployment and configuration time,

and system run time. Furthermore, the interactions may be extended from software compo-

nents to humans, including system developers, system administrators, and end users. In our

running example, an existing video streamer application, which is unaware of the presence

of the Service Clouds infrastructure in the design and development time, needs to utilize the

Service Clouds to provide the robust video streaming. To complete such an integration and

configuration process, the application developer needs to know what kind of software mod—

ifications or configurations are necessary in order to use the underlying autonomic services,

and how the system can conduct further interactions with services during the run time. On

the other hand, the system administrator needs to know the concrete platform-specific and

application-specific information to complete the services deployment, configuration, and

binding. Furthermore, the system administrator may also need to know the user preferences

regarding QoS and other system requirements (e. g., security policy) in order to manage the

run-time adaptation.

Generally, to support interactive activities in such a service-oriented architecture, we

need to:

124

0 Modify the application to use the underlying services if it was not implemented

specifically atop the underlying service infrastructure. To do so, the system developer

could modify the application manually, but a better approach is to transparently shape

the application with respect to the existing business code. The mechanism(s) used

on a particular application depend on the characteristics of the application, including

the programming language and any middleware platform used.

0 Configure and bind services. Although a well-designed service should be general to

any application, the system administrator still needs means to customize application-

specific configurations in order to set up and maintain services. Only after the service

binding is established, can the application start using the underlying services.

ASSL is intended to facilitate the rapid deployment and configuration of such services.

The ASSL specification contents cover a range that include service capabilities and re-

sponsibilities, application requirements, and user preferences. ASSL is a highly-extensible

XML-based language, and its main strength is extensibility; it can act as the basis for com-

posing the domain/project-specific interaction specification. In our current design, ASSL

is a collection of XML schemas, which are used to specify various aspects of interaction

processes in an autonomic system. The core schemas can be extended to add new features

or increase its expressiveness. Details of ASSL core schemas and extension schemas are

presented in Section 5.4.2 and Section 5.4.3, respectively.

Figure 5.4 provides a conceptual view of the use of ASSL. The interactive process of

construction, configuration, and management of an autonomic system centers around a Ser-

vice Specification Document (SSD), which is an XML instance written in ASSL. An SSD

125

contains three sections: information section, binding section, and interaction section. The

information section lists physical host-specific and application-specific information. This

information can be used to describe the system architecture and generate “glue code“ for

incorporating applications to communicate with a service-oriented infrastructure (transpar-

ent shaping). In the binding section, the service side and the application side exchanges

information about service composition and sets up the service path (bootstrapping). The

interaction section contains the application requirements and user preferences according to

the parameterized services resource for the run-time system reconfiguration (adaptation).

All this information can be updated periodically or updated according to the change of the

run-time conditions, for example, the change of the IP address. With the reusability and ex-

tensibility provided by XML, users can easily customize their SSDs by leveraging existing

schemas as well as introducing new notations.

tlixistinu)‘ Transparent

\pplicntwn Shaping

Sen tcc Specification SCH”: Hum" . . I

. Rt-atli Bootstrapping ——> Adaptation
Document \

. PPllLJIlnll

Lriublcr

,,,'_ l_.v L, , ”v.1

Itcwlnpnu-nt Time (fompik‘ 'l in“: Run Time

Figure 5.4: Conceptual view of the the use of ASSL.

Different from other XML-based specification techniques, ASSL uses XUI tech-

niques [207] to analyze the XML schemas and generate a Java graphical user interface,

called the SSD console, visualizing the SSD at run time as shown in Figure 5.5. To gener-

ate an SSD console. a valid XML schema is required. Based on an XML schema. an SSD

console can be generated automatically. without writing one line of code. The generated

126

SSD console enables a sophisticated way of editing the underlying XML instance or cre-

ating a new one. All modifications done with the SSD console will be validated on-the-fly

against the XML schema immediately, greatly reducing the possible errors in composing

XML instances. Only valid changes will affect the underlying XML-based SSD. By the

dynamic generation of the graphic user interface on the basis of an XML schema, a notice-

able shortening of the development cycles and a loose coupling between the SSD and the

actual application development can be reached. This has the consequence that any changes

in the SSD instance schema are reconstructed directly by the presentation logic. Thus,

the developer only needs to focus on the SSD specification syntax, greatly increasing the

expressiveness of SSD and the convenience of SSD-based interaction.

, Furthermore, the Service Clouds infrastructure can provide a Web services function unit

to maintain and manage the SSD-based interactions. Before an application can begin to

use the underlying services, the system administrator or the user first needs to use the SSD

console to complete the SSD and generate the “glue code” for shaping the application. The

SSD console can also be used as the front-end interaction platform for services deployment,

configuration, and binding. At run time, the user can use the SSD console to monitor the

system execution, receive event notification, and conduct further system management.

5.4.2 ASSL Core Schemas

The core of ASSL is the SSD instance schemas, which can be extended to add new features

or increase its expressiveness. The SSD instance schema is shown in Figure 5.6. In our

current design, we define only three basic sections (informationSection, bindingSection,

127

128

r
a
m
.
.
.

D
_
t
n
l
o
t
m
n
fi
t
t
n
fi
fi
fl
l
i
’
l
h

[_
‘3

u
e
3
o
n
a
t
t
o
n
3
m
o
a
s
n
a
t
e

L
]
m
n
u
q
u
e
t
l
l
o
n

1
)

1
,
)
'
t
a
a
o
n
a
u
o
n
o
n
p
w
a
n
g
e

‘

.
"
:

i
n
t
l
l
l
l
‘
t
l
'

t
i
l
l
l
l
‘

l
i
p
U
I
U
C
S

4
4

44
4

4
4

4
4

4
4

4

‘
m
?

fi
n
‘
f
‘
i
l
‘
a
l

~
n
f
0
f
n
v
i
a
'
l
o
'
l
a
b
J
U
I
m
E
W
4
8
0
3
8
7
”
!

1
"
W
a
r
m

g
i
l
l
e
s
u
t
e

A
A

4

m
a
i
n

'
3
5
9
1
6
1
1
0

.
.
.
.
.
.
z
-
.
_

.
.
.
,

"
m
“
-

F
E
C
S
e
r
v
e
t

.
a
'
r
a

. l

"
3
0
9
'
9
1
6
‘
1

.
4

4.
A

4
U

A
4

4
4
4
4
4
4
4

_
4

4
4
4
4
4
4

4
4
4
4

4
4
_

4

m
8

a
m
s
u
a
l
i
r
t
t
o
t
r
n
a
l
i
o
n
q
b
a
u
l
l
h
s
w
i
d
e
r
-
t
h
e
m

4
4

I
4

4

i
e
e
n
s
l
a
p
l
i

4
A

V
U

1
t
i
l
l
.

’
J
m

.
.
.
.
.
.
c
.
.
.
.
.
.
.

..
.
.
.
.
.
.
.

.
.
.
-
.
-
.
.
.
.
.
.

.
.
.
.
.
.
.
.
_
-
L
-

.
.
.
.
.
.
.
.
.

-
.
.
s
-

«
.
.
.

‘
"
M
.
"

t
F
E
4
-
‘
5
C
1
4
e
4
r
4
1
1
4
t
a
g
a
4
4
4
u

H
I

-
“
“
‘
-
"
“
“
“
‘

.
i
.
.
a
n
a
r
m
u
a
g
r

1.
.

.
m
a
m
t
t
l
e
.
,
.
.
.
.
.

[
H

I
m
m
m
m
e

1
“
9
.
5
2
3
4
2
9

.1
.

h
u
m
a
n
e
.
.
.
)
“
m
m

H
i
p
1
3
5
7
5
4
5
1

4
V

‘
A

i
4‘

I

.
m
m
s
w
m

[
3
5
.
4
4
1
.
1
4
:
“

U
:

A
A

U
4
4
4
4
.
4
4
.
5
4

..

m
a
r
r
o
w

l
i
a
s
o
j
w

4,
.
.

4
..
U

..
A,
:
1
»
,

_
.
.
-
-
.
A

.
.
.
.
i
.
.
.

.

i
n
t
-
A
n
c
e
s
t
o
r
”

2
2
3
5
'
s
}
:

A
H

V
U

A
l

-
.

A
l

A

 44
4

.
.

.
.

..
.

,
.

,
,.

.
..

..
_
_
,
-
.
.

.
-
.
.
.
.

'
w
e
'
l
i
l
m
m
‘
n

4
44

.
.

.
.

.
.
.

(
“
“
3

p
r
o
p
o
s
e
d

4
4

_
4
4

_
4
4

4
4
4
4
4

_
4
4

4
4
4
4
4
4
4
4
4

4
4
4
4

4
4
4

i
4
i
‘
l
m
l
o
l
e
r
a
u
1
0
m
e

[
2
&
4

H
4
4
4
4
4
4
4
4

A
i

V
-

l
-
-
<
-
—

P
.

A
A

N
‘
4
M
-
U

A
A

h
I

i,
a
m

1
1
0
”
!

4
I

I
d
e
s
c
r
i
p
t
i
o
n

A
A

A
N

I
”
7

W
M

.
.

n
n
r
.

|
u
l
.
.
U
'
.
t
m
e
w
:

F
i
g
u
r
e

5
.
5
:
A
n
e
x
a
m
p
l
e
o
f
a
n
S
S
D
s
h
o
w
n

i
n
t
h
e
S
S
D

c
o
n
s
o
l
e
.

O
D
Q
O
N
U
I
L
L
M
N
H

O
N
U
'
l
u
b
L
A
J
N
H

and interactionSection), which are sufficient for the proof of concept. To add more sections

and create a new SSD instance schema, one can simply extend the XML complex type of

SSDInstance.

<xsdzcomplexType name="SSDInstance">

<xsdzsequence>

<xsdzelement name="informationSection" type="SSDInfoSectionType"></xsd:element>

<xsdzelement name="b1nding8ection" type="SSDBindingType"></xsd:element>

<xsd:element name="interactionSection" type="SSDInteractionSectionType">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

Figure 5.6: The SSD instance schema.

The basic elements in the information section are serviceProvider and serviceClient, as

shown in Figure 5.7, which are also the basic roles in a service-oriented system. The infor-

mation section lists physical host—specific and application-specific information, including

IP address, screen size and color depth, programming language, character set, and operat-

ing system. This information is defined by the XML complex type of HostInfonvpe, which

is introduced in Section 5.4.3.

<xsdzcomplexType

<xsd:sequence>

<xsdzelement

<xsdzelement

</xsd:sequence>

 </xsd:complexType>

name="SSDInfoSectionType">

name=”serviceProvider" type="HostInfoType"></xsd:element>

name="serviceClient" type="HostInfoType"></xsd:element>

Figure 5.7: The information section schema.

One can introduce more elements (other service participants) by extending the XML

complex type of SSDlnfoSectionDpe. For example, if we need to specify a system with a

type of component serviceProxy in addition to the serviceProvider and serviceClient, we

129

l
—
‘
H

H
O
K
O
W
Q
O
N
U
I
A
U
J
N
H

o
u
t
-
w
a
t
—
t

can define a new XML complex type of SSDInfoSectionExtType by extending the XML

complex type of SSDInfoSectionType as shown in Figure 5.8. The new type of SSDInfoS-

ectionExtTvpe consists of three elements: the serviceProvider and serviceClient defined in

SSDInfoSectionType, and serviceProxy defined in SSDInfoSectionExtType.

<xsd:complexType name="SSDInfoSectionExtType">

<xsdzcomplexContent>

<xsdzextension base=”cop:SSDInfoSectionType">

<x5d:sequence>

<xsdzelement name="serviceProxy" type="cop:HostInfoType"

maxOccurs="unbounded" m1nOccurs="O">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Figure 5.8: An example of extending the information section schema.

In the binding section, the service side and the application side exchanges information

about service composition and setting up the service path. The key elements for service

binding in the Service Clouds infrastructure include serviceGateway and primaryProxy.

More elements can be added by extending the XML complex type of SSDBindingType.

The binding section schema is shown as Figure 5.9.

<xsdzcomplexType name="SSDBindingType">

<xsdzsequence>

<xsdzelement name="serviceGateway" type="xsd:string"></xsd:element>

<xsdzelement name="primaryProxy" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:complexType>

Figure 5.9: The binding section schema.

The interaction section contains the application requirements and user preferences ac-

cording to the parameterized services resource and run-time conditions (e.g., throughput,

130

hand—off, packet loss, delay, data rate, etc.). This information can be used for the deci—

sion of service composition and run-time adaptation. The basic element in the interaction

section is InteractionItem, which usually can be used to describe the adaptation policies.

In each policy, we define the responsibilities of the participating parties who are involved

in the adaptation processes and the interfaces through which they carry out the adaptation

actions. Specifically, the responsibility specification is composed by extending the XML

complex type of InteractionItemType. The basic information included in InteractionItem-

Type could be text guides for other developers and end users, for example, the description

of the necessary actions that should be taken by the end user in response to the adaptation

request. The information included in InteractionItemType could also be other communi-

cation types, for example, the COCA messages we introduced in Chapter 4. For example,

one can re-define or extend InteractionItemType by using EventItemType and Messagelt-

emType. To customize other interaction policies, one can extend the XML complex type

of SSDlnteractionSectionType or completely override it. The interaction section schema is

shown as Figure 5.10

5.4.3 ASSL Extension Schemas

Besides the ASSL core schemas, we have also developed some extensions to the ASSL core

schemas. Our current set of extensions is hierarchical complex types, which complements

the expressiveness of those more fundamental ones. These extensions are summarized

below.

131

o
o
q
m
m
w
a
t
—
t

U
‘
U
‘
U
‘
U
t
b
A
A
A
.
5
4
3
D
J
)
A
b
w
w
w
w
w
w
w
w
w
w
N
N
N
N
N
N
N
N
N
N
t
—
‘
H
t
—
t
t
—
a
i
—
a
v
—
a
H
r
—
J
i
—
J
t
—
a

c
o
w
s
-
o
m
m
q
u
A
w
m
w
o
o
m
q
m
m
w
a
i
—
o
o
o
m
\
t
m
m
b
w
m
w
o
o
m
q
m
m
w
a
t
—
‘
o
w

<xsd:complexType name="SSDInteractionSectionType">

<xsdrsequence>

(xsdzelement name="InteractionItem" type="InteractionItemType"

maxOccurs="unbounded" minOccurs="O">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzcomplexType name="InteractionItemType")

<xsdzsequence>

<xsdzelement name="name" type="xsd:string"></xsd:element>

<xsdzelement name="description" type="xsd:string"></xsd:element>

(xsdzelement name="status" type="InteractionStatusT"></xsd:element>

<xsdzelement name="providerReaction" type="SSDInteractionItemDescriptionType"

maxOccurs="unbounded" minOccurs="O"></xsd:element>

<xsd:element name="clientReaction" type="SSDInteractionItemDescrrptionType"

maxOccurs="unbounded" minOccurs="O"></xsd:element>

<xsdzelement name="interactionlnterface" type="xsd:string" maxOccurs="unbounded"

minOccurs="0"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SSDInteractionItemDescriptionType”>

<xsdzsequence>

<xsdzelement name="item" type="xsd:positiveInteqer"></xsd:element>

(xsdzelement name="description" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzcomplexType name="EventItemType">

<xsdzsequence>

<xsdzelement name="name" type="xsd:string"></xsd:element>

<xsdzelement name="description" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzcomplexType name="MessageItemType">

<xsd:sequence>

<xsd:element name="name" type="xsd:string"></xsd:element>

<xsdzelement name=”description" type="xsd:string"></xsd:element>

<xsd2element name="source" type="xsd:string"></xsd:element>

<xsd:element name="target" type="xsd:string"></xsd:element>

<xsdzelement name="message" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzsimpleType name="InteractionStatusT">

(xsdzrestriction base="x5d:string">

<xsdzenumeration value="proposed"></xsd:enumeration>

<xsd:enumeration value="accepted"></xsd:enumeration>

<xsdzenumeration value="denied"></xsd:enumeration>

</xsd:restriction>

</xsd:simpleType>

Figure 5.10: The interaction section schema.

132

m
u
m
m
A
r
i
—
a

N
N
‘
N
N
N
N
l
e
l
N
N
F
-
H
H
H
H
H
H
H
H
H

t
o
m
q
m
w
b
w
w
w
o
o
m
u
m
w
b
w
m
w
o
o

30

31

32

33

34

35

36

37

38

39

40

Information related types. These information related XML types can be used as the basic

building blocks for specifying physical information of system components as shown in

Figure 5.11. Here, we give the examples of Hostlnfolype and ScreenSizeType, showing

the physical information about the running platform and application. One can easily define

other similar types.

<xsdzcomplexType name="HostInfoType”>

<xsdzcomplexContent>

(xsdzextension base="InfoItemType">

<xsdzsequence>

<xsdzelement name="hostName" type="xsd:string"

minOccurs="0" maxOccurs="l">

</xsd:element>

<xsdzelement name="hostIP" type='xsd:string"

minOccurs="l" maxOccuro="l">

</xsd:element>

<xsdzelement name="devLanguage" type="DevLanguageT"

minOccurs="0" maxOccurs="1">

<fxsd:element>

<xsd2element name="mainFile" type="xsd:string"></xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsdzcomplexType name="InfoItemType”>

<xsdzsequence>

<xsdzelement name="itemName" type="xsd:string" maxOccurs="1"

minOccurs="l">

</xsd:element>

<xsd:element name=”description" type="x5d:string"

maxOccurs="1" minOccurs="l">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzcomplexType name="ScreenSizeType">

<xsdzsequence>

<xsd element name="screenw1dth"

type="xsd:nonNegativeInteger" minOccurs=”1" maxOccurs="l">

</xsd:element>

<xsd:element name="screenHeight"

type="xsd:nonNeqativeInteger" minOccurs="l” maxOccurs="l">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

Figure 5.1 1: The information related types.

m
d
m
k
fi
w
a
H

H
H
r
-
‘
b
—
‘
r
—
e

A
L
u
N
b
—
‘
O
K
D

<xsdzcomplexType name="LossRateType">

<xsdzsequence>

<xsdzelement name="minLossRate” type="LossRateT"></xsd:element>

<xsdzelement name="maxLosstte" type="LossRateT"></xsd:element>

<xsd:element name="curLossRate" type="LossRateT"></xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsdzsimpleType name="LossRateT”>

<xsdzrestriction base="xsd:nonNegativeInteger”>

<xsdzmin1nclusive value="0"></xsd:minInclusive>

<xsdzmaxlnclusive value="lOO"></xsd:maxlnclusive>

</xsd:restriction>

</xsd:simpleType>

Figure 5.12: The QoS related types.

QoS related types. QOS—oriented adaptation is a very important fact in autonomic com-

puting systems. These QoS related XML types can be used as the basic building blocks

for specifying QoS parameters of user preferences and system run-time conditions. Here,

Figure 5.12 is an example of network packet loss rate. More types can be defined for other

QOS parameters such as throughput, hand-off, delay, data rate, etc.

Interaction related types. These interaction related XML types as shown in Figure 5.13

can be used as the basic building blocks for specifying adaptation rules and actions regard-

ing to the system requirements or user preferences. Here, we give an example of the inter-

action section schema showing the adaptation policies regarding the change of IP address

(lnteracthC/rangefvpe) and the network packet loss rate (InteractLossRateType). These

two adaptation policies are based on the event-action pattern adopted by COCA. Thus they

extend the basic InteractionItemType by introducing element event and element action,

whose types are EventltemType and Messageltemljwe, respectively. Moreover, for the pol-

icy regarding the network loss rate, we also need the users to provide their preferences on

134

(
D
u
m
U
l
-
D
-
L
Q
N
H

N
N
N
N
N
H
H
H
H
H
H
H
H
H
H

A
r
i
-
J
O
Q
C
D
Q
O
N
L
n
-
b
w
m
w
o
m

<xsd:complexType name="InteractIPChangeType">

<x3d:complex€ontent>

<xsd extension base="cop:InteractionItemType">

<xsd:sequen:e>

(xsdzelement name="event" type="cop:EventItemType">

<xsdzelement name=”action" type="cop:MessageltemType">

</xsd:element>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsdzcomplexType name="InteractLossRateType")

<xsdzcomplexContent>

<xsdzextension base="cop:InteractionItemType">

<xsdzsequence>

<xsdzelement name="YourTolerableLossRate" type="cop:LossRateT">

<xsdzelement name="event" type="cop:EventItemType">

<xsdzelement name="action" type="cop:MessageItemType">

</xsd:element>

</xsd:sequence>

</xsd;extension>

</xsd:complexContent>

</xsd:complexType>
Figure 5.13: The interaction related types.

the tolerable loss rate for decision making purpose. Thus YourTolerableLossRate is intro-

duced in InteractLossRateType. Other complicated adaptation policies can be specified in

the similar way.

5.5 Empirical Results: Autonomic Services Specification,

Binding, and Interaction

Having described the use and language basis of ASSL in the service specification, bind-

ing, and interaction, in this section, we will show the empirical results of using ASSL to

compose SSDs and build an autonomic video streaming service atop the Service Clouds

infrastructure. All the activities of service deployment, system configuration, and run-time

management are guided under SSDs with the help of the SSD console.

135

Vldoo Streaming Application Binds) Service Clouds Intrastructure

0..‘ 0..'

1 1 ? 1..n 0..n 1 f 0..n

l 7 J 1

Video Server Vldeo Player Deep Service Clouds Mobllo Servloe Cloud:

1 1 j 1 I1 0.}. T

4

Primary Proxy Service Gateway Translont Proxy

Robust Pervasive Streaming Service UDP Relay Servlce FEC Servlce Unlcast-Multlcast Converslon Sorvloe

Figure 5.14: Class diagram of the video streaming application and the Service Clouds

infrastructure.

In the scenario depicted in Figure 5.3, RTP-based video players (app.fecc) of user MI

(MI.cse.msu.edu) and user M2 (M2.cse.msu.edu) request a video stream from the video

server S (S. cse.msu.edu). For test purposes we stream a recorded motion-JPEG 30 fps video

(although it could be a live video). The Service Clouds infrastructure comprises deep ser-

vice clouds and mobile service clouds. The entry point of the Service Clouds infrastructure

is the service gateway G running on G.planetlab.org. There are four autonomic communi-

cation services used in this case study: UDP relay service that identifies the fast primary

proxy, i.e., N2 (N2.planetlab.org) or N4 (N4.planetlab.org), to be used; robust pervasive

streaming service that supports continual video stream; unicast-multicast conversion ser-

vice and FEC service provided by the transient proxies running on the wireless edge, i.e.,

WI (W1.cse.msu.edu) and W2 (W2.egr.msu.edu). Figure 5.14 shows the class diagram of

the software components and the underlying services in such an autonomic video streaming

system.

136

To build and maintain an autonomic video communication system from the given col-

lection of aforementioned applications and services, the tasks for the system developer are

(1) shaping the applications and the underlying services to enable them to communicate

with one another; (2) configuring and deploying the applications and the underlying ser-

vices according to user requirements and available system resources; (3) providing means

to the end user for monitoring and interactively managing the system. In these activities,

the system developer coordinates the interactions among application developers, service

developers, and end users. Sometimes these roles are carried out by the same person or

within the the same organization. However, in many cases, different parties are involved

in these activities. This motivates the need for a collaborative environment for the system

integration, configuration, and management.

Again, all these activities center around an SSD, and Figure 5.15 illustrates the data

flow for processing the SSD. which involves following steps:

Step 1: The system developer uses the ASSL core and extension schemas to compose the

SSD instance schema, and publishes it to other interested parties. The SSD instance

schema defines that the XML instance document (SSD) must adhere to a particular

set of data structural and data constraints, ensuring the syntax correctness of the SSD.

Step 2: Every interested party that obtains the SSD instance schema can automatically

generate the SSD console to visualize the SSD instance locally.

Step 3: With the help of the SSD console, the application developer, the service developer,

and the end user can retrieve and collaboratively complete the SSD by providing the

application-specific information, service—specific information, and user preferences.

137

Step 4: Similar to the COCA specification document processing we introduced in Sec-

tion 4.6, the final SSD can be used to generate Aspects code skeletons for shaping

applications and services.

Step 5: The application developer and the service developer can then complete the Aspects

by mapping the concrete implementation for application/service interfaces with the

COCA message processing logic. The Service Clouds-ready code can be produced

by using the Aspect] compiler to re—compile the business code for applications and

services with the final Aspects.

Step 6 and 7: The final SSD can be also used to generate the service configuration and

execution scripts, and the system execution instructions and scripts for the service

administrator and the end users, respectively. All these generated codes and scripts

will facilitate the system integration, configuration, and run—time interactive manage-

ment.

5.5.1 Service Specification and Transparent Shaping

Transparently shaping applications. The first step of building such an autonomic system

is to shape the applications with COCA. Integrating existing applications into the Service

Clouds infrastructure requires that they are Service Clouds ready, that is, able to com-

municate with Service Clouds services. Thus, we need to augment existing applications

so that (1) they can report events of interest to the Service Clouds infrastructure and (2)

their local configuration and adaptation mechanisms are accessible to the Service Clouds

139

S
y
s
t
e
m
D
e
v
e
l
o
p
e
r
/

A
d
m
i
n
i
s
t
r
a
t
o
r

S
t
e
p

1
:

C
o
m
p
o
s
e
S
S
D

i
n
s
t
a
n
c
e

s
c
h
e
m
a
s

A
S
S
L

c
o
r
e
a
n
d

e
x
t
e
n
s
i
o
n

s
c
h
e
m
a
s

S
e
r
v
i
c
e
D
e
v
e
l
o
p
e
r
/

| !
A
d
m
i
n
i
s
t
r
a
t
o
r

S
S
D

i
n
s
t
a
n
c
e
s
c
h
e
m
a

E
n
d
U
s
e
r

A
p
p
l
i
c
a
t
i
o
n

D
e
v
e
l
o
p
e
r

S
e
r
v
i
c
e
c
o
n
f
i
g
u
r
a
t
i
o
n

a
n
d
e
x
e
c
u
t
i
o
n

s
c
r
i
p
t
s

S
t
e
p

2
:

G
e
n
e
r
a
t
e

S
S
D

c
o
n
s
o
l
e

U
s
e
r
p
r
e
f
e
r
e
n
c
e
s

S
e
r
v
i
c
e
-
s
p
e
c
i
i
c
i
n
f
o
r
m
a
t
i
o
n

V
i
s
u
a
l
i
z
a
t
i
o
n

o
f
S
S
D

i
n
s
t
a
n
c
e

S
y
s
t
e
m
e
x
e
c
u
t
i
o
n

i
n
s
t
r
u
c
t
i
o
n
s
a
n
d

s
c
r
i
p
t
s

S
t
e
p

6
:
G
e
n
e
r
a
t
e

>
-
.
“
c
a
t
i
o
n
-
s
p
e
c
i
f
i
c

e
x
e
c
u
t
i
o
n

s
c
r
i
p
t
s

i
n
f
o
r
m
a
t
i
o
n

F
i
n
a
l
S
S
D

i
n
s
t
r
u
c
t
i
o
n
s
a
n
d

s
c
r
i
p
t
s

S
t
e
p

5
:

M
a
p
c
o
n
c
r
e
t
e

i
m
p
l
e
m
e
n
t
a
t
i
o
n

t
o

A
s
p
e
c
t
s
c
o
d
e

s
k
e
l
e
t
o
n
s

A
s
p
e
c
t
s
c
o
d
e
s
k
e
l
e
t
o
n
s
.

C
O
C
A
m
e
s
s
a
g
e

p
r
o
c
e
s
s
i
n
g

l
o
g
i
c

C
o
n
c
r
e
t
e
i
m
p
l
e
m
e
n
t
a
t
i
o
n

f
o
r
a
p
p
l
i
c
a
t
i
r
n
i
n
t
e
r
f
a
c
e
s

C
o
n
c
r
e
t
e
i
m
p
l
e
m
e
n
t
a
t
i
o
n

S
t
e
p

4
:
G
e
n
e
r
a
t
e

t
o
r
s
e
r
v
r
c
e
i
n
t
e
r
f
a
c
e
s

A
s
p
e
c
t
s
c
o
d
e

s
k
e
l
e
t
o
n
s

F
i
n
a
l
A
s
p
e
c
t
s

B
u
s
i
n
e
s
s
c
o
d
e

f
o
r

a
p
p
l
i
c
a
t
i
o
n
s
a
n
d
s
e
r
v
i
c
e
s

S
e
r
v
i
c
e
C
l
o
u
d
s
-

r
e
a
d
y
c
o
d
e

A
s
p
e
c
t
.
)
C
o
m
p
i
l
e
r

E
x
e
c
u
t
e
c
o
d
e

S
e
r
v
r
c
e
C
l
o
u
d
s
-

r
e
a
d
y
c
o
d
e

A
d
a
p
t
i
v
e
a
c
t
i
o
n

F
i
g
u
r
e
5
.
1
5
:
D
a
t
a
fl
o
w
d
i
a
g
r
a
m

f
o
r
p
r
o
c
e
s
s
i
n
g
t
h
e
S
S
D
.

infrastructure. In our current design, we bridge the existing applications under the COCA

framework [208]. COCA provides a means to specify the relationships among different sys-

tem components, generates code that provides the collaborative adaptations, and governs

the system-wide adaptive behavior during execution. COCA also provides a set of reusable

adaptation-supporting services that enable legacy components to be integrated into an adap-

tive system. Specifically, we weave in a COCA communication interface transparently with

respect to the existing business code of each application. With the COCA communication

interface, an application can communicate with the Service Clouds infrastructure and other

peer applications by exchanging and interpreting XML-formatted messages.

Most of the necessary information to Support the transparent shaping is specified in the

SSD information section. The information section addresses two main questions regarding

integration activities: (1) Which software components are involved in the adaptation? (2)

How do they interact with one another, that is, through which interfaces? This part of

SSD is used at design time to generate “glue code” that enables existing applications and

underlying services to interact with one another. The collected information includes the

component name (used to identify the component), communication information (used to

exchange messages with other components), the development language (used to decide the

suitable means to generate “glue code”), and the interfaces through which the individual

components can adjust their behaviors.

Figure 5.16 and 5.17 show an example SSD information section and the generated “glue

code” skeleton, respectively. The interactive activities between the system developer and

the application developer as well as the involved software components are illustrated in Fig-

ure 5.18. Specifically, the system developer specifies that an application named appfecc

140

<1nformation$ection>

<serviceCIient>

<itemName>app.tecc</itemName>

<hostName>M1.cse.msu.edu</hostName>

<devLanguage>Java</devLanguage>

<mainFile>FECClient.java</mainFile>

<interactionInterface>reConnect</1nteractionInterface>

</serviceClient>

</information$ection>\
D
C
O
m
e
U
l
-
D
L
A
J
N
H

Figure 5.16: An example SSD information section for the application app.fecc.

running on M1.cse.msu.edu can be reconfigured through one interface of reConnect. When

appfecc receives the COCA reConnect message, it should invoke re-connection actions

to react to the changes of IP address. The system developer publishes this SSD through

a Web service interface, and the application developer can retrieve this SSD through an

SSD console. After reviewing this SSD, the application developer should complete the

application-specific information, e.g., the development language is Java and the main file

is FECClient.java. As a result, the application developer can generate the “glue code”

skeleton with the help of the COCA development toolkit provided by the SSD console.

The skeleton comprises the code for weaving in a COCA communication interface to the

application with the Aspect Java technique and processing the incoming COCA reconfig-

uration messages. The only thing left to the application developer is to map the message

handling functionalities with the concrete reconfiguration implementations. For example,

the dynamic proxy instantiation service will dynamically instantiate a new transient proxy

on the wireless edge when a mobile client roams into a new subnet and its IP address

changes. In this situation, the dynamic proxy instantiation service will notify the applica-

tion appfecc to re-connect to the new instantiated proxy by sending a COCA reConnect

message. Upon receiving this message, the application should re-establish the socket con-

l4l

1 public aspect Bridging_FECClient {

2 // listen to the COCA messages

3 declare parents: FECClient implements Observer;

4 // connects to the COCA infrastructure

5 after() returning(F€CClient fecc): callfFECClient.new(..)) {

6 // register topology information

7 COCACoreEnv.connLocal(”app.fecc");

8 Mngateway.getInstance().addObserver(fecc);

9 // register reconfiguration interfaces

10 Reconmed reconmed = new Reconmed(”");

11 reconmed.setCmdName("reConnect");

l2 MadaptHelper.conn(reconmed);

13 }

14

15 // process reconfiguration message

16 // this code skeleton is automatically generated based on COCA framework

17 public FECClient.update(Observable argO, Object argl) {

l8 // receive and interpret message

19 quMessage msg = (quMessage) argl;

20 if (msg.checkMsgName(MadaptMessage.MSG_NAME_RECONF)) {

21 Reconmed reconmed = new Reconmed(msg.getMsgParams());

22 String cmdName = reconmed.getCmdName();

23

24 if (cmdName.equalsIgnoreCase("reConnect")) {

25 // here, the concrete implementation should be completed

26 // by the application developer

27 try {

28 RTSPsocket = new Socket(ServerIPAddr, RTSP_server_port);

29 // reset socket:

30 RTSPBufferedReader = new BufferedReader(new InputStreamReader(

31 RTSPsocket.getlnputStream()));

32 RTSPBufferedWriter = new BufferedWriter(new OutputStreamWriter(

33 RTSPsocket.getOutputStream()));

34 // re—join multicast group

35 if (isMulticast) {

36 RTPsocket_Video.leaveGroup(multicastRchroupIP);

37 RTPsocket_Audio.leaveGroup(multicastRchroupIP);

38 RTPsocket_Video.joinGroup(multicastRchroupIP);

39 RTPsocket_Audio.joinGroup(multicastRchroupIP);

40 }

41 } catch (IOException e) {

42 e.printStackTrace();

43 }

44 }

45 }

46 }

47 }

Figure 5.17: An example of “glue code” skeleton generated for the application appflxc to

use the dynamic proxy instantiation service.

142

nection. The application developer can complete this functionality within the generated

“glue code” skeleton and ship the shaped application to the system developer for further

integration. With the help of ASSL and the SSD console, the two parties involved in this

system integration process can clearly specify their requirements and exchange informa-

tion.

Application Developer
System Developer/Administrator

, ', composes and publishes SSD

.. -_ ,,)\

mils-9e

”“ sso

transparently shapes the application

Dynamic Proxy Instantiation Service ________Mgags; ______+ RTP-based Video Player

(sev.proxy) r6Com“? (app.fecc)

Figure 5.18: Interactive activities for transparently shaping applications.

Service shaping and configuration. Besides shaping the application to use the under-

lying services, the system developer also needs to specify how the services interact with

the applications. The interactive activities between the system developer and the service

developer as well as the involved software components are illustrated in Figure 5.19. In

the demonstration example, the application app.fecc is capable of monitoring the network

packet loss rate. When appfecc detects the loss rate as being higher than a user pre-defined

threshold, it can notify the interested parties of this event by sending COCA messages.

Since the transient proxies running on the wireless edge provide the FEC services to com-

pensate for the packet loss, app.fecc can request the transient proxies to instantiate the FEC

services when the network packet loss is high and terminate the FEC services when the

network packet loss is low. Thus, these interactions can be specified in an SSD information

143

section by the system developer, and the service developer can retrieve this SSD through

an SSD console. After reviewing this SSD, the service developer should complete the

service-specific processing of service instantiation and termination upon receiving COCA

messages from the applications. Figure 5.20 shows an example SSD information section

for FEC services. Specifically, an FEC service named sevfec running on a transient proxy

W] can be reconfigured through two interfaces of insertFEC and removeFEC. When WI

receives insertFEC or removeFEC COCA messages, it will invoke FEC service instantia-

tion/termination actions to react to the changes of network packet loss.

. Service
System Developer/Administrator Developer/Administrator

composes and publishes SSD retrieves andSW

/ '- “‘ SSD

transparently shapes the service

RTP-based Video Player __Mf3§§'<}_g_6_3____________ FEC Service

(app.fecc) msertFEC/removeFEC (sevfec)

Figure 5.19: Interactive activities for service instantiation and termination.

<informationSection>

<59rviceProv1der>

<itemName>sev.fec</itemName>

<hostName>Wl.cse.msu.edu</hostName>

<devLanguage>Java</devLanguage>

<mainFilebAutoMMCMobileNode.java</mainFile>

<interactionInterface>insertFEC</interactionInterface>

<intertacePara-l>8</interfacePara—l>

<intertacePara—Z>4</interfacePara—2>

<interactionInterface>removeFEC</interactionInterface>

</serviCPProvider>

</information8ection>

s
a
t
—
-

H
o
w
o
o
q
m
m
w
a
i
—
a

.
.
.
a

[
\
‘
i

Figure 5.20: An example SSD information section for FEC services.

144

5.5.2 Service Binding

In the running example, in order to use the underlying services, the applications need to

connect to the Service Clouds infrastructure, set up service path, and establish service bind-

ing. For example, the application app.fecc needs to know the entry point (service gateway)

of the Service Clouds infrastructure so that it can initialize the service binding process.

On the other hand, the Service Clouds infrastructure needs to know the video streaming

specific communication interfaces (e.g., RTP and RTSP port) to set up the proxy service

path. Thus, the system developer, the application developer, and the service developer can

exchange this information in the binding section of an SSD.

Binding with the UDP relay service. Our previous studies indicate that application level

relays in an overlay network can actually improve network throughput for long-distance

bulk transfers [181]. For example, due to the dependence of TCP throughput on round

trip time (RTI‘), splitting a connection into two (or more) shorter segments can increase

throughput, depending on the location of the relay nodes and the overhead of intercept-

ing and relaying the data. By using application layer entities to emulate network-layer

functionality, such TCP relays can be more easily deployed and managed than some other

approaches to improving TCP throughput, such as using advanced congestion control pro-

tocols, which requires either router support or kernel modifications. Similar to this concept,

in the demonstration example, we deploy UDP relay services on the primary proxies. To

develop a practical UDP relay service, key issues to be addressed include identification of

promising relay nodes for individual data transfers, and the dynamic instantiation of the

relay service. The example selection rules for relay nodes can be based on RTT or other

l45

QOS and security parameters.

<bindingSection>

\
O
C
D
Q
O
N
L
D
-
w
a
H

 </bindingSection>

<serviceGateway>G.planetlab.org</serviceGateway>

<server>S.cse.msu.edu</server>

<serverRTSPPort>33503</serverRTSPPort>

<clientRTPPort>33SO1</clientRTPPort>

<UDPRelaySelection>RTT</UDPRelaySelection)

<primaryProxy>N2.planetlab.org</primaryProxy>

<primaryProxyPort>57794</primaryProxyPort>

Figure 5.21: An example SSD binding section for UDP relay services.

System Developer/Administrator

provides application-

ports)

W108

I

I

executes /’

’ generates

 it t

scripts for booting the Service Clouds

l

E boots

V

Service Clouds Infrastructure

- t’i‘
. '/

,fl\ executes/ 7 V .~

\\ / ii“ A U :

scripts for executing the application

binds

ApplicationDeveloper

specific configuration(RTP»i)\\

M)1
fl_';\

provides user preferences (proxy

selection rules)

:5 End User

K

\2\

UDP Relay Service

(sev.udp)

“
.
-
-
-
-
-
“

...-

...—>1 RTP-based Video Streaming

Figure 5.22: Interactive activities for binding with the UDP relay service.

Figure 5.2] shows an SSD binding section for the UDP relay service. The interactive

activities between the system developer, the application developer, and the end user as well

as the involved software components are illustrated in Figure 5.22. The system developer

assigns the service gateway to be running on G.planetlab.org. The application developer

specifies that the video server S runs on S.cse.msu.edu with the RTSP port 33503 and the

application uses the RTP port 3350] . The user can specify that the selection of the primary

146

proxy for the UDP service is based on RTT. Based on this collected information, the system

developer can generate an execution script file, as shown in Figure 5.23, to boot the Service

Clouds infrastructure. After the Service Clouds infrastructure is booted, the application

app.fecc can connect to the service gateway running on G.planetlab.org to request the UDP

relay service. The primary proxy is selected based on the RT'I‘ between the video server

S and the primary proxy candidates N2 and N4. The experimental computation results

shows that the RTT between S and N2 is 70.071 ms, whereas it is 97.188 ms between S

and N4. Thus, the service gateway assigns the node N2 running on N2.planetlab.org as the

primary proxy, and notifies the application app.fecc of the selection result by updating the

SSD. This primary proxy will open the port 57794 for receiving RTP commands from the

application app.fecc. This primary proxy will also open the port 33501 for receiving RTSP

video packets from the video server.

java autommc ~sc-gateway G.planetlab.org -mm-server S.cse.msu.edu

—client—video~port 33501 —server—mmc—port 33503 -re1ay-selection rttN
i
—
a

Figure 5.23: An example execution script for booting the Service Clouds infrastructure.

Moreover, based on the result of identifying the service path for the video stream, the

system developer can generate another execution script file, as shown in Figure 5.24, to bind

the application appfecc with the UDP relay service. The end user can use this script file to

start the application appfecc. After execution, the application app.fecc can communicate

with the primary proxy N2, instead of the original video server S, to obtain the video stream.

147

java videostreamer.FECClient —server N2.planetlab.org -port 57794

2 -resource resource/MVI_8065

Figure 5.24: An example execution script for binding UDP relay services.

Binding with the robust pervasive streaming service. As mentioned earlier, the Service

Clouds infrastructure supports the video stream atop an overlay network to clients of vari-

ous types (e.g., desktop, laptop, PDA) with different connections (e.g., wired LAN, 802.11

wireless). The overlay service path, which is composed and maintained dynamically, has to

provide robustness through different mechanisms as the stream traverses different environ-

ments. The Service Clouds infrastructure supports continuous streaming by the dynamic

instantiation of transient proxies, while users roam along different subnets.

For example, user MI requests to watch the video stream, and the Service Clouds in-

frastructure connects to the video server and successfully multicasts the stream through a

transient proxy W] in subnet A, where the user MI is located. Next, user M2 requests to

watch the video stream being broadcasted from the server. Upon receiving the request, the

infrastructure identifies that the video is already being multicast in user M2 location, that is,

subnet A. Thus, no extra configuration is necessary in the service path, except registering

user M2 as a service receiver. Finally, when user M1 goes to wireless via subnet B, the

infrastructure detects this change and branches off a copy of the stream through another

transient proxy W2, practically constructing an overlay multicast tree, which delivers the

stream at subnet 8.

Figure 5.25 shows an example SSD binding section for robust pervasive streaming ser-

vices. The interactive activities between the system developer, the application developer,

148

and the service developer as well as the involved software components are illustrated in

Figure 5.26. Specifically, the application developer specifies the multicast information and

the service developer provides the information about the candidate transient proxies. When

the running host of the application appfecc changes its IP address, the robust pervasive

streaming service scuper will compare the client’s new IP address with the IP addresses of

the candidate transient proxies (i.e., the one running on Wl.cse.msu.edu and the one run-

ning on W2.egr.msu.edu), and check if there is a transient proxy within the same subnet as

the client’s new IP address. If not, the transient proxy will be instantiated and configured to

multicast to the multicast group of 2285.6. 7, to which the application app.fecc listens. At

the same time, the application appfecc will get a COCA reConnect message notification

of re-joining the multicast group. Here, only one candidate transient proxy is available for

each subnet. If there were multiple candidates, similar selection rules as those of primary

proxies could be applied. Remembering that we have demonstrated how the application

app.fecc should react to the COCA reConnect message, this operation demonstrates that

the Service Clouds infrastructure builds an overlay service path for multicasting toward the

wireless edge and handles change of IP address on the mobile client transparently to the

end user.

<bindingSection>

<transientProxy—1>Wl.cse.msu.edu</transientProxy-l>

<transientProxy—2>W2.egr.msu.edu</transientProxy—2>

«multicastGroup>228.S.6.7</multicastGroup>

</binding8ection>U
‘
w
a
N
r
—
I

Figure 5.25: An example SSD binding section for robust pervasive streaming services.

149

System Developer/Administrator Application Developer

proposes application-service provides application- a c

. interaction specific configuration _ /~’

- a" (multicast group) M\(L

' SSD PJ's—1:14:

i
provides service-specific i initializes

. . I

configuration (candidate i

transrent proxres) Pervasive Streaming Service

. sev. er
Servrce I L P) x K

D elo lAd i 'st t - - I . .‘x \ -
CV per m n] ra or instantiates I, monnors locatlon ‘\\ \\blndS

/ \

v ‘ \

Dynamic Proxy Instantiation Service Message: RTP-based Video Player

—————————— v

(sev.proxy) reConnect (app.fecc)

Figure 5.26: Interactive activities for binding with the robust pervasive streaming service.

5.5.3 Run-Time Service-Application Interaction

Having shaped the applications and configured the services, the autonomic system is ready

for use. To manage the run-time service-application interaction, the end user should be

able to specify the user preferences according to the parameterized services resource and

run-time conditions. Meanwhile, the system developer should be able to specify how the

underlying services provide supporting information for adaptation decisions, which are ei-

ther made by the end user or made by the system automatically according to the pre-defined

rules. The system developer should also be able to specify how the applications react to the

adaptation-specific events generated by the underlying services. All this information can

be reflected in the SSD interaction section.

In the interaction section, the SSD defines the conditions under which the system should

adjust its behaviors and the corresponding concrete actions. The interactive activities be-

tween the system developer, the application developer, the service developer, and the end

user as well as the involved software components are illustrated in Figure 5.27. Specifi-

150

cally, the SSD groups concrete interaction activities of the autonomic system in response

to the run-time environment, identifies the events that will trigger the interactions, defines

an action list that will guide the system behaviors in response to the trigger events, and

specifies any constraints that validate the policy rules. An example SSD interaction section

is illustrated in Figure 5.28. In this example, the user specifies the tolerable loss rate of the

video streaming at 20%; when the network packet loss rate is higher than this threshold,

the application app.fecc should request the instantiation of the FEC services (sevfec) on

the transient proxies by sending COCA insertFEC messages. Figure 5.29 shows the gen-

erated “glue code” skeleton and the concrete implementation for the FEC service sevfec

to react to the adaptation request of compensating for network packet loss. Specifically,

after receiving a COCA message and if this message is for inserting FEC facilities, the

FEC service sevfec will use the FEC encoder to process the incoming data packets with

FEC (n, k) parameters. Finally, the FEC service sevfec will multicast the FEC encoded

packets. Correspondingly, the application app.fecc will insert the FEC decoder to decode

the incoming FEC data packets. With the help of the FEC services, the quality of the video

stream is improved.

In the demonstration example, the multimedia stream sends audio and video UDP pack-

ets over separate UDP sockets. When M1 moves to the wireless subnet, the connection

becomes prone to high loss rate. Whenever the application app.fecc detects intolerable loss

rate (higher than 20% in our test), the transient proxy on the wireless edge uses FEC to

encode the stream by breaking each packet into four packets and sending them across the

wireless link along with four extra parity packets. Figure 5.30 plots the packet loss rates

for audio and video at MI. We have applied the FEC encoding only on the audio stream. In

151

System Developer/Administrator

Application Developer

proposes application-service Q c

% interaction . . , , I":

, retneves SSD a, \i [/

\ r ’-r ' __J‘QP

retrieves SSD transparently shapes the applicati:%>

Service - . .

Developer/Administrator firs]:frigieulssgrgqgfsqences I RTP-based Video Player I

i; “‘3 . ” , (app.fecc)

fl End User /,/

transparently Shapes the service K“ //Message. inserrFEC/removeFEC

FEC Service j’/

(sev.fec)

Figure 5.27: Interactive activities for run-time service—application interaction.

our experiment, video packets are a few times bigger than MTU (maximum transmission

unit). This results in the fragmentation of UDP packets and significantly increases packet

loss rate due to a lack of MAC-layer retransmission in multicasting. Typical FEC encoding

has little advantage for the high quality video packet streaming on wireless channels. Thus,

more complicated adaptation techniques to transcode the video are needed. However, this

is not our focus in this work. As the plots show, at the time slot 5 the user switched from

the wired subnet to the wireless subnet. Thus, the network loss rate raised significantly.

Accordingly, based on the feedback from the application app.fecc, the system instantiated

or terminated the FEC service at the time slot 11 and 26, respectively. This adaptation

effectively mitigated the packet loss rate observed by the application app.fecc.

152

<interaction3ection>

<Interaction1tem>

<name>interactLossRate</name>

<description>reduce high loss rate</description>

<YourTolerableLossRate>20</YourTolerableLossRate>

<event>

<name>high_loss_rate_alert</name>

</event>

<action>

\
J
O
‘
i
k
fl
-
L
b
W
I
\
'
P
-
‘

\
O
G
)

10 <source>app.fecc</target>

ll <target>sev.fec</target>

12 <message>insertFEC</message>

l3 </action>

14 </Interaction1tem>

15 </interactionSection>
Figure 5.28: An example SSD interaction section for compensating for the network packet

loss.

5.6 Conclusions

In this chapter, we propose ASSL, an XML-based technique that provides comprehensive

specification of an autonomic system, focusing on the system integration, configuration,

and run—time interaction management. ASSL is an extension of COCA specification with

more visualization and extensibility, and it provides a unified platform to support the inter~

actions among different parties in the orchestration and execution of autonomic systems.

We illustrate the use of ASSL to specify interaction between the applications and the un-

derlying autonomic services. Using aspect-oriented techniques, we can generate and weave

in “glue code” into an existing application to make it ready for interaction with the auto-

nomic services and other applications. Meanwhile, the specified information included in

an SSD can be used to facilitate the deployment, configuration, and run-time management

of autonomic services.

153

1 public aspect Bridging_AutoMMC {

2 .

3 // connects to the COCA infrastructure

4 // and register reconfiguration interfaces

5

6

7 // process reconfiguration message

8 // this code skeleton is automatically generated based on COCA framework

9 public autommcmobilenode.update(Observable argO, Object argl) {

10 // receive and interpret message

11 quMessage msg = (quMessage) argl;

12 if (msg.checkMsgName(MadaptMessage.MSG_NAME_RECONF)i {

l3 Reconmed reconmed = new Reconmed(msg.getMsgParams());

14 String cmdName = reconmed.getCmdName();

15

16 if (cmdName.equalsIgnoreCase("insertFEC")) {

17 // here, the concrete implementation should be completed

18 // by the application developer

19

20 // create a RTPpacket object from the DP

21 RTPpacket rtp_packet = new RTPpacket(pktRcvd.getData(),

22 pktRcvd.getLength());

23

24 // get the header and payload of the received RTP packet

25 int payload_length = rtp_packet.getpayload_length();

26 byte[] payload = new bytefpayload_length];

27 rtp_packet.getpayload(payload);

28 int rtpHeaderSize = RTPpacket.HEADER_SIZE;

29 byte[] rtpHeader = new bytelrtpHeaderSize];

30 System.arraycopy(rtp_packet.header,0,rtpHeader,O,rtpHeaderSize);

31

32 // encode the payload with FEC(n,k)

33 FECPacket[} fecPacketList =

34 currentRelay.fecEncoder.encodePacket(payload);

35 for (int j = 0; j < fecPacketList.length; j++) {

36 // Builds an RTPpacket object containing the frame

37 int fecPacketSize = fecPacketList[j].getPacketSize();

38 byte[] fecPacket = fecPacketList[j].getPacket();

39 int rtpPacketSize = rtpHeaderSize + fecPacketSize;

40 byte[] rtpPacket = new bytelrtpPacketSize];

41 System.arraycopy(rtpHeader,O,rtpPacket,0,rtpHeaderSize);

42 System.arraycopy(fecPacket,O,rtpPacket,

43 rtpHeaderSize,fecPacketSize);

44 // construct the packet to send

45 DatagramPacket a0? = new DatagramPacket(

46 rtpPacket,

47 rtpPacketSize,

48 currentRelay.receiverInetAddress,

49 currentRelay.receiverPortNum);

50 try {

51 currentRelay.outSocket.sendfaDP);

5 }catch (Exception ex) {

53 ex.printStackTrace();

5 }

55 }

56 }

57 }

58 }

59 }
Figure 5.29: An example of “glue code” skeleton generated for the FEC service sevfec to

react the adaptation request of compensating for the network packet loss.

154

l
o
s
s
r
a
t
e

l
o
s
s
r
a
t
e

 o - . . . T . . . r . . . Y , ,

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 21 23 25 27 29

time slot (every 30 seconds)

(a) video

 r i117 r1 rfii fr

5 7 9111315 1719 2123 25 27 29

time slot (every 30 seconds)

+il:letvvorl< —;—- Appjcation

(b) audio

Figure 5.30: Packet loss rate at the mobile node M1.

155

Chapter 6

CONCLUSIONS AND FUTURE

RESEARCH

Our studies have established a solid understanding of adaptation characteristics and the use

of expressive orchestration in adaptive software design for mobile systems. By provid-

ing a means to specify system requirements, manage the interaction between systems and

users, support interoperability among system compositional components, and encapsulate

the adaptation logic, expressive orchestration offers an effective solution to the design, de-

velopment, and run-time management of adaptive mobile systems. The applicable domain

of expressive orchestration expands from individual applications to composite systems and

fully distributed systems. In the rest of this chapter, we summarize our specific contribu-

tions and discuss the future work.

156

6.1 Summary of Contributions

In summary, this research makes several contributions [12—17]:

1. This dissertation provides a comprehensive investigation of the necessary techniques

(including basic adaptation characteristics, language and architecture support for col-

laborative adaptation, and adaptation decision reasoning) for building an adaptive

mobile system. These preliminary and experimental investigations can be used as a

basis for the development of adaptive software mechanisms that attempt to manage

adaptation tradeoffs in the presence of highly dynamic wireless environments. As

a case study, we evaluate the energy consumption of FEC as used to improve QoS

on wireless devices, where encoded audio streams are multicast to multiple mobile

computers. Our results quantify the tradeoff between improved QoS, due to FEC,

and additional energy consumption, delay, and bandwidth usage caused by receipt

and decoding of redundant packets.

2. Based on the preliminary studies on adaptation characteristics, we investigate the

use of message-based communication to facilitate the integration and collaboration

of adaptive/non-adaptive components. As a proof of concept, we develop COCA

(COmposing Collaborative Adaptation), an infrastructure for collaborative adapta-

tion among components that were not necessarily designed to interoperate in the

composite systems. COCA provides a set of development utilities to aid system

designers in specifying system architecture and adaptation logic and automatically

generating the corresponding code to realize collaborative adaptation among existing

components. COCA provides a set of run-time utilities to enforce the collaborative

157

adaptation execution. COCA also provides a Web services infrastructure to sup-

port the corresponding interaction among components. The methods used in COCA

are general and can be extended to other distributed computing models that require

collaborative adaptation. For example, we apply COCA in a service-oriented infras-

tructure, called Service Clouds, providing interactive design support and run-time

adaptation management.

3. This dissertation addresses specification techniques that can help design, develop-

ment, deployment, and management of fully distributed service-oriented autonomic

systems. We propose ASSL (Autonomic Service Specification Language), an XML-

based technique that provides comprehensive specification of an autonomic system,

focusing on system integration, configuration, and run-time interaction management.

ASSL is an extension of COCA specification with more visualization and extensi-

bility, and it provides a unified platform to support the interactions among different

parties in the development and execution of autonomic systems.

6.2 Future Research

Several investigations complementary to the research presented in this dissertation may be

pursued in future work.

6.2.1 Modeling Adaptive Systems with Patterns

Given the potentially critical nature of adaptive systems in which system faults could lead

to significant loss. methods for modeling and analyzing adaptive systems before starting

158

the design and development phase are increasingly important. However, currently many

adaptive systems use ad hoc development approaches that emphasize implementation over

analysis, often causing conceptual errors to be propagated from prototyping design to sys-

tem execution. To model adaptive systems, we first need to understand those basic charac-

teristics (in both design and execution aspects) of adaptive systems. The concept of design

patterns can help on this issue.

Patterns are a way of documenting experience by capturing successful solutions to re-

curring problems. Therefore, they are best suited for describing proven solutions of design

problems in adaptive systems. Although patterns are well-known in software engineering,

they have successfully been applied to other domains as well, including patterns for orga-

nizations, processes, analysis, customer interaction, and many more. Because patterns are

rooted in practice, this dissertation, as well as other related works conducted by the Soft-

ware Engineering and Network Systems (SENS) Laboratory in Michigan State University,

has investigated different aspects of adaptive systems and implemented several running

adaptive systems. Thus, it is possible to generalize patterns that cover most aspects of de-

sign, development, and management of adaptive systems. These patterns could provide a

solid basis for further modeling adaptive systems.

6.2.2 Contract-Based QOS Specification

As discussed earlier, in many recent studies [10, 60, 79,91,92,94—96, 169, 209], contracts

have been used in the management of adaptation. Techniques have been proposed for

contract description, contract reasoning, and contract enforcement. However, the correct—

159

ness of adaptation contracts has not yet been studied extensively. In order to illustrate the

problems that we plan to investigate, let us consider the MetaSocket enabled audio confer—

encing testbed described in Chapter 3. Components in such a system may expose two types

of interfaces: adaptation interfaces (which can be used to reconfigure the application be-

haviors) and constraint interfaces (which can be used to inspect the pre- or post-condition

of the adaptation). For example, adaptation interfaces include methods to insert/remove

FEC filters; whereas obtaining the processing overhead (time) is a constraint interface.

The application may provide both of these two types of interfaces or only the adaptation

interfaces.

As shown in Chapter 4, in order to integrate the above audio application into a col-

laborative multimedia conferencing system, we can use COCA to specify the architecture

composition and adaptation policies. However, some quality of service aspects are still

missing. First, how can we ensure that the adaptation policies are not obviated by other

constraints? For example, an adaptation rule may indicate that an FEC filter should be

inserted when the observed loss rate is high. This rule itself is executable. However, in

a particular conferencing system, the user may also have specified real-time constraints.

From this example we can see that while each component is correct, some constraint logic

on their composition may need to be considered. The system developer needs a means

to express such QOS concerns and formally specify those constraints with the format of

contract at design time.

For adaptive component design, if a component provides a constraint interface, we may

use model checking to test if it meets the overall system real-time requirements. On the

other hand, if the component does not provide such an interface to support model checking,

I60

we may generate testing code from the formal constraint specification in the contract. Using

the testing code, we can check if a component satisfies the overall system requirements.

If it does, the component is allowed to connect to the system, otherwise a negotiation

between the system developer and component developer (system and its compositional

components) is required for integration purposes. Open questions in this work include the

following: How do we use the “contract” to specify these constraints? How do we verify

(statically and dynamically) the component design and the generated code against the above

contracts? How can we manage the contract negotiation and enforcement?

161

BIBLIOGRAPHY

162

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

Jacob R. Lorch and Alan Jay Smith. Software strategies for portable computer en-

ergy management. IEEE Personal Communications Magazine, 5(3):60e73, June

1998.

Erik P. Ham's, Steven W. Deep, William E. Pence, Scott Kirkpatrick, M. Sri-

Jayantha, and Ronald R. Troutman. Technology directions for portable computers.

Proceedings of the IEEE, 83(4):636—658, April 1995.

Gartner Inc. http: / /www . gartner . com.

Sanjay Udani and Jonathan Smith. Power management in mobile computing. Tech-

nical Report MS-CIS-98-26, Distributed Systems Laboratory, Department of Com-

puter Information Science, University of Pennsylvania, August 1996.

Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason

Flinn, and Kevin R. Walker. Agile application-aware adaptation for mobility. In

Proceedings of the 16th ACM Symposium on Operating Systems Principles, pages

276—287, Saint Malo, France, 1997.

Sarita V. Adve, Albert F. Harris, Christopher J. Hughes, Douglas L. Jones, Robin H.

Kravets, Klara Nahrstedt, Daniel Grobe Sachs, Ruchira Sasanka, Jayanth Srinivasan,

and Wanghong Yuan. The Illinois GRACE Project: Global Resource Adaptation

through CoopEration. In Proceedings ofthe ACM Workshop on Self-Healing, Adap-

tive and Self-Managed Systems (SHAMAN), New York City, June 2002.

W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. Design and evaluation of

a cross-layer adaptation framework for mobile multimedia systems. In Proceedings

of the SPIE/ACM Multimedia Computing and Networking Conference (MMCN’03),

pages 1—13, Santa Clara, CA, January 2003.

B. D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications

in Odyssey. Mobile Networks and Applications, 4(4):245—254, 1999.

Christian Poellabauer and Karsten Schwan. Kernel support for the event-based coop—

eration of distributed resource managers. In Proceedings ofthe 8th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS 2002), San Jose,

California, September 2002.

163

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

John Keeney and Vinny Cahill. Chisel: A policy-driven, context-aware, dynamic

adaptation framework. In Proceedings of the 4th IEEE International Workshop on

Policiesfor Distributed Systems and Networks, pages 3—14, 2003.

Component-Based Development of Adaptable and Dependable Middleware.

http://www.cse.msu.edu/ mckinley/rapidwarel, accessed November 2005. Computer

Science and Engineering Department of Michigan State University.

Z. Zhou, P. K. McKinley, and S. M. Sadjadi. On quality-of-service and energy

consumption tradeoffs in FEC-enabled audio streaming. In Proceedings of the

12th IEEE International Workshop on Quality of Service (IWQoS 2004), Montreal,

Canada, June 2004.

Philip K. McKinley, E. P. Kasten, S. M. Sadjadi, and Zhinan Zhou. Realizing multi-

dimensional software adaptation. In Proceedings of the ACM Workshop on Self-

Healing, Adaptive and self-Managed Systems (SHAMAN), held in conjunction with

the I6th AnnualACM International Conference on Supercomputing, New York City,

June 2002.

S. M. Sadjadi, Philip K. McKinley, Eric P. Kasten, and Zhinan Zhou. Metasockets:

Design and operation of run-time reconfigurable communication services. The spe-

cial issue on Auto-adaptive and Reconfigurable Systems of the Wiley InterScience

Software-Practice and Experience (SP&E) journal, 2006.

Zhinan Zhou, Ji Zhang, Philip K. McKinley, and Betty H. C. Cheng. TA-LTL:

Specifying adaptation timing properties in autonomic systems. In Proceedings ofthe

3rd IEEE Workshop on Engineering ofAutonomic and Autonomous Systems (EASe

2006), Columbia, MD, USA, April 2006.

Zhenxiao Yang, Zhinan Zhou, Betty H. Cheng, and Philip K. McKinley. Enabling

collaborative adaptation across legacy components. In Proceedings ofthe 3rd Work-

shop on Reflective and Adaptive Middleware (RM 2004), 2004.

Zhinan Zhou and Philip K. McKinley. COCA: A contract-based infrastructure for

composing adaptive multimedia systems. In Proceedings of the 8th International

Workshop on Multimedia Network Systems and Applications (MNSA 2006), Lisboa,

Portugal, July 2006.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing

adaptive software. IEEE Computer, 37(7):56—64, 2004.

David P. Helmbold, Darrell D. E. Long, and Bruce Sherrod. A dynamic disk spin-

down technique for mobile computing. In Mobile Computing and Networking, pages

130—142, 1996.

David P. Helmbold, Darrell D. E. Long, Tracey L. Sconyers, and Bruce Sherrod.

Adaptive disk spin-down for mobile computers. Mobile Networks and Applications,

5(4):285-297, 2000.

I64

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Fred Douglis, Padmanabhan Krishnan, and Brian Bershad. Adaptive disk spin-down

policies for mobile computers. In Proceedings of the 2nd USENIX Symposium on

Mobile and Location-Independent Computing, 1995.

P. Krishnan, Philip M. Long, and Jeffrey Scott Vitter. Adaptive disk spindown via

optimal rent-to-buy in probabilistic environments. In Proceedings of the 12th Inter-

national Conference on Machine Learning (ML95), pages 322—330, 1995.

Y. Lu and G. De Micheli. Adaptive hard disk power management on personal com-

puters. IEEE Great Lakes Symposium on VLSI, pages 50—53, 1999.

Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the power-hungry disk. In

USENIX Winter, pages 292—306, 1994.

Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Saving

portable computer battery power through remote process execution. Mobile Com-

puting and Communications Review, 2(1): 19—26, January 1998.

Dietmar A. Kottmann, Ralph Wittmann, and Markus Posur. Delegating remote op-

eration execution in a mobile computing environment. Mobile Networks and Appli-

cations, 1(4):387—397, 1996.

Kester Li, Roger Kumpf, Paul Horton, and Thomas E. Anderson. A quantitative

analysis of disk drive power management in portable computers. In USENIX Winter,

pages 279—291, 1994.

B.T. Zivkov and A.J. Smith. Disk caching in large database and timeshared sys-

tem. In Proceedings of the 5th International Workshop on Modeling, Analysis, and

Simulation of Computer and Telecommunications Systems (MASCOTS 97), pages

184—195, Haifam Israel, 1997.

Mark Weiser, Brent Welch, Alan J. Demers, and Scott Shenker. Scheduling for

reduced CPU energy. In Operating Systems Design and Implementation, pages 13—

23, I994.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithm for dy-

namic speed-setting of a low-power CPU. In Mobile Computing and Networking,

pages 13—25, 1995.

Jacob R. Lorch and Alan Jay Smith. Operating system modifications for task-based

speed and voltage scheduling. In Proceedings of the 1st International Conference

on Mobile Systems, Applications, and Services (MobiSys 2003), pages 215-230, San

Francisco, CA, USA, 2003.

J. Lorch and A.J. Smith. Reducing processor power consumption by improving pro-

cessor time management in a single-user operating system. In Proceedings of the

2nd ACM International Conference on Mobile Computing and Networking (MOBI-

COM), page 143C154, Rye Brook, NY, I996.

165

[33] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evaluation

of dynamic voltage scaling algorithms. In Proceedings of the 1998 International

Symposium on Low Power Electronics and Design, pages 76—81. ACM Press, I998.

[34] D. Lee. Energy management issues for computer systems,

http:/lwww.cs.washington.edu/homes/dlee/frontpage/mypapers/generals.ps.gz.

[35] J. Lorch. A complete picture of the energy consumption of a portable computer,

Master Thesis, Computer Science, University of California at Berkeley, 1995.

[36] K. Werner. Flat panels fill the color bill for laptops. Circuits and Devices, 10(4):21—

29, July 1994.

[37] Subu lyer, Lu Luo, Robert Mayo, and Parthasarathy Ranganathan. Energy-adaptive

display system designs for future mobile environments. In Proceedings of the

Ist International Conference on Mobile Systems, Applications, and Services (Mo-

biSys2003), San Francisco, California, May 2003.

[38] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of net-

work interfaces in hand—held devices. IEICE Transactions on Communications, E80-

B(8):l 125-31, 1997.

[39] R. Xu, Z. Li, C. Wang, and P. Ni. Impact of data compression on energy consump-

tion of wireless-networked handheld devices. In Proceedings of the 23rd IEEE In-

ternational Conference on Distributed Computing Systems (ICDCS ’03), Providence,

Rhode Island, May 2003.

[40] Michele Zorzi and Ramesh R. Rao. Error control and energy consumption in com-

munications for nomadic computing. IEEE Transactions on Computers, 46(3):279—

289, 1997.

[41] CORBA and IIOP Specification. http: / /www . omg . org/technology/

documents/ formal /corbai iop . htm, accessed July 2004.

[42] Microsoft .NET Homepage. http : //www .microsoft . com/net /, accessed

July 2005.

[43] Java RMI Homepage. http: // java . sun . com/products/ jdk/rmi/, ac-

cessed July 2005.

[44] IBM and Cisco. Adaptive Services Framework, October 2003.

[45] Barry Redmond and Vinny Cahill. Supporting unanticipated dynamic adaptation of

application behaviour. In Proceedings of the I6th European Conference on Object-

Oriented Programming, London, UK, 2002.

[46] Shivajit Mohapatra, Radu Cornea, Niki] Dutt, Alex Nicolau, and Nalini Venkatasub—

ramanian. Integrated power management for video streaming to mobile handheld

devices. In Proceedings of the I I th ACM International Conference on Multimedia,

pages 582—591. ACM Press, 2003.

I66

[471

[481

[49]

[50]

[51]

[52]

[53]

['54]

[55]

[56]

[57]

158]

M. Satyanarayanan. Fundamental challenges in mobile computing. In Symposium

on Principles ofDistributed Computing, pages 1—7, 1996.

M. Satyanarayanan, Brian Noble, Puneet Kumar, and Morgan Price. Application-

aware adaptation for mobile computing. In Proceedings of the 6th ACM SIGOPS

European Workshop, pages 1—4. ACM Press, 1994.

Jason Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applica-

tions. In Proceedings ofthe I 7th ACM Symposium on Operating Systems Principles

(SOSP), Kiawah Island Resort, SC, December 1999.

Jason Flinn and M. Satyanarayanan. Powerscope: a tool for profiling the energy

usage of mobile applications. In Proceedings of the 2nd IEEE Workshop on Mo-

bile Computing Systems and Applications, pages 2—10, New Orleans, LA, February

1999.

Jason Flinn, Eyal de Lara, M. Satyanarayanan, Dan S. Wallach, and Willy

Zwaenepoel. Reducing the energy usage of office applications. In Proceedings ofthe

IFIP/ACM International Conference on Distributed Systems Platforms (Middleware

2001), Heidelberg, Germany, November 2001.

Wanghong Yuan and Klara Nahrstedt. ReCalendar: Calendaring and scheduling

applications with CPU and energy resource guarantees for mobile devices. In Pro-

ceedings of the Ist IEEE International Conference on Pervasive Computing and

Communications (PerCom ’03), Fort Worth,Texas, March 2003.

Shang-Wen Cheng, An-Cheng Huang, David Garlan, Bradley Schmerl, and Peter

Steenkiste. Rainbow: Architecture-based self adaptation with reusable infrastruc-

ture. IEEE Computer, 37(10), 2004.

H. Liu, M. Parashar, and S. Hariri. A component-based programming framework for

autonomic applications. In Proceedings ofthe Ist IEEE International Conference on

Autonomic Computing (ICAC), New York, USA, May 2004.

Fabio Kon, Roy H. Campbell, M. Dennis Mickunas, and Klara Nahrstedt. 2K: A

distributed operating system for dynamic heterogeneous environments. In Proceed-

ings of the 9th IEEE International Symposium on High Performance Distributed

Computing, Pittsburgh, 2000.

J. Appavoo et al. Enabling autonomic behavior in systems software with hot swap-

ping. IBM Systems Journal, Special Issue on Autonomic Computing, 42(1), 2003.

Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of the TAO

real-time object request broker. Computer Communications, 21(4), 1997.

Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio

Magalhaes, and Roy H. Campbell. Monitoring, security, and dynamic configuration

167

[59]

[60]

[61]

[62]

[63]

[64]

[651

[66]

[67]

[68]

[69]

[70]

with the dynamicTAO reflective ORB. In Proceedings of the IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms and Open Distributed Process-

ing, number 1795 in LNCS, pages 121—143, New York, April 2000. Springer-Verlag.

G. S. Blair, G. Coulson, A. Andersen, M. Clarke, F. M. Costa, H. A. Duran, R. Mor-

eira, N. Paralavantzas, and K. B. Saikoski. The design and implementation of open

ORB version 2. IEEE Distributed Systems Online, 2(6), 2001.

Partha P. Pal, Joseph.P. Loyal], Richard E. Schantz, John A. Zinky, and Franklin

Webber. Open implementation toolkit for building survivable applications. In Pro-

ceedings of the DARPA Information Survivability Conference and Exposition, Jan-

uary 2000.

IONA Technologies Inc. ORBacusfor C++ and Java version 4.1.0, 2001.

R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu. Thread transparency in

information flow middleware. In Proceedings of the International Conference on

Distributed Systems Platforms and Open Distributed Processing. Springer Verlag,

November 2001.

R. Baldoni, C. Marchetti, A. Termini. Active software replication through a three-

tier approach. In Proceedings ofthe 22th IEEE International Symposium on Reliable

Distributed Systems (SRDSOZ), pages 109—118, Osaka, Japan, October 2002.

Martin Geier, Martin Steckermeier, Ulrich Becker, Franz J. Hauck, Erich Meier, and

Uwe Rastofer. Support for mobility and replication in the Aspecth architecture.

Technical Report TR-I4-98-05, Univ. of Erlangen-Nuernberg, IMMD IV, 1998.

S. M. Sadjadi and P. K. McKinley. ACT: An adaptive CORBA template to support

unanticipated adaptation. In Proceedings ofthe 24th IEEE International Conference

on Distributed Computing Systems (ICDCS), Tokyo, Japan, March 2004.

Common Lisp Object System. http:/lwww.dreamsongs.com/CLOS.html, accessed

November 2005.

Python Programming Language. http:/lwww.python.org/, accessed November 2005.

Ian Welch and Robert J. Stroud. Kava - a reflective java based on bytecode rewriting.

In Proceedings of the Ist OOPSLA Workshop on Reflection and Software Engineer-

ing, pages 155—167, London, UK, 2000. Springer-Verlag,

S. M. Sadjadi, P. K. McKinley, B. H. C. Cheng, and R. E. K. Stirewalt. TRAP/J:

Transparent generation of adaptable java programs. In Proceedings ofthe 2004 Inter-

national Symposium on Distributed Objects and Applications, Agia Napa, Cyprus,

October 2004.

Eric Wohlstadter, Stoney Jackson, and Premkumar T. Devanbu. DADO: Enhancing

middleware to support crosscutting features in distributed, heterogeneous systems.

In International Conference on Software Engineering ICSE, pages 174—186, 2003.

168

[71] P. David, T. Ledoux, and M. Bouraqadi-Saadani. Two-step weaving with reflec-

tion using Aspect]. In Proceedings of the OOPSLA 2001 Workshop on Advanced

Separation of Concerns in Object-Oriented Systems, 2001.

[72] E. Tanter, J. Noye, D. Caromel, and P. Cointe. Partial behavioral reflection: spatial

and temporal selection of reification. In Proceedings of the 18th ACM SIGPLAN

Conference on Object-oriented Programing, Systems, Languages, and Applications

(OOPSLA 2003), pages 27-46, Anaheim, California, 2003. ACM Press.

[73] Power aware distributed systems. http : / /pads . east . isi . edu/.

[74] V. Raghunathan, C. Pereira, M. B. Srivastava, and R. Gupta. Energy aware wireless

systems with adaptive power-fidelity tradeoffs. IEEE Transactions on VLSI Systems,

February 2005.

[75] Jan-Peter Richter and Hermann de Meer. Towards formal semantics for QoS support.

In Proceedings of[NFOCOM 1998.

[76] Cristian Koliver, Klara Nahrstedt, Jean-Marie Farines, Joni da Silva Fraga, and San-

dra Aparecida Sandri. Specification, mapping and control for QoS adaptation. Real-

Time Systems, 23(1-2), 2002.

[77] Tarek F. Abdelzaher and Kang G. Shin. QoS provisioning with quntracts in web

and multimedia servers. In Proceedings ofthe IEEE Real-Time Systems Symposium,

New York,USA, December 1999.

[78] Tarek Abdelzaher, Kang G. Shin, and Nina Bhatti. User-level QOS-adaptive resource

management in server end-systems. IEEE Transactions on Computers, 52(5), 2003.

[79] Eric Wohlstadter, Stefan Tai, Thomas Mikalsen, Isabelle Rouvellou, and Premkumar

Devanbu. GluerS: Middleware to sweeten quality-of-service policy interactions.

In Proceedings ofthe 26th International Conference on Software Engineering, pages

189—199. IEEE Computer Society, 2004.

[80] Baochun Li and Klara Nahrstedt. Dynamic reconfiguration for complex multime-

dia applications. In Proceedings of IEEE International Conference on Multimedia

Computing and Systems, Florence, Italy, June 1999.

[81] E. Gelenbe, M. Gellman, and Pu Su. Self-awareness and adaptivity for QoS. In

Proceedings ofIEEE International Symposium on Computers and Communication,

June 2003.

[82] R.R.-F. Liao and AT Campbell. A utility-based approach for quantitative adaptation

in wireless packet networks. ACM Journal on Wireless Networks, 7(5), 2001.

[83] Baochun Li, Dongyan Xu, Klara Nahrstedt, and Jane W.S. Liu. End-to—end QoS

support for adaptive applications over the internet. In SPIE Proceedings on Internet

Routing and Quality ofService, November 1998.

I69

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[911

[92]

193]

1941

Stefan Fischer, Abdelhakim Hafid, Gregor von Bochmann, and Hermann de Meer.

Cooperative QOS management for multimedia applications. In Proceedings ofIEEE

International Conference on Multimedia Computing and Systems, 1997.

Bobby Vandalore, Raj Jain, Sonia Fahmy, and Sudhir Dixit. QuaFWiN: Adaptive

QoS framework for multimedia in wireless networks and its comparison with other

QoS frameworks. In Proceedings of the 24th IEEE Conference on Local Computer

Networks (LCN), October 1999.

Baochun Li, Dongyan Xu, and Klara Nahrstedt. Towards integrated runtime solu-

tions in QOS-aware middleware. In Proceedings ofACM Multimedia Middleware

Workshop, Ottawa, Canada, 2001.

M. Shaw and D. Garlan, editors. Software Architecture: Perspectives on an Emerg-

ing Discipline. Prentice Hall, 1989.

G. S. Blair, L. Blair, V. Issamy, P. Tuma, and A. Zarras. The role of software ar-

chitecture in constraining adaptation in component-based middleware platforms. In

Proceedings of the 2nd International Conference on Distributed Systems Platforms

and Open Distributed Processing (Middleware ’2000), New York, April 2000.

Ziyang Duan, Arthur Bernstein, Philip Lewis, and Shiyong Lu. A model for ab-

stract process specification, verification and composition. In Proceedings ofthe Sec-

ond International Conference on Service Oriented Computing (ICSOC), New York,

November 2004.

Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame—

work for software architecture description languages. IEEE Transactions on Soft-

ware Engineering, 26(l):70—93, 2000.

Anand R. Tripathi, Tanvir Ahmed, Richa Kumar, and Shremattie Jaman. Design of

a policy-driven middleware for secure distributed collaboration. In Proceedings of

the 22nd International Conference on Distributed Computing Systems (ICDCS ’02).

IEEE Computer Society, 2002.

B. N. Jorgensen, E. Truyen, F. Matthijs, and W. Joosen. Customization of object

request brokers by application specific policies. In Proceedings of the 2nd Interna-

tional Conference on Distributed Systems Platforms and Open Distributed Process-

ing (Middleware ’2000), New York, April 2000.

Romain Rouvoy and Philippe Merle. Abstraction of transaction demarcation in

component-oriented platforms. In Proceedings of the fourth ACM/IFIP/USENIX

International Middleware Conference (Middleware’2003), Rio de Janeiro, Brazil,

June 2003.

H. Gimpel, H. Ludwig, A. Dan, and B. Kearney. PANDA: Specifying policies for

automated negotiations of service contracts. In Proceedings of the 1st International

Conference on Service Oriented Computing (ICSOC), Trento, Italy, December 2003.

I70

[95] Svend Frolund and Jari Koisten. QML: A language for quality of service specifica-

tion. Technical report, HP Laboratories, Palo Alto, 1998.

[96] Xiaohui Gu, Klara Nahrstedt, Wanghong Yuan, Duangdao Wichadakul, and

Dongyan Xu. An XML-based quality of service enabling language for the web.

Technical report, Department of Computer Science University of Illinois at Urbana-

Champaign, Urbana, April 2001.

[97] Orlando Loques, Alexandre Sztajnberg, Romulo Curty Cerqueira, and Sidney Ansa-

loni. A contract-based approach to describe and deploy non-functional adaptations

in software architectures. Journal of the Brazilian Computer Society, 2004.

[98] Nicolas Le Sommer and F. Guidec. A contract-based approach of resource-

constrained software deployment. In Proceedings of the IFIP/ACM Working Con—

ference on Component Deployment (CD 2002), pages 15—30, London, UK, 2002.

Springer-Verlag.

[99] Arun Mukhija and Martin Glinz. CASA - a contract-based adaptive software ar—

chitecture framework. In Proceedings of the 3rd Workshop on Applications and

Services in Wireless Networks, pages 275—286, 2003.

[100] Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, and Damien Watkins. Mak-

ing components contract aware. IEEE Computer, 32(7):38—45, 1999.

[101] Bertrand Meyer. Applying ‘Design by Contract’. IEEE Computer, 25(10):40—51,

1992.

[102] Robert Allen and David Garlan. A formal basis for architectural connection. ACM

Transaction ofSoftware Engineering Methodolgy, 6(3):2l 3—249, 1997.

[103] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In Pro-

ceedings ofthe 4th ACM SIGSOFTsymposium on Foundations ofsoftware engineer-

ing, pages 3—14. ACM Press, 1996.

[104] Eric M. Dashofy, Andr Van der Hoek, and Richard N. Taylor. A highly-extensible,

xml-based architecture description language. In Proceedings of the Working

IEEE/IFIP Conference on Software Architecture (WICSA ’01), page 103. IEEE Com-

puter Society, 2001.

[105] K. Appleby, S. B. Calo, J. R. Giles, and K.-W. Lee. Policy-based automated provi-

sioning. IBM Systems Journal, 43(1), 2004.

[106] Eiffel Software. http:/lwww.eiffel.com/, accessed July 2004.

[107] L. Andrade and J. Fiadeiro. Evolution by contract. In ECOOP’00 Workshop on

Object-Oriented Architectural Evolution, 2000.

[108] L. Rizzo. Effective erasure codes for reliable computer communication protocols.

ACM Computer Communication Review, April 1997.

171

[109] Jutta Degener and Carsten Bormann. The GSM 06.10 lossy speech com-

pression library and its applications, 2000. available at http:/lkbs.cs.tu-

berlin.de/ jutta/toast.html.

[l 10] Christine E. Jones, Krishna M. Sivalingam, Prathima Agrawal, and Jyh-Cheng Chen.

A survey of energy efficient network protocols for wireless networks. Wireless Net-

works, 7(4):343—358, 2001.

[1 11] Krishna M. Sivalingam, Jyh-Cheng Chen, Prathima Agrawal, and Mani B. Srivas-

tava. Design and analysis of low-power access protocols for wireless and mobile

ATM networks. Wireless Networks, 6(1):73—87, 2000.

[1 12] B. Burns and J.-P. Ebert. Power consumption, throughput and packet error measure-

ments of an IEEE 802.11 WLAN interface. Technical report, Telecommunication

Networks Group, Technische University Berlin, August 2001.

[1 l3] Suresh Singh and C. S. Raghavendra. PAMAS: power aware multi-access protocol

with signaling for ad hoc networks. ACM SIGCOMM Computer Communication

Review, 28(3):5—26, 1998.

[1 14] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless

sensor networks. In Proceedings of the [NFOCOM 2002, 2002.

[115] Bob O’Hara and A1 Petrick, editors. The IEEE 802.1] Handbook: A Designer’s

Companion. Standards Information Network and IEEE Press, January 2000.

[l 16] Tijs van Dam and Koen Langendoen. An adaptive energy—efficient MAC protocol

for wireless sensor networks. In Proceedings of the Ist International Conference on

Embedded Networked Sensor Systems, pages 171—180. ACM Press, 2003.

[l 17] P. Havinga and G. Smit. Energy-efficient TDMA medium access control protocol

scheduling. In Asian International Mobile Computing Conference (AMOC 2000),

pages 1—9, 2000.

[118] Rajgopal Kannan, Ram Kalidindi, S. S. Iyengar, and Vijay Kumar. Energy and

rate based MAC protocol for wireless sensor networks. ACM SIGMOD Record,

32(4):60—65, 2003.

[119] D. Xu, B. Li, and K. Nahrstedt. QOS-Directed error control of video multicast in

wireless networks. Technical Report Computer Science Dept., UIUC, August 1999.

[120] Dongyan Xu, Baochun Li, Klara Nahrstedt, and Jane W.-S. Liu. Providing seamless

QoS for multimedia multicast in wireless packet networks. In Proceedings ofSPIE

Multimedia Systems and Applications, pages 352—361 , Boston, MA, USA, 1999.

[121] X. Xu, A. Myers, H. Zhang, and R. Yavatkar. Resilient multicast support for

continuous-media applications. In Proceedings International Workshop on Network

and Operating System Support for Digital Audio and Video (NOSSDAV), St. Louis,

Missouri, May 1997.

172

[122] N. Maxemchuk, K. Padmanabhan, and S. Lo. A cooperative packet recovery proto-

col for multicast video. In Proceedings International Conference on Network Pro-

tocols, October 1997.

[123] Bert J. Dempsey, Jorg Liebeherr, and Alfred C. Weaver. A new error control scheme

for packetized voice over high-speed local area networks. In Proceedings of the

18th IEEE Local Computer Networks Conference, pages 91—100, Minneapolis, MN,

1993.

[124] M.Luby, L.Vicisano, J.Gemmell, L.Rizzo, M.Handley, and J.Crowcroft. RFC 3452

Forward Error Correction (FEC) Building Block.

[125] M.Luby, L.Vicisano, J.Gemme11, L.Rizzo, M.Handley, and J.Crowcroft. RFC 3453

The Use of Forward Error Correction (FEC) in Reliable Multicast.

[126] D. Rubenstein, J. Kurose, and D. Towsley. Real-time reliable multicast using proac-

tive forward error correction. Technical Report UM-CS-l998-019, 1998.

[127] M. Podolsky, C. Romer, and S. McCanne. Simulation of FEC-based error control for

packet audio on the Internet. In Proceedings ofIEEE INFOCOM’98, San Francisco,

California, March 1998.

[128] Jonathan Rosenberg, Lili Qiu, and Henning Schulzrinne. Integrating packet FEC

into adaptive voice playout buffer algorithms on the lntemet. In Proceedings of

IEEE INFOCOM 2000, pages 1705—1714, 2000.

[129] Paul Lettieri, Christina Fragouli, and Mani B. Srivastava. Low power error con-

trol for wireless links. In Proceedings ofACM/IEEE MobiCom ’97, pages 139—150,

1997.

[130] Paul J. M. Havinga. Energy efficiency of error correction on wireless systems. In

Proceedings of the IEEE Wireless Communications and Networking Conference,

September 1999.

[131] A. Nadgir, M. Kandemir, and G. Chen. An access pattern based energy management

strategy for instruction caches. In Proceedings of 2003 IEEE International SOC

Conference, Portland, Oregon, 2003.

[132] D. Duarte, N. Vijaykrishnan, M. J. Irwin, and Y.F. Tsai. Impact of technology scaling

and packaging on dynamic voltage scaling techniques. In Proceedings of the 15th

Annual IEEE International ASIC/SOC Conference, 2002.

[133] A. Vahdat, A. R. Lebeck, and C. S. Ellis. Every joule is precious: A case for revis-

iting operating system design for energy efficiency. In Proceedings of the 9th ACM

SIGOPS European Workshop, 2000.

[134] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. Ecosystem: Managing energy

as a first class operating system resource. In Proceedings ofASPLOS 2002, 2002.

[135]

[I36]

[137]

[138]

[139]

[140]

[141]

[I42]

[143]

[144]

[145]

[146]

H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy: Unifying policies for re-

source management. In Proceedings ofUSENIX 2003 Annual Technical Conference,

2003.

Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau. Information and Control

in Gray-box Systems. In Proceedings of the 18th ACM Symposium on Operating

Systems Principles, pages 43—56, 2001.

Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning wireless net-

work power management. In Proceedings of the 9th Annual International Confer-

ence on Mobile Computing and Networking (MOBICOM ’03), 2003.

Surendar Chandra and Amin Vahdat. Application-specific network management for

energy-aware streaming of popular multimedia formats. In Proceedings of USENIX

Annual Technical Conference, 2002.

Surendar Chandra, Carla Schlatter Ellis, and Amin Vahdat. Managing the storage

and battery resources in an image capture device (digital camera) using dynamic

transcoding. In Proceedings of the Third ACM International Workshop on Wireless

and Mobile Multimedia (WoWMoM’00), 2000.

Blackdown Project. Java platform 2 version 1.3.x for Linux. available

athttp://www.blackdown.com/java-linux/javaZ—status/jdkl.

3—status.html,2001.

Joel M. Vincent. iPAQ H3100/H3600/H3700 series Pocket PC battery white paper.

Technical report, Compaq Computer Corporation, October 2001.

S. M. Sadjadi, P. K. McKinley, and E. P. Kasten. Architecture and operation of an

adaptable communication substrate. In Proceedings ofthe Ninth IEEE International

Workshop on Future Trends in Distributed Computing, San Juan, Puerto Rico, May

2003.

E. Kasten, P. K. McKinley, S. Sadjadi, and R. Stirewalt. Separating introspec-

tion and intercession in metamorphic distributed systems. In Proceedings of the

IEEE Workshop on Aspect-Oriented Programmingfor Distributed Computing (with

ICDCS ’02), Vienna, Austia, July 2002.

P. K. McKinley and S. Gaurav. Experimental evaluation of forward error correction

on multicast audio streams in wireless LANs. In Proceedings ofACM Multimedia

2000, pages 416—418, Los Angeles, California, November 2000.

Jean-Chrysotome Bolot and Andres Vega—Garcia. Control mechanisms for packet

audio in Internet. In Proceedings ofIEEE INFOCOM’96, pages 232—239, San Fran-

cisco, California, April 1996.

Philip K. McKinley, Chiping Tang, and Arun P. Mani. A study of adaptive forward

error correction for for wireless collaborative computing. IEEE Transactions on

Parallel and Distributed Systems, September 2002.

174

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

ED. Elliot. Estimates of error rates for codes on burst-noise channels. Bell System

Technology Journal, 42: 1977—1997, September 1963.

David A. Eckhardt and Peter Steenkiste. A trace-based evaluation of adaptive error

correction for a wireless local area network. Mobile Networks and Applications,

4(4):273—287, 1999.

Yu-Chee Tseng, Chih-Shun Hsu, and Ten-Yueng Hsieh. Power-saving protocols

for IEEE 802.11-based multi-hop ad hoc networks. In Proceedings of the IEEE

INFOCOM 2002, New York, June 2002.

ITU-T Rec. P.862. Perceptual evaluation of speech quality (PESQ): An objective

method for end-to—end speech quality assessment of narrow-band telephone net-

works and speech codecs, February 2001.

Spirent Communications. Using PESQ to test voice quality - white paper, 2002.

Mehmet Aksit and Zied Choukair. Dynamic, adaptive and reconfigurable systems

overview and prospective vision. In Proceedings of the 23rd International Con-

ference on Distributed Computing Systems Workshops (ICDCSW’03), Providence,

Rhode Island, May 2003.

GS. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira,

and N. Parlavantzas. Reflection, self-awareness and self-healing in OpenORB.

Charleston, SC, November 2002.

Thorsten Kramp and Rainer Koster. A service-centered approach to QOS-supporting

middleware (Work-in-Progress Paper). In IFIP International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing (Middleware ’98), The

Lake District, England, September 1998.

Anind K. Dey and Gregory D. Abowd. The Context Toolkit: Aiding the develop-

ment of context-aware applications. In Proceedings of the Workshop on Soflware

Engineering for Wearable and Pervasive Computing, Limerick, Ireland, June 2000.

Eddy Truyen, Bo N. Jorgensen, Wouter Joosen, and Pierre Verbaeten. Aspects for

run-time component integration. In Proceedings of the ECOOP 2000 Workshop on

Aspects and Dimensions of Concerns, Sophia Antipolis and Cannes, France, 2000.

F. Akkai, A. Bader, and T. Elrad. Dynamic weaving for building reconfigurable soft-

ware systems. In Proceedings ofOOPSLA 2001 Workshop on Advanced Separation

of Concerns in Object-Oriented Systems, Tampa Bay, Florida, October 2001.

Z. Yang, B. H.C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K.

McKinley. An aspect-oriented approach to dynamic adaptation. In Proceedings of

the ACM SIGSOFT Workshop On Self-healing Software (WOSS ’02), pages 85-92,

November 2002.

175

[159] S. M. Sadjadi. Transparent Shaping to Support Adaptation in Pervasive and Auto-

nomic Computing. PhD thesis, Department of Computer Science and Engineering,

Michigan State University, August 2004.

[160] S. M. Sadjadi and P. K. McKinley. Using transparent shaping and web services to

support self-management of composite systems. In Proceedings ofthe Second IEEE

International Conference on Autonomic Computing, Seattle, Washington, June 2005.

[161] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier Killijian. Open-

Java: A class-based macro system for Java. In Proceedings of OORaSE, pages

117—133, 1999.

[162] Jean Charles Fabre and Tanguy Perennou. A metaobject architecture for fault-

tolerant distributed systems: The FRIENDS approach. IEEE Transactions on Com-

puters, 47(1):78—95, 1998.

[163] Raymond Klefstad, Douglas C. Schmidt, and Carlos O’Ryan. Towards highly con-

figurable real-time object request brokers. In Proceedings of the 5th IEEE Inter-

national Symposium on Object-Oriented Real-Time Distributed Computing, April -

May 2002.

[164] Z. Yang, Z. Zhou, P. K. McKinley, and B. H. C. Cheng. Enabling collaborative

adaptation across legacy components. In Proceedings of the Third Workshop on Re-

flective and Adaptive Middleware (with Middleware ’04), Toronto, Ontario, Canada,

October 2004.

[165] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):4l—50, 2003.

[166] Web Services Policy Framework. http://www—128.ibm.com/

developerworks/library/specification/ws—polfram.

[167] Arun Mukhija and Martin Glinz. CASA - a contract-based adaptive software archi-

tecture framework. In Proceedings of the 3rd IEEE Workshop on Applications and

Services in Wireless Networks (ASWN 2003), Beme, Switzerland, july 2003.

[168] Arun Mukhija and Martin Glinz. A framework for dynamically adaptive applica-

tions in a self-organized mobile network environment. In Proceedings of the 4th

International Workshop on Distributed Auto-adaptive and Reconfigurable Systems

at the 24th International Conference on Distributed Computing Systems (ICDCS

2004), Tokyo, Japan, march 2004.

[169] Arun Mukhija and Martin Glinz. Runtime adaptation of applications through dy—

namic recomposition of components. In Proceedings of the 18th International Con—

ference on Architecture of Computing Systems (ARCS 2005), Innsbruck, Austria,

March 2005.

176

[I70]

[171]

[172]

[173]

[174]

[175]

[I76]

[177]

[178]

[I79]

[180]

[181]

Scott D. Fleming, Betty H. C. Cheng. R. E. Kurt Stirewalt, and Philip K. McKin-

ley. An approach to implementing dynamic adaptation in C++. In DEAS ’05: Pro-

ceedings of the 2005 workshop on Design and evolution of autonomic application

software, pages 1—7, New York, NY, USA, 2005. ACM Press.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design pat-

terns: abstraction and reuse of object-oriented design. In Oscar M. Nierstrasz,

editor, Proceedings of the European Conference on Object-Oriented Programming

(ECOOP), volume 707, pages 406—43 1, Berlin, Heidelberg, New York, Tokyo, 1993.

Springer-Verlag.

S. M. Sadjadi, P. K. McKinley, and E. P. Kasten. Architecture and operation of an

adaptable communication substrate. In Proceedings of the 9th IEEE International

Workshop on Future Trends of Distributed Computing Systems (FTDCS ’03), pages

46—55, San Juan, Puerto Rico, May 2003.

The Sphinx Project. http: / /cmusphinx . sourceforge . net/html/

cmusphinx.php.

The FreeTTS Project. http: //freetts . sourceforge . net/docs/

index.php.

The Microsoft Visual Studio .NET. http://msdn.microsoft .com/

vstudio/ , accessed January 2005. The Microsoft Visual Studio .NET.

ALTOVA XML Spy. http: / /www . xml spy . com/, accessed January 2005. The

XML Spy.

The Jess Project. http: //herzberg . ca . sandia . gov/ jess/.

Ji Zhang, Zhenxiao Yang, Betty H.C. Cheng, and Philip K. McKinley. Adding safe-

ness to dynamic adaptation techniques. In Proceedings of the ICSE 2004 Workshop

on Architecting Dependable Systems, Edinburgh, Scotland, May 2004.

Chiping Tang and Philip K. McKinley. Modeling multicast packet losses in wireless

LANs. In Proceedings ofACM International Workshop on Modeling, Analysis and

Simulation of Wireless and Mobile Systems (MSWiM’03) (in conjunction with ACM

Mobicom), San Diego, September 2003.

W. Asprey, et a1. Conquer system complexity: Build systems with billions of parts.

In CRA Conference on Grand Research Challenges in Computer Science and Engi-

neering, pages 29—33, 2002.

Farshad A. Samimi, Philip K. McKinley, and S. Masoud Sadjadi. Mobile Service

Clouds: a self-managing infrastructure for autonomic mobile computing services.

In Proceedings of the Second International Workshop on Self-Managed Networks,

Systems & Services (SeIfMan 2006), Dublin, Ireland, June 2006. Springer (LNCS).

I77

[182] Steve R. White, James E. Hanson, Ian Whalley, David M. Chess, and Jeffrey O.

Kephart. An architectural approach to autonomic computing. In Proceedings ofthe

First International Conference on Autonomic Computing (ICAC 2004), pages 2—9,

2004.

[183] OASIS SOA Reference Model group. OASIS Reference Model for Service Oriented

Architecture V 1.0. Technical report, OASIS, July 2006.

[184] Extensible Markup Language (XML) 1.1. ht tp : / /www . w3 . org/TR/Z 0 04 /

REC— xml 1 l - 2 O 0 4 O 2 O 4 / , accessed July 2004. W3C Recommendation.

[185] Simple Object Access Protocol (SOAP) 1.1. http: / /www . w3 . org/TR/ZOOO /

NOTE-SOAP— 2 0000508 /, accessed July 2004. W3C Note 08.

[186] Web Services Description Language (WSDL) 1.1. http: //www . w3 . org/TR/

wsdl, accessed July 2004. W3C Note 15.

[187] UDDI: Universal Description, Discovery and Integration. http: / /www . uddi .

org/ , accessed July 2004.

[188] The Nixes Tool Set. http:/lwww.aqualab.cs.northwestern.edu/nixes.html, accessed

May 2006.

[189] Smart Framework for Object Groups. www.smartfrog.org, accessed May 2006.

[190] Management Software: HP OpenView. http://www.novadigm.com/, accessed May

2006.

[191] S. Vestal. A cursory overview and comparison of four architecture description lan-

guages. Technical report, Honeywell Technology Center, February 1993.

[192] D. Garlan, R. Monroe, and D. Wile. ACME: An architectural interconnection lan-

guage. Technical report, CMU-CS-95-219, Carnegie Mellon University, 1997.

[193] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann.

Specification and analysis of system architecture using rapide. IEEE Transactions

on Software Engineering, pages 336-355, 1995.

[194] S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical report, Honeywell

Technology Center, April 1996.

[195] Nenad Medvidovic, Peyman Oreizy, Jason E. Robbins, and Richard N. Taylor. Using

object-oriented typing to support architectural design in the c2 style. In SIGSOFT

’96: Proceedings of the 4th ACM SIGSOFT symposium on Foundations ofsoftware

engineering, pages 24—32, New York, NY, USA, 1996. ACM Press.

[196] Mary Shaw and David Garlan. Formulations and formalisms in software architec-

ture. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends and

Developments, volume 1000 of Lecture Notes in Computer Science, pages 307—323.

Springer-Verlag, 1995.

178

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel, and Michel Wermelinger.

A survey of self-management in dynamic software architecture specifications. In

WOSS ’.04 Proceedings of the 1st ACM SIGSOFT workshop on Self-managed sys-

tems, pages 28—33, New York, NY, USA, 2004. ACM Press.

Daniel Le Metayer. Describing software architecture styles using graph grammars.

IEEE Trans. Softw. Eng., 24(7):521—533, 1998.

Dan Hirsch, Paolo Inverardi, and Ugo Montanari. Graph grammars and constraint

solving for software architecture styles. In ISAW ’98: Proceedings of the third in-

ternational workshop on Software architecture, pages 69—72, New York, NY, USA,

1998. ACM Press.

Gabriele Taentzer, Michael Goedicke, and Torsten Meyer. Dynamic change man-

agement by distributed graph transformation: Towards configurable distributed sys-

tems. In TAGT’98: Selected papers from the 6th International Workshop on The-

ory and Application ofGraph Transformations, pages 179—193, London, UK, 2000.

Springer—Verlag.

Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph

based architectural (re)configuration language. In ESEC/FSE—9: Proceedings of the

8th European software engineering conference heldjointly with 9th ACM SIGSOFT

international symposium on Foundations ofsoftware engineering, pages 21—32, New

York, NY, USA, 2001. ACM Press.

Michel Wermelinger. A simple description language for dynamic architectures. In

ISAW ’98: Proceedings ofthe third international workshop on Software architecture,

pages 159—162, New York, NY, USA, 1998. ACM Press.

Carlos Canal, Ernesto Pimentel, and Jose’ M. Troya. Specification and refinement of

dynamic software architectures. In Software Architecture, TCZ First Working IFIP

Conference on Software Architecture (WICSAI), pages 107—126, 1999.

Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-Solorzano. Dynamic coor-

dination architecture through the use of reflection. In SAC ’01: Proceedings of the

2001 ACM symposium on Applied computing, pages 134-140, New York, NY, USA,

2001. ACM Press.

Nazareno Aguirre and Tom Maibaum. A temporal logic approach to the specifica-

tion of reconfigurable component-based systems. In ASE ’02: Proceedings of the

I 7th IEEE international conference on Automated software engineering, page 271,

‘Washington, DC, USA, 2002. IEEE Computer Society.

Virginia C. de Paula, G. R. Ribeiro Justo, and P. R. F. Cunha. Specifying dynamic

distributed software architectures. In Proceedings of XII Brazilian Symposium on

Software Engineering, 1998.

XUI Rich Client Framework. http://xui.sourceforge.net/, accessed June 2006.

179

[208] Zhinan Zhou and Philip K. McKinley. COCA: A contract-based infrastructure for

composing adaptive multimedia systems. In Proceedings of the 8th International

Workshop on Multimedia Network Systems and Applications (MNSA 2006), Lisboa,

Portugal, July 2006. to appear.

[209] Fei Yu, Vincent W.S. Wong, and Victor C.M. Leung. Efficient QoS provisioning for

adaptive multimedia in mobile communication networks by reinforcement learning.

In Proceedings of the SPIE/ACM Multimedia Computing and Networking Confer-

ence (MMCN’04), 2004.

180

