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ABSTRACT

PREDICTION OF RHEOLOGICAL PROPERTIES OF RIGID ROD FLUIDS IN

SIMPLE HOMOGENEOUS SHEAR FLOWS BASED ON A REALIZABLE MODEL

FOR THE ORIENTATION DYAD

By

YoChan Kim

Non-spherical particles dispersed in a fluid have a tendency to align in shear

flows because of particle-fluid drag. This phenomenon is opposed by rotary diffusion.

At high concentrations and in the absence of hydrodynamic couples, self-alignment can

also occur because excluded volume forces prevent the retum-to-isotropy of anisotropic

states by rotary Brownian motion. The balance between microhydrodynamic and

diffusive (i.c., Brownian and excluded volume) torques at the microscale has a direct

impact on the rheological properties of rigid rod fluids (particulate suspensions and liquid

crystalline polymers) at the continuum scale.

Over the past sixty years, important characteristics of the microstructure

associated with the foregoing alignment phenomenon have been quantified in terms of

the low order moments Of the orientation density function governed by the rotary

Smoluchowski equation. In this research, a closed model for the second order moment

< pp > (orientation dyad) has been identified based on the condition that in the absence

ofan external field all realizable anisotropic states must relax to stable equilibrium states.

A key step in the development of the new closure is the use of an algebraic pre-closure

for the orientation tetrad < pppp > in terms of the orientation dyad < pp> that

preserves the six-fold symmetry and contraction properties of the original orientation

tetrad.



In the presence of a simple shear flow, the microstructure and the rheological

characteristics predicted for rigid-rod fluids agree with previous theoretical and

experimental results for a wide range of Péclet numbers. In addition to the Péclet number

(i.c., Pe :-:||Vg||/(6D;) ), the orientation director also depends on three other

dimensionless groups: a tumbling parameter, A; an excluded volume coefficient, U; and,

a dimensionless time t a 6 D: t. The rotary diffusion coefficient for dilute solutions, D; ,

is used to scale time. Unlike other closure models, the approach developed hereinafter

predicts that all two-dimensional and three-dirnensional realizable anisotropic states

relax to either a steady state (isotropic or anisotropic) or a periodic state, depending on

Pe, A, and U. The model predicts the existence of shear thinning and shear'thickening

phenomena, Newtonian plateau regions at low and high Péclet numbers, positive (and

negative) first normal stress differences, and negative (and positive) second normal stress

differences. For Pe = 0 , multiple equilibrium states exist for 4.72 S U S 5.00 . For

Pe > O and initial directors located in the flow-deformation plane, the predominant

feature for U < 25 is the existence of a unique nematic-like microstructure with a steady

alignment of the director that becomes completely aligned with the velocity as Fe —) 00.

For A < l and U > 25, tumbling and wagging of the director occur at low to moderate

values of the Péclet number. If the initial director has a component in the direction of the

vorticity, then director kayaking and director log-rolling may occur. The coexistence of

stable anisotropic states (or texture) predicted by the model may provide an explanation

ofwhy micro defects occur during the processing ofsome structured fluids.
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z Arbitrary vector

Other Symbols

(1 Degree of orientation order parameter, structure parameter

)2 Motion ofthe suspension with velocity

6 Jaumann derivative

An Polymer contribution shear viscosity

A110 Zero-shear rate viscosity

At Change oftime step

AUMs Maier-Saupe excluded volume potential
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The statistical theory of rigid rod suspensions provides a means for understanding

the microstructure and rheology of structured fluids (Doi and Edwards, 1978a, 1978b;

Doi, 1981). The microstructure may be either isotropic or anisotropic. Under extreme

conditions, a nematic phase may occur wherein the long axis of rod-like particles (or

molecules) align in the same direction. The tendency for some fluids to develop nematic-

like microstructures either spontaneously or under the influence of an external force field

has a significant and practical impact on the rheological, optical, and material properties

of structured fluids.

Particle suspensions and liquid crystalline polymers may be either isotropic or

anisotropic, depending on the local environment. The microstructure is often

characterized statistically by low-order moments of the orientation distribution function,

referred to hereinafter as the orientation dyad (second order tensor) and the orientation

tetrad (fourth order tensor). The orientation dyad, < pp > , is symmetric and non-

negative (i.c., realizable). The orientation vector B has unit length and is aligned with

the principal axis of an axisymmetric ellipsoidal particle, cylindrical rod, or disk-like

particle. The eigenvalues of <22 > are real and non-negative (i.c.,

0 < 1p] < )‘pZ < 11,3 < 1). The “director” of the microstructure is defined as the

eigenvector associated with the largest eigenvalue of the orientation dyad. For an



isotropic material, the director has no preferred direction inasmuch as all the eigenvalues

of <pp> are the sameOtpl = A = 11,3 =1/3).p2

Figure 1.1 illustrates the type of possible anisotropic states that can occur for

axisymmetric ellipsoidal suspensions (see Kini et al., 2003; Nguyen et al., 2001a; Parks

et al., 1998; Petty et al., 1999; Weispfennig et al., 1999). Each orientation state is

parameterized by two nontrivial invariants of the structure tensor l_) (IIb = hf; Q) and

1111, = egg-2) ). The b-operator is defined as the anisotropic component of the

orientation dyad (2=(<pp>—%l ). As noted on Figure 1.1, three-dimensional

anisotropic states for which 0 < )‘p1 = 11,2 < 11,3 < 1 have quadratic forms with prolate

surfaces (F-boundary) whereas three-dimensional anisotropic states for which

0 < hp] < lpz = 11,3 < 1 have quadratic forms with oblate surfaces (D-boundary). In

the absence of external hydrodynamic forces, all stable and unstable equilibrium states

are either on the prolate boundary or on the oblate boundary of the invariant diagram

(Doi and Edwards, 1986; Kini, 2003).

Two-dimensional planar anisotropic states are located on the B-boundary of

Figure 1.1. These states are associated with structure tensors with one eigenvalue equal

to zero and two unequal positive eigenvalues (lpl = 0, 11,2 ¢ 11,3 , 11,2 + Ap3= 1).

Two-dimensional planar isotropic states (Point C on Figure 1.1) have one zero eigenvalue

and two equal eigenvalues (lpl = 0, 11,2 = 11,3: 1/2). A fully-aligned microstructure

forms an ideal nematicphase with 11 = 0, 7&2 = 0, and 7.3 = 1 (Point A on Figure 1.1).
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Figure 1.1 Anisotropic Orientation States (Parks, 1997)



Microstructures associated with axisymmetric suspensions must fall either on the

boundaries or within the bounded region of the (Hb , 1111, )-plane identified by Figure 1.1.

Microstructures outside this domain are unphysical because at least one of the

eigenvalues of the orientation dyad is negative.

The realizability domain defined by Figure 1.1 stems directly from the algebraic

properties of real, symmetric, non-negative operators and is a fundamental characteristic

of any second-order moment of a distribution function. Appendix A shows how the

boundaries depend on the invariants of the structure tensor. This model-independent

result places an important theoretical constraint on allowable models for the orientation

dyad. A practical consequence of Figure 1.1 is that it provides a means to identify a

closure model for the orientation tetrad in terms of the orientation dyad, i.e.,

< pppp > = S(< pp >). This closure is developed in CHAPTER 5 and 6 below.

1.2 Background

The primary objective of this research is to examine the influence of the low-order

moments of the orientation distribution (microstructure) on the equilibrium and

rheological properties ofrigid-rod suspensions. Liquid crystalline polymers (LCPs), such

as poly (g-benzyl-L-glutamate) in m-cresol and hydroxypropylcellulose in water are often

represented as rigid-rod suspensions with a characteristic length L ~ 110 nm and a

characteristic diameter (1 ~ 1.16-1.75 nm (Bibe and Armstrong, 1988; Larson, 1999;

Walker and Wagner, 1994; Yousefi et al., 2003). The stiffness of LCPs stems from the

presence of aromatic rings in the backbone of the polymer or from the a-helix structure



due to hydrogen bonding (see Figure 1.2). The significant decrease in the shear viscosity

of thermotropic and lyotropic liquid crystalline polymers (LCPs) during processing

makes these materials commercially attractive. Specific end uses of LCPs exploit their

low elongation resistance to cutting, favorable thermal properties, high resistance to wear,

and high-strength, low-weight, and high-irnpact resistance (Collyer, 1992). The tensile

moduli of LCPs in the solid phase may vary between 1-100 GPa, depending on the

molecular orientation of the constituent polymers (Donald and Windle, 1992).

Applications of LCPs are numerous and range from reinforced bulletproof vest to optical

components in electrical devices (Collyer, 1992).

Liquid crystalline polymers are generally manufactured by a stepwise

polycondensation reaction in either a batch or a continuous process (Jansson, 1992). The

polymer is mixed with various additives and extruded as a filament. Over half of the

LCPs sold are reinforced with 30% — 40% glass fillers having polymeric sizing to

produce a strong interface between the fiber and the matrix material (Clarke et al., 1997).

Some LCPs are injection molded for special applications.

Equilibrium Microstructure

In the absence of an external field, a rigid rod suspension has an isotropic

microstructure (i.e., IIb= 0 and 1111, = 0) at low concentration. As the concentration

increases to a critical value, the microstructure undergoes a spontaneous transition to an

anisotropic nematic-like state. Several methods have been developed to study this

transition experimentally. For example, Robinson (1966) developed a birefiingence
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Figure 1.2 Molecular Structure of LCP (Larson, 1999)



technique to study biphasic phenomena (i.e., coexistence of isotropic states and

anisotropic states at the same concentration) for poly-y-benzyl-L-glutamate (PBLG) in

dioxane solutions. This phenomenon was observed for PBLG aspect ratios from 10 to

100 and has been reported by other investigators using other methods (see Abe and

Yamazaki, 1989b; Kubo and Ogino, 1979; Murthy et al., 1976; Sartirana et al., 1987).

Abe and Yamazaki (1989a) developed a NMR technique to correlate the relative

orientation of the (rt-helical backbone of PBLG rigid-rod molecules by exploiting a

quadrupolar splitting phenomena related to the pendant side chain containing C-D and

N-D bonds. If the PBLG solution is isotropic, the NMR spectrum has only one resonance

peak. As the concentration increases and the microstructure approaches the biphasic

region, quadrupolar splitting occurs. The split increases as the fluid becomes more

anisotropic. In the biphasic region, the central peak corresponds to an isotropic

microstructure and the split signal corresponds to a nematic-like microstructure. As the

concentration increases firrther, the isotropic peak disappears while the peak-to-peak

distance in the split increases. Figure 1.3 illustrates the observations reported by Abe and

Yamazaki for PBLG in DMF (dimethylformamide) and in 1, 4-dioxane with aspect ratios

of32,121, and 185.

Non-Equilibrium Microstructure

In a time independent external field, director tumbling of LCP solutions may

occur at low shear rates, but direct measurements using optical methods are difficult.

However, optical measurements of this phenomenon for lower molecular weight liquid

crystal (LC) suspensions have been reported extensively (Bedford and Burghardt, 1996;
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Burghardt and Fuller, 1991; Fuller, 1995; Larson, 1999). Rheological measurements on

LCP solutions and melts have been used to study director tumbling. Erickson and others

(see p. 453-456 in Larson, 1999) related this phenomenon to a phenomenological

tumbling parameter A that couples the angular motion of the rigid rod to the strain rate of

the flow field (see Eq.(10-3) p. 448 in Larson, 1999). For homogeneous shear flows and |

X | > 1, the director attains a steady alignment relative to the flow direction in the shear

(or deformation) plane (i.e., flow/cross-flow plane). On the other hand, if | 7t | < 1, the

director rotates continuously in the shear plane (see p. 454 in Larson, 1999; Carlsson,

1982; Carlsson and Skarp, 1986). Because A is related to rheological Leslie-Ericksen

coefficients, tumbling phenomenon has been studied indirectly for more than thirty years

by measuring fluid properties of the suspensions (see Cladis and Torza, 1975; Gahwiller,

1973; Pieranski and Guyon, 1974; Skarp et al., 1981).

Skarp et al. (1981) (also see Carlsson and Skarp, 1986; Clark et al., 1981)

measured the Leslie-Ericksen coefficients for 4-n-octyl-4’-cyano-biphenyl (a

thermotropic liquid crystal) over a range of temperatures (35 — 40 °C). They used an

electromagnetic field to initially align the orientation director parallel and perpendicular

to the flow direction. After removing the magnetic field, the anisotropic microstructure

relaxes and the LE-coefficients were measured. The rheological data indicated that the

magnitude of the tumbling parameter was less than unity, which implies director

tumbling according to Ericson’s theory. This approach has also been applied to infer

director tumbling in LCP solutions subjected to homogeneous shear flows with limited

success (see Burghardt and Fuller, 1990; Larson, 1988).



Rheological Properties

The rheological characteristics of LCPs are important indicators of molecular

orientation because time-dependent molecular conformation is strongly coupled with the

flow (Walker et al., 1995). Some LCPs in simple shear flows show shear viscosity with

strain rate (or stress) response curves with three distinct characteristics: 1) a shear

thinning region at low strain rates (Region I); 2) a Newtonian plateau (Region II); and, 3)

an additional shear thinning region at high strain rates (Region 111) (Walker and Wagner,

1994; Walker et al., 1995; Larson, 1999). Region 11 occurs for a wide range of strain

rates because the molecular orientation and the conformation of the rigid-rod polymer

solution are maintained. Shear thinning occurs at higher strain rates because the flow

field distorts the microstructure by flow alignment. Clearly, flow alignment enhances the

relative motion between phases (i.e. translational diffusion) with the result that the shear

viscosity decreases (i.e., shear thinning).

An anomalous shear-thinning region at low strain rates has only been observed for

LCPs. However, not all LCPs show a Region I behavior. Walker and Wagner (1994)

have shown that (1,4-phenylene-2,6-benzobisthiazole) (PBZT') has a Region I response

only at relatively high concentrations. This phenomenon has not been firlly characterized

experimentally because of inaccurate shear stress measurements at low strain rates (see

Doraiswamy and Metzner, 1986; Larson, 1999; Walker et al., 1995). In addition, no clear

theoretical explanation for this phenomenon has been identified.

Another interesting characteristic ofLCP solutions is the occurrence of a negative

first normal stress difference (N1) at intermediate strain rates (see Baek et al., 1993;

Chono et al., 1996; Kiss and Porter, 1980; Larson, 1999; Magda et al., 1991). At low

10



strain rates, N1 is positive; however, as the strain rate increases, N1 attains a maximum

value and then decreases to zero and becomes negative. At higher shear rates, the first

normal stress difference becomes positive again. This observation suggests that N1 is

sensitive to changes in the microstructure as the strain rate increases. Beck et a1. (1993)

have suggested that the transition from positive to negative values of N1 was associated

with the orientation director changing from a stable periodic tumbling state to a stable

periodic wagging state. This is consistent with the Leslie-Ericksen theory, which requires

director tumbling for negative first normal stress differences (also, see p. 449 in Larson,

1999; Burghardt and Fuller, 1990).

In addition to the negative first normal stress difference, direct oscillatory

response of the viscosity also indicates molecular tumbling phenomenon. When the rate

of shear is suddenly changed, the shear stress component of the deviatoric molecular

stress shows an oscillatory response including a reversal in the strain rate (Burghardt and

Fuller, 1991; Picken et al., 1991; Vermant et al., 1994; Walker et al., 1995). This

relaxation response has multiple overshoots and undershoots that can be imposed with

various shear rates before the steady state is reached against strain. Since this type of

response is independent of strain rate, it must be due to changes in the microstructure

rather than the flow properties. In addition, there is only one overshoot when the

microstructure relaxes to a steady flow alignment state. These experimental observations

support the hypothesis that multiple stress oscillations and director tumbling are

correlated (Burghardt and Fuller, 1991; Larson, 1999).

ll



Theoretical Studies

Liquid crystalline polymers have stiffness characteristics that are different from

other polymers. LCPs have been studied for many years. Although “industria ” LCPs

are not as rigid as “laboratory” LCPs, understanding the behavior of rigid rod suspensions

would nevertheless provide valuable information and insight related to processing LCPs.

Theoretical studies of LCP orientation phenomenon are primarily related to the

Smoluchowski’s (S-) equation. The S-equation governs the distribution of orientation

states. It is a partial differential equation that balances the accumulation of states subject

to rotary convection and rotary diffusion in orientation space (see CHAPTER 2 below).

The diffusive flow has two contributions: Brownian motion and the excluded volume

phenomenon. Brownian motion tends to mix the LCP molecules randomly whereas the

excluded volume effect tends to align the LCP molecules. The convective flux arises due

to the torque on the LCP molecules in a shear field.

There are several ways to study the S-equation. One approach is to develop a

solution using spherical harmonics (Chaubal and Leal, 1997, 1999; Larson, 1990).

Another approach is based on the method-of-moments. Developing an explicit expansion

for the density function is a complicated process and requires significant computational

resources. On the other hand, developing a solution based on low order moments of the

density function requires a closure approximation (Marrucci, 1996).

Doi (1981) developed a second order moment equation by integrating the S-

equation with Maier-Saupe potential for the excluded volume. Doi used a quadratic

closure approximation for the orientation tetrad (i.e., < p p p p > = < p p > < p p > ).

Unfortunately, these approaches do not retain the six-fold symmetry and six-fold

12



contraction properties of the fourth order moment (see CHAPTER 3 and the development

in CHAPTER 5).

Hand (1962) used a first order closure approximation for < p p p p > , which

satisfies six-fold symmetry and six-fold contraction. However, Hand’s closure is limited

to microstructures near the isotropic state (see E on Figure 1.1). Later, Hinch and Leal

(1976) introduced two closure approximations based on an anisotropic analysis of the

orientation tetrad near the isotropic and nematic states (see Figure 1.1). The HL-closures

predict phase transition from the isotropic to the nematic state, but predict unrealizable

behavior for some situations (Chaubal and Leal, 1999).

Later, Cintra and Tucker (1995) developed a new closure for the orientation tetrad

based on an orthotropic operator. The approach assumes that the symmetry directions of

the tetrad coincide with the orientation dyad. The closure coefficients of the tetrad are

obtained by fitting the moment equation with the “exact” solution based on a spherical

harmonic expansion of the orientation density function. The orthotropic closure is

applicable to simple geometries and can provide valuable bench mark information.

There are other closures that combine previous approximations (Tucker, 1988;

Larson, 1999). For example, Tucker (1988) has combined Hand’s closure approximation

at the isotropic state and the decoupling approximation at the nematic state. This

superposition of two asymptotic closures is similar to the strategy employed by Hinch

and Leak and is an example of a hybrid closure approximation. Larson (1990) used the

decoupling closure for the excluded volume potential and the HL-closure for the

convective flux in the same model. None ofthe foregoing closure approximations satisfy

the symmetry properties of the orientation tetrad and the realizable condition on the

13



second order moment. In addition, none have firlly predicted the microstructure and

rheological properties ofLCPs.

Recent research at Michigan State University has developed a representation of

the orientation tetradic in terms of the orientation dyad that satisfies the six-fold

symmetry and the six-fold contraction properties associated with < p > (see Parks

et al., 1999; Parks and Petty, 1999a, 1999b; Petty et al., 1999; Imhoff, 2000; Nguyen,

2001; Kini, 2003; Mandal, 2004). This closure is incomplete and needs an appropriate

closure coefficient C2 (11b , HIb) so that the orientation dyad is realizable for all

conditions. Previous studies assumed that C2 = 1/3 for all anisotropic states within the

invariant diagram (Figure 1.1). This condition must be true at the nematic state, but it is

not required elsewhere. However, it is noteworthy that C2 = 1/3 predicts biphasic

phenomena (Kini, 2003; Nguyen, 2001) and tumbling phenomena (Nguyen, 2001).

However, a “universal” value of C2 = 1/3 causes unrealizable behavior for some

physically allowable initial conditions. This is unacceptable and a resolution of the

problem is developed in CHAPTER 6 below. Imhoff (2000) and Mandal (2004)

identified a value for C2 by using solutions of the S-equation. Their best fitted C2

value was 0.37, but this choice of C2 is also unacceptable because it yields unrealizable

results orientation dyad for certain initial conditions.

1.3 Objective

This research addresses a long-standing fundamental problem related to the

self-alignment and flow alignment of structured fluids. The approach, which builds on

14



the statistical theory developed earlier by Doi and many others (see, esp., Doi and

Edwards, 1986; Bird et al., 1987a,b; Larson, 1999) provides new insights and

understanding of the relationship between the microstructure and the phenomenological

properties of structured fluids at the continuum scale.

The objective of the research is to develop a closure for the orientation tetrad that

yields a realizable model for the orientation dyad. The new approach is used to predict

the microstructure and the rheological response of rigid rod suspensions to simple shear

flows. By using the S-equation based on Doi’s theory (1981), an equation for the second

order moment of the orientation density fimction can be developed that depends on the

fourth order moment (i.e., the orientation tetrad). Although the method-of-moments has

been employed for more than thirty years as a mean to study the microstructure of rigid

rod suspensions, understanding the equation has been limited by the absence of a

satisfactory closure model for the orientation tetrad. This is a significant theoretical

deficiency that hinders the interpretation of rheological anomalies associated with the

response of microstructure fluids to simple shear fields. To address this issue, this

research presumes that the orientation tetrad can be approximated by using an algebraic

closure, < pppp > = 3(< pp >) . The efficacy of this hypothesis will be evaluated for a

class of microstructured fluids (i.e., rigid rod suspensions) in homogeneous shear flows.

The aim of the research is to deve10p a realizable dynamic model for the orientation dyad

for a wide class ofcomplex engineering flows.

15



1.4 Outline

The equilibrium relaxation of the orientation dyad in the absence of an external

field (CHAPTER 7) and the non-equilibrium relaxation of the orientation dyad in the

presence of an external field (CHAPTER 8) are addressed in this research. The S-

equation in orientation space (CHAPTER 2) is used to develop an ordinary differential

equation for the orientation dyad, < pp > (CHAPTER 4). The moment equation has

three physical contributions: rotary Brownian motion, excluded volume phenomenon,

and hydrodynamic interactions through particle/fluid torque. A Maier-Saupe potential is

used for the excluded volume effect and Jeffery’s model is used for the hydrodynamic

interactions (CHAPTER 2). In addition, the effect of tube dilation on the diffusive flux is

examined. Doi’s stress model is used to predict the viscosity and the normal stress

differences (CHAPTER 9).

Once the realizable closure approximation is obtained, the ordinary differential

equation is solved for the orientation dyad by using a fourth order Runge-Kutta algorithm

with a dimensionless time step less than 0.0003 (see APPENDIX G). The moment

equation has three independent dimensionless variables: U, Pe, and A. (see CHAPTER 2).

For A _<_ l, the model is used to study the microstructure and rheology of rigid rod

suspensions for a wide range of U and Pe (CHAPTER 7 and CHAPTER 8). Various

initial value problems are examined with and without homogeneous shear. In CHAPTER

3, two metrics of the microstructure are defined to evaluate the results: 1) the order

parameter a; and, the deviation of the director from the flow direction, 253 - g2 .
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CHAPTER 2

SMOLUCHOWSKI EQUATION FOR RIGID ROD SUSPENSIONS

2.1 Introduction

Smoluchowski’s equation (S-equation) governs the evolution of the orientation

density function ‘I’( p, t; Z (X, b) for a suspension of rigid rod particles (see p.50 in Doi

and Edwards, 1986). The fraction of particles with orientation vectors with angular

coordinates between (0, 4)) and (0 + A0, 4) + Ad>) is given by ‘I’(p, t; 2(3, D)sin9AOA¢.

In a frame of reference moving with the local velocity of the suspension, the S-equation

is a balance equation for orientation states and can be written as:

6‘? 6 .

(3)3 =-5E-(2‘I’). (2.1)

. 6 . . . . .

In the above equation, ‘6— rs a surface gradient operator on a sphere in orientation space

P

and the vector p is the angular velocity of the particle about its center of mass. The

vector X represents the spatial position of a material fluid element at some arbitrary

reference time; the spatial position of the materialfluid element at time t is f; = )2 (X, i).

The vector zLX, B is the motion ofthe suspension with velocity fl (3, D defined by

A

it; t) Eta—i] . (2.2)

at X

The Operator on the left-hand-side of Eq.(2.l) represents the substantial (or material)

derivative of the orientation density function:
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A

(2.3)
a:

at
   

E —T + —?

X at i at

The rotary flux of orientation states relative to a material frame of reference, p‘I’ ,

X.

can be separated into a rotary convective flux pC‘I’ and a rotary diffusive flux

lE—Ec )W;

E‘I’EEC‘I’+@-2c)‘l’- (2.4)

In this research, the rotary convective flux developed by Jeffery (1922) for ellipsoidal

particles suspended in a homogenous shear field will be used for pc‘l’ (see Section 2.2

below). Doi’s model for the rotary diffusive flux (see Section 2.3 below) will be used for

(p— pC )‘I’ . The rigid rods have the same density as the suspending fluid so gravity is

unimportant. The S-equation given by Eq.(2.1) above assumes that spatial diffusion of

the particles relative to the translational velocity is also unimportant.

2.2 Jeffery’s Model for Rotary Convection: Tumbling Coefficient

Jeffery’s model is used for the rotary convective flux (Jeffery, 1922).

Hydrodynamic drag causes the rotary motion of the suspended particles (Batchelor, 1976,

1982; Bibbo et al., 1985). A balance of angular momentum on an axisymmetric rigid rod

yields the following equation for pC (see Jeffery, 1922; Parks et al., 1999):

5p

re 5%», brawl-22H I
I
I
!
»

'2 1, (2.5)
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where 7» is a dimensionless tumbling parameter.

ll
C
l
»

and W are the rate-of-strain and

vorticity tensors, respectively:

§filtéuttflfilwuvwl; (2.6a)

i=§l€7Q-(rr)Tl=§[V/r—(vyTl. (26»

For homogeneous shear, VQ = ye), 92 where

7: (may =‘/2§:§T 423':ng =constant. (2.7)

In this research, A is only a function of the particle aspect ratio, L/d. For axisymmetric

 

particles (see Jeffery, 1922)

L

(592—1

._ 5 +1 . (2.2)

(g? +1

For large aspect ratio particles 71. i 1. For disk-like particles 7t -'—- 1. A typical tumbling

parameter for slender rod-like particles is about 0.7, which is equivalent to L/d s 2.38

(see p.280 Larson, 1999; Bretherton, 1962; Trevelyn and Mason, 1951). The rotational

period of a rigid rod can be related to the tumbling parameter (Jeffery, 1922; p.280

Larson, 1999). For )t. = i 1, a prolate spheroidal particle and a disk-like oblate particle

have infinite rotation periods (i.e., they are not rotating). Experimental evidence for

particle rotation (or tumbling) in rigid rod suspensions has been given by Larson and

many others (see p.280 Larson, 1999; Anczurowski and Mason, 1967a, 1967b; Frattini

and Fuller, 1986).
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2.3 Brownian Motion: Rotary Diffusivity

Rotary Brownian motion is an important phenomenon in particle/fluid

suspensions. This phenomenon has a direct impact on models for viscoelasticity,

diffusion, birefringence and dynamic light scattering.

The theory of rotary diffusion in concentrated suspensions is well described by

the following hypothesis (see p.294, Doi and Edwards, 1986; Parks et al., 1999):

 

as! ea ALI
'—' =—<D > —-‘I’— . 2.3

2 EC R" [6p 62(kBT)] ( )

In the above equation, AU is an excluded volume potential and < DR > represents an

average rotary diffusion coefficient. In general, < DR > depends on the phenomenon of

tube dilation (see p.360 in Doi and Edwards, 1986; Kuzuu and Doi, 1993, 1994; p.520 in

Larson, 1999), the particle aspect ratio L/d, the volume fraction of particles, and the

temperature. In this research, the influence of tube dilation on the microstructure and

rheology will be examined (see CHAPTER 8 and CHAPTER 9), but most of the

applications will assume that < DR > is given by

3ka
<DR>éD§a

1mg L3

 (29)

In the above equation, k]; and 718 represent, respectively, the Boltzmann constant and the

solvent viscosity; T is the temperature. Dfi has units of 1/(time) and represents the

rotary diffusion coefficient for dilute suspensions of rigid rods (see p.334 in Doi and

Edwards, 1986; p.281 in Larson, 1999). For semi-dilute and concentrated suspensions,

Eq.(2.9) is multiplied by a tube dilation factor Fm (< DR > = Fm D; ), which depends

2O



on the invariants of the microstructure (see Figure 1.1). In this research, FTD = 1 for

most of the applications. For the tube dilation examples (see Sections 8.5 and 9.5), Doi’s

theory for FTD is used (see p.360 in Doi and Edwards, 1986):

1Doi

11b )(1-

3 (2.10)

2

Note that Eq.(2. 10) implies that < DR > —» 00 as the microstructure approaches a nematic

state (see Point A on Figure 1.1).

2.4 Excluded Volume Phenomena: Maier-Saupe Potential

The excluded volume potential introduced by Eq.(2.6) above accounts for the

interaction of a rigid rod particle with neighboring particles. The main physical idea is

that particles cannot occupy the same space at the same time. This phenomenon has

important consequences that partly explain the self-alignment and the flow-induced

alignment of particles. Doi (1981) and others have developed models for the

instantaneous excluded volume potential by minimizing the Onsager free energy for rigid

rod suspensions (11g et al., 1999; Onsager, 1949) with the result that (see p.359, Doi and

Edwards, 1986):

A

kAI'JI‘ =-Upp:<pp>+{higherorderterms}. (2.11)
B _- -_

 

The above equation stems from an expansion of the second virial coefficient of the

Onsager nematic potential. The lead term is the so—called Maier-Saupe potential:

A

AUMS

kBT

 =-Upp:<p_p>. (2.12)
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This model is used in the Doi theory for rigid rod suspensions and is also used

hereinafter. The average of Eq.(2.12) shows that < AUMS > is proportional to the

second invariant of the orientation dyad: < AUMS > = -ngT < pp > :< pp >. With

< pp> = 1+ 2 , the average excluded volume potential can be expressed as
l

3

(AUMS >=—UkBT(%+Hb). ‘ (2.13)

Thus, at the isotropic state (i.e., Point E on Figure 1.1), < AUMS >= —-;:UkBT ; and, at

the nematic state (i.e., Point A on Figure 1.1), < AUMS > = —UkBT .

The nematic coeffiCient U is dimensionless and, as indicated above, compares the

average excluded volume potential with kBT. For rigid rod suspensions (see p.66 in

Larson, 1999), U is proportional to the concentration of particles and the excluded

volume V}; = aoL. The parameter a0 is the diameter of a tube of length L that contains a

single rigid rod. In this research, a0 is assumed to be independent of the local

microstructure (i.e., 11b and 1111,). Tube dilation affects the nematic potential (and rotary

Brownian diffusion) through the FTD-factor introduced by Eq.(2.10).
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2.5 Discussion

The S-equation with Jeffery’s model for rotary convection (see, Eq.(2.5)) and

Doi’s model for the excluded volume potential (see, Eq.(2.12)) can be written as

  

6‘1’ 6

(57); +Pe-a— K—l amt-.1221 L§ 21M=

' ‘ (2.14)

a 6 a

+FTD—- —+U‘I’—(pp<pp>

2 62 52 " '-

where t is a dimensionless time and Pe is Péclet number:

taongi, Pea 1 d“}. (2.15)
0 d6DR y

The S-equation determines how the orientation density function changes with

time over the surface of a sphere in orientation (phase) space (see Edwards and Beris,

1989). The relaxation of ‘1’ (p , t) from an initial state is controlled by four physical

factors: 1) a rotational torque due to the antisymmetric component of the velocity

gradient; 2) a rotational torque due to the symmetric component of the velocity gradient; ,

3) a rotational torque due to Brownian motion; and, 4) a rotational torque due to the

excluded volume phenomenon. A direct numerical (or analytical) analysis of Eq.(2.14)

subject to arbitrary, but realizable, an initial condition has not been done. Some limited

results have been reported for isotropic initial conditions (see Doi, 1981; Hand, 1962;

Hinch and Leal, 1976; Petty et al.,1999; Tucker, 1988), but an understanding of Eq.(2.14)

has primarily resulted from a study of the low order moments of ‘I' (_p , t). The moment

method (see CHAPTER 3) will be used in this research.
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CHAPTER 3

MOMENTS OF THE ORIENTATION DISTRIBUTION

3 .1 Introduction

In this research, a rigid rod is approximated as an axisymmetric ellipsoid. A single

orientation vector 2 defines the instantaneous orientation state of the rod in terms of the

angular variable 0 and d) (see Figure 3.1):

2:9r = sin(0)cos(¢t)ex + sin (0)sin((l>)§y + cos(0)§z. (3.1)

There is no distinction between the head and the tail ofthe rod. Therefore, the orientation

density function satisfies the symmetry condition ‘1’(p, t) = ‘1’ (-p, t). The vorticity

direction is ex; the cross-flow direction is gy; and, the flow direction is £2. The plane

that contains the flow direction and the cross-flow direction is called the shear plane (or

the deformation plane); the plane that contains the cross-flow direction and the vorticity

direction is called the cross-flow/vorticity plane; and, the plane that contains the vorticity

direction and the flow direction is called the vorticity/flow plane (see Figure 3.1).

Measuring the orientation of individual rigid rods in a suspension is not practical.

However, low-order moments of the density function ‘I’(p , t) can be measured. These

moments provide an objective means to understand the complex behavior of rigid rod

suspensions. For a suspension of axisymmetric particles, the first moment <p > is zero

because of symmetry:
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(0,4), t) sin(0)d0d4)= 0. (3.2)

Psi”
All of the odd moments are zero. The zeroth moment (i.e., integration of the density

0
:
3

function over the sphere) is unity because the total number ofparticles is a constant.

3.2 Orientation Dyad: Structure Tensor and the Order Parameter

The second moment of the orientation density function is

I
'
d

I
'
D 22] I pp ‘I’(0,4),t)sin(0)d0d4). (3.3)

0 O

The second moment < pp > is also called the orientation dyad. < p _p_ > is a symmetric,

non-negative operator, and its trace is unity because

tr(<p_p>)a<_p-p>=1. (3.4)

This dyadic-valued operator defines the microstructure of rigid rod suspensions. Figure

3 .2 illustrates an isotropic (or three-dimensional random) orientation state for which

1 . .

<pp > = 3(gxgx +§y§y +§z§z) , isotropic state.

When the rigid rod particles are randomly distributed in a two-dimensional plane (see

Figure 3.2 and Figure 1.1), then

-1 l ' tr ' tat<pp>——?:(_e_y§_y +_e_z_e_z), panarrso oprcs e.

When all ofthe rigid rods are pointing in one direction (see Figure 3.2), then

< p p > = g e nematic state.
2—2’

26



27

 

F
i
g
u
r
e
3
.
2
T
h
r
e
e
O
r
i
e
n
t
a
t
i
o
n
S
t
a
t
e
s
f
o
r
t
h
e
O
r
i
e
n
t
a
t
i
o
n
D
y
a
d

 

 
 

 
   
i
f
}
:
 

 

   
 

3
_
x
s
x
+
§
y
§
y
+
2
2
9
2
)

i
s
o
t
r
o
p
i
c

2
_
y
9
y
+
§
z
s
z
)

p
l
a
n
a
r
i
s
o
t
r
o
p
i
c

<
E
E
>
=
9
2
9
2

n
e
m
a
t
i
c



The orientation dyad can be represented as the sum of an isotropic operator and an

anisotropic operator:

"
H<pp>= +2. (3-5)

w
l
t
—
e

A scalar-valued order parameter a is often used to define the orientation state or the

prolate (and oblate) boundary of Figure 1.1. This parameter defined in terms of the

second invariant ofthe structure tensor p:

3 1/2

{311,} . (3.6)

Note that:

or = 1 at the nematic state; or = 0 at the isotropic state; and, a = —1/2 at the planar

isotropic state (see Figure 1.1).

3.3 Orientation Tetrad: Symmetry and Contraction Properties

The fourth order moment of the orientation density function is:

21! 1!

_pp =j Jpp_pp‘I’(9, o, t) sm(0)d0d4) (3.7)

o o

This statistical property is called the orientation tetrad. Previous studies have used the

following closure hypothesis for the orientation tetrad (Hand, 1962; Hinch and Leal,

1976; Doi, 1981; Tucker, 1988; Petty et al., 1999):

<pppp> 3(< pp >) (3.8)

Eq.(3.8) is also used to support this research (see CHAPTER 5). Clearly, the orientation

tetrad has six-fold symmetry. For example, with p = g = b = g = d , it follows that
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<pppp>.—-. <pbgd>

E<h§9é>2<shaé>5<éhsa> (3-9)

E<agh§> E<adsh> E <_a.12<_19>-
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Eqs.(3.9) and (3.10) are important properties that should be retained by any closure based

on Eq.(3.8) above.

3.4 Realizable Anisotropic States: Invariant Diagram

The orientation dyad is a symmetric and non-negative operator (see Parks et al., 1999).

The eigenvectors ii and the eigenvalues 7»pi of the orientation dyad < pp > are defined

by:

<pp>~xi=hpixi . (3.11)

The eigenvalues of < pp > are real and non-negative: 0 5 API 5 11,2 S 2,1,3 5 1. The

eigenvectors of < pp > are:

)‘1 r 5.1 = xxlgx +xyl§y +le§z

12 , x2 = xngx +xy2gy +x22§z (3.12)

B , $3 = xx3§x +xy3§y +xz3§z

The three invariants of < pp > are
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Ip =I'I(<BE >)=}cp1 + 1132 '1' )‘p3

_ _ 2 2 2
11p —tr(<pp>-<pp>)—).pl+1.1)2+}.p3 (3.13)

_ _ 3 3 3
IIIp --t(<pp>-<pp>)—7.pl +1132 +1133.

The orientation director is defined as the eigenvector associated with the largest

eigenvalue of < pp > (i.e., x3 ).

The structure tensor p , defined by Eq.(3.5), has three eigenvalues: bbl , hbzl, and

21,3. The invariants of p are

1b =h’fg)=lb1+7»b2+’~b3=0

11b =u(b-p)=1§2+1§2+1§3 (3.14)

mb=tr< -2-2>=Xi.+>~i2+13.3-I
I
U
‘

II

The second and third invariants of p are non-zero. Figure 1.1 uses these invariants of the

microstucture to identify all possible realizable orientation (see Parks et al., 1999; esp.,

Lumley, 1978). The orientation states within this designated region are realizable

inasmuch as the eigenvalues of < pp > are real and non-negative.

The eigenvectors of < pp > and 1:) are the same. The eigenvalues are related by

1 . _

)‘bi =lpi ~§ , 1-1,2,3. (3.15)

For uniaxial alignment states (see point A of Figure 1.1),

1 l 2

Apl = O, 1.132: 0, and 11,3 =1 (xbl = -3, Abz =—§, lb3 :3). (3.163)

For planar isotopic states (see Point C ofFigure 1.1),

A'pl = 0, 1.132: 1/2, and A133 =1/2 (hb1=-?13-, le =-;-, 71.133 =%). (3.161))
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For isotopic states (see Point E of Figure 1.1),

1p, =1/3, 1P2 = 1/3, and 1p, =1/3 (atb1 =0, 11,2 :0, 1b, =0). (3.16c)

For planar anisotopic states (see Line B of Figure 1.1),

1 1 3
AP] = 0, 71.132: 1 -1133 , and A133 Och] =—§, )‘bZ =Ap2 —§, 3,1,3 =E-hp2) (116(1)

For axisymmetric oblate states (see Line D of Figure 1.1),

_
_ 1 1

4 1 l

(1131:3—271132, M32 =7~p2 -§, 1133 =7~p2 -§)

(3.16e)

For axisymmetric oblate states (see Line D ofFigure 1.1),

1
hp]: xpz = leand )‘p3 =1-21p1 (05113153)

1
1 4

0.14.17, 1.. =3” '3’ 1.. 721.1) (3.160

The planar anisotopic boundary of Figure 1.1 follows by substituting the planar

anisotopic eigenvalues of 2 into Eq.(3.14):

11b = 2/9 + 2111b . (3.17)

The prolate boundary of Figure 1.1 follows by substituting the axisymmetric prolate

eigenvalues of p into Eq.(3.14):

2/3

111, = 6 (13151] . (3.18)

The oblate boundary of Figure 1.1 follows by substituting the axisymmetric oblate

eigenvalues of 2 into Eq.(3.14):
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2/3

11b=6[ 1611b) . (3.19)

3.5 Discussion

This research proposes to examine a longstanding moment closure problem

related to the orientation tetrad of rigid rod suspensions, such as liquid crystalline

polymer (LCP). The proposed approach is based on an analysis of the low order

moments ofthe S-equation for the orientation density function. The moment equation for

< pp > is unclosed inasmuch as it depends explicitly on < pppp >. In CHAPTER 4, the

moment equation for < pp > is presented. In CHAPTER 5 and CHAPTER 6, a

realizable closure for <pppp > based on the hypothesis expressed by Eq.(3.8) is

developed that satisfies all the symmetry and contaction properties defined by Eq.(3.9)

and Eq.(3.10).
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CHAPTER 4

EQUATIONS FOR THE MICROSTRUCTURE AND THE STRESS

4.1 Intoduction

In principle, the S-equation given by Eq.(2.14) can be solved numerically for any

initial condition, ‘I’(p, 0). The resulting solution can be used a posteriori to calculate the

low-order moments that appear explicitly in the stess equation. This approach does not

require an a priori closure model for moments. Although a direct numerical simulation

of the S-equation for relatively simple flows and initial conditions provides useful

predictions of statistical properties, this approach is not practical for complex flows or

complex initial conditions. The method-of-moments provides an alternative means to

study Eq.(2.14). Unfortunately, this approach is unclosed inasmuch as the dynamic

equation for < pp > depends explicitly on < pppp >. However, once an appropriate

closure has been identified (and validated) the moment equation for < pp > can be used

to study the relaxation of the microstucture of rigid rod suspensions from arbitrary

anisotopic states. Thus, the main objective of this research is to develop an algebraic

closure for the orientation tetad in terms ofthe orientation dyad.

4.2 Dynamic Equation for the Orientation Dyad

An equation for < pp > follows directly from Eq.(2.14) by first multiplying the

equation by pp and then integrating over the unit sphere:
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6<pp>

6t

 

>x+PellT-<22>+<22>_fl_l=

—FTD[(< pp> —%l) —U(< pp> - < pp> — < pppp>:< pp>)] (4.1)

+>~Pel§T° <22> +<22> -§-2 <2222>=§l

The terms on the lefi-hand-side of Eq.(4.1) is the Jaumann derivative of < pp > , which

represents the rate of change of < pp > relative to a tame rotating with an angular

velocity proportional to the vorticity (see Bird et al., 1987b). The first bracket on the

ri t-hand-side represents rotary diffusion due to Brownian motion and excluded volume

phenomenon. The second bracket on the right-hand-side accounts for rotary convection

due to fluid/particle drag. Clearly, Eq.(4.1) is unclosed due to the explicit appearance of

the orientation tetad < pppp >. Note that both of the bracket terms, which represents

different physical phenomena, depend on < pppp >.

4.3 Dynamic Equations for the Stucture Invariants for Pe = 0

For Pe = 0, Eq.(4.l) can be reduced to two coupled scalar equations for the

stucture tensor invariants IIb and 1111, (see Figure 1.1). The following equations for Pe

= 0 are derived in APPENDD( A and B:

 

dcllltb =—211b+2FTDU|:§-Ilb+IHb—p:<pppp>zp] (4.2)

din: =—3IHb +3FTDU[§-1Hb +-;—11b2 _2::-<pppp>(22)] (4.3)
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The stucture tensor 2 (.=.< pp > —-13-£ ) appears explicitly in Eqs.(4.2) and (4.3). Once

closed, the above coupled nonlinear autonomous (i.e., the independent variable does not

appear explicitly in the differential equation) first-order, ordinary differential equations

can be integrated from any orientation state in the realizable region defined by Figure 1.1.

If U = 0, then the equations are closed and linear and can be integrated analytically (see

Section 7.3).

4.4 Algebraic Equation for the Stess

The deviatoric component of the total stess for a rigid rod suspension consists of

three contributions:

2 = 33 +3" +35 (4.4)

where is is the solvent contribution; iv is the viscous contribution; and, :E is the

elastic contribution (Baek and Magda, 1994). is depends on the solvent viscosity ns

and the stain rate of the flow (Newtonian fluid):

S = Znsg . (45)

1
1
1
-
1
)

The microstucture of the suspension couples with the stain rate to produce an additional

viscous contribution to i :

v
(4.6)

It
c
h

ll
(
1
1
>

= ch <2222>=

The viscosity coefficient cCR is given by
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30k T

ccR =——;B—— (4.7)
6DR Fm

The viscous stess is due to the drag of the solvent on the rigid rod (see p.521 Larson,

1999)

Doi (1981) deve10ped an elastic stess based on the Onsager free energy with the

result that (see Han and Kim, 1993; Larson, 1988):

:E = 3ckBT[(<pp> —%l)—U(< pp>~<pp>-<pppp>:<pp>):l . (4.8)

The first term on the right-hand-side of Eq.(4.8) represents the stess induced by rotary

Brownian motion. The second term is the stess caused by the excluded volume

phenomenon. For homogeneous shear flows, the viscosity of the suspension is given by

A E .:.§z

n= ’ . (4.9)
1’

The first and second normal stess differences are defined as follows

Nee-3921,32,. (4.10)

812:2 '39 -§x-:-2x- (4.11)
Y

In a cone-and-plate viscometer, a positive N1 represents a force that pushes on the cone.

A negative N1 represents a force that causes the cone to push on the fluid.

4.5 Discussion

Eq.(4.l) provides the relaxation of the dyad. The solution governs depends on

three dimensionless groups: Pe, U, and A. These groups are independent and account for

different physical phenomena. A closure approximation for the orientation tetrad
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< pppp > in Eq.(4.1) is developed based on six-fold symmetry and six-fold contaction

properties (CHAPTER 5). In CHAPTER 6, Eqs.(4.2) and (4.3) are used to develop a

realizable closure for Eq.(4.1).

Doi’s elastic stess model defined by Eq.(4.8), is similar to but not as complete as

Ericksen, Leslie, and Parodi’s (ELP) stess. Doi (1981) noted that the ELP stess has a

limitation for predicting nonlinear viscoelasticity, which is important in rigid rod

suspensions (Doi, 1981). The Doi stess, even if it is not as general as the ELP stess,

separates the elastic and viscous contributions of the stess in both isotopic and nematic

phase tansition. However, Doi emphasizes that his model is incomplete because of

physical and mathematical assumptions. The influence of the microstucture (i.e.,

< pp > and < pppp >) on Eqs.(4.6) and (4.8) is the focus ofCHAPTER 9.
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CHAPTER 5

CLOSURE FOR THE ORIENTATION TETRAD

5.1 Intoduction

In this chapter, a closure stategy for the orientation tetad is intoduced based on

the hypothesis that

(5. 1)
<2222 > = 3<< 22 >>

Parks et a1. (1999) used the Cayley-Hamilton theorem of linear algebra (Frazer et al.,

1960) and developed a representation for 3(< pp >) in terms of the following six

independent tetadic Operators:

I ; l < pp >;<p>

m
—
t

1
1
1
—
:

I
T
)

<22> <21)? ; <22>-<22> .1. :

They proposed that S(< pp >) could be written as a linear combination of two tetradic

operators with six-fold symmety and six-fold contaction (see Eqs.(3.9) and (3.10)):

<pppp>=C131(<pp>)+C232(<pp>). (5.2)

In the above representation, 31(< p p >) is first-order in < pp > and 32 (< p p >) is

second-order in < pp >. The scalar coefficients C1 and C2 are functions of the

eigenvalues of < p p > or, equivalently, the eigenvalues of the stucture tensor

The closure coefficients C1 and C2 are not independent becausep=<pp>- ;.

l
e

Eq.(5.2) must satisfy the six-fold contaction conditions (see Eq.(3.10):
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tr<2222>=trlfi<<22>>l

= C1 t1‘[31(< B B >)]+C2 t[32(< E E >)]

=(C1+C2)<BB>

The above result implies that C1 + C2 = 1.

Parks, Petty, and Shao (see Parks et al., 1999) developed explicit expressions for

Sl(<pp >) and 32(<pp >) by using the following two six-fold symmetic tetadic

operators:

S[g g] =AijAkt +AikAjt +AieAjk (5-3)

and

81;), El=AijBkt + AikBjt + AilBjk + BijAkt + BikAjt + BitAjk (5-4)

In the above equations, the operators A and B are symmetric and may be 1 , < pp > ,

or <pp>~<pp>. The operators Sl(<pp>) and 32(<pp>) are definedas follows:

1 5

31(<pp>)E--3—5—S[I {HESRBP l] (5.5)

2

32(<pp>):—:-3—5<pp>:<pp>S[ll]

+S[<pp><pp>] (5.6)

10

-—< >-< >1 .
3,122 22 .1

Eqs.(5.2), (5.5), and (5.6) define a preclosure for the orientation tetad

< >2

I
'
U

I
'
d

1
'
6

1
'
6

<2 pg>=[l—Cztnb.mb)]81(<gy>>+czmb.mb)32(<gg>). (5.7)
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This representation satisfies all six-fold symmetry and six-fold contaction properties of

the exact orientation tetad. A closure for the second-order coefficient C2 (11b , 1111,) will

be identified in CHAPTER 6 based on the idea that solutions to Eq.(4.1) must be

realizable (i.e., <pp >2gg 2 0 , g arbitary) for all initial conditions <pp > (O) with

invariants IIb(0) and IIIb(0) on the invariant diagram defined by Figure 1.1. Realizable

solutions (unsteady, steady, or periodic) must be produced for any combination of the

physical property groups of 1., U, and Pe: —1 5 its 1; 0 5 U < oo; 0 5 Pe < 00. The

development of C2(IIb, 1111,) in CHAPTER 6 is the primary accomplishment of this

research.

5.2 Closure Models

Hand’s Closure

Hand (1962) studied the microstucture and rheology of rigid-rod suspensions

near the isotopic state (see Figure 1.1) and assumed that Eq.(5.1) could be approximated

as

<£EBB>Hand=3M<BB>L
(5.8)

Which is Eq.(5.7) with C2 = 0. As demonstated in CHAPTER 7 (Pe = 0), this yields

unrealizable orientation dyads for finite values ofU and, thereby does not provide a basis

for understanding the self-alignment phenomenon of rigid-rod suspensions.

Doi ’s Closure (Decoupling Approximation)
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Doi (1981) studied the microstucture and rheology of rigid rod suspensions near

the nematic state (see Figure 1.1) and assumed that Eq.(5.1) could be approximated as

<EEEB>Doi=<PP><EE>- (5.9)

Unfortunately, this closure does not satisfy the six-fold symmety and six-fold

contaction properties of the orientation tetad. Although Bq.(S.9) has been widely used

by many researches for more than fifty years, it misrepresents the fundamental symmety

characteristics of the orientation tetad and, thereby, the symmetry characteristics of the

orientation density function for rigid suspensions of ellipsoidal particles. This unphysical

property occurs for all realizable orientation states, including the nematic-like states near

Point A of Figure 1.1. Bq.(5.9) is not a good approximation for < p p p p > , comments to

the contary in the cmrent literature notwithstanding (Doi and Edwards, 1986; Chaubal,

1997; Larson, 1999).

Tucker '5' Hybrid Closure

Tucker (see Tucker, 1988) used the following hybrid closure for < p p p p > to

study the flow-induced alignment ofrigid rod suspensions:

< EBEB>Tucker= 27(det <pp >)31(<pp >)

(5.10)

+[1—27(det<pp>)]<pp><pp> .

For isotopic states, Xpl = 21,2 = 711,3 = 1/3; therefore, 27(det<pp >) =1 and Eq.(5.10)

asymptotically approaches Hand’s closure for orientation states near the isotopic state

(see Point E, Figure 1.1). For the nematic state, 21,1 = 711,2 = 0 and 21,3 = 1; therefore,

27(det<pp >) = 0 and Eq.(5.10) asymptotically approaches Doi’s closure. For the
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reason cited above, the hybrid closure also misrepresents the firndamental symmetry

characteristics of the orientation density function and, thereby, does not provide an

appropriate closure for the moment equation governing the behavior of < p p > .

Hinch andLeal ’3 Closure

Hinch and Leal (1976) developed the following closure for < p p p p > :< p p > ,

which appears in the moment equation for < p p > (see Eq.(4.1)):

<EBE£>HL3<BE>=CII+°2<22>+C3<EB>‘<EE> (511)

where

s——+-8—t[ pp> <pp>]-—6—t[<pp> <pp> <pp>]

15 15 -- 5 -- --

2 1
c2 =———t[<pp> <pp>]

5 5 -

c __3

3" 5

0 =2

4'5

Note that the above result is symmetric and that t[< p ppp >:< p p >] =< pp >:< p p > ,

as required by Eq.(4.1). The foregoing closure stems from the idea that for Pe = 0 and

U —) 0 (‘weak’ nematic stength), the microstucture asymptotically approached the

isotOpic state. And, for Pe = 0 and U —* oo (‘stong’ nematic stength), the

microstucture asymptotically approaches the nematic state. Unfortunately, as shown in

CHAPTER 7, the Hinch and Leal closure yields unrealizable predictions for Fe = 0 and
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finite values of U and, thereby, does not provide a physically acceptable closure for

Eq.(4.1) (see APPENDIX D).

Fully Symmetric Quadratic (FSQ-) and Orthotropic Closure

Petty and Bénard together with their students (see Imhoff, 2000; Imhoff et al.,

2000; Kim et al., 2001, 2002, 2003, 2004, 2005; Kini 2003; Kini et al., 2003, 2004;

Mandal et al., 2003, 2004; Nguyen, 2001; Nguyen et al., 2001a, 2001b; Parks et al., 1999;

Parks and Petty, 1999a, 1990b; Petty et al., 1999) have used Eq.(5.7) as a closure for the

orientation tetrad by assuming that C2 is a universal constant. However, realizability at

the nematic state (Point A or Figure 1.1) and at the planar isotopic state (Point C or

Figure 1.1) requires C2 = 1/3 and C2 = 1/2, respectively (see CHAPTER 6). Clearly, C2

must depend or the local orientation state characterized by 11b and 1111,. Therefore, as

demonstrated in CHAPTER 7, Eq.(5.7) with C2 = constant may yield unrealizable

predictions for Pe = 0 and U < co and, thereby, does not provide a physically acceptable

closure for Eq.(4.1).

Cinta and Tucker (1995) also developed a closure for < p p p p > that satisfies

all six-fold symmety and six-fold contaction properties of the exact orientation tetad.

They related their closure coefficients to the local properties of the microstucture by

“fitting” model predictions with results based on a direct numerical simulation of the

S-equation for homogeneous shear flows and for homogeneous extensional flows. The

general realizability of the resulting orthotropic closure has not been determined.
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5.3 Discussion

Hand’s closure satisfies six-fold symmetry and six-fold contaction properties, but

it is not realizable for finite values of U. Doi’s (decoupling) closure predicts realizable

solutions to Eq.(4.1) (see APPENDIX D), but does not satisfy six-fold symmety and six-

fold contaction properties. Fully symmetric quadratic (FSQ) closure and the orthotropic

closure satisfy six-fold symmety, and six-fold contaction. In CHAPTER 6, the FSQ-

closure coefficient C2 is related to the local microstucture so that < pp > is also

realizable for all rigid rod suspensions subject to simple homogeneous shear.



CHAPTER 6

REALIZABLE CLOSURE

6.1 Intoduction

In this chapter, a realizable closure model for the orientation dyad < pp > is

identified for the relaxation of anisotopic microstuctures in the absence of an external

field (i.e., Pe = 0). A closure for the orientation tetad < pppp > , defined by Eq.(5.7),

will be completed by developing an equation for C2(IIb, 1111,) based on the condition that

all initial orientation states on the boundary of the realizable region (see Figure 1.1) must

remain either on the boundary or be attracted by states within the realizable region.

Clearly, this condition requires

(1 '
1
1

p- go. (6.1)

all boundaries of Figure 1.1

D
:

H

In the above inequality, the vector _11 is an outward pointing unit vector perpendicular to

the local tangent of the realizable boundary. The components of the vector E are the

invariants ofthe stucture tensor:

 

The vectors g1 and m are orthogonal unit vectors on the two-dimensional invariant

plane (i.e., 911 “9111 =0). For Pe = 0, FTD = 1, and <pppp> defined by Eq.(5.7), it

follows directly from Eq.(4.1) that (see Appendix D):
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dIIb 7 3 54 2
——=—211 +2U —II +—III -—-II C 6.2bdt b [35 b 7 b 35 b 2] ( )

dIIIb

dt
= —31111, + 3U[ 315111, +3-an -3311bmbcz] . (6.26)

 

14 35

Eqs.(6.2b) and (6.2c) govern the relaxation of all orientation states. The objective of this

chapter is to relate the second-order closure coefficient C2 to the local invariants IIb and

III), by using Ineq.(6.1).

6.2 Realizable Isotopic, Planar Isotopic, and Nematic States

The excluded volume term in Eq.(4.1) is zero at the isotopic, the planar isotopic,

and the nematic states. This can be seen by evaluating < pppp >:< pp > at these three

states.

An eigenvector representation for the orientation dyad < p p > is

3 3 3

<pp>(t)=Z?~pi(t)zsi(t)ai(t)=ZZ<pipj >(t)§i 9,- (6.3)

Eq.(6.3) is a representation of < pp > using the fixed mutually orthogonal base vectors

g1, 92, and Q3. The instantaneous orientation vector p can be expressed as

3 3

g = 2140);, = 213101310). (6.4)

i=1 k=l

which implies that

3 3 3 3

_2 = 22p.(t)p,(t)s.9, = 225]. (0'5: (081mm). (6.5)

i=1 3:1 k=1£=1

Therefore, the average of Eq.(6.5) shows that
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~ (t)~ (0) O, ifk¢t (66)

< = .

pk p‘ 1k, ifk=t

Note that <p>=0_ implies that <pi >=0 and <pp >=0. Also,

tr<pp>=Z<pipi >=X<iik p”) >=Zrk =1 (6.7)

i k k

Eqs.(6.3) and (6.5) can be used to represent the components of < pppp >:< pp >

in terms of the eigenvectors of < pp > with the result that

<BBBB>KBE> E< 2222K B>

< (2251133 Kifij )(ZZEkF! £185! ):(Z)"pm 35me ) >

I
'
d

(6.8)

Eq.(6.8) holds for all orientation states (see Figure 1.1).

Isotropic States

For an isotopic state, < pp > =

1° + 1° + 1° - 1 Thus Eq (6 8) reduces tol 2 3 — 3 o , o o

[<2222>=<22>]L.mpic

zzz< 131 15ij 13m >33?

mij

922611311me pm)>?£?a? (6.9)

=§ZZ<I51 151' >33?

1 1

b
o
l
t
-
1

<pp> =11.

isotopic -

b
e
l
t
—
-
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Eq.(6.9) implies that the excluded volume effect in Eq.(4.1) is zero at the isotropic state.

This conclusion holds for the FSQ-closure for any value of C2(O, 0). Thus, the isotropic

state is a fixed point (i.e., steady state) of Eq.(4.1) for Fe = 0 and U 2 0.

Nematic States

For a nematic state, <pp>=x§x§ and A? :43;- =O,k‘; =1 (see Figure 1.1).

Thus, Eq.(6.9) reduces to

~ ... (6.10)

=< 22133133 >

= ZZ< 1515133153 >883).

I 1'

At the nematic state,

~ ~ ~ ~ 1, if i = . = 3

< PinP3P3 > = 0 otherwise (6.11)

Therefore,

[<BEEE >:<BE 1| - =£§§§5 (6.12)

which shows that the excluded volume effect in Eq.(4.1) is zero at the nematic state:

[<22>'<22>-<2222>=<22>]| =(z§z§)~(§§x§)—(L§z§)=g. (6.13)
nematic

This conclusion holds for the FSQ-closure provided C2(2/9, 2/3) = 1/3. Unlike the

isotropic state, the nematic state is not a fixed point (i.e., steady state) of Eq.(4.1)

inasmuch as the Brownian motion term is non-zero:
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1 2 1

[QP‘gl] =§l§£§ 73%? +L‘2’L‘2’) (6.14)

nematic

Planar Isotropic States

For a planar isotropic state, <pp >=§ngg + xgxg) and 1‘; = 0, A3 = 1‘; =%

(see Figure 1.1). Thus, Eq.(6.9) reduces to

 

[< 2222 >:< BE >]Iplanar isotropic

1 ~ ~ ~ ~

=§ZZZ< Pi Pjpm Pm >505?

m i j

1 ~ ~ ~ ~

=§ZZ< Pi 15(me pm)>§?§§’ (6'15)
1 J m

1 ~ ~ 0 o
=EZZ< pi pj >25 Zfij

1 J

_1 _1 o o o o
_§<pp> -z(lz§2+§353)'

planarisotropic

Eq.(6.15) implies that the excluded volume effect in Eq.(4.1) is zero at the planar

isotropic state:

[<22>'<22>-<2222>=<22>]|planar isotropic

(6.16)

(8353 +§§a§)-(x‘2’2s2 +x§z§)-%(§§l‘2’ +2313) =2

This conclusion holds for the FSQ-closure provided C2(1/6, —1/36) = 1/2. This result

shows that the planar isotropic state is not a fixed point of Eq.(4.1) because the Brownian

motion term is not zero

[<pp>-ll]
_... 3:

(533.3 +£33.54). (6.17)
 planar isotropic



6.3 Realizable Prolate and Oblate States

The prolate boundary is defined by (see Figure 1.1):

III 2/3

11b = 6 ('61) , o s 1111, 5 2/9. (6.18)

The outward pointing normal vector on the prolate boundary is given by

 

 

Ep =+D¥I§H ++n¥n§nl (6.193)

where

up a — 1 (6.1%)

11 2/3

4 6

1+— —

J 9(11111)

1/3

2(3)
3 III

nfn .=. + b (6.19c)

4 6 2/3

1+— _—
9 111,,

Note that 111, pp =(ni’1)2 + (n‘l’n)2 =1. On the prolate boundary, the components of

dE/dt are defined by Eqs.(6.2b) and (6.20) with 111, and HIb related by Eq.(6.18). It is

noteworthy that Ineq.(6. 1) on the prolate boundary (F-line on Figure 1.1) reduces to

1:1
which implies that initial orientation states on the prolate boundary remain on the prolate

z 0 , (6.20)

prolate boundary 

boundary for all time without any additional conditions on C2(Ilb, 1111,).

A similar result holds for the oblate boundary (see Figure 1.1):
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=0. (6.21)1:1
The analog of Eq. (6.18) for the oblate boundary (see Figure 1.1) is

 oblate boundary

 —— 5 111b s o (6.22)

-mb 2/3 1

’ 36

Hb=6(

The outward pointing normal vector on the oblate boundary is

 

E0 = +nfign + +ncfilgln (6.233)

where

o _ 1

1111 = - 2/3 (6.23b)

4 6

1+— ——

J 9( 1111:)

1/

2[__6_] 3
3 111

° — b (6.23c) 

Note that no 3110 = (n a)? + (ni’n)2 =1. Eq.(6.21) implies that initial orientation states

on the oblate boundary remain on the oblate boundary for all time without any additional

conditions on C2(Ilb, 1111,).

6.4 Realizable Planar Anisotropic Boundary

The planar anisotropic boundary is defined by (see Figure 1.1):

2 1 2

H =ZIII +—- , —— 5111 _<_—. 6.24b b 9 36 b 9 ( )
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The outward pointing normal vector on the planar anisotropic boundary is given by

npa = +n {la 911 + “11131:; 9.111 (6.25a)

where

pa 1
nII =— (6.25b)

5

r1pa = ——2— (6.25c)
III \f5—

Note that npa ~npa =(ng’la)2 +(n11’fi)2 =1. On the planar anisotropic boundary, the

components of dE/dt are defined by Eqs.(6.2b) and (6.2c) with IIb and 1111, related by

Eq.(6.24) above. Ineq.(6.1) on the planar anisotrOpic boundary has two contributions

(see APPENDD( F):

npaE - 51—:- = 1111): £1 + III d mb

(1 t . . d t d t
planar amsotropic pa

=212191111.){wsm1—s-4smb+18<22<1+H1>1><o ow... (6.26)
9453

 

   p8

 

Note that (—2 + 9 mb) 5 0 for -1/36 5 mb 5 8/36. Clearly, a necessary condition for

Ineq.(6.26) to be satisfied for all U 2 O is

84-45111},

1804191111,) '

 2 2 (6.27)

Ineq.(6.27) is a significant finding and represents one of the primary results of this

research. The conclusion here is that Eq.(4.1) and the FSQ-closure (see Eq.(5.7))

produces realizable microstructures for 0 S U < co and Pe = 0. This theory will be tested

in CHAPTERS 7, 8, and 9 for a wide range of conditions.
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6.5 Discussion

In this research,

C2 = 8 + 45111},
(628)

18(1+9IIIb)

 

for —1 S 71 5 +1, 0 _<_ U < 00, and O S Pe < 00 for all realizable state defined by Figure 1.1.

The analysis in this chapter shows that Eq.(6.28) is consistent with the idea that planar

anisotropic states are attracted to 3D anisotropic states (see Figure 1.1). The results of

CHAPTER 8 (Pe > 0) show that this important feature of the FSQ-closure is satisfied by

a wide class of planar anisotropic states. Figure 6.1 illustrates the behavior of C2(IIIb)

for —1/36 S III}, S 8/36. A major hypothesis for the theoretical results developed in

CHAPTER 7, 8, and 9 is that the FSQ-closure coefficient defined by Eq.(6.28) above

applies for all anisotropic states.

Although the Doi-closure (see Bq.(5.9)) does not satisfy all the six-fold

symmetry and six-fold contraction properties of < p2pp > , Eq.(4.1) nevertheless yields

a realizable orientation dyad for Fe = 0 and < pppp > = < pp > <pp >. Figure 6.2

shows that how the excluded volume (EV) terms that appear in Eqs.(6.2b) and (6.2c) vary

over the planar anisotropic boundary of Figure 6.1. Note that the EV-terms are zero for

the Doi-closure and the FSQ-closure at the planar isotropic state and the nematic state.

The Doi EV-term in Eq.(6.2b) is significantly larger than the FSQ EV-term in Eq.(6.2b).

This indicates that the Doi-closure has a higher tendency for self-alignment. This

conjecture is confirmed by the equilibrium calculations presented in CHAPTER 7

inasmuch as the Doi theory predicts biphasic phenomenon at smaller values ofU.
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CHAPTER 7

MICROSTURCTURE IN THE ABSENCE OF AN EXTERNAL FIELD

7.1 Introduction

In the absence of an external field, the relaxation of < pp > is governed Eq.(4.1)

with Pe = 0:

d<pp> 1
d-t— =FTD[—(<EE>-‘3‘l)+U(<pp>-<pp>—<pp>z<pppp>)). (7.1) 

The Fm -factor in the above equation accounts for the tube dilation phenomenon

(see Eq. (2.6)). The first term on the right-hand-side of Eq.(7.1) represents rotary

Brownian diffusion. The second term accounts for the excluded volume phenomenon.

The dimensionless group U measures the relative importance of self-alignment and rotary

Brownian motion.

Experimental studies for rigid rod suspensions, such as lyotropic liquid crystalline

polymers, show that a transition fi'om an isotropic state to an anisotropic state occurs at

some critical concentration (Abe and Yamazaki 1989a, 1989b; Farhoudi and Rey, 1993;

Kubo and Ogino, 1979; Murthy et al.,l976; Orwoll and Vold, 1971; Robinson, 1966;

Sartirana et al., 1987; Srinivasarao and Barry, 1991). The equilibrium orientation state is

isotropic for dilute solutions (U << Uc) and anisotropic for concentrated solutions

(U >> Uc ). Uc is a critical value of the nematic coefficient that depends on the

concentration of the dispersed phase. The objective of this chapter is to determine the

effect of U on the steady state solutions of Eq. (7.1) for the FSQ-closure developed in

CHAPTER 5 and CHAPTER 6.
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7.2 Biphasic Phenomena

The asymptotic solutions of Eq.(7.1) are steady equilibrium states for all U.

Clearly, the Fm-factor does not affect the steady state solutions. In APPENDIX B and

APPENDD( D, the following equations for the second and third invariants of the

structure tensor 2 are derived from Eq.(7. l):

 

d—HL- = -2FTDIIb + ZFTDU —7—Hb +3111}, —fiIIb2C2 :| (723)

35 7 35

dmb = -3FTDIIIb +3FmU[ 375-11111 +finb2 -%Hbmbcz]- (731’)

The steady state solutions to Eq. (7.1) have two equal eigenvalues

(see APPENDIX D). This means that the equilibrium states in the absence of an external

field are either prolate states or oblate states (see Figure 1.1). Thus, application of

Eq.(3.6) implies that the steady state solutions to Eqs.(7.2a) and (7.2b) can be represented

2
in terms of the order parameter or. defined by IIb = i— (a) . Since the equilibrium

solutions of Eq.(7.2a) and Eq.(7.2b) are either prolate or oblate states, Eq.(3.6) can be

represented in terms of a and IIIb: IIIb = g (:t (1)3 . The positive sign is for prolate

states and the negative sign is for oblate states (see Figure 1.1). It follows directly from

Eq. (7.2a) that the order parameter is determined by the following algebraic equation:

0: 1—U[l-+-l-a--3-§a2C2]. (7.3)
35 7 35

Eq. (7.3) has three solutions:
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a=0

 

l/7i‘fil/7)2-(144/35)C2(-113-—%). (7.4)

(72/35)c2

 a:

The solution or = 0 corresponds to the isotropic state. This steady state may be stable or

unstable, depending on the value of U. If the steady state is on the prolate boundary of

Figure 1.1, then the positive sign of Eq.(7.4) applies. For oblate steady states, the

negative sign applies. Previous application of the FSQ-closure assumed that C2 was

constant and independent of the microstructure (Imhoff, 2000; Imhoff et al., 2000; Kim et

al., 2001, 2002, 2003, 2004, 2005; Kini 2003; Kini et al., 2003, 2004; Mandal et al., 2003,

2004; Nguyen, 2001; Nguyen et al., 2001a, 2001b; Parks et al., 1999; Parks and Petty,

1999a, 1990b; Petty et al., 1999).

Figure 7.1 shows how U influences the steady state order parameter or for C2 =

constant. For U < U1, all steady states are isotropic (a = 0). For U1 < U < U2 , three

steady states exist: two stable and one unstable. The unstable state is on the prolate

boundary. The region U1 < U <U2 is called the biphasic region. Regardless of the C2

value, U2 = 5 for the FSQ-closure, but the value of U1 depends on C2 (see Figure 7.1).

For C2 < 1/2, the oblate solutions become unrealizable for large finite value of U. For

C2 < 1/3, the prolate solutions become unrealizable for finite values of U. The

orientation state is always realizable if C2 > 1/2, but it can not cover all possible

orientation states inasmuch as the order parameter a S 0.78 for C2 5 1/2. Nevertheless,

this result provides the possibility that the FSQ-closure coefficient C2 can be fitted to the
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experimental results with C2 = C2 (111, ,IIIb) (see Abe and Yamazaki, 1986 for the

experimental data and CHAPTER 6 for the FSQ-closure coefficient).

Analogous to Eq. (7.4), the order parameters for the decoupling-closure and the

HLl-closure are (Chaubal et al., 1995):

a = 0, -1— i311] — —§— for decoupling-closure (7.5a)

4 4 3U

11: 0, %i%‘/49—2—3—0 for HLl-closure. (7.5b)

Figure 7.2 shows the comparison between decoupling-closure, HLl-closure, and the

FSQ-closure developed in CHAPTER 6. The phase transition from the isotropic state to

the anisotropic state appears in both closure approximations. The figure also shows the

biphasic region for the decoupling-closure, HLl-closure, and FSQ-closure. The biphasic

region has two stable states and one unstable state that can coexist for the same U. The

isotropic state is a steady state solution to Eq. (7.1) for all three closures. The

equilibrium orientation state is the anisotropic state if the initial condition on or is above

the unstable state. When the initial condition on or is below the unstable state, the

orientation state relaxes to the isotropic state. The locations of the unstable states were

determined by solving Eq.(7.l) as an initial value problem.

Although the qualitative trends of each closure are similar, the quantitative

differences are significant. The decoupling approximation predicts the existence of

prolate states for which or(U) —> g as U —-> 00 (see Figure 7.2). However, the biphasic

transition point is lower than the other models (U2 = 3). The HLl—closure, however, has
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the same U2 as the FSQ-closure, but the HLl-closure predicts unrealizable oblate states

for U < 00. The FSQ-closure with C2 (1111,) defined by (6.12) satisfies both prolate and

oblate realizability conditions. Therefore, the decoupling approximation and the FSQ-

closure are realizable for all equilibrium steady states. Tables 7.1 and 7.2 show how U

influences the order parameter and the invariants for the equilibrium states.

7.3 Relaxation to Isotropic and Anisotropic Steady States

When U and Pe are zero and Fm = 1, Eq.(4.1) reduces to

Nguyen (2001) discussed various aspects of this equation. An analytical solution to

Eq.(7.6a) is

<pp>(t)=§l+(<pp>(O)—%l)exp(—t). (7.6)

Eq. (7.6a) becomes an isotropic state (< pp > = 1/3) as t —> 00. The structure tensor

corresponding to < pp > (t), defined by Eq.(7.6b), is

gm= 2(01exp(—t) (7.7)

The two invariants, IIb and 1111, of g are

111, = tr(b Q) = Kb (0) exp(—2 t) , and (7.8a)

1111, = tr(1; “22) = mb (0) exp(—3 t). (7.8b)

Eqs.(7.8a) and (7.8b) imply that
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Table 7.1: Invariants and Order Parameter of the Equilibrium

Structure Tensor on the Prolate Line

III,
 

0.0221 0.0013

 

0.0682 0.0073

 

0.1640 0.0271
 

0.231 1 0.0454
 

0.2828 0.0614
 

0.3239 0.0752
 

0.3572 0.0872
  0.5511  0.1670
  . = (3/2 IIb)1/2
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Table 7.2: Invariants and Order Parameter of the Equilibrium

Structure Tensor on the Oblate Line

IIt) IIIb

0.0000 0.0000

-0.2744 0.0162

-0.3200 0.0352

-O.3510 0.0509

-O.3728 0.0637

-0.3890 0.0741

61, = — (3011,)“2

 

 

 

 

 

 

   
 

 



3/2

L192] (79)
m, (t)=IIIb<0)[

II11(0)

Figure 7.3 shows that all planar anisotropic states relax to isotropic states on a time scale

of order 4tc if U = O and Pe = 0. If U > 0, the relaxation trajectories in the invariant

plane depend on the closure approximation and the excluded volume potential model.

When the initial state is planar isotopic (see Figure 1.1), solutions to Eqs.(7.2a) and

(7.2b) remain on the oblate line. All other initial conditions relax to the prolate boundary.

Figure 7.4 shows that transient solutions for U = 0 and U = 3. Both solutions

relax to the isotropic state. However, the tansient solution for U = 3 is attracted towards

the nematic state before it reaches the isotopic steady state. When the rigid rod

suspension is concentated, the orientation state is anisotopic state (U > U2 = 5).

Tube dilation does not affect the steady state solutions. However, as illustated by

Figures 7.5 and 7.6, tube dilation makes the orientation state relax faster to the

equilibrium state. In addition, the relaxation time increases as the orientation state is

closer to U1 , and it decreases for higher U (see Figures 7.5 and 7.6).

7.4 Discussion

The microstuctures of rigid-rod particle suspensions predicted by the FSQ-

closure are realizable for all values ofU. For U > U1, the orientation stucture parameter

or increases as U increases. For U —> 00, a -> 1, which is the nematic state (see Figure

1.1). These predictions are consistent with other closure approximations and

experimental observations.

The decoupling approximation with the Maier-Saupe potential has U1 = 8/3 with
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Figure 7.3 Relaxation ofthe Microstructure due to Rotary

Brownian Diffusion (U = 0; 1 =1/(6D0R) ).
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Fm =1

11b 0.15 .‘ . 3 _2

l ------- F1196" = (17111,) , p. 360 Doi & Edward (1986)
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III],

    

Figure 7.5 The Effect of Tube Dilation on the Relaxation ofthe

Microstructure (FSQ-model; U = 3; initial conditions:

IIb(O) = 2/9; IIIb(0) = O).
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a = 1/4. The second critical U for the decoupling approximation is U2 = 3 with or = 0

and 1/2. The HLl-closure predicts that U1 = 240/49 with a = 1/8, and U2 = 5 with or =

0 and 1/4. The FSQ-closure predicts that U1 = 4.73 with 01 = 0.167, and U2 = 5 with a

= 0 and 0.321 (see Table 7.1). de Genne (1974) estimated a value for U2 (5 4.55) from

the orientation density function. Chaubal et al. (1995) also calculated the order parameter

curve based on the density function.

The HLl- and FSQ-closures agree better with the transition point than the

decoupling approximation. However, the anisotopic tansition fits the decoupling

approximation better (i.e., the curve is much steeper in both the exact and Chaubal et al.

solutions). The HLl-closure becomes unrealizable on the oblate boundary. Using other

types of excluded volume potential model, qualitative difference with Chaubal et al. can

be modified, but U2 is much higher than other approximations (see Ilg et al., 1999).

The computational results are based on initial condition for < pp > with only

diagonal components in the planar anisotopic state. When U = 0 and Pe =0, Brownian

motion is the only driving force that makes the orientation state random. The nematic

potential coefficient U influences the anisotopic orientation state as well as the

equilibrium isotopic state. For U > U2 , all the steady states are either on the prolate or

on the oblate boundaries (see Figure 1.1). In addition, relaxation experiments provide a

means to determine the rotary diffusion coefficient DR Previous studies have estimated

DR values by fitting the first normal stess difference N1 with computational results.

Beak and Magda (1993) have reported that the DR coefficient for PBLG solutions is

about 2 s'l. With DR ~ 28‘1 , the time scale for relaxation to an equilibrium state in the
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biphasic region may be as long as 10 — 100s inasmuch as tc 5 10 to 100 (see Figure 7.6).

Figure 7.6 may be used to design an experiment to estimate the rotary diffusion

coefficient by measuring the relaxation time of rigid rod suspensions are a wide range of

concentrations inasmuch as to ~1/(6Dfi) .
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CHAPTER 8

MICROSTUCTURE INDUCED BY HOMOGENOUS SHEAR

8.1 Intoduction

The relaxation of < pp > (t) in the presence of a homogeneous shear field

(1 = constant) will be examined in this chapter by solving Eq.(4.1) for Pe > 0. The

velocity gradient for the rigid rod suspension is

Vfi=19ysz- (8.1)

~ . 1

§=§lr =§(§y92 +929y) (8.2)

W-Wl'-1 83
=—= 7’5 sygz-gzsy). (.)

The objective of the chapter is to explore the effect of the tumbling parameter )1

on the microstucture for a wide range ofU and Pe. Appendix B shows how the director

of < pp > can be calculated in terms of the components of < pp > . The motion of the

director relative to the fixed flow direction (3 = 11292) will be examined for L/d = 00

(Section 8.2), L/d =12 (Section 8.3), and 0 _<_ L/d < 00 (Section 8.4). In Section 8.5, the

influence of tube dilation on the microstucture will be discussed. The results of this

chapter are based on the FSQ-closure for < p p p p > defined by Eqs. (5.11) and (6.12).

Eq. (4.1) is integrated by using a fourth-order Runge-Kutta algorithm (see APPENDIX

G).
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8.2 Relaxation of Planar Anisotopic States for L/d = 00

For L/d = 00, A = 1 (see Eq.(2.4)). For this case, Eq. (4.1) with E = 1, Fm = l, and

VQ defined by Eq.(8.l) above predicts that all realizable orientation states (see Figure

1.1) relax to steady states for U 2 0 and Pe > 0 (see CHAPTER 7 for Fe = 0). If the initial

condition for the director (i.e., the eigenvector associated with the largest eigenvalue of

< pp > ) is in the deformation plane, then the steady state is unique.

Figure 8.1 shows the effect of U and Pe on the steady state angle between the

flow direction ( p =uzgz) and the director (cost) = x3 o_e_z ). The director angle

decreases monotonically as U increases for fixed Pe, and as Fe increases for fixed U. The

results show that hydrodynamic coupling (l-parameter) and the excluded volume

phenomenon (U-parameter) cause anisotopic steady states.

For U S 3 and Pe —> 0, Figure 8.2 indicates that the microstucture is isotopic

(i.e., IIb = 0 and BL, = 0). As Pe increases, anisotopic steady states occur. For fixed

values of Pe, the microstucture becomes more nematic-like as U increases. This occurs

because the excluded volume term in Eq.(4.1) mitigates the retum-to-isotopy due to

rotary Brownian motion. Thus, the flow-induced alignment mechanism and the

excluded-volume effect simultaneously promote nematic-like microstuctures. The

excluded volume mechanism makes the microstucture more prolate axisymmetric (see

CHAPTER 7) whereas the hydrodynamic coupling of < pp > with g tends to make the

microstucture more isotopic.
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8.3 Relaxation of Planar Anisotopic States for L/d E 12

The tumbling parameter k in Eq.(4.1) plays a significant role in the relaxation of

the microstucture. This is anticipated by Eq.(2.2), which predicts that a single rigid rod

in a steady shear flow will tumble continuously if | 71 | < 1 (see p.449 , Larson 1999). For

U = 0 and l S Pe _<_1,000, Table 8.1 compares the invariants of the stucture tensor for [M

= 00 (A. = 1) and L/d = 12 (2» = 0.987). For 7» = 1, the steady state invariants approach the

nematic state (see Figure 1.1) for large values of Pe. However, for Pe = 1,000 and

1. = 0.987, the microstucture of the suspension is less nematic (11b = 0.48, 1111, = 0.13).

For 71 = 0.987 and U > 27, Eq.(4.1) predicts director tumbling for Pe a 10. For

this case, Figures 8.3 and 8.4 show that an initial planar isotopic state (see Figure 1.1)

relaxes to a periodic state characterized by director tumbling with a frequency of

ft 5 6D°R1d15. The initial condition for < pp > (0) is planar isotopic:

2<22><01=Gy2y +2222). (8.4)

The eigenvectors of < pp > (0) are in the deformation (or shear) plane (see Figure 3.1).

The director tumbles 180' because there is no distinction between the head and the tail of

a rigid rod.

Director tumbling occurs for two reason: 1) the excluded volume phenomenon

mitigates rotary Brownian motion and, thereby, reduces the intinsic diffusive torque on

the microstucture; and, 2) the torque on the microstucture due to particle coupling with

the shear rate is weakened by a reduced tumbling parameter (i.e., A = 0.987 < 1). As a

consequence, the torque due to the antisymmetic component of the velocity gradient can
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Table 8.1 Invariants of the Equilibrium Anisotopic Tensor for

Different Tumbling Parameters

(FSQ-model; Fm = 1; U = 0)

 

 

 

 

 

 

 

 

 

      

2. 1 1. = 0.987

P6 111, 1111, 11b 111b

1 0.0412 0.0017 0.0402 0.0016

5 0.1754 0.0249 0.1686 0.0232

10 0.2588 0.0488 0.2458 0.0447

50 0.4477 0.1202 0.4062 0.1029

100 0.5099 0.1475 0.4475 0.1201

500 0.6020 0.1905 0.4785 0.1335

1000 0.6240 0.2011 0.4801 0.1342

66 0.6667 0.2222 0.4805 0.1344
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sustain the phenomenon of director tumbling (see Eq.(4.1)). The dimensionless tumbling

frequency ft aft/6D?l depends on U and P6. For U > 27, Eq.(4.1) predicts that ft

increases as Pe increases. This conclusion is consistent with previous theoretical and

experimental studies related to director tumbling (see p.280 and p. 463, Larson, 1999).

Figure 8.3 shows that the director rotates slowly when it is nearly aligned with the

flow direction and rapidly rotates as it crosses the vorticity/cross-flow plane (see Figure

3.1). The temporal response of the eigenvalue associated with the director is also shown

in Figure 8.3. It is noteworthy that 13 (t) is a minimum during the rapid tumbling phase

of the motion. The invariants of the stucture tensor for this example are shown on the

invariant diagram, Figure 8.4. Clearly, Eq.(4.1) together with the FSQ—closure yields a

realizable orientation dyad for director tumbling. Note also that the initial planar

isotopic orientation state rapidly locks onto the tumbling orbit for is 0.09/6Dfi .

For A. = 0.987 and U = 27, Eq.(4.1) predicts that director wagging will occur for

Pe = 24. This phenomenon is illustated by Figure 8.5, which shows the angle between

the fixed flow direction and the director. For this case, the wagging frequency

fw z 6D§n/11. Note that the director eigenvalue 713 is a minimum as the director wags

about the flow director. A planar isotopic initial condition is also specified for this

calculation and, as illustated by Figure 8.6, the orientation state locks onto the periodic

wagging state within 15 0.09/6Dfi. Eq.(4.1) predicts that f 5 fw/6Da —-> 00 for Pe E

30 and U a 27. As the Péclet number increases, the microstucture approaches the fully

aligned state (Point A, Figure 1.1). The coupling between the strain rate dyadic and the
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orientation dyad weakens as (11b,IIIb) —> Point A. Thus, for U = 27 and Pe > 30, the

diffusive torque balances the hydrodynamic torque to produce a steady state

microstucture. Figures 8.7 and 8.8 illustate this phenomenon for 71 = 0.987, U = 27, and

P6 = 95. A planar isotopic initial condition with the director in the shear plane was also

specified for the calculation (2 < pp > (0) = gyg + 92 gz ). The director angle relaxes
y

rapidly from its initial condition of 45' and fluctuates around the flow director.

Eventually the director attains a steady state with a small negative offset from the flow

direction. Figure 8.8 shows that the invariants of the stucture tensor are close to the

prolate axisymmetric boundary. It is noteworthy that for U = 27, P6 = 95, and 71. = 1

(rather than 0.987), the director also attains a steady state, but with a small positive offset

from the flow direction (see results on Figure 8.1).

Figure 8.9 gives a phase diagram for A = 0.987. The diagram was constucted by

integrating Eq.(4.1), F”) = 1, and the FSQ-closure from a planar isotopic initial

condition (2 < _p_p > (0) = eye + 9292 ). The asymptotic state depends on U and Pe.
Y

Three possible states were found: 1) steady states; 2) periodic tumbling states; and 3)

periodic wagging states. The boundaries shown on Figure 8.9 were determined within

(APe, AU) = (1, 1). For example, at P6 = 10, steady alignment occurs for U = 25 and

director tumbling occurs for U = 26. For U = 27, Pe = 95, and 71. = 0.987, Figures 8.10

and 8.11 show how a planar isotopic state with an initial director colinear with the

vorticity (see Figure 3.1) relaxes to its steady state. The initial condition for the

orientation dyad is 2 < pp > (0) = 9x9); + 92.3.2- The eigenvalues and eigenvectors for

this initial condition are
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XI (0) = 0, 2&1 (0) = an

xz <0>=1/2 2.2 <0)=sz (8.5)

2.3 (0)=1/2 x3 (0) =2):-

The director 53 is initially aligned with the vorticity V xu =3 = wxgx and as

indicated by Figure 8.10, remains colinear with _w_ for the entire relaxation process. The

steady state invariants of the stucture tensor are Kb (00) = 0.492 and IIIb (co) = 0.138 (see

Figure 8.11). It is noteworthy that this steady state is different from the one that deve10ps

from a planar isotopic state with an initial director in the shear plane (see Figure 8.7 and

8.8). Thus, if U = 27., Fe = 95, and A = 0.987, Eq.(4.1) predicts the existence of two

steady states:

1) 11b (00) = 0.546, 1111, (00) = 0.165 (see Figure 8.8); and,

2) 11b (00) = 0.492, Int, (00) = 0.138 (see Figure 8.10).

Figure 8.10 shows that x1 '92 = x2 -§y = 0.052 for t —+ 00. The rocking motion of the

two eigenvectors 2E1 and x2 around the director x3 (see Figure 8.10) has been termed

log-rolling (see p.450 Larson, 1999). The three eigenvalues associated with the steady

state orientation dyad < pp > (oo) are 21(00) = 0.014, 2.2 (00) = 0.083, and 13(00) =

0.903. Thus, a relaxation process with the initial director colinear with the vorticity (i.e.,

x3 (0) ~ v_v) produces a final microstucture which is less nematic than a process with the

initial director colinear with the cross flow direction (i.e., x3 (0) ~ 3x31). Figure 8.12

gives a phase diagram for k = 0.987 for a planar isotopic initial condition with the

director in colinear with the vorticity (see Figure 3.1): 2 < pp > (0) = ex ex + gzez. The
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asymptotic states depend on U and Pe. Three possible states were found: 1) log-

rolling/steady alignment; 2) periodic humbling; and, 3) periodic wagging.

Figure 8.13 shows the relaxation of an anisotopic microstucture with the initial

director located in the vorticity/flow plane. The initial condition for the orientation dyad

is

<pp>(0)=-5—e 2 +—2-§ s +-5-e 9 +i(§ 2 +§ 9,.) (8.6)

The dimensionless groups U, Pe, and 7» are the same as the relaxation process illustated

by Figures 8.8 and 8.10 (i.e., U = 27, Pe = 95, and 7t. = 0.987). The initial condition for

the eigenvalues and eigenvectors for < pp > (0) are

20(0)=1/6, 51(0)=-§y,

12(0)=2/6, s2 (0)= J5 (Ex-22) (8.7)

mow/6. s3 (0)= J5 (§x+§z).

As indicated by Figure 8.13, the director x3 relaxes to a final steady state (x3 (oo) = g2 )

by executing a complex three dimensional motion wherein the “cross-flow” component

of x3 (i.e., g3 - gy) first increases to a maximum and then decreases to a steady state

(i.e., x3 (00) - 9y = O ) by a damped oscillation through the vorticity/cross-flow plane. The

“vorticity” component of 53 (i.e., x3 ex) shows a monotonic decrease from its initial

condition (33 (0)-§x = «[2- ) to its final steady state (x3010);x < 0). This relaxation

process, which has been termed director kayaking, produces a microstucture with

invariants 11b (00) = 0.546, and Int, (00) = 0.165 (see p537, in Larson, 1999). Steady state

component of < pp > (oo) are
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< pp > (oo) = 0.031 exex — 0.001 exey — 0.001exez

— 0.0016Yex + 0.032 eyey - 0.004 eyez . (8.8)

— 0.001ezex - 0.004 ez ey — 0.937 ezez

The eigenvalues and eigenvectors associated with < pp > (00) are

2.1 (co) = 0.031, x1 (00) = 0.998 g, + 0.065 g, + 0.052 g,

9.2 (co) = 0.032, 52(00) = 0.065 9,, - 0.098 _e_y — 0.004 e2 (8.9)

23(00) = 0937, 103(00): —0.001§x — 0.004 gy + 0.997 g,

8.4 Relaxation of Planar Anisotopic States for 0 _<. L/d < 00

Figure 8.14 shows relaxation of a planar anisotopic state with

(< _p_p > (0) =§gy§y +§gz§z) for 2s. = 0.5, U = 27, Pe = 95, and Fm =1. The director

and its eigenvalue are periodic. One eigenvalue relaxes to a steady state. The other two

eigenvalues fluctuate and the director tumbles in the deformation plane with a period

it i 0.08/6D°R.

Figure 8.15 shows director tumbling for 3. = O, U = 27, FTD = 1, and Pe = 95.

The director tumbles 180' with period of it i 0.07/6Dfi. However, for this case the

invariants of the stucture tensor and the eigenvalues of < pp > relax to steady state

values with a microstucture on the prolate boundary (11b (00) = 0.551, ml, (00) = 0.167).

For this case (A = 0), asymptotic solutions to Eq.(4. 1) split into two contributions: 1) solid

body rotation; and, 2) a steady state microstucture that exactly balances the Brownian

torque and the torque due to the excluded volume potential. It is noteworthy that Ill) (00)
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and IIIb (00) are the same as shown in Table 7.1, for U = 27, Pe = 95, and A = 0 and for as

well as U = 27, Fe = 0, A =1. For A = 0, U = 0, and Fm =1, Eq.(4.1) reduces to

6< >

RE +Pe[lT-<pp>+<pp>-E]= I-< >. 8.10

at X = ‘32 ( )

.1.

3

For Pe = 95, Figure 8.16 shows the relaxation of the invariants of the stucture tensor

l
l
c
"

( < pp > — g I) to the isotopic state. The director tumbles with a period

it i 0.07/6D§ , which is the same dynamic response as A = 0, U = 27, and Pe = 95 (see

Figure 8.15). Figures 8.15 and 8.16 support the idea that the asymptotic solutions to

Eq.(4.1) for A = 0 splits into a solid body rotation and a steady state axisymmetric prolate

microstucture on the F-boundary of Figure 1.1.

For U = 27, Fe = 10, and Fm = 1, Table 8.2 shows that the dimensionless

tumbling period decreases as A decreases. Larson noted that the tumbling period tt ~ L/d.

Table 8.2 shows the relation of tt ~ (L/d)2/3 for 0 < A < 0.91, but as A —> 1, tt —-> 00.

8.5 The Effect of Tube Dilation on the Relaxation of Planar Anisotopic

States

Figure 8.17 shows the effect of tube dilation on the microstucture for A = 0.987.

The phase transition between steady alignment and tumbling for fixed Pe is the same as

Figure 8.9 (i.e., U = 26), but the tumbling and wagging regions are extended to larger

values of Fe. This occurs because the diffusive flux becomes larger inasmuch as

FTB‘ —+ 00 as 11}, -—> 3/2.
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Table 8.2 The Effect of A on the Tumbling Period

(FSQ-model; Fm = 1; U = 27; Pe = 10)
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8.6 Discussion

The microstucture of the orientation dyad, which is induced by a homogeneous shear,

has four independent variables: U; Pe; A; and, the initial state of the orientation dyad.

Figures 8.2 and 8.15 show that the nematic potential U influences the axisymmetric

orientation state (the prolate state) regardless of director tumbling. For

Pe > 0 and A = l, the microstucture is anisotopic and inside the invariant diagram. For

large values ofU and Pe, the orientation states are near the nematic state.

The tumbling parameter A influences the periodic orientation state and its period.

For A = 1, the orientation states are steady states. For A < l, periodic orientation states

occur. Table 8.2 shows that reducing A reduces the tumbling period. Eq.(4.1) has four

physical features that determine the orientation state: vorticity, Brownian motion,

nematic, and stain contributions. The vorticity contribution tends to have periodic

rotation, but the stain contibution hinders its motion. For U < 26, the nematic

contribution is not large enough to reduce the stain contibution (steady alignment). For

U > 26 with A < 1, the director tumbling occurs at low value of Pe because the vorticity

contribution becomes larger than the stain rate term. However, for large values of Pe,

the stain rate contribution regains its stength (steady alignment) (see Figure 8.9). If the

stain rate contibution is reduced by A (Figure 8.14 and 8.15), director tumbling occurs

for even larger values of Pe.

The HLl-closure approximation predicts tumbling phenomenon with A = 1.

According to Chaubal (1995), the decoupling approximation used by Doi and others can

also predict tumbling phenomenon (Chaubal and Leal, 1997, 1998; Chaubal et al. 1995)

provided the flow field is modified. The results developed in this chapter shows that

100



Doi’s theory predicts director tumbling for homogenous shear provided A < 1

(see Figure 11.3).

The log-rolling and kayaking phenomena have been predicted by other closure

models (Chaubal et a1. 1995; Faraoni et al. 1999; Larson and Ottinger 1991). FSQ-

closure also predicts director humbling, log-rolling, and kayaking. As demonstated in

this chapter, the realizable FSQ-closure also predicts log-rolling, and kayaking by the

director as well as the existence of multiple steady states for Pe > 0.
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CHAPTER 9

VISCOSITY AND NORMAL STRESS DIFFERENCES

9.1 Intoduction

For homogenous shear flow, the deviatoric stess has three nontrivial normal

components and two non trrvral shear components: ;zgxgx , ;zeygy, ;zezgz , __rzgygz

= izez gy. In this chapter, the effect of the tumbling parameter A, the excluded volume

coefficient U, and the Péclet number Pe on the viscosity, the first normal stess

difference, and the second normal stess difference will be developed by using Doi’s

theory for the stess (see Eqs.(4.8)) and the FSQ-closure for the orientation tetad (see

Eqs.(5.8) and (6.12)). The dimensional rheological properties are defined as follows:

 

viscosity

i =9 9

ne‘ iy. (90
Y

zgz — Eygy) , (9.2)

1:12 5::(§y§y_§z§z)' (93)

The objective is to access the impact of the realizable FSQ-closure on the rheological

properties of rigid rod suspensions.
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9.2 Rheological Properties: L/d = 00

Shear Viscosity

Figure 9.1 shows the effect of the excluded volume coefficient U and the Péclet

number, Pe = i/(6DR ) , on the steady state shear viscosity due to the viscous and elastic

components ofDoi’s stess for the realizable FSQ-closure (see Eq.(4.8)):

_ A . 6DR

71 713-01 Tls) 3ckBT
 =F(U,Pe) , osU<oo , OSPe<oo. (9.4)

The theory predicts the existence of a Newtonian plateau for low shear rates (i.e.,

y < 60 DR) and a shear-thinning region for high stain rates (i.e., 73> 600DR ). For large

Pe, Figure 9.1 shows that the shear viscosity becomes independent ofU for large Pe:

Pe —>oo -3/5

n—nsEF(U,Pe)——)0.18Pe (9.5)

PBLG in m-cresol solution and PBZT in methane sulfonic acid solution, which are

lyotopic LCPs, also show shear thinning phenomena at large stain rates with

n 5 —1/3 and n .2. —3/4, resp. (see, p.286 and p.510 in Larson, 1999).

For low values of Pe, the shear viscosity becomes independent of Pe

(i.e., Newtonian plateau) but still depends on U. Figure 9.1 shows that

lim F(U,Pe)=0.01+——O‘—25——.

pig—>0 1+1.17U

(9.6)

For dilute suspensions, DR is independent of concentation (i.e., DR —> D3) and

U << 1. Therefore, Eq.(9.4) and Eq.(9.6) predict that Afio at c, which is consistent with

experiments and other theoretical predictions for rigid rod suspensions and LCPs

(see p.281 in Larson, 1999).
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As the concentation increases, U becomes large and DR cc 0‘2 (see p.287 and p.

520 in Larson, 1999). Under these conditions, Eq.(9.4) indicates that Afio at c3 / U for

"concentated" suspensions. For "high" concentations of PBLG in m-cresol (i.e., > 0.5

wt% ), Mead and Larson (see p. 290 in Larson, 1999) observed that the zero-shear rate

viscosity increases with concentation as Afio 0: c3. Thus, Eq.(9.6) and the foregoing

experimental observation imply that U becomes independent of concentation for semi-

dilute and concentated suspensions. For dilute suspensions, U at c (see p.66 in Larson,

1999)

Figure 9.2 shows how the viscous and elastic contibutions to the shear viscosity

(i.e., Afi :— fi —fi 3: fiv + fig) depend on Pe for U = 0 and U = 27. For the stess model

used herein (see Eqs.(4.6) and (4.8) ), fiv and ma are defined as follows:

 

  

 

0 5‘7": " . (9-7)

V Y Ilg

and

’0 _i; _3ckBT[<pypz>—U(<pyp>-<ppz>—<pypzpp>:<pp>)] (98)

E=—.‘- '* - -

v "9"

In the above equations, cQR represents the viscous drag coefficient between the rod and

the suspending fluid per unit volume of mixture and has units of viscosity (force-

time/area). The parameter 3ckBT has units of energy per unit volume of mixture, and

c CR is related to 3 ckBT and the rotary diffusion coefficient DR as follows

3ckBT

c = . 9.9CR 60,. ( > 
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Bachelor developed Eq.(9.9) for dilute suspensions of slender rods (see p. 284 in Larson,

1999). This parameter is used to scale the viscosity coefficients: 71V =fiV/cCR and

n5 =fiE/cCR. For Pe > 50, Figure 9.2a and 9.2b show that the shear viscosity is

primarily due to the viscous stess; however, for Fe << 5, the elastic stess becomes more

important although the viscous contribution remains significant (Tlv is approximately

25% ofAn at Pe = 0.1).

For U = 0, the elastic stess is due to Brownian motion. For U > 0, the excluded

volume phenomenon mitigates rotary Brownian motion. With U = 27, Figure 9.3 shows

that the elastic stess does not contribute significantly to the viscosity because rotary

Brownian motion is balanced by counter diffusion due to the excluded volume potential.

For low values of Pe, both the viscous and the elastic components of the viscosity

are approximately independent of the stain rate (i.e., Newtonian plateau, NP); therefore,

Eqs.(9.7) and (9.8) imply that in this region

 

fi

whims—02': 441310 W

[< pypz > —U (< pyp> - < ppz> — < pypzpp>z< pp>):le at: "g“. (9.11)

For U = 0 and large Pe, Eq.(9.7), Eq.(9.8), and Figure 9.2a imply that

lim <p§p§ > at: ”gm—3’5 (9.12)

Pe—wo -

l/5
lim < pypz > at H S ||- (9.13)

Pe—No -

For U = 27 and large Pe, Eq.(9.7) and Figure 9.2b imply that

lim <p§p§ >°c|I§||’3’5, (9.14)
Pe—mo
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which is the same as Eq.(9.12). It also follows from Figure 9.2b and Eq.(9.5) that

. —/
P111133 [<pypz>—U(<pyp>-<ppz>—<pypzpp>:<pp>)]ocl|§|| 15. (9.15)

00

The effect of U and Fe on the elastic contribution of i : E22 is shown in Figure
Y

9.4. If U E 0 for dilute and semi-dilute solution, then Doi’s shear stess for the elastic

contibution can be approximated by the Brownian motion contibution of stess (see

p.308 and p.338, Doi and Edward, 1986; and, Smyth et al., 1995). Thus, with U = 0,

Eq.(9.8) implies that

“352 |U=0 = 3nkBT < Psz > (9-16)

Figure 9.4 shows that the general tend of total elastic contribution, predicted by

Doi’s shear stess depends on U and Pe. Smyth et al. (1995) used a birefringence method

to estimate the elastic contribution to the shear stess for semi-dilute solutions of xanthan

gum (L = 1440 nm and L/d 660) in fructose solvent (ns = 0.483 Pa-s). They used

Eq.(9.16) to relate the stess to the microstucture. For limited range of shear rates, their

1/3
experimental data indicated that if; at (y) . Figure 9.4 shows that these experiments

are consistent with the Doi theory with a realizable FSQ-closure provided U = 5 and 0.2

< Pe < 2 (i.e., 1.2 Dfi <7 <12Dfi). The stain rates in the Smyth/Mackay experiments

covered the range ls-1 < 7 < 203—1. Therefore a combination of Doi’s theory and the

experimental observations gives the following estimate D‘fi s 1.3 s_1. For U = 0, the

elastic stess makes a significant contibution to the total stess for Pe < 100.
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Normal Stess Differences

Figure 9.5 shows that N; is positive for 10’1 S Pe S 103 and 0 S U S 35. For large

3/5

values of Pe, Nl oc Pe . For small values of Pe, Nl oc Pe. These results are consistent

with the experimental measurements of Zirnsak et al. (see p. 295 in Larson, 1999) for

glass fibers suspended in Newtonian fluids and with experimental measurements of Kim

and Han (see p. 513 in Larson, 1999) for thermotopic polyesters, OQO (phenylsulfonyl)

10. By contast, at low Péclet numbers, Nl cc Pe2 for isotopic viscoelastic fluids

(see p. 450 in Larson, 1999).

For a fixed value of Pe, Figure 9.5 also shows that the first normal stess

difference decreases as the excluded volume coefficient U increases. This occurs because

counter diffusion due to the excluded volume effect balances rotary Brownian motion for

sufficiently large values of U (see Table 9.1). For U —> 00 at low Pe, N1 is primarily

determined by the viscous stess. This prediction is qualitatively supported by the

thermotopic polyester experiments mentioned of Kim and Han (1993) above inasmuch

as N1 increases with an increase in molecular weight. In an earlier study of PBLG

solutions (lyotopic LCP), Robinson (1965) observed that the critical concentation

corresponding to a tansition from an isotopic to a nematic state decreases with an

increase in molecular weight. Therefore, if U decreases as the molecular weight

increases, it follows that Figure 9.5 is qualitatively consistent with tends observed for

both thermotopic and lyotopic LCPs.
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Table 9.1 Viscous and Elastic Contributions to the Shear Viscosity and

the First and Second Normal Stress Differences at Selected

Values of U and Pe for L/d = no

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

    

Elastic

Property Pe U Total Viscous

. Excluded

Total Browman Vl

oume

0 0.0761 0.0374 0.0387 0.0387 0

5 15 0.0295 0.0272 0.0023 0.0180 —0.0157

n-ns 27 0.0122 0.0109 0.0013 0.0208 —0.0195

0 0.0019 0.0019 0.0000+ 0.0000+ 0

1,000 15 0.0028 0.0028 0.0000+ 0.0000+ 0.0000+

27 0.0017 0.0017 0.0000+ 0.0000+ 0.0000+

0 0.8928 0.4011 0.4972 0.4972 0

5 15 0.5027 0.3965 0.1062 0.8337 —0.7274

27 0.3619 0.3160 0.0459 0.9040 —0.8581

N1 0 28.487 27.515 0.9717 0.9717 0

1,000 15 27.675 26.840 0.8351 0.9756 —0.1405

27 27.016 26.267 0.7488 0.9780 —0.2292

0 —0.0420 0.0420 —0.0840 —0.0840 0

5 15 —0.0159 0.0159 -0.0318 0.0037 —0.0355

27 —0.0071 0.0071 —0.0142 0.0037 —0.0179

N2 0 —0.0055 0.0055 —0.0110 -0.0110 0

1,000 15 —0.0294 0.0294 —0.0588 —0.0076 —0.0512

27 —0.0394 0.0394 —0.0788 —0.0059 —0.0729     
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Unlike N1, Figure 9.6 shows thath < 0 for 10‘1 3 Fe :103 and 0 s U s 35. As

expected, the magnitude of the second normal stess difference is significantly smaller

than the first normal stess difference (|N2|S|N1|/200). The calculations support the

conclusion that INzl/IN1|—>0 for Pe—>0 and Pe—)oo . Note that for PeleO ,

|N2| SlNll/IOO for U = 35 and decreases to |N2|S|N1|/250 for U = 0. For a fixed

value of U, the second normal stess difference increases in magnitude as Pe increases,

but reaches a maximum for an intermediate value of Pe. For large values of U (i.e., U >

15), max |N2| occurs at Pe 5 200. For Pe E 10 and U > 15, |N2| decreases as U

l
l

increases; however, for Pe _ 500, |N2| increases as U increases. Coincidently, for

10 S Pe S 500 and U > 15, the shear viscosity decreases significantly as Pe increases

whereas the first and second normal stesses increase as Pe increases.

Figure 9.7 shows the contribution of normal stess differences with FTD = 1, A =

0.987, and U = 27. For Pe > 10, the viscous contribution to N1 becomes dominant,

though the elastic contribution is increasing (see Table 9.1). On the other hand, the

elastic contribution to N2 is more important than the viscous contibution. Table 9.1

shows that the elastic contibution of N2 is nearly twice as larger as the viscous

contibution
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9.3 Rheological Properties: L/d s 12

Shear Viscosity

Figure 9.8 shows the effect of the tumbling parameter A on n — n5 for U = 0. This

rigid rod contribution to the viscosity for A = 0.987 (L/d 5 12) is the same as A = l for Pe

<100. However, for Pe > 100, a Newtonian plateau occurs for A = 0.987 and the shear

thinning region continues for A = 1. Because Pe is high (see Eq. (4.1)), the diffusive flux

becomes negligible, but it still makes a relatively significant contribution because the

convective flux (hydrodynamic interaction part) is mitigated by A. For example, Table

8.1 shows that the invariants of the stucture tensor are nearly constant with A = 0.987 at

high value of Pe. Hypothetically, if the microstucture could be forced to align more for

A = 0.987, another shear thinning state may appear for larger Pe (Region 111) (see Larson,

1999 p. 509 — 511; Walker and Wagner, 1994; Walker et al., 1995).

In the tumbling region (high U and low Pe), the shear viscosity has a periodic

behavior because the microstucture does (see CHAPTER 8). Figure 9.9 shows an

example of the instantaneous viscosity for director tumbling (A = 0.987, U = 27, Pe = 10,

and Fm = 1). The dimensionless frequency of the dynamic viscosity tumbling is 0.21.

Note that it has two local maximums and one local minimum per period. The shear

viscosity shows instantaneous thickening when the director is not aligned with the flow

direction. A period of shear thinning follows when the director rotates towards the cross

flow direction (i.e., g xw ), but the flow and rigid rod resistance is not significant. The

resistance to director rotation becomes significant when the director passes through the
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cross-flow/vorticity plane, which trigger another shear thickening episode occurs (see

Figure 8.3). As the director rotates away from the cross flow direction, another shear

thinning episode occurs. It is noteworthy that this prediction agrees qualitatively with

experimental results reported by Gu and Jamieson for thermotopic liquid crystals, 8CP at

36.6 °C (see p.465 in Larson 1999; Chaubal and Leal, 1999).

The time averaged shear viscosity can be obtained by averaging the instantaneous

shear viscosity over several time periods. Figure 9.10 shows the effect of U and Fe on

the time averaged shear viscosity for A = 0.987. As U increases, the Newtonian plateau

region is extended to higher values of Pe because the tumbling region is extended for

A = 0.987 (see Figure 8.9). Shear thinning occurs in the wagging region. In the steady

alignment region (high values of Pe), the shear viscosity is independent of Pe. In

addition, shear viscosity becomes independent of U and Fe for A = 0.987 at high Pe

because the orientation state becomes nearly constant (see Table 8.1).

For some LCP experimental studies, the shear viscosity shows a shear thinning

phenomenon at low stain rates (Region I), a Newtonian plateau region at medium stain

rates (Region II), and a shear thinning region at high stain rates (Region 111) (Walker and

Wagner 1994, Walker et a1. 1995, and see Larson 1999 p. 509 — 511). Region I may be

due to layers of different orientation states (texture affect) in LCP solutions (Marrucci,

1991), Region II is due to the director tumbling phenomenon, and Region 1]] is due to the

shear aligning phenomenon (see Larson 1999, p. 509 — 511). Figure 9.10 shows that

Region II coincides with director tumbling and Region III with the director wagging

region (see Figure 8.9). Note, however, that additional Newtonia plateau occurs in the
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steady alignment region at high Pe'clet numbers (see CHAPTER 11 for further

discussion). For U = 27, Figure 9.11 shows that the elastic contribution to the shear

viscosity is relatively small for all Péclet number. Indeed, the elastic contibution to the

rigid rod suspension stess is almost negligible for Pe > 20, and the viscous contribution

becomes independent of Pe (see Table 9.2). This shows that the Newtonian plateau

region at high Pe is determined by the viscous contibution of the stess and that the local

microstucture is insensitive to further increases in Pe.

Normal Stess Differences

Figure 9.12 shows the instantaneous first normal stess difference (N1) for

director tumbling. The frequency of tumbling is approximately 6 Dfi rt/15 when U = 27,

Pe = 10, A = 0.987, and FTD = 1. When the director tumbles, N1 changes sign. N1

increases when the initial director is off-aligned from the flow direction (t s 44.3), and

decreases when the director rotates towards the cross-flow direction (compare with

Figure 8.3). N1 increases again when the director completes the rotation from the cross-

flow direction to the flow direction. In a cone-and-plate viscometer, the plate is pushed

apart when the director rotates away from flow direction because this causes an increase

in N1. On the other hand, when the director aligns with the flow direction the plates push

back on the fluid.

Figure 9.13 shows the effect of U and Pe on the time averaged first normal stess

difference for A = 0.987 and FTD = 1. When U is relatively small (steady alignment
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Table 9.2 Viscous and Elastic Contributions to the Shear Viscosity and

the First and Second Normal Stress Differences at Selected

Values of U and Fe for L/d -_'=. 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elastic

Pr0perty Pe U Total Viscous

. Excluded

Total Browman
Volume

0 0.0809 0.0560 0.0249 0.0249 0

5 15 0.0251 0.0238 0.0011 0.0126 -0.0115

11 _ TI 8 27 0.0228 0.0214 0.0014 -0.0004 0.0018

0 0.0099 0.0099 0.0000+ 0.0000+ 0

1,000 15 0.0123 0.0123 0.0000+ 0.0000+ 0.0000+

27 0.0132 0.0132 0.0000+ 0.0000+ 0.0000+

0 0.8728 0.3813 0.4915 0.4915 0

5 15 0.3586 0.2803 0.0190 0.8223 -0.8033

27 -0.0128 -0.0111 -0.0017 0.8699 -0.8716

N1 0 5.5053 4.6326 0.8727 0.8727 0

1,000 15 0.2563 1.9266 0.3297 0.8952 -0.5655

27 -0.3244 -0.2789 -0.0455 0.9046 -0.9501

0 -0.0470 0.0399 -0.0869 -0.0869 0

5 15 -0.0140 0.0102 -0.0242 -0.0245 0.0003

27 0.0003 -0.0001 0.0004 0.0196 -0.0192

N2 0 -0.0579 -0.0074 -0.0505 -0.0505 0

1,000 15 -0.0537 0.0275 -0.0813 -0.0135 -0.0678

27 0.0094 -0.0056 0.0150 0.0014 0.0136
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region), N1 is always positive. However, N1 is negative in the tumbling region and

remains negative for higher values of Pe. Figure 8.7 shows that the director angle for

high U and Pe is negative. The negative angle indicates that the director is pointing

downward so that the plate is pushed towards the local microstate. Larson (1999)

explains that N1 is positive when the director is tumbling, and becomes negative when it

is wagging. He suggests that the negative N1 in both the computational results and

experimental results supports the idea of director tumbling for LCPs. Both results also

show increase in N1 at high stain rates. Figure 9.13, however, shows that N1,avg

predicted by the Doi stess is independent of Pe at high values of Pe. However, Nl,avg

still depends on U. N1 remains negative as long as the director tumbles. A dependence

of Pe only occurs when A = 1 (see Figure 9.1). As mentioned previously, a negative N1,

which is independent of Pe, is caused by a constant orientation state.

Figure 9.14 shows the instantaneous second normal stess difference (N2) for

director tumbling. The dimensionless frequency of tumbling is 0.21 when U = 27,

Fe = 10, and FTD = l. Analogous to the instantaneous N1 analysis, the sign ofN2 can be

related to the microstucture of the rigid rod suspension. N2 decreases to negative values

when the director is close to the cross flow direction. However, when the director passes

the cross flow direction (t E 44.3), it changes to positive values. Then, N2 slowly

decreases to zero as the director approaches the flow direction (see Figure 8.3).
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Figure 9.15 shows the effect of U and Fe on the time averaged N2. When U is relatively

small (steady alignment region), N2 is always negative. For U > 27 (where the director

tumbles), N2 is always positive. At the high value of Pe, N2 becomes independent of Pe,

but depends on U. As previously noted by Beak and Magda (1993), Beak et al. (1993),

and Larson (see p.534, 1999), the results summarized by Figure 9.15 show that 1)N1 and

N2 have opposite signs; 2) N2 has a local minimum where N1 has a local maximum; and,

3) [NZ] S |N1| /20 (see Table 9.2).

9.4 Rheological Properties: 0 S L/d < 00

Figure 9.16 shows the effect of the tumbling parameter A on the shear viscosity

with Fm = 1. In this research, the tumbling parameter is related to the aspect ratio of a

rigid rod by Eq. (2.3), which shows that A —-> 1 as L/d —-> co; and, A —> —1 as L/d —+ 0. If

L/d = 1, then A = 0. The suspension viscosity 1]an — 113 2 A11an has a maximum at A =

0.100, which corresponds to L/d = 1.106. Note that the shear viscosity is not symmetic

about A = 0. As I A | —> 0, the frequency of tumbling increases, which causes the

viscosity to increase (see Table 8.2).

Figure 9.17 shows the effect of A on the first normal stess difference with

Fm = 1. There are two local positive maxima: one at A = 0.750 and N1 = 0.1084; and,

another at A = -0.965 and N1 = —0.0168. A local minimum is located at A = —0.600 and
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N1 = —0.070. N1 is negative for both positive and negative values of A. However, N1 is

positive for A = 21:1 (A = 1, N1 = 0.699; and, A = —1, N1 = 0.531). According to Larson

(1999 p. 294), N1 oc (L/d)21n(L/d) for rigid rods (A > 0). This relationship can be

approximated by power law relationship, N1 oc (L/d)7'4. Figure 9.17 shows qualitative

agreement with this theory until A s 0.7. N1 decreases with the tumbling parameter as A

—-> 1.

Figure 9.18 shows the effect of A on the second normal stess difference with

FTD = 1. Notice that there are two local minima: A = 0.700, N2 = —0.025; and,

A = —0.920, N2 = —0.007. A local maximum occurs at A = —0.500 (N2 = 0.012). N2

increases to positive values as A —* 21:1; however, N2 is negative for A = :t1 (A = 1,

N2 = —0.0127; and, A = —1, N2 = —0.5688). The sign ofN2 is always opposite NLbut the

magnitude varies with A.

9.5 Rheological Properties: Effect ofTube Dilation

Shear Viscosity

In this section, the effect of tube dilation on the rheological properties will be

examined. This phenomenon directly impacts the rotary diffusion coefficient in Eqs.(4. 1)

and (4.6). The tube dilation coefficient FTD depends on the local microstucture through

. —2

. the second invariant of the stucture tensor: F196” = (I —%Ilb) . Table 9.3 defines how
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Table 9.3 Legend for Figures 9.19 — 9.23

 

. -2

RR? = [l—g—Hb) ,Eq.(2.8)

 

legend Eq.(4.1) Eq.(4.6)

_a_ No No

 

 

-A— Yes No

+ Yes Yes
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the FTD-factor is applied in the results presented hereinafter. If no tube dilation is

considered, then this is designated as “No” in the table. If tube dilation is included, then

the affected equations are identified as “Yes.” Figure 9.19 shows the effect of tube

dilation on the time averaged shear viscosity for A = 0.987 and U = 27. With tube

dilation, the tumbling region is extended to larger values of Fe (cf. Figures 8.9 and 8.17).

Tube dilation enhances the diffusive flux in the moment equation so the director has more

freedom to rotate. Because of director tumbling, the Newtonian plateau is also extended.

When the tube dilation is included in Eq.(4.1) and Eq.(4.6), shear thickening occurs near

the tumbling and wagging transition region. Larson notes that shear thickening occurs

because the increase in interparticle spacing makes it harder for the solution to deform

(see p.273, Larson, 1999). In Figure 9.19, the shear thickening phenomenon may be

explained as an interparticle spacing effect. However, Larson also mentions that there is

no known direct relationship between tube dilation and shear thickening. Figure 9.20

shows the contibution of stess components on the time averaged shear viscosity when

Fm = E??? in Eq. (4.1) and Eq.(4.6). Shear viscosity is nearly identical with the viscous

contibution of the stess, which is consistent with A = l and A = 0.987 study without tube

dilation.

Normal Stess Differences

Figure 9.21 shows the effect of tube dilation on the time averaged of the first

normal stess difference with A = 0.987 and U = 27. Note that N] is independent of Fe
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for Pe >> 2,000. In addition, N1 with and without tube dilation have similar tends in the

tumbling, wagging, and steady alignment regions. The inclusion of tube dilation in

Eq.(4.1) causes the tumbling at high value of Pe. This influences prediction of the

minimum of N1 and its magnitude of N1. If tube dilation is included in Eq.(4.1) and

Eq.(4.6), N] has a local minimum in the wagging region. Tube dilation affects the

magnitude ofN1 at the local minimum significantly. Figure 9.22 shows the effect of tube

dilation on the time averaged second normal stess difference with A = 0.987 and U = 27.

Though N2 values are independent of large Pe value for all tube dilation cases (see Table

9.3), they have different tends related to tumbling, wagging, and steady alignment. With

the tube dilation effect, signs ofN2 values are not always opposite to N1. When BB? is

only applied to Eq.(4.1), N2 is negative for low value of Pe. In the director wagging

region, N2 changes from negative to positive. In the steady alignment region, N2 remains

positive and becomes independent of Pe. When FPSi is applied to both Eq.(4.1) and

Eq.(4.6), N2 is positive for low value of Pe and decreases to negative in the wagging

region. In the steady alignment region, N2 remains negative and becomes independent of

Pe. None ofthese results have been observed experimentally.

Figure 9.23 shows the contribution of stess on the time averaged normal stess

differences with EB? only in Eq.(4.1), A = 0.987, and U = 27. The viscous contibution
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to N1 determines the total N1, while the sum of Brownian and the excluded volume

contibution to the elastic component ofN1 are very small.

9.6 Discussion

Predictions of rheological properties, N1, N2, and A1] are coupled with the

microstucture of the orientation states. These orientation states can be categorized by a

tumbling parameter A. For A = 1, all solutions are steady state. A11 has a Newtonian

plateau and a shear thinning region, N1 is always positive, and N2 is always negative

(see Figures 9.1, 9.5, and 9.6).

For A 3 0.987, a steady alignment region at small values ofU (U < 27) is predicted.

An, N1, and N2 have similar tends as the case with A = 1, until the orientation state

becomes independent of Pe at large values of Pe. Based on previous experimental and

theoretical studies, negative N1 is caused by tumbling phenomenon, which is predicted

by this research. For A 5 0.987, N] becomes independent of Pe for large values of Pe.

The effect of tube dilation in the moment equation adds additional diffusive flux in

the orientation state, which gives an extended tumbling region. This phenomenon

broadens the Newtonian plateau region. When the tube dilation effect is included in the

moment equation and in the viscous contribution of the stess, shear thickening occurs

near the tumbling/wagging tansition region. Moreover, the magnitudes of the normal

' stess differences are increased significantly.
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In general, An and N1 are mainly determined by the viscous contibution to the

stess, while the elastic contibution, which includes rotary Brownian motion and the

excluded volume effect, is very small. The second normal stess difference, however, is

determined mame by the excluded volume contribution. These results offer useful

insights on how to modify the stess model.
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CHAPTER 10

CONCLUSIONS

In this research, the Smoluchowski equation (S-equation) for the orientation

density fimction was used to study the self-alignment and the flow-induced alignment of

semi-dilute and concentated suspensions of ellipsoidal particles. A Maier-Saupe

excluded volume potential and Jeffery’s model for rotary convection in a homogeneous

shear field were used to close the S-equation. Doi’s model for the rotary diffusion

coefficient accounts for the influence oftube dilation on highly aligned suspensions.

Low-order moments of the orientation density fimction were used to quantify the

relaxation of the microstucture from initial anisotopic states. An unclosed moment

equation for the orientation dyad < pp > was derived from the S-equation. An algebraic

closure for the orientation tetad < pppp > , which appears in the moment equation for

< pp > , was developed based on the hypothesis that all planar anisotropic states are

attacted by three dimensional anisotopic states.

The objective of this chapter is to summarize the salient conclusions of this

research. The following four complementary topics, which relate to the self-alignment

and the flow-induced alignment of rigid rod suspensions, will be addressed: 1) closure for

the orientation tetad; 2) equilibrium states; 3) non-equilibrium states; and, 4) rheology of

rigid-rod suspensions.

145



Closurefor the Orientation Tetrad

This research has developed a new algebraic closure approximation (FSQ-

closure) for the orientation tetad < pppp > in terms of the orientation dyad < pp > with

the following three characteristics:

0 the closure retains the six-fold symmetryproperties ofthe exact orientation tetad;

o the closure retains the six-fold contraction properties of the exact orientation

tetrad; and,

o the second-order FSQ-closure coefficient, defined by

 2 = 8+“ 1111, , —is 111., s—8— (10.13)
18(1+9 1111,) 36 36

mb 510322] (10.1b)

pa<pp>—%l , (10.10)

has the feature that all planar anisotopic states are attacted by three dimensional

anisotopic states (see Figure 1.1).

The FSQ-closure for < pppp > is

< E 222 > = [1 — c2(111b)]31(< £2 >)+c2(111b)32(< 22 >). (10.2)

The tetadic operators Sl(-) and 32 (-) are defined by Eqs.(5.5) and (5.6), respectively.

Eqs.(10.1a) and (10.2) are significant discoveries that will have an immediate impact on

the further development and understanding of the flow (and light scattering) properties of

suspensions, liquid crystalline polymers, and other fluids with microstucture.

Figure 10.1 compares the steady state solutions of the moment equation (see

~ Eq.(4.1)) with statistical properties calculated from solutions of the S-equation deve10ped
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by Cinta and Tucker (1994). Cinta and Tucker solved Eq.(2.14) numerically subject to

a uniform initial condition (isotopic) with A = 1, U = 0, FTD/Pe = 9C1, and t* = tPe. The

orientation dyad was calculated directly from the orientation density function. No

closure approximation was required for < pppp >. It is noteworthy that solutions to

Eq.(4.1) with the realizable FSQ-closure for < pppp > predicts qualitatively the same

steady states as the direct numerical simulation for a wide variation in the dimensionless

diffusion coefficient C1. Figure 10.1a shows a comparison of the FSQ-closure

predictions of < pp > : gzez with the results of Cinta and Tucker (1994). Figure 10.1b

compares the relaxation of the microstucture (i.e., IIb and 1111,) for the two approaches.

The results show that the FSQ-closure with C2(IIIb) defined by Eq.(6.28) provides a

qualitatively consistent prediction of the exact statistical properties. Note that for

C1 —> 0, the steady state approaches the nematic state (see Point A on Figure 1.1); and, as

C1 —-> co, the steady state approaches the isotopic state. Earlier application of the FSQ-

closure with C2(IIIb) = constant (see Parks et al., 1999; Nguyen et al., 2001; Kini et al.,

2003) predicted unrealizable behavior for small values of C1. For example, if C2 = 1/3,

unrealizable steady states occur for C1 < 0.01. Clearly, the discovery of the closure

coefficient C2(IIIb) defined by Eq.(6.28) is a major accomplishment ofthis research.
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Equilibrium States

The steady state (equilibrium) solutions to Eq.(4.1) with Pe = 0 are either

isotopic, prolate anisotopic, or oblate anisotopic. All initial planar anisotopic

microstuctures are attacted (relax) to the prolate anisotopic boundary of Figure 1.1. If

the initial state is oblate anisotopic, then the equilibrium state is oblate anisotopic.

However, if an infinitesimal disturbance produces a microstucture within the invariant

domain (see Figure 1.1) near the oblate line, the relaxed equilibrium state will be prolate

anisotopic, not oblate. Thus, oblate equilibrium states are stable to disturbance that are

oblate; however, they are unstable to arbitary realizable disturbance.

Figure 7.2 shows how the steady state order parameter or (a (3/211b)1/2) depends

on the excluded volume coefficient U. The isotopic state (or = 0) is a solution to Eq.(4. 1)

for all U, 0 S U < 00. For U < U1, or = 0 is the only steady state solution.

For U1 < U < U2, three equilibrium solutions exist: two are stable (isotopic and

prolate anisotopic) and one is unstable (prolate anisotopic). The existence of this so-

called biphasic region has been confirmed by experiments and by other theories (see

CHAPTER 1).

For U > U2 = 5, Eq.(4.1) still predicts the existence of three equilibrium states for

the same value of U: 1) a stable prolate anisotopic state; 2) an unstable isotopic state;

and, 3) a conditionally stable oblate state. For U —> co, the prolate state approaches the

nematic state (Point A on Figure 1.1) and the oblate state approaches the planar isotopic

state (Point C on Figure 1.1)
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Non-equilibrium States

The class of tansient solutions to Eq.(4.1) with the FSQ-closure is sensitive to the

tumbling parameter A and to the initial conditions for < pp > (0). For A = 1, Fe > 0, and

U > 0, all planar anisotopic states with the initial director in the flow/cross-flow plane

(see Figure 8.8) relax to three-dimensional anisotopic states. None of these states are on

the prolate boundary. Figure 8.2 shows the distribution of the steady state invariants.

The locus of steady states (111,, 1111,)SS is parameterized by U and Pe. For fixed Pe, the

steady states approach the prolate boundary as U increases. Also, for fixed U, the steady

states approach the nematic state as Pe increases. Increases in U and Pe have

qualitatively similar effect on director alignment. Thus, Figure 8.1 suggests that an

initially isotopic material could be processed to attain the same three-dimensional

anisotopic microstucture by following different paths in the plane variations in U and

Pe.

For A < 1, Pe > 0, and U > 0, the asymptotic solutions to Eq.(4.1) with the FSQ-

closure may be either steady or periodic. Periodic solutions require a relatively large

value of the excluded volume coefficient (e.g., U > 27). If the initial director is in the

flow/cross-flow plane and if U > 27, then the theory predicts director tumbling for

Fe < 20 and director wagging as Pe increases. For large Pe and U > 27, the director

relaxes to a steady state alignment relative to the flow direction. Figure 8.9 summarizes

the physical nature of the asymptotic states for different combinations ofU and Pe. This

phase diagram or microstucture map, provides the insight needed to attain (or to avoid)

specific microstuctures.

Table 8.1 summarizes an unanticipated result related to the alignment
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phenomenon for large values of Pe. Note that for A < 1, the steady state invariants

approach a highly aligned state independent of Pe; whereas, for A = 1, the steady state

invariants continue to approach the nematic state (see Point A on Figure 1.1).

Apparently, the rotational torque due to the vorticity (~ Pe) is unable to counter the stong

rotational torque due to diffusion because the complementary rotational torque due to the

stain rate (~APe) is weaker with A < 1.

For high Péclet numbers (Pe > 90) and for high excluded volume coefficients

(U > 27), the asymptotic response of the director for A < 1 depends on the initial

condition < pp > (0). For example, if the initial director is in the flow/cross-flow plane,

then the director relaxes to a steady state, which has a negative offset from the flow

direction (see Figure 8.7; A = 0.987; U = 27; Pe = 95). However, if the initial director is

in the vorticity/flow plane, director log-rolling occurs (see Figure 8.10; A = 0.987; U =

27; Pe = 95) with a positive offset from the flow direction. On the other hand, if the

initial director is in the vorticity/flow plane and the initial condition of < pp > (0) has an

off-diagonal component, then director kayaking occurs (see Figure 8.13; A = 0.987; U =

27; Pe = 95) with a negative offset from the flow direction. This type of behavior has

been reported by others based on direct simulations of the S-equation, but the

comprehensive set of results given in CHAPTER 8 has not been previously developed

using low-order moments to the S-equation primarily because a realizable theory for

< pp > was unavailable heretofore.
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Rheologz ofRigidRod Suspensions

The microstucture of a rigid rod suspension has a significant impact on the

viscous and elastic components of the deviatoric stess (see Eqs.(4.5) and (4.8)) inasmuch

as

,v .~

; °C<BEBB>-§ - (10.3)

. 1
;E at [(<pp> _gl)‘U(<EB>‘<EB>-<BBEB>3<EB>):| . (10.4)

The tumbling parameter A, which contols the behavior of < pp > and, thereby,

< pppp > , also impacts the rheology of the suspensions. For A = 1, the shear viscosity

has a Newtonian-like behavior for low Pe and a shear thinning behavior at high Pe (see

Figure 9.1). As indicated by Figure 9.2, the viscous component of the suspension

viscosity determines the shear thinning behavior at high Pe. At low Pe, the elastic and

viscous components are equally important.

Figure 9.4 shows how U and Pe influence the shear component of the elastic

stess for A = 1(see Eq.(10.4) above; and, Eq.(4.8)). It is not surprising that for Pe > 1,

the contribution of the elastic stess decreases inasmuch as the excluded volume

contribution to 152 diminishes as the director aligns with the flow. Note that the stess

. - - V

model (Eq.(4.7)) With the FSQ-closure for < pppp > (see Figure 9.4) predicts that ryz

1/3 E 1/3
at Pe for U = 0 and Pe > 10. However, for U = 5 and 0.2 < Pe < 2, ryz oc Pe also.

E
Thus, in a flow/stop experiment for which iyz can be measured (see Smyth et al., 1995),

. it is important to cover a wide range ofU (CC C) and Pe (or: y) to compare with appropriate
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theoretical models. For 0.05 wt% xanthan gum in a fructose solution, Smyth et al. (1995)

. . / -l . — . . .
observed that 152 at y] 3 for 1 s < y < 20 s 1. A comparison of 121118 experimental

result with the microstructure theory developed herein indicates that DR ~ 1.3 s.1 if U E

5. This estimate is consistent with the rotary diffusion coefficients for PBLG solutions

(Back and Magda, 1993; also see Figure 9.4).

As anticipated by the microstructure results in Table 8.1, the shear viscosity

predicted for 7t < 1 has a Newtonian plateau for Pe —+ co (i.e., k = 0.987, U = 0, and Pe

> 500). Once again, this phenomenon implies that shear thinning is limited by the

weaker rotational torque due to particle coupling with the strain rate.

Finally, Figure 9.19 shows that tube dilation causes shear thickening. This

unanticipated result occurs provided tube dilation affects rotational diffusion in the

moment equation and hydrodynamic drag in the viscous stress equation. This interesting

(and perhaps doubtful) result requires additional research (see p.337 Doi and Edwards

1986)
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CHAPTER 11

RECOMMENDATIONS

The FSQ-closure for the orientation tetrad needs additional development and

validation to become a practical closure for Eq.(4.1). Although the traditional models for

the rotary convective flux and the rotary dtfiilsive flux used to close the Smoluchowski

equation could be improved, the purpose of this chapter is to identify specific problems

that would support the use of Eqs.(4.1) and (4.4).

Suspension Theory

In the approach adopted in this research, the tumblingparameter A (see Eq.(2.5)),

the excluded volume coefficient U (see Eq.(2.12)), and the Péclet number Pe (see

Eq.(2.15)) were treated as independent dimensionless groups. In general, 7», U, <DR>,

and CR depend on the aspect ratio L/d, the volume fraction of the dispersed phase av, and

the local microstructure (11b and 1111,):

A=Fl(-Ij,av , IIb, IIIb)

U =Fu(%-, (1v , 11b, IIIb)

 

<DR>=FU(£,avaHbaIHb)

pa d

PEEL—Fol: a 11 111)

kBT gd’ V’ b’ b'
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A systematic parametric study of Eq.(4.1) and (4.4) with the FSQ-closure should be

developed for suspensions of prolate ellipsoids for which 1 S L/d < 00. An explicit

dependence ofL/d and av on the above groups should be used in the parametric study.

The tube dilation model of Doi was used in this research to determine the effect

of the microstructure on <DR >/D§ and DfiQR lkBT. Shear thickening occurs

because tube dilation was included in both factors. The influence of tube dilation on the

tumbling parameter A should also be developed, if appropriate. An explicit dependence

of L/d on the tumbling parameter was used in this research to study oblate and prolate

ellipsoidal suspensions. However, the effect of L/d on <DR> and CR were not studied.

Figure 11.1 shows the variation of the rotary drag coefficient with L/d for prolate

ellipsoidal suspensions (see p.292, Doi and Edwards, 1986; and Jeffery, 1922). This

theory, and its generalization to oblate ellipsoidal suspensions, should be used in the

proposed parametric study of Eqs.(4.1) and (4.4).

FSQ-closure coefficient

The FSQ-closure was developed based on the Cayley-Hamilton theorem, which

led to the representation of < pppp > given by Eq.(5.7). The second order closure

coefficient was selected so that planar anisotropic states are attracted by three-

dimensional anisotropic states for all values of 1, U, and Pe. The results in CHAPTER 7,

8, and 9 validated that this approach produces realizable orientation states for simple

shear flows. However, the universality of C2(IIIb) as a second-order closure coefficient
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needs to be tested for other flows. C2(IIIb) also needs to be validated experimentally for

simple shear flows.

As demonstrated in CHAPTER 7 as well as in CHAPTER 8, the relaxation of the

microstructure to an anisotropic state has a dynamic signature that is sensitive to the

closure model for < pppp > . For example, the initial trajectory from a planar

anisotropic state depends on the closure assumption and could be tested directly (see

Figure 7.4). Stress relaxation experiments and/or optical experiments that directly

measure the relaxation of the director could be designed to test the ad hoc assumption of

replacing Ineq.(6.27) with Eq.(6.28).

Texture (Pe > 0)

Figure 11.2 shows that Eq.(4.1) with an FSQ-closure has multiple steady states

for the same parameter set (7L, U, Pe). Note that for A. = 0.987, U = 27, and Pe = 95, two

stable steady state solutions to Eq.(4. 1) occur with distinct microstructures:

(11b, IIIb)1 = (0.4923, 0.1381) and (111,, 1111,); = (0.5463, 0.1648). This result was"

discovered serendipitously by numerically integrating Eq.(4.1) from two different initial

conditions (see Figure. 11.2). The first microstructure was obtained by the relaxation of

an initial director in the flow/vorticity plane, whereas the second microstructure resulted

fiom the relaxation of an initial director in the flow/cross-flow plane. The existence of

multiple steady states for Fe = 0 has been known for many years (see biphasic region in

CHAPTER 7). The existence of multiple steady states for Fe > 0 have not been

systematically studied or discussed in the literature. Larson (p.515, 1999) and Marrucci
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(1999) have previously suggested that multiple steady state phenomenon may be the

underlying cause for the existence of small strains associated with defects in the

microstructure (texture). For very small strain rates, the viscosity would be high, but

would decrease significantly for marginal increases in the strain rate inasmuch as the

multiple steady states would be eliminated. Marrucci has hypothesized that this

phenomenon may explain the Region I behavior observed for some liquid crystalline

polymers. Thus, the results illustrated by Figure 11.2 together with the possibility that

multiple steady states for Fe > 0 may relate to Region I behavior supports the suggestion

that a comprehensive study of the possible multiple steady state solutions to Eq.(4.1) with

the FSQ-closure should be conducted for 0 < U < co and 0 < Pe < 00. This could provide

significant new insights and understanding on the origins of texture and other phenomena

associated with structured fluids.
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APPENDIX A

Derivation ofMoment Equations with Structure Tensor
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The objective of APPENDIX A is to find the moment equation in terms of the

structure tensor 2. From Eq.(4.1), the derivative of dynamic equation with the structure

tensor 2 for Fm = l is starting from:

 

 

 

6<pp> b U(
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Once the orientation dyad < pp > is substituted with 2 from left hand side of Eq.(A.1)
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Once the orientation dyad < pp > is substituted with 2 , right hand side of the first line in

Eq.(A.1) becomes:
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Note2:

T T

5b 6b . .

[ =) --1— [—3] +<pp>Tle+lz<pp>T

E 6DR at

--———-——l —a—bT+< >T-WT+W'< >T

6DR 6t= 39 ‘= =' 22 (A9)

a) _—

=—5i)_tb =U(<pp>T<pp>T—<pp><pppp>)

+2.Pe(<pp>T:§T +§T :<p_p>T —2<p_ppp>:§)

And

2T=2, “(2)20

S181, tr<§=0

bT satisfies the same equation as 2. If 2T = Eat t = 0, then 2T =2 for t > 0.

Therefore, "(2) and the symmetry of g are “conserved.”
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APPENDIX B

Derivation ofMoment Equations in the Invariant Form
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The objective ofAPPENDIX B is to find the moment equations in terms of the invariants

IIb and 1111, of the structure tensor 2.

General Second Invariant Dynamic Equation

The second invariant dynamic equation is derived by taking trace of the dot

product of the structure tensor from Eq.(A.6):

+UJ + tPeKLb

—+UJ+>.PeK] (3.1)+

I
O
‘

I
€ ’

-
1

I
I
C
I
T

The trace of the ordinary derivative is:

u[d—(2~2)]=%[trbbtr2-( 2)]=‘”I—-b—
dt

= —2IIb +2U[J. b]+ 2m: (3.2)

l
—
_
‘

M u
c
r

I
-
—
—
—
l

Note that

0(mime-2)

because b is traceless tensor.

Since gT=-g,(g-g7):g=—(g-g)zg: (31;2)£50. Therefore,the

vorticity does not influence dynamic equation of second invariant. The second and third

terms in the second line of Eq. (3.2) is
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2:242 2+2 2):2—2 <2222>2

3; (2.3)

=§Hb+IIIb—g:<pppp>2

and

2=2=§2 2+2 2) 2+2-2) 2—22 <2222>2

=§§=2+§ (2 2l+§=(2'2)—2§<EEBB> 2 (3.4)

=2§=E2+2 1.2-2 <2222>]=2§;

Combining Eqs.(B.3) and (BA) into Eq.(B.2), the dynamic equation for the second

invariant becomes:

dIIb
dt =—211b+2U[;:g]+2rPe[;zg]

(13.5)
l
l
'
-
—
1

H

=—211b+2U[ ;Hb+IIIb—2:<p_ppp>:g ]+4XPe[§:

General Third Invariant Dynamic Equation

The third invariant dynamic equation is derived by taking trace of another dot

product from Eq.(B.1):

__‘Lb b-b)=i‘2 b-b+b d_2.b+h 2.92

dt "" dt=a== _ t: ""dt

=—32-2 2+U2-2-2+2 2 2+2-2 J]+>~PeK-2-2+2 22+2 2 2]

—[W 2+2 it‘ll-22¢ W 2+2 2.2T) 2+2-2- W 2+2-.W__T)

(B6)

1 2

,where 1:321'2 2—2 <pppp> and §=§§+§ 2+1; __S_-2<_pppp> §

Notethat
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And since 2“=—2, (221.“ )=(2-2)=-(2-2)=(2-2H222 )= "
2 '50.

Therefore, the vorticity does not influence dynamic equation of second invariant. The

second and third terms in the second line of Eq. (B.6)

 

d t V (13.7)

(B.8)

=—111b+ IIbZ—b <2222>(2 2)

and

2 (2 2l=38 b 2)+s (2 2 2)+2 (2°--2)—22:<2222>=22)

=22 [—2 2+2 2 2—<2222> (2 2)] (39)

Notice that tr(2 - 22 - __1;): -;—11b2 by using Caley-Hamilton theorem.

Combining Eqs.(B.8) and (B9) into Eq.(B.6), the dynamic equation for the second

invariant becomes:

dIII
t" =-3111b +3U[%Illb 432—11,,2 —b:<2222>:(2.2 )] 

1 (13.10)

+6>~Pe§:[g2-2+2-2-2-<2222>=<2~2)]
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APPENDIX C

Normal Vectors in the Invariant Diagram
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The objective of APPENDD( C is to find the outward pointing normal vectors in

the boundary of the invariant diagram. Normal vector _n of the invariant diagram is

defined as:

E = 1111911 +En1§111 (C-l)

In order to be realizable for the orientation state, the dot product of invariant dynamic

equations (dIIb/dt and dIIIb/dt) and the normal vector must be less than zero:

 

 

n-d—£50 org-hSO (C.2a)

dt

where d—-f- = _de911 +——dmb£111, 2 = di ’dt (C.2b)

dt d t d t ,/(d§ /d t)-(df /d t)

Normal vector on the planar anisotropic line

The relationship of 111J and 1m is

IIb = 2111b + 2/9 (C.3)

Therefore slope on the planar anisotropic line is 2.

Based on Eq.(C.3) the normalized vector of the planar anisotropic line is:

2 I

Then, the normal vector becomes

1 2

Eplanar anisotropic = ‘J‘ggll _ TEEIII (C-S)

Normal vector on the prolate line

From Eq.(3.18), the slope ofthe prolate line is

(4/6)(6/111b)“3 (06)

Then, normalized base vector becomes:
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(4/6X6/1nb)“3 1

= /3 911+ /3 E111

J1+(4/9)(6/111b)2 J1+(4/9)(6/111b)2
Eprolate

Therefore, the normal vector on the prolate line becomes:

—1 (4/6)(6/111b)“3

/3 E11+ ,3 $2111

J1+(4/9)(6/111b)2 J1+(4/9)(6/111b)2
Qprolate =

Normal vector at oblate line

From Eq.(3.17), the normalized base vector becomes:

(4/6X—6/mb)“3 e + -1

-—II

J1+(4/9X—6/IIIb)2/3 fi+(4/9)(—6/mb)2’3

  

 

Hoblate =
 

2111

Therefore, the normal vector becomes:

—1 + -(4/6)(—6/mb)“3

E blt = $11 9111

0 ac J1+(4/9X—6/IIIb)2/3 (/1+(4/9)(-6/1111,)2’3
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APPENDD( D

Derivation of Various Closure Analysis in the Invariant Form
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The objective ofAPPENDIX D is to find the moment equations in terms of the

invariants 11b and IIIb ofthe structure tensor ‘9 for various closure approximations. With

the invariants ofmoment equations, the realizability of orientation dyad < p p > is

determined.

Realizability of Decoupling Closure

Decoupling approximation provides realizable orientation dyad without the

external field (Pe = 0). The moment equation can be represented with invariants of Q,

then the moment equation can be represented with scalar value of 111, and 1111,.

The invariant form of decoupling closure double dot with dyad 2 from Eq.(A.6) is:

"
O
"

<2222>=2=<_2><22> (DI)

Based on general the invariant dynamic equations (see Eq. (B5) and Eq. (B.10)), each

the double dot product of decoupling closure becomes:

2 <21>><22>>=b (D.2)

gz<pp><pp>:(=b.-g)

Since <pp>:2=(2+%ljz=b= bzg=11b (D.3a)

and<pp>:(2_b_)= [b+-;—I):(=b-g)=tr(Q-=b_-g)+-;-tr(l=)-=g) 1112+;Hb, (D.3b)

the invariant form from Eq.(D.2) becomes:

I
I
O
"

<pp><pp>z2=llb2 (D.4a)

and
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H
O
" :<pp><pp>:(b-b)=IIbIIIb 2%111,2 (13.42)

Therefore, the invariant forms of moment equations for the decoupling closure, when Pe

 

 

= 0 are:

d 11" = —2111, +2U[ 1111, +1111, ~sz ] (11561)
d t 3

and

d mb -_- —3111b +3U[%1Hb +£4le 411be ] (D'Sb)

Realizability atplanar anisotropic line

Substituting 11., and III}, relationship at planar anisotropic line (111, = 21111) + 2/9) into

Eq.(D.5a) and Eq.(D.5b), the invariant form ofmoment equations become:

 

dH
—b— : —41nb —3+U[—8mb2 +3111}, +1] (D-6a)
dt 9 9 81

dIIIb 2 7 2
=-3111 +U —4III +—III +— . D-6b

(it b l b 9 b 81] ( )

Using normal vector analysis (see Eq.(C.2)),

 

df dIIb dIIIb
o—:-—= . _ + $0

D07

9 '[dt 911 dt9111) ( )

Therefore dot product becomes:

— +

d dt J? t J3 t (D.8)

 

Since the maximum III}, value is 2/9, the dot product is always negative.

Realizability prolate and oblate line
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Using the same method from Eq.(D.6), the invariant form of moment equations on the

prolate line become:

 

2 2 4

d1] III “ III ‘ 111 ‘
—9—=—12 —‘l 3 +2U 2 J 3’+111(,-3 ——‘-’- 3 (D-9a)
dt 6 6 6

2

dIII m ‘ III ‘
dtb =—3IIIb +3U 31-1111, +6[—€b-)3 —6IIIb [-6—bj3 (ng)

Afier taking dot product with normal vector from Eq.(C.10) to Eq.(D.9a) and Eq.(D.9b),

Eq.(D.7) is zero. Analogous to the prolate line, the oblate line provides the same result.

Therefore, decoupling closure in prolate line and oblate line are realizable.

Realizability of Hand’s Closure

From section 6.2 mention, Hand’s closure provides realizable orientation dyad on

the prolate and the oblate line. Based on general the invariant moment equations (see Eq.

(B5) and Eq. (B.10)), each the double dot products ofHand’s closure are:

2K PinPkPl >Hand=2 = bij [- 3%(12'121 + 112111 + Iilek)

1 (p.10)

+ 7(Pin11d + PiPkIjl +PiP11jk + IiijPl +IikPjP1 + IilePk):| bij

1

2K P1PijPl >Hand=(2'2) =bij [‘Efiijlkl + 111:1 ji +1111jk)

1 (D.11)

+ 7(Pin1k1 + PiPkIjl + P1131151: + IiijPl +IikPjP1 + 1111’ij )](biybjy)

The right hand side from Eq. (D.11) becomes

2 4

—II +—III D.1215 b 7 b ( )
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Substituting Eq.(D.12) into Eq. (B.5), the second invariant moment equation becomes:

an,
 = —2Fm11b + ZFTDUI: 373-11}, +21%] (D.13)

The right hand side from Eq. (D.11) becomes

3 2 2
—II +_m D.14

7 b 15 b ( )

Substituting Eq.(D. 14) into Eq. (8.10), the third invariant moment equation becomes:

d111,

dt

 = —3FTDIIIb +3FTDU[ %mb +li411b2] (D.15)

Realizability atplanar anisotropic line

Substituting 11., and 1111, relationship at planar anisotropic line (111, = 2111b + 2/9) into

Eq.(D.]3) and Eq.(D.]S), the invariant form ofmoment equations become:

 

an, 4 2 29
——=—4HI -—-+U -+——III -16

dt b 9 [9 7 b] (D )

dIII
1’ =--3111b +U[-—6IIIb2 +3111b +327] (D.17)

Using normal vector analysis (see Eq.(C.2)),

 

df 1111,, (1111b '
n--—==n- —e + e $0 .18
_ dt ( -11 dt -111] (D )

- d t

Therefore dot product becomes:

_p_-ii:— 2(- 2 +9111, )(-105 + 2(8 + 45111,)U) (D1813)

d t 9453

 

Therefore, Hand’s closure is not realizable at a certain U and 1111, (where 2(8+ 45111b )U

is more than 105).

Realizability prolate and oblate line
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The invariant forms ofmoment equation of Hand’s closure on the prolate line become:

_2_ 2

 

 

dII 111 111 ‘
b —12 ——b 3+2U 9 —‘l 3 +9111, (D.19)

dt 6 5 6 7

4

dIII "
b =—3IIIb+3U ;H1b+%(-II:—]3 (D20)

1/ 3

Multiplying Eq.(D.19) and .Eq. (D.20) with _%[%] (see Eq.(C.10)), Eq.(D.7)

b

becomes zero. Therefore, 11 3% = 0 at the prolate line. Analogous to the prolate line,

the oblate line provides the same result. Therefore, Hand’s closure on the prolate line

and the oblate line are realizable.

Realizability ofHLl Closure

HLl closure provides realizable orientation dyad on the prolate and the oblate line

for Fe = 0. Based on general the invariant moment equations (see Eq. (B5) and Eq.

(B.10)), each the double dot products of in HLl closure are:

l

b:< :=b —b. 6< >-b-< >-< >< >:b2 2222> 2 52< <22 2 22 22 22 2 (13.21)

+21< 22> =-2 22<22><22>=2>=2

b:< >: ——b: 6< >b< ->< >< >:b2 <2222 £22)= < 22> 2 <2>2 22 22 2 (D22)

+Zl<252>=2-21< 22>- <22>=2>=(2-2)

Eq. (D.21) becomes

1 2 2

§(4111b +3111, + 2111, ) (D23)
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Substituting Eq.(D.22) into Eq. (8.5), the second invariant moment equation becomes:

 

d H

b = -2FTD 111) + ZFTD U[: -1- 1111) + l 11b --Z 111,2] (13.24)

(1 t 5 5 5

Eq.(D.22) becomes

;é111, + 211,111, +%H,2) (D25)

Substituting Eq.(D.25) into Eq. (B.10), the third invariant moment equation becomes:

c1111,

dt

 = —3FTDIII, +3FTDU[ £111, €11,111, "L's—161M] (D26)

Realizability atplanar anisotropic line

Substituting II, and III,> relationship at planar anisotropic line (11), = 2111), + 2/9) into

Eq.(D.24) and Eq.(D.26), the invariant form ofmoment equations become:

 

an, 4 3
——=—4111 ——+U— —2+9111 5+72111 .27dt b 9 405[( bx 1.)] (D )

dIII
b =-3111,+U[(—2+9111,)(1+90111,)]. (D28)

Using normal vector analysis (see Eq.(C.2)),

 

dm" 2m] 5 0 . (D.29a)

Therefore dot product becomes:

. d_§ _ 2(— 2 + 9111, )(45 + 2(—2 + 9111, )U)
_n — (D.30b)

d t 405J§

 

Therefore, HLl closure is not realizable at a certain U and III, (where 2(—2+9IIIb )U is

more than 105).
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Realizabilityprolate line

The invariant forms ofmoment equation ofHM on the prolate line become:

 

 

2 2 4

dII 111 ‘ " III "b 2—12 —b— 3 +2U 9 E’- 3 +1111, £3 ——b- 3 (D31)
dt 6 5 6 5 5 6

4 5

d111, 1 6 111, 3' 72 III, 3
=—3111 +3U —111 +— — —— — .32

dt b 5 b 5L 6) 5[ 6) (D )

1/ 3

Multiplying Eq.(D.31) and .Eq. (D.32) with -%[III—:] (see Eq.(C.10)), Eq.(D.7)

becomes zero. Therefore, 11 g—gt = 0 at prolate line. Analogous to the prolate line, the

oblate line provides the same result. Therefore, decoupling closure on the prolate line and

the oblate line are realizable.

Realizability ofFSQ Closure

FSQ-model provides realizable orientation dyad on the planar anisotropic line if

8+45111,

18(1+91n,)'

 2 In addition, FSQ-model provides realizable orientation dyad on the

prolate and the oblate line, regardless of C2 without the external field The first term of

FSQ-model is Hand’s closure and it is already proven in Eq. (D.18), Eq. (D.19), and

(D20). Based on general the invariant moment equations (see Eq. (B5) and Eq. (B.10)),

each the double dot products of in second term ofFSQ closure are:
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"
O
"

a, 2

2J2(<EE >):2=C2(Hb,111b)bij [-3-§<p°pfi >< pupB >(Iij1kl +Iik1jl + Iilek)

+ <13in ><PkP1 >+<Pipk ><PjP1>+<PiP1><Pij >)

2

_7(< PiPY ><1>ij >1k1+<Pin >< Pka >Ijl+<Pin ><PYPI >111

+ Iij <1)ka ><pr1 >+Iik <pjp7 ><pyp1 >+111 <13ij ><Pypk >)]bij

(13.33)

I
I
O
‘

:32(<pp>):(2-2)

2

=C2(nbalnb)bij [§<Papp ><P¢1PB >(Iij1k1 +Iik1j1+1111jk)

+ (<19in ><PkPl >+ <PiPk ><PjP1>+<PiP1><Pij >)

2

—7(<piPy >< 13ij >Ik1+<PiPY XPYPk >Ijl+<PiP7 >< P791 >11k

+Iij <1)ku ><pyp1 >+Iik <1)ij ><pyp1 >+In <1)ij >< pypk >)](biybjy)

(D.34)

Eq. (D.33) becomes

4 1 2 10 2 4 2( 2 )
— II +— +— II +—II +—III =-—7II +8111 +30HI D.35

35("3)21]"7"7"105b b b ()

Substituting Eq.(D.35) into Eq. (B.5), the second invariant moment equation becomes:

de 7 3 54 2

—=—2F II +2F U —II +—III ——II C .36(it TD b To [35 b 7 b 35 b 2] (D )

Eq. (D.34) becomes

4 1 2 3 2 10 3 2 2 54

— II +— +— III +—II +—II III =—II +—III +—II III .37

35(b3J21Jb7b7bb7b15b35bb(D)

Substituting Eq.(D.37) into Eq. (B.5), the third invariant moment equation becomes:

dIIIb

dt

7 l 2 54

=—3F III +3F U —III +—II -—II III C D.38TD b TD [35 b 14 b 35 b b 2] ( )
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Realizabilityprolate line

The invariant forms of dynamic equation of FSQ-model on the prolate line become:

 

2 2 4

(111 111 ‘ III “ 111 ‘
——b =—12 —b 3 +2U 9 —b 3 +3111b -—1944 —b 3C2 (D39)
dt 6 5 6 7 35 6

4 5

(1111}, 1 18 111,, 3 1944 111,, 3
=-3III +3U —111 +—— — -— — c .40

dt b 5 b 7( 6 j 35 [ 6) 2 (D )

1/3

Multiplying Eq.(D.39) and .Eq. (11.40) with "it—T6) (see Eq.(C.10)), Eq.(D.7)

b

becomes zero. Therefore, 11% = 0 at prolate line. Analogous to the prolate line, the

oblate line provides the same result. Therefore, FSQ-model closure on the prolate line

and the oblate line are realizable.
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APPENDIX E

 
Eigenvalues and Eigenvectors of the Orientation Dyad
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The objective of APPENDIX E is to find the eigenvalues and eigenvectors when

the dyadic valued operator has zero components in pxpy, pxpz, pypx, and psz. Thus, the

eigenvalues and the eigenvectors can be solved algebraically. If the dyadic valued

operator is given as:

<EB>’Z‘-i = Ai121 (E-l)

, then it can be expanded to:

Pxpx 0 0 xix xix

0 Pypy Pypz xiy = A'i xiy a (E2)

0 pzpy Pzpz xiz xiz

where ggi is the eigenvector, related to the eigenvalues Xi

Therefore,

Pxpx xix = A1 xix (E33)

PyPy Xiy + Psz xiy = 11 xiy (5313)

mm X12 + 13sz x12 = 1i Xiz (E30)

Based on Eqs.(E.3b) and (E.3c), x1 x, xzy, x22, 113),, and X32 are only non-zero component

of eigenvector if all of non-zero components of the dyad from Eq.(B.2) and all of the

eigenvalues are different each other.

Using Eqs.(E.3b) and (E.3c),

[(pzpz -?~i) (Pypy ->~i)-pzpy Pszin2 = 0 (E4)

For i = 1, Eq.(E.3a) becomes:

PxPx xlx = 11 xlx (55)

Therefore, 11 is the same as pxpx.
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The first eigenvector related to M becomes:

1

31: xlx 0 (E6)

0

For i = 2, Eqs.(E.3a) and (E4) becomes:

pypzx22

X2 = — (E73)

y (pypy "'12)

 

[(prz —>»2> (pypy —x2)—pzpy pyszxay = 0 (E.7b)

Since X32 is non-zero component, the inside bracket in Eq.(E.7b) can be solved using

quadratic equation.

 

_ (pypy +pzpz)-\/(pypy +Pzpz)2 -4(pypy pzpz -pypz pzpy)
 

 

7»2 2 (E8)

From Eq.(E.7a), the second eigenvector related to lg becomes:

P0P

£2 = - (WP: :12) x” (E9)

1

For i = 3, Eqs.(E.3b) and (E4) becomes:

x22 ___ _ Pzpyx22
(E.lOa)

(13sz - 13)

[(192192 -?~3) (pypy -?~3)-pzpy pyszX3z = 0 (31%)

Since X32 is non-zero component, the inside bracket in Eq.(E.10b) can be solved using

quadratic equation.
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2

_ (Pypy +pzpz)+J(pypy +pzpz) -4(pypy Psz -pypz Pzpy)
 l 13.113 2 ( )

From Eq.(E.7a), the third eigenvector related to k3 becomes:

(

0 1

53 = 1 x 22 (E.12)

_ Pzpy

\ (Pzpz _ A'3 ) )
  

The eigenvectors are orthogonal to each other, the dot product of each eigenvector itself

becomes:

£1‘2‘.1=£2'£2=2£3°2E3=1 (E13)

Therefore,

XIX =1 (E.14a)

P P 2

gz-gz = 1+ _X_i_ xgy =1 (E.14b)

pypy '3‘2

P P 2

953 $3 = 1+[—z—y——] x§z =1 (E.14c)

Psz"x3

Solving Eqs.(E.14b) and (E.14c),

x3, ___ 1 (E.15a)

PP 2
1+ ___2L£L_.

Pypy"12

and
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 x2 = (E.15b)

z p p 2

pzpz-M

 

 

  

l

0

O

32 = - pypz 1 (E.16b)

(Pypy "'12) p P 2

1 1+ —y-z_._

pypy ->~2

/ N

0

53 = 1 1 (E.16c)

___EL— 1 Pzpy 2
+ _—

\ (Psz ’96)} pzpz —7L3
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APPENDD( F

Realizability in the Planar Anisotropic Line
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The objective of APPENDIX F is to derive the inequality equation in Ineq.(6.27).

In order to find the closure coefficient C2, Ineq.(6.1) is applied to the planar anisotropic

line. The outward pointing normal vectors in the prolate line are

n}? :1}? (111)

riff] =72§ (F2)

In the planar anisotropic line Eqs.(6.2b) and (6.2c) become

dIIb 4 4 58 16 96 423 2
_=———4111 +U—+—III — —+—111 +—111 c M
dt 9 b [45 35 b (105 35 b 35 b) 2] ( )

dIIlb 2 83 6 2 36 324 2
——=—3111 +U——+—III +-111 — —111 —-—m c F.4
dt b [189 105 b 7 b (35 b 35 b) 2] ( )

Multiplying Eq.(F.1) with Eq.(F.3) and Eq.(F.2) with Eq.(F.4), Ineq.(6.1) becomes

dF 4 2

 

 

n-—==-—+—111

‘dt 96 J? b

64 8 12 2

+U + H1 --———--111 (F.5)

[9456 105J§ 743 b

16 24 216 2
—( + 111 ——111 c ]so

105J§ 3545 b 353 b) 2

After arrange Eq.(F.5) the inequality becomes

2(—2 + 9111,, ){105 + 2U[—8 -45111b +18C2(l+ 1111,)]}< 0

945/3

 (R6)
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APPENDIX G

Computational Code for Transient Calculations
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The objective ofAPPENDIX G is to demonstrate the computation scheme using

flow chart and list the computational code for MATLAB 12.

 

[start]

1

time step (dt), number iteration (stop). shape factor (lam), U, Pe, solving order (order),

< p p > (a_real), Identity tensor (ID), velocity gradient (Du)

 

 

 

  
symmetric Tensor (s), vorticity tensor (w)

l

Dummy <32) (a)

l

n = number iteration (n) = stop yes

jno

yes

r = solving order (n) = 4?

i no

anisotropic tensor (1)), eigen value of (lamda),

eigen vector of anisotopic tensor (lamdab)

l

second invariant (iid). third invariant (iiid),

C3 (C2). C1 (C1), difi‘usion coefficient (Drbar)

l

<2£>'<££> (a), 2'2 ('bb) ‘2? § (a5) <2£>'V“(aDu),

<22>§ <22> (aSa). <22>°V° <22>caDua). ”kw-9 (traceas).

 

 

 

   

 

 

 

 

   

 

   

 

”(<pp>-V” (traceDu), <pp>c<pp> <pp >(aaa) b-bb’Cbbb)l _    

 

       
<2222>=< 22>(ppppddpp).< 132>1§ (ppppdds).

§<pp>+ <pp>S’(saas), §<pgpp> +<_p>-§’(waaw)

i <> 0 o
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   moment equation (dk)

 

 

 

1 yes

third Runge-Kutta

iteration (dk3)

fourth Runge-Kutta

iteration (dk4)

stress tensor (tau), stress components (W, X, Y. Z)

<32 > tensor (a), <p_ g >components (A, B, C, D, F), physical time (time)

/ print the results /<—-—
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%clf

clear all

%time step

dt=0.003;

%number of time step

stop=20000;

%tumbling parameter

lam=0.987;

%nematic potential

U=27;

%Péclet number

Pe=30;

%1st order Euler order=1

%2nd order R-K order=2

%4th order R-K order=4

order=1;

%Constant Diffusion Coefficient Dr=1

%Doi Tube Dilation Dr=2

Dr=l;

dbar=l;

%Decoupling approximation closure=1

%Hybrid approximation closure=2

%FSQ approximation closure=3

closure=3;

%Doi stress st=l

%Ottinger stress st=2

st=1;

%Constant C2 const=1

%function of IIIb const=2

const=2;

c2const=l/3;

%Initial Condition

a_real(1,1)=0;a_real(1,2)=O;a_real(1,3)=0;

a_real(2,1)=O;a_real(2,2)=1/3;a_real(2,3)=0;

a_real(3,1)=0;a_real(3,2)=0;a_real(3,3)=2/3;

%Unit tensor;

ID(1,1)=1;ID(1,2)=0;ID(1,3)=0;

ID(2,l)=O;ID(2,2)=1;ID(2,3)=O;

ID(3,1)=0;ID(3,2)=0;ID(3,3)=1;

%Velocity gradient for simple shear flow;
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Du(l,l)=O;Du(1,2)=O;Du(1,3)=0;

Du(2,l)=O;Du(2,2)=O;Du(2,3)=l;

Du(3,l)=O;Du(3,2)=O;Du(3,3)=0;

for i=l:3

for j=l:3

s(i,j)=.5*(Du(i,j)+nu(j.i));

W(i,j)=.5*(DU(i,j)-DU(j,i));

end

end

a_test=a_real;

a=a_real;

for n=l:stop

for r=lzorder

b=a-l/3*ID;

%Determine eigenvalues;

lamda1=a(1,l);

lamda2=(a(2,2)+a(3,3)-((a(2,2)+a(3,3))“2-

4*(a(2,2)*a(3,3)-a(2,3)*a(3,2)))“(1/2))/2;

lamda3=(a(2,2)+a(3,3)+((a(2,2)+a(3,3))“2-

4*(a(2,2)*a(3,3)-a(2,3)*a(3,2)))“(1/2))/2;

lamdab1=lamdal-l/3;

lamdab2=lamda2-l/3;

lamdab3=lamda3-l/3;

%determine C2

iiid=lamdab1“3+lamdab2“3+lamdab3“3;

iid=lamdabl“2+lamdab2“2+lamdab3“2;

if const==

C2=c2¢onst;

end

if const==2

C2=(8+45*iiid)/(18*(1+9*iiid));

end

C1=l-C2;

C3=0;

C4=1-C1-C2-C3;

c2(n)=C2;

%Tube Dilation

if Dr==

Drbar=dbar;

end

if Dr==
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if st==l

Drbar=(l-3/2*iid)“(-2);

end

if st==2

Drbar=(1-3/2*iid)“(-l);

end

end

%Determine S[I(a*a)];

aa=a*a;

bb=(a-ID/3)*(a-ID/3);

aS=a*s;

aDu=a*Du;

aSa=aS*a;

aDua=aDu*a;

traceas=trace(aS);

traceaDu=trace<aDu);

aaa=aa*a;

bbb=bb*(a-ID/3);

%Determine aza (Ila) and alpha(2,1);

IIa=aa(l,1)+aa(2,2)+aa(3,3)t

IIb=bb(1,1)+bb(2,2)+bb(3,3);

%Determine alpha(3,l);

IIIa=aaa(l,1)+aaa(2,2)+aaa(3,3);

IIIb=bbb(1,1)+bbb(2,2)+bbb(3,3);

if closure==

%Decoupling

ppppddpp=IIa*a;

ppppddS=traceas*a;

end

if closure==

%Hybrid

ppppddpp=(l-27*det(a))*IIa*a+27*det(a)*((-

1/35+l/7*IIa)*ID+3/35*a+4/7*aa);

ppppddS=(1—27*det(a))*traceas*a+27*det(a)*(-

2/35*s+1/7*(2*a*s+2*s*a+traceas*ID));

end

if closure==

%<pppp>=<pp>

ppppddpp=cl*((—

l/35+1/7*IIa)*ID+3/35*a+4/7*aa)+c2*(2/35*IIa*ID-

2/7*IIIa*ID+6/7*aaa-2/7*aa+39/35*IIa*a);
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%<pppp>:S

ppppddS=Cl*(-

2/35*s+1/7*(2*a*s+2*s*a+traceas*ID))+C2*(4/35*s*IIa+a*traceas+2*a

Sa-2/7*(trace(aa*s)*ID+2*aa*s+2*s*aa));

ppppddDu=Cl*(-

2/35*Du+1/7*(2*a*Du+2*Du*a+traceaDu*ID))+C2*(4/35*Du*IIa+a*tracea

Du+2*aDua-2/7*(trace(aa*Du)*ID+2*aa*Du+2*Du*aa));

PPPPddSC2=(4/35*s*IIa+a*traceas+2*aSa—

2/7*(trace(aa*s)*ID+2*aa*s+2*s*aa));

end

saas=s*a+a*s;

waaw=w*a+a*(W');

if st==

ot=l;

end

if st==

ot=(6*(l-3/2*iid))“(-1/2);

end

%Moment Equation

dk=Drbar*((ID/3-a)+ot*(U*(aa-ppppddpp)))+lam*Pe*(saas-

2*ppppddS)-Pe*waaw;

% lst order Eular

if order==

a=a+dk*dt;

end

%4th order Runge-Kuttar

if order==4

if r==

dk1=dk;

a=a_real+dk1*dt*0.5;

end

if r==2

dk2=dk;

a=a_real+dk2*dt*0.5;

end

if r==

dk3=dk;

a=a_real+dk3*dt;

end

if r==4

dk4=dk;

a=a_real+(1/6)*(dkl+2*dk2+2*dk3+dk4)*dt;

end

end
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%Second order Runge-Kuttar

if orde ==

if r==

a(i,j)=a_real(i,j)+dkl(i,j)*dt;

end

if r==

dk2(i,j)=dk(i,j);

a(i,j)=a_real(i,j)+(1/2)*(dkl(i,j)+dk2(i,j))*dt;

end

end

end

%Decomposition of Moment Equation

test1(n)=U*(aa(2,3)-ppppddpp(2,3));

test2(n)=U*(aa(2,2)-ppppddpp(2,2));

test3(n)=U*(aa(3,3)-ppppddpp(3,3));

test4(n)=Pe*(saas(2,3)-2*ppppddS(2,3)-waaw(2,3));

test5(n)=Pe*(saas(2,2)-2*ppppddS(2,2)-waaw(2,2));

test6(n)=Pe*(saas(3,3)-2*ppppddS(3,3)-waaw(3,3));

test7(n)=ID(2,3)/3-a(2,3);

test8(n)=ID(2,2)/3-a(2,2);

test9(n)=ID(3,3)/3-a(3,3);

test10(n)=dk(2,3);

test11(n)=dk(2,2);

test12(n)=dk(3,3);

test13(n)=Pe*(saas(2,3)-2*ppppddS(2,3));

testl4(n)=Pe*(saas(2,2)-2*ppppddS(2,2));

tetslS(n)=Pe*(saas(3,3)-2*ppppdds(3,3));

test16(n)=-Pe*waaw(2,3);

testl7(n)=-Pe*waaw(2,2);

test18(n)=-Pe*waaw(3,3);

test19(n)=(dk(2,2)-(ID(2,2)/3—a(2;2))-(U*(aa(2,2)-

ppppddpp(2,2)))-(-Pe*waaw(2,2)))/(Pe*(saas(2,2)-2*ppppddS(2,2)));

test20 (n)=(dk(3, 3) - (ID(3,3) /3-a(3,3) ) - (U* (aa(3,3)-

ppppddpp(3,3)))-(-Pe*waaw(3,3)))/(Pe*(saas(3,3)-2*ppppddS(3,3)));

test21(n)=(dk(2,3)-(ID(2,3)/3-a(2,3))-(U*(aa(2,3)-

ppppddpp(2,3)))-(—Pe*waaw(2,3)))/(Pe*(saas(2,3)-2*ppppddS(2,3)));

if st==1

tau=b-U*(aa-ppppddpp)+Pe*ppppddS/Drbar;

end

if st==2

tau=b-U/((l-IIa)“(l/2))/3*(aa-ppppddpp)+Pe*ppppddS/Drbar;

end

%Decomposition of Stress

N1btest(n)=b(3,3)-b(2,2);

Nlntest(n)=-U*(aa(3,3)-ppppddpp(3,3))+U*(aa(2,2)-

ppppddpp<2.2));

Nlhtest(n)=Pe*ppppddS(3,3)/Drbar-Pe*ppppddS(2,2)/Drbar;

N2btest(n)=b(2,2)-b(1,l);
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N2ntest(n)=-U*(aa(2,2)-ppppddpp(2,2))+U*(aa(1,1)-

ppppddpp(1.l));

N2htest(n)=Pe*ppppddS(2,2)/Drbar—Pe*ppppddS(l,l)/Drbar;

shearb(n)=b(2,3)/Pe;

shearn(n)=-U*(aa(2,3)—ppppddpp(2,3))/Pe;

shearh(n)=Pe*ppppddS(2,3)/Drbar/Pe;

All(n)=all;

A22(n)=a22;

A33(n)=a33;

A23(n)=a23;

a_real=a;

%Components of <pp> and Stress

W(n)=tau(2,3);

X(n)=tau(2,2);

Y(n)=tau(1,l);

Z(n)=taU(3,3);

A(n)=a(111);

B(n)=a(2,2);

C(n)=a(3.3);

D(n)=a(2,3);

F(n)=a(3,2);

%Time step

time(n)=(n-l)*dt;

%First Normal Stress

N1=Z-X;

%Second Normal Stress

N2=X-Y;

end

%Eigenvalue and Eigenvector

eigenvalue_1=A11;

eigenvalue_2=(A22+A33—sqrt((A22+A33).“2-4.*(A22.*A33-A23.“2)))/2;

eigenvalue_3=(A22+A33+sqrt((A22+A33).“2-4.*(A22.*A33-A23.“2)))/2;

eigenvector_32=1./sqrt(1+(A23./(B-eigenvalue_2)).“2);

eigenvector_23=l./sqrt(1+(A23./(A33-eigenvalue_3)).“2);

eigenvector_33=(-A23./(A33—eigenvalue_3))./sqrt(l+(A23./(A33-

eigenvalue_3)).“2);

eigenvector_22=(-A23./(A22-eigenvalue_2))./sqrt(1+(A23./(A22—

eigenvalue_2)).“2);

eigenvalueb_1=eigenvalue_1-1/3;

eigenvalueb_2=eigenvalue_2-1/3;

eigenvalueb_3=eigenvalue_3-l/3;

%Shear Viscosity

shear=W/Pe;
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%Invariants

II=eigenvalueb_l.“2+eigenvalueb_2.“2+eigenvalueb_3.“2;

III=eigenvalueb_l.“3+eigenvalueb_2.“3+eigenvalueb_3.“3;

%Invariant Domain

xIII=[-l/36:0.000l:2/9];

yII=2/9+2*XIII;

nyI=[O:0.000l:1/6];

xxIII=-6*(nyI/6).“(3/2);

ynyI=[O:0.000l:2/3];

xxxIII=6*(ynyI/6)-“(3/2);

plot(XIII,yII,xxIII,nyI,xxxIII,ynyI,III,II,'+')
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