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ABSTRACT

PREDICTION OF RHEOLOGICAL PROPERTIES OF RIGID ROD FLUIDS IN
SIMPLE HOMOGENEOUS SHEAR FLOWS BASED ON A REALIZABLE MODEL
FOR THE ORIENTATION DYAD
By
YoChan Kim

Non-spherical particles dispersed in a fluid have a tendency to align in shear
flows because of particle-fluid drag. This phenomenon is opposed by rotary diffusion.
At high concentrations and in the absence of hydrodynamic couples, self-alignment can
also occur because excluded volume forces prevent the return-to-isotropy of anisotropic
states by rotary Brownian motion. The balance between microhydrodynamic and
diffusive (i.e., Brownian and excluded volume) torques at the microscale has a direct
impact on the rheological properties of rigid rod fluids (particulate suspensions and liquid
crystalline polymers) at t.he continuum scale.

Over the past sixt}; years, important characteristics of the microstructure
associated with the foregoing alignment phenomenon have been quantified in terms of
the low order moments of the orientation density function governed by the rotary

Smoluchowski equation. In this research, a closed model for the second order moment

<pp > (orientation dyad) has been identified based on the condition that in the absence

of an external field all realizable anisotropic states must relax to stable equilibrium states.
A key step in the development of the new closure is the use of an algebraic pre-closure

for the orientation tetrad <pppp> in terms of the orientation dyad <pp> that

preserves the six-fold symmetry and contraction properties of the original orientation

tetrad.



In the presence of a simple shear flow, the microstructure and the rheological
characteristics predicted for rigid-rod fluids agree with previous theoretical and

experimental results for a wide range of Péclet numbers. In addition to the Péclet number

(e, Pe=|Vu|/(6D}) ), the orientation director also depends on three other

dimensionless groups: a tumbling parameter, A; an excluded volume coefficient, U; and,
a dimensionless time t = 6D} t. The rotary diffusion coefficient for dilute solutions, D3,

is used to scale time. Unlike other closure models, the approach developed hereinafter
predicts that all two-dimensional and three-dimensional realizable anisotropic states
relax to either a steady state (isotropic or anisotropic) or a periodic state, depending on
Pe,A,andU. The model predicts the existence of shear thinning and shearthickening
phenomena, Newtonian plateau regions at low and high Péclet numbers, positive (and
negative) first normal stress differences, and negative (and positive) second normal stress
differences. For Pe =0, multiple equilibrium states exist for 4.72<U<5.00. For
Pe >0 and initial directors located in the flow-deformation plane, the predominant
feature for U < 25 is the existence of a unique nematic-like microstructure with a steady
alignment of the director that becomes completely aligned with the velocity as Pe — .
For A <1 and U > 25, tumbling and wagging of the director occur at low to moderate
values of the Péclet number. If the initial director has a component in the direction of the
vorticity, then director kayaking and director log-rolling may occur. The coexistence of
stable anisotropic states (or texture) predicted by the model may provide an explanation

of why micro defects occur during the processing of some structured fluids.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The statistical theory of rigid rod suspensions provides a means for understanding
the microstructure and rheology of structured fluids (Doi and Edwards, 1978a, 1978b;
Doi, 1981). The microstructure may be either isotropic or anisotropic. Under extreme
conditions, a nematic phase may occur wherein the long axis of rod-like particles (or
molecules) align in the same direction. The tendency for some fluids to develop nematic-
like microstructures either spontaneously or under the influence of an external force field
has a significant and practical impact on the rheological, optical, and material properties
of structured fluids.

Particle suspensions and liquid crystalline polymers may be either isotropic or
anisotropic, depending on the local environment. The microstructure is often
characterized statistically by low-order moments of the orientation distribution function,
referred to hereinafter as the orientation dyad (second order tensor) and the orientation

tetrad (fourth order tensor). The orientation dyad, <pp>, is symmetric and non-
negative (i.e., realizable). The orientation vector p has unit length and is aligned with
the principal axis of an axisymmetric ellipsoidal particle, cylindrical rod, or disk-like

particle. The eigenvalues of <pp> are real and non-negative (ie,
0 <Apy <Apy < Apz < 1). The “director” of the microstructure is defined as the

eigenvector associated with the largest eigenvalue of the orientation dyad. For an



isotropic material, the director has no preferred direction inasmuch as all the eigenvalues
of <pp> arethe same (A, = Ay = Ap3 =1/3).

Figure 1.1 illustrates the type of possible anisotropic states that can occur for
axisymmetric ellipsoidal suspensions (see Kini et al., 2003; Nguyen et al., 2001a; Parks
et al., 1998; Petty et al.,, 1999; Weispfennig et al., 1999). Each orientation state is

parameterized by two nontrivial invariants of the structure tensor b (I, = tr(b-b) and

My =tr(b-b-b)). The b-operator is defined as the anisotropic component of the
orientation dyad (b=(< EB>—%1 ). As noted on Figure 1.1, three-dimensional

anisotropic states for which 0 < A,; = A5 < Ap3 <1 have quadratic forms with prolate

surfaces (F-boundary) whereas three-dimensional anisotropic states for which
0 <Apy <Apy =Ap3 <1 have quadratic forms with oblate surfaces (D-boundary). In
the absence of external hydrodynamic forces, all stable and unstable equilibrium states
are either on the prolate boundary or on the oblate boundary of the invariant diagram
(Doi and Edwards, 1986; Kini, 2003).

Two-dimensional planar anisotropic states are located on the B-boundary of
Figure 1.1. These states are associated with structure tensors with one eigenvalue equal
to zero and two unequal positive eigenvalues (Ap; = 0, Apy # Ap3, Apy + Apz=1).
Two-dimensional planar isotropic states (Point C on Figure 1.1) have one zero eigenvalue

and two equal eigenvalues (Ap; =0, Apy = A,3=1/2). A fully-aligned microstructure

forms an ideal nematic phase with A; =0, A, =0, and A3 =1 (Point A on Figure 1.1).
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Microstructures associated with axisymmetric suspensions must fall either on the

boundaries or within the bounded region of the (II,, III}, )-plane identified by Figure 1.1.

Microstructures outside this domain are unphysical because at least one of the
eigenvalues of the orientation dyad is negative.

The realizability domain defined by Figure 1.1 stems directly from the algebraic
properties of real, symmetric, non-negative operators and is a fundamental characteristic
of any second-order moment of a distribution function. Appendix A shows how the
boundaries depend on the invariants of the structure tensor. This model-independent
result places an important theoretical constraint on allowable models for the orientation
dyad. A practical consequence of Figure 1.1 is that it provides a means to identify a
closure model for the orientation tetrad in terms of the orientation dyad, i.e.,

<pppp> = 3(<pp>). This closure is developed in CHAPTER 5 and 6 below.

1.2 Background

The primary objective of this research is to examine the influence of the low-order
moments of the orientation distribution (microstructure) on the equilibrium and
rheological properties of rigid-rod suspensions. Liquid crystalline polymers (LCPs), such
as poly (g-benzyl-L-glutamate) in m-cresol and hydroxypropylcellulose in water are often
represented as rigid-rod suspensions with a characteristic length L ~ 110 nm and a
characteristic diameter d ~ 1.16-1.75 nm (Bibbo and Armstrong, 1988; Larson, 1999;
Walker and Wagner, 1994; Yousefi et al., 2003). The stiffness of LCPs stems from the

presence of aromatic rings in the backbone of the polymer or from the a-helix structure



due to hydrogen bonding (see Figure 1.2). The significant decrease in the shear viscosity
of thermotropic and lyotropic liquid crystalline polymers (LCPs) during processing
makes these materials commercially attractive. Specific end uses of LCPs exploit their
low elongation resistance to cutting, favorable thermal properties, high resistance to wear,
and high-strength, low-weight, and high-impact resistance (Collyer, 1992). The tensile
moduli of LCPs in the solid phase may vary between 1-100 GPa, depending on the
molecular orientation of the constituent polymers (Donald and Windle, 1992).
Applications of LCPs are numerous and range from reinforced bulletproof vest to optical
components in electrical devices (Collyer, 1992).

Liquid crystalline polymers are generally manufactured by a stepwise
polycondensation reaction in either a batch or a continuous process (Jansson, 1992). The
polymer is mixed with various additives and extruded as a filament. Over half of the
LCPs sold are reinforced with 30% —40% glass fillers having polymeric sizing to
produce a strong interface between the fiber and the matrix material (Clarke et al., 1997).

Some LCPs are injection molded for special applications.

Equilibrium Microstructure

In the absence of an external field, a rigid rod suspension has an isotropic
microstructure (i.e., Iy= 0 and III}, = 0) at low concentration. As the concentration
increases to a critical value, the microstructure undergoes a spontaneous transition to an

anisotropic nematic-like state. Several methods have been developed to study this

transition experimentally. For example, Robinson (1966) developed a birefringence
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technique to study biphasic phenomena (i.e., coexistence of isotropic states and
anisotropic states at the same concentration) for poly-y-benzyl-L-glutamate (PBLG) in
dioxane solutions. This phenomenon was observed for PBLG aspect ratios from 10 to
100 and has been reported by other investigators using other methods (see Abe and
Yamazaki, 1989b; Kubo and Ogino, 1979; Murthy et al., 1976; Sartirana et al., 1987).
Abe and Yamazaki (1989a) developed a NMR technique to correlate the relative
orientation of the a-helical backbone of PBLG rigid-rod molecules by exploiting a
quadrupolar splitting phenomena related to the pendant side chain containing C-D and
N-D bonds. If the PBLG solution is isotropic, the NMR spectrum has only one resonance
peak. As the concentration increases and the microstructure approaches the biphasic
region, quadrupolar splitting occurs. The split increases as the fluid becomes more
anisotropic. In the biphasic region, the central peak corresponds to an isotropic
microstructure and the split signal corresponds to a nematic-like microstructure. As the
concentration increases further, the isotropic peak disappears while the peak-to-peak
distance in the split increases. Figure 1.3 illustrates the observations reported by Abe and
Yamazaki for PBLG in DMF (dimethylformamide) and in 1, 4-dioxane with aspect ratios

of 32, 121, and 185.

Non-Equilibrium Microstructure

In a time independent external field, director tumbling of LCP solutions may
occur at low shear rates, but direct measurements using optical methods are difficult.
However, optical measurements of this phenomenon for lower molecular weight liquid

crystal (LC) suspensions have been reported extensively (Bedford and Burghardt, 1996;
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Burghardt and Fuller, 1991; Fuller, 1995; Larson, 1999). Rheological measurements on
LCP solutions and melts have been used to study director tumbling. Erickson and others
(see p. 453-456 in Larson, 1999) related this phenomenon to a phenomenological
tumbling parameter A that couples the angular motion of the rigid rod to the strain rate of
the flow field (see Eq.(10-3) p. 448 in Larson, 1999). For homogeneous shear flows and |
A | > 1, the director attains a steady alignment relative to the flow direction in the shear
(or deformation) plane (i.e., flow/cross-flow plane). On the other hand, if | A | < 1, the
director rotates continuously in the shear plane (see p. 454 in Larson, 1999; Carlsson,
1982; Carlsson and Skarp, 1986). Because A is related to rheological Leslie-Ericksen
coefficients, tumbling phenomenon has been studied indirectly for more than thirty years
by measuring fluid properties of the suspensions (see Cladis and Torza, 1975; Gihwiller,
1973; Pieranski and Guyon, 1974; Skarp et al., 1981).

Skarp et al. (1981) (also see Carlsson and Skarp, 1986; Clark et al., 1981)
measured the Leslie-Ericksen coefficients for 4-n-octyl-4’-cyano-biphenyl (a
thermotropic liquid crystal) over a range of temperatures (35 — 40 °C). They used an
electromagnetic field to initially align the orientation director parallel and perpendicular
to the flow direction. After removing the magnetic field, the anisotropic microstructure
relaxes and the LE-coefficients were measured. The rheological data indicated that the
magnitude of the tumbling parameter was less than unity, which implies director
tumbling according to Ericson’s theory. This approach has also been applied to infer
director tumbling in LCP solutions subjected to homogeneous shear flows with limited

success (see Burghardt and Fuller, 1990; Larson, 1988).



Rheological Properties

The rheological characteristics of LCPs are important indicators of molecular
orientation because time-dependent molecular conformation is strongly coupled with the
flow (Walker et al., 1995). Some LCPs in simple shear flows show shear viscosity with
strain rate (or stress) response curves with three distinct characteristics: 1) a shear
thinning region at low strain rates (Region I); 2) a Newtonian plateau (Region II); and, 3)
an additional shear thinning region at high strain rates (Region III) (Walker and Wagner,
1994; Walker et al., 1995; Larson, 1999). Region II occurs for a wide range of strain
rates because the molecular orientation and the conformation of the rigid-rod polymer
solution are maintained. Shear thinning occurs at higher strain rates because the flow
field distorts the microstructure by flow alignment. Clearly, flow alignment enhances the
relative motion between phases (i.e. translational diffusion) with the result that the shear
viscosity decreases (i.e., shear thinning).

An anomalous shear-thinning region at low strain rates has only been observed for
LCPs. However, not all LCPs show a Region I behavior. Walker and Wagner (1994)
have shown that (1,4-phenylene-2,6-benzobisthiazole) (PBZT) has a Region I response
only at relatively high concentrations. This phenomenon has not been fully characterized
experimentally because of inaccurate shear stress measurements at low strain rates (see
Doraiswamy and Metzner, 1986; Larson, 1999; Walker et al., 1995). In addition, no clear
theoretical explanation for this phenomenon has been identified.

Another interesting characteristic of LCP solutions is the occurrence of a negative

first normal stress difference (N;) at intermediate strain rates (see Baek et al., 1993;

Chono et al., 1996; Kiss and Porter, 1980; Larson, 1999; Magda et al., 1991). At low
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strain rates, N is positive; however, as the strain rate increases, N attains a maximum
value and then decreases to zero and becomes negative. At higher shear rates, the first
normal stress difference becomes positive again. This observation suggests that N is

sensitive to changes in the microstructure as the strain rate increases. Beck et al. (1993)

have suggested that the transition from positive to negative values of N; was associated

with the orientation director changing from a stable periodic tumbling state to a stable
periodic wagging state. This is consistent with the Leslie-Ericksen theory, which requires
director tumbling for negative first normal stress differences (also, see p. 449 in Larson,
1999; Burghardt and Fuller, 1990).

In addition to the negative first normal stress difference, direct oscillatory
response of the vi_scosity also indicates molecular tumbling phenomenon. When the rate
of shear is suddenly changed, the shear stress component of the deviatoric molecular
stress shows an oscillatory response including a reversal in the strain rate (Burghardt and
Fuller, 1991; Picken et al., 1991; Vermant et al., 1994; Walker et al., 1995). This
relaxation response has multiple overshoots and undershoots that can be imposed with
various shear rates before the steady state is reached against strain. Since this type of
response is independent of strain rate, it must be due to changes in the microstructure
rather than the flow properties. In addition, there is only one overshoot when the
microstructure relaxes to a steady flow alignment state. These experimental observations
support the hypothesis that multiple stress oscillations and director tumbling are

correlated (Burghardt and Fuller, 1991; Larson, 1999).
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Theoretical Studies

Liquid crystalline polymers have stiffness characteristics that are different from
other polymers. LCPs have been studied for many years. Although “industrial” LCPs
are not as rigid as “laboratory” LCPs, understanding the behavior of rigid rod suspensions
would nevertheless provide valuable information and insight related to processing LCPs.

Theoretical studies of LCP orientation phenomenon are primarily related to the
Smoluchowski’s (S-) equation. The S-equation governs the distribution of orientation
states. It is a partial differential equation that balances the accumulation of states subject
to rotary convection and rotary diffusion in orientation space (see CHAPTER 2 below).
The diffusive flow has two contributions: Brownian motion and the excluded volume
phenomenon. Brownian motion tends to mix the LCP molecules randomly whereas the
excluded volume effect tends to align the LCP molecules. The convective flux arises due
to the torque on the LCP molecules in a shear field.

There are several ways to study the S-equation. One approach is to develop a
solution using spherical harmonics (Chaubal and Leal, 1997, 1999; Larson, 1990).
Another approach is based on the method-of-moments. Developing an explicit expansion
for the density function is a complicated process and requires significant computational
resources. On the other hand, developing a solution based on low order moments of the
density function requires a closure approximation (Marrucci, 1996).

Doi (1981) developed a second order moment equation by integrating the S-
equation with Maier-Saupe potential for the excluded volume. Doi used a quadratic

closure approximation for the orientation tetrad (i.e., <pppp> =<pp><pp> )

Unfortunately, these approaches do not retain the six-fold symmetry and six-fold

12



contraction properties of the fourth order moment (see CHAPTER 3 and the development

in CHAPTER 5).

Hand (1962) used a first order closure approximation for <pp pp >, which

satisfies six-fold symmetry and six-fold contraction. However, Hand’s closure is limited
to microstructures near the isotropic state (see E on Figure 1.1). Later, Hinch and Leal
(1976) introduced two closure approximations based on an anisotropic analysis of the
orientation tetrad near the isotropic and nematic states (see Figure 1.1). The HL-closures
predict phase transition from the isotropic to the nematic state, but predict unrealizable
behavior for some situations (Chaubal and Leal, 1999).

Later, Cintra and Tucker (1995) developed a new closure for the orientation tetrad
based on an orthotropic operator. The approach assumes that the symmetry directions of
the tetrad coincide with the orientation dyad. The closure coefficients of the tetrad are
obtained by fitting the moment equation with the “exact” solution based on a spherical
harmonic expansion of the orientation density function. The orthotropic closure is
applicable to simple geometries and can provide valuable bench mark information.

There are other closures that combine previous approximations (Tucker, 1988;
Larson, 1999). For example, Tucker (1988) has combined Hand’s closure approximation
at the isotropic state and the decoupling approximation at the nematic state. This
superposition of two asymptotic closures is similar to the strategy employed by Hinch
and Leak and is an example of a hybrid closure approximation. Larson (1990) used the
decoupling closure for the excluded volume potential and the HL-closure for the
convective flux in the same model. None of the foregoing closure approximations satisfy

the symmetry properties of the orientation tetrad and the realizable condition on the

13



second order moment. In addition, none have fully predicted the microstructure and
rheological properties of LCPs.
Recent research at Michigan State University has developed a representation of

the orientation tetradic in terms of the orientation dyad that satisfies the six-fold
symmetry and the six-fold contraction properties associated with <pppp > (see Parks
et al., 1999; Parks and Petty, 1999a, 1999b; Petty et al., 1999; Imhoff, 2000; Nguyen,
2001; Kini, 2003; Mandal, 2004). This closure is incomplete and needs an appropriate
closure coefficient C, (II,, Il ) so that the orientation dyad is realizable for all
conditions. Previous studies assumed that C, = 1/3 for all anisotropic states within the
invariant diagram (Figure 1.1). This condition must be true at the nematic state, but it is
not required elsewhere. However, it is noteworthy that C, = 1/3 predicts biphasic
phenomena (Kini, 2003; Nguyen, 2001) and tumbling phenomena (Nguyen, 2001).
However, a “universal” value of C, = 1/3 causes unrealizable behavior for some

physically allowable initial conditions. This is unacceptable and a resolution of the
problem is developed in CHAPTER 6 below. Imhoff (2000) and Mandal (2004)

identified a value for C, by using solutions of the S-equation. Their best fitted C,
value was 0.37, but this choice of C, is also unacceptable because it yields unrealizable

results orientation dyad for certain initial conditions.

1.3 Objective

This research addresses a long-standing fundamental problem related to the

self-alignment and flow alignment of structured fluids. The approach, which builds on

14



the statistical theory developed earlier by Doi and many others (see, esp., Doi and
Edwards, 1986; Bird et al, 1987ab; Larson, 1999) provides new insights and
understanding of the relationship between the microstructure and the phenomenological
properties of structured fluids at the continuum scale.

The objective of the research is to develop a closure for the orientation tetrad that
yields a realizable model for the orientation dyad. The new approach is used to predict
the microstructure and the rheological response of rigid rod suspensions to simple shear
flows. By using the S-equation based on Doi’s theory (1981), an equation for the second
order moment of the orientation density function can be developed that depends on the
fourth order moment (i.e., the orientation tetrad). Although the method-of-moments has
been employed for more than thirty years as a mean to study the microstructure of rigid
rod suspensions, understanding the equation has been limited by the absence of a
satisfactory closure model for the orientation tetrad. This is a significant theoretical
deficiency that hinders the interpretation of rheological anomalies associated with the
response of microstructure fluids to simple shear fields. To address this issue, this
research presumes that the orientation tetrad can be approximated by using an algebraic

closure, <pppp> = 3(<pp>). The efficacy of this hypothesis will be evaluated for a

class of microstructured fluids (i.e., rigid rod suspensions) in homogeneous shear flows.
The aim of the research is to develop a realizable dynamic model for the orientation dyad

for a wide class of complex engineering flows.
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1.4 Outline

The equilibrium relaxation of the orientation dyad in the absence of an external
field (CHAPTER 7) and the non-equilibrium relaxation of the orientation dyad in the
presence of an external ﬁéld (CHAPTER 8) are addressed in this research. The S-
equation in orientation space (CHAPTER 2) is used to develop an ordinary differential

equation for the orientation dyad, <pp > (CHAPTER 4). The moment equation has

three physical contributions: rotary Brownian motion, excluded volume phenomenon,
and hydrodynamic interactions through particle/fluid torque. A Maier-Saupe potential is
used for the excluded volume effect and Jeffery’s model is used for the hydrodynamic
interactions (CHAPTER 2). In addition, the effect of tube dilation on the diffusive flux is
examined. Doi’s stress model is used to predict the viscosity and the normal stress

differences (CHAPTER 9).

Once the realizéble closure approximation is obtained, the ordinary differential
equation is solved for the orientation dyad by using a fourth order Runge-Kutta algorithm
with a dimensionless time step less than 0.0003 (see APPENDIX G). The moment
equation has three independent dimensionless variables: U, Pe, and A (see CHAPTER 2).
For A < 1, the model is used to study the microstructure and rheology of rigid rod
suspensions for a wide range of U and Pe (CHAPTER 7 and CHAPTER 8). Various
initial value problems are examined with and without homogeneous shear. In CHAPTER
3, two meuics of the microstructure are defined to evaluate the results: 1) the order

parameter o; and, the deviation of the director from the flow direction, x5 -¢,.
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CHAPTER 2

SMOLUCHOWSKI EQUATION FOR RIGID ROD SUSPENSIONS

2.1 Introduction

Smoluchowski’s equation (S-equation) governs the evolution of the orientation
density function ¥(p, t; Z@, t)) for a suspension of rigid rod particles (see p.50 in Doi
and Edwards, 1986). The fraction of particles with orientation vectors with angular
coordinates between (6, ¢) and (6 + A8, ¢ + A¢) is given by ¥(p, §; § (X, 1))sinBABAY.
In a frame of reference moving with the local velocity of the suspension, the S-equation

is a balance equation for orientation states and can be written as:

oY o (.
D% =-5-B"(B‘P)- @.1)

In the above equation, —ai is a surface gradient operator on a sphere in orientation space
P

and the vector p is the angular velocity of the particle about its center of mass. The
vector X represents the spatial position of a material fluid element at some arbitrary
reference time; the spatial position of the material fluid element at time t is X = X X, 9.

The vector § (X, 1) is the motion of the suspension with velocity @ (%, f) defined by

Q& bg(i%] . 2.2)
ot fg

The operator on the left-hand-side of Eq.(2.1) represents the substantial (or material)

derivative of the orientation density function:
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The rotary flux of orientation states relative to a material frame of reference, p¥,

can be separated into a rotary convective flux EC‘-I‘ and a rotary diffusive flux

p¥=p ¥ +(p-pc )Y (2.4)
In this research, the rotary convective flux developed by Jeffery (1922) for ellipsoidal
particles suspended in a homogenous shear field will be used for EC‘P (see Section 2.2
below). Doi’s model for the rotary diffusive flux (see Section 2.3 below) will be used for
(E— p c ) Y . The rigid rods have the same density as the suspending fluid so gravity is

unimportant. The S-equation given by Eq.(2.1) above assumes that spatial diffusion of

the particles relative to the translational velocity is also unimportant.

2.2 Jeffery’s Model for Rotary Convection: Tumbling Coefficient

Jeffery’s model is used for the rotary convective flux (Jeffery, 1922).
Hydrodynamic drag causes the rotary motion of the suspended particles (Batchelor, 1976,
1982; Bibbo et al., 1985). A balance of angular momentum on an axisymmetric rigid rod
yields the following equation for p C (see Jeffery, 1922; Parks et al., 1999):

0

Ec

B =(5)x =~W-p+A[I-ppl

117}

-pl, (2.5)
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where A is a dimensionless tumbling parameter.

nv»

and W are the rate-of-strain and

vorticity tensors, respectively:

[N’ 14

=%[@@+(\?Q)T]=§[Vg+(vy7]; (2.62)
i_h%[@g—(@@f]%[w—(VH)T]. (26b)
For homogeneous shear, 6g = ?gy €, where

y=y(Vi):(Vi)" = 2§:§T =\/2=W=:ﬂT = constant. Q.7

In this research, A is only a function of the particle aspect ratio, L/d. For axisymmetric

particles (see Jeffery, 1922)
L

=?-1
1<a=-49___ <1 22)

For large aspect ratio particles A=1. For disk-like particles A=1. A typical tumbling
parameter for slender rod-like particles is about 0.7, which is equivalent to L/d = 2.38
(see p.280 Larson, 1999; Bretherton, 1962; Trevelyn and Mason, 1951). The rotational
period of a rigid rod can be related to the tumbling parameter (Jeffery, 1922; p.280
Larson, 1999). For A =+ 1, a prolate spheroidal particle and a disk-like oblate particle
have infinite rotation periods (i.e., they are not rotating). Experimental evidence for
particle rotation (or tumbling) in rigid rod suspensions has been given by Larson and
many others (see p.280 Larson, 1999; Anczurowski and Mason, 1967a, 1967b; Frattini

and Fuller, 1986).
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2.3 Brownian Motion: Rotary Diffusivity

Rotary Brownian motion is an important phenomenon in particle/fluid
suspensions. This phenomenon has a direct impact on models for viscoelasticity,
diffusion, birefringence and dynamic light scattering.

The theory of rotary diffusion in concentrated suspensions is well described by

the following hypothesis (see p.294, Doi and Edwards, 1986; Parks et al., 1999):

X 0¥ o AU
h—p . =—<Dgp > —-¥— ) 23
PP R (ag ag(kBT)J (2.3)

In the above equation, AU is an excluded volume potential and < Dy > represents an
average rotary diffusion coefficient. In general, < Dy > depends on the phenomenon of
tube dilation (see p.360 in Doi and Edwards, 1986; Kuzuu and Doi, 1993, 1994; p.520 in
Larson, 1999), the particle aspect ratio L/d, the volume fraction of particles, and the
temperature. In this research, the influence of tube dilation on the microstructure and
theology will be examined (see CHAPTER 8 and CHAPTER 9), but most of the

applications will assume that <Dy > is given by

3kpT

<Dgp>=Dg =
nnsL3

(2.9)

In the above equation, kg and ng represent, respectively, the Boltzmann constant and the

solvent viscosity; T is the temperature. D} has units of 1/(time) and represents the

rotary diffusion coefficient for dilute suspensions of rigid rods (see p.334 in Doi and

Edwards, 1986; p.281 in Larson, 1999). For semi-dilute and concentrated suspensions,

Eq.(2.9) is multiplied by a tube dilation factor Frp (<Dg >=Fpp D; ), which depends
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on the invariants of the microstructure (see Figure 1.1). In this research, Frp = 1 for

most of the applications. For the tube dilation examples (see Sections 8.5 and 9.5), Doi’s
theory for Frp is used (see p.360 in Doi and Edwards, 1986):

1

Doi
IIy)

(1-

3 (2.10)

2
Note that Eq.(2.10) implies that < Dy > — o as the microstructure approaches a nematic

state (see Point A on Figure 1.1).

2.4 Excluded Volume Phenomena: Maier-Saupe Potential

The excluded volume potential introduced by Eq.(2.6) above accounts for the
interaction of a rigid rod particle with neighboring particles. The main physical idea is
that particles cannot occupy the same space at the same time. This phenomenon has
important consequences that partly explain the self-alignment and the flow-induced
alignment of particles. Doi (1981) and others have developed models for the
instantaneous excluded volume potential by minimizing the Onsager free energy for rigid

rod suspensions (Ilg et al., 1999; Onsager, 1949) with the result that (see p.359, Doi and

Edwards, 1986):

AU :

LT =—Upp:<pp>+{h1gherorderterms}. (2.11)
B 19 A0y 4 4

The above equation stems from an expansion of the second virial coefficient of the

Onsager nematic potential. The lead term is the so-called Maier-Saupe potential:

=-Uppx<pp>. (2.12)
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This model is used in the Doi theory for rigid rod suspensions and is also used

hereinafter. The average of Eq.(2.12) shows that <AfJMs > is proportional to the

second invariant of the orientation dyad: <AU ms >=—-UkgT <pp>«<pp>. With

I+b, the average excluded volume potential can be expressed as

W | =

<pp>=
<AUps >=—UkBTG+IIb). ‘ (2.13)

Thus, at the isotropic state (i.e., Point E on Figure 1.1), < AfIMS >= —%UkBT ; and, at

the nematic state (i.e., Point A on Figure 1.1), < AUpg >=-UkgT .
The nematic coefficient U is dimensionless and, as indicated above, compares the

average excluded volume potential with kgT. For rigid rod suspensions (see p.66 in

Larson, 1999), U is proportional to the concentration of particles and the excluded

volume Vg = a’L. The parameter a° is the diameter of a tube of length L that contains a
single rigid rod. In this research, a’ is assumed to be independent of the local
microstructure (i.e., I, and III). Tube dilation affects the nematic potential (and rotary

Brownian diffusion) through the Frp-factor introduced by Eq.(2.10).
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2.5 Discussion

The S-equation with Jeffery’s model for rotary convection (see, Eq.(2.5)) and

Doi’s model for the excluded volume potential (see, Eq.(2.12)) can be written as

(—>x+Pe—— [ w-p+rr1-ppi-Is-pl)¥)-
o (2.14)
+F-mi~ —+U‘I’i(pp:<pp>
62 ) 61_) -= ==
where t is a dimensionless time and Pe is Péclet number:
t=6D% i, Pe=— du, 2.15)
o d
6DR y

The S-equation determines how the orientation density function changes with

time over the surface of a sphere in orientation (phase) space (see Edwards and Beris,

1989). The relaxation of ¥ (p,t) from an initial state is controlled by four physical

factors: 1) a rotational torque due to the antisymmetric component of the velocity
gradient; 2) a rotational torque due to the symmetric component of the velocity gradient;
3) a rotational torque due to Brownian métion; and, 4) a rotational torque due to the
excluded volume phenomenon. A direct numerical (or analytical) analysis of Eq.(2.14)
subject to arbitrary, but realizable, an initial condition has not been done. Some limited
results have been reported for isotropic initial conditions (see Doi, 1981; Hand, 1962;
Hinch and Leal, 1976; Petty et al.,1999; Tucker, 1988), but an understanding of Eq.(2.14)

has primarily resulted from a study of the low order moments of ¥ (p,t). The moment

method (see CHAPTER 3) will be used in this research.
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CHAPTER 3

MOMENTS OF THE ORIENTATION DISTRIBUTION

3.1 Introduction

In this research, a rigid rod is approximated as an axisymmetric ellipsoid. A single
orientation vector p defines the instantaneous orientation state of the rod in terms of the
angular variable 0 and ¢ (see Figure 3.1):
p=g, =sin(8)cos($)e, +sin (G))sin(d))gy +cos(@)e,. 3.1
There is no distinction between the head and the tail of the rod. Therefore, the orientation
density function satisfies the symmetry condition ¥ (p,t) = ¥ (-p,t). The vorticity
direction is e, ; the cross-flow direction is gy; and, the flow direction is ¢,. The plane
that contains the flow direction and the cross-flow direction is called the shear plane (or
the deformation plane); the plane that contains the cross-flow direction and the vorticity
direction is called the cross-flow/vorticity plane; and, the plane that contains the vorticity
direction and the flow direction is called the vorticity/flow plane (see Figure 3.1).

Measuring the orientation of individual rigid rods in a suspension is not practical.
However, low-order moments of the density function ¥( p, t) can be measured. These
moments provide an objective means to understand the complex behavior of rigid rod

suspensions. For a suspension of axisymmetric particles, the first moment <p > is zero

because of symmetry:
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2n n
<p> = j jg ¥(0,,t)sin(6)d6dd = 0. (3.2)
00

All of the odd moments are zero. The zeroth moment (i.e., integration of the density

function over the sphere) is unity because the total number of particles is a constant.

3.2 Orientation Dyad: Structure Tensor and the Order Parameter

The second moment of the orientation density function is

’j' p W(6,, t)sin(0)d0ds . (3.3)
0

I'U
I'O
OQ——.a

The second moment <pp > is also called the orientation dyad. <pp> is a symmetric,

non-negative operator, and its trace is unity because
tr(<pp>)=<p-p>=1. (34

This dyadic-valued operator defines the microstructure of rigid rod suspensions. Figure

3.2 illustrates an isotropic (or three-dimensional random) orientation state for which
ey +€,¢;), isotropic state.

When the rigid rod particles are randomly distributed in a two-dimensional plane (see
Figure 3.2 and Figure 1.1), then

1

<gg>=3(eye +€,¢,), planar isotropic state.

When all of the rigid rods are pointing in one direction (see Figure 3.2), then

<pp>=e

22> nematic state.
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The orientation dyad can be represented as the sum of an isotropic operator and an

anisotropic operator:

I+b. (3.5)

wl-—-

<PP>

A scalar-valued order parameter a is often used to define the orientation state or the
prolate (and oblate) boundary of Figure 1.1. This parameter defined in terms of the

second invariant of the structure tensor b :

3 1/2
"(EH") . (3.6)

Note that:
a = 1 at the nematic state; o = 0 at the isotropic state; and, o = —1/2 at the planar

isotropic state (see Figure 1.1).

3.3 Orientation Tetrad: Symmetry and Contraction Properties

The fourth order moment of the orientation density function is:
2n
<pppp> = [ [pppp W(6,0,0)sin(6)d0d¢. G.7)
00

This statistical property is called the orientation tetrad. Previous studies have used the
following closure hypothesis for the orientation tetrad (Hand, 1962; Hinch and Leal,

1976; Doi, 1981; Tucker, 1988; Petty et al., 1999):
<pppp> = 3(<pp>) (3-8)
Eq.(3.8) is also used to support this research (see CHAPTER 5). Clearly, the orientation

tetrad has six-fold symmetry. For example, with p=a=b=c=d , it follows that
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<pppp>=<abed>
=<bacd>=<cbad>=<dbca> (3.9)
=<acbd>=<adcb>=<abdc>.

n
A

1» o
0 I
vV Vv
]}
A
—~ o~

1®» o
1o 10
vV V

(3.10)

e’

o

Q.

\Y

1}

A

7~~~

o |
)
N
10 |
[~V -

Egs.(3.9) and (3.10) are important properties that should be retained by any closure based

on Eq.(3.8) above.

3.4 Realizable Anisotropic States: Invariant Diagram

The orientation dyad is a symmetric and non-negative operator (see Parks et al., 1999).

The eigenvectors x; and the eigenvalues Ap,; of the orientation dyad < pp > are defined
by:

<EB>'2‘-i=lpi§i . 3.11)
The eigenvalues of <pp > are real and non-negative: 0 < Aj,; <Ay < Ap3 < 1. The

eigenvectors of <pp > are:

Mo, X = Xx1€y +Xy1€y tXz18,
Ay, Xy = Xxp€y +Xy2€y +Xpe, (3.12)
A3, X3 = Xx38y +Xy38y +Xg538,

The three invariants of <pp> are
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Ip =tf(<22>)=lpl +Xp2 +lp3

= =12 2 2
I, =t(<pp>-<pp>)=A2, +1% +12; (3.13)

11, =1J'(<£B>-<EE>)=7L§,l +7L:2 +lg3 .
The orientation director is defined as the eigenvector associated with the largest
eigenvalue of <pp > (ie., X3).

The structure tensor b, defined by Eq.(3.5), has three eigenvalues: Ay, szl, and

Ap3- The invariants of b are
Iy =tr(b)=Ap; +Ap2 +Ap3 =0

Iy =tr(b-b)=A2, +12, +22, (3.14)
My =tx(b-B-b)=hyy +Agp + Ry

o i

The second and third invariants of b are non-zero. Figure 1.1 uses these invariants of the
microstructure to identify all possible realizable orientation (see Parks et al., 1999; esp.,
Lumley, 1978). The orientation states within this designated region are realizable

inasmuch as the eigenvalues of < pp > are real and non-negative.

The eigenvectors of <pp> and b are the same. The eigenvalues are related by

lbi =)"pi -% s 1= 1,2, 3. (3.15)

For uniaxial alignment states (see point A of Figure 1.1),

1 1 2
x’pl = 0, )"p2= 0, and )"])3 =1 O"bl = —-3-, )'bZ = —3, )‘b3 =-3—) (3.163)

For planar isotropic states (see Point C of Figure 1.1),

lpl = 0, )"p2= 1/2, and lp3 =172 O"bl =—§, )"bZ =—;-, )"b3 =%) (316b)
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For isotropic states (see Point E of Figure 1.1),

)“pl = 1/3, po =1/3, and )\.p3 =1/3 O"bl =0, )"bZ =0, A‘b3 =O) . (3160)

For planar anisotropic states (see Line B of Figure 1.1),

1 1 3
Apt =0, App=1-hp3,and Ap3 (hpy =-7, Ab2 =App -3 M3=2"Ap) (3.169)

For axisymmetric oblate states (see Line D of Figure 1.1),
_ 1 1
)‘pl =1- 2)"p2 , sz , and lp3 = A’p2 (g < )"p2 < —2-)

4 1 1
(o1 =3 = 2hp2> Aoy =Apa =35 M3 =2Ap2 —3)

(3.16¢)
For axisymmetric oblate states (see Line D of Figure 1.1),

1

A sz = ).pl,and )\.p3 = 1—2).p1 (OS)"pl Sg)

pl»

1 1 4
(Ap1 =2p -3 Ap2 =Ap) -3 Ab3 ='§_2pr) (3.16f)

The planar anisotropic boundary of Figure 1.1 follows by substituting the planar
anisotropic eigenvalues of b into Eq.(3.14):
I, =2/9 + 2101, . 3.17)

The prolate boundary of Figure 1.1 follows by substituting the axisymmetric prolate

eigenvalues of b into Eq.(3.14):
2/3
II, =6 (%) . (3.18)

The oblate boundary of Figure 1.1 follows by substituting the axisymmetric oblate

eigenvalues of b into Eq.(3.14):
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2/3
I, =6 (-—I;I—b-) . (3.19)

3.5 Discussion

This research proposes to examine a longstanding moment closure problem
related to the orientation tetrad of rigid rod suspensions, such as liquid crystalline
polymer (LCP). The proposed approach is based on an analysis of the low order
moments of the S-equation for the orientation density function. The moment equation for

<pp > is unclosed inasmuch as it depends explicitly on <pppp >. In CHAPTER 4, the
moment equation for <pp> is presented. In CHAPTER 5 and CHAPTER 6, a
realizable closure for <pppp> based on the hypothesis expressed by Eq.(3.8) is

developed that satisfies all the symmetry and contraction properties defined by Eq.(3.9)

and Eq.(3.10).
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CHAPTER 4

EQUATIONS FOR THE MICROSTRUCTURE AND THE STRESS

4.1 Introduction

In principle, the S-equation given by Eq.(2.14) can be solved numerically for any
initial condition, ¥(p,0). The resulting solution can be used a posteriori to calculate the
low-order moments that appear explicitly in the stress equation. This approach does not
require an a priori closure model for moments. Although a direct numerical simulation
of the S-equation for relatively simple flows and initial conditions provides useful
predictions of statistical properties, this approach is not practical for complex flows or
complex initial conditions. The method-of-moments provides an alternative means to
study Eq.(2.14). Unfortunately, this approach is unclosed inasmuch as the dynamic

equation for <pp > depends explicitly on <pppp>. However, once an appropriate
closure has been identified (and validated) the moment equation for <pp > can be used

to study the relaxation of the microstructure of rigid rod suspensions from arbitrary
anisotropic states. Thus, the main objective of this research is to develop an algebraic

closure for the orientation tetrad in terms of the orientation dyad.

4.2 Dynamic Equation for the Orientation Dyad
An equation for <pp > follows directly from Eq.(2.14) by first multiplying the

equation by pp and then integrating over the unit sphere:
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o<pp>
BB, +Pe| WT-<pp> +<pp> W |-

(at

“.1)

A
I's
s

\%

~
| S

~Frp| (<pp> 3D~ U(<pp> < pp> - <pppp>
#APelsT-<pp>+<pp>§-2<pppp>i§ ]
The terms on the left-hand-side of Eq.(4.1) is the Jaumann derivative of < pp >, which
represents the rate of change of <pp> relative to a frame rotating with an angular

velocity proportional to the vorticity (see Bird et al., 1987b). The first bracket on the
right-hand-side represents rotary diffusion due to Brownian motion and excluded volume
phenomenon. The second bracket on the right-hand-side accounts for rotary convection
due to fluid/particle drag. Clearly, Eq.(4.1) is unclosed due to the explicit appearance of

the orientation tetrad <pppp>. Note that both of the bracket terms, which represents

different physical phenomena, depend on <pppp>.

4.3 Dynamic Equations for the Structure Invariants for Pe = 0

For Pe = 0, Eq.(4.1) can be reduced to two coupled scalar equations for the

structure tensor invariants Il and III;, (see Figure 1.1). The following equations for Pe

= () are derived in APPENDIX A and B:

__d;]: =_znb+2FTDU[-;-nb +IHb—B:<BBBB>:2:| 42)
dgltb =310, +3qu[-;-mb +%Hb2 -2=<2222>=(2'2)] (43)
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The structure tensor b (=<pp > —% 1) appears explicitly in Egs.(4.2) and (4.3). Once

closed, the above coupled nonlinear autonomous (i.e., the independent variable does not
appear explicitly in the differential equation) first-order, ordinary differential equations
can be integrated from any orientation state in the realizable region defined by Figure 1.1.
If U = 0, then the equations are closed and linear and can be integrated analytically (see

Section 7.3).

4.4 Algebraic Equation for the Stress

The deviatoric component of the total stress for a rigid rod suspension consists of

three contributions:
i= 5 +1V +4F (4.9)
where iS is the solvent contribution; '%:V is the viscous contribution; and, iE is the

elastic contribution (Baek and Magda, 1994). is depends on the solvent viscosity ng

and the strain rate of the flow (Newtonian fluid):

S=2n5§. .5)

e

The microstructure of the suspension couples with the strain rate to produce an additional

viscous contribution to T :

. (4.6)

">

&' = clp <pppp>:

The viscosity coefficient c{g is given by
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clr = —S—COki 4.7
6Dr Frp
The viscous stress is due to the drag of the solvent on the rigid rod (see p.521 Larson,

1999).
Doi (1981) developed an elastic stress based on the Onsager free energy with the

result that (see Han and Kim, 1993; Larson, 1988):

iE = 3ckBTI:(<BB>—%l)—-U(<BB>-<BB>—<EEP_2>:< E>)] . (4.8)

o

The first term on the right-hand-side of Eq.(4.8) represents the stress induced by rotary
Brownian motion. The second term is the stress caused by the excluded volume

phenomenon. For homogeneous shear flows, the viscosity of the suspension is given by

e, -i-e
f=—TL=—= (49)
Y
The first and second normal stress differences are defined as follows
I:IZ =§.y igy —gx'i'.e.x' (4'11)

In a cone-and-plate viscometer, a positive N; represents a force that pushes on the cone.

A negative N, represents a force that causes the cone to push on the fluid.

4.5 Discussion

Eq.(4.1) provides the relaxation of the dyad. The solution governs depends on
three dimensionless groups: Pe, U, and A. These groups are independent and account for

different physical phenomena. A closure approximation for the orientation tetrad

36



<pppp > in Eq.(4.1) is developed based on six-fold symmetry and six-fold contraction

properties (CHAPTER 5). In CHAPTER 6, Eqgs.(4.2) and (4.3) are used to develop a
realizable closure for Eq.(4.1).

Doi’s elastic stress model defined by Eq.(4.8), is similar to but not as complete as
Ericksen, Leslie, and Parodi’s (ELP) stress. Doi (1981) noted that the ELP stress has a
limitation for predicting nonlinear viscoelasticity, which is important in rigid rod
suspensions (Doi, 1981). The Doi stress, even if it is not as general as the ELP stress,
separates the elastic and viscous contributions of the stress in both isotropic and nematic
phase transition. However, Doi emphasizes that his model is incomplete because of
physical and mathematical assumptions. The influence of the microstructure (i.c.,

<pp> and <pppp>) on Eqs.(4.6) and (4.8) is the focus of CHAPTER 9.
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CHAPTER 5

CLOSURE FOR THE ORIENTATION TETRAD

5.1 Introduction
In this chapter, a closure strategy for the orientation tetrad is introduced based on

the hypothesis that
(CN))

<pppp> = 3(<pp>)
Parks et al. (1999) used the Cayley-Hamilton theorem of linear algebra (Frazer et al.,

1960) and developed a representation for J(< pp>) in terms of the following six

independent tetradic operators:
I <pp>1;

1t

<pp> <pp> ; <pp>-<pp>1; I <pp>-<pp>.

They proposed that 3(<pp >) could be written as a linear combination of two tetradic

operators with six-fold symmetry and six-fold contraction (see Egs.(3.9) and (3.10)):
(5.2)

<pppp>=C; 31(<pp>)+C3 32(<pp>).

In the above representation, 3;(<pp>) is first-order in <pp> and 3I(<pp>) is

second-order in <pp>. The scalar coefficients C; and C; are functions of the

eigenvalues of <pp> or, equivalently, the eigenvalues of the structure tensor

I. The closure coefficients C; and C; are not independent because

W | =

b=<22>'

Eq.(5.2) must satisfy the six-fold contraction conditions (see Eq.(3.10):
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tr<pppp>=t{3(<pp>)]
=C tr[31(< PP >)]+ G, 3[32(< PP >)]
=(C;+Cy)<pp>

The above result implies that Cy + C = 1.

Parks, Petty, and Shao (see Parks et al., 1999) developed explicit expressions for

31(<pp>) and I, (<pp>) by using the following two six-fold symmetric tetradic

operators:

S[A Al=AjAke +AiAj + AyAj (5.3)
and

S[A Bl=AjBy, + AgBjs + AjyBj +BjjAy, +BicAjy +BjyA (5.4)

In the above equations, the operators A and B are symmetricand may be 1, <pp>,

or <pp>-<pp>. The operators 31(<pp>) and 32(<pp>) are defined as follows:

1 5
31(<pp>)=——S[II]+—S[<pp>1 55
1(<pp>)=-CS[I I+ <Sl<pp> 1] (5.5)
2
32(<BE>)E'3—5<BE>:<BE>S[,I.,I.]
+S[<pp><pp>] (5.6)

0
-—[<pp>-<pp>1] .
35(<PP>-<pp>1]

Egs.(5.2), (5.5), and (5.6) define a preclosure for the orientation tetrad

< >

I's
o]
s
I'e

<pppp>=[1-Co(ly,Imy)]3 (< pp>) + Co({ly, Mp) I (<pp >). (5.7
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This representation satisfies all six-fold symmetry and six-fold contraction properties of

the exact orientation tetrad. A closure for the second-order coefficient C, (I, , Il ) will
be identified in CHAPTER 6 based on the idea that solutions to Eq.(4.1) must be
realizable (i.e., <pp>zz20, z arbitrary) for all initial conditions <pp>(0) with
invariants II(0) and III;,(0) on the invariant diagram defined by Figure 1.1. Realizable

solutions (unsteady, steady, or periodic) must be produced for any combination of the

physical property groups of A, U, and Pe: -1 <A< 1; 0<U < o0; 0 <Pe <. The
development of Co(Ily, IlI) in CHAPTER 6 is the primary accomplishment of this

research.

5.2 Closure Models

Hand'’s Closure
Hand (1962) studied the microstructure and rheology of rigid-rod suspensions
near the isotropic state (see Figure 1.1) and assumed that Eq.(5.1) could be approximated

as
<BBBB>H3N1=31(<BB>)’ (5.8)
Which is Eq.(5.7) with C; = 0. As demonstrated in CHAPTER 7 (Pe = 0), this yields

unrealizable orientation dyads for finite values of U and, thereby does not provide a basis

for understanding the self-alignment phenomenon of rigid-rod suspensions.

Doi’s Closure (Decoupling Approximation)
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Doi (1981) studied the microstructure and rheology of rigid rod suspensions near
the nematic state (see Figure 1.1) and assumed that Eq.(5.1) could be approximated as
<PPPP>Doi =<PP><pPPp>. 5.9
Unfortunately, this closure does not satisfy the six-fold symmetry and six-fold
contraction properties of the orientation tetrad. Although Eq.(5.9) has been widely used
by many researches for more than fifty years, it misrepresents the fundamental symmetry
characteristics of the orientation tetrad and, thereby, the symmetry characteristics of the
orientation density function for rigid suspensions of ellipsoidal particles. This unphysical
property occurs for all realizable orientation states, including the nematic-like states near

Point A of Figure 1.1. Eq.(5.9) is not a good approximation for <p pp p >, comments to

the contrary in the current literature notwithstanding (Doi and Edwards, 1986; Chaubal,

1997; Larson, 1999).

Tucker’s Hybrid Closure

Tucker (see Tucker, 1988) used the following hybrid closure for <pppp> to

study the flow-induced alignment of rigid rod suspensions:

<g;_)gg>-rucke,=27(det<gg>)31(<gg>) (5.10)
+[1—27(det<22>)]<22><1_)g> .

For isotropic states, A = Apy = Ap3 = 1/3; therefore, 27(det <p p >)=1 and Eq.(5.10)

asymptotically approaches Hand’s closure for orientation states near the isotropic state
(see Point E, Figure 1.1). For the nematic state, 7~pl = kpz =0 and 7\1,3 = 1; therefore,

27(det<pp>)=0 and Eq.(5.10) asymptotically approaches Doi’s closure. For the
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reason cited above, the hybrid closure also misrepresents the fundamental symmetry
characteristics of the orientation density function and, thereby, does not provide an

appropriate closure for the moment equation governing the behavior of <pp >.

Hinch and Leal’s Closure

Hinch and Leal (1976) developed the following closure for <pppp>:<pp>,

which appears in the moment equation for <p p > (see Eq.(4.1)):

<pPPPP>HL:< BB>=c1£+c2<Bg>+c3<22>-<gg> 5.11)

+Cy4 <EB>'<EB>-<EE>

where

€1 5—%+%u[<22>-<22>]—%tr[<22>-<22>-<BB>]

czsz—lu‘[<pp>-<pp>]
5 5 LE=T RS

Note that the above result is symmetric and that tr[< PPPP><PP >] =<pp><pp>,

as required by Eq.(4.1). The foregoing closure stems from the idea that for Pe = 0 and
U — 0 (‘weak’ nematic strength), the microstructure asymptotically approached the
isotropic state. And, for Pe = 0 and U — o (‘strong’ nematic strength), the
microstructure asymptotically approaches the nematic state. Unfortunately, as shown in

CHAPTER 7, the Hinch and Leal closure yields unrealizable predictions for Pe = 0 and
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finite values of U and, thereby, does not provide a physically acceptable closure for

Eq.(4.1) (see APPENDIX D).

Fully Symmetric Quadratic (FSQ-) and Orthotropic Closure

Petty and Bénard together with their students (see Imhoff, 2000; Imhoff et al.,
2000; Kim et al., 2001, 2002, 2003, 2004, 2005; Kini 2003; Kini et al., 2003, 2004;
Mandal et al., 2003, 2004; Nguyen, 2001; Nguyen et al., 2001a, 2001b; Parks et al., 1999;

Parks and Petty, 1999a, 1990b; Petty et al., 1999) have used Eq.(5.7) as a closure for the
orientation tetrad by assuming that C, is a universal constant. However, realizability at
the nematic state (Point A or Figure 1.1) and at the planar isotropic state (Point C or

Figure 1.1) requires C, = 1/3 and C5 = 1/2, respectively (see CHAPTER 6). Clearly, Cy
must depend or the local orientation state characterized by II, and III,. Therefore, as

demonstrated in CHAPTER 7, Eq.(5.7) with C, = constant may yield unrealizable

predictions for Pe = 0 and U < o and, thereby, does not provide a physically acceptable
closure for Eq.(4.1).

Cintra and Tucker (1995) also developed a closure for <pppp > that satisfies

all six-fold symmetry and six-fold contraction properties of the exact orientation tetrad.
They related their closure coefficients to the local properties of the microstructure by
“fitting” model predictions with results based on a direct numerical simulation of the
S-equation for homogeneous shear flows and for homogeneous extensional flows. The

general realizability of the resulting orthotropic closure has not been determined.
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5.3 Discussion

Hand’s closure satisfies six-fold symmetry and six-fold contraction properties, but
it is not realizable for finite values of U. Doi’s (decoupling) closure predicts realizable
solutions to Eq.(4.1) (see APPENDIX D), but does not satisfy six-fold symmetry and six-
fold contraction properties. Fully symmetric quadratic (FSQ) closure and the orthotropic

closure satisfy six-fold symmetry, and six-fold contraction. In CHAPTER 6, the FSQ-

closure coefficient C; is related to the local microstructure so that <pp> is also

realizable for all rigid rod suspensions subject to simple homogeneous shear.



CHAPTER 6

REALIZABLE CLOSURE

6.1 Introduction

In this chapter, a realizable closure model for the orientation dyad < pp > is

identified for the relaxation of anisotropic microstructures in the absence of an external

field (i.e,, Pe = 0). A closure for the orientation tetrad < pppp >, defined by Eq.(5.7),

will be completed by developing an equation for C»(IIy, III,) based on the condition that

all initial orientation states on the boundary of the realizable region (see Figure 1.1) must
remain either on the boundary or be attracted by states within the realizable region.

Clearly, this condition requires

n. 8 <0. (6.1)

dt all boundaries of Figure 1.1

In the above inequality, the vector n is an outward pointing unit vector perpendicular to
the local tangent of the realizable boundary. The components of the vector F are the
invariants of the structure tensor:

dio dil
F= bEu'*'

b
e 6.2a
1t e (6.2a)

dt

The vectors efj and e are orthogonal unit vectors on the two-dimensional invariant
plane (ie., e;;-¢;; =0). For Pe = 0, Frp = 1, and <pppp > defined by Eq.(5.7), it

follows directly from Eq.(4.1) that (see Appendix D):
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dl, 7 3 54

=201 +2U| ——II; +=1II}, — =10, 2C 6.2b
it b [35 b+ o e =32l 2] (6.2b)
di, 7 1 54

=3[0, +3U] —II + —1I2 - 2=, 1,C, | . 6.2¢
dt b [35 bFIg b T35 00 "] (6.2¢)

Eqgs.(6.2b) and (6.2c) govern the relaxation of all orientation states. The objective of this

chapter is to relate the second-order closure coefficient C; to the local invariants II}, and
11Ty, by using Ineq.(6.1).

6.2 Realizable Isotropic, Planar Isotropic, and Nematic States

The excluded volume term in Eq.(4.1) is zero at the isotropic, the planar isotropic,

and the nematic states. This can be seen by evaluating <pppp ><pp > at these three

states.

An eigenvector representation for the orientation dyad < pp > is

3 3 3
<pp>M) =2 Anx;OX;()=2 > <pipj > (V)g; g; (6.3)

i=l ]:] J:l

Eq.(6.3) is a representation of < pp > using the fixed mutually orthogonal base vectors

€1, €2, and e3. The instantaneous orientation vector p can be expressed as

3 3
P=2Pi()e; = X P (Ox (1), (6.4)
i=1 k=1
which implies that
3 3
pp =ZZ pi(t)pj(t)e;e; = ZZpk(t)pz(t)xk(t)x,(t) (6.5)
i=1 j=1 k=l1¢=1

Therefore, the average of Eq.(6.5) shows that
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B OF, (1) > = 0, ifk=¢ 6.6)
PREIPLE ==, ifk=¢ '
Note that <p >=0 implies that <p, >=0 and <py >=0. Also,
r<pp>=) <piPi >=) <Pk P¢ >= D Ax =1 6.7)
i k k

Eqgs.(6.3) and (6.5) can be used to represent the components of < pppp ><pp >

in terms of the eigenvectors of < pp > with the result that

<PPPP><PP> =<PPPP<Pp>> =

< (X2 BB xixj) (XD PrPe Xk X ): (X rpm XmEm ) >

(6.8)

Eq.(6.8) holds for all orientation states (see Figure 1.1).

Isotropic States

For an  isotropic state, <pp>=
AT +A5 +A5 = % . Thus, Eq.(6.8) reduces to

[kpppp><pp>]l oo

1 o
=§ZZZ< Pi PjPm Pm > X7 %]

mi j

1 . oo =
3 22 <Pi B Pm Pm) > 27 x5 (6.9)
i j m

1 -
=§ZZ< Pi Bj > 2§
ij

<pp> =—1.
~7  lisotropic

W | =
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Eq.(6.9) implies that the excluded volume effect in Eq.(4.1) is zero at the isotropic state.

This conclusion holds for the FSQ-closure for any value of C3(0, 0). Thus, the isotropic

state is a fixed point (i.e., steady state) of Eq.(4.1) for Pe =0 and U > 0.

Nematic States
For a nematic state, <pp>=x3x3 and A] =A% =0,A3 =1 (see Figure 1.1).

Thus, Eq.(6.9) reduces to

- (6.10)
=<PPP3P3 >
=Y <iBjBibs > 2010
ij
At the nematic state,
—— o~ 1, ifi=j=3

<PiPjP3P3 > = {0 otherwise} 6.11)
Therefore,
kppppcpps]| o =x355. 6.12)

which shows that the excluded volume effect in Eq.(4.1) is zero at the nematic state:

[<BP_>-<BE>—<BEBB>:<22>]I =(x3x3)-(x3x3)-(x3x3)=0.  (6.13)

nematic

This conclusion holds for the FSQ-closure provided C3(2/9, 2/3) = 1/3. Unlike the

isotropic state, the nematic state is not a fixed point (i.e., steady state) of Eq.(4.1)

inasmuch as the Brownian motion term is non-zero:
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D +x5%9) (6.14)

Planar Isotropic States

1

For a planar isotropic state, <pp >=—(x3x3 +x3X3) and A] =0, =13 =

(see Figure 1.1). Thus, Eq.(6.9) reduces to

k PPPP ><PP >]|p1m isotropic

1 e
=EZZZ< Bi PiPm Pm > X%

mi j

1 o s
=5 22 < Bi Bj QP Pm) > 27 %] (6.15)
i) m

1 -
=2 22 <FiPj>x{x]
1]

=—<pp> =—(x2X7 +x3x3).

N -

planar isotropic
Eq.(6.15) implies that the excluded volume effect in Eq.(4.1) is zero at the planar

isotropic state:

(6.16)

This conclusion holds for the FSQ-closure provided Cy(1/6, —1/36) = 1/2. This result

shows that the planar isotropic state is not a fixed point of Eq.(4.1) because the Brownian

motion term is not zero

[<pp>—ll]
—_—— 3:

(x9x5 +x5x3). 6.17)

planar isotropic



6.3 Realizable Prolate and Oblate States

The prolate boundary is defined by (see Figure 1.1):

I 2/3
I, =6 (—gh) ,  0<II<2/9. (6.18)

The outward pointing normal vector on the prolate boundary is given by

where
nP = - 1 (6.19b)
1 2/3
4( 6
1+—| —
9[1111,)
/
z( 6 )l 3
3\ 10
nf, =+ b/ (6.19¢)
2/3
4( 6
1+—| —
9\ Iy

Note that n,-n, =(n}’1)2 + (ni’n)2 =1. On the prolate boundary, the components of

dF/dt are defined by Eqs.(6.2b) and (6.2¢c) with IIy, and III}, related by Eq.(6.18). It is

noteworthy that Ineq.(6.1) on the prolate boundary (F-line on Figure 1.1) reduces to

&

which implies that initial orientation states on the prolate boundary remain on the prolate

=0, (6.20)
prolate boundary

boundary for all time without any additional conditions on Co(Ily, IIl}).

A similar result holds for the oblate boundary (see Figure 1.1):
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=0.
oblate boundary

&

The analog of Eq. (6.18) for the oblate boundary (see Figure 1.1) is

2/3
I, =6 Ll . <1, <0
6 36
The outward pointing normal vector on the oblate boundary is

.0 o
Bo =+0p€yp ++0mem

where

(6.21)

(6.22)

(6.23a)

(6.23b)

(6.23¢)

Note that n_ -n, = (“?1)2 + (n‘l’n)2 =1. Eq.(6.21) implies that initial orientation states

on the oblate boundary remain on the oblate boundary for all time without any additional

conditions on Cy(IIy, ).

6.4 Realizable Planar Anisotropic Boundary

The planar anisotropic boundary is defined by (see Figure 1.1):

2 1 2
My, =2I += , -— <II, <=.
b L) 36 P9

1

(6.24)



The outward pointing normal vector on the planar anisotropic boundary is given by

Dpa = ‘m]ﬁa e+ +nf1? e (6.252)
where
nf = (6.25b)
NG
N (6.25¢)
I J’S' .

Note that D, 0, =(n}’la)2 +(n}°’f;)2 =1. On the planar anisotropic boundary, the

components of dF/dt are defined by Eqgs.(6.2.b) and (6.2c) with Il and III, related by

Eq.(6.24) above. Ineq.(6.1) on the planar anisotropic boundary has two contributions

(see APPENDIX F):

2 i _ap(4Db)| (410
dt . . dt dt
planar anisotropic

_2(-2+911;) {105+ 2U[- 8 — 451}, +18C,(1+11L,) ] }

- 94545

Note that (-2 + 9 III) < 0 for -1/36 < III, < 8/36. Clearly, a necessary condition for

pa pa

<0, 0<U<w. (6.26)

Ineq.(6.26) to be satisfied for all U>0 is

8 + 45II,,

18(1+9IIy) 627)

2

Ineq.(6.27) is a significant finding and represents one of the primary results of this
research. The conclusion here is that Eq.(4.1) and the FSQ-closure (see Eq.(5.7))
produces realizable microstructures for 0 < U < o and Pe = 0. This theory will be tested

in CHAPTERS 7, 8, and 9 for a wide range of conditions.
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6.5 Discussion

In this research,

C, —_-ﬂ_ (6.28)
18(1+ 9111

for-1 <A <+1,0<U <, and 0 < Pe < o for all realizable state defined by Figure 1.1.
The analysis in this chapter shows that Eq.(6.28) is consistent with the idea that planar
anisotropic states are attracted to 3D anisotropic states (see Figure 1.1). The results of

CHAPTER 8 (Pe > 0) show that this important feature of the FSQ-closure is satisfied by

a wide class of planar anisotropic states. Figure 6.1 illustrates the behavior of Co(IIl)

for —1/36 < III, < 8/36. A major hypothesis for the theoretical results developed in

CHAPTER 7, 8, and 9 is that the FSQ-closure coefficient defined by Eq.(6.28) above
applies for all anisotropic states.

Although the Doi-closure (see Eq.(5.9)) does not satisfy all the six-fold
symmetry and six-fold contraction properties of <pppp >, Eq.(4.1) nevertheless yields
a realizable orientation dyad for Pe = 0 and <pppp> = <pp><pp>. Figure 6.2
shows that how the excluded volume (EV) terms that appear in Eqs.(6.2b) and (6.2c) vary
over the planar anisotropic boundary of Figure 6.1. Note that the EV-terms are zero for
the Doi-closure and the FSQ-closure at the planar isotropic state and the nematic state.
The Doi EV-term in Eq.(6.2b) is significantly larger than the FSQ EV-term in Eq.(6.2b).
This indicates that the Doi-closure has a higher tendency for self-alignment. This
conjecture is confirmed by the equilibrium calculations presented in CHAPTER 7

inasmuch as the Doi theory predicts biphasic phenomenon at smaller values of U.
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CHAPTER 7
MICROSTURCTURE IN THE ABSENCE OF AN EXTERNAL FIELD

7.1 Introduction

In the absence of an external field, the relaxation of <pp > is governed Eq.(4.1)
with Pe = 0:

d<pp>

1
d_t_ =FTD(_(<BB>—§D+U(<BE>'<BB>_<BB>:<BP.BB>))' 7.1)

The Frp -factor in the above equation accounts for the tube dilation phenomenon

(see Eq. (2.6)). The first term on the right-hand-side of Eq.(7.1) represents rotary
Brownian diffusion. The second term accounts for the excluded volume phenomenon.
The dimensionless group U measures the relative importance of self-alignment and rotary
Brownian motion.

Experimental studies for rigid rod suspensions, such as lyotropic liquid crystalline
polymers, show that a transition from an isotropic state to an anisotropic state occurs at
some critical concentration (Abe and Yamazaki 1989a, 1989b; Farhoudi and Rey, 1993;
Kubo and Ogino, 1979; Murthy et al.,1976; Orwoll and Vold, 1971; Robinson, 1966;
Sartirana et al., 1987; Srinivasarao and Barry, 1991). The equilibrium orientation state is

isotropic for dilute solutions (U << U_) and anisotropic for concentrated solutions
(U >> U.). U, is a critical value of the nematic coefficient that depends on the

concentration of the dispersed phase. The objective of this chapter is to determine the
effect of U on the steady state solutions of Eq. (7.1) for the FSQ-closure developed in

CHAPTER 5 and CHAPTER 6.
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7.2 Biphasic Phenomena

The asymptotic solutions of Eq.(7.1) are steady equilibrium states for all U.
Clearly, the Frp-factor does not affect the steady state solutions. In APPENDIX B and
APPENDIX D, the following equations for the second and third invariants of the

structure tensor b are derived from Eq.(7.1):

dm, 7 3 54
b _ 2F I +2FpU| — I +=1I ——1I, 2C 7.2
o1l D [35 b+l =32l 2] (7.2a)

d1II, 7 1_ o 54
=-3 my, +3F Ul —II, + —10< ——1I,I11;,CH |. 7.2b
T Frpl m[35 b+ 0b" —3c M bz] (7.2b)

The steady state solutions to Eq. (7.1) have two equal eigenvalues
(see APPENDIX D). This means that the equilibrium states in the absence of an external
field are either prolate states or oblate states (see Figure 1.1). Thus, application of

Eq.(3.6) implies that the steady state solutions to Eqs.(7.2a) and (7.2b) can be represented

in terms of the order parameter o defined by Il =§(a)2 . Since the equilibrium

solutions of Eq.(7.2a) and Eq.(7.2b) are either prolate or oblate states, Eq.(3.6) can be

represented in terms of o and III,: Iy, =%(:t a)3. The positive sign is for prolate

states and the negative sign is for oblate states (see Figure 1.1). It follows directly from

Eq. (7.2a) that the order parameter is determined by the following algebraic equation:

0= 1-U(l+la—§9azc2). (7.3)
35 7 35

Eq. (7.3) has three solutions:
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a=0

1/7¢J(1/7)2-(144/35)c2(%-%). (7.4)

(712/35)C,

a=

The solution a = 0 corresponds to the isotropic state. This steady state may be stable or
unstable, depending on the value of U. If the steady state is on the prolate boundary of
Figure 1.1, then the positive sign of Eq.(7.4) applies. For oblate steady states, the

negative sign applies. Previous application of the FSQ-closure assumed that C, was

constant and independent of the microstructure (Imhoff, 2000; Imhoff et al., 2000; Kim et
al., 2001, 2002, 2003, 2004, 2005; Kini 2003; Kini et al., 2003, 2004, Mandal et al., 2003,
2004; Nguyen, 2001; Nguyen et al., 2001a, 2001b; Parks et al., 1999; Parks and Petty,

1999a, 1990b; Petty et al., 1999).
Figure 7.1 shows how U influences the steady state order parameter a for C, =
constant. For U < U, all steady states are isotropic (a = 0). For U; <U < U,, three

steady states exist: two stable and one unstable. The unstable state is on the prolate

boundary. The region U; < U <U, is called the biphasic region. Regardless of the C,
value, U; = 5 for the FSQ-closure, but the value of U; depends on C, (see Figure 7.1).
For C, < 1/2, the oblate solutions become unrealizable for large finite value of U. For
C, < 1/3, the prolate solutions become unrealizable for finite values of U. The
orientation state is always realizable if C, > 1/2, but it can not cover all possible

orientation states inasmuch as the order parameter a < 0.78 for C, < 1/2. Nevertheless,

this result provides the possibility that the FSQ-closure coefficient C, can be fitted to the
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experimental results with C, = C, (II,,III,) (see Abe and Yamazaki, 1986 for the

experimental data and CHAPTER 6 for the FSQ-closure coefficient).
Analogous to Eq. (7.4), the order parameters for the decoupling-closure and the

HL1-closure are (Chaubal et al., 1995):

a=0, 1 t 21 ’ 1 _ 3 for decoupling-closure (7.5a)
4 4 3U

a=0, -l-i11’49—-2--‘ﬂ for HL1-closure. (7.5b)
8 8 U

Figure 7.2 shows the comparison between decoupling-closure, HL1-closure, and the
FSQ-closure developed in CHAPTER 6. The phase transition from the isotropic state to
the anisotropic state appears in both closure approximations. The figure also shows the
biphasic region for the decoupling-closure, HL1-closure, and FSQ-closure. The biphasic
region has two stable states and one unstable state that can coexist for the same U. The
isotropic state is a steady state solution to Eq. (7.1) for all three closures. The
equilibrium orientation state is the anisotropic state if the initial condition on a is above
the unstable state. When the initial condition on a is below the unstable state, the
orientation state relaxes to the isotropic state. The locations of the unstable states were
determined by solving Eq.(7.1) as an initial value problem.

Although the qualitative trends of each closure are similar, the quantitative

differences are significant. The decoupling approximation predicts the existence of

prolate states for which a(U) — % as U — oo (see Figure 7.2). However, the biphasic

transition point is lower than the other models (U, = 3). The HL1-closure, however, has
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the same U, as the FSQ-closure, but the HL1-closure predicts unrealizable oblate states
for U < 0. The FSQ-closure with C, (I, ) defined by (6.12) satisfies both prolate and

oblate realizability conditions. Therefore, the decoupling approximation and the FSQ-
closure are realizable for all equilibrium steady states. Tables 7.1 and 7.2 show how U

influences the order parameter and the invariants for the equilibrium states.

7.3 Relaxation to Isotropic and Anisotropic Steady States

When U and Pe are zero and Frp = 1, Eq.(4.1) reduces to

d<g£>
dt

I-<pp> (7.6a)

W | —

Nguyen (2001) discussed various aspects of this equation. An analytical solution to

Eq.(7.6a) is

1 1
<BB>(0=_3'£+ <22>(0)—§£ exp(-t). (7.6)
Eq. (7.6a) becomes an isotropic state (<p p>=1/3) ast — . The structure tensor
corresponding to < pp > (t), defined by Eq.(7.6b), is

B()= b(0)exp(-1) (7.7

The two invariants, II, and III;, of b are

I, =tr(b-b) = II, (0)exp(-2t), and (7.8a)
I, =tr(b-b-b) = Il (0)exp(-3t). (7.8b)
Eqgs.(7.82) and (7.8b) imply that
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Table 7.1: Invariants and Order Parameter of the Equilibrium
Structure Tensor on the Prolate Line

I, 10,
0.0221 | 0.0013

0.0682 | 0.0073
0.1640 0.0271
0.2311 0.0454
0.2828 | 0.0614
0.3239 | 0.0752
0.3572 | 0.0872
0.5511 0.1670

= (312 IIb)1/2
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Table 7.2: Invariants and Order Parameter of the Equilibrium
Structure Tensor on the Oblate Line

I, I,
0.0000 | 0.0000
-0.2744 | 0.0162
-0.3200 | 0.0352
-0.3510 | 0.0509

-0.3728 | 0.0637
-0.3890 | 0.0741

o, = — (3/211,)"?




3/2
I ) (t)J (1.9)

Iy (t) =1, (0)( 11, (0)
Figure 7.3 shows that all planar anisotropic states relax to isotropic states on a time scale
of order 4t.if U = 0 and Pe = 0. If U > 0, the relaxation trajectories in the invariant
plane depend on the closure approximation and the excluded volume potential model.
When the initial state is planar isotropic (see Figure 1.1), solutions to Eqs.(7.2a) and
(7.2b) remain on the oblate line. All other initial conditions relax to the prolate boundary.

Figure 7.4 shows that transient solutions for U = 0 and U = 3. Both solutions
relax to the isotropic state. However, the transient solution for U = 3 is attracted towards
the nematic state before it reaches the isotropic steady state. When the rigid rod
suspension is concentrated, the orientation state is anisotropic state (U > U, = 5).

Tube dilation does not affect the steady state solutions. However, as illustrated by
Figures 7.5 and 7.6, tube dilation makes the orientation state relax faster to the

equilibrium state. In addition, the relaxation time increases as the orientation state is

closerto U, and it decreases for higher U (see Figures 7.5 and 7.6).

7.4 Discussion

The microstructures of rigid-rod particle suspensions predicted by the FSQ-
closure are realizable for all values of U. For U > U, the orientation structure parameter
o increases as U increases. For U — o, a — 1, which is the nematic state (see Figure

1.1). These predictions are consistent with other closure approximations and

experimental observations.

The decoupling approximation with the Maier-Saupe potential has U; = 8/3 with
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