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ABSTRACT

COMPUTATIONAL AEROACOUSTICS: ITS METHODS AND APPLICATIONS

By

Shi Zheng

The first part of this thesis deals with the methodology of computational

aeroacoustics (CAA). The effects of parameters used in constructing a broadband

optimized upwind scheme are systematically studied. It is shown that there are optimum

values for these parameters for a given range of wavenmber, at which the overall

accuracy of the scheme improves. However a scheme that is accurate everywhere in a

wide range is virtually not possible because increasing the accuracy for large

wavenumbers is always at the expense of decreasing the accuracy for smaller

wavenumbers. Partially for avoiding such a dilemma, optimized multi-component

schemes are proposed. When calculating a sound field with dominant wavenumbers, such

a scheme is superior to an optimized broadband scheme. The Fourier analysis shows that

even for broadband waves an optimized central multi-component scheme is at least

comparable to if not better than an optimized central broadband scheme.

Numerical implementation of the impedance boundary condition in the time

domain is a unique and challenging topic in CAA. A problem is proposed and its

analytical solution is derived and evaluated to benchmark such boundary conditions. A

CAA code using Tam and Auriault’s formulation of broadband time-domain impedance

boundary condition very accurately reproduces the analytical solution. The CAA code is

also tested against the analytical solution of a semi-infinite impedance duct problem and



the experimental data from the NASA Langley flow impedance tube facility in the

presence of a sheared or zero mean flow. The CAA code accurately predicts the duct

acoustics in terms of both amplitude and phase.

In the second part of the thesis are applications of the developed CAA codes. A

time-domain method is formulated to separate the instability waves from the acoustic

waves of the linearized Euler equations in a critical sheared mean flow. The effectiveness

of the method is demonstrated by a test problem solved with the CAA code.

Several other applications are concerned with coupling an optimizer with the

CAA code. A noise prediction and optimization system for turbofan engine inlet duct

designs is developed. The noise prediction system is verified with several test problems,

each emphasized on testing a specific aspect of the system. The noise prediction and

optimization system is applied in three scenarios: liner impedance optimization, duct

geometry optimization and liner layout optimization. The results Show that the system is

effective in finding values for the design variables in favor of a given objective function.

With the same idea of coupling an optimizer with the CAA code but in a different

context, a conceptual design for adaptive noise control is developed. It consists of a liner

with controllable impedance and an expert subsystem which is realized with an optimizer

coupled with the CAA code. It is shown that the expert system is able to find the

impedance properties that minimize the difference between the current and the desired

acoustic fields.
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1 INTRODUCTION

1.1 CAA Numerical Schemes and Boundary Conditions

Computational aeroacoustics (CAA) deals with the problems of sound generation

and propagation in the presence of a mean flow. Acoustic fluctuations are many orders of

magnitude smaller than the mean flow variables. Therefore, the numerical schemes for

CAA are required to be much more accurate than those for traditional computational fluid

dynamics (CFD). The dispersion and the dissipation errors of the numerical schemes

have to be minimized to ensure that waves travel with an accurate speed, phase and

amplitude. In the past ten years or so, many numerical schemes with high accuracy have

been developed for applications in CAA. One approach for designing these schemes is to

lower the otherwise possible maximum order of accuracy for a given stencil width such

that the additional degrees of freedom can be used to minimize the integrated error over a

range of wavenumber. It is noted from Zhuang and Chen’s work [67] that for optimized

upwind schemes the range of wavenumber is not the only parameter involved in the

optimization process. Other parameters also play an important role in the optimization. A

systematic study of the effects of parameters involved in the optimization, on the

characteristics of the dispersion and the dissipation errors is critical to better

understanding and improving the optimized schemes. For example, previous works [21,

22, 45] show that if a relatively large range of wavenumber is chosen for the optimization,

the deviations from the exact solutions for small wavenumbers will be excessive,

although the scheme can give accurate solutions at relatively large wavenumbers.

Therefore, further improvement of the optimized schemes over a range of wavenumber is

limited due to the fact that increasing the accuracy for relatively large values of

1



wavenumbers is at the expense of decreasing the accuracy for smaller values of

wavenumbers. Since some acoustic waves travel with dominant wavenumbers in a range

of spectrum, one possible way to design a better scheme for this class of acoustic wave

propagation problems is to optimize the scheme for these dominant wavenumbers. The

scheme would be superior to those optimized for a range of spectrum (optimized

broadband schemes). In addition, the scheme optimized for the selected wavenumbers

may give reasonably accurate results even for broadband waves if the deviations from the

exact solutions are also relatively small at non-selected wavenumbers. The effects of

parameters on optimized upwind schemes will be investigated and schemes optimized for

multiple components will also be designed in this thesis.

As important to accurate CAA predictions as a numerical scheme are numerical

boundary conditions for CAA. One of them is impedance boundary condition. Since

impedance is conventionally defined in the frequency domain, such information must be

properly converted into the time domain to serve as a well-posed boundary condition for

the governing equations. Tam and Auriault developed their time-domain single-frequency

and broadband impedance boundary conditions for the three-parameter impedance model

of the Helmholtz resonator type, by implicitly using the derivative properties of the

Fourier transform.[49] Ozydriik and Long borrowed the idea from the computational

electromagnetics community and proposed their time-domain surface acoustic impedance

condition based on the z-transform.[33] Fung and In applied the inverse Fourier

transform to the reflection coefficient instead of the corresponding impedance, resulting

in a stable time-domain impedance boundary condition. [13, 14]



Ozydriik and Long [33, 34] and In and Fung [17] have applied their own time-

domain impedance boundary conditions to the NASA Langley flow impedance tube, for

which experimental data are available. Favorable predictions of the sound pressure level

(SPL) were reported for the both groups, but predictions of the phase information have

not seen published. Tam and Auriault have tested their time-domain impedance boundary

condition for a one-dimensional problem. [49] In this thesis the same formulation will be

verified with a problem in three dimensional Semi-open space bounded by an impedance

wall. Because of the difference in geometry between a duct and an open space, which

results in the concept of modes for a duct configuration, Tam and Auriault’ formulation

will be further verified and validated in a duct configuration. This is one of the topics of

this thesis.

1.2 CAA Applications

Since the perturbations of a sound source are so small compared to the mean flow,

the effect of its propagation on the mean flow is in general negligible. It is therefore a

common practice to study the convection and refraction effects of a sheared mean flow

on acoustic wave propagation by solving the linearized Euler equations (LEE) based on

such a mean flow. Unfortunately, the instability wave is intrinsic to the solution of the

homogenous LEE (for a shear flow, these instability waves are well known Kelvin-

Helmholz instabilities). The solution of the LEE includes both the instability wave

solution and the acoustic wave solution. Because the instability waves grow

exponentially as they are convected to the downstream, they can overwhelm the acoustic

wave solution downstream of the sound source. In order to develop a numerical solver to

study the effects of a mean flow on acoustic wave propagation, it is critical to establish a



method that can either suppress the instability waves or isolate the instability waves from

the total solution so that the acoustic wave solution can be obtained by subtracting the

instability wave solution from the total solution.

In the past, many techniques have been developed for this purpose. Agarwal et a1.

[15, 08, 24, 53] developed a general technique in the frequency domain to filter out the

instability waves. The method is simple and effective than the previous studies [15, O8,

24, 53]. However, the disadvantages of the technique are that it requires a large amount

of memory due to direct matrix solvers and it can only handle single frequency sound

sources due to the nature of frequency-domain approaches. Ewert and Schrbder [12]

presented a time-domain approach by formulating acoustic perturbation equations driven

by sources determined from a compressible flow simulation. They demonstrated that the

systems of acoustic equations are free of instability waves for critical mean flows.

Recently Zheng et a1. [59] developed a time-domain method to separate the instability

waves from the acoustic waves without any modifications of the governing equations.

For a single frequency noise source, they have shown that by placing a sound source with

the same excitation frequency upstream of the domain of interest, where the acoustic

wave solution is desired, the instability wave solution alone can be approximated in the

region of interest. The acoustic wave solution is then successfully achieved by

subtracting the instability wave solution from the total solution of the LEE. Since one of

the main advantages of the time-domain technique is that it can handle multi-frequency

or broadband noise sources, one objective of this thesis is to extend the above global

time-domain technique to multi-frequency or broadband noise sources so that the



separation of the acoustic wave solution from the instability wave solution can be

performed effectively for any noise sources in critical mean flows.

Noise, as an environmental issue, has a major impact on both the conceptual and

detailed design of modern aircraft engines. Because of the large bypass ratios in modern

aircraft engines, fan noise is becoming an increasingly important noise source during the

critical take-off and landing phases. Reducing acoustic noise emission of jet engines is of

great interest in civil applications. This is where CAA is of great importance. Novel

acoustic treatments and scarfed inlets of turbofan engine inlet ducts designed to attenuate

such noise are therefore vital for the noise reduction of modern aircraft engines. These

designs usually rely upon extensive experimental tests, which are very expensive and

time consuming. Novel acoustic liners designed to attenuate such noise are therefore vital

for the noise reduction of modern aircraft turbofan engines. These designs usually rely

upon extensive experimental tests, which are very expensive and time consuming. In

order to achieve optimal acoustic liner designs, it is necessary to have accurate

impedance models and aeroacoustic prediction tools so that acoustic fields inside and

radiated from both inlet and exhaust of turbofan engines can be predicted accurately and

efficiently. For this reason, there have been ongoing research activities for the

development of numerical noise prediction systems,[ 3, 9, 11, 19, 20, 28, 30, 39, 41, 42,

43, 44, 58, 65] and impedance boundary conditions. [13, 14, 17, 26, 27, 32, 33, 35, 49, 64]

In the past, there have been ongoing research activities for the development of numerical

noise prediction systems.[3, 9, 30, 36, 41, 43, 44] It has been shown that these numerical



tools can be effectively used to predict both the acoustic wave propagations inside the

inlet duct and the directivity patterns of the radiated sound in the far field.

A CAA noise prediction tool greatly assists in designing turbo fan engines by

reducing the number of physical prototype builds and tests. Better physical insights are

also obtained through virtual parametric studies that are typically more comprehensively

done than if done physically. The power of such a tool is enhanced when it is used in

conjunction with an optimization program. Without a complete knowledge of the physics

involved in the product development, the user of the tool has to, to a certain degree, adopt

the method of trial and error to find a design that meets the requirements. Manpower is

spent in analyzing results, deciding the next design to try, and re-setting up the model, etc.

When multiple design variables are involved, it is a serious challenge for a designer to

think in a multi-dimensional design space, and only a limited portion of the design space

is explored. The result of such a heavily human involved design loop may be time-

consuming and far from the best possible design. On the other hand, in an optimization

process, an optimizer takes much of the human work.

A noise prediction and optimization system for turbofan engine inlet duct design

is developed in this thesis. Such a system naturally consists of a) a tool for predicting

acoustic fields inside and radiated from a turbofan engine inlet duct and b) an optimizer

that finds optimum design parameters toward a certain requirement on noise emission.

Several design scenarios of practical significance are exercised with the noise prediction

and optimization system. In the first two of them, the acoustic power emitted from a

engine inlet duct is minimized by finding either the optimum duct geometry or the liner



impedance. In the third scenario, the overall noise level in an affected region during a

take-off or landing phase is minimized by finding the most cost-effective liner layout.

Active noise control is an increasingly attractive topic on attenuation of jet engine

inlet duct noise. The traditional approach is to employ a passive duct liner in the walls of

the engine nacelle. Since the performance of these conventional passive liners depends on

the source level and spectrum as well as the mean flow, [37] traditional passive liners

with fixed irnpedanCe properties may not provide the maximum noise suppression due to

the inability of adjusting liner impedance properties to achieve the optimum impedance.

In order to suppress the noise more effectively, the impedance properties may need to be

adaptively adjusted to accommodate the continuously changing mean flow conditions and

the spectra of the noise sources. This is the essential idea of truly active noise control.

Naturally, the realization of such noise control requires a) a liner whose impedance

properties are adjustable and b) an algorithm that determines the optimum impedance

properties. One objective of this thesis is to establish a design for the coupling of a CAA

time-domain method with an optimizer for adaptive noise control. Although such noise

control is still not a truly active noise control, it is a large step toward truly active noise

control as compared with the traditional passive noise control.

1.3 Thesis Outline

Chapters 2, 3 and 4 are toward the methodology of CAA while topics on its

applications are discussed in Chapters 5, 6 and 7. Conclusions are given in Chapter 8.

In Chapter 2, the effects of optimization parameters, 60 , A and a on the

characteristics of broadband optimized upwind schemes are systematically studied. An



approach for designing high-order optimized upwind and central finite difference

schemes is presented. In this approach, numerical schemes are optimized at several

discrete frequencies instead of over a range of wavenubmer. These optimized multi-

component schemes, as referred to in this thesis, are very accurate to predict an acoustic

wave of dominant wavenumbers.

Chapter 3 is dedicated to verify the time-domain broadband impedance boundary

conditions formulated by Tam and Auriault. [49] A three dimensional acoustic wave

propagation problem with an impedance boundary is proposed as a test problem. Its

analytical solution is derived and evaluated. The test problem is then numerically solved

using the time-domain broadband impedance boundary condition implemented in a CAA

code and the results are compared with the analytical solution.

Chapter 4 is to verify the above mentioned formulation of the impedance

boundary condition in a duct environment. The CAA code is used to solve a semi-infinite

two-dimensional duct problem with an acoustic liner with or without a sheared mean

flow. In addition, the formulation with the CAA code is validated by the experimental

data from the NASA Langley flow impedance tube facility. In both the verification and

the validation problems, the no-slip condition is assumed for the mean flow to avoid the

controversy over the condition of particle displacement continuity and the condition of

particle velocity continuity, and also to ensure the well-posedness of a time-domain

broadband impedance boundary condition.

In Chapter 5, a time-domain method is developed that can separate the undesired

instability wave solution under a critical sheared mean flow condition from the acoustic

solution of the linearized Euler equations. The previously developed CAA code is used to



demonstrate the effectiveness of the method by solving an acoustic propagation problem

with a three-frequency sound source under a critical sheared flow condition.

In Chapter 6, a design of an adaptive noise control system (ANC) is proposed.

The system consists of two primary components, an expert subsystem with an acoustic

prediction code coupled with an optimizer and a liner with controllable impedance

properties. For an acoustic field under the influence of a noise source, a liner and a mean

flow condition, an optimization process is executed by the expert subsystem in search of

a set of required impedance parameters that minimize the difference between the current

and the desired acoustic fields. The liner prOperties then can be adjusted adaptively to the

required impedance parameters. The feasibility and potential of the design concept are

demonstrated by using the previously developed CAA code and the three-parameter

impedance model of the Helmholtz type.

A noise prediction and optimization system for turbofan inlet duct designs is

developed in Chapter 7. This system consists of a noise prediction tool and an optimizer.

For the noise prediction tool, a hybrid method is adopted: a CAA method for the duct and

its near field and a Kirchhoff method for the far field. The noise prediction system is

verified with several test problems, each emphasized on testing a specific aspect of the

system. The capabilities of the system are demonstrated with three applications: liner

impedance optimization, duct geometry optimization and liner layout optimization.



2 HIGH-ORDER OPTIMIZED NUMERICAL SCHEMES

FOR COMPUTATIONAL AEROACOUSTICS

In this chapter, the effects of optimization parameters, 30 , A and a on the

characteristics of broadband optimized upwind schemes are first systematically studied.

A new approach for designing high-order optimized schemes is then presented.

2.1 High-Order Optimized Upwind Broadband Schemes

Acoustic problems are governed by the linearized Euler equations. To simplify,

consider the one-dimensional scalar modal wave equation, with c being the speed of

sound,

Bu Bu

‘a—t" + Ca — 0 (2.1)

Suppose we are using a stencil with N points to the left and M points to the right. The

spatial derivative 6a / 82: in Equation (2.1) can be approximated by a finite difference on

a uniform grid of spacing A2: in the general form

Bu 1 M
— = — a "u; ' (2.2)

(0:1: )1 AID-121v J +1

Bu Bu . .
where 5; =5;(le,t) , ui+j =u[(l+ ])A:r,t] and the coefficrents aj are

1

determined by the specific schemes, one of which, referred to as “standar ” in this

chapter, is purely based on Taylor series expansion. Obviously a standard scheme has the

maximum order of accuracy with a given stencil. However this property does not

necessarily guarantee that the scheme satisfies the dispersion relation to a maximum

10



extend for a given wavenumber. In other words, the numerical wavenumber a defined in

Equation (2.3) is not optimized to be as close to the wavenumber a as possible.

_ i M ..
a = —A—$j;N aj exp(zjaAa:) (2.3)

Instead of achieving the maximum order of accuracy by the Taylor expansion, the

strategy applied to optimized schemes is to set some coefficients in the finite difference

approximation free so that they can be used for minimizing the dispersion and the

dissipation errors of the schemes. Specifically the L2 norm of the error introduced by the

approximation of the non-dimensional numerical wavenumber 6A2: to the non-

dimensional exact wavenumber aAa: is defined as [46]

B0 — 2
E = f IaAz — aAzl d(aAa:) (2.4)

-30

For optimized upwind schemes, the numerical wavenumber, 6A2: , is a complex number,

and the integrated error E is considered as [67]

30 — 2
= A Re 0A2: —- 0A2:

E f-fio{ [ ( ) ] + 2 (2.5)

(1 — A)[Im(an) + exp(—ln 2((laAsvl — 7r) /0)2)] }d(an)

where Re and Im denote the real and imaginary parts, repectively, 60 defines the range

of wavenumber for optimization, A is a weighting factor and a is a control parameter

which determines how the imaginary part of the numerical wavenumber approaches to

zero. The integrated error E is then minimized with respect to coefficients aj that are

chosen as free parameters,

BE

0713' — O (2.6)

11



It is known from the previous work [21, 22, 45] that if the range of wavenumber

is too large the oscillations or overshoot observed in both the real and the imaginary parts

of the numerical wavenumber will increase. However, using a small value of fig will not

be able to exploit the full potential of the optimized schemes. From the current

investigation it is noted that all the three parameters fig , A and a in Equation (2.5) can

be adjusted to improve the optimized upwind schemes. The objective here is then to

study the effects of each individual parameter on the dispersion and the dissipation errors

of the schemes. A 7-point stencil with 4 points to the left and 2 points to the right is used

for all the schemes considered in this section. Since the optimization performed in this

section is over a range of wavenumber, the schemes are referred to as the optimized

broadband schemes, as distinguished from the optimized schemes studied in the next

section.

At first, the effects of the parameter fig are investigated. It is concluded from the

previous work [21, 22, 45] that although using a small value of fig does not allow us to

take advantage of the optimized schemes to their full potential, it, however, does reduce

the dispersion and the dissipation errors of the schemes. Our results shown in Figure 2.1

indicate that this is not always the case when there are other parameters involved during

the optimization process. In Figure 2.1 the Fourier analysis of the optimized upwind

broadband schemes with fig 2 7r / 2 and 7r / 3 is shown along with that of the standard

Taylor scheme. The parameters A and a are considered as A = 0.9661 and

a = 0.27957r for both of the optimized schemes. It can be seen that the deviation from

the exact solution increases for both the real and the imaginary parts of the numerical

wavenumber with the range of wavenumber decreased from fig = 7r / 2 to fig = 7r / 3.

12



As a matter of fact, the accuracy of the optimized scheme with fig = 7r / 3 is even worse

than that of the standard Taylor scheme. To improve the scheme with fig = 7r / 3 one

has to search for optimum values of parameters A anda . Therefore, decreasing the range

of wavenumber for optimization alone does not always improve the scheme. In Figure

2.2 the Fourier analysis of the optimized schemes with fig = 7r / 2 and A = 0.9661 is

shown for different values of the parametera. As we can see, the effect is monotonic in

the range of the parameter a tested here. It is interesting to note in Figure 2.2 (a) that the

three curves for different values of a intersect at a point where OAT is a little less than

the given range of wavenumber fig (fig = 7r / 2 ). It seems that there is a better value for

a at which the deviation from the exact solution is overall relatively small for a given

optimization range. Figure 2.2 (b), shows that the scheme passes through the exact

solution at a relatively larger value of OAT for the smallest value of a , but a significant

overshoot of the dissipation error makes the scheme unstable. Similar behavior of the

dispersion and the dissipation errors are shown in Figure 2.3 with the parameter A varied.

In Figure 2.3 the parameters fig and a are given as fig = 7r / 2 and a = 0.27957r for all

the schemes.
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From the results shown above, it is concluded that all the three parameters, fig , A

and a affect the characteristics of the optimized upwind broadband schemes. The

improvement of the schemes is limited since increasing the accuracy for relatively large

values of OAT is at the expense of decreasing the accuracy for smaller values of OAT.

A practical approach is to control the errors by adjusting the available parameters in such

a way that all the wavenumbers in the range of interest is reasonably balanced. This is

particularly important when the schemes are used to solve waves with broadband

wavenumbers.

2.2 High-Order Optimized Multi-Component Schemes

High-order schemes discussed in the last section are optimized over a given range

of wavenumber. As we have seen, for a given range of wavenumber the parameters A

and 0 also affect the characteristics of the optimized upwind schemes. For a scheme that

gives an accurate result for relatively large values ofOAT , the deviation from the exact

solution for smaller values of OAT could become excessive. In order to improve the

optimized upwind schemes for smaller values of OAT , one has to find optimum values

for parameters A and a over a given optimization range of wavenumber. Unfortunately

the improvement of the scheme for smaller values of OAT is only possible at the

expense of decreasing the range of wavenumber, fig, over which the scheme is capable

of giving an accurate solution. The question, then, arises if it is possible to construct a

scheme that can give accurate solutions for waves with both high and low wavenumber

components. The main objective of this section is to design such a scheme that is accurate

and efficient for waves with both large and small wavenumbers. Since it is not

uncommon for acoustic waves to have several dominant wavenumbers ranging from
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small to large, the scheme is, therefore, optimized for these dominant wavenumbers. To

construct the coefficients, aj , of such a scheme, instead of minimizing the integrated

error E for a given range of wavenumber, the numerical wavenumber, OAT , is set to be

equal to the actual wavenumber, OAT , at these dominant wavenumbers. Therefore for

each dominant wavenumber, the following two equations have to be satisfied.

M

Re(OAT) = Z aj sin(jOAT) = OAT (2.7)

j=—N

M

Im(O'AT) = — Z aj cos(jOAT) = —e (2.8)

j=—N

where e is a small positive number to prevents the scheme from becoming unstable at

these dominant wavenumbers as time increases. If the number of dominant wavenumbers

is P , then the number of equations used for matching the numerical and the actual

wavenumbers is 2P. In order to construct a scheme with a given order of accuracy,

additional equations from the Taylor series expansions

M

Z a]- = 0 (2.9)

j=—N

M

Z ajj=1 (2.10)

j=—N

M

Z aJ-j’“ =0, k=2,3,...,M+N—2P (2.11)

j=-N

are needed. The nominal accuracy of the scheme is of (M + N — 2P)th order. Noted

that the number of stencil points has to be chosen accordingly in order to have a certain

order of accuracy. In the current investigation, the upwind scheme with a 9-point stencil

18



is optimized for three selected wavenumbers, 117r/60 , 77r/30 and 7r/3 , with grid

The coefficients, a§VM (with N = 5spacing AT given as 1 and s = 10‘5 .

andM = 3), of the Optimized 3-component scheme with 2nd—order accuracy, along with

the standard Taylor 8th-order scheme and a 6th-order optimized broadband scheme

(OAT, A = 0.9962 , a = 0.27957r) are calculated and given in Table 2.1. It is worth

mentioning that a_J J

Table 2.1 The coefficients of three schemes using the same stencil

 

 

 

 

 

 

 

 

 

    

Taylor Optimized broadband 3-corrcrplgrirrélritzigheme

63%., 0.003571428571429 0.003230147260265 0.005604334153557

a532, 0.035714285714286 0.032070834858131 0.045751714302010

a???) 0.166666666666667 0.150718387386172 0.184410450650187

(£32 0.500000000000000 0.461711038871108 0.505608972029783

£31 0.250000000000000 -1.194148295379005 -1.222126953455600

083 0.449999999999999 0.398926233735301 0.399314635216253

9153 0.500000000000001 0.528733084416301 0.541020210497248

033 0.071428571428572 0.080551224485787 0.088485995954237

933 0.005952380952381 0.007206862630388 0.008932202168292
 

The Fourier analysis of the three schemes is shown in Figure 2.4. We can see that

both the dispersion and the dissipation errors of the 3—component scheme are kept at a

very low level for quite a wide range of OAT. At the wavenumbers, 117r / 60 , OAT and

7r / 3 , for which the optimization of the scheme is performed, the dispersion error is as

small as zero and the dissipation error is a minimum (it cannot be given as zero due to the

stability consideration). In order to examine the region of smaller OAT more clearly, an
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enlarged plot of Figure 2.4 is given in Figure 2.5 for the range of O} /O — 1. It is shown

in Figure 2.5 (a) that the three-component scheme passes through the exact solution at the

three selected wavenumbers, but an oscillatory behavior around the exact solution with

small amplitudes is observed. It is noted from Figure 2.5 (b) that the imaginary part of the

numerical wavenumber OiAT is greater than zero in the region of

0.79 < OAT < 1.04. These positive values of the imaginary part of the numerical

wavenumber, although small in magnitudes, imply the 3-component scheme constructed

here would eventually lead to an unstable solution for waves with a wavenumber OAT

falling into this region. However, for waves with the three selected dominant

wavenumbers, the 3-component scheme is stable and able to give minimum dispersion

and dissipation errors. We will discuss how to avoid the stability problem of the 3-

component scheme for broadband waves later in this section. We can also see from

Figure 2.4 that the highest wavenumber for which the dispersion and dissipation errors

are minimum is around OAT = 7r / 3 for the 3-component scheme. The scheme,

therefore, can accurately resolve a wave with a number of points per wavelength (PPW)

as low as 6. However, the other two schemes shown in Figure 2.4 begin to deviate from

the exact solution at much smaller wavenumbers.

In order to test the effectiveness and accuracy of the 3-component scheme, the

dimensionless one-dimensional Euler equations

n

P

a p

a

8
+—61: = 0 (2.12)

    

are solved numerically for two wave propagation problems using all the three schemes

given in Table 2.1. The flux vector splitting method is used and the Jacobian matrix is
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split according to positive or negative eigenvalues. For all the three schemes, the

coefficients used for the time discretization are the same as those derived by Tam et al

[47].

First we consider a wave with three Sinusoidal components of different

wavenumbers,

u(T,t) = p(T,t) = 0.3COS[%($ — t) — 1.0]

+1.0COS[:731(;-(£L' — t) + 0.1] (2.13)

117T

1. I —. —t — .+ 0005]60 (T ) 07]

The computational domain is given as —120 g T g 0 and the periodic boundary

conditions are imposed at the both boundaries. The grid size used by all the three

schemes is considered as AT 2 1.0 , i.e. PPW = 6 for the highest wavenumber

component, O = 7r / 3. The time step is given as At = 0.1. Afier the wave has traveled

a distance of 120000AT, or 1000 fundamental wavelengths in this case, the numerical

solutions from the three schemes are compared with the analytical solution in Figure 2.6

(a). As expected the 3-component scheme gives the most accurate result since the scheme

is optimized for the three dominant wavenumbers. The advantage of the 3-component

scheme can be demonstrated more clearly by comparing the errors of solutions from the

three schemes (see Figure 2.6 (b)). It is known that the optimized broadband schemes,

although optimized for the range of fig 3 7r / 2 or 7r / 3 , cannot give satisfactory results

when using PPW = 6. Results shown in Figure 2.6 (b) substantiate the claim that it is

necessary for the optimized broadband scheme to use more PPW (e.g. with

PPW = 10) to achieve a reasonably accurate solution. Therefore these schemes are not

always suitable to predict wave propagation accurately and economically (e.g. with

21



PPW = 6). For acoustic waves with dominant wavenumbers, the advantage of using

multi-component schemes is that the schemes not only accurately predict the solution but

also use a minimum PPW (e.g. PPW = 6 ) for the component of the highest

wavenumber (e.g. O,- /O ). Since the deviation from the exact solution for smaller values

of OAT is not excessive for the 3-component scheme (see Figure 2.4 and Figure 2.5), the

smaller wavenumber components can be easily resolved by the scheme due to their

relatively large individual PPW ’S.
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Figure 2.4 Comparisons of the optimized upwind 3-component scheme

(a = 117r/60, 77r/30 and 7r/3, s = 10-5), the optimized upwind broadband

scheme (fig = 7r/ 2 , A = 0.9962 , a = 0.27957r) and the standard Taylor

scheme (a) O, / O —1 versus OAT; (b) O,- / O versus OAT.
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Figure 2.7 The wavenumber spectrum of the broadband wave.

Until now we have demonstrated that the 3-component scheme has the advantage

when resolving waves with dominant wavenumbers. It is also interesting to find out if the

scheme can be used to solve broadband waves. For this purpose, a Gaussian wave is

considered instead of the wave with the three sinusoidal components. The dimensionless

velocity and pressure for the Gaussian wave are given as

_ 2
_(2: t4:- 60)] (2.14)
 u(T,t) = p(T,t) = exp

 

The peak of the Gaussian wave is located at T = —60. The computational domain, the

boundary conditions, the grid size and the time step used here are the same as those in the

previous problem. The Fourier transform of Equation (2.14), when performed with

respect to T , is
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12(O) = {7(a) = 4J7? exp[z'O(-—t + 60) —- 4O2] (2.15)

The transform gives the wavenumber Spectrum of the Gaussian wave and the module of

the transform is plotted in Figure 2.7. The horizontal axis in Figure 2.7 is the same as

that in Figure 2.4 Since the grid size AT is given as 1. It can be seen from these two

figures that the 3-component scheme gives slightly better characteristics than the other

two schemes in the region of 0 < OAT < 7r / 3 , where most of the wavenumber

components of the Gaussian wave exist. In Figure 2.8, the solutions from all the three

schemes are compared with the exact solution after the wave has traveled a distance of

12000AT. As expected, the 3-component scheme gives a slightly better result. However,

as mentioned earlier, the imaginary part of the numerical wavenumber for the 3-

component scheme is positive for some wavenumbers. Although the magnitudes of these

positive numbers are small, they will eventually lead to an unstable solution for a

broadband wave. In order to avoid the stability problem when solving broadband waves,

a modification to the upwind multi-component schemes is needed. There are some

approaches we could use to modify the optimized upwind multi-component schemes such

that the imaginary part of the numerical wavenumber either remains negative or is

positive for some wavenumbers, but with orders of magnitude smaller amplitudes.

Another approach to avoid the stability problem is to consider central multi-component

schemes instead of upwind multi-component schemes with the understanding that

artificial dissipation is required for central difference schemes. Three central 1-

component schemes and three central 2-component schemes are constructed for several

values of wavenumbers selected for optimizations. A 7-point stencil is used for all the

optimized central schemes discussed below. The orders of accuracy for these optirrrized
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central schemes are the 4th-order for the l-component schemes and the 2nd—order for the

2-components schemes. In Figure 2.9 the Fourier analysis of these 1-component and 2-

component schemes is shown along with that of Tam’s 4th-order, 7—ponit stencil

optimized central broadband schemes. As is shown in Figure 2.9, the l-component

schemes optimized for wavenumbers OAT = 0.9571 and OAT = 1.4215 are nearly

identical to Tam’s broadband central schemes with fig = 7r / 3 and fig = 7r / 2 ,

respectively. In fact, by adjusting the value of the wavenumber for optimization, the 1-

component scheme is almost identical to the optimized central broadband scheme with a

corresponding range of optimization. The results in Figure 2.9 also show a marked

improvement for the 2-component schemes. By adjusting the values of wavenumbers for

optimization, the 2-component schemes can always give better characteristics than those

of Tarn’s broadband schemes. The characteristics of a 2-component scheme can be

further improved by adding a 3rd wavenumber for optimization, but the number of stencil

points has to be increased accordingly.

The results shown in this section indicate that when solving acoustic waves with a

few dominant wavenumbers, the optimized multi-component schemes are superior in

terms of accuracy and efficiency to the optimized broadband schemes. In addition, the

performance of the optimized central multi-component schemes, if constructed

accordingly, is at least as good as the optimized central broadband schemes while solving

broadband waves.
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Figure 2.8 The results of the broadband acoustic wave after traveling a distance

of 12000AT predicted by different schemes. (a) wave shapes as compared to the

exact solution, (b) local corresponding errors.
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Figure 2.9 Comparisons of the central multi-component schemes with Tam’s

central schemes and the standard Taylor scheme. The dots on the horizontal axis

indicate the values of OAT for which the 1- or 2-component schemes are

optimized.
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3 A THREE-DIMENSIONAL BENCHMARK PROBLEM

FOR BROADBAND TIME DOMAIN IMPEDANCE

BOUNDARY CONDITIONS

In this chapter, an acoustic wave propagation problem in three dimensions with

an impedance boundary is proposed and its analytical solution is derived and evaluated. It

is then used as a benchmark problem to test a broadband time domain impedance

boundary condition.

3.1 Formulation of the Test Problem

The test problem is illustrated in Figure 3.1. The domain of interest lies in the

ranges of —00 < T < oo, —oo < y < co and z 2 0. A liner with uniform impedance

2(0)) 15(w)/ 23,,(60) is applied at z = 0, where p and 0,, are acoustic pressure and

particle velocity ’0” normal to the liner (positive when pointing into the liner) in

frequency domain. A spherical Gaussian acoustic pressure pulse pg(R) = exp(—BR2) is

initially introduced with zero initial velocity components, where constant B > 0 and R

is the distance to the pulse center at S(0,0,zg). It is noted that all the quantities in this

report are non-dimensionalized such that the speed of sound is unity.

3.2 The Analytical Solution

The analytical solution of the test problem is considered to be the superposition of

three component waves, i.e., the outgoing wave, which diverges from the sphere center,

the incoming wave, which converges to the sphere center and the reflected wave by the

impedance boundary. A broadband incident wave needs to be decomposed into harmonic

waves and a non-plane incident wave needs to be decomposed into plane waves. Then the

31



reflection of each of the harmonic plane incident wave by the impedance boundary can be

determined. The total reflected wave is in a form of an integral of the reflected harmonic

plane waves. This is the general idea for deriving the analytical solution to the problem.

T2 Spherical initial pulse

/ 

 

   
 

     I-\       
Ix

Liner at z = 0

Figure 3.1 Schematic of the test problem

The outgoing and incoming waves in free space with the same initial condition

can be determined, in terms of the velocity potential «,2 defined by V99 : 17 with

spherical symmetry [57], to be

990ut(Rit) : f(R _ t)/R (3-1)

Win (R, t) = —f(R + t)/ R (3.2)

where R = r2 + 312 + (z — 25)2 and f is determined from the initial condition to be

f(r) = —exp(-Br2)/(4B), for —00 < r < 00.

For the test problem, the outgoing and incoming waves are not exactly the same

as the free space solutions. This is because the actual initial condition is not a complete

spherical Gaussian pulse, part of which is outside the semi-infinite space. However, if the

32



center of the spherical pulse is far away from the impedance boundary, the outside

portion of the initial pulse will be of very small amplitude and thus insignificant to the

whole problem. Therefore, we can safely assume a complete initial spherical Gaussian

pulse for the test problem and approximate its outgoing and incoming waves with the free

space solution in Equations (3.1) and (3.2). Such treatment will greatly simplify the

analysis.

The reflected wave is determined by considering the incident (outgoing) wave

‘Pout in Equation (3.1) being reflected by the impedance boundary. As stated earlier, the

broadband spherical outgoing wave must be decomposed into harmonic plane

components to study the effects of the impedance boundary. This decomposition process

is done in the following two steps (can be done in the reverse order).

In the first step, the broadband outgoing spherical wave ‘Pout is decomposed into

harmonic outgoing spherical waves

(00.4120 = f_°:of(ko)expiiko(R - 01/de0 (3.3)

by resolving function f(R —— t) into its Fourier transform

filo) = exp[—k3 awn/(8858')

which is real and even due to the fact that f(R — t) is real, even and summable. [5]

Obviously the expression exp[ikg(R — t)] / R in the integrand of Equation (3.3)

represents a harmonic outgoing spherical wave with an angular frequency/wavenumber

kg (the speed of sound is unity). Since f(kg) is real and even, the integration in Equation

(3.3) can be performed only over the non-negative range of angular

frequency/wavenumber kg with the real part of the integral unchanged,
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00.4130 = 2Re{f0°° f(k0)eXP(-ik0t)exp(ikoR)/deo} (3.4)

For the sake of convenience, the time dependence is separated from the harmonic

spherical wave, which will then be represented only by the term exp(z'kgR) / R in the

following derivation.

As the second step of the decomposition process, a harmonic spherical wave

exp(z'kgR) / R with a non-negative angular frequency/wavenumber kg is decomposed

into harmonic plane waves, using Weyl’s integral, [38, 40]

 

' oo oo dkxd

exp(ikgR)/R = %f_oof_ooexp{i[kxx + kyy + kz(z — 23)]} k kg , for z > 0(3.5)

2

where exp{z'[sz + Icyy + kz(z -— zs)]} represents a harmonic plane wave with

 

k, = 77.3 — k3 — Inf, .

By now, the broadband spherical incident wave has been decomposed into

harmonic plane waves and thus it is ready to incorporate the effects of the impedance

boundary on each of these harmonic plane incident waves. Using the method of mirror

image, the reflected wave of each of the harmonic plane waves in the integrand of

Equation (3.5) by the impedance boundary is determined to be

Cr(kg,kz)exp{i[kxT + logy + kz(z + z5)]} (3.6)

where the reflection coefficient 0,.(kg, k2) is determined from the liner impedance Z(w) ,

crank.) = 12008. In) — 1712800. /k0) +1] (3.7)

Corresponding to Equation (3.5), the reflected harmonic (non-plane) outgoing wave is

then obtained by integrating the reflected harmonic plane waves in Equation (3.6),

dkxdky

2

(3.8) 

(pk0,,.efl(T,y,z,kg) = %f_:f_:cr(k0ikz)exp{i1kxx + kyy + kz(z '1' ZS)”
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Similarly, the reflected wave of the outgoing wave in Equation (3.4) is obtained by

integrating the reflected harmonic (non-plane) wave in Equation (3.5),

w A .

9041(3in zit) = 2Re{j;) f(k0)eXp(—2k0t)991.g,refl(Rak0)dk0} (39)

By changing the variables of integration and separating the real and the imaginary

parts of Equation (3.8), we have

Re{<pt~.,,rafl(x,y,z,k0)l = k0f_01015in(k03'§ — firVoIkorx/l — £2115

+1:ng 02 COS(,32)e—kOZ'EJ0[k0T\/1 + £2]d{

and

ImISOkg,refl($i y, 416)] = koficr cosikoz't - firflolkorflldé

+kof0°° 02 sin(fi2)e"‘"z'5Jolk0rW1d:

where Jg is the Bessel function of the first kind of order zero and 01 , 02, fil and ,32

are the moduli and arguments of reflection coefficients Cr(k0,—k‘0€) and Cr(k0,ik0§)

defined in Equation (3.7),

CI = lCi-(koi-koéfl, fir = arsICr(k0,-k0€)1.

02 = ICrU‘OiikOQI’ 32 = argICAkoiikoOI-

By taking the derivatives of the velocity potential, the acoustic pressure and the

components of the particle velocity can be determined. Specially, the acoustic pressures

associated with the outgoing, incoming and reflected waves are determined from

Equations (3.1), (3.2) and (3.9),

R—t

2R

 

(9

Pout (xiyizit) = —-a_;900ut (Bit) = 6Xp[—B(R — ”2] (310)
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R+t

2R

 

0

1302(3) yizit) = —EWIR(RIt) = €Xp[—B(R + 02] (311)

and

B

I’m/1(3) yr 23 t) = — 3t- ‘Prefl ($7 y) 27 t)

00 - (3.12)

= 2f0 k0f(k0)ISin(k0t) Beware/r) — 008(kot)1m(<pa,,rafl)ldko

which has to be evaluated using numerical integration. The total acoustic pressure is

given by the sum of Equations (3.10), (3.11) and (3.12).

3.3 Numerical Implementation

3.3.1 Broadband Dispersion-Relation-Preserving (DRP) Upwind Scheme

A fourth-order, seven-point stencil optimized upwind DRP scheme with the

parameters [68] chosen as fig = 7r/2, A = 0.0374 , and a = 0.26757r is used for the

numerical simulation of the Euler equations. The approximation coefficients used in the

scheme for the interior and boundary points are the same as those listed in Reference [68].

3.3.2 Broadband Time Domain Impedance Boundary Condition

For the impedance of the Helmholtz resonator type characterized by

Z(w) = Rg — i(X_1/w + X101) (3.13)

where Rg , X_1 and X1 are constant parameters, the broadband time domain impedance

boundary condition is given by Tam and Auriault [49] as

80,,

at

821),,

6t2

 
- X_1'Un + X1

 

0p _

Fi _ R0 (3.14)

where p and 0,, are the acoustic pressure and the normal acoustic velocity at the

impedance boundary (positive when pointing into the impedance liner) in the time
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domain. Since in a discrete form, both the Euler equations and the impedance boundary

condition (3.14) have to be satisfied on the nodes at the impedance boundary, extra

freedom must be introduced to accommodate this requirement. For this purpose, a ghost

value for pressure is introduced on a point outside the computational domain one grid

spacing away from each of those boundary nodes. For the test problem, the discretized

ghost value for pressure at time level n is

pn()
(R) 15

piijghost =(Azle :1:call 519271))/a—1 (3-15)

}(n-1)

and 0115 and b) are the coefficients for spatial and temporal discretization of the DRP

where

Bu 60 6w
(n+1)_ 8(n) 3 _i _ _ .. ..

8151.873]. + Atleob’] X1 33; + 83/ +—(92 L“) + R0320 + X-lwwfl

   

scheme.

3.3.3 Nonreflecting Radiation Boundary Condition

The boundary conditions at all the boundaries other than the impedance boundary

should be able to simulate the situation of a semi-infmite space by allowing the waves to

leave the finite computational domain without being reflected. This physical condition is

approximated by the non-reflecting radiation boundary conditions for the three-

dimensional case

51 i l —T T_
(6t+6r+r)[p’v ,p] —0 (3.16)

where r is the distance between the current boundary point and a fixed point inside the

computational domain.
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3.4 Comparison of the Results

In the test problem, the initial acoustic pressure pulse pg(R) = exp(—BR2) with

B = (1n 2)/ 25 is centered at S(0,0, 30). The three parameters for the impedance model

are Hg 2 0.2, X_1 = —0.4758 and X1 = 2.0938.
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Figure 3.2 Comparison of the acoustic pressure along the T-axis at (a) t = 20

and (b) t = 30.
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The results from the numerical simulation are compared with the analytical

solution for the test problem. The acoustic pressure along the T -axis, which is at the

impedance boundary, at t = 20 and t = 30 is shown in Figure 3.2 (a) and Figure 3.2

(b). Shown in Figure 3.3 is the acoustic pressure along the z -axis at t = 30. The

asymmetry about 2 = 30 where the center of the initial spherical pulse lies shows the

effect of the impedance boundary. As we can see in all the figures, the numerical

solutions agree very well with the analytical solutions and thus the time domain

broadband impedance boundary condition is verified.
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Figure 3.3 Comparison of the acoustic pressure along the z -axis at t = 30
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4 VERIFICATION AND VALIDATION OF A TIME-

DOMAIN IMPEDANCE BOUNDARY CONDITION IN LINED

DUCTS

In section 4.1, a semi-infinite impedance duct problem is proposed and its

analytical solution is given. In addition the numerical scheme is introduced along with the

time domain-broadband impedance boundary condition and other relevant types of

boundary conditions. The numerical results are compared with those of the analytical

solution at the end of the section. In section 4.2, the configuration of the NASA Langley

flow impedance tube facility is introduced, for which the numerical method is again

implemented and the results are compared with the experimental data. The effects of the

exit boundary condition are also discussed.

Unless otherwise stated, variables used in this chapter are dimensionless with

L =1m as the length scale, Cg = 344.283m/s as the velocity scale,

p0 = 1.29 kg/m3 as the density scale, L/CO as the time scale, p008 as the pressure scale

and ngg as the impedance scale. The harmonic time dependence exp(z’wt) is assumed.

Under this convention, the impedance is Z = R + z'X , where R and X are the

resistance and the reactance.
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4.1 Verification with Analytical Solution

4.1.1 Verification Problem and its Analytical Solution

To verify the time—domain impedance boundary condition, we consider a semi-

infinite two-dimensional duct with a hard upper wall and an acoustically treated lower

wall. The lower wall is characterized by its frequency dependent impedance

Z(w) = 13(w)/ 27n(w) (4.1)

The mean flow velocity inside the duct is parallel in the z direction, i.e., Mx = M(y)

and My = 0 . The mean flow density and pressure are constant and equal to p0

and poo?) / 7 , respectively. Such a duct configuration is shown in Figure 4.1. The

orientation of the coordinate system is shown in the figure and its origin is at the lower

left comer of the duct.

Incoming wave 1

Do”

 

 

  
 

_hard wall

acoustic treatment

 

Figure 4.1 The semi-infinite impedance duct

This problem is governed by the two-dimensional linearized Euler equations

(LEE) with a parallel mean flow in the a: direction,

Bu (911 an

where
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'p‘ M01) 1 0 0 '0 o 1 0'

u 0 M(y) 0 1 O 0 0 O

= a = a B = 9

u v A 0 0 M(y) 0 0 0 0 1 and

.P. 0 1 0 M(y) .0 0 1 0‘

’0 O O O

0 0 M'(y)

D =

O 0

10 0 OJ

When the solution to the LEE is assumed to have the following form

"I>(y)'

U(y) [‘( t k )] (4 3)u = exp 2 w — x .

V(y) .-

.P 9).  

Equation (4.2) can be reduced to a second-order ordinary differential equation for P(y)

only,

P"+ ——2k—$———M'(y)P'+ {[w — M(y)kI ]2 — 1%? }P = 0 (4.4)

w - M(10kg:

At the upper boundary of the duct, the boundary condition is given as the hard

wall boundary condition

P '(h) = O (4.5)

To give the boundary condition at the acoustic treatment, we have to face a

controversy as to whether the condition of particle displacement continuity (PDC) or the

condition of particle velocity continuity (PVC) is to be used. When PDC or PVC is

satisfied the boundary condition at the lower boundary at y = 0 is

ZwP'+ z'[w — M(0)k,]2P = 0 (4.6)
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or

ZP'+ i[w — M(0)kz ]P = 0 (4.7)

It is not an intention of this chapter to solve such a controversy. However, if no-

slip condition is assumed, e.g., the mean flow is zero, at the acoustic treatment, it is easy

to verify that Equation (4.6) is the same as Equation (4.7) and thus the controversy is

avoided. On the other hand, if slip condition is assumed instead, the boundary

condition (4.6) or its time-domain equivalents will lead to an unstable solution and thus is

ill-posed. Stability analysis shows that any time-domain solution with such a boundary

condition is prone to stability problems. [49, 52] Although the stability analysis was done

in a semi-infinite domain, our numerical results show stability problems even in a duct

configuration. For these reasons, the no-slip condition is assumed in the current study.

For such a case, both Equation (4.6) and Equation (4.7) are reduced to

ZP'+ in = 0 (4.8)

Equations (4.4), (4.5) and (4.8) define an eigenvalue problem with k; being the

eigenvalue. For a general sheared mean flow profile M(y) , the problem is not

analytically solvable and thus numerical procedure must be employed. For the zero mean

flow case, the solution (for the right propagating wave) can be given as

P(y) = C cos[ky(h - 11)] (4.9)

where constant C is resulted from solving the eigenvalue problem; Icy is determined by

solving the following transcendental equation

Zky tan(kyh) — iw = 0 (4.10)

with
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h==uP—g min

The eigenvalue problem has a series of eigenvalues km, each corresponding to a mode

allowed in such a duct configuration. We have calculated the least attenuated mode

allowed in the configuration shown in Figure 4.1 with duct widthh = 0.0508 , frequency

2000L/c0 and specific impedance Z = 4.99 + 0.252' for the treatment. For the zero

mean flow case, k3 = 36.2 — 1.942’ , Icy = 9.13 + 7.672’ and P(y) is given by Equation

(4.9). For the case with a sheared mean flow M(y) = 1.2(y / h)(1 — y / h) of centerline

Mach numberM(h/2) = 0.3, kg; = 30.0 —1.362' and P(y) is obtained by numerically

solving Equations (4.4), (4.5) and (4.8). These two cases will serve as test cases to verify

our numerical methods in subsection 4.1.3.

Once P(y) is known, the solution to the LEE in Equation (4.2) can be determined

by using Equation (4.3) and the following equation,

 

 

 

' _mmm+wmo

W) ‘ w — Mom

+ U(y) = affix—(May) — [w $8M, P'(y) (4.12)

Hw=w_&MhP@)

When presenting the calculated results later in subsection 4.1.3, we will use the

sound pressure level SPL(:1:) and the phase relative to point at (0, h) along the upper wall.

From Equation (4.3),

SPL(:I:) — SPL(0) = 20(10g10 e) Im(k$ )3: (4.13)

where the sound pressure level at the inlet SPL(0) is determined by the reference

pressure. The phase relative to the phase at point (0, h) is



99(33) 2 —- Reflex )3; (4.14)

4.1.2 Methodology of the Numerical Implementation

4.1.2.1 Inlet and Exit Boundary Conditions

When we numerically solve the semi-infinite impedance duce problem, the

computational domain can only be a segment of the duct, staring at a: = 0 and ending at

some at > 0 , for example. To simulate the infinite extension to the right of the duct, it is

required that all the outgoing waves leave the computational domain without being

reflected at the artificial duct exit. The same requirement applies for the duct inlet at

:r = 0 with the incoming wave in Equation (4.3) also specified. For these purposes, we

implement the Perfectly Matched Layers (PML) boundary conditions in unsplit physical

variables [16] in vertical :1: -layers (PML regions) left to the inlet and right to the exit,

Bu' 6u' Bu' 6q 0. M(y)

— —_—+B—+ ' —+ ' —l3—— '= ,0t +A 0:1: 03/ Du +0$B6y 0$u +1_ 2(y)Au 0 (415)

where u' = u — 11in , with 11in being the incoming wave specified in Equation (4.3), for

the inlet boundary condition, and u' = u for the outlet boundary condition. q is an

auxiliary variable and defined by Bq / at = u'. 0,; spatially varies and takes the same

form as in Reference [16]. At the outer boundaries of the PML regions, a characteristics-

based boundary condition is applied to further improve the quality of the absorbing

boundary conditions.

We need to point it out that in Reference [16], the PML boundary condition is

proposed for a uniform mean flow and its well-posedness is only proved in the same

context. In spite of this, our numerical solution as seen later shows the success of the

boundary condition for a non-uniform flow.
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4.1.2.2 Impedage Boundary Condition

At the acoustically treated wall, the broadband time-domain impedance boundary

condition proposed by Tam and Auriault [49] is applied:

32v”

6t2

93_ 51),,

8t _ R0 at

  

— X_1’Un + X1 (4-16)

where R0 , X_1 and X1 are related to the impedance by R(w) = R0 and

X(w) = X_1/w + X10).

Equation (4.16) is valid only when the no-slip condition is satisfied at the acoustic

treatment. For the slip condition and also PDC to be satisfied, a time-domain impedance

boundary condition similar to Equation (4.16) can be found to be

322),,Zip Map _ 61),,

8t25 55—303.
  

— X_1vn + X1 (4.17)

However this boundary condition has been found to be unstable both analytically and by

our numerical experiments, a result supporting the analysis in References [49, 52].

The stability analysis in References [49, 52] shows that time-domain impedance

boundary conditions are unstable with the combination of PDC and slip condition. This

limitation is not unique to the current time-domain formulation in Equation (4.17). It is a

challenge to be overcome for any time-domain impedance boundary conditions. However,

we may take an alternative approach that leads to the same result by using a stable non-

slip time-domain impedance boundary condition and the fact that as the boundary layer

thickness approaches to zero, the non-slip impedance boundary condition gives a limiting

result of the combination of PDC and slip condition. [29, 52]
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4.1.2.3 Hard Wall Boundary Condition

The hard wall boundary condition is applied at the upper wall. A ghost point is

introduced right above each of the node at the upper boundary in implementing the

condition 639/83; = 0 at y = h. The hard wall can also be treated as a special case of

the acoustically treated wall with 12(9)) 2 X(w) = 00. In such a case, the adoption of

either PDC or PVC does not make a difference, i.e., Equations (4.6) and (4.7) are

equivalent.

4.1.2.4 NumericgScheme

The two-dimensional linearized Euler equations are numerically solved with a

fourth-order seven—point-stencil optimized upwind Dispersion-Relation-Preserving

scheme [68]. The spatial coefficients for both the interior and the boundary points are the

same as those listed in Reference [68] while the temporal coefficients are from Reference

[47].

4.1.3 Comparison with the Analytical Solution

The semi-infinite impedance duct problem with only the least attenuated mode is

used to test the numerical methods presented above. The domain of interest starts at

x = 0 and ends at a: = 0.8382 , for which we use 216 grid points in the a: direction and

14 grid points in the y direction with uniform spacings A2: and Ag. The PML

boundary conditions with and without incoming waves are implemented in 10 vertical 3: -

layer left to a: = 0 and 20 vertical x-layers right to a: = 0.8382, respectively. The time

step is chosen such that CFL = 0.05 for A93. The parameters X_1 and X1 for the

reactance X are selected such that the specific impedance Z = 4.99 + 0.252’ is satisfied
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for the test frequency given earlier. We have conducted a grid dependence study, which

shows that a converged solution is achieved with the above spatial and temporal

resolutions. The calculation is started with all the acoustic variables being zero

everywhere in the computational domain and is terminated when the solution has become

periodic. It takes about 90 seconds of CPU time and 1.2 MB of memory on a personal

computer with an Athlon XP 1800+ CPU at 1533 MHz and 512-MB PC2100 DDR

memory.

In Figure 4.2, we compare the numerical solution with the analytical solution for

the zero mean flow case. Shown in Figure 4.2 (a) is a comparison on the sound pressure

level along the hard wall. It can be seen that the numerical solution coincides with the

analytical solution described by a straight line very well even near the exit of the

computational domain. Figure 4.2 (b) compares the phase along the hard wall, where the

phase is relative to the inlet point on the hard wall and has been converted into the range

of [—180°,180°] . Again, the agreement between the numerical solution and the

analytical solution is excellent everywhere in the computational domain. Specially, the

excellent agreements near the exit substantiate that the PML boundary condition indeed

introduces little reflections.

With a sheared mean flow M(y)=1.2(y/h)(1— y / h) , the comparisons

between the analytical and the numerical solutions are given in Figure 4.3. As we can see,

an excellent agreement between the two solutions is achieved.

By benchmarking our numerical methods with the analytical solution, we

conclude that our numerical methods are accurate and reliable under the physical
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conditions and configurations in the test problem. In the next section, we are going to

apply our numerical methods to the NASA impedance duct configuration.
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Figure 4.2 Comparison of the numerical solution with the analytical solution for

the least attenuated mode of the semi-infinite duct problem with a zero mean flow.

(a) Sound pressure level along the hard wall; (b) Phase along the hard wall.
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Figure 4.3 Comparison of the numerical solution with the analytical solution for

the least attenuated mode of the semi-infinite duct problem with a sheared mean

flow M(y) = 1.2(y / h) (1 — y / h). (a) Sound pressure level along the hard wall;

(b) Phase along the hard wall.
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Figure 4.4 Configuration of the NASA Langley flow-impedance tube
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4.2 Validation with Experimental Data

4.2.1 Experimental Setup

The experimental data from the Flow-Impedance Test Laboratory of NASA

Langley Research Center [37] are used to validate our numerical methods. The duct

configuration for the experiment is shown in Figure 4.4, where acoustic treatment is

applied only in the middle section of the lower wall while all the rest of the walls are hard

wall. The liner impedance Zwall and exit impedance Zen-t were experimentally

measured at each test frequency f = w / 27r and are listed in Table 4.2. An incoming

acoustic wave of each test frequency is supplied at the inlet and its amplitude is adjusted

such that the numerical result best matches the experimental data at the duct inlet for each

test frequency.

Table 4.2 Impedance on the wall and at the exit

 

f Zwall Zen't

 

(HZ) R X R X

 

500 0.41 -1.56 1.077 0.008

 

1000 0.46 0.03 0.966 0.042

 

1500 1.08 1.38 0.935 -0.047

 

2000 4.99 0.25 1.094 -0.070

 

2500 1.26 -1.53 1.074 0.127

 

3000 0.69 -0.24 0.852 0.008     
4.2.2 Numerical Results and Comparison with the Experimental Data

The NASA Langley flow-impedance tube problem is solved numerically by the

numerical methods introduced in section 4.1. For the zero mean flow cases, both the
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PML boundary condition and the impedance boundary condition with the specified exit

impedance th are considered for the exit boundary condition. The grid and time step

used for both the cases are the same as for the verification problem except that for the

latter case, the vertical x-layers right to the domain of interest are not needed, which

correspondingly reduces the computational cost. The numerical results of SPL and the

phase along the upper hard wall are shown in Figure 4.5 for all the test frequencies,

where “PML” and “Specified impedance” denote the boundary conditions used. As we

can see, the agreements between the numerical results and the experimental

measurements are in general very good. Note that when the PML boundary condition is

used at the exit, there is virtually no reflection at the exit. The reflection is apparent

when the specified impedance condition is used at the exit. However, due to the fact that

the reflection at the exit is small, the difference between the numerical solutions with the

two different boundary conditions at the exit is insignificant except for the case of

2000Hz. For this case, there is a small discrepancy between the two numerical results. It

is also noted from Figure 4.5 that the agreement between the numerical solution and the

experimental data improve as the frequency increases. The reason for the improvement

could be that the reflections at both the inlet and the exit are minimum at higher

frequencies. Therefore the PML boundary conditions used are more adequate for these

cases.

For the cases with a mean flow, only the PML boundary condition is applied at

the exit. Since an accurate mean flow profile is not available, we assume the profile as

M(y) = 1.2(y/h)(1— y/h) for the nominal Mach number 0.3. The same measured

impedance parameters for the liner in Table 4.2 are used. The results are compared with
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the experimental data in Figure 4.6. Again, the agreement between the numerical solution

and the experimental data is very good for both the sound pressure level and the phase.
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Figure 4.5 Comparison of the numerical solution with the experimental result at

test frequencies with a zero mean flow. (a) SPL along the upper (hard) wall;

(b) Phase along the upper (hard) wall.
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along the upper (hard) wall.

M(y) = 1.2(y/h)(1—— y / h). (a) SPL along the upper (hard) wall; (b) Phase

test frequencies with a mean flow

figure 4.6 Comparison of the numerical solution with the experimental result at
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5 A TIME-DOMAIN METHOD FOR ACOUSTIC WAVE

SOLUTIONS OF MULTI-FREOUENCY SOUND SOURCES

IN SHEARED MEAN FLOWS

Based on the characteristics of the eigen-solution of the homogeneous linearized

Euler equations (LEE), a procedure is developed that can separate the instability wave

solution contained in the total solution of the LEE from the acoustic solution. The

problem formulation and the analytical solution are given in sections 5.1 and 5.2

respectively. In section 5.3, a full description of the numerical methodology and a global

time-domain method of separating the instability wave solution from the total solution of

the LEE for a multi-frequency sound source are presented. The numerical solutions of the

acoustic wave solution are shown in comparison with the respective analytical solutions.

5.1 Problem Formulation

The problem studied here is similar to Problem 1 of Category 4 in the Fourth

Computational Aeroacoustics Workshop on Benchmark Problems [59] except that the

sound source involves multiple frequencies or a broad-banded spectrum instead of a

single frequency. This difference renders a frequency-domain method less feasible. The

schematic of the problem is shown in Figure 5.1.

 

A Sheared Mean Flow

8
V 25 ' Sound Source

>5

 

 0 - a - 1 - . . 1 . 1 _

-50 0 50 100 130

x (m)

  

Figure 5.1 The domain of interest with a sound source and a sheared mean flow
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The problem is symmetric about the .r -axis and the domain of interest is given as

—50m 3 :c 3 150m and 0111 g y 3 50m. A sound source is located near :1: =2 0 m

and y = 0m. The mean flow is parallel to the an -axis and the mean flow velocity,

density and pressure are given by

(y) = u)- expl-(1n2)(y/b)21@
1
‘

  

 

i=0

‘ 1 17—1_ _ 1U(y) 1 29—11(1)) (5.1)
—_—-—=—— _ uy—ur-uy+——

10(9) 27PM) 1“) Pj Uj poo Uj

17:103330Pa

where the mean flow parameters are given in Table 5.1, with Mj = uj/,/ 7R Tj .

Table 5.1 The mean flow parameters

 

My T1 (K) Too (K) R(m23-2K-1) 7 b(m)

 

0.756 600 300 287.0 1.4 1.3

 

The governing equations are the two-dimensional LEE for a parallel mean flow in

the z direction,

a a 0 01—1

    

— A— B— U D— =: S 5.2

8t+ 623+ (91/ + By ( )

where

'p‘ '1—1 ,5 0 0 l 0 0 E l 15‘

u 0 17 0 1/[7 0 0 0 0 _ 11"

U: ,A: _ ,B: _9U: — 9

”U 0 0 u 0 0 0 0 1/p v

.P. 0 w? 27 0 0 917 0 1'5    
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The non-homogeneous term S(at, y,t) on the right hand side of Equation (5.2)

represents the sound source. Due to the facts that all numerical schemes have a limitation

on dealing with high-frequency acoustic waves and the high-frequency acoustic waves

can be effectively damped out in the atmosphere, the high-frequency components in a

sound source can be safely neglected in this study. As a result, a sound source composed

of either discrete frequencies or a broadband spectrum can be effectively represented by a

finite number of frequencies. For the purpose of demonstration, it is assumed that the

sound source in the current problem consists of three frequency components, denoted by

l = 1,2, 3 , each with its own amplitude 01 , spatial dependence, and phase 90) , i.e.,

3

5($, 1M) = 201 expl-(bz,1$2 + by,1y2)]eXP[-i(wzt + 901)]

1 =1

where the sound source parameters are given in Table 5.2.

Table 5.2 The sound source parameters for the three-frequency-component sound

 

 

SOUI'CC

at bu by,1 wt

l _1 _3 _2 _2 _1 Sol

(111 Kgs ) (m ) (m ) (rads )

1 1133 0.041n 2 0.32 In 2 76 0

2 1E4 0.04 In 2 0.32 In 2 38 W / 3

3 1E3 0.04 In 2 0.32 In 2 60 0
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As will be seen in the next section, the sound source at the three excitation

frequencies 02,, l = 1, 2, 3 will trigger, for each frequency, an instability wave that

grows along the a: direction and co-exists with the acoustic waves radiated from the

sound source. Such instability waves can overwhelm the acoustic waves downstream of

the sound source. Therefore it is necessary to either eliminate or isolate these instability

waves so that the acoustic wave solution can be achieved alone.

5.2 Instability Wave and Analytical Solution

5.2.1 Instability Wave

Assuming that the perturbations of flow variables have a space- and time-

dependence of the following form

  

'p‘ RI>(Zl).

u U(y) .

v = V(y) exp[1(ax — wt)] (5.3)

1p. _P(y)‘  

where a is the wavenumber in the a: direction, the homogeneous version of

Equation (5.2) can be reduced to a second order ordinary differential equation for P(y)

  _<_1_ 1 d_P
dy flea-arr)? dy

 

1 a2
+ __ _ P = O 5.4

[’YP [7(0) — 0217?] ( )

The boundary condition at y = 0 is given by the symmetry condition

dP_
E — 0 (5.5)

In the far field, where the mean flow is uniform, the solution to Equation (5.4)

must be in a form of C exp(ifiy) , where C is an arbitrary constant, and
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fl = Juli/ago)2 - a2 with 000 being the sound speed in the far field. Note that a

positive sign has been chosen for fl such that the wave is outgoing at y —+ 00 . The

boundary condition at y —> 00 is therefore

531—; = ifiP (5.6)

Equation (5.4) with the boundary conditions (5.5) and (5.6) forms an eigenvalue

problem and is numerically solved using the shooting method. At the three excitation

frequencies of the sound source given in section 5.1, w = 38, 60 and 76 rad/s , the

corresponding characteristic wavenumbers are a = 0.1547 — 0.0384i,

0.2980-0.0576i, and 04145—003771 In-1 . The imaginary parts of these

wavenumbers are negative and thus indicate a wave growing in the 2: direction for each

of the three frequencies, according to the form assumed in Equation (5.3).

The above analysis shows that the instability wave is intrinsic to the homogenous

LEE under the mean flow and boundary conditions given in section 5 .1. It, therefore,

exists for any corresponding non-homogeneous LEE with the same mean flow and

boundary conditions. The non-homogenous term in LEE acts both as a sound source

radiating acoustic waves to the surroundings and as a trigger for the instability wave.

5.2.2 Analytical Solution to the Acoustic Wave

Dahl [6] has derived the analytical solution for a problem very similar to the one

formulated in section 5.1. The sound pressure of the acoustic wave solution for the

current problem can be obtained for each frequency in Table 5.2 as
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ia 7r ,

Pa($ayat) = ‘25 EGXPl—“wt + 99)]

*f: exp('ika: — 1:2 /4b,,)  

 

91(41)ny flyo><gggyf§yo>k> (swear/822141104110 (5.7)

 

+C2 (’9 10f: p(y0)(wA“yfigyomexp(-byy3)C1(kay0)d1/0 d1»

where (1(k, y) ((201, y)) is the solution to the initial-value problem of the characteristic

Equation (5.4) only with the boundary condition at y = 0 (y = 00) for a given

wavenumber k; A(k,y) is the Wronskian of (109,11) and (2(k,y) with respect to y ,

defined as

3C1(k y) (5.8)
A(16,11): C10611)—

0C2(k1!)
6y -C2 (’631)—

Note that (1(k, y) and C203, 3;) , as well as their Wronskian, are not analytically obtainable

for a general parallel mean flow condition. They, along with the integrals in Equation

(5.7) are numerically evaluated. For a multiple frequency components sound source, the

solution is the superposition of the solutions of each frequency component. The obtained

sound pressure of the acoustic wave solution pa(:1:, y, t) , referred to as the analytical

solution, will be used in the next section for comparisons with the numerical solution.

5.3 Numerical Solution

The total solution of the problem proposed in section 5.1 contains both the

acoustic wave solution and the instability wave solution. If the instability wave solution

contained in the total solution is known, which is referred to as the contained instability

wave solution, then the acoustic wave solution can be achieved by subtracting the

contained instability wave solution from the total solution. This section is organized as

follows: first the numerical method used for obtaining the total solution and the technique
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of how to numerically achieve the “pure” instability solution are explained. Then a

method is demonstrated that can derive the contained instability wave solution and thus

the acoustic wave solution from the pure instability wave solution and the total solution.

At last the numerical results of the acoustic wave solution are compared with the

respective analytical solutions.

5.3.1 Numerical solutions of the Total Solution and the Pure Instability Wave

Solution

Shown in Figure 5.2 is the computational domain with —250 m S :1; g 350 m and

0 m 3313100 111. In the x-direction, a uniform grid with A2: = 1.5 m is used and in

the y direction, the grid size varies from Ag 2 0.4 m at y = 0m to Ay = 1 m in

the far field, with the grid density determined by

dy _[36]]- _ 1 — 0.6exp[-(1n my? /50]

where g is the transformed coordinate of y and j is the index of the grid points in the

y direction. In the shaded area (—150 111 323150 m and O m 331350.62 m), the

governing equations are applied. In the left, right and upper boundary regions, as denoted

by the unshaded area in Figure 5.2, the Perfectly-Matched-Layer (PML) boundary

condition in unsplit physical variables [16] is used. At the outer boundaries of the PML

regions, a characteristics-based boundary condition is applied to terminate the

computational domain. At the lower boundary of the computational domain, a symmetry

boundary condition is applied. The numerical scheme used here is a fourth-order seven-

point-stencil optimized upwind Dispersion-Relation-Preserving scheme [68]. The size of

the time step is T1 / 4000 , where T1 is the period corresponding to the first angular
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frequency in Table 5.2. An enough number of time steps must be allowed for any initial

 

  

     
 

 

effects to taper off.
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x (In)

Figure 5.2 The computational domain with the grid distribution. The unshaded

area is the PML regions.

Using the above numerical scheme, the boundary conditions and the grids, the

numerical solution of the problem formulated in section 5.1 is obtained. The sound

pressure of the solution at t = 224511 is shown in Figure 5 .3 (a) for the three-frequency

component sound source shown in Table 5.2. As expected, the solution contains both the

acoustic wave solution and the instability wave solution and thus is referred to as the total

solution.

In order to get the “pure” instability wave solution (referred to as the pure

instability wave solution), a sound source of the same excitation frequencies is effectively

placed upstream of the domain of interest. Such a sound source will produce a strong

instability wave but a weak acoustic wave in the domain of interest and thus the total

solution in this region can well approximate a pure instability wave. The sound source

actually used for calculating the pure instability wave is

3

5(3, y, t) = [6(51C - x1)6(y - 111) - 6(2: - $21501 - 112)]Z exr)(-iwzt) (5.9)

(=1

where 6( -) the Dirac delta function, (21,311) = (—148.5m,0m) and

($2,3/2) = (—147m,0m) are two neighboring grid point on the x-axis, w) is the same
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angular frequencies in Table 5.2. The reason for choosing such a dipole-like source as in

Equation (5.9) is that it produces an acoustic wave that seems to be local to the source

and thus weak in the domain of interest. The instability wave solution is then obtained in

the same way as the total solution above, but with the sound source replaced by Equation

(5.9). The sound pressure of the pure instability wave solution, at the same time as that

given in Figure 5.3 (a), is shown in Figure 5.3 (b). It can be seen that inside the domain of

interest, which is confined by the short-dashed line, the solution is almost utterly free of

acoustic waves radiated from the dipole-like sound source and thus can very closely

approximate the pure instability wave. Note that the contours in Figure 5.3 (a) and Figure

5.3 (b) are not on the same scale. Although the pure instability wave and the contained

instability wave in the total solution look very similar, they differ both in the phase and in

the amplitude for each of the frequencies. The next sub-section explains how to construct

the contained instability wave from the total solution and the pure instability wave

solution.
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Figure 5.3 The sound pressure t = 22411 in the entire computational domain of

-250m 3 a: 3 350m and 0m __<__ y 5 100m. Outside the region confined by the

long-dashed line is the PML region; the region confined by the short-dashed line

is the domain of interest. (a) the total solution; (b) the pure instability wave

solution. Note that the contours in the two plots are not on the same scale.

5.3.2 Constructing the Contained Instability Wave

As assumed in section 5.1, the spectrum of a sound source is represented by a

finite number of angular frequencies 02, , l = 1, 2,..., Nw. The total solution at a reference

point (mo,y0) , with a time dependence of exp(—iw1t) for each of the angular

frequencies w; , can therefore be written as

N11)

p(zo,yo.t) = ZH(zo,yo)exp(—iw1t) (5.10)

(:1

where H(xo,y0) is the complex amplitude for angular frequency 021. If p(:co,y0,t)

represents the actual real-numbered physical quantity, a time history of the numerical

solution, p(x0,y0,tk) , k = 1, 2,...,Nt , can therefore be expressed as

66



N

P($0,y0,tk) = Z[3,r($oay0)608(wztk) + H,i($anO)Sin(wltk)Iv k = 1,2,..-,N1

where

I=1

114930.110) + 111105040) = 1101307110), 1 = 1,2,---,Nw

Or in the matrix form,

where

[101,1 1N, x2Nw =

[101,j IN, x2Nw

 

 

r P1,r($0,y0) I

131,100,110)

PNw,r ($0, 110)

. PNw,z($O, yO) ‘

’ cos(wlt1) sin(w1t1)

Lcos(wltNt ) sin(wltNt )

 2Nw x1

cos (0)Nu) t1)

. p($01y01t1) l

P($0,y0,t2)

  p($01y07tNt)
b 1Nt X1

sin(wNwt1) '

C03(WNw tNt) Sin(wNw tNt )9 
Nt X2Nw

If the matrix [waINtx2Nw has a rank of 2N0}, and 2Nw S Nt the complex

amplitudes are (over-)determined and have the unique least squares solution from the

above linear system

where

 

- P114202 3,0) I

131,1(130, yo)

PNw,r($O7y0)

 _PNw,i($013/O)‘
2Nw x1

= [61,1 I2Nw th

' P(930,y0,t1) I

p($01y07t’2)

  Lp(‘7301?>/01tNt )

[61,1 12111,, th = ([101,le Iwk,l])-1 [101,le
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When the solution is rewritten in a component form,

N1

Pl,r($0,y0) = Z 61,21—1P($0,y0,t1).l == 1,2,---,Nw (511)

1:1

N1

11105040) = Z €1,21p($0,y0,t1),l = 1,21---1Nw (512)

1:1

Note that the coefficients ck) need to be calculated only once. One great feature

about Equations (5.11) and (5.12) is that the summation can be canied out at the same

time as the values of p(:co, y0,tk) is being calculated for k = 1, 2,..., Nt and thus there is

no need to store the solution history. This feature can help save a considerable amount of

memory, in particular when Nt is large or when the complex amplitudes for many points

are needed, as shown later when the complex amplitude of the pure instability wave

solution is to be known for the entire domain of interest.

Similarly for the pure instability wave solution, 19111455019014) , of the same

frequency components, the complex amplitude for each frequency is,

Pins,l($01y0) = PinsJ,r($Oa 310) 'I' iPz'ns,1,2'($013/0) 9 I = lazr-wNw

with

N1

37111411301110) = Z 01,21—1p1ns($0,y0,t1), k = 1,2,..-,Nt

1:1

Nt

11111141001110) = Z €1,21P1ns($0,y0,t1), k = 1,2,--.,Nt

1:1

Note that the time sequence tk , k = 1,2,...,Nt , is not necessarily the same for the total

solution and the pure instability wave solution.

68



Now the reference point (500,3)0) is chosen at a grid point where the contained

instability wave in the total solution is very strong while the acoustic wave is very weak.

(Such a location is typically far downstream of the sound source.) Then the known total

solution can be used to approximate the contained instability wave solution at this point,

for each of the frequencies 09, , l = 1, 2,...,Nw ,

Pc,z‘n.s.1 ($0, 310) % 13030410)

Because an instability wave solution is an eigen-solution of the homogeneous

LEE, the contained instability wave solution and the pure instability wave solution at any

point (z, y) differ only by a complex proportionality constant C) for each angular

frequency w) . Therefore,

Pc,z'ns,l($ay) : Pc,2'ns,l(301y0) N 1310170190)

131112103110) Pins,l ($01 :00) PinsJ (370 a yO)

  C):

Since the complex amplitudes, H(zo,y0) and Pinsflzowo) , have been calculated from

the total solution and the pure instability wave solution respectively, the complex

proportionality Cl is therefore known. As a result the contained instability wave solution

at point (513,31) can be determined by

Nu) Nu)

1111130411111) = Re 212.111.3103 y)eXP(-iw1t) = Re ZCzfin..s.1($,y)eXP(—iwzt)

1:1 1:1

  

N0)

= Z [CLTP'i’IISJf 008(wlt) + CLrP'insJJ Sin(wlt) + Cl,'ipins,l,-r 8111(w1t) _ Cl,iBn.S.l,i COSGWQ]

[=1

where the complex amplitude for the pure instability wave, B,,_,,J(:1:,y) , is calculated in

the same way as 372110170190)- As can be seen here, the complex amplitude for the pure
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instability wave solution is needed for the entire domain of interest.

Finally, the acoustic wave solution is obtained by subtracting the contained

instability wave solution from the total solution,

pacous (x, y, t) = 1103,11, t) - pains (to, y, 0

5.3.3 Acoustic Wave Solution in Comparison with the Analytical Solution

Following the procedure described in the last subsection, the acoustic wave

solution is calculated by using the point ($0,110) (2:0 = 147m, yo = 0 m) as the

reference point and N1 =20 after any initial effects have tapered off. Figure 5.4 (a), (b)

and (c) show the sound pressure field for the total solution, the contained instability wave

solution, and the acoustic wave solution, respectively, at the same time as that given in

Figure 5.3. The sound source considered here is the three-frequency component sound

source given in Table 5.2. The comparisons of the corresponding sound pressure along

the lines of—50 111 325150 In at y=15 m , —50 m 323150 In at y=50 m and

5 m 3 3,350 m at :1:=100 m , with the analytical solutions calculated using the

method described in section 5.1 are shown in Figure 5.5. The agreements between the

numerical solutions and the analytical solutions are excellent.

The computation was performed on a personal computer with an Athlon XP

1800+ CPU at 1533 MHz and 512-MB DDR memory at 133 MHz. It took about 15 hrs

of CPU time and 10 MB of memory to numerically calculate the total solution and the

pure instability solution, and construct the contained instability wave solution to obtain

the acoustic wave solution. It is worth mentioning that the computational cost reported

above does not necessarily characterize the technique of achieving the acoustic wave
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solution. The computational cost greatly depends on the specific numerical scheme and

boundary conditions used. With the amplifying nature of instability waves, it takes a

longer time for the initial effects to taper off and thus a stead state to establish, because

this process involves not only the absorption of the initial waves by the non-reflecting

boundary conditions but also the amplification of the instability waves triggered by the

numerical reflections due to the imperfectness of these boundary conditions. Therefore, it

is expected that a steady state solution can be achieved in less time if a more effective

non-reflecting boundary condition is used.

y
(
m
)

y
(
m
)

y
(
m
)

 
x (m)

(c)

Figure 5.4 The sound pressure 1 = 22411 in the domain of interest for the three-

frequency component sound source. (a) the total solution; (b) the contained

instability wave solution; (c) the acoustic wave solution.
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Figure 5.5 The sound pressure for the three-frequency component sound source at

= 22421 as compared with the analytical solution along the lines of

(a) —50 m $153150 m at y=15 m, (b) —50 m 3333150 In at y=50 m and

(c) 5 m 3 3,1350 m at z=100 m.
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6 COMPUTATIONAL AEROACOUSTICS TIME-DOMAIN

METHOD COUPLED WITH ADAPTIVE NOISE CONTROL

OPTIMIZER

In this chapter a design of an adaptive noise control system using a computational

aeroacoustics (CAA) code combined with an optimizer to adaptively control liner

impedance is proposed and tested for multi-dimensional acoustic problems.

 

  

   

 

 

Current Actual

acoustic field Adjustable acoustic field _

Liner (closest to the desired)

Impedance

parameters

Desired

acoustic field Expert

Subsystem

   

Figure 6.1 Schematic of the adaptive noise control system

A schematic of this adaptive noise control system is shown in Figure 6.1. The

system consists of two primary components, a liner with controllable impedance and an

expert subsystem. For a given acoustic noise source and mean flow condition, the current

acoustic field refers to the acoustic field resulting from the current values of the liner

impedance. The desired acoustic field, which is assumed to be different from the current

acoustic field, refers to the acoustic field that we would like to achieve. Considering the

desired acoustic field as an input, the expert subsystem calculates new values for the

impedance parameters to which the liner is adjusted accordingly to achieve a resultant

acoustic field that is the closest to the desired one. This is the basic idea of the adaptive

noise control system. In the next section, the expert subsystem and liners with
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controllable impedance will be discussed. The implementation of the adaptive noise

control system will be demonstrated in section 6.2.

6.1 Adaptive Noise Control System

6.1.1 The Expert System

Different values of the impedance parameters will have different effects on the

acoustic field and thus the resultant acoustic field will be different. In order to achieve an

acoustic field that is the closest to the desired one, the expert subsystem is designed to

determine the optimum values for those impedance parameters to which the impedance

properties are to be adjusted accordingly. For this purpose, the expert subsystem can be

treated as an optimization system, whose objective function is one that can indicate the

difference between the current and the desired acoustic fields and whose design variables

are the impedance parameters. Mathematically, the objective function is formulated as

the relative averaged difference in the acoustic pressure of the current and the desired

fields over a certain space V and a certain temporal range At , as in Equation (6.1).

fflpcur ‘pdesIdth

At V

f f110.16.14th

 
D :

(6.1)

The acoustic pressure is treated in time domain instead of frequency domain and thus no

amplitude, phase and frequency are explicitly associated with it. Therefore the definition

in Equation (6.1) indicates a complete comparison between the current and the desired

acoustic pressure fields.
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A real controllable-impedance substance may only allow its impedance

parameters to be varied over specific ranges. This imposes the constraints for the

optimization problem.

With the objective function, the design variables and the constraints well defined,

the optimization or minimization process is realized with the aid of a MATLAB function

‘frnincon’, which is provided in the MATLAB optimization toolbox. Details of the

algorithms involved in this function can be found in the User’s Guide for the optimization

toolbox [25] and the references cited in the guide. Only the general ideas are outlined

here. The problem under study is formulated as a constrained nonlinear programming

problem. Such a problem is solved in MATLAB using the Newton-Lagrange method,

with which the problem is first formulated in the form of the Kuhn-Tucker (KT)

equations, whose solution forms the basis of the original problem. The KT equations are

solved with a Sequential Quadratic Programming (SQP) method, which uses a quasi-

Newton method (the Broyden-Fletcher-Goldfarb-Shanno method) to update the Hessian

of the Lagrangian function at each major iteration. At each major iteration, a Quadratic

Programming (QP) sub-problem for the updated Hessian is first solved to provide a

search direction for the current SQP iteration. Then along the search direction, a line

search procedure is performed by means of cubic, quadratic or mixed cubic/quadratic

polynomial interpolation and extrapolation. The searching result is a new point of design

variables that sufficiently decrease the value of a merit function that reflects both the

minimization of the objective function and the violation of the constraints.

It is worth mentioning that the optimization process present here is quite similar

to the impedance eduction method of Watson et. al.[55, 56] In their works, the impedance

eduction method is used to find the liner impedance in a duct by minimizing the
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difference between the measured acoustic pressure field and the predicted acoustic

pressure field, which is numerically calculated by solving the Helmholtz equation

(frequency-domain approach) based on the predicted liner impedance. Although their

works attack a different practical problem, the idea is essentially the same as that in the

expert subsystem of the current chapter. Both deal with an inverse problem, one in time-

domain and the other in frequency—domain.

6.1.2 Liners with Controllable Impedance

By now we have established the expert subsystem with which we can

approximate a desired acoustic field if we can control the impedance properties. The

standard approach of controlling impedance properties is a mechanical approach, which

is to control the geometric parameters of the liner (e.g. the diameter and/or depth of the

Helmholtz resonators in an array) so that the required impedance properties can be

achieved.[2] Since the impedance properties also depend on the liner material properties,

a potential approach of controllable impedance might be developed through the control of

material properties or micro-structures of the materials. The liners with controllable

impedance are critical components in the adaptive noise control system and merit further

investigation. However, our main purpose of the current study is to demonstrate the

feasibility and potential of the coupling of a CAA time-domain method with an optimizer

for the purpose of adaptive noise control, we will not get into any specific approaches for

controllable impedance in this chapter. Instead, the three-parameter impedance model of

the Helmholtz type [49] given in Equation (6.2) is used for the purpose of the

demonstration.

Z(w) = R0 —1'(X_1/w + X1111) (6.2)
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It is worth mentioning that the general concept of the adaptive noise control

system works for all kinds of liners with controllable impedance.

6.2 Numerical Implementation and Results

To test the feasibility of the coupling concept above, we implement the concept

for a two-dimensional problem as shown in Figure 6.2. All the variables used in this

chapter are dimensionless with L = 0.012m as the length scale, 00 = 340m/s as the

velocity scale, p0 = 1.29kg‘/m3 as the density scale, L / 0.0 as the time scale, p008 as

the pressure scale and poao as the impedance scale.

A y

40 :----------------------------- :

. 5(30, 10) E

:0 g x

‘— 
40

segment I segment 11

Figure 6.2 Test problem schematic

The acoustic field of interest lies in the region of 80 x 40 confined in the dashed

lines and is bounded by an impedance wall of two segments of equal length, denoted as

segments I and II, at y = 0. The impedance is assumed to be characterized by the three-

parameter model as in Equation (6.2) but takes different values for the impedance

parameters for the two segments. We add a note that when this model is used for a case

with a mean flow, it is assumed that the mean flow effects are included in the three

parameters. [49, 61] When the same values are used for the three parameters R0, X_1
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and X1 in the cases of different mean flow conditions, they represent different liners.

Initially, the acoustic velocity components are zero everywhere and the broadband

acoustic pressure has a cylindrical Gaussian distribution of the form

pom) = exp(—BR2) (6.3)

where R is the distance to the pulse center 5' at a: = 30 and y = 10 and B = 0.04ln2.

The above problem is numerically solved by a CAA code in time domain with a seven-

point-stencil upwind optimized DRP method. [47, 68] The accuracy is sufficient for both

the temporal and spatial scales of the current problem. Nonreflecting radiation boundary

condition [48] is applied at the left, right and upper boundaries. It has been substantiated

that numerical reflection is virtually zero at these boundaries. At the lower boundary,

Tam’s broadband time-domain impedance boundary condition [49, 61] is applied. For the

three-parameter impedance model in Equation (6.2), the time-domain impedance

boundary condition is derived as

821),,

612

a a
5%:110 a”: —X_1v,,+X1  (6.4)

where p and 11,, are the acoustic pressure and the normal acoustic velocity (positive

when pointing into the liner) at the impedance wall, both being time-domain variables.

The CAA time-domain code will be incorporated in the optimization process to predict

the acoustic field given the noise source, the mean flow condition and the values for the

impedance parameters.

The optimization process is schematically illustrated in Figure 6.3. As a

discretized special case of Equation (6.1), the objective function used in the current

optimization process is defined as the sum of the local differences over all the nodes in

the computational domain at a certain time, say t = 25 , as in Equation (6.5),
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ZZIpcur " pdes Ii,j,t—_—25

J 2

ZZIpdes Ii,j,t=25

J r

 191 z (6.5)

where the desired acoustic pressure pdes is assumed to be known and the current acoustic

pressure is computed by the CAA time-domain code.

 

 
 

   

 

   
  

Optimized

Constraints MATLAB function design variables

30,1 2 0, X—1,i S 0 and Win00" R0,1,X—1,1 and X1;

X1972 O for 1' = 1,2 for 1' = 1,2

' . . _ Design variables

Objective function D 30,23 X- 1’1, and X191

_ . for 1' = 1,2 '

Desrred Predicted ,

acoustic field _/ \ acoustic field In-house

’0‘ FORTRAN code
   

 

Figure 6.3 Optimization process

As discussed in section 6.1, constraints may be imposed to the optimization

problem from the practical considerations of a real controllable-impedance substance. In

the current problem, the three-parameter model in Equation (6.2) is used. Since this

model analogously represents a damped mechanical vibration system of resistance R0 ,

compliance —X_1 and mass X1, all being greater than or equal to zero, we can assume

that the physical constraints for the three parameters are R0 2 O, X_1 S 0 and X1 2 0.

Mathematical analysis shows that the constraint X-1 < O is also required for the

stability of the broadband time-domain impedance boundary condition. [49]

The MATLAB function ‘fmincon’ is used to minimize the objective function that

is calculated by an in-house FORTRAN program. Every time upon being called by
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‘fmincon’, the FORTRAN program numerically calculates the acoustic field with the

impedance parameters that it receives as inputs using the CAA time-domain code. It then

calculates the relative averaged difference between the two fields as defined in Equation

(6.5). The difference is returned to ‘fmincon’ as the value of the objective function. Many

calls may be needed before the optimization process is terminated when the magnitude of

the directional derivative in the search direction is less than 2 x 10"9 while all the

constraints are satisfied. The small magnitude indicates the optimization accuracy.

To test the optimization process, several desired acoustic fields are proposed for

three different mean flow conditions: no mean flow, a uniform mean flow (Mx = 0.8 ,

My = 0) and a sheared mean flow (Mx(y) = 0.8sin[(7r/2)/(y/40)] and My = 0).

For each of the mean flow conditions, the desired acoustic fields for unperturbed and

perturbed cases are specified as the following. For the unperturbed cases, the desired

acoustic fields are calculated by the CAA code for a given set of impedance parameters

shown as ‘exact’ in Table 6.1. These desired acoustic fields for unperturbed cases are

shown in Figure 6.4 (a), Figure 6.5 (a), and Figure 6.6 (a) respectively for the three mean

flow conditions. For the perturbed cases, the desired acoustic fields are defined as the

addition of the desired acoustic fields of the corresponding unperturbed cases and a

uniformly distributed random perturbation within 10% of the local acoustic pressure.

These desired acoustic fields for the perturbed cases are shown in Figure 6.4 (b), Figure

6.5 (b), and Figure 6.6 (b). Figure 6.7 (a) shows another desired acoustic pressure field

achieved by uniformly decreasing by 10% the local acoustic pressure of the unperturbed

desired acoustic field with the sheared mean flow in Figure 6.6 (a). After obtaining the
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desired acoustic fields for all the cases, we then reverse the process to find out the

required impedance parameters by using the optimization process.

For all the desired acoustic fields, we quite arbitrarily choose R0 = 1 ,

X_1 = —1 and X1 = 1 , only to satisfy the physical constraints, as the initial guess for

all the simulated cases. It can be seen from Table 6.1 that the values of the initial guess

are enough far away from the optimized impedance parameters. Other initial guesses

have also been tried and essentially the same results have been obtained. Therefore, we

would like to say that the global optimum is achieved. The optimization was performed

on a personal computer with an Athlon XP 1800+ CPU at 1533MHz and 512MB

memory. It took about 10 minutes of CPU time for each of all the simulated cases. The

optimization results are shown in Table 6.1.

In Table 6.1, “unperturbed optimized” is used for the unperturbed cases and

“perturbed optimized” is used for the perturbed cases. For the unperturbed cases, the

resultant acoustic pressure fields with these optimized impedance parameters are visually

undistinguishable from those shown in Figure 6.4 (a), Figure 6.5 (a), and Figure 6.6 (a),

respectively and thus are not presented. The values of the impedance parameters for the

unperturbed cases are very accurately reproduced by the optimization procedure. It is

shown in Table 6.1 that the objective function, or the relative averaged difference,

defined in Equation (6.5) is in the order of 10"7 for the three unperturbed cases, as

compared to zero, the theoretically obtainable value. The small magnitudes of the relative

error substantiate the accuracy of the optimization procedure. For the perturbed cases, the

resultant acoustic fields with these optimized impedance parameters are shown in Figure

6.4 (c), Figure 6.5 (c), and Figure 6.6 (c) for the three different mean flow conditions. It
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is interesting to note that these acoustic fields (Figure 6.4 (c), Figure 6.5 (c), and Figure

6.6 (c)) still resemble the desired acoustic fields for the unperturbed cases (see Figure 6.4

(a), Figure 6.5 (a), and Figure 6.6 (a)). The resemblances can also be found with a

comparison between the corresponding optimized impedance parameters for the

perturbed cases (see “perturbed optimized” in Table 6.1) and those impedance parameters

(see “exact” in Table 6.1) used to produce the desired acoustic fields for the unperturbed

cases. These close resemblances result from the fact that the averaged effects of the

random perturbations in the desired acoustic fields for the perturbed cases nearly vanish.

For the desired acoustic pressure field shown in Figure 6.7 (3), however, the

averaged effect of the modification will not vanish. As might be expected, the resulting

values of the impedance parameters (see “modified optimized” in Table 6.1) are quite

different from those (see “exact” in Table 6.1) used to produce the desired acoustic field

for the unperturbed case. As a result, the difference is also more obvious between the

current acoustic pressure field shown in Figure 6.7 (b) and the unperturbed (unmodified)

desired one shown in Figure 6.6 (a).

For the perturbed or modified cases, an acoustic field that is identical to the

desired one is even physically impossible and thus it is reasonable that the rrrinirnized

objective function is not as small as for the unperturbed cases. However it is believed that

the accuracy is good due to the small magnitude in the directional derivative and the

evidence shown for the unperturbed cases.
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Figure 6.4 Acoustic pressure fields at t = 25 without mean flow. (a) the

unperturbed desired; (b) the perturbed desired; (c) the optimized (resultant) for the

perturbed desired.
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Figure 6.5 Acoustic pressure fields at t = 25 with a uniform mean flow of

Mt = 0.8 and My = 0 . (a) the unperturbed desired; (b) the perturbed desired;

(c) the optimized (resultant) for the perturbed desired.
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Figure 6.6 Acoustic pressure fields at t = 25 with a sheared mean flow of

M1. (y) = 0.8 sin[(1r /2)(y / 40)] andMy = 0. (a) the unperturbed desired; (b) the

perturbed desired; (c) the optimized (resultant) for the perturbed desired.
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Figure 6.7 Acoustic pressure fields at t = 25 with a sheared mean flow of

Mz(y) = 0.8sin[(7r/2)(y/40)] and My = 0. (a) the modified desired; (b) the

optimized (resultant) for the modified desired.
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Table 6.1 Values for the impedance parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

seg. Ro X—r X1

all 1 0.20000000 -0.47576471 2.09383333

exact

cases II 0.10000000 -0.23788235 1.04691667

no “DPS”? 1 0.19999880 -0.47576529 2.09383775 60115.07

0" ““12 11 0.09999081 023788437 104693702

mean

flow perturbed 1 0.19766536 047855838 2.11890414 50013-02

°anlzed 11 012036436 023173582 098874926

unperturbed 1 019999997 047576475 2.09383192 51813-07

“mm” 09mm“ 11 0.09999943 023788338 104692421

mean

flow perturbed I 019583255 047632917 210251175 508E-02

°Pumlzed II 0.10042433 023866052 104792525

I 019999945 047576487 209383427
unperturbed

o timized 24213-07
P 11 009999810 023788297 104692207

Shear“ I 0.2001 1584 047660989 209708747
perturbed

mean 0 timized 5.04E-02

flow 9 11 009269976 024189526 107151848

modified I 0.30733303 046104729 204534607

0 timized 8.96E—02

p II 0.16058164 022220306 0.93715973   
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7 NOISE PREDICTION AND OPTIMIZATION SYSTEM

FOR TURBOFAN ENGINE INLET DUCT DESIGN

A noise prediction and optimization system for turbofan inlet duct designs is

developed in this chapter. In section 7.1, the numerical noise prediction system including

the numerical methods and models are explained in details. Four verification problems

are given in section 7.2, each with an emphasis on testing an aspect of the numerical

methods. Sections 7.3, 7.4 and 7.5 each present an optimization problem solved with the

noise prediction and optimization system.

7.1 Noise Prediction System

A schematic of the generic engine inlet duct is shown in Figure 7.1. The duct

geometry as well as the mean flow is axisymmetric. The duct wall is partially lined with

acoustic liners. With a given sound source at the duct outlet, the sound wave propagates

inside the duct and then radiates into the far field. A hybrid method is adopted to solve

for the whole computational domain. That is, the governing equations with proper

boundary conditions are solved inside the duct and also possibly in its near field and a

Kirchhoff method is applied in the far field. These two regions are connected with the

Kirchhoff surface as shown in Figure 7.1 . Unless otherwise stated, variables used in this

chapter are dimensionless with [.0 = 1m as the length scale, c0 = 340 m/s as the

velocity scale, p0 = 1.29 kg/m3 as the density scale, LO/co as the time scale, mg? as

the pressure scale and poco as the impedance scale. The harmonic time dependence is

assumed in the form of exp(iwt). Under this convention, the impedance is Z = R + 1X ,

where R and X are the resistance and the reactance.
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Figure 7.1 The whole computational domain

7.1.1 Governing Equations

Under the assumptions that both the duct geometry and the mean flow are

axisymmetric, a spinning mode with azimuthal mode number m (m being integers) exists

at the angular frequency 02. Its perturbation variables in the cylindrical coordinates can

thus be assumed of the form,

'u($,r,0,t)‘ '12(x,r)‘

12(50, 1‘, 6, t) 13(1):,1‘)

= ‘ t ' 0 7.1

W(a=,r,0,t) “(m 8.156... + m) ( ’

p($, r201t) A(x1 7.)    

where u , v and w are the acoustic velocities in the axial (a: -), radial (r -) and azimuthal

(0 -) directions, respectively, and p is the acoustic pressure. The duct axis is on the r -

axis.

With the form in Equation (7.1), the linearized Euler equations are reduced to

811 811

A—+B—+Cfi+iwfi = 0 (7.2)

8 a: 0 r

where
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0 2001 0000

a 01700 0601

“=0’A_00170’B:00170’and

f; 10017 0100

dU/dxdE/dr 0 0

di/dxdv/dr 0 0

C: _ _ a

0 0 v/r‘ zm/r

0 l/r im/r d17/dr+dfi/dr+U/r

and U and F are the mean flow velocities in the axial and radial directions, respectively.

The azimuthal mean flow velocity is zero since the mean flow is axisymmetirc.

7.1.2 Boundary Conditions

Impedance BC

   
Radiation BC

with

source terms

.._.H_._ ._._._._._._._ _ _ "H-

BCatr=0

  
Hard wall BC

    

Radiation BC

Figure 7.2 Types of boundary conditions

The computational domain where the governing equations are calculated, i.e., the

region inside the duct and the near field, are bounded by boundaries of different

characteristics. These boundaries are mathematically modeled by different types of

boundary conditions (BC) shown in Figure 7.2, which are explained as follows.



7.1.2.1 Boundary Conditions at r = 0

Along the axis r = 0, some terms in the governing equations are singular and

thus not numerically solvable. Here we are going to derive the boundary conditions at

r = 0 based on the local (analytical) solution at r = 0. The boundary conditions will

then be used to replace the governing equations to avoid the singular terms.

In the infinitesimal region near r = 0 , the mean flow can always be considered

as uniform (for an axisymetric mean flow, this is even more accurate). Therefore, the

local solution near 1' = 0 is, for a given 2: and an azimuthal mode number m ,

13(317‘) 7' Jm (fir)

 

13(2,7‘) ~ __dJ,,:A£fir)

121(01“) ~ JmfAfir)

15017,") ~ Jm(fi7')

where Jm is the mth order Bessel function of the first kind and fl is a parameter

determined by the local mean flow conditions. By using the properties of Bessel

functions and extending the solutions to the z-r plane of negative r , we have

612 A A 613 0 73

E—v—w—E— H

for m being odd, and

A 61’} 80 . 0 4

“‘E“E“”’ (7°)

for m being even but zero. The derivation of the boundary condition for m = 0

. . . . J 1"

involves a lrttle more reasoning than other even modes, because for this mode, —"—’(—B—)
r
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. . J 137' .

1s not continuous at r = 0. In fact, "’(' ) 2 00 for r = 00. However, there rs no

7‘

 

rotating mode for m = 0 and this physically means 12) = 0 . In other words, the

Jm(.Br)

proportionality constant for 121 ~ is zero. Therefore, the boundary conditions in

Equation (7.4) also apply to the case of m = 0.

Although the local solution is for the uniform or zero mean flow case, the

boundary conditions in Equations (7.3) and (7.4) are valid for a non-uniform mean flow

case.

7.1.2.2 Non-Reflecting Radiation Boundary Conditions

Non-reflecting radiation boundary conditions are applied at the duct outlet and at

the Kirchhoff surface to allow any outgoing wave to exit the computational domain.

Inhomogeneous terms are added at the outlet to allow waves entering the computational

domain to simulate the fan face condition. The following non-reflecting radiation

boundary conditions used in this chapter is a frequency-domain version of the time-

domain formulation by Tam, et al., [47, 48, 50]

a 1 (9 1

(1w+5§+R)u :w( +a5+11)“'“(7'5)

where fiin = [riimfiimririm 13111 ]T is the incoming waves, determined from the fan face

condition and R is the distance from the current boundary point to the location of an

imaginary point source inside the computational domain. If the source location is at

(51:0, 70) on the z-r plane of the current problem, Equation (7.5) is

tw+cosai+sina3+l10—[iw+cosa—6—+sinai+—l— a- (76)

(9:1: (91/ R _ 6:1: L 03/ R m '
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0,and srna 2—2.'th = _ 2 _ 2, =wr R J(:1: 2:0) +(r 10) cosa R R 

We are going to study one specific mode of the fan noise with each simulation.

Therefore, at the fan face of the inlet duct, the analytical solution [10] of mode (m, n) (m

and n are the azimuthal and radial mode numbers, respectively) of a hard-wall cylindrical

annular duct with the same inner and outer radii and mean flow is used for the

inhomogeneous term fiin- On the Kirchhoff surface fiin is set to zero.

7.1.2.3 Impedance and Hard Wall Boundary Conditions

The acoustic liner on the inlet duct wall is modeled by the impedance boundary

condition [26], which is, expressed in the current notation,

fl - n = (ii/Z) +(1/iw)fi-V(f9/Z) — (p/in)n-(n-Vfi) (7.7)

where n is the local unit vector normal to the boundary surface and is positive when

pointing from the fluid side to the liner, Z is the liner impedance and ii is the vector of

the mean flow velocity. We assume that the impedance Z is uniform and thus spatially

independent and the acoustic treatment is impermeable, i.e., the normal mean flow

velocity 170.) is zero at the boundary (but not its spatial derivatives). Under these two

assumptions, Equation (7.7) is simplified to be

a-

222,.) : 10215 + a - v15 — 13% (7.8)

with 110.) being the normal acoustic velocity.

When the governing Equation (7.9) is numerically solved using an iteration

method or a pseudo-time marching method, the formulation in Equation (7.8) will cause

numerical instability. We use a time-domain formulation of the impedance boundary
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condition [49], which has been proved to be stable in the time-domain calculation. For

example, such a formulation is, for a zero mean flow case,

if)_1 (912 813 v+im10
___ __ — ‘ < .an R 6:0 8r+ r qun for X _0 (710)

28-2%., _.) for X>O (711)
fin—X n p .

At a hard wall, the hard wall boundary condition is formulated as

ea _
571- — 0 (7.12)

7.1.3 Grid Generation and Transformation of the Governing Equations and

Boundary Conditions

The duct geometry is described by the inner radius BMW, and the outer radius

Router , both as a function of :1: ,

 

  

11...”...(1) : max[0,0.64212 — J0.04777 + O.98234(:1: / L)2) (7.13)

0.08295 2 eW-I/ L) - eb

Router“) = 1 "' a + 1 “(m/L) + 1 _ 6b (7-14)

  

where the duct length L = 1.86393 and a and b are parameters that determine the

variation of the outer radius over the duct length but with the outer radius fixed at the two

ends. (Router(0) = 1 and Emma) = 0.91705)

The problem is going to be solved in a body-fitted coordinate system. A body-

fitted grid is generated using elliptic partial differential equations and a six-order

accuracy scheme for discretization. Such accuracy will not compromise the accuracy of

the numerical scheme for solving the governing equations and the boundary conditions.

Since the geometry of the duct is parameterized, the grid can be automatically generated,
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given a set of geometry parameters a and b. The grid generation gives the mapping from

the physical domain (21:, r) to the computational domain (5,77) and is formally expressed

as

= 15(1, 7‘)

71 = 71(137‘)

The governing equations and the boundary conditions are correspondingly transformed

into and solved in the new coordinates (E, 77).

7.1.4 Numerical Schemes

The governing equations are reformulated in a pseudo-transient form

811 Aafi Bafi C“ ' ‘ 0 715

67+ 3.3+ 5+ “W“— (-)

Equation (7.14) along with the same boundary conditions given earlier is solved with a

4th-order seven-point-stencil optimized upwind Dispersion-Relation-Preserving

scheme. [68] The spatial coefficients for both the interior and the boundary points are the

same as those listed in Reference [68] while the temporal coefficients are from

Reference [47].

7.1.5 Kirchhoff Integral

Due to the limitation of computational resources, we adopt a hybrid method to

study acoustic radiation to the far field. With this method, the sound field inside of the

duct and its near field is calculated using the CAA method discussed earlier while the

sound field in the far field is calculated with a Kirchhoff method based on the

information calculated by the CAA method on the Kirchhoff surface (see Figure 7.1)
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The Kirchhoff’s formulation in the frequency domain for a stationary surface [23],

assuming the time dependence is exp(1'wt) , is

1007,10) =

1 1 .w ,

EfsofieXpI—ZEZ—[m — M(1‘ - w )1} «p —

 

(7.16)

where M is the Mach number in the a: direction, 6 =W, 513 = (2:, y, z) is the

observation point, 37 = (x',y',z') is a point on the Kirchhoff surface, variables with

subscript “0” are transformed variables based on the Prandtl-Glauert transformation,

$0=$390=fiy.20=fizand711=57°0—§0-

7.2 Verification of Noise Prediction System

In this section, we verify the noise prediction system with several test problems,

each with an emphasis on a different aspect of the noise prediction system.

7.2.1 Semi-Infinite Hard-Wall Annular Duct

In this test problem, we consider a semi-infinite hard-wall annular duct with an

inner radius Rinner = 0.42356 and an outer radius Router = 1. The duct starts at the

left boundary and extends to infinity to the right. At the inner and outer duct walls, the

hard wall boundary conditions in Equation (7.12) are applied. At the left boundary, the

nonreflecting radiation boundary condition in Equation (7.6) is applied with the incoming

waves fiin given as mode (6,1) or mode (6,2) at w = 16. To simulate the infinite

extension of the duct, we terminate the computational domain at some finite duct length

to the right and apply the nonreflecting radiation boundary conditions with fiin = 0. In
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Figure 7.3, the numerical solutions (below the axis) are compared with the exact solution

(above the axis) for mode (6,1) and mode (6,2), respectively. We can see that very good

agreement is achieved.

 
 

 

 

Figure 7.3 Results of the hard-wall annular duct problem. The exact and the

numerical solutions are above and below the axis, respectively. (a) mode (6,1); (b)

mode (6,2).

7.2.2 Semi-Infinite Hard-Wall Circular Duct

In this problem, we consider a semi-infmite hard-wall circular duct, which is

similar to the semi-infinite hard-wall annular duct problem except that the duct axis at

r = 0 is part of the computational domain, where the boundary conditions at r = 0 are

applied. The angular frequency, the outer radius and all the other boundary conditions are

the same as in the annular duct problem above. Again the numerical solutions agree very

well with the exact solutions for mode (6,1) and mode (6,2), as seen in Figure 7.4 (a) and

Figure 7.4 (b), respectively.
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Figure 7.4 Results of the hard-wall circular duct problem. The exact and the

numerical solutions are above and below the axis, respectively. (a) mode (6,1); (b)

mode (6,2).

7.2.3 Semi-Infinite Lined-Wall Circular Duct

 

Figure 7.5 Results of the lined-wall circular duct problem. The exact and the

numerical solutions are above and below the axis, respectively. (a) w = 12 ,

Z = 0.2 — z',mode (6,1); (b) 1.; =10, Z = 0.2 + z',mode (6,1).

The semi-infinite lined-wall circular duct problem is geometrically the same as

the semi-infmite hard-wall circular duct considered problem above. The impedance

boundary condition is applied at the lined wall. In Figure 7.5 (a) is a comparison between

the exact and the numerical solutions for mode (6,1), to = 12, Z = 0.2 — 1‘. In Figure

7.5 (b) is a comparison between the exact and the numerical solutions for mode (6,1),
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w = 10 , Z = 0.2 + z'. The signs of reactance in these two cases require that Equations

(7.10) and (7.11) are applied, respectively. As we can see, both the numerical solutions

accurately reproduce the exact solutions.

7.2.4 Test Problem for the Kirchhoff Code

Here we verify our Kirchhoff code, which is based on Equation (7.16), using the

test problem shown in Figure 7.6. An exact solution for the acoustic pressure is

exp(—iwr)

13(7‘) = r , for 0 < r < oo (7.17)

where r is the radial coordinate in the spherical coordinate system. Because we assume

the time dependence is of the form exp(1’wt), Equation (7.17) is an outgoing wave and

thus the source where this wave is originated is at r = 0 , i.e., inside the Kirchhoff

surface of radius r0 . Therefore, the acoustic pressure at any location outside the

Kirchhoff surface can be predicted using Equation (7.16). The acoustic pressure obtained

with the Kirchhoff code is compared with the exaction solution for 70 < r 5 10m in

Figure 7.7. We can see that the agreement is excellent.

 

7'0

Kirchhoff surface

Figure 7.6 Schematic of the test problem for the Kirchhoff method
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Figure 7.7 Results of the test problem for the Kirchhoff method

With the noise prediction system verified, we now couple it with the same

optimizer that has been discussed in Chapter 6. In the following sections, the noise

prediction and optimization system will be applied to attack three optimization problems.

For each of them, the objective function, the design variables, the constraints and the

result will be defined and then the optimization result will be given.

7.3 Liner Impedance Optimization

7.3.1 Problem Definition

For the liner impedance optimization, we use the duct geometry described with

Equations (7.13) and (7.14) with a = —1.8166 and b = —11. The liner is applied on a

segment of the outer duct wall with the location unchanged during the optimization. The

liner’s resistance R and reactance X are selected as the design variables and no

constraints are applied on them. For the purpose of demonstration, we use the total

acoustic energy on the surface of the duct inlet Sink) as the objective function F ,

F = | p [2.15 (7.18)

Sinlet
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7.3.2 Optimization Result

The optimization starts with Z =2 1 + z' and terminates when a local optimum

point is found. Figure 7.8 and Figure 7.9 show the history of the objective function

defined in Equation (7.18) and the resistance R and reactance X as the optimization

proceeds. The optimized design variables are achieved at R = 0.3936 and

X = —1.337 , after about 100 iterations, with the objective function F decreasing from

0.1767 to 0.02469.

 

   

0.2;J

0.15}

E
”-10.1:

0.05}

00 20 40‘”L6'0““80 100

Iteration No.

Figure 7.8 The history of the objective function during the liner impedance

optimization

 

    
Iteration N0.

Figure 7.9 The history of the design variables R and X during the liner

impedance optimization.
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Shown in Figure 7.10 is the sound field calculated with the optimized impedance

parameters. The field in the region outside the duct is obtained with the Kirchhoff code.

As a comparison, the case without any liner applied is shown in Figure 7.11. We can see

a significant reduction in the noise level near the duct inlet and also in the far field as a

result of the sound absorbing mechanism of the liner.

 

Figure 7.10 The sound field calculated with the optimized liner impedance.

 

Figure 7.11 The sound field calculated with the original geometry and without

liners applied.

7.4 Geometry Optimization

7.4.1 Problem Definition

For the geometry optimization, all the walls are considered hard walls. The duct

geometry is described with Equations (7.13) and (7.14), with parameters a and b as the

design variables and no constraints are applied on them. The objective function are the

same as defined in Equation (7.18).
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7.4.2 Optimization Result

The optimization starts with a = —1.8166 and b = -11 and terminates when a

local optimum point is found. Figure 7.12 and Figure 7.13 show the history of the

objective function defined in Equation (7.18) and the design variables a and b as the

optimization proceeds. The optimized design variables are achieved at a = 0.085284

and b = —16.844 , after about 30 iterations, with the objective function F decreasing

 

   
 

fi
r

. 

from 0.81886 to 0.43303.
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Figure 7.12 The history of the objective function during the geometry
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Figure 7.13 The history of the design variables a and 0 during the geometry

optimization.
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The sound field calculated with the optimized geometry is shown in Figure 7.14,

with the field outside the duct calculated with the Kirchhoff code. The sound field in

Figure 7.11 corresponds to the geometry at the start of the optimization. The directivity

pattern in the far field is changed but the reduction in the noise level is not obvious. This

is because without the sound absorbing mechanism like a liner, the sound power emitted

from the duct inlet is approximately equal to the sound power coming into the duct at the

duct outlet, if the outgoing wave at the duct outlet due to the wall reflection is very small.

The geometry optimization would be more effective when the directivity pattern is

considered in the objective function or when the geometry is optimized together with the

liner impedance optimization.

 

Figure 7.14 The sound field calculated with the optimized geometry.

7.5 Liner Layout Optimization

Acoustic treatment of turbofan engine inlet ducts attenuates fan noise with the

penalty of added weight. A design with the most weight—effective acoustic treatment is

certainly desirable. The effectiveness of the acoustic treatment with given impedance

properties depends on the number and sizes of the liner patches, as well as their mounting

locations on the inlet duct wall. An example of this is shown in Figure 7.15, where the

total area of liner patches (indicated by the bold lines along the duct walls) is the same for



the both cases. In this section the liner layout of a fixed-amount/area of liner patches is

optimized to reduce the noise emission from a turbofan engine inlet duct.

 

  

Figure 7.15 The sound fields with different layouts of liner patches. The bold

lines indicate the liner patches. Equal amounts of liner are applied for the two

cases.

7.5.1 Problem Definition

We assume that n liner patches are mounted on the duct wall, occupying half of

the area of the duct wall, A. Note that this includes the cases of fewer liner patches. To

simplify the analysis and also to reduce the calculation cost for the optimization process,

we assume that all the patches are circular. With the duct wall radius given as a function

of the axial coordinate x , R(:1:), the area and location of any patch i will only depend on

the coordinates of its two ends, can and 113,2 , for i = 1, 2,...,n. These will be considered

as the design variables. A physically correct layout of these patches requires that

OSI/r £5811 £3312 S'°°S$z‘1 Satin-"£3111 S$n2 SL2 SL (7.19)

where L is the length of the duct and L1 and L; reflect design constraints . This is

illustrated in Figure 7.16 for the case of n = 2. To satisfy the requirement on the total

area of the liner patches, we need to have

n 1:22
Ef 27rR(x)dx = A / 2 (7.20)

i=1 “1

Equations (7.19) and (7.20) are the constraints for the design variables.
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As mentioned earlier, the grid generation is parameterized such that run and rig ,

for z’ = 1, 2,...,n are always on grid points.

The objective function will reflect the noise level in an affected region during a

take-off or landing period. The affected region may be an area in the vicinity of an airport,

denoted by D , with any point on it denoted as 52' e D . We assume the airplane takes off

at time t = 0 and the noise is negligible to the people in the affected region after time

t = T . The airplane travels in a path described by

550 = 550(t) (7.21)

This is illustrated in Figure 7.17 (note that Figure 7.17 uses a different coordinate

system than Figure 7.16), with the reference frame set on the ground.

In the CAA simulation, the reference frame is established on the aircraft/engine

inlet duct and the motion of the aircraft is equivalently treated as the free stream velocity.

In such a case, any fixed point in the ground reference frame, :3 , is now expressed as

"l

a: (t) = 53 — 530(t). Correspondingly, the affected region D now becomes a function of

the time, D'(t), defined by

D'(t) = {52"(t) l it"(t) = :3 — "0(t),i:' E D} (7.22)

Thus, the objective function can be written in a form like

f = f0TffDm| 1)ng IdD'dt (7.23)

which has the meaning of the overall acoustic power in the affected region during a take-

off or landing period.
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Figure 7.16 Patches of liner on the duct wall
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Figure 7.17 Affected region and airplane path

7.5.2 Optimization Result

A simple case with only one liner patch on 40% of the total duct inner wall is

considered. The impedance is given as Z = 1 + z'. The design variables are thus the

positions of the two ends of the liner patch, x1 and 2:2. L1 and I22 are chosen to be

0.1864 and 1.6755, corresponding to 0.1L and 0.9L , respectively. The affected region

S is givenas asquare of —5 s a: g 5, —5 S y S 5 and z = 0 duringalanding period

—100 g t g 0, with t = 0 defined when the engine arrives at a: = 0 , y = 0 and

z = 0. During the landing period, the aircraft moves at M = 0.1 with a descending

trajectory at angle of 30°.
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Figure 7.18 The history of the objective function during the geometry

optimization.
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Figure 7.19 The history of the design variables 1:1 and 2:2 during the geometry

optimization.

The optimization starts with 231 = 0.9062 and $2 2 L2 = 1.6755. Figure 7.18

and Figure 7.19 show the history of the objective function defined in Equation (7.23) and

the design variables 2:1 and 2:2 as the optimization proceeds. The optimized design

variables are found at 231 = 0.4165 and 2:2 2 1.1483 with the objective function f

decreasing from 79.9 to 49.0. The sound field with the liner layout at the start of the

optimization is shown in Figure 7.20 (a). Figure 7.20 (b) shows the sound field calculated

with the optimized layout. The bold lines along the duct walls indicate the liners patches.
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(b)

Figure 7.20 The sound field before (a) and after (h) optimization.
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8 CONCLUSIONS

The effects of optimization parameters, 60 , A and a on the characteristics of

broadband optimized upwind schemes are systematically studied. It is shown that there

are optimum values for the control parameter a and the weighting parameter /\ for a

given range of wavenmber, at which the overall accuracy of the schemes improves. A

scheme that is accurate everywhere for a wide range is virtually not possible since

increasing the accuracy for relatively large wavenumber (1132: is always at the expense

of decreasing the accuracy for smaller wavenumber aAz. A practical approach is to

optimize a scheme by adjusting the available parameters in such a way that its dispersion

and dissipation errors at all the wavenumbers in the range of interest are reasonably

balanced.

The unique feature of optimized multi-component upwind and central schemes is

that they are optimized for the selected wavenumbers so that they can accurately and

efficiently predict the acoustic waves traveling with these wavenumber components.

When calculating a sound field consisting of dominant wavenumbers, the optimized

multi-component schemes are superior to the optimized broadband schemes. For

broadband waves, the optimized upwind multi-component schemes need to be modified

so that they are stable for the range of wavenumbers considered. The optimized central 1-

component schemes can give nearly identical dispersion and dissipation characteristics as

those of the optimized central broadband schemes. For a given stencil width, the 2-

component schemes give better characteristics than the optimized central broadband

schemes. Based on the Fourier analysis, it is expected that the optimized central multi-

component schemes are at least comparable to if not better than the optimized central
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broadband schemes when solving broadband wave problems. The accuracy of the multi—

component schemes improves as the number of wavenumbers chosen for optimization

increases. However, the number of stencil points has to be increased accordingly.

The time-domain impedance boundary condition is a type of boundary condition

that is unique and important to CAA. It imposes more challenges that most of the other

types of boundary conditions involve in CAA. A three-dimensional initial and impedance

boundary problem is proposed to benchmark broadband time-domain impedance

boundary conditions in a three-dimensional context. Its analytical solution is derived and

evaluated. A CAA code using Tam and Auriault’s formulation of broadband time-domain

impedance boundary condition very accurately reproduces the analytical solution. This

formulation is also used in some of the other chapters of the thesis.

The above-mentioned CAA code, with slight modification, is also tested in an

impedance duct environment. It is tested against the analytical solution of a semi-infinite

impedance duct problem and the experimental data from the NASA Langley flow

impedance tube facility in the presence of a sheared or zero mean flow. The CAA code

accurately predicts the duct acoustics in terms of both amplitude and phase. Both the

analytical solution and the experimental data are only available for single-frequency

cases. However, since the system of the linearized Euler equations and all the boundary

conditions are linear, a series of tests at discrete frequencies representing the spectrum in

a certain range should reasonably be equivalent to a broadband test in the same range.

A global time-domain technique is presented to achieve the acoustic wave

solution by subtracting the contained instability wave solution from the total solution of

the LEE. In particular this study is focused on multi-frequency component sound sources.
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The characteristics of the eigen-solution of the homogeneous LEE with the boundary

conditions allow us to relate the contained instability wave solution with the pure

instability wave solution. As a result, the contained instability wave solution, instead of

being suppressed, is obtained from the pure instability wave solution and the total

solution with a technique developed in the study. The acoustic wave solution can then be

achieved by subtracting the contained instability wave solution from the total solution.

The concept of the method presented here is simple and the method is easy to be

implemented. The effectiveness of the method is demonstrated by a test problem solved

with the previously developed CAA code. The presented method can potentially be

applied to problems with more generalized mean flows, practical sound sources, and

realistic physical domains.

A conceptual design is developed for adaptive noise control through the coupling

of a CAA time-domain code with an optimizer. A three-parameter broadband impedance

model is used for the purpose of demonstration of the concept although the concept

works for all kinds of liners with controllable impedance. The CAA code with the

broadband time-domain impedance boundary condition serves as an accurate and

efficient tool for simulating the acoustic field to be controlled. Incorporating the CAA

code with the optimizer, it is shown that the optimization procedure is able to find the

optimum impedance properties for a desired acoustic field under different mean flow

conditions.

As another application of the CAA code that has been developed and tested, a

noise prediction and optimization system for turbofan inlet duct designs is developed.

Such a system consists of a noise prediction system and an optimizer. A hybrid method is
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adopted for the purpose of more efficient noise prediction: the CAA code is used for the

duct and its near field and a Kirchhoff method for the far field. The noise prediction

system is verified with several test problems, each emphasized on testing a specific

aspect of the system. The capabilities of the optimizer coupled with the noise prediction

system are demonstrated with three optimization problems: liner impedance optimization;

duct geometry optimization and liner layout optirrrization. The results show that the

optimization can effectively change the acoustic field in favor of the design objectives.

Some topics that may deserve further study are briefly discussed as follows.

The current DRP schemes are finite difference schemes that can only be applied

on a structured grid. A high-order DRP scheme on unstructured grids is highly desirable

since it would be accurate for wave propagation in long distances as well as flexible for

complex geometries.

The impedance boundary condition is mathematically unstable with a non-zero

tangential flow at the boundary. However such a scenario exists in practice when the

local effects are averaged over the surface of a liner, resulting in a uniform impedance

boundary condition and at the same time non-zero tangential flow. Therefore, a stable

formulation of the impedance boundary condition with non-zero tangential flow would be

of great value for modeling lined boundaries.

A more general formulation of the impedance boundary condition with an

arbitrary flow would be useful to model any boundary beyond which all the effects are

lumped and represented by the boundary condition. It would be a universal formulation

for nearly all types of the boundary conditions encountered in CAA. This should be

another potential subject for fiiture study.
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