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ABSTRACT

AB INITIO CONFIGURATION INTERACTION (CI) CALCULATION OF THE
CHARGE-DENSITY SUSCEPTIBILITY OF MOLECULAR HYDROGEN AND
HIGHER-ORDER VAN DER WAALS INTERACTIONS FROM
PERTURBATION THEORY

By

Ruth L. Jacobsen

The charge-density susceptibility x(r, r’;w) of a molecule is defined as the
change in the w-frequency component dp° (r, w) of the electronic charge-density
at a point I' within a molecule, due to a perturbing potential v, (l", w) of frequency
w applied at a point I’ (within linear response). This work includes a derivation
of an ab initio expression for the charge-density susceptibility and its application
to calculate x(r, r; w) of the H, molecule as a function of T, I, and w in the
aug-cc-pVDZ basis set using a configuration interaction wavefunction with single
and double excitations (CISD). Since CISD theory is equivalent to full configuration
interaction (CI) theory in a two-electron case, the results are exact within a given
basis set. Results of the calculations of x(r, r’; w) for the Hy molecule are analyzed,
with emphasis on the behavior of the function when the frequency w is close to a
molecular transition frequency from the ground electronic state.

In order to test the calculations of X(r,r’;w) for the H, molecule, the result
for x(r, r'; w) has been used to calculate the frequency-dependent polarizabilities
azr (W), ayy (W), and @, (W) of H as a function of w in the DZ, DZP and
aug-cc-PVDZ basis sets. Excellent agreement has been obtained between our results
for static polarizabilities and the corresponding finite-field polarizabilities obtained
with the MOLPRO quantum chemistry software package.

Following a review of known results for the second-order and third-order correc-
tions to the energy of interaction of two molecules in the polarization approximation,

complex contour integration is used to derive a new equation for the third-order



dispersion energy of two interacting molecules. The results for the second- and third-
order interaction energies are used to obtain approximations to these energies for
pairs and clusters of hydrogen fluoride molecules, in terms of the properties of the

individual molecules.
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1 Ab Initio Configuration-Interaction (CI) Calcula-
tion of the Charge-Density Susceptibility of Hj
from Perturbation Theory

1.1 Introduction

The charge-density susceptibility X(r, r’;w) gives the change in the w-frequency
component 0p° (r, w) of the electronic charge density at point r within a molecule,
due to a perturbing potential 'Ue(r' , w) of frequency w applied at r’ (within linear
response),!

dp°(r,w) = /x(r,r’;w) ve(r',w) dr'. (1)

Molecular properties, such as dipole and higher-order polarizabilities, Sternheimer
electric field shielding tensors,® induction energies for interacting molecules,®7° van
der Waals dispersion energies,!! infrared intensities,® electronic reorganization terms
in vibrational force constants,®” and intramolecular dielectric functions* depend on

the charge-density susceptibility x(r,r’;w).
The dipole polarizability @a3(w) of a molecule is the first moment of the
charge-density susceptibility x(r, r'; w) , with respect to both r and 1’

agg(w) = /7‘0 rg x(r,r';w) dr dr’, (2)

where 7T, and 7"5 are the & and 3 components of T and T’ | respectively
( (a, 8 =z,v, 2:)).3 Similarly, the quadrupole polarizability Cagms (w) is related
to x(r,r’;w) by

1 1
Caprs(w) = 3/ ~—(3raT3 — a3 T?) 5(3 T T5 — 045 ) x(r,r';w) dr dr’.

2
(3)
In Eq. (3), Ta and T3 are the & and (3 components of T, and ’r; and 7‘3 are the 7y

and & components of 1’ .3

When a molecule is subject to an external electric field F€¢ , the net electric
field experienced by nucleus I within that molecule depends on the unperturbed
electric field within the molecule and the screening of the applied field resulting from
rearrangements in the molecular electronic charge distribution. If the applied field
F¢ is both static and uniform, the shielding tensor '75( 3 determines screening effects

1



which are linear in F'® . The shielding tensor '7!, 3 depends on the static nonlocal
polarizability density a(r,r’)

vls= —/dr dr’ To5(RY, 1) a(r,r). (4)

In Eq. (4), Tag(RI ,T) is the @ component of the dipole-propagator ten-
sor T(R!,r) with coordinates R of nucleus I . Also, the static nonlocal
polarizability density determines the static susceptibility,?

VvV :a(r,r') = —x(r,1'), (5)

where V and V' are the gradients with respect to T and T’ .

When a pair of molecules interact at long range (where the overlap between the
charge clouds is weak), the permanent and fluctuating charge distributions of each
molecule give rise to a perturbing potential v, (r, w) that acts on the neighboring
molecule. Thus, both induction and dispersion energies depend on x(r, r’;w) .
Specifically, the dispersion energy of a pair of molecules A and B depends on the
charge-density susceptibility at imaginary frequencies.?3 Several researchers have de-
rived equations for the second-order dispersion energy of interaction between two
atoms or molecules that depend on the charge-density susceptibilities of the inter-
acting atoms or molecules. In 1963, McLachlan!? derived the first equation of this
type. Specifically, McLachlan derived an equation for the second-order dispersion
energy of interaction of two atoms that is given in terms of implicit forms of the
charge-density susceptibilities of the two molecules. Following the work of McLach-
lan, Longuet-Higgins derived the first equation for the second-order dispersion energy
of interaction of two molecules that has an explicit dependence on the charge-density
susceptibilities of the two molecules. Specifically, according to Longuet-Higgins’ work,
the second-order dispersion energy of interaction W between two molecules is'3

W = —%/drl/drg‘/drﬁ/dr’g

x jdéa (r19r2’2€) a’ (rllalJ2az£)’ (6)
0

|ry — r'q||rs — 'y

In Eq. (6), a(r;,ro,2€) and o' (r'y,1/5,1€) are the charge-density susceptibil-
ities of the first and second molecules, respectively. Note that we are using Longuet-

Higgins’ notation in Eq. (6); « and &' correspond to the function x(r, r';w)

2



in this work. In Eq. (6), r; and Ty are points in the first molecule, r'; and
r'y are points in the second molecule, and 2§ is an imaginary frequency. Longuet-
Higgins’ « susceptibility measures the response of the electronic charge-density at
r; to an exponentially increasing perturbation at s with e€) time dependence.
The ' susceptibility measures the corresponding response at I’; to an exponentially
increasing perturbation at I’y with e*) time dependence.

Langhoff'* has expressed the second-order Coulomb energy in terms of the Fourier
integral of the Coulomb potential and uses the contour integration techniques of
Casimir and Polder!% to simplify the energy denominators contained in this ex-
pression for the Coulomb energy. The resulting expression gives the second-order
Coulomb energy in terms of the response functions of the two systems, which are
essentially Fourier transforms of the charge-density susceptibilities of those systems.
Jacobi and Csanak used a similar procedure to write the second-order dispersion en-
ergy of interaction between two closed-shell atoms in terms of implicit forms of the
Fourier-transformed charge-density susceptibilities of those atoms.!® Langhoff’s work
is similar to Jacobi and Csanak’s work in that both involve transforming susceptibili-
ties from configuration to momentum space. Langhoff transforms the susceptibilities
in the second-order Coulomb energy from configuration to momentum space, and Ja-
cobi and Csanak transform the susceptibilities in the second-order dispersion energy
similarly. The momentum-space expressions for the second-order Coulomb and dis-
persion energies contain integrals over fewer variables than the configuration-space

expressions.

Following the work of Jacobi and Csanak, several researchers developed approxi-
mate methods for calculating the second-order dispersion energy of interaction of two
atoms or molecules from the charge-density susceptibilities of those systems. Koide'®
developed the first approximation to the second-order dispersion energy of interac-
tion of two spherically symmetric atoms by deriving a convergent expansion for the
interaction energy where V' is written in terms of spherical wave interactions. This



expansion for the second-order dispersion energy AFE gives

1 d3k ikr dsk, —ik'r
AE = ‘m/ A T
X %/duaA (k,k'; ) ap (=k, —K'; ) (7)
0

where we have used Koide’'s notation for Eq. (7). In Eq. (7),
a4 (k,k';2u) and ap (—k, —k';2u) are the polarizabilities of atoms A and B, re-
spectively. Also, k and k’ are wavenumber vectors, and vu is an imaginary frequency.
These polarizabilies correspond to Fourier transforms of charge-density susceptibili-
ties of atoms A and B, which depend on spatial coordinates I and r’, as well as on the
imaginary frequency 2u . Koide derived the polarizability o (k, k’; zu) in terms
of spherical harmonics and polarizabilities «y (k, k’;2u) , for angular momentum
quantum numbers | = 0, 1,2, ...; a;(k,k’;w) is defined as

2 w
alkkiw) = 35 a5
p#0 P

X (01Q7* (k)" Ip){plQr" (K) |0), (8)

where we have let 1 = w . The states |p) are the eigenstates of the unperturbed
atom (which is either atom A or B in this case), and |0) is the ground state of the
unperturbed atom. Again, we are using Koide’s notation in Eq. (8). Also, ﬁwp =
E,—Ey, where E,and Ej are the energies of states |p) and |0). Finally, Q" (k)
and Q" (k') are multipole moment operators which are defined in Koide’s work in
terms of spherical harmonics and Bessel functions. The polarizability o ( k, k' w)
in Eq. (8) can be approximated using the variational method of Karplus and Kolker!®
or other variational methods. After calculating oy (k,k’;w) , one can use his
or her results for o (k:, k'; w) and the appropriate spherical harmonics to obtain
aAp (k, k'; zu) and ap (—k, -k/; zu) . Finally, using the resulting expressions for
a4 (k, k'; zu) and ap (—k, -K/; zu) and Eq. (7), one can obtain an approximate
dispersion energy of interaction of atoms A and B. References 1, 25-30 and 31 give

equations for second-order dispersion energies that depend on approximate charge-

4



density susceptibilities and include other derivations and calculations that are related

to these equations.

Recently, Kohn, Meir, and Makarov?® have used density functional theory (DFT)
to derive a seamless expression for the van der Waals interaction energy of two atomic
or molecular systems. The expression is seamless in the sense that it yields accurate
van der Waals energies at any intersystem distance. They began their derivation
by using either the local-density approximation (LDA) or the generalized-gradient
approximation (GGA) to describe the electron density 7 (r). Next, they separated
the Coulomb potential into short and long-range parts, and assumed that the van
der Waals energies could be completely attributed to the long-range interactions.
At this point, they used the adiabatic connection formula to write the long-range
interaction energy. After transforming this expression into the time domain, they
obtained the correct long-range limit for the van der Waals energy F,qw of two
spherically symmetric atoms A and B,

C
Eyaw = --R—g, (9)
with the following expression for Cg :
6= T ! 2 t + o '
0 0

In Eq. (9), R=|R4—Rp|, where R4 and Rp are the coordinates of the nuclei
of atoms A and B, respectively. In Eq. (10), x*? is the 2 component of the response
of the electron density to a perturbation applied in the 2 direction. In equation form,
this response is

X = /drldl‘2x(r1,l‘2) 2129, (11)

where X (rl, l‘g) is the static charge-density susceptibility.

Dobson and co-workers?! ™23 have developed a seamless density functional for cal-
culating the van der Waals interaction energy of atomic, molecular or other physical
systems. The functional is defined by four equations, and Dobson and Wang give spe-
cific forms of these equations for the interaction of two jellium metal slabs in reference

21. The first equation gives the average ground-state electron density ’77'1 GA (z, z’) of

5



the interacting system. The second equation, which depends on ﬁl GA (z, z’) and the
Kohn-Sham polarization response a}l}ogn of the system, gives the Kohn-Sham density-
density response function X gs (z, 2, q) zs) of the interacting system. The third
equation is the Dyson-like screening equation for the Kubo density-density response
function X\ (r, r';w= zs) of the interacting system. When A = 1 in the Kubo
density-density response function, we obtain the frequency-dependent charge-density
susceptibility x (r, r'; w) defined in this work. The equation which gives the Kubo
density-density response function depends on the Kohn-Sham density-density re-
sponse function, the
exchange-correlation kernel fz.) (r, r;w= zs) of the system, and a modified
electron-electron interaction AV . Finally, the fourth equation for the van der
Waals density functional is the adiabatic connection fluctuation-dissipation (ACFD)
formula. This equation uses Vooul, X, and X ks as input, and gives the correlation
energy of the system. In this work, we have used Dobson and Wang’s?! notation to
refer to all quantities contained in the four equations that yield their seamless density
functional for van der Waals interactions. Also, all quantities mentioned in this work
that appear in Dobson and Wang’s equations are defined in reference 21. Dobson and
Wang have carried out a related derivation (and calculations) in reference 24.
Equations for the second-order dispersion energy that depend on charge-density
susceptibilities are superior to the corresponding point-multipole expressions for the
second-order dispersion energy because the former equations account for charge-
overlap effects that are neglected in the latter expressions. Because charge-overlap
effects are accounted for, the dispersion energy as defined in terms of charge-density
susceptibilities is finite as /B — 0 , whereas the corresponding infinite series for the

point-multipole dispersion energy diverges.
The static charge-density susceptibility x(r, r’) determines the derivative of the
electronic charge density with respect to nuclear coordinates,®

595(1')_ A —1/ / N A | A1
SRA = Z* (4me,) dr' x(r,r')V4|r' = R%| | (12)

6



where Z4 is the charge of nucleus A with coordinates R4 , and V4 denotes
the derivative with respect to R4 . Eq. (12) holds because the electronic charge
density responds via the same susceptibility to an applied potential and to the change
in the nuclear Coulomb potential when a nucleus shifts.> Changes in the electronic
dipole moment as a molecule vibrates depend on linear combinations of the deriva-
tives Op§(r)/ORA ; thus the intensities of vibrational transitions are related to the
internal charge redistribution in the molecule by Eq. (12). Similarly, the electronic
charge redistribution term in harmonic force constants depends on X (r,r’) ; this
term corresponds to the induction energy energy of the molecule, due to changes in

the nuclear Coulomb field, as the molecule vibrates.”

A non-local intramolecular dielectric function ev_l(r, r'; w) characterizes the
screening of an applied potential ve(r; w) by the electronic charge redistribution,
to give an effective potential ves(Ir,w) within the molecule

Vesf(r,w) = /eljl(r, r';w) ve(r',w) dr'. (13)

The dielectric function is related to x(r, r’; w) by*

€€ (r, ;W) = 8(r — ') + (4me,)” /dr" Ir—r"| " x(r", r;w). (14)

The correlations of the spontaneous quantum mechanical fluctuations in charge
density are determined by the imaginary part of the charge-density susceptibility
X"(r,r';w) via the fluctuation-dissipation theorem,%

% (8pe(r,w) Bpe(r’,w') + dpe(r',w') dpe(r,w)) = (%) x"(r,r';w)
X6 (w + w') coth (:]:;,) (15)

For this reason, the total electronic energy of a molecule is determined by x(r, r’; zw)
and the permanent molecular charge density,58

) {Pe(r)) {pe(r"))
222 /d |r—RN| /drd P—




SOIECE = O
()Zz R [ dr ”elr_i’i{l“r)a. (16)

In Eq. (16), X is an electronic self-energy. Additionally, the charge-density

susceptibility x(r, r’;w) is related to the softness kernel as defined in density
functional theory.33:34

The static charge-density susceptibility X(r, r’) has been calculated ab initio
using a finite field CI approach for water by Li, Ahuja, Hunt, and Harrison.3? Ando,3
Zangwill and Soven,®, Gross and Kohn,3"®® and van Gisbergen and coworkers®® have
developed techniques for calculating the charge-density susceptibility within density
functional theory (DFT). The charge-density susceptibililty can also be calculated ab
initio using time-dependent perturbation methods,

pseudo-state techniques,40-44:41743,45-50

or by quantum Monte Carlo methods.? 733 Fur-
thermore, an ab initio expression for the charge-density susceptibility x(r,r’;w) can
be formulated by deriving the linear response function within coupled-cluster (CC)

theory.54

1.2 x(r,r’;w) at CI Level: Derivation

Quantum mechanically,

x(r,vsw) = (Yolpe(r) G(w) pe(r')|¥o)
+ (Yolpe(r') G(—w) pe(r)|¥o), (17)

where W is the ground-state wavefunction, pe(r) is the electronic charge-density
operator at I ,

N
r) = —Z o(r —ry), (18)
=1
Pe (r’) is the charge-density operator at I’ ,and G ( ) is the reduced resolvent,

Gw) = (1= po)(H = By — h) (1 = gn) = 3 720K (1)
K#0




In Eq. (19), H is the electronic Hamiltonian for the unperturbed molecule, gy is
the projection operator for the ground-state wavefunction, and Wy is the K*?
excited-state wavefunction. Also, Fy and Fk denote the energies of the ground
and K™ excited states, respectively. Thus

x(r,r';w) = Z(‘I’olpe(r)|‘1’1{)(‘I’K|Pe(r')|1110>

= Ex — Eog — hw
(Wolpe(r)| ¥ k) (¥ k| pe(r)| o)
+ Kz#:o oy . (20)

At CI level, the ground and K®* excited- state wavefunctions ¥y and Wx have

[Wo) = co(0)|®) +Zc B9 + Y (K)|eg)
i1>7.a>b
+ ...=ZCJ(0 ICI)J,

Vk) = ZCJ )|®.). (21)

the form

In Eq. (21), |<I>> is the reference determinant for the ground state, l@?) is a singly-
excited determinant, and |@?Jl-’ is a doubly-excited determinant. Additionally,
|<I>J) represents all possible determinants in the full CI expansion. The coefficients
CJ(K ) are the CI coefficients, determined by solving the Schrodinger equation at
CI level,

H|Vk) = Ex|Vk). (22)
From Eqs. (20) and (21),
x(r, r';w) = A(r,r’;w) + A(Y, r; —w), (23)
where

A(r,rw) = Z Z 0)cs (K)ey»(K)cyn(0)

K#O JJ/ Jl’ JII/
(@|pe(r)|D ) (D | pe(r))| D yomr) (24)
Eyx — Ey — hw |

Since pe(r) is a one-electron operator, the matrix elements in Eq. (24) vanish unless
J and J' differ by at most one orbital occupancy. We separate A(r, r'; w) into
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four sets of terms, based on the relationship between the determinants |9 ), |® ),

I¢Jl’> ,and |®J"') s

A(r,r;w) = Z Aj(r,r;w) + Z Ay grggm(r,r’;w)
J JI JII JIII J=JI.JII#JIN
+ Z AJ;AJ"J"(I', I"; w)
J#J',J":J’”
+ Z Agpgrgrzgm(r, i w). (25)
J#J' JII#J”I

Terms in Eq. (24) with J = J' and J” = J"” are included in A J.07(r, r'; w)
etc. In terms of the atomic spin orbitals ¢, , @4, @: , and @, and the expansion
coefficients djs that relate molecular orbital [ to atomic orbital ¢ ,

Ap(r,riw) = ) ¢p(r)dg(r)en(r)du(r)

p.q.t.u

x 3 Y es0)es(E)er(K)erm(0)
K+#0 i(J),j(J"),0cc
dzpdzqdjtd]u
Ex — Ey — hw
= ) BY(w) &(r) 84(r) &u(r) Su(r’).  (26)

p.q.t.u

In Eq. (26), the sum over i(J) runs over all molecular orbitals ¢ that are occupied

in determinant J and similarly for the sum over j(J”) . The sum over p, g,
t ,and u runs over all atomic orbitals. For J # J' , we define [(J,J') as
the molecular orbital occupied in J but not in J', 7(J,J’) as the molecular
orbital that is occupied in J’ but notin J, dj ), is the coefficient of atomic
orbital p in molecular orbital /, and dr( J,J')q 1s the coefficient of atomic orbital g
in molecular orbital 7 (and similarly for J” # J” ). We obtain

AJ=JI’JII#JIH = AJJII#JH' r, r (.d Z d)p ( ,) d)u(r’)

pg.t.u

x Y Y es(0)cs(K)em(K)em(0)

K#0i(J),0cc
dipdiqdl(J”,J”’)tdr(J”,J”’)u
Ex — Ey — hw

= D Bisgn(w) dp(r) 64(r) $i(r') du(r’) (27)

p.q.t.u
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Ajpg gr=gm (r, 1 w) = Z ®p(r) q(r) Dr(r') @u(r')

Piq,t.u
X Z Z CJ CJ' CJ"(K)CJ”(O)
K+#0 j(J"),0cc
dy(3.9pr (3.9t A0
Ex — Ey — ﬁw
= Z Bgzéh}i J” (r)¢q(r)¢t(rl)¢u(rl)(28)

p.g.t,u

Asprarzm (0,F50) = 3 6,(r) 0y(r) 8u(r') 6 ()

p.q.t.u
x Z dl(‘]*J')pd':g]‘J,)ng‘]""]’;;‘:dr(‘]”*‘]m)“
K#0 K — L0 —

x c,(O)cJ,(K)cJ,,(K)cJ,,,(0)
= Z ng#tl.;l J//#Jm )

p.q.tu

X &p(r)dq(r) e (r')du(r'). (29)

The calculations of the charge-density susceptibility x(r, r’; w) in this work are
based on Egs. (26) - (29).

To check the calculations of x(r, r’; w) , we have calculated « 3(w) from
X(l‘, r’;w) and Eq. (25). The frequency-dependent polarizability aqag(w) is
given by

dos(w) = 3 oltal Vi) (¥lsl Vo)

prard Fx — Fy — hw
(Wolus| ¥k ) (¥k|1a|Po)
30
+ g‘;o Ex — Eq+ o (30)

where [, and Ug denote the o and (3 components of the dipole moment

operator, given by [l, = E €iTia + E ZiR;, where N is the total number of
i=1 7=1
electrons in the molecule and M is the total number of nuclei. Also, e; is the charge

on the i*® electron, Zj is the charge on the jth nucleus, T;, isthe a component

:th

of the vector from the origin to the 2" electron, and Rja is the @ component
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of the vector from the origin to the j th nucleus. Eq. (2) follows from Egs. (20) and
(30). From Egs. (25) - (29),

t
aag(w) = Z BTJ?,J",J”’ (w) pb Nf/jua (31)
JJJn Jm
where
BYY 1 (W) = BY(w) 8100 8n g + BY ju(w) 80 (1= 8o gm)
+ B.I;ZZ;’,J”(U)) (1 — 6],]’) 6J//Jm
+ B’J";Z,’J,,#J,,,(w) (1 -— 5JJ') (1 - (5J~Jm) ; (32)

BT and uf,“ are dipole moment integrals in the atomic orbital basis, defined as

iz = (plfalg) snd uf = (tliglu)
1.3 Algorithm for x(r,r’;w)

We have used the General Atomic and Molecular Electronic Software System
(GAMESS)!¢ to calculate the one- and two-electron integrals, to find the molecu-
lar orbitals at restricted Hartree-Fock (RHF) level, and to transform the one- and
two-electron integrals from the atomic orbital basis to the molecular orbital basis.
Then we have solved the CISD (CI singles and doubles) equations to find the CISD
coefficients cj(K) , the ground-state energy FEj , and the excited-state energies
FEx . Using these quantities, the atomic orbitals, and the transformation coeffi-
cients from the atomic orbital to molecular orbital basis, we have calculated A j j»,
Ajepgn, Aggrzgm and Ajgzy gngegm and then summed to obtain the charge-
density susceptibility x(r,r’;w) of the molecule.

To calculate cqs(w), we have used dipole moment integrals [ 74 @p(T) ¢q(r) dr
and f 7‘23 &4(r') ¢u(r') dr’ computed in the linear-response coupled-cluster pro-

gram written by Kondo and co-workers. %56

1.4 Results of x(r,r';w) Calculations

We have calculated the charge-density susceptibility of the H, molecule at the CISD

level as a function of frequency w and points T and r’ using a program based on
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the algorithm presented here. Since CISD is equivalent to full CI in a two-electron
case, our results are exact within the basis set that we used. Each plot of the charge-
density susceptibility that we will present here was generated by fixing w, r’ ,and
, and calculating x(r,r’;w) forall y and z includedin —3.25 <y < +3.25
and —3.25 < 2 < +3.25 au. with Ay = Az = 0.05 . The aug-cc-pVDZ
basis set was used for the plots. Note that the internuclear axis was aligned with
the 2z -axis for all calculations, and that we used the equilibrium geometry of the H,

molecule (the equilibrium bond length of H, is 1.40126 a.u.).

Before presenting the results of our calculations, let us discuss some important
properties of the charge-density susceptibility that we will use to understand the
behavior of X(r,r’;w) . Recall Eq. (20) from Sect. 1.2,

x(r,r’;w) — Z<\Ilolp€(r)|qlK)(‘I’Klpe(r’)hl/o)

K0 Fyx — Ey— hw
(Wolpe(r')|W k) (¥ k| pe(r)| o)
+ %;0 Ex — Eo+ hw ' (33)

According to Eq. (33), x(r, r';w) is singular for energies Aw that are equal
to =% (EK - Eo) , if the corresponding terms in the numerator do not vanish.
We have verified this property of x(r, r’;w) by calculating x(r, r’;w) of H,
at ¥ =0,0,00 £ =0,and w = E; — Ey (data not shown). For these
conditions, Xx(r,r’;w) of H, was approaching infinity at —3.25 < y < 3.25
and —3.25 < 2 <3.25 with Ay =Az=0.05.

If Wy is asinglet state and Wy is a triplet state, then the matrix elements
(Wolpe(r)|¥k) , (Yoloe(r')|¥k), (Yk|pe(r)|Wo), and (¥k|pe(r')| o) van-
ish. This holds because p, (r) and pe (r’) are spin-independent operators, so that
it is impossible for pe(r) and pe(l") to change the spin of Wy to a singlet.
Therefore, triplet states will not contribute to x(r,r’;w) , and x(r,r’;w) will
not be singular at energies which correspond to transitions to triplet states. This
will be true for all of our data, since W is a CI singlet ground state for all of our

calculations.
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In the aug-cc-pVDZ basis, H, has 18 spatial orbitals and 36 spin orbitals. Eigh-
teen of the spin orbitals have « spin functions, and the other eighteen have (3 spin
functions. We label & spin orbitals with odd integers, and 3 spin orbitals with even
integers. In terms of spatial orbitals, the lowest energy spatial orbital (the 1oy
orbital) is doubly occupied in the ground-state configuration of H,. In terms of spin
orbitals, the lowest energy « and (3 spin orbitals are occupied in the ground-
state configuration of Hy. Recall from Eq. (21) that the ground- and excited-state
CISD wavefunctions are generated from a linear combination of all possible singly-
and doubly-excited determinants. Therefore, according to Eq. (21), the ground-state
wavefunction for H, in the aug-cc-pVDZ basis is:

[To) = co(0)|®) + c5(0)| ) + c5(0 )I‘I’5)
+ c5(0)|®3) + c5(0)|®3) + ... +c33(0)|8T3) + ci5(0)|B}3) + ...
= co(0)|®) + c5(0) [|83) — [®3)] + ... +c31(0)|BT) + ... (34)

where ®3, @2, ®3 , and ®P§ are singly-excited determinants which correspond
to exciting an electron from spin orbital 1 (10ga) to spin orbital 3 (10y4) , from
spin orbital 1 (logq) to spin orbital 5 (204a) , from spin orbital 2 (1logg)
to spin orbital 4 (loyg) , and from spin orbital 2 (logg) to spin orbital 6
(2043) , respectively. Also, P35 and P35 are doubly-excited determinants
corresponding to exciting electrons from spin orbitals 1 and 2 to spin orbitals 3 and
4, and from spin orbitals 1 and 2 to spin orbitals 3 and 6, respectively. In Eq. (34),
the quantity |<I>‘;’) - |<I>g> is a singlet spin-adapted configuration state function.
This is because each determinant involved in the linear combination in either quantity
involves exciting an electron from the same lower energy spatial orbital to the same
higher energy spatial orbital, and the resulting determinantel configuration is an
eigenfunction of S? and S = 0 . If we write configuration |®3) — |®$) in
terms of spatial orbitals %; and spin functions a and 3, where (¢;|¢;) = d;; and

(a|B) = bap , we have:

|93) — [93) = [¥1(1)B(1)¥3(2)(2) — 91 (2
— [1()e(1)¥3(2)8(2) — ¥1(2
= [¥1()¥3(2) + ¥1(2)¥3(1)]
x [B(1)a(2) = B(2)a(1)].

)B(2)¥s(1)e(1)]
Ja(2)93(1)B(1)]
(35)

According to Eq. (35), the spin part of |®3) —|®8) is antisymmetric with respect

to electron exchange. We can carry out a similar analysis on each excited-state W g
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in the aug-cc-pVDZ basis set in order to determine whether a particular Wg isa
singlet or a triplet state.

Let us return to our discussion of the properties of X(r, r'; w) . To do this,
consider the symmetry of the H, molecule. Since H, belongs to the D, point group,
there are an infinite number of irreducible representations that can be used to classify
the symmetries of its orbitals and states, including 2;’, 2;, Iy, 27, I, I,
Ag ,and A, . If Y =0 and ¥; isa 129 state, then matrix elements
(Wolpe(r)[¥k), (Yolpe(r)|¥k), (Vklpe(r)|¥o) , and (Vi |pe(r')|Wo) are
nonzero only for Wy states that have 129 symmetry. Therefore, when r’ = 0
, X(r, r’;w) will only be singular for energies hw approaching the energy of
transition to Eg states. In order to understand why this is true, we need to consider
the composition of the charge-density susceptibility. According to Egs. (25) - (29) in
Sect. 1.2, the charge-density susceptibility is essentially a sum of products of atomic
orbitals evaluated at T and I’ which is weighted by CI coefficients, coefficients for
converting atomic orbitals to molecular orbitals, and energy denominators. Although
we have not done so here, we can also write the charge-density susceptibility as a
sum of products of molecular orbitals evaluated at r and r’ and weighted by CI
coefficients and energy denominators. Now, consider the molecular orbitals of H, as
a function of I’ . The 04 orbital is nonzero at 2/ =0, and the o, orbital
is zero when 2’ = 0 . The mg and T, orbitals are also zero when 2 =0.
Therefore, the only orbitals and states which will contribute to x(r,r’;w) of Hy
when r' = (0,0,0) are 0gtype orbitals and X, -type states. Note that this
property of X(r,r’;w) is also true when T =0 .

If I lies along the molecular axis and Wy is 129 state, then matrix elements
(Wolpe(r)| k), (Yolpe(r')|¥k), (¥k|pe(r)|¥o) . and (¥k|pe(r')|¥o) will
only be nonzero for !X, and !X, states. Therefore, when I’ lies along the
molecular axis, the only singularities in X(r, r'; w) will occur at transitions to lzg

or lzu states. This property of X(l‘, r’;w) can also be explained in terms of
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the molecular orbitals of Hy. The 0y4(r’) and o,(r') orbitals are nonzero for all
2’ except 2’ = 0. Therefore, these orbitals will contribute to x(r, r; w) for all
r' = (0,0,£2) except r' =(0,0,0) . Since the my(r') and m,(r') orbitals
are zero for all 2’ , they will not contribute to x(r, r'; w) when I’ is on the large
2’ axis. This property of X(r, r’;w) is also true for r = 0 . Note these results
hold when the molecular axis is along the 2’ (or 2 ) axis, which applies for all of
our calculations.

If ' is somewherein the T2 plane, then the matrix elements (Wq|pe(r)| V),
(Wolpe(r)|¥ k), (¥k|pe(r)|¥o), and (Vg|pe(r')|¥o) will only be nonzero
for T, and 1A:,z_yz-type states (of the states generated by the basis set used).
As aresult, if T’ isin the T2 plane, x(r, r'; w) will only blow up for energies
which correspond to transitions to IHI and lez_yz states in these calculations.

Figure 1 shows the charge-density susceptibility of the H, molecule with w = 0
and ' = (0,0,0) . As expected, Xx(r,r’;w) does not become singular when
w = 0, since we are not near any transition energies. Also, note that X(r, r'; w)
has the general shape of a 04 molecular orbital of Hp. This is as expected, since
r' = (0,0,0) , for which only 0, type orbitals and ¥, type states contribute to

x(r,r';w) .
. Figure 2 shows the charge-density susceptibility of the H, molecule when 1’ =
(0,0,0) and w = 0.3858668352248763 a.u. Note that fiw isnear (E; — Ej)
in the aug-cc-pVDZ basis set. As in Fig. 1, the susceptibility has the general shape
ofa 0, molecular orbital of H. Again, this is observed because r’ = (0,0,0) ;
since only 04 - type orbitals and Zg -type states contribute to x(r, r'; w) for
r = (0,0,0). Also, although Aw isnear (E; — Ey), x(r,r’;w) of Hy does
not become singular at any r . This is because W, is a triplet state, and, as we
have discussed, triplet states will not contribute to X (r, r'; w) at any frequency, r
or ¥ value.

The charge-density susceptibility of the H, molecule at r’ = (0,0,0) and
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w = 0.4812104263202694 a.u. is shown in Fig. 3. This value of Aw is
near (E4; — Ey) for the aug-cc-pVDZ basis set. As was the case for w = 0
and w = 0.3858668352248763 a.u., x(r,r’;w) has the general shape of a o
molecular orbital of H, because 1’ = (0,0, 0) . However, in contrast to Xx(r,r’;w)
at w =0 andat w = 0.3858668352248763 a.u., x(r,r’;w) is singular near
w = 0.4812104263202694 a.u. This happens because ¥y isa !X, state.
Figure 4 shows the charge-density susceptibility of the H, molecule at r’ =
(0,0,40.07) and w = 0.3858668352248763 a.u., which is near (E; — Ep)
. This is the same frequency that was used to calculate x(r, r'; w) as shown in Fig.
2. As was the case for x(r, r'; w) as shown in Fig. 2, X(r, r'; w) is not singular
at this frequency, since W, is a triplet state. However, the shape of X(r, r'; w) in
Fig. 2 is different from the shape of X(r, r';w) in Fig. 4. Whereas x(r,r’;w) as
shown in Fig. 2 has the general shape of a 04 molecular orbital of Hy, x(r, r'; w)
as shown in Fig. 4 resembles a 0, molecular orbital of Hy. This results from the
fact that r’ lies on the molecular axis. Recall that when I’ lies on the molecular
axis, both 04 and 0,-type orbitals can contribute to x(r, r'; w). Therefore, both
04 and 0y-type orbitals contribute to x(r,r’;w) when r’ = (0,0,0.7) , and the
overall shape of x(r, r’;w) depends on a sum of products of g4 and 0, orbitals.
The charge-density susceptibility of the H, molecule at r’ = (0,0,0.7) and
w = 0.4648380650856789 a.u., which is near (FE3 — Ej) , is shown in Fig. 5.
According to Fig. 5, x(r, r'; w) is singular near this frequency. This results from
the fact that W3 isa !, state, since x(r,r’;w) ofHyat ' = (0,0,0.7) is
singular for transitions to X, or Y, states. Notice also that the charge-density
susceptibility of H, in Fig. 5 resembles a ¢, molecular orbital of H,. Again, this
occurs because both 0g4-type and o,-type orbitals contribute to x(r, r'; w) when

I’ lies on the molecular axis, but ¥’ # (0,0, 0).
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1.5 Results of a,3(w) Calculations

In order to test our calculations of the charge-density susceptibility of H,, we have cal-
culated the Qzz(w), oy (w) and @,,(w) components of the static and frequency-
dependent polarizabilities of the H, molecule at the CISD level in the DZ, DZP and
aug-cc-pVDZ basis sets. Table 2 provides a comparison of the 0z (w), ayy(w) ,
and Q,, (w) components of the frequency-dependent polarizability g (w) ob-
tained by integration of x(r, r'; w) (using the algorithm described here) and by
finite-field calculations carried out with the MOLPRO!” quantum chemistry software
package. There is excellent agreement between the  , (w), Qyy (w) ,and «Q,, (w)
values calculated here and the corresponding values calculated with MOLPRO!.

Figure 6 shows the «,, (w) component of the polarizability of H, in the DZ, DZP
and aug-cc-pVDZ basis sets as a function of frequency for various frequencies within
the range from 0 to 1.5 atomic units (a.u.). Note that for these calculations, the bond
length of Hy was set to 1.40126 a.u. (the equilibrium bond length of the Hy molecule).
According to Fig. 6, a,, (w) in the DZ basis set becomes singular at approximately
0.58 a.u., and azz(w) in the DZP basis has a singularity at approximately 0.57 a.u.
In the aug-cc-pVDZ basis set, «, z(w) is singular at frequencies of approximately
0.47 and 0.6 a.u. Figure 7 shows the same data as shown in Fig. 6, however, the
range of the «,, (w) values in Fig. 7 is restricted to &+ 200 a.u.

We will now explain the singularities of zz (W), @y (W) , and @, (w) in the
DZ, DZP and aug-cc-pVDZ basis sets in terms of the spin states which contribute to
ao3(w) of Hz and the symmetries of these states. According to Eq. (30), aqp(w)
can be written in terms of matrix elements (Wo|ua|Vk) and (Vi|us|Wo) of
dipole moment operators U, and Lg , respectively. Because p, and pg are
spin independent and W is a singlet state, matrix elements (Wo|us|Vk) and

| (¥ |pp|Wo) will be nonzero only if the W states are singlet states. Therefore,

only singlet Wg’s will contribute to aqg(w) .
We can determine which singlet excited states contribute to y3 (w) by analyzing
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the symmetries of the matrix elements which contribue to @q3(w) . To begin this
analysis, consider Eqgs. (21) and (30). If Eq. (21) is substituted for |¥g) and |¥g)
, then a,3(w) becomes

aas(w) = P(a, B,w) + P(3,a, —w) (36)

and

Pla,Bw) = > Y ci0)esm(0)cs(K)es(K)

K>0 J.J' g7, Jm
(@gfta|® ) (P | 1| P gm) (37)
Ex — FEy — hw

where all quantities in Eq. (37) have been defined previously. According to group
theory, the matrix element (® ;|{,|® ) will be nonzero only if the direct product
of the irreducible representations of ®j , i, , and Py equals or contains the
totally symmetric irreducible representation for the molecular point group. We will
determine the symmetries of @, flo, and Py that make (P;|fin|®P ) nonzero

for a=zr,a=y,and a=2z2.

Let us begin by determining the symmetries of ®j, ®, and [i, that make
(®y|f1,|® ) nonzero when J = J'. Egs. (21) and (37) indicate that determinants
®; are contained within the ground state CI wavefunction Wq . Because all
determinants within a CI wavefunction must have the same symmetry as the overall
wavefunction, determinants ®; must have the same symmetry as the wavefunction
Wy. Therefore, since we have required that Wq has Z;’ symmetry (in the Dy

point group), ®; must also have Z;’ symmetry. If we let fi, = — (e 21 t+e 22)
in (Py|.|®s) , we have
(Dy|2:|Ps) = —€(@y]21|Ds) — € (Ds|22| D). (38)

In the Dy, point group, 2 transforms as 2;’ . Therefore, the direct product
corresponding to either (®,]21|®s) or (Psl22|®s) s TF Ty I = I,
which does not equal or contain Z;’ . Therefore, matrix elements (P j|a,|® )
vanish for all J = J’. Now, let us determine the symmetries of ®7, ®; and fi,
that make (®|,|®s) nonzerowhen J # J' . Ifwelet 1, = —(e2) + € 23)
in (®,|i,|®,) , we have

(@)i1:| ) = —e (Py|21|P ) — € (Dy|22|D ). (39)
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Let us assume that @ has X symmetry. Since ®; has Z;“ symmetry and
z) has ¥} symmetry, the direct product corresponding to either (® ;|z;|® /) or
(®g|20|®y) is E; Tt = Z;’ , which is the totally symmetric representation.
Therefore, (P j|f1,|® ) will contribute to @, (w) when ®y has LI symmetry.
Since the excited states Wx that contain ® ;7 must have the same symmetry as
®;: , we can also conclude that excited states with ZI symmetry will contribute
to Q,, (w) If ®; has a non-zero projection of the angular momentum along the

z axis, (Py|@,|Py) vanishes. Therefore, only states of X symmetry contribute

to Q. (w) .

At this point, let us determine the symmetries of ®;, ®/, and [i, that make
(®y|fiz|®s) nonzero when J = J'. If we let i = —(ex) +exs) in
(Py|faz|®s), we have

(@y]z| D) = —e(Dy|z1|Ds) — € (Dy|T2| D). (40)

In the Dy, point group, x transforms as I, . Therefore, the direct product
corresponding to either (®;|z1|®y) or (Ps|z2|®;) is X7 I, T = II,
, which does not equal or contain 2;. Therefore, matrix elements (P |/, |® )
vanish for all J = J’ . Let us determine the symmetries of ®;, ® 5 and [i,
that make (®;|f;|®Py) nonzero when J # J'. If welet 1, = — (e ) + e z2)
in (®y|f.|®y), we have

(@t |®yr) = —e (Dylz1|Py) — € (D@ y|T2| D). (41)

Let us assume that ®j has II, symmetry. Since ®; has Z; symmetry and
zy has II, symmetry, the direct product corresponding to either (® j|z1|® ;)
or (®y|za|®y) is X I, I, = B + X7 + Ay, which contains the totally
symmetric representation. The matrix element (®j|i,|® ) will contribute to
0z (W) when ®y has II,. symmetry. Since the excited states U that contain
® ;» must have the same symmetry as ® j/, we can also conclude that excited states
with Hu, symmetry will contribute to Q. (w) Excited states of other symmetries
do not contribute. In the Do point group, ¥y also transforms as II,. Therefore,

matrix elements (®;|fi,|®;) will also vanish, matrix elements (®j|z,|® )
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will also be nonzero when @ has II,, symmetry, and excited states with Il
symmetry will be the only ones to contribute to @y (w) . In Fig. 7, we see that
Q,, (w) in the DZ basis set is singular at two frequencies, approximately 0.58 and
1.47 a.u. We also see that «,, (w) in the DZP basis set is singular at 0.57 and at
1.43 a.u.

For the three basis sets, each of the frequencies where «, z(w) blows up corre-
sponds to a specific (Fx — Ep) value. In the DZ basis, 0.58 a. u. and 1.47 a. u.
correspond to (E; — Ep) and (E; — Ep), respectively. In the DZP basis, 0.57 a. u.
and 1.43 a. u. correspond to (E; — Ep) and (E7 — Ep). Finally, 0.47 a.u. and 0.6 a.u.
correspond to (E3 — Ey) and (Ejo — Ep) in the aug-cc-pVDZ basis set. According to
an analysis of the spins and symmetries of states 2 and 7 in the DZ and DZP basis
sets, state 2 corresponds to the 1121“: of Hs, and state 7 corresponds to the 2122"
state of Hy. A similar analysis of states 3 and 10 in the aug-cc-pVDZ basis set shows
that these states correspond to the 1123' and 212;*' states of Hy, respectively.

Figure 8 shows the «a;, (w) component of the polarizability of the H, molecule
in the DZP and aug-cc-pVDZ basis sets as as a function of w, where w varies from 0
to 1.75 a.u. Note that the Q. (w) component of the polarizability of H, in the DZ
basis set vanishes, since there are no p-type atomic orbitals on either of the H atoms
in the DZ basis set. According to Fig. 8, . (w) of Hy in the aug-cc-pVDZ basis
set is singular at approximately 0.57 a.u. Figure 9 shows the g, (w) component of
the polarizability of H, as a function of w in the DZP basis set, where w varies from
0 to 1.75 a.u. Note that these data were also shown in Fig. 8, however, in Fig. 8,
the @z (W) scale is too large to show the behavior of @z (w) in the DZP basis.
According to Fig. 9, the a4 (w) component of the polarizability of H, in the DZP
basis is not singular within the 0 to 1.5 a.u. frequency range.

Only II,-type states will contribute to the (w) component of the polariz-
ability of Hy. The energy fuw of the frequency at which oz, (w) is singular in the

aug-cc-pVDZ basis set corresponds to the degenerate energy differences (Eg — Ep)
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and (E9 — Ep). According to an analysis of the spins and symmetries of Ug and Wy,
these states are the IIIL,I and llnuy states of Hy, respectively. Transitions to
the 1T, state account for the singularity of Qs (w).

The ayy (w) component of the frequency-dependent polarizability of Hj in
the DZP and aug-cc-pVDZ basis sets as a function of w , where 0 < w < 1.75
a.u., is shown in Fig. 10. Note that the ay, (w) component of the frequency-
dependent polarizability of H, in the DZ basis set vanishes. Fig. 10 shows us that
the ay, (w) component of the polarizability of H, in the aug-cc-pVDZ basis set
also has a singularity at w = 0.57 a.u.

Only II,-type states will contribute to (w) of the Hy molecule. As was the
case for the o, (w) , the energy Fw corresponding to the frequency at which
Qyy (w) has a singularity corresponds to the degenerate energy differences (Eg — Ej)
and (Ey — Ey). As mentioned above, Ug and Uy in the aug-cc-pVDZ basis are the

llHuI and llﬂuy states of Hy, respectively.
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2 Higher-Order van der Waals Interactions from
Perturbation Theory

2.1 Introduction

This chapter provides an introduction to intermolecular interaction phenomena and
a brief summary of the methods used to calculate these interactions, within pertur-
bation theory. In chemistry, the interaction energy Fj;,; of molecules A and B is
given by

Eint = Egp— E4— Ep (42)
where E4p is the total energy of the two interacting molecules. Also, in Eq. (42),
E4 and Ep are the energies of molecules A and B when they are separated from
one another.

In comparison to covalent bond energies, intermolecular interaction energies are
weak. Whereas covalent bond energies are on the order of one hundred kilocalories per
mole, intermolecular interaction energies range from fractions of kilocalories per mole
to kilocalories per mole. Despite the relatively small magnitudes of intermolecular
interaction energies, several phenomena are affected by these interactions. Some of
these phenomena include the structures and properties of intermolecular complexes,
molecular dynamics, solvation, and the behavior of bulk gases, liquids, and solids.
This chapter is organized as follows: In Sect. 2.1, we introduce the idea of an in-
termolecular interaction energy and briefly discuss the importance of this kind of
interaction in chemistry, biology, and physics. In Sect. 2.2, we present the basic
quantum mechanical theory of intermolecular interactions. In Sects. 2.3 and 2.4, we
present and discuss the polarization and the multipole approximations, respectively.
We use Sect. 2.5 to introduce various formulations of the bipolar expansion. Fi-
nally, we discuss symmetry-adapted pertubation theory and many-body perturbation

theory in Sects. 2.6 and 2.7.
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2.2 The Quantum Mechanical Theory of Intermolecular In-
teractions

In the Born-Oppenheimer approximation, the time-independent electronic Schrédinger
equation is

H|Vy) = Ei|¥y). (43)

In Eq. (43), H is the Hamiltonian for the system, |Wj) is the exact electronic
wavefunction for the ki state of the system, and FEj is the exact energy for the
k" state of the system. If the system consists of two interacting molecules A and
B, then Eq. (43) becomes

qulk,\3> = EkABIquAB>’ (44)

. th
where Wy,  and Fj,, are the exact wavefunction and energy for the k'™ state
of the interacting system. In Eq. (44), the overall Hamiltonian H is

H=HA+HB+vV, (45)

where HA4 and HPB are the Hamiltonians for molecules A and B when they are
isolated from one another. The Hamiltonians H X are given by

HY - ()zw Sy

zEX i€eX aeX

+ Z (46)

1,j€Xi<] Tij

where X = A for molecule A, and X = B for molecule B. Indices 7 and J run
over all electrons in X, and & runs over all nuclei in X. Also, ( ) V2 is the kinetic
energy operator for the " electron in molecule X, Z, is the charge on nucleus
« of molecule X, and T, is the distance between the ith electron and nucleus @ in
molecule X. Additionally, 7;; is the distance between the ith and j** electrons in
molecule X. The Hamiltonians H* and H? satisfy the time-independent electronic
Schrédinger equation

HX|¥,,) = Ei | Vi), (47)

with X = A for molecule A, and X = B for molecule B. In Eq. (47), ¥y, )
is the exact wavefunction for the [t* state of molecule X , and Ej, is the
corresponding energy of that state. Finally, in Eq. (45), V' is the intermolecular
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interaction operator, which is

- yyatoyy L

~YEA é€B neB 'yeA
-2 Z —+D. D - (48)
meA JeB meAneB ™"

Indices 7y and & run over all nuclei in A and B, respectively, and m and n run
over all electrons in A and B. Also, Z, is the charge on nucleus 7y in molecule
A, and Zj is the charge on nucleus & in molecule B. We also use T,s to denote

the distance between nucleus 7 in A and nucleus ¢ in B, Tny to denote the

th

distance between nucleus 7y in A and the n™" electron in B, and 7,5 to denote

the distance between nucleus 0 in B and the mt?

th

electron in A. Here, T, is
electron in A and the n'?
combine Eqs. (44) and (45), we have

(HA+ HB + V) [Wi,,) = Bkl Vi) (49)

the distance between the ™ electron in B. When we

Eq. (49) can only be solved exactly for the interaction between a hydrogen atom
and a proton. The energy of interaction between two larger systems can be obtained
by solving Eq. (49) approximately, using either perturbation theory or variational
theory.2%% Although variational methods have successfully been used to calculate in-
termolecular interaction energies,?®® these methods will not be discussed in this work.
For the remainder of this chapter, we will briefly discuss various perturbative schemes
for solving Eq. (49). For more detailed descriptions of each of the methods mentioned

here, we refer the reader to several reviews.”0 737

2.3 The Polarization Approximation
.2.3.1 Introduction

In Rayleigh-Schrodinger perturbation theory, the Hamiltonian for any perturbed
atomic or molecular system is

H=H"+YV, (50)

where HO is the Hamiltonian for the unperturbed system, and V is the term that
describes the perturbation which is being applied to the system. If we assume that
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the Hamiltonian in Eq. (49) has the form of Eq. (50), then HA+H?Z = HO inEq.
(49) and we can solve Eq. (49) with perturbation theory. This specific partitioning of
the Hamiltonian in Eq. (49) is known as the polarization approximation (PA).6%76:70
In this formulation of Eq. (49), V is the potential of interaction between A and
B. When A and B are infinitely far apart, V = 0 and H = H? , since there
is no interaction between A and B when they are isolated from one another. Let us

consider only the ground-state Schrodinger equation for the interacting system. In
this case, Eq. (49) becomes

(HA + HB + V) |W0AB> = EOAqu’OAB>' (51)

Now, let us derive expressions for the exact ground-state wavefunction and energy of
the interacting system. Let us introduce an ordering parameter A into the expression
for the Hamiltonian of the interacting system, so that H becomes

H=H"+)\V. (52)

Then, let us expand both Wq,, and FEp,, ina power seriesin A . When we do
this, ¥o,, becomes

Vs = 3 AT (53)
=0
where
(n) _ 5. 10"%
Voo = i i on (54

and, Fj 4p becomes
- (n)
Bou = 3B, (5)
n=0

In Eq. (53), \1182)8 is the n'P-order correction to the exact wavefunction for
the interacting system, W ap - Similarly, in Eq. (55), E(()ZL is the nt? -order
correction to the exact energy for the interacting system, Fj,, . Now, let us impose
the intermediate normalization condition, so that

0
(T, [o,5) = 1. (56)
Then, substituting Eq. (53) for |¥ A B) in Eq. (56), we obtain
(o.9)
n 0 n
n=1
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Since A # 0, Eq. (57) simplifies to

Z< (()(:)Bl‘yOAB> =0. (58)
n=1

If we substitute Eqs. (53) and (55) into Eq. (51) and combine terms of the same
order in A\ , we obtain a system of equations of infinite order. The general form of
an equation in this system for a given n is

(HA+ HB) |w{ )y + v]u Yy = E(§3>3|\IJOAB) + BN 1Yy

OAB OAB

+ ESOIw y + E w0y, (59)

O0aB

where n =1, 2,...00 . If we multiply each term in Eq. (59) by (ng)el and use
Eq. (54), we obtain

(n) _ (0) (n—1)
EP = (v® Vgl (60)

OaB OaB

th

The n!* -order energy E(()ZL is known as the 7™ -order polarization energy.

The ground state energy for the interacting system is the sum of the nth_order
polarization energies for all possible values of 7 , that is,

o
EOAB = Z E((JZ)B (61)

n=0

Also, the nth _order polarization wavefunction ‘I/(()Z)B is calculated recursively from

\Il(n

O0asB

n—1) (k
= -GV +ZE0 el s (62)
k=1

where G is the reduced resolvent given by Eq. (19) in Chap. 1. The 15, 27¢ and
37 _order polarization energies have been studied extensively, and their physical
interpretations are well understood. In the next section of this chapter, we will

present the equations for each of these energies and briefly discuss their physical

interpretations.
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2.3.2 The First-, Second-, and Third-Order Polarization Energies

The 1%t-order polarization energy is obtained by letting n = 1 in Eq. (60),

EM = (w0 v gy, (63)

O0aB O0as Oas

We approximate \Ilgl)a by the product of the exact ground-state wavefunctions
Wy, and W, of Aand B, so that

v = Wy W, (64)

Y:)

Using Eq. (64) in Eq. (63), we obtain

ESD = (W0, W0, |V|¥0o,¥0,). (65)

The energy given by Eq. (65) is called the electrostatic energy. Classically, E(();)a is
interpreted as the Coulombic interaction energy between the charge distributions of
A and B.™9% When the distance between A and B is large enough that the potential
energy of interaction of A and B is asymptotically approaching zero, the electrostatic
energy is the sum of the energies due to the interactions between the permanent
multipole moments of A and B. When A and B are relatively close together, the
electrostatic energy contains terms that can be attributed to the overlap of the charge
distributions of A and B. These terms are largely responsible for stabilizing van der
Waals complexes that consist of an atom and a diatomic molecule.”” 8% Also, the

structures of dimers of polar molecules, especially of hydrogen-bonded dimers, are

largely determined by the electrostatic energies of these complexes,81 859486793
We obtain the 2™%-order polarization energy by letting n = 2 in Eq. (60),

Egy = (Yo [VIT5,),)- (66)
Using Egs. (64) and (62) in Eq. (66), we obtain
E(gi)g = —(Wo, Vo, |VGV[¥o,V0,). (67)

If we allow excitations of A or B only in Eq. (67), we obtain the induction con-

tribution to E(()A)B . The term that arises from excitations in A can be physically
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interpreted as the polarization of molecule A due to the static electric field produced
by B. Similarly, the term that arises from excitations in B can be interpreted as
the polarization of molecule B due to the static electric field produced by A. It is
important to note that the induction energy does not account for intermonomer elec-
tron correlation, that is, the correlation of the motion of the electrons in A with the
motion of the electrons in B. When the distance between A and B is such that in-
teraction energy is asymptotically approaching zero, the induction energies of A and
B can be calculated using the permanent multipole moments and static multipole
polarizabilities of A and B. At shorter distances, where the charge distributions of
A and B overlap, the polarization propagators®®®” of A and B are also needed to
calculate E(()i)B . Equations that express the second-order induction energy in terms
of polarization propagators are given in references 95 and 187. Distributed multi-
pole moments and polarizabilities are often used in calculations of induction energies
generated by the interaction of two larger molecules.®® 1% However, because the po-
larizabilities used in these calculations are non-unique, these calculations are often
inaccurate. % Angyé.n et. al. have improved these types of calculations by defining
distributed multipole polarizabilities so that they are basis set independent, and have

also used these polarizabilities to calculate induction energies.!%!
We obtain the 3"%order polarization energy by letting n = 3 in Eq. (60),

2
Ege = (Yol VITE,). (68)
Using Egs. (64) and (62) in Eq. (68), we obtain
ES) = (W0, %o, |VGVGV ¥, ¥0,), (69)

where V = V — (¥, o, |V|¥o,¥p,). We obtain the 3™%-order induction
energy in the same way that we obtain the 274 _order induction energy. When we
allow excitations in states of 4 or B in Eq. (69), we obtain the 3™%-order induction
energy as a sum of four terms. The first two terms represent the polarization of

molecule B due to the static electric field produced by A and vice versa. The second
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two terms represent the mutual polarization of A and B by the fields of B and
A, respectively. As was the case for the 2"¢-order induction energy, the 3¢-order
induction energy can also be calculated using the permanent multipole moments and
static multipole polarizabilities at large intermonomer distances. At distances where
the charge-densities of A and B overlap, the static polarization propagators of A and
B are also needed to calculate the 3™%-order induction energy. Moszynski et. al. has
derived an expression for the 3"-order induction energy that expresses this energy in
terms of the static polarization propagators of A and B,'® including the quadratic
polarization propagators?"1927105 of 4 and B.

We have discussed the terms that arise in the expressions for E(()i)a and Eéi)a when
we allow excitations in A or B only. If we allow simultaneous excitations of A and B
in the expressions for E(()i)a and E(()i)a’ we obtain the dispersion contributions to these
energies. The dispersion energy appearing in Eéi)B can be physically interpreted as
a consequence of the correlation of the motion of the electrons in A with the motion of

the electrons in B. At large intermonomer distances, the 2™ _order dispersion energy

E(2.disp)

Oap can be calculated from the dynamic multipole polarizabilities of A and

B.1%6 At distances where charge overlap is important, the polarization propagators of

2,di _ s
A and B are also needed to calculate E(() A stp ) 95,101-109 The 374 order polarization

energy contains terms corresponding to a combined induction-dispersion effect as well

as terms corresponding to a pure dispersion effect. Moszynski et. al. have derived an

3,ind—disp)

equation which expresses the induction-dispersion energy E(()A 5 in terms of

the electron densities and polarization propagators of A and B.'®" In this work, the

isp)

. . 3.d . .
dispersion energy E(()A 5 is expressed in terms of frequency-dependent monomer

susceptibilities for the first time. It should be noted, however, that our result is

~correct only for large distances between A and B, where exchange can be neglected.

3,disp)

Previous attempts to express E((,A o

by Chan et. al.!'0

in terms of monomer properties were made
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2.3.3 The Convergence of the Polarization Expansion

The convergence of the polarization expansion has been thoroughly studied.!!!'™125
The polarization expansions for the interaction energies of H-H* and H-H systems
converge. According to studies performed by Chalanski et. al., Jeziorski et. al., and
others, the polarization expansion for the H-H* interaction energy slowly converges
to the energy of the 1so, ground state of the system at large H-H* distances. Addi-
tionally, at small intermonomer distances, calculations of the polarization expansion
for the interaction energy of two ground-state He atoms carried to high order show
that the series is convergent. However, in general, the polarization expansions for
the interaction energy of other many-electron systems either converge to energies of

unphysical states or diverge.
2.3.4 Summary

There are two major advantages to using the polarization approximation to study
intermolecular interactions. The first advantage is that the polarization approxima-
tion is conceptually simple, relative to other perturbative methods for calculating
intermolecular interactions.?®? The second advantage, which is more important than
the first, is that the energetic expressions which result from these calculations have
physically meaningful interpretations, as discussed earlier in this chapter.?%® However,
there are also several drawbacks to using the polarization approximation to study in-
termolecular interactions. One major problem with the polarization approximation is
that the unperturbed Hamiltonian H 0 has the wrong symmetry with respect to elec-
tron exchange. Although H 0 is symmetric with respect to the exchange of electrons
within molecule A or B, H 0 is not symmetric with respect to electron exchange
between A and B.”? As a result, the polarization approximation does not account
for exchange effects.?®? The inability of the polarization approximation to account for
exchange effects inspired the development of symmetry-adapted perturbation theory,

which will be discussed later in this chapter.
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2.4 The Multipole Approximation
2.4.1 Introduction

Another common method for calculating intermolecular interaction energies is known
as the multipole approximation. In the multipole approximation, we express both the
intermolecular interaction operator and interaction energy as infinite series in inverse
powers of R4p , where R4p is defined as the distance between the centers of mass
of A and B. The multipole expansion for the intermolecular interaction operator V'
in an arbitrary space-fixed coordinate system is

>V
V= '—nn7 70
; (RaB) 70
where V,, is given by?®
n—1
Vn = ‘/l.n—l—l- (71)
1=0

In turn, Vj,_;_1 describes the interaction between the 2! instantaneous moment
on A with the 2"~'~1 instantaneous moment on B. When we express the inter-
molecular interaction operator V' as a multipole expansion in powers of R+‘8 , we
can write the interaction energy of A and B as?8%284283

(¢ar¢a R)
(Rap)"

In Eq. (72), {x (X = A for monomer A and X = B for monomer B) is the

x C,
Eint (Ras,C4,Ca,R) ~ 3 (72)

n=1

Euler angle that describes the rotation of a coordinate system fixed on X with respect
to the spaced-fixed coordinate system in which V' and Fj,; (R AB, ¢4, (B, f{) are
defined. Also, R = (9, d)) are the polar angles that indicate the orientations of
the molecular axes of A and B with respect to the space-fixed coordinate system.
The functions C, (C 4,€B, R) appearing in Eq. (72) contains coefficients that are
called van der Waals constants.

In the following sections, we will discuss various formulations of the intermolecular

interaction operator, van der Waals constants, and intermolecular interaction energy
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in the multipole approximation. Finally, we will discuss the convergence properties

of many of the expansions that we will discuss.

2.4.2 The Cartesian and Spherical Formulations of the Intermolecular
Interaction Operator in the Multipole Approximation

We can write the multipole expansion of the intermolecular interaction operator as
described by Eqgs. (70) and (71) in terms of irreducible spherical!?671% or Cartesian

tensors!377145

of the multipole moments on monomers A and B. First, we will write
the multipole expansion of the intermolecular interaction operator in terms of the
irreducible spherical tensors. Let us begin by noting that we will refer to the operator
Van-i—1 in the following presentations as a specific form of V), , with [4 =n
and lg = n — 1 — 1. The quantities l4 and [g refer to multipole moments on

monomers A and B, respectively. In the spherical tensor formalism, V) Alp 18

la+lp
WAJB = XlAJB(RAB)‘lA—IB_l Z (—l)m l;r—:-]lg (R)
171=—1A—13
X [MlA ® MlB]lA+lB (73)

where X, , Is a constant, and the equation for this constant is

X105 = (-1)2|IS]]%, (74)
where S is given by
S — 204 + 2lp (75)
2l 4

In Eq. (73), we also have that Cqu':lg (f{) are complex spherical harmonics

which are often replaced by real tesseral harmonics.!** We note that equations for
the real tesseral harmonics are given in reference 145. The quantities M;, =
{M{:A,mA = —lA,...,-HA} and M, = {M,’Z",mB = —Ip, ...,-HB} are
multipole moment tensors on A and B, respectively. The M [Z 4 and M [Z B com-
ponents of the multipole moment tensors M;, and M;, on A and B are given
by

=" ZyrrCx (8) (76)

peX
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where X = A for monomer A and X = B for monomer B. In Eq. (76),
p runs over all nuclei and electrons in monomer X, Z, is the charge of the pth

particlein X , and CZ:X (Fp) is a spherical harmonic. Finally, the tensor product
m .
[MIA ® MIB]IAHB 15

l4 lp

M, @M = Y D> MM (la,ma;l,mpll,m), (77)

mA——lA mg——lg
where (l A4, ma;lp,m Bll , m) is a Clebsch-Gordon coefficient, and where we have
let ly+1lg=1
Now, let us write the multipole expansion of the intermolecular interaction oper-

ator as given in Egs. (70) and (71) in terms of Cartesian multipole moment tensors
on A and B. In the Cartesian formalism, V) Alp 1S

la+l 3
Vies = D 3 M T M), (78)
{a} {8}
Here, the M, I{AO} and M 1{33} components of the multipole moment tensors on A
and B are
= Z ZpTpnTp-+Tpny s (79)
peX

where X = A and 7 = a for monomer A,and X = B and v = (3 for
monomer B. As in Eq. (76), p runs over all nuclei and electrons in monomer X,

and Zp is the charge on the pth particle in X. Also, Ty, Tp, y2++-Tpy, 8T€ the

Cartesian coordinates of particle p. In Eq. (78), the tensor T{[ A}+{§% is given by

la
(la+ls] _ La+lg+1(=1)
Taran = (Bas)™" s (Vor VeV, V5, V5V, )

y (RLAB) . (80)

Mulder et. al. give general expressions for T{[ QA} {5; for l4+ g < 6 in reference

142, and Isnard and co-workers give specific expressions for T{[ A} {gl for tetrahedral

and linear molecules in reference 246. One can convert between the spherical and
Cartesian formulas for V), ;, using equations derived by Coope et. al.'¥71%8 and

Stone 149,150



2.4.3 The van der Waals Constants

In this section, we will discuss various methods for calculating the van der Waals

functions C, ( (4, (B, ﬁ.) . We obtain the first expression for Cp, (C 4,€B, f{)
by solving the Schrodinger equation for the energy of interaction of A and B in
Rayleigh-Schrodinger perturbation theory with the normalized Hamiltonian H N ,

which is
HY = Hy+ V", (81)
In Eq. (81), V¥ s a truncated form of the multipole expansion that is given by
N
V
V=) " (82)
nzz; (RaB)"

with N = Ny + Np , where N4 and Np are the total number of electrons in
monomers A and B, respectively. The operator V), appearing in Eq. (82) is defined
in Eq. (71). When the Schrédinger equation containing H N is solved, we obtain an
asymptotic expansion for the energies of the AB dimer which is expressed in powers

of F}G and contains the van der Waals functions Cj, (( 4,(B, R) .12 According

to Ahlrichs,'® one can calculate the van der Waals functions C, (( 4,(B, R) re-
cursively. Jeziorski et. al. give the equations needed to perform these calculations in

reference 280.
We obtain another expression for the van der Waals coefficients by asymptotically

expanding the polarization energies E(()::L as

o C™ (¢4 (o R
Egy) (CA, CB,R) ~> ¢ ((Ig:;i R)

m=1

(83)

Then, each van der Waals coefficient C,, (C 4,CB, R) is obtained from

Cn (CA,CB,R) = icgl) (CA,CBaR) : (84)

n=
where M is an integer whose value depends on whether the interacting molecules A

and B are neutral or charged.?®°
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We can also use the standard Rayleigh-Schrodinger perturbation equations of the
polarization approximation to write expressions for the C',(,? ) coefficients. One
obtains these expressions by substituting Eq. (82) for the intermolecular interaction
operator into the standard RSPT equations of the polarization approximation. In

this approximation, C’,(yi) <CA,CB,R) and C,(,f) (CA,(B,R) are

Cr(rp (CAaCBaﬁ) = (‘I/(()(i)BIVnI\II(()?‘)B), (85)
and280
C? (¢ar¢a R) = 3 (U8, iGanVailTL),). (36)
k=k

where G 4p is the reduced resolvent for the AB complex. The expression for G 4p
is given by Eq. (19) with index K replaced by k, g replaced by Wi,,, Eg
replaced by FEj,, ,and Ey replaced by Ej,,. Finally, if the interaction energy
is known, then the van der Waals coeflicients can be computed from

Ci (CA, CB,f{) = RAl,i;rBoo RapEin (RAB,CAa CB,R) (87)
and

Co(CarCaR) = lim_(Ran)" (Bint (Ras,CaCaR)

B—0

21 Gk (CarCa R)
- Z (RAB)k . (88)

k=1

2.4.4 Removing the Angular Dependence from the Multipole Expansion
for the Interaction Energy

The irreducible spherical and Cartesian expressions for the interaction energy pre-
sented in Sect. 2.4.2, as well as the equations for the van der Waals constants pre-
sented in Sect. 2.4.3, are very useful. However, since all of these expressions depend
on the Euler and polar angles (4, (g, R , they need to be re-evaluated every time the
geometry of the AB dimer is changed. Fortunately, we can also write an expression
for the interaction energy in the multipole approximation which separates the depen-
denceon (g4,(B, R from the rest of the expression for the interaction energy. In this
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equation, the non-angular part of the interaction energy (which contains the van der
Waals constants) depends only on the distance R4p between the centers of mass of
A and B, so that this portion of the interaction energy only needs to be re-computed
if the distance between monomers is changed. In the polarization approximation, the

th

equation for the m™" -order correction to the energy of the interacting system which

separates the angular and radial components of the intermolecular interaction energy
is
A
B, =3 Wl (Rap) Ay (¢ar . R). (89)
{A}

In Eq. (89), {A}gl 6 (R AB) is the radial expansion coefficient which depends on
the intermonomer dlsta.nce R4p . Additionally, A} (CA, (B, fl) is a function
containing the angular dependence of E (n ) . The equation for this function is

L

L,y Lg
Am (G R) = > 3 > SuuDi ko)

Ma=—La Mg=—Lg M=—L

X MBKB(CB)C (R) (90)
where
Ly Lg L
SmrL = (MA Mg M) (91)

isa 37 symbol,!** C £/I (R) is a complex spherical harmonic, and DII;["; ’ KA(C a)”
and Dﬁ’,f; kg (C B)" are elements of the Wigner rotation matrix as functions of the
orientation angles of monomers A and B.!*3 References 247, 248, 133-135 and 249
also contain derivations of equations (89) and (90). To obtain this energy in the
multipole approximation, we replace the intermolecular interaction operator that ap-
pears in the equation for the radial expansion coeflicients {A}é(()?‘)g (RaB) with the
multipole expansion of the intermolecular operator, as given by Egs. (70) and (71).
When we do this, we can write approximations for the radial expansion coefficients
{A}ééz)e (R A B) that are determined by the irreducible spherical tensors of the po-

larizabilities and multipole moments of A and B.!3%132 Van der Avoird et. al. have
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reviewed these derivations in reference 75. We will present the equations for the elec-
trostatic, second-order induction, and second-order dispersion radial expansion coeffi-
cients in the multipole approximation. Note that we will denote these approximations

to the exact radial expansion coefficients {A}E (R AB) by {A}EO B (Rag) -
The electrostatic radial expansion coefﬁcxent in the multipole approximation is

(2L4+2Lg +1)!
(2L4)! (2Lp)!

{A}a(l (Rag) = (=1)"01,4151

QriQLE

(RAB)LA+LB+1 :

(92)

In Eq. (92), f: and Qf: are the spherical portions of the 2[4 and 2[5
multipole moments on A and B. The equations for Qf: and Qf: are
Kyqa
QF = (o, |MEAID,,) (93)

and

QKB = <\IIOB|MLB I\IIOB> (94)

In Egs. (93) and (94), M{f: and Mi{: are multipole moment operators of A

and B, as defined in their respective molecular coordinate systems.
The second-order induction radial expansion coefficient in the multipole approxi-

mation is!30-132-135
d 1°°°°°°ooc{{//\\}}dA
{A} g 22n R 1 O o
( B) QZZZZ (RAB)n
1a=114=11p=013=0

1 o0 (o o] o [o o] ,in 3
- 52222 ——({;}AB‘i)nB (95)

where {A} is a set of indices given by {A} = {l4,,1B,l5} , and

n=l,4+l:4+13+lgg+2. (96)
Also, ciA { ,\} ind—a and ciA { /\} ing_p are long-range induction coefficients, where
{A}
C{,\} ind-A 18

A LalsL K K
C{{A}},ind—A &atrtan oz, (0) [Qi; ® Q] Ly (97)
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The long-range induction coefficient for B is given by Eq. (97) with A and B
K

interchanged. The irreducible product [Q[ 5 ® le] L: is given by Eq. (77) with

M, =Q;,, M, = Q[/B, m = Kpg ,and | = Lg . The quantity {LALBL

Lalylgl
is a constant, given by

Lo, [ (24 + 20 + 1)1 (2 + 2y + 1)1

&iat, = (1 @) @) L) @)l ) 7
x [(2La+1) (2L +1) (2L +1)]?
X (la +18,0; 1y + 3,0|L, 0). (98)
where
A Uy La
las ={ s Iy Lp (99)

la+ig U+l L

is a 9j symbol,'* and (l4 +Ip,0;1'; + %5, 0|L, 0) is a Clebsh-Gordan coefficient.
Finally, a(Il{:qu) L (0) is the irreducible spherical tensor portion of the frequency-
dependent polarizability on A,

Ka

e, (@)

_ Z 2 (EﬂA - EOA)

n#0 (EHA - EOA)2 —w?

~ -~ Ky
x [ (00, /My, [n,) © (0, [V, | 90,)] * (100)

A
with the frequency w = 0. In this equation, ¥,,, and E,,, are the n'" excited-state
wavefunction and energy of A, res};()ectively. The irreducible product
(Vo IV, | W) ® (¥, [N, [ Wo,)| " is given by Eq. (77) with My, =
(W0, /My, |¥n,), My, = (¥, |My, |¥,), m = K4, | = L. We obtain the
equation for the irreducible spherical component of the frequency-dependent polariz-

ability on B by replacing A with B in Eq. (100).

The second-order dispersion radial expansion coefficient in the multipole approx-
130,132-135

W™ Ba) = -3 33 R (o)

imation is



with

o0
{A} LaLpL K K
Ciyaisp = fzﬁ' Lol / Ay, (W) g, (w) dw. (102)
0

Van der Avoird and co-workers?®! have reviewed the calculations of the electrostatic,
second-order induction, and second-order dispersion radial expansion coefficients.
Since the electrostatic and induction coeflicients are determined only by the multipole
moments and static polarizabilities of the monomers, it is relatively straightforward

to calculate these coefficients.280

However, because the second-order radial dispersion
coefficients are determined by the polarizabilities of the monomers at imaginary fre-
quency, calculating these coefficients is relatively difficult. To date, these coefficients
have been calculated with several different methods, including many-body pertur-
bation theory,236:251:237,238,240239 the second-order polarization propagator approach
(SOPPA),?° and the multiconfigurational time-dependent Hartree-Fock (MCTDHF)
technique.?59726! Other methods that have been used to calculate these coefficients
are the limited CI technique,?*4?*2 the random-phase approximation (RPA), or the
time-dependent coupled Hartee-Fock (TDCHF) approach.?41:243253,254,242

2.4.5 The Convergence of the Multipole Expansions of the Intermolecular
Interaction Operator and Interaction Energy

In general, the multipole expansion of the intermolecular interaction operator as de-
fined by Egs. (70) and (71) is divergent. However, there is a small region of configura-
tion space where the multipole expansion of V is convergent. The exact specifications
of this region are given in reference 151.2%°

Like the multipole expansion of the intermolecular interaction operator V |,
the multipole expansion of the interaction energy is also divergent. Although the
divergence of this expansion has only been proven for the Hj system,'3*715¢ it is

expected that the expansion will also diverge for multi-electron systems. Additionally,

Damburg et. al.!*® and Cizek and co-workers!®® have shown that Eq. (72) is not
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summable for HJ using conventional summation techniques,!® so it is also expected
that the expansion will not be summable for any multi-electron complexes.

Some of the methods used to define and calculate the van der Waals constants also
have divergent expansions of the intermolecular interaction energy.?®° For example,
the multipole expansion of the intermolecular interaction energy that is produced
when the Schrédinger equation is solved using RSPT with H N and VN (as
defined in Eqs. (81) and (82)) is divergent.?%® This divergence results from the fact
that VY cannot be treated as a small perturbation, which is a direct consequence
of the fact that the spectrum of H N is continuous.

The convergence properties of the asymptotic expansion given by Eq. (72) are
not well understood. Although researchers have studied the convergence properties
of the expansions for the first- and second-order polarization energies, no one has
investigated the convergence properties of the expansions for higher-order polarization
energies. Jeziorski et. al. have studied the convergence properties of the asymptotic
expansion for the electrostatic energy E((]i)a for the water dimer,?®® and Berns and
co-workers have studied the convergence properties of the same expansion for the
N, dimer.?6? The expansions of Eéi)g for both the water dimer and the N, dimer
converge. However, neither expansion converges to the correct physical value of the
electrostatic energy for the appropriate system. Vigné-Maeder et. al have shown that
in general, the asymptotic expansion of the electrostatic energy is convergent for any
system when Gaussian functions are used to approximate the unperturbed charge
distributions of the monomers.?83 Again, however, the expansion does not converge
to the physical ground-state electrostatic energy of the system of interest. Several
researchers?64267 have studied the convergence properties of the asymptotic expansion
for the electrostatic energy for each of various large molecules using the distributed
multipole analysis. Stone has reviewed this method in reference 98. Dalgarno et.
al.?%® have studied the convergence properties of the asymptotic expansion for the

2™_order polarization energy of Hf. Specifically, they showed that the asymptotic
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expansion for the 2"%-order induction energy of H is divergent. Young?®® studied
the convergence properties of the asymptotic expansion for the 2"%-order polarization
energy of the H, molecule. The author showed that the asymptotic expansion for the
2" order dispersion energy of Hj is divergent. We should also mention that neither
Dalgarno’s final expression for the 2"?-order induction energy of H nor Young’s final
expression for the 2™-order dispersion energy of H, are Borel or Pade summable.!57

One might be able to use distributed polarizabilities®®2707272 to make these series

convergent. To date, however, no one has done these studies.

2.4.6 The Multipole Approximation and Nonadditive Interactions

Stogryn273'274

was the first to use the multipole approximation in the study of nonad-
ditive intermolecular interactions. Piecuch?”® has derived equations in the spherical
tensor formalism for the interaction energy of M molecules to any order of pertu-
bation theory. These equations are based on Wormer’s perturbation equations in
the spherical tensor formalism for the energy of interaction of two molecules.!30:132
Piecuch has also derived an expression for the anisotropic induction energy of M
molecules through third-order in perturbation theory.5® The author has also used his
equations to derive expressions for the isotropic interaction energy® and anisotropic
dispersion energy® of M molecules through third-order in perturbation theory. Fol-
lowing this work, the author derived expressions for the induction energies of M
molecules through fourth-order in pertubation theory.2”6:277 Finally, Piecuch used the
equations presented in reference 275 to calculate the nonadditive induction energies

of the Aro-HF and Ar,-HCI systems. We refer the reader to reference 278 for a review

of these derivations and calculations.
2.4.7 Summary

There are significant advantages and disadvantages of using the multipole approxi-

mation to calculate intermolecular interaction energies. Probably the most significant
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advantage of using the multipole approximation to calculate intermolecular interac-
tion energies is that it is easier to evaluate multipole interaction energies than it is
to evaluate the corresponding polarization energies. This is because the expression
for any particular polarization correction must be completely re-evaluated any time
the Euler or polar angles between monomers are changed, while only part of the cor-
responding expression in the multipole approximation needs to be re-evaluated when
these angles are changed. As discussed in Sect. 2.4.4, we can write the multipole
expansion of the intermolecular interaction energy as a product of radial expansion
coefficients and angular functions. When one changes the Euler or polar angles be-
tween monomers, only the angular functions need to be re-evaluated.

Although the multipole expansion of the interaction energy is easier to evaluate
than the corresponding energy in the polarization approximation, there are also signif-
icant disadvantages of using the multipole approximation to calculate intermolecular
interaction energies. The most significant disadvantage of using the multipole ap-
proximation to calculate intermolecular interaction energies is that by definition, the
multipole expansion does not account for charge-overlap effects. Charge-overlap ef-
fects are contributions to the intermolecular interaction energy that are caused by
the overlap of the electron density on A with the electron density on B, and these
effects are largest when the intermonomer distance is near or below the van der
Waals minimum for the dimer. There is another method for calculating intermolec-
ular interaction energies that has the many of the same advantages as the multipole
approximation, and also accounts for charge-overlap effects. This method is known

as the bipolar expansion, and this method is the subject of the next section.

2.5 The Bipolar Expansion
2.5.1 Introduction

Another method for calculating intermolecular interaction energies involves using the

bipolar expansion for the intermolecular interaction operator. There are several ad-
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vantages to using this method to calculate intermolecular interaction energies. Like
the multipole expansion, the bipolar expansion of the intermolecular interaction en-
ergy can be separated into a radial component and an angular component. Also,
intermolecular interaction energies computed using the bipolar expansion of the in-

termolecular interaction operator include contributions from charge-overlap effects.

2.5.2 The Bipolar Expansion of Buehler and Hirschfelder

The exact bipolar expansion of the intermolecular interaction operator proposed by
Buehler and Hirschfelder is?°%2%6

o0

l<
;::; = Z Z Jllj;lB (7'1,7'2, RAB) )/l;n (él, &1) }/I;m (52,&2) . (103)
la,lp=0m=—Il,

In Eq. (103), 719 is the distance between particles 1 and 2, where particle 1 belongs
to monomer A, and particle 2 belongs to monomer B. Also, I =14 if 4 <lp
,and l. = lg if lg < ly . The quantities 7y, 9~1, (51 and 79, 9~2, (,52
are polar coordinates of particles 1 and 2, respectively. Finally YIT (0~1, (131) and
Yl;m (52, c];g) are spherical harmonics defined with respect to particles 1 and 2,
respectively.

Buehler and Hirschfelder?®>2%¢ derived Eq. (103) after assigning coordinate sys-
tems to monomers A and B. The coordinate systems that they assigned to A and B
have their origins at the centers of mass of A and B, and their 2 axes are co-aligned.
Also, the * and ¥y axes of the system on A are parallel to the z and y axes of the
systemon B. The Z, ¥y ,and 2 axesin both of these coordinate systems are parallel
to the corresponding axes of an arbitrarily selected spaced-fixed coordinate system.
Note that we have written Eq. (103) with the notation used by Meath and co-workers
in reference 257. Note also that although Ng et. al." use J):;la (r1,72, RaB) in
place of the B}zla (r1,72, RAB) quantities used by Buehler and Hirschfelder, these
functions are proportional to each other.

There are four different expressions for J );’;L (r1,79, Ry B), and the form of
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this function that we use in Eq. (103) depends on the intermonomer distances of
interest. Specifically, the form of J}:’;'B (r1,72, RAp) depends on whether we are
interested in calculating intermolecular interaction energies for Rag > 71 + 7o ,
r1 > Rag + 179, 79 > Ryqp + 11, or |7‘1 - 7‘2| < Rjgp < |7'1 + T2|. For
Rap > r1 + 719, 71 > Rag + 79, and 19 > Rygp + 71, the equations for
JII,:T;L (r1,72, R4oB) are combinatorial expressions containing [4 and lg. Each of
these combinatorial expressions also consists of a product of powers of R4p, 71, and
T9, and this product is also multiplied by m. For |r] — 9| < Rap < |r; + 19,
the equation for J}:}IB (r1,79, RAB) is a finite sum of different powers of Rap, T1,
and 79. The exact expressions for JIIZ;L (7‘1, T, RAB) are given in reference 257.
If we neglect the contribution of the JI[:IL'g (r1,72, Rap) functions to %12 when
71 > Raogp+172, 79 > Rag+711, |1‘1 —7‘2| < Rsag < |7'1 +7‘2|, then ;:—2- reduces

to the multipole expansion.

2.5.3 The Fourier Integral Formulation of the Bipolar Expansion

We can also express the bipolar expansion of the intermolecular interaction opera-
tor in terms of a Fourier transform. In this formulation of the bipolar expansion,

1/r1y is2®

i —_ L d ke‘l.kR —ik'f‘leik'f‘g (104)
T12 27'(2 k2
Kay and co-workers?*® assigned the same coordinate systems to monomers A and B
as Buehler and Hirschfelder assigned to A and B. Kay et. al.?%® also chose the same
laboratory frame as chosen by Buehler and Hirschfelder. In Eq. (104), eik'R, etk

,and €'¥T2  are given by

l A
Z Z O (k) (.8 (105)
=0 m=-1

with T= R for ¥R
kT

 F=71; for e¥T1 and F=Fp for e¥%2 . Note that
the equation for e is expressed in terms of the arbitrarily selected spaced-fixed

coordinate system. In Eq. (105), the unit vector k = % , and its orientation angles
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are O and ¢ . Also, C l—m (f{) is a Racah spherical harmonic, and it is given
byl43

4 2 m
o (k) = (5 ¥ Gus)- (106
Finally, the Kk-dependent multipole operator g;" (k,F) is
m o 20+1 .
a (k%) = Eo Do )y ). (107

The j;(kT) quantity contained in Eq. (107) is a spherical Bessel function. If we
substitute Eq. (105) into the Fourier integral given by Eq. (104) and integrate over
0. and ¢ , we obtain

i = Z ilA_lB_j (2]+1) 2IA+[B+1
Tz lalp j kaks
Az (¢ o R)
@) (2lp)1 4B Ao (¢n¢a R

dk ji (kRag) q." (k,T1) q;.° (K, T2), (108)

X
o\g

where we have expressed rlz in terms of the coordinate systems centered on A and

B. Also
la lp j
e = (08 7) (109)
The quantity ;":II;'; (CA,CB, ) is given by Eq. (90) with

{A} = {la,ka,lB,kB,j} . If we select a space-fixed coordinate system that
has R along 2z and replace V' in Eq. (60) with Eq. (108), we obtain an expres-
sion for the mP-order correction to the energy of interaction of A and B where the

angular and radial components are completely separate from each other.

2.6 Symmetry-Adapted Perturbation Theory
2.6.1 Introduction

Although polarization theory lends itself to physically meaningful interpretations of
each term in the interaction energy of A and B, it can<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>