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ABSTRACT

MATCHED INTERFACE AND BOUNDARY(MIB) METHOD

AND ITS APPLICATIONS TO IMPLICIT MODELING OF BIOMOLECULES

By

Yongcheng Zhou

This dissertation describes the matched interface and boundary (MIB) method

[94, 96] for elliptic interface problems, in which the equations have discontinuous

coefficients and possible singular source on the interface. This low regularity leads to

the slow convergence or divergence of most traditional numerical methods for smooth

problems. The complexity of the interface makes it more difficult to develop efficient

numerical methods.

The matched interface and boundary method is closely related to the methods

with ghost points while it differs from these methods in the implicit enforcing of the

interface conditions. A uniform Cartesian grid is used in the formulation of the MIB

to take advantages of the conventional high order central finite difference schemes.

Attentions are only paid to the irregular grid points near the interface where the

difference schemes involve the fictitious values instead of solely solution values. A

local coordinate transformation is used to project the interface conditions defined in

the gradient direction on the interface to the coordinate directions, which allows the

MIB method to handle irregular interfaces. By iterative application of the interface

conditions, fourth and sixth order numerical methods for general elliptic interface

problems are successfully derived for the first time.

Both immersed interface method (HM) and MIB methods are used for the accu-

rate solution of the Poisson-Boltzmann equation for electrostatic potentials. Molec-

ular surface generated with MSMS is chosen as the dielectric interface and special

techniques are developed to implement this triangulized molecular surface into the

finite difference method with Cartesian grid. This is the first application of analyti-

cal molecular surface in the finite—difference-based Poisson-Boltzmann solvers, and is

also the first method which conserves the continutity Of potential flux at the molecu-



lar surface. Substantial improvements in the surface potentials and the electrostatic

solvation energies are found as a result of this work. It is also found that, by mesh re-

finements, the solutions of all other traditional Poisson-Boltzmann solvers essentially

converge to results of interface methods attained with a coarse mesh. Thus interface

methods are relatively more efficient in achieving solutions of the same accuracy. The

convergent solvation energies calculated from interface methods at coarse meshes not

only permits an accurate energetic analysis of the molecular interactions but also pro-

vide an accurate calibration for the Generalized Born method. The accurate potential

itself also has significant implications in the analysis of protein/ligand binding and

association.
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Chapter 1

Introduction

Many problems in fluid dynamics, material science and molecular biology can be

modeled by elliptic equations with singular sources or discontinuous diffusion coeffi-

cients at fixed or moving internal interfaces, such as viscous incompressible flow with

an elastic weightless immersed boundary (Stokes problem of blood flow [63]), stable

or unstable crystal growth (Stefan problem [22, 25]) or implicit solvent modeling in

biornolecular simulation (Poisson-Boltzmann equation [28]). The singularities in the

source and/or the diffusion coefficient will cause the reduction of the global regularity

of the solution, and consequently, lead to poor performances of most standard nu-

merical methods designed for smooth solutions, usually seen through degradation of

the convergence rate or even leadint to divergence of the numerical scheme.

This dissertation is about the design, analysis and applications of an accurate and

robust numerical algorithm, the matched interface and boundary(MIB) method, for

elliptic interface problems on Cartesian grids. The MIB method was first proposed

for the numerical solution of the Maxwell's equation for electromagnetic fields in

media with straight material interfaces [94]. It will be demonstrated that the MIB

method can be generalized to 2-D or 3—D elliptic problems with arbitrary interfaces

given an appropriate local coordinate transformation, a sophisticated organization

Of interface conditions and a deliberated selection of grid points for the solution of

fictitious values. Substantial improvement. on accuracy and resolution. as well as

savings of the computational cost. are achieved with this new method. Among the



variety Of potential applications Of interface methods, we are particularly interested in

the application of MIB to the numerical solution of the Poisson-Boltzmann equation

derived from an implicit solvent model of biomolecular salty, aqueous environment.

This application possesses physical elegance, mathematical complexity and biological

importance.

1.1 Elliptic interface problem and its numerical

methods: a brief review

An elliptic interface problem is given by the equation

V - (UV?!) — K(X)U(X) = [)(x), x 6 fl = (2+ U QT (1.1)

with an appropriate boundary condition on 80. For simplicity, Q is assumed to be

a regular domain, such as a rectangle in two dimensions (2D) or a cuboid in three

dimensions (3D). 82“ and IV” are two complementary subdomains of Q which are

separated by an internal interface P. On this interface either the diffusion coefficient

[3 is discontinuous or the source term p(.r) is singular, or both have singularities.

Supplemented by the underlying physics of the equation, we have two jump conditions

at the interface:

[it] = u+(X(s)) — u—(X(s)) = 95(3), [322"] = [3+127:(X(s)) — ,B—u;(X(s)) = i’i(s).

(1.2)

where X(.s-) is a point on the interface F, s is the arc-length parametrization Of the

interface F, and n is the outer normal direction of the interface. The superscript :i:

denotes the limiting value of a function from one side or the other of the interface.

In either subdomain Q" or (2+ the function u(x) is smooth, but global regularity

Of the solution is usually low, due to the finite jumps in the solution and/or its

gradient on the interface. l\-’Iost of the standard numerical methods (excluding dis-

continuous Galerkin or similar methods) assume that the solution is smooth inside



its discretization stencil, which will not hold for the case at hand if the discretization

stencil includes grid points located in different subdomains. Special treatments or

modifications are therefore necessary to extend the application of many well devel-

oped numerical methods such as finite difference method and finite element method

to these elliptic interface problems.

One of the earliest investigations on the elliptic interface problems was conducted

by Babuska in 1970 using the finite element method [3], whereby he formulated the

interface problem as an equivalent minimization problem and incorporated all the

jump conditions into the cost functions. This method and a technique developed by

Xu [91], require the exact evaluation of integrals on the boundary and the internal

interface, which is usually difficult to obtain for an arbitrary interfaces or boundaries.

In the 1970-19808, Peskin [50, 63, 64] developed an immersed boundary method to

model blood flow in the heart. In the immersed boundary method, the complicated

time-varying geometric boundary is regarded as being immersed in the fluid, and the

Navier-Stokes equation is solved on a simple Cartesian grid. The presence of the

embedded boundary is modeled via a singular source localized on the interface. This

singular source is then approximated and distributed over a small neighborhood near

the interface, usually through some discrete delta functions. The immersed boundary

method has had success in modeling flows in complicated time—dependent geometry

[17, 92] due to its flexibility, efficiency, and robustness. Recently, Tornberg and

Engquist have proposed and analyzed a class of regularization methods for treating

the singular source terms [79]. An extensive review of the immersed boundary method

for turbulent flow simulations can be found in [33]. However, the immersed boundary

method is typically first order accurate in higher dimensions and the smearing of the

jumps along the interface might prevent its application to circumstances where sharp

jumps and/or the resolution of the solution at the interface are of concern.

The success of these pioneering works and the identification of more interface prob-

lems have motivated the emergence Of a variety of interface methods in the last decade,

among them a major advance in this field was due to LeVequc and Li [42]. Thcsc



authors proposed the immersed interface method (IIM) for solving elliptic equations

with discontinuous coefficients and singular sources. In the IIM, local corrections

of finite difference schemes on irregular grid points where the discretized Laplacian

operator involves nodes from both sides of the interface, are pursued throughout the

domain. This is achieved by incorporating interface jump conditions into local Taylor

expansions of the operator on irregular points, from which FD schemes with genuinely

first-order accurate truncation error can be derived. The resulting scheme is of second

order accuracy and preserves the jumps at the interface. For 2-D or 3—D problems,

a local coordinate is typically required to offer a better representation of the jump

conditions since they are given in the direction normal to the interface. The IIM is

robust and efficient, and has been successfully applied to a variety of interface-related

problems, such as moving interface problems [30], elliptic irregular domain problems

[14] and 3—D interface problems [13], to name a few. The reader is referred to a re

cent review [45] or Li’s monograph [47] on IIM method for more details about these

applications.

Various extensions and further improvements of the HM have been considered in

the literature [2, 6, 7, 14, 29—32, 35, 38, 41, 48, 49, 52, 69, 71, 81, 83, 90], includ-

ing the formulations in polar coordinates [49], the formulation based on the finite

element method [44] and the formulation proposed by Dumett and Keener [14] for

solving anisotropic elliptic boundary value problems. On the other hand, the prob-

lem of convergence and efficiency of the IIM has attracted many research interests

because the original IIM [42] typically leads to a matrix of non—symmetric coeffi—

cients though the original problem is self—adjoint and strictly elliptic. This reduces

the number of standard fast solvers that can be utilized with IIM, and convergence

may not be rigorously guaranteed [31]. To address this issue, a maximum principle

preserving IIM was proposed by Li and Ito [46] to attain a diagonally dominant albeit

still non-symmetric coefficient matrix. Specially designed multigrid solvers can then

be employed to speed up the convergence of the maximum principle preserving 11M

[1, 40]. For interface problems with pi(_'.ccwise constant coefficients, a fast IIM was



constructed [43] through introduction of an unknown jump condition for [an]. To-

gether with the elliptic equation, this unknown will also be solved numerically. The

success of the fast IIM lies in the fact that it models the jump conditions in 22(1')

and its gradient as correction terms for the standard finite difference approximation

to the equation. The latter is solved with fast Poisson solvers whilst the correction

term is updated using the solution of u(a:). A satisfactory convergence was found

from this iterative procedure. Motivated by the fast IIM [43], an explicit jump IIM

was developed by Wiegmann and Bube [90]. Recently, a decomposed IIM for elliptic

equations with variable coefficients was proposed by Berthelsen [6]. The linear sys-

tems in two IIMs [89] and [6] are all symmetric and diagonally dominant, allowing

the use of conventional fast Poisson solvers.

Another popular sharp interface scheme using the Cartesian grid is the ghost

fluid method (GFM) originally developed for treating contact discontinuities in the

inviscid Euler equations by Osher and his coworkers [18]; The GFM is typically first

order accurate for interface problems, including the elliptic one [51] and could be of

second order accuracy for elliptic irregular domain problems. In the flavor of the level

set method which gives an implicit representation of the interface, the interface jump

conditions are captured implicitly by extending values across the interface into a ghost

fluid. On irregular grid points, when the FD discretized Laplacian refers to a node

from the other side of the interface, a ghost fluid value instead of the real one will

be supplied. Such a jump condition capturing procedure is directly incorporated into

the numerical discretization in a way that the symmetry of the FD coefficient matrix

is maintained, allowing the use of standard fast solvers. In higher dimensions, the

jump in the normal derivative is correctly captured through a projection to Cartesian

coordinate directions in the GFM, while the jump in the tangential derivatives is

neglected [51]. In this way the GFM can be applied dimension by dimension. The

GFM is very simple and robust, and its practical extensions to complex interface

problems such as 3D moving interfaces or the multiphase Navier-Stokes equations

are promising. Recently, an interesting jump condition capturing FD scheme was



constructed by W'ang [84] by using a body-fitting curvilinear coordinate system.

It is noted that there also exist numerous studies in the literature about the quite

relevant elliptic irregular domain problem [36, 59, 60]. One way to solve this prob-

lem is to embed the irregular domain to a larger regular computational domain, and

reformulate the original boundary conditions as interface jump conditions. A simple

Cartesian grid can then be adopted, so that various fast algebraic solvers developed

in the literature can be utilized. This essentially converts an elliptic irregular domain

problem into an elliptic interface problem. Due to this close relationship, the meth—

ods originally designed for one type of problems may be extended for another one.

However, in the immersed boundary problems, no solution is sought outside the do-

main boundary, whereas, in immersed interface problems, interface jump conditions

couple the solutions on both sides of the interface. Moreover, an immersed inter-

face problem has two interface conditions by definition while an immersed boundary

problem has only one ‘interface condition’ coming from the boundary condition of the

original problem. In this dissertation, we will primarily focus on solving the elliptic

immersed interface problems. The application of our method will be extended to a

few immersed boundary problems.

To solve an elliptic problem with an irregular domain or interface, a body-fitting

grid can be employed [3, 10, 11]. Nevertheless, for certain geometrically complex

domains, the construction of a good body-fitting mesh remains a nontrivial and time-

consuming task, even though considerable progress has been made. Furthermore, a

considerable increase of computational difficulties will be encountered for moving in-

terface problems, where a moving mesh method is required to regenerate or deform the

grid during the simulation. Therefore, numerous modified finite difference methods

that are based only on a simple Cartesian grid have been chosen to solve the elliptic

interface—related problems in the literature [1, 6, 17, 18, 30, 31, 33, 36, 40, 42, 44-

46, 50, 51, 59, 60, 63, 64, 84, 89, 92]. One obvious advantage of Cartesian grid

methods is that there is no computational cost for grid generation. A Cartesian grid

also allows the use of simple data structures and a standard FD stencil over a ma-



jority of the domain. Moreover, many contemporary software packages, such as fast

Poisson solvers, multigrid, level set method, etc. are mainly developed for a Cartesian

grid, and thus could be taken advantage of. On the other hand, in order to properly

maintain the accuracy at the interface, some extra numerical work needs to be done

near the interface in a Cartesian FD method. In general the growth of computational

cost due to these extra operations is very small compared to the solution of the linear

system as the modification of numerical methods occurs only in a small region near

the interface.

The matched interface and boundary (MIB) method to be formulated in this dis-

sertation is based on fictitious points, which are regarded as the smooth extension

of the subdomains separated by an internal interface. The solution values at these

fictitious points are determined by hierarchically matching two given interface con-

ditions. The idea of fictitious points or ghost domain was also used in the literature

for solving elliptic irregular domain problems by Mayo [59, 60] in the 19803. The

ghost cell is introduced outside of the (inner) domain as a fictitious domain. Similar

ideas have been explored in Refs. [36, 92], but the fictitious values are smoothly

extended or extrapolated according to the jump conditions. Our MIB formulation

differs from these in the sense that fictitious values on the different subdomains are

solved pairwisely and simultaneously. Most importantly, the determination of ficti-

tious values are independent of the coordinate direction and the discretization of the

elliptic equation. The resultant flexibility makes it possible for the MIB method to

handle elliptic problems with irregular interfaces.

1.2 Illustration of MIB method: 1-D example

First proposed by Zhao and Wei [94] for the solution of the Maxwell’s equation with

straight material interface, the MIB method manages to implicitly enforce both inter-

face conditions by modifying the discretization schemes near the dielectric interface.

A major ingredient Of the MIB method can be illustrated with the following l-D

example. Consider a uniform mesh with grid spacing h. and let the interface be lo-



cated at a: = a where at, g a S :r,+1 for some 2', as in Figure 1.1. Suppose the

diffusion coeflicient is [3“ in the left subdomain and [3+ in the right subdomain. For

a one-dimensional elliptic equation (1.3) with interface conditions (1.4)

(Iii/1):; : p(.1:), (1.3)

[u] = u+(a) - ”IL-((1), [Bum] = BTuI(a) — ,[3_ur(a), (1.4)

a straightforward application of the finite difference scheme says at 1:,-

541 2”i+1 — 203'.“ 2+,5v:_1 zlui +54 2ui—1l / I / h2 I / l / _—__ p(:[:,i), (1.5)
 

where ,8,+1/2 and fl,_1/2 are the values of diffusion coefficient at positions 1,41” and

13—1/2: respectively. This discretization, based on Taylor expansions of smooth func-

tions, renders a second—order convergence only if both 22(12) and [3(1) are continuous,

which is not the case for the elliptic interface problems.

”Ur—3
Uzi-2   

l l l

i-3 i—2 1—1 i ' i+1 i+2 i+3 i+4
lax

Figure 1.1: Illustration of MIB method for 1-D problem. The dash line indicates

the position of interface 1‘ = a, where 22(1) has a discontinuity. Real solutions 22(1)

at grid points are marked in black and the fictitious values f (:13) are marked in green.

Fictitious values f,“ and fi+2 are the smooth extension of the solution in left subdo—

main; f,_1 and f, are the smooth extension of the solution in right subdomain. These

fictitious values are solved by matching two interface conditions simultaneously.

The degradation of the convergence of standard finite difference on elliptic inter-

face problems is attributed tO failure to ensure the interface conditions. With the MIB
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method, one modifies the finite difference scheme near the interface by first smoothly

extending the subdomains separated by the interface and then applying the standard

finite difference scheme on the extended subdomains. As seen from Figure 1.1, a

second-order central difference scheme at 1:, involves grid points :ri_1,:r,- and 1,-4.1,

but :r,-+1 is located on the other side of the interface. Since on the left subdomain,

only the difference scheme at 3:,- involves the grid point on the other subdomain, it

is sufficient to smoothly extend the left subdomain up to 22,41 to accommodate the

discretization at 12,-. Similarly, the right subdomain would be left-extended up to 13,-.

The solution values on these two extended domains are called fictitious values f (:r)

to distinguish them from the real solution values 22(x) at the same place. These two

fictitious values f,- and fi+1 can be solved from an approximation of the interface

conditions (1.4)

+ + + — — —

(“10.26 + wo.2+1”2’+1 + w0,2+2“i+2) _ (w0,2—1“i—1 + “bani + “"0,zt+1fi+1)

= [22] (1.6)

.++ + ,.+ .. —,— .. .—...— .
If ((1)1in + “'1,i+lui+1 + ”"1,i+2“1+2) —- {I (u21,i_1u.,_1 + 201,241, + wl,i+lf1+1)

= [[22,], (1.7)

where (waif,- + trial-+122,“ + wai+2ui+2) is the interpolation Of u+(a) on ui+1,u,¢+2

. | . . ‘ . '. . . . . + +

and fictitious value I, mth corresponding interpolation weights w0,i+1,w0,i+2 and

222+ (222+ f- + 212+ 22- + 222+ 22- ) is the a roximation of 22+(a) at the same
0,2: 1,2 2- 1,i+1 2+1 1,2'+2 2+2 pp in

set of nodes via finite difference. Similar approximations to u"(3:) and u;(a) are

conducted on the nodes 22,-1, 221 and fictitious value fi+1 with respective interpolation

weights or finite difference coefficients, which are calculated with Fornberg’s algorithm

[21].



The equations (1.6 and 1.7 are linear in f, and f,+1:

+ — _ + + — —

+ + — — __ , , + + +

[3 “11.4% T B w1.2+1fi+1 — [23223;] - [I (wl,2+lu‘i+1 + wl.2+2ui+2)

+fi—(urii_lui_1+luii22,).

The fictitious values f,- and f,“ are solved to be the linear combinations of real

solution values 22,-_1,u,;, 22,-+1,22.,-+2 and the prescribed jumps [22], [6223;]:

ft = Cite—1 + (3'2": + C2U2+1 + Ciui+2 + CEI’UI + Cislfiuxl,

f,+1 = C[+Iu,-_1 + 0'2“”, + Gym-+1 + c:,+lu,-+2 + cg+1[u] + CEHUJM],

where the vectors are

--’6_1‘I1,2+1K1 + “’0,i+1K2
 

 

(3'i =
D

_ + + +
CH1 _ I3 wl’iKldl-wo‘iKg

D

_ - — _ ,+ _ +

K1 — (IUO,i~—1’wO,i’ “any “’0,2+2v1i0)

_ —— —,— __,+,+ ___-++

K2 - (L3 “hi—1’13 “1,2, I3 “0,241, ’3 w0,i+2’0’1)

and D = -,23‘w;j, +1203: 1 + [3116’ i +1wf,i' These two fictitious values are supplied to

the standard central difference schemes at .r, and I,“ such that

23,_1/2u,-_1 —— 2(B,-_1/2 + [3,-+1/2)ui+fii+1/2fi+1

h2

{3+1 2ft — 2(2341 2 + 5+3 2)”i + 54-3 2“i+2

I / I / I122 / I / = 0(1‘2—1)» at Ti+l

 

P0326), at 3172',

 

are actually conducted on smooth subdomains, and thus have a better convergence

property than (1.5), as illustrated by Table 1.1.

More fictitious values can be solved to support higher order discretization of the

equation near the interface via iterative enforcing of the interface conditions as only

If)



two fictitious values can be solved from two interface conditions. Following the above

procedure, we first solve f,- and f,“ from

2+4 '

(u'ol'f2‘l' Z u'Okuk)_ (: uIOkuk+w0i+1fi+I) = IUI (1'8)

12:2+1 k:2'-— 3

2+4

6+ 2011f, Z w:kuk)—/3(Z w‘22,, +2012+1f1+1) = [2322;] (1.9)

k:2'+1 k:2'— 3

which approximate the interface conditions(1.4) at fifth-order accuracy. We then solve

fi—l and f1+2 from

2+4

(“’(Ii—Ifi-l + “6113+: 1"(fink) -

k:2+1

2'

( Z ”IO—,kl‘k + u'(I,z‘+1fi+1 + ufii+2fi+2l = I’ll]. (1.10)

k=i—3

2+4

I3+('IUII:Z'—lfi-_l + ”urtifl- + Z uytkuk) _

k=2+1

2'.

fl-( 2 IL’ikILk+U’ii+lfi+l +u,1—.i+2fi+2) 2 {/3111}. (111)

k=2—3

Using two fictitious values at either side Of the interface is consistant with a fourth-

Order central finite difference in the vicinity of the interface. for example,

f2+1 47% 112—1 4112—2 “vi—3
. z __.+___ + . — 2 .--. 1.12

u” 1222 3112 4h? 322 12h2 a :2, 1' ( )

[2+2 4f2+1 22; 4712—1 “2—2
= ____+ _ __,____ t 1.13

"II 1222 3h2 422 + 31.2 12h2 a I’ ( I

Ui+3 41t2+2 "2+1 4fzi—1 fI—Q

  

 

 

 
  

  
 

: _ + _. + — t ‘ , 1.14

"xx 12h.2 3h2 4h? 312.2 122.2 a “7"“ ( )

“2+4 4Ui+3 “2+2 4“2+1 fz’
,. . : ———‘- | — ‘ ‘ '— t . 7' , 1.1!,

"” 122-2 32.2 4112 + 311.2 122.2 a "+2 ( J)

to achieve fourth-order convergence, as shown in Table 1.1.

In addition to the convergence rate Of the scheme, we are also interested in the

relation between the accuracy of the MIB scheme and the magnitude of the jump in

the diffusion coefficient ii. Considering a seemid-order MIB scheme. for which only
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Table 1.1: Numerical convergence test for the equation (13221.); = j'(.r). The compu-

tational domain is [0, 2] and the interface is located at :2: = a = 0.74174243050441595.

23 = 1,22(;r) = sin(3:r) if :2: S a and fl = 10, 21(1) = cos(31‘) if I > a.

 

2nd MIB 4th MIB

Loo Order Loo Order

20 28013—2 1.18E—4

4O 6.89E-3 2.02 8.80E-5 3.75

80 1.64E—3 2.07 5.37E—6 4.03

160 3.98E-4 2.04 2.88E—7 4.22

320 1.02E—4 1.96 1.79E—8 4.01

  

 

 

one fictitious value is defined on either side of the interface, i.e., fi and fi+1, the

interface conditions ( 1.4) can be approximated by

+ + +
(woyz‘fi + u’0,i+1u2+1 ‘1' u’o,i+2“2+2) -

(zu&i_1ui_1+ “11,215+ 222(ii+1f,1+1) = [22], (1.16)

+ + + +

.B_(u’;i_1ui—1 + wit-"11.2, + lL’ii+lfi+1) = [23221.]. (1.17)

On the other hand, interface conditions (1.4) can also be approximated by using the

exactly extended values 22;+ and u-2+1’ respectively defined at :ri and n+1

+ + + + , + 3

("HO-,i—lu‘i‘l + 216,122.,- + “'"0—,-i+1"2'—+1 + (30—123) 2 [22], (1.18)

++,+,.+ ,. ,+.. +2
{2 (ML/1.221. +“1,i+1"1+1+u'l,i+2”1+2 +Cl h. )

[Bur], (1.19)
— - — — — — 2

[3 (u'1,l'—1ui—l+'w1.1'.uz'+ll'1,i+1'll't+1+ C1 12 )

where C7168” , )1— and (31+ are the coefficients of the leading truncation errors. Note

that fictitious values fi and fi+1 are the approximation to the exact values 22;L and

211.11 on fictitious domains, respectively. We denote the difference between these

12



fictitious values and the extended exact values as e,- and 6,“, i.e,

2.,- = at - f,- (1.20)
2

62+1 = Ui—H—fnl- (121)

By subtracting Eq. (1.16) from Eq. (1.18), and Eq. (1.17) from Eq. (1.19), we notice

that e,- and 624.1 satisfy the following two equations:

waif,- — mime,“ = (00- - 03)}.3, (1.22)

B+wftiei—B—wl—,i+lei+1 —_- (fi’Cf—fl+Cl+)h2. (1.23)

Solving for e,- we obtain

. _ ._ ,+ ’ ,_
3 , — — — _ + + 2

_ —. 9+ _ + + . — .

(3 “'0,2“’1.2+1+/3 “"1,2"’0,2+1

 (1.24)e,- 2

Since wit.“ ~ 0(1),wa:i ~ 0(1) ~ ()(1/12) and 222:2. ~ 0(1/h), it follows
’u'1,2'+1

that (.1: ~ ()(123). Moreover, since

— + - 3 ,— — +B+ 2

‘(Co ‘ Coll”1,zi+1h “ “‘0.2+1(Ci ‘ C1 37)"
 , (1.25)c,- =

+ - 6+ ,+ —

‘u’o,2w1,2+1 + F“1,2w0,2+1

as 6+ /13“ increases, 6,: asymptotically approaches C(123), where the constant C de-

pends only on (11+ and “T2" In other words, for large jumps in the diffusion coefficient,

the approximation error depends only on the solution of the problem. This proves

that the present method is robust to a large contrast of .13 at the interface.
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Chapter 2

MIB Method: 2-D Formulation

and Numerical Experiments

This chapter is devoted to the formulation and test of the MIB scheme for solving 2-D

elliptic equations with irregular (curved) interfaces. Compared with the treatment of

interface in LB or a straight interface in 2-D, it is much more intricate to treat irregu-

lar interfaces because the local topology of irregular points varies from point to point.

Therefore, the procedure outlined for regular interfaces cannot be directly applied. A

second-order 2-D MIB scheme will be described first followed by its generalization to

higher order schemes. We will then present an alternative interpolation formulation of

the MIB method without the explicit use of fictitious domains. We show that the new

formulation is essentially equivalent to the improved fictitious domain formulation.

It is believed that this alternative formulation offers not only a better understanding

of the MIB method, but also provides insights into other similar high order interface

methods that might be constructed. Extensive numerical experiments are performed

to demonstrate the high accuracy and robustness of the MIB method, as well as its

flexibility in handling irregular interfaces.

14



2.1 Second-order 2-D MIB scheme for irregular in-

terface

Before proceeding to the construction of the MIB scheme for the discretization of

(6223):; or (flag/)3), we have to identify the irregular grid points since only these points

necessitate special care when the standard central difference scheme is applied to the

whole domain. We define a grid point to be irregular if all the discretization points

participating a standard central finite difference scheme at this point are not on the

same side of the interface. For example, in a second order 2D scheme, an irregular

point has at least one of its 4 nearest neighbor grid points lying on the other side of

the interface. Note that the number of irregular points increases when a higher order

FD scheme is employed.

Assume as before that there are two given conditions associated with the interface,

i.e.,

[22] 2 22+ — u- : ¢2(2:. y) (2.1)

[Bun] 2 8+2”: — B—u; = 2/2(.r,y) (2.2)

and also assume that both ¢(r,y) and 2,0(12,y) are C 1 continuous along the inter-

face I‘. When considering the interface which is not always aligned with the 17- or

y- mesh lines, as what shown by Figure 2.10, one more interface condition can be

attained by differentiating Eq. (2.1) along the tangential direction of the interface,

i.e. [227] = (6701,21). Hence for a point ($0,210) on the interface, we have three jump

conditions,

[22] 2 22+ — 22.— : (5(1‘0, yo) (2.3)

[HT] = 22: — 21; = 927(2'0, 210) (2.4)

[(371.22] = .8+U+ — .(3_'U'_ : 11311504101 (2-5)

where the normal vector of the interface is 22' = (cos 6, sinfi) and 227 is the derivative
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in the tangential direction 2? = (— si116. c056), while 0 S 0 < 272 is the angle between

the positive .2:- direction and the vector 22’. Considering these relations, these three

local interface conditions can be reformulated as

['22.] 2 22+ — '22— = c'b(;270, yo) (2.6)

[227] (—22.;l" sin6 + 22; cos 6) — (—22; sin6 + 22,"; cos 6) = p(:2:0, yo) (2.7)

[dun] = 6+(22: c086 + 22;” si116) — 6’02; c050 + 22;; si116) = 222(10, yo). (2.8)

In the MIB approach, the implementation of jump conditions is disassociated with

  
(b) (C)

Figure 2.1: Three typical situations for an interface crossing the mesh lines. In the

left chart, the interface passes the ;2:- mesh line at point A and y- mesh line at point

B. The interface conditions are approximated at point A and point B to generate

the difference scheme for (23th and (Buy)y, respectively. In the middle chart, the

interface conditions are approximated at point A to obtain the difference scheme only

for (6221):; and the regular central difference is used for (fiuy)y. In the right chart,

the difference scheme for (Buy)y is set up from the approximation of the interface

conditions at point B while term (Burk. is treated with the regular central difference.

the discretization of the elliptic equation. Also (23221.)1 and (822y)y will be treated

separately. Therefore, we only need to illustrate how to locally recover the second

order accuracy of the standard 3—point finite difference scheme for ((3221);. The mod-

eling for (2322],)y can be achieved similarly. Considering an interface point 0 = (2:0, go)

which is located at the intersection of interface I‘ and the :2: mesh line, see Figure 2.2,

one fictitious point on each side of (IO, yo) is required in the present MIB modeling.

+| .,
To estimate these two fictitious values we will discretize 22 2122; and 22; involved

in the jump conditions by using a 1-D grid partition as in the regular interface cases.

However. it remains a problem to deal with the two derivatives 22,] and 22,7 in the
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jump conditions (2.7) and (2.8) at the interface point (230,210). We overcome this

difficulty essentially via two steps. First, by using jump conditions (2.7) and (2.8),

we eliminate one 3; derivative that is more difficult to discretize near the interface.

Second, we carry out the discretization for the remaining y derivative by using a one-

sided FD scheme on the auxiliary points whose values are obtained by interpolation.

This is usually possible in practice. If 22;] is easier to be evaluated, we will cancel 22,:

[(3.1%)
 F

y $9.1“) %
 

      

 

3
i

 

(3702310

Figure 2.2: Irregular point (2', j) and the interface. The interface crosses the .2:-

mesh line at (230,310). The fictitious values are fij and fi+1,j (green). The vertical

dash line is the auxiliary line on which three auxiliary points (in empty circle) are

defined: (0,j + 2), (0,j +1) and (0,3) right at (120,210). The jumps [22], [23227,] and [227]

are evaluated at (20,210).

from (2.7) and (2.8) to attain

[22] : 22+ — 22—, and [(3227,] — /3_ tan 6[22T] : C1122}L — C1722; + CJUJ, (2.9)

where C: = /3+ cos6 + 23‘ taiifisinfl, C; = 23‘ cosél + 23—tani9si119 and C; =

23+si119 — 23" sinO. If otherwise 22,7 is easier to be calculated, one shall use the

following jump conditions derived from Eqs. (2.6), (2.7) and (2.8) by canceling 22;:

[2,2] 2 22+ — 22-, and [23227,] — 23+ ta116[227] = Cfuj — C7722; - C" ”J y 22,]. (2.10)
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where C; : [3+ cos6 + 6+ tan6sin 6, C; = ,6“ cos6 + [3+ tan6sin6 and C; =

,6‘ sin6 — 21+ sin6.

Cancellation of 225,]L or 22; from Eqs. (2.7) and (2.8) is required when modeling

(23223,)y, which leads to two other combinations of jump conditions. One combination

IS

[22] = 22.+ — 22—, and [2322”] + 6‘ cot 6[uT] = Cgu: + C322,; - CW2-y y, (2.11)

where C; : (Fr—23‘) cos 6, C; = /3‘ cos6cot6+fi+ sin6 and C; : 23_(cos6cot 6+

sin 6); and the other is

[22] 2 22+ — 22— and [23227;] + 6+ cot 6[uT] = Cgu; + (7.322,)f — Cgug. (2.12)

It is easy to check that here C; 2 (6+ — 23’) cos 6, C; = 23+ cos6cot6 + 6‘ sin6

and C; = [3+(eos6cot6 + sin 6). Either Eq. (2.11) or Eq. (2.12) can be chosen to

formulate the discretization scheme for (62%),), depending on whether 22; or 22; is

easier to be evaluated.

In the ewe that either tan 6 or cot 6 is undefined in choosing jump conditions, i.e.,

whenever the outer normal direction is aligned to the :2:- or y- direction, the interface is

locally perpendicular to the mesh line so that it can be treated as a straight interface

locally. The procedure introduced in Section (1.2) for the 1-D problem can be directly

employed to handle these irregular points.

It is seen that for irregular interfaces each irregular point should have its own local

MIB representation because of different local topology, while for regular interface

cases, in contrast, only one global representation is needed throughout the whole

domain. Some typical topology near irregular points is depicted in Figure 2.1.

We first consider the detailed discretization of jump conditions (2.9) at the inter-

face point (270,210) for the topology given in Figure 2.2, where the interface f‘ passes

through point (:20, yo) between two irregular points (2', j) and (2 + 1, j ) Four nodes

along the j’h mesh line, i.e., (2i — 1.)), (ij), (2 + 1,j) and (2' + 2,3), are required
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fatto approximate I—derivatives in jump conditions (2.9). In order to evaluate 22J

(20,210) = (:ro,;2/j), we add an auxiliary y- mesh line (dash line) through (20,210).

Three auxiliary grid points on this auxiliary line will be employed to approximate

22;] . Two of these three points, (0, j + 1) and (0, j + 2), are on the positive side of the

interface, while the third auxiliary point (0, j ) is right on the interface.

Refer again to Figure 2.2, where point (2' -~ 1, j ) and (2', j) are on the same side of

the interface while (2' + 1,3), (2' + 2,3), (0,j + 1) and (0,j + 2) are on the other side.

We deploy two fictitious points at (2', j) and (2' + 1, j), the corresponding fictitious

unknowns are denoted as fi,j and fi+1,j, respectively. The two conditions in Eq.

(2.9) are then approximated to be

’ll’&i_l'lli_l’j + w(_)_,2'”’iaj + 2226—‘H1f2j+1,j + [22] :

“Ki-[id +'”'0[.2’+1"i+1vj + Ulai+2ui+2J (2.13)

.C; (201—,i_122,--1,j + 22213221,]- + '2221-‘i+1f,j+1,j) + [6227,] - ,8— tan 6[u,.] =

Cic'bfll’iifaj + lvti+1u2+hj + wig-HUM”)

2+ +

+C’y (Pijll-ij + Ptj+1paj+l + P1yj+2”o,j+2) (2-14)

where superscripts, - and +, signify that the FD approximation is on the - and + side

of the interface, respectively. Here 222 and p are FD weights for approximation along

the 1?— and y- directions, respectively. Their first subscript (0 or 1) represents that it

is for interpolation or for the first-order differentiation, while their second subscript

is the node index. For example, 222(ii_1, 222672. and “2&1.“ are the interpolation weights

of u(ro,y0)- at grid points (2 — 1,3), (2',j) and (2'+1,j).

As aforementioned, 22,] shall be approximated on a one-sided finite difference

stencil comprised of three auxiliary points, i.e., 223,220.14] and nag-+2, which need
J

+. with function values at real grid pointsfurther numerical treatments. To relate 220 J

we adopt the relation

113:]. :12;j+ [21.] : u'gj-l'ui—IJ + u'fhiuij + ‘l"(f.i+1fi+l.j + [It]. (215)
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The other two auxiliary values, 220,j+1 and nag-+2 are interpolated on three grid points

around them to ensure an accuracy of 0(223). These interpolation points are chosen

22 1222022, and should be on the same side of the interface. For the geometry in Figure

2.2 we choose interpolation points to be (2',j + 1), (2' + 1,j + 1), (2' + 2,j + 1) and

(2,j + 2), (2 + 1,j + 2), (2' + 2,j + 2) for 2203+] and cog-+2, respectively. As a result

of these interpolations, nag-+1 and 220042 become known variables in jump condition

(2.14).

There are only two unknowns in Eqs. (2.13) and (2.14), i.e., fictitious values f2",j

and [141“). To solve for the representation of these fictitious values in terms of the

real function values and the known jumps, we introduce two expansions

f,- - = Ci - U, (2.16)
.2

2.21.. = ci+1 -U, (217)

where Cf = (1, .. ,C6) and CHI: (0“, CH1, ,Cé“) are the expansion

coefficients of the two fictitious unknowns with respect to 6 real unknowns and 3 jumps

which are also given by the vector

U = ("H—1,13 22,0, "‘2+1,js '22..,-+2,j, “OJ-+1, 220,342, [22.], [dun]. [227]).

Inserting these expansions of ./'2‘,j and ./'22+1,j to Eqs. (2.13) and (2.14), we end up

with a small linear system for vectors Ci and CH1:

ci+1U—m+C’-U Kl-U (2.18)||

“0,2+1

(C; 222 —C;pfjjw(;,+,)ci+1.U—Cfiwffici-U = Kg-U, (2.19)
1.2+l

or equivalently

wu,+,C'+1— 220,0 = K] (2.20)

(Cfu’l—JH - ijijrriai+l)C'+l —— CllwiiC' : K2. (2.21)
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where

_ — - + + _
K1 — (—2220,z._1,—u20’i,u20’i+1,2005i+2,0,0, 1,0,0),

_ + +

K2 — (‘rC “’12—1+Cypi,ju’02— 1» Crw1,i+C'ypl,j“’0,vi w1,2+1 C2: w12+21

+ + + + — _
Cyp1j+11Cy p1,j+2va p1,j7 —1,23 tan6).

The solution of this 2 x 2 linear system is readily available with Cramer’s formula:

_ "+.+ _

“’0,2+1K2(Cr “’1,2+1 (’y1’1,j"’0,2+1lK1
 C" = (2.22)

1+, + ,._.
_ ‘+ + __(t’.’L‘ 21,11,231! 0,i+l + U)O,i(C; ”II—,i-l-l (1y P1,jw0,z+1)

_ + + +
Ci+1_ Cf wliKl + won-K2 (2 23)

+ + — ' '
‘xC“’1,2“’03 + “’02(C "’1,2+1 Cy I’1,j“’0.i+1)

 

Before finishing the solution of the fictitious values, we need to distribute the

expansion weights of fm- and f2+l,j at auxiliary points 220d“ and Uo,j+2 to their

respective interpolation nodes defined above. Suppose

'+1
nay-+1 1’ ° (122,142,U2+1,j+1.u2+2,j+1)

. '+2 . . . .
”0,24?- — 1' '(”2.3+12uz+1.y+12U-2+2,J+1),

where IJ'+1 = (I]+1,I%+1,I§+l) and I]+2(IJ+2I]+213+?) are the interpolation

coefficients in the vector form. The expansion weights of fz',j and fi+l,j could then

be distributed onto these interpolation points and the final expressions of fij and

f2+1,j are:

f2.) = Cl“i—l.j + (3321223 + C§312«2+1.j+ (332712”)

2 j+1 j+1 j+l
+ 05(11 “n+1 + 12 U2+1.j+1 + 13 "2'+2.j+l)

2 2+2 j+2 j+2
+ (325(1) “2,142 +12 u2+1,j+2 +13 l1'2'+2.j+2)

+ CHM] + Céwun] + C§[22T] (2.24)
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_ ‘+1 '.+1 '+1 ' 1
fi+l,j — CI] u,_1,j '1' C12 um- + cs 11,41,3' '1" 02+ “2.4-22].

2+1 j+l j+1 j+l

+ C5 (11 U2,j+1 + 12 “i+l,j+1 + 13 u-i+2,j+l)

2+1 j+2 2+2 j+2

+ C6 (11 u2i,j+2 + 12 ui+l,j+2 + 13 U2+2,j+2)

+ c;+1[22] + cg+1[,2322,,] + of,“ [22,]. (2.25)

One can therefore discretize (flux); at irregular points (2', j) and (2' + 1, j ) as at the

regular point:

12.“ 1
 

 

#2—12 [32—1j+/jz;1j 2+ j-—22 _ 1 a a . .

(fluxlx = Tia-1,2 — 2 h2 2 “2,3‘ + —h22f2+1,j at (22])

,3+ 3+ + + +

2221.2 ‘ 245.2 5223.2 314%.], . .
(13111:): = ——‘h2 (’3' — ’12 22241,]- + —h2ui+2J at (2 +1,])

by substituting the above expansions to fi,j and fi+12j. The known terms involving

given jumps [u], [ur] and [1311.1] should be collected and combined into the right—hand

vector B in the ultimate linear system Ax = B from which the elliptic equation is

L. 1,-2.2

Dj+1

/(22:0, yo)

(#21223),3 (21126)}9 ’ ' ' ’ :\

eventually solved.

 

   
1 1 1H

Figure 2.3: Irregular point (1, j) and the interface. The. interface crosses the y- mesh

line at (1:0, yo). The dash horizontal line is the auxiliary line 011 which three auxiliary

points (in empty circle) are defined: (2' - 2,0), (2' — 1,0) and (Lo) right at ($0,310).

The jumps [12], [1322"] and [HT] are evaluated at the intersect point (170,310).

The difference scheme for ((311111)), can be generated f1.)llowing the procedure similar
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to that for (dumb. Let (2', j ) and (i, j + 1) be a pair of irregular points and between

them the interface I‘ intersects the 2th mesh line at ($0,310), see Figure 2.3. We

need two fictitious points, fw- at point (i, j) and fig-+1 at (i, j + 1), to facilitate the

discretization of (Bug/)3, at (i, j) and (2', j +1). Jump conditions, Eq. (2.12), are chosen

and approximated at the intersect point (:50, yo). Considering the fact that we do not

have grid points to directly approximate u; , a horizontal auxiliary mesh line passing

through (2:0, go) is introduced and three auxiliary points, (2' —- 2,0), (2' —- 1,0) and (2', o),

are deployed on which a one-sided finite difference approximation for u; is formulated.

The jump conditions (2.12) are then replaced by the following approximate equations:

P55411224 + 176,ch +Pij+1f2,j+1 + [U] ’-

pajfz'g' + Paj+1utj+1 +Paj+2utj+2v (226)

C;(p1—‘j_lu,j‘j_1 + pijuivj + pij+lfi2j+1) + [Hun] + ,6+ cot 0(117] =

Cy+(Pii-,jfi,j +Pitj+1uij+l +Pij+2ui,j+2)

+C; (wi2-2ui—2.o + 2111—3411,-le + wit-122:0). (2.27)

The notations used here follow the same nomenclature as that in Eqs. (2.13) and

(2.14). Since 127-0 is defined at an auxiliary point on the interface rather than at a

grid point, we relate it with the unknowns at grid points by an interpolation:

— + + + +
“2,0 = “2,0 _ [u] : 1’0,ij + P0,j+1“j+1 + Pod-+210” — lU-l- (228)

Nevertheless the interpolation on points 12,1,j_2, u,”j and fi,j+2 is also applicable. With

this relation, Eq. (2.27) is changed into

- - — V — ,2 -+ ,
Cy (p13j_1u,3j_1 + pLju’i-J + p1,j+1fi2j+1) + [dun] +13 cot ()[uT]

._ + + . . .+ . . + , . .

— Cy (1)1,jf‘l2J +P1.j+1“w+1 +1’1,j+2“w+2)

+Cx— [uvii_211,_2,o +wiz-__1u,_1,0

+‘u’1-,li(p()+,jfi~,j + I);j+l’ll.i‘j+1 + 7);j+2""i2j+2 — i”l)l (2.29)
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Also, we are interested in the representations of the two fictitious values fiJ and

f2,j+1 With respect to the known jumps and real unknowns, i.e.,

fi,j = Cj.U (2.30)

f2,j+1 = Cj+l'U (231)

Where U = (u2,j—12u2:,j2U2,j+12u2',j+22 ”0,2—22uo,i-—12 [U], [Bun], [Urll and the compo-

nents of vector Cj , Cj+1 are the expansion coefficients of fiJ and fig-+1 with respect

to U, respectively. A 2 x 2 linear system for Ci and Cj+1 can be obtained by replacing

fi,j and fig-+1 in Eqs. (2.26) and (2.29) with above representations, as follows

paj+lcj+l-U—p3:jcj'U = Kl-U (2.32)

C
inj+1cj+l ‘U ' (Cg-ptj + ngiipaj)cj ' U = K2 - U. (2.33)

It is easy to verify that

__ — — + +

K1 ‘ (‘1’02—1"P0,.2*P0,j+1’1’0,j+21010"1-0’0)

__—.— _-—— +.+ —,—+

K2 — ( Cyp1.j—1’ C1/P1,ijyP1,j+1+Cxw1,2po,j+1’

+ + — - + 2— — — - — +
Cy p13j+2 + C1: u’l’ipo‘j+2, CI “’1,2_220:r w1._i_1, —C.’L' u’l’i, —1, —8 C012 6).

After dropping the vector U from the above system, we obtain the solution of the

system again by Cramer’s formula:

Ci : "(Offpltj + (’l;;7"'1—,2P0-,j)K1 + pa:ng (2.34)

CJPIJ'HPEJ' ’ de+1(clipi:j + 051017212652)

02-222 = ’CJPIHIK‘ + ”52211“ . (2.35)
(,7y—])ij+1])(‘;j — 7’(Tj+l( 331+p‘13 + (II—ml—JPJJ)

 

 

The expansions of C] and C1+1 solved from this linear system involve the un-

knowns at auxiliary points 12091-2 and 1103;], which are not regular points, so we

also need to distribute the weights 011 these two points to the regular grid points.
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Considering the local topology we choose grid points u.,~_1,j_1,u,-_1,j and 12,4041

for the interpolation at auxiliary points 1204-4, and 71.2-_2,j_1,7/.,-_2,j and 72,22,141 for

120,242. With these two interpolation relations:

'—1 ”—1 ”—1
110,1;1 : Ii 'uvi._15j_1+lz2 ‘ll.i_1,j+I§ 7‘i—1,j+11 (2.36)

'—2 '—2 ‘—2
“OJ—2 == 1? lH—23—1-FIE lH—zg-tlé 1H—2J+12 (237)

it turns out that both fiJ and fig-+1 have the expansions in terms of unknowns at

regular grid points and known jumps, as below

_ j j ' '

f2.2 — Chum—1 + 02112.2 + 032%“ + Ciumz

cj Ii—l , , Ii—l _ _ Ii—l , ,

+ 5( 1 ul—l,j-l + 2 lit—1,] + 3 ut-l,]+l)

j '—2 '—2 :_2
+- de11 IM—2J—1-tlé 1H—2J-tlé lH—2J+1)

+ Cflu] + cgwun} + can.) ' (2.38)

'+1 '+1 "+1 “+1

f2.2‘+1 = Ci ”2.2—1 + 02 ”2,2 + Cf; ”2,221 + C31 “21,2422

'+1 7—1 '—1 7—1
+ C"; (171 'II.2'_1.J‘_1 + I222 7122;13‘7' + I; 'Il.l'_1$j+1)

'+1 '—2 :_2 '—2
+ C‘é (Ill u,_2,j_1 + 122 u,j_2J + 1?} Ui_2‘j+1)

+ 0],“ [22] + c§+112222n1 + (25112,). (2.39)

With these two fictitious values, the discretization of uyy at point (2]) and ('i,j + 1)

becomes straightforward

 

(3.— 1 .1311 +137. 1 (3.11

. _ J—Q .. .12 J—Q... .72. ‘

(Bug/)1, — (A—ypul’J—l — (Ag/)2 u’l-J + mfj+l at (l,})

fl1.1 fill-+fi11 8+1

((311) : i2”. .__:?_l—_Zu. .+_1:?_f. 1 at (ij+1)

” 3’ my)? “J (Am? 1" (A2) ’+ ’

The known terms involving [12], [117] and [1311"] should also be collected and combined

into the vector B in the final linear system AI = B.

The finite difference schemes constructed above are applicable regardless whether



the intersect point of the interface with the mesh line is at the grid point. However,

significant simplification can be obtained if the intersect point is a grid point. When

it comes to such a case, the difference scheme for ((1th + (Hugh, can be generated

in a single run rather than separately.

lj+2

x 01‘”

 

1+1 i+2

    
72 Tj_1

Figure 2.4: Irregular point (2', j) and the interface. The interface passes the grid

point (2', 3'). No auxiliary lines and auxiliary points are needed. The jumps [12], [Bun]

and [UT] are evaluated at the point (i, j)

Figure 2.4 shows such a situation where grid point (2‘, j) is an intersection point.

Note that when [u] 75 0 the function on the interface is not well defined but from the

computational point of view the interface itself can be treated either as in the interior

of the interface or outside it. Here we regard it as in the interior of the interface, i.e.

22(21, j) = u—(i,_j) if the grid point (i, j) is on the interface. In such a case, one only

needs to take care of the difference scheme at point (i, j) since both (2 — 1, j) and

(z',j - 1) are now regular points. For (i + 1,3) and (2',j + 1), the jump in [u] can be

directly incorporated to generate the difference schemes

 

23: 3 , 23:3 +1371, . 12:1 ,
2 ..J '1 ,j -z .j I. ,j

((322,), = figuflzr am)? 2 22,+lyj+(Tf)3(22,,J-+[u]) (2.40)
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at (2'+1,j) and

 
523% B:j+% + 822% fiilfié

(Ully)y Z mlliqj+2 — (Ag/)2 Ui,j+1 + (ATP—(aid. + [11]) (2.41)

at (i,j+1). For point (i, j) on the interface, however, two fictitious values, fig-+1 and

fi+1,j, are required in order to formulate the difference scheme for ([3121);- + (flu/fly

at the point (2', j). The expansion coefficients of these two fictitious values with

respect to the unknowns at surrounding grid points and the known jumps would

also be solved from the approximation equations of the jump conditions at point

(2', j ) However, since the grid point is now on the interface, the interface conditions

adopted are slightly different from what we used earlier. On the one hand, the

Lagrange interpolation representation of the interface relation for 11, Eq. (2.6), does

not involve either f,+1,j or fig-+1 at all. Thus this jump condition can not provide

an approximate equation for the fictitious values. On the other hand, two targeted

+andfictitious values make the approximation possible for all derivatives, 11;, “Luz,

u; . Therefore the cancellation of one of Eqs. (2.7) and (2.8) is no longer necessary

and these two conditions exactly provide two approximate equations for f,j+1 and

[24.1,]; as follows

—(“’1—.2’—1“i-1~J +w1—jui2j + ‘ll’l—ai+1./ii+1,j)SlIlf)

+ (P;j_1“i.j—l 'l' Fiji-1M + Pij+1fi,j+l) C056 + [“7”]

= —[w:i(u,,j + [11]) +1Ufti+lui+1aj + wii+21t2+2JlSi119

+ [pig-(um- + [12]) + pfjj+luiyj+1 + pij+211.,-,j+2] cos 6, (2.42)

fi-(u';i_111,_13j+ 111i.i21.,-,j+ u”l-,i+1fi+1~j) c086

+/3_(1)1_.j_1u,3j_1 + plijuiaj + pij+lf,qj+1)sint9 +[,13u,,]

: 15+[wii(u,jfij + [11]) +101+J+1ui+1 + ’tt’:i+2ll.,‘+2) cos6

/ + + ‘ ‘ + 2 . . , + .7 . . .' /

+13 (le(u,,'.j + [11]) +/)1.j+l”"--J+1 + 1)].j+2u.,‘1+2) smf). (2.43)

These two equations construct a 2 x 2 linear system for vectors C"+1 and CjH,
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which are the respective expansion coefficients of fictitious values fi+1,j and fi,j+12

i.e. [24.10“ = Ci+l ' U,fzf,j+1 = Cj+1‘ U With

U = (112—142 122.), "2+1,j2 "2+2,j2 U2,j—12U2.j+12 ui,j+2= ["1 [(311721 lurll-

The solution of this linear system is

_ — - 2+1 — 2+1 _

fl’w‘ cosOCi+1 +fi’ _- sinOCj+1 = K (2 45)
1.2+1 p1,]+1 2’ '

where

_. . _ + . . + _

K1 2 (1012—1511161 (101,1. — w1,z.)sm6 + (pm- -— pm.) cos 0,

+ ,+ ,2 _ — + +

pi]- Cos6’ - wtiiisi110,0,—1)

—— — . + + - — . 2+ + — — -

+ + . . + + __ — — ~ 2+ + - + + 2
B w13i+1cos6h8 w1,2+2 c036, B pl,j-l 81116, (3 121,].+1 sm6,,6 P14429110:

5+(wiicosfl +ptj sin6), —1,0),

and

U_pij+lsinBK1— p1—,j+1C056K2

Ci+1 (2.46) 

(Unw1,2+11’1,j+1

13—2121,,“ cos 9K1 + mm.“ smflKg

 Ci+1 (2.47)

v‘f_“’1,2+17’1,j+1
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Thus we obtain the full representations of fi+1,j and f2.j+1

[my = c",+122,-_1,,- + 052122,,- + c§+122,-+1,,- + c3122.,“ + (splay-,1

+ (32:12,,J12 + ci+1[22] + cg+1[22.] + c;‘,+1[o22,,] (2.48)

f2,j+1 = CJj+1Ui—1,j+ Cg+11t2j+ C§+IU2+1J + Ci+lua2+2,j + CgHuin

+ CéHum-Jrg + C?” [u] + C?“ [217] + Cg+l[flun] (2.49)

and the difference scheme for (1312;); + (Bug/)3, at the point (i, j ) is

 

 

B211“ [3,—+1.+5,__1- [31:1

(fluxlx'l'ffiuyly = fifflld‘t I 2:102 2‘] z,j+ (A152): l—l,]

523.2% [323% +52% ‘Bij—

YEW-fund (Ay)2 U2,j+ (Ag)? 2.1—1 (2-50)

It is noted that the representation scheme described above has a local truncation

error of 0(h3) so that the central finite difference scheme for the second-order deriva-

tives have a local truncation error of 0(h) at irregular points. Because the number of

irregular points is of 0(N) while the number of the total grid points is of 0(N2), the

global approximation error of the proposed MIB method is dominated by the error

of 0(h2) at regular points, which has been verified in our numerical experiments.

Comments 2.1.1. The placement of auzrilarty points is flerrihlc in the MIB method

and it is not necessary to use a one-side difference scheme to approximate the partial

derivative that is not in the primary direction. For example, considering the topology

of the interface and the distribution of grid points in Figure 2. 5, we can place two

auxiliary points on the opposite side of the sir-mesh line y = yj hence y: can be

approximated with a central finite difference on these auxiliary points, in contrast

to the situation in Figure 2.2 where both auriliary points are placed on the same

side of the mesh line. In this case, the expansion weights of fictitious values on

720,];1 and Uo.j+l will be distributed to u(i,j - 1), u(i + 1,j — 1), u(i + 2,j — 1) and

u(i,j + 1). u(i + 1,] + l), n(i + 2,j + 1), respectiocly.
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Figure 2.5: Irregular point (i, j) and the interface. The interface crosses the x-

mesh line at ($0,110). The fictitious values are fi,j and fi+12i (green). The vertical

dashed line is the auxiliary line on which three auxiliary points (in empty circle) are

defined: (0, j - 1). (0, j + 1) and (0, j) right at ($0,310). The jumps [11.],[fiun] and [or]

are evaluated at ($0, yo).

Comments 2.1.2. In case that the interface crosses the mesh line at a grid point, it

is possible to solve the fictitious values rather than to formulate the difference scheme

at that grid point directly as did in Eq. (2.42) to Eq. (2.50). For three fictitious values

fiqj, fi+1J and fig-+1 in Figure 2.4, fiyj can be directly represented as ui‘j = [11] since

it is on the grid point (i, j) which is regarded as inside of the interface by default.

Therefore the fictitious value fi+1J is be determined using the second relation in

Eq.(2.9), i.e., [13117,] — ,13" tan()[uT] : (1:11.; — (I; 11.; + (ff/i"; The approximation

to this relation presents an equation for fi+1J as follows

[Hun] — 13— tand[uT] — (If (7’:j(""i.j + [11]) + pij+l'u'i2j+1 + P:j+2'ui,j+2) =

(1':(?lli+:i('lti,j + [11]) + "-‘1’jf2+1""i+1,j +11132J) -—

— + + +

02012—111242 + www.2- +u'1.2+1fi+1,1)' (251)

The third fictitious value f,j,j+1 is solved from the approximation to the second relation
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in Eq.(2.11)

[dun] + fi_ COt’ 6[u7] — C: (mil-,1: (”i-J + lull + wii+lui+l,j + will-+2.,jui'l'21j) 1‘

027 (PL-(112s + lull + Ply-Hwy“ +1113”) '-

CJ(P:j_1U2,j—1 + pig-112,]- +pij+1fi,j+l)° (2252)

The central finite difference scheme at grid point (i,j) can then be formulated using

these fictitious values.

2.2 Higher order 2-D MIB scheme for irregular
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Figure 2.6: A typical stencil used in constructing a fourth-order scheme for um and

11$. There are two pairs of fictitious points in this case: ff}, f1+l.j and f,_1‘j, f,+2‘j.

The generalization of the proposed MIB method to higher order convergence is

quite straightforward. In the present approach, a high order scheme means the use

of standard high order finite difference discretization in the whole computational

domain. In the vicinity of the interface, irregular grid points are first identified
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according to the finite difference discretization. Fictitious points are then created at

the same locations of the irregular points. The function values at fictitious points are

determined by enforcing the interface jump conditions. For high order schemes, the

same set of interface conditions is repeatedly used to determine the required set of

fictitious values. At each irregular grid point, this procedure is exactly the same as

what was described for the straight interfaces.
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Figure 2.7: A typical stencil used in constructing a sixth order scheme for um

and ur. Now there are three pairs of fictitious points in this case: fij, fi+19j and

fi—l,j2fi+2,j as well as fi—2,j2 fi+3,j~

Let us consider a fourth-order case. We start with the interface condition (2.9)

and the stencil shown in Figure 2.6 to derive a fourth-order scheme for um and u,r

by using following steps:

1. Use 11,-_3‘j, - . 2 ,uM- and fi+1,j as a stencil to approximate 11’ and 11;. For u+

and u; we choose the stencil fi,j-"1'+l,j- - - - ,11,-+4,j. Here, u; is discretized on

. . . . . V

aux111ary pomts (0,3). - - - . (0,] + 4), to ensure an accuracy of ()(h‘-’).

2. Solve the 2 x 2 linear system resulting from Step 1 for the representations of

32



fi,j and f2+1,j-

3. Use u,_3,j,--- ,uiJ and f,+1,j,f,:+2‘j to approximate 11‘ and 11;, and use

f,_1,j,f,,j and U2+1,j2 - ~- ,11,-+4,j to approximate 11+ and u; Use the same

approximation for 11;) as Step 1. Note that at this moment, both fio' and _f,-+1,j

are known.

4. Solve the 2 x 2 linear system resulting from Step 3 for the representations of

fi—1,j and fi+2,j-

5. Substitute appropriate terms of fi—1,j2 f2,j» f2+1,j2 f2+2,j for the values at irreg—

ular points when the standard fourth-order central discretization of am or an

crosses the interface.

This iterative procedure is systematic and is of arbitrarily high order provided

there are enough number of regular points available on both sides of the interface.

For example, a sixth order discretization of an and am can be constructed by using the

stencil illustrated in Figure 2.7. In this case, we successively solve the representations

for three pairs of fictitious values (figj,fi+1,j), (f,_1,j,f,-+2,j) and (fi-2,j2fz'+3,j)-

It is noted that in constructing high order MIB methods, one needs to ensure that

the local truncation error at the irregular point is one order lower than the designed

global order of accuracy. The nature of high order accuracy of these schemes can be

appreciated from the numerical examples presented in Section 2.5.

2.3 Subtleness in domain extensions

We have not yet specified in sufficient detail how to determine fictitious values for a

given topology of irregular points, which is a subtle issue indeed. At the first glance,

fictitious values have to be solved along the direction of discretization, as they are

needed in this discretization. In this regard, a fictitious value at a given point varies

when it is obtained via smooth extension from different directions, because it is solved

from the smooth continuation only in the direction associated with the original dis-

cretization. According to this association between the domain extension and the
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discretization, f,+1,j should only be solved along the r-direction, see Figure 2.8.

Similarly, fig-4 should be determined twice, along the :c- and y-directions, respec-

tively. Unfortunately, fig--1 cannot be solved along the y-direction up to fourth-order

accuracy due to the large curvature in Figure 2.8. It is this difficulty that has severely

constrained the applicability of the MIB scheme in Ref. [96], where only one generic

elliptic interface problem with relatively low curvatures was solved up to fourth-order

accuracy.
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Figure 2.8: Fictitious value f,,j+2 shall be used for the discretization of uy,uyy

at grid point (i, j + 1). However, fig-+2 can not be solved along the y-direction

but it can be solved along arc-direction, i.e., solved together with fictitious values

fi—2,j+22 f2—1,)'+2 and f2+1,j+2-

A close look at the fictitious values in Figure 2.9 reveals that the fictitious values

must fall into one of the following five categories:

1. Those can be solved only along one of the :1:- and y-directions and will be used

for the discretization along the same direction.

2. Those can be solved only along one of the :1:- and y-directions, but will be used

for the discretization along the other direction.

3. Those can be solved only along one of the :r- and y-directions, and will be used

for the discretization along both directions.
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4. Those can be solved along both the :r- and y-directions, and will be used for

the discretization along either one, or both directions.

5. Those can not be solved along any direction, but will be used for the discretiza-

tion along one or both directions.

It is seen that a fictitious value in either the second, the third or the fifth category

would be deemed as unsolvable. As seen in Figure 2.8, to find four fictitious val-

ues [my - - - , fig-+3 along the y-direction, grid points (:ri, yj_2) through (517,-, yj+1) are

supposed to be on same side of the interface, whereas the other four grid points,

(xi,yj+2) through (r,,yj+5), must be on the other side. Similarly, to find four fic-

titious values fig-4, - - - , fig-+1, by considering the extension in the y-direction, we

need points (1,,yj_4) through (x,,yj_1) on one side and (:r,,yj) through (2,, yj+3)

on the other side. It is obvious that the distribution of grid points with respect to the

interface in Figure 2.8 does not satisfy such an assumption. In particular, it is unable

to find fictitious values f,,j_2 through f1.j+3 by the extension in the y-direction along

the ith mesh line since there are only two grid points in one subdomain on that mesh

line. According to the above discussion, however, at least four grid points in either

subdomain are needed in order to define a fourth-order extension. These fictitious

values can be classified into the third type, and were unsolvable by using the practice

of Ref. [96].

To enhance the flexibility of MIB method in handling irregular interfaces, we intro-

duce a new concept, the disassociation between domain extension and discretization.

This concept is established based on the following error analysis. If the approximation

errors of fictitious values at a given point (2,. yj) obtained from the z- and y-directions

are both of 0(h”) for a positive n, the difference between these two fictitious values

nmst be of 0(hn). Therefore, a fictitious value at an irregular point (12,-. yj), regard-

less the direction in its calculation. can also be used for the discretization in any

direction involving the grid point. For example, fictitious values fi,j through fi’j+3

are essentially the extension of the inner or the outer subdomain. Although they

cannot be calculated through the extension in the y—direction, they indeed can be



 
Figure 2.9: The distribution of fictitious points (stars) for a 40 x 40 mesh with

irregular interface. Each fictitious domain roughly has two layers of fictitious points,

supporting a fourth-order central difference scheme. The green stars represent the

smooth continuation of the interior subdomain and the red stars denote the smooth

continuation of the outer subdomain.

obtained by the extension in the x-direction. Particularly, one can show that f1“,j+2

can be calculated considering the extension along the (j + 2)th horizontal mesh line.

The known fig-+2 can be used to facilitate the discretization, not only for um and um

at (r,_2, yj+2) and (:r,_1,yj+2), resepctively, but also for 11y and uyy at (:ri,yJ-) and

(.r,-, yJ41), respectively. This new understanding makes it possible to solve the ficti-

tious values of the second and third types, and significantly broadens the applicability

of the MIB method to general interface geometry.

For the fictitious values of the fourth type, i.e., those that can be extended in both

the :r- and y-directions, such as f,_11j_2, f,_1,j+3 in Figure 2.8, we may attain their

values in the most convenient manner and use them for necessary discretization.

Finally, fictitious values of the fifth type may be made available in most cases by

refining the mesh. For example, if there are only four grid points inside a circular

interface, fictitious values cannot be solved for all higher order schemes, i.e., orders

higher than two, on such a grid. However, when the grid size is doubled in both

directions, the fourth-order fictitious values can be obtained. For this reason, the

present MIB method is a robust high order approach for all curved interfaces.
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It was claimed in Ref. [96] that the proposed MIB scheme is of arbitrarily high or-

der in principle. Indeed, the MIB procedure is systematic and it encompasses a variety

of higher order schemes. However, the higher order convergence was demonstrated

only for an interface problem on a special geometry due to the association between

the domain extension and the discretization. It is believed that with the present

understanding and extension technique, we are able to fully realize the higher-order

potential of the MIB method for arbitrarily curved geometry.

It is noted that for a general interface the difference scheme generated by the MIB

involves more nodes than the HM and of course, more than the standard central dif-

ference scheme. The number of grid points and the distribution of the MIB stencils

vary with the underlying mesh and the local extension of the interface relative to

the mesh. Also, the resulting linear system is no longer symmetric and diagonally

dominant, as in the case of the HM. Nevertheless, all the iterative solvers we tested,

including the successive over relaxation (SOR) or the preconditioned biconjugate gra-

dient (PBCG), always yield the solution with a favorable convergence rate. Detailed

comparison in terms of accuracy and CPU time is given in Section 2.5.

2.4 Interpolation formulation

The MIB method described in the preceding sections makes use of fictitious domains

and values for the standard high order finite difference discretization of the governing

equation near the interface. The fictitious values give a smooth continuation of the

solution across the interface. Interface jump conditions are iteratively used to deter-

mine fictitious values. In this section, the possibility of the smooth continuation in

terms of polynomial expansions is investigated. This interpolation formulation does

not require the use of fictitious domains and values. To illustrate the idea, we start

our discussion with a 1-D problem. The general principle is then applied to 2-D prob-

lems with curved interfaces. Particular attentions are paid to the relation between

these formulations.
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2.4.1 One dimensional formalism

Consider the 1-D elliptic problem given in Eq. (1.3). The interface is located at

r,- g a S 23,-“. In a second-order central finite difference scheme, at,- is the irregular

point to the left of the interface, and 1,-4.1 the irregular point to the right. On each

side of the interface, we define a second-order polynomial

'11—(17) = (1.6 + 9711—” —— :1:,-) + %%(.r -— :ri)2, (2.53)

+ + “f a; 2
u (I) = 00 +7(f-I2+1)+h—2($-I2+1) , (2-54)

where the polynomial coefficients are scaled by h to reduce the condition number of

the coefficient matrix. Obviously, a6 = u,- and 03" = u,“ and the remaining four

coefficients can be determined from the expansion of the polynomials at two grid

points, and from two interface jump conditions

 

—01_ + 0‘27 2 11,:_1 — u,- (2.55)

of + a; = Iti+2 — 11,411 (2.56)

(-0TI—,~ + 031'?) — (0.1—I) + 02-112) 2 [u] — 11,41 +11,- (2.57)

13+(aif — 2113.2») — 8"(a1- + 202—171) = h[,1’3uI] (2.58)

where I) = a 11171 ,1‘,- = PILL—J. The first two equations, (2.55) and (2.56), are the

realizations of u‘ (at) at 17,, 1, and 11+ (1:) at .r,+2, respectively. The last two equations,

(2.57) and (2.58), are the approximations of the interface jump conditions with u‘ (r)

and 11+ (11"). Eqs.(2.55«2.58) essentially provide an algebraic system for the coefficients

of u" (.r) and 11+(r), whose solutions are the representations of those four polynomial

coefficients in terms of 11,-_1, 11,-.11,+1.11.,+2.eb and '1/1. These polynomial coefficients
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are solved by inverting the coefficient matrix of equation

      

( —1 1 0 0\ {01—\ {u,_1—u, W

0 0 1 1 (12— : 1124.2 -- 11224.1 , (2.59)

—.r1 ~11“? —.r,» I; ail" [u] — 11,311 + u,-

( —,13- —213-.2:, 5+ —26+2,. ) ( a; f ( 141222,] f

It can be seen from Eqs. (2.53) and (2.54) that

h2'

_ a; _ 22.,- + at 2
“22- (332) = 72122-1032) = 712—2112 (332+1) = 72" and ”22(I2+2) =

The l-D elliptic equation (1.3) can therefore be approximated at irregular points by

 
,{3— ’12 = p(.l‘,i) at 12', (2.60)

20+

{ff—1;;— = p(.r,'+1) at :1:,j+1, (2.61)

if B is piecewise constant. Otherwise the approximation equations would be

 

, a- 20—

latch—[+2021]; = 10052) at $22 (262)

0+ 20.+

.13.z.-(I2+1)—}[-+/3(I2'+1)7l§— = p(I2+1) at $2+1- (2-63)

The constants in the representations of 111—. 112—41: and a; in the above equations,

i.e., the terms involving given jumps 0 and w, should be moved to the right hand

side. This finishes the establishment of a second-order interpolation scheme at both

irregular points.

The above procedure can be easily generalized to construct higher order schemes.

For example, to attain a fourth-order scheme at irregular points near the interface,

one can start the formulation of the scheme by defining a fourth-order polynomial on
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each side of the interface

_ _ a a— a a—

u (r) = 00 + -#(a: — xi) + h—22(.r — 2,)2 + h—%(:1: — 12,-)3 + 344“ — 21,-)4, (2.64)

+ + “f “i 2 a; 3 “i 4
U (I) = 00 + 72—(31? — 12+1) + [705 — 332+1) + fit? — $2+1) + 1705 — 332+1) -

(2.65)

The first two coefficients 06 and 06' again have to be u,- and 11,-“ respectively. The

remaining eight coefficients are to be determined by using two interface jump condi-

tions, and by expanding these two polynomials at six grid points, i.e., points 13.],

1,-_2 and 22,--3 for Eq. (2.64), and points n+2, 35,-+3 and 17,-+4 for Eq. (2.65). We

could therefore end up with eight linear algebraic equations

  

( —3 9 —27 81 0 0 0 0l

_2 4 -8 16 0 0 0 0

-1 1 —1 1 0 0 0 0

0 0 0 0 1 1 1 1 i
0 0 0 0 2 4 8 16

0 0 0 0 3 9 27 81

—-.r1 —I12 ”If ‘fl —xf If <13? $3
(42‘ ”fl-“ _3,,,_,,.12 *4/37"? 13+ _2/)+,2,. 311+]; 41122:? f

— — — — + + + +T
(a1,02,a3,a4,a1,02,a3,a4)

: (u‘i-3 _ uii ui—2 — uii ut—l — ui: “i+2 _ lli+lvui+3 — ui-f-l: ui+4 — ut-l-I:

[u] — ui+l + “12 h'lfl'llxllT

where the first three equations are generated from 11’(.1:), while the next three equa-

tions are generated from u+(:1:). The last two equations are the approximation of two

interface jump conditions with polynomials u“(.r) and u+(r) at a: = a. By inverting

the coefficient matrix, the representations of all the eight polynomial coefficients are

solved, and expressions for u‘(.r) and 'u.+(:1.') are fully determined.
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Unlike the second-order case, where each polynomial is used only once in for-

mulating the difference scheme at either 1:,- or 27,“, for the fourth-order case, each

polynomial is applied twice since there are two irregular points on each side of the

interface, i.e., 23,3-1 and x,- on the left, and 23,41 and 1,-1.2 on the right. These points

are identified since the regular central difference scheme at these points involves the

grid point(s) on the opposite side. In particular, u‘(:1:) would be used to formulate

the difference scheme at the points 11:17-1 and mi, while u+(:1:) is used at 21:,“ and

23,-4.2. Assuming a piecewise continuous ,6, the difference schemes at the two closest

irregular points are

a— 20’

2.122.171 wash—22 = per.) at 22,, (2.66)

a+ 20+

.131(1‘2+1)7:++B(I2+1)722' P(I2+1) at 12+1- (2267)

At the other two irregular points, the difference schemes are more complicated since

the derivatives of the polynomials involve more terms

/3 (I'—1) _ _ _ _ 507:1) _ _ —
ifml _ 25,2 + 3a3 — 4114 ) + $90.2 — 603 +1204)

= 11032—1) at I2—12 (2-68)

B~ 8. 11.(7,‘11+2)((,;L + 211.;- + 3113+ + 40.1) + —’(7:;2) (211.2,” + 60.;- + 120$)

= P('-’132+2) at $2+2~ (2-69)

It is concluded from the above discussion that at irregular points near the interface,

a difference scheme of arbitrary order can be formulated by following these steps:

1. Define a polynomial on each side of the interface

u_(;r) = 11,: + Z %(:c —— cm), (2.70)

k=l l

71 0+

u+(.‘1:) -— 112.11 + 2 Elk“? -- $12.1), (2.71)

k=l '

where n, the order of the 1')olyn(;)mial, depends on the global accuracy required.
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These polynomials are essentially the approximations of the solution in the

vicinity of the interface.

2. Expand each polynomial at the nearest n — 1 grid points to the interface on the

same side. The total number of expansions is therefore 2n — 2.

3. Approximate two interface jump conditions with these polynomials. Differenti-

ation is needed in approximating [flux], the jump in flux.

4. Compose a 2n x 2n linear algebraic system by combining 2n — 2 expansion poly-

nomials and two discretized interface jump conditions. Solve this linear system

by inversion, and the solution is the representation of polynomials’ coefficients

in terms of the approximation solution at involved grid points and the given

jumps.

Approximate the original elliptic equation at all the irregular points by differ-C
3
1

entiating the polynomials. Replace the polynomial coefficients with their rep-

resentations. This gives rise to a finite difference scheme at the corresponding

grid point.

2.4.2 Two dimensional formalism

The new formulation of the MIB method for 2-D problems with curved interfaces

can be accomplished similarly. The essential idea is to construct l-D interpolation

polynomials, instead of 2-D ones. Referring to Figure 2.10, we have two irregular

points, r,- and “+1, along the .r-axis for a second-order scheme. Two l—D polynomials,

in exactly the same form as Eqs. (2.53) and (2.54), are defined

11°(.1:,yj) = (1.6 + -h—l(.1: — 21,) + [fake — 1,)2, (2.72)

+ + ”f “i 2
u (1:. yj) 2 a0 72—(1: - 17,41) + h—2(r — 17,-+1) . (2.73)

These polynomials can be regarded as the 1-D approximation of the solution in the

vicinit of the interface alon 1 : 1 - mesh line. Here, one has a" = u- - and
1 JJ 0 L.)
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Figure 2.10: (Same as Figure 2.2) Irregular point (i, j) and the interface. The

interface crosses the 15- mesh line at (1:0, yo). The vertical dashed line is the auxiliary

line on which three auxiliary points (in empty circle) are defined: (0, j + 2), (0, j + 1)

and (0, j) right at (130,310). The jumps [u], [Bun] and [ur] are evaluated at (120,310).

a; = u,+1,j by definition. To solve for the rest four coefficients, these two polynomials

are to be evaluated at (17,--1411) and (13,42, yj), which gives two equations. The other

two equations are obtained from the approximations of interface jump conditions

(2.74) and (2.75) [96]

I[u] = u+ — 21—, (2.74)

[Bun] — L3— ta116[uT] 2 C311: + (71:11.; + CIT-11;, (2.75)

where 6 is the angle between the normal vector and the :r—axis, C; = fi+ c086 +

5“ tanOsinB, C; = —,(3"(cos6 + tan65i116), and C; 2 (8+ — ,8_)sin 0. Although

the approximation to Eq. (2.74) is trivial, special care has to be taken in treating Eq.

(2.75), which couples two directions. Here we approximate Eq. (2.75) as

C',+ ([v—

—l‘::—(n.;L — 20.3.1.3.) + f—(rlf + 2072—11) + (2.76)

CJUTJUJJ' +Pij+1llo.j+l + Pij+guaj+2l = [£31172] — (3— ta116[uT].
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. . . . . 1' ’ 13‘ 17' — I

where p 18 the FD we1ght 1n the y-direction, and r, = —0T—5, :rr = —flh——O-. Note

2.

that here auxiliary values ”(if nag-+1 and nag-+2 are also introduced to calculate u;

as done in the fictitious domain formulation [96], where

-+_ — _ — —2
uo,j — “10,310 + [u] — (”233' + (11 z, + a2 1:1) + [u]. (2.77)

The final algebraic system for four polynomial coefficients is

f —1 1 0 0) (q)

0 0 1 1 a;

—$1 "$12 "Ir $3 ail.

    1 — + 2 — + 1 2 +

{MAJ-WJ )

WHJ—WHJ

¢’WHJ+WJ

\ [fiun] — (3“ tanfilur] — C; {pa-(um- + [u]) + pinuOJ-itl + ptj+2u0J+2l )  

Desirable difference schemes for ur or u.171' at two irregular points can be obtained

from the direct differentiation of these two polynomials after all of their coefficients are

determined. Following a similar procedure, one can determine polynomials u- (13,-, y)

and u+(:ri,y), which are then used to approximate 11;, ugy, u; and 21.33, at corre-

sponding irregular points.

High order 2—D interpolation schemes can be established in a manner similar to

what was described for 1-D high order schemes. However, for general interfaces

with large curvatures, the construction of a high order interpolation MIB scheme

is subject to the same difficulty as that in the fictitious domain formulation, i.e.,

there are not sufficient grid points to support high order polynomials along all the J:-

and y-directions on one side of an interface, see at = 1:,- mesh line in Figure 2.8. It

normally takes four grid points to determine a fifth-order polynomial u.— (.rl-, y), which

is required for calculating u], and uyy at four-irregular points, .ri‘j_2, mid-4, 17-i,j+2
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and mid-+3, in a fourth-order scheme. One solution to this problem is to make use of

two interface intersection points, which would provide four jump conditions. However,

a simple remedy is to make use of two other polynomials found in the .r-direction,

namely, u‘(r, yj+2) and u_(.r, yj_1) to supply function values at Ii,j-—1 and 332‘,j+2-

These two computed function values, together with the original function values “id

and aid-+1, as well as two interface jump conditions, can determine u‘(a:,:,y). As

usual, this determination is sought in coupling with the determination of u'l’ (xi, y),

whose solution has no additional problem. Moreover, we can choose either one of the

two interface intersection points along the :1: = .12,- mesh line.

The two formulations also differ from each other in dealing with large curva-

tures. The fictitious domain approach avoids determining a fictitious value along a

discretization direction whenever there are insufficient number of grid values along

the direction inside an interface. It makes use of grid values in the other direction

to determine the fictitious values. However, the interpolation formulation cannot

avoid determining polynomials in all directions at an irregular point because it has

to calculate both the .r- and i/-derivatives at the irregular point. It therefore makes

use of other polynomials to provide function values outside the interface to complete

the determination of each required polynomial. These two approaches might involve

different sets of grid values in dealing with a given situation.

2.4.3 Comparison of two formulations

In this subsection, we discuss the similarities and difference of the fictitious domain

formulation and the interpolation formulation mainly based on 1—D cases. In terms

of similarities, both formulations share the same set of irregular points for a given

interface geometry and given order of the scheme. Both approaches utilize only the

standard (high order) central finite difference (.liscretization and the lowest order inter-

face jump conditions. The essential equivalence between the two formulations would

be obvious if the fictitious value formulation was also casted in polynomial expres-

sions. Referring to Figure 1.1, bridged by the fictitious value f,+1, the solution in



the left vicinity of the interface is actually approximated by a Lagrange interpolation

polynomial

1

u'tr) = Emit-saws.“ (2.78)

k=0

to an accuracy of 0(h3) or

3

fix) = ZLku._3+k+L4f.-+1 (2.79)

k=0

to an accuracy of 0(h5). These two polynomials, although not explicitly constructed,

are actually approximated in seeking the fictitious values. Moreover, a very important

common feature is that, in either 1D or higher dimensions, both approaches make use

of only I—D polynomials. This treatment significantly simplifies the scheme.

Comparing Eq. (2.78) with Eq. (2.53), or Eq. (2.78) with Eq. (2.64) it can

be found that with the fictitious domain approach one only needs to determine two

parameters, i.e, the fictitious values f, and f5“, to resolve the approximate solutions

in both the left and the right vicinities of the interface. With the new formulation,

however, one has to solve for all the six polynomial coefficients to determine the

approximate solution.

Since approximate polynomials are explicitly determined in the new formulation,

they are then directly differentiated to provide the approximation to the first and

second derivatives in the elliptic equation. In the fictitious domain approach, instead

of differentiating approximate polynomials implicitly determined with the first pair

of fictitious values f,- and fi+1e a formal central difference scheme involving f, or fi+1

is adopted at each irregular point to approximate the partial derivative. Moreover,

to support a fourth or higher order scheme, more fictitious values are needed, and

they have to be solved progressively after determining f,- and fi+1- With the new

formulation, however, all the coefficients in the high order polynomials are solved

simultaneously.
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2.5 Numerical experiments on irregular interfaces

The performance of the MIB scheme for 2-D elliptic problems with irregular interfaces

is to be examined in this section with a couple of examples. We will primarily focus

on the second-order and fourth-order MIB method in our numerical experiments,

while the last case is devoted to the validation of high order MIB schemes. Numerical

results are compared to the analytical solutions of the equations, in terms of both

numerical accuracy and computational efficiency. The IIM of LeVeque and Li [42] is

regenerated for a comparison in some test cases. The performance of our IIM code

has been verified with that in the literature [42] and is found to be similar to a later

version of the IIM given by Li and Ito [46]. The PBCG solver [65] is adopted to solve

the linear system due to its efficiency and the simplicity in implementation. The

standard LOO norm error measurement is employed in this section.

Example 2.5.1. We consider a 2-D Poisson equation

(flush + (Wyn, = ftr, 31) (2-80)

defined in a square {—1, 1] x {—1, 1] with a circular interface r2 E .172 + 312 = 3 inside.

Following [42], the exact solution is designed to be

:r:2+y2 r3053

4

711(1— 81?} ’11;)+(I2‘ + T2)/b Otherwise

b otherwise
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Table 2.1: Numerical efficiency test of the 2-D Poisson equation in Example 2.5.1.

b = 10, [u] = 0, [Gun] = —0.75.
 

 

 

n x n Second-order MIB IIM

x 9 L00 Order Loo Order

20 x 20 2.852 (-4) 2.167 (—3)

40 x 40 7.707 (-5) 1.9 5.000 (4) 2.1

80 X 80 2.069 (~5) 1.9 1.131 (-4) 2.1

160 x 160 5.131 (-6) 2.0 2.748 (-5) 2.0

320 x 320 1.257 (6) 2.0 6.781 (-6) 2.0
 

Such a designated solution forces the discontinuous inhomogeneous term f (3:, y) to be

8.0 1‘ S 0.5

./(:r. y) = -

8(1):2 + 312) + 4.0 otherwise

Let b = 10 such that u(:r,y) is continuous throughout the domain and [Bun] =

—0.75 on the interface. The computed result with a 20 x 20 mesh is plotted in

Figure 2.11. Table 2.1 lists the computed error of the second-order MIB scheme in a

comparison with the results of the IIM. Both methods have very clear second-order

accuracy. The MIB delivers a more accurate result than that of the IIM. It is found

that the CPU times used for generating the local immersed grids are almost the same

for both methods although the underlying algorithms are different. The CPU times

used for solving the linear algebraic equation systems are not compared because the

IIM method has its own optimal solver [46], while no such solver is available for the

MIB yet. It is expected that the IIM method is faster since it involves fewer irregular

nodes.

Example 2.5.2. We want to use our forth-order MIB method to solve the same Pois—

son equation in ermnpld2.5.1 ) with. a designated finite jump in [u] at the interface:

2:2 + y2 — 1 r g 0.5

Wt. 11) = 4

211(1— glg — %) + (12- + 7‘2)/b otherwise

It can be checked that on the interface [u] = 1 and [Han] =2 —0.75 with b = 10.
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-1 -1

Figure 2.11: Computed solution (upper) and the error (lower) for the 2-D Poisson

equation in Example 2.5.1. ,6 = 10. [u] = 0, [Ban] = —0.75.

49



Because the analytical solution is a fourth-order polynomial, it is expected that a

fourth-order method shall render a numerical solution of the machine error. The

error plot in Figure 2.12 exactly illustrates this prediction, where the maximum error

is around 10‘”.

 

 

3.

 

     

  

   
     

O, T‘VYZI‘,‘

; ‘04s)? ‘ .

"KxA;"/" 0

Figure 2.12: The computed solution (upper) and the error (lower) for Example

2.5.2.
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Example 2.5.3. In this example we solve the Laplace equation u“; + uyy = 0, which

is defined in the square [—1,1] x [—1,l] and has the following analytical solution:

(,2: cos(y) r S 0.5

"(13 y) =

0 otherwise

The jumps in u and on along the interface r = % can be evaluated from this

solution. Note that here we have unit diffusion coefficient throughout the whole

domain. Table 2.2 gives the computational results of the second-order MIB and

the IIM for a comparison. Again, as expected, a steady second-order convergence is

validated for both methods. Moreover, the MIB scheme is favored over IIM due to the

smaller numerical error on all the 5 successively refined meshes. The computed result

in Figure 2.13 sharply features designated discontinuity along the circular interface.

Table 2.2: Numerical efficiency test of the 2-D Laplace equation in Example 2.5.3.

 

 

 

(3 = 1.

nr x ny Second—order MIB IIM

‘ Loo Order Loo Order

20 x 20 1.015 (-4) 4.389 (-4)

40 x 40 2.511 (-5) 2.0 1.079 (-4) 2.0

80 x 80 6.369 (-6) 2.0 2.778 (—5) 2.0

160 x 160 1.608 (-6) 2.0 7.500 (-6) 1.9

320 x 320 3.714 (-7) 2.1 1.740 (-6) 2.1
 

Example 2.5.4. We consider the Poisson equation with a computational domain

[—1,1] x {—1.1} and an elliptical interface

x 2 y 2

(IS/27) +(10/27) :1
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The analytical solution and the coefficient ,8 are given as the follows

ex cos(y) inside P

141.11) = 2

5exp (—x2 — 32—) otherwise

b inside P

fi($.y) ==

1 otherwise.

Two cases are considered, one with b = 10 and the other with b = 1000. The

latter shows a strong discontinuity in the coefficient fl and demands more iterations

in solving the linear system as it is ill-conditioned due to the large jump in 6. The

lower accuracy for the case with b = 1000 can be attributed to the larger jump in the

coefficient.

Table 2.3: Numerical convergence test and accuracy test for Example 2.5.4.
 

 
 

  

 

n : b = 10 b = 1000

”I 4th MIB 2nd MIB 4th MIB 2“ MIB

y Loo Order Loo Order Loo Order Loo Order

40 3.92E—5 5.21E—3 6.19E—3 2.76E—2

80 29213-6 3.75 1.49E—3 1.8 2.65E—4 4.55 7.52E—3 1.9

160 1.70E—7 4.10 3.75E—4 2.0 1.33E—5 4.32 2.17E—3 2.0

320 8.57E—9 4.31 7.80E—5 2.3 6.73E-7 4.30 4.84E—4 2.2
 

To validate the asymptotic behavior of the approximation error with the increasing

of the jump in ,6, a series of 0+ are chosen for numerical tests. The results are

collected in Table 2.4. It can be seen that for moderate magnitude the numerical

error is increasing while for large jumps the error is almost a constant.

Example 2.5.5. To examine the resolution of the proposed method, a Helmholtz-like

Table 2.4: Robustness test of high order MIB scheme with Example 2.5.4. 0‘ = 1.

 

e+ 10 20 100 500 103 104 105 108
 

Loo 3.92E-5 7.10E—5 1.89E—4 3.04E—4 3.28E—4 3.53E—4 3.56E—4 3.56E—4
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Figure 2.14: The computed solution (upper) and the error (lower) for Example 2.5.4

with second-order method and n; = 72y: 40.

v - (awe. y» + W. one. y) = qe, y)

is considered, where k(.r, y) = no(:c,y) is the dielectric function describing macro-
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scopically the properties of the medium in which the wave propagates. Both 6 and k

are discontinuous at the interface. The analytical solution to the equation is designed

to be highly oscillatory

x2 + y2 r S 0.5

14:16.11) =

sin(nx) cos(ny) otherwise,

where n can be tuned to produce solutions of desired frequency. The computational

domain and the interface are the same as those in Example(Z. 5. 2), while

10 r S 0.5

.3 =

1 otherwise,

and

1 r g 0.5

0(1. y) =

\/1—0 otherwise.

It is generally believed that a high order method usually comes with high resolu-

tion, which is absolutely needed in solving the Maxwell’s equation or the Helmholtz

equation for high frequency wave propagation and scattering. In this example two

different frequencies, H. = 2 and K. = 12, are considered as in Table 2.5 where the

solution of the present fourth-order scheme is compared with that of the second—order

MIB scheme. It is observed that the order of convergence agrees with the theoretical

analysis for both schemes. Also observed is that the low frequency solution can be well

approximated by both schemes. However, for the high frequency case, considerable

differences can be found in the two schemes. In particular, for the low frequency case,

a sparse mesh (20 x 20) is sufficient for both schemes to produce, a result of moderate

C
I
!

0
1



accuracy, i.e., around 10‘3. For the high frequency problem, since the solution ad-

mits large gradients and is anisotropic, one has to use a very dense mesh (320 x 320)

to resolve the fast variation in the solution if one sticks to a second-order method. It

is noted that by using the fourth-order MIB scheme, nevertheless, an 80 x 80 mesh

can provide a sufficient resolution. It is therefore anticipated that with the proposed

high-order interface method, significant saving on computing time can be achieved

for problems that involve both material interface and high frequency oscillations.

Example 2.5.6. This example was introduced in Ref. [43], and is adopted here

to examine the flexibility of MIB in dealing with complex interfaces. The analytical

solution to the equation, the coefficient 5 and a jigsaw puzzle-like interface F are given

below

(217(y2 + x2 sin(y)) inside P

u(x, y) =

—(x2 + y2) otherwise,

1 inside P

15(1'. y) =

10 otherwise,

17(0) 2 0.6 cos(6) - 0.3 cos(36)

P :

y(6) = 1.5 + 0.7 sin(6) — 0.07 sin(36) + 0.2 sin(76).

A discretization of the interface is plotted in, Figure 2.9. The computed solution

and the error for a 100 x 100 mesh are plotted in Figure 2.16 and the numerical

error in terms of the L2 norm are collected in Table 2.6, together with the data of

the second-order counterpart. We note that the predicted convergence rate for both

methods are verified, whereas the fourth-order method gives a much more accurate

result. The maximum error occurs at the irregular points near the interface where

the local truncation error is one-order lower than that. at regular points.

Example 2.5.7. This is another standard test case for testing numerical methods

designed for solving elliptic interface problems. The interface is pararnc—ztrizcd with
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Figure 2.15: The computed solution (upper) and the error (lower) for Example2.5.5.

the polar angle 6. as

1 sin(6)

— §+—7—-.



The exact solution to the problem can be arbitrarily designed. Here we choose

exp(x2 + y2) inside P

“(13 21) =

0.1(x2 + 312)2 — 0.011n(2 172 + y2) otherwise,

1 inside P

8(x, y) =

10 otherwise

This solution also prescribes the Dirichlet boundary condition of the problem. The

non-homogeneous term of the Poisson equation can also be derived from the exact

solution. Figure 2.16 plots the computed solution with a mesh of 100 x 100. Table

2.7 shows the results of the numerical accuracy tests on three successively refined

meshes, in comparison with the second-order MIB method.

In the last example, we will scrutinize the convergence of the fourth-order and

sixth-order MIB methods. We note that the present method is particularly favorable

if the immersed inner boundary is convex. In such cases, there is always an adequate

number of grid points to support a given high order approximation of the interface

conditions.

Example 2.5.8. Here we choose the immersed inner boundary as a circle of radius

% with its center located at the origin. The computational domain is {—1, 1] x {—1, 1],

excluding the inner circle. The exact solution of the Poisson equation is set to be

u(x, y) = 5exp(—x2 — y2/2) on the computational domain.

We plot the numerical solution, computed on a 40 x 40 grid, in Figure 2.17 with a

negative sign (i.e., —u(x, y)) to illustrate the immersed inner boundary. The accuracy

and convergence order of our MIB method are presented in Table 2.8. For high order

methods, it takes more time in the generation of the local difference schemes because

of the iterative nature of the current algorithm, as given in Table 2.8. However,

this time is still negligible compared to the time spent on the solution of the main

linear system. It is seen that the result obtained by using the sixth order scheme



at the grid of 40 x 40 is about 30 times more accurate than that obtained by using

the second-order scheme at the grid of 640 x 640, while consuming only a fraction

( 1 /473) of CPU time. In order for the second method to reach the same accuracy

of the sixth order scheme at the grid of 40 x 40, a grid larger than 2600 x 2600 has

to been used, which approximately costs 300000 seconds CPU time. Therefore, the

sixth order scheme is about 28000 times more efficient than the second-order scheme

in terms of CPU time. It is noted that the CPU time used for the generation of the

local finite difference scheme (i.e, the immersed grids) is very small compared to that

for solving the linear algebraic equation system.
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Figure 2.16: Upper: the computed solution of Example(2.5.6): Lower: computed

solution of Example(2.5.7). Both are computed with mesh ul- : ny : 100.
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Table 2.6: Numerical convergence test for Example 4.

 

 

 

n _ n 4th MIB 2nd MIB

3 — y L2 Order L2 Order

100 2.10E—8 3.78E—5

200 1.5439 3.77 1.06E—5 1.83

400 5.1119111 3.95 2.49E—6 2.09
 

Table 2.7: Numerical convergence test for Example 5.
 

 

 

n _ n 4th MIB 2nd MIB

3 _ y L2 Order L2 Order

100 1.29E—7 ‘ 5.03E-5

200 1.17E-8 3.46 1.35E—5 1.90

400 7.09E—10 4.04 3.41E—6 1.99
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Figure 2.17: The solution of the high order MIB method for the 2-D Poisson equa-

tion in Example 2.5.8. —u(x, y) is plotted.
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Chapter 3

MIB Method: 3-D Formulation

and Numerical Experiments

3.1 Second-Order 3-D MIB Scheme for Irregular

Interfaces

Consider a 3-D elliptic interface problem

V ' (fiVUO‘D - K-(I‘MO‘) = 700‘) (3-1)

with interface conditions

[u] = u+—-u_, (3.2)

[dug] = fl+ug—/3_ug. (3.3)

Here the coefficient function 19(1) and the source function p(r) are given. The linear

Poisson-Boltzmann equation to be derived in the next chapter is a special case of Eq.

(3.1). As the condition (3.3) is defined in the normal direction 75, a local coordinate

transformation is needed to relate this normal gradient ug to the partial derivatives
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with respect to the three Cartesian coordinates um, uy, uz,

(zi{,1i,7,u<)T = A - (um, uy, uz)T (3.4)

where the superscript T denotes the transpose of the transformation matrix A which

is defined as

cos it cos 6 cos w sin 6 sin w

A = — sin 6 cos 6 0 - (3'5)

— sin 6) cos 6 — sin «[1 sin 6 cos 1b

The coordinate transformation represented by A is accomplished through two steps.

In the first step, the x — y plane is rotated with respect to the z— axis by an angle

6 such that the normal vector would be located on the new x — 2 plane. Denoting

this new coordinate by (x', y’, z’), in the second step, the x’ — 2’ plane is rotated with

respect to the y’—axis by an angle 21; such that the normal vector is aligned with

the x’— axis after rotation. The coordinate after the second rotation is essentially

(it n? ()9 Since

cos 111 cos 6 cos it sin 6 sin w cos 1b 0 sin 711

-— sin 6 cos 6 0 = 0 1 0

— sin w cos 6 — sin w sin 6 cos 2,: — sin w 0 cos d)

c056 sin6 0

X —sin6 0036 0 1 (3-6)

0 0 1

where in the right—hand side the first matrix is the transformation matrix for the

second rotation with respect to the y'— axis and the second matrix represents the

first rotation with respect to the z—axis. For points located on the contact surface,

it is pretty easy to obtain these two angles 6, 2b as in this case 5 is actually the outer

normal direction of a sphere with the given center. Details for computing these angles



will be presented in the next section.

With local transformation (3.4), interface condition (3.3) can be recasted as

[Bug] 2 ,6+(cosz,bcos6u;§ +coswsin6uy+ +sinwuj)

— ,6“ (cos w cos 6a; + cos w sin 6n; + sin wuz— ). (3.7)

Nevertheless, one can not simply use (3.7) and (3.2) as the two conditions to solve for

the fictitious values fi,j,ks f,+1,33k in the x—direction because Eq. (3.7) involves four

partial derivatives in the y- and 2- directions which can not be approximated using

only the grid points in the x- mesh line. To reduce the number of partial derivatives in

the interface conditions, we can differentiate interface condition (3.2) with respect to

the tangent and binormal coordinates respectively to provide two additional interface

conditions

11,? — u; = (— sin 6n}L + cos 6uy+) — (— sin6u; + cos 6ug), (3.8)

u: — uC— : (— sin 1)) cos 6n: — sin w sin 6n; + cos do?)

_ (_ sin 1; cos 6n; — sin wsin6u; + cos mg), (3-9)

and then cancel any two derivatives which are not in the primary direction from Eqs.

(3.7),(3.8) and (3.9). It turns out that there are 12 possible combinations for such

cancellation, 4 for x— being the primary direction, 4 for y— and 4 for z—, which are

listed as follows

1. Cancel a; and u; from Eqs. (3.7),(3.8) and (3.9) to have

[flag] — [3- tanu’rhicl + (Mun) = C311: + (ll—Tu; + (jug) + C211: (3.10)
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where

2. Cancel u;

= 56“ tan6/ cos Lb

= 6+ cos w 0086 + [3— tan w sinw/ cos6 + 6_ cosw sin6 tan6

= —fi—/(coswcos6)

= (6+ —/3_)coswsin6

= (13+ — 6‘) sin ,5

and u; from Eqs. (3.7),(3.8) and (3.9) to have

[ng) + C1,[u,,] — 6+ tan[uC] = Cfu: + 0,11; + (7;qu + Cz-u; (3.11)

where

3. Cancel u;

= —,6"‘ cos it" tan 6 — 6+ tan w sin is tan 6

= 13+ cos it cos 6 + ,13’ cos u“ sin 6 tan 6 + 6+ tan w sin 111/ cos 6

2 —(/3+ tanwsinw + 6‘ cos w)/cos6

: (,6+ — fi—) cos w sin6

= (6+ — 6‘) sin 1))

and u: from Eqs. (3.7),(3.8) and (3.9) to have

[Bug] + Cn[u,,] — ,6“ tan Mac] 2 C’jlfuj;r + 0,711,: + C3711; + C'ju: (3.12)
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where

C7) = —[3+ cos it tan 6 —- 6‘ tan w sin w tan 6

C; = (6+ cos it + ,6— tan If; sin w)/ cos 6

C; = —/3— cos w cos6 — 6+ cos w sin 6 tan6 — 6‘ tan w sin w/ cos6

Cy— : (6+ — 6-)coswsin6

0: = (/3+—/3’)sinw

4. Cancel u; and u: from Eqs. (3.7),(3.8) and (3.9) to have

(Bug) + Cn[u,,] — [3+ tan Mac] = C311; + C1711; + Cy—uy— + Cgu; (3.13)

where

C,, 2 —,(3+ tan 6/ cos d)

C; = /3+/(coswcos 6)

C; = —,/3‘" cos it) cos 6 — [3+ cos d sin 6 tan 6 — 6+ tan w sin 61/ cos 6

Cy— : (6+ — {3')coswsin6

(I; 2 (6+ — [3“)3111'7/1

5. Cancel u; and u; from Eqs. (3.7),(3.8) and (3.9) to have

[Bug] + C,,[u,,] — {3_ tan 7,6[UC] 2 C31; + Cy— u; + Cgu: + (7:11.: (3.14)
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where

CD = 6‘ cot 6/ cosw

C; = 6‘L cos w sin6 + 6‘ cosw cos6cot6 + 6‘ tanw sin 61/ sin6

Cy‘ = —6‘/(cosr,bsin 6)

C: = (6+ — 6‘)coswcos6

0: = (6+—6‘)Sinu’2

6. Cancel u; and u: from Eqs. (3.7),(3.8) and (3.9) to have

[Bud + C,,[u,,] — 6+ tan 1,6[Ud = 0,703 + CJu; + 0:21;; + C;u; (3.15)

where

C,, = 6‘ cos w cot 6 + 6+ tan w sin w cot 6

C; 2 6+ cos 6’) sin 6 + 6‘ cos 0) cos 6 cot 6 + 6+ tan 1b sin 41/ sin 6

Cy‘ = —(6‘ cos 16 + 6+ tan w sin w)/ sin6

C; = (67L — 6‘)coswcos6

(I; = (4+ — 9*) $in

7. Cancel u: and u; from Eqs. (3.7),(3.8) and (3.9) to have

[735,14— 0,,[u,,] — )3- tanfluc] = 055,"; + cry—u; + cgu; + 0,13: (3.16)
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where

C?

8. Cancel u:

= [73+ cos a" cot 6 + 6‘ tan w sin w cot 6

= (6+ cosw + 6‘ tan w sin w)/ sin6

= -—6‘ cos w sin6 — 6+ cosw cos6 cot 6 — 6‘ tanw sin 61/ sin6

= (6+ —6‘)coswcos6

= (73+ — 73-) sind'

and u: from Eqs. (3.7),(3.8) and (3.9) to have

[6nd + C7,[u,,] — 6+ tand'[u<] 2 C511; + Cy‘u; + Cx‘u; + Cz‘uz‘ (3.17)

where

9. Cancel a}

2 6+ cot 6/ cos w

2 6+ / (cos 1;; sin 6)

= —,6‘ cos 1.1" sin6 — 6+ cos it; cos 6 cot 6 —- 6+ tan 1b sin w/ sin 6

2 (6+ —6‘)coszt'cos6

2 (6+ — 6‘) sin (,6

and u; from Eqs. (3.7),(3.8) and (3.9) to have

[6.7,] + (7,,[n,,] + Cc [21C] 2 0:5: + an,‘ + on; + C; a; (3.18)



where

C,, = 0

CC = 6‘ cotw

C: 2 6+ sinw + 6‘ cosw cot w

Cz‘ = —6‘/sinw

C; = (6+ — 6‘)coswcos6

C; = (6+—6‘)coswsin6

10. Cancel u; and u; from Eqs. (3.7),(3.8) and (3.9) to have

[6nd + C,,[u,,] + CduC] = Cju: + Cz‘u; + C321: + Cgug (3.19)

where

C,, : —(6+ — 6‘) cos 1)”) sin6cos6

CC 2 6+ cot 61 sin2 6 + 6‘ cot w cos2 6

C: 2 6+ sintb +6+ coswcotwsin26 +6‘ cos dicotwcos26

C.‘ = —6‘ sin w — 6+ cos i/i cot it: sin2 6 -— 6‘ cos 41/) cot it) cos2 6

C: 2 (6+ — 6‘)cosz/rcos6

C‘ = (6+—6‘)coswsin6

11. Cancel u; and u; from Eqs. (3.7),(3.8) and (3.9) to have

[6u5] + C77[u.,7] + CduC] = Cju;Jr + Cz‘u; + C;u; + CJ'uy+ (3.20)
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where

0,, 2 (6+ — 6‘) coswsin6cos6

CC = 6+ cot it cos2 6 + 6‘ cot w sin2 6

C: = 6+ sin w + 6+ cos wcotwcos26 + 6‘ cos w cotwsin26

Cz‘ = —6‘ sine’) — 6+ cos 1,!) cot w c0826 — 6‘ coswcotwsin26

C; = (6+ —— 6‘) cos 1b cos6

C; = (f3+—,[3_)COS'{/)Sinff

12. Cancel u: and u; from Eqs. (3.7),(3.8) and (3.9) to have

[6u5] + C,,[u,,] + Cduc] = Cjuj + Cgu; + 0,70; + Cy‘u; (3.21)

where

C,, = 0

CC = 6+ cot '16

C2‘ = 6+ / sin 17’)

Cz‘ = —6‘ sin w — 6+ cos 2/2 cot it

C; = (6+—6‘)coswcos6

C‘ = (6+—6‘)coswsin6

One of these twelve conditions will be chosen in addition to Eq.(3.2) for the solution

of the a pair of fictitious values. The details of this solution will be illustrated in the

x- direction with interface conditions (3.2) and (3.10). The solution with the other

conditions can be accomplished similarly.

Consider a situation as shown in Figure 3.1, where the interface intersects a .1:—

mesh line at s 2 (x0, ya, 20) between (i, j, k) and (i + 1. j, k), which are then classified

as irregular points. The solution of interior domain will be extended to the point
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Figure 3.1: Local topology around irregular point (i, j, k). The interface crosses

the x-mesh line at the point 5 = (x0, yo. 20) between (i, j, k) and (i + 1, j, k), which

are two irregular points, on which two fictitious values, fi,j,k and f,+1,j,k are defined

(marked with green dots). Two auxiliary lines (dashed line) are sketched passing

through S, one on the x — y plane and the other on the x - 2 plane. Two auxiliary

points (in empty circle) (0, j, k + 1) and (0, j, k + 2) are placed on the auxiliary line

on the x — 2 plane to facilitate the'discretization of uz‘; Also, two auxiliary points

(0, j, k + 1) and (o, j,k + 2) are placed on the auxiliary line on the x — y plane to

facilitate the discretization of uy‘.

(i + 1, j, k) as f,+1,j_k whereas the exterior domain will be continuated to the point

(i,j, k) as f,,j,k. With these two fictitious values the interface condition (3.2) can be

approximated to be

_ + . . + . . + . .

(waifursk + w0.i+1“2+1.J.k + “’0.i+2“z+2,J-k)

(Illa-1-1'l‘i—-l,j,k + “"(TJui-jsk + f"’0—,i+1fi+l.j.k) = [u]. (3.22)

In a similar way we can also get the approximations to the partial derivatives 11;

and u: in Eq. (3.10). The approximation of the other two derivatives u; and u;

at the point (x0. yo. :0), however, rei‘nains a major problem because (x0, yo, :0) is not
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located on any y— mesh line or z— mesh line. To overcome the difficulty due to

the lack of real grid points for finite difference, we add two auxiliary lines passing

(x0, ya, 20), one on the x — y plane and the other on the x — 2 plane, and set two

auxiliary points on each auxiliary line to support a one-sided finite difference for u,

and uz‘. This makes it possible to approximate Eq. (3.10) as

- ., __ + + + +
[(3115] — #3 WWlUcl + Colurrl - Ca: (u'1,,-fi,j,k + wl,i+1ui+l,j.k + w1,i+2ui+2,j,k)

+ 05‘ (what‘s—13's + wi‘suzyik + wii+1fi+lnuk>

+ (”137(I)0,j“'0,j,k + Po,j—l“o,j-l,k + p0,j-2“'0,j-2,k)

+ Cz_ (qo,kuo,j,k + qo,k+luo,j,k+l + go,k+2uo,j,k+2)i

(3.23)

where p0,; are the finite difference weights for u; at auxiliary nodes (0, j,k), (0, j —

1, k), (0, j —- 2, k) and q0,; are the finite difference weights for u; at auxiliary nodes

(o,j,k), (o,j,k + 1) and (o,j,k + 2). Here u+(o,j, k) is the limiting value of the

solution u(x. y, 2) at the point S from the + side of the interface. Values fi,1;), and

fi+l,j,k can be solved from Eqs. (3.22) and (3.23) as the linear combinations of the

solution values at the real grid points u,_11j,k,11,,j,k,u,-,j,k,u,-,j,k and the auxiliary

points

uo.j,ka uo,j—l,ka uo.j—2,ka uo,j,kv uo,j,k+l: uo,j,k+2

as well as the four given jumps [17], [617.5], [un], [HCl' These values are given in the

following general form

fz',j,k = (l”'i—l.j,k + (?'i‘"i,j,k + (73”2'.+1,j.k + (-"2i'"i+2,j,k

+ C5“O,j.k + C6“a.j+1.k + Ci‘uo.j+2.k + Ci'uo,j,k + C9%,j,k—1

+ ("l()l‘(),j.k-—2Clllul + C7{2[6u{] + C(3[u,,] + Ciglud, (3.24)

fi+l,j,k = CfHUi—LM + C§+lui,j.k + C§+lui+1,j.k + CiHUi+2,j,k

+ Cg+luo.j.k + Cfij+luo.j+l.k + (73f+luo.j+2.k + Cvé+lu(),j,k + Cé+1”o.j.k—l

+ c1315.,“.42 + off] [u] + €507,355] + (i'{§1[n,,] + (731 [ac]. (3.25)
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In these two linear representations of the fictitious values, the solution values at auxil-

iary points have not yet been defined. In MIB, we obtain these values by interpolating

the available normal grid points on the same subdomain. For example, u(o, j — 1, k)

can be interpolated on u(i — 1,j — 1,k),u(i,j -— List) and u(i + 1,j —— 1,k), and

u(o,j — 2, k) can be interpolated on u(i-1,j— 2, k), u(i,j — 2, k) and u(i+1,j- 2, k).

Similarly, auxiliary values u(o. j, k+1) and u(o, j, k+2) are interpolated at u(i—2, j, k+

1), u(i — 1,j, k +1),u(i,j,k +1) and u(i — 1,j, k + 2),u(i,j, k + 2),u(i+1,j, k + 2),

respectively. It is also noticed that the auxiliary value u+ (0, j, k) can be interpo-

lated as (way/5J7); + u’0ti+1"’i+l,jsk + wlei+2ui+2sjskl or (“’(ii_1“i—l,j,k + wiped-J, +

1116: 2' +1 fi+1,j,k) + [u], see Eq.(3.22). The expansion coefficients of the fictitious values

on these auxiliary points can therefore be distributed to their respective interpolation

nodes. Let

140d} ’6) = (ufii_lui—1,j,k + 116,,“in + w()_,i+1fi+l,j,k) + lit-l,

5(1),) — 1,1.) = I,-_1 '(u(i—1,j—1,k),u(i,j— 1,k),u(i+1,j— 1,1:))T,

5(1),) — 2,1.) = 1,4 . (u(i — 1,j — 2,1,), ”(1,j — 2, k), u(i + 1,j — 2,L:))T,

“(wk/~51) = 1141-(u(-i—2..r.k+1).u(1i-1,j.k+1).'u(vi..r.k+1))T.

u(o,j, k + 2) = Ik+2 - (u(i -— 1,j, k + 2), u(i,j, k + 2),u(i + 1,j, k + 2))T,

where I is the vector consisting of corresponding interpolation weights. Then

fi,j,k = Cf”i——1,j,k + C2”i,j,k + C3”i+1,j,k + C4"i+2,j,k

+ ( '5’ + C.‘§)(1Li(ii_111,_l,j7k + wiprtik + wO—,i+lfi+1sjsk + [11])

+ egg--1 -(u(i—1,j— 1,k),u(i,j— 1,k),u(i+1,j— 1,15»T

+ (741,4 - (u(i — 1,j - 2, k),u(i,j — 2, k), u(i + 1,j — 2, 13))T

+ 6'3 ' 1141 - (u(i — 231k + lime — LM + Dun-(1.1.117 + 1))T

+ c."{0.1,,+2.(u(zt—1,j.k+ 2), u(i.j, k + 2),u(i + 1.1116 + 2))T

+ (76(11] + Ci0[6u{] + Cillunl + Cighid, (3.26)

~
4
1

Q
5
1



_ 1+1 1+1 5+1 3+1
fi+l,j,k — C1 “i—l,j.k+C2 “1,j,k‘l'c'3 ui+1,j,1~+C4 ui+2,j,k

+ (Cg+1 + (}§+1)(U’(i,i_1ui—1,j,k + mil-11mg; + u’(;,+1fi+l,j,k + lul)

+ Cé+1-Ij_1-(u(i—1,j— 1,k),u(i,j-1,k).1t(i+1.j— 1.k))T

+ 03,1“ .1j_2.(u(5_1,j— 2, k),u(i,j — 2,k),u(1:+ 1,j — 2,k))T

+ 05+1-IH1-(ua— 2,j, k +1),u(i-1.]}k +1).U(i.j.k +1))T

+ (.‘i31.1k+2-(n(1—1,j,k + 2), “(1,)“, 1.- + 2),u(i+1,j,k+ 2))T

+ Cfi” [u] + 039611,] + 631 [11,] + 01:1 [1.4]. (3.27)

This finished the solution of fictitious values fi,j,k and f,+1,j,k in the x—direction.

The standard finite difference scheme for um- at the points (i, j, k) and (i + 1, j, 11:)

will then be modified accordingly by incorporating these fictitious values

 

H— fi+1,j,k — 2111.331: + Iii—1,331;

 

it,” = 2 at (i,j,k), (3.28)

h

u. '. ~2u' - + -_ .- .

5,, = 13+ ”2’1"" ”221*" f2 1"“ at (1+1, M). (3.29)

and replacing fi,j,k and f,+1,j,k with their respective representations in Eq.(3.26) or

Eq.(3.27).

Although solved in the .rz—direction, the fictitious value (folk or ./'11+1,j, k represents

the smooth continuation of the solution on the respective subdomain to the current

irregular point. Therefore it can be used for the formulation of difference schemes for

any partial derivatives rather than um. In particular, if the central difference scheme

of uyy at some irregular point in the subdomain 0+ involves the grid point (i, j, k),

the fictitious value f,,j, k can be directly supplied. This makes it possible to handle an

interface with large Gaussian curvature such that a fictitious value can only be solved

in one particular direction while it will be used for the central difference scheme in

other direction(s).

Comments 3.1.1. It is noted that tan6, cot 6. tangb or cot (t) is undefined for partic-

ular values of 6 or a. This happens when the normal vector at the interface is on a

coordinate plane, i.e., on the x — y, :r — z or y — 2 plane. One can then apply the MIB
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method formulated for 2-D problems in Chapter 2 to solve for the fictitious values in

these cases.

Further reduction to the 1-D problem might happen if the normal vector is aligned

with a coordinate direction. The original two interface condition instead of reorganized

ones are to be used to solve for the fictitious values in this case, as described in Section

1.2.

Kr /
+

k+2 / Q

r t r i

k+1$ if 4 
 

  (iJ,k) i+l i+2
  
 

 

+

x

Figure 3.2: Local topology with interface intersecting at a grid point (i, j, k). Two

fictitious values, fi,j,k and fi+1,j,k are defined (marked with green dots).

 

Comments 3.1.2. In case that the interface crosses the mesh line at a grid point, the

related fictitious values can also be solved in a similar manner as described in Comm-

ment 2.1.2. In Figure 3.2, for example, one fictitious value fi,j,k = u(i, j, k) + [u] and

the other fictitious value fi+1,j,k can be solved with interface condition 3.13, in which

u; is to be directly approximated using Uiaj‘k,Ui’j_1,k,u.i’j_2,k, u; is to be approxi-

mated using Ui,j1k,uzjtj7k+l, u,,j,k+2, u; is to be approximated using u,‘__1,J-7k. ui,j,k, £41,3-};

and u: is to be approximated using filth" u,,;+1‘31k: u,;+2,ch- Auxiliary lines and points

are therefore no longer needed.
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3.2 Numerical Experiments

Example 3.2.1. We consider a 3-D Poisson equation

(IBUIJLC + (final/)3] + (5112)}: : f(xa yr Z) (330)

defined in a cube [—1,1] x [—1, 1] x {—1.1} with a spherical interface

1

r2Ex2+y2+z2=Z

The exact solution is designed to be

(12 + y2 + z2)2 r g 0.5

u(i. y, z) = (3.31)

2(x2 + 312 + z2)2 otherwise

with. the diffusion coefficient

1 r < 0.5

6(x, y) = . (3.32)

80 otherwise

Such a designated solution forces the discontinuous inhomogeneous term f (x, y, z) to

be

20(2:2 + y? + 22) r g 0.5

MI. y) = . (3.33)

3200(1:2 + y2 + 2.2) otherwise

Table(3.l) lists the global errors in the infinity norm.

Table 3.1: Numerical convergence test for Example(3.2.1)

 

 
nI :2 ny Loo Order

20 1.56E—2

40 4.16E—3 1.91

80 8.93E-4 2.22
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Example 3.2.2. We consider a 3-D Poisson equation

(flu-TLC + (fiuyly + 03113»: = f(x7 y: Z) (334)

defined in a cube [~1,1] x [—1, 1] x [—1,1] with an ellipsoidal interface

12 y2 22

0—49 + 0.16 + 0.09

 

The exact solution is designed to be

u(x,y, z) : sin(:r) cos(y) sin(z) r S 0.5 (3.35)

exp(x2 + y2 + 22) otherwise

with the difiusion coefficient

1 r S 0.5

3(1, y) = , (3-35)

10 otherwise

from which one can derive the inhomogeneous term f (x) and the jumps [u] and [Gun]

required for the solution of the Poisson equation.

Table(3.2) lists the global errors in the infinity norm.

Table 3.2: Numerical convergence test for example(3.2.2)

 

 

n1 = ny LOO Order

20 9.33E—3

40 2.42E-3 1.95

80 5.98E—4 2.02
 

3.3 Comparison of MIB and HM

It is interesting to examine the fundamental difference (or similarities if any) between

MIB and IIM since both of them manage to impose continuity conditions across the
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interface by locally modifying the finite difference schemes according to the interface

conditions. MIB uses only the zeroth- and first-order interface conditions, while IIM,

by contrast, derives a number of additional second-order interface conditions. In IIM,

as the solution on either side of the interface is approximated by a multi-dimensional

Taylor expansion with respect to the solution at the interface, it allows(actually re-

quires) one to choose in the whole domain the grid points near the host irregular

point. For 2-D problem, one needs 10 conditions in HM to fully determine the 10 co-

efficients in two third-order Taylor polynomials of two variables. These 10 conditions

are chosen to be 4 interface conditions (2 original ones plus 2 derived second-order

ones) and 6 independent expansions of Taylor polynomials at 6 grid points. More grid

points can be chosen to provide an under-determined linear system which essentially

provides necessary space for the optimization of these polynomial coefficients. Such

flexibility, however, does not exist for the MIB method as here one always chooses a

primary direction to solve for the fictitious values and this is equivalent to the deter-

mination of 1-D polynomials, as illustrated in Section 2.4 of interpolation formulation.

As a result, one has to choose different sets of grid points for the approximation of

partial derivatives with respect to x and those with respect to y, therefore MIB has

more grid points involved in the finite difference schemes at irregular points than HM

and the resultant linear system might be more ill-conditioned.

On the other hand, as the fictitious values are always solved in one direction, the

generalization of MIB to higher order is straightforward and the small linear system for

fictitious values is always invertible. For the HM method, however, the generalization

to higher order might be hindered by the lack of a sufficient number of interface

conditions for the determination of more coefficients in higher order multi-dimensional

polynomials. For example, to determine two fifth-order 2-D Taylor polynomials, a

total of 28 coefficients are to be determined. It remains a problem to derive a sufficient

number of high order interface conditions, and the linear system for the coefficients

of these high-order multi-dimei1sional polynomials may be not invertible.
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Chapter 4

Poisson-Boltzmann Equation and

Interface Methods

In this chapter, we will discuss the Poisson-Boltzmann equation from the perspective

of implicit solvent modeling, of which the fundamental theoretical underpinning is the

Debye—Hiickel theory describing the distribution of the electrostatic potential ¢(x) in

3—D space. The importance of the electrostatic potential motivated many interests of

scientists over the years and reviews of these efforts appear on a frequent basis. In the

first section, we will discuss the major considerations and critical assumptions in the

derivation of the Poisson-Boltzmann equation. Three most important mathematical

issues will be highlighted in the next section. One of them, the discontinuity of the

dielectric constant, will be further addressed, but this section is mainly devoted to

the brief review of the analytical solution and the numerical methods for the Poisson-

Boltzmann equation. A short discussion on the dielectric interface will be given in the

last section as this interface is the position where discontinuity occurs and therefore

is critical to the formulation of the MIB method and to the solution of the Poisson-

Boltzmann equation.
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4.1 Implicit Solvent Modeling and the Poisson-

Boltzmann Equation

The importance of electrostatic interactions to chemistry, physics, material science

and biology has been well established. Because of the crucial roles of electrostatic

properties in investigating electrostatic binding and solvation energies [23], electro—

static steering of ligands toward proteins [67], protein conformational change [73, 85],

folding stability [73, 95] and many other important subjects, the accurate evalua-

tion of electrostatic properties has therefore always been a major concern in molec-

ular/structural biology. This task is further complicated by the consideration of the

solvent environment as most biochemical reactions of biomolecules occur in salty

solution or at interfaces between lipid bilayers and aqueous phases. A complete ener-

getic description of biomolecular processes therefore has to include the surrounding

aqueous solvent environment, either explicitly or implicitly [56]. With an explicit

model the biomolecule(s) to be studied are embedded in a large number of solvent

molecules. The interaction between two charges is described by Coulomb’s law and

the total electrostatic energy of the system is derived as the sum of these mutual

Coulomb interactions. The explicit model might provide the most accurate and de-

tailed description of the solvent but it also significantly increases the computational

cost as the number of solvent particles can be more than 90% for a real simulation

[4]. Some quantities, such as solvation energy, converge slowly as one has to average

over all degrees of freedom of all solvent particles. These critical limitations reduce

the time scale, the size of the molecule and the amount of sampling that can be

achieved in practical simulations. An implicit solvent model, however, describes the

solvent as a structureless dielectric continuum and replaces the solvent interactions

with an equivalent energetic term based on the mean field behavior. Similarly, the

biomolecule itself can also be modeled as dielectric media with partial charges at

atomic positions. The electrostatic potential induced by the partial charges inside

the molecule and the free ions inside the solvent. is therefore governed by a Poisson
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equation:

v - (clown) = __(,,f(,.) + 002)) (4.1)

where 5(x) is the spatial dependent dielectric constant and 50 is the dielectric per-

mittivity of the vacuum. Here pf (x) is the fixed charge density inside the molecule

and 0(x) is the charge density of the free ions among the solvent. The distribution

of free ions depends on the electrostatic field. Therefore the charge density inside the

solvent is a function of ¢(x). In particular, one can relate the density of the ionic

particles subjected to the external field with 00(x), the ionic density in the absence

of external electrostatic potential field, via

515(1)/kT
0(1) = 00(11), (4-2)

Il/kT is used to describe the redistribution ofwhere a Boltzmann distribution 6‘“

the charge density in the background of potential of mean force (PMF) E(x), which

represents the average effect of the entire system on a single particle. This PMF

can be further related with the average electrostatic potential if one assumes that the

tendency of free ions toward regions of low electrostatic potential energy is dependent

of the magnitude and sign of its charge. With this crucial assumption, usually referred

to as Gouy-Chapman or Debye-Hiickel theories of ion distributions, the ionic potential

of the mean force is replaced by the product of average electrostatic potential and

the charge of the ion. Then the Poisson equation becomes the Poisson-Boltzmann

equation:

V-(c(x)Vq)(x))=—4—7T pf(.r)+Zc,z,qe-~W<W”A(I) , (4.3)
60 i

where c,- and z,- are the bulk concentration and valence of ion i, respectively. q is the

unit( proton) charge, k is the Boltzmann constant, T is the absolute temperature and

/\(r) is the accessibility of the ion at position x. There are a number of variations of
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this primitive Poisson—Boltzmann equation under different assumptions. For instance,

if the potential is weak, equation (4.3) can be linearized to be

 

7r -c,-z.2 2' x

V - (€(I)V¢(I)) = -::—0- [191(2) - 2‘ if (M AW] ; (44)

while for symmetric ionic solution with bulk concentration c and valency 2, equation

(4.3) can be reduced to be

v . («avian = —4—" [pf (x) — 2czqsinh (“1““) Am] . (4.5)
60 kT

l __ eOkT

D — 87rc22q2

can be derived from the linear Poisson-Boltzmann equation for symmetric ionic solu-

 

The so—called Debye length

tion

_ 81rcz2 2 4n

V - (( (.I:)Vc9(.r:)) + -—-"—q—-¢(.1r))\(.r) = ——pf(.r)/\(x), (4.6)

eOhT 60

8rrc22q2 . . 2 .
whereT has a d1mens10n of 1/ (length) . Moreover, it can be found that

(Q 7

8rrcz2 2

v - (we) + ——_"—¢<.r> = o, (4.7)
CohT

admits a general solution

(5(1‘) 2 fie—I/ZD (4.8)

which describes the exponential decay of the electrostatic potential in ionic solution.

Here kD = 1/lD is the Debye screening constant.

There are a number of significant assumptions in the above derivation of the

Poisson-Boltzmann equation. The critical examination on these assumptions can

provide not only the deep understanding of the BBB but also motivations to the mod-
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ification of Poisson-Boltzmann theory for other important or specific circumstances.

Below we will summarize these assumptions and the modifications or extensions con-

cerning these assumptions:

1. Fixed charge density in biomolecules.

This assumption does not consider the re—arrangement of the polar and charged

groups in the external electrostatic potential field. The average polarizability

of the protein is measured by its dielectric constant which also macroscopically

characterizes the relaxation of the protein structure in response to the charge

perturbation. Therefore the neglection of polarizability of the charged groups in

an implicit model would lead to considerable deviation of the dielectric constant

inside the biomolecules. Shark [72] and Simonson [76] have demonstrated that

a larger dielectric constant should be used in solving the Poisson-Boltzmann

equation if polarizability is neglected.

2. Uniform dielectric constant in biomolecules.

The issue about the dielectric constant in biomolecules is closely related to the

model of fixed charge density. As mentioned above, the dielectric constant of a

protein is a macroscopic quantity to characterize its relaxation in response to

charged perturbations. Therefore the hydrophobic core and the charged protein

side chains at the protein/solvent interface might have different response and

different dielectric constant, as the latter are usually undergoing large, mutually

uncorrelated and anisotropic motions. In this regard, molecular dynamics (MD)

simulations are usually used for the detailed prediction of the protein dielectric

properties in solution. Simonson illustrated that the Frohlich-Kirkwood theory

could provide a consistent prediction with the MD simulation if the charge por-

tion of the side chains are treated as part of the solvent and assign the remaining

part of the protein a uniform dielectric constant of 3—4 [76]. A more complicated

inhomogeneous dielectric map can be generated by assigning every amino acid a

different dielectric constant based on its unique intrinsic polarizability [75, 77].

There are more physical considerations of the effects of polarizability on the di-
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electric function besides the layered dielectric model for proteins. For example,

a local dielectric function (.(r, 1") (depending on the response point r and the

perturbation point r’) or (“1‘ — r’ I) (depending on their separation only) rather

than a single dielectric constant can be supplied to the Poisson-Boltzmann equa-

tion to introduce the polarization induced by the external field, the fluctuations

of electronic polarization within an individual molecule, and the local field in

a cluster of non-overlapping molecules [34]. Non-local dielectric functions have

been used to account for the effects of solvent shells surrounding charged species

in work on electron transfer, the double layer at electrode-solvent interface and

intermolecular interactions near interfaces.

. Singular charge density in biomolecules.

The physical modeling of charge distribution inside biomolecules remains an

open question. It appears that there is a tendency to use more physical finite-

size models such as homogeneously charged sphere, the Fermi two-parameter

charge distribution or the Guassian charge distribution instead of the usual point

charge model [80]. The advantages of these finite-size models to the solution

of the Poisson-Boltzmann equation, however, have not been explored in depth.

Particularly, because the characteristic size in these finite-size models is of the

same scale as the root-mean-square (RMS) radius of the nucleus

,/(R‘2) = (0.836A1/3 + 0.570) x 10‘15 meters,

it is very difficult to provide a discrete description of these finite-size models

on a mesh of size ranging 0.1A to 0.5A. It might be possible to investigate

the consequence of these finite-size models in the framework of the boundary

element method, whereby the Green function for the point charge can be simply

replaced by the smooth potential corresponding to a finite-size model.

. Boltzmann distribution of the ions in the solvent.

When a biomolecule with charged surface is immersed in an electrolyte solution
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(ionic solution, for example), ions of opposite charges to the surface are electro—

statically attracted to the surface while ions of like charges are repelled. The

counter ions are not bounded to the surface but remain dispersed and mobile

in the vicinity of the surface due to their thermal motions. According to the

Gouy-Chapman—Stern model, the region next to the surface is called the Stern

layer where the distribution of ions is determined by the Coulomb interactions

and special absorption. The region next to the stern layer is called the diffuse

layer and ions in this layer can move freely (diffuse) in any direction. This

spatial separation of ions is denoted as the electric double layer [37].

In addition to the local density distribution represented by the electric double

layer, the packing effects caused by the finite size of the ion and solvent molecules

can also be considerable and the resultant spatial variations of ionic density

and strong correlation between ion-ion, ion-solvent or solvent-solvent molecules

can not be modeled by a Boltzmann distribution. A number of modifications

have been developed to address the deviation of real ionic distribution and the

Boltzmann model. For instance, Eigen and Wicke [16] modified the Boltzmann

distribution by introducing steric and confinement effects of ions, while Luo

et. al. [54] conducted molecular dynamics simulations including the solvent

and ionic structures to obtain the potential of mean force (PMF) of a single

ion. This PMF is then supplied to the generalized Poisson-Boltzmann equation

(combining Eq.(4.2) and Eq.(4.1))

47r

v . some» = jofm + €_E(I)/kT00(I))- (4.9)

The solved real ionic distributions were found to agree with the x-ray reflectivity

measurements.
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4.2 Analytical Solutions and Numerical Techniques

for the Poisson-Boltzmann Equation: A Brief

Review

A close look at the Poisson-Boltzmann equation will reveal four major features,

namely, the irregular interface between the solute and the solvent, the discontinuous

dielectric function on this dielectric interface, the singular partial charge distribution

and the nonlinearity in the case the strong potential. We are particularly interested

in the handling of the dielectric constant with discontinuity at the irregular molecular

surface, not only because dielectric properties of macromolecules are crucial to their

stability and activity but also because this discontinuity poses one of the most difficult

challenges in seeking the numerical solution of the Poisson-Boltzmann equation and

all of the current methods for the Poisson-Boltzmann equation are lacking of specific

treatments of this discontinuity. In particular, we are interested in the incorporation

of these two conditions

¢p = 05w: (pa; = (w (:3 1 (4°10)
 

at the dielectric interface into the numerical solution of the Poisson—Boltzmann equa-

tion. The first condition describes the continuity of the electrostatic potential across

the interface while the second characterizes the balance of the derivative of the electro-

static potential field at the interface. The subscript p denotes protein and w denotes

solvent. We will refer to the second as the potential flux continuity condition, which

is not considered in any finite-difference or finite-element based Poisson-Boltzmann

solvers.

Because of the complicated dielectric interface and charge distribution, the ana-

lytical solution to the Poisson-Boltzmann equation is not available for almost all the

pratical systems 1 and a variety of computational techniques and software packages

 

1There are very few systems having analytical solutions of linear Poisson-Boltzmann equation.

To the author's best. knowledge, they are:
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have been developed for the numerical solution fo the Poisson-Boltzmann equation.

These numerical techniques cover all the major discretization methods such as finite

difference, finite element, boundary element and Fourier spectral methods. One of the

first such Poisson-Boltzmann solvers was developed by Orttung [62] in 1979 based on

the finite element method. After that a number of other Poisson-Boltzmann solvers

emerged, such as a finite difference method by Warwicker and Watson [86] and a

boundary element technique by Zauhar and Morgan [93]. The successful applica-

tions of these solvers, espically the method by Warwicker and Watson [86], on the

biological macromolecules, motivated the establishment of the numerical technique

of higher accuracy and efficiency. A list of major Poisson-Boltzmann solvers with a

short description of each solver was given by Baker and is reproduced here.

The construction of accurate and efficient numerical algorithms is restricted mainly

by the point charges and the discontinuous dielectric constant at the molecular sur-

face. Despite the slow advancement of numerical techniques for the singular charge

density, a number of techniques were devised to improve the accuracy of the solution

near the dielectric interface. For example, APBS manages to discretize the equation

on a mesh a priori refined in the vicinity of the molecular surface. Some robust a

posteriori error estimation is used to drive the adaptive mesh refinement when multi-

level meshes are used in APBS [27]. Similarly, Delphi [24] attmpts to improve the

accuracy of the solution, especially in the vicinity of the dielectric interface, by first

solving the Poisson—Boltzmann equation in a computational domain much larger than

the molecule(s) enclosed. Then, the second round of computation is carried out on

the smaller domain with a refined mesh. The boundary condition of this second

 

1. A single sphere with single or multiple point charges. They are to be discussed in this

dissertation.

2. A single sphere with a uniform distributed charge on the surface [28]

3. Multiple point-charged molecule with complete solvent penetration [28].

4. Two centered charged spheres. It seems that an analytical solution might. be obtained using

the bispherical coordinate system. Despite a number of research articles [20, 61, 78] in the

past decades, there is no simple solution of electrostatic potential in closed form for this. case

Some. solutions in semi-analytical form are series of slow convergence and are too complicated

to be implemented.

o. Systems with cylindrical geometries [57. 74].
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run comes from the last computation. Such a ‘focusing’ procedure can be hierarchi-

cally implemented to acquire a sufficient resolution and accuracy near the molecular

surface. All these techniques are based on the local mesh refinement and there is no

special treatment of the interface conditions in the fundamental discretization scheme.

A noteworthy class of numerical techniques for the Poisson-Boltzmann equation

is the boundary element method. In this approach, two boundary integrals, one in

the interior of the molecule and the other in solvent, are defined. The electrostatic

potential and its normal gradients are determined from the matching of both inter-

face conditions on the molecular surface with these two integrals. Once the surface

potential is solved, the potential in the entire domain can be analytically computed.

Theoretically, boundary element approach is superior to all the other techniques be—

cause it allows the discretization of the equation in lower dimension, as both interface

conditions are satisfied, because the singularity of the point charges are removed

through boundary integrals, and because the far field boundary conditions are en-

forced exactly in an integral. The very first boundary element method proposed by

Zauhar and Morgan [93] assumes that the ionic strength is zero but this assumption

was soon removed in the formulation of Rashin [66]. The first boundary element

approach based on Green’s function for the Poisson-Boltzmann equation, however,

probably is due to Juffer et. al. [66].

Compared with the wide applications of finite difference or finite element based

Poisson-Boltzmann solvers, the applications of boundary element methods are found

to be limited. This might be explained by a number of fundamental issues in the

boundary element methods for the Poisson-Boltzmann equation. For example, the

Green’s function of the Poisson-Boltzmann equation may be difficult to find if the

molecules have complex internal structures. Additional volume integrals have to be

calculated if the boundary element method is used to solve the nonlinear Poisson-

Boltzmann equation [9]. The final linear system might be ill-conditioned if weak

formulation of the linear Poisson-Boltzmann equation or the numerical quadrature in

the surface integral is not optimized. In particular, the matching of the two interface
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conditions with the surface integrals gives rise to 4N2 influence coefficients where N

is the number of surface elements. The calculation and storage of this large number

of quantities severely limits the efficiency of the boundary element method. It has

been demonstrated that the application of a fast multipole technique could reduce

the computational complexity of these quantities to an order of N log(N) [8]. It is

expected that further investigation on the fast multipole or related method such as

tree code, and on the fast calculation of the Maxwell stress tensor on the molecular

surface [53] could provide necessary thrust to the application of the boundary element

method on the numerical solution of the Poisson-Boltzmann equation.

4.3 Dielectric Interface

The definition of dielectric interface is one of critical issues in the implicit solvent

model. Any biomolecular surface, such as van der Waals surface, solvent accessible

surface, solvent-excluded surface [12], Gaussian surface [88], multiresulution molecular

surface [87], can be chosen as the dielectric interface in computation but the choice

of which biomolecular surface to use as the dielectric interface is still open to debate.

Most of these biomolecular surfaces consider only the constant van der Waals radii

of the atoms and the radius of the probe which is the spherical model of the solvent

molecule. They are defined a priori and are supplied into a particular implicit solvent

model, the Poisson-Boltzmann equation for example, to determine the energetic state

of the system. In contrast to these surface definitions, the biomolecular surface can

be derived from the minimization of an energy functional of the solute cavity shape

[15]. In this case, the biomolecular surface is the output of the implicit solvent model

rather than its input.

The implementation of a well-defined molecular surface in the solution of the

Poisson-Boltzmann equation depends on the underlying numerical technique. In finite

difference based Poisson-Boltzmann solvers such as DelPhi, MEAD and PBEQ, the

molecular surface is used to define the map of the dielectric function only and the

position of the molecular surface is not explicitly computed. In PBEQ, for example,
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a set of probes centered at the van der Waals surface are defined, and any grid

point enclosed in this envelope is regarded to be in the solute (otherwise it is in the

solvent). In APBS with finite element discretization, nevertheless, the position of the

molecular surface is explicitly calculated to provide the exact position for local mesh

refinement. None of these Poisson-Boltzmann solvers calculates the normal direction

of the molecular surface as they do not consider the discontinuity of the potential

gradient at the molecular surface.

Few molecular surface generators calculate the normal direction of the molecular

surface. We notice that the normal vector and other geometrical quantities can be

derived from the spherical harmonic expansion of the molecular surface [58]. The

slow convergence of such expansion toward an accurate description of the molecular

surface prevents us from implementing the same molecular surface as other Poisson-

Boltzmann solvers. The MSMS program due to Michel Sanner et. al. provides an

efficient algorithm for the molecular surface, its normal directions, its total area and

its triangulation [68]. We will implement the MSMS surface in our solution of the

Poisson-Boltzmann equation. However, we do prefer the dielectric interface defined as

the iso—surface of some analytical function such as a Gaussian surface or the recently

developed multi-resolution model of the molecular surface. The former is the iso-

surface of additive approximate electron density centered at each partial charge and

the latter is the iso—surface of the solution to a diffusion equation. Because the

surface is a particular level set of an analytical function, the solvent accessibility and

the surface geometry can be readily derived from the function [70]. The molecular

surface derived from the minimization of an energy functional can also be described

by an isosurface hence it can be easily implemented into our interface algorithm.
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Chapter 5

Application of Interface Methods

to the Poisson-Boltzmann Equation

In this chapter, the continuous conditions of the electrostatic potential and its flux

are to be incorporated in the numerical solution of the Poisson—Boltzmann equation.

We first present the implementation of MSMS surfaces in the MIB method. Our

implementation can be generalized to other finite-difference—based Poisson-Boltzmann

solvers. We will then solve the Poisson-Boltzmann equation with the MIB method

formulated in Chapter 3. The results of the MIB method will be compared with

those of the PBEQ and the APBS, with special concerns in the convergence rate, the

accuracy of the electrostatic potential near the dielectric interface and the accuracy

of the electrostatic solvation energy. In addition to the MIB method, the immersed

interface method is reproduced, which not only has its own merit as an alternative

interface method for the Poisson-Boltzmann equation, but also helps us to confirm

our MIB results.
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5.1 Implementation of molecular surface in MIB

and IIM

The implicit enforcement of the interface conditions at the molecular surface in the

MIB method necessitates an explicitly defined molecular surface such that its inter-

section points with the mesh lines can be calculated with a sufficient accuracy being

consistent with the accuracy of the approximation to the Poisson-Boltzmann equa—

tion. We choose the MSMS program as our molecular surface generator since it is

one of a few software packages that explicitly calculate both the molecular surface

coordinates and associated normal directions. MSMS gives the triangulation of the

molecular surface, which is a first-order approximation to the analytical molecular sur-

face. A decision has to be made on whether the triangulation surface or the analytical

surface is to be used. By using a triangulated surface it means that the intersections

of the surface triangles with the mesh lines will be calculated and used in the MIB

formulation. These intersections deviate from the exact intersections of the molecular

surface and the mesh lines by some small displacements whose magnitude depend on

the density of the triangulation. By using these approximate intersect points instead

of the exact intersect point one could get simplification and computational efficiency

in locating points but at the possible reduction of accuracy in the solution of electro-

static potential. In the numerical experiments comparison will be made between these

two types of molecular surfaces: the exact molecular surface and its approximation

via triangulation. We will show that a fairly good approximation to the analytical

molecular surface can be given by the MSMS surface and the error between these two

surfaces can be reduced effectively by using appropriate triangulation density such

that the numerical error due to the finite difference becomes dominant.

Starting with an MSMS triangulation, we are going to determine the accessibility

of grid points to the solvent and the nearby mesh line/surface intersect point(s) for

each irregular point. W'e. will first calculate the possible intersect points of each

triangle with the mesh lines. Let (:I:,:,;1/,j,z,-).i = 1, . . . . 3 be the three vertices of a



surface triangle. we define

xmm = min{x1,x2, 3:3}, 113mm = max{x1,x2,x3},

yrnin = Inin{y1,y2, I3}, ymax = maX{y1,y2, ya},

Zmin = min{z1,22,z3}, 2mm; 2 max{zl, 22, 23}.

The x-mesh lines (yj, 3),) that might intersect with this triangle must lay inside the

rectangles defined by above intervals for y and z, i.e., ymm < yj < ymar and zmm <

3k < zmax. The other two rectangles, determined by rm," < x < xmax, ymin <

y < ymax and 35min < x < xmax, Zmin < z < zmax, define respectively the z- and

y- mesh lines that might intersect with the current triangle. The intersect points of

mesh lines with the current triangle are calculated in two steps. In the first step, we

calculate all the intersections of these mesh lines with the plane spanned by these

three vertices

13—11 y‘IUl 3‘31

5132-11 y2-y1 32—21 =0- (5.1)

  ~r3‘11y3‘y1 533—31

To find the intersect point of the mesh line (xi, yj) with this plane, for example, one

can solve the linear equation of 2 obtained by replacing x, y with 23,-. yj respectively

in equation (5.1), i.e.,

133—11 yj-y1 z-zi

$2 - I1 312 - y1 Z2 - :1 = 0' (5.2)

  333—171313—31133—2‘1

The intersect point then has a coordinate (x,, yj, :5). In the second step, we examine

whether these intersections are inside the triangle. Those points that are not located

within the triangle must be discarded. The remaining points are the real intersect

points of the mesh lines with this triangle. An intersect point. is inside the triangle if
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(133, 313, 23)

 

mesh line (y), 3k)

  
      (12,92,22)

(171,111,21) mesh line (22,, 2),.)

  
mesh line (x,, y,-)

Figure 5.1: The illustration of mesh lines and triangle as well as their intersect

points. If the intersect point happens to be a vertex, or passes through a side of the

triangle, or the sum of three angles 61,62 and 03 is 2rr, then the intersect point is

inside the triangle.

0 the intersect point is overlapped with one of three vertices of the triangle,

0 or the intersect point is located one side of the triangle,

0 or the total of the three angles 61, 62 and 63 is 2rr.

The normal vector of the triangle will be taken as the normal vector of the molecular

surface at the intersect point. However, if the intersect point coincides with a vertex

of the triangle, the normal vector at that vertex, which has been calculated by the

MSMS, rather than that of the triangle will be taken as the normal vector of the

molecular surface at the intersect point.

We will then determine the accessibility of each grid points based on all these

intersect points of the mesh lines and the molecular surface. As we can always choose

a sufficiently large computational domain to enclose the molecule, the grid points be-

fore the first intersect point or after the last intersect point are then always accessible

and are marked by — 1. Since a molecule is an enclosed simply connected or multiply

connected 3—D domain, the number of intersect points of a mesh line with the molec-

ular surface is alway even if the mesh line is never tangent to the molecular surface.

This reflects the fact with any mesh line that penetrates into the molecular surface at

some place must penetrate out of the surface again at the other place. If a mesh line

is tangent to the molecular surface, the tangent point will be counted twice to make
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the total number of intersect points be even. Once the lists of intersect points on each

mesh line are ready, all the intersect points on the same mesh line are ordered accord-

ing to their major coordinate to make the determination of accessibility of grid points

more efficient. Here the major coordinate means the x coordinate for intersect points

on the same x-mesh line, the y coordinate for intersect points on the same y-mesh line

and the z coordinate for intersect points on the same z-mesh line. The accessibility

is determined on each mesh line. For example, to determine the accessibility of all

grid points on mesh line (yj, 2k), all the intersect points of this mesh line with the

molecular surface are increasingly ordered in an array, xint, of length n, which must

be even. All the grid points (17,, yj, 2k) within xintl and xintl+1 where l is odd will

be regarded as inaccessible, while all the grid points within xintl and xintl+1 where

l is even are accessible, as shown in Figure 5.2. The accessibility at all grid points

can be determined by examining all mesh lines along a single direction, i.e., either

all x-mesh lines, or all y-mesh lines or all z-mesh lines. The irregular points can be

found once the accessibility at all grid points are determined.

Example 5.1.1. To validate the MSMS surface implementation in our MIB method,

we design a 3—D Poisson problem (Hafiz + (,Buy)y + (fiuz)z = f(x, y, z) with internal

interface defined by the molecular surface of cyclohexane(5.1). The discontinuous

solution u(x, y, z) of the Poisson equation is designated to be

1:2 + y2 + z2 inside interface

u(x, y, z) = 1 (5.3)

—————— + log(2 x2 + y2 + Z2) otherwise

Vx2+y2+z2

and the diffusion coefficient ,6 : 1 inside the cyclohexane and 80 outside. These

definitions also prescribe f (x, y, 3) as well as the jumps [u] and [Bun].

A second—order convergence is expected if the implementation of the MSMS sur-

face is appropriate and the error in the MSMS surface is dominated by the intrinsic

discretization error in the MIB method. The latter can be guaranteed by a trian-

gulation of sufficiently high density. This prediction is verified by Table 5.1. More
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Figure 5.2: 2—D diagram of the accessibility determined by chasing intersec points of

mesh lines and molecular surface. Accessible grid points are marked by solid red circles

and the inaccessible grid points are marked by empty black circles. For the upper

mesh line (y = y4) which has 6 intersection points with the molecular surface(the right

most one is counted twice as the mesh line is tangent to the molecular surface at this

point), the grid points ( 1,4) through (3,4) are accessible because they are located

before the first intersection point; grid points (4,4) through (5,4) are inaccessible

because they are located between the first and the second intersection point; grid

points (6,4) through (8,4) are accessible again because they are located between the

second and the third intersection point; grid points (9,4) and (10,4) are inaccessible

again because they are located between the third and the fourth intersection point;

grid points (11,4) through (15,4) are accessible because they are located between the

fourth and the fifth intersection point. Between the fifth and the sixth intersection

points there are no grid points. After the sixth intersection point which is the last

one on this mesh line, all the grid points are accessible.

importantly, Table 5.1 provides a guide line for the selection of surface triangulation.

In particular, in order to get a second-order convergence up to a mesh size of 0.1A,

the density should be larger than 50. On the other hand, if one sticks to a mesh

size of 0.5A in the calculation of electrostatic potential for the real biomolecules, a

triangulation density of 10 is sufficient since for this mesh size there is no essential

difference between the solutions at density of 10 and density of 40. Assured by this

observation, an MSMS surface with a density of 10 will be used for numerical so-

lutions of the Poisson-Boltzmann equation with a mesh size of 0.5A. When a finer

mesh such as 0.2A or 0.1A is necessary for the examination of the convergence, we
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will instead use the MSMS surface with a density of 40. Our implementation of the

Table 5.1: Positions and radii of atoms of cyclohexane.
 

 

1‘ y z vdW radius

-2.0270 0.9540 -0.6510 1.7

-1.6690 0.2340 0.6650 1.7

-0.4530 -0.6870 0.4410 1.7

0.7510 0.1480 -0.0400 1.7

0.3930 0.8680 -1.3560 1.7

-0.8230 1.7880 -1.1320 1.7

-2.2840 0.2080 -1.4180 1.2

-2.8880 1.6170 -0.4830 1.2

-2.5270 -0.3680 0.9970 1.2

-1.4260 0.9800 1.4350 1.2

-0.1960 -1.1890 1.3850 1.2

-0.7010 -1.4410 -0.3200 1.2

1.0070 0.8940 0.7270 1.2

1.6120 -0.5150 —0.2080 1.2

0.1490 0.1210 -2.1260 1.2 .

1.2510 1.4700 -1.6880 1.2

-1.0810 2.2910 -2.0760 1.2

-0.5750 2.5430 -0.3710 1.2
 

Table 5.2: Numerical convergence test for Example (5.1.1).
 

 

 

 

 

Density of Mesh Loo

triangulation size(A) error Order

1/2 103(0)

5 1/4 9.83(-1)

1/8 116(0)

1/2 1.38(-1)

10 1/4 3.63(-2) 1.93

1/8 1.65(—2) 1.14

1/2 137(4)

20 1/4 3.134(2) 1.95

1/8 9.83(-3) 1.85

1/2 1.38(-1)

40 1/4 3.54(-2) 1.96

1/8 9.07(-3) 1.96
 

MSMS surface for the MIB method is also applicable for the HM method, i.e., we first

find the intersect points of each mesh line with the interface and then determine the

accessibility of each grid point. It is noticed, however, the HM scheme at any irregular

point only requires the. geometry of a nearby interface point, which is not necessary
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to be the intersect point of the mesh line and the molecular surface. We choose one of

the nearby intersect points as the required interface point since it produces minimum

extra calculation.

 

____________________________

 

Figure 5.3: The grid points and interface point needed for the formulation of the

IIM scheme [13] at the irregular point(i, j, k). The IIM method manages to find the

Taylor expansions of the solution accurate to 0(h3) at both sides of the interface, for

which a total of 16 expansion coefficients are to be determined. Original IIM requires

10 grid points and 6 interface conditions at an interface point(p’ or p) to solve for

the 16 polynomial coefficients. These 10 points(red) are chosen to be (i,j. k), other

6 grid points directly connecting to (i, j, k) and 3 more grid points inside the cube,

preferably at the other side of the interface. IIM with optimization employs all the

27 grid points (red and green) inside the cube to produce constrained quadratic

optimization problems from which 16 polynomial coefficients are solved. See [13] for

the detailed formulation of 3—D IIM scheme. It is not necessary to choose the interface

point to be the nearest one as p'. For simplicity we choose p’, the intersect point of

the interface with the mesh line, as the interface point for the irregular point (2', j, k).

5.2 Numerical validation of interface method for

the Poisson-Boltzmann equation

We consider a sphere of radius 2A, centered at the origin and with charges inside whose

number and positions are to be tuned. A sphere with single or multiple charges admits

an analytical solution of electrostatic. potential and has been used for evaluation and
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accuracy assessment for various Poisson-Boltzmann solvers. For noncentered charge

or multiple charges one can seek the analytical solution as the expansion of spherical

harmonic functions [39]. Both the exact boundary conditions and the exact values of

the solvation energy can be calculated from these analytical solutions. The derivation

of analytical solutions for multiple charges is given in Appendix A.

The first computation is on the sphere with a single unit charge. Table 5.3 lists the

convergence of two interface methods in comparison with the PBEQ and the APBS. In

addition to the electrostatic solvation energy, we also calculate the maximum absolute

error 61, the maximum percentage error e2 and the average percentage error 63 of

the electrostatic potential near the surface of the sphere, as

~

 

 

81 = maxim-v.9,» -¢>(:v.y,z)l, (5-4)

¢(x,y.Z)

Ni" a > a >__ :r,y,z — 1:,y,z .

e3 _ 100x 2| Was/,2) |/N,,.,.. (5.6)

Here (13(17, y, z) and ¢(.r, y, z) are the computed and exact electrostatic potential, re-

spectively. The maximum values and summation are taken over all the irregular grid

points near the molecular surface, whose number is given by Ni". Given a suffi-

ciently small grid spacing, a convergent solvation energy could be solved with all

three methods. The necessary resolution required for a given accuracy of solvation

energy, however, differs across the methods due to their different convergence proper-

ties. MIB and HM have a convergence rate of 2, which is indicated by about fourfold

decreasing in all three errors as the grid spacing is halved. Such a uniform convergence

is attributed to the modified difference scheme near the interface. In contrast, PBEQ

and APBS have similar convergence rates of around 0.3. As a result, a grid spacing of

0.5A suffices for both MIB and HM to yield an almost exact solvation energy whereas

for PBEQ and APBS one has to use a mesh size smaller than 0.05A to get a solvation

energy of similar accuracy. The most. significant difference occurs at the accuracy

of the surface potential, which can be seen from the maxinuun absolute error, the
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maximum relative errors and the average relative errors in Table 5.3. For mesh size

of 0.5A, the surface potential of PBEQ and APBS deviate from the exact value by

more than 84% at its maximum and by more than 23% on average. The errors in

the surface potential calculated with PBEQ or APBS are consistently much larger

than those of the interface method despite a slight decrease with the refinement of

the mesh. The maximum error is around 50% even for a grid spacing of 0.05A. With

either interface method, however, the surface potential is accurate to about 8% at its

maximum and only about 2% on average for a grid spacing of 0.5A. If h = 0.2A is

chosen the maximum error is only about 2% with corresponding average error below

1%, which is almost unachievable by PBEQ and APBS due to their slow convergence.

The second system we studied is a sphere with a noncentered charge located

at (a,0,0). As the charge approaches the surface, a stronger interaction between

the charge and the surface is anticipated and a larger error may occur if the two

interface conditions are not handled correctly. The electrostatic solvation energies for

0 g a S 1.5 were computed and collected in Table 5.4-5.5. In addition to the growth of

the solvation energy these two tables also show that the computation errors, both for

PBEQ and the two interface methods, increase as the charge approaches the surface.

It is interesting to see that interface methods and PBEQ have different responses to

the displacement of the charge. As the charge is moving from the center to (0.2, 0,0)

the relative errors, both the maximum and the average, increase about twofold for the

MIB method whereas they remain in the same high level for PBEQ. A slight increase

in the maximum relative error can also be seen for the HM method. A larger error in

the surface potential of both interface methods occurs as the displacement of charge

increases but the average relative error is well below 5% except for a = 1.5. For PBEQ,

although there is a slight decrease in the accuracy of surface potential, the maximum

and average relative errors are always larger than 20% for the various displacements

of charge. Furthermore, the average relative error in the interface methods can be

efficiently reduced to less than 1% for all displacements by refining the mesh to a grid
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spacing of 0.2A but the large error in the traditional finite difference method PBEQ

decreases only slightly from 23% to 12%. Table 5.5 also shows that a very large

error could occur on interface methods as the charge is very close to surface, such as

a = 10,12 or 1.5. Such a large error results from the mixing of the grid points for

singular charge distribution and for the modified difference schemes near the interface.

In particular, the solution on the grid points within the trilinear distribution of the

singular charge is of the lowest accuracy. The inclusion of these grid points into the

difference scheme at the irregular points, as in the case of a > 0.6 and h = 0.5, will

degrade the accuracy of the solution near the interface. However, because the van der

Walls radii of the partially charged atoms are usually larger than 1.0A such a small

distance between the charge and the surface will not occur in pratical biomolecular

simulations.

A stronger interaction of charge and surface can be found by placing two noncen-

tered charges in a single sphere. In the third system for our validation, one charge is

placed at (a, 0, 0) and the other at (0, 0, a) where a varies from 0.2A to 1.5A. Except

for the increase of the solvation energy, the results for both interface methods and

PBEQ display a striking qualitative similarity with the case with a single noncentered

charge, as presented in Table 5.6-5.7. The amplification of the charge-surface inter-

action results in a larger maximum relative error in the surface potential of interface

methods, which could be 34% for a = 0.6A. However, the average relative error does

not grow with the increase of the number of charges, and is smaller than 3% for

a < 1.0A, similar to the case with single charge.

For all three systems, PBEQ provides a more negative (i.e. more favorable) free

energy of solvation, and the deviation from the analytical value is around 5% for a

mesh size of 0.5A. Such a systematic percentage error amounts to about 3.87kcal/mol

for a centered-charged single sphere and will lead to about a deviation of 17kcal/mol

for sphere with two noncentered charges (a. = 0.6).

These three numerical experiments also demonstrate some noticeable differences

between the two interface methods. Compared with the MIB method, the smaller
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interface discretization stencil of HM indicates that its interface discretization will less

likely be influenced by the singular charge distribution. This speculation is validated

by the smaller el and c2 of HM in Tables 5.3 - 5.7 at a mesh size of 0.5A if the

displacement of the charge is smaller then 0.6A. In particular, the maximum absolute

error in the surface potential is 2.63kcal/mol/e for MIB and is about 1.98kcal/mol/e

for IIM if the displacement of charge is zero. Substantial increases of the maximum

absolute error and the maximum relative error are seen in the MIB method. Such

increases for IIM are nevertheless much smaller.

This relative advantage of smaller discretization stencils in HM will diminish when

the charge is close to the interface. If that is the case, the grid points participating in

the distribution of singular charges have to be involved in the discretization at irreg-

ular points and these two types of errors are always mixed together. A considerable

increase in the maximum absolute error is seen in Table 5.3 and Table 5.6 when the

displacement is increased from 0.6A to 0.8A or larger.

On the other hand, MIB has a more accurate approximation to the interface

conditions and the resultant discretization at the irregular points as illustrated in

Table 2.1 and Table 2.2. This explains its smaller average relative errors for all the

tested cases in the above numerical experiments, despite its larger maximum absolute

errors and large relative errors at small charge displacement. Furthermore, the errors

in the solvation energies computed with IIM are much larger than those computed

with MIB, especially at large charge displacement. For this reason we will only

report the results of MIB in all the other numerical experiments and calculations for

biomolecules.

For general molecules, however, the evaluation of the solutions of the variety of PB

solvers remains difficult due to the lack of analytical solutions for reference. The slow

convergence or stagnance of many Poisson-Boltzmann solvers, as found in practical

simulations, prevents the achievement of a convergent solution through simple mesh

refinement for self-checking. In this numerical experiment, we are going to investigate

the convergence of PBEQ and MIB on the problems without analytical solutions. In



particular, we are interested in whether the numerical results provided by the MIB

method can be used as an alternative reference to measure the accuracy of popular

PB solvers.

Two unit positively charged spheres, of the same radius 2A, are placed on the

r—axis symmetrically with respect to the origin. The molecular surface of this model

molecule is composed of two spherical caps at two ends and an inward tori surface

in the middle, each of which is analytically given. The solvation energy is computed

for systems with different sphere-sphere distances, which vary from 2A to 5A. The

electrostatic potential computed from MIB at the finest mesh of h=0.05A is saved as

reference to measure the accuracy of the surface potential computed with MIB and

PBEQ at three coarse meshes of h = 0.5, 0.2, 0.1.

The data given in Table 5.8 indicate that the solvation energy is almost convergent

for MIB with a grid spacing of 0.5A and the further refinement of the mesh can only

provide minor improvement. For PBEQ, a deviation of 4-6kcal/mol in solvation

energy at the coarse mesh can be reduced by mesh refinement. Hence the solution of

PBEQ essentially converges to that of MIB as far as the solvation energ is concerned.

The convergence rate of PBEQ’S solution to MIB’s solution matches well with the

rate observed in the last three systems with analytical solutions as reference. For

all the charge distance considered, the maximum and average relative errors of the

surface are about more than 80% and 20%, respectively for a grid spacing of 0.5A,

which are of the same magnitude as observed in the first three test systems, see Figure

5.4. The average absolute error in the surface potential at this resolution is about

3-4kcal/mol whereas the largest error could be 17-22kcal/mol.

5.3 Application of interface method for biomolecules

Motivated by the superior accuracy and convergence property of MIB, we then move

to the numerical experiments of MIB on biomolecules. We are going to investigate if

traditional Poisson-Boltzmann solvers will converge to the solution of MIB at coarse

mesh for large macroinolecules and if we can achieve the savings in the computational
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Figure 5.4: Maximum absolute error e1 (upper left), Maximum relative error

€2(upper right), average absolute errors(lower left) and average relative error 83 (lower

right) in the surface potential of two positively charged spheres. The errors of MIB

and PBEQ are plotted in black and blue, respectively. The average absolute error

is the total of the absolute errors at all irregular points divided by the number of

irregular points. The absolute error is in kcal/mol/e and the relative error is the per-

centage. The x-axis is the distance between centers of two spheres. Circle: h = 0.5;

Diamond: 1:. = 02; Square: h = 0.1.

time and the memory due to the use of coarse mesh. Twenty four structures, mostly

adopted from test set 1 of [19], were used in this study to examine the accuracy and

robustness of MIB in handling different protein conformations. The missing hydrogen

atoms in the original PDB files were added using the HBUILD function in CHARMM.

The all-atom representations were generated and partial charges were assigned, both

with the CHARMM22 force field. The coordinates and partial charges of the atoms

prescribed as such were also supplied to APBS. It is noticed that hydrogen atoms

in some of the amino groups are completely buried inside the nitrogen atom and

MSMS can not handle such cases. These hydrogen atoms then have to be removed
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before being supplied to MSMS as they have no contribution to the molecular surface.

The partial charges at these hydrogen atoms, however, have to be retained in the

solution of the Poisson-Boltzmann equation as they do contribute to the electrostatic

potential. The deviation of electrostatic solvation energies calculated by PBEQ with

different mesh size from those calculated by MIB with a fixed mesh size of 0.5A are

plotted in Figure 5.5. For all 24 proteins, PBEQ delivers a more negative solvation

energy at a mesh size of 0.5A or 0.25A. At a mesh size of 0.15A, nevertheless, there

are two proteins for which the PBEQ gives a slightly larger solvation energy. For

protein 1ajj, the solvation energy solved from PBEQ is larger than that from MIB

by 0.7kcal/mol or 0.06%. For protein luxc, this difference amounts to 1.5kcal/mol

or 0.13%. The overall monotonous decreasing of the deviation from the MIB with

the improvement of resolution proves the reliability of MIB at low resolution as the

reference for traditional Poisson-Boltzmann solvers. The saving of computational

time and memory usage are critical for simulations of large molecules, for which it

is usually impossible to use a resolution of 0.2A or smaller to obtain a convergent

solution. In particular, there is a strong correlation between this deviation and the

total partial charge of the biological molecules. For protein 1a7m with 180 residues,

for example, the total charge is about 677e and the deviation is about -103.5, —36.5

and —12.5kcal/mol/e for h = 0.5, 0.25 and 0.15, respectively. A much larger error of

solvation energy can be projected for molecules of large size or highly charged, and

might contribute to the over stabilization of slat-bridges as found in many simulations

[55, 95]. This correlation also explains the aforementioned overshoot for the small

proteins 1ajj and luxc. For larger proteins with large total absolute charges, the

solvation energies computed from PBEQ at a mesh size of 015A is always smaller

than those from MIB by more than 10kcal/mol.

The surface electrostatic potential of 1a63 generated with PBEQ is shown in Fig-

ure 5.6, along with the potential difference between the PBEQ solution and the MIB

solution. There are scattered regions of negative potential but most of the potential

surface is largely positive where the numerical error is also large. as seen in the right
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Figure 5.5: Left y-axis: the deviation of electrostatic solvation energy calculated

with PBEQ at h = 0.5 (circle), h = 0.25(diamond) and h = 0.2(square) from that

calculated with MIB at h. = 0.5. Right y-axis: the solid line plots the total absolute

charge of the proteins. x-axis from left to right: lajj, 1vii, 2erl, lbbl, lcbn, 2pde,

1sh1, lfca, .lptq, 1bor, luxc, lvjw, lfxd, 1hpt, 1mbg, lbpi, 1r69, 451e, 1neq, 1a2s,

lsvr, 1frd, 1a63 and 1a7m.

chart. These errors in the surface potential, usually as large as —3kcal/mol/e to

3kcal/mol/e, may contribute to large discrepancies in calculating the binding affinity

and reaction rate of protein-ligand association. More detailed work is required to

elucidate and justify the role of this discrepancy.
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Table 5.8: Electrostatic solvation energy in kcal/mol of two positively charged

spheres at four different mesh sizes h = 0.5, 0.2, 0.1 and 0.05. The distance between

the centers of two spheres D vary from 2A to 5A.

 

 

 

D MIB PBEQ

0.5 0.2 0.1 0.05 0.5 0.2 0.1 0.05

2.0 276.39 276.78 276.83 276.84 283.12 279.66 277.70 277.10

2.5 266.68 267.15 267.22 267.24 272.28 269.05 268.15 267.50

3.0 257.69 258.00 258.06 258.07 266.02 260.34 259.10 258.60

3.5 249.28 249.39 249.43 249.44 252.72 250.82 250.33 249.44

4.0 241.28 241.45 241.49 241.50 247.92 243.39 242.40 241.90

4.5 234.39 234.38 234.38 234.38 238.76 235.73 235.22 234.80

5.0 228.10 228.18 228.16 228.17 235.70 230.04 229.10 228.60
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Figure 5.6: The map of electrostatic potential on the surface of protein 11163. Upper:

potential computed with MIB; Lower: Difference of potentials computed with PBEQ

and with MIB.
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Chapter 6

Thesis Contribution and Future

Research Plan

6.1 Thesis Contribution

6.1.1 The Matched Interface and Boundary Method

A new approach for solving elliptic interface problems, the matched interface and

boundary (MIB) method, is generalized from its primitive 1-D formulation to higher

dimensions in this dissertation. The MIB method, after generalization, is capable to

solve 2-D or 3—D elliptic problems with discontinuous diffusion coefficients or singular

sources at irregular internal interfaces which are usually not aligned with the mesh

lines. The essential ingredient of the MIB method is the matching of the lowest

order interface conditions simultaneously and exactly at select points on the interface

with fictitious values. These fictitious values represent the extension of the solutions

in its subdomain to other subdomains. For an interface that is not aligned with

the mesh lines, appropriate coordinate transformations are defined such that the

interface conditions in the normal direction can be handled in the Cartesian grid.

These interface conditions are re-organized such that there is a primary direction

in the final set of interface conditions. All the fictitious values are solved along its

primary direction but can be used for the discretization of partial derivatives with
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respect to any coordinate. The matching of interface conditions provides essential

algebraic relations for the expansion of these fictitious values in terms of real solution

values and given jumps. Once the fictitious values are solved, in other words, once

each subdomain is extended to a sufficiently large margin, the standard central finite

difference scheme can be applied on the extended smooth domain to obtain desired

high convergence and high accuracy. The same set of interface conditions can be

iteratively used to solve for more fictitious values to support high order difference

schemes. Among a variety of numerical methods for elliptic interface problems such

as immersed interface method (IIM), immersed boundary method and ghost fluid

method, MIB is the first numerical method that can be systmatically generalized to

arbitrary high order for a general interface. The fourth-order and a sixth-order MIB

schemes are successfully formulated in this work.

An interpolation formulation is also proposed in this dissertation whereby the in-

terface conditions are matched via explicitly defined polynomials instead of through

fictitious values. The comparison between these two implementations describes the

similarities and relations among different interface methods based on Taylor expan-

sion(IIM), Lagrange interpolation(MIB) and explicit polynomials(interpolation for-

mulation).

6.1.2 Interface Methods for the Poisson-Boltzmann equation

The application of interface methods can be found in a variety of disciplines such as

fluid dynamics, material science, electromagnetics and molecular biology. However,

this dissertation describes the first application of interface methods to the numerical

solution of the Poisson-Boltzmann equation to conserve the continuity of the electro-

static potential and its flux at the dielectric interface. It is noticed that in most finite

difference Poisson-Boltzmann solvers the molecular surface is only used to determine

the accessibility of grid points but the exact location of the molecular surface is not

considered. Therefore it was impossible for these methods to maintain the continuity

of the potential flux at the molecular interface. In contrast, the analytical molecular
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surface generated by MSMS is incorporated into MIB for the discretization of the

equation near the molecular surface. The accuracy of the solution, measured in ei-

ther electrostatic potential field or the derived quantity such as electrostatic solvation

energy, is significantly improved due to the consideration of the discontinuous poten-

tial gradient at the molecular surface. The accurate surface potential, solved with

interface methods, makes it possible to quantitatively investigate the electrostatic

complementary of the molecular surfaces involved in many bimolecular interactions

such as electrostatically directed ligand association. The convergent electrostatic po—

tential also provides an accurate calibration for the Born radii in the Generalized

Born methods.

6.2 Future research plan

6.2.1 Theoretical analysis and fast algebraic solvers for the

MIB method

The matched interface and boundary method discussed in this dissertation is proved to

be very promising for the interface problems, as illustrated by our extensive numerical

experiments. Nevertheless, there are many directions for extending this thesis work.

Firstly, we expect to develop a solid analysis of the convergence of the MIB

method. The approximation of the interface conditions in the current MIB method

implies that the local truncation errors at the irregular points are one order lower than

that at the regular points. Although it is commonly believed and actually demon—

strated in this thesis that the convergence rate of the global error is not affected, we

want to find out the rigorous conditions under which this claim is true.

Secondly, there are several numerical issues associated with the MIB method. The

coefficient matrix of the linear system for the MIB method is always not symmetric

and might not be diagonally dominant. Techniques to solve such systems efficiently

are important for the applications of MIB method. The convergence might become a

major problem with the increasing of the percentage of numbers of irregular points.
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It is expected that some of the state-of-the—art techniques such as the multi—grid

method, GMRES, QMR, etc, could by customized for the fast solution of the linear

system derived from our MIB method.

Thirdly, the MIB method formulated in this thesis is based on the finite difference

on a Cartesian grid. However, the essential idea of MIB, the matching of the interface

conditions with fictitious values, might be extended to other formulations like varia-

tional principles or finite element methods on adaptive and/or composite meshes to

attain more flexibility in handling the complex boundary or internal interface.

Finally, there are a large number of interface problems in which the interface is

moving. It is therefore worthwhile to combine our MIB with the level set or similar

marching methods for the-moving interfaces to provide an accurate solutions for this

type of problems.

6.2.2 Investigation of biological significance of accurate sur-

face potential

In this thesis, the MIB method was used to solve for the convergent and accurate

electrostatic potential from the Poisson-Boltzmann equation. The significance of the

MIB method, however, is mostly substantiated by the accurate electrostatic solva—

tion energies and the implication of an accurate surface potential in the analysis

of the protein/ligand binding and the steering of ligands toward the protein. It is

these applications that would signify the applications of the interface methods for

the Poisson-Boltzmann equation. It is necessary to quantify the surface potential in

analysis of the binding or association. The physical model and mathematical tools for

such quantitative analysis, however, have not yet been well established. Most studies

were based on the binding free energy or association entropy and molar partition

coefficient[5]. Only a small number of works were based on the similarity analysis

[82] on the electrostatic potential of different enzymes and the scoring functions using

geometric-electrostatic correlation functions [26]. We hope that the accurate surface

potential solved with the MIB method can be helpful in the accurate identification
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and prediction of binding site and binding affinity with these new analytical tools and

protocols.
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APPENDIX A

Kirkwood Solution to

Non-Centered Charged Sphere

We consider a sphere of radius b in a solvent of dielectric constant cw. The sphere

has dielectric constant 6p and M discrete point charges q1,q2, . . . ,qM inside. The

sphere-solvent complex is schematically show below.

Following the general solution due to Kirkwood [39], one can choose a spherical

coordinate system with origin at the center of the sphere. The positions of M charges

are given by (7k, 9k, (pk), k = 1, . . . , M. It should be noted that here 0 E [0, 77] is the

polar angle from z—axis and 90 E [0, 27r) is the azimuthal angle in the :7: -— y plane

from the x—axis. This notational convention is different from that we used in the

derivation of the interface scheme. It is adopted here to maintain the consistence

with the original notation used by Kirkwood and the convention normally used in

physics.

The electrostatic potential inside the sphere 3,, satisfies the Poisson equation and

is given by a spherical harmonic series

.M 00 n

¢p = Z—qL-“l-Z Z Bn,m7‘nP,T,"'(cosO)eim‘p (A.1)

 

16:1 Cplr _ Tkl 11:20 1712—71

00 Tl E
00 n

7m , . . . [I] ,

= Z 2 E r711+1P,’,"(c089)ezm)‘°+ E Z BnmrnP,T(cos6)e’mi’(,A.2)

"Zomz‘"
n=0m=—n

where Ir — Tkl is the distance of the charge qk from the point (736,42) where the
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electrostatic potential is to be measured. The first spherical harmonic represents the

potential induced by the point charges (II: and the second is the dielectrical contri-

butions of the solvent outside of the sphere. P,’,"‘(cos 0) are the associated Legendre

functions of the first kind and i is the imaginary unit. Coefficients Enm are deter-

mined by the distribution of the point charges, as

(n -__|__m|)!
: n m( —i.mc,«2k

Enm (71’ +——|——"n1|)!'2 rik (COS 6k)e (A.3)

Assume the ionic concentration is zero in the solvent, the electrostatic potential

outside of the sphere (bu, shall satisfy the Laplace equation and have a spherical

harmonic expansion

 

OO Tl

‘ C j
6.... = E : E : (1_:J:7[+Gnmr"’,’,")l'e(cos())""6 (A4)

All the coefficients, 137,,r,,,,(7n,n and (Inm, have to be fixed by fitting the appropriate

boundary conditions.

As potential 65w must be vanishing as r approaches to 00, Gnm = 0 follows. The

remaining coefficients. Bnm and Cnm, will be determined by fitting the continuity

conditions on the surface of the sphere, i.e.,

()921L— Lap

‘ 7 = ' , f y—‘— — A.59211 95]) u 67‘ (p—(91‘ ( )

which provide two equations for every harmonic component of the potential:

Enm 271+]

—6 + b Bnm = Cnmy (A'G)

P

(n + 1)Emn, —- nepb2n+anm = (n + 1)€anm. (A.7)
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Solution of these two equations gives the expression of Bnm and Gnm:

B = _ , A.8
”m [719, + (n + 1)eu.]62n+1 ( )

C = . A.9

nm 7ch + (71+ 1)€w ( )

 

 

The final real-valued solution to electrostatic potential can be obtained by con-

sidering only the real part of equations (A2) and (A4), although the coefficients

Enm, Cnm, Bnm determined as above are complex functions.
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