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ABSTRACT

ENHANCING RANGELAND SUSTAINABILITY WITH REMOTE SENSING AND

COLLABORATIVE INFORMATION EXCHANGE

By

H. Scott Butterfield

Remote sensing is a powerful tool for range management, but is used by only a

small fraction ofprivate range managers. Factors limiting use ofremote sensing may

include i) its cost and complexity, and ii) a dearth ofmeans by which to quantify

senescent biomass. Senescent biomass is a significant forage resource for livestock

during dry periods in grasslands. My research examines factors that influence the use of

remote sensing by private range managers and are associated with the use ofremote

sensing for estimating rangeland biomass.

To understand what factors limit the use of remote sensing data by managers, I

conducted surveys with managers participating in a rangeland stewardship program in

California, in which they were provided with regular remote sensing-based analyses of

their properties. My work showed that managers of larger, commercially active ranches

found the experimental use ofremote sensing to be a positive experience that convinced

them that this technology could help improve management. This suggests that the broad

use ofremote sensing by managers of privately-held, commercial rangelands may be

limited in part by the simple lack of opportunity to test these technologies. Programs that

assist ranchers in obtaining appropriate products may thus be a cost-effective way to

enhance conservation on private rangelands. My findings suggest that voluntary self-



analysis by ranchers of the landscape dynamics of their own properties is likely to lead to

more engaged conservation efforts than top-down prescriptions.

Many grasslands experience a significant annual dry period, during which

senescent biomass is the dominant canopy component. During these periods, remote

sensing indices such as the normalized difference vegetation index (NDVI) underestimate

total biomass (green and senescent), which can have significant consequences for end-of-

the-season management decisions. Even though the general effect of senescence on the

NDVI-biomass relationship is well understood, no study has characterized this effect in

detail for annual grasses. To determine the period during which a single NDVI-biomass

relationship is useful, I grew annual grasses, and measured canopy properties weekly

from germination to the end of the season. NDVI underestimated biomass by

increasingly large amounts as the canopy transitioned from dominance by green to

senescent biomass. When the entire season was considered, the species-specific NDVI-

biomass equations were remarkably similar, suggesting that a single equation may be

robust to the structural and phenological differences that exist among annual grasses.

I used spectral measurements from these same grass stands to develop and

evaluate a vegetation index describing the mean PAR absorbed by the surface (MAPAR)

for senescent biomass estimates. Under some conditions, MAPAR was significantly

correlated to total biomass throughout the season, including periods when senescent

biomass was dominant. However, the utility of MAPAR declined as the soil moisture or

organic matter content increased, and also when significant stem lodging occurred.

These findings suggest that MAPAR, or a MAPAR-like index, may prove valuable as a

tool for evaluating senescent biomass in dry regions, such as California rangelands.
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CHAPTER 1

INTRODUCTION

Background

Rangelands comprise approximately 315 million hectares, or some 40% of the

land mass in the United States (World Resources Institute 1996). Of this, approximately

one-half is privately-owned (USDA Natural Resources Conservation Service 2000) and

thus susceptible to pressures from urbanization (e.g., Heady and Child 1994, Smith 2000,

Haver 2001 , Jensen 2001). Rangelands are composed of grasses, forbs, shrubs, and trees,

and are predominantly used for livestock grazing in the western United States (Heady and

Child 1994). Rangelands can include natural grasslands, savannas, shrublands, many

deserts, tundra, alpine communities, coastal marshes, and wet meadows (Heady and

Child 1994, Barbour et a1. 1999).

Rangelands in the western United States provide a variety of ecosystem services,

including forage for grazing animals, clean air, and open spaces, and habitat for native

wildlife and plant species (Heady and Child 1994). Rangelands can also serve as high

quality watersheds if levels ofresidual dry matter (RDM)--the amount ofdry plant

material on the ground at the beginning ofthe season--are maintained within

recommended ranges (Bartolome et al. 2002) and if riparian areas are properly managed

(e.g., fenced and either ungrazed or grazed only irregularly and by a small number of

grazing animals). In addition, rangeland ecosystems provide important economic

services, including supporting an approximately $80 billion beef and cattle industry as

well as private recreational (e.g., hunting) pursuits (World Resources Institute 1996,

Mitchell 2000)



Because of the collective importance ofthe services that rangeland ecosystems

provide, the “health” ofrangelands often directly influences the economic well-being of

communities in the region, as is the case in the western United States (Heady and Child

1994, Mitchell 2000, O’Brien et a1. 2003). Defining and monitoring rangeland health is a

complex process, and one for which a variety of state and federal agencies (e.g., the

Bureau of Land Management) as well as nonprofit organizations (e.g., the Central Coast

Rangeland Coalition) have developed their own unique systems (e.g., Bureau of Land

Management 1996, Ford et al. 2006). In these systems, rangeland health is often

evaluated by assessing a number ofthe following indicators: (i) degree of soil stability

and watershed function; (ii) integrity of nutrient cycles and energy flows, including plant

productivity and the presence ofdesirable forage species; (iii) resistance and resilience to

unexpected or catastrophic disturbances, which is evaluated by measuring multiple

factors including age class distributions and plant vigor; (iv) maintenance ofbiological

diversity and habitat quality, and (iv) socio-economic sustainability of the rangeland and

ranching operation (The Nature Conservancy 2000, 2005, 2006, Ford et a1. 2006). Here,

I define socio-economic sustainability as the use ofrangeland resources in such a way as

to meet present living costs while preserving natural resources and income sources for

future generations.

Enhancing rangeland “health” and achieving long-term sustainability are

important goals for many ranchers and conservation biologists, and thus motivating

factors for much work, including my own research. Because they are such broad goals,

however, my work has focused on the more immediate specific steps of evaluating and

expanding remote sensing use by land managers, with a particular focus on using remote



sensing to evaluate properties, such a biomass production, that are integral to analyses of

rangeland health, as described above. In the long-term, scientific advances in this area, in

combination with economic analyses, will likely help managers meet goals in rangeland

sustainability.

Broad questions about rangeland health and sustainability are important because

at present many rangeland ecosystems and the communities they support are threatened

by multiple factors, which include: (i) rising levels of invasive noxious weeds (e.g., Mack

1989, D’Antonio and Vitousek 1992, Vitousek et al. 1996, DiTomaso 2000); (ii) global

warming, which threatens to make rangelands more vulnerable to invasion by exotic

species (e.g., Alward et al. 1999); (iii) nitrogen deposition, which can favor the increased

dominance of exotic species (McLendon and Redente 1991, Field et al. 1992, Fenn et al.

1998, Koide et al. 1998, Weis 1999, Aber and Melillo 2001); and (iv) urbanization (e.g.,

Heady and Child 1994, Wilcove et al. 1998, Smith 2000, Haver 2001, Jensen 2001). In

combination, these threats are making it increasingly difficult for private range managers

to maintain economically viable ranch operations (Leitch et al. 1994, World Resources

Institute 1996, Mitchell 2000). As economic margins decline while rangeland property

taxes and the value of land for urban development rise, more rangeland managers--even

many ofwhom who are part of multi-generation ranching families--consider selling their

properties (The Nature Conservancy 2005). When ranches are converted to urban and

suburban uses, large areas of open space are then lost, along with the ecosystem and

economic services that these rangelands provided (The Nature Conservancy 2000, 2005,

2006, Heady and Child 1994). Such sales therefore can have lasting detrimental

consequences, not only for the native species that live there but also for human



communities (World Resources Institute 1996, Roling and Wagemakers 1998, Mitchell

2000, The Nature Conservancy 2005).

In my research, I chose to work with private range managers, because they are

important contributors to the management and overall conservation ofrangeland

ecosystems. Many of these managers are strongly committed to conservation in order to

preserve viable ranching operations for future generations of their families (Jensen 2001,

Butterfield and Malmstrom 2006, The Nature Conservancy 2006). In addition, private

range managers possess a wealth of invaluable expert knowledge about ecological

dynamics in their regions, often described as “local ecological knowledge”(Berkes et al.

2000, Olsson and Folke 2001).

Interest in local ecological knowledge, or knowledge held by a specific group of

people (e.g., the western range management community in this case) about their local

ecosystems and the interplay among organisms and their environment (Olsson and Folke

2001), has grown recently within the scientific community. Researchers have shown that

such knowledge can contribute to the conservation ofbiodiversity (Gadgil et al. 1993),

the protection of endangered species (Colding 1998), the preservation of threatened

ecological processes (Alcom 1989), and increases in the overall sustainability ofresource

use (Berkes et a1. 2000).

To meet the growing needs and pressures ofmanagement in rangeland

ecosystems, range managers have begun to evaluate new management practices designed

to decrease levels ofnoxious weeds and in the process increase total biomass production.

These practices include prescribed burning, short-duration, high-intensity grazing

(SDHI), and seeding of native perennial bunchgrasses (e. g., Thomsen et al. 1990, Taylor



and Ralphs 1992, Coppock and Birkenfeld 1999, Krueter et a1. 2001, Malmstrom et a1.

2004, DiTomaso and Johnson 2006). Noxious weeds, such as yellow starthistle

(Centaurea solstitialis L.), medusahead (Taeniatherum caput-medusae (L.) Nevski), and

leafy spurge (Euphorbia esula L.), are especially problematic in rangeland ecosystems in

the western United States because of their negative impact on livestock operations (Lusk

et al. 1961, Lym and Kerby 1987, Young 1992, Callihan et al. 1992, Callihan et al. 1995,

Vitousek et a1. 1996, DiTomaso 2000, DiTomaso and Johnson 2006). Noxious weeds

can reduce livestock carrying capacity (Lym and Kerby 1987, Heady and Child 1994,

Leitch et a1. 1994), and quickly decrease biomass production (Mooney et al. 1986, Mack

1989, D’Antonio and Vitousek 1992) as well as the quality (e.g., nutritional value) of

forage available for grazing animals (Lusk et al. 1961, Barry 1995). Some noxious

weeds (e.g., yellow starthistle) can even be toxic to livestock (Panter 1990). Once

noxious weeds have become established, the cost associated with the management ofthe

ecosystem as a whole increases greatly (Roche and Roche 1991, Leitch et al. 1994,

Randall 1996, DiTomaso 2000, Tu et al. 2001, DiTomaso and Johnson 2006).

To gain assistance in evaluating these new management practices, some managers

have formed watershed collectives with each other and forged relationships with non-

profit conservation organizations and university scientists who can provide scientific

analyses (e.g., Haver 2001, Jensen 2001, Qi et al. 2002, Malmstrom et al. 2004, The

Nature Conservancy 2000, 2005, 2006). These collaborations provide managers the

unique opportunity to evaluate a variety of different practices in combination with one

another, and to collaborate in assessing which practices will decrease noxious weeds and

increase levels of desirable forage species most. In many cases, it is likely that managers



could increase the effectiveness of their ranch operations if they were able to monitor

rangeland vegetation in detail over their entire properties each year. This capability

would be especially helpful for identifying noxious weed infestations when they are small

and more easily controlled and/or eradicated (Everitt et al. 1995, Lass et al. 1996,

Boswell 2000, Lass et a1. 2002, Everitt et al. 2006, DiTomaso and Johnson 2006).

However, managers often cannot monitor their entire properties each year using ground-

based efforts alone because their ranches are large and ecologically complex (George and

Fulgham 1989, Rowan and Conner 1995, Tueller 1989, Coppock and Birkenfeld 1999,

Tueller 2001).

Remote sensing, however, can help managers conduct annual property-wide

assessments ofrange condition (Tueller 1989, Hunt et al. 2003, Wallace et al. 2003, Lass

et al. 2005, Washington-Allen et a1. 2006). For example, managers can use remote

sensing data to quantify the effect of their management practices on noxious weed spread

and biomass production from scales of individual pastures to entire watersheds. This

allows managers to quantify the impact of each practice within the context of non-

management induced variations, such as those related to topographic and soil differences

(Tueller 1982, Richardson and Everitt 1992, Pickup et al. 1994, Wessman et al. 1997,

Wallace et al. 2003).

Range managers can also use remote sensing data to expand the temporal scale of

their analyses. Many satellite sensors acquire data at least twice a month across western

United States rangeland ecosystems. Some ofthese sensors, like the Landsat series, have

been acquiring data for more than 20 years. For example, because ofthe time period over

which it has been acquired, Landsat satellite data can provide managers the unique



opportunity to analyze the effects of their current management practices within the

context of historical land use and land cover changes across their properties (Paruelo and

Golluscio 1994, Saltz et al. 1999, Wallace et al. 2003, Malmstrom et a1. 2004, Shaw

2005, Reeves et al. 2006, Washington-Allen et al. 2006). This capability, for example,

allows managers to determine which practices were most successful in the past at

decreasing noxious weed levels, and thus to focus future management efforts on those

which were most effective (Malmstrom et a1. 2004, Washington-Allen 2006). Remote

sensing data can also provide managers the unique ability to evaluate the impact of their

current management practices across temporal scales from months to decades (e.g.,

Tucker et al. 1983, Pickup et a1. 1994, Wessman et a1 1997, Wallace et al. 2003). This

capability enables managers to base management decisions on both short- and long-term

biomass and weed trends (e.g., Hunt et al. 2003, Lass et a1. 2005, Mustafa et al. 2005,

Everitt et al. 2006, Mundt et a1. 2006).

Despite their value, remote sensing data currently are used by only a small

fraction of range managers (Tueller 1982, 1989, Daberkow and McBride 2000, 2003).

The low use rates of innovative technologies, like remote sensing, often indicate either

that the technology has not been successfiilly introduced to the end-user (i.e., the range

manager in this case) or that the end-user does not see its utility (Fliegel 1993, Kreuter et

al. 2001, Daberkow and McBride 2003).

Another potential limitation is the current lack ofremote sensing approaches for

quantifying total biomass during time periods when senescent biomass is present.

Senescent biomass is an important forage resource in grass-dominated rangeland

(grassland) ecosystems for a substantial portion of the year (e. g., George and Fulgham



1989, Richardson and Everitt 1992, Frank and Aase 1994, Qi et al. 2000). During dry

periods, senescent biomass is the only forage resource available for grazing animals

(George and Fulgham 1989, Richardson and Everitt 1992, Frank and Aase 1994, Qi et al.

2000). In these ecosystems, this can mean that senescent biomass is the only forage

resource available for up to six months during the year (George and Fulgham 1989,

Prince 1991, Saltz et al. 1999).

The amount of senescent plant material on the ground at the beginning of the

season, known as residual dry matter (RDM), is also an important indicator of rangeland

health (Bentley and Talbot 1951, Heady 1956, Bureau of Land Management 1996,

Bartolome et al. 2002, Guenther and Christian 2005, Ford et al. 2006). In grazed

grasslands, RDM is primarily composed of the foliage and stem biomass of grasses and

forbs from the current season (Bartolome et al. 2002, George et a1. 2006). However, in

ungrazed grasslands, RDM can also include dry tree leaves, woody debris, and grass and

forb litter from previous growing seasons (i.e., more than a year old). In western

rangeland ecosystems, properly managed RDM can reduce soil erosion, and thus increase

biomass production of desirable forage species and decrease levels ofbroadleaf noxious

weeds, such as yellow starthistle (Bartolome et al. 1980, McDougald et al. 1982, Heady

and Child 1994, George and Menke 1996, Molinar et al. 2001, Bartolome et al. 2002).

RDM measurements are used not only by range managers, but also by federal agencies,

such as the Bureau of Land Management, for compliance monitoring across federally

owned and/or managed grassland ecosystems (Bureau of Land Management 1996). In

addition, RDM assessments are used by range management specialists and conservation

organizations, such as The Nature Conservancy, for both compliance and effectiveness



monitoring across conservation easements (e.g., Guenther 1998, The Nature Conservancy

2000, 2005, 2006, Molinar et al. 2001, Guenther and Christian 2005).

Remote sensing data have been used for more than 30 years to quantify green

biomass in grassland ecosystems (Rouse et al. 1974). However, during periods when

senescent biomass is present, vegetation indices, such as the normalized difference

vegetation index (NDVI), underestimate total biomass. NDVI is calculated using surface

reflectance (R) values in the red (0.63—0.69 pm) and near infrared (N1R) (0.76—0.9 um)

spectral regions as:

NDVI = (RNIR - Rred) / (RNIR+ Rm) [1311- 1]

NDVI is highly correlated to green biomass because it is calculated using the red spectral

region, which is sensitive to chlorophyll amount, and the NIR region, which is sensitive

to both leaf internal and canopy structure (Rouse et al. 1974, Tucker 1979). Thus, as

green biomass increases, NDVI increases. However, as vegetation senesces, chlorophyll

degrades and leaf internal structure declines (Tucker 1979). This results in NDVI values

more similar to that of the soil background (Huete et al. 1985), and causes NDVI to be a

poor predictor of total biomass during these time periods (e.g., Tucker 1979, Tucker et al.

1983, Gamon et al. 1995).

To assess grassland condition during time periods when senescent biomass is

present, researchers have thus developed a variety of approaches, including: 1) thermal

remote sensing data coupled to NDVI measurements (French et al. 2000); 2) vegetation

indices that use the shortwave infrared region (SWIR: 2000—2300 nm) (e.g., Qi et al.

2000); and 3) techniques such as spectral mixture analysis of the SWIR region (e.g.,

Gamon et a1. 1993). The SWIR region has been used because it contains cellulose (2090



nm and 2270 nm) and lignin (2130 nm and 2270 nm) absorption features that are masked

by water in green vegetation but become evident as vegetation senesces (Roberts et al.

1993). While each of these techniques has been used successfully in grassland

ecosystems to produce estimates of fractional senescent vegetation cover, [or the areal

proportion of the surface covered by senescent vegetation (White et al. 2000)], none can

be directly used to quantify biomass, either total (green plus senescent) or senescent. For

range management operations, fractional cover is not always in itself an adequate

indicator ofrangeland condition because it is not a direct surrogate of productivity as

stand biomass is (Pickup et al. 1994).

To increase the utility of remote sensing data for biomass management in

rangeland ecosystems it is therefore imperative that we more clearly define the limits of

green vegetation indices (like NDVI) throughout the season as well as develop new

remote sensing approaches that can be used when senescent biomass is present. The

studies in this dissertation were motivated by the lack of detailed information about the

effect of senescence on the NDVI-biomass relationship for grass species and grass mixes

that dominate western grassland ecosystems. This detailed information is important

because it enables analysis of the error associated with the use ofNDVI for biomass

estimates during time periods when senescent biomass is present.

The objectives ofmy dissertation were: 1) to identify limitations associated with

the use ofremote sensing data by private range managers and to evaluate the impact of

the use of remote sensing data on manager decision-making, 2) to increase the accuracy

ofNDVI-green biomass estimates in grassland ecosystems, and 3) to develop a new
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remote sensing approach for the quantification of biomass that can be used in grassland

ecosystems when senescent biomass is present.

Organization of the Dissertation

For my thesis research I examined three fundamental questions regarding the use

ofremote sensing data by private range managers in California. First, what factors

influence the use ofremote sensing data by the private range management community

and how does the use ofremote sensing impact decision-making? Second, during what

part of the growing season can a single NDVI-biomass equation (i.e., biomass =

flNDVI» be accurately used in annual grasslands with mixed species composition? And,

third, are there alternative means for quantifying senescent biomass from satellite data

that are accessible and affordable for private range managers?

In Chapter 2, Experimental use ofremote sensing by private range managers and

its influence on management decisions (Butterfield and Malmstrom 2006), I used case

study analyses to examine how the characteristics ofrange managers and their properties

influence the use ofremote sensing data. I found that remote sensing data were most

likely to be used and invested in by range managers who had recently implemented other

new practices and who believed remote sensing products would help increase ranch

profitability. In these cases, managers found that remote sensing data allowed them to

extend their intensive management efforts to a greater proportion of their properties and

to base their management decisions on multi-year forage and weed analyses.

In Chapter 3, Phenological eflects on remotely-sensed biomass estimates in

annual grasslands, I used annual grass stands planted in an agricultural field on the
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campus of Michigan State University in East Lansing, Michigan to examine in detail the

impact of canopy senescence on NDVI-biomass estimates. I used these data to determine

the phenological period during which a single NDVI-biomass equation could be used in

annual grasslands with mixed species composition. I found that in all stand types, NDVI

could be used to estimate green biomass throughout the season, regardless of the

proportion of senescent biomass present. Furthermore, all stand types displayed similar

phenological relationships between NDVI and biomass, reaching maximum NDVI and

maximum biomass simultaneously. Last, when the entire season was considered, the

species-specific NDVI-biomass equations were remarkably similar, suggesting that a

single equation may be robust to the structural and phenological differences that exist

among common grass species.

In Chapter 4, Remote sensing-based estimates ofsenescent biomass: Common

problems and a new approach in annual grasslands, I propose a new vegetation index for

senescent biomass estimates, MAPAR (the mean PAR absorbed by the surface), and

examine its potential for landscape-scale RDM estimates in western grassland

ecosystems. Across dry, light-colored sandy loam soils, MAPAR was correlated with

senescent biomass across a wide-range of conditions. However, the utility ofMAPAR

declined where the soil was darker, either due to increased soil moisture or organic matter

content, and also when significant stem lodging occurred. In most western grassland

ecosystems, such as those found in California, soil is often low in organic material (e.g.,

2—10 %). In addition, across grazed grasslands, stems often do not reach heights where

stem lodging would be a significant issue. Therefore, these results suggest that MAPAR

12



may be a valuable approach for estimating senescent biomass, or RDM, in grazed

grassland ecosystems.

I conclude the theses with a summary of future research directions that were

inspired by my dissertation research in Chapter 5.
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CHAPTER 2

EXPERIMENTAL USE OF REMOTE SENSING BY PRIVATE RANGE MANAGERS

AND ITS INFLUENCE ON MANAGEMENT DECISIONS

Abstract

Although remote sensing has many potential applications for range management,

its use by range managers has thus far been limited. To investigate the factors that

encourage use of remote sensing and to examine its influence on decision making by

individuals who manage privately owned rangeland, we evaluated the decision-making

processes of three ranch owners and one professional ranch manager who were

introduced to remote sensing while collaborating with us in a rangeland stewardship

program in California. Two of the participants had extensive ranching experience (11 to

> 20 years) and managed large cattle ranches (1000 to > 2000 ha) and two had less

experience and managed smaller sheep ranches (< 200 ha). During the five-year

program, the participants implemented a series of new management practices, including

prescribed burning, rotational grazing, and seeding of native grasses, with the aim of

reducing noxious weeds and increasing productivity. We used remote sensing to quantify

the effect of these practices and provided ranch-wide remote sensing analyses to each

manager on a password-protected website. Using case study methodologies, we found

that managers of larger, commercially active ranches found the experimental use of

remote sensing to be a highly positive experience that convinced them that this

technology could help address difficult management situations and increase ranch

profitability. This suggests that the broad use of remote sensing by managers of

privately-held, commercial rangelands may be limited in part by the simple lack of

opportunity to test these technologies. Programs that assist ranchers in obtaining

14



appropriate remote sensing products may thus be a cost-effective way to enhance

conservation on private rangelands. Our findings suggest that voluntary self-analysis by

ranchers of the landscape dynamics of their own properties is likely to lead to more

engaged conservation efforts than top-down prescriptions.

Introduction

Few range managers currently use remote sensing products to inform their

management decisions (Daberkow and McBride 2000, Hunt et al. 2003, Washington-

Allen 2006), even though remote sensing offers valuable means of assessing the

influence ofmanagement practices on forage production (e.g., Pickup et a1. 1994) and

invasive noxious weed spread (e.g., Lass et a1. 1996) across large range units. Several

studies have examined factors influencing the use of innovative technologies in general

(Fliegel 1993, Rogers 1995, Roling and Wagemakers 1998, Daberkow and McBride

2003) and of specific range management technologies, such as cattle vaccines (Harris et

al. 1995) and prescribed burning (Kreuter et al. 2001). To our knowledge, however, no

study has sought to identify factors that promote the use ofremote sensing technologies

by range managers or investigated how the use of remote sensing can influence manager

decision-making. With other innovative technology, low use rates have often been found

to indicate either that the technology has not been successfully introduced to the end user

(in this case, the range manager) or that the end user does not see its utility (Fliegel 1993,

Kreuter et al. 2001, Daberkow and McBride 2003). In the case ofremote sensing, use

may also be limited by its cost and complexity or by the lack of opportunity to try it.
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California’s rangelands are a good example of a system in which broad use of

remote sensing technologies could benefit range managers by allowing them to assess

management techniques for weed control and forage improvement over large areas.

Since first settled by European immigrants, California’s rangelands have been under

pressure from human activities, which have resulted in the conversion of this system from

one dominated by native vegetation including annual forbs and perennial bunchgrasses to

one dominated by introduced annual grasses (Heady 1977, D'Antonio and Vitousek

1992). These introduced annual grasses, which have relatively high forage value, have

supported an extensive ranching economy in the state for more than 150 years (George

and Fulgham 1989). Today, however, a wave of introduced noxious species, including

yellow starthistle (Centaurea solstitialis L.; all nomenclature follows Hickman (1993)),

medusahead (Taeniatherum caput-medusae (L.) Nevski), and barbed goatgrass (Aegilops

triuncialis L.), are spreading through the region, reducing rangeland productivity and

threatening the economic sustainability of established ranches (Maddox and Mayfield

1985, Young 1992, Peters et al. 1996). Unlike the previously established exotic species,

these new invaders provide poor forage during most of the season (Bovey et al. 1961,

Lusk et al. 1961, Callihan et al. 1982, Callihan et al. 1995, Peters et al. 1996). To

manage the noxious weeds, range managers are testing a variety ofnew management

approaches, but it can be costly for them to assess the consequences ofthe new

approaches with on-the-ground surveys alone, given the extent of their properties.

Remote sensing offers an opportunity for managers to evaluate large areas more quickly

and cost-effectively.
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To identify factors that promote the use ofremote sensing by range managers and

to investigate the influence ofremote sensing on range management decisions, we used

an in-depth, case-study approach to examine the experimental use ofremote sensing

products by four individuals who manage private rangelands in the Western Sacramento

Valley foothills in California, as part of a five-year rangeland stewardship program

(1999-2004) (Malmstrom et al. 2004). Managers were involved in the program primarily

because they wanted to increase the productivity of their land and decrease noxious weed

levels (Table 2.1). To do this, they tested a series ofnew management practices (Table

2.2). None ofthese managers had specifically used remote sensing data to make

management decisions on his or her property prior to involvement in our study.

Here, we examine l) the ways in which managers’ ranching approaches and

previous ranching experiences influenced their interest in and use ofour experimental

remote sensing products, and 2) the ways in which the remote sensing products in turn

influenced the managers’ decision-making. We produced a broad suite ofremote sensing

products, which included a time series of spring forage estimates for the watershed, and a

map ofnoxious weed distributions. This information was presented to the managers

through an interactive website that allowed each to view his or her property as a whole or

on a field-by-field basis. Data were presented in graphs and as maps, which could be

selected to show estimated values for a given time period or patterns of change across

years. We conducted surveys and interviews with all four managers before and after they

worked with these remote-sensing materials and then used case study methodologies to

analyze their responses.
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Table 2.1. Motivation for involvement in the stewardship program. Responses were

given in survey 1, before managers were provided access to the remote sensing products,

on a Likert scale (1 = no motivation to 5 = high motivation).

 

Cattle] Cattle2 SheeLl Sheep2
 

Increasing forage production 5 5 5 1

Decreasing noxious weeds 4 3 5 3

Establishing native bunchgrasses 5 l 2 1

Promoting landowner outreach 4 2 4 5

Increasing water quality 5 2 1 1
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Table 2.2. Management practices tested during the stewardship program.

 

Cattle 1

 

1 unit totaling 12.1 ha

2 units totaling 157.8 ha

6 units totaling 157.8 ha

1 unit totalirglOl 1.7 ha

Prescribed burning, seeding of native bunchgrasses,

rotational grazing

Prescribed burning, rotational grazing

Rotational grazing

Fencing planned
 

Cattle 2

 

1 unit totaling 16.2 ha Rotational grazing (spring only)

 

6 units totaling 550.4 ha Rotational grazing (fall only)

1 unit totalinLZ6.3 ha Prescribed burning, seeding of native bunchgrasses

Sheep 1

 

1 unit totaling 24.3 ha

3 units totaling 97.1 ha

2 units totaling 46.5 ha

Rotational grazing, prescribed burning, seeding of clover

Prescribed burning, seeding of native bunchgrasses,

rotational grazing

Prescribed burning, rotational grazing
 

Sheep 2

 

1 unit totaling 16.2 ha

1 unit totaling 16.2 ha

Prescribed burning, seeding of native bunchgrasses,

rotational grazing

Rotational grazing
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Methods

Growing season terminology

Most California rangelands experience a Mediterranean climate, distinguished by

a moderate fall-winter-spring growing season and a prolonged summer drought. We thus

consider time in terms of “biological” years that begin in fall at the end of the summer

drought (i.e., September 200N) and continue into August of the following calendar year

(200N + 1). We refer to September—November as fall, December—February as winter,

March—May as spring, and JunwAugust as summer. For most annual range grasses, the

growing season begins in fall with the first rains, continues through the wet winter, and

reaches its peak in spring. By late May, most annual range grasses are senesced, but the

newer noxious weeds may remain green later into the summer.

Remote sensingproducts

To produce maps of green spring forage values, we used field-calibrated

algorithms to estimate green forage biomass from NDVI (normalized difference

vegetation index) values derived from Landsat satellite imagery acquired in late March or

early April of each year from 1999 to 2004 (Malmstrom et al. 2004). We used Landsat

imagery both because of its availability and cost effectiveness to private range managers

as well as the appropriateness of its spatial scale (30 m) for rangeland forage analyses.

Forage estimates were made only at the peak ofthe growing season when green biomass

was dominant, because we found that remote sensing algorithms for quantifying

senescent biomass previously developed for southwestern systems (Qi et al. 2000) failed

to perform adequately in the California annual grasslands (Malmstrom et al. 2004). To
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map the distribution oftwo dominant noxious weeds-medusahead and goatgrass—we used

a time series of fine spatial resolution (1 ft) aerial photography acquired at key

phenological time points when these weeds showed reflectance patterns distinct from the

more valuable forage grasses (Malmstrom et al. 2004). To provide managers interactive

access to the remote sensing products, we built a password-protected website on which

each manager had access to information about only his or her own property. The website

offered managers whole-property and field-by-field access to spring forage maps from

1999—2004, forage change maps comparing differences across years, a quantitative 5-

year forage analysis, a map ofnoxious weed distribution in 2004, and land use history

and weather data.

Surveys and interviews ofland managers

To gather baseline information about the managers’ experiences, practices, and

attitudes, we asked each manager to complete a survey in March 2004, prior to

introducing him or her to the remote sensing materials. This survey contained 25

multiple-choice Likert scale questions (Miles and Huberman 1994, Strauss and Corbin

1998) and ten short-answer ones. Among the subjects we explored were the managers’

1) assessment of the current range conditions at their property and the need for new

management approaches, and 2) previous experiences with using new management

practices such as prescribed burning for weed control. We interviewed each manager

individually to clarify his or her responses and to gather additional information about

management approaches used on his or her property and its land use history.
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We then showed all four managers how to use the project website to access the

remote sensing products, and gave them five months (March—August 2004) in which to

explore the products and test their utility for management decision-making. In August,

we re-surveyed and interviewed the managers to determine to what extent they had used

the remote sensing products, how the products had influenced their decision-making, and

what improvements might increase their interest in using remote sensing in the future.

Like the first survey, the second one contained 25 multiple-choice Likert scale and ten

short-answer questions, about half ofwhich were identical to those asked in the first

survey. Both surveys adhered to Dillman’s (1978) guidelines, except that we did not use

follow-up mailings because our group was small enough to contact by phone.

Analysis ofresponses

Because our study group was by necessity small, we used case study

methodologies to analyze manager responses (Yin 2003). Case studies provide the

opportunity to intensively examine the experiences and responses of a smaller group of

managers, who represent elements of a larger management community. While case

studies provide substantial insight into manager motivation, care must be taken when

extrapolating results from individual case studies to other situations. To construct the

case studies, we first coded the survey and interview data to identify manager responses

in two broad categories of interest (Miles and Huberman 1994, Strauss and Corbin 1998):

1) Manager characteristics and experience and 2) Influence ofremote sensing on

management decisions. Manager characteristics and experience included descriptive

information about each manager and his or her management operations; Influence of
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remote sensing on management decisions included information about how each manager

used remote sensing data to evaluate his or her success in meeting his or her own

management objectives. During the coding process we sought illuminating quotations

from each manager that provided insight into his or her own unique story.

We used the managers’ responses from the second set of surveys and interviews

to determine their response to the remote sensing products. We defined the use ofremote

sensing during the study as the extent to which managers accessed the website and our

remote sensing products with the purpose ofusing the products to evaluate the impact of

their management efforts and to decide which approaches to use in the future. We also

quantified the managers’ self-reported planned intent to use these same remote sensing

products for management evaluations in the future and to invest in new remote sensing

data and products for their properties.

Results

We present each case study individually, with two sections within each: 1)

Manager characteristics and experience, which discusses the characteristics of each

manager and his or her management operations and motivations for involvement in the

stewardship program; and 2) Influence ofremote sensing on management decisions,

which discusses how each manager used the experimental remote-sensing products to

evaluate his or her management strategies, and his or her suggestions about how the

products could be improved to enhance their value for private range managers such as

themselves or for long-term management planning. To protect their privacy, the
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managers and case studies are referred to by code names: Cattle 1, Cattle 2, Sheep 1, and

Sheep 2.

Cattle 1

Manager characteristics and experience. At approximately 2000 ha, Cattle l was

the largest ranch studied. Cattle 1 has been family-owned for over 20 years and has been

used primarily for commercial cattle grazing during that time. The landowners’

motivations for involvement in the stewardship program were diverse but centered on the

desire to increase ranch productivity (Table 2.1). Both the current and former managers

(son and father) agreed that it was important to increase the value of their land, especially

given pressure from urbanization, governmental regulations, and global competition, so

that their family business “makes it to the next generation.” The father believed “grazing

alone maintained feed for cattle” and that “burning and seeding native perennials was too

expensive” to be a property-wide solution. However, his son believed that to “preserve

the ranching way of life in California” it was necessary to implement management

strategies that took advantage ofnew technologies and cooperative partnerships. His

outlook was evident in the diversity ofmanagement practices implemented during the

program (Table 2.2). Rotational grazing, the practice of alternating periods of grazing

and rest among two or more fenced pastures throughout the season, was an especially

distinctive change that occurred in the last 1—2 years of the program because the ranch .

had previously used set stocking rates. Cattle 1’s manager believed that “decreasing

stocking rates in the spring would allow more re-growth and, combined with burning in

the summer, would have a positive effect on forage.”
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Influence ofremote sensing on management decisions. Before working with the

remote sensing products, Cattle 1’s manager believed that there was a “place for remote

sensing in ranching,” but emphasized that it could never replace the skills of a rancher.

He believed that remote sensing would allow him to quickly visualize forage and weed

levels across his entire property, which would allow him to compare fields enrolled in the

program with those being managed with a traditional grazing approach.

After evaluating the remote sensing products on the project website, Cattle 1’s

manager concluded that he could use the weed map and the time series of forage

estimates to determine whether the programs’ restoration efforts had made impacts on

weed control and forage production that were large enough to justify their continued use.

During the second interview, for example, he discussed how his analysis of the remote

sensing maps had led him to conclude that “while burning increased forage levels the

year following the burn, two years later medusa was back and forage levels were where

they were before the burn.” Therefore, “burning is only beneficial if used along with

seeding of good competitors, such as native perennial grasses.” He indicated that his

evaluation had also led him to conclude that his rotational grazing efforts had increased

forage and decreased weeds during the 2003—04 growing season. This conclusion was

significant in a management context because “managing with cattle requires fewer

additional inputs of time and money compared to burning and seeding.”

Based on the value he gained from the remote sensing products we produced for

the lower portion of his ranch, Cattle 1’s manager requested that we also produce similar

products for the ranch’s upper portion. He found this upper 1000-ha portion to be more
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difficult to manage because of its ruggedness, size, and lack of fencing, and so had not

yet tried restoration efforts in it (Table 2.2). The additional forage maps led Cattle 1’s

manager to conclude that forage increases in the closely managed lower portions of the

property had been much greater than those in the upper portions. He believed that these

differences were due to his inability to “control cattle and visually inspect” the upper

portions of the property “throughout the season.” He believed that remote sensing data

would allow him to address both issues, and he planned to use the forage maps to

coordinate fencing of the upper portion in 2004—05 and to monitor forage thereafter

(Table 2.2). His first-hand experience of remote sensing’s capacity to quantify

management effects and help enhance management efforts in remote terrain led Cattle 1’s

manager to increase the amount ofmoney that he would be willing to invest annually in

these technologies from approximately $100 (survey 1) to $500 (survey 2), with the latter

value exceeding the cost of an entire Landsat Thematic Mapper (TM) scene ($425).

The outreach efforts at Cattle 1 involved a two-way exchange of information

between scientists and range managers. This exchange allowed us to produce remote

sensing products customized for the experience level and management needs of Cattle 1’s

manager. Cattle 1’s manager emphasized that the remote sensing did not change what

management strategies he believed were possible, but rather the means by which he could

assess their effectiveness: “This is what I meant when I said remote sensing was only a

tool. It helps me see the effects ofmanagement, but it cannot do them for me.” Voicing

an important common theme among the case study group, he indicated that he believed

that the increasing challenges of ranching were making cooperation between ranchers and
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scientists even more important. This program confirmed to him that such partnerships

“improve the chances of rancher survival.”

Cattle 2

Manager characteristics and experience. At approximately 1200 ha, Cattle 2 was

the second largest ranch in our sample. Cattle 2 is family-owned, commercially grazed

by cattle, and managed by a professional range manager with over 20 years of ranching

experience. Cattle 2’s manager participated in the program to increase ranch productivity

(Table 2.1). He felt rotational grazing was the best way to accomplish this because it

“did not require an additional investment of time and money.”

Influence ofremote sensing on management decisions. Prior to evaluating the

project’s remote sensing products, Cattle 2’s manager was receptive to incorporating

remote sensing data into his management regime because he believed that there was a

“pressing need to increase the productivity and profitability” of his ranch and that these

tools would allow him to “directly meet these needs.” Cattle 2’s manager felt remote

sensing would be useful for analyzing forage and weed levels before and after grazing

events. He believed that ifmonthly forage maps were available, he could make grazing

adjustments during the season, which would allow him to maximize the time his cattle

spent grazing while maintaining adequate forage for the following season. In addition, he

thought that using the forage and weed maps together would allow him to determine

whether there was “good feed in a field or just medusa.”
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After viewing the 2004 weed map, Cattle 2’s manager was surprised to see high

weed levels across select grazing fields. Even though he knew noxious weeds were a

significant threat across his property, he believed that he had limited their impact with

grazing alone. He concluded that weed increases were due not to the ineffectiveness of

his grazing efforts, but rather to seasonal water limitations that restricted grazing to the

spring when the weeds were maturing and thus unable to be grazed effectively by cattle.

During the interview, he used the forage and weed maps together to show us that fields

grazed only in the fall had both increased forage (Table 2.2) and decreased weed levels.

Even though Cattle 2’s manager focused on grazing as a tool to manage his

property, the size of the ranch prevented him from tracking these effects “across every

field at the same time.” After analyzing the time-series forage maps, he was encouraged

by the capacity ofremote sensing to allow him to track forage levels across different

fields simultaneously without extensive field work and to easily compare values from

growing seasons. Like Cattle 1’s manager, Cattle 2’s manager also believed that remote

sensing data would allow him to more intensively manage the upper portions of his

property, which would increase ranch productivity. Because of this potential, Cattle 2’s

manager increased the amount ofmoney that he planned to invest annually in these

technologies from approximately $0 (survey 1) to $500 (survey 2).

The collaborative nature of the landscape analysis effort motivated the managers

of Cattle 1 and 2 to share their forage and weed species maps with one another, which

allowed Cattle 2’s manager to see the benefits of practices he did not implement during

the program, such as the multi-year effect ofburning and seeding with perennial grasses

(Table 2.2). While the results did not substantially change his mind about which
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practices were most successful, they did convince him to try burning and seeding a 16-ha

field heavily infested with medusahead and under seasonal grazing restrictions (Table

2.2), beginning in 2005.

Sheep 1

Manager characteristics and experience. Sheep 1 was the largest sheep ranch in

our sample, but at approximately 170 ha it was significantly smaller than both cattle

ranches. The ranch was purchased by the current landowner in 1998 and subsequently

grazed by about 200 ewes. This manager initially had little commercial ranching

experience but is highly educated and made considerable efforts to increase her

knowledge of ranching during the program by enlisting the help of range managers and

scientists. In addition, because ranching is not her primary occupation, she has employed

a professional range manager to assist her. In this study, we interacted solely with the

landowner-manager herself. Her motivations for involvement in the program were

diverse, but she emphasized increasing ranch productivity and decreasing noxious weed

levels (Table 2.1).

When purchased in 1998, Sheep 1 was dominated by medusahead and yellow

starthistle. To restore it, half of the property was burned in the summer of 1999 and then

seeded with native perennial bunchgrasses in the fall of 2000. Unfortunately, bunchgrass

populations did not immediately take hold. During the 2000—01 growing season, the

landowner was thus forced to confine her sheep to the unburned portion of her property,

which led to overgrazing. More fields were burned in 2000—03, with varying degrees of
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success; the most success occurred in a 24-ha field where the landowner used intensive

short—duration gazing followed by burning and seeding with clover (Table 2.2).

Influence ofremote sensing on management decisions. Even before evaluating

the remote sensing products, Sheep 1’s manager felt that forage and weed maps would

provide her with an essential overview ofher ranch and a means to “determine which

management practices worked and which fields needed to be attacked next.” Because

almost every hectare of Sheep 1 was involved in a restoration test, Sheep 1’s manager

had the unique opportunity to see the short- and long—term effects of a variety of

management efforts in combination with rotational gazing practices (Table 2.2).

Before analyzing the remote sensing products, Sheep 1’s manager did not believe

prescribed burning was a long-term solution for her property because of its “cost, danger,

and varied results.” After the unsuccessful restoration efforts of 1999—2000, Sheep 1’s

landowner expected this portion of her property to have low forage levels and large areas

ofmedusahead and goatgass. The remote sensing products supported these beliefs, and

contributed to her conclusion that prescribed burns alone were not effective enough to

offset their high cost. In addition, the time-series forage and weed maps led Sheep 1’s

manager to decide that rotational gazing in combination with other practices, such as

sowing good weed competitors, was the most effective strategy for increasing forage and

decreasing weeds on her property. Because remote sensing data allowed Sheep 1’s

manager to base her management efforts on multi-year forage trends, she increased the

amount ofmoney that she planned to invest annually in these technologies from

approximately $100 (survey 1) to $500 (survey 2).
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Sheep 1’s manager believed that the outreach efforts were an important part of the

stewardship progam. She felt these efforts were a model for how progams should be

carried out in the future and that “the in-person visits were essential components of

establishing trust and sharing knowledge.” Like other participants, she emphasized the

value of collaborative research, and she indicated that she believed that “California farm

land was being swallowed up by developers and that projects like this should serve as

models for how scientists and landowners can work together.”

Sheep 2

Manager characteristics and experience. At approximately 30 ha, Sheep 2 was

the smallest ranch in this study. The managers have owned the ranch for approximately

20 years but have never commercially managed the forage on their property. Sheep 2’s

managers were involved in the stewardship progam to increase collaborative interactions

with scientists and other participating landowners and to help conserve the gassland

habitat on their property (Table 2.1). Sheep 2’s managers did not manage the forage or

weed levels on their property during the progam, but they did allow project scientists

and other property owners to conduct restoration tests on their property (Table 2.2).

Influence ofremote sensing on management decisions. After accessing the

website, Sheep 2’s managers responded that while the website “looked geat,” they had

“no need for weed maps or analyses ofmanagement practices.” They emphasized that if

their property were larger the remote sensing products would be helpful, but because it

was so small they could “walk across the property if they needed to see what was going
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on.” Although Sheep 2’s managers did not believe that the website was useful on their

property, they did see the benefit of time-series forage and weed maps, commenting that

“seeing how the land has changed allows us to see whether we are part of the problem or

part of the solution.”

Discussion

Factors influencing the use ofremote sensing by managers

In this experimental test of the value ofremote sensing for private ranch

managers, we produced and offered, at no cost to the managers, a suite ofremote sensing

products tailored to the managers’ needs and worked individually with each manager to

ensure that any questions or concerns s/he had about how to access the products on the

project website could be addressed promptly. In doing so, we thereby removed or

reduced several barriers that might otherwise prevent private managers from

experimenting with remote sensing as a management tool, such as its cost and potential

uncertainty on the managers’ part about how to get appropriate products for their

properties. We then examined, among our case study goup, what other factors came into

play in determining the degee to which each manager was willing to “use” the remote

sensing products we provided to analyze them and draw conclusions from them about the

success of their management strategies. In addition, we evaluated the influence ofthe

experiment on the managers’ self-reported willingness to purchase remote sensing

products in the future.

In general, it has been found that several criteria need to be met for users to begin

to use and invest in new technology. Rogers (1995) and Somers (1998) concluded, for
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example, that end users must first believe that there is a relative advantage (e.g.,

financial) to using the new technologies, and then have the opportunity to determine how

best to incorporate these technologies into their current practices. In our study, the three

managers whose properties are used for commercial livestock production (Cattle l, Cattle

2, Sheep 1) spent the most time analyzing and evaluating the remote sensing data and

were most interested in purchasing remote sensing products in the future. These three

managers concluded that remote sensing provided tools that could help maximize their

properties’ productivity and that they would like to cooperatively purchase additional

remote sensing products in the future. After experimenting with the remote sensing

products, all three managers of commercially active properties increased the amount of

money they indicated they would be willing to spend on remote sensing data.

Individually, their planned annual investments of approximately $500 would each be

enough to purchase an entire single Landsat TM scene (a 170 x 183 km scene costs

$425). If pooled, their planned annual investments of approximately $1500 would be

large enough to purchase multiple TM scenes and additional GIS data for their properties,

or additional aerial photogaphs for noxious weed mapping. While our expectations of

use and investment did not initially assume that cost-sharing would be necessary, from

this particular study, we would conclude that at least in the early stages of use

collaborations between managers increase the likelihood of investment by decreasing the

annual financial obligation to any one manager. Unlike the other managers, the managers

of the smaller, commercially inactive property (Sheep 2), spent less time evaluating the

remote sensing data and were uninterested in purchasing products in the future.
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Consistent with Rogers’ and Somers’ findings, it was evident that the managers

who used the remote sensing products most extensively during our study and who were

interested in purchasing products in the future were those who believed that the remote

sensing technologies could offer them management advantages. The managers of the

three commercially active ranches believed that their current management efforts were

not optimized and that there was thus a need for new management approaches on their

properties. These managers had participated in the stewardship progam in order to

increase forage production and decrease invasive noxious weed levels across their

properties (Table 2.1), and they were willing to test new management approaches to meet

these goals (Table 2.2). In other situations, Hanselka et al. (1990) and Kreuter et al.

(2001) likewise found that managers were more likely to use and invest in new range

management technologies if range conditions across their properties were poor. In

contrast, the managers of Sheep 2, while impressed by the remote sensing products, did

not see a need to test new management approaches and thus were less interested in

exploring the utility of remote sensing.

The managers most interested in using the remote sensing products not only felt

that there was a need to try new management approaches but also believed that using

remote sensing could effectively help them do it. Likewise, Kreuter et al. (2001)

concluded that “Brush Busters” management approaches were broadly used and invested

in across Texas rangelands because of their perceived effectiveness in decreasing brush

and increasing productivity. During our study, the managers of Cattle l, Cattle 2, and

Sheep 1 each had at least one experience that convinced them that they could increase the

productivity and profitability of their property by using these particular remote sensing
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products to inform their management decisions. For example, the managers of Cattle 1

and 2 concluded that forage and weed species maps provided them with the opportunity

to monitor their rotational gazing efforts more intensively during the season, which

allowed them to maximize the time cattle spent gazing while making sure adequate

forage was left for the following season. In addition, they were convinced that remote

sensing approaches would allow them to extend their rotational gazing efforts to the

upper portions of their properties, where increases in forage had been much smaller than

in their more intensively managed lower portions. Sheep 1’s manager had recently

implemented a series of strategies aimed at increasing forage production and decreasing

weed levels (Tables 2.1 and 2.2). She was able to use the multi-year forage analyses to

determine the effectiveness of these efforts and to develop a comprehensive adaptive

management strategy for her property. In contrast, the managers of Sheep 2 did not see

the need to explore whether remote sensing could help increase ranch productivity or

profitability because their ranch was not commercially active.

Influence ofremote sensing on decision-making

Range managers are skilled in reading and assessing landscapes and maps, and

our case study goup readily transferred these skills to interpreting remote sensing data

and incorporating it in to their management analyses. Among our manager goup, those

managing commercially active properties believed that remote sensing data allowed them

to base their decision-making process on multi-year forage trends across their entire

properties, rather than on one-year forage changes across individual pastures. The ability

to view multi-year forage trends allowed those managers who were actively managing
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their land to quantitatively assess the forage impact ofnew management practices they

tested during the stewardship progam, and to determine whether these practices were

short-term fixes or long-term solutions to problems such as increasing noxious weed

levels. For example, the multi-year analyses enabled the managers ofboth Cattle 1 and

Sheep 1 to conclude that they would only invest in prescribed burning in the future if it

was done in coordination with seeding of good competitive forage gasses like native

bunchgasses or clovers; otherwise, the positive impact of fire on noxious weeds is too

temporary (1—2 years) for commercial range management operations to justify its

expense and potential hazard.

The remote sensing products used in this study were developed with the input of

our manager goup. Mutual discussion of the remote sensing products during the

progam helped us tailor the website and forage maps to the needs and experiences of

each manager, and also provided a forum in which to elicit information from managers

about historical land use and past management strategies. Historical land use data is an

invaluable resource for managers seeking to assess the long-term influence of

management strategies and other factors such as invasive species and climate change.

However, on many private ranches, including well managed ones, data on stocking rates

and other land use information are often not kept in a detailed or consistent manner.

Through involvement in this study, our manager goup was able to determine for

themselves the value of coordinating remote sensing analyses with on-the-gound

management data, and as a result, expressed increased commitment to keeping more

detailed management (e.g., gazing) records for decision-making in the future.
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An important theme expressed throughout by the manager case study goup was

the importance of collaboration, among ranchers and between ranchers and scientists, in

finding ways to optimize rangeland management in regions facing pressure from forces

such as urbanization and invasive species. This sentiment contrasts with historical

expressions of enmity between conservation biologists and Western ranchers (e.g., Jensen

2001) and indicates the overwhelming need for innovation to protect remaining

rangelands as conservation and cultural resources (e.g., Weiss 1999). Our findings

suggest that voluntary engagement in collaborative rangeland analyses not only can

increase the success of stewardship progams like this one, but is also more likely to be

effective in supporting long-term efforts to improve rangeland conditions than top-down

prescriptions. Our work demonstrates that such collaborations can foster the

development and application of innovative management technologies and thereby

facilitate efforts to enhance rangeland sustainability.

Management Implications

Our findings suggest that one hurdle impeding the broad use of remote sensing by

managers of privately-held, commercial rangelands may simply be the lack of

opportunity to test it. When given this opportunity, all of the commercially active

managers in our case study goup responded very positively and found creative ways to

effectively use it to evaluate their management efforts. These managers chose to use our

remote sensing products during the study and indicated they intended to use them and

buy more products in the future because the experimental tests convinced them that such
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remote sensing products would help optimize their management practices and increase

ranch productivity and profitability.

Although the cost of some remote sensing products can be high, relatively low-

cost data have been traditionally available to the public through well established

progams such as the Landsat data acquisition progam. When such imagery are

available, use ofremote sensing by private range managers can be economically feasible,

particularly if consortia ofmanagers with properties falling within the same satellite

scenes can collaboratively cost-share and obtain technical support from local universities

or agencies. We hOpe that these findings will encourage more private range managers

and scientists to collaborate on efforts to incorporate remote sensing into commercial

range management and rangeland restoration efforts. Continued support of regular image

acquisition by reliable, appropriate-scale satellite systems with public data availability is

essential to this aim.
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CHAPTER 3

PHENOLOGICAL EFFECTS ON REMOTELY—SENSED BIOMASS ESTIMATES IN

ANNUAL GRASSLANDS

Abstract

Remote sensing data can provide range managers the means to more efficiently

quantify the effects of their management efforts on biomass production across large range

units. Vegetation indices such as the normalized difference vegetation index (NDVI)

have been used for more than 30 years in rangelands to quantify geen biomass. In many

gass-dominated rangeland (gassland) ecosystems, however, there is a sigrificant dry

period, during which time senescent biomass is the dominant forage resource for

livestock. During these periods, indices like NDVI underestimate total biomass and are

thus largely unhelpfiJl as management tools. Both at the beginning and end of the

gowing season, forage can consist of a mix of senescent and geen material. Use of

NDVI to estimate total biomass during these periods must be carefully evaluated. Even

though the general effect of senescence on the NDVI-biomass relationship is well

understood, no study has specifically characterized this effect in detail for gass species

that are representative components ofgassland systems globally. To examine the impact

of senescence on NDVI-biomass estimates and to determine the phenological period

during which a single NDVI-biomass equation (i.e., biomass =f(NDVI)) is usefiJl for

estimating biomass in mixed species stands, I gew annual gass species in monoculture

and in mixtures in a common garden on the campus ofMichigan State University in East

Lansing, Michigan, and measured a suite of stand canopy parameters weekly from

germination to the end of the season. In all stands tested, there was an approximately 40-
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day lag between maximum NDVI and maximum biomass. During this period, there was

a simultaneous decrease in NDVI with increasing senescent vegetation cover. The result

was that NDVI values at maximum biomass in week 9 were similar to those in week 1,

even though biomass increased, on average, from 27.0 g/m2 in week 1 to 372.0 g/m2 in

week 9. When the entire season was considered the species-specific NDVI-biomass

equations were remarkably similar, suggesting that a single equation may be robust to

many of the structural and phenological differences that exist among gass species and

therefore can be used to estimate biomass in gassland ecosystems with mixed species

composition.

Introduction

Currently there are many remote sensing tools available that range managers

could use to help manage biomass on their properties (e.g., Tueller 1989, Hunt et al.

2003, Washington-Allen et al. 2006, Butterfield and Malmstrom 2006). Range managers

are particularly interested in the potential for using remote sensing data to quantify

month-to-month variability in herbaceous biomass, the stem and foliage biomass of

gasses and forbs that is the primary forage resource for livestock (Malmstrom et al.

2004, Butterfield and Malmstrom 2006). Remotely-sensed images with fine spatial

resolution (e. g., 30 m) can be used to assay gassland conditions at the pasture level

(Wylie et a1. 2002, Malmstrom et al. 2004, Mustafa et al. 2005, Washington-Allen et al.

2006). In the western United States, range managers are experimenting with using

satellite-based geen biomass estimates to evaluate the effectiveness of their management
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approaches, as a way to enhance ranch profitability (Qi et al. 2000, Qi et al. 2002,

Malmstrom et al. 2004, Butterfield and Malmstrom 2006).

Now that geen biomass estimates have proven valuable, managers are interested

in using similar remote sensing products to evaluate management effects during periods

when senescent biomass is present (Qi et a1. 2000, Qi et al. 2002, Butterfield and

Malmstrom 2006). Senescent biomass is an important forage resource for livestock in

gass-dominated rangeland (gassland) ecosystems during dry periods (George and

Fulgham 1989, Richardson and Everitt 1992, Frank and Aase 1994, Maselli et al. 1998,

Qi et al. 2000, Hoare and Frost 2004). However, while there are many remote sensing

approaches for the quantification of geen biomass (Rouse et al. 1974, Kauth and Thomas

1976, Tucker 1979, Huete 1988, Major et al. 1990, Qi et al. 1994), none allows for the

direct quantification of senescent biomass.

Efforts to use remote sensing data to quantify senescent biomass in gasslands

have met with limited success. A major difficulty is associated with separating the

spectral profile of senescent biomass from that of the soil backgound (Huete et al. 1985).

There has been some success in quantifying the fractional cover of senescent vegetation,

[or the areal proportion of the landscape occupied by senescent vegetation, not biomass

(White et al. 2000)], by employing approaches that take advantage of the shortwave

infrared region (SWIR: 2.0—2.3 pm), which is sensitive to changes in canopy water

content (Gamon et al. 1993, Qi et al. 2000, Asner and Heidebrecht 2002). The SWIR

region has been used because it contains cellulose (2090 nm and 2270 nm) and lignin

(2130 nm and 2270 nm) absorption features that are masked by water in geen vegetation

but become evident as vegetation senesces (Roberts et al. 1993). For example, NDSVI,
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the normalized difference senescent vegetation index (Qi. et al. 2000), uses similar

principles to those associated with the calculation of NDVI, the normalized difference

vegetation index (Rouse et al. 1974), but substitutes reflectance in the NIR region with

reflectance in the SWIR region. In southwestern rangeland ecosystems, this allowed Qi

et al. (2000) to distinguish the fraction of the gound covered by senescent biomass from

that of bare soil. To estimate end-of-the-season biomass values, others have used time

integals ofNDVI (Tucker et al. 1983, Tucker et al. 1985, Prince 1991, Wylie et al.

1991). However, these approaches do not satisfy range management needs for biomass

management because they either do not directly estimate biomass or can do so only for

some times of the year. These capabilities would be particularly important for assessing

gazing decisions during dry periods (George and Fulgham 1989, Pickup et a1. 1994,

Wessman et al. 1997, Saltz et al. 1999).

While research on the use ofremote sensing for senescent biomass estimates

continues, the accuracy ofgeen biomass estimates may be increased by characterizing in

detail the impact of senescence on the relationship between NDVI and biomass in gass

species that are representative of gassland ecosystems globally. Vegetation indices, like

NDVI, were desigred to quantify geen biomass only, not total biomass (Tucker 1979).

Thus, most gassland researchers have limited their use ofNDVI to parts of the season

when geen biomass is dominant (e.g., Gamon et al. 1995, Wylie et al. 2002, Malmstrom

et al. 2004). However, in many gassland ecosystems, the transition fi'om dominance by

geen to senescent biomass varies from year-to-year, and for significant portions of the

season the canopy is a mix ofboth biomass types (George and Fulgham 1989,
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Richardson and Everitt 1992, Frank and Aase 1994, Maselli et al. 1998, Qi et al. 2000,

Hoare and Frost 2004).

Although the general effect of senescence on NDVI-biomass estimates is well

understood, especially in crop species (Tucker et al. 1980, Hatfield 1983), no study has

specifically characterized this relationship for gass species or gass mixes. This detailed

information for gass species and gass mixes that are representative of gassland

ecosystems globally is important because it enables analysis of the error associated with

the use ofNDVI for biomass estimates during time periods when senescent biomass is

present. Without detailed phenological information for representative gasses species and

gass mixes, estimates ofbiomass cannot be accurately made during the transition period

from dominance by geen to senescent biomass. This is especially problematic in range

management situations where within-season management decisions can have a large

impact on biomass production. The aim of this study was to quantify weekly variability

in the canopy properties of three annual gass species that are representative of annual

gasslands globally throughout an entire vegetation cycle, from germination to the end of

the season, to determine the time period that a single NDVI-biomass equation (i.e.,

biomass =f(NDVI)) could be used in gassland ecosystems with mixed species

composition.

Methods

Experimental Design

To examine the effect of canopy senescence on remotely-sensed biomass

estimates in different annual gasses, I established stands of three annual gass species:
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Avenafatua L. (wild oats; all nomenclature follows Hickman (1993)), Bromus

hordeaceus L. (soft chess), and Lolium multiflorum Lam. (annual ryegass) in an

agricultural field on the campus of Michigan State University in East Lansing, Michigan

in 2003. I established the plots in Michigan in order to have continuous access to

instrumentation. Use of a Michigan site for this experiment was considered acceptable

because the aim was to examine general temporal variation in the properties of annual

gass canopies in detail during a single gowing season, not to develop a site-specific

NDVI-biomass equation for any one gassland site.

I chose these species because all three are often common components of grassland

ecosystems in the western United States (Hickman 1993, http://plants.usda.gov/), and are

also representative of annual gasslands globally. Two ofthe species, A. fatua and L.

multiflorum, are naturalized in Michigan as weeds (Voss 2001), so I was confident that

they would complete their entire phenological cycle, from germination through

senescence, during the study period. In addition, I was intrigued by the structural

differences among these three species, including stem thickness, stem (stand) density, and

stem height (Crampton 1974, Hickman 1993, httmflplantsusdamfl, and the potential

impact these differences may have on NDVI-biomass estimates in mixed species stands

throughout the season. For example, A. fatua has thicker stems and on average gows

taller than B. hordeaceus and L. multiflorum; however, both B. hordeaceus and L.

multiflorum generally have geater stem densities than stands ofA. fatua (S. Butterfield,

personal observation). I used an experimental approach in order to reduce the impact of

two potential sources of variability in gassland ecosystems: l) backgound plant litter
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from previous gowing seasons, and 2) changing gazing management regimes. To

ensure that no litter was present, the field was tilled prior to the experiment.

To capture among-species variation in seasonal trajectories, I planted single-

species stands ofhigh-density A. fatua (1,000 plants/m2) and low-density A. fatua (500

plants/m2), B. hordeaceus (6,000 plants/m2), and L. multiflorum (2,000 plants/m2), and

one mixed species stand containing A. fatua (500 plants/m2) and B. hordeaceus (4,000

plants/m2). I used these densities to broadly emulate those conditions found in annual

gasslands in the western United States (http://plants.usda.gov/). I chose the A. fatua-B.

hordeaceus mixture because these species are often co-dominants in California annual

gassland ecosystems (S. Butterfield, personal observation). There were 10 replicates of

each stand type. I planted the stands in 1—m x 6—m plots in a randomized complete block

design. There were 6 different l—m2 plots within each l—m x 6—m plot. The soils in the

field were Riddles-Hillsdale sandy loam 2—6%.

Measurements

NDVI. I measured surface reflectance in the experimental plots weekly for 15

weeks, from 11 June 2003 (approximately two weeks after seed germination) until 1

October 2003 (when most stands had senesced and begun to disintegate). To do this, I

used a UniSpec-DC field hyperspectral radiometer with a 20°-field-of-view fore optic (PP

Systems Inc., Amesbury, MA). The UniSpec-DC detects spectral intensity in 256 bands,

distributed between 0.3 and 1.1 pm, with a resolution of 3.7 nm. I made measurements

with the radiometer in nadir orientation, centered 1.43-m above each l-m2 plot on a boom

attached to a tripod. The gound resolution of these measurements was 0.25-m2. To
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estimate the contribution of the soil backgound, I also measured surface reflectance in

plots ofbare soil weekly. To minimize sun angle and shadowing effects, I collected

spectral data within one hour of solar noon, which was calculated using data found at

http://www.wunder;ground.com/. I converted spectral intensity to reflectance using a

Spectralon panel (Labsphere Inc., North Sutton, NH). To calculate NDVI, I used mean

reflectance (R) values in the red (0.63—0.69 pm) and NIR (0.76—0.9 um) regions as:

NDVI = (RNIR - Rred) / (RNIR + Rred) [EQ- 1]-

Biomass. To permit comparisons ofNDVI and herbaceous biomass, I harvested

the stem and foliage biomass from 1--m2 plots within each l—m x 6—m plot at six time

points during the gowing season. For each harvest, 1 clipped biomass at gound level

from the 0.25-m2 portion of the l-m2 quadrat viewed by the radiometer. I then dried the

biomass at 65°C to constant mass, separated it into geen and senescent portions, and

weighed it. I harvested biomass within a few hours of the spectral measurements. I

chose the harvest dates to ensure that two samplings occurred within each of three canopy

stages: 1) early growth, germination to maximum geenness (defined as maximum

NDVI); 2) canopy maturation, onset of senescence to maximum biomass (geen plus

senescent); and 3) canopy decline, maximum biomass to the end ofthe season.

LAI. To develop a set of nondestructive proxy data that could help me interpolate

the biomass values, I took indirect measurements of canopy leaf area index (LAI) weekly

using a sunfleck ceptometer (AccuPAR, Model No. PAR-80 Decagon Devices, Inc.,

Pullman, WA). The ceptometer uses broadband PAR (photosynthetically active

radiation) sensors that cannot readily distinguish between geen and senescent canopy

components (Gholtz et a1. 1991, Gamon et al. 1995, White et a1. 1997). Thus, I defined
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LAI as the total one-sided area per unit gound area of all abovegound canopy

components, including geen and senescent foliage and stems (Decagon Devices 2001).

AccuPAR-based LAI measurements require the determination of leaf angle

distribution and leaf absorptivity constants as well as measurements of the radiation

above and below the canopy. I calculated LAI as:

LAI=[(1—1/2K)fb - 1] In t / A (1 — 0.47 fb) [Eq. 2],

where K is the canopy extinction coefficient, fb is the fraction of incident PAR, r is the

fraction of transmitted PAR, and A is a function of leaf absorptivity in the PAR band

(Decagon Devices 2001). The canopy extinction coefficient, K, is a function of solar

zenith angle, leaf distribution parameters, and sun conditions (Jones 1992). While the

leaf distribution parameter can vary substantially between crop species (e.g., 0.76 for

maize to 3.03 for strawberry), these differences are minimal for similar annual gass and

crop species (Jones 1992, Decagon Devices 2001). Because I did not have specific leaf

distribution values for any of the species used in this study, I used the same value, 1.0, for

all five stand types and took measurements within one hour of solar noon and as much as

possible under the same sun conditions. I selected this leaf distribution parameter

because it represented an average value for annual gass and crop species with similar

gowth habits and canopy structural characteristics in the Decagon manual (Decagon

Devices 2001). I took five measurements within each 0.25-m2 quadrat viewed by the

radiometer and calculated the mean.

fAPAR. fAPARm] canopy (hereafter referred to asfAPAR), which is used

interchangeably in the literature withjPAR, indicates the fiaction ofPAR absorbed by

geen and senescent canopy components together (Gholtz et al. 1991, Gamon et al. 1995,
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Asner and Wessman 1997, White et a1. 1997, Serrano et al. 2000a, Serrano et al. 2000b).

In gass stands, measurements offAPARgreen, or the fraction ofPAR absorbed by green

foliage, have traditionally been used to estimate photosynthetic rates (e.g., Monteith

1977, Gamon et al. 1995). However, measurements offAPARgm.n andfAPAle canopy

have also been used to estimate gass stand biomass (Le Roux et al. 1997, Asner et al.

1998, Bremer et al. 2001). Thus, to permit comparisons betweenfAPAR and biomass, I

separately measuredfAPAR each week using the AccuPAR ceptometer. ThefAPAR

measurements require four readings per measurement: one each with the ceptometer

facing upward both above and below the campy and one each with the ceptometer facing

the gound above and below the canopy. fAPAR was then calculated as:

fAPAR=1-t—r+trs [Eq. 3],

where t is the fraction of incident radiation transmitted by the canopy, r is the fraction of

incident radiation reflected to the sensor above the canopy, and r5 is the reflectance of the

soil surface (Decagon Devices 2001). I took five sets ofmeasurements within each 0.25-

m2 quadrat viewed by the radiometer and calculated the mean.

Vegetation characteristics. To compare remotely-sensed measures of changes in

canopy phenology with on-the-gound measures, each week I also measured mean

canopy height and estimated the fractional cover ofgeen vegetation, senescent

vegetation, and soil. I calculated mean canopy height using stems in six randomly

located circular plots, with a diameter of 9.0 cm, within each 0.25-m2 quadrat viewed by

the radiometer. I estimated cover using Daubenmire classes (Daubenmire 1968): 1 = 0—

5%; 2 = 5—25%; 3 = 25—50%; 4 = 50—75%; 5 = 75—95%, and 6 = 95—100%. In statistical
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analyses, 1 used midpoint percentiles to represent cover class values: 1 = 2.5%, 2 = 15%,

3 = 37.5%, 4 = 62.5%, 5 = 85%, and 6 = 97.5%.

Biomass equation analyses. To analyze the relationships between biomass and

NDVI,fAPAR, and LAI, I used General Linear Model procedures in SYSTAT 10.2

(SYSTAT Software Inc., Richmond, CA). To compare the biomass equations (i.e.,

biomass =f(X), where X = NDVI,fAPAR, or LAI) among species types, I used Analysis

of Covariance (ANCOVA), in which species (Avena, Bromus, Avena-Bromus, and

Lolium) was the independent categorical effect variable, NDVI,fAPAR, or LAI were

covariates, and biomass was the response variable. The two Avena monoculture

treatments were not sigrificantly different for the NDVI (p = 0.43 7),fAPAR (p = 0.054),

or LAI (p = 0.461) biomass equations, so I combined them for the ANCOVA analyses.

For the ANCOVA NDVI analyses, only geen biomass was considered because NDVI is

only used for estimates ofgeen biomass. For the NDVI andfAPAR analyses, biomass

values were transformed with the natural log to meet ANCOVA assumptions. In all

cases p 0.05 was considered significant.

Results

Seasonal canopy dynamics

Three distinct phenological phases were evident in all of the annual gass species.

Early growth extended from germination until the canopy reached maximum geenness

in week 5 (Figure 3.1 a). Canopy maturation began in week 6, when senescent vegetation

cover became evident (Figure 3.1c) and NDVI began to fall (Figure 3.1a), and ended in

week 9 when maximum biomass (Figure 3.1b),fAPAR (Figure 3.1a), and height (Figure
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Figure 3.1. Seasonal changes in A) NDVI andfAPAR; B) geen (GRN) and senescent

(SEN) biomass; C) senescent vegetation cover; and D) LAI and height. Values are mean

weekly measurements averaged over all five stand types (N = 50) during early growth,

canopy maturation, and canopy decline. Weeks 5 and 9 (shaded columns) were

maximum geenness (MAX GRN) and maximum biomass (MAX B10). All five stand

types were combined because they displayed the same phenological trends except in

weeks 9 and 10; a severe storm caused stem lodging in the Avena and Avena-Bromus

plots in week 9, which impacted height and cover estimates in weeks 9 and 10 (see text

for details).
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3.1d) were reached. At this point, the canopy was almost entirely senescent (Figures 3.1b

and 3.1c), and NDVI values were similar to those from week 1 (Figure 3.1a). During

canopy maturation, there was an approximately 20% increase in biomass (Figure 3.1b).

Canopy decline began in week 10 and continued until week 15, during which time the

senesced gass canopies began to disintegate. In week 9, after measurements were

taken, a strong storm caused stem lodging in the Avena and Avena-Bromus stands, and

resulted in a height decrease at week 10 (Figure 3.1d). The subsequent canopy openings

allowed weed gowth in these plots, leading to a short-term increase in geen vegetation

cover (decrease in senescent cover), until weeds were removed (Figure 3.1c).

Relationship between ND VI, fAPAR, and biomass

During early growth, NDVI andfAPAR values increased in parallel with geen

biomass until the point ofmaximum geenness (defined as maximum NDVI) (Figures

3.1a, 3.1b, 3.2a, and 32b). Because of the difficulty ofpredicting the date ofmaximum

geenness a priori, I did not harvest biomass exactly on the date but shortly thereafter.

Trends in LAI, the non-destructive proxy ofbiomass (R2 = 0.71, p < 0.001), suggest that

biomass increased throughout early growth from germination through maximum

geenness (Figures 3.1d and 3.2c). However, once the canopy started to senesce and lose

geenness (week 6), NDVI values began to fall and diverged from biomass and LAI,

which continued to increase until maximum biomass was reached four weeks later. Thus,

during canopy maturation and decline NDVI was a poor predictor of canopy biomass.

When the entire season was considered, however, NDVI was significantly correlated to

geen biomass (R2 = 0.78, p < 0.001).
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Figure 3.2. Seasonal relationships between biomass and A) NDVI, B)fAPAR and C)

LAI during early growth: germination (harvest 1: week 1) to maximum geenness;

canopy maturation: onset of senescence (harvest 3: week 6) to maximum biomass

(harvest 4: week 9); and canopy decline: maximum biomass to the end of the season

(harvest 6: week 15). Harvest 2 occurred in week 2 during early growth and harvest 5 in

week 10 during canopy decline. Values represent weekly means from A. fatua-B.

hordeaceus (open squares), A. fatua (open circles), B. hordeaceus (closed triangles), and

L. multiflorum (closed circles) stands. Numbers indicate biomass harvests, not weeks.
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Unlike NDVI,fAPAR continued to climb with both biomass and LAI from week

5 to 9 (Figures 3.1 and 3.2). Thus,fAPAR was significantly correlated to biomass

throughout the season (R2 = 0.82, p < 0. 001). Note that meanfAPAR values decreased

slightly between weeks 6 and 8. I did not sample biomass each week during this period.

However, trends in LAI suggest that biomass values leveled off (Figures 3.1a and 3.1d).

Generality ofbiomass equations

All of the stand types displayed similar phenological relationships among NDVI,

fAPAR, LAI, and biomass throughout the season (Figure 3.2). NDVI sigrificantly

underestimated biomass in all of the stand types after harvest 3 in week 6, or the point in

the season when canopy dominance transitioned from geen to senescent biomass.

fAPAR increased in all of the stands along with biomass and LAI during canopy

maturation and reached its maximum value at harvest 4 in week 9 (Figures 3.2b and

3.2c). fAPAR then decreased, along with biomass and LAI, from harvest 4—6 (week 9 to

15) as the senesced canopies began to disintegate during canopy decline. Consequently,

unlike NDVI,fAPAR was significantly related to biomass in all of the stand types from

harvest 1 through harvest 6.

The NDVI,fAPAR, and LAI biomass equations differed sigrificantly among the

stand types tested (e.g., Species * NDVI, p < 0. 05) (Table 3.1). All of the stand types

reached maximum geenness and maximum biomass together (Figure 3.2). The Avena—

Bromus mixed stands had biomass equations intermediate between the Avena and

Bromus monocultures (Table 3.2; Figures 3.3, 3.4, and 3.5). In addition, when the entire

season was considered, the only pronounced differences in the biomass equations
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Table 3.1. ANCOVA results for differences in biomass equations among stand types.

Species, the independent categorical effect variable, include: A. fatua, B. hordeaceus, L.

multiflorum, and A. fatua-B. hordeaceus.

 

 

 

 

 

 

 

Biomass = f(X) Df F P

X = NDVI

NDVI 1 669.76 < 0.001

Species 3 8.04 < 0.001

Species * NDVI 3 6.23 < 0.001

Error 213

X =fAPAR

fAPAR 1 1225.12 < 0.001

Species 3 17.16 < 0.001

Species *fAPAR 3 12.98 < 0.001

Error 216

X = LAI

LAI 1 1018.93 < 0.001

Species 3 1.38 0.15

Species * LAI 3 2.16 0.01

Error 226
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Table 3.2. Stand-specific biomass equations. NDVI equations are based on geen

biomass data only'. fAPAR2 and LAI’ equations are based on geen plus senescent

biomass data". Note that these biomass equations are given for comparative purposes

only, not as definitive equations for all gassland situations. See Figure 3 for a gaphical

representation of these equations.

 

 

 

 

 

 

 

Biomass = f(X) Equation R2 P

x = NDVI

Avena y = 1.19e8-5” 0.91 < 0.001

Avena-Bromus y = 1.80e6'64" 0.86 < 0.001

Bromus y = 2.14e6"3" 0.87 < 0.001

Lolium y = 2.64e6'07" 0.93 < 0.001

x =fAPAR

Avena y = 12.45835" 0.91 < 0.001

Avena-Bromus y = 32.54e3'53" 0.90 < 0.001

Bromus y -= 50.65e2'86" 0.85 < 0.001

Lolium y = 27.78e3'78" 0.88 < 0.001

x = LAI

Avena y = 200.21x + 24.46 0.75 < 0.001

Avena-Bromus y = 196.15x + 47.86 0.73 < 0.001

Bromus y = 189.98x + 60.62 0.81 < 0.001

Lolium y = 179.07x + 50.94 0.76 < 0.001
 

 

' NDVI values used to develop these equations ranged from approximately 0.20 to 0.80.

2fAPAR values used to develop these equations ranged from approximately 0.05 to 0.80.

3 LAI values used to develop these equations ranged from approximately 0.05 to 3.0.

4 Biomass values used to develop these equations ranged from approximately 5 g/m2 to 565 g/m2.
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Figure 3.3. Stand-specific biomass relationships. NDVI-biomass relationships represent

data for geen biomass only. See Table 2 for equations, R2 and p values, and footnotes

detailing the range of values used to develop these equations. The top line is A. fatua, the

2nd
line from the top is A. fatua-B. hordeaceus mixture, the 3"d line from the top is B.

hordeaceus, and the bottom line is L. multiflorum.
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represent data for geen plus senescent biomass. See Table 2 for equations, R2 and p
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A. fatua-B. hordeaceus mixture, and the bottom line is B. hordeaceus.
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Figure 3.5. Stand-specific biomass relationships. LAI-biomass relationships represent

data for geen plus senescent biomass. See Table 2 for equations, R2 and p values, and

footnotes detailing the range of values used to develop these equations. The top line is B.

hordeaceus, the 2'“d line from top is A. fatua-B. hordeaceus mixture, the 3rd line from the

top is A. fatua, and the bottom line is L. multiflorum.
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occurred in the Avena stands at NDVI andfAPAR values > 0.7 (Figures 3.3 and 3.4).

Thus, because biomass increases exponentially with increases in NDVI andfAPAR

(Figures 3.3 and 3.4), small stand-specific changes in NDVI orfAPAR above 0.7 could

lead to large differences in biomass estimates (Table 3.2).

Discussion

Although NDVI has been used for several decades to estimate geen biomass in

gassland ecosystems (Tucker et al. 1983, Richardson and Everitt 1992, Gamon et al.

1995, Qi et al. 2000, Wylie et a1. 2002, Mustafa et al. 2005), to my knowledge this is the

first study to examine seasonal variability in NDVI-biomass relationships in annual gass

stands. My findings establish that, like perennial gasslands (e.g., Williams 1970, Tothill

1977, Veenendael 1996, Parihar 1999, Bremer et al. 2001), annual gass communities

experience a substantial lag between maximum geenness (maximum NDVI) and

maximum biomass, here approximately 40 days (Figures 3.1, 3.2a and 3.2b). During this

lag period, biomass increased on average by approximately 20% (Figure 3.2b) even

though NDVI decreased (Figure 3.1). Collectively, these findings demonstrate that a

significant amount ofabove-gound production occurs during canopy maturation in

gassland ecosystems, which NDVI-like indices cannot measure. Consequently,

estimates of annual biomass production based on NDVI at maximum geenness will fail

to account for the additional biomass production that occurs as NDVI decreases. This is

a point of importance not only for range managers but also for carbon modelers who seek

to derive productivity estimates from vegetation indices, like those derived from the
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MODIS NDVI (e.g., Huete et al. 1999) and/orfAPAR products (e.g., Knyazikhin et al.

1999)

In all stand types tested,fAPAR and biomass were sigrificantly correlated

throughout the season, regardless of canOpy phenological and/or structural attributes

(Figure 3.2). This was the first such finding for stands of annual gasses dominant in

western semi-arid annual gassland like those found in the Central Valley of California

(Malmstrom et a1. 2004, Butterfield and Malmstrom 2006), although a strong season-long

correlation betweenfAPAR and biomass has also been found in other gassland

ecosystems, including African savannah (Le Roux et al. 1997), Kansas tallgass prairie

(Bremer et al. 2001), and dry Texas gassland (Asner et al. 1998). As in these other

gassland systems,fAPAR in this study increased during canopy maturation because

biomass and LAI increased (Figure 3.1) and so thus did the total amount ofradiation

absorbed by geen plus senescent foliage and stems (Asrar et al. 1984, Asner et al. 1998,

Serrano et al. 2000b, Jorgensen et al. 2003). Currently,fAPAR cannot be measured

directly from satellite data, so thus cannot be used to quantify stand biomass throughout

the season across large gassland landscapes. However, these findings do highlight the

potential importance ofgound-basedePAR measurements for biomass estimates in

gassland ecosystems, particularly when senescent biomass is dominant and vegetation

indices such as NDVI cannot be used.

To my knowledge, this was the first study to explicitly test the commonly held

assumption that remotely-sensed biomass equations can be applied in gasslands with

similar species composition or phenological traits. I found that there were significant

differences in all three equation types tested (e. g., biomass =](NDVI)) (Table 3.1), most
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likely as a result of differences in stand structural attributes (e. g., stem height, LAI, and

stem density, the number of stems per unit gound area). For example, the Bromus and

Lolium plots had geater NDVI per unit biomass than Avena plots (Figure 3.2a), most

likely because Bromus and Lolium stem densities and vegetation cover (data not shown)

were geater. It is also possible that this finding was a result of differing leaf nitrogen

contents, although I did not explicitly test this as part of this study. Hull and Mooney

(1990) found geater leaf nitrogen content in both B. hordeaceus and L. multiflorum than

in A. fatua. Leafnitrogen content is positively correlated to total chlorophyll amount in

annual gasses (Gaborcik 2003) and thus also to total PAR absorbance and NDVI

(Tucker 1979, Gamon and Surfus 1999). Avena plots, on the other hand, most likely had

geaterfAPAR per unit biomass values than both Bromus and Lolium plots (Figure 3.2b)

because they had geater LAI, biomass, and height values (Asner et al. 1998).

Even though I found that all three equation types (e.g., biomass =f(NDVI)) were

sigrificantly different among the species tested (Table 3.1), when the entire season was

considered there were remarkable similarities in these equations (Figures 3.3, 3.4, and

3.5). The most pronounced differences occurred in the Avena stands at NDVI and

fAPAR values > 0.7 (Table 3.2; Figures 3.3 and 3.4). NDVI values > 0.7, when they do

occur, are most likely to be limited to periods ofmaximum geenness (Figures 3.1 and

3.2), when both geen cover and geen stand biomass are geatest (Myneni and Williams

1994, Gamon et al. 1995, Bremer et al. 2001, Wang et al. 2001, Fensholt et al. 2004).

fAPAR values > 0.7, on the other hand, are most likely to occur from maximum biomass

to the point in the season when stand biomass starts to decline (e. g., from stem

disintegation). Avena stands with NDVI andfAPAR values > 0.7 are those which are
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dense and have tall, thick stems. In these stand types, a “general” biomass equation

would likely underestimate stand biomass. However, tall, lush Avena stands are not

common in gazed gassland ecosystems (Butterfield, personal observation). In addition,

in a number of gassland studies, including those in annual gasslands and tallgass

prairies, satellite-based NDVI values did not reach 0.7, even when the canopy reached

maximum geenness (Gamon et al. 1995, Wang et al. 2001, Wylie et al. 2001). Together,

these results suggest that a single equation will be most effective if developed in stands

with similar species composition. However, they also suggest that under most conditions

biomass equations are robust to the structural and phenological differences that exist

among common annual gasses and thus can be used to estimate stand biomass in

gasslands with mixed species composition.
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CHAPTER 4

REMOTE SENSING-BASED ESTIMATES OF SENESCENT BIOMASS:

COMMON PROBLEMS AND A NEW APPROACH IN ANNUAL GRASSLANDS

Abstract

The value ofremote sensing as a management tool in annual gasslands would be

enhanced if remote sensing could be used to directly quantify senescent herbaceous

biomass (dry forage). Globally, senescent biomass is the dominant forage resource for

livestock in gassland ecosystems during dry periods. Current approaches for quantifying

dry forage do not provide estimates ofbiomass, only of fractional senescent vegetation

cover, which is the areal proportion of the landscape occupied by senescent vegetation.

However, in range management operations, cover is not always an adequate indicator of

range condition, and is a less useful metric of forage production than is stand biomass. In

Chapter 3, I demonstrated that measurements offAPAR, the fraction ofPAR

(photosynthetically active radiation) absorbed by the canopy, could be used to quantify

senescent biomass. However,fAPAR is a gound-based measurement and cannot be

derived directly from satellite data, which limits its utility for large scale management.

To address this issue, I developed a new index, called MAPAR, which estimates the

mean PAR absorbed by the surface and which was based on afAPAR index developed

by Asner et al. (1998) in gass leaves using hyperspectral reflectance data. Unlike

fAPAR, MAPAR can be derived directly from reflectance data, and so can be retrieved

both in the field as well as from satellite sensor data. In this study, I examined whether

MAPAR could be used to estimate senescent biomass in annual gass stands. Because

MAPAR is a measure of surface absorbance, I also used these gass stands to examine

how changes in soil backgound conditions, such as cover, moisture, and organic matter
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content, influenced the utility ofMAPAR for biomass estimates. 1 found that across dry

sandy loam soils MAPAR was sigrificantly correlated to senescent biomass. However,

the utility ofMAPAR was reduced in stands where significant stem lodging occurred and

under conditions where the soil backgound was darkened, either from increases in soil

moisture or organic matter content. In California annual gassland plots with canopy leaf

area index (LAI) values ranging from <0.2 to 6, MAPAR was sigrificantly correlated to

biomass. In these same plots, the gound-based MAPAR measurements were

significantly correlated to satellite-based ones, despite the difference in spatial scale (1 -

m2 vs. 900-m2) between the two. Collectively, these results suggest that MAPAR could

be used to estimate senescent biomass in annual gasslands under some conditions.

However, the application ofMAPAR is most likely limited to situations where either

fractional soil cover is <15% or the soil is both dry and low in organic matter content.

Introduction

During dry periods in many gass-dominated rangeland ecosystems around the

world (hereafter referred to as gasslands), senescent herbaceous biomass, which consists

ofthe dry foliage and stems ofgasses and forbs, is a dominant forage resource (e.g.,

Bentley and Talbot 1951, George and Fulgham 1989, Prince 1991 , Frank and Aase 1994,

Saltz et al.,1999, Qi et al. 2000). In addition, in these systems the amount of senescent

biomass on the gound at the beginning of the season, referred to as residual dry matter

(RDM) (Hedrick 1948, Bentley and Talbot 1951), is an important determinant of

rangeland condition. RDM quantities represent the combined effects of the previous

season’s production and of use by gazing animals of all types (Bartolome et al. 2002).
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Some RDM measurements also include dry matter contributions from tree foliage, woody

debris, and gass and forb biomass more than one year old (e.g., Guenther 1998,

Bartolome et al. 2002). RDM is an especially important range indicator because of its

known impact on soil erosion, biomass production, and forage quality (Morrison et a1.

1993, Frank and Aase 1994, Heady and Child 1994, George and Menke 1996, Bartolome

et a1. 2002).

A remote sensing-based approach for the quantification of senescent biomass

would provide range managers the means to assess annual gassland conditions and

gazing decisions throughout the season and to better optimize annual use ofgassland

resources. Currently, such a tool does not exist: it is difficult to discriminate senescent

biomass fi‘om soil backgounds because senescent biomass lacks the unique signature of

geen biomass present in the visible and near-infrared spectral regions (Huete and

Jackson 1987, Streck et al. 2002). To assess gassland conditions during times when

senescent biomass is dominant, a variety of approaches have been deve10ped including:

1) thermal remote sensing data coupled to NDVI, the normalized difference vegetation

index (French et al. 2000); 2) spectral vegetation indices that use the shortwave infrared

(SWIR: 2000—2300 nm) region (McNaim and Protz 1993, van Deventer et al. 1997, Q1 et

al. 2000, Daughtry 2001, Nagler et al. 2003); and 3) spectral mixture analysis of the

SWIR region (e.g., Gamon et al. 1993). The SWIR region has been used because it

contains unique, relatively narrow cellulose (2090 nm and 2270 nm) and lignin (2130 nm

and 2270 nm) absorption features that are masked by water in geen biomass, but are

exposed as biomass senesces. All of these approaches have been used with some success

in gassland and cropping systems, but mainly to estimate fractional senescent vegetation
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cover, or the areal proportion of the landscape occupied by vegetation (White et al.

2000), not biomass. These approaches are further limited by reliance on datasets to

which range managers typically do not have access.

In Chapter 3, I demonstrated that gound-based measurements offAPAR', or the

total fraction of photosynthetically active radiation2 absorbed by the canopy, could be

used to quantify senescent biomass under some conditions in stands of annual gasses,

supporting the findings of Le Roux et al. (1997) in Afiican savannah, Asner et al. (1998)

in dry Texas gasslands, and Bremer et al. (2001) in Kansas tallgass prairie. fAPAR is

calculated as:

fAPAR= 1 —t—r + tr, [Eq- 11

where t is canopy transmittance, r is canopy reflectance, and r8 is soil reflectance. fAPAR

was measured in the above studies using a AccuPAR ceptometer (Decagon Devices, Inc.,

Pullman, WA).

fAPAR increases with biomass because the total amount ofradiation absorbed by

foliage and stems increases (Asner et a1. 1998). Asner et al. (1998) concluded that

senescent gass stands can absorb as much PAR as geen gass stands, even though the

fraction that is used for photosynthesis (i.e.,fAPARm) decreases with increasing

senescence. Other authors have concluded that as a gass or crop canopy transitions from

dominance by geen to senescent biomass, PAR absorption is primarily dependent upon

LAI and the density of vegetation (e.g., Asrar et al. 1984, Serrano et al. 2000b, Jorgensen

et al. 2003) rather than the total proportion ofgeen biomass. However,fAPAR cannot

be derived directly from satellite data because sensors cannot measure canopy

 

' fAPAR is used interchangeably in the literature withfPAR

2 PAR: 400—700 nm
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transmittance or distinguish the contribution of soil to the overall reflectance signal. This

limits the applicability offAPAR for large-scale range management.

Researchers interested in landscape-scale “fAPAR” measurements have

traditionally used NDVI to estimatefAPARgm, (Field et al. 1995, Knyazikhin et al. 1999,

Los et al. 2000), or the fraction ofPAR absorbed solely by geen foliage, because there is

a strong linear relationship between NDVI andfAPARm (Asrar et al. 1984, Hatfield et

al. 1984, Sellers 1985, Choudhury 1987). However, NDVI andfAPAR values for whole

canopies, including senescent fractions, are less correlated (Gamon et al. 1995, Asner and

Wessman 1997). Thus,fAPAR values for canopies with senescent elements must be

derived by other means (Asner et al. 1998). One such strategy proposed by Asner et al.

(1998) used hyperspectral instrumentation and an integating sphere to measurefAPAR:

k

(1.0 — rn — tn)

fAPAR = “:1 [Eq.2]

k

where k = # bands from 400—700 nm; rn = reflectance in band 11; and tn = transmittance in

band 11. However, this approach has limited field applicability because it uses an

integating sphere to derive both reflectance and transmittance, which is not practical

with rangeland stands.

Motivated by the findings ofAsner et al. (1998) and the strength ofthe season-

long relationship that I found betweenfAPAR and biomass in stands of annual gasses

(R2 = 0. 82, p < 0. 001) (Chapter 3), I analyzed hyperspectral reflectance data that was

taken simultaneously with thesefAPAR measurements to explore whether radiometer-

based PAR reflectance trends were similar to ceptometer-basedePAR trends. During

68



the transition from dominance of geen to senescent biomass that occurred from

maximum NDVI in week 5 to maximum biomass in week 9 (Figure 4.1), I found that

reflectance in the PAR region decreased, and that mean PAR surface absorbance,

MAPAR (Eq. 3), increased withfAPAR, canopy leaf area index (LAI), and biomass

(Chapter 3). Because MAPAR development was motivated in part by thefAPAR

equation used in Asner et al. (1998) (Eq. 2), it is important to note the similarities and

differences between these equations; while both equations use reflectance values from the

entire PAR spectrum (400—700 nm), MAPAR (Eq. 3) does not include a transmittance

value in its calculation.

To determine whether MAPAR could be used to estimate senescent biomass, I

measured MAPAR and harvested biomass from stands of annual gass species planted in

an agricultural field in East Lansing, Michigan (42° 44’ 10” N, 84° 28’ 59” W).

Because MAPAR is an index of surface absorbance, I also used these stands to examine

how changes in the soil backgound, such as cover, type, and condition, influenced the

utility ofMAPAR for biomass estimates.

To determine the limitations of using gound-based MAPAR measurements in

annual gasslands, I investigated whether the index could be used to estimate geen

biomass in l-m2 plots located in Winters, California (38° 30’ 45” N, 121° 29’ 33” W)

with LAI values ranging from near zero to six. I was particularly interested in testing

MAPAR in annual gasslands where LAI values >5 because other studies have shown

that indices, such as NDVI, can saturate under these conditions in both annual crop

(Asrar et al. 1984, Hatfield et a1. 1984) and gass species (Gamon et al. 1995).

Finally, based on these analyses, I examined whether MAPAR could be used to
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Figure 4.1. Seasonal changes in surface reflectance in stands ofAvena (high and low

density), Bromus, Avena-Bromus, and Lolium from week 1 (“germination”) to 5

(maximum geenness: maximum NDVI) to 9 (maximum biomass,fAPAR, and LAI) to

15 (canopy death). Values represent weekly means across all five stand types. Surface

reflectance was derived from UniSpec measurements. The blue (B: 450— 520 nm), geen

(G: 520—600 nm), red (R: 630—690 nm), and near-infrared (NIR: 760—900 nm)

wavelength regions for Landsat satellite sensors are identified for reference.
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estimate landscape-scale RDM in gassland ecosystems in the western United States,

where LAI would typically range from <0.5 to 3 (Gamon et a1. 1995, Knyazikhin et al.

1999) depending upon the slope and aspect of the site (Bartolome et al. 2002) and the

management methods in use (Harris et a1. 2002).

Methods

Index. conceptualization in Michigan grass stands

For this study, I focused on four of the five stand types described in Chapter 3:

Avenafatua L. (all nomenclature follows Hickman (1993)) low density, A. fatua high

density, Bromus hordeaceus L., and A. fatua—B. hordeaceus mixed stands. I excluded

Lolium multiflorum Lam. because I wanted to focus on only species present in both

monoculture and mixed stands. There were 10 replicates of each stand type. The soils in

the Michigan gass stands (Chapter 3) were Riddles-Hillsdale sandy loam 2—6%. Prior to

the experiment, the field was tilled, so there was no litter from the previous gowing

season present. This study considered the relationship between PAR absorption and

herbaceous biomass, the foliage and stem biomass of the gass species tested.

MAPAR. I measured surface reflectance in the Michigan gass stands using a

UniSpec-DC field hyperspectral radiometer with a 20°-field-of-view fore optic (PP

Systems Inc., Amesbury, MA). The UniSpec-DC detects spectral intensity in 256 bands,

distributed from 300 to 1100 nm, with a resolution of 3.7 nm. 1 made measurements with

the radiometer in nadir orientation, centered 1.43-m above the target portion (0.25-m2

gound resolution) of each plot. To minimize sun angle and shadowing effects, I
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collected spectral data within one hour of solar noon. I converted spectral intensity in to

reflectance using a Spectralon panel (Labsphere Inc., North Sutton, NH).

To calculate MAPAR in the Michigan gass stands using the UniSpec data, I used

reflectance values in the PAR region as:

(1.0 — rn)

=1 We 31

k

MAPARfu" =
 

where k = # bands from 400—700 nm; and rn = reflectance in band 11.

In this case, MAPARfun uses the entire PAR spectrum, from 400 to 700 nm. There are 92

bands present in these wavelength regions in the UniSpec data. All radiation hitting a

surface must be reflected, absorbed or transmitted so that reflectance + absorbance +

transmittance = l (Bowers and Hanks 1965). For the MAPAR calculation, I assumed

that transmittance through the canopy was zero. Therefore, incoming radiation was either

reflected back to the sensor or absorbed by the surface (vegetation + soil). This

assumption was made partly by necessity, as the UniSpec-DC, like satellite sensors,

cannot measure canopy transmittance in the field. For the whole canopy/soil system, this

assumption is met because reflectance is the sum ofthe direct reflected light from the

canopy plus the fraction of the transmitted light that is reflected from the soil or

understory and then re-transmitted through the canopy (H. Jones, personal

communication). This assumption is false for individual leaves or under conditions

where canopy LAI is low or vegetation is patchy (Goudriaan 1977, Jones 1992, Asner et

al. 1998, Asner et al. 2000). Thus, I assumed that a certain level of error would be

possible when calculating MAPAR early in the season when LAI was low, but that this
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error would most likely decrease as the season progessed and fractional vegetation cover

and LAI increased (Chapter 3). I examined this assumption directly as the Michigan

gass stands progessed from germination in week 1 (low LAI and cover values) to

maximum biomass in week 9 (high LAI and cover) (e.g., Table 4.1).

I calculated MAPAR using mean PAR absorbance values rather than total PAR

absorbance values or the integal ofPAR reflectance, as is the case for some

measurements ofbroadband albedo (the fraction of incident radiation reflected by a

surface) (e. g., Maurer et al. 2002). I chose to do this because I was interested in

developing a reflectance-based index that possessed a similar “fAPAR-like” ability to

estimate senescent biomass (Chapter 3) and Asner et al. (1998) had used a similar

equation to measurefAPAR in gass leaves using hyperspectral radiometer data (Eq. 2).

For this same reason, I initially calculated MAPAR in the Michigan gass stands using

the entire PAR spectrum (400 — 700 nm) rather than wavelength regions corresponding to

individual satellite sensors (e.g., Landsat: 450—520, 520—600, 630—690 run). I address the

impact of this decision and of scaling gound-based MAPAR measurements to satellite

scales in Tests ofMAPAR in California annual grasslands. While I focused on mean

PAR absorbance in this study, the dynamic ranges ofmean and total PAR are similar and

total PAR absorbance was also a significant predictor of biomass season-long (R2 = 0.60,

p < 0.001). This suggests that these measures may be used interchangeably.

Biomass. I used 1) biomass data from six time points throughout the season, and

2) weekly LAI data (Chapter 3) to examine the seasonal ability ofMAPAR to estimate

biomass, both geen and senescent. LAI was significantly related to biomass throughout

the season in the Michigan gass stands used this study (R2 = 0. 71, p < 0. 001).
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Table 4.1. Phenological effects on MAPAR-based estimates in the Michigan Bromus

stands. Fractional cover values represent weekly means. Fractional soil cover was

calculated as the midpoint of Daubenmire classes (Daubenmire 1968). Fractional

senescent cover is the percentage of total vegetation cover. Biomass was only harvested

six times over the gowing season. R2 values represent relationships with MAPAR.

Sigrificant at:p<0.001 = ***,p<0.01 = **, and p<0.05 = *.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Week Soil Proportion of vegetation LAzl fAPAR Biongass

Fraction cover that was senescent (R) (R ) (R )

1 62.5 0 0.00 0.00 075*“

2 15 0 0.82*** 0.95***

3 15 0 0.71*** 0.72*** 0.94***

4 15 0 0.78*** 0.79***

5 2.5 0 0.70*** 0.34

6 2.5 2.5 0.86*** 0.61* 0.11

7 15 15 0.71*** 0.70***

8 15 37.5 0.75*** 0.34

9 15 97.5 0.56* 0.48* 0.60**

10 15 85 0.72*** 0.70*** 0.76***

11 15 85 0.81*** 0.78***

12 37.5 97.5 0.58* 0.88***

13 37.5 97.5 0.73*** 0.77***

14 37.5 100 0.46* 0.56*

15 37.5 100 0.51"“ 0.56* 0.69***

Season 0.73*** 0.62** 0.91***
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Therefore, I used LAI as a non-destructive surrogate for biomass.

I used General Linear Model (GLM) procedures in SYSTAT 10.2 (SYSTAT

Software Inc, Richmond, CA) to analyze the relationships between MAPAR andfAPAR,

LAI, and biomass. To compare the MAPAR-biomass equations (i.e., biomass =

f(MAPAR)) developed for the geen (harvests 1—3; weeks 1, 3, and 6) and senescent

(harvests 4—6; weeks 9, 10, and 15) time periods, I used Analysis of Covariance

(ANCOVA). In the ANCOVA analyses, time period (geen vs. senescent) was the

independent categorical effect variable, MAPAR was the covariate, and biomass was the

response variable. For these analyses, biomass values were natural-log-transformed to

meet ANCOVA assumptions. Relationships withp 0. 05 were considered sigrificant.

Solar zenith angle tests. I analyzed weekly relationships 1) between mean

MAPAR values (Avena, Bromus, and Avena-Bromus) and solar zenith angle (SZA), a

significant component of the BRDF; and 2) between MAPAR and LAI,/APAR, and

biomass in the Michigan Bromus stands. Solar zenith angle is the angle measured at the

earth’ surface between the sun and the zenith (Liang et al. 2002). I focused on the

Bromus stands because they provide a broad range of fractional vegetation and soil cover

ratios for evaluating the effectiveness ofMAPAR for estimates ofbiomass (Table 4.1).

Across vegetated surfaces, NDVI and albedo have been shown to increase independently

of changes in canopy structure at SZA values >40° (Qi et al. 1995, Danaher 2002).

NDVI increases with SZA because ofreduced illumination and increased shadowing of

the soil backgound, and increased illumination of the vegetated surface (Danaher 2002).

Using this logic, MAPAR, which is broadly inversely related to NDVI (and albedo),

values could be expected to decrease at SZA values >40°. This effect is reduced across
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bare soil (Qi et al. 1995), although Idso et al. (1975) showed that albedo increased at SZA

values >40° as well. I calculated SZA using software available at

http://solardat.uoregon.edu/SolarPositionCalculator.htm1, together with sun rise and sun

set data found at http://www.wunderground.com/. 

Soil background effects. Soil backgound effects are known to have a large

influence on remotely-sensed biomass estimates (e.g., Huete 1988). To estimate the

contribution of the soil backgound to the MAPAR measurements in the Michigan gass

stands, I measured surface reflectance in plots ofbare soil (Riddles-Hillsdale sandy loam

2-6%) weekly, and compared MAPAR with weekly measurements offAPAR, LAI, and

biomass in the Bromus and Avena stands. In these stands, I was able to examine the

ability ofMAPAR to discriminate vegetation from backgound soils in plots with

fractional vegetation cover values ranging from 2.5% to 97.5%. I also made additional

soil measurements in an adjoining agricultural field at the Michigan State University

Plant Pathology farm located in East Lansing, Michigan with Houghton Muck organic

(8.0%) soils. In addition, I made measurements outside using pots with Riddles-Hillsdale

sandy-loam (dry/wet), sand (dry/wet), and Houghton Muck (dry/wet) soils, respectively.

I used repeated measures (paired) t-test procedures in SYSTAT 10.2 to analyze the

differences between MAPAR-based vegetation and soil values; mean weekly values were

calculated and used for each analysis. In all cases p 0. 05 was considered significant.

To address the reliability ofMAPAR for biomass estimates in different soil

backgound conditions than those used in this study, I compiled reflectance data from

both soil and vegetation on different soil types from the literature (Table 4.2). I broadly
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categorized soils as light-colored or dark-colored. For those soils used in this study, I

defined “light-colored” soils as those that had MAPAR values significantly lower than

both geen and senescent vegetation, and “dark-colored” soils as those with MAPAR

values geater than geen and senescent vegetation. For example, I categorized the

Riddles-Hillsdale sandy-loam soil (2-6% organic matter content) used in the Michigan

gass stands as light-colored (Table 4.2) because the average MAPAR value ( 0.84) was

sigrificantly lower than values for both the geen (0.93—0.97) and senescent (0.91—0.95)

vegetation throughout the entire season. By necessity, I included MAPAR values only

for the measurements that I took as part of this study. In all other cases, I broadly

categorized soils as “light” or “dark” based on their published reflectance curves as well

as their similarity to soils used in this study.

Tests ofMAPAR in California annual grasslands

fAPAR, LAI, and biomass. To test the reliability of MAPAR for biomass

estimates in gassland ecosystems, I collected data fi‘om 80 1.0-m2 plots randomly

distributed across annual gasslands located in Winters, California (Malmstrom et al.

2004, Butterfield and Malmstrom 2006) from 28—29 March 2003; the period of

maximum geenness at this site. 1 determined the coordinates of each plot with a Trimble

Pro XRS GPS unit (Trimble Navigation Limited, Sunnyvale, CA) using real-time

differential correction. At each plot, I measured MAPAR,fAPAR, and LAI and assessed

Daubenmire fractional cover (Daubenmire 1968), and then clipped all of the abovegound

biomass. To facilitate comparisons between gound-based MAPAR measurements and
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those from Landsat satellite data (see Satellite-based MAPAR estimates), I calculated

MAPAR from field spectroradiometer data using the Landsat bandwidths as:

kblue kgreen kred

(1.0 — inane) + (1.0 — rngm) + (1.0 — rnwd)

11111119: 1 ngrecn:l nred = 1

MAPARtm (unweighted) =
 

IEQ- 4]

kblue + l(green + kred

where kbluc = # ofbands from 450—520; kgreen = # ofbands from 520—600;

kmd = # ofbands from 630—690; rublue = reflectance in blue band 11;

r = reflectance in geen band n; rumd = reflectance in red band 11;
"green

with UniSpec data, k1,.“c + kgrm + km, = 65;

and with Landsat data, kblue + kgmfl + km = 3

Note that when using Eq. 4 to calculate MAPAR there are regions within the PAR region

that are not included (e.g., 400 to 450 and 600 to 630). The relationship between

MAPARrun (Eq. 3) and MAPARm (unweightedfis represented in Figure 4.2 using the

Michigan Bromus stands and the California annual gassland plots. MAPARM was

geater than MAPARm, (unweighted) under all conditions tested, including when geen

biomass, senescent biomass, and the soil backgound were dominant. In the Michigan

Bromus stands and California annual gassland plots, this effect was reduced as MAPAR

(and biomass, LAI, and cover) increased.

I did not separate geen and senescent biomass; therefore, biomass includes both

components. I dried biomass at 65°C to constant mass and weighed it. The soils in these

plots were either light-colored Sehom clay or Sehom-Balcom silty clay, or dark-colored,

Tehama loam (Table 4.2). I used GLM procedures in SYSTAT 10.2 to compare
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Figure 4.2. Relationship between MAPARfufl (Eq. 3) and MAPAR“m (unweighted) (Eq. 4) in

A) the Michigan Bromus stands (N = 150) and B) the California annual gassland plots

(N = 169). Relationships in the Bromus stands are shown for the geen (GRN: weeks 1-

7) and senescent (SEN: weeks 8-15) periods as well as for the entire season (weeks 1-15).
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MAPAR withfAPAR, LAI, and biomass.

To estimate the contribution of soil backgound to MAPAR measurements in the

California annual gassland plots, I measured surface reflectance in plots of bare soil

from all three soil types. In all cases, the soils were dry (Table 4.2) and data were

collected within the same +/- one hour of solar noon window as the vegetation

measurements. To analyze the differences between vegetation and soil values I used one-

sarnple t-test procedures in SYSTAT 10.2; p 0.05 was considered significant.

Satellite-based MAPAR estimates. To examine whether I could use satellite-

based MAPAR measurements to predict on-the-gound conditions, I acquired a Landsat

Enhanced Thematic Mapper (ETM+) LlG geo-referenced image from 28 March 2003

that coincided with the field measurements in the annual gassland in Winters, California.

Level 1G ETM+ imagery are delivered as calibrated digital numbers, which I converted

to top-of-the-atmosphere (TOA) reflectance using ERDAS Imagine 8.6 (Leica

Geosystems, Atlanta, GA). 1 then converted the TOA reflectance values to surface

reflectance with the SS radiative transfer model (Verrnote and Roger 1996). I calculated

MAPARm (unweighted) values for each pixel using Eq. 4. When using actual Landsat data,

the summation terms in Eq. 4 are not needed because there is only one reflectance value

per pixel in the blue, geen, and red bands, respectively. Because these bands are not

equal in size (e.g., 70, 80, and 60 nm, respectively), if values are not weighted by

bandwidth, the MAPARtm (unweighted) value (Eq. 4) may diverge somewhat from the

MAPARfu" values (Eq. 3) derived from UniSpec measurements under some conditions.

Differences may also exist because there are missing spectral regions in the MAPAR(m

(unweighted) calculation (Eq. 4) when compared to MAPARfuu (Eq. 3).
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To analyze the effect of weighting vs. not weighting MAPAR,m by bandwidth, 1 used the

UniSpec data from the Michigan Bromus stands and California annual gassland plots. I

calculated MAPAR in the Bromus stands using the MAPARfi," (Eq. 3) and MAPAR(m

(unweighted) (Eq. 4) equations as well as a MAPARm (weighted) equation weighted for Landsat

bandwidth. (Note: I did not weight MAPARfim for UniSpec bandwidth differences

because the UniSpec bands are equal in size, 3.7 nm). The MAPAR(m (weighted) equation

has the same denominator as the MAPAR;m (unweighted) equation (Eq. 4) (i.e., km“e + kg",en +

km), but the numerator for MAPARtm (weighted) is different and is calculated as:

kblue kgreen kred

[bw,,..*( 0.0—r“.....1)]+[bwm*( rl-o—rn....1)]+[bw~a*( [1.0—rub]
nblue=1

“green: I nred =1

 

bwblue + bwgreen + bwred

where kblue = # ofbands from 450—520; kgmn = # ofbands from 520—600; km) = # of

bands from 630—690; rub,“ = reflectance in blue band 11; rm“,n = reflectance in geen band

n; rmd = reflectance in red band 11; and bw = bandwidth.

I calculated MAPARm, in the California annual gassland plots using the

unweighted and weighted (Eqs. 4 and 5) equations. MAPAR“ (wcighwd) was geater than

MAPAR,m (unweighted) under all conditions tested (Figure 4.3). This occurred because while

both equations have the same denominator (e.g., kblue + kgm." + km; = 65) (Eqs. 4 and 5),

the numerator for the MAPARtm (weighted) equation (Eq. 5) was always geater, often 3—4X

geater, than the numerator for the MAPAR,m (unweighwd) equation (Eq. 4). In the Michigan

Bromus stands this led to large differences in MAPAR-based biomass estimates; in all

cases, MAPAR,m (weightedybased biomass estimates (y = 6E-29 * EXP(71.97x)) were

smaller than MAPAR!m (unweighmdybased estimates (y = 3E-08 * EXP(24.23x)) for a given
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Figure 4.3. Relationships between A) MAPAR,m (unweighted) (Eq. 4) and MAPARtmwcighwd)

(Eq. 5), and B) MAPARfu" (Eq. 3) and MAPARm (weighted) in the Michigan Bromus stands

(N = 150); B) MAPARtm (unweighted) and MAPARtmwcighted) in the California annual

gassland plots (N = 169).
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MAPAR value. This occurred because as MAPAR.m (weighted) values got larger (vs. those

which were unweighted) stand biomass values remained the same. For this study, I chose

to calculate MAPAR with Landsat data using Eq. 4 because this allowed for the most

direct comparison with gound-based MAPAR measurements used in this study, and also

allowed for the geatest consistency between the California field plot comparisons and

those from the Michigan gass stands. In addition, the MAPAR(m (unweighwd) dynamic

range (e.g., in the Bromus plots 0825—0955) was larger than the MAPARm, (weighted)

dynamic range (e.g., in the Bromus plots 0945—0985), which could allow for geater

discrimination ofMAPAR and/or biomass values within a heterogeneous gassland.

However, end users should consider this weighting issue when deciding which MAPAR

equation is most appropriate for their own situation.

I compared the Landsat-based MAPAR,m (unweighted) values to those from the 80 1-

m2 quadrats. I compared quadrat values to those from Landsat pixels in which they were

nested. When more than one quadrat fell within a given 900-m2 Landsat pixel, the

quadrat values were averaged before comparison.

To examine whether satellite-based MAPAR measures could discriminate bare

soil from both senescent and geen vegetation, I randomly extracted Landsat-scale (900-

m2) bare soil values from cultivated fields in Winters, California using a 9 May 2001

ETM+ image for the senescent period and the 28 March 2003 image for the geen period.

I processed the May image using the same methodology described above. I extracted the

soil values from fields with dry light-colored Capay silty clay and dark-colored Tehama

loam soils (Table 4.2). I used these fields, instead of smaller bare soil patches, to

decrease the likelihood ofmixed pixel effects. The fields had been harvested 2—4 weeks
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before image acquisition, so the soil moisture conditions of bare gound were accurately

represented. I determined harvest dates using additional Landsat data acquired as part of

Malmstrom et al. (2004). One drawback of this approach is that cultivated land can be

texturally different than bare gound in a gassland ecosystem. However, this is likely

secondary to the sub-pixel mixing effects that would have occurred if I had used smaller

patches. I used t-test procedures in SYSTAT 10.2 to analyze differences. In all cases p

0. 05 was considered significant.

Results

Tests ofMAPAR in Michigan grass stands

fAPAR, LAI, and biomass. MAPARrouAPAR, LAI, biomass, and NDVI

increased in all of the Michigan gass stands between week 1 and week 5. At week 5, all

plots achieved maximum geenness (defined as maximum NDVI) (Figure 4.4). NDVI

decreased thereafter due to increasing canopy senescence. In contrast, MAPARfufl,

fAPAR and LAI continued to increase until week 9, when maximum biomass occurred.

Notably, MAPARfi," followed the phenological trends in all three canopy variables

through week 15, including the decreases from week 9 to 11. MAPARbeAPAR, and

LAI values did not change markedly from week 11—14 (Figure 4.4), thus causing the

MAPARfun-biomass (Figure 4.5a), -fAPAR (Figure 4.6a), and -LAI (Figure 4.6b)

relationships to saturate around MAPARfu“ values of~0.936. This phenomenon was

reduced somewhat in the Bromus stands (Figure 4.5b).

Across weeks and stand types, mean MAPARfufl was strongly and significantly

correlated to meanfAPAR, LAI, and biomass (Figures 4.5a and 4.6); this correlation was
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Figure 4.4. Seasonal changes in A) NDVI and MAPARfufl (Eq. 3) and B)fAPAR and

LAI; week 5 is maximum geenness and 9 is maximum biomass. Between weeks 9 and

10, there was a strong storm that caused significant stem lodging and facilitated invasion

by geen weedy vegetation; LAI decreased as the plots were weeded. Values represent

weekly means for the Michigan Avena (high and low density), Bromus, and Avena-

Bromus stands (11 = 40).
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the GRN time period and the dashed line is for the SEN time period.
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also sigrificant in the Bromus stands alone (Table 4.1; Figure 4.5b). When data from all

four stand types were combined, MAPARfu“ was sigrificantly correlated to biomass

during the geen period (week 1—7) and for the entire season (week 1—15) (Figure 4.5a).

However, during the senescent time period (week 8—15), MAPARfi,“ and biomass were

not significantly correlated (Figure 4.5a). In Bromus stands, MAPARfu" and biomass

were significantly correlated during both the geen and senescent time periods (Figure

4.5b). In addition, in Bromus stands the geen and senescent biomass equations (Figure

4.5) were not significantly different (MAPARfufl * Time, df= 1, F = 0.068, p = 0. 795).

Solar zenith angle tests. MAPARfim increased with solar zenith angle (SZA) from

week 1 to 9 in the Michigan gass stands (Figure 4.7). During this time period, there was

a sigrificant positive relationship between MAPARfufl and SZA (R2 = 0. 60, p < 0. 05).

However, this relationship lost its significance as MAPARfun decreased fiom week 10 to

15, while SZA continued to increase (Figure 4.7). Solar zenith angles were geater than

40° in weeks 14 and 15. During this period, the decrease in MAPARfi," may have

occurred independently of the decreases in stand biomass and LAI (Figure 4.4).

MAPARfufl'baSCd bare soil values ranged from 0.80—0.84, but were the same, 0.84, in

week 1 and 15. In the Bromus stands, MAPARmu was sigrificantly correlated tofAPAR,

LAI, and biomass within individual weeks, when SZA was constant (Table 4.1).

MAPARfuu was significantly correlated to all three variables throughout the season,

except for weeks 1 (not significant forfAPAR or LAI), 5 and 8 (fAPAR), and 6

(biomass).

Soil background eflects. The soil backgound was dominant in the Bromus stands

in week 1 (Table 4.1) and in the Avena stands in weeks 1—3 and 11—1 5 (fractional soil
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cover: 62.5—97.5%). In the Bromus stands, MAPARfu" values in week 1 were correlated

only with biomass, not withfAPAR or LAI, which were difficult to measure when

vegetation was short and cover was low. In the Avena stands, MAPARfu“ was

significantly correlated to LAI in weeks 1—3, and 11, 12, and 14 (R2 = 0.49, 0.50, 0.50,

0.56, 0.62, 0.49; p < 0. 05). In these same stands, MAPARfuu was significantly correlated

tofAPAR in weeks 1—3 and 15 (R2 = 0.72, 0. 76, 0.55, 0.45; p < 0. 05) and biomass in

weeks 1, 3, and15 (R2 = 0.66, 0. 76, 0.4 7; p < 0.05). Throughout the season in the

Michigan gass stands, MAPARfufl values from dry soil were sigrificantly lower than

those from vegetation (Table 4.3). Values from dry Houghton Muck soils were similar

to, and in some cases larger than vegetation values (Table 4.2), although they were still

significantly lower overall (Table 4.3). As soil moisture increased, soil values increased

and became similar to, or geater than, vegetation values (Table 4.2).

Tests ofMAPAR in California annual grasslands

fAPAR, LAI, and biomass. In the California annual gassland plots, MAPARm,

(unweighted) measured with field instruments was sigrificantly correlated to LAI, biomass,

andfAPAR during the period ofmaximum geenness (Figure 4.8). Notably, unlike with

NDVI-like indices (Asrar et al. 1984, Hatfield et al. 1984), the MAPAR-based

relationships did not appear to saturate at LAI values >5. Dry bare soil values for Sehom

clay, Sehom-Balcom silty clay, and Tehama loam soils were sigrificantly lower than

vegetation values (Table 4.3).

Satellite—based MAPAR estimates. Overall, in the California annual gassland

plots, the gound- and Landsat-based MAPAR(m (unweighted) values were significantly
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Table 4.3. Results of the t-tests for differences between MAPAR-based vegetation and

soil values. The Michigan gass stand comparisons were made using geen and senescent

biomass data (weeks 1—15). For the gound-based California annual gassland

comparisons, only geen biomass was considered. The Landsat satellite-based California

annual gassland comparisons were made either in May, when senescent biomass was

dominant, or March, when geen biomass was dominant.

 

 

 

 

Soil Type Soil-Vegetation t df P

Comparison

Experimental plots

(Michigan)

Riddles-Hillsdale sandy loam Green and senescent -l7.00 14 <0.001

Houghton Muck organic Green and senescent -6.02 14 <0.001
 

 

Natural grasslands - ground

(California)
 

Sehom clay/

Sehom Balcom silty clay/ Green -13.23 10 <0.001

Tehama loam
 

 

Natural grasslands — Landsat

 

 

 

 

(California)

Camay silty clay— May Senescent -22.35 19 <0.001

Tehama loam— May Senescent -16.88 19 <0.001

Capay silty clay— March Green -26.86 19 <0.001

Tehama loam- March Green -25.47 19 <0.001
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Figure 4.8. Relationship between MAPARtm (unweighted) (Eq. 4) and A) LAI, B) biomass,

and C)fAPAR in California annual gassland plots during the period ofmaximum

geenness (28—29 March 2003). MAPAR:m (“weight“), was derived from UniSpec

measurements. LAI andfAPAR were derived from AccuPAR measurements.
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correlated (R2 = 0.47, p < 0. 001). In most cases, Landsat-based MAPARtm (unweighted)

values were lower than gound-based estimates, with differences ranging from 0.0004 to

0.0189. Landsat-based MAPARtmmweigmed) soil values for both light-colored Capay silty

clay and dark-colored Tehama loam soils (Table 4.2) were significantly lower than

senescent and geen vegetation (Table 4.3).

Discussion

A remote sensing-based approach for the quantification ofbiomass that could be

used by managers regardless of the dominance of geen or senescent biomass would

revolutionize biomass management in gassland ecosystems globally. Armed with this

tool, managers could assess gassland conditions, including RDM levels, throughout the

season and make real-time gazing decisions across large gassland units. One ofthe

main reasons such a tool has yet to be developed is the difficulty and expense associated

with quantifying senescent biomass (Huete et al. 1985, Huete and Jackson 1987, Streck et

al. 2002).

I tested the utility of the MAPAR index as a tool to estimate senescent biomass

because it behaved similarly tofAPAR throughout the season (Figure 4.4) and could be

directly derived from accessible satellite sensor data (i.e., Landsat). I found that, across

the dry sandy loam soils in this study, MAPAR closely followed the seasonal trajectory

offAPAR, LAI and biomass (Figure 4.4; Chapter 3), demonstrating that in dry light-

colored soils (Table 4.2) MAPAR was sensitive to phenological changes that occur in

annual gass species.

96



It is important to define MAPAR in relation to albedo because albedo is a

common measurement used in the remote sensing literature (e.g., Qi et al. 1995, Liang et

al. 2002) as well as a current end-product of the MODIS satellite sensor (Lucht et al.

1998). It is intriguing to imagine a future situation where MAPAR values could be

extracted directly from MODIS data. MODIS, like the UniSpec data, acquires gound

reflectance data across the entire PAR spectrum using bands with approximately the same

bandwidth (10—1 5 nm in the case ofMODIS). In general, MAPAR and albedo are

inversely related; as albedo increases, MAPAR decreases. However, this relationship can

vary depending on the surface type (and thus the magritude of canopy transmittance) and

bidirectional reflectance distribution function (BRDF), as well as the instrument being

used to measure albedo. Ground-based albedo measurements, for example, are most

commonly acquired using an albedometer. Unlike a radiometer which measures

reflectance at a single view angle (e.g., nadir), an albedometer integates the amount of

radiation reflected by a surface over all view angles. Thus, across non-Lambertian

surfaces, like the gass canopies measured in this study, reflectance and albedo can differ

significantly depending on the BRDF (Liang et al. 2002).

MAPAR in Michigan grass stands

For range management decision-making, it would be ideal to use a single biomass

index all season long. In this study, when all of the Michigan stand types were gouped,

the season-long MAPAR-biomass relationship was sigrificant (Figure 4.5a). However,

the relationship appeared to saturate at MAPAR values near ~0.936. As a result, when

only the senescent period was considered, MAPAR was not sigiificantly correlated to
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biomass (Figure 4.5a). This may indicate that the dynamic range ofMAPAR is

insufficient for late-season biomass estimates, either because of the amount ofbiomass

on the gound or because of the proportion of senescent biomass present.

However, it is also possible that the saturation phenomenon was an artifact of the

stem lodging event that occurred in the Avena and Avena-Bromus stands during week 10.

This conclusion is supported by the MAPAR-biomass relationship in the Bromus stands

as well as in the stands ofLolium multiflorum (Chapter 3), which were not impacted by

the stem lodging event. The radiation regime ofa plant canopy is a firnction ofphoton

scattering by leaves, stems, and soils (Jones 1992). The contribution of leaf, stem, and

soil optical properties to canopy PAR absorption is modulated by LAI, leaf angle

distribution, and foliage clumping (Asner et al. 1998), which determine the density and

optical depth of the canopy (Ross 1981). As gass stems lodge at the end of the season,

the density and optical depth of the canopy may be reduced (Ross 1981, Jones 1992,

Asner et al. 1998), thus decreasing the amount of PAR absorbed by the canopy

independently ofbiomass. In addition, stem lodging may cause openings in a gass

canopy, which in some instances could also decrease PAR absorption (Ross 1981, Jones

1992, Asner et al. 1998) without parallel decreases in canopy LAI or biomass. In the

Michigan Bromus stands, the saturation phenomenon was reduced (Figure 4.5b) and

MAPAR was sigrificantly correlated to biomass during the senescent time period (Figure

4.5b; Table 4.1). Likewise, MAPAR was significantly correlated to biomass during the

senescent time period in the Michigan Lolium stands (R2 = 0. 55, p < 0. 001). The

saturation phenomenon does highlight a potential limitation ofMAPAR in gassland
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ecosystems, where lodging is possible at the end of the season once vegetation has

senesced and stem integrity has declined.

A single species-specific biomass equation could be applied throughout the

season for Bromus (Figure 4.5b) and Lolium (y = 2E-06e20'40", R2 = 0. 91, p < 0. 001)

stands. Based on these results, I recommend using a single equation for the geen and

senescent time periods assuming there is not a significant amount of stem lodging.

Future efforts should be directed at testing the impact of canopy structural attributes on

the relationship between MAPAR and biomass throughout the season.

Like other reflectance-based indices, MAPAR measurements are influenced by

the BRDF, as a function of sun-surface-sensor geometry, canOpy architecture and optical

properties, soil backgound properties, and illumination conditions (Deering 1989).

While I tried to control for as many of these factors as possible in the Michigan stands, I

did not make any specific BRDF corrections. One important component of the BRDF

that was not controlled for was solar zenith angle (SZA). SZA increased in the plots

from ~20° in week 1 to 47° in week 15 (Figure 4.7). Studies designed to address BRDF

effects have shown that increases in SZA above 40° can cause reflectance-based indices,

like NDVI, as well as albedo to increase across vegetated surfaces (Qi et al. 1995).

NDVI increases because ofreduced illumination and increased shadowing of the soil

backgound, and increased illumination of the vegetated surface (Danaher 2002).

Because MAPAR is broadly inversely related to reflectance-based indices like NDVI as

well as to albedo, it is possible that during weeks 13—15, when SZA was geater than 40°

(Figure 4.7), MAPAR values could have decreased independently of the decreases in

stand biomass and LAI (Figure 4.4). However, the results from this study suggest that
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the SZA effect was most likely secondary to the relationship between MAPAR and

biomass. For example, in the Bromus stands, MAPAR was significantly correlated to

biomass, as well asfAPAR and LAI, within individual weeks when SZA was constant

and therefore not impacting the predictive capacity ofMAPAR (Table 4.1 ).

Because MAPAR is an index of surface absorbance, it is important to understand

how changes in the soil backgound influence the reliability of MAPAR. In general, dry

soils are usually more reflective than vegetation in the visible regions and less so in the

near infrared regions (Bowers and Hanks 1965). However, as moisture and organic

matter content increase and the color of the soil darkens, the amount ofradiation

absorbed by soil increases and the differences in reflectance between soil and vegetation

decrease (Bowers and Hanks 1965) (Table 4.2). As a consequence, MAPAR-based bare

soil values increased, and the ability to discriminate vegetation decreased, when the light-

colored sandy loam soils used in the Michigan gass stands were wet. In addition,

MAPAR was not as effective for biomass estimates on dark-colored soils high in organic

matter content, such as Houghton Muck (80%) (Table 4.2). The soil backgound effect

would likely decrease as vegetation cover and LAI increase, and the canopy closes

(Hoffer 1978). Before using MAPAR, a manager should assess soil conditions across his

or her property. If both fractional soil cover on average is geater than 15% (canopy

cover is <85%) and the soil is either wet or has high organic matter content (Table 4.2), I

would not recommend using MAPAR for biomass estimates.

MAPAR in California annual grasslands
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MAPAR derived from UniSpec measurements was sigrificantly correlated to

LAI, biomass, andfAPAR (Figure 4.8) at maximum geenness in California gassland

plots with LAI values from <0.2 to 6. These results, together with those from the

Michigan stands, suggest that across these soil types and conditions the dynamic range of

MAPAR may be sufficient to predict a large range offAPAR, LAI, and biomass values

that are naturally present during the period ofmaximum geenness.

Although it was outside the scope of this study to test MAPAR at the landscape-

scale throughout the entire season, I found that MAPAR measurements from l-m2 plots

were significantly correlated to those from 900-m2 Landsat pixels. Combined with the

encouraging results from the Michigan gass stands and California annual gassland plots,

these results support testing MAPAR at the landscape scale using Landsat or MODIS

satellite data. Such tests would initially focus on identifying how sub-pixel level changes

in soil cover, type, and condition as well as vegetation condition (e.g., stem lodging)

impact the broad-scale applicability ofMAPAR for biomass estimates.

MAPARfor RDM estimates

An important management application ofthe MAPAR index is landscape-scale

RDM estimates. Currently methods used by range managers are gound-based (e.g.,

Clawson et al. 1982) and time intensive, and have varying accuracy (Bartolome et al.

2002). While remote sensing-based RDM approaches have been developed for crOp

systems (Daughtry 2001, Streck et al. 2002, Nagler et al. 2003), these approaches rely on

instruments and datasets to which private range managers usually do not have access. A

more accessible remote sensing-based RDM approach, which could be applied to Landsat
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or MODIS data, for example, would likely increase the number ofmanagers who use

remote sensing to monitor RDM levels. I did not specifically test the ability of MAPAR

to make RDM estimates in gassland ecosystems. However, MAPAR successfully

estimated biomass where conditions were like those a manager may encounter during the

period when RDM estimates are made: 1) senescent vegetation cover is dominant, 2) the

soil backgound and vegetation are dry, and 3) biomass values range from 900—2350

kg/ha (Figures 4.5 and 4.6; Table 4.1) (Bartolome et al. 2002). Because of the sensitivity

ofMAPAR to soil backgound conditions, it may be difficult to apply MAPAR in

situations where RDM is low (e.g., on flat slopes and swales, <450 kg/ha), which is an

important issue to monitor in the future.

MAPAR, as calculated in this study, had two main limitations: the utility of

MAPAR for biomass estimates decreased as the soil darkened (Table 4.2) and when

gasses lodged (Figure 4.5a). There may be alternative MAPAR-based approaches that

decrease some of these soil backgound and vegetation condition limitations (Table 4.4).

Two possible approaches to test in the future are: 1) use MAPAR to quantify biomass at

maximum biomass and then estimate RDM using the field-based guidelines developed by

Bartolome et al. (2002); and 2) use MAPAR for interannual RDM comparisons (i.e.,

RDM change detection). A change detection approach is promising because it would

provide the user the means to minimize the influence of the soil backgound (type,

condition) in the retrieval of biomass (and RDM) data (Mas 1999, Jensen 2000). In its

simplest form, change detection involves subtracting values (e.g., biomass) of one

satellite image from a second image that has been precisely registered to the first (Singh

1989). Because images would be acquired at the same time of the year, soil backgound
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conditions would likely be the same in both images. Thus, “change” would be due to

changes in biomass (or RDM) rather than soil cover, type, or condition (Hallum 1993).

Both of the RDM approaches detailed in Table 4.4 have certain advantages and

disadvantages. However, the findings from this study are sufficiently encouraging to

suggest that testing these approaches across gassland ecosystems would be worthwhile.
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CHAPTER 5

CONCLUSIONS

Although my dissertation research has answered several questions about the use

of remote sensing in rangeland ecology, it has also led to many more. Having identified

factors that influence the use ofremote sensing data by private range managers and

examined ways in which remote sensing use impacts manager decision-making, I am

now interested in investigating in more detail the economic impact of remote sensing

approaches on a diverse goup ofranching operations. It would be valuable, for example,

to better understand whether there is a threshold sum that ranchers are willing to spend on

remote sensing data, as a function of their ranching operations’ size and diversity (as

measured in terms of acreage, head of cattle, diversity of land uses, etc.), as well as to

continue to adapt the development and delivery of remote sensing data to the unique

needs of individual range managers.

Although quantifying the economic impact of remote sensing data on ranching

operations may be challenging, such an assessment would be invaluable to managers

interested in using remote sensing data. For example, an economic assessment could

identify particular situations (e.g., a large ranch with many livestock and a widespread

weed infestation) in which investment in remote sensing data was likely to be

worthwhile. Alternatively, an economic analysis might conclude that remote sensing is

generally a cost-effective management tool in which land managers should more broadly

invest, but that its use is limited by availability and training. Without a full economic

analysis of the impact ofremote sensing on ranch profitability, it is likely that few range

managers will want to make long-term commitments to investing in remote sensing data.
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My dissertation research examined a few ofmany possible applications of remote

sensing data for biomass and weed management in gassland ecosystems (e.g., Tueller

1989, Hunt et al. 2003). It is clear that remote sensing data can provide managers means

to evaluate management decisions across a variety of spatial and temporal scales and to

focus management practices on those which most efficiently increase rangeland health,

primarily by decreasing noxious weeds and increasing levels of desirable forage species.

It is less clear however, which remote sensing applications are most useful for private

range managers and therefore likely to be invested in by the managers themselves. My

study was the first to specifically address the use ofremote sensing data by private range

managers. Future efforts should be directed at evaluating similar questions ofuse and

impact across a broad and diverse goup ofrange managers and ranching operations.

Such work would help answer questions concerning, for example, the importance of the

size of the ranching operation on the use and investment in remote sensing data. In

addition, as remote sensing data continue to be refined and new applications are

developed which allow managers to evaluate measures ofrangeland health at finer spatial

and temporal scales (e.g., Lass et al. 2005, Mustafa et al. 2005, Everitt et al. 2006, Mundt

et al. 2006), it is imperative that we evaluate how to best deliver these data to managers

and train managers in how to apply them to their individual management situations.

The range managers in California with whom I worked were interested in

investing in remote sensing data because they believed these data could help them

optimize their ranching operations and increase the protection of their ranches’ natural

resources (Butterfield and Malmstrom 2006). However, this goup ofmanagers, unlike

most range managers, enjoyed free access to remote sensing data and training in its use
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for five years. Without this support, it is likely that this manager goup would have been

less interested in investing in remote sensing data. There are a number of reasons why

this may be the case, which should be investigated in the future, including: (i) the

perceived costs to individual managers and uncertainties about how to obtain appropriate

remote sensing products, and (ii) concerns that remote sensing data could be used by

_
_
I

government agencies or conservation organizations to regulate private gazing and/or

land management operations in an authoritarian manner (S. Butterfield, personal

communication). Collaborations like the ones discussed in Butterfield and Malmstrom

 (2006) can help alleviate some ofthese difficulties by providing a forum in which I

scientists, managers, agency staff, and non-profit conservation organizations can develop

cost-sharing collectives (e.g., for purchasing and processing remote sensing data) and

products tailored to different, often unique management situations. These collaborations

can also provide opportunities for exploring and addressing concerns managers may have

about the use ofremote sensing data as a regulatory tool across their properties.

Such collaborations appear to be powerful means through which to develop

remote sensing products that are accurate, affordable, and easy to use in operational range

management contexts. Because ofthe pressures currently associated with maintaining

profitable range management operations in the western United States (Roche and Roche

1991, Leitch et al. 1994, World Resources Institute 1996, Mitchell 2000, O’Brien et al.

2003) and because private lands often contain high-quality ecosystems and species of

conservation interest (e.g., The Nature Conservancy 2000, 2005, 2006), collaborations

like those described in Butterfield and Malmstrom (2006) are likely to become more

common in the future.
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My dissertation research also examined the properties of a new vegetation index,

MAPAR, which could be used under some conditions to quantify senescent biomass.

Future efforts will be focused on testing the applicability ofMAPAR (and of associated

remote sensing-based approaches) at the landscape-scale and on identifying how sub-

pixel level changes (in soil cover, type, and condition as well as vegetation condition)

impact the use ofMAPAR for senescent biomass estimates. An important application of

MAPAR to the range management and conservation communities is its use as an

indicator of residual dry matter (RDM). RDM is particularly interesting to conservation

organizations and their partners (e.g., The Bureau of Land Management 1996, Guenther

and Christian 2005, The Nature Conservancy 2006) because it can strongly influence

biomass production and noxious weed spread. Although I did not specifically test the

ability ofMAPAR to make RDM estimates as part ofmy dissertation work, I did find

that MAPAR successfully estimated biomass under conditions like those under which a

range manager would normally estimate RDM (i.e., senescent vegetation cover is

dominant, the soil backgound and vegetation are dry, and biomass values range from

900—2350 kg/ha). Because MAPAR is sensitive to changes in soil backgound

conditions, the application ofMAPAR for RDM estimates is likely limited to situations

where fractional soil cover <15% or the soil is both dry and low in organic matter

content. Future efforts should be directed at testing the limits ofMAPAR across a wide

range of gassland conditions using fine and moderate resolution satellite data, such as

that from Landsat TM and MODIS.
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