
m
m
!

M.
..

..
..

.a
.m

.1
«m

..
.l

a
,__

...
.

..

1.
W
h
a
m
m
i
w

1.
..

..
.r

fi
k
a
m
w
m
s
fi
$
3
9

.
Q
v
1
.
3
.

.
‘

.
‘
1

.

)
5
.
.
.

.
4.
..
..
.

1
.

F
1
.
.
.
.
.
.

.
.
u

.

(
r
;

x
v
i
.
:
6
.
.
.

5
.
.

“
H
R
H
.
“
2
n

‘
v

v
)

.
«
2
.
5
.
:

.
3

"
l
s
x

{
g
i
s
t
}
!

.
!

s
)
!
.
%

3

x

1
.
1
.

\
2
.
7
1
3
:

t
.

.
1
.

.
1
2
.
]
!

3
!
.

.
I
z
t
l

3
.
2
.
3
:
.

1
.
5
2
.
3
9
6
5
,
»

.
.

,
f
u
s
a

.

I
x

x
I
n I
.

v
.

.
. 3
.

.
3
.
.
.
5
.
1
!

1
1
2
‘
;

i
t
!

‘
I
I
I
-

:
-

. A
.

6
2
:
.
.
.

.
2
}
.

#
1
1
4
!
-
I
t
f
r

<
9

.
5
3
.

..
(
a
?
)

n
»
.

“
{
n
u
”
£
n
m
. :

w
i
d
t
h
.

f
u
n
»
.
.
.

fi
n
a
w
-
I
I
G
A
I
.
i
n
!

i
.

1
’
1
.

u
n
d
u
l
a
t
i
n
g
;
P
S
I
H
I
E
V
5
~
E
I
L

u
.
I
G
A
I
¢
¢

g
a
n
g
”
.

u
n
4
.
:
v
\
C
«
U
.
I

s
o

(
I

v
u
:

a
c
i
d
“

.
.
0
.
.
.

I
.

.
1

.
(
“
4
t
h

{
o
u
t
}
.

..
..

3
2
.
.
.
?

E
.

c
.
.
.

.

J

u
.
.
.
-

.
.

.
3

1
1
1

i
v
y
»

K
. x.
»

f
a
u
n
a
“
.

:
s

.
.
3 H
.

.
.
5
.

2
3
.
.
.
.

5
:
4
5
}
.
.
-

i
a
.
.
.

«
K

x
:

E
.
.
.

s
.
.
.

(
4
.
.
.
:

x .
.

‘ \
S
I

.
5
1
.

I
a
n
.

.
D
o
h
v

§
‘
.
:
t

‘
O
.

.
1
-

r
.
.
.

i

5
!
.
- 1
"

.
I
!
5

.
.
3
:

.
«
w
fi
.

{
1
.
5
}
.

f
.

3
.
.
.
? i

A
r
,

1
.

.
9
‘

x
5
:

.
.
l
l

.
4
5 .
~

.
w
e

..
$
2
.
3
.
.
-

L
u
r
c
h
“
.

$
5
»
; I
.
.
.

C
.

a
t
.

.

r
!

C
.

[
c
u
-
l
l

~
B
u
m
m
'
V
t
h
-
z
.

l
a
u
g
h
i
n
g
.
»
—

a

.
3

£

3
,

,
I
.

w
.
u

.
1.
.

..
t
.

a.
4
3
2
.
2

a
.

1
‘

.

.
3
.

I
Q
.
»

.
”
5
:
.
.
.

r
.
.
3
;

_

x a

.
..
..
t
h
i
s

.
.

c
a
b
a
n
a
.
.
.
»

a
n
.
.
.

n
o
.

u
:

.
1

n

2
:
“

..
.a

f
:
(
L
I

«
:
6
c
h

a

mm

300“);

This is to certify that the

dissertation entitled

OPTIMIZATION OF TECHNOLOGY-SCALABLE WIDE-ISSUE

SUPERSCALAR MICROPROCESSORS

presented by

JUNWEI ZHOU

.
L
l
B
R
A
R
Y

M
l
c
h
i
g
a
n
S
t
a
t
e

U
n
i
v
e
r
s
i
t
y

has been accepted towards fulfillment

of the requirements for the
PhD degree in Electrical & Computer Engineering

Major Professor's Signature

5%

Date

MSU is an Affirmative Action/Equal Opportunity Institution

-
-
o
-
-
c
-
9
-
0
-
9
-
.
-
.
-
o
-
o
-
u
-
u
-
o
-
o
-
.
-
o
-
c
-
o
—
I
-
o
-
I
-
o
-
o
-
o
-
o
-
-
0
-
.
-
c
-
0
-
o
-
o
-
o
-
o
-
o
-
0
-
o
-
n
-
o
-
9
-
0
-
9

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

2/05 p:/CIRC/DateDue.indd-p.1

OPTIMIZATION OF TECHNOLOGY-SCALABLE WIDE-ISSUE

SUPERSCALAR MICROPROCESSORS

By

Junwei Zhou

A DISSERTATION

Submitted to

Michigan State University

In partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering

2006

ABSTRACT

OPTIMIZATION OF TECHNOLOGY-SCALABLE WIDE-ISSUE SUPERSCALAR

MICROPROCESSORS

By

Junwei Zhou

Advances in VLSI fabrication technology have enabled performance improvements

in superscalar microprocessors that can exploit the instruction-level parallelism (ILP) and

thread-level parallelism (TLP) in programs to achieve high instruction throughput.

Overall instruction throughput is determined by the summation across all threads of the

product of the clock rate and the instructions per clock (IPC). As submicron process

features continue to scale down, however, wire delays compromise the clock rates in

centralized processors, and fiirther deepening the processor pipeline could significantly

degrade the IPC performance. Coupled with the inconsistency in ILP and TLP across

applications, it is increasingly difficult to continue improving overall instruction

throughput to meet industry demands.

Multi-core approaches dividing a centralized superscalar processor into multiple

separate cores to achieve overall wide issue width while enabling high clock rates. With a

fixed hardware budget, the hardware resources of an individual core are reduced, thus

minimizing wire delays. However, in multi-core designs, the IPC of the individual thread

is compromised, hurting the overall throughput. To maximize instruction throughput a

new approach is needed that can simultaneously optimize both the IPC and the clock rate.

This thesis explores the performance bottlenecks in the superscalar microarchitecture

and aims to identify process-scalable methodologies for maximizing instruction

throughput over a wide range of applications. First, circuit-level techniques are applied to

optimize the critical instruction queue stage of a centralized microarchitecture,

significantly reducing the required hardware and associated delays and providing up to

36% improvement in overall instruction throughput. Next, the distribution of hardware

resources is explored to identify a performance-optimal compromise between centralized

and multi-core approaches. We show that distribution of the processor back-end can

reduce the required hardware resources significantly with relatively small IPC

degradation. Finally, a new adaptive clustered multithreaded (ACMT) microarchitecture

is proposed to enable high performance on both single- and multi-threaded workloads.

ACMT allows the allocation of hardware resources to be dynamically modified and

provides an overall higher instruction throughput than simultaneous multithreading

(SMT) and multi-core processor (CMP) implementations.

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Andrew Mason, for his support to this

work during this four years period. His help, advice, and encouragement have been very

important for me.

I am grateful to my parents for their concern, patience and understanding throughout

my graduate study. I am indebted to my wife, Guoyu Zhu, for her support and

encouragement during this un-easy but the most memorable time of my life.

I thank faculty Anthony Wojcik, Peixin Zhong and Nihar Mahapatra for serving on

my committee. I thank them for providing directions, sharing their ideas, and answering

my questions.

I am privileged to know Jichun Zhang, Prasanna Balasundaram, William Kun, Jian

Li, Chao Yang, and Yue Huang during the past four years. I thank them for helping me

with the circuit design in this work.

Finally, I want to thank Wireless Integrated Microsystems at University of Michigan

for supporting this work.

iv

TABLE of CONTENTS

LIST OF FIGURES ...vii

LIST ofTABLES ...x

1 Introduction l

1.1 High Performance Processors ... 1

1.2 Challenges2

1.3 Related Work... 4

1.4 Projet Objectives .. 6

1.5 Thesis Organization .. 7

2 Potentials and Limitations of Wide-Issue Superscalar Processors 8

2.1 Microarchitecture Background... 8

2.2 Performance Potentials of Wide-Issue Width Processors 10

2.3 Basic Hardware in Superscalar Processors .. 13

2.3.1 SRAM.. 14

2.3.1.1 Delay Analysis .. 14

2.3.1.2 Simulation Results ... 16

2.3.2 Content-Addressable Memory ... 20

2.3.2.1 Delay Analysis .. 20

2.3.2.2 Simulation Results ... 23

2.3.3 Delay Impact on Performance ... 24

3 Instruction Queue Design & Optimizations .. 27

3.1 A Centralized InstructionQueue27

3.2 A Banked Instruction Queue Design ... 30

3.2.1 Instruction Steering ... 32

3.2.2 Select Logic .. 34

3.2.2.1 First Level Select Logic .. 35

3.2.2.2 Second Level Select Logic ..38

3.2.3 One Cycle Delay On Global Tag Lines .. 44

3.3 Implementation & Results .. 44

3.3.1 WakeupDelay46

3.3.2 Select LogicDelay47

3.3.3 IPCResults49

3.3.3.1 Instruction SteeringPolicy49

3.3.3.2 IPCperforrnance52

3.3.3.3 Instruction Throughput. 56

3.3.3.4 One-clock delay in global tag line ... 57

3.3.3.5 IPC Performance on Multi-program Workloads................................... 59

3.4 Summary on Banked Instrution Queue Design... 62

3.5 Another Instruction Queue Optimization Technique...63

3.5.1 Reducing Tag Match Delay.. .. 64

3.5.1.1 Tag Encoding... 66

3.5.1 .2 Implementation.. 68

3.5.1.3 Results..69

3.5.2 Removing Tag-OR Delay.. 70

3.5.2.1 Implementation.. 72

3.5.2.2 Results..74

3.6 Summary.. 75

4 An Adaptive Clustered Multithreaded Microarchitecture... 77

4.1 Hardware distribution on A SMT processor.. 78

4.1.1 Instruction queue..79

4.1.2 Register File... 80

4.1.2.1 Performance Degradation.. 81

4.1.2.2 Results.. 82

4.1 .3 Functional Units... 84

4.1.3.1 Performance Degradation .. 85

4.1.3.2 Results.. 85

4.1.4 Ll Data Cache..88

4.1.4.1 Performance Degradation.. 89

4.1.4.2 Results.. 89

4.1.5 Summary and Discussion...91

4.2 An Adaptive Clustered Multithreaded Microarchitecture 94

4.2. 1 Microarchitecture... 95

4.2.1.1 Frond-end pipeline... 95

4.2.1.2 Instruction steering...97

4.2.1.3 Instruction queue..97

4.2.1.4 Data path (Register File and Function Units) 99

4.2.2 Adaptive Hardware Allocation..

100

4.2.2.1 Single Program Workload..

100

4.2.2.2 Multi Programs Workloads.. 102

4.2.3 Simulation Results... 102

4.2.3.1 Single Program... 103

4.2.3.2 Multiple Programs... 106

4.3 Summary.. 108

5 Summary and Future Work.. 110

5.1 Summary of Contributions... 1 1 l

5.2 Future Work... 113

Appendix: Microarchitecture Simulator.. 115

Bibliography ... 1 20

vi

LIST OF FIGURES

Figure 2.1. A basic superscalar pipeline ... 8

Figure 2.2. IPC performance vs. issue width on SPEC 2000 benchmarks.................. 11

Figure 2.3. IPC speedup of wide-issue processor for multi-program workloads 13

Figure 2.4. A multi-port SRAM cell .. 14

Figure 2.5. A four-port SRAM cell layout... 16

Figure 2.6. SRAM delay vs. the issue width (64 entries) 18

Figure 2.7. SRAM delay vs. SRAM size (number of entries) 18

Figure 2.8 Hierarchical bitlines ... 19

Figure 2.9. A CAM cell schematic ... 21

Figure 2.10. A CAM cell layout..22

Figure 2.11. CAM delay vs. issue width ..23

Figure 2.12 Revised IPC performances for multi-program workload25

Figure 2.13. Optimization space to reduce delay of the SRAM/CAM structure in a wide-

issue processor. ...25

Figure 3.1. A conventional instruction queue ...28

Figure 3.2. A banked instruction queue ..32

Figure 3.3. Instruction steering ..33

Figure 3.4. Two-level select logic ..34

Figure 3.5. Linear CSP circuits for select logic ...36

Figure 3.6. Binary CSP circuits for an 8-entry CAM.. 37

Figure 3.7. Second level select logic ...38

Figure 3.8. Circuits in the switch network. (a) A generic dynamic 2-bit comparator. (b)

the comparators used in channel 1 and 2. (c) Dynamic OR...................................40

vii

Figure 3.9. Filter circuits used in Figure 3.7 ...40

Figure 3.10. Interleaved inputs to priority encoders. NX-Y represents a request from

channel Y of bank X. ..41

Figure 3.11. The select results of global requests resets the local requests42

Figure 3.12. A three inputs priority encoder...43

Figure 3.13. The wakeup delay vs. M value ...46

Figure 3.14. Select delay vs. N and M...46

Figure 3.15. Total instruction queue delay normalized to the centralized design48

Figure 3.16. Global tag lines activity vs. steering policies (4 bank configuration). . .50

Figure 3.17. IPC performance vs. instruction queue configurations (fixed two

communication ports for all configuration) ..52

Figure 3.18. IPC vs. port number for various stering algoirthm 53

Figure 3.19. IPC performance vs. bank configurations on single program55

Figure 3.20. Instructions throughput vs. bank configuration on (a) DEP; (b) MOD

steering policy ... 56

Figure 3.21. Percentage of instrucions accessing to the global tag lines. (4b-dep

represents 4-bank configuration with dep steering policy) 57

Figure 3.22. IPC impact of one-clock communication delay 58

Figure 3.23. Relative IPC on multithreading (a) DEP on 8-bank configuration (b) DEP on

4-bank configuration (c) MOD (d) DEP with l-clock communication delay60

Figure 3.24. CAM delay vs. transistor size .. 65

Figure 3.25. The number of redundant bits versus the minimum hamming distance (8

information bits) ...67

Figure 3.26. CAM matchline delay vs.XOR transistor size in the CAM cell 70

Figure 3.27. An entry in the register map table ...72

viii

Figure 3.28. Instruction queue implementing one-hot encoding 73

Figure 3.29. Wakeup delay using one-hot coding verses instruction queue size on IBM

0.18pm technology ... 74

Figure 4.1. Hardware decentralization of a SMT processor78

Figure 4.2. Relative IPC with/without register file distribution on multiple program.82

Figure 4.3. IPC performance with distributed func units on the DEP steering policy.86

Figure 4.4. IPC performance of four-cluster configuration on MOD steering policy.86

Figure 4.5. IPC performance degradation due to hardware distribution from the

instruction queue to the L1 data cache ..89

Figure 4.6. Performance of SMT vs. CMP.. 92

Figure 4.7. Clustered Multithreaded microarchitecture (ACMT).............................95

Figure 4.8. Cluster activity in a 4-cluster ACMT... 103

Figure 4.9. The IPC Performance of the ACMT. The non-adaptive ACMT has all clusters

active all the time .. 103

Figure 4.10. The IPC performance of SMT, CMP, and ACMT on single program 105

Figure 4.11. The IPC performance of SMT, CMP, and ACMT on multi-program......... 106

Figure 4.12. Performance of SMT, CMP and ACMT (assuming two-clock-delay for both

the SMT and the ACMT)... 107

ix

LIST OF TABLES

Table 3.1. Microarchitecture configuration ..45

Table 3.2. Delay oftwo select logics on one configuration47

Table 3.3. Codeword size and coding efficiency versus register file size for minimum

Hamming distance of three ..69

Table 4.1. Microarchitecture configurationsof SMT, CMP, and ACMT.................. 101

1 INTRODUCTION

1.1 High Performance Processors

Modern high performance microprocessors achieve high instruction throughput by

exploiting parallelisms in the applications. The overall processor throughput is

proportional to the number of simultaneously running threads and the instruction

throughput of individual threads. Microprocessor throughput is ultimately a function of

the processor clock rate and the instructions per clock (IPC) for a specific thread.

processor __ throughput = Z instruction _ throughput,- = 2 IPC, x clock _ rate

t t

where t is the number of threads

High throughput microprocessor architectures fall into two primary categories based

on how they take advantage of parallelisms in the set of instructions to be executed,

which is referred to as instruction level parallelism (ILP). The very large instruction

word (VLIW) microarchitecture [3-5] relies on compiler techniques to exploit the ILP in

a program. In contrast, the superscalar microarchitecture [1,2] utilizes hardware to make

the most of ILP. Since the 19905, superscalar performance has continued to improve

through architectural advancements and significant increases in hardware resources.

Currently, superscalar is a standard for high performance microprocessors in a wide

range of applications [27,28,32,33,34,86].

Today’s superscalar processors overcome control flow and data flow constraints that

are inherent in a program using intensive speculation techniques [6-15]. Speculative

execution effectively improves the instruction throughput of single thread by predicting

program events and fetching and executing instructions before the events occur. In

addition, Simultaneous Multithreading (SMT) [16-20] has been used in superscalar

processors to achieve high performance on multiple thread/program workloads. In SMT,

several execution threads are multiplexed onto a common set of hardware resources to

increases hardware utilization.

Superscalar is a hardware intensive microarchitecture that has benefited significantly

from improvements in silicon fabrication technology. Following the trend predicted by

Moore’s Law, each generation of process technology has approximately doubled the

number of available transistors. In combination with architectural improvements, the

dramatically increasing hardware budget has allowed superscalar performance to scale

along with fabrication technology, maximizing overall processor throughput by putting

more and more hardware resources on a microprocessor chip.

[.2 Challenges

The superscalar microarchitecture is deeply pipelined to support high clock rate. Until

recently, the increasingly available hardware resources have been harnessed to increase

the depth of processor pipelines, i.e., the number of pipeline stages and the size of

individual pipeline stage. This increases the number of in-flight instructions to exploit

program parallelism. Conventional superscalar processors implement centralized

hardware in each pipeline stage, and multiple instructions access the common hardware

simultaneously. The centralized design typical has high hardware utilization and high

efficiency when the hardware resources are relatively low. However, as more and more

hardware resources have been utilized to scale performance, hardware utilization of the

centralized resources has decreased with successive generations of fabrication

technology. A plot of delivered processor performance versus the number of

implemented transistors demonstrates that the efficiency with which the available

hardware resources are utilized has declined over time. As a result, many recent efforts

have turned to enhancing the width of the pipeline [26-28] to boost performance by

increasing the number of instructions that are fetched and executed concurrently.

Wire delays present another challenge to scaling superscalar performance with

process technology. In new technologies, wire delays increase relative to the number of

transistors [79,80] and have become a dominate delay source. Coupled with the increased

size of centralized hardware units, the pipeline critical path delay has increased, resulting

in slower clock rates and lower instruction throughput. Combating this problem by

further deepening the pipeline would introduce pipeline bubbles that significantly

compromise the IPC performance and therefore the overall instruction throughput [31].

On the other hand, multi-core processor approaches, including Chip Multi-processors

(CMP) [29,91,92] and Chip Multi-threading (CMT) [26,28], implement multiple small

cores to achieve overall wide issue width while enabling high clock rates. A multi-core

processor can be viewed as dividing a centralized superscalar processor into separate

cores that share part of memory hierarchy. With the same hardware budget, the hardware

resources of an individual core are reduced, thus minimizing wire delays. However, in

multi-core designs, the IPC of the individual thread is compromised, hurting the overall

throughput. To maximize instruction throughput with the available transistor budget, a

new approach is needed that can simultaneously optimize both the IPC and the clock rate.

1.3 Related Work

A high performance superscalar processor has many pipeline stages. Their hardware

implementations have different level of circuit complexity and scale differently with

technologies. Many researches optimized critical pipeline stages to remove the system

bottleneck, achieving high performance. Optimization of individual stage has minimal

affect on other stages, and therefore can retain most advantages of a centralized design.

The critical pipeline stages includes the instruction queue [44-60], the register file

[35-42], the memory disambiguation logic [73-76], the instruction cache [49,87], and

functional units [85,86]. Some work improved the delay by improving hardware

utilization and reducing the overall hardware resources [36,37,38,44,57]. Other work

reduced the hardware resources on the critical path by dividing a large centralized

structure into multiple small segments in hierarchy [37,47,52,60], in pipeline [51,54], or

in parallel [32,39,45,74,76]. In addition, new circuit techniques [40,41,59] were used to

counter the increasing delay with technologies.

Instead of optimizing individual pipeline stages, some techniques distribute part of a

centralized processor to support technology scaling. Multiscalar architecture [22] and

Trace Window architecture [23] contain multiple processing elements which have their

own instruction flow control, instruction queue, register file and functional units. The two

architectures differ in the organization and communications of the processing elements.

Both use compiler techniques to divide programs into tasks which are assigned to

processing elements. A task is a sequence of code that is executed speculatively. When

control or data prediction prove to be wrong, the whole task and its results are discarded

or re-executed.

Multicluster architecture [24] only distributes the register file, instruction window and

functional units. Each cluster is assigned a subset of the architecture registers. The

register file of one cluster can be accessed by instructions executed in another cluster.

Compiler support is used to reduce the portion of these instructions. Zyuban [25]

proposed a version of the multicluster architecture, tailored to achieving high energy

efficiency. Each cluster is provided with a local instruction queue, a local physical

register file, a set of execution units, local memory disambiguation units, and one bank of

the interleaved data cache. The instructions are dispatched to clusters dynamically based

on data dependency.

Chip Multiple Processor (CMP) [29] and Chip Multi-Threaded (CMT) processor

[26,28] implements multiple cores to exploit thread-level parallelism. A CMP core is

assigned to a thread and is not available to other threads. Multiple cores can share some

resources, such as the memory controller, off-chip bandwidth, and the L2 cache, to

improve the utilizationof these resources. Stanford Hydra processor has four MIPS-based

processors on a single chip [91]. AMD, Intel and Fujitsu released dual-core processors

[92, 27]. CMT support many simultaneous thread execution via a combination of support

for CMP and SMT. It is similar to CMP, but each core run multiple threads

simultaneously. In 2001, IBM introduces the dual-core POWER-4 processor and recently

releases their second generation CMT processor, the POWER-5 [28], in which each core

is a two-issue SMT. In 2003, Sun Microsystems released CMT processor Jaguar [93] that

implements two SPARC on the chip. In 2004, eight cores Niagara processor [26] was

introduced with an overall 32 issue width.

1.4 Projet Objectives

Optimization of the critical pipeline stage can improve processor performance by

removing the performance bottleneck with minimal effect on other pipeline stages. In

addition, targeting individual stages allows leveraging the unique characteristics of the

stages to find the optimal design under various design constraints. One objective of the

thesis aims to improve the design of a critical pipeline stage of a wide-issue superscalar

processor and show the effectiveness of the resulting design strategy.

Optimization on each of many critical stages can be applied to keep improving

performance, but it requires a significant amount of design effort. More importantly, the

design space of an individual stage is greatly limited by other pipeline stages. Processor

distribution provides a more scalable solution. It horizontally divides a wide centralized

pipeline into parallel distributed pipelines, which can be viewed as applying a common

optimization approach on each pipeline stage. This strategy requires less design effort

than exploring the optimal solution of each pipeline stage. The hardware of additional

pipeline stages can be easily added as a module to the available design to provide

scalable processing resources. However, distribution of some pipeline stages may have

very limited improvement on the hardware complexity but could cause significant

performance degradation.

This thesis aims to create a link between two design strategies — optimization of

critical pipeline stages and the distribution of a centralized processor — to explore the

optimal solution by thorough analysis at both the circuit level and the architecture level.

An effective and scalable approach will be applied to distribute the hardware on a critical

stage, and then extend the hardware distribution scheme to other stages, eventually

resulting in a distributed processor. To show the design tradeoff and the impact on overall

performance (instruction throughput), the affect of hardware distribution on circuit delays

and the IPC performance are analyzed simultaneously. Based on the analysis, an optimal

hardware distribution to maximize the overall performance is identified.

1.5 Thesis Organization

Chapter 2 describes the pipeline and hardware of a speculative execution superscalar

processor. Two key circuits, multi-port SRAM and CAM, that are critical to exploit ILP

but refuse to scale with technologies are analyzed. Chapter 3 presents the optimization of

the instruction queue. Design at both the architecture and the circuit level is described,

and the overall performance improvement is discussed. Another optimization approach

that potentially leads to new instruction queue designs is also described. Chapter 4

explores hardware distribution of other pipeline stages. Based on obtained results, an

Adaptive Clustered Multithreaded (ACMT) microarchitecture is proposed to achieve

higher performance than both SMT and CMP processors. The conclusions and thesis

contributions are summarized in Chapter 5.

2 POTENTIALS AND LIMITATIONS OF WIDE-ISSUE SUPERSCALAR

PROCESSORS

The advances in VLSI technology support wider-issue superscalar processors to

achieve high instruction throughput. More silicon area and smaller feature size allow

storing a larger number of in-flight instructions in a processor pipeline to exploit the

Instruction Level Parallelism (ILP) and Thread Level Parallelism (TLP) in applications.

This chapter describes the pipelines of a speculative superscalar processor and their

hardware implementations.

2.1 Microarchitecture Background

The pipeline of a speculative superscalar processor is shown in Figure 2.1.

Instructions are fetched from the instruction cache and a trace cache that provides high

bandwidth for the backend of the pipeline.

Branch predictor Renaming lnstmction Register Functional Load/store Reorder

& Trace cache table queue file units queue buffer

Fetch Decode/ Issue Register ll Execution l Memory I Comm'rt l

Rename Read {1 5 Access . :

I : 1

SRAM/CACHE SRAM/logic CAM/SRAM SRAM Logic CAM/SRAM SRAM

Figure 2.1. A basic superscalar pipeline.

The fetched instructions are sent to the pipeline where they are executed speculatively

before the branch outcomes are available. First, the operands of fetched instructions are

renamed from architectural registers to physical registers to remove false data

dependencies. The physical registers are used in the rest of the pipeline to track the data

dependence between instructions. A register renaming table is used to keep the register

mappings.

The renamed instructions go to a buffer where they will be selected for issuing

depending on their operand availability. The instruction will request issuing with no

latency if both operands are available; otherwise the instruction will stay at the queue

waiting for the required operands. In a deep pipelined processor, the issue logic schedules

instructions speculatively. The scheduler does not wait until the required data is available

in the register file before issuing the instructions, otherwise there would be pipeline

bubbles that cause a severe performance penalty. Instead, the issue logic assumes the data

will be available in a fixed amount of cycles depending on the type of operations. The

issue logic sends instructions for execution based on this delay, assuming the issued

instruction can get the data directly from functional units through the bypass network

immediately after the results are generated.

The two types of data dependencies between instructions are register and memory

dependencies. Memory dependencies occur when the addresses referenced by a load

instruction are the same as the preceding store instructions. While register dependencies

are known at the instruction scheduling stage, memory dependencies cannot be resolved

until the address computation is finished in the execution stage. Speculative execution

can be applied to resolve memory dependence and expose the parallelism hindered by

this ambiguous dependence [73,74]. Execution of a load does not wait until all the

previous store addresses are calculated. Instead, estimation on whether the load has any

true dependence is performed. The load may be allowed to execute and obtain memory

data speculatively before an ambiguously dependent store executes. Studies have shown

that the speculation has a very high success rate [73]; therefore, performance is improved

as loads are executed much earlier than they would if they had to wait for ambiguous

dependences to be solved.

After instructions are executed, their results are saved in a physical register. Due to

branch misprediction, the speculatively executed instructions might be at the wrong path

and discarded later when the misprediction is discovered. The commit stage is to

implement the sequential execution model when the actual execution is non-sequential.

Each register in the register file has four states [30]: (a) architectural register; (b)

renamed register with invalid value, (c) renamed register with valid value, (d) free. When

a decoded instruction includes a destination register, a free register from the register file

is allocated for the destination register. The state of the allocated register is then set to be

a renamed register with an invalid value. After the instruction finishes execution, the

generated value is written into the register whose state is changed to be a renamed

register with a valid value. Because this instruction could be in the mispredicted branch,

its associated register remains in the renamed register state. After all of its previous

instructions have been finished and no branch prediction occurs, the register is set to be

the architectural register at the commit stage. The old architectural register is reclaimed

for future register renaming.

2.2 Performance Potentials of Wide-Issue Width Processors

Prevalent speculative execution techniques throughout the pipeline greatly increase

the hardware utilization, so that the performance can benefit from a wide issue width. The

IPC vs. processor issue width was simulated on five SPEC integer benchmarks and six

10

floating point benchmarks. The processor configuration described in Chapter 3 is used in

the simulation and the simulated results are shown in Figure 2.2. The issue window is

assumed to be unlimited for all issue widths to show the exploitable parallelism in

applications. A four-issue processor is 70% faster on average than a two-issue processor.

The IPC can be increased by additional 38% with an 8-issue processor. Due to the limited

ILP in a single program, further increasing the issue width to 16 only improves the IPC

by an average of 10% over an 8-issue processor. However, the mesa benchmark still sees

a 25% IPC improvement with a 16-issue process.

06’ of f 66° aif a“ a9 as? cit 4‘?
<5)

Figure 2.2. IPC performance vs. issue width on SPEC 2000 benchmarks (five floating point

benchmarks on the left side; integer benchmarks on the right side).

A superscalar processor with large issue width has a high probability of leaving many

of the pipeline stages idle due to control and data dependencies. Therefore, the benefit of

implementing wide-issue superscalar is diminishing for single thread/program. With

minimal hardware modification, a wide-issue superscalar can process several independent

instruction streams simultaneously. In such processors, all the pipeline backends are

shared by all threads/programs, substantially improving the hardware utilization. All

decoded instructions are saved in the same instruction queue which dynamically

schedules instructions from any threads/programs to the processor execution units. If

some threads stall due to long memory latency or branch misprediction, the instructions

in un-stalled threads will be selected and executed. By exposing instruction-level and

thread-level parallelism, processor performance is closely related to the issue width and

the amount of hardware units when there is sufficient parallelism available. Superscalar

processors that support such multithreading are called Simultaneous Multithreading

(SMT). The wide-issue processors in this thesis are SMT unless otherwise specified.

The overall IPC vs. the processor issue width for multi-program workloads are

simulated. The results are shown in Figure 2.3. Multiple groups are simulated for each

combination of issue width and workloads. Each group contains programs selected

randomly from the SPEC 2000 benchmarks. The averaged IPC of all groups is

normalized by the IPC of a four-issue processor running a single program. In Figure 2.3,

increasing the workloads of a four-issue processor to four programs improves

performance only slightly because the performance is limited by the processor’s issue

width. An eight-issue processor has 88% higher performance than a four-issue processor

on four-program workloads. A 167% improvement can be achieved with a l6-issue

processor.

12

U:

.E __ ,w _ .

E +4~issue l

m
—-— 8-issue l

g — — 16-issue j

1 2 4 6

number of programs

Figure 2.3. IPC speedup of wide-issue processor for multi-program workloads.

2.3 Basic Hardware in Superscalar Processors

A wide issue processor requires a large instruction window to expose parallel

instructions and efficiently utilize the wide issue bandwidth. Hundreds of in-flight

instructions are searched, executed and remain in the pipeline before committed. A high

performance processor typically employs many memory circuits (SRAM, CAM) in most

of the pipeline stages shown in Figure 2.1. The SRAM stores the history behavior and

results of programs, which are used for speculative issue/execution. The CAM provides

fast search ability to locate the candidates among hundreds of in-flight instructions in the

pipeline.

The SRAM/CAM in wide-issue processors typically has multiple ports that support

simultaneous access by multiple instructions. The number of ports in some key units is

proportional to the issue width of the processor to avoid a performance penalty due to

port conflictions. An eight-issue processor, for example, requires a 24 port register file

(2? read ports and 1? write ports) so that up to eight instructions can fetch operands

l3

and write results to the register file without access conflictions. Considering the bypass

networks from memory and some special function units to the register file, even more

ports are required [86].

231 SRAAJ

In a deep pipelined speculative execution processor, SRAM stores not only the

current processor state, but also the history of instructions behavior. They are accessed by

addresses, such as the architecture register name, the physical register name and the

instruction address.

2.3.1.1 Delay Analysis

A typical multi-port SRAM cell is shown in Figure 2.4. The cell has dedicated read

and write ports that support write and read operations in the same cycle. The read port

uses dynamic NAND to avoid data corruption during the read operation. The SRAM is

assumed to have one word each row, so there is no column decoder or column MUX on

the bitline. A typical application of such SRAM is the register file in which bitlines are

corresponding to the data bits in the data path. The total delay of the SRAM consists of

the delay of the wordline decoder, the bitline, the sense amplifier, and the output buffer.

Bn_ BL B1 Bn

Figure 2.4. A multi-port SRAM cell.

14

Because the signal on the bitline is a small analog signal that cannot be reduced by

pipelining, we assume an entire pipeline stage for the bitline read/write operation. The

memory access can be pipelined in two stages with wordline decoding in one stage and

bitline read/write in the second stage. Therefore, the bitline delay is a critical path delay

that increases as technology scales.

Read access determines the critical timing of the SRAM. The selected cell discharges

one of the differential bitlines that are both precharged to VDD. The small signal on the

bitline is amplified by the sense amplifier that converts the small swing input signal to a

full swing CMOS signal. The latch output is buffered by an inverter chain that drives on

the data bus. To provide a good margin to process variation and noise, the sense

amplifier is enabled after a certain voltage swing at the input of the sense amplifier has

been established. Therefore, the read delay is the sum of the delay to establish the

required voltage swing on the bitline, the delay of the sense amplifier, and the buffer

delay of driving the data line.

Reading of a very large array is very slow due to a large bitline load and wire delay.

The voltage swing at the sense amplifier input is determined by the threshold variations

in the crossed coupled inverter. The dominant source of threshold variations in closed

space transistors in deep submicrometer geometries is the random fluctuation of the

channel dopant concentrations [78]. This portion of the threshold mismatch (about 50mv)

remains constant with process scaling.

The layout size of the SRAM is limited by wires. A possible layout of a four-port

SRAM cell is shown in Figure 2.5. The bitlines are shielded by the power supply and

ground to reduce coupling noise on the bitlines. The cell width is proportional to the

15

number of bitlines (twice the number of ports for a differential bitline design); the height

is proportional to the number of word select lines (equal to port number). Therefore, as

the number of ports increase, the size of the memory array grows quadratically and the

bitline length grows linearly.

J
w
a
r

Ll
U
T
j
'

IJ

 z
l
-
L
Q
’

 A. ._. 4 . ___‘

VDD 00 GND So VDD BLO GND 6U) VDD 01 GND 51 voo 3L1 GND 8T1

Figure 2.5. A four-port SRAM cell layout.

2.3.1.2 Simulation Results

A large portion of the read access delay establishes the voltage swing before it is

amplified. This delay increases linearly with the load of the bitline. Therefore, given a

fixed SRAM capacity, read access delay increases linearly with the port number.

Furthermore, the demands on SRAM capacity keeps increasing to utilize the available

issue bandwidth, therefore, the access delay grows more than linearly with the issue

width of a processor. As a result, the performance improvement by high issue bandwidth

is offset by larger access delay that hurts the clock rate.

The relationship between the port numbers and the issue width varies with the

specific units. For example, the register renaming table needs to rename 2*IW source

operands and [W destination operands each cycle, therefore it requires a total of 3*1W

ports to support 1W issue rates. For the instruction queue, a SRAM stores the destination

operands. It needs IW write ports to receive the destination operands of new instructions,

and 1W read ports to send out the destination operands of issued instructions. In the

following delay simulation, an SRAM entry has the same number of read and write ports

as the issue width.

The read delay of a 64-entry SRAM vs. issue width is simulated on an IBM 0.131)?

CMOS technology with Cadence Spectre. The simulated results are shown in Figure 2.6.

The storage cell with one read and one write port is 2.3%)? X 1.91)? . Each additional port

increases the height by the width and space of metal-1. The bitline isolation transistor is

turned on after a 10% VDD voltage swing has been established on the bitline. The impact

of non-ideal clock generation is ignored, that is, the clock timing of the sense amplifier

and isolation transistors is perfectly controlled.

The delay of the sense amplifier remains constant due to the isolation transistor. The

delay on the bitline increases significantly with the issue width. With a fixed SRAM size

(the number of entries), the read delay of a l6-issue processor is more than twice that of a

four-issue processor. Considering the effect of wire delay which grows quadratically with

wire length, the delay grows faster for a larger SRAM structure (Figure 2.7). For a 256-

entry SRAM structure, increasing the issue width from 4 to 8 slows down the SRAM by

90% due to the extra ports; this ratio grows to 118% for a 512-entry structure. It is

worthy to note that the situation gets worse as technologies scale.

17

C1 driver

I sense amplifier

121 bit line

2 4 6 8 12 16

issue rate

Figure 2.6. SRAM delay vs. the issue width (64 entries).

0
1

 n
o
r
m
a
l
i
z
e
d
d
e
l
a
y
t
o
6
4
e
n
t
r
y

SRAM size (word)

Figure 2.7. SRAM delay vs. SRAM size (number of entries).

With a fixed SRAM size, reducing the SRAM ports improves the SRAM speed.

Some techniques have been designed to reduce the SRAM ports. A large SRAM, for

example, is divided into a number of address interleaved small arrays. For each access,

only the addressed array is activated. The addressed array has shorter bitlines, and can be

accessed faster than the whole SRAM. In addition, the address interleaved memory has

fewer ports but Still maintains the same peak bandwidth as the original SRAM.

A multilevel bitline hierarchy partitions a single long bitline into small segments

using additional metal layers [77]. A large SRAM is divided into a number of identically

sized small arrays (shown in Figure 2.8). Each array is framed by a local bitline and the

local sense amplifier. Each small array has a local bitline whose output is connected to

the global bitline by nMOS drivers. Global bitlines are precharged in the same way as the

local bitline in each cycle. If any of the outputs of the local bitline is high, the nMOS

drivers turn on and discharge the global bitline. Additional metal layers are used to

implement the global bitline on the top of the bitline, but there is an area penalty for the

global bitline.

Local bifl ine

Global Bitline

Local bitline

L1H— Cell argalfl

”7:251 ‘ l

if 3U... 4..
Figure 2.8 Hierarchical bitlines.

2. 3.2 Content-Addressable Memory

The SRAM is used for data storage and lookup based on a known address. Inside a

high speed processor, some data to be sought is associated with a known keyword rather

than a known address. The known keyword is compared against previous stored

keywords to reference other data or trigger actions. For example, the original operands of

newly fetched instructions are renamed to reference the physical register. A physical

register designator contains a keyword that is associated with a particular instruction. The

exact instruction locations in each hardware unit are normally not known. The keywords,

which are called tags, are used to search for the instructions among hundreds of in-flight

instructions in the pipeline. The memory that performs this type of function is called

content-addressable memory (CAM) [82-84].

2.3.2.1 Delay Analysis

The CAM uses the storage circuits of the SRAM but allow the access of data through

a matching mechanism. There are three types of CAM architectures [82] varied by the

matching mechanism: bit-serial, word-serial, and fully parallel. High performance

processors use only fully parallel CAM to achieve minimum latency. A fully parallel

CAM array is similar to a SRAM array, each row containing n-bit tags that are compared

to the incoming search tag. The stored tags in each row are generally different but some

rows could have the same tags. If there is a match, then a match line of the corresponding

row sends a match signal to the encoder that generates the physical address of the

matched row in the array. In most cases, a CAM is used with a SRAM, the match line is

used directly as the word select line of the SRAM, and the encoder is not needed.

20

A multi-port CAM is shown in Figure 2.9. It contains a SRAM and extra search ports.

A search port corresponds to a comparator that compares the data stored in the SRAM

cell and the data on the tag line. The match lines are precharged to high. If the stored data

is different from the tag, the corresponding match line is discharged to indicate a

mismatch. Otherwise the match line remains high. Each search port associates with a

match line. All of the match lines of a CAM cell are combined with an OR gate; the

output of the OR gate is high if there is a match in any of the search ports.

Figure 2.9. A CAM cell schematic

CAM has three types of operations: read, write, and search. The read and write

operations are the same as the SRAM. The CAM in Figure 2.10 has shared read/write

ports. The search operation consists of three sequential actions as follows:

0 Searched tag drive: The searched tag is driven to the CAM tag line.

0 Tag match: match lines are discharged when there is any mismatch bit between the

searched tag and the stored tag. Match line results are evaluated after worst discharge

time.

21

0 Match-line OR: match results are combined to indicate if there is a match in any of

the match lines.

Because tag drive and tag match delays are mainly wire delays, they do not scale with

technologies. In addition, the search results are usually used to access the SRAM.

Therefore, search is the critical timing operation in a CAM.

A layout of a two-port CAM cell is illustrated in Figure 2.10. The read/write port is

the same as the SRAM write ports. The match line is in parallel with the word select

lines. The height of a CAM is determined by the number of word select and match lines.

Notice that match lines impede the implementation of high density CAM. In a SRAM,

multiple words can be in one row and the access to an individual word is controlled by

column decoders. In a CAM, the match lines can not be shared between words. The

match lines have to take different rows or a different layer, making it difficult to trade

array width for height like a SRAM array.

5, .

O
.4

E

:

I

I m
u
n

 J_ .1 LL _ L

VDD BLD GND fio voo TAGO GND TAGO VDD 8L1 GND 3171 van Tm1GND mm

Figure 2.10. A CAM cell layout.

22

2.3.2.2 Simulation Results

The delay of a 64-entry CAM array was simulated on an IBM 0.13m technology.

The results are shown in Figure 2.1 1. The number of read/write and search ports assumes

scaling with the issue width. The basic I-port CAM cell is 2.3191 X 31“)? . The size of the

comparator in the CAM cell is 4X the minimum transistor size to reduce the match line

delay. Increasing the port number raises the length of the tag lines, width of the match

lines, and the number ofOR gate inputs. Multiple smaller gates are used to implement the

OR gates when it has more than four inputs.

The tag line delay is largely caused by the driver delay and only increases slightly

with longer tag lines. However, there is significant increase in the match line delay. The

match line speed is limited by the discharge transistors of the mismatch bits. In the worst

case, only one bit is different, and the match line is discharged through only two serial

transistors. Large OR gates are required for wide issue width to combine the search

results.

400

300

g H—“}‘

1;; 200 I tag match.

g G lag drive l

100 <

Issue width

Figure 2.1 1. CAM delay vs. issue width

23

Notice that CAM is an energy intensive structure. The comparator in Figure 2.9 is a

dynamic NOR gate that pulls down the match line when any mismatch bits are active.

This comparator achieves a small delay. However, most comparisons in a CAM result in

a mismatch; a significant amount of energy is wasted by driving searched words to these

entries and charging/discharging match lines every cycle. A NAND type comparator

discharges the match line only when there is a match, consuming less power.

Unfortunately the delay of a NAND comparator is proportional to the width of the word,

and is not used in high speed processors.

2.3.3 Delay Impact on Performance

Section 2.2 showed that many applications benefit significantly from wide-issue

processors. However a speculative wide-issue superscalar requires large SRAM/CAM

capacity and ports to exploit the available issue bandwidth. This significantly increases

the delay of a processor. If we keep the clock rate scaling with technology, more pipeline

stages are needed, which would offset the performance improvement achieved with a

higher issue width.

The revised IPC performance was simulated with the same processor configuration as

in section 2.2. It assumes the four-issue processor issues dependent instruction

consecutively, while there is one clock delay for eight-issue processors and two clock

delay for l6-issue processors between the executions of two dependent instructions. The

simulated results are shown in Figure 2.12. The revised IPC of a 16-issue processor is

even lower than a four-issue or eight-issue processor for a single program workload. The

16-issue processor has noticeable performance improvements only for more than two

threads/programs workloads. In fact, the results do not take into account the increased

24

mis-speculation penalty which further degrades the performance of wide-issue

processors.

«13%

—o—4—issue

3m0/0 L_ +84$SU€ _. - _ H -2

g +16—issue
TE

W 2CD% * ~—- ~—» ~ , . -.____ __

o l
9: .

|

100% [P

00/0 l r r r

1 2 4 6

nunber of progam

Figure 2.12 Revised IPC performances for multi-program workload.

Therefore, a fundamental issue in wide-issue processor design is to mitigate the

scaling of delay to the issue width in heavy-ported SRAM/CAM structures. Approaches

can be generalized into two dimensions: 1. reduce memory size. 2. reduce port number.

The design space based on these two dimensions can be described in a tree shown in

Figure 2.13.

Reduce delay

Reduce capacity Reduce ports

/ l

/ \a \‘

Improve . Distribute Distribute Reduce bandwidth

hardware utilization workload bandwidth requirements

/i\/
Hierarchy Pipeline Parrallel

Figure 2.13. Optimization space to reduce delay of the SRAM/CAM structure in a wide-issue

processor.

25

We can improve the hardware utilization to reduce capacity with a minimal

performance penalty due to less hardware resources. We can also distribute the whole

workload into multiple segments. The segments could operate in a hierarchy which has

the smaller segment on the critical path, so that the delay depends only on the size of the

smaller segment. Multiple segments can run in a pipeline; only the segment in the first

stage exists on the critical path. Or each segment operates independently and can be

accessed faster than putting them together. In the second dimension, we can reduce the

amount of port accesses to decrease the data bandwidth requirement. Similar to the idea

of distributing workloads, the total bandwidth is distributed to multiple smaller units,

which operate in parallel to provide higher bandwidth.

Many researches reduce the size/port of the multi-port SRAM/CAM on the critical

pipeline stages, including the instruction queue, the register file, and the memory

disambiguation logic, to remove the system bottleneck. A W-issue N—core processor

distributes a centralized W-issue core into N parallel cores, and each core has W/N issue

rate. The size and ports number of the SRAM and CAM circuit is reduced by a factor of

N accordingly.

26

3 INSTRUCTION QUEUE DESIGN & OPTIMIZATIONS

The instruction queue (also called the issue buffer in some literatures) is a critical

component of out-of-order issue logic that determines the degree of ILP which can be

exploited within a superscalar processor [43,47]. After new instructions are fetched from

the instruction cache, instruction operands are renamed to remove false data

dependencies. The renamed instructions are inserted into the instruction queue where

they wait until their operands become ready. The ready instructions compete for issue

slots. The issued instructions broadcast their status to all entries of the queue to update

the operand status of dependent instructions. When both operand values are available, the

waiting instructions wake up and request issuing at the next clock. To achieve high

performance, the instruction queue is required to wake up and issue instructions with

minimal latency.

This chapter focuses on the optimization of the instruction queue for wide-issue

superscalar processors. A conventional instruction queue is described in section 3.1. Our

new banked instruction queue is introduced in section 3.2. Simulation results and

summary are provided in section 3.3 and 3.4. Another new optimization approach on the

instruction queue is presented in section 3.5. The chapter summary is in section 3.6.

3.1 A Centralized Instruction Queue

A conventional instruction queue consists of two CAMS, a SRAM, and select logic,

as shown in Figure 3.1. The CAMS store the source operand tags of waiting instructions

and the SRAM stores destination operand tags. For every issued instruction, its

destination tag is read from the SRAM and sent to the comparator input of the CAM. The

27

CAM associatively searches for source tags that match the destination tag and sets the

ready bit when there is a match. If both source operands of an entry are ready, it sends a

request to the select logic for issuing. When the entry wins an issue slot, its destination

tag is read from the SRAM and broadcast to the CAM to wakeup dependent instructions

in the next cycle.

des lags

R source

l

l

l

l R li—lsoiurceta 1.] destags ,_l

L? 'j‘gj .3, —

(lip—J” ‘°R";- - ”4- Z

I. . :17. ._n E

a.)

‘ (D

des tag:— . 7

source1

l

 C'AM

Figure 3.1. A conventional instruction queue.

Select logic selects instructions for issue from a pool of ready instructions in the

instruction queue. The oldest-first selection policy is mostly implemented in the select

logic. When there are more ready instructions than the available issue slots, the oldest

instructions are prioritized over the younger instructions. The instruction wakeup and

selection process exist in the critical path of the pipeline. They constitute a closed loop in

which delay limits the speed of executing dependent instructions.

There are two types of instruction queues implementing the oldest-first policy:

compacting and non-compacting. In the compacting instruction queue, the top entries in

28

the queue have the highest priority. New instructions are inserted from the bottom of the

queue. In every cycle, the empty entries created by the issued instructions are filled by

the following instructions. Instructions that occur earlier in the program order occupy the

top entries in the queue and have higher priority than the later instructions. In the non-

compacting queue, the entries that are created by the issued instructions are not filled

immediately. Instead, a head and tail pointer is used to indicate the start and the end of

the queue. When the instruction pointed to by the head is issued, the head points to the

next non-empty entry in the queue.

The compacting scheme has high queue utilization and the select policy can be

implemented with a simple position-based select logic. However, instruction compaction

results in more delay and degrades processor performance. In addition, the compacting

instruction queue may be a major source of power consumption in the instruction queue.

Each time an instruction is issued, all entries are shified up to fill the empty entry created

by the issued instructions. This results in a large number of shifts and therefore a large

amount of power dissipation.

The non-compacting queue doesn’t need to shift each entry every cycle, and therefore

has much lower power dissipation. The head always points to the oldest instruction in the

queue. However, because the head moves along the queue, more complicated select logic

has to be used. Bradley [94] et. al. proposed Cyclic segmented prefix (CSP) circuits to

implement the oldest-first selection policy for the non-compacting instruction queue.

However, it needs sequential add operations which have more than linear increases in

delay with the issue width. Because power has become the major design limitation, we

only discuss non-compacting instruction queue in this work.

29

AS the processor issue width continues to increase to achieve higher performance,

more memory ports are required in the CAM and SRAM. As discussed in Chapter 2, the

delay and area of SRAM and CAM is proportional to their port number; it is getting more

difficult to keep the delay and power consumption under design constraints.

3.2 A Banked Instruction Queue Design

A banked instruction queue has been designed to reduce the CAM/SRAM port

number. The centralized CAM and SRAM is divided into N banks shown in Figure 3.2.

Each CAM bank can issue up to M (M<IW) instructions in parallel but a total of [W

instructions are granted for issue in one cycle. Because a CAM bank issues only M

instructions simultaneously, M instead of [W write ports are needed to fill the entries

emptied by the issued instructions. Similarly, the SRAM needs M write ports to accept

new instructions and Mread ports to read the destination tags of issued instructions.

The decentralized instruction queue needs communication between banks because

some instructions may have its operands located in different banks. The CAM of each

bank has M search ports, among which IW/N ports are used for the issued instructions at

the same bank, i.e. the tags of issued instructions from the same bank are sent to these

ports to search for the dependent instructions. The other NC=M—IW/N ports are used as the

communication ports to receive destination operands from other banks. One

communication port requires a pair of global tag lines that are shared by all banks. The

global tag lines are active only when the dependent instructions are in different bank from

the producer.

30

r——F\;iEJI'i'It o peran d
,-. . Wu]

WWIourcetag1i4} __D. GU EL+ Des tags1‘

..... —L—.._-

:3" ,_.D
f...”.-_..T:..(2.35“

NC -< l

[sTgurcebagz L R I l—ll-tilGTl 3__’ l Des tagSZ-mi;

Em.--" ...sz 3

;. ___.- -....._,.--. ".3112:
l

v
v

l.._. _—__-..-—.—......-_-I

soufftagwynl R l l: T’ l 068.3896wi1 i D GT --
,.......-L- -...L -._; 1

_
'

l----..-.—---- .---— «r...-.-.a . I .

. ---m- --_. . --_. . 90.

C~;-~-”N‘“ o RAM'I I
'3) ---..--..._., ...--....-.Il--...l

Let operand
— C)

/1 JR. 5

WSIN+NC +_ ' E

8 S

3;? ”91 is;

/WS/N+NC 6111,11

Right operand ‘ '“

 “Hm... I e:»—~~--«D~raj iiiDeEéETifié
--—-—-—---- 4'- --— 1 _

source tag 2 p »—- - __y 1 Des tags 2

l.-.;_.1::.._.-.;._l;_'i_fj.-..1 ”D lPTl - -~

-.___.___.__._-._ .._.. ""‘ J

l E. :J_lND x/vvsw/Nc

[sourcetagws/n] R l __ ~- -..- e—b *besutaé—sws/n

I- ,. -‘c"N

i Let operand ----------

Figure 3.2. A banked instruction queue.

To improve resource utilization, the communication ports are reused for local

instruction wakeup on the cycles when global tag lines are idle. Up to M instructions can

be selected for issue in each bank. In the following section, the operand tags that have to

be sent to other banks are called global tags, they otherwise called local tags. The issue

requests generating global tags are called global requests and are called local requests

otherwise. A GT bit associated with a CAM entry is added in the instruction queue to

indicate the type of issue request. It is used by the select logic for issue arbitration. The

31

select logic chooses at most NC entries that have a set GT. If the GT bit of an issued

instruction is set, its destination operand will be put on the global tag lines through the

pass transistors in Figure 3.2.

With a fixed M, reducing the amount of bank communications would increase the

ports available for instruction issue and wakeup. Therefore, newly decoded instructions

need to be assigned to banks in a manner that minimize the amount of communication.

The steering logic, which implements the steering policy, assigns a decoded instruction to

a bank, and notifies the producer instruction by setting its GT if dependent instructions

are sent to different banks

3. 2.] Instruction Steering

Steering logic is needed to assign renamed instructions to instruction queue banks

based on the steering policy. There is a tradeoff between IPC performance and the

hardware complexity of the steering logic. A complicated algorithm that achieves less

communication may have larger delay thus hurting the clock rate.

Based on data dependencies between instructions, there are three cases when steering

instructions.

1) both operands are ready: the instruction is inserted into the assigned bank without

setting bit GT.

2) only one operand is ready: If the bank of the producer instruction is the same as that of

the new instruction, then no further action is taken. Otherwise, the producer instruction

having been steered to the instruction queue needs to be notified that its dependent

instructions are in another bank.

32

3) both operands are not ready: it is similar to case 2). The GT bit of two entries

corresponding to the two producer instructions might be set.

An approach similar to [50] is used to set up this bit (shown in Figure 3.3). Two new

fields Ei and Pi are added to the rename alias table (RAT). Field Ei points to the

instruction in the bank that will produce the corresponding register. Pi indicates the bank

where the producer instruction is assigned. Considering an instruction newly assigned to

a bank by the steering logic, if both operands are ready then the instruction is inserted

into the assigned bank. Otherwise, the entry corresponding to the producer instruction is

accessed through Ei and its GT bit is set.

"EL steering ,flrfixi, K.
I . C . 1

‘ logrc | r

/ GT Physical Reg D

l . / P
L V. ' .

source [sicalnRegl _fl El }

reg |

RAT Instmction queue SRAM

Figure 3.3. Instruction steering.

There is another implementation option to set up bit GT. Instead of using a pointer

Ei to point to the producer in the instruction queue, the Physical Reg ID in the RAT can

be sent to the instruction queue and compares with the Physical Reg ID field in the

SRAM. The GT of matched entry are set. This method doesn’t need the extra storage cell

for Ei in the RAT, and therefore reduces the RAT complexity. However, extra

comparators are needed for associative searching, turning the SRAM into CAM structure.

This work adopted the first option.

33

3.2.2 Select Logic

In this banked instruction queue design, the select logic should meet the following

requirements when selecting instructions for issue.

0 Total number of selected instructions from all banks are no more than IW.

0 Total number of selected instruction accessing to the global tag lines are no more than

NC.

0 Assuming the number of active global tag lines is Na, each bank can issue up to M-Na

local instructions simultaneously.

The global and local issue requests are processed separately. The issue requests of

ready entries are sent to either the global requests block or the local requests block shown

in Figure 3.4. Each block implements a two-level select logic [95]. Take the local

requests block for example, a first-level select logic receives issue requests from one

CAM bank and asserts up to M requests with all unselected requests reset to logic zero.

The total N*M requests selected in the first level are then sent to the second level for final

arbitration of up to [W instructions. The global request block operates in a similar manner

except that each first level logic selects NC requests, and the second level also selects NC

requests from N*NC candidates.

The global requests are set to have higher priority than local requests. Each bank can

issue up to M instructions, but the exact amount of issue slots depends on the dynamic

number of global requests. Assuming there are X global requests, where OSXSNC, then

each bank can issue up to M-X local requests. Therefore, the results from the global block

are used to gate the outputs of the local block.

34

The final grand signals from the global or local requests block are used as the

SRAM’s word select lines. The selected SRAM entries put the destination operands on

IW/N local tag buses or NC global tag buses shown in Figure 3.2.

CAM irst Leve irst Leve SRAM

Bank1 (CSP) 2*; (05") ’8‘ 83"“.6, '6’

2 2

_ *6 — ‘6

e 2 a 2(D a) q; 0’ SRAM

CAM irstLeve --1 0’ irstLeve -‘ w Bank2.0
1:Bank2 (csp) t: a, (CSP) ‘3 a:

c c

o "’ 0 mo m o co

m '9 ‘1’ "CI:
03 r: <0 C

.2 2

.‘7’ '5

o O

3,- 3

CAM irst Leve irst Le ve 32$“;

BankN (csp) (CSP)

Figure 3.4. Two-level select logic.

3.2.2.1 First Level Select Logic

The Segmented prefix (CSP) circuits [94] is used in the first level that receives issue

requests from one CAM bank and asserts up to M or NC requests with all unselected

requests reset to logic low.

A modified linear CSP circuit is shown in Figure 3.5. It consists of a ring CSP circuit.

Each CSP circuit has an adder and multiplexer. The ring is attached to the wrap-around

CAM. The ready signal of a CAM entry is set high when the corresponding instruction is

ready for issue. The head signal of each CAM entry indicates the head of the ring, which

corresponding to the oldest instruction. The CSP circuits apply add operations to

35

successive inputs starting from the head entry, and accumulate the number of ready

instructions. The sum circulation stops at the head entry by setting the head bit high.

The overflow bit (Ov) indicates if the accumulated sum is larger than the issue width.

Only the ready entries without sum overflow access the SRAM to read destination

operands. Once the overflow bit is set, it propagates to the rest of the ring with OR gates.

The head bit chooses either to pass the OR results or set the initial overflow bit to zero.

The delay of the OR gate is smaller than adders, and can bypass the slower add operations

to reduce the delay. All requests afier the first entry where overflow is detected are reset to

low.

'6 3 Reajy=0 CSP [SUNS M. 3:0}

Head=0 node 7

I

I1 Ready=1 csp Surgo, S: 1}

Head=1 ile—

| Ready=0 csp SW50. S=0}

2 Head=o node '

L" +

l Ready=1 CSP :1 5:1

3 Head=0 node {Sun} ' }

L l—

(A)

Sum

V

(3)

Figure 3.5. (A) Linear CSP circuits for select logic. (B) A CSP node

36

The CSP can be implemented in tree structures to achieve a logarithmic delay in the

window size [94]. While the linear CSP circuits apply the add operator in-order to

successive inputs, the logarithmic CSP circuits apply the operator in parallel to contiguous

subsets of inputs. A binary tree CSP circuit has been implemented as shown in Figure 3.6.

Every two contiguous inputs are grouped together in each stage and processed in parallel.

The accumulated sum at the root is fed back to the previous stages to implement cyclic

segmented prefix. The critical delay through the binary tree consists of 21gn—l CSP circuit

nodes. One of the critical paths is shown in thick lines. The CSP node circuit shown in

Figure 3.6(b) implements the accumulation function and passes the sum and overflow bit

to the next node.

R Su .5

A' {—39 CSP Um»)
WS

 (A) (C)

Figure 3.6. (a) Binary CSP circuits for an 8-entry CAM. (b) A CSP circuit node. (c) CSP circuits

symbol.

37

Each CSP circuit receives up to WS issue requests and generates up to WS

corresponding groups of outputs containing an accumulated Sum and a grant signal S.

The grant signal indicates whether the request has been selected in the first level.

The adder width in the CSP has a logarithmic relationship with the issue width. Since

each bank has a smaller issue width (M<IW), smaller adders can be used in the CSP

circuit compared to the adder in a large instruction queue. Therefore, using small size CSP

circuits can potentially lead to power and delay improvements.

3.2.2.2 Second Level Select Logic

The second-level select logic consists of switch networks, priority encoders and filters

shown in Figure 3.7. The priority encoders select up to [W instructions from N*M

candidates. In a priority encoder, the priority is associated with the physical location of

the request and cannot be changed dynamically. Because the Sum output from the first-

level CSP circuits indicates the relative age of the requesting entries (relative distance

from the requesting entry to the head of the queue), this information is used at the second

level to implement the oldest-first select policy.

TlSwich network“? 5 EH Filter lm

INS/N _ o , i

flinch networklii’ g WA, Filter i—W/Qr:

"’i/ver 3‘ T1

':

. O —7C—§l————‘
-— F ' /

JTlSWICh networkl—iji+ 5 12—1 Ilter m

’WS/N
Figure 3.7. Second level select logic.

The Switch network block in Figure 3.7 passes the selected requests to M channels

based on the sum from CSP circuits’ outputs. The issue request with sum=0 represents the

38

head of the waiting instructions, and are sent to the first channel. The issue request with

sum=1 goes to the second channel, and so forth. There are only IW/N+NC and NC output

channels from the local and global block respectively. If there is no issue request, the

corresponding channel output keeps low. These channel outputs are sent to priority

encoders at the second level for final issue decision. Notice that the original CSP circuits’

outputs are also sent to the second stage where they combine with the second level result

to generate the final grant signals.

A simple switch network implementation is shown in Figure 3.8. Each channel

consists of a dynamic OR and multiple comparators. First, the comparator in Figure

3.8(a) compares sum A with the channel number C (assuming M_<_4). When A matches C

and the associated select signal is valid, then output CR turns high. The comparator’s

outputs connect to the dynamic OR gate of the channel. If one comparator detects a

match, then the OR gate output turns high indicating there is an issue request from

channel C. Because the channel number bits are static, the circuits in Figure 3.8(a) can be

simplified. Take channel one for example, the channel number C<2>=0 C<l>=1; M6,

M3, M4 and M2 can be removed because their branches are always open. In addition, M3

and M7 can be short since they are always on. The simplified circuits at channel one and

two are shown in Figure 3.8(b).

39

_ T _17

cu< ,_ a cu< 1‘. a

CIKJIIJ‘ ‘kl _ “MI. 1

A=- A==
. . 10

«I >0-1.} R=(A=C) [1.4% _H j—

i‘; MWL “ml
A<_1>1;M8A<1>H'M9 _ _ A

ll .. } A<_0>l A<QE1

c<211m6<1§1dn Si 5, Fl
' l, ‘ *l Fl l

» __ '1

A<0>_l‘ JAllis-3511 ’ Ti ‘I v.14 1MB ‘3’I __

:9 <> J
r

80:1 III/12C O‘llrM3
gdll

7' >0.
R0

51 ' l _J Jl rM1 A911 Af=“l— l7

j . l . I

(A) TIC)

Figure 3.8. Circuits in the switch network. (a) A generic dynamic 2-bit comparator. (b) the

comparators used in channel 1 and 2. (c) Dynamic OR.

The filter circuits in Figure 3.7 receive outputs from both CSP circuits and priority

encoders. Only the issue requests selected by both blocks are granted for issue. Each

grant signal is used as the SRAM word select signal for a corresponding SRAM bank.

The circuits in Figure 3.9 can be used as the filter circuits. A grant signal from the

priority encoder output is passed through a MUX to an AND gate based on the sum value

of each entry. If this signal and the corresponding output of the first level are both high,

then the issue request is granted.

40

I
I

-
c
7
“
.
1
1

 14> // l\. _ Grant1

C NC . ———

Priority Encoder Output jl/rSrU—ml S

 + \Giantwsm

/ SUIT) S

15“"va SWS/N}

Figure 3.9. Filter circuits used in Figure 3.7.

IW priority encoders are employed to select IW instructions in parallel. Because there

are total N*M requests, each priority encoder receives N*M/IW requests and grants one.

To ensure that the oldest instruction of each bank always wins an issue slot over younger

instructions, the issue requests to the priority encoder are interleaved as shown in Figure

3.10. The N*M requests from all first-level banks are grouped and ordered by the channel

number. This is assuming that each priority encoder receives two signals, A and B, and

grants one with priority A>B. The ordered N*Mrequests are connected to input A of each

priority encoder in sequential order and then to the input B, so that lower channel

numbers have higher priority. Figure 3.10 shows an example of the interleaved requests

for N=4, M=4 and IW=8.

41

NO-O N04 N93 NOL Ni-O N1-1 N1-2 N1-3 N2-0 N2-1 N2-2 N2-3 N3-0 N3-1 N3-2 N33

+5 7‘ ‘- -‘:::;3..‘<~’/" '___’__J__..._

N0+0 N10 N20 30 N01 N11 N21 N31 N02 N12N22 N32 03N;3 N33 N33

+

L_P0_ll__l l___lL_FLll___.ll__l LF’_5_lL_PL_l

v v v v v v v v v v v v

A—— P riority —GrantA=A_

B——— encoder ~——GrantB=AB

Figure 3.10. Interleaved inputs to priority encoders. NX-Y represents a request from channel 1’ of

bank X. .

The global requests have higher priority than local requests and are always granted to

be issued. The outcomes of the global priority encoder are used to reset the last NC grant

signals from the local priority encoder because they share the same search port. The

outputs to the priority encoder consist ofN*NC grant signals in which up to only NC are

set high. These set signals are used to reset the NC local requests in each bank shown in

Figure 3.11. Finally, the priority encoder outputs are used to filter the outputs from the

first level logic.

The priority encoder is used in the second level. Figure 3.12 shows a three inputs

priority encoder. SO has the highest priority, and is always granted if it is high. S] will be

granted only if S1 is high and S0 is low. S3 has the lowest priority; if either S0 or S]

requests to issue, S3 will not be granted. The global section has NC priority encoders

operating in parallel to grant up to NC requests that will access to the global tag lines.

Similarly, IW/N+NC priority encoders in the local section grant up to IW/N+NC requests

simultaneously.

42

($11 ‘ (51)

1W 3
s 1,3 0

(umWS/JN) a.) (5712/.

5 WS/N

'C

(SN)/ .3 SN)

(SumN.S

Wei}

Global Re uests

q 17‘ it

lSwitch networkl

,/,NC, ._ . _

(51)- ($1) __ g l

’ [Tn/‘1’ " flH—i/IWTNA’

(S1) 3

I (51) [fig .- .

7“”,—> L —— NC = 151 .

c g “' /wsm

l (Sum .51) 8 L

SIN 0L, _—

5
'C

.9 |

551,77> ‘L L (SN) — . l

7 SN "(VII/N V , ./1wiN+ ; l

SN) 33
SN 2 .—

l '—/‘)Nc' ’ v "73-, 5 SN ' (SN
, WS/N

l (SurnN,SN) 3’"

wer _
. 1,-0.9?“ R¢999§l§ ._ . ,,

Figure 3.1 1. The select results of global requests resets grant signal of the local requests.

so l C; GrantO

I l

I. I q—LfiT , f 1

i T ' a
H’V_ \Y

51' 1:1: ,-_,"7. *l/ Grant1

i (‘5 .l l

. I ‘T Lid—ELI 1111 l

| J T . 1 “.

l 1 Pre

$2 _ Dipo—s GrantZ

Figure 3.12. A three inputs priority encoder.

Note that this two level scheme does not implement a global oldest-first policy; a

newer instruction in a lightly loaded bank could be prioritized over an older instruction in

43

a heavily load bank. However, Simulations Show that this quasi oldest-first policy has

only slight impact on IPC performance.

3.2.3 One Cycle Delay On Global Tag Lines

Global tag lines are slow because they go through all banks and access all entries in

the instruction queue. Allowing one extra cycle delay on the global tag line reduces the

critical path delay and potentially improves the clock rate. However, this would increase

the latency to wakeup instructions that are at different banks from the producer

instruction, degrading IPC performance.

An instruction has up to two operands. There are three cases pertaining to the

availability of the operands: 1) both are ready: the instruction competes for the issue slots

without delay. 2) only one‘operand not available: there could be one cycle penalty to

wakeup the instruction depending on the relative locations of the producer and the

consumer. 3) both operands are not available: the location of the producer that will be

executed early is not on the critical path and doesn’t change the wakeup latency. As

simulation will show in the result section, the extra cycle delay in the global bus has a

modest effect on the performance when the amount of communication is low.

3.3 Implementation & Results

The instruction queue delay and IPC performance varies with the value of N and M.

For example, a small M means a few ports of each bank, resulting in a small wakeup

delay. However, M limits the maximum number of instructions issued from a bank in one

cycle. Due to the dynamic nature of instruction wakeup, the request entries are not evenly

distributed to each bank. If the issue request limit is reached in a bank, some requests

44

 IT

might be blocked even though there are empty issue slots in other banks. Thus, low

values ofM could significantly impact processor IPC performance.

The instruction queue has two operations: instruction wakeup and select. Both the

delay and IPC performance on various bank configurations has been simulated. The

critical path circuit was implemented on IBM 0.13um CMOS and was simulated with

Cadence Spectre with a power supply of 1.5v.

SimpleScalar—3.0 [66] has been modified to model the processor with a banked

instruction queue. The register update unit is decomposed into instruction queues,

physical register files, and a reorder buffer. The architectural parameters are summarized

in Table 3.1. Integer benchmarks having different IPC levels, branch misprediction and

memory reference numbers were selected from the SPEC CPU2000 suite. The

benchmark executables were precompiled Alpha EV6 binaries available with

SimpleScalar. The first one billion instructions were bypassed to skip the startup code

and the next 100 million instructions were simulated. The inputs were from the reference

inputs for each benchmark.

TABLE 3.]. MICROARCHITECTURE CONFIGURATION.

Fetch/dec/commit rate 8

Issue rate 8

Register file size 256

Integer ALU 8

Instruction queue size 64

Branch predictor Comb., 1k PHT, 8-bit global history, 2k 11-

bit local history

LSQ size 64

Dl/Il cache 32k, 2 way, 32-byte lines, 2-cycle latency

D2 cache 2M, 4-way , 64-byte lines, 8-cycle latency

Main Memory 100 cycle

45

3.3.1 Wakeup Delay

The instruction wakeup delay consists of the delay of reading destination operand

tags from the SRAM and searching for the matching tag in the CAM. For SRAM read

operation, the selected cell discharges one of the differential bitlines that are both

precharged to VDD. The small signal on the bitline is amplified by the sense amplifier to

reduce the read delay. To provide a good margin to process variation and noise, the sense

amplifier is enabled afier a 10% supply voltage swing has been established on the bitline.

The wakeup delay vs. M is shown in Figure 3.13. Decreasing M reduces the length of

tag lines and match lines. In addition, a small M requires small OR gates that combine the

match line results. Therefore, the delay of searching for matching tags is reduced when

the issue width M deceases. The delay of reading operands from SRAM is also improved

because a large portion of this delay is establishing a voltage swing between differential

bitlines before sense amplifiers turn on. This delay increases more than linearly with the

total port number.

The overall wakeup delay of the centralized design (M=8) is 89% larger than the

minimum configuration (M=2). Reducing M from eight to four results in a 32% wakeup

delay reduction. Considering the effect of wire delay which grows quadratically with the

wire length, higher percentage delay reduction can be expected in new processes with

smaller feature sizes.

46

1 ,

l lseardiingtags

A 800% Ureadoperands — T i 7 7 v T»

in

3 600-17 - , #L_,_ K _, —
>. i

2 l

. 1 1

. l I I ., —
l l

l l l I

QILILLll #L L,Ll,_l__l IL. ,. L,. I L

=2 M=3 =4 M=5 M=6 M=7 M=8

Figure 3.13. The wakeup delay vs. M value.

3.3.2 Select Logic Delay

The critical path of the select logic consists of two parallel sections, each of which

consists of CSP circuits, a switch network, priority encoders and a filter. The delay of the

CSP circuits dominate the total select delay due to sequential add operations. The delay

depends on the adder size and has logarithmic delay in the bank size. The section

processing the local issue requests has a larger issue bandwidth, requiring a larger adder

and more add operations. Therefore, the delay of the local section determines the

selection delay.

Assuming four banks with four issues per bank (N=M=4), there are seven total stages

in the critical path of the first-level CSP circuits. The worst delay occurs when the sum

starts from zero and increments to three. Delays of the two-level select logic are listed in

Table 3.2 along with delays for a conventional select logic constructed with binary tree

CSP circuits. The conventional centralized design has a significantly larger delay for sum

accumulation because it requires 11 stages and eight sequential add operations in the

worst case. The switch network, the priority encoder, and the filter circuits incur a delay

47

large centralized implementation.

overhead for the two-level hybrid design. However, the total delay is still 36% less than a

TABLE 3.2. DELAY OF TWO SELECT LOGICS ON ONE CONFIGURATION

CSP Switch Priority Filter Total

network encoder

4-CSPs 523ps 83ps 52ps 95ps 0.75n

Baseline ll71ps - - - 1.17n

Figure 3.14 Shows the select delay for various bank configurations. N=1 represents

the conventional centralized design. The delay increases with M due to the sequential add

operations before the accumulated sum reaches M. Dividing the instruction queue into

fine grained banks reduces the number of stages and the accumulation operations on the

critical path, and results in a smaller total delay than a larger bank. There is a small jump

in delay when increasing M from four to five, because a wider adder is needed in the first

level select logic for sum accumulation.

 1200} ._ .

 1000——~ —————— e ._.

D
e
l
a
y

(
p
s
)

I I I l l I l

‘
1

2
2
2
2

I
I
I
I
I
I
I
I

m
u
m
—
-

M=2 I M=3 v Mzi has I UM=6

Figure 3.14. Select delay vs. N and M.

Total instruction queue delays normalized to the centralized design are shown in

Figure 3.15. An 8-bank instruction queue with 2-issues each bank reduces the total delay

by a maximum of 39%. A 2-bank configuration barely improves the delay due to the

overheads of the second level select logic. The instruction wakeup and select can be

48

implemented in two pipeline stages to support a high clock rate. The critical path delay

improvement would depend on the longer operation of the two stages. In this design, the

select logic is slower, and the two-level select logic reduces the select delay up to 50%.

Note that the wakeup delay would increase relative to the select logic as wire delay

increases in new technologies.

100% I

a +

3 I

I __ --l _ H _,_L_
g 800/0 I v I ‘ ‘

a ' ,
E . ‘ "

§ 600/0 T A

3 l
3 400/0 1' ’7 “—— '— *— fl :____:_ _ __-L

2 l "-0- N=2

2 20% e . ~— ~ e—- ”—4 ----- A I N=4

g A N=8

'0 I *—

0% I . L ,

M=2 M=3 M=4 M=5 M=6

Figure 3.15. Total instruction queue delay normalized to the centralized design.

3. 3.3 [PC Results

3.3.3.1 Instruction Steering Policy

Deciding the number of the global tag lines is critical to achieve an optimal tradeoff

amongst delay, power, and performance. If there are not enough global tag lines, multiple

cycles might be needed before an instruction wins the global resources. There is then a

delay to issue the dependent instructions. However, adding global tag lines require more

communication ports, essentially eliminating the benefit of banking.

The amount of communication between banks is dependent on the instruction steering

policy. Several steering policies [62,63,65] of different complexity were described as

follows.

49

° DEP. New instructions are steered after the register dependence information has been

updated based on instructions in the previous cycle and the preceding instructions being

renamed in the same cycle. This policy can achieve the performance close to the optimal

algorithm that is NP complete. The drawback is that it needs to analyze data

dependencies between new instructions before the steering decision is made which may

hurt clock cycle.

The data dependency logic at the register renaming stage can be reused in instruction

steering. However it may increase the size and delay of the register renaming logic. We

chose to use dedicated steering logic and add an additional pipeline stage before the

instruction wakeup stage for instruction steering.

‘3 CTRL. This policy partitions programs by control flow instead of data flow. It can be

done by monitoring branch instructions that are easy to identify at the instruction fetch or

decoding stage. The steering logic assigns consecutive instructions to the same

instruction queue segment until a branch instruction is reached, and then the instructions

are assigned to the next segment. Instructions within a basic-block are likely dependent,

so reasonable performance can be achieved. Since branch instructions can be identified at

the instruction fetch or decoding stage, no extra pipeline stage is needed for instruction

steering.

D MOD. Instructions are assigned in a modulo three fashion. The first three instructions

are assigned to segment 0, the next three to segment one and so forth. It has been shown

that the mod3 algorithm has minimal complexity and is an efficient steering method for a

quad cluster processor [63]. Similarly, the steering decision can be made in parallel with

register renaming, and no additional pipeline stage is needed.

50

D RAND. Instructions are steered to segments blindly. It has no pipeline penalty and is

used as a reference to evaluate the effectiveness of other steering algorithms.

Assuming there are unlimited communication ports, Figure 3.16 shows the activity of

the global tag line vs. steering algorithms for a 4-bank configuration. DEP requires less

communication than other steering algorithms; in about 80% cycles, there is no

communication between any banks. CTRL increases the amount of communication by

almost 50%. MOD performs the worst, only slightly better than steering instructions

blindly.

‘ IDEP

ICTRL ’ T

4-- EMOD ‘*

BRAND

p
e
r
c
e
n
t
a
g
e

o
f
c
y
c
l
e
s

#ofactlve global tags

Figure 3.16. Global tag lines activity vs. steering policies (4 bank configuration).

Figure 3.16 shows that the communication ports are idle most of the time. For the

DEP steering policy, the percentage of cycles when more than two ports are used for

communication is less than 3%. For all steering policies, three communication ports can

meet more than 90% requirement. However, when the ports for communication are

limited, the stalled instructions due to resource confliction would compete for the

communication ports again in the next cycle. Therefore, the amount of stalls would be

51

amplified and causes more performance degradation.

3.3.3.2 IPCperformance

The amount of communication increases with the number of banks. It is because with

more banks, the dependence graph of programs is divided into more pieces, and the

communications between them increase. The IPC for an instruction queue with two

communication ports are shown in Figure 3.17. With DEP, the 2-bank design reduces

IPC by 3.5%. There is slight increase in the IPC penalty (4.1%) when a 4-bank

configuration is used. This penalty almost doubled for an 8-bank design.

The other steering policies incur a higher IPC penalty due to the dramatic request

increases in global tag line access. For the 2-bank design, MOD performs worst with

about 8% IPC degradation. Assigning instructions blindly can achieve the best workload

balance, offsetting its higher overhead of bank communication for a 2-bank

configuration. The IPC of 4-bank and 8-bank instruction queues are more sensitive to

bank communication. The penalty with CTRL and MOD grows significantly, only

slightly better than RAND.

100% k— Mi. 7

 90% ,

{:DE‘I:

umi

— lDRANDJ

80% a

70%

W
W

I
P
C

60% 0

 50% —

2-bank 4-bank 8-bank

Figure 3.17. IPC performance vs. instruction queue configurations (fixed two communication

ports for all configuration).

52

This result shows that with the same communication resources, a course-grained bank

configuration required less communication and therefore has higher performance than a

fine-grained design. The IPC performance is susceptible to steering policy and bank

configurations when the communication resource is relatively small. DEP requires the

least amount of communication and has the lowest IPC penalty for all configurations.

We are more interested in the performance variation with total hardware resources

that are directly related to the value of M. Figure 3.18(a) shows the IPC variation with M

on the DEP steering policy. The explored M is limited to six to get meaningful hardware

resource reduction compared to the non-banked design. For an 8-bank instruction queue,

there is a 16% IPC penalty with only one communication port (NC=1, M=2). The penalty

is reduces to only 5.6% when three communication ports are employed (M=4). Further

increasing the ports, however, doesn’t help IPC noticeably. Adding two more ports

(M=6) only reduces the IPC penalty by 1%. The 4-bank configuration has the highest IPC

performance when M>3.

The rational behind this is that the 4-bank configuration has more resources for

communication compared to a 2-bank design, and therefore has less stall due to global

resource confliction. In addition, when the global tag busses are idle, they can be used for

local instruction wakeup, so the individual bank has the same peak bandwidth. While an

8-bank CAM provides more resource for communication, Figure 3.16 shows that it is

unlikely that more than three global busses are active in the same cycle for

communication. On the other hand, more banks compromise the oldest-first select policy.

The critical old instructions in a crowd bank might be bypassed by younger instructions

in other banks, causing IPC degradation.

53

100%7 , ~ , ,- 100%.

(7 I l—————~ ' 1. x I

90% a - 90% +‘ , ,7;

g 30% ;‘L-——— — —-— m 9: 80%a .1..J—_71;_m-_m7/_!

“2’ o l ~— 3 70o/ .-
___ __,_ __F __ ___,___ “ 0-..“-.4 .W W. . w _

E m 2 bank I % mm0 o ___7 v 7 __ * __—4— 60%,M;'__ ..,l'.__,__ ._ r n _s

‘1 60" F4 bank ‘r t" ' . 4bankl

50% A 8 bank—l 50% i A 8 bankJ

o ,.__.___.__r__ss_ T - ‘ 40% .__._z.___ ”DZ---“ _,-___ __s

40/°2 3 4 5 6 2 3 4 5 6

M M

(a) DEP (b) MOD

100% . 100%

0 0 «u # ant" h T— / ' O , .. /
. / Q_ I /

E 30%.___..»._ / — 80%H- *w _. Wm — 74..--

(D ’ o/ 0)) 1‘ //

“(26 70% . . fu- 70%~—.—5__7*’ _,,‘ .

_ , -m_—-— .5 1,"; - __wa—w

g 50% ’f‘""“‘" P—“ + 2 bank "—" (I 60%“—f.* f— ‘fl"' 2 bank r

F . 4bank ' o u 4bank

50°/°f“"“’““ _. 8bank ”m 50/°l‘*""”—“m—’ . a bank “

400/ f __.._ _TJ—m , . 40%. . . .

°2 3 4 5 6 2 3 4 5 e

M M

mom (d) RAND

Figure 3.18. IPC vs. port number for various stering algoirthm.

Figure 3.18(b) shows the normalized IPC variation for the MOD steering policy.

Because MOD incurs more communication between banks, the IPC performance benefits

significantly from a large M (more communication ports). Different from DEP, the 4-

bank configuration didn’t outperforms an 8-bank until M>4. This is because the IPC with

MOD is more sensitive to communication resources, and an 8-bank CAM has more ports

available for communication with the same M. Therefore, the 8-bank configuration is

preferred using the MOD steering policy if hardware resources are limited (M<5).

Compared to DEP, one more port is needed when the IPC starts to grow slowly. Similar

54

to DEP, a 2-bank configuration has the lowest IPC which is mainly limited by its few

communication ports under the same hardware budget.

The IPC with the other two steering policies perform similar to the MOD. When there

are no more than five ports, the 8-bank configuration has the highest IPC. Figure 3.19

summarizes the relative IPC of all configurations. Because CTRL and RAND have

similar or worse performance than MOD, they are not included in the comparison. When

there are very limited port resources (M<4), DEP produces higher IPC than other steering

methods and the 8-bank configuration has the highest IPC performance with an 8.1% IPC

penalty. When the port number is increased to four, a 4-bank instruction queue reduces

the IPC penalty to 4.1%, and is slightly better than the 8-bank design. With a S-port

hardware budget or higher, all configurations achieve close IPC with variations within

2% except for the 2-bank. In this case, MOD is preferred over DEP because of the simple

hardware to implement the MOD steering policy.

 100%
E4095 I l?

90% 1 '_—

-

\

8-DEP p///

80%

8
.

2;, / / N2-MOD

g 70% N4-MQD

a / /

o ‘;

60 /° /N8-MOD

50%

M=2 M=3 M=4 M=5 M=6

Figure 3.19. IPC performance vs. bank configurations on single program.

55

3.3.3.3 Instruction Throughput

The overall processor performance is measured by the instruction throughput (clock

rate fiPC). Assuming the instruction queue delay determines the clock rate, the

processor performance vs. bank configuration is summarized in Figure 3.20 based on

previous delay and IPC results. With the DEP steering policy, the 8-banked instruction

queue has the highest performance and can achieve a 37% higher performance than the

centralized design. Note that each bank only needs to support an issue width of three to

achieve the maximum performance. A larger M degrades the performance because the

increase in delay is more significant than the IPC improvement. With the MOD steering

policy, 8-bank configurations still outperform the 4-bank designs under the same

hardware resources. However, each bank should have an issue width of four to obtain the

maximum performance.

 150%

Q

g 130%. -— -— ,_ — w .n .1 _,

3 '/\'\A I +N=2
s
‘5 ' ‘ +N=4

g 110% ——.—-_W W, A -_~__-.--__ ,z

3' +N=8

S ’\-o . ,__ .
5

90% —~— a -———---~—-————— -——— -~~————— ——~-~

70% . , ,

M=2 M=3 M=4 M=5 M=6

(a)

56

150%

130%

. N=2

f/I.\' -—I— N=4
110% .2- . _

x + N=8 J

90% ___. L._~__ ._ ___ _, ___.

70% . 1 r r

M= M=3 M=4 M=5 M=

(b)

Figure 3.20. Instructions throughput vs. bank configuration on (a) DEP; (b) MOD steering policy.

t
h
r
o
u
g
h
t
p
u
t
i
n
c
r
e
a
s
e

3.3.3.4 One-clock delay in global tag line

An extra clock delay in the global tag lines allows faster clock rates to issue local

instructions at the cost of possibly increasing the latency of dependent instruction

executions. Based on the results of the last section, the 2-bank configuration has poorer

performance than 4-bank or 8-bank configurations, and therefore is not included in this

discussion. CTRL and RAND have similar or worse performance than MOD and are also

removed from the design space. Furthermore, only M=3, 4 and 5 are analyzed because

they have reasonable IPC and hardware resource tradeoffs.

Figure 3.21 shows that a 4-bank instruction queue with the DEP steering policy has

an average of 15% instructions accessing the global tag lines. MOD increases this to

more than twice the amount of dependent instructions that are not assigned into the same

bank. This number increases modestly for 8-bank configuration.

57

40% — ._,,_ . z B

V)

C

.9 a

23 30%_____ l ‘ ,, A is

E
(I)

s

“6 20°.iczi_zi*,-’zBJ . _, fl

3, .

g .m

g 1009“}
g- . _, _. V

o ‘

‘L l

0°/cl_» n g A" .. J ,.

4b-DEP 4b-MOD 8b-MOD

Figure 3.21. Percentage of instrucions accessing to the global tag lines. (4b-dep represents 4-bank

configuration with dep steering policy)

In spite of a significant amount of inter-bank communication, only those instructions

whose last unready operand is located at another bank would cause a performance

penalty. Figure 3.22 shows the impact of the extra clock communication delay. An

instruction queue configuration is denoted by N—M—SP-a’, where N is the bank number; M

is the total port number; SP is the steering policy, and d denotes the communication

delay. The performance impact with the DEP steering policy is much smaller than that

with MOD. Across all configurations, one clock communication delay causes a 2-5% IPC

penalty with the DEP steering policy. The 4-bank configuration has slightly higher

performance than the 8-bank, which requires a higher amount of communication.

For the MOD steering policy, increasing the port number doesn’t noticeably improve

the IPC. For example, the IPC gap of an 8-bank configuration is increased from 9% to

13% when M increases from four (N8-M4-MOD-l) to five (N8-M5-MOD-1). It is

because the amount of communication is so high that the performance degradation caused

by the communication delay is much larger than that caused by port conflictions.

Therefore, minimizing the amount of communication is critical when multiple cycle

58

communication delays are allowed.

1 00%

R
e
l
a
t
i
v
e
I
P
C

N4- N4- 'N4-' N4- N4: N43 Y N03 N8- , N83 N8- ‘iNei N8-

M3— M3- M4— M4- M5— M5- M3- M3- M4- M4- M5- M5-

DEP- DEP- DEP- DEP- DEP- DEP— DEP- DEP- DEP— DEP- DEP— DEP-

o 1 o 1 o 1 o 1 o 1 o 1

(a) DEP

R
e
l
a
t
i
v
e
l
P
C

N4- N4- N8— N8- N8- N8-

M5- M5- M3— M3- M4- M4—

MOD-MOD- MOD-MOD- MOD-MOD- MOD-MOD-

0 O 1 0 1

(b) MOD

Figure 3.22. IPC impact of one-clock communication delay.

3.3.3.5 [PC Performance on Multi-program Workloads

The banked instruction queue on a single thread has more than 4% IPC penalty that

cannot be improved by employing more communication ports. This is because ready

instructions are not distributed evenly among banks. Some banks are idle and others are

overloaded on some cycles. The hardware utilization can be improved with multi-

59

threaded or multi-program workloads. The increased parallelisms reduces the amount of

idle cycles at a bank due to lack of ready instructions. Figure 23a shows the IPC with the

DEP steering policy. For M3, the IPC degration decreases with more threads. For

example, the configuration (N,M)=(4,4) has 4.2%, 3.6%, 1.7% IPC degradation when

there are one, two, and four running threads, respectively. (N,M)=(4, 5) has even less than

0.1% IPC degradtion on multithreades workloads. While an 8-bank configuraton has a

lower IPC than a 4-bank configuration on single thread, it outperforms a 4-bank with the

same M on multithread workloads. Fine-grained designs have more communication ports

with the same hardware resource, workloads imbalance is not a performance limitation

anymore on multithreading. Notice that there should be at most two commucation ports

(M=3 for N=8, and M=4 for N=4), otherwise the IPC penalty is even larger on

multithreaded workloads than on a single thread.

Figrue 23b shows the IPC on the MOD steering policy. As the performance is mostly

limited by the communication resources, it is more sensitive to M than on DEP. Again,

the 8-bank configuration has higher performance than the 4-bank configuration.

However, the MOD still incurs a 7% IPC degration on four threads when M_<_4.

Therefore, a fined-grained bank configuration with the DEP steering policy is prefered on

multithreaded workloads.

60

1 00%

90%

Eo _ O

9. g 80/o

.3 :5
E m 700/0

(or) 0:

60%--

50% _, - T ,

M= M=3 M=4 M=5

(a) (b)

100°xb~ o

i . / :‘ . 100A 1

| .7 I"
. ’3 ____.,_.—» '

80% A 1’ 1 0/ ___-. ,« _w_ / .._. ._._ _ ! _

0 i / . // O 80 0 g / I __—

E ; './ a N41P E ' n' o N41P

9 60%! -—~— /7:41:71 ,___ v-—fi I N42P - g 60%.“,zw(_ .___ _r ' N421”

g l ,r xiii" N4 4P % 07']; N4 4p

m l ‘ N81P tr . N81P
0/5, __ .. , _ .- »_..

40' '* g, ‘l o N82P 40% . M- *— ~ * _ o N82P”

' N849) l N84Pi

20% -2“, —— --—.—————-—— 200/ ,i______.. _, ___- .__ , _ _

M=2 M=3 M=4 M=5 ° M=2 M=3 M=4 M=5

(C) (d)

Figure 3.23. Relative IPC on multithreading (a) DEP on 8-bank configuration (b) DEP on 4-bank

configuration (c) MOD ((1) DEP with l-clock communication delay.

Figure 23c shows the relative IPC when there is a one clock communication penalty.

Based on the above results, only the DEP steering policy is considered. The IPC

degration is significant when there is only one port for commuication (W,M)=(8,2), or

(N,A/0=(4,3)). On the other hand, increasing the communication ports to more than two

has only a slight performance improvement. There is a 6.9% IPC degradtion for (N,M) =

(8,4) on four thread workloads compared to less than 0.1% when there is no

61

communication delay. Additional port resource reduces the degradations to 5.4%. This

result shows that the performance is limited by the communication delay. Only two or

three are needed to achieve the best potential perfomance.

It is interesting to note that the communication penalty has a small affect on the

performance of processes which have a tight hardware budget. With M=3, the 8-bank

configuration increases the IPC degration from 7.3% to 10.7% on four threads with one

clock communication penalty. A smaller M contributes to a faster clock rate and may

result in higher overall performance.

3.4 Summary on Banked Instrution Queue Design

Our design reduces the physical size of the instruction queue by reducing its memory

ports. A centralized structure is divided into N parallel banks. The hardware size of each

entry is determined by the issue width M of each bank instead of the overall issue width

IW. The select logic still selects up to [W ready instructions from all banks to match the

other parts of the pipeline. Compared to the [W issued centralized processor, the physical

size of the instruction queue is reduced by M/IW. In addition, our design reuses the

communication resources when they are idle, achieving a high hardware utilization.

Our design supports easy tradeoffs between hardware complexity, the IPC, and the

clock rate. The design space of our banked instruction queue is determined by three

factors: the number of banks N, the issue width of each bank M, and the instruction

steering policy. The optimal bank configuration depends on the specific constrains of a

processor. The physical size of the whole instruction queue is determined by M. When

the hardware budget is limited, M is small. With as little as 25% (M=2) hardware

resources of a centralized 8-issue processor, the 8-bank configuration obtains 83% IPC

62

performance of the centralized design. With 50% hardware resources (M=4), the IPC

performance can be improved to 95.8%.

High clock rates can be achieved with a fine-grained bank configuration (large N) and

a small issue width of each bank, potentially resulting in high overall performance

(instruction throughput). For example, an 8-bank instruction queue with M=2 can achieve

36% higher performance than the centralized design, assuming that the processor clock

rate can be increased at the same rate as the delay improvement of the instruction queue.

The IPC performance is not sensitive to the bank granularity and the steering policy when

the hardware budget is relatively large. With about 63% (M=5) hardware, the IPC

performance varies by 2%. Therefore, simple steering logic can be used to minimize its

affect on the pipeline.

3.5 Another Instruction Queue Optimization Technique

Optimization of individual stages allows to ulilize the unique characteristics of the

target stage and come up an optimal design to meet particular design constrains. We have

designed another independent optimization technque [97] described in this section.

In a conventional design, the destination register of each instruction is mapped in the

renaming stage to the physical register identifiers. The identifiers are used to wakeup

waiting instructions as well as to index the physical register at later cycles. Using the

register identifier in the wakeup/select process unnecessarily limits the design space of

the instruction queue. In fact, the tags at the instruction queue are only used to keep track

of instruction dependencies. They can be separated from the register identifiers without

any effect on the pipeline. The instruction queue chooses a set of code as tags to update

63

the instruction status. The hardware of the instruction queue can be optimized based on

the code characteristics to achieve lower delay and/or power consumption. Tag separation

greatly increases the design space of the instruction queue. In this section, the potential of

such decoupling techniques is demonstrated with two different tag coding methods that

were designed to reduce the wakeup delay by targeting different delay components in the

wakeup process.

The first method targets the tag match delay component in the wakeup delay. A linear

code is used as the tag that is composed of the physical register identifier and redundancy

bits. The physical register identifiers are sent from the instruction queue to the pipeline

register for register access, and the redundant bits are used in the wakeup process to

reduce the tag match delay. The second method uses the one-hot code to remove the OR

delay components in the critical path. This scheme allows the use of the grant signals

from the select logic as tags broadcast to all entries in the instruction queue, therefore

removing the destination tag read as well as the tag OR operations.

Notice that the non-compacting instruction queue is assumed in this section. The

delay is limited only on the instruction wakeup delay. Instruction select is in another

pipeline and therefore its delay is not in the wakeup critical path.

3.5.1 Reducing Tag Match Delay

As discussed in Chapter 2, tag match delay takes up more than 40% of the total

wakeup delay. At the precharge stage, the matchline in Figure 2.9 is precharged to VDD

through a pMOS transistor. At the evaluation stage, if there are any mismatch bits

between the tag and the data in memory cells, the match line is discharged through the

64

nMOS transistors of the mismatching cells. The worst case delay occurs when only one

bit is mismatched, turning on only one discharge nMOS to pull down the match line.

To reduce the tag match delay, one option is to increase the size of the pull-down

transistor. However, this would increase the tag line load, which would result in higher

tag drive delay and power consumption. In addition, all of the pull-down transistors on

the match lines would have to be increased. This would increase the parasitic capacitance

of the match line, and also would require more discharge time thus offsetting the speed

benefit of large pull down transistors.

Figure 3.24 shows the tag drive and tag match delay vs. the pull down transistor size.

Using four times minimum size transistors reduces the match line delay by 60% percent

at the cost of a 10% increase in tag drive delay compared to using minimum size

transistors.

(___..

q +match lin

250 \‘r i .

\ 1+tag dnve

1x 2x 3x 4x 5x 6x

Figure 3.24. CAM delay vs. transistor size.

The tag match delay also depends on the number of pull-down nMOS that turn on

simultaneously. This number is equal to the Hamming distance between tags. In the

65

conventional design, the tags are binary codes referring to physical registers, and the

minimum Hamming distance (MHD) between any two tags is one. However, if the tags

are encoded so that the minimum Hamming distance is greater than one, tag match delay

can be reduced without increasing transistor size.

3.5.1.1 Tag Encoding

Implementing a separated set of tags in the instruction queue requires additional

hardware to store the tags and link the tags of the issued instructions to the physical

register identifiers that are used for register access. Binary linear codes [95] are suitable

for this application. A linear code C is referred to as a [n, k] code, where n is the length

and k is the dimension of the code. A linear code can be considered as having two parts.

The first part of a codeword has k bits representing the information content. In this case,

it is the physical register identifier. The second part has n-k bits. These are redundant bits

that are used to increase the code Hamming distance. Therefore, there remains a direct

mapping from the tags in the instruction queue to the physical register identifier. Only n-k

memory cells are needed to store the redundant bits.

A. Minimum Hamming Distance = 2

The minimum Hamming distance of a linear code is determined by the minimum

weight of C. The weight of a binary codeword w(c) is the number of one bit in the

codeword c. The minimum weight of the code C is defined as the minimum nonzero

weight among all nonzero codewords. For linear codes, the minimum weight equals the

minimum distance shown as follows:

66

Let d(a, b) represent the Hamming distance between codewords a and b. Then

d(a,b) =d(a-c,b-c) for all codewords c. In particular, d(a,b) =d(a-b, b-b) = d(a-b, 0) =w(a-

b).

To find a code C with a minimum Hamming distance d, it is only necessary to ensure

that each codeword has at least d bits with logic value one. Notice that each codeword of

the check parity code has an even number of 1’s, so any nonzero codeword has at least

two 1’s. Therefore the minimum Hamming distance of the check parity code is two. For

an n-bit codeword, only one redundant bit is required, and the other n-l bits represent the

physical register address.

B. Minimum Hamming Distance > 2

A code with a large minimum Hamming distance allows more pull down transistors

to turn on simultaneously, reducing the average tag match delay. A greedy algorithm can

be used to find sets of codewords with a Hamming distance of d. This is done by starting

with codeword 0 then counting upward, adding a codeword that has a Hamming distance

of at least d to the previous codeword. This algorithm will produce a linear set of codes

with minimum Hamming distance d.

Figure 3.25 shows that the number of redundant bits required grows as the minimum

Hamming distance increases. More redundant bits than information bits are needed when

the minimum Hamming distance is larger than five. This increases the size of the tag and

the number of memory cells to store the tag. More importantly, longer tags incur a larger

diffusion capacitance on the match line, offsetting the benefit of increasing discharge

paths. Based on these considerations, only codes with a minimum Hamming distance less

than four have been considered.

67

, /

/

/

o /.I

MHD=1 MHD=2 MHD=3 MHD=5 MHD=7

#
o
f
r
e
d
u
n
d
a
n
t

h
i
t
s

a
:

Figure 3.25. The number of redundant bits versus the minimum hamming distance (8 information

bits).

3.5.1.2 Implementation

Operand tags are obtained at the instruction decoding stage when the names of logical

registers are translated into physical register identifiers. It is assumed that a CAM

structure mapping table is used to keep track of the mapping from logical registers to

physical registers [45]. The size of the mapping table is equal to the size of the physical

register file with each entry representing a physical register. The entry contains the name

of a logical register and a valid bit. Since a logical register can be mapped into multiple

physical registers, the valid bit is used to indicate the latest mapping. In the renaming

process, the source operands of new instructions are searched associatively in the

mapping table. The latest entry into which the logical register has been mapped is

activated. The word lines corresponding to the entry are used to access a ROM and

retrieve the physical register identifier.

In a traditional design, each ROM entry stores the binary code of a physical register

identifier. Thus the length of an entry is logarithmically proportional to the register file

68

size. In this design, each entry stores the codeword of a linear code. The same number of

cells store the register identifier, and extra cells store the redundant information. Assume,

for example, that the check parity code is used for tag coding, then only one extra cell is

needed in the ROM representing the parity of the physical register identifier. No extra

delay is introduced because the redundant bits are stored in ROM and accessed in parallel

with the information bits.

When a ready instruction is selected for issue, its destination tag consisting of the

physical register identifier and the redundant bits are broadcast to the instruction queue.

Only the register identifier part of the tag is sent to the pipeline register used to access the

register file. Therefore, the added redundant bits in the operand tag have no effect on any

other hardware units.

3.5.1.3 Results

The number of information bits in the tag directly depends on the size of the register

file. While the number of redundant bits is always one for the check parity code, it varies

for a larger minimum Hamming distance depending on the specific code implemented.

Coding efficiency is defined as the ratio of the number of information bits over the length

of the codeword. Table 3.3 lists the coding efficiency and number of redundant bits for

MHD=3 verses the number of information bits. When the register file contains from 64 to

1K entries, the number of redundant bits remain at four. Therefore, the coding efficiency

increases as the size of the register file increases over this range, resulting in better delay

improvement.

69

TABLE 3.3. CODEWORD SIZE AND CODING EFFICIENCY VERSUS REGISTER FILE SIZE FOR MINIMUM

HAMMING DISTANCE OF THREE.

Size of register No. of information Codeword size No. of redundant Coding

file bits bits Efficiency

32 5 8 3 0.625

64 6 10 4 0.6

128 7 11 4 0.64

512 8 12 4 0.67

1k 9 l3 4 0.69

Figure 3.26 shows the tagline delay versus different coding schemes. Tags with

MHD=I represent the conventional binary code. Tags with MHD=2 represents the check

parity code. For a minimum transistor size, the check parity code reduces the matchline

delay by 42% over the traditional design. Using tags with MHD=3 achieves only an

additional 8% reduction because the number of cells storing the redundancy bits grows

from one to four as the tag distance is increased from two to three.

300

\ —o— MHD=1 l

250 +MHD=2

\ +MHD=3

200 \\

>5

fl

3 150 K
'D

50 , .."_____ .- .__3

1x 2x 3x 4x 5x 6x

Figure 3.26. CAM matchline delay vs.XOR transistor size in the CAM cell.

3.5.2 Removing Tag-0R Delay

Each source operand in an instruction queue entry corresponds to IW match lines that

are OR’ed to set the ready bit of the operand. Let the destination tags of issued instruction

70

be c1,c2,---,c1W, and the source tag of entry k in the instruction queue be ck. In the

traditional design, c, is encoded in the binary code. Let the compare operation of tags a

and b be a®b=Zai€Bbi. Then the function to set the ready bit is

m

2 cm
rk =cl®ck +c2®ck +---+cIW€Bck . The ready bit is high if any of c1,c ,---, is

Ck.

The OR delay accounts for about one third of the wakeup delay. This delay can be

removed by encoding tags with one-hot code. With the dot operation of tags a and b is

defined as a b = z a,- - b,- , then

m

Ci'Cj=l,i=j,

ci-cj = 0,i¢ j

Consider a function: rk'zc' . c, +c3-c, +~-+c’W- c, =(c' +c2 +~~+c’”'). ck.

If any of c',c2,---,c'wisck, thenrk'= ckock =1, otherwiserk'=0. Therefore, this

function can be used in the instruction queue for associative search operations, and

c] + c2 + ---+ ch is the broadcast signal to update the instruction queue. The 1’ bit in the

one-hot code is set to be the grant line of the corresponding entry. Then all of the grant

lines from the select logic realize c1 + 02 + ...+ cIW ; therefore, no OR gates are needed to

implement the function rk' .

In addition, the combination of the grant lines is equivalent to the destination tag read

from the RAM in the conventional design. Thus, one-hot encoding removes the RAM

71

read operation, further reducing the wakeup delay. The wakeup logic that implements

one-hot encoding is similar to the dependence matrices described in [49].

3.5.2.1 Implementation

The register rename logic keeps track of the mapping from logic registers to both

physical register identifiers and instruction queue identifiers. An entry of the register map

table is shown in Figure 3.27. It contains the physical register identifier (R_tag) and the

instruction queue identifier (I_tag) that is mapped to the same logical register. The logical

register identifier is used to index the map table. An instruction reads the table to obtain

the R_tag and I_tag for each architecture source register. The tags of the allocated

physical register and the instruction queue are also written to the map table. The same

rename logic used in the traditional design can be applied to create, in parallel, the R_tag

and the I_tag. I_tags are used for instruction wakeup, and R_tags of issued instructions

are sent to the pipeline register to access the register file.

Physical register identifier Instruction queue identifier

Figure 3.27. An entry in the register map table.

The instruction queue implementing one-hot encoding, shown in Figure 3.28, is

similar to the conventional instruction queue in Figure 3.1. XOR operations in the

conventional CAM are replaced with AND operations. Each source operand of an entry

has only one match line, which is precharged to VDD. When there is a match, one of the

pull down transistors turns on, discharging the match line and generating the ready signal.

The grant signals from the select logic are used as the tag in one-hot encoding and are

72

broadcast to all entries in the instruction queue. R_tags of issued instructions are sent to

the pipeline register.

One important feature of this design is that it does not have the dissipation-on-

mismatch issue. In the conventional design, the mismatch bit turns on a corresponding

pull down transistor to discharge the match line. Because most of the entries in the

instruction queue are not dependent on the issued instructions, a significant amount of

power is wasted by charging and discharging match lines in every cycle. Intensive

research has been done to reduce this type of power consumption [58,59]. However, the

binary coding used in the conventional design requires bitwise XOR operations that limit

power and delay tradeoff. With one-hot encoding, the XOR operation is replaced by a

faster, lower power AND operation, and the pull down transistor is turned on only when

there is a match. Therefore, this scheme removes the power consumption associated with

discharge-on-mismatch that dominates the instruction queue power consumption [57].

However, one-hot encoding requires more memory cells to store operand codes. The

length of the instruction queue identifier is the size of the instruction queue. Thus, the

number of memory cells in the wakeup logic increases quadratically with the queue size.

Moreover, the load of the match line grows linearly with the queue size. For large

instruction queues, the increased delay at the match line would quickly offset the benefit

of removing the OR delay and destination operand read delay.

73

[_—

[Pipeline reg

.5330 vran Binary tags R_L One-hottag_L One-hottag_R if}

.9. ..z. _.... l "T T iH _# l

l . -
Ar

4.»

U I I I I I I

.2
Q)

(I) S E?
‘ f_l an; m

l Ll? ,_ l” l
gran Binary tags EL One-hottag_L One-hottag_R R_R

L L. _ .1

RAM cell RAM cell RAM cell

Prech rge l _[_ _]'_

1 film. filmWis-Wm
i- l '-:- lfi _

' tagl ' tag2 - tagws Clk “J
Figure 3.28. Instruction queue implementing one-hot encoding.

3.5.2.2 Results

The wakeup delay is shown in Figure 3.29. For a 16-entry instruction queue, the one-

hot encoding scheme improves the delay by 49% due to reduction of the OR delay and

operand read delays. The improvement drops to 25% for a 32-entry instruction queue

because the loads of the tag match line is doubled, causing much larger tag match delay

than in the traditional design. When the size of the instruction queue increases to 64, the

dramatic increase in tag match delay exceeds the sum of the OR gates and RAM access

delay.

74

Results show that the one-hot encoding scheme has delay advantage for small

instruction queues. Larger instruction queues can be divided into multiple partitions that

are executed in a pipeline or in parallel. However, because the size of the instruction

queue only affects the tag drive and the SRAM access delay, the wakeup delay in the

traditional design reduces slowly as the size of the instruction queue is decreased. Some

research work assumes a small and fast instruction queue. The one-hot encoding scheme

would provide significant delay improvement in such designs.

A 600 I tag OR

g H _ H 0 tag match

g 300
0 tag drive

fl H U I des read

0 ,

one-hot binary one-hot binary one-hot binary

code code code code code code

16 32 64
hstruction queue size

Figure 3.29. Wakeup delay using one-hot coding verses instruction queue size on IBM 0.18pm

technology.

3.6 Summary

Our first optimization approach utilizes data dependencies between instructions to

reduce hardware resource requirements of the instruction queue. The second approach

applies coding techniques to reduce the instruction wakeup delay. Two optimization

approaches can be used together to achieve higher performance. For example, the linear

code can be used in the banked instruction queue to further reduce the matchline delay

components.

75

Many approaches have been proposed to improve the instruction design. Folegnani

and Gonzalez [57] adjusted the effective size of the instruction queue to increase the

energy efficiency. Brekelbaum et a1. [60] split the instruction window into a large, slow

window and a small but fast window. The large window is to extract the far-flung ILP

while the small window is issue the critical instructions. Michaud [52] employed a large

prescheduler buffer and a small issue buffer to search/issue instructions. New instruction

are sent and reordered at a prescheduler buffer, and then dispatched to the issue buffer in

the data-flow order.

These approaches reduce the memory size (number of entries) of the instruction

queue and could be used together with our banked design that reduces the memory ports.

The combination of multiple optimization approaches would result in significant

improvement over the conventional design. Therefore, there is large room to improve the

critical stage to increase the processor performance. Many hardware of the conventional

processor are over-designed, and significant amounts of hardware can be reduced with

only a modest impact on the processor performance.

76

4 AN ADAPTIVE CLUSTERED MULTITHREADED MICROARCHITECTURE

The banked instruction queue in Chapter 3 describes an optimization of a critical

pipeline stage of a wide-issue processor (SMT). The overall processor instruction

throughput have been improved by reducing the delay of the critical stage while

maintaining most of other pipeline stages unchanged. This strategy (Optimization of the

current critical pipeline stage) can be applied to more stages to keep driving the

performance up. However, a large amount of design effort is needed to optimize each of

many critical stages. It is increasingly difficult to meet design constrains when the overall

issue width increases.

Multi-core (CMP) design provides a scalable solution to increase the issue width of a

processor. An N-core processor can be viewed as distributing the hardware of each

pipeline stage of a SMT into N segments, and each CMP core has a segment of the

distributed hardware from each stage. This strategy is scalable because the hardware of

additional pipeline can be easily added as a module to the current design to provide more

processing resources. However, distribution of some pipeline stages has very limited

benefit to the hardware complexity but causes significant performance degradation.

Therefore, the SMT and the CMP processor represent two sides of the design

spectrum. SMT has the highest level of hardware utilization. However, the layout area

and delay of a SMT processor is large. CMP has the highest layout efficiency and

supports clock rate scaling, but its hardware utilization is low when some cores are idle.

This chapter links the two opposing designs in order to explore the optimal hardware

distribution scheme between SMT and CMP. We start with a SMT processor and

distribute the hardware of each pipeline stages, eventually resulting in a CMP processor.

77

_
'

1
"
?
!
"

The performances of SMT and CMP on applications with different parallelisms are

discussed. Based on these results, we propose an adaptive clustered multithreaded

microarchitecture that achieves higher performance than both SMT and CMP.

4.] Hardware distribution on A SMTprocessor

The banked instruction queue in Chapter 3 presented a distributed design that traded

IPC performance for delay in a SMT processor. Similarly, other centralized hardware in a

SMT processor can be distributed to support high clock rate and overall high instruction

throughput. Figure 4.1a represents a conventional IW-issue multi-threaded SMT

processor in which each centralized unit processes IW instructions simultaneously. Figure

4.1b represents a SMT with distributed instruction queue. The monolithic structure is

divided into NIQ units, each of which has small issue bandwidth with simple hardware.

Continuing distribution on the register file is shown in Figure 4.10. NRF small register

files in parallel serves up to IW instructions. The hardware in the critical path is reduced,

and therefore, its access delay is improved. Repeating this to the rest of the pipeline,

including the data cache, functional units and instruction cache is shown in Figure 4.1d-f.

Hardware distribution stage by stage allows leveraging the characteristics of each

pipeline stage to achieve optimal performance. Therefore the number of hardware

segments of each pipeline stages could be different. In this study, however, we divide

each stage with the same granularity that enables to derive CMP from SMT.

78

. Front-end l

1

[lnstmction Queue

l

l . Register file

1

Functional Units

l

1

l

. _L L i

l_\-r_ [_h_l_1 Data Cache j

(A)

[Front-end

Leann].L .é651:biagfig-méafiml
l

[BanmlLBankfl _ I839. fits: __SBe'TFNR

~—-—-———- 4

T: _‘ Functional Units

Jr

[Hui L1 Data C_ache

(C)

L
-
.
J

L Front-end

 [Tana_l-lf§iBébi<éil;i§§%9§;l

i again" leaner “§€§"rii‘é”f‘f__

..jiifijjijjfiffi-._---.'fi.-_,_ l

[__thlHam}

| Bank1 :Hl_B_a_nk21; L1DcacheBankN

(E)

AV “l
l Front-end i

 -.,.. -.._ ..

 ___--.a- ».- -_ “___..-.A‘- n...—

k1 ll Bank2 I Inst Queue [BER—1Q

Register file "fl Tm '_ 1

l

Functional Units]

l —‘ “— # ’1

L L1 Data Cache -- .

(B)

Front-end l

i... .. __.__

18am llBakZl 'StQueBaTN

 ,_ _t --

ll._3an!$1-_l--l_ Bank?.l--BeafiIs--_l:Baflk_'tsi-i_

l -
pm L Fuz l Faeanrflflnfi]

l

[___ L1 Data Cache [__k. #I H]

(D)

l1“ lll '2 l Front-end WIT?

 [B_ankfli l Bank2] "inacdén‘e Bank—N;

t j l [Ilfifjfi'iflilff

VBanku _[Bank2] 399.519... lBankNIl

l Fu1 I}! Fuz lfuncunitsniuN l

- ,-__.---- l

 J

(F)

Figure 4.1. Hardware decentralization of a SMT processor.

4.1.] Instruction queue

.LiBéokJiF-ae fiiféé‘aiéhé fBénK'il

The distributed instruction queue uses the banked design discussed in Chapter 3. To

achieve reasonable IPC performance, we choose the four-bank and eight-bank

configurations; both having the same hardware resources with an issue width of four

79

(M=4) in each bank. Both DEP and MOD steering policies are among the design options.

Based on the results in Chapter 3, the banked instruction queue reduces the hardware

resources by half with an as little as 4% IPC penalty.

4.1.2 Register File

The Register file is a port-heavy memory unit in a superscalar processor and is a

perfect candidate for distribution. In fact, Alpha 21264 uses two register file copies to

reduce the number of read ports [32].

A new distributed register file that easily interfaces to the above banked instruction

queue has been design. Note that some distributed register files [36,39] can be used here.

Exploration of the optimal register file design is beyond the scope of this thesis.

Similar to the instruction queue, the centralized register file is divided into N banks,

each of which is associated with an instruction queue bank. One bank has 2*M read ports

and M write ports, so that up to M instructions issued from an instruction queue can fetch

operand data and write results from/to the associated register file. The combination of a

bank of the instruction queue and the register file is called a cluster. Because the physical

size of each entry of the register file scales with M instead of the processor issue width

1W, the total size of the register file is reduced to M/IW. For simplicity, the rest of this

section uses M to represent both the read port number and the write port number instead

of 2*M for read and M for write.

Similar to the instruction queue design, IW/N ports of each register file bank can be

accessed only by the associated instruction queue bank, and NC=M—IW/N ports are

shared by all register files. The NC shared search ports in the banked instruction queue

are used to wakeup instructions that require data from other banks, and the NC shared

80

read ports in the banked register file are used to read these operand value from the

destination register file.

4.1.2.1 Performance Degradation

Banked register files incur additional stalls and IPC penalty when the total number of

issued instructions that read data from other bank simultaneously is larger than NC. The

amount of access to the shared ports in the register file is determined by the steering

policy described in Chapter 3.

Statistically, MOD generates the same amount of access to the shared port in both the

instruction queue and the register file. However, more attention needs to be paid to the

DEP steering policy.

There are two types of data dependence. 1) the operand data has been available in the

register file; 2) the operand data is yet to be generated by the parent instructions. The

DEP policy in Chapter 3 steers instructions based on the second type. The location of the

ready operand in the register file does not matter because of the centralized register file.

However, DEP may cause a large amount of port conflicts in the register file. The

steering logic assigns instructions based on the location of the parent instruction whose

results have not been generated yet. This may cause access to the shared ports of the

register file if the other ready operand is already stored at a different bank.

If minimization of shared port access of the register file is favored, on the other hand,

access to the global tag bus of the instruction queue would increase. Even worse, this

scheme causes severe workload imbalance. Once an operand value is available in a bank,

it will pull all its dependent instruction to its bank, consequently drawing most

instructions to one cluster.

81

Simulations show that assigning a dependent instruction only by an un-issued parent

instruction has a much better workload balance. On average, one-third new instructions

have their operands ready before entering the instruction queue. These instructions can be

assigned to the bank with the least loads to distribute instructions. Therefore, the same

DEP policy as in the Chapter 3 is used to assign new instructions to clusters.

4.1.2.2 Results

A ready instruction will not be selected for issue when it requires an operand from

other register files but fails to win a shared port. Figure 4.23 shows the relative IPC of 4-

bank and 8-bank configurations with the DEP steering policy. On single thread, the 4-

bank register file introduces additional an 4% IPC penalty to the processor with only a 4-

bank instruction queue. The total IPC degradation increases to 8.5% compared to the

centralized design due to hardware distribution overheads.

The 8-banked configuration has only a 1% additional IPC penalty. This is because the

8-banked register file has more shared ports on the same hardware budget, and therefore

has fewer resources conflicts. A processor with an 8-bank instruction queue and register

file (8-cluster) is 7.2% slower than the baseline for single program. The IPC penalty

decreases on workloads with more threads. Two threads have a 6% IPC penalty and this

is further reduced to 1.7% on a four thread workload. In comparison, the 4-bank

configuration has a much higher IPC penalty of 7%. Therefore, the 8-bank configuration

is preferred for both single and multiple thread workloads.

82

100%

90%

Wank 10 only

8°% 1- 4 bank IQ+RF

l1:: 8banklOonty|

D 8 bank |Q+RF

70%

r
e
l
a
t
i
v
e
I
P
C

60%

50%

(a) On DEP steering policy

1 00%

90%

I 4 bank 10 orig1

I 4 bank lQ+RF

D 8 bank 10 only E

[Cl—8 bank lQ-t-RF

80% a

70% «

r
e
l
a
t
i
v
e
I
P
C

60% -

 50% ~

(b) On MOD steering policy

Figure 4.2. Relative IPC with/without register file distribution on multiple programs(P).

MOD incurs a larger number of resource conflicts on the register file and therefore

has lower perfomance than with the DEP steering policy. Similarly, the 8-banked

configuration outperforms a 4-bank because of relatively fewer shared ports in the 4-bank

configuration. Because the performance bottleneck on MOD is the high amount of access

conflicts to the shared ports, the IPC penalty does not decrease by increasing the thread-

level parallelism. Compared to DEP that have a 1.7% IPC penalty reduced from 7.2%,

83

MOD has an 11.3% IPC penalty increased from 10% when the number of thread

increases from one to four.

4.1.3 Functional Units

Function units are in the critical loop in the processor pipeline. The execution results

of function units are written back to the register file to be accessed by the dependent

instructions in next cycles. In addition, the functional units outputs are also sent to their

inputs, forming a close loop, so that the outputs are available for the dependent

instruction immediately. The delay of this execution loop is critical for performance.

Because the majority of instructions have integer operations, modern high performance

processors aggressively keep this loop delay to one clock cycle [85,86]. The Intel

Pentium 4, for example, pipelines the ALU to maintain a one cycle loop delay at the cost

of higher latency.

In a 32 or 64 bit processor, the physical width of the ALU is much larger than its

height. The ALUs in the datapath are typically stacked together and the bypass wires go

through the stack [40]. Assuming the number of ALUs is proportional to the issue width,

the bypass delay increaes more than linearly with the issue width. Because the wire delay

gets larger as technology scales, the bypass delay has become one of the major

limitations on the clock rate.

To reduce the execution loop delay, the ALU stack is divided into segments, each of

which is physically associated with a register file bank. In other words, the cluster in

section 4.2 extends to the functional units. The result of an ALU is available to the ALUs

at the same cluster with no latency. There are one or multiple clock latency to bypass the

results to the ALUs at other clusters.

84

4.1.3.1 Performance Degradation

Segmentation of the functional units causes IPC degradation due to two factors.

Firstly, the issue width of each instruction queue bank is limited by the number of the

function units (IW/N) in the cluster. The NC communication ports in the instruction queue

cannot be reused to wakeup local instructions when the global tag busses are idle. This

can be viewed as distributing execution bandwidth into clusters without data forwarding

delay between clusters.

The second factor is the delay in forwarding the instruction’s result to its dependent

instructions that are in different clusters. This is similar to the communication delay in

the instruction queue, resulting in an additional IPC penalty on top of the first factor.

4.1.3.2 Results

Figure 4.3a shows the effect of the above two factors on performance with the DEP

steering policy. N4:IQ+RF+FU_DlyX denotes four clusters with X clock data forwarding

delays between clusters. When X=0, it denotes distribution of the execution bandwidth

and the new instruction results are available to all clusters with no latency.

For the four-cluster configuration, distribution of the execution bandwidth alone

causes a 5.6% IPC degradation. On a single program, one clock inter-cluster forwarding

delay increases the IPC degradation to 13%; while a two clock forwarding delay

increases it to 18% compared to the design that has a clustered instruction queue and

register file but shared execution units. The clustered design has an overall IPC

degradation of 26% which is reduced to only 18% with multi-program workloads if two

clock inter-cluster forwarding latencies are needed. The results show that the execution

85

bandwidth distribution and data forwarding cause significant performance degradation on

both single and multithreaded workloads.

100%

90%

80%

70%

r
e
l
a
t
i
v
e
I
P
C

60%

 50%

I N4le+RF I N4:|Q+RF+FU_Dly0 I N4:IQ+RF+FU_DIy1 c1 N4:IQ+RF+FU_Dly2

(a) four-cluster configuration.

100%

90%

80%

70%

r
e
l
a
t
i
v
e
I
P
C

60%

50%

I N8:lQ+RF I N8:IQ+RF+FU_D|y0 u N8:IQ+RF+FU_Dly1 n N8:IQ+RF+FU_DIy2

(b) eight-cluster configuration.

Figure 4.3. IPC performance with distributed functional units on the DEP steering policy.

(N4le+RF denotes four clusters without distribution on the functional unit.

N4:IQ+RF+FU_DlyX denotes four clusters with distributed functional unit and X clock data

forwarding delays between clusters.)

86

The eight-cluster configuration, which has higher performance than four clusters

before the functional units are distributed, has more IPC degradation with distributed

functional units. The reason is that the eight-cluster processor has a lower functional unit

utilization due to workload imbalance. In addition, the amount of data forwarding on

eight clusters is also higher than on four clusters.

The performance of a four-cluster configuration on the MOD steering policy is shown

in Figure 4.4. The increased amount of data forwarding on the MOD steering policy

greatly limits the throughput, and therefore incurs a larger IPC degradation that increase

even more on multithreaded workloads. The overall IPC degradation (35%) is much

higher than that on the DEP steering policy (22%) assuming one-clock forwarding

latencies. The eight-cluster configuration requires more inter-cluster data forwarding, and

has even lower performance than the four-cluster design. Therefore, MOD steering policy

can only be used on clusters without distribution on the functional units to obtain

reasonable IPC performance.

100%

l

l

900/147 »

80% ‘1

r
e
l
a
t
i
v
e
I
P
C

70% '

60%

50% .

1P 2P 4P

[IEthHRFI N4:IQ+RF+Fu_otytn N4:Io+RF+Fu_oty1:i N4le+RF+FU_Dy2:

Figure 4.4. IPC performance of four-cluster configuration on MOD steering policy.

87

4.1.4 L1 Data Cache

Because on average about 1/3 of program instructions are load/store instructions, a

wide—issue processor should allow for multiple concurrent memory accesses to achieve

higher performance. A multi-ported level-1 cache can accommodate several accesses in a

single cycle, but it has large latency and power consumption.

The cluster in the last section is extended to the level-1 cache. Each cluster has an

independently-addressed cache bank. Load and store instructions are dispatched to the

cluster based on the prediction on their target cache bank. Bank predictions are made at

the instruction steering stage with a bank predictor [75,76]. Bank check is made

concurrently with memory address computations. The instruction queue is notified during

the cycle following a bank check. A correct bank prediction does not need further actions,

but a misprediction comes along with the correct bank number. A mispredicted memory

instruction will be able to be routed again to the correct bank.

Stores are not issued until both the data and address registers become available.

Memory dependence speculation is used to expose the parallelism that is hindered by

ambiguous memory dependences [73]. Load instructions are executed before the

addresses of older store instructions are computed through memory dependence

prediction. The issue of a load is delayed until an older store has been issued if a

dependency between them has been predicted. Mispredictions are not discovered until

stores execute, many cycles after loads and their dependent instruction have left the

instruction queue. When this happens, the affected loads and dependent instructions are

reissued from the instruction queue.

88

4. 1. 4. 1 Performance Degradation

Bank misprediction requires rerouting the mispredicted memory instruction to the

correct bank, causing a delay in its execution. In addition, its dependent instructions need

to be reissued, which wastes the processor issue resources. Furthermore, banked cache

puts more pressure on the instruction queue size because the issue loads and dependent

instructions won’t be released until the memory disambiguation is solved.

Lastly, banked cache affects other pipeline stages. It adds constraints on the

instruction steering logic that not only needs to consider the data dependences between

instructions, but also the bank predictor results for memory access instructions. The two

constraints may generate conflicting results. The penalty of violating data dependence,

which is due to increased communication between clusters, is typically smaller than

routing and reissuing the mispredicted and dependent instructions. Therefore, the

memory predictor results should have a higher priority over data dependency analysis

results in an instruction steering decision, but larger amounts of inter-cluster

communications would occurs.

4.1.4.2 Results

The bank prediction accuracy varies with the number of bank. The results in [74]

were used to model the bank prediction accuracy: 85% for four banks and 84% for eight

banks. These numbers should be regarded only as a sample of the potential of the banked

cached since the specific machine configurations and designs are crucial to the choice

and accuracy of the bank predictor.

The processor performance with distributed L1 data cache is shown in Figure 4.5. On

a single program, the banked L1 data cache causes less then 2% additional IPC

89

degradation with the four-cluster and eight-cluster configurations. The degradation is

increased to about 5% with four-program workloads. The increased amount of

communications introduced by cache bank prediction reduces instruction throughput

more significantly on multi programs than on single programs.

103%

90%

O

E

O 80%

.2

..

s
O

‘ 70%

60%

50%

L. 10 - lO¢RF lOORF+FU E] IO+RF+FU+L1data

(a) four-cluster configuration

111%

907/» 1

o

E
g 80% ‘

.5

2

2
707/0 ‘

60%

 50%

[Ito Inmar DIQ+RF+FU UIQ+RF+FLHL103ta l

(b) eight-cluster configuration

Figure 4.5. IPC performance degradation due to hardware distribution from the instruction queue

to the L1 data cache.

90

4.1.5 Summary and Discussion

The SMT on single program workloads has respectively 4.2%, 8.5%, 22% and 23%

IPC degradation when the instruction queue, the register file, the functional units and the

data cache are distributed in sequence as described above. Distribution of the functional

units contributes to the most IPC degradation. Four-program workloads have a reduced

total 18% IPC degradation because the increased parallel instructions improve the

utilization of the distributed hardware. The eight-cluster configuration has higher

performance than the four cluster alternative before the functional units are distributed

owning to its relatively large amounts of communication resources. However, when the

functional units are distributed, the eight-cluster performs worse because the performance

is limited by its low functional unit utilization and a large amount of data forwarding

SMT and CMP are at two end of the design spectrum. The hardware distributions

described in this section shows a link between the two designs. An N-core CMP

processor can be viewed as extending the distribution from the back-end to the front-end

of an SMT as shown in Figure If. A CMP core contains a segment of each pipeline stage,

and is assigned to a single thread. Individual core exploits the ILP and multi-core exploit

the TLP in applications.

The hardware resources in SMT processors are shared by all threads. Exposure of all

hardware to each thread would maximize the hardware utilization, and potentially

generate high instruction throughput. In addition, single threads can take control of all

hardware resources, and the maximum IPC can be obtained when there is only one active

thread. On the other hand, CMP has low hardware utilization on a single thread. As the

number of threads increases, the total hardware utilization increases proportionally. Only

91

when there are enough threads in the pipeline, all CMP hardware resources are active,

and higher performance can be obtained.

Figure 4.6 shows the performance of a SMT and a CMP processor. SMT-ideal

denotes the SMT that issues dependent instruction back-to-back without increased

latency as technology scales. SMT-D1 has one-clock latency to issue/execute dependent

instructions and SMT-D2 has two-clock latency. The CMP processor has four cores,

based on the optimal bank configuration from previous results. One core fetches and

executes instructions from a single thread, and the processor support four threads. More

threads will cause memory thrashing [28] and therefore is not considered in this work.

Because each core of the CMP processor is small, it can issue/execute dependent

instruction back-to-back. The SMT processor also supports the same overall issue width

and threads.

Results show that the IPC of SMT-ideal is more than twice that of the CMP on single

programs. The CMP is essentially reduced to a two-issue processor on a single program,

leaving the other three cores idle. The SMT fetches and executes up to eight instructions

from that program, and therefore has much higher performance than the CMP. When the

increased delay in the SMT is considered, SMT still outperforms the CMP on single

program. Even with the two-clock extra latency in the issue/execution loop, the SMT-D2

is 27% faster than the CMP.

The CMP performance doubles on two programs because the programs are executed

in two cores in parallel. SMT-ideal is still faster than CMP at this stage, but the

improvement is reduced from 103% to 66%. However, SMT-D2 is slightly slower than

the CMP due to the two-clock latency in the critical loop. When there are four programs,

92

the CMP has close performance to the SMT-ideal but is 36% and 50% faster than SMT-

D1 and SMT-D2, respectively.

547 ,L 777.777.7777 , A]

ISMi—idtgl

ISMT—D1 l

USMT—DZ l

[cows 1

Figure 4.6. Performance of SMT vs. CMP.

The poor performance of the CMP processor on single thread is due to the

decentralization of the front-end pipeline including instruction fetch and decoding.

However, the hardware complexity of the instruction cache, which dominates the front-

end size, scales linearly with the fetch width; and the decentralization does not reduce its

hardware complexity significantly.

In fact, an instruction cache can fetch in a single cycle contiguous instructions up to

the first predicted taken branches, or up to a maximum branch limit. The upper bound on

fetch bandwidth is limited by the frequency of taken branches. Since the average number

of instructions between taken branches is 12 on integer programs, and more on floating

point applications [87], a wide single instruction cache can be shared by multiple cores

accessing the shared cache alternatively. Even with a large capacity, a shared instruction

cache hardware complexity would be in the same range as the hardware complexity of

93

the independent instruction caches of all cores. In addition, a branch predictor is needed

to achieve high fetch bandwidth. The hardware cost of a shared branch predictor will also

be in the same range as replicating it in each core.

The upper bound on fetch bandwidth can be further improved with a Trace cache [87-

90] which provides the capability of fetching instruction beyond taken branches. Trace

cache has the property of capturing dynamic instruction sequences, which makes it

possible to store the information about instruction renaming and cluster assignments to

simplify the register renaming stage. A line in the trace cache is fully specified by the

starting address and sequence of branch outcomes which describe the followed path. The

length of a trace cache line is limited by the maximum number of instructions and by the

maximum number of basic blocks determined by the branch predictor bandwidth.

Therefore, with almost the same hardware complexity, a large single instruction

cache has higher averaged fetch throughput than multiple small caches that have the same

aggregate fetch width. When a multiprogrammed workload is encountered, the capacity

is dynamically shared among different processes. When the workload is a single process,

the processor can exploit whole hardware resource, achieving a much higher fetch rate

than one slice of the cache.

The next section introduces the Adaptive Clustered Multithreaded Microarchitecture

(ACMT) that is able to obtain high performance on both single and multiple programs.

4.2 An Adaptive Clustered Multithreaded Microarchitecture

It is favorable to have a centralized front-end and distributed back-end to achieve

high IPC perfomance. The decentralization of a front-end limits the flexibility to allocate

94

hardware to instructions, resulting in low hardware utilization and poor performance on

applications with low thread level parallelism. On the other hand, distributed back-end

keeps the latency of the pipeline critical loop unchanged with technologies, supporting

high instruction throughput.

From the hardware complexity perspective, decentralization of the frond-end does not

reduce its hardware complexity significantly because the instruction cache, which

dominates the front-end, scales linearly with the fetch width. In contrast, the back-end

pipeline employs many multi-ports SRAM and CAM circuits, including the instruction

queue, register file and load queue. Distribution of these structures could significantly

reduce their hardware size and the delay. Therefore, it is reasonable to distribute the

back-end pipeline and retain the centralized front-end to achieve overall high

performance.

4.2.1 Microarchitecture

The adaptive Clustered Multithreaded microarchitecture (ACMT) was developed to

explore the performance potential of an optimally distributed processor. It has a

centralized front-end pipeline and distributed back-end as shown in Figure 4.7. The

ACMT pipeline stages are described below.

4.2.1.1 Frond-endpipeline

The ACMT processor consists of a centralized front-end and distributed back-end

pipeline. The front-end (fetch, decode, and rename) is shared by the backend of the

pipeline. Instructions are fetched from the instruction cache or a trace cache. The amount

of instructions that can be delivered is complicated by control hazards inherent in the

execution of a program. In addition to cache misses and branch mispredictions, sustained

95

instruction fetch bandwidth is limited by frequent taken branches in the dynamic

instruction stream.

_

RI RR .

, - , Functional

Instruction Register Units 7 L1 Data *-

Queue File Cache

o, l l iFL
v "V

.c .E

m A

”- c + .74 . a:

a -4 :4 LT :
‘6 g’ l I *5

E “.5 RI RR 7 . o

2;; o r 1 , Functional N

c o 1— Instruction Reglster Units L1 Data _i
— a, .

D ueue File Cache

E“
R1 RR

. . Functional

Instruction Register ’ Units L1 Data

._ Queue File Cache

Figure 4.7. Clustered Multithreaded microarchitecture (ACMT).

The trace cache effectively addresses this issue by storing instructions in their

dynamic program order in a separated cache. A long sequence of dynamic instructions.

containing multiple blocks (possibly noncontiguous) was constructed as a trace over

several cycles. When the trace is needed again, as predicted by the branch predictor, the

entire trace is supplied in a single cycle to the decoder, thereby exceeding the taken-

branch bandwidth limit.

When there are multi threads, one or two threads are granted to fetch instructions and

a large block of continuous instructions are read at each cycle. The other non-blocking

threads are selected to access the instruction cache in the next cycle. The fetched

instructions are decoded and renamed before assigned to the segmented instruction

queue.

96

Totally flexible routing from the decoder to instruction queue banks requires a large

crossbar and high latency. The proposed processor steers instructions to an instruction

queue based on the instruction’s physical placement in the instruction buffer. This

scheme results in less complexity but restricts the steering capabilities. The retire-time

assignment approach [64] is used to address this problem. The instructions are reordered

within a trace cache line at retire time so that they are fetched and sent to the desired

position in the decoder. The delay to reorder the instructions is not in the critical path of

the pipeline, and therefore does not affect clock rate.

4.2.1.2 Instruction steering

Results from section 3.3 show that the DEP steering policy has higher IPC

performance than other steering policies. To reduce the delay of dependence analysis, a

backward dependence steering algorithm [65] employing the DEP steering policy is used.

Backward dependency moves dependency analysis operations off the critical path by

reconstructing the data dependence graph after instructions are dispatched. Steering

decisions are made based on the reconstructed dependence graph. This scheme can be

implemented with a history table. After an instruction is assigned to a cluster, new entries

in the history table are created for the instruction’s parent, and the instruction’s cluster

number is saved in these entries. The history table is looked up when new instructions are

fetched. The new instructions are assigned to the cluster indicated in the table entry when

there is a hit.

4.2.1.3 Instruction queue

The banked instruction queue is modified and used in this design. The total

instruction queues of all clusters can be viewed as a banked instruction queue with each

97

bank corresponding to the instruction queue of a cluster. Because instructions from a

thread can be steered to any cluster to maximize hardware utilization, dependent

instructions may be located in different clusters and communication between different

instruction queues are needed.

The instructions that need tags from other clusters are sent to RI which is an IW-port

CAM inside of the instruction queue shown in Figure 4.7. Only RI receives operand tags

from other cores. The instruction queue has issue width determined by the number of

function units of the cluster.

Bit “GT” described in Chapter 3 is used in each entry indicating if dependent

instructions are at other clusters. Destination tags of issued instructions are only sent to

other clusters when bit “GT” is set. The distance between the central decoding/renaming

logic and each cluster is different. Due to the wire delay, decoded instructions might

arrive to the destination cluster in different order from when they are renamed. There are

three cases:

1) Parent instructions and dependent instructions are steered to the same cluster. Then the

latency from the rename logic to the cluster just increases the pipeline stages and thus

increases the branch misprediction penalty.

2) Parent instruction is steered to the cluster close to the rename logic, and the dependent

instructions go to distant clusters. Then the parent instruction is issued without any extra

latency but the dependent instructions would wakeup with a multiple clock penalty.

3) Parent instruction is steered to the distant cluster, and the dependent instruction goes to

the cluster close to the rename logic. Then the wakeup of both instructions are delayed.

98

Wire delay needs to be considered when updating bit “GT”. This bit is reset when an

entry is allocated in the instruction queue, and it is updated if dependent instructions

fetched in the later cycles are assigned to other clusters. Due to the wire delay, the

producer might have been issued by the time the updating information arrives. Because

the producer is not aware of the new dependent instruction steered to other clusters, it

only sends its destination tag to its own cluster when issued, causing deadlock.

Our approach to address this issue is to keep the issued instruction in the instruction

queue for DN cycles, where DN is the delay in clock cycles between clusters. This

approach increases the capacity pressure on the instruction queue size. Assuming the

cluster issue width is IWi, then the instruction queue keeps at least DN*IWi issued

instruction. An alternative is to move these instructions to another table. The table only

stores the latest instructions and can be implemented with a FIFO structure. Its hardware

capacity and complexity is much smaller than the instruction queue, and therefore doesn’t

compromise the cycle time.

4.2.1.4 Data path (Register File and Function Units)

In the register renaming stage, if the operand value of the new instruction is already

ready in other cluster’s register file, this data will be read and copied to the R of the

cluster to which the new instruction is assigned. The issued instruction read the register

file and R in parallel in order to fetch operand data. Simulations show that only a small

RR is needed and therefore its delay is not critical.

A table FT is added at the functional units of each cluster. Each entry of FT contains

two fields: tag and cluster number. The tag field stores the register tag. A FT entry is

allocated at the dispatch stage for the instruction that needs data from other clusters. After

99

the instruction is renamed, if its source operand will be generated from other cluster, a FT

entry in the producer cluster is allocated. The tag field is set to be the source tag of that

instruction, and cluster number field is set to be the consumer cluster. After an instruction

is executed, its destination tag is checked with the FT tag field. If there is a match, the

results are forwarded to the destination core.

The wire delay of transmitting tags from the source to the destination cluster is

designed to be the same as the wire delay of forwarding data, so that the instructions at

the destination cluster can wakeup, issue and read operand values from the bypass

network. The FT entry is allocated at the register renaming stage. The wire delay from

the register renaming logic to the FT of the producer cluster is not critical because it is

smaller than the total latency of issuing and executing an instruction.

4. 2.2 Adaptive Hardware Allocation

4.2.2.1 Single Program Workload

When there is only one running program, the program can access all clusters to

achieve high performance. The whole processor operates as a SMT with a decentralized

back-end. While more clusters could provide more hardware to exploit the ILP in the

program, it has higher communication overheads which offsets or even exceeds the

benefits obtainable with extra clusters. Adjusting the number of available clusters

according to the dynamic requirement of the program could possibly result in high

performance and high energy efficiency.

The policy to adjust the number of active clusters depends on the particular goals of

the applications, such as maximizing performance, minimizing the energy dissipation or

100

energy-delay product. In this work, the object function is to select the optimal number of

active cluster to achieve maximal performance.

For every Tl cycles, the processor starts to search for the optimal configuration. The

IPC of the different configurations is sampled for T2 cycles, and the configuration with

the highest IPC is selected for the next T1 cycles. Parameter T2 need to be large enough

to allow the processor state to be updated based on the cluster configuration. Increasing

T2, however, would increase the time when the processor operates at an un-optimal

configuration, resulting in performance degradation. Parameter Tl determines the

algorithm’s overhead and the delay to respond to the dynamic requirements of programs.

To allow the processor to change the configuration during T1 cycles, the cluster search

procedure can be triggered by a significant variation of the number of branches or

memory references. Simulation results show the algorithm generates stable results for a

wide range of T1 and T2.

Disabling an extension cluster can be realized by not assigning any new instructions

to the cluster at the steering stage. After all of the instructions in the instruction queue are

executed, the disable cluster can be shut down completely to save power. When an

extension cluster is just added into the pipeline, the steering logic still assigns the

consumer instructions to clusters of the producer instruction. The new independent

instructions are assigned to the new cluster and their subsequent dependent will move to

the new cluster in later cycles.

The instruction fetch and rename units are shared by all clusters. When a cluster is

shutdown, the width of the backend pipeline is reduced. To match the width of the

backend pipeline, the instruction fetch and decoding rate could be reduced accordingly to

101

save power without significantly affecting the performance. This can be implemented by

gating the instruction fetch logic to provide the required fetch rate.

4.2.2.2 Multi Programs Workloads

When there are two active programs, each program takes control of two clusters only.

The processor operates as a two four-issue SMT and each SMT has two segmented back-

end. Limiting the number of clusters that can be accessed by one program yields a lower

communication overhead than distributing the program to all clusters. High hardware

utilization is obtained by running two programs in parallel.

When there are four programs, each program is assigned to one cluster. The processor

operates as a four-core CMP. There is no communication between clusters, and the

instruction from each program executes independently.

4.2.3 Simulation Results

The SimpleScalar have been modified to model SMT, CMP and ACMT. The

benchmarks are SPEC CPU2000 INT. The processor architectural parameters are

summarized in Table 4.1.

TABLE 4.] MICROARCHITECTURE CONFIGURATIONSDF SMT, CMP, AND ACMT

SMT 4-core CMP 4-cluster ACMT

Fetch/dec rate 8 2 / core 8

Issue rate 8 2 / core 2 /cluster

Register file size 256 64 /core 64 /cluster

Integer ALU 8 2 /core 2 / cluster

Instruction queue size 64 16/ core 16 /cluster

LSQ size 64 16 / core 16 /cluster

Dl/Il cache 32k, 2-way, . 8k, 2-way, 8k, 2-way,

2-cycle lat. l-cycle lat. / core l-cycle lat. / cluster

D2 cache 2M, 4-way, 512k, 4-way, 512M, 4-way,

8-cycle lat. 8-cycle lat. /core 8-cycle lat. / cluster

Main Memory 100 cycle 100 cycle 100 cycle

102

4.2.3.1 Single Program

Based on the results in previous sections, the four cluster configuration has overall

higher performance than other alternatives. Therefore, four two-issue clusters are

employed in the ACMT. Figure 4.8a shows the clusters activity. The adaptive mechanism

allows the processor operating with only a subset of the clusters. In benchmark bzip, the

processor shuts down one cluster for 48% of the cycles due to the limited ILP in the

program. In the case of benchmark gap, the processor activates all cores almost all of the

cycles in order to exploit the ILP available in the program. On average, one cluster is shut

down for 32% of the cycles. The processor rarely selects only one cluster, showing that

the benefit of more execution bandwidth is larger than that of the increased

communication overhead.

As the communication overheads increase, the processor operates with fewer clusters

in more cycles. Figure 4.8b shows the cluster activity assuming a two-cycle

communication delay between clusters. One cluster is shut down for about 40% of the

cycles, increased from 32% with a l-cycle communication delay. Still, the processor

turns on at least two clusters for most of the cycles in order to achieve high performance.

The eight-cluster configuration, which has higher performance than four clusters

before the functional units are distributed, has more IPC degradation with distributed

functional units. The reason is that the eight-cluster processor has a lower functional unit

utilization due to workload imbalance. In addition, the amount of data forwarding on

eight clusters is also higher than on four clusters.

103

TV 7*" 1

El four cluster

Uthree ouster l

I two cluster ‘

p
e
r
c
e
n
t
a
g
e
o
f
c
y
c
l
e
s

1

l I one cluster 1

o. > c Q l o o. “—- 1— a)
f; d: o m 0 fi 0 D. >

.o S a) an O? at E > m

o

in 100%

2

o

E 80% . _ 7 7

45 Elfour cores

¢ 60% Elthree cores

a:

2 ' I two cores

c 40% ‘ ‘

8 l lone core

3. 20%

0% K

“)0 05$ “0“ 0Q 00 ($90 0\ 493 49

(b) Two-cycle communication delay.

Figure 4.8. Cluster activity in a 4-cluster ACMT (T1=480k, T2=16k in the cluster adjustment

algorithm).

2.5

l non-adaptive

El adaptive

I
P
C

Figure 4.9. The IPC Performance of the ACMT. The non-adaptive ACMT has all clusters active

all the time. '

104

The IPC performance of the adaptive processor is shown in Figure 4.9. Shutting down

some clusters dynamically has performance very close to utilizing the full hardware

capacity all the time. There is a slight performance degradation due to configuration

exploring that requires the processor to operate with a non-optimal configuration in order

to sample its IPC. This result is not sensitive to the values of the T1 and T2 parameters. A

stable performance can be achieved when T] varies from 8k to 32k and T2 from 320k to

IM cycles.

The increased wire delay in advanced technology affects the IPC of both SMT and

ACMT, but in different ways. In a SMT processor, multiple clocks are needed to access

the increasingly large centralized hardware, resulting in more execution latency for all

instructions. The ACMT processor support technology scaling inside clusters but suffers

from communication delay between distributed hardware. However, only dependent

instructions located on different clusters are affected by this communication delay. CMP

supports technology scaling and have no communication overheads.

The IPC performance comparison between SMT, CMP, and ACMT is shown in

Figure 4.10. The horizontal axis represents the delay in clock of the execution loop in

SMT. It is the minimal number of clocks to execute two dependent instructions. For

ACMT, the delay is the delay to forward instructions results between clusters. The IPC of

both SMT and ACMT degrades when the delay increases. The CMP supports clock

scaling and has no communication; therefore, its performance does not change with this

variable.

The SMT with delay=0 represents an ideal SMT processor. Its performance degrades

quickly when the execution loop delay increases. The ACMT with delay=0 represents a

105

decentralized SMT without a communication penalty, and has lower IPC than the ideal

SMT. However ACMT outperforms the SMT when the delay is larger than zero. In

addition, the delay degrades the ACMT performance much slower than the SMT because

only a small portion of instructions (dependent instruction assigned to different clusters)

are affected in the ACMT. The CMP has the worst performance because of its low

hardware utilization on single program.

25

21

1.5 ~ ° SW
8 +AQP

- 1 q ‘ § ‘ - +CNP

0.5 ~

0 T

o 1 2 3

delay

Figure 4.10. The IPC performance of SMT, CMP, and ACMT on single program.

4.2.3.2 Multiple Programs

Figure 4.11 shows the IPC performance of SMT, CMP and ACMT on multiple

programs. Without considering the increased delay of large centralized hardware and

wires between clusters, ACMT has slightly less IPC than the ideal SMT on two-program

workloads (Figure 4.11a). However, ACMT has significantly higher performance than

the SMT when the delay penalty of centralized hardware and communication wire are

106

considered. The CMP was still outperformed by SMT and ACMT, but the performance

difference decreases to 25% ofACMT, reduced from 35% on single programs.

When there are four programs, the ACMT works similar to the CMP processor. Since

one thread is attached to a back-end cluster, there is no data forwarding between clusters.

The centralized Trace cache in the ACMT can fetch instructions beyond taken branches

of a single program. It has higher averaged fetch throughput than multiple small caches

that have the same aggregate fetch width. Therefore, ACMT has slightly higher

performance than the CMP. Both ACMT and CMP have much higher performance than

the SMT that has a one clock delay penalty in its critical execution loop.

4 6

5 a

3 I\ t I

4 4 \\

I I

i; 2 ‘ g sl "

2 a

1 + 9V"- +M

. .00}: 1 « +OVP

O +AOVP O +ACNP

0 1 2 0 1 2

delay delay

(a) two program workloads (b) four program workloads

Figure 4.11. The IPC performance of SMT, CMP, and ACMT on multiple programs.

Figure 4.12 shows the performance of the three processors on all types of workloads

assuming a two-clock-delay on both SMT and ACMT. ACMT has a consistently higher

performance on all workloads. The ACMT requires communication resources between

distributed cores, which results in a high hardware utilization and therefore high

107

performance when the parallelism in applications is low. When the thread level

parallelism is high, the ACMT is similar to a CMP processor with an shared Trace cache.

lust? 7.

‘ICMP ‘

swag

Figure 4.12. Performance of SMT, CMP and ACMT (assuming two-clock-delay for both the

SMT and the ACMT)

4.3 Summary

Multi-core processors provide a scalable hardware platform for multi-threaded

applications. The overall high instruction throughput ZIPCi x clock_rate is achieved

!

by improving the clock rate and the summation factor (high layout area efficiency and

therefore more cores with the same hardware budge) but sacrificing the IPC of individual

threads. SMT, on the other hand, supports high IPC of individual threads at the cost of

large layout area and a slow clock rate.

An ACMT processor achieves higher performance than both SMT and CMP having

the same issue width. An ACMT processor is a SMT with clustered back-end that

provides a high performance execution engine. The dependent instructions in the same

cluster can be executed back-to-back to achieve high IPC performance. In addition,

108

ACMT is similar to a CMP processor with a shared instruction fetch engine. Advanced

instruction fetch techniques (such as Trace cache) is used to achieve higher averaged

fetch throughput than multiple small caches in each CMP cores. Therefore, the ACMT

processor supports high clock rates and high IPC on applications with various ILP and

TLP.

The centralized front-end of the ACMT allows flexible hardware allocation to

instructions. Some of the clusters are deactivated if contributions from the additional

clusters are offset by the increased communication overheads. All clusters are activated

to meet the peak requirements of programs. This feature improves the processor energy

efficiency when ruing single threads.

ACMT trades chip area to achieve high performance on various workloads. An

ACMT needs extra communication hardware compared to a CMP. Data forwarding

between clusters takes large routing area that could have been used to accommodate more

cores in a CMP processor. The communication hardware is not used in applications when

their TLP is high. Therefore, ACMT is suitable for applications having limited TLP and

requiring high performance on single program.

109

5 SUMMARY AND FUTURE WORK

Advances VLSI technology provide more hardware resources that can be utilized in a

superscalar processor to exploit the ILP and the TLP of the applications. The additional

transistors resources have been harnessed to increase the pipeline depth and processor

issue width to achieve high instruction throughput. A wide-issue superscalar processor

maintains an increasingly large number of in-flight instructions in pipelines to exploit

parallelisms in applications. It employed multi-port SRAM and CAM circuits in many

pipeline stages and the circuit complexity typically increases with the issue width in the

conventional centralized design. Because the delay of the SRAM and CAM does not

scale with technologies, the critical path delay of the processor increases, causing

significant performance degradation.

Optimization of the hardware in the critical pipeline stage can remove the

performance bottleneck with minimal impact on other pipeline stages. Our work on the

instruction queue shows that there is large room for performance improvement through

hardware optimization. However, trying to push performance improvements by

optimizing each of many pipeline stages is not an ideal methodology because it requires

significant design effort that does not necessarily scale with advances in fabrication

technology. Multi-core processors provide a scalable hardware platform for applications

with high thread-level parallelism. However, they have low hardware utilization and fail

to yield high performance on single threads, which is important in many applications.

This thesis presents a solution that achieves high performance on a diverse set of

applications.

110

5.1 Summary ofContributions

0 Multiple approaches have been developed to optimize the delay of the instruction

queue of a superscalar processor. We have designed a banked instruction queue that

supports high clock rate with modest IPC penalty. The banked design requires 50%

hardware resources with only 4% IPC degradation on single program workload and

virtually no IPC degradation when running multiple programs, providing 28%

improvement in overall instruction throughput compared to a conventional instruction

queue. In addition, our design provides easy tradeoffs between hardware resources and

the IPC. With 25% of the hardware resources, the banked instruction queue causes 18%

IPC degradation but achieves 36% higher instruction throughput owning to the

improvement in delay. This work has conducted thorough simulations at both the circuit

level and the architectural level, enabling evaluation of the overall performance. A

microarchitectural simulator has been developed to model distributed microarchitecture

running multi-threaded workloads based on the SimpleScalar tool.

In addition, two coding techniques have been developed to reduce individual delay

components on the critical timing path of the instruction queue. One uses a linear code to

increase the Hamming distance between operand tags, significantly reducing the

instruction wakeup delay. This method can be combined with the banked instruction

queue to achieve the maximum performance. The other uses one-hot code that can

remove the OR gate and the tag read delay from the critical path, resulting in significant

delay improvement in a small instruction queue.

o A methodology has been developed to identifi) the optimal hardware distribution

scheme ofwide-issue superscalar processors. We start with a SMT processor and analyze

111

the effect of hardware distribution of each of the major pipeline stages. We have shown

that the distributions of the instruction queue, the register file, and the L1 data cache can

achieve significant reduction in circuit size and delay with relatively small IPC

degradation. This methodology provides a link between SMT and CMP, which represent

two opposite sides of the design spectrum. The performance relative to the SMT and the

CMP processors has been analyzed on single and multiple program workloads. Results

show that, even with multiple clock latencies in the critical pipeline loop, an 8-issue SMT

still outperforms an 8-issue 4-core CMP by 27% on single program. However, the CMP

has a 42% higher IPC than the SMT on multi-program workloads with the advantage of

small layout size and high clock rate.

0 This thesis introduces the Adaptive Clustered Multithreaded (ACMT)

Microarchitecture that achieves higher overall performance than either SMT or CMP

architectures. The ACMT employs clustered back-end to support high execution

bandwidth; it utilizes a centralized frond-end to obtain a high instruction fetch bandwidth

and high hardware utilization. Simulations show that an 8-issue 4-cluster ACMP running

single programs has 22% and 55% higher IPC than an 8-issue SMT and 8-issue 4-core

CMP, respectively. The ACMP outperforms the SMT and the CMP by 49% and 4%,

respectively, on four-program workloads.

We have shown that single threads have large ILP that can yield to higher IPC with

more cluster resources. When the ILP in a portion of program is high, the contribution of

additional clusters (higher execution bandwidth) exceeds the increased performance

degradation due to cluster communication overheads. We also show that the ILP varies

112

significantly within programs. Shutdown a set of clusters dynamically reduces the

communication overhead, and has minimal affect on the overall performance.

We have shown that the ACMT is suitable for applications with dynamic TLP and

ILP. The centralized front-end is flexible to allocate hardware resources to exploit both

TLP and ILP. When the TLP is high, a thread is assigned to a reduced subset of clusters.

A smaller subset of clusters has less communication overhead, and multiple subsets of

clusters yields overall higher performance. When the TLP is low, a larger subset of

clusters provides higher execution bandwidth to exploit the ILP in applications.

5.2 Future Work

Based on the results of this thesis, we suggest the following directions for future

research.

0 Performance comparison of SMT, CMP, and ACMP under the same hardware

budgets. ACMT needs more wire area for communications between clusters. The

instruction queue, register file and functional unit of each cluster also consume transistors

to send/receive data from other clusters. Under the same hardware budget, more cores

could be accommodated in a CMP processor which could result in higher instruction

throughput for applications with high TLP.

o Heterogeneous Clustered Microarchitecture. For homogeneous cluster designs (each

cluster is the same size), the granularity of the clusters determines performance of each

cluster and the overheads of the whole processor. Fine-grained clusters support high

clock rate but have low IPC performance on applications with low TLP and high ILP.

Course-grained clusters have high IPC on the above applications but the advantage

diminishes when the application TLP increases. The relatively low clock rate of course-

113

grained clusters may result in lower instruction throughput than a fined-grained design.

A heterogeneous design employing clusters with different performance may be more

efficient than the homogeneous design to adapt to the application requirements. By

assigning the applications with high ILP to a large cluster and high TLP applications to

small clusters, an overall higher instruction throughput could possibly be achieved.

0 Optimization of Energy Efliciency. This thesis aims to maximize the processor

instruction throughput with increased hardware budget. As power has become a critical

design limitation, it would be interesting to explore the optimal design for maximizing

processor energy efficiency.

The energy efficiency of homogenous clustered microarchitecture has been analyzed

in [25]. The performance and energy dissipation of homogeneous clustered

microarchitectures respond radically and inversely to the cluster granularity, making it

difficult to minimize the energy-delay product. Fined-grained clusters need a large

number of small clusters and incur significant performance degradation resulting in lower

energy efficiency as measured by energy-delay metric. Using a larger cluster would

reduce the delay factor but may still result in higher energy-delay due to increased energy

dissipation within each cluster. A heterogeneous design that incorporates clusters with

different performance and energy dissipation characteristics could potentially achieve an

overall lower energy-delay than homogeneous clustered designs. Large clusters could be

used to provide higher performance (less delay) and small clusters could be used to

achieve low energy dissipation.

114

l
.

APPENDIX: MICROARCHITECTURE SIMULATOR

SimpleScalar [66] was created by Todd Austin to simulate real programs running on a

range of modern processors and systems. It contains a detailed, dynamically scheduled

processor model that supports out-of-issue, speculative execution. In addition to

simulators, the SimpleScalar includes performance visualization tools, statistical analysis

resources, and debug and verification infrastructure. Many tools have been developed

based on the SimpleScalar infrastructure for research and instruction.

The microarchitecture simulator used in this thesis work was developed based on the

SimpleScalar out-of-order simulator. Because SimpleScalar only models single core and

single thread microarchitecture, it was modified to model SMT and cluster

microarchitecture to meet the simulation requirements of this thesis.

I. Support SMTProcessor Architecture.

i. Instruction Fetch.

In SimpleScalar, the instructions of simulated program are loaded into “mem” array

by calling function MD_FETCH_INST. To support SMT, two-dimension array are used

to store the instructions of each thread, and function MD_FETCH_INST is reused to load

the instructions of each thread. The global variable “active_thread” selects the threads to

be processed.

MD_FETCH_INST(inst, mem, fetch_regs_PC);

9:MD_FETCH_INST(inst, threads[active_thread].mem, threads[active_threadjfetch_regs_PC),'

The instruction fetch unit implements an 8-2 fetch algorithm. Two threads are

selected to fetch instructions each cycle. Assuming the processor issue width is 1W, up to

IW instructions can be fetched from each selected threads each cycle. The thread that has

115

6619’

L2 cache miss (set threadsstall variable to) is stalled from instruction fetch. All un-

stalled threads are selected in rotation.

ii. Instruction Renaming

SimpleScalar has two structures variables (regs and spec) representing the

architectural and physical register file of the processor. In SMT, each thread has its own

architectural register file, but all threads share the same physical register file. To reuse the

SimpleScalar code, each thread still associates with its architecture register file (regs)

and physical register file (spec). Another scalar variable gRUU_num is used to represent

the total usage of processor physical register file. If the value ofgRUU_num is larger than

the size of the physical register file, all threads are stalled from register renaming until

some instructions are executed & retired. A new structure thread is used to describe

threads.

struct thread {

struct regs_t *regs; //architectural register file

struct regs_t *spec; //physical register file

struct mem_t *mem; // hold instructions of all threads

struct cache;t *cache_ill;

struct cache;t *cache_i12;

struct cache_t *cache_d11;

struct cache_t *cache_d12;

struct cache_t *itlb;

struct cache;t *dtlb;

struct bpred_t flpred;

iii. Instruction Issue & Execution

Issue and execution of instructions in a SMT processor is the same as in a superscalar

processor. All instructions wait in a shared instruction queue until they are ready to

issue. The ready instructions from all threads compete for execution units with age-based

116

select policy. For each thread, the ready instructions are inserted into a queue

(readyq[active_thread]) based on the instruction ages. In each cycle, the top entries of

each queue are issued until the total issued instructions reach the processor issue width.

This prevents a single thread to occupy all execution units and block execution of other

threads.

All threads share a load/store queue for memory access instruction. In this SMT

model, each thread has its own instruction and data cache. The shared load/store queue

interfaces with multiple separated data cache.

iv. Instruction Retirement

The executed instructions of each thread remain in a single reorder buffer until they

are retired. A segment of the reorder buffer is assigned to a thread. Similar to the

instruction issuing, the top entry of each reorder buffer segment is allowed to retire. All

reorder buffer segments are searched each cycle, so that the executed instructions from

each threads can be removed from processor hardware fairly.

2. Support Clustered Microarchitecture

The above SMT processor simulator was further modified to model SMT clustered

processors. The single instruction queue, register file, and execution unit pools were

divided into multiple segments. Multiple steering algorithms were implemented. User

chooses the cluster configuration and steering algorithm in the configuration file. All

other units, including instruction fetch, decoding, and instruction retirement are not

affected.

117

 ‘F,
_
.
.
I

i. Segmented Instruction Queue

The instruction dependency analysis is modeled in function ruu_link_idep. After a

new instruction is decoded, it is added into the dependent list of the parent instruction.

When an instruction is issued, its dependent list is looked up, and all instructions on the

list update their operand status to ready. To model the segmented instruction queue, a

decoded instruction is associated with an instruction queue. The new instruction was

assigned to a queue based on the steering algorithm. The implemented steering

algorithms are described in the next section. If the designed queue is full, the new

instruction is assigned to the queue with the least number of entries.

Instruction wakeup process is modeled in function ruu_writeback. When an

instruction is issued, the cluster number of its dependent instructions is compared with

that of the issued instruction. If they are different, the dependent instructions are sent to

the ready queue with the hold flag set true. The instructions with a true hold flag remain

in the queue for cycles specified in the configuration file. Otherwise, they complete for

the execution units and are removed from the queue if they win.

ii. Steering Algorithm

The steering algorithms are modeled in function ruu_link_idep. For dependence

algorithm, if its parent instructions are still in the ready queue, the instruction is assigned

the same cluster value as its parent instructions. The cluster number of the second

operand overwrites that of the first operand. If the instruction has no parent instructions

or all of them have been issued, then the instruction is assigned to the queue with the least

number of entries. In our simulation, average 60% instructions are in this case. The other

three steering algorithms are straightforward in the code.

118

iii. Segmented Physical Registerfile

The results of executed instruction are stored in the physical register file. After the

instruction retires, the physical register is marked as a logic register. For an instruction

still in the ROB (not retired), the cluster number that is assigned to the instruction after it

is steered is also used to indicate the segmented physical register file. For the instruction

not in the ROB (retired), its cluster number variable doesn’t exist anymore. Therefore,

additional table (struct *log_reg) is used to keep track the location of the retired

instructions.

struct log_reg_table{

mdLaddr_t pc; //instruction PC

int lsq; // is in LSQ or not.

int cluster; //physical register file

}log_reg[LOG_REGISTER_NUMER]

After a new instruction gets its cluster number at the instruction steering stage, the

table log_reg is updated by the clustered number. The updated entry is indexed by the

destination operand of the new instruction.

iv. Segmented Execution Units

The segmented execution units is modeled in module ruu_issue. In each cycle,

ruu_issue() checks the ready instruction queue of each cluster. The top entry in the queue

requests for execution units in its segment and the total number of allocated executed

units is countered. If the maximum quote has been met, all ready instructions of this

cluster are reinserted to the queue that will be checked in the next cycle.

v. Banked Data Cache

The banked data cache is modeled in function ruu_link_idep. If a new instruction is

not a memory access instruction, then the instruction is assigned to a cluster based on the

specified steering algorithm. If the instruction is a load/store instruction, the instruction is

119

assigned to a cluster randomly. For a two-operand instruction memory instruction, it can

be assigned to two different clusters. In our model, the instruction is assigned based on

the result of the steering algorithm at X% cycle. The value of X is the data cache bank

prediction accuracy. The results in [74] were used to model the prediction accuracy: 85%

for four banks and 84% for eight banks.

120

10.

11.

12.

l3.

l4.

BIBLIOGAPHY

. J. E. Smith and G. S. Sohi, “The Microarchitecture of Superscalar Processors,”

Proceeding ofthe IEEE, Vol. 83, No. 12, December 1995.

M. Johnson, “Superscalar Design,” Englewood Clifis, NJ:Prentice-Hall, 1990.

J. A. Fisher and B. R. Rau, “Instruction-Level Parallel Processing,” Science, pp.

1233-1241, September 1991.

T. M. Conte, P. M. Mills, K. N. Menezes, and B. A. Patel, “Optimization of

Instruction Fetch Mechanisms for High Issue Rates,” Proc. 22nd Annual

International Symposium on Computer Architecture, pp. 333-344, June 1995

B. R. Rau, D. W. L. Yen, W. Yen, and R. Towle, “The Cydra 5 Departmental

Supercomputer: Design Philosophies, Decisions, and Trade-offs,” IEEE Computer,

vol. 22, pp. 12-35, January, 1989.

D. Kaeli and Pen-Chung Yew, “Speculative Execution in High Performance

Computer Architectures,” CRCpress, 2005.

C. H. Perleberg and AJ. Smith, “Branch Target Buffer Design and Optimization,”

IEEE Trans. on Computers, 42(4), pp. 396-412, Apr. 1993.

Q. Jacobson, al et., “Path-based Next Trace Prediction,” Proc. 30th Int ’1 Symp.

Microarchitecture, 1997.

A. Uht and V. Sindagi, “Disjoint Eager Execution: An Optimal Form of Speculative

Execution,” Proc. 28th Int ’1 Symp. Microarchitecture, 1995.

T.F. Chen, “Supporting Highly Speculative Execution via Adaptive Branch Tree,”

Proc. 4th Int ’1 Symp. HPCA, Februaryl998.

A. Roth et al., “ Dependence Based Prefetching for Linked Data Structures,” Proc.

8th Int ’1 Conf on Architectural Supportfor Programming Languages and Operating

Systems, October 1998.

B. Calder and G. Reinman, “A Comparative Survey of Load Speculation

Architecture,” Jounal ofInstruction-Level Parallelism, 1(39), January 2000.

F. Gabbay and A. Mendelson, “Using Value Prediction to Increase the Power of

Speculative Execution Hardware,” ACM Trans. Computing Systems, 16(3), 1998.

M.H. Lipasi and JP. Shen, “Exceeding the Dataflow Limit via Value Prediction,”

Proc. 29’” Int ’1 Symp. 0n Microarchitecture, December 1996.

121

15.

l6.

l7.

l8.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Gonzalez and A. Gonzalez, “Control-Flow Speculation through Value Prediction

for SuperScalar Processors,” Int ’1 Conf 0n Parallel Architecture and Compilation

Technique, September 1999.

D. Tullsen, S. Eggers, and H. Levy, “Simultaneous Multithreading: Maximizing On-

Chip Parallelism,” Proc. 22th Int ’1 Symp. Computer Architecture, pp. 392-403, 1995.

D. Koufaty, and D. T. Marr, “Hyperthreading Technology in the Netburst

Microarchitecture,” IEEE Micro, vol. 23, No. 2, pp. 56-65, March, 2003.

D. Tullsen, et al., “Handling Long-latency Loads in a Simultaneous Multithreading

processor,” Proc. 34'” Int ’1 Symp. 0n Microarchitecture, pp. 318-327, 2001.

D. Tullsen, et al., “Exploiting Choice: Instruction Fetch and Issue on An

Implemnetable Simultaneous Multithreading Processor,” Proc. 23th Int ’1 Symp. On

Computer Architecture, pp. 191-202, 1996.

Z. Chishti and TN. Vijaykumar, “Wire delay is not a problem for SMT,” Proc. 31'"

Int ’1 Symp. On Computer Architecture, May 2005.

F. J. Cazorla, al et., “Dynamically Controlled Resource Allocation in SMT

Processors,” Proc. 36th Int ’1 Symp. Microarchitecture, 2004.

G. S. Sohi, S. E. Breach, and TN. Vijaykumar, “Multiscalar Processors,” Proc. 34th

Int'l Symp. on Computer Architecture, pp. 414-425, June 1995.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace processor,” Proc. 30th

Int'l Symp. on Microarchitecture, pp. 138-148, November, 1997.

K. I. Farkas, P. Chow, N. P. Jouppi and Z. Vranesic, “The Multicluster Arcitecture:

Reducing Cycle Time Through Partitioning,” Proc. 30th Int'l Symp. on

Microarchitecture, pp. 149-159, November, 1997.

V. Zyuban and P. Kogge, “Inherently Lower-Power High Performance Superscalar

Architecture,” IEEE Transactions on Computers, Mar 2001.

P. Kongetira, “A 32-way Multithreaded SPARC Processor,” Hot Chips 16,

http://www.hotchips.org/archive/, 2004.

T. Takayanagi, al et., “A Dual-Core 64-bit UltraSPARC Microprocessor for Dense

Server Applications,” IEEE J. Solid-State Circuits, Vol. 40, No. 1, January 2005.

R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 Chip: A Dual-Core

Multithreaded Processor,” IEEE Micro, vol. 24, No. 2, pp. 40-47, March, 2004.

122

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

J. Burns and J. L. Gaudiot, “Area and System Clock Effects on SMT/CMP

Throughput,” IEEE Trans. on Computers, Vol. 54, No. 2, February 2005.

D. Sima, “The Design Space of Register Renaming Techniques,” IEEE Micro, vol.

20, No. 5, pp. 70-83, 2000.

V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock Rate versus IPC: The

End of the Road for Conventional Microarchitecture,” Proc. 27th Int ’1 Symp. on

Computer architecture, pp. 248 -259, June, 2000.

RE. Kessler et al., “The Alpha 21264 architecture,” Proc. Int ’1 Conf On Computer

Design, pp. 90-95, December 1998.

C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway, “The AMD Opteron

Processor for Multiprocessor Servers,” IEEE Micro, vol. 23, No. 2, pp. 66-76, March,

2003.

H. Ando, al et., “A 1.3-0H2 Fifth-Generation SPARC64 Microprocessor,” IEEE J.

Solid-State Circuits, vol. 38, No. 11, pp. 1896-1905, Nov. 2003.

N. S. Kim and T. Mudge, “The Microarchitecture of a Low Power Register File,”

Proc. Int ’1 Symp. Low-Power Electronics and Design (ISLPED), pp. 384-389, 2003.

1. Park, M. D. Powell, and T. N. Vijaykumar, “Reducing Register Ports for Higher

Speed and Lower Energy,” Proc. 35th Int ’1 Symp. Microarchitecture, pp. 171-182,

2002.

R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing the complexity of

the register file in dynamic superscalar processors,” Proc. 34th Int ’1 Symp.

Microarchitecture, pp. 237-249, 2001.

A. Gonzalez, J. Gonzalez, and M. Valero, “Virtual-Physical Register,” Proc. 4th Int ’1

Symp. High Performance Computer Architecture, 1998.

K. L. Cruz, A. Gonzalez, M. Valero, and N. P. Topham, “Multiple-banked Register

File Architectures,” Proc. Int ’1 Symp. Computer Architecture, pp. 316-325, June

2000.

E. Fetzer, M. Gibson, A. Klein, N. Calick, C. Zhu, E. Busta, and B. Mohammad, “A

Fully Bypassed Six-Issue Integer Datapath and Register File on the Itanium-2

Microprocessor,” IEEE J. Solid-State Circuits, vol. 37, No. 11, pp. 1433-1440, Nov.

2002.

R. K. Krishnamurthy, et al., “A l30-nm 6-GHz 256 x 32 bit Leakage-Tolerant

Regsiter File,” IEEE J. Solid-State Circuits, vol. 37, No. 5, pp. 624-632, May. 2002.

123

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

G. Hinton, et al., “A 0.18-um CMOS IA-32 Processor With a 4-GHz Integer

Execution Unit,” IEEE J. Solid-State Circuits, vol. 36, No. 11, pp. 1617-1627, Nov.

2001.

J. Leenstra, et al., “A 1.8-GHz Instruction Window Buffer for an Out-of-Order

Microprocessor Core,” IEEE J. Solid-State Circuits, vol. 36, No. 11, pp. 1628-1635,

Nov. 2001.

J. Abella, et al., “Power-and Complexity-Aware Issue Queue Designs,” IEEE Micro,

vol. 23, No.5, pp. 50-58, September, 2003.

S. Palacharla, N. P. Jouppi, and J. Smith, “Complexity-effective Superscalar

Processors,” Proc. 24th Int ’1 Symp. On Computer Architecture, pp. 206-218, June

1997.

H. Akkary, R. Rajwar, and S. T. Srinivasan, “Checkpoint Processing and Recovery:

an Efficient, Scalable Alternative to Reorder Buffers,” IEEE Micro, vol. 23, No.6, pp.

11-19, Nov, 2003.

A. R. Lebeck et al., “A large, Fast Instruction Window for Tolerating Cache Misses,”

Proc. 29th Int ’1 Symp. Computer Architecture, pp. 59-70, 2002.

T. Moreshet and R. I. Bahar, “Complexity-Effective Issue Queue Design under Load-

Hit Speculation,” Proc. Workshop Complexity-Eflective Design, 2002.

M. Goshina et al., “A High-Speed Dynamic Instruction Scheduling Scheme for

Superscalar Processors,” Proc. 33th Int ’1 Symp. Microarchitecture, pp. 225-236,

2001.

M. Huang, J. Renau, and J. Torrellas, “Energy-Efficient Hybrid Wakeup Logic,”

Proc. Int ’1 Symp. Low-Power Electronics and Design (ISLPED), pp. 196-201, 2002.

J. Stark, M. D. Brown, and Y. N. Patt, “On Pipelining Dynamic Instruction

Scheduling Logic,” Proc. 32th Int ’1 Symp. Microarchitecture, pp. 57-66, 2000.

P. Michaud, A. Seznec, “Data-Flow Prescheduling for Large Instruction Windows in

Out-of-Order Processors, ” Proc. 4th Int ’1 Symp. on High-Performance Computer

Architecture, Janunary 2001 .

D. Ernst, A. Hamel, and T. Austin, “Cyclone: A Broadcast-Free Dynamic Instruction

Scheduler with Selective Replay,” Proc. 36th Int ’1 Symp. On Computer Architecture,

May, 2003.

S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. “A Scalable Instruction Queue

Design Using Dependence Chains,” Proc. 29th Int'l Symp. on Computer Architecture,

pp. 318-329, May 2002.

124

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

M. D. Brown, J. Stark, and Y. N. Patt, “Select-Free Instruction Scheduling Logic,”

Proc. 34th Int ’1 Symp. Microarchitecture, pp. 204-213, 2001.

S. Onder and R. Gupta. “Superscalar Execution with Dynamic Data Forwarding,”

Int ’1 Conf on Parallel Architectures and Compilation Techniques, pp. 130--1 35, Oct.

1998.

D. Folegnani and A. Gonzalez, “Energy-Effective Issue Logic,” Proc. 28th Int’l

Symp. on Computer Architecture, pp. 230-239, June, 2001.

D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power Requirements of

Instruction Scheduling Through Dynamic Allocation of Multiple Datapath

Resources,” Proc. 33th int ’1 Symp. Microarchitecture, pp.90-101, 2001.

D. Ponomarev, al et., “Energy Efficient Comparators for Superscalar Datapaths,”

IEEE Trans. on Computer, vol. 53, No. 7, pp. 892-904, 2004.

E. Brekelbaum, J. Rupley II, C. Wilkerson, and B. Black, “Hierarchical Scheduling

Windows,” Proc. 35th Int'l Symp. on Microarchitecture, pp. 27-36, November, 2002.

J. M. Parcerisa, J. Sahuquillo, A. Gonzalez, and J. Duato, “Efficient Interconnects for

Clustered Microarchitectures,” Int ’1 Conf. on Parallel Architectures and Compilation

Techniques, pp. 291--300, Oct. 2002.

R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi, “Dynamically Managing the

Communication-Parallelism Trade-off in Future Clustered Processors,” Proc. 30th

Int ’1 Symp. On Computer Architecture, pp. 275-287, June 2003.

A. Baniasadi and A. Moshovos, “Instruction Distribution Heuristics for Quad-Cluster,

Dynamically-Scheduled, Superscalar Processors,” Proc. 33th Int'l Symp. on

Microarchitecture, pp. 337-347, December, 2000.

R. Bhargava and L. K. John, “Improving Dynamic Cluster Assignment for Clustered

Trace Cache Processors, ” Proc. 30th Int ’1 Symp. On Computer Architecture, pp. 264-

274, June 2003.

R. Canal, J. M. Parcerisa and A. Gonzalez, “Dynamic Cluster Assignment

Mechanisms,” Proc. 6th Int ’1 Symp. on High Performance Computer Architecture,

pp. 133-143, January, 2000.

T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer

System Modeling,” IEEE Computer, vol. 35, no. 2, pp. 59-67, February, 2002.

125

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

D. M. Brooks, V. Tiwari, and M. Maronosi, “Wattch: A Framework for

Architectural-Level Power Analysis and Optimization,” Proc. 27th Int ’1 Symp. On

Computer Architecture, June 2003.

T. M. Austin and G. S. Sohi, “Dynamic Dependency Analysis of Ordinary

Programs,” Proc. 19th Int ’1 Symp. on Computer architecture, pp. 342 — 351, 1992.

M. B. Taylar, W. Lee, S. Amarasinghe and A. Agarwal, “Scalar Operand Networks:

On-Chip Interconnect for ILP in Partitionad Architectures,” Proc. 10th Int ’1 Symp. on

High Performance Computer Architecture, January, 2003.

V. A. Singh, K. Sankaralingam, S. W. Keckler and D. Burger, “Design and Analysis

of Routed Inter-ALU Networks for ILP Scalability and Performance,” Proc. 21th

Int ’1 Conf on Computer Design, October, 2003.

R. Kuma, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen, “Single-ISA

Heterogeneous Multi-Core Architectures: The Potential for Processor Power

Reduction,” Proc. 36th Int'l Symp. on Microarchitecture, pp. 81-92, December, 2003.

S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylar, and R.

Laufer, “PipeRench: A Coprocessor for Streaming Multimedia Acceleration,” Proc.

26th Int ’1 Symp. On Computer Architecture, pp. 28-39, May, 1999.

G. Z. Chrysos and J.S. Emer, “Memory Dependence Prediction Using Store Sets,”

Proc. 25th Int ’1 Symp. On Computer Architecture, pp. 142-153, June-July 1998.

H. Neefs, H. Vandierendonck and K. D. Bosschere, “A technique for high

bankdwidth and deterministic low latency load/store access to multiple cache banks,”

Proc. 32th Int ’1 Symp. On Computer Architecture, May 2005.

A. Gandhi, al et., “Scalable Load and Store Processing in Latency Tolerant

Processors,” Proc. 32th Int ’1 Symp. Computer Architecture, 2005.

P. Racunas and Y. N. Patt, “Partitioned First Level Cache Design for Clustered

Microarchitectures,” Proc. 17th Int ’1 Conf on Supercomputing, pp. 22-31, June,

2003.

B. S. Amrutur and M. A. Horowitz, “Speed and Power Scaling of SRAM’s,” IEEE J.

Solid-State Circuits, Vol. 35, No. 2, pp. 175-185, February 2000.

J. D. Meindl et al., “The impact of stochastic dopant and interconnect distributions on

gigascale integration,” IEEE Int. Solid-State Circuits, Dig. Tech. Papers, pp. 232—

233, 1997.

S. 1. Association, “International Technology Roadmap for Semiconductors,” 2002.

126

8O

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93

R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proceedings of the IEEE,

89(4), pp. 490-504, 2001.

G. A. Saihalasz, “Performance trends in high-end processors,” Proc.]EEE, vol. 83,

Jan. 1995.

K. J. Schultz and P. G. Gulak, “Architectures for Large-capacity CAMS,” Integration,

the VLSIJournal 18, pp. 151-171, 1995.

L. Chisvin and JR. Duckworth, “Content-addressable and associative memory:

alternatives to the ubiquitous RAM,” IEEE Comput. 22, pp. 51-64, 1989.

F. Shafai, al et., “Fully Parallel 30-MHz, 2.5-Mb CAM,” IEEE J. Solid-State Circuits,

Vol. 33, No. l 1, pp. 1690-1696, November 1998.

S. K. Mathew al et., “A 4-GHz 300-mW 64-bit Integer Execution ALU Width Dual

Supply Voltages in 90-nm CMOS,” IEEE J. Solid-State Circuits, Vol. 40, No. 1,

January 2005.

G. Hinton, al et., “The Microarchitecture of the Pentium 4 Processor,” Intel

Technology Journal Q1, 2001 .

E. Rotenberg, S. Bennett, and J. E. Smith, “Trace cache: A Low Latency Approach to

High Bandwidth Instruction Fetching,” Proc. 29th Int ’1 Symp. On Microarchitecture,

pp. 24-34, December 1996.

E. Rotenberg, S. Bennett, and J. E. Smith, “A Trace Cache Microarchitecture and

Evaluation,” IEEE Trans. on Computers, Special Issue on Cache Memory, 48(2), pp.

111-120, February 1999.

Q. Jacobson, E. Rotenberg, and J. E. Smith, “Path-based Next Trace Prediction,”

Proc. 30th Int ’1 Symp. On Microarchitecture, pp. 14-23, December 1997.

Q. Jacobson, J.E. Smith, “Trace Preconstruction,” Proc. 27th Int ’1 Symp. On

Computer Architecture, pp. 37-46, June 2000.

L. Hammond et al., “The Stanford Hydra CMP,” IEEE MICRO, Magazine, Vol. 20,

No. 2, pp. 71—84, 2000.

Advanced Micro Devices, “AMD Demonstrates Dual Core Leadership,”

http://www.amd.com/, 2004.

Q. Jacobson, “UltraSPARC IV Processors,” Microprocessor Forum, 2003.

127

94. D. S. Henry, B. C. Kuszmaul, G. H. Loh and R. Sami, “Circuits for Wide-Window

Superscalar Processors,” Proc. 27th Int ’1 Symp. On Computer Architecture, pp. 236-

247, 2000.

95. V. Pless, “Introduction to the Theory of Error-Correcting Codes, 3rd Edition,” Wiley,

1998.

96. J. Zhou and A. Mason, “A Two-level Hybrid Select Logic for Wide-Issue Superscalar

Processors,” to appear in Int ’1 Symp. On Circuits and Systems (ISCAS), May 2006.

97. J. Zhou and A. Mason, “Increasing Design Space of the Instruction Queue with Tag

Coding,” ACM Great Late Symp. On VLSI (GLSVLSI), April, 2005.

128

