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ABSTRACT

NEWTRANSFORM-BASED REPRESENTATIONS FOR IMAGES

By

Ramin Eslami

This dissertation designs and develops new directional representation of images that

are based on true two-dimensional (2-D) basis. Furthermore, we employ the proposed

directional schemes in image denoising and coding, where the satisfactory results of these

applications are heavily dependent on the nonlinear approximation behavior of the

proposed schemes.

First, we develop methods to find a translation-invariant version of a general

multidimensional multi-channel subsampled filter bank. In particular, we extend the

algorithme a trous to a generalized algorithme a trous. Then, based on this algorithm, we

propose the translation-invariant contourlet transform (TICT) and also the less complex

and less redundant scheme of semi-TICT (STICT). We use the proposed TICT and

STICT schemes for image denoising and compare them with the state-of-the-art methods.

Second, we propose a new family of nonredundant geometrical transforms using

Hybrid Wavelets and Directional filter banks (HWD). We convert the wavelet basis

functions in the finest scales to a flexible and rich set of directional basis elements by

employing directional filter banks, where we form a nonredundant transform family,

which exhibits both directional and nondirectional basis functions. We demonstrate the

potential of the proposed transforms using nonlinear approximation. In addition, we

employ the proposed family in two key image processing applications, image coding and



denoising, and show its efficiency for these applications.

Third, we examine the issue of linearly combining different denoising schemes in

order to improve the denoising results. We propose to optimally mixing the denoising

results by minimizing the £2 norm of the overall error, where we develop optimal and

suboptimal approaches that do or do not require an access to the original image and the

noisy image.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

Natural images contain smooth regions separated by regular edges, which are the

common singularities found in these 2-D signals. As a result, there are two major types of

correlation (or forms of dependencies) that exist among pixels within these images: the

dependencies over the smooth regions and those dependencies that are found along

edges. This implies that images can be represented more efficiently than when using the

Euclidean basis, which is their current representation in the spatial domain. There have

been numerous approaches that attempted to decorrelate the dependencies in images. We

can divide these methods into two major categories.

Some methods work in the spatial domain, where they divide an image into

homogeneous segments taking into account the edges. Binary space trees [75], quad-tree

decomposition [83], and beamlets [31] are a few examples in the literature. These

methods, however, are not successful in representing images with complex structure.

The other category of schemes is based on a transformation or specifically, a basis or

a frame decomposition, which could be overcomplete. Fourier and wavelets are two



classical transforms in this category. A regular l-D signal having a singularity produces

many large (or significant) coefficients in the Fourier domain, whereas the wavelet

transform of this signal results in a few significant coefficients around the singularity

[91]. This makes the wavelet transform an efficient scheme for piecewise smooth l-D

signals. To measure this efficiency, we consider the nonlinear approximation behavior of

the transform.

In nonlinear approximation, one retains the M largest transform coefficients

(significant coefficients) and sets the others to zero. Then one measures the (fz-norm)

error of the reconstructed signal. For an orthonormal transform, this error is the same as

the error in the transform domain, which is the [2 -norm of the insignificant coefficients.

Hence, retaining the M largest coefficients is equivalent to the best nonlinear

approximation for an orthonormal transform. It is shown that for piecewise smooth l-D

signals, wavelets provide an approximation error with a fast decay as M increases [60].

For instance, this error for a piecewise constant signal with a single discontinuity is of

order TM while it is of order —— when we use the Fourier transform [91].

In the 2-D case, however, although wavelets provide good nonlinear approximation

results when compared to the Fourier case, they are not optimal. Two dimensional

wavelets are constructed using tensor product of the 1-D transforms, which lead to

separable bases. Consequently, they are not true bases for 2-D signals. That is, they

ignore the regular geometry (e.g. regular edges) found in natural images. As a result,

constructing new bases, which are more suited to natural images, has been a challenging

task in recent years.



Several studies of the human visual system have shown that it is a localized,

multiresolution and directional system. In addition, [68] shows that the image patches

used as a basis to represent images sparsely are localized, oriented and bandpass

functions. Therefore, directionality is an important feature that is not rich in wavelets.

Bandelets [57], brushlets [65], complex wavelets [53], contourlet transform [28], curvelet

transform [12], directionlets [90], and steerable pyramids [84] are among the directional

multiresolution transforms in the literature.

There are, however, some disadvantages associated with some of these transforms.

One major issue is redundancy, which is not desirable in image coding. Another issue is

pseudo-Gibbs phenomena artifacts, which are introduced when setting some transform

coefficients to zero prior to reconstructing the image. This happens in some image

processing tasks such as image coding and denoising. It is worth noting that the problem

of ringing artifacts is more serious for directional transforms when compared with their

non-directional counterparts such as traditional 2-D wavelets. Another aspect of some of

the recently proposed directional transforms is that they are adaptive in the sense that

they do not follow a fixed procedure (independent of the signal) but rather signal-

dependent procedures. Meanwhile, a fixed-procedure transform is usually desirable for a

low computational complexity realization. Hence, one may argue that the recently

developed signal-adaptive directional transforms have a key disadvantage when

compared with non-directional transforms.

1.2 PROBLEM STATEMENT

In this study, we look for new 2-D transforms, which satisfy the following criteria:

0 Provide perfect reconstruction



0 Be multiresolution and localized transforms

0 Have the feature of directionality

0 Be nonredundant (required for coding applications)

0 Provide good nonlinear approximation

0 Introduce a minimum level of ringing artifacts during nonlinear

approximation (and thus when decoding and denoising)

o Incur reasonable computational complexity

A transform fulfilling the above criteria would be a proper choice for image denoising

and coding. Therefore, we look for efficient 2-D directional transforms and study their

applications in image denoising and coding. Note that redundancy is not a requirement

for denoising applications. Hence, this particular feature has not been pursued by some of

the transforms developed under this work. Furthermore, although the complexity aspects

are critical for practical realizations of any transforms, these aspects do not represent the

highest priority when developing new transforms with other (arguably more critical)

features such as reconstruction with minimal artifacts and high efficiency nonlinear

approximation. Nevertheless, this dissertation attempts to develop low-complexity

variations of high-complexity directional transforms.

1.3 DISSERTATION PROPOSAL OUTLINE

In Chapter 2 we study and propose methods to develop translation-invariant

directional transforms that are primarily targeting denoising applications. To achieve this,

we first develop a translation-invariant scheme corresponding to a general

multidimensional multi-channel filter bank, where we extend the algorithme a trous to a

generalized algorithme a trous. Then we use the proposed methods to develop



translation-invariant contourlet transform and employ it to image denoising.

We propose a new family of nonredundant directional transforms using Hybrid

Wavelets and Directionalfilter banks (HWD) in Chapter 3. Then we use this family in a

few image processing applications including nonlinear approximation, coding, and

denoising and Show its efficiency when compared with other leading transforms.

In Chapter 4 we propose and formulate methods to optimally/suboptimally and

linearly combine different denoising schemes in order to improve the denoising results.

Then we apply the proposed combination schemes to several image denoising approaches

and provide the results.

Finally, in Chapter 5 we state possible extensions and improvements that we are

currently developing and pursuing for the proposed methods.



Chapter 2

TRANSLATION-INVARIANT CONTOURLET

TRANSFORM

2.1 INTRODUCTION

During the past decade, wavelets have proven their capability in many signal and

image processing applications such as compression and denoising [60]. Owing to the

good nonlinear approximation property of wavelets for piecewise smooth signals, they

have been very effective in generating efficient representation of one-dimensional (l-D)

waveforms. In the case of natural images in which piecewise regions are separated by

smooth curves (or edges), however, one can still observe that there are self-similarities

among the wavelet subbands. This implies that one is able to further process wavelet

coefficients of an image in order to achieve more de-correlation. It is well known that

wavelets are properly structured to treat point-wise singularities; hence, they are

appropriate in representing piecewise smooth l-D signals. In contrast, natural images

contain 2-D singularities (edges), which need a more efficient transform than the wavelet

transform (WT).



A. Background

An important factor of an effective transform is directionality. Having this feature, a

transform would have the potential to handle 2-D singularities effectively. Many

directional transforms have been introduced in recent years. Continuous (directional)

wavelets [2], complex wavelets [54], steerable pyramids [85], and brushlets [65] are

some examples in the literature. The wavelet X-ray transform [95] and ridgelet transform

[l4] apply wavelets to the radon transform of an image in such a way that one could

effectively represent arbitrarily-oriented lines in an image. To make the ridgelet

transform applicable to a natural image, the authors in [12] constructed curvelets using

three steps: subband decompositions of the image, partitioning the subbands into blocks

in such a way to satisfy the anisotropic scaling law', and then applying the ridgelet

transform to the resulting blocks.

Using a similar idea of combining subband decomposition with a directional

transform, Do and Vetterli introduced the contourlet transform (CT) [26]-[28]. In the CT,

a Laplacian pyramid (LP) [10] serves as the first stage and directionalfilter banks (DFB)

[5] as the second stage. The LP is a redundant transform with a redundancy ratio of up to

4/3; thus, since the DFB is critically sampled, the redundancy factor of the CT is up to

4/3. Both the LP and the DFB involve subsampling in their implementations and similar

to the wavelet transform they are shift variant. Therefore, it follows that the CT is a shift-

variant transform. An important advantage of translation invariance is that the

performance for denoising applications is significantly improved when a translation-

 

' The anisotropic scaling law, which is different from the isotropic scaling law in wavelets, is based on

having frame elements (generalized basis functions) with a 2—D support dimension that obeys the rule

width or lengthz.



invariant (TI) scheme of a subsampled transform is employed. This advantage of TI

schemes is achieved due to the elimination of the pseudo-Gibbs phenomenon artifacts

resulting from thresholding the transform coefficients [22]. Translation-invariant

(sometimes called stationary or undecimated) wavelets have been introduced in several

studies [6], [22], [62], [66], [71]. TI denoising can be realized through the cycle-spinning

algorithm [22], [43]. Cycle-spinning, however, may not be a computationally efficient

way to perform TI denoising for many applications. Hence, an alternative to cycle-

spinning-based approaches is desired. Indeed, since wavelets are partially TI, by using an

appropriate algorithm such as “algorithme a trous” [49], [82], the TI wavelet coefficients

can be derived with low complexity, where only Nlog2 N wavelet coefficients are

needed to obtain the TI wavelets of a signal of size N, when using L = logz N levels. In

contrast, in the cycle-spinning algorithm, one needs to calculate N2 wavelet coefficients

for the same signal.

In algorithme a trous, which is originally introduced for l-D wavelets, we need to

update the wavelet filters at each level (except the first one) when using undecimated

transform (i.e., there is no subsampling operations). In a nutshell, starting from the

second level, we update the decomposition filters by upsampling them with two. That is,

we put zeros between samples (trous in French means holes). In addition to using the

same procedure in the synthesis stage, we also add a scaling factor equal to 1/ 2 at the

end of each reconstruction level.

8. Contributions

In this chapter we propose methods for developing a TI scheme from a general

multidimensional and multi-channel subsampled filter bank (FB). In particular, the



following contributions are presented in this chapter:

1. First, we employ the cycle-spinning algorithm (originally developed for the

wavelet transform) to the contourlet transform, where it provides significant

improvements over its wavelets counterpart when applied to noisy images.

The high complexity of the cycle spinning algorithm, however, motivates us to

develop another more efficient directional TI transform. In particular, we extend

the algorithme c‘z trous [49] introduced for 1-D wavelets to a “generalized

algorithme c‘z trous” (GAT), which is applicable to a general multidimensional

subsampled (uniform or non-uniform) FB.

We prove that the TI version of a subsampled FB obtained through the GAT

provides a tightframez if the original subsampled FB has a tight frame.

Using the proposed GAT along with employing modified versions of the DFB,

we introduce the TI contourlet transform (TICT).

Although the TICT has potential to image denoising applications [36], its high

redundancy in conjunction with a relatively high complexity provides an

opportunity for fiirther improvements. As a consequence, we propose semi-

TICT (STICT), which is a less redundant and less complex scheme.

We also provide efficient realizations for the proposed TICT and STICT

schemes. Subsequently, we propose a new image denoising scheme where we

employ the STICT alongside the powerful bivariate shrinkage firnction (a

Bayesian-based shrinkage approach, which considers the dependencies between

transform coefficients) [79] and show its capability when compared with some

 

2 In the tight frame condition, the reconstruction frame elements are the same as those for the

decomposition; thus, the signal can be easily reconstructed (see Section 2.4A).



other outstanding denoising schemes.

C. Overview ofthe Chapter

The outline of the chapter is as follows: In the next section we present our first

approach for translation-invariant contourlet denoising, where we employ the cycle-

spinning algorithm. In Section 2.3 we study and develop a TI scheme of a subsampled

FB. Then, we propose a TI scheme of the CT in Section 2.4. Section 2.5 presents a new

image denoising scheme based on the STICT along with the simulation results and

finally, our main conclusions and future work are given in Section 2.6.

Glossary ofAbbreviations:

APS additions per input sample

BLS-GSM Bayes least-squares estimate using Gaussian scale mixtures

BS bivariate shrinkage

CT contourlet transform

CS cycle spinning

DFB directional filter bank

DTCWT dual-tree complex wavelet transform

FB filter bank

GAT generalized algorithme (‘1 trous

HDFB horizontal DFB

HT hard thresholding

LP Laplacian pyramid

MPS multiplications per input sample

QFB quincunx filter bank

10



STICT semi-TI contourlet transform

TI translation-invariant

TICT TI contourlet transform

TIDFB TI directional filter bank

TILP TI Laplacian pyramid

TIWT TI wavelet transform

VDFB vertical DFB

WT wavelet transform

2.2 CONTOURLET DENOISING USING CYCLE SPINNING

A. Cycle-Spinning Algorithm

Cycle spinning for denoising is a simple method that can be applied to a shift variant

transform for signal denoising. For a shift variant transform T, operating on a noisy image

x = S + noise, where S is the original image, we denote the 2-D circular shift by SM

and the threshold operator by (9. Now, if the following procedure is applied:

 

K,K2

3: 1 .2 S_,.,_,.(T“(6lT(S,-,,-(x))])),

where (KI ,K2) are the maximum number of shifis, one would expect an improvement

for the estimation 5 compared to the de-noised image without cycle spinning. The above

cycle spinning procedure consists of the following steps:

1. Initialize § = 0, i=0, and j=0

2. Circular-shift the noisy image by (i, j)

11



3. Decompose the shifted noisy image using the transform T

4. Threshold the transform coefficients

5. Obtain the denoised image by reconstructing the thresholded coefficients

6. Shift back the denoised image by (-i,—j) and multiply by 1/(K1K2)

7. Add the output of Step 6 to S

8. Incrementiby 1; if i 5 K1 go to Step 1

9. Incrementj by 1; if j S K2 go to Step 1

10. S is the denoising result

For the wavelet transform decomposed into L levels (L S logz (N) ), where the

input image is of size (N, N) and K = 2L , after K shifts in each direction, the transform

output repeats. Since the contourlet transform is a shift variant transform, we can apply

the same approach to the contourlet transform. Note that cycle-spinning algorithm is a

highly complex procedure for translation-invariant denoising. As a result, we will later

develop a translation-invariant contourlet transform to achieve efficient denoising.

Figure 1 shows a flow graph of the contourlet transform. It consists of two major

stages: the subband decomposition and the directional transform. At the first stage, we

use Laplacian pyramid (LP), and for the second one we use directional filter banks

(DFB). Quincunx filter banks are the building blocks of the DFB.

We used the fan filters designed by Phoong, Kim, Vaidyanathan, and Ansari [72]

with support size of (23, 23) and (45, 45) for the quincunx filter banks in the DFB stage.

Figure 2 depicts an example of the contourlet coefficients of the Boats image

decomposed into three LP levels and {1].}IS1.53 = {3,2,2} directional levels (from finest

12
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Figure l. A flow graph of the contourlet transform. The image is first decomposed into subbands by the

Laplacian pyramid and then each detail image is analyzed by the directional filter banks.

to lowest scales).

B. Numerical Experiment

To test our algorithm, we selected four images of size 512x512: Barbara, GoldHill,

Mandrill, and Peppers. We used four approaches for our experiments: the contourlet

transform (CT), the wavelet transform (WT), and the translation invariant wavelet

transform (WT-CS) in addition to the proposed method based on the contourlet transform

using cycle spinning (CT-CS). Moreover, we applied 81 cycle spins in this experiment.

We used biorthogonal Daubechies 9-7 wavelet transform and the same wavelet filters

for the LP stage of the contourlet transform. For the contourlet transform, we used 6 LP

levels and {1].}1SjS6 = {5,4,4,3,3,2} directional levels. We added zero-mean Gaussian

noise to the images and applied the above de-noising methods using a simple hard-

thresholding to the noisy images. We set the thresholds to some values so that we obtain

best PSNR values of the denoised images.

For contourlet denoising, we set the threshold values to

{1313,36 = a X {3.40‘,2.40‘,2.40‘,1.70’,1.70‘,1.20’} , where a is a constant around
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Figure 2. The contourlet transform of the Boats image using 3 LP levels and {3, 2, 2} directional levels.

For better visualization, the transform coefficients are clipped between 0 and 15.

one used to obtain the best value of PSNR. Note that at the finer scales we apply higher

thresholds, which improves the contourlet denoising results. Note also that this method of

variable thresholding fails to improve the wavelet denoising results since it introduces

annoying artifacts, which resemble speckle noise.

Figure 3 shows the PSNR values of the denoised images versus a range of the input

noise. For the Peppers image, which is a piecewise smooth image, and hence a “wavelet-

friendly” image, the WT-CS performs almost the same as the CT-CS at a range of the

input noise power. However, in case of images containing mostly textures and contours

such as the Barbara image, the CT-CS yields significant improvements of up to 1.5 db

over the WT-CS.

To visually compare the estimated images, we show part of the denoised images of

the GoldHill image for sigma = 20 in Figure 4.



Barbara

 2 ' .- . -._ . . _ -- 1k -1“ H iL L . LL. L . . . . - .

90 40 60 30 230 4O 60 80

standard deviation standard deviation

Figure 3. The PSNR values of the denoised images versus the standard deviation Of noise for the denoising

experiments.

2.3 DEVELOPING A TI SCHEME FOR A SUBSAMPLED FILTER BANK

In this section we develop a TI version of a general multi-channel and

multidimensional FB. Translation invariance is achieved through several ways. Consider

a l-D wavelet transform scheme with periodic extension, and a signal of size N. At the

first level, one decomposes the signal using the wavelet lowpass and highpass filters h

and g, and then downsamples the resulting approximation and detail coefficients, that is,

discards the odd-indexed coefficients.

Now, if one cyclic-shifts the original signal by an even number, e.g. 2k, (k E Z) ,

the output will be shifted by k, that is, the single-level wavelet transform is T1 for even

shifts. So, to make this wavelet transform TI, we also need the odd-indexed values of the

filtered coefficients. To obtain these coefficients, one can cyclic-shift the signal by l (or

an odd number) and decompose it; or, use the same signal and in downsampling shreds

the even-indexed coefficients. Hence, one obtains two sets of transform coefficients for
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Denoised Image Using WT-CS Denoised Image Using CT-CS

PSNR = 28.87 PSNR = 29.39

Figure 4. Denoising experiment of the GoIdHill image corrupted with a Gaussian noise ofsigma = 20.

each channel (each has a size of N/2) at the first level.

At the next wavelet level, we encounter the same situation. However, since we have

two sets of approximation coefficients, using the same procedure as the one we used for

the first level, for each wavelet channel we obtain four sets of coefficients, each having a

length of M4, leading to 2N coefficients at this level. We can decompose the signal up to

logzN levels, where we get a total of NlogZN wavelet coefficients and an

approximation signal that is constant [60]. This way we achieve translation invariance by

keeping all transform coefficients. For images, however, this procedure should be done in

two dimensions: row and column. Consequently, omitting even- or odd-indexed rows and

even- or odd-indexed columns, one can downsample the coefficients in four ways. Below

we examine the problem for a general FB.

Consider a perfect reconstruction d-dimensional N—channel FB as illustrated in

Figure 5. We denote M as a d xd sampling matrix. Note that if N =dM, where

dM =|det(M)|, the PE is critically sampled and if N >dM, it is oversampled.

Suppose we denote the outputs of the analysis filters before downsampling as



 
 

 H0(z) MIM ml) ”I‘M G0(1)

W1(Z) C) Y1(Z)
X— 111(2) ' I::>——' 01(2) x

HN-l(z) WN—I (Z)YN-1(z) @ GN_1(Z)

Figure 5. A single-level multi-channel filter bank.

 
 

  

 

      

    
     

 

WIIHI’ for 0 S i < N, where n = (n1, ...,nd )T e Zd. Hence, we have

Min]: WIIMHI- Below we state a generalized procedure for obtaining all possible

shifts of a multidimensional and multi-channel FB.

Remark 2.1: If one computes all possible shifts of wi[n] (see Figure 5) by3

kc EN(M), (OSchM —1), that is, {Wim'I-kcnOsCde—l’ where

dM = Idet(M)| , and N(M) is the set of integer vectors of the form Mt, t E [0,1)d ,

then the output of the analysis section is translation invariant. Notice that the shifting of

wt.[n] is equivalent to shifting either the input signal x[n] or the analysis filter hi[n]

by the value of kc . It is clear that for a multilevel FB, one can apply the above method at

each level for as many inputs as that level has. (See Appendix Al for proof.)

In the next remark, we give an example that illustrates the fact that the existence of

subsampling operations in a FB is not sufficient for shift variance of the FB. In what

md
A

follows we define zm = Z1 ---zd , where z = (21,...,zd)T and

A .

m=(ml,...,md)T EZd, and define zM =(sz‘,...,zmc‘1 )T where M 18 a dxd

 

3 Note that in general this shift could be kc + mM where m E Zd is an arbitrary integer vector.
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matrix with mm. as its lth column. We also adopt the notatlon zM 9- 2W ) for an

integer l E Z.

Remark 2.2: Regarding Remark 2.1, if in a critically-sampled FB, without loss of

generality, we have wi[n] = W0 [11 + RI], (0 Si S dM - I) (suppose that k0 = 0 ), the

FB will be T1. In this case the analysis and synthesis filters satisfy HI. (z) = zk’H0 (z)

and Gi(z) = z—k’GO (z), and {yi[n]}0<i<d _1 represent the polyphase components

- - M

of W0 [11]. Consequently the filter bank boils down to a simple nonsubsampled system

with analysis filter HO (2) and synthesis filter Go (2), where Go(z)=1/H0(z) to

ensure perfect reconstruction.

Using the procedure mentioned in Remark 2.1 to obtain a TI signal decomposition, is

appropriate in some applications such as adaptive coding, where we need to find a “best”

shift based on a cost fimction. In that case, we find the output of each channel for each

possible shift and measure the cost to obtain a best shift for that channel. As a result, the

method of finding a best tree proposed in [21] is easily extendable to the

multidimensional FB case with an arbitrary sampling matrix M. If however, we need the

TI representation in some other applications (such as denoising) in which we require all

the TI coefficients at the same time, we can use other approaches where we do not need

to shift the coefficients. In what follows, we further discuss this aspect of the TI design.

Remark 2.3: In a single-level multidimensional perfect reconstruction FB (see

Figure 5), omitting the sampling Operations leads to a new TI output, x,, which is a

18
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Figure 6. The nonsubsampled or T1 multi-channel filter bank scheme in the polyphase domain.

scaled version of x, , i.e. x, = axr, where a =1/dM (see Figure 6). Furthermore, the

redundancy of the resulting TI filter bank equals N. (See Appendix A2 for proof).

Note that each synthesis channel of the non-subsampled FB in the polyphase domain

[89], [92] yields a signal equal to the reconstructed signal, and as a result, the

reconstructed signal (x,) is the average of the dM reconstructed signals resulting from

the (1M output channels of PB in the polyphase domain. However, the non-subsampled

PE is redundant by a factor of N. Although redundancy is not desirable in some signal

processing applications such as compression, it provides abundant information about a

signal, which is advantageous for some applications such as denoising.

According to Remark 2.3, one can simply omit the subsampling operations at a

single-level FB scheme to obtain a TI realization of the FB. For a multilevel FB,

however, we cannot merely do so at every level to construct the corresponding TI

scheme. In the nonsubsampled version of the FB, one has to change the analysis filters of

level(s) l > 1 such that they operate the same way as if there is subsampling. In the next

proposition, we show how one can construct new filters when one omits the subsampling

operations in a multilevel PE, in order to achieve translation invariance.
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Figure 7. The effects of subsampling on the filters of a filter bank should be considered when developing a

   

 

 

      

TI scheme.

Proposition 2.1 (generalized algorithme c‘z trous): Assume that we have an L-level

octave-band multi-channel FB with analysis and synthesis filters at level 1 as Hi(l)(z)

and G,-(l)(z), (0 Si < N, IS I S L), respectively and a general d-dimensional

sampling matrix M (with size d x d ). If one omits the subsampling operations in the F3

to obtain the TI scheme, the new analysis and synthesis filters at a level I, (I S l S L)

1—1 1-1

are H,Il)(z) = H1. (2M ) and Cit-(”(1): Gi(zM ), respectively.

Proof We prove this proposition through induction. For the first level (1 =1), as

stated in Remark 2.3, the filters remain unchanged. Now suppose we have the TI filters of

HI. (z) = HI. (z ) and G,- (2) = G,(z ) for a level 1. Assume that the output

of the analysis part at this level is Yi“)(z), (O Si < N). Now at the next level, I + l,

we apply a FB using the previous level filters, which are Hi“) (z) and Ci“) (2). Since in

the original FB, each analysis (synthesis) filter presumes a downsampled (upsampled)

version of the output of the last level, as depicted in Figure 7, the equivalent filters are

obtained using the noble identities: HIII“) (2) = H5’) (2M) and GEM) (z) = Gr“) (1M) .

Hence,
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H.."+”(z) = H.(z"”""” ) = H.(z”’ ), and Gf’+”(z> = G.(z‘M’""M > = G.(z“’ >.

Note that according to Remark 2.3, one has to include a scaling factor equal to

1/ (1M after each synthesis bank. 1:]

The following corollary generalizes Proposition 2.1 when the sampling matrices are

not the same.

Corollary 2.1: Suppose that MI, (ISIS L), is the (d-dimensional) sampling

matrix for the level I in the FB mentioned in Proposition 2.1. Then the equivalent analysis

and synthesis filters for the non-subsampled F8 for levels I 2 2 (they remain unchanged

I-I l-l

HMJ] {II/"1]

for the first level) are Hi(1)(z)=H,-(z[j=l ), and G,.(')(z)=G,.(z Fl )

respectively. To ensure perfect reconstruction, a scaling factor equal to l/dM1 is

required after each synthesis bank having the sampling matrix M1 .

In Proposition 2.1 and Corollary 2.1 we have extended the well—known algorithme d

trous proposed in [49] for the wavelet transform to a generalized algorithme d trous,

which is applicable to a general multidimensional multi-channel FB system. Below we

extend Remark 2.3 for a single-level non-uniform FB (i.e. has different sampling

matrices). The equivalent single-level FB form of a multilevel wavelet transform is an

example of such FBs.

Proposition 2.2: Suppose that a perfect reconstruction multidimensional non-

J

uniform FB has N = Zn, channels with analysis and synthesis filters as

i=1

{Hm,H,.,2,...,f-I,.,ni}15iSJ, and {Gi,1,G,’2,...,Gi,ni}IS,.SJ, respectively. Suppose also
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that the sampling matrices for the channels {(i,n); IS 11 S ”1} are equal, where we

denote them as Mi , (l S i S J) . Now, if we remove the sampling operations, the FB can

be made perfect reconstruction by adding a scaling factor equal to 1/ (1Mi , after each

synthesis filter for the channels {(i,n); l S n S n,}.

Proof: Here we provide a proof for a special case, where the FB with subsampling

(which we call it A) is a simplified version (which is obtained through FBs identities) of

an L-level FB (15’), where B is composed of a series and parallel combinations of distinct

FBs like the one given in Figure 5. Note that the total number of channels in B is equal to

N. Now, regarding Remark 2.3, for each distinct PE in B one can omit the subsampling

operations, add the proper scaling factors at the end of each distinct FE, and modify the

filters taking into account the relevant level and the sampling matrices before this level.

Finally, one can simplify the resulting FB (C) to a single-level one, where we denote it D.

Note that the filters in D are the same as those in A. Assume that a set of distinct FBs, F ,

from the input to output of C with the scaling factors {1/ did; 1 S l S L}, lead to the

resulting channels {(i n); l S n._< n} in D, which have the saine scaling factor equal to

1/ dM.This scaling factorIS in fact equal to H(1/dMI). On the other hand, one can

conclude that the sampling matrices assciciatedwith F in the FB 8 are

{M(I; ISIS L}. Thus, the sampling matrix for channels {(i,In); 1S n Sni} in A,

which is La reduced version of B, is M =1:[(MiI ) , hence,

dM_ =det{H(M,’ )}—— l_[(dM,). Therefore, to obtain D fro=m A, one can simply

[=1

omit the subsampling operations and add the scaling factor 1/dMi to the channels

 

associated with the sampling matrix, Mi . Cl

In the next section, we develop a TI scheme of the contourlet transform using the

algorithms mentioned in this section.
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Figure 8. Laplacian pyramid. Left: The signal x is decomposed into a detail signal, (1, and

approximation, c. Right: The reconstruction scheme.

2.4 TRANSLATION-INVARIANT CONTOURLET TRANSFORM

The contourlet transform is composed of two stages: a Laplacian pyramid (LP) [10],

[29] and a directional filter bank (DFB) [5], [70]. The LP decomposes an image into a

number of radial subbands plus an approximation image. Then, the DFB is applied to

each resulting detail subband where a maximum number of directions are used at the

finest subband, and this number of directional levels is decreased at every other radial

detail subband to achieve the anisotropic scaling law of width at length2 [12], [27].

Since the contourlet transform is realized using two stages of subsampled F85, to create a

TI contourlet transform (TICT), we need to develop TI schemes for both stages, as

explained below.

A. Translation-Invariant Pyramids

A new reconstruction scheme was proposed for the LP that is based on the frame

reconstruction, leading to more robustness against noise [29]. Figure 8 shows the LP

decomposition as well as its new reconstruction schemes. We let the sampling matrix, M ,

equal to diag(2,2) for images, where diag(al,az, ...,aN) is defined as a diagonal

N x N matrix having ((11,612, ...,aN) as its diagonal elements. Here H and G are 2-D
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Figure 9. Single—level 2-D LP in the form of an oversampled filter bank.

lowpass filter pair4. Note that if one removes the subsampling operations from this LP

framework, the resulting nonsubsampled FB will fail to be perfect reconstruction.

Do and Vetterli [29] proposed the LP in the polyphase domain [89], [92] in the form

of an oversampled FB. In this form one can better observe the structure of the pyramids,

and besides, it is a more suitable framework for developing the TI version of the LP.

Defining the vector of the polyphase components of a signal x in the z-domain as

X7, (z) = (X0 (z),...,X3 (z))T, and the filters h and g as the row and column vectors

Hp(z) 2 (H0 (z),...,H3 (z)) and (373(1) = (GO (z),...,G3 (2))T, one can write the

input-output relationship of the LP as (see Figure 9),

( H(z) \ (Hap

zko ’ Go (1M)H(Z) K0 (2)
7(2) = (2.1)

    tz“ — G.(z“>H<z)) use»

 

4 While it is easily extendable to the multidimensional case, we present the 2-D LP, proper for image applications.
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Therefore, we have Y(z) = DM {T(Z)X(z)} , where DM {-} denotes the downsample

operator using matrix M. If the filters h[n] and g[n] are biorthogonal with respect to the

sampling matrix M, the inverse transform of the LP in the polyphase domain is found to

be

5(z)=(G(z) {“0 — G(z)H0(zM) z""3 — G(z)H,(zM))

= (0(2) F0(z) 173(1)),

and if UM {} denotes the upsample operator with respect to the matrix M, we have (see

Figure 9):

mo = 8(z)U..{Y<z>}.

Figure 9 shows a single-level LP in the form of an oversampled FB. To construct a

multilevel LP, one can simply iterate the single-level LP on the lowpass channel. Using

the generalized algorithme a‘ trous developed in Section 2.3, the multilevel TI scheme of

the LP is constructed by suppressing all subsampling Operations

and modifying the filters at level I:

T">(z)=(H(z“'"‘) Ko(z“’") K3(z’f"))r.

and

—1 —1 —1

s">(z>=(6(z”’ ) Fo<z“’ ) F.(z”’ )).

—1 21—1 21—1 _ . . . .
where z =(zl ,z2 ). This Implies that we upsample the corresponding filters In

both row and column directions with 21'1 . Note also that we should scale the signal after

each synthesis bank by ‘A. In the TILP scheme, since there are four detail channels at
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each level, the redundancy factor of this scheme is 4L + 1, when an L—level scheme is

employed. Below, we provide a brief discussion about the characteristics of the LP filters

(Figure 9).

As mentioned before, the LP is perfect reconstruction when the filter pair h and g are

biorthogonal. Now we examine the condition in the case of the TILP.

Proposition 2.3: Upon omitting the subsampling Operations in a single-level

oversampled LP, the filters h and g should be biorthogonal to ensure perfect

reconstruction.

Proof' The proof is straightforward noting that

S(z)T(z) = 4 + G(z)H(z)(Hp (2M )0, (2M) — 1).

Therefore, if Hp (zM )G'p (ZM)=1 we have perfect reconstruction. This condition is

equivalent to Hp (z)Gp (z) = l, which implies that the filters h and g are biorthogonal.

The constant 4 indicates the need for a scaling factor. 1:1

Consequently, removing subsampling operations from the LP does not eliminate the

restriction of biorthogonality of filters h and g in the TILP frameworks. Now we take a

closer look at the highpass filters of the TILP.

Proposition 2.4: Let H(1d)(z) be a l-D linear phase lowpass filter having multiple

zeros at z = —1 as:

H<‘d>(z) = (1 + z)N' (1 + z“ )N1 R(z), (2.2)

where R(z) = R(z—l). Then, if Héld)(z) and HIM)(Z) are polyphase components of

H(ld)(z), Hl(ld)(22) has zeros at z=ij or a)=:tn'/2. In addition, Héld)(22)
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and Hl(ld)(22) cannot have a zero at z = —1.

Proof: We can write

Hg‘d>(zz) = Even{H(ld)(z)} and Hfld)(zz) = z“ Odd{H“d)(z)}.

Therefore,

Hl‘d’<22)|z=ij =:j2”r‘<R(j>—R(—j»=o

and for the second part since H(1d)(z) is a lowpass filter, we have H("0(1) at 0 and

consequently, regarding (2.2) its even and odd parts are not zero at z = —1 . D

As a matter of fact, H1(1d)(22) is also a lowpass filter with about half of the cutoff

frequency of H(ld)(z). Note that the filters Gi(zM)H(z), (0SiS3) in (2.1) are

separable and obtained from l-D filters Géld)(z)H(ld)(z) and Glad)(z)H(ld)(z),

where they have zeros at a) = if and the latter has also zeros at a) = in/ 2. It turns out

that the analysis LP filters KI. (z) , (0 Si S 3) - and similarly H(z) - have passbands

with different cutoff frequencies as illustrated in Figure 10.

Note that when we remove the subsampling operations in a FB, we encounter fewer

restrictions in the filter design of such FBs. For instance, to ensure perfect reconstruction

in a TI pyramid having five channels, the filters have to just fulfill the following

condition:

3

H(z)G(z> + 26K.<21F.-(z)=1.
i:

However, there is no standard method for designing 2-D filters having more than two

channels with arbitrary passband regions. Moreover, the McClellan transformation,
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Figure 10. The frequency responses of the analysis filters in the 2-D oversampled LP (Figure 9).

which is normally used in 2-D filter design, seems to be disadvantageous in designing

2-D multi—channel FB. As a result, we resort to biorthogonal filters in the TILP similar to

the LP. Next, a frame analysis is provided for a single-level TILP.

For redundant transforms, frames [25], [24] are efficient tools for analysis. A frame is

defined as follows.

Definition: Let the sequence {49].}1.er and signal x, be in the Hilbert space H; then

{19].}jer is a frame if there exist two constants A>0, and B<oo, such that,
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Allx”2 S zl<x,6j >|2 S Bllxllz. We call A and B, the frame bounds. A frame is known

jeF

as a tight frame when A = B. In a tight frame, the signal is reconstructed through

x=A_]Z<x,6lj>19j.

jer

It is important to note that when a scheme can be expressed by a frame, it represents a

stable framework, where the existence of an inverse transform is guaranteed. This is

especially important for the schemes that are redundant. Since the LP is an oversampled

FB, it could be better analyzed using flame theory. In the next proposition we prove that

the TI realization of a single-level subsampled FB having a tight flame, is also a tight

frame.

Proposition 2.5: Consider a single-level multidimensional FB (see Figure 5) having

a tight frame with frame bounds equal to one. Then, the corresponding TI FB provides a

tight flame with frame bounds A = B = dM .

Proof' From Remark 2.1, a technique to obtain a TI set of outputs is to shift the

analysis filters by kc, (O S c S dM — 1). We also shift the synthesis filters,

correspondingly. Hence, for each shift we have a distinct set of kernel functions.

Furthermore, each set provides a tight flame as we show it below. Assume the kernel

functions of the original FB are {9j}j zd , thus the tight flame condition implies that

E

2

Z Kxagj» = ”xllz NOW a Shift in {6].}. 2" corresponds to the same shift in x as
’6

jeZd

mentioned in Remark 2.1. As a result, the shifted version of the kernel functions is a

distinct tight frame with flame bounds equal to one. Now suppose we denote the analysis
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kernel functions for a shift of kc , by {gjc}jeZd , where O S C S dM — I. Let us denote

{(01} = {9;}, (OSCSdM — l, and jEZd ), as the kernel functions of the TI FB.

Then we have

 
Z Kan->1 = Z KM) =dM llxll -
jeZd 6:0 jeZd

Therefore, the TI FB provides a tight flame with flame bounds A = B = dM . 1:1

As a result, if a subsampled FB provides a stable framework, the corresponding TI

scheme also represents a stable realization.

Corollary 2.2: If the subsampled FB in Proposition 2.5 has a tight flame with frame

bounds equal to K, then the corresponding TI scheme provides a tight flame with flame

bounds A = B =dMK.

Corollary 2.3: Since it is proven that a LP with orthogonal filters provides a tight

frame [29], the single-level 2-D TILP with orthogonal filters provides a tight frame with

frame bounds equal to four.

B. Translation-Invariant DFB

The DFB is the major part of the contourlet transform. It is realized through iterated

quincunx FBs, and some resampling operations that just rearrange coefficients. In an I -

level DFB, we decompose the frequency space to 2’ wedge-shaped partitions

(Figure 11). Using the noble identities, one can transfer all sampling Operation to the end

(beginning) of the forward (inverse) transform of the DFB [70]. As a result, one obtains

2I analysis and 21 synthesis filters, Hi“) and Ci“) respectively and the overall
’
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sampling matrices Si”), (O Si < 21 ), as given below [70], [27]:

s“): diag(2i‘l,2), for OSi<2i“

‘ diag(2, 2H), for 2"‘Si<2’

Since it is the equivalent iterated DFB system for 1 levels, to construct the TI scheme, it

is sufficient to suppress the subsampling operations and multiply the reconstructed signal

by a scaling factor, which is 1/ det(S,-(I))=2-I for both vertical and horizontal

directions. Therefore, the redundancy factor of such a scheme is equal to the number of

. . i

directions 2 .

According to the passband regions of the TILP highpass filters (see Figure 10), for

filters K1 and K2 it is more appropriate to employ vertically- and horizontally-oriented

DFBS [38], respectively (as we explain further in Section 2.4C). In vertical DFB (VDFB)

and horizontal DFB (HDFB) we can achieve vertical directions (directions between 45°

and 135°) and horizontal directions (directions between -45° and +45°) as depicted in

Figure 11. In these two modified DFB schemes, we stop decomposing the signal

horizontally or vertically after the first level of the DFB. Therefore, the overall sampling

matrices for VDFB and HDFB will be

SN) _ Q, for subband y1

' _ diag(2,2H), for 2"1Si<2”

and

SW) = {diag(2i“‘, 2), for 0 S i < 21:1

I Q, for subband yo

where Q is the quincunx sampling matrix. Note that we can change the shape of subbands
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Figure 11. (a) The frequency response of a DFB decomposed in 3 levels. (b) An example of the vertical

directional filter banks using 8/2 directions. (c) An example of the horizontal directional filter banks using

8/2 directions.

y0 and y1 (see Figure 11) in the spatial domain into a rectangle using a resampling

matrix and shifting as explained in [38]. In the TI versions of the VDFB and HDFB we

should consider the new sampling matrices to obtain the proper scaling factors. The

redundancy factor of the modified (either vertical or horizontal) TIDFB will be 2’-1 + 1.

Note that the construction provided for the (modified) TIDFB is not efficient in terms

of complexity. We will present an efficient construction in Section 2.4D.
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C. TI and Semi-TI Contourlet Transforms

The TI contourlet transform (TICT) is constructed using the TILP and (modified)

TIDFB. In fact, we employ a similar structure as the one used in the contourlet transform.

However, when developing the TICT, since every level of the TILP has four highpass

subbands, we propose to apply the (modified) TIDFB to each one of these subbands. The

form of passbands of highpass filters in the TILP (Figure 10) suggests to apply regular

TIDFB to highpass outputs of K0 and K3 and use TI VDFB and TI HDFB for outputs

of K1 and K2, respectively. To preserve the anisotropic scaling law of

width 0C length2 , we apply (modified) TIDFBs with a desired maximum number of

directional levels to the four finest subbands of the TILP, where we are at level one, then

as we decrease the radial resolution of the TILP at higher levels, we decrease the

directional levels at every other TILP level.

Remark 2.4: Assume that a TILP has L levels and we apply ii-level (1 Si S L)

(modified) TIDFBS to the four detail subbands of level i of the TILP. Then the

redundancy factor of the constructed TICT is 3L2:=1 21". + 3 .

Improvement in denoising performance is an important reason justifying the

construction of a TI version of a subband scheme. Since the redundancy of the (modified)

TIDFB increases exponentially as the number of directional levels is raised, it makes the

TICT highly redundant when comes along with the redundant transform of the TILP.

Therefore, we propose another variety of the CT, which is less redundant and less

complex. This new scheme is accomplished through applying the critically-sampled

(modified) DFBS to the TILP in much the same way that we employ the (modified)
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Figure 12. Some of the STICT coefficients of the Boats image using L = 3 and {ii}lsis3 = {3,2,2}

directional levels. The coefficients for only one TILP subband (k = 3) are depicted. From left to right the

(d) (d) (d) . . . . . .
subbands 771 3 , 772 3 , and 773 3 With all directions are shown. For better Visualization, the transform

coefficients have been clipped.

TIDFBs to realize the TICT. Hence, this contourlet realization is not TI and therefore, we

refer to this approach as the semi-TI contourlet transform (STICT). The redundancy

factor of this scheme is the same as that of the TILP, which is 4L + 1 .

Figure 12 shows an example of the STICT of the Boats image using three TILP levels

and (modified) DFBS with {libs-$3 = {3,2,2} directional levels. Images at the top part

of each level in this figure indicate the horizontal directions. We will denote the

transform coefficients of the TICT and STICT by pg)(m) and 7752 (m) , respectively,

where i , (1 S i S L) indicates the pyramidal level, k , (1 S k S 4) shows the pyramidal

subband at each level, (1, (1Sd.S2Ii -for regular DFB) specifies the directional

subband at each level, and m denotes the position in two dimensions. Likewise, we can

also denote the CT coefficients by yéd) (m) with the same definition for i , d , and m.

Although the STICT is not TI, our preliminary image denoising results indicated the
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potential of this approach [36]. The main drawback of a shift-variant FB scheme to

employ for denoising is due to the appearance of artifacts when one reconstructs the

signal from not all of the transform coefficients. Here, we perform a simple experiment

(similar to the one in [53]) to evaluate our proposed methods. First we obtain the

transform of a synthetic image of a circle using the CT, TICT, and STICT (with

{1:}19.S3 = {3,2,2} ). Then, for each method we reconstruct the image by keeping one

directional subband at a level (L =L) and its parent subbands in the other levels

(L < L).

Figure 13 shows some examples of the reconstructed images. It is clear that the

images reconstructed using the CT show a lot of artifacts approving the unsuitability of

this scheme for some image processing tasks such as image denoising. In contrast, the

results of the TICT are almost artifact-flee with higher directional resolution. The STICT,

interestingly, provides the results without noticeable differences to those of the TICT,

which clarifies the importance of making the pyramidal subbands translation invariant.

Hence, making the DFB stage translation invariant does not have much impact in

improving denoising results.

In the next subsection we will provide fast realizations of the TILP and (modified)

TIDFB as well as the complexity analysis of the different proposed contourlet schemes.

D. Complexity Analysis and Efficient Realization

When employing the STICT and TICT we encounter alternative FB schemes for

which we propose and express efficient realizations along with their individual

complexities; then we identify the complexities of the above transforms. Note that we

compute the complexities for the decomposition (analysis) stages while we have similar
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(a)

  
TICT STICT CT

(b)

 

(C)

Figure 13. (a) Reconstructed images using the subbands 79) , péli, and ”ilk for IS i S 3 , and

1 S k S 4. (b) Image reconstructed using the subband(s) with indices 6. = I, i = 3 , and 1 S k S 4.

(c) Original image.

ones for the reconstruction (synthesis) bands.

1) E

Since the sampling matrix M is separable, the 2-D filtering could be carried out in a

0")
had) and g with lengths 1,, and lg,separable mode using the 1-D filters

respectively. Therefore, from Figure 8, we have (lh + lg )/2 multiplications per input

sample (MPS) and (1,, + lg — 2)/2 additions per input sample (APS) (note that the

input to the filter G has N2 / 4 nonzero samples for an input image of size N x N). For
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a multilevel LP, the complexity is up to 4/3 the complexity of a single-level LP.

2) TILP:

Considering the transfer function of a single-level TILP (2.1), although the filters

KI. , (0 Si S 3) are indeed nonseparable, we can do the filtering in a separable mode by

computing the difference of the filtered input image (by first H(z) and then (fl-(ZN),

which are both separable filters) from the input image shifted by ki. Since H(z) is a

common filter in all the channels, we are just required to filter the input image by this

filter once, which needs 21,, MPS and 21,, — 2 APS. Now, without loss of generality,

suppose that lg is odd, then the polyphase components of gud) (denoted by g6”) and

gl(1d)) will have the lengths of (Ig —l)/ 2 and (lg +l)/2. Meanwhile, the filters

Cit-(ZN), (0 Si S 3) are created using the ID filters g3”) and glad) . It turns out that

one needs to filter the rows and columns of the input signal by 851d) and glad) once.

Hence, the complexity of filtering by (fl-(2M ), (0 Si S3) will be

2 x (lg - l)/2 + 2 x (lg +1)/2 = 21g MPS and 21g — 4 APS. Consequently, the

overall complexity is 2(lg + [h) MPS and 2(lg +1}, -1) APS. For an L-level TILP, the

complexity will be L times the complexity of the single-level TILP.

3) DEB;

Although the quincunx sampling matrix is nonseparable and thus filtering using fan

filters is nonseparable, Phoong et al. [72] proposed an efficient approach, which provides

separable filtering in the polyphase domain. Suppose that the kernel function ,B(z) in the
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ladder network [72] has length l , which generates the 2-D synthesis filters with support

sizes of (213 — 1,21'3 - l) and (4lfl - 3,413 — 3). Then, the complexity of the

quincunx filter bank (QFB) is 213 MPS and 2113 — 1 APS. Since we iterate the QFB at

all channels for the higher directional levels, the complexity of the i -1evel DFB will be

i times and that of a modified DFB is (i + 1) / 2 times the complexity of the QFB.

4)m

In this case, opposite to the DFB, we have to perform nonseparable filtering at some

levels due to omitting the subsampling operations. Nevertheless, we show that we can

have a complexity similar to the separable filtering. Using again the filters designed in

[72], we have the synthesis filters for QFB as follows:

41/3 -1 -1

HO(ZI922):(1/2)(zl +Zi 76(2122 )fl(2122)),

and

—4Ifl+l

Hl(zl922)=zl _18(zlz2l)fl(2122)H0(zl’22),

provided that the sampling matrix is

Here, since both ,B(zlzz—l) and fl(zlzz) are diagonal matrices having [[3 nonzero

elements, the complexity of the QFB is 41p MPS and 41fl — 2 APS, which is the same

as the separable case. In the second level of the TIDFB, we upsample the filters by Q,

where ,B(z12;1)fl(zlzz) transforms to 3(222 )fl(z]2 ) and therefore, for each QFB we
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reach the same complexity as the first level. For higher levels, in addition to the sampling

matrix Q, we have resampling matrices, as well. The overall sampling matrices for these

levels after the second level are in the form of [70]

i-2 1 0

1% 11°10 21:21

,. [‘4

Consequently, for a level 123, ,B(Z§)fl(zlz) converts to ,6(Z§),6(Z12 ) or

("—1

,6(z§ )fl(212), which indicates that for each QFB at these levels also we have the

same complexity as the first level. Since the total number of the QFBS employed in an i -

level TIDFB is 2] — 1 and that of the modified TIDFB is 21“1 , (l 2 2), the complexity

of these schemes will be 41,6 (21 — 1) MPS and (41,5 — 2)(2[ — 1) APS, and 41/, 21—1

MPS and (41,3 — 2)2H APS, respectively.

5) STICT:

In this case, for an L-level STICT employing (modified) DFBS with

A

ll. , (1 S i S L) levels, we have

2L(l,, + lg) + 61,222. + 21,,1. MPS,

and

L A

2w, +1g — 1) + 3(21, “DZ-=11: + (21,, — 1) APS.

6) TICT:

Considering the complexity of the TILP and (modified) TIDFB,
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an L-level TICT having TIDFBs with 1,, (1 _<_. i s L) levels has the complexity of

2L0, +1g) + 121,321?=1 2’? —81,, MPS,

and

2L(l,, + 1g — 1) + (41, — 2)ZL1(3(2’3' ) — 2) APS.

Note that in the above calculations, we have considered general forms of the filters.

If, however, linear phase filters are employed, we can use about half of the filter lengths

in the above complexities. We see that due to the (modified) TIDFB, both the

complexity and redundancy ratio of the TICT are exponentially proportional to the

A

directional levels 1,, (l S i S L), whereas they appear as linear terms in those of the

STICT. Hence, significant reductions in complexity can be achieved when using STICT,

especially when using a high number of levels.

2.5 IMAGE DENOISING

One of the major applications of the wavelet transform is denoising. For images,

however, directionality is an important feature that the regular WT lacks. It follows that,

when one denoises images using wavelets, the edges and fine details are smeared.

Therefore, using subband decompositions having the feature of directionality as well as a

good nonlinear approximation property would result in superior image denoising

performance [36], [80], [86]. The CT has been shown to be a better alternative choice

than the WT at some cases [28], [36], [43], [74]. In [43], a cycle-spinning algorithm is

employed to improve the denoising performance of contourlets. Although it is equivalent

to a TI denoising if all of the possible shifts of the input image are used [22], the
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computational complexity of this procedure for an image of size N X N is N2 times

that of the CT, which consequently makes this algorithm almost prohibitive for rather

large-size images. Our preliminary work on contourlet TI denoising demonstrated the

effectiveness of the STICT in image denoising [36]. Here, we improve our method

through finding a suitable shrinkage function.

A. STICTDenoising Scheme Using Bivariate Shrinkage

One of the most crucial factors in image denoising is the method of shrinkage.

Because of the inter-scale and intra-scale dependencies amongst the transform

coefficients, it is of key importance to build the shrinkage operation upon an appropriate

probability model to account for these dependencies. Bivariate shrinkage is a recent

shrinkage approach, which in addition to taking into account the dependencies among the

coefficients in each subband, considers the parent-children relationship into the MAP

(maximum a posteriori probability) estimation [79]. In this work, we introduce a new

image denoising scheme based on the proposed STICT and incorporating bivariate

shrinkage. This shrinkage approach is established through modeling the joint probability

distribution function (PDF) of parents and children of the transform coefficients. For

wavelets and also dual-tree complex wavelet coefficients, [79] proposed the following

non-Gaussian joint PDF

 

3

x = e a , 2.3
pX( ) 272'0'2 ( )

where x1 and x2 denote parents and children. The main advantage of this model is that it

provides a closed-form shrinkage function that results in easy realization and also

generates competitive results in comparison with the more sophisticated models [79].
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For the STICT, we need to first study the joint PDF of parents-children. In this case,

we propose a parent-children relationship, which is similar to the one introduced for the

CT coefficients [74]. Suppose that we have the STICT with I}, (1 S i S L) directional

levels, then we consider the following parent-children relationship where

III = (ml / 2, m2 )T for horizontal and III = (m1, m2 / 2)T for vertical subbands:

parent child(ren)

”Six (m) if [1+1 = A1 a (i 7‘: L)

nifi.’(m) —> '

nitrite) and mime) if I"... =I". +1, (in)

For subbands corresponding to y0 or yl (see Figure 11), the children lie at the same

position where the parents are in the next coarser level. Note that for the approximation

subband 77L (m) , all the directional subbands at the previous level are children subbands

with a similar relationship that was mentioned above. Using this definition, in Figure 14

we demonstrate the normalized joint histogram of parents—children for the Barbara and

Peppers images, when an STICT with {BLSKZ '2 {3,3} directional levels is employed.

We see that the joint histograms are similar to that of the wavelet coefficients (see [79])

and hence, we propose to use the model (2.3) for our bivariate shrinkage function in the

STICT domain.

B. Simulation and Results

To evaluate the proposed schemes, we performed several experiments on a variety of

images all of size 512 x 512. Here, we also provide the CT and TICT denoising results

using hard thresholding. For the sake of comparison, we also employed some of the state
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     0
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Figure 14. The normalized joint histograms along with their contour plots of parents-children of the

STICT coefficients for the images Barbara and Peppers.

of the art methods in literature such as the dual-tree complex wavelet transform

(DTCWT) with both hard thresholding (HT) and bivariate shrinkage (BS) [80], and the

BLS-GSM denoising method propose by Portilla et a1. [73] (using full steerable pyramid

with window size (3, 3) and inclusion of parents). Furthermore, we used a T1 (or

undecimated) wavelet transform (TIWT) as well as adaptive Wiener filter (function

wiener2 in Matlab) using a window size of (5, 5). Note that using the generalized

algorithme a trous proposed in Section 2.3, we can easily construct the TIWT. Hence, a

TIWT with L levels has the redundancy factor of 3L +1 and complexity of

2L(lg +l,,) MPS and 2L(lg +l,, — 2) APS where I,' and Ig are the lengths ofthe 1-

hUd) (M).
D analysis filters and g

The filters we used for the TIWT and TILP in the (S)TICT are biorthogonal
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Daubechies 9/7. Further, we used 5 levels for the TIWT and a 4-level TILP in the

(S)TICT. For the (modified) DFB and TIDFB, we utilized the fan filters designed in [72]

with [fl =12 and hence, support sizes of (23,23) and (45,45). We applied

{LMS-S4 = {3,3,2,2} directional levels to the (S)TICT except for the STICT (BS) for

the Barbara image where we used {1:}1554 = {4,3,3,2}. Note that if we use more

directions and levels in the (S)TICT, there will be more artifacts introduced in the

denoised images.

The images were contaminated by a zero-mean Gaussian noise with a standard

deviation of 0'. For all the denoising schemes, we assumed that 0' is unknown and we

estimated it using the robust median estimator [32]. Moreover, we mirror-extended the

noisy images to avoid boundary distortion. Although the size of the noisy images is rather

large, the PSNR values of the denoising results change slightly (usually up to i0.1 dB)

when we use a different noise instance. Hence, to obtain more accurate PSNR values, we

repeated each denoising experiment ten times using different noise realizations and found

the average of PSNR values. We also clipped the noisy images to set the pixel values in

the allowable range of 0 to 255.

Table 1 shows the PSNR values of the denoising results when the standard deviation

of the input noise is varying between 0' = 5 and 0' = 100. In the first part of the table

we used hard thresholding to compare different transforms for denoising. As seen, our

proposed TICT (HT) method outperforms the other methods in most cases. In addition,

the STICT (HT) provides competitive PSNR values to the other outstanding schemes.

The second part of Table 1 shows our proposed STICT (BS) denoising results as well
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Table l

PSNR Values of the Denoisin Experiments
 

 

 

 

 

 

 

  

 

 

 

 

 

   

 

 

 

 

 

  

 
 

 

 

 

 

            

Nois TIWT DTCWT STICT TICT TIWT prcwr BLS- STICT

Image a Imagi; CT (HT) (HT) (HT) (HT) (HT) ll (BS) (BS) 180] GSM173] (BS)

5 34.15 33.64 36.54 36.04 36.75 37.07 37.85 37.09 37.96 37.95

w 10 28.13 30.17 32.58 32.66 33.19 33.49 33.72 33.50 34.40 34.42

a. 20 22. 15 26.49 28.26 28.93 29.26 29.53 29.41 29.78 30.60 30.59

3 40 16.38 23.17 24.53 25.02 25.42 25.70 25.33 26.35 26.70 26.77

70 12.25 21.04 22.19 22.28 22.54 22.78 22.38 23.44 23.54 23.57

100 10.16 19.76 20.60 20.62 20. 75 20.95 20.67 2_]_.__4_1_ 21.51 2 I .40
a F-

5 34.15 33.97 36.88 36.37 36.78 37.11 38.13 37.55 38.17 38.04

10 28.14 30.59 33.32 33.24 33.31 33.59 34.19 34.02 34.69 34.35

g9 20 22.18 27.27 29.75 29.80 29.79 30.03 30.32 30.63 31.14 30. 73

a 40 16.42 24.08 26.32 26.20 26.25 26.49 26.47 27.36 27.65 27.15

70 12.31 21.50 23.27 23.10 23.10 23.33 23.27 24.33 24.41 23.91

‘ 100 10.20 19.83 2—l._0=6 21.00 20.89 21.08 L 21.12 21.94 21.55

5 34.15 35.00 37 33 37.35 37.30 37.52 38.27 38.00 38.22 38.20

10 28.13 32.10 34 53 34.71 34.67 34.89 35.08 35.30 35.60 35.44

g 20 22.13 28.91 31 35 31.45 31.52 31.75 31.54 32.35 32.63 32.30

8 40 16.35 25.62 27 83 27.67 27.94 28.22 27.68 29.24 29.39 28.82

70 12.22 22.78 24 55 24.31 24.52 24.82 24.23 25.93 25.96 25.35

100 10.15 21.98 g 22.09 22.15 22.39 _ 22.05 23.30 22.79

5 34.21 33.75 35 86 36.04 35.68 35.83 r 36.88 36.52 36.46 36.46

V 10 28.25 31.53 33 91 33.99 33.82 34.00 34.49 34.27 34.57 34.43

g 20 22.32 28.50 30 97 30.91 30.92 31.15 31.12 31.49 31.92 31.60

3 40 16.59 24.82 27 06 26.79 26.99 27.26 26.78 28.00 28.21 27.77

70 12.46 21.62 23 29 23.00 23.20 23.45 22.90 24.29 24.26 23.91

100 10.30 19.58 20 70 20.58 20.61 20.80 20.54 21.48 21.44 21.19
 

as those of the TIWT (BS), DTCWT (BS) [80] and BLS-GSM [73]. The computational

times for these methods on the computer we ran the simulation were roughly 35s, 178, 58,

and 95s, respectively. As seen in Table 1, for low and moderate noise (0' S 20) our

method performs competitively to other methods but for higher power of noise this

approach slightly degrades due to the amount of introduced artifacts.

Visually, however, the proposed STICT (BS) method performs better in recovering

very fine details found in some images such as the Barbara image. Figure 15 shows the

visual results of the Barbara image where the superior performance of the proposed

approach is clear.
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TIWT (BS) DTCWT (BS) [80] BLS-GSM [73] STICT (BS)

  

 

R = 30.60

  
)1

, H4    PSNR = 26.35 PSNR = 26.70

(b)

Figure 15. The denoising results of the Barbara image when (a) 0' = 20 , (b) 0' = 40 .

Another visual example is depicted in Figure 16, which illustrates part of the GoldHilI

image. Again, we can see that the detail over the roofs are better recovered using the

STICT (BS) approach.

Finally, Figure 17 depicts another example from the Boats image. Here, we can

compare the artifacts introduced around edges by these methods. Note that both the

TIWT and dual-tree complex wavelets produce more (visible) artifacts around strong

edges. The proposed method provides similar performance to that of the BLS-GSM in

this figure.
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TIWT (BS) DTCWT (BS) [80]

 

PSNR = 33.09 PSNR = 32.82

BLS-GSM [73] STICT (BS)

    
PSNR = 33.27 PSNR = 32.97

Figure 16. The denoising results of the GoldHiIl image when 0' = 10.

2.6 CONCLUSION

In this work, we studied and developed new approaches for converting a general

multi-channel multidimensional subsampled FB to a translation-invariant or non-

subsampled FB. Particularly, we extended the algorithme £1 trous, which has been

introduced for l-D wavelets, to a generalized algorithme a‘ trous, which is applicable to a

general multidimensional and multi-channel FB framework.

Using the proposed generalized algorithme d trous as well as incorporating modified

versions of the DFB, we constructed the new scheme of the translation-invariant

contourlet transform (TICT). We also proposed semi-TICT (STICT) to reduce the high

redundancy and complexity of the TICT. Then, we used a competent Bayesian-based

shrinkage approach in conjunction with the proposed STICT to create an efficient
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BLS-GSM [73]; PSNR = 31 .14 STICT (BS); PSNR = 30.73

Figure 17. The denoising results of the Boats image when 0' = 20 .

denoising scheme. Our results indicate the potential of this new scheme in image

denoising.
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Chapter 3

ANEW/FAMILY OF NONREDUNDANT

DIRECTIONAL TRANSFORMS

3.1 INTRODUCTION

Recently, there have been several studies showing that separable 2-D wavelets fail to

represent images optimally [60], [91]. It is well known that the wavelet transform

provides efficient approximation of 1-D piecewise smooth signals; nevertheless, since

natural images possess l-D singularities in the form of regular edges, approximation

behavior of 2-D wavelets for images indicates the need for further improvement [91],

[12]. As a means to offset this deficiency to some extent, most image processing systems

utilizing the wavelet transform, for instance coding and denoising systems, usually take

advantage of a post-processing stage to treat the inter- and intra-scale dependencies

amongst the wavelet coefficients [73], [78], [79]. However, this approach alone does not

necessarily eliminate the demand and need for more efficient image transforms.

To construct an efficient image transform, the following criteria are critical. First, the

transform should provide a good nonlinear approximation (NLA) [60] behavior. This
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requires the transform to be direction-sensitive (or geometric) in addition to being able to

provide perfect reconstruction, multiresolution representation, and localized analysis.

Other important features include the transform performance in terms of introducing a

minimum level of ringing artifacts during NLA. The second criterion is that the transform

should incur reasonable computational complexity. In the light of this property, fixed-

procedure transforms are more desirable in contrast to the adaptive transforms, which

normally impose more computations. Finally, being nonredundant is a requirement in

some image processing tasks, most notably image coding.

In this chapter we introduce a new family of image transforms fulfilling the

aforementioned criteria, study their properties and show their applications to coding and

denoising of natural images. This family is one of the first nonadaptive directional

approaches that is employed for image coding. The proposed transform family is

constructed using Hybrid Wavelets and Directionalfilter banks (HWD); thus we refer to

them as the HWD transforms.

Other nonredundant geometrical image transforms include bandelets [57], CRISP-

contourlets [59], directionlets [90], nonredundant complex wavelets [48], and

multiresolution direction filter banks [67]. A primary difference between our proposed

transform family and the other nonredundant transforms mentioned above is the

following. While HWD is nonadaptive, it possesses a rich set of directions, and provides

an efficient NLA by taking advantage of the wavelet transform in its construction, and

thus, it could be directly employed in key image processing applications such as coding.

We should also note that there have been a few attempts in the past to increase the

directionality of wavelets using checkerboard filter bank [4], [17]. Although these
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transforms provide nonadaptive directional extension of wavelets, they are limited to a

small number of directions and do not have flexibility when compared with our proposed

scheme.

The chapter is organized as follows: In the next section we briefly present

background material and the notations required for developing the proposed scheme. In

Section 3.3 we explain the construction of the proposed HWD transform family. In

Section 3.4 we provide multiresolution analysis and efficient realization of the

transforms. The applications of the proposed family as well as the experimental results

are given in Section 3.5 followed by our main conclusions in Section 3.6.

3.2 BACKGROUND

A. Motivation

It is known that the wavelet transform (WT) fails to provide optimal NLA decay for

images containing regular regions of Ca (a > 1) (i.e., a -order continuously

differentiable regions) separated by regular discontinuities (or edges) of Ca . While the

optimal decay rate of NLA is of 0(M_a) where M is the number of retained

coefficients during NLA, wavelets provide a decay rate of 0(M'1) [60], [57]. This low

decay rate is due to the fact that the discontinuities in images yield many wavelet

coefficients of large magnitude. That is, the regularity over the edges remains unseen

from the WT. It turns out that there is quite ample room to further improve the NLA

decay rate of wavelets.

Here, we attempt to pass wavelet coefficients through a filter bank in order to

combine the large wavelet coefficients around discontinuities to achieve a more sparse
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representation. Although it is possible to construct a totally different basis from wavelets,

we believe that improving wavelet basis has some key advantages:

0 The discrete wavelet transform can be realized using a critically-sampled filter

bank and consequently, provides a nonredundant image decomposition.

o Wavelets are popular in the image processing community and there exists

numerous algorithms and procedures utilizing wavelets for image processing

applications; hence, one can benefit from these algorithms by cleverly adapting

them to the proposed transform family.

0 Wavelet packets is an alternative to handle the problem adaptively. One can also

enjoy this feature of wavelets when extending it for the proposed transforms.

Other leading approaches such as curvelets [12], [13] and contourlets [28] use a

similar idea of combining large transform coefficients around discontinuities. The

curvelet transform has been proposed in the continuous domain and therefore,

implementing it in the discrete domain is challenging. The contourlet transform employs

a Laplacian pyramid [10] to extract edges of an image and applies directionalfilter banks

(DFB) [5] to all bandpass outputs of the pyramid with decreasing number of directions

when moving to the coarser pyramid subbands. The DFB stage attempts to decorrelate

the dependencies found over the edges in the bandpass outputs of the pyramid. The

reason for choosing the Laplacian pyramid as the first stage is that because its highpass

channels are not subject to downsampling and thus there is no frequency scrambling for

these channels. This construction, however, leads to the existing redundancy of the

contourlet scheme, which makes this transform unsuitable for image coding.

Below we outline the notations we use in the chapter. Then we very briefly present
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key aspects of the 2-D wavelet transform and DFB, which are required for the realization

of the HWD family.

Notation: We denote a discrete (1' -dimensional signal by x[n] where

n = (nl,n2,...,nd), and its z-transform as X(z) = Znezd )c[n]z"n , where

. d .
z = (Zl,zz,...,zd) IS a complex vector and zn =1—IHZ?‘ . We also define zM as

m m m . .

z =(z 1,2 2,...,Z d),where M=[m1 m2 md]1sa dxd integer

matrix with mi as its ith column.

B. 2-D Separable Wavelets

The 2-D separable wavelet transform [60] is obtained from the tensor product of the

corresponding l-D wavelets. Suppose that H(M) (Z) and Gad)(z) are l-D lowpass and

highpass decomposition filters, then the lowpass and three highpass channels

corresponding to the Horizontal, Vertical, and Diagonal subbands for 2-D wavelets are

obtained as Figure 18(a) illustrates. In this work we denote the sampling matrix M as

diag(2, 2) = 212. Figure 18(b) shows how the WT5 partitions the frequency space.

Since the WT uses a separable construction, the basis functions are merely aligned in two

horizontal and vertical directions (see Figure 18(0)). As a result, wavelets have poor

directionality.

C. Directional Filter Banks

Bamberger and Smith introduced directionalfilter banks (DFB) using quincunx and

parallelogram filter banks [5], [3]. An improved version of the DFB using tree-structured

 

5 From hereafter we mention 2-D separable wavelet transform as wavelet transform (WT).
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Figure 18. (a) 2-D separable wavelet transform. (b) The frequency partitioning of the separable wavelets.

(c) Some basis functions corresponding to Horizontal, Vertical, and Diagonal subbands of biorthogonal 9/7

wavelets (from lefi to right). Note that only positive values are shown.

filter banks was developed recently [70]. In an I -level DFB, the frequency space is

divided into 21 wedge-shaped subbands (see Figure 19(a)). The overall sampling

matrices Dim for channels 1 S i S 21 of such a DFB is [70]

D") = diag(2H,2), for ISiSZI"l

diag(2, 2H), for 2’"1 < i S 2’ ’

where the channels 151' _<_ 21‘1 correspond to the mostly horizontal subbands and the

channels 2"1 < i S 2’ indicate the mostly vertical subbands.

We can also construct half-tree DFBS by just decomposing the mostly vertical

directions or the mostly horizontal directions, where we call the resulting schemes

vertical DFB (VDFB) and horizontal DFB (HDFB) as Figure 19 depicts [38]. In VDFB
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Figure 19. (a) The frequency response of a (full-tree) DFB decomposed in 3 levels. (b) An example of the

vertical directional filter bank (VDFB) using 3 levels. (c) An example of the horizontal directional filter

bank (HDFB) using 3 levels.

(HDFB), we stop iterating at subband yh ( yv) after one level and do not decompose the

signal horizontally (vertically) further. We call the subbands yh and yv as pseudo-

directional subbands.

The first level of the DFB is a simple quincunx filter bank (QFB) with fan filters.

Therefore, the overall sampling matrices for VDFB and HDFB are

DiVU) :
Q, for subband yh (i = 'h ')

diag(2, 2H), for 2"1 as 2’ ’

and
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DH“) = diag(2"‘,2), for 1si_<_2"‘

‘ Q, for subband y, (i = 'v')’

where Q is a quincunx sampling matrix. Note that we number the directional channels in

the half-tree DFBS similar to a regular DFB. Moreover, we denote the overall

reconstruction filters by F}<n(z), (lSiSZI) for the DFB subband i, and also

directional subbands in VDFB and HDFB with appropriate 1'. We also denote the

synthesis fan filters resulting in subbands yh and yv by Fh (z) and Fv(z),

respectively. Then, the functions {fi(1)[n—Di(l)m]} (and similarly

151'le , meZz

{fim [n - 13.-mull} 22 and {ff”[n — D,”(’)m]} in VDFB and
mei613”, iellgl), meZ2

HDFB, where Isl)={i|i='h'or2H<iS21} and I£’)={i| i='v' or

1 Si S 2”1 }) provide a directional basis for 12 (Z2). Note that if we utilize orthogonal

fan filters in the DFBsé, the basis functions are orthogonal in the corresponding DFB

[26].

Since we use quincunx sampling at the first level, the shape of subbands yh and yv

in the spatial domain is diamond. We can change the shape into a rectangle using a

unimodular matrix and shifting as explained in [38].

3.3 HYBRID WAVELETS AND DFB

A. Construction

We propose to extend the directionality of the WT by employing the DFBS to the

 

° By DFBS we sometimes mean both full-tree and half-tree DFBS depending on the context.
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highpass channels of the WT. Therefore, we use the name Hybrid Wavelets and

Directionalfilter banks (HWD) transform family. Before describing the construction, we

elaborate further regarding the proper use of the DFBS in this scheme.

A major drawback of employing DFB is the pseudo-Gibbs phenomena artifacts

introduced when some of the transform coefficients are set to zero during NLA, coding

[45], and denoising [44]. Since in the DFB we need to use long filters for better

directional resolution and since the basis functions are directional, it turns out that the

issue of ringing artifacts will be severer for the DFB when compared with other subband

schemes such as WT. Do and Vetterli attempted to address this issue by applying the

DFB to the Laplacian pyramid in which the highpass channels are free from frequency

scrambling [28], [26].

In a previous work [45], [47], we applied DFBs to all the highpass channels of WT,

which resulted in introducing many artifacts in the smooth regions during NLA and

coding. In this work, we address the problem as described below.

Conjecture 3.1: The main reason for the creation of ringing artifacts when applying

the DFB to the WT highpass channels is employing the DFB to the coarser wavelet

subbands.

This conjecture is based on the following reasons:

1. The human visual system is more sensitive to the low-frequency portions of images.

Consequently, the ringing artifacts resulting from the coarser wavelet scales due to

applying DFBS render more irritant distortions. In addition, smooth regions have

nonzero transform coefficients mainly in the coarser scales of the WT and are best

represented by wavelet basis functions. Therefore, it is crucial to retain coarser
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wavelet subbands and do not change their basis elements.

2. Although the frequency scrambling exists in all the levels of wavelet highpass

channels, it is worse for coarser levels due to the lower frequency content of these

subbands.

3. Suppose that a line segment of support size of E x 1 exists in the input image and we

apply a J -level WT (we assign level one to the finest resolution). Then the support

size of the line at a level j (1 S j S J ) is approximately

[(1— 2_j )t’g + 2-]. E] x (1 — 2”.)3g for the diagonal subband (a similar expression

is obtained for other subbands), where [g is the length of the 1-D highpass filter

g(ld)[n]. Observe that the line segment becomes thicker in coarser scales. Since we

would also have larger directional basis elements if we apply DFB to the coarser

scales, we expect introducing more distortion during nonlinear approximation.

4. Since large-size fan filters are employed in the DFB, the size of coarser subbands

usually becomes less than the size Of the DFB filters applied to them. In this case, we

take advantage of the periodic extension7 of the signal as we see in the following

example. Assume a 1-D N -point signal x[n] and a filter with length 3

(N <6 S2N) are given. To obtain a filtered signal with size N, we can

concatenate two copies of x[n] to Obtain xC [It]. Now we can use 2N -point DFT

(discrete Fourier transform) [69] to obtain the filtered output yC [n] and find y[n]

as the first N -point of yC [n]. One can prove that the 2N -point DFT of xC [n] is

 

7 Note that if we use linear-phase filters, we can benefit from symmetric extension yielding less border

artifact.
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expressed as

X(2N)[k]= 2X‘N)[k] fork=0,2,...,2N—2

C 0 fork=1,3,...,2N—1’

,27r

N-l '1

where X(N)[k]= Zn=o x[n]e N is the N -point DFT Of x[n]. Therefore,

X(CZ/V) [k] is proportional to the concatenation of two copies of X(N) [k] where the

Odd samples are set to zero. It turns out that a distorted version of the input signal

x[n] is employed in filtering, which makes the output distorted. [:1

Now we explain how to construct the HWD transform family. Since in the WT we

already have horizontal and vertical subbands, different paradigms could be considered to

apply DFBS to the Jm < J finest subbands of wavelets. We propose two types of HWD

transforms:

0 HWD using Both Full- Tree and Half-Tree DFBS (W:

i. Apply HDFBs with I]. levels to vertical wavelet subbands at levels 1 S j S Jm.

- . 1. . . I-—l . ,
We denote these subbands by VD?) (l 6 1,3!) ={z| 1S1 S 2’ or z = 'v }).

ii. Apply VDFBs with lj levels to horizontal wavelet subbands at levels

. - . l- . . ,

1S} SJm. We denote these subbands by HDE') (161:!) ={z| l: h' or

2’!"1 < i 3 2’1».

iii. Apply (full-tree) DFBS with 1]. levels to diagonal wavelet subbands at levels

. ' . 1' .

lSjSJ We denote these subbands by DD?) (teI;J)={z|m U

ISiSZU».
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Figure 20. A schematic plot of the HWD-H transform using 11 = 3 directional levels.

0 HWD using F1411- Tree DFBS (HWD-F)8:

Apply (full-tree) DFBs with lj levels to all three highpass subbands of wavelets

at levels 1S j S Jm. We denote the subbands by VDY), HDy) . and DDS")

. I - . . l -

(z e I((1! ) = {l | 1S1 S 2 I }) corresponding to the vertical, horizontal. and

diagonal wavelet subbands to which we applied the DFBS.

A schematic diagram of the HWD-H transform is illustrated in Figure 20. Using the

noble identities [89], we can move the DFB filters before downsampling by M in the

 

8 We formerly called HWD-F and HWD-H as HWD type 3 and HWD type 2, respectively [42].
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Figure 21. The frequency partitioning in the HWD family using II = 3 directional levels.

WT. Consequently, we can find the frequency partitioning by the HWD family as

Figure 21 demonstrates.

Remark 3.1 (directional subbands): In HWD-H, since we apply VDFB to wavelet

horizontal subband and HDFB to wavelet vertical subband, we convert wavelet

horizontal and vertical subbands to mostly vertical and horizontal directional subbands,

respectively. However, in HWD-F, we have all set of directions at each wavelet highpass

subbands in the finest scales.

Similar to the DFB, the major direction represented by each directional subband in

HWD is perpendicular to the major axis passing through the subband (in the Fourier

domain) as Figure 22 shows. As seen, a directional subband in the wavelet vertical

subband represents a mostly horizontal direction (see also Figure 24).

Remark 3.2 (frequency scrambling): Since our Objective is the construction of a

critically-sampled scheme, we cannot avoid subsampling in the wavelet stage of the

HWD transforms. As a result, frequency scrambling in the wavelet highpass subbands is

inevitable. That is, the frequency regions of wavelet highpass subbands are subject to

stretching and displacement due to downsampling by M. For instance, as Figure 23
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a)2 ll

 

 
Figure 22. A directional subband ofHWD (VD?) ). The shaded regions show the frequency support of the

subband and the thick line indicate its major direction in the space domain.

shows, the high frequency regions (frequencies near 602 = fl') of the horizontal wavelet

subband are mapped to low-frequency regions (frequencies near 602 = 0) after

downsampling. Therefore, to decrease the aliasing due to downsampling, in HWD-H we

decompose horizontal wavelet subbands (at finest scales) into mostly vertical directions

(see Figure 23) and vertical wavelet subbands into mostly horizontal directions.

Nonetheless, for some images with a large amount of textures and oscillatory patterns,

taking advantage of full-tree DFBs in all wavelet finest subbands as in HWD-F, yields

better results indicating the minor impact of the frequency scrambling in this case.

In Figure 24 we show some basis functions of the HWD family in both the space and

Fourier domains. (Note that the Fourier transform of a basis function corresponds to its

relevant subband.) As a matter of fact, in the HWD family we convert the wavelet basis

functions at a few finest scales to more directional basis elements. We also show a few

basis functions of the DFB in Figure 24(b).

Remark 3.3: Note that under HWD-F, since some Of the DFB filters are oriented
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Figure 23. The effect of downsampling on the wavelet highpass subband which gives rise to frequency

scrambling. By applying VDFB to horizontal subband in the HWD-H scheme, one can avoid inputting low-

frequency regions of the wavelet subband to the directional decomposition.

similar to the wavelet subbands, we have more aliasing. Additionally, from Figure 24(b)

last row, we can see that since the wavelet filters fail to perfectly separate frequency

regions, we have more leakage to low-frequency region in those subbands.

Remark 3.4: As mentioned in Remark 3.1, the major direction represented by each

directional subband in HWD is the same as the direction of the DFB subband that is

employed in the HWD subband. As a result, all three directional subbands VD?) , HDg-i) ,

and DD?) represent the same direction as subband i of the DFB stands for (see

Figure 19). We can see this fact from Figure 24 when we compare parts (a) and (b).

Note that both stages utilized in the HWD family (i.e. the WT and DFB) are

nonredundant and we can use any number of directions in this construction.

Consequently, the HWD transforms provide a family of nonredundant, flexible and rich

directional and nondirectional basis elements leading to good NLA decay for natural
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Figure 24. (a) Some directional basis functions of the HWD-H (first two rows of which the last column

corresponds to the pseudo-directional subbands) and HWD-F (all except the pseudo-directional ones) when

11 = 3. (Only positive values are shown.) (b) Four basis functions of the DFB with l = 3. (c) The

corresponding magnitudes of the Fourier transform of the basis functions in (3).

images as we demonstrate in Section 3.5.

B. HWDfor Quincunx Wavelets

Similar to the HWD, we can add directionality to the quincunx wavelet transform

(QWT) to construct Hybrid Quincunx Wavelets and Directionalfilter banks (HQWD). In

contrast to the WT, the QWT uses nonseparable diamond filters and has just one highpass

channel at each level. As a result, we propose the HQWD transform as follows (see

Figure 25(a)):

. m.-

Apply (full-tree) DFBs with lj levels to the highpass subbands of quincunx
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Figure 25. (a) The HQWD transform. (b) The frequency partitioning in the HQWD ll =12 =3

directional levels. (c) Left: A basis function of the QWT. Right: Some directional basis functions of

wavelets at levels 1S j S Jm. We denote the resulting subbands by ODE-i)

(Isiszbi

Again, after using the noble identities, the frequency span of the HQWD is obtained

as Figure 25(b) shows. A few basis functions are depicted in Figure 25(c). We consider

the following quincunx sampling matrices for odd and even QWT levels, respectively:

91431:] at; '1‘]-

In this case, at even levels (i.e. j = 2k, k e Z) we have the equivalent overall sampling

of MU”).

C. Scaling Law and DFB Levels

Suppose that in HWD, we apply I]. -level DFBS to the highpass subbands of level j
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in the WT. Then a transform coefficient in the directional subbands of the HWD will

, l'~1 .

have support 8126 of about 26f x 2] t’f after the DFB reconstruction, where the

maximum size of the fan filter pair of the DFB are assumed (Efjf). Now, to obtain

the basis element, we pass the resulting coefficients through j -level WT synthesis bank.

Therefore, we have an upsampling by Mj , which expands the size of the input by

2j x Zj followed by filtering by the overall synthesis filters of size about

(Zj —1)l’g x (2" —1)€g. As a result, the support size of the basis elements in the

+j—l

directional subbands of the HWD family is about 211L131 x 2’ 62, where E, z 62

are constants.

Consequently, similar to contourlets, we can hold the parabolic scaling law of

Width 0C length2 [12], [28] through decreasing the directional levels I]. at every other

coarser wavelet scales up to level Jm: [jg =le —|_(j2 — j1)/ ZJ, for levels

13 jl < j2 S Jm.

Note that in the case of the HQWD, the QWT synthesis bank involves upsampling by

Qj that is equal to M172. Hence, the support size of the basis elements in HQWD is

+j/2—l

about 2j/2+l€l x 2’j 62 (fl z 82). It follows that for the HQWD transform we

should enforce the scaling rule:

ljz =lj1—LU2 ‘j1)/4j, (151i <j2 SJ,”-

The number of directions in the DFB stage (1].) and the number of finest wavelet
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scales (Jm) that should be employed in the HWD are dependent on the image size and

the amount of textures in the image. For texture images and images with a significant

amount of texture regions we use larger values of directional levels. To satisfy item 3 in

Conjecture l for a given image of size N x N and fan filter pair of the DFB with

maximum support size of ((7 f , t’ f ) , we should have

Jm <10g2 3?,— ’

f

where 1‘1”: is assumed 2 (the minimum number of directional levels). Note that for

HQWD we have Jm < 210g2 (N/ZKf).

3.4 ANALYSIS AND REALIZATION

A. Multiresolution Analysis

Having the multiresolution fi'amework for 2-D separable wavelets, we extend it to a

new system to account for the proposed schemes.

Suppose that we construct 2-D wavelets from l-D scaling and wavelet functions ((0

and t1! ) as [60]

W‘(t)=¢(tl)wlt2), w2(t)=w(tl)¢(tz), and w3(t)=w(tl)w(t2).

which form an orthonormal basis of L2 (R2). The 2-D multiresolution is defined as

2 o

Vj=Vj®Vj, (16%), where {Vj} jeZ denotes the corresponding l-D

approximation space and we have the detail space W]2 connected to the approximation

space as the orthogonal component of Vf: V111 = V1? EB W}. The approximation

67



spaces have the inclusion property of V21.“ C V2, (j E Z). Defining the l -D wavelet at

. _ . _ . . k .
scale 21 as {WM (t) = 2 J/2W(2 ft — n)}j,nez, the family {Vim (t)}n622 15 an

lsks3

orthonormal basis of WI? . Note that we can also define the detail orthogonal subspaces

2,1 _ 2,2 _ 2,3 _
w]. _VJ. aw], w]. —Wj®Vj, and w]. _wj®wj,

Where

2 3 2,k
w]. =®ij .

Now for instance we consider the HWD-H transform, where we apply lj -level

( j S Jm ) DFBS to the detail multiresolution space WI? as (see Section 3.2C):

1,1] l}- V , [-

Inf-.90): Z...dzf.‘’[m— D."’nle-ma) for tell”

2(1) (/)DH(1') . (1')

n.;.(t>= 2,,ejzzfi D.- Inn/int). for zeI.’

and

773130): 2...Z2f.‘”[m— D.“’njy/jma), for 1_<_is2’f(orietj,’f’).

Therefore, by using orthogonal DFBS, we span the detail subspaces W}J , Wf’z , and

W123 ( j S Jm ) into the following orthogonal directional subspaces:

w2,l:@w2,,i(l), w2,2_ ®W2,2,(i), and w2,3: @W2H3U)

1'er J ielh ield "

For the other levels Jm < j S J in HWD-H, we have the same functions as wavelets:

{Win (t)}neZ2 '

lSkS3
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Remark 3.5: The family

1(0) 2,(1j) 3,(1j)

i1,j,n ’ i2,j,n ’ i3,j,n ilelv,izelh,i3eld

neZ

provides an orthonormal basis for WJ? ( j S Jm ). In addition, each individual family

1.(1j) 2.(’j) d 3.(’j)

7711,13" ilelv ’ 7712,13" izelh’ an ”bum i361d’

2 2 2
Del neZ neZ

. . . 2,1 2,2 2,3

provrdes an orthonormal basrs for the detail subspaces Wj , Wj , and Wj

(1 S j S Jm ), respectively.

Proof of the above statement is similar to that of the quad-tree decomposition in

wavelet packets [60]. Since we use orthonormal filters in the DFBS, we divide Wf’k ,

(1 S k S 3) into orthogonal detail subspaces after each directional level. As a result, the

proof is achieved through induction.

. LU ') 211') 3,0 ')

Remark 3.6: The family {77:1,jfn (t), 77,2,ff“ (t), 77,3an(t)},.le,v,26,h,3e,d

neZZ, jSJm

together with {Win (t), (”Ln (t)}nezz, b1.)Jm provide an orthonormal basis for

lSkS3

L2 (1R2) .

We can derive similar analyses for HWD-F and also HQWD.

B. Approximation

Owing to the similar structure of the proposed HWD-F to contourlets [28], one can

prove a similar NLA rate of decay for HWD-F for a class of signals. In particular, it can

be shown that an image x containing C2 regions separated by C2 curves when
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decomposed by an HWD-F transform, follows the NLA decay of

2 3 -2

“x — xM ”2 S A(logM) M ,

where xM is the reconstructed image using M largest-magnitude transform coefficients

and A is a positive constant. Note that the directional subbands in the HWD-F transform

should have as many directional vanishing moments as possible (ideally have perfectflat

passbands and are zero elsewhere) and the wavelet scaling function should satisfy

peC?

The proof is similar to the one provided for the contourlet transform’s approximation

decay [28], however, we must emphasize a few points.

1. Generally, the curves in the image will have components in all three wavelet

highpass subbands where they are subject to being directionally decomposed by the

DFBS. Thus, each segment of curve will have just significant components when it

intersects a directional basis function oriented alongside the curve. The fact that we have

three highpass channels in the WT stage of HWD as opposed to the one highpass

subband of the pyramid stage of contourlets, only changes the constant A in the NLA

decay rate.

2. The scales j > Jm (wavelet subbands) in HWD-F mostly stand for the smooth

regions and the wavelet highpass subbands furnish sufficient angular resolution for the

curve components.

3. Unlike the contourlet transform, since HWD take advantage of wavelets with

horizontal and vertical vanishing moments and good NLA decay when compared with the

Laplacian pyramid in contourlets, practically HWD shows better NLA decay in
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comparison to the contourlet transform (see Section 3.5A).

In the next section, we provide an efficient realization for the proposed transform

family.

C. Efficient Realization

While the WT can be implemented efficiently using 1-D filters, the DFBS in the

HWD need to be treated carefully. Although the quincunx filter bank [89], which is the

major building block of a DFB, is a non-separable filter bank system, it is possible to

implement it using ladder network and hence benefiting from low computational cost

similar to 2-D separable filtering.

Phoong et al. [72] proposed a two-channel filter bank using a pair of halfband filters,

which can be realized in the polyphase domain using ladder network. This scheme,

however, has some restrictions. Ansari et al. [1] proposed a two-channel filter bank using

a triplet of halfband filters, where they could address the restrictions in double-halfband

filter bank. We use this scheme to construct the DFBS.

The equivalent analysis band of the quincunx filter bank (QFB) scheme using

diamond filter is shown in Figure 26. The parameter c is set to J2 — 1 , to ensure that the

1-D lowpass and highpass filters have the same magnitude of 1/J2 at a): fi/ 2; a

condition not achieved using the double-halfband filter bank. To have the maximum

regularity of the filters, we use the Lagrange coefficients (ak) in the FIR l-D T-filter [1]

Id NT —k k-l
R( )(z) = Zk=l ak (z + z ), where

a ___ (—1)"+NT“1'[:1VT(NT + 0.5 — i) .

" (NT - k)!(NT — 1 + k)!(k — 0.5)
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Figure 26. Top: The analysis bank of the triplet QFB. Bottom: The synthesis bank.

TO have a QFB with diamond filter pair, we use the transformation

R(z) = R(ld)(zl)R(ld)(z2), whereas we use time-reversed versions of the T—filters to

obtain a QFB with fan filters: R(z) = R(ld)(—ZI)R(1d)(—zz). The resulting filter pair

will have support sizes of (8NT — 3, SN, —3) and (12NT - 5, 12NT — 5).

Figure 27 depicts the frequency responses of the fan filter pairs using both double-

halfband (with support size of (23, 23) and (45, 45)) and triple-halfband (with support

size of (29, 29) and (43, 43)) ladder structures. It is clear that the triplet filter bank yields

smoother fan filters and consequently introduces less visible ringing artifacts when

employed in the DFBS.

One of the issues affecting the efficiency of a transform is the regularity of its filters

[55]. Since HWD is composed of two filter bank stages, its regularity is dependent on the
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Figure 27. Top: The fan filter pair using triplet filter bank [1]. Bottom: The fan filter pair using double-

halfband filter bank [72].

regularity of both wavelets and DFBS. While the regularity of DFBS needs a

comprehensive treatment, here we resort to performing a simple test.

The largest first-order difference of the coefficients of the iterated filter bank in the

lowpass channel (which leads to an approximate of the scaling function) is an indication

of the regularity [55], [56]. Here we measure the largest first-order difference when we

apply an I -level DFB to the wavelet scaling function. We approximate (p by 7 iterations

of the Daubecheis 9/7 analysis filter and apply both double- and tipple-halfband DFBS

with normalized filters and 1 levels to q). Table 2 shows the maximum value of the first-

order differences obtained for all the DFB subbands in the n, and n2 directions. As seen

73



Table 2

Largest First-Order Difference of the DFB When Applied to to

| DFBlevel(l) INODFB 2 3 4 I

DFB(THF)' l 0.0239 0.0245 0.0320 0.0431 |

| DFB(DHF)2 | 0.0239 0.0466 0.0815 0.1479 J

IDFB using normalized triple-halfband filters

2DFB using normalized double-halfband filters

 

 

 

    

and expected, it is clear that the DFB with triple-halfband filters has more regularity.

In what follows, we examine the complexities of the proposed schemes.

D. Complexity

Since the HWD transforms are composed of two stages, we first express the

complexities of wavelets and DFBS. Here we evaluate the complexities of the analysis

banks; similar expressions for the synthesis banks can be derived.

1) BLT; Suppose that we use analysis 1-D filters of a same even length, 6 ,, , in the

2-D WT. Then the complexity of a single-level WT is 26 ,, multiplications per input

sample (MPS) and 26 ,, - 2 additions per input sample (APS). If we use linear-phase

filters, we have 6 ,, MPS and 26 ,, — 2 APS in the WT. For an octave-band WT, the

complexity will be up to 4/ 3 times the complexity of a single-level WT [92].

2) DFB: Regarding the ladder network shown in Figure 26, the complexity of the

QFB is evaluated as follows. Since at each channel we decrease the number of samples

by 2 and we have three levels of separable convolution with 1-D T-filters having a length

of 6, , the complexity of the QFB is 36, +1 MPS and 36, — 3/ 2 APS. For the linear-

phase maximally flat filters that we use in this work, we have 3N, +1 MPS and

3N, - 3/ 2 APS (NT = 6, / 2) for the QFB. For a J -level octave-band QWT, we
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have 2(1 — 1/ 2J) times the complexity of the OFB.

The complexity of an I -level DFB is 1 times that of the QFB (note that after each

level the size of the signal is halved). A half-tree DFB needs (1+ 1)/2 times the

operations required for the QFB.

3) HWD: Suppose that in the HWD (considering linear-phase filters), we apply I, -

level DFBS (1 S j S Jm) to the j th highpass channels of the WT. Then the complexity

OfHWD-F is about

(4/3)r,, + 3(3N, + 92:3, (1,741) MPS

and

(4/3)r,, +9(N, —1/2)Z::'l (1,741') APS.

In the case of HWD-H, the complexity is about

(4/3)r,, + (3N, + 02:; ((21,. +1)/4f) MPS

and

Jm -

(4/3)t,, +3(N,. — 1/2)Z,=1 ((21,. +1)/4J) APS.

And for the HQWD we have

Jm -

(3N, +1)(2(1-1/2J)+ 27:1 (1,721)) MPS

and

3(N, —1/2)(2(1—-1/2J)+Zj_':l (1,721)) APS.
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Figure 28. Left: The HWD-F transform of the Barbara image. Here J = 3 , Jm = 2 , and I, = I, = 3.

Right: The HWD-H transform of the Boats image with J = 3 , Jm = 2 , and I, = 12 = 2 .

3.5 APPLICATIONS AND RESULTS

In this section we show examples of the HWD transforms and then present potential

applications of the proposed transforms. Particularly, we examine their applications in

nonlinear approximation, image coding, and image denoising.

Figure 28 depicts two examples of the HWD transforms of the Barbara and Boats

images. In this figure the wavelet subbands are separated with white lines and the

directional subbands at the two finest wavelet subbands are separated with gray lines. The

transform coefficients are clipped for better visualization.

A. Nonlinear Approximation

Nonlinear approximation (NLA) is an efficient approach to measure the capability of
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Figure 29. Examples of the nonlinear approximation PSNR results. Left: The NLA results for the Barbara

image. Right: The NLA results for the Peppers image.

a transform in sparse representation of a signal. Having a good NLA behavior, a

transform would have potential in several signal processing applications such as coding,

denoising, and feature extraction.

We tested our proposed transforms using a variety of images and compared them with

other transforms such as the WT and contourlets [28]. We used five decomposition levels

in all methods and employed Daubechies 9/7 filters for the WT. For the HWD transforms

we set Jm = 2. For contourlets we used {1,}ls1.35 = {5,4, 4,3,3} (j =1 corresponds to

the finest scale) directional levels. Figure 29 shows two examples of the NLA PSNR

results versus the number of retained coefficients. For the Barbara image we used HWD-

F with 11 =12 = 3 directional levels while for the Peppers image (and other images that

contain less texture) we used HWD-H with 11 =12 = 2.

The proposed HWD transform shows promising results for the Barbara image (and

other images with significant texture content) where it consistently outperforms both
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Table 3

PSNR Values of the NLA Experiment for the Barbara Ima e
 

 

 

 

 

       

Method / M 2048 4096 8192 16374 32768

HWD (THF)' 23.91 25.86 28.28 31.35 35.39

HWD (DHF)2 23.87 25.73 28.05 30.95 34.73

Wavelets 23.33 24.63 26.68 29.95 34.58

Contourlets [zg 23.29 24.95 27.08 29.63 32.91
 

IHWD using triple-halfband filters

2HWD using double-halfband filters

wavelets and contourlets. In particular, it achieves up to 1.6 dB (1.2 dB) improvement

over the WT (contourlet transform). In the case of the Peppers image, the HWD

transform provides comparable result to that of wavelets. Note that for many other

images such as Boats, Fingerprint, GoldHill, Mandrill, and texture images our

experiments indicated that HWD always provides better NLA performance.

Some numerical values for the NLA of the Barbara image are also given in Table 3.

To demonstrate the effect of employing regular fan filters in HWD, we also provided the

HWD results when using double-halfband filters. The superior results especially for large

values of M are clear for the HWD transform using maximally flat triple-halfband fan

filters.

Figure 30 shows the visual results of NLA of the Barbara image when M = 8192.

As seen, the proposed HWD method provides better detail in conjunction with an

acceptable level Of artifacts in the result.

Our experiments implied that the HWD-H is more appropriate for images that are

mostly smooth, whereas HWD-F provides very good performance for images containing

a significant amount of fine textures.

Weialso performed NLA for the HQWD transform and compared it with the

quincunx wavelet transform. Table 4 shows the PSNR values obtained for the Barbara

image. As seen, HQWD provides a growing improvement in the PSNR values as the
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Figure 30. Example of the NLA visual results for the Barbara image when M = 8192 .

 

 

Table 4

PSNR Values of the NLA Experiment for the Barbara Ima e uincunx Case

Method / M 2048 4096 8192 16374 32768 I

HQWD 22.21 23.69 25.59 28.18 31.90

Quincunx WT 21.95 23.06 24.54 26.64 30%       

number of retained coefficients increases. In this experiment we used ten wavelet levels

andfortheHQWDweused Jm =4 and 1, =3 (lSjSJm).

B. Image Coding

Due to the good NLA performance of the HWD family and since this transform

family is nonredundant, a potential key application for the proposed transforms is image

coding.

Although the NLA decay rate of wavelets for images is suboptimal, one can benefit
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from tree-based coding schemes to improve this decay rate [20]. The SPIHT algorithm is

an efficient tree-based wavelet coding scheme [78]. In this scheme, inter-scale

dependencies are considered through the parent-children relationships existing among the

wavelet coefficients. Note that although there are other superior schemes such as space-

frequency quantization [94] and WSFQ [93], since the scope of this chapter is not image

coding, we just provide our preliminary results using SPIHT coding algorithm.

To take advantage of the SPIHT scanning algorithm for the HWD transform

coefficients, a new parent-children relationship should be considered. Suppose that we

have an HWD transform with J levels. For the levels Jm < j S J , we have the same

relationship as the one in the WT, and for the levels 1 S j S Jm , for each subband HD, ,

VD and DDj we can use a similar parent-children relationship as the one considered
1"

for the contourlet coefficients [74]. The problem appears when we attempt to define the

children of coefficients lying at level Jm +1. By applying DFBS to level Jm , we almost

remove the inter-scale dependencies that existed between wavelet levels Jm and Jm + 1.

Nevertheless, we employ a suboptimal but simple rearrangement algorithm to be able to

apply a similar SPIHT scanning algorithm as the one we use for wavelets (see Appendix

A3 for detail).

Although the described procedure is not optimal, we will show that the low bit-rate

SPIHT coding results are rather promising for images with high amount of textures and

details, where we could capture more details in the HWD coded images when compared

with the wavelet coder. In our coding simulation, we used the image Barbara and an

image composed of 16 textures [9]. For both images we used HWD-F with 5 wavelet
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Figure 31. Coding performance of the wavelet and HWD coders using SPIHT algorithm in terms of PSNR

versus the rate for the Barbara image.

levels and Jm = 2, where for the Barbara image we used 1, =12 = 3 directional levels

and 1] =12 = 4 directional levels for the Texture16 image. The number of directional

levels is handy-optimized.

In Figure 31 we show the RD curves of the wavelet and proposed coding schemes for

the Barbara image. As seen, our method provides better or comparable result for a wide

range of low bitrate when compared with the wavelet SPIHT coder. Remarkably, unlike

the NLA performance of HWD in comparison to that of wavelets, the coding

performance does not show significant improvement, which indicates a need for more

sophisticated algorithms that we would address later.

Figure 32 shows visual coding results of the Barbara image at 0.25 bpp and the

results for Texture16 at 0.1 bpp are depicted in Figure 33. As can be seen from the

figures, more directional features are retained when using the HWD transform (for

example table cover and chair in Figure 32). Further, we have improved PSNR values

compared with those of the wavelet coder.
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Wavelets/SPIHT; PSNR = 27.45 HWD-F/SPIHT; PSNR = 27.83

Figure 32. Coding results of the Barbara image at rate 0.25 bpp.

C. Image Denoising

Image denoising is another application of the HWD transforms. We tested the

proposed transforms for denoising of noisy images corrupted with additive white

Gaussian noise. For the first part of simulation, we used a simple hard-thresholding rule

to shrink the transform coefficients. This way we can observe to what extent the

transform is efficient without the use of more complex shrinkage schemes. The threshold

is selected as 30' [60] where 0' is the standard deviation of the input noise and is

estimated using robust median estimator [32].

We also mirror-extended the images to remedy boundary artifacts. Although the sizes

of the noisy images are rather large, the PSNR values of the denoising results change

slightly (usually up to 3.0.1 dB) when we use a different noise instance. Hence, to obtain

more accurate PSNR values, we repeated each denoising experiment ten times and found

the average PSNR values. We also clipped the noisy images to set the pixel values in the
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Figure 33. Coding results of the Texturel6 image at rate 0.1 bpp.

allowable range of 0 to 255.

Since the HWD transforms are shifi variant, they introduce many artifacts in the

denoising results. Therefore, we also constructed translation-invariant HWD (TIHWD)

transforms by removing subsampling operations to improve the results. A delicate point

in developing the TIHWD schemes, is that we should not change the frequency

partitioning of the HWD transforms (see Figure 21). As a result, we first upsample the

DFB filters at level j (1 S j S Jm ) by Mj , where M = diag(2,2) and then remove the

sampling operations using the generalized algorithme a trous introduced in [36], [44].

In addition to the proposed methods, we also employed the wavelet transform (WT),
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Table5

PSNR Values of the Denoising Experiments

Left Part: Different Transforms With Hard Thresholmgight Part: Different Denoising Methods ‘

Nois CT CuTFW DTCWT TICT DTCWT STICT BLS- TIHWD

[magi WT QB] [11] HWD TIWT [53] [36] (BS)[801tBS)[36]GSM[73l (BS)

10 28.13 29.86 29.78 29.71 30.07 32.58 32.66 33.49 33.70 33.50 34.42 34.40 34.46

20 22.15 25.80 26.31 25.89 26.58 28.26 28.93 29.53 30.01 29.78 30.59 30.60 30.78

40 16.38 22.44 22.94 23.67 23.16 24.53 25.02 25.70 26.33 26.35 26.77 26.70 27.15

60 13.30 20.99 21.04 22.60 21.21 22.82 23.00 23.57 23.96 24.28 24.48 24.41 24.84

10 28.14 30.76 30.30 31.44 30.86 33.32 33.24 33.59 33.70 34.02 34.35 34.69 34.50

20 22.18 27.21 26.88 28.66 27.29 29.75 29.80 30.03 30.13 30.63 30.73 31.14 30.96

40 16.42 23.83 23.55 25.82 23.82 26.32 26.20 26.49 26.66 27.36 27.15 27.65 27.48

60 13.37 21.94 21.53 23.96 21.77 24.17 23.98 24.26 24.42 25.25 24.87 25.43 25.24

10 28.13 29.97 29.72 30.86 30.02 32.07 31.98 32.10 32.36 32.82 32.98 33.27 33.25

20 22.17 26.98 26.84 28.43 27.05 29.17 29.16 29.16 29.44 29.97 29.93 30.31 30.22

40 16.41 23.93 23.82 25.87 24.00 26.32 26.02 26.35 26.63 27.26 27.01 27.49 27.37

60 13.34 22.09 21.88 24.22 22.08 24.40 23.94 24.57 24.71 25.40 25.05 25.54 25.44

10 28.13 32.10 31.58 33.46 32.08 34.53 34.71 34.89 34.73 35.30 35.44 35.60 35.39

20 22.13 28.58 28.16 30.59 28.59 31.35 31.45 31.75 31.60 32.35 32.30 32.63 32.40

40 16.35 24.97 24.64 27.27 24.92 27.83 27.67 28.22 28.17 29.24 28.82 29.39 29.15

60 13.27 22.94 22.42 25.29 22.73 25.50 25.25 25.82 25.80 26.96 26.38 27.03 26.78

10 28.25 31.83 31.04 32.54 31.69 33.91 33.99 34.00 33.95 34.27 34.43 34.57 34.44

20 22.32 28.49 27.89 29.67 28.43 30.97 30.91 31.15 31.18 31.49 31.60 31.92 31.72

40 16.59 24.47 24.09 26.20 24.46 27.06 26.79 27.26 27.44 28.00 27.77 28.21 28.14

60 13.53 22.00 21.64 23.91 21.91 24.38 24.04 24.56 24.71 25.41 25.04 25.42 25.44
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contourlet transform (CT) [28], and adaptive wiener filter using “wiener2” function in

Matlab. Moreover, we used the curvelet transform via frequency wrapping (CuTFW)

[11] (where we found that it gives better denoising results than curvelets via

unequispaced FFT approach), translation-invariant WT (TIWT) [22], dual-tree complex ‘

wavelet transform (DTCWT) [53], and translation-invariant CT (TICT) (see Chapter 2)

using hard thresholding for the sake of comparison. Except for the Barbara image that

we used HWD-F with [1:12 =3, for the other images we used HWD-H with

11:12 =2. Similar to the NLA experiment, for contourlets we used

{If}1S155 = {5,4,4,3,3} directional levels.

The left part of Table 5 shows the PSNR values of the denoising results for different

images and noise levels using hard thresholding. As seen, the HWD transform yields in
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TIWT; PSNR = 30.97 DTCWT; PSNR = 30.91 TIHWD; PSNR = 31.18

Figure 34. Denoising results ofthe Peppers image when 0' = 20 .

better PSNR values than the CT. Moreover, for the Barbara image it achieves superior

results when compared with the WT. In the case of translation-invariant (TI) denoising,

we see that the proposed TIHWD denoising scheme almost always provides better results

(improvements up to 1.80 dB) when compared with the TIWT and DTCWT schemes.

Moreover, it outperforms curvelet (CuTFW) denoising scheme.

As an example of the visual results for this part of denoising, in Figure 34 we show

the T1 denoising results of the Peppers image when 0' = 20. We see that the TIHWD

scheme provides less visible artifacts in the denoised image.

In the second part of denoising experiment, we took advantage of the bivariate

shrinkage (BS) scheme with local variance estimation [80] for TIHWD, where we also

used this approach for semi-translation invariant contourlet transform (STICT) described

in Chapter 2. For TIHWD (BS) we used a window size equal to (17, 17) for estimation of

local variance whereas we used a window with size (5, 5) for STICT (BS). We also

compared our method to some other leading denoising approaches: DTCWT (BS) [80]

and BLS-GSM (Bayes least squares using Gaussian scales mixtures) [73].

The right part of Table 5 shows PSNR values resulting from the above methods. We

see that for the image Barbara, our TIHWD (BS) denoising scheme provides better
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Figure 35. Denoising results of the Barbara image when 0' = 40 .

results whereas for other images it shows comparable performance (within 0.25 dB). Our

results are also comparable to those reported in [23] for NSCT—LAS (nonsubsampled

contourlet transform using local adaptive shrinkage).

Figure 35 demonstrates a visual example for this part for the Barbara image and

noise level of 0'=40. It clearly shows the superior performance of the TIHWD in

retaining details along with introducing fewer (or comparable) artifacts in the result.
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3.6 CONCLUSION

We proposed a new family of nonredundant geometrical image transforms by

employing wavelets and directional filter banks. We showed that to avoid artifacts

introduced during nonlinear approximation (and thus coding and denoising), we should

change the wavelet basis functions in only a few finest wavelet scales. This way we take

advantage of both directional and nondirectional basis functions to efficiently represent

natural images. The proposed family benefit from a number of essential characteristics.

They are nonredundant and at the same time provide promising nonlinear approximation

behavior for natural images especially those having a significant amount of periodic

texture. Consequently, they have potential for image coding. In the experiments, we

employed the proposed transform family in nonlinear approximation, image coding, and

image denoising and demonstrated their efficiency in these applications.
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Chapter 4

ON THE LINEAR COMBINATION OF

DENOISING SCHEMES

4.1 INTRODUCTION

As have been highlighted in previous chapters of this thesis, wavelets have proven

their capability in removing noise from a piece-wise smooth signal [60]. Under wavelet

denoising with hard thresholding, one simply sets to zero the transform coefficients of the

noisy signal, which are below a threshold, and reconstructs the resulting coefficients to

obtain the denoised signal.

Recently, several new image transform schemes have been introduced, where most

of them take advantage of the important feature of directionality. Following a similar

procedure to the wavelet denoising scheme, one can employ other transforms for

denoising [36], [44].

Owing to the characteristics of a transform, a transform-domain denoising scheme

introduces some artifacts in the denoising results that are different from those of other

schemes. Furthermore, each denoising scheme may have some advantages over the others
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and also some drawbacks. As a consequence, combination of different schemes would be

a solution to reduce artifacts and to compensate for the drawbacks. Taking advantage of

the same idea, the authors in [22] proposed translation-invariant (TI) wavelet denoising,

where it is, in effect, equivalent to the average of all denoised images resulting from the

cycle-spinning algorithm. In [36] we have shown that the pseudo-Gibbs phenomena

artifacts that usually appear in the denoising results when we use the contourlet transform

[28] denoising scheme, can be significantly reduced. In this chapter, however, we use a

different strategy that is based on a linear optimization approach in conjunction with

employing different denoising schemes, where we extend our preliminary work [41].

The remainder of the chapter outline is as follows. In the next section we briefly

highlight some of the related work. Section 4.3 provides problem formulation for our

proposed linear combination method. The experimental results are provided in

Section 4.4 and finally Section 4.5 concludes the chapter.

4.2 RELATED WORK

In a general framework, where one wishes to find an optimal representation over a dictionary

of bases functions, a few algorithms have been proposed [51]. Suppose that D: {3, ,... BM } is

the dictionary of the bases functions, where B, is the matrix corresponding to the ith basis and

we want to decompose a signal x (given in a row vector of length N ) using the dictionary D.

Therefore, we have

M

x : ZizlaiBi ’

where {a,}ls,sM are the arrays of coefficients and a, = (a,,,...,a,N). The method of

frames [25], provides a with a minimized 6 2 norm. Basis pursuit [18] is another
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algorithm, which optimizes a subject to 61 norm; and hence, results in a linear

programming approach. Matching pursuit [63] attempts to find a best basis in ’D

utilizing a greedy algorithm. It sequentially adds elements from D that are most

correlated with the residual. The above methods, however, are computationally

expensive.

Total variation is a technique employed to denoising [77] and later was combined

with traditional wavelet decompositions to reduce artifacts in wavelet denoising [16],

[33]. Using the same idea, the authors in [15] applied the curvelet transform in

conjunction with total variation to improve the denoising results of curvelets. Starck et al.

[87] proposed an algorithm to combine several transforms, where they used an iterative

approach to minimize an 6 1 norm instead of total variation norm.

Our approach, however, is based on a linear combination of the denoising results and

thus is not complex. Meanwhile, the proposed approach provides improvement in the

PSNR values and, more importantly, in visual quality due to significant reduction of the

artifacts. Here we assume that the image is corrupted with an additive white Gaussian

noise.

4.3 OPTIMAL LINEAR COMBINATION

A. Optimal LMSApproach

We wish to find an analytical solution to the following problem. Suppose that an

image denoted by a row vector 5? 6 RM, with size N is corrupted with an additive

zero-mean white Gaussian noise 2 =11 + v. Note that we use boldface for random

variables and random vectors and a tilde sign for a variable that does not have zero mean.

90

 



Now we employ M different denoising schemes to the noisy image to obtain the

denoised signals {91,y,,...,y,,}, where 5', ERIXN. Assuming that none of the

denoised signals is an exact copy of the original signal, which is usually the case because

of the artifacts introduced by the denoising schemes and also because of the remaining

noise in the denoising results, we wish to find a better estimation )2 of the image J? using

the denoised images {y, , y, ,. . ., 52M }. In this work, we are only interested in the linear

estimation approach. To obtain more compact equations, we centralize the random

~ ~ , .. N ..

vectors x and {y,},S,-3M around then means m,E = mean(x) = 1/NZn=lx[n] and

.. N ..
my, 2 mean(y,)=l/Nzn=1y,[n] as

where lMxN is a matrix of size M X N with all entries equal to one.

Using the denoising results, we are interested in a linear estimation of x ,

,. M

x : 21:1 k1yi ’

and therefore a vector of coefficients K = (k1,...,kM) in order to minimize the variance

of error e = x —— it (note that the variance of error is a scalar):

K0 = arg min {Heuz} = arg min{E[x — it][x — if},

K K

where (.)T denotes the transpose operation. This is the well-known problem of optimal

linear estimation in a least-mean-squares (LMS) sense. Note that we define the inner

product of two random vectors as the expectation:
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r 2 T 2
(x,y) = E[xy ]= CW, and ”x" = (x,x) = E[xx ]= 0,.

Hence, we can express the above equations in terms of inner products where it is

straightforward to switch between deterministic and stochastic cases.

Defining the matrix ofthe denoising results as y = (y{,. . .,yL )T e RMXN , we can

find the optimal LMS estimator coefficients K0 as [52]

K =C C‘1 (4.2)
WY,

where

C.=E1yy71= (EIy.y,-1)..,,M e814”,
=il,.. .,M

is the covariance matrix of y and

C..=E1xy’1=(E1xyl] E[xyhi) est“,

denotes the cross-covariance matrix. Therefore, using the computed coefficients in (4.2),

we find the optimal LMS estimation as

fro = 0y = nyC;'y. (4.3)

Further, the minimum mean-square error is found to be [52]

“e H —_§a — nyC;‘,C

It follows from (4.1) that the Optimal estimated image is

)

i0 =mf11xN +Ko(y—mj3)

=millxN +nyC;l(y-my)a

_ _ T T MxN
where C,—C,-,,ny—C~-,, andmy =(mT mM) ER .

}’l’
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While the above LMS method provides optimal coefficients to combine the denoising

results, its dependence on the statistical properties of the original image 3? makes this

approach unattainable in practice. Nevertheless, we use this oracle approach for the sake

of comparison.

Note that in the above formulation, we used only one coefficient k,- to scale all pixels

in a denoising result y,. The reason for this is to facilitate developing a non-oracle

method to find a set of near optimal coefficients.

B. LMS Approach using the Noisy Signal

Since finding the optimal coefficients K0 as given in (4.2) is subject to having the

original signal, we need to develop other approaches that do not rely on having

knowledge of the original signal. One approach is to use the noisy image instead of the

original. (Note that the noisy signal is the maximum likelihood estimation of the original

signal [7].) Therefore, the suboptimal estimated (removed-mean) image 2,“, , and the

corresponding coefficient vector K are expressed as
'10 ’

A _ _ —l

xno —K,,0y and Km — C2,,Cy . (4.4)

Note that, since 2 = i — millxN and thus 2 = x + V, we have 0',2 = 0'3 + 0'3,

C —C +C 6118”“ d] C -—C +C 6118““ 6 t12,, - x), v), , an a so ,2 — y, y, . onsequen y, we can

calculate the covariance of the error (associated with the noisy signal) as

2 _ 2 2 —1 -1
||e,,|| _ "e0” + a, — C,,C, (C, + C,,) - CWC, C,,. (4.5)

Since the denoising schemes usually take advantage of nonlinear approaches to
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remove noise, it is not trivial to find statistical measures such as C,3, and va ; hence, we

attempt to use approximate values. If we assume that y, = x (1 Si SM), we can

express (4.5) as

2 —”e0“2 :03 _22:1C"}’i _C Cvy yv

~ 2- Z” -Z'" 2_ 0V 2 i=1 CW1“ l=1vai

In addition, it is reasonable to assume that there is low correlation between the noise

    eno

(4.6)

2 41.0112 20. It
    

ev and the denoised signals y. Meanwhile, we always have ,0

follows that the variance of the noise is the dominant term in (4.6), and hence, for a rather

good estimation of the signal using the proposed approach given in (4.4), we should

ensure that the power of the input noise is low.

C. Approximation to the Optimal LMSApproach

Now we consider another method to this linear estimation problem. Here we suppose

that the denoised signals are corrupted versions of the original signal with additive

distortions expressed as y, = i + 11, (1 S i S M ) or equivalently after removing the

mean values we have

y, =x+qi (lSiSM),

where I], E RIXN is the distortion vector due to the artifacts and remaining noise in the

denoised signal y,. In particular, we assume that the denoised signal is linearly related to

the original signal. We also assume that 1|, (lSi SM), is uncorrelated with x.

Denoting 1| =(111T,...,1]L)T e RMXN , we can write y = 1Mx1 x + I]. The linear LMS
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solution [52] to this problem is found to be

0 0
it = K y, with Ko =(||x||’2 +11... C,;‘1M,,)_l1,xMC,;‘.

>> 1, we obtain the Fisher estimation of x as
  

By assuming ”x

A —- _l —

xF = (11XM Cr; 1 lMxl) llxM Cr] 13' , (4-7)

and

lleFl|=(llxMCI;-11Mxl)‘l'

Note that although there is no explicit dependence on the signal x in (4.7), we have

no prior knowledge of C”. Meanwhile, it is important to note that when deploying

different denoising schemes, one would target a variety of such schemes that generate

different types of artifacts. Ideally, the resulting artifacts from the different denoising

schemes are uncorrelated. Therefore, under such scenario, we can assume that C” as I ,

which results in the estimation

1 1A M

x =——l =— , ., 4.8.. MtxMy M24. ( )

= 1/M . That is, 2,, is Obtained through averaging the denoised images (where

  

2

ea
  

and

we assumed that m, =mean(m,-,,)). Note that when C” =1, 32,, is the optimal

unbiased LMS estimation of x.

As mentioned above, for the assumption C” =1 to be viable, one should have

E[n,nf]=0 (lSi,jSM and i¢j) and E[tyityiT]zl (lSiSM), which is the

case (to some extent) when one employs different denoising schemes having comparable
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performance and producing different types of artifacts.

4.4 EXPERIMENTAL RESULTS

A. A BriefNote on the Denoising Artifacts

Here we briefly outline the type of artifacts introduced by some different image

denoising schemes to better appreciate the benefit of combining denoised image signals.

Particularly, we consider denoising under the wavelet transform, contourlet transform,

and adaptive Wiener filter [58]. Notice that while there exist other approaches, we have

selected the above methods due to their different characteristics where each of them can

be representing a different class of image denoising schemes. Remarkably, when some

statistical approaches could improve the above methods, their intrinsic features that result

in denoising artifacts still remain and cannot be totally eliminated.

l) Wavelet Denoising Scheme: The wavelet transform has shown its capability for

denoising piece-wise smooth images [60]. Wavelets, indeed, provide unconditional bases

of 62 and also of many smoothness spaces [30]. As a result, wavelet shrinkage is a

smoothing operation for a wide variety of signal classes. Wavelet shrinkage in

comparison to other older methods such as convolutional smoothers and Fourier-domain

damping is much simpler, and offers many broad near-optimality properties not

achievable by the older methods [30].

An important problem that arises in a transform-domain denoising is the artifacts

introduced when one thresholds the transform coefficients. The ringing artifacts are in

fact due to pseudo-Gibbs phenomena, which occur near edges and discontinuities and

resemble the basis functions of the transform. Figure 36(a) shows some of the basis

functions of the wavelet transform. Note that this transform is efficient in capturing point-
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 (C)
Figure 36. (a) Some basis functions of wavelets. (b) The denoising result of the Barbara image using

wavelets (0', = 20). (c) Some basis functions of contourlets. (d) The denoising result of the Barbara

image using contourlets (0', = 20).

wise singularities and the basis functions are like points. Therefore, the artifacts in a

denoised image will look like the basis functions as shown in Figure 36(b), which depicts

an example, where the standard deviation of the input noise is 20. Notably, this denoising

scheme is incapable of capturing some textures and fine details and therefore, yielding

another kind of distortion.

2) Contourlet Denoising Scheme: The contourlet transform, one of the geometrical image

transform, is introduced to better capture directional features of an image [28]. Owing to

the directionality of this transform, the basis functions are in the form of needle-shaped

segments, which can be oriented in different directions as Figure 36(c) shows.

Consequently, the denoising artifacts will look like arbitrarily-oriented needle-shaped
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segments that are more visible in the smooth regions (see Figure 36(d)). To have

sufficient directional resolution, one has to use directional filters with large support. As a

result, the basis functions and thus the artifacts appear in the form of long segments,

which severely degrade the quality of the denoised image. Nevertheless, the contourlet

denoising scheme outperforms the wavelet approach in retaining textures and fine details

in the denoising results (compare Figure 36(b) and (d)).

3) Adaptive Wiener Filtering: The Wiener filtering is a traditional denoising method,

which usually leads to a lowpass filtration. This approach would be the optimal linear

minimum-mean-square error estimate of the signal if x[n] and v[n] are samples of

stationary random processes that are linearly independent from each other and their

power spectral densities (PSD) are known [58]. Practically, however, the above

assumptions do not hold. To improve the performance of this scheme, we can use

adaptive filtering, where one locally estimates the PSDS of the signal and noise and

9)
estimates the signal. As a result, if mg, and 022(9) denote the local minimum and

 

variance of the noisy image 2 in the window Q , respectively, the local estimate 5.10) is

[58]

2(0) 2
A 0' - 0'3(0) = min) + 2 v (210) _ mu»),

02(0) 2

2

where we assumed that V is a zero-mean white Gaussian noise.

Since this approach is a locally filtering task, it introduces artifacts, which resemble

speckle noise (see Figure 38). Additionally, blurring textures and edges in the output is

another kind of distortion resulting from this approach. As we enlarge the window size,
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the artifacts reduce, but more edges are smeared in the denoised image.

4) Other Methods: In addition to the above methods, we also employ our proposed linear

combining of multi-scheme denoising approach in conjunction with two competitive

advanced denoising methods, namely, the BLS-GSM [73] (Bayes least-squares using

Gaussian scales mixtures) and TIHWD (translation-invariant hybrid wavelets and

directional filter banks) using bivariate shrinkage (BS) (see Section 3.5C). In Section

3.5C we showed that the TIHWD (BS) denoising approach provides sometimes better

results in retaining fine textures than other leading approaches such as the BLS-GSM

denoising method. However, BLS—GSM renders fewer artifacts in the results.

Consequently, we attempt to linearly combine these two methods in order to achieve

better results.

B. Results

As we mentioned earlier, to better take advantage of the proposed linear combination

approach when there is no prior information of the original signal, it is advised that the

denoising schemes for which we employ the LMS approach, provide comparable

performances. As a result, for the first part of our experiments, we used the three

denoising techniques, wavelets [60], contourlets [28], [44], and adaptive Wiener

(function “wiener2” in Matlab) [58] while employing hard thresholding for the former

ones. And in the second part, we used the two leading approaches of BLS-GSM [73] and

TIHWD (BS) (see Chapter 3).

To test our proposed LMS approach, we selected a variety of images and used

additive white Gaussian noise with 0' =10, 20, and 40. We employed all the denoising

schemes with the same parameters as those reported in Section 3.5C. We assumed that 0'
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Table 6

PSNR Values of the Denoised Images

Noisy Adaptive WT

Image Wiener (HT) CT (HT) LMS_O LMS_N LMS_A

10 28.13 28.31 29.86 30.17 31.36 31.32 31.14

Barbara 20 22.15 26.44 25.80 26.49 27.74 27.43 27.68

40 16.38 23.65 22.44 23.17 24.50 22.88 24.35

10 28.14 30.44 30.76 30.59 32.14 32.11 32.11

Boats 20 22.18 28.36 27.21 27.27 29.18 28.77 29.04

40 16.42 25.09 23.83 24.08 26.06 23.70 25.84

10 28.13 32.66 32.10 32.10 33.78 33.68 33.72

Lena 20 22.13 30.00 28.58 28.91 30.89 30.05 30.72

40 16.35 26.10 24.97 25.62 27.46 23.94 27.33

10 28.25 32.87 31.83 31.53 33.53 33.46 33.31

Peppers 20 22.32 30.09 28.49 28.50 30.84 30.25 30.48

40 16.59 25.79 24.47 24.82 27.04 24.06 26.63

 

Image 0

 

 

 

 

 

 

 

 

 

 

 

           
 

WT (HT): ...... wavelet transform with hard thresholding

CT (HT): ...... contourlet transform with hard thresholding

LMS_O: ........optimal LMS method using the original image (see Section 4.3A)

LMS_N: .....LMS method using noisy image (see Section 4.38)

LMS_A: ........method of averaging (see Section 4.3C)

is unknown and we estimated it using the robust median estimator [32]. Moreover, we

mirror-extended the noisy images to avoid boundary distortion. Although the size of the

noisy images is rather large, the PSNR values of the denoising results change slightly

(usually up to 21:01 dB) when we use a different noise instance. Hence, to obtain more

accurate PSNR values, we repeated each denoising experiment ten times using different

noise realizations and evaluated the average of PSNR values. We also clipped the noisy

images to set the pixel values in the allowable range of 0 to 255.

Table 6 provides the PSNR values for the first part. We refer to the optimal LMS

method of Section 4.3A as LMS_O, the method of Section 4.33 as LMS_N, and finally

the averaging method of Section 4.3C as LMS_A. As seen, the proposed LMS method

achieves between one and two dB improvement in most cases. For low noise levels (say

0' = 10), the results where the noisy image is used as the estimate of the original signal

in the LMS algorithm (LMS_N) are comparable with those of the LMS_O (optimal LMS
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Table 7

PSNR Values of the Denoised Images (Advanced Methods)

Noisy BLS- TIHWD

Image GSM (ES) LMS_O LMS_N LMS_A

10 28.13 34.40 34.46 34.70 34.60 34.70

Barbara 20 22.15 30.60 30.78 30.97 30.86 30.95

40 16.38 26.70 27.15 27.30 27.02 27.15

10 28.25 34.57 34.44 34.62 34.62 34.60

Peppers 20 22.32 31.92 31.72 32.03 31.36 31.94

40 16.59 28.21 28.14 28.73 25.95 28.32

BLS-GSM: ......Bayes least-squares using Gaussian scales mixtures

TIHWD (BS): ...translation-invariant HWD with bivariate shrinkage

 

Image 0

 

 

 

 

 

 

         
 

with oracle) results. Remarkably, the averaging approach (LMS_A) provides near-

optimal PSNR values. The reason is that the selected denoising methods are comparable

(and the types of artifacts generated are different/uncorrelated).

Note that although the PSNR values achieved using adaptive Wiener method are

usually higher than those of the wavelet and contourlet schemes, it introduces more

visible artifacts in the results. That is due to the fact that the PSNR measure treats the

low-frequency artifacts similar to the high-frequency ones; while, eyes are usually more

sensitive to the low-frequency artifacts.

Table 7 shows the PSNR results for the second part where we employ the combining

approach to the BLS-GSM and TIHWD (BS) denoising schemes. Since these methods

provide much fewer artifacts, linear combination cannot improve the PSNR values

significantly. Note that again, since these schemes yield close PSNR values, the

averaging method yields near-optimal performance.

Now we show some visual results. Figure 37 depicts the visual results of the Boats

image when 0' =10. We see that the distortions resulting from the denoising schemes

are very different as pointed out earlier. The LMS approach shows a significant reduction

in the artifacts while the salient advantages of the denoising schemes are preserved.
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CT — PSNR = 30.59 LMS_A — PSNR = 32.11

Figure 37. The denoising results of the Boats image when 0' =10. (Note that the visual results for

LMS_O and LMS_N are similar to that of LMS_A.)

Further, all the LMS methods provide similar results in this case.

Another example is demonstrated in Figure 38, where we used BLS-GSM and
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BLS—GSM PSNR = 26.70 LMS_A — PSNR = 2715

Figure 38. The denoising results of the Barbara image when 0 = 40 .

TIHWD (BS) denoising schemes with 0' = 40. As seen, using the averaging approach

takes advantage of desirable features of both methods, that is, producing fewer artifacts in

the BLS-GSM approach and better retaining of fine textures in the TIHWD denoising

scheme.

4.5 CONCLUSION

In this chapter we proposed a method based on the least-mean-squares approach to

linearly combine different denoising schemes in an optimal sense. We found the

proposed scheme to be efficient in improving denoising results through significant

reduction in the artifacts and hence an increase in the PSNR values. We also proposed
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non-oracle methods of averaging and LMS estimation with the noisy image as special

cases of linear combining, where we showed that we can achieve near-optimal results for

comparable denoising schemes.
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Chapter 5

FUTURE WORK

Using directional filter banks, we added more directionality to the wavelet transform

and proposed the new transform family using Hybrid Wavelets and Directional Filter

Banks (HWD). Then we employed the proposed scheme to several image processing

applications. Our preliminary results indicate the potential of the proposed HWD family

for image processing. We can utilize this family in several directions explained in the

following sections.

5.1 IMAGE CODING

For image coding, we plan to investigate more sophisticated approaches that take care

of dependencies among the HWD coefficients. For this purpose, finding appropriate

statistical models is necessary.

While we can benefit from a nonadaptive and thus less-complex coding scheme using

HWD family, it is possible to achieve more efficiency through applying the proposed

family in an adaptive framework similar to wavelet packets. In this direction, we used an

early version of the HWD family in [46].
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5.2 IMAGE DENOISING

While the denoising results of the translation-invariant HWD (TIHWD) are quite

satisfactory (see Section 3.5C), there is still room to further improve the performance of

the TIHWD denoising scheme by developing more suitable shrinkage schemes for this

family.

Furthermore, note that in all of the scenarios for image denoising in the thesis, we

considered white Gaussian additive noise for greylevel images. Under a possible

extension of our denoising approaches, we can consider nonlinear noise, non-Gaussian

noise, and color images.

5.3 IMAGE WATERMARKING

Another application that the proposed family could be useful for is image

watermarking. Regarding the fact that the significant HWD transform coefficients better

represent edges and fine details when compared with wavelets, one could easily embed a

watermark in these image components. Since the details correspond to perceptually most

significant image coefficients, we expect to have a robust watermarking scheme [34],

[37].

5.4 OTHER POSSIBLE AREAS FOR HWD

One can also utilize the proposed family in other applications. For example, feature

extraction iS a possibility for pattern recognition. Another example is 3-D image

processing where the need to extend and develop a 3-D HWD transform family is

inevitable.
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APPENDICES

A.l Proof of Remark 2.1 (see Section 2.3)

Let us denote the output of channel i for each shift R, as: S,c[n], for

0Si<N, and OSchM -1, and the set of outputs of channel i as:

s,[n]= {S,O[n], ...,S,(,,M_l)[n]}. That is, for each channel i, we have (1,, outputs

obtained by shifting W, as,

s,c[n]=w,.[Mn+k,], (09de —1, OSi<N)

Z x[m]h,.[Mn — m + kc]

meld

= Z x[ta + kc]h,.[Mn —III].

meZd

As a result, Sic equals the cth polyphase component of W,, that is, 8,, [n] = Wic [n],

(O S C S dM — 1, O S i < N). Now if one shifts the input as

x'[n] = x[n + p], (p E Zd), one obtains the same shift for w,[n], (O S i < N) as

w,’[n] = w,[n + p]. It turns out that s,.'[n] = {w,.[Mn + Mp + k, 1, 0 _<_ c s 6,, — 1} ,

the set of polyphase components of w,'[n] , is equal to S,[n + p]. C]
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A.2 Proof of Remark 2.3 (see Section 2.3)

We can prove this proposition in the polyphase domain. Let the filters and input

d -1

signal x[n] in the polyphase domain be H,(Z)= i zkcH,c(zM),

c=0

d —1 d -1

G,(z)= g: z-kcG,c (2M), and X(z)= E z_chc(zM). Now we use a matrix

c=0 c=0

7'

notation for the polyphase components as X7; (2) = (X0 (z),...,XdM _, (2)) (here the

subscript P denotes the polyphase domain), Y(z) = (Y0 (z),..., YN_, (2))T , and

  

_ [100(1) H0,(dM—1)(Z) 2

H79 (2) = 5 5 ,

bH(N—1),O (2) "° H(N—l),(dM—1)(z)d

and

600(1) '” G0,(N—1)(z)

012(1) = : .' :

_G(dM-1).0 (z) GMM -1),(N—1)(z)4  

Thus in the polyphase domain we have [89], [92]

Y(z) = Hp (z)X,, (z), (A. 1)

and for the synthesis part, the reconstructed signal is

X, (z) = AT(z"1 )G, (zM )Y(zM ), (A.2)

where A(z) = (2k0 ,zkl ,...,zde '1 )T. Figure 39 shows the FB represented in the

polyphase domain. By inserting Y(ZM) from (A.1) to (A.2) we obtain the reconstructed
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Figure 39. The polyphase domain scheme of the multi-channel filter bank given in Figure 5.

signal as

X, (z) = AT(z")G,,(zM)H,,(zM)x,,(zM).

We denote T73 (ZM ) = Gp(zM )Hp(zM) as the transfer fimction of the FB in the

polyphase domain. It is clear that for perfect reconstruction we should have

T7, (2M ) = I4M , which leads to

X, (z) = AT (2‘1 )XP (1M) = X(z).

Now, we omit the subsampling operations, leading to a non-subsampled FB as

depicted in Figure 6. Note that before doing this, it is better to transfer the downsampling

(upsampling) operations to the right (lefi) side of the analysis (synthesis) filters. As

shown below, this is advantageous since when we omit the subsampling operations, the

transform coefficients will be the same as those in Figure 5 before downsampling, i.e.,

W(Z) = (W0 (2),. . . , W,,,_l (z))T. The forward transform is expressed as

W(z) = X(z)H,, (zM )A(z).

On the other hand,

X, (z) = AT(z")G,,(zM )W(z).
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As a result,

Xt(z)=dMX(z)-

It follows that we need a scaling factor to ensure perfect reconstruction as a = 1/ dM .

Since the resulting TI scheme is non-subsampled, the redundancy of this scheme equals

the number of channels, N.

Finally, since the output of the channel c, (O S c S dM — 1) of synthesis bank is

X56) (2) = szz-kCX(z) = X(z),

we have

(1 -1

X.(z)=(1/d..131 X.‘C’<z). a
c=0
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Figure 40. A schematic diagram of the directional subbands using 1 levels (‘5' is ‘H’ or ‘V’, and

d = 2"l ). Left: Subbands obtained by applying HDFB to a wavelet highpass channel. Middle: Subbands

obtained by applying VDFB. Right: Subbands obtained by applying full-tree DFB.

A.3 The Rearrangement Algorithm (see Section 3.58)

For each of the three types of the subbands in the levels 1 S j S Jm , we utilize its

individual algorithm as described bellow (see Figure 40):

1) For subbands that a HDFB is applied: Suppose we decompose a wavelet subband

of size Ns x Ns, into d = 2’.1 horizontal directional subbands SD“) (1 S i S d , ‘S’ is

either ‘H’ or ‘V’), each having a size of M x fit, where M = N3 /2, and 172 = N, /d.

Now we combine these directional subbands column-wise to form SD01) as:

SDW) =[c,"‘...clhd Cg...c,’;,d ], where cf denotes the column i of subband

SD”). To form a subband almost similar to a wavelet subband, we combine the resulting

. . . . " H H T
matrix wrth SD”) I'OW-WISC to obtaIn SHDFB =[rl rlv rM r5] , where r,"

denotes the row i of subband SD”) and (-)T denotes the transpose Operation.
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2) For subbands that a VDFB is applied: Here we use the dual procedure of the one

we used to rearrange the HDFB subbands. That is, we first combine the vertical

directional subbands row-wise, and then we interlace the resulting matrix with SD”),

column-wise to obtain SVDFB.

3) For subbands that a full DFB is applied: In this case, we first combine the

horizontal subbands to obtain SD(H) = [0,,” ...Clhd 63,] ”.ng ]. Now we divide the

vertical subbands into two parts and combine each part row-wise separately as

SD _[’.1 000’] r’h 000’";z ] ,

and

(V2) _ V6+l Vd , , , V6+l Vd T
SD _[,.1 000,1 rfi coor’fi ] ,

where 5 =d/2. Interlacing the resulting matrices column-wise, we obtain SDW),

which is the same size as SD01) : SDW) = [01V1 61V2 - -- CB of; ]. Finally, we interlace

SD(H) and SD02 row-wise and obtain S~DFB =[r1Hr1V rang ]T.
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