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ABSTRACT

RAPID PROTOTYPING AND QUICK DEPLOYMENT OF

SENSOR NETWORKS

By

Umamaheswaran Arumugam

Event-driven programming platforms for sensor networks require the programmers

to deal with several challenges including buffer management, stack management, and

flow control. TO simplify the design Of sensor network protocols, several high-level

primitives are proposed. However, these primitives have to be implemented in an

existing event-driven programming platform and most of them still require the pro-

grammers to use the same platform (though some intricate details of the platform are

hidden).

In this dissertation, we develop tools and protocols that enable the programmers

to rapidly prototype and quickly deploy sensor network protocols. We propose to

reuse existing abstract models from distributed computing literature (e.g., read/write

model, shared-memory model). Since these models hide several low-level challenges

of the target system, programs written in these models are simple, easy to under-

stand, and concise. These abstract programs must then be transformed into a model

consistent with sensor networks. The main contributions of this dissertation are as

follows.

0 We consider a new computational model for sensor networks, namely, write all

with collision (WAC) model and develop algorithms that transform programs

written in traditional abstract models into sensor networks. We Show that the

transformation algorithms preserve the self-stabilization property Of the original

programs.



0 Based on this theoretical foundation, we propose ProSe, a programming tOOl

for sensor networks. PrOSe enables the programmers to (1) specify protocols in

Simple abstract models, (2) reuse existing fault-tolerant/self-stabilizing proto-

cols from the literature in the context of sensor networks, and (3) automatically

generate and deploy code.

0 To quickly deploy the generated programs, we propose Infuse, a bulk data

dissemination protocol for reprogramming the sensors in—place. To deal with

arbitrary channel errors, we extend the sliding window mechanisms Of TCP/IP.

We Show that Infuse provides a reliable and energy-efficient data dissemination

service through simulations and real-world experiments.

Based on our experience in developing sensor network applications, we expect

that these results would simplify the protocol design, implementation, evaluation,

and deployment. As a result, it enables the transition where protocols are designed

by domain experts rather than experts in sensor networks.
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Chapter 1

Introduction

In the recent years, sensor networks have become popular due to their wide variety

of applications, including, unattended monitoring of undesirable events (e.g., border

patrolling, critical infrastructure protection), hazard detection (e.g., landslide detec-

tion), habitat monitoring (e.g., studying the micro—climates of storm petrels), and

structural monitoring (e.g., monitoring the structural integrity of bridges). In these

applications, small low-power embedded devices (called sensors) are used to: (1) sam-

ple the physical phenomenon, (2) process the sampled values, (3) communicate the

sampled values or their semantic interpretations to other sensors over the radio, and

(4) in certain applications respond to the physical phenomenon (using actuators).

Since the recent development in micro-electrical-mechanical systems (MEMS) tech-

nology enables the production of these sensors and actuators in large numbers and

at low cost, large—scale deployment of these devices are now possible. For example,

_ in [9, 10], sensor networks demonstrated the potential for monitoring a large field for

detection and tracking of undesirable objects.

1



Table 1.1: Resource limitations of sensor network platforms
 

 

 

 

Platform Processor RAM Communication Estimated lifetime

bandwidth (< 1% duty cycle) [112]

Mica 2 [31] and 8-bit. 7.37 MHz 4 KB 38.4 Kbps 453 days (Mica 2)

XSM [41] ATmega 128L

Mica Z [32] 8-bit, 7.37 MHz 4 KB 250 Kbps 328 days

Atmega 128L

Telos [113] 16—bit, 8 MHz 10 KB 250 Kbps 945 days

Tl MSP43O       
 

1.1 Challenges in Sensor Networks

During the design, implementation and deployment of sensor network applications,

most existing sensor network platforms (e.g., Mica [61], XSM [41]) pose several low-

level challenges to the designers. First, due to small form-factor, the sensors are

limited by the amount of resources they have. Second, since the sensors communicate

over a broadcast medium (e. g., radio), message collision (e.g., due to hidden terminal

effect) affect the communication among sensors. And, third, faults such as message

corruption, sensor failures and malicious sensors affect the state of a sensor network

protocol. We discuss these challenges in more detail, next.

Resource limitations. The sensors are often constrained by limited computa-

tion cycles, limited communication bandwidth, limited memory, and limited power.

Hence, they need to collaborate with each other in order to perform a certain task.

Additionally, due to limited power, to sustain the network for longer duration, meth-

ods for power management need to be used so that a sensor is put in Sleeping mode

while its services are not necessary.

Table 1.1 highlights the constraints imposed by some of the existing sensor network

platforms. Specifically, the sensors have memory of 4-10 KB and the bandwidth is at

most 250 Kbps. Furthermore, for 1% duty cycle (i.e., sensors report data once every

. 3 minutes), the estimated lifetime is between 1-3 years. However, the duty cycle in

many applications is usually higher as the sensors are required to sample the physical
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phenomenon at higher rates. Therefore, the designer of a sensor network protocol

needs to address low-level concerns such as when to forward the data to other sensors

and when to put a sensor to sleep state in order to conserve energy.

Nature of communication. Since the sensors communicate using a Shared

wireless medium (e.g., radio), the basic mode of communication is local broadcast

with collision. Specifically, whenever a sensor communicates all its neighbors receive

the message. However, if two or more messages are sent to a sensor simultaneously

then due to collision it receives none. Such message collision is undesirable in sensor

networks as it results in wastage of power to transmit the messages resulted in the

collision. Moreover, due to hidden terminal effect, a given message may collide at one

sensor and be correctly received at another sensor. In addition, the communication

range of a sensor is limited and, hence, the network is multi-hop in nature. Therefore,

the sensors need to collaborate with each other in order to forward (e.g., route) data

to its destination.

To deal with these problems, the designer needs to ensure reliable message com-

munication among sensors. Towards this end, the designer has to address the issue

of how to forward messages (e.g., using a proactive/reactive acknowledgment based

communication or scheduled communication). Also, the designer needs to identify

the tradeoff between energy and latency during multi-hop communication in order to

choose the appropriate operating point for an application.

Faults. The execution of a sensor network protocol is often hindered by (1)

Simple crash faults such as failure of sensors and (2) transient faults such as message

corruption (due to varying link properties, e.g., signal strength), message collision,

and arbitrary state corruption. Since the sensors monitor and report real-time events,

it is important that these faults do not restrict the functionality of a sensor network

protocol. Therefore, the designer has to ensure that in the presence of faults, the

protocol provides the specified functionality. In other words, the designer has to
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guarantee that the protocol is fault-tolerant.

1.2 Challenges in Existing Programming Plat-

forms for Sensor Networks

One of the important challenges in deploying sensor network applications is program-

ming. Most of the existing platforms (e.g., nesC/TinyOS [47]) for developing sensor

network programs use event-driven programming model [4]. AS identified in [4, 70],

while an event-driven programming platform has the potential to simplify concur-

rency by reducing race conditions and deadlocks, the programmer is responsible for

stack management and flow control. For example, in nesC/TinyOS platform, the

state of an operation does not persist over the duration of entire operation. As a

result, programmers need to manually maintain the stack for the operation (through

the use of global variables). This also suggests that the state of the operation is

shared across several functions. Hence, the designer has to manually control the flow

through the use of global state variables. AS the program size grows, such manual

management becomes complex and is often the source of programming errors.

In addition, typical sensor network platforms require the programmers to manage

buffers, contend for access to radio channel, and deal with faults. Hence, as mentioned

in [88], programming in nesC/TinyOS platform is “somewhat tricky” for domain ex-

perts (e.g., civil engineers in structural health monitoring applications, biologists in

habitat monitoring applications, geologists in volcanic eruption monitoring applica-

tions). Moreover, in [88], authors motivate the need for a simpler programming model

that would allow domain experts to specify their applications in terms of event-driven

programming where they do not need to worry about several programming level is-

sues.

Limitations of existing primitives for programming sensor networks. To
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simplify programming sensor networks, several macroprogramming primitives are pro—

posed (e.g., [55, 88, 96, 104, 105, 131—133]). These primitives allow the programmers

to specify the functional aspects of the protocol while hiding most of the low-level

details of the network. In other words, these primitives enable the programmers to

specify abstract programs.

While macroprogramming primitives simplify the specification and implementa-

tion of sensor network protocols, they have the following important drawbacks: (1)

the designer of a macroprogramming primitive has to still implement the primitive in

a typical sensor network platform (e.g., nesC/TinyOS), (2) if existing primitives are

insufficient or need to be extended to deal with hardware/software developments then

domain experts have to rely on experts in sensor network platforms, and (3) most

of these primitives still require the programmer to specify protocols in nesC/TinyOS

platform (though some intricate details of the platform are hidden).

1 .3 Thesis

Since sensor networks are often deployed in large numbers and in hostile/inaccessible

fields, it is necessary to provide a reliable, efficient, and robust networking of sensors.

To accomplish this, the designer of a sensor network protocol needs to deal with the

challenges identified in Section 1.1 in addition to the functionality of the protocol.

The designer also has to deal with programming level challenges (e.g., manual stack

management, manual buffer management, flow control) as identified in Section 1.2.

Moreover, in order to ensure reliable, efficient, and robust networking of sensors, the

designer needs to solve several problems that are already considered in distributed sys-

tems and traditional networking. These include (variations of) consensus, agreement

_ in presence of faulty/malicious sensors, leader election, reliable broadcast, routing,

synchronization, and tracking. Furthermore, many self-stabilizing [38, 40] algorithms
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are developed for these problems in the literature. A system is self-stabilizing, if

starting from arbitrary initial states the system recovers (in finite time) to states

from where the computation proceeds in accordance with its specification. Thus, a

self—stabilizing system ensures that after the occurrence of faults, the system recovers

to states from where it satisfies its specification. Therefore, it is advantageous to

enable the designer to reuse existing self-stabilizing algorithms to the extent possible.

The abstract models considered in distributed systems literature to develop solu-

tions to these problems hide low-level details such as message collision, race condi-

tions, and synchronization. Also, the abstract models facilitate the designer to verify

the correctness of the deployed programs and allow manipulation of existing programs

to meet new properties. Therefore, reusing abstract models and the distributed pro-

grams developed using them will enable the designer to rapidly prototype protocols

and quickly evaluate their performance.

Based on this discussion, in this dissertation, we defend the following thesis:

Rapid prototyping and quick deployment of fault-tolerant sensor

networks can be achieved by hiding low-level details from the

designer of a sensor network protocol.

To enable this, we make the following contributions: (1) foundational contributions

that identify models and provide algorithms for enabling rapid prototyping and (2)

experimental contributions that enable the designer to simplify the construction and

deployment of sensor network protocols.

1.3.1 Foundational Contributions

In this work, we develop the theoretical foundation that enables the designer to reuse

existing algorithms and abstract models considered in distributed systems literature.
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1. Computational model and transformations for sensor networks. One

challenge in reusing existing algorithms is that the abstract models considered in

these algorithms does not account for the difficulties and opportunities provided

by sensor networks. Since the basic mode of communication in sensor networks

is local broadcast with collision in nature, the computations in sensor networks

can be thought of as a write all with collision (WAC) model. Intuitively, in this

model, whenever a sensor executes, it can update the state of all its neighbors.

However, when two sensors try to update the state of a common neighbor (say,

k), due to collision, state of k remains unchanged. On the contrary, the ab-

stract models do not have the notion of message collision and existing programs

assume a point-to—point communication. In order to facilitate reuse of abstract

models and existing programs, we present transformation algorithms that allow

one to transform programs written in abstract models into programs in WAC

model. Thus, the transformations enable the designer to quickly evaluate ex-

isting algorithms in the context of sensor networks. Also, the transformations

preserve the self-stabilization property of the original program. In other words,

if the original program is self-stabilizing then the transformed program preserves

this property.

2. Enabling stabilization-preserving deterministic transformations.

While designing transformation algorithms for WAC model, we Show that a

time division multiple access (TDMA) algorithm can be effectively used to

transform programs written in abstract models into programs in WAC model.

If a deterministic and self-stabilizing TDMA algorithm in WAC model is used

with the transformation then it is possible to provide deterministic guarantees

about the transformed program in WAC model. To facilitate this, we present

a self-stabilizing deterministic TDMA algorithm for sensor networks. To the

best of our knowledge, this is the first such algorithm that achieves these prop-
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erties. Also, this is the first such algorithm that demonstrates the feasibility

of stabilization-preserving deterministic transformation of programs written in

abstract models into programs in WAC model.

1.3.2 Experimental Contributions

In this work, we design and implement protocols and tools for the designer to rapidly

prototype and quickly deploy sensor network protocols.

1. Programming tool for sensor networks. Based on the theoretical foun-

dation for reusing abstract models and distributed programs, we develop ProSe,

a tool for programming sensor networks. Towards simplifying the construction

and deployment of sensor network protocols and applications, ProSe enables

the following: (i) specify protocols in simple abstract models while hiding low-

level concerns from the designer, (ii) reuse existing algorithms, (iii) automat-

ically transform the specified programs into WAC model, and (iv) automate

code generation and deployment. Furthermore, we develop abstractions to deal

with failed sensors, arbitrary message loss (due to random channel errors), and

arbitrary state corruption. Also, we show how we used ProSe to generate pro—

grams for routing tree maintenance, distributed tracking service, and power

management. We expect that the tool enables the transition where protocols

are designed by domain experts rather than experts in sensor networks.

2. Data dissemination protocol for sensor networks. In order to quickly

deploy sensor network protocols, we develop Infuse, a TDMA based reliable

data dissemination protocol for sensor networks. Reliable data dissemination

service is essential, especially, in network reprogramming, where the sensors

are reprogrammed with a new program image in place. One of the important

requirements in data dissemination is 100% reliability, both in terms of the
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number of sensors receiving the data and the data being delivered. Towards

providing a reliable service, Infuse uses sliding window based flow control mech-

anisms and implicit acknowledgments to deal with the problem of arbitrary

message loss (due to channel errors). Furthermore, we propose optimizations

to reduce energy usage during the dissemination process. Also, we Show that

Infuse tolerates failure of sensors and ensures that the data is delivered to all

the active sensors.

. Tradeoffs in sensor communication. In order to assist the designer in

fine-tuning the parameters of the protocols, we identify the tradeoffs in sensor

communication. First, we identify the tradeoff between energy and latency. We

Show that a Simple TDMA service can be effectively used to conserve energy

when the network is idle. Also, we identify the improvement in the lifetime of

the network with respect to the probability of occurrence of an event. Second,

we identify the tradeoff between causality and timely delivery. We show that

a simple logical timestamp algorithm can be used to achieve causal delivery of

messages at the base station in order to observe the computations in sensor

networks. Also, we provide guidelines for the designer to determine the time a

sensor has to buffer messages depending on the level of causality violations the

application can tolerate.

1.4 Organization of the Dissertation

The rest of the dissertation is organized into 2 parts. In the first part, we present the

foundational aspects of the dissertation work. In Chapter 2, we formally introduce the

models of computation considered in distributed systems literature. We identify the

assumptions made in this work and define terminologies and notations. In Chapter 3,

we present a transformation algorithm that allow the designer to transform existing
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programs in distributed systems literature into a model consistent with sensor net-

works. We Show how a TDMA algorithm is useful in obtaining such transformation.

In Chapter 4, we present a self-stabilizing deterministic TDMA algorithm for sen-

sor networks. This algorithm demonstrates the feasibility of stabilization-preserving

deterministic transformation.

In the second part, we present the experimental aspects of the dissertation work.

In Chapter 5, we present a programming tool for sensor networks that allows the de-

signer to specify programs in simple abstract models considered in distributed systems

literature. This tool is based on the theoretical foundations established in Chapter 3.

Then, in Chapter 6, we present case studies on rapid prototyping of sensor network

protocols with this tool. Specifically, we consider a network routing tree mainte—

nance program, a distributed target tracking program, and a power management

program. Subsequently, in Chapter 7, we present a bulk data dissemination protocol

for sensor networks that allows one to reprogram the sensors in-place in a reliable

and energy-efficient manner. Thus, using the tool developed in Chapter 5 and the

protocol developed in Chapter 7, the designer can rapidly prototype sensor network

protocols, evaluate existing algorithms in the context of sensor networks, and quickly

deploy them in a sensor network. Additionally, in Chapter 8, we identify the tradeoffs

in sensor communication. This helps the designer to tune the protocols to operate at

the desired level while deploying them. Finally, in Chapter 9, we make the concluding

remarks and identify the scope for future research.
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Part I

Foundational Aspects
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Chapter 2

Preliminaries

In this chapter, we precisely define what a program is, specify the structure of the

programs written in abstract models considered in distributed systems literature and

in write all with collision (WAC) model, and discuss the different semantics of dis-

tributed programs. We also briefly discuss existing transformation algorithms that

allow one to transform programs written in one model into another model.

2.1 Program

We define a program based on the work of Chandy and Misra [23].

Definition. A program iS a set of variables and a finite set of actions. Each

variable has a predefined nonempty domain. In this dissertation, the programs are

Specified in terms of guarded commands [39]; each guarded command is of the form:

(guard) ——> (statement)

The guard of each action is a predicate over the program variables. The statement

of each action atomically updates zero or more program variables. [I]

For a program p, we define the following.
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Definition (State). A state of p is defined by a value of each variable of p, chosen

from predefined domain of the variable. D

Definition (State Predicate). A state predicate is a boolean expression over the

variables of p. C]

Definition (Enabled). An action of p is enabled in a state iff its guard is true in

that state. C]

Definition (Computation). A computation of p is fair, maximal sequence of

states 30,31, . . ., such that for each j, j > 0, sj is obtained from sj_1 by executing

(one or more) actions of p. E]

2.2 Computational Models in Distributed Systems

A computational model limits the variables that an action can read and write. To-

wards this end, we split the program actions into a set of processes. Each action is

associated with one of the processes in the program. Some of the commonly encoun-

tered models include message passing model, read/write model and shared-memory

model. In message passing model, processes Share no memory and they communicate

by sending and receiving messages. Thus, in each action, a process can perform one

of the following tasks: send a message, receive a message, or perform some internal

computation. A read/write model reduces the complexity in modeling message pass-

ing programs. In read/write model, the variables of a process are classified as public

variables and private variables. In each action, the process can either (1) read the

state of one of its neighbors (and update its private variables), or (2) write its own

variables (public and private). Thus, this model hides the complexities of message

queues, message delays, etc. The Shared-memory model simplifies the read/write

model further in that in one action it allows a process to atomically read its state as

well as the state of its neighbors and write its own state. Thus, this model hides the
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intermediate states, where a process has read the state of a subset of its neighbors,

that occur in read/write model. We now formally describe the restrictions imposed

by read/write model and shared-memory model.

2.2.1 Read/Write Model

In read/write model, a process consists of a set of public variables and a set of private

variables. In the read action, a process reads (one or more) public variables of one of

its neighbors. For Simplicity of presentation, we assume that each process j has only

one public variable uj that captures the values of all variables that any neighbor of

j can read. 1

Furthermore, in a read action, a process could read the public variables of its

neighbor and write a different value in its private variable. For example, consider

a case where each process has a variable :1: and j wants to compute the sum of the

:1: values of its neighbors. In this case, j could read the a: values of its neighbors

in sequence. Whenever j reads oak, it can update a private variable sum.j to be

sum.j + Ink. Once again, for simplicity, we assume that in the read action where

process j reads the state of k, j simply copies the public variables of k. In other

words, in the above case, we require j to copy the a: values of all its neighbors and

then use them to compute the sum.

Based on the above discussion, we assume that each process 3' has one public

variable, v.j . It also maintains copy.j.k for each neighbor k of j; copy.j.k captures

the value of uk when j read it last. Now, a read action by which process 3' reads the

state of k is represented as follows:

 

true —> copy.j.k=u.k;L l
 

And, the write action at j uses u.j and copy.j (i.e., copy variables for each neigh-

bor) and any other private variables that j maintains to update 1).j . Thus, the write
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action at 3' is as follows:

 

predicate(v.j, copy.3' , other_priuate_uariables.j )

—> update 22.j , other_private_uariables.j ;

   

2.2.2 Shared-Memory Model

In shared-memory model, similar to read/write model, for simplicity of presentation,

we assume that each sensor (say, j) maintains one public variable, v.j . It also main-

tains copy.j.k for each neighbor k of j that captures the value of v.k when j read it

last.

Since, in each action, a process can read the state of all its neighbors and write

its own state, we model the restrictions imposed by shared-memory model as follows:

 

true ——> Vk : k is a neighbor ofj : copy.j.k == uk;

if (predicate( u.j, copy.j, other.priuate_uariables.j) )

update i).j, other_priuate.uariables.j;

   

Remark. We use the term abstract models to denote the computational models such

as read/write model and shared-memory model developed for Specifying distributed

programs.

2.3 Computational Model of Sensor Networks

AS mentioned in Introduction, in most existing sensor platforms, the basic mode

of communication is local broadcast with collision. More specifically, due to the

shared wireless medium, if a sensor simultaneously receives two or more messages

then they collide and, hence, the messages become incomprehensible. If a message

communication does not suffer from a collision then the message is written in the

memory of all neighbors of the sender. Based on this description, we can view the
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model of computation in sensor networks as write all with collision (WAC) model.

Intuitively, in this model, in one atomic action, a sensor (process) can update its

own state and the state of all its neighbors. However, if two sensors (processes)

Simultaneously try to update the state of a sensor (say, k) then due to collision, the

state of k is unchanged. We now formally describe the restrictions imposed by this

model.

2.3.1 Write All with Collision (WAC) Model

In the WAC model, each process consists of write actions (to be precise, write-all

actions). Each write action at j writes the state of j and the state of its neighbors.

Similar to the case in read/write model, we assume that each process j has a variable

v.j that captures all the variables that j can potentially write to any of its neighbors.

Likewise, process j maintains l.j.k for each neighbor k; l.j.k denotes the value of 11.11:

when k wrote it last. Thus, an action in WAC model is as follows:

 

predicate(v.j, l .j, other_private_uariables.j )

—> update ’0.j , other.private-variables.j ;

  
Vk : k is a neighbor ofj : l.k.j = v.j;

 

We model the collision as follows. If two neighbors, say j and k, of process q were

to execute Simultaneously then their write actions collide at q. Hence, neither l.q.j

nor l.q.k is updated. Thus, if several processes execute simultaneously then only a

subset of their neighbors may be updated.

2.4 Semantics of Distributed Programs

Semantics of a distributed program specify how the enabled actions of the processes

are executed. For shared-memory model (and also for the WAC model), there are

different types of semantics that are often used. These include interleaving semantics
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(also known as central daemon), maximum parallelism, and powerset semantics (also

known as distributed daemon).

Interleaving semantics. In interleaving semantics, a central scheduler (called

central daemon) non-deterministically selects a process, say 3', among all the processes

that have one or more enabled actions. Process j then non-deterministically chooses

one action out of all the enabled actions and executes it atomically.

Maximum parallelism. In maximum parallelism, all the processes (with one

or more enabled actions) non-deterministically choose an enabled action and execute

concurrently with other processes.

Powerset semantics. In powerset semantics, a distributed scheduler (called

distributed daemon) selects any non-empty subset of processes (with one or more

enabled actions). Each selected process then non-deterministically chooses an enabled

action and executes it concurrently with other selected processes.

2.5 Transformation Algorithms

The ability to model programs in simple, abstract models (e.g., shared-memory model

under interleaving semantics) and later transform them into concrete models (e.g.,

message passing model, WAC model under powerset semantics) is one of the impor-

tant problems in distributed systems. Several algorithms (e.g., [6, 48, 49, 65, 67, 101,

103] have been proposed for enabling such transformations.

Transformations for read/write model and message passing model. In

[103], a stabilization preserving transformation is proposed to transform programs

written in shared-memory model into programs in read/write model. The main idea in

this paper is to split the action by which a process reads the state of all its neighbors in

Shared-memory model into a sequence of individual read actions in read/write model.
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To achieve this transformation, local mutual exclusion is necessary to ensure that

neighboring processes are not reading the state of one of its neighbors simultaneously.

In [103], the authors extend this solution to transform programs written in read/write

model into message passing model. Also, in [40], algorithm for transforming programs

in shared-memory model into programs in message passing model is proposed.

Semantics transformation. In [6, 48, 49, 67, 101], programs written under the as-

sumption of interleaving semantics are transformed to execute under the assumption

of powerset semantics. Also, these transformations preserve the stabilization property

of the original program. In other words, if the original program is self-stabilizing then

the transformed program under powerset semantics is also self-stabilizing. The solu-

tions developed in [6, 48, 49, 67, 101] ensure local mutual exclusion. In other words,

if a process has an enabled action then they ensure that no neighbor of that process

has an enabled action. In [48, 49, 101], the programs are transformed into shared-

memory model under a distributed daemon. In [6], the programs are transformed

into message passing model under a distributed daemon.
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Chapter 3

Transformations for Write All

With Collision Model

The abstract models introduced in Chapter 2 hide low-level details such as message

collision, race conditions, and synchronization from the designer of a sensor network

protocol. Hence, it is desirable to reuse these models and the distributed programs

developed using them in the context of sensor networks. Also, it enables the designer

to verify the correctness of the protocols (e.g., using model checkers) as well as to

manipulate existing programs in order to meet new properties (e.g., fault-tolerance,

self-stabilization, etc). In short, the reuse of abstract models will aid the designer

to (1) rapidly prototype sensor network protocols, (2) quickly evaluate their perfor-

mance, and (3) gain assurance about the deployed protocols.

One challenge in reusing abstract models is that it does not account for the difficul-

ties and opportunities provided by sensor networks. More specifically, as mentioned

in Chapter 2, the computational model in sensor networks is write all with collision

(WAC) model. Hence, to enable reuse of abstract models, it is necessary to transform

the programs written in abstract models into programs in WAC model.

While previous literature has focused on transformations among other models of
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computation (e.g., [6, 48, 49, 65, 67, 101, 103]), the issue of transformation to WAC

model from other models has not been addressed. To redress this deficiency, in this

chapter, we present a transformation algorithm that allow us to correctly execute

programs written in read/write model and Shared-memory model in the context of

sensor networks. Also, we Show that the transformation preserves the self-stabilization

property of the original program. In other words, if the original program is self-

stabilizing then the transformed program in WAC model is also self-stabilizing.

The rest of the chapter is organized as follows. First, in Section 3.1, we introduce

the system assumptions. Then, in Section 3.2, we present the transformation algo-

rithm. Subsequently, in Section 3.3, we illustrate our transformation algorithms using

the grid routing protocol designed in [25]. In Section 3.4, we discuss the efficiency of

our transformation algorithms.

3.1 System Model and Proving Correctness of

Transformations

We assume that the set of processes in the system are connected. Furthermore, we

assume that in the given program in read/write model, for any pair of neighbors j

and k, 3' can never conclude that k does not need to read the state of k. In other

words, we require that the transformation Should be correct even if each process exe-

cutes infinitely often. We also assume that the transformation should work correctly

even if the communication among neighbors is bidirectional, i.e., the transformation

algorithm should not assume that communication between some neighbors be only

unidirectional. Additionally, we assume that the topology remains fixed during the

program execution, i.e., failure or repair of processes does not occur. Thus, while

proving stabilization, we disallow corruption of topology related information. This

assumption is similar to assumptions in previous stabilizing algorithms where the
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process IDS are considered to be incorruptible.

We assume that each process has a clock variable and the rate of increase of clock

is same for all the processes. We assume that there exists a distinguished process (or

a base station) in the network that is responsible for initiating the computation of

the program in WAC model. Furthermore, we assume that the execution of an action

is instantaneous. The time is consumed between successive actions.

Proving correctness of transformation. We now discuss how we prove that

our algorithms are correct and preserve stabilization property during transformation.

Towards this end, we define the notion of equivalence between a computation of the

given program and computation of the transformed program. This notion is based

on the definition of refinement [1, 95] and simulation [95].

Consider the transformation of program p in read/write model into program p’ in

WAC model. Note that in WAC model, multiple writes can occur at once whereas in

read/write model, at most one read/write can occur at a time. Hence, each step of the

program in WAC model would be Simulated in read/write model by multiple steps.

If c’ = (30,31, . . .) is a computation of p’ and c is a computation of p, we say that c

and c’ are equivalent if c is of the form (too,t01, . . . ,tof0(= tlo),t11, . . . ,t1f1(= tgo), . . .),

where Vj : sj and tJ-o are identical (subject to renaming of variables) as far as the

variables of p are concerned.

To Show that our transformations are stabilization preserving, we proceed as fol-

lows. We Show that given any computation of p’, there exists a suffix of that compu-

tation such that there is a computation of p that is equivalent to that suffix. If the

given program, p, is stabilizing fault-tolerant then any computation of p is guaranteed

to reach legitimate states and satisfy the specification after reaching legitimate states.

It follows that eventually, a computation of p’ will reach legitimate states from where

it satisfies its specification.
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3.2 Read/Write Model to WAC Model in Timed

Systems

In this section, we present the transformation algorithm to transform a program in

read/write model into a program in WAC model for timed systems. From Chapter

2, we note that in the WAC model there is no equivalent of a read action (as in

read/write model or shared-memory model). Hence, an action by which process j

reads the state of k in read/write model needs to be modeled in the WAC model by

requiring k to write the appropriate value at j. When k writes the state of j in this

manner, it is necessary that no other neighbor of j is writing the state of j at the

same time. Finally, a write action (of read/write model) can be executed in WAC

model as is.

To obtain the transformed program that is correct in WAC model, we can use

a collision-free time-slot based protocol like time-division multiple access (TDMA)

[12, 14, 60, 76, 80]. TDMA ensures that when process k writes the state of 3' no other

neighbor of j is executing simultaneously. More Specifically, when k executes, TDMA

guarantees that the neighbors within distance 2 of k do not execute simultaneously.

We initially assume that the clocks of the processes are initialized to 0 and the

rate of increase of the clocks is same for all processes. Subsequently, we also present

an approach to deal with uninitialized clocks; this approach enables us to ensure

that if the given program in read/write model is self-stabilizing then the transformed

program in WAC model is also self-stabilizing.

3.2.1 Transformation Algorithm

The main idea behind this algorithm is graph coloring. Let the communication graph

in the given program in read/write model be G= (V, E). We transform this graph into

G"=(V, E’) such that E’={(:c,y)|(x 75 y) /\ ((2:,y) E E V (Elz :: (11:,2) E EA (z,y) E
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E))} (cf. Figure 3.1). In other words, two distinct vertices :1: and y are connected in

G’ if the distance between a: and y in G is at most 2. Let f : V ——* [0. . . K—1] be the

color assignments such that (Vj, k : k is a neighbor of j in G" : f (j) 7’5 f (k)), where

K is any number that is sufficient for coloring G’.

./\. ————-
,/ \/ \,

Figure 3.1: Transformation using graph coloring. The number associated with

each process denotes the color of the process.

 

 

Let f.3' denote the color of process 3'. Now, process j can execute at clock.j = f.j .

Moreover, process j can execute at time slots f.j + 0* K, where c is an integer. When

j executes, it writes its own state and the state of its neighbors in G. Based on the

color assignment, it follows that two write actions do not collide. Figure 3.2 shows

the actions of process j. As discussed in Chapter 2, for simplicity of presentation, the

variable v.j at j (in Figure 3.2) captures the values of all variables that any neighbor

of j can read in read/write model.

 

process j

const f.j, K;

var v.j, l.j, clock.j;

initially

set v.j according to the initial value of v.j in read/write model;

set l .j according to the initial value of copy.j in read/write model;

clock.j = 0;

begin

(3c : clock.j =f.j + c * K) —-—) if(predicate(v.j,l.j)) update v.j;

Vk : k is a neighbor of j in the original graph :

l.k.j = v.j;   end
 

Figure 3.2: Transformation for arbitrary topology

Theorem 3.1 For every computation of the transformed program in WAC model
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under powerset semantics there is an equivalent computation of the given program in

read/write model.

Proof. Consider the program in the WAC model (cf. Figure 3.2). Based on the

initial values of the clocks, the process with color2 0 starts the computation. The

initial values of the variables of the program are assigned according to the program

in the read/write model.

A write action by process j in the transformed program is equivalent to the follow-

ing computation of the original program in read/write model: a write by process j,

followed by the read actions by the neighbors of j. Now, consider the case where mul-

tiple processes execute Simultaneously in WAC model. Based on the slot assignment,

there are no collisions and, hence, these multiple write-all actions can be serialized.

If (so, 31) is a transition of the transformed program in WAC model under powerset

semantics then there is a corresponding computation (uo,u1, . . . ,um) of the program

in interleaving semantics, where m is the number of processes that execute simultane-

ously in the transition (30,31). Moreover, for each transition (u,-, u,-+1) in interleaving

semantics, there is a corresponding computation of the program in read/write model.

Consider the transition (u0,u1) of the program in interleaving semantics. For the

transition (u0,u1) (say, of process p), we can construct a computation in read/write

model, (too,t01, . . . ,tofo), where .221, 2:2, . . . , :1:f0_1 are neighbors of p. Since tab is a state

of the program in read/write model, we identify the v and copy values for tab.

. For state too : v.p(t00) = v.p(u0),V:r : :1: is a neighbor of p : copy.:1:.p(too) =

l.:r:.p(u0). This is due to the fact that the variables of the program in WAC

model are initialized according to the initial values in the program in read/write

model.

0 State to] is obtained from too by executing the write action at process p.

0 State tOw, 1 < w < f0, is obtained from tom—1) where process :cw_1 reads the
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value of up.

Now, in 7510 = tofo, we have v.p(t10) = v.p(u1),\7’;r : a: is a neighbor of p :

copy.:z:.p(t10) = l.:r.p(u1). Furthermore, by induction, if uo(= so),u1,...um(= 31) is

a computation of the program in interleaving semantics then there exists a sequence

of transitions t00,t01, . . . ,t0f0(=t10),t11, . . . ,t1f1(=t20), . . -yt(m—1)fm_1(=tm0) that is a

computation of the given program in read/write model.

Thus, for each computation of the transformed program in WAC model in in-

terleaving semantics, there is an equivalent computation of the given program in

read/write model. It follows that, for a computation of the transformed program in

the WAC model under powerset semantics, there is an equivalent computation of the

given program in the read/write model. C]

3.2.2 Preserving Stabilization in Timed Systems

To Show that stabilization is preserved during transformation, we first present how

we deal with the case where the clocks are not initialized or clocks of processes are

corrupted. Note that we have assumed that the rate of increase of the clocks is still

the same for all processes. To recover from uninitialized clocks, we proceed as follows:

Initially, we construct a spanning tree of processes rooted at the base station. Let

p.j denote the parent of process j in this Spanning tree. Process 3' is initialized with

a constant c.j which captures the difference between the initial Slot assignment of j

and p.j .

If clocks are not synchronized, the action by which p.j writes the state of j may

collide with other write actions in the system. Process j uses the absence of this

write to stop and wait for synchronizing its clock. Process j waits for K a: n slots,

where K is the period between successive slots and n is the number of processes in

the system. This ensures that process j starts executing only when all its descendants
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have stopped in order to synchronize their clocks. When j later observes the write

action performed by p.j , it can use c.j to determine the next slot in which it should

execute. Since the root process or the base station continues to execute in the slots

assigned to it, eventually, its children will synchronize with the root. Subsequently,

the grandchildren of the root will synchronize, and so on. Continuing thus, the clocks

of all processes will be synchronized and hence, further computation will be collision-

free.

In the absence of topology changes, the spanning tree constructed above and the

values of f.j and c.j are constants. Hence, for a fixed topology, we assume that these

values are not corrupted. (This assumption is similar to assumptions elsewhere where

process ID cannot be corrupted.) Once the clocks are synchronized, from Theorem

3.1, for the subsequent computation of the transformed program, there is an equivalent

computation of the given program in read/write model. Also, if the given program

is self-stabilizing then every computation of that program reaches legitimate states.

Combining these two results, it follows that every computation of the transformed

program eventually reaches legitimate states. Thus, we have

Theorem 3.2 If the given program in read/write model is self-stabilizing then trans-

formed program (with the modifications discussed above) in WAC model is also self-

stabilizing. [3

3.2.3 Transformation of Programs in Shared-Memory Model

From Chapter 2, we note that in Shared-memory model, a process can read the state

of all its neighbors and write its own state. In the transformation proposed in Section

3.2.1, a read action of process 3' in read/write mode is simulated in WAC model by

requiring the neighbors of j to write their state at j. Now, to transform a program

in shared-memory model into a program in WAC model, we proceed as follows.

In shared memory model, whenever a process executes, it has the fresh state
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information of all its neighbors. Therefore, in our transformation, we need to ensure

the following: if process j executes its actions at time t then, before j can execute

its actions again (at time t’ > t), it Should allow all its neighbors to execute at least

once. In other words, when process j executes again, it Should have the new state

of all its neighbors. Thus, read all action (i.e., read the state of all its neighbors)

by process j in shared-memory model is simulated in WAC model. To implement

this transformation, we need a TDMA service that ensures the following property;

between every two slots assigned to a process (say, j), each neighbor of j is assigned

at least one slot. The transformation algorithm proposed in Section 3.2.1 ensures this

property. We also note that the TDMA algorithm from [80] guarantees this property.

Hence, a program in shared-memory model can be transformed into a program in

WAC model using these algorithms.

3.3 Illustration: Transformation of a Routing Pro-

gram

In this section, we illustrate the transformation algorithm from read/write model into

WAC model. Specifically, we consider the logical grid routing protocol (LGRP) [25]

designed for A Line in the Sand (LITeS) experimental project [9], where a sensor

network is used for target detection, classification and tracking. We note that the

LGRP program is a variation of the balanced routing program proposed in [27],

modified to work in the context of grid based network topology. We transform the

LGRP program in read/write model into a program in WAC model. The resulting

program is a variation of the program used in LITeS project [9]. (There are small

differences between the transformed program and the program in [9]. We identify

them at the end of this section.)

In LGRP, sensors are organized into a logical grid, either offline or using a local-
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ization algorithm. A routing tree is dynamically constructed with the base station as

the root. The base station is located at (0,0) of the logical grid. A sensor (say, j)

classifies its neighbors within H hops as low neighbors or high neighbors. Specifically,

sensor k, located within H hops of j, is classified as j ’5 low neighbor if k’s distance

to the base station in the logical grid is less than that of j’s distance. Otherwise,

it is classified as j’s high neighbor. The set of low neighbors and high neighbors

identify the potential parents of j in the routing tree. The low and high neighbors

are computed statically (or at initialization) and are assumed to be constant as far

as LGRP is concerned.

Sensor j maintains a variable, inversion count. The inversion count of the base

station is 0. If j chooses one of its low neighbors as its parent then it sets its inversion

count to that of its parent. Otherwise, 3' sets its inversion count to inversion count

of its parent + 1. If 3' finds a neighbor which gives a smaller inversion count, then it

replaces its parent and updates its inversion count. Furthermore, when the inversion

count exceeds a certain threshold, it indicates that the tree may be corrupted (i.e.,

contain cycles). To deal with this problem, when the inversion count exceeds a

predetermined threshold, 3' sets its parent to null. Sensor j will later rejoin the

routing tree when it finds a neighbor which provides a better inversion count. Once

the routing tree is established, whenever 3' receives a data message, it forwards the

message to its parent.

Next, we specify the program in read/write model and then transform it into

WAC model. In this illustration, we consider H = 1, to simplify the presentation of

the program. We note that our transformations can be used for other values as well.

3.3.1 LGRP Program in Read/Write Model

Figure 3.3 Shows the LGRP program in read/write model. In this program, process

j (1..N—1) maintains 2 public variables, inv.j , inversion count of j, and up.j , status
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of j (indicates whether j has failed or not).1 Also, process j maintains a private

variable, p.j , the parent of j and 2 copy variables, copy.j.inv.k, the inversion count

values of neighbors of 3' when j read last, and copy.j.up.k, the status of neighbors of

j. The action of the base station (i.e., process bs) is as follows:

 

[true ——> p.bs, inv.bs, up.bs = (33,0, true; ]

 

In this program, process j reads the state of its neighbors and updates its copy

variable, copy.j.inv.k and copy.j.up.k. When 3' finds a low neighbor or a high neigh-

bor that gives a better inversion count value, it replaces its parent and updates the

inversion count accordingly. If p.j has failed, inversion count of p.j has reached the

maximum allowed value, or inversion count of j is not consistent with its parent, j

removes itself from the routing tree by setting p.j to null and inv.j to cmazr. It will

rejoin the routing tree when it finds a neighbor that provides a better inversion count.

Thus, the LGRP program in read/write model is as shown in Figure 3.3.

3.3.2 Transformed LGRP Program in WAC Model

Figure 3.4 shows the transformed routing program in WAC model. We obtained

this program using the transformation algorithm proposed in Section 3.2.1. In this

program, process j (1..N —1) knows the color assigned to it (f.j ) and the maximum

number of colors used in the system (K). Furthermore, j maintains 2 copy variables,

l.j.inv.k and l.j.up.k similar to the copy variables in the program in read/write model.

However, l.j.inv.k and l.j.inv.k indicates the value of inv.k and up.k respectively

when process k last wrote j. The action of the base station (i.e., process bs) is as

follows, where f.bs is the color assigned to the base station:

 

1In this program, whenever a sensor/process fails, it notifies its neighbors. This action can be

implemented as follows; whenever a sensor fails to read its neighbor for a threshold number of

consecutive attempts, it declares that neighbor as failed. Similarly, in WAC model, whenever a

sensor fails to receive update from its neighbor, it declares that neighbor as failed.
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process j: (1..N—1)

const

cmax; // maximum inversion count

In.j ; // low neighbors of j

hn.j; // high neighbors of j

var

public inv.j : {0..crnax}; // inversion count of j

public up.j : (true, false}; // status of j

private p.j : {ln.j U hn.j U null}; // parent ofj

copy Vk E {ln.j U hn.j } : copy.j.inv.k; // inversion count of neighbors of j

c0py Vk E {ln.j U hn.j} : copy.j.up.k; // status of neighbors of j

begin

true ——> copy.j.inv.k = inv.k; // read inv.k

copy.j.up.k = uch; // read up.k

k E ln.j A copy.j.up.k A (copy.j.inv.k < max) A (copy.j.inv.k < inv.j)

—-+ p.j, inv.j = k, copy.j.inv.k; // low neighbor which gives a better

// path to the base station (i.e., root)

k E hn.j A copy.j.up.k A (copy.j.inv.k < cmax) A (copy.j.inv.k + 1 < inv.j)

-——> p.j, inv.j = k, copy.j.inv.k + 1; // high neighbor which gives a better

// path to the base station (i.e., root)

p.j 5:4 nullA

(ficopy.j.up.(p.j)v // parent is dead, or

(copy.j.inv.(p.3') >= crnarr)v // parent’s inversion count >= cmax, or

(p.j E ln.j A inv.j 76 copy.j.inv.(p.j))v // j’s inversion count is not

(p.j E hn.j A inv.j aé copy.j.inv.(p.j) + 1)) // consistent with its parent

—+ p.j,inv.j = null,cmax;

p.j = null A inv.j < cmax // 3' has no parent and its

——> inuj = cmax; // inversion count is less than cmarc  end 
 

Figure 3.3: Grid routing program in read/write model

 

3c : clock.bs = f.bs + c =1: K ——»

p.bs, inv.bs, up.bs = bs, 0, true;

  
Vk : k is a neighbor of bs : l.k.inv.bs, l.k.up.bs = inv.bs,up.bs;

 

Also, in the time slot assigned to 3', process 3' executes the write actions consistent

with the write actions in the program in read/write model. Specifically, j replaces

its parent and updates its inversion count if it finds a neighbor that gives a better

inversion count value. Also, it sets p.j to null and inv.j to cmax if its current parent

has failed, inversion count of its current parent exceeds the threshold, or j ’S inversion

30



count is not consistent with that of its current parent. Once j updates its local

variables, it executes its write-all action. In other words, 3' updates inv.j and up.j at

its neighbors.

 

process j : (1..N—1)

const

cmax, ln.j, hn.j;

f.j; // color ofj

K; // maximum colors used in the network

var

public inv.j, up.j;

private p.j, clock.j (initially, clock.j = 0);

copy Vk E {ln.j U hn.j } : l.j.inv.k; // inversion count of neighbors of j

copy Vk E {ln.j U hn.j} : l.j.up.k; // status of neighbors of j

begin

(30 : clock.j = f.j + c* K)

—)

// execute write action consistent with the read/write program

if (k E ln.j A l.j.up.k A (l.j.inv.k < cmaaz) A (l.j.inv.k < inv.j))

p.j,inv.j = k,l.j.inv.k;

if (k E hn.j A l.j.up.k A (l.j.inv.k < cmax) A (l.j.inv.k + 1 < inv.j))

p.j,inv.j = k,l.j.inv.k + 1;

if (p.j 75 nullA

(-1l.j.up.(p.j)v

(l.j.inv.(p.j) >= cmax)V

(p.j E ln.j A inv.j 79 l.j.inv.(p.j))\/

(p.j E hn.j A inv.j 75 l.j.inv.(p.j) + 1)))

p.j,inv.j = null,cma:1:;

if (p.j = null A inv.j < cmax)

inv.j = cmaac;

// execute write-all actions, updating the state of all the neighbors of j

Vk : k E {ln.j U hn.j} :l.k.inv.j, l.k.up.j = inv.j, up.j;   end
 

Figure 3.4: Grid routing program in WAC model

Thus, the program written in read/write model is transformed into a program in

WAC model. The transformed program shown in Figure 3.4 differs from the program

in [25]. First, unlike the program in [25], the transformed program uses TDMA to

execute the write—all actions. This ensures collision-free update of the state of a sensor

at its neighbors. Next, the transformed program abstracts the failure of sensors. In
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[25], the authors use “heartbeat” messages; the lack of a threshold number of such

messages indicates failure of sensors.

3.4 Efficiency of the Transformation

In the transformation from read/write model (and Shared-memory model) to WAC

model, the lower bound on the time required for an enabled process to execute again

is 0(d), where d is the maximum degree of the communication graph. This is due to

the fact that once a process executes, it needs to allow its neighbors to execute before

executing again.

Now, we compute the efficiency of the transformations proposed in this chapter

and in [81]. For timed systems, a process executes once in K slots where K is the

number of colors used to color the extended communication graph. Thus, in timed

systems, the transformation can Slow down the given algorithm by a factor of K

that is bounded by d2 + 1, where d is the maximum degree of any node in the graph.

This slow down is reasonable in sensor networks where topology is typically geometric

and value of K is small (e.g., K = 5 for grid-based topology). Table 3.1 shows the

performance of our transformation algorithms.

Table 3.1: Performance of different transformation algo—

 

 

  

rithms

Systems assumptions Time complexity

Untimed (asynchronous) systems [81] 0(N)

Timed systems. grid topology [81] 0(1)

Timed systems, arbitrary topology 0(K). K 5 d’2 + 1  
where N is the number of processes in the system, K is the

number of colors required to obtain distance-2 vertex coloring,

and d is the maximum degree.

In [58], Herman introduce local broadcast with collision model for sensor networks.

They propose cached sensor transform (CST) that allows one to correctly simulate a
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program written for interleaving semantics in sensor networks. Unlike the transfor-

mation algorithms proposed in this chapter, CST uses carrier sense multiple access

(CSMA) to broadcast the state of a sensor. Furthermore, CST uses randomization

while allowing concurrent execution of multiple processes.

3.5 Chapter Summary

In this chapter, we showed that a TDMA algorithm can be effectively used to trans-

form a program in read/write model or shared-memory model into a program in WAC

model. If the TDMA algorithm is self-stabilizing then the transformation preserves

the stabilization property of the given program in read/write model or shared-memory

model.

We illustrated the transformation algorithm using the logical grid routing protocol

(LGRP) [25] designed for the Line in the Sand project [9]. We transformed the LGRP

program in read/write model into a program in WAC model. We showed that the

transformed program is similar to the LGRP implementation in [9], where the write-

all action is implemented using a broadcast message. Furthermore, the transformed

program is the TDMA version of the current LGRP implementation and, hence, the

problem of message collision is avoided.
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Chapter 4

Stabilization-Preserving

Deterministic Transformations for

WAC Model

In Chapter 3, we showed that a time division multiple access (TDMA) algorithm is

applicable in transforming existing programs written in read/write model or shared-

memory model into write all with collision (WAC) model. Specifically, the transfor-

mation proposed in Chapter 3 takes any TDMA algorithm (or distance 2 coloring

algorithm) in WAC model (e.g., [22, 60, 80]) as input. If the algorithm in [80], which

is self-stabilizing, deterministic and designed for grid based topologies, is used with

the transformation algorithm in Chapter 3 then the transformed program in WAC

model is self-stabilizing and deterministically correct for grid based topologies. And,

if the algorithms in [22, 60], which are randomized, are used then the transformed

program in WAC model is probabilistically correct. Thus, if a self-stabilizing deter-

ministic TDMA algorithm in WAC model for an arbitrary topology were available

then it would enable us to provide deterministic guarantees about the transformed

program in WAC model. With this motivation, in this chapter, we propose a self-

34



stabilizing deterministic TDMA algorithm. This algorithm can be used to transform

existing self-stabilizing abstract programs into programs in WAC model that are de-

terministically self-stabilizing.

The rest of the chapter is organized as follows. In Section 4.1, we present our

self-stabilizing TDMA algorithm in shared-memory model. Programs written in this

model are easy to understand and, hence, we discuss our algorithm first in this model.

In this algorithm, we reuse existing graph traversal algorithms (e.g., [36, 66, 108, 109]).

Subsequently, in Section 4.2, we transform this algorithm into WAC model. Then, in

Section 4.3, we show how stabilization can be added to the TDMA algorithm in WAC

model. In Section 4.4, we present extensions to improve the bandwidth utilization

of the sensors. Then, in Sections 4.5 and 4.6, we present optimizations to deal with

corruption and topology changes. In Section 4.7, we discuss some of the questions

raised by this work and in Section 4.8, we discuss the related work.

4.1 Self-Stabilizing TDMA in Shared-Memory

Model

TDMA is the problem of assigning time slots to each sensor. Two sensors j and k

can transmit in the same time slot if 3’ does not interfere with the communication of

k and k does not interfere with the communication of j. In other words, j and k can

transmit in the same slot if the communication distance between j and k is greater

than 2. Towards this end, we model the sensor network as a graph G = (V, E), where

V is the set of all sensors deployed in the field and E is the communication topology

of the network. Specifically, if sensors j and k can communicate with each other then

the edge (j, k) E E. The function distancedj, k) denotes the distance between j and

k in G. Thus, the problem statement of TDMA is shown in Figure 4.1.

In this algorithm, we split the system architecture into 3 layers: (1) token circu-
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Problem statement: TDMA

Given a communication graph G: (V, E); assign time slots to V such that the

following condition is satisfied:

If j, k E V are allowed to transmit at the same time, then distancedj, k) > 2   
Figure 4.1: Problem statement of TDMA

lation layer, (2) TDMA layer, and (3) application layer. The token circulation layer

circulates a token in such a way that every sensor is visited at least once in every

circulation. The TDMA layer is responsible for assigning timeslots to all the sensors.

And, finally, the application layer is where the actual sensor network application re-

sides. All application message communication goes through the TDMA layer. Now,

we explain the functions of the first two layers in detail.

4.1.1 Token Circulation Layer

The token circulation layer is responsible for maintaining a spanning tree in the

network and traversing the graph infinitely often. In this chapter, we do not present

a new algorithm for token circulation. Rather, we only identify the constraints that

this layer needs to satisfy. The token circulation protocol should recover from token

losses and presence of multiple tokens in the network. In other words, we require

that the token circulation protocol be self-stabilizing. We note that graph traversal

algorithms such as [36, 66, 108, 109] satisfy these constraints. Hence, any of these

algorithms can be used.

Remark. Although TDMA slot assignment in shared-memory model is (expected

to be) possible without a token circulation layer, we have used it to simplify the

transformation to WAC model.
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4.1.2 TDMA Layer

The TDMA layer uses a distance 2 coloring algorithm for determining the initial slots

of the sensors. Hence, we present our algorithm in two parts: (1) distance 2 coloring

and (2) TDMA slot assignment.

Distance 2 coloring. Given a communication graph G = (V, E) for a sensor

network, we compute E’ such that two distinct sensors :1: and y in V are connected

if the distance between them in G is at most 2. To obtain distance 2 coloring, we

require that (‘v’(i, j) E E’ :: color.i 75 color.j), where color.i is the color assigned to

sensor i. Thus, the problem statement is defined in Figure 4.2.

 

Problem statement: Distance 2 coloring

Given a communication graph G: (V, E); assign colors to V such that the following

condition is satisfied:

(V(i,j) 6 E’ :: color.i 96 color.j)

where, E’ = {(sc,y)|(:1: 75 y)A ((x,y) 6 E V (Elz E V :: (23,2) 6 EA (z,y) E E))}   
 

Figure 4.2: Problem statement of distance 2 coloring

We use the token circulation protocol in designing a distance 2 coloring algorithm.

In our algorithm, each sensor maintains two public variables: color, the color of the

sensor and nbrClr, a vector consisting of (id, c) elements, where id is a neighbor of the

sensor and c is the color assigned to corresponding sensor. Initially, nbrClr variable

contains entries for all distance 1 neighbors of the sensor, where the corresponding

color assignments are undefined. A sensor can choose its color from K, the set of

colors. To obtain a distance 2 coloring, d2 + 1 colors are sufficient, where d is the

maximum degree in the graph (cf. Lemma 4.1). Hence, K contains d2 + 1 colors.

Figure 4.3 shows the algorithm for distance 2 coloring. In this algorithm, whenever

a sensor (say, j) receives the token from the token circulation layer, it executes actions

A1 and A2 (in that order). Action A1 determines the colors used in the distance 2

neighborhood of j and chooses a non-conflicting color. Action A2 ensures that color.j
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is properly updated at its neighbors and subsequently forwards the token. We note

that for simplicity of presentation, we represent action A2 separately from action A1.

Whenever j receives the token, we require that action A2 is executed only after action

A1 is executed at least once.

Action A]. First, j reads nbrClr of all its neighbors and updates its private variable

distQClr.j. The variable distQClr.j is a vector Similar to nbrClr.j and contains the

colors assigned to the sensors at distance 2 of j. Next, j computes the set used.j

which denotes the colors used in its distance 2 neighborhood. If color.j 6 used.j , j

chooses a color from K that is not used in its distance 2 neighborhood. Otherwise, j

keeps its current color.

Action A2. Once j chooses its color, it requires that its neighbors read its current

color. Specifically, j waits until all its distance 1 neighbors have copied color.j .

Towards this end, sensor I will update nbrClr.l with (j, color.j) (using action A3) if j

is a neighbor of l and color.j has changed. Once all the neighbors of j have updated

nbrClr with color.j, j forwards the token (using the token circulation layer).

Now, we illustrate our distance 2 coloring algorithm with an example (of. Figure

4.4). Let us assume that the token circulation layer maintains a depth first search

(DFS) tree rooted at sensor r. Whenever a sensor receives a token, the TDMA layer

computes the colors used in the distance 2 neighborhood and decides the color of the

sensor. In Figure 4.4, let the colors assigned to sensors 1', a, c and d be 0, 1, 2 and 3 re-

spectively. When sensor b receives the token, nbrClr.b contains {(c, 2)} and dist20lr.b

contains {(a, 1), (d, 3)}. Thus, usedb contains {1,2,3}. Once this information is

known, b determines its color. In this example, b sets its color to 0, the minimum

color not used in its distance 2 neighborhood. Similarly, other sensors determine their

colors.

Lemma 4.1 If d is the maximum degree of a graph then d2 + 1 colors are sufi‘icient
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sensor j

const

N.j // neighbors ofj

K // set of colors

var

public color.j // color of j

public nbrClr.j // colors used by neighbors of j

private dist2Clr.j // colors used at distance 2 of j

private used.j // colors used within distance 2 of j

begin

A1: token(j) -——r

dist2Clr.j := {(id, c)|3k E N.j : ((id, c) E nbrClr.lc) A (idaéj)}

used.j 2: {cl (id, c) E nbrClr.j V (id’, c) E dist2CIr.j }

// choose an unused color from K, i.e., {K — used.j}.

if(color.j E used.j) color.j:= minimum color in {K—used.j}

A2: token(j) A (Vl E N.j : ((j,c) E nbrClr.l A color.j = 69)»

forward token

  A3: (I E N.j) A ((l,c) E nbrClr.j) A (color.l 76 c) —->

nbrClr.j := nbrClr.j — {(l, c)} U {(l, color.l)}

end

 

Figure 4.3: Algorithm for distance 2 coloring in shared-memory model

to obtain distance 2 coloring.

Proof. Based on the assumption about degree, given any vertex v, there exists at

most d distance 1 neighbors, d(d — 1) distance 2 neighbors. Thus, at most d2 vertices

are within distance 2 of v. Now, we can arrange the vertices in some order and allow

them to choose a color in such a way that the choice does not conflict with vertices

that are considered earlier and within distance 2. When a vertex is about to choose

a color, at most d2 colors could be in its distance 2 neighborhood. Thus, a vertex can

choose a color such that it does not overlap with the colors assigned to vertices in its

distance 2 neighborhood. I]

Corollary 4.2 For any sensor j, used.j contains at most d2 colors. D

Theorem 4.3 The above algorithm satisfies the problem specification of distance 2
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Figure 4.4: Color assignments using depth first search token circulation. The

number associated with each sensor denotes the color assigned to that sensor.

The dashed edges denote the back edges in the depth first search tree.

coloring. Cl

Theorem 4.4 Starting from arbitrary initial states, the above algorithm recovers to

states from where the problem specification of distance 2 coloring is satisfied.

Proof. Based on the assumption in Section 4.1.1, the token circulation layer is

self-stabilizing. The TDMA layer preserves the stabilization property of the token

circulation layer Since it eventually allows a sensor to forward the token. Thus,

starting from arbitrary initial states, the token circulation algorithm self-stabilizes to

states where only one token is present in the network. In the circulation of the token

after stabilization, we Show that the following conditions are satisfied.

0 Given any sensor va that is visited by the token, color of va does not conflict

with sensors that are within distance 2 of va and have been visited.

0 Given any sensor va that is visited by the token, color of 120 is correctly captured

in all its neighbors.

Let v1, v2, . . . ,vx be the path taken by the token after stabilization. It is straight-

forward to see that the above conditions are satisfied when the token is sent by v1.

Furthermore, based on the algorithm, these conditions are preserved when the token
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is passed. When the token circulation is complete, based on the above conditions, it

follows that the specification of distance 2 coloring is satisfied and the colors will be

unchanged in subsequent token circulations. E]

TDMA slot assignment. Once a sensor (say, j) decides its color, it can com-

pute its TDMA Slots. Specifically, color.j determines the initial TDMA slot of j.

And, future slots are computed using the knowledge about the period between suc-

cessive TDMA Slots. Since the maximum number of colors used in any distance 2

neighborhood is d2 + 1 (cf. Lemma 4.1), the period between successive TDMA slots,

P = d2 + 1, suffices. Once the TDMA slots are determined, the sensor forwards the

token in its TDMA Slot. And, the sensor can start transmitting application messages

in its TDMA slots. Thus, the algorithm for TDMA slot assignment is Shown in Figure

4.5.

 

const P = (d2 + 1);

when j decides its color

j can transmit at slots color.j+c =1: P, where c 2 0

  
 

Figure 4.5: TDMA Slot assignment algorithm in shared-memory model

In Figure 4.4, the maximum degree of the graph is 3. Hence, the TDMA period is

10. However, since the number of colors assigned to sensors is 5, the desired TDMA

period is 5. We note that while the number of colors used by our algorithm is small as

the value of the d is expected to be small in sensor networks, identifying an optimal

assignment is not possible. This is due to the fact that the problem of distance 2

coloring is NP-complete even in an offline setup [92]. In [73, 114], approximation

algorithms for offline distance 2 coloring in specific graphs (e.g., planar graphs) are

proposed. However, in this chapter, we consider the problem of distributed distance 2

coloring where each sensor is only aware of its local neighborhood. In this case, given

a sensor with degree d, the slots assigned to this sensor and its neighbors must be
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disjoint. Hence, at least d + 1 colors are required. Thus, the number of colors used in

our algorithm is within (1 times the optimal. We present an algorithm for computing

the TDMA period depending on the local knowledge of the maximum difference in

colors assigned to distance 2 neighborhood of each sensor in Section 4.4.1.

Theorem 4.5 The above algorithm ensures collision-free communication.

Proof. Consider two distinct sensors j and k such that the distance between

j and k in the communication graph G is at most 2. The timeslots assigned to j

and k are color.j + c * P and color.k + c * P respectively, where c is an integer and

P = (d2 + 1). Suppose a collision occurs when j and k transmit a message at slots

color.j + 01 * P and color.k + c2 * P respectively, where c1, c2 > 0. In other words,

color.j + Cl =1: P: color.k + c2 =1: P. From Theorem 4.3, we know that color.j aé color.k.

Therefore, collision will occur iff [colonj — color.k] is a multiple of P. However, since

the distance between j and k is at most 2, [color.j — color.k] is at most d2 (less than

P). In other words, [colorj — color.kl S d2 < P. Hence, if j and k transmit at the

same time, then the distance between them is greater than 2. This iS a contradiction.

Thus, collisions cannot occur in this algorithm. [3

Since the distance 2 coloring algorithm is self-stabilizing (cf. Theorem 4.4), start-

ing from arbitrary initial states, the algorithm recovers to states from where the initial

TDMA slots assigned to the sensors are collision-free. Once the initial TDMA slots

are recovered, the sensors can determine the future TDMA slots. Thus, we have

Theorem 4.6 Starting from arbitrary initial states, the above algorithm recovers to

states from where collision-free communication is restored. CI

4.2 TDMA Algorithm in WAC Model

In this section, we transform the algorithm presented in Section 4.1 into a program in

WAC model that achieves token circulation and distance 2 coloring upon appropriate
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initialization. (The issue of self-stabilization is handled in Section 4.3.) As discussed

earlier, in shared-memory model, in each action, a sensor reads the state of its neigh-

bors as well as writes its own state. However, in WAC model, there is no equivalent

of a read action. Hence, the action by which sensor j reads the state of sensor k in

shared-memory model is simulated by requiring k to write the appropriate value at

j. Since simultaneous write actions by two or more sensors may result in a collision,

we allow sensors to execute in such a way that simultaneous executions do not result

in collisions.

Observe that if collision-freedom is provided then the actions of a program in

Shared-memory model can be trivially executed in WAC model. Specifically, the

write all action of a sensor (say, j) in WAC model can be thought of as simultaneous

read action by all neighbors of j. Our algorithm in this section uses this feature

and ensures that collision-freedom is guaranteed. Thus, the effect of execution of a

token circulation program in WAC model is similar to the case where it is executed

in shared-memory model.

To obtain a program in WAC model, we proceed as follows. In this program, in

the initial state, (a) sensors do not communicate among each other and (b) nbrClr

and distQClr variables contain entries such that the color assignments are undefined.

We present our algorithm in two parts: (1) distance 2 coloring, and (2) TDMA slot

assignment.

Distance 2 coloring. Initially, the base station (i.e., sensor r) circulates the token

for obtaining distance 2 coloring. Whenever a sensor (say, j) receives the token (from

the token circulation layer), it chooses its color. Towards this end, j first computes the

set used.j which denotes the colors used in its distance 2 neighborhood. If nbrClr.j

(or distBClr.j) contains (l, undefined), l did not receive the token yet and, hence,

color.l is not assigned. Therefore, j ignores such neighbors. Afterwards, j chooses

a color such that color.j E used.j . Subsequently, j reports its color to its neighbors
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within distance 2 using the primitive report-distance.2_nbrs (discussed later in this

section) and forwards the token. Thus, the action by which k reads the colors used in

its distance 2 neighborhood (in shared-memory model) is modeled as a write action

where j reports its color to the sensors in its distance 2 neighborhood using the

primitive report-distance_2_nbrs.

Note that the order in which the token is circulated is determined by the token

circulation algorithm used in Section 4.1, which is correct under the shared-memory

model (e.g., [36, 66, 108, 109]). Since token circulation is the only activity in the

initial state, it is straightforward to ensure collision-freedom. Specifically, to achieve

collision-freedom, if j forwards the token to k in the algorithm used in Section 4.1,

we require that the program variables corresponding to the token are updated at j

and k without collision in WAC model. This can be achieved using the primitive

report-distance.2_nbrs. Hence, the effect of executing the actions in WAC model will

be one that is permitted in shared-memory model. Figure 4.6 shows the transformed

algorithm in WAC model.

 

sensor j

const N.j , K

var color.j, nbrClr.j, dist2Clr.j, used.j

begin

token(j) ——>used.j := {cl (id, c) E nbrC/r.j V (id’, c) E dist2CIr.j }

color.j := minimum color in K—used.j

execute report_distance.2_nbrs

forward token

end    
Figure 4.6: Algorithm for distance 2 coloring in WAC model

Theorem 4.7 The above algorithm satisfies the problem specification of distance 2

coloring.

Proof. Observe that, the action by which a sensor (say, j) reads the colors assigned

to sensors in its distance 2 neighborhood is simulated in this algorithm by requiring
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j to write its color at the sensors within distance 2 of j. Since there is no other

communication before color assignment, token circulation will succeed. Hence, from

Theorem 4.3, it follows that the above algorithm satisfies the problem specification

of distance 2 coloring. Cl

TDMA slot assignment. Once a sensor determines its color, it can compute

its TDMA slots. Similar to the discussion in Section 4.1, the color of the sensor

determines the initial TDMA slot. Subsequent Slots can be computed using the

knowledge about the period between successive slots. If d is the maximum degree of

the communication graph G, the TDMA period, P=d2 + 1 suffices.

However, unlike the algorithm in Section 4.1 in Shared-memory model, sensors

do not start transmitting messages immediately. Otherwise, the token circulation

may be interrupted due to collisions. Once the TDMA slots are determined, a sensor

forwards the token in its TDMA slot. Hence, the token circulation does not collide

with other TDMA Slots. Next, a sensor waits until all the sensors in its distance

2 neighborhood have determined their TDMA slots before transmitting application

messages in its TDMA Slots. Thus, when a sensor starts transmitting application

messages, all sensors in its distance 2 neighborhood have determined their TDMA

slots and, hence, does not interfere with other TDMA slots and token circulation.

Figure 4.7 shows the TDMA slot assignment algorithm.

 

const P = (d2 + 1);

if (j has decided its color) A (all sensors within distance 2 of j are colored)

j can transmit application messages at slots: color.j + c at P, where c 2 0

  
 

Figure 4.7: TDMA slot assignment algorithm in WAC model

Theorem 4.8 The above algorithm ensures collision-free communication. Cl

Implementation of report-distance.2_nbrs. In the above algorithm, we use the

primitive report..distance-2._nbrs. In particular, whenever a sensor (say, j) decides its
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color, this primitive reports the color to its distance 2 neighborhood. Specifically, it

updates the nbrClr value of its distance 1 neighbors and dist2Glr value of its distance

2 neighbors. We discuss its implementation, next.

Sensor j sends a broadcast message with its color and a schedule for its distance

1 neighbors. The sensors at distance 1 of j update their nbrClr values. Based on the

schedule in the report message, each of the neighbors broadcast their nbrClr vectors.

Specifically, if a distance 1 neighbor (say, I) of j is already colored, the schedule

requires 1 to broadcast nbrClr.l in its TDMA slot. Otherwise, the schedule specifies

the slot that I should use such that it does not interfere with the slots already assigned

to j’s distance 2 neighborhood. If there exists a sensor k such that distanceg(l, k) g 2,

then k will not transmit in its TDMA slots, as l is not yet colored. (Recall that a sensor

transmits application messages only if all its distance 2 neighbors have determined

their TDMA slots.) Now, a sensor (say, m) updates dist20lr.m with (j, color.j) iff

(m 5A j) A (j E N.m). Thus, this schedule guarantees collision-free update of color.j

at sensors within distance 2 of j. Furthermore, this primitive requires at most d+1

update messages.

4.3 Adding Stabilization in WAC Model

In the algorithm presented in Section 4.2, if the sensors are assigned correct slots then

validating the Slots is straightforward. Towards this end, we can use a Simple diffus-

ing computation to allow sensors to report their colors to distance 2 neighborhood

and ensure that the slots are consistent. For simplicity of presentation, we assume

that token circulation is used for revalidating TDMA slots. Now, in the algorithm

presented in Section 4.2, we observe that in the absence of any faults, the token cir-

culates the network successfully and, hence, slots are revalidated. However, in the

presence of faults, the token may be lost due to a variety of reasons, such as, (1) slots
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assigned to sensors are not collision-free, (2) nerlr values are corrupted, and/or (3)

token message is corrupted. Or, due to transient faults, the token may circulate in a

cycle or there may be several tokens.

To obtain self-stabilization, we use the convergence-stair approach proposed in

[52]. First, we ensure that the token does not circulate in a cycle and if the system

contains multiple tokens then it recovers to states where there is at most one token.

Then, we ensure that the system recovers to states where there is a unique token (cf.

Figure 4.8).

Step 1: Dealing with multiple tokens. During token circulation, there may be

multiple tokens in the network or the tokens may circulate in a cycle. To deal with

these problems, we add a time-to-live (TTL) field to the token message. Whenever the

base station initiates a token circulation, it sets TTL to the number of hops the token

traverses during one circulation. Since the token traverses an edge twice (once during

visiting a sensor and once during backtracking), the base station sets TTL to 2 * |Et|,

where IE] is number of edges traversed by the token in one circulation. At each

hop, the token decrements its TTL value. If this value is zero, the token circulation

is terminated. Thus, this ensures that the token returns to the base station within

2 >1: [Etl hops or it is lost.

To deal with the case of multiple tokens, we ensure that any token in the network

either returns to the base station within a predetermined time or it is lost. Towards

this end, we ensure that a sensor forwards the token as soon as possible. To achieve

this, whenever a sensor, say j, receives the token, j updates its color at its neighbors in

its TDMA slot. (This can be achieved within P slots, where P is the TDMA period.)

Furthermore, in the subsequent slots, (a) the neighbors relay this information to

distance 2 neighbors of j and (b) j forwards the token. (Both of these can be achieved

within P slots.) Observe that if the TDMA slots are valid then any token will return

in 2 :1: P =1: [Er] slots to the base station. Otherwise, it may be lost.
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owhen new token circulation begins

0 set a timer T1 for token return

0 set TokensReceived := 0

oupon completing token circulation

0 set TokensReceived := 1

o // do not recirculate until T1 expires

—upon expiry of timer T1

- // only base station has the token

— if TokensReceived = 1

— start a new token circulation

else

wait for distance 3 neighborhood

to stop

send recovery token   

oupon receiving a token

o verify nbrClr and dist2Clr variables

0 forward token (see description)

— set a timer T2 for return of

the token

upon expiry of timer T2

// stop communication until new token

set nbrClr and dist2CIr

to undefined

upon receiving recovery token

recompute nbrCIr, dist2Clr, color

wait for distance 3 neighborhood

to stop

forward recovery token

 

(a) Actions at the base station (b) Actions at the sensors

 

Arbitrary state: 0 or more tokens
f- Step 1: Actions with .

 

At most 1 token

V

[— Step 2: Actions with o and -

v
 

Exactly l token
[— Step 3: All actions

V
 

 

    
Exactly l token /\ TDMA slots are correct
 

     
 

 

(c) Convergence to legitimate states

Figure 4.8: Adding stabilization

In order to revalidate the slots assigned to the sensors, the base station initiates

a token circulation once every token circulation period, Pm slots. The value of Ptc

is chosen such that it is at least equal to the time taken for token circulation (i.e.,

Pm 2 2 a: P * [Et|). Thus, when the base station (i.e., r) initiates a token circulation,

it expects to receive the token back within Ptc slots. Towards this end, the base

station sets a timeout for Ptc duration whenever it forwards the token. Now, if the

base station sends a token at time t and it does not send any additional token before

time t+ Ptc then all tokens in the network at time t will return to the base station

before time t + Ptc or they will be lost. Hence, when the timeout expires, there is

no token in the network. If the base station does not receive any token before the
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timeout expires, it concludes that the token is lost. Similarly, whenever a sensor

(say, j # r) forwards the token, it expects to receive the token in the subsequent

round within Ptc. Otherwise, it sets the color values in nbrClr.j and dist2Clr.j to

undefined. And, stops transmitting until it recomputes color.j and the sensors in its

distance 2 neighborhood report their colors. Therefore, at most one token resides in

the network at any instant. Thus, we have

Lemma 4.9 For any system configuration, if the base station initiates a token circu-

lation at time t and does not initiate additional token circulation before time t+ Pic

then no sensor other than the base station may have a token at time t + Pm. [:1

Steps 2 and 3: Recovery from lost token. Now, if the token is lost in the

network, the base station initiates a recovery by sending a recovery token. Before

the base station sends the recovery token, it waits until the sensors in its distance

3 neighborhood have stopped transmitting. This is to ensure that the primitive

report-distance.2_nbrs can update the distance 2 neighbors of the base station suc-

cessfully. Let Trt be the time required for sensors in the distance 3 neighborhood of

the base station to stop transmitting. Specifically, the value of Trt should be chosen

such that the sensors within distance 3 of the base station can detect the loss of the

token within this interval. Although, the actual value of Trt depends on the algo-

rithm used for token circulation, it is bounded by Ptc. After waiting for Trt amount

of time, the base station recomputes its color. Furthermore, it reports its colOr to

the sensors within distance 2 of it. As mentioned in Section 4.2, the primitive re-

port_distance_2_nbrs ensures collision-free update since the sensors within distance 3

have stopped. Then, it forwards the recovery token.

Now, when a sensor (say, j) receives the recovery token, similar to the base station,

it waits until the sensors in the distance 3 neighborhood of j have stopped transmit-

ting. Then, j follows the algorithm in Section 4.2 to recompute its color. Once j

decides its color, it uses the primitive report-distance-2-nbrs to update the sensors
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within distance 2 of j with color.j . Thus, we have

Lemma 4.10 Whenever a sensor (say, j) forwards the recovery token, sensors within

distance 2 of j are updated with color.j without collision. CI

The pseudo—code for stabilization and the illustration of how sensors converge to

legitimate states are shown in Figure 4.8. Once a sensor recomputes its color, it can

determine its TDMA slots using the algorithm in Section 4.2. Thus, we have

Theorem 4.11 With the above modification, starting from arbitrary initial states,

the TDMA algorithm in WAC model recovers to states from where collision-free com-

munication is restored. [:1

Time complexity for recovery. Based on the above discussion, the value of

Trt depends on the algorithm used for token circulation. Suppose Trt = Ptc, i.e., the

base station waits for one token circulation period before forwarding the recovery

token. Now, when the base station forwards the recovery token, all the sensors in the

network would have stopped transmitting. Furthermore, whenever a sensor receives

the token, it can report its color without waiting for additional time. To compute the

time for recovery, observe that it takes (a) at most one token circulation time (i.e.,

P“) for the base station to detect token loss, (b) one token circulation for the sensors

to stop and wait for recovery, and (c) at most one token circulation for the network

to resume normal operation. Thus, the time required for the network to self-stabilize

is at most 2 =1: Ptc+ time taken for resuming normal operation. Since the time taken

for resuming normal operation is bounded by Ptc, the time required for recovery is

bounded by 3 >1: Ptc.

We expect that depending on the token circulation algorithm, the recovery time

can be reduced. Since this chapter does not focus on a specific token circulation

algorithm, we do not consider the issue of optimizing the recovery time. We refer the

reader to Section 4.7 for a discussion on local recovery for small perturbations.
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4.4 Improving Bandwidth Utilization

In this section, we discuss mechanisms for improving the bandwidth utilization of

sensors. First, we Show how the TDMA period can be updated. Next, we Show how

the sensors can locally negotiate to request for additional bandwidth.

4.4.1 Dynamic Update of TDMA Period

In this extension, we focus on the problem of reducing the period between successive

Slots. This solution is based on the approach presented in [80]. Our solution involves

three tasks: (1) allowing each sensor to compute the maximum difference in colors

assigned to sensors within distance 2, (2) communicating the difierence in the network,

and (3) updating the TDMA period.

Task 1: Computing the desired local TDMA period. Regarding the first

task, when a sensor (say, j) starts transmitting application messages, j has the knowl-

edge about the colors assigned to sensors within distance 2 of j. Hence, j can

compute the maximum difference (LP.j ) among the colors assigned to the sensors

in its distance 2 neighborhood. Specifically, LP.j = mar({Vl,k : distancea(l, j) S

2 A distancec(k, j) 5 2 : |color.l -— color.k|}) + 1. Since j maintains the colors assigned

to sensors within distance 2 of j in used.j , LP.j = macr({‘v’c1, c2 E used.j U {colorj} :

[cl -C2I})+1. The variable LP.j denotes the desired TDMA period for sensor j, since

it reflects the maximum number of slots occupied in its distance 2 neighborhood.

Remark. In order to improve the TDMA period, we can ensure that a sensor

chooses its color by locally minimizing the maximum difference in colors assigned to

its distance 2 neighborhood. Specifically, whenever sensor j receives the token, it sets

color.j =cj where cj minimizes the quantity ma1({Vc,- E used.j : lcj — c,-|}). In other

words, j chooses a color such that the maximum difference between its color and

the colors assigned to its distance 2 neighborhood is minimized. Thus, this greedy
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approach minimizes the desired local TDMA period value of j.

Task 2: Computing the maximum local TDMA period. Regarding the

second part, we use the token circulation algorithm to compute the maximum local

TDMA period. Let token.LP denote the maximum desired TDMA period determined

so far. When the base station initiates token circulation, it sets token.LP = LP.r,

where LP.r denotes the maximum difference among the colors assigned to the sensors

in the distance 2 neighborhood of the base station. Now, whenever a sensor (say, j)

forwards the token, it sets token.LP=max(token.LP, LP.j) It follows that when the

base station receives the token back, it will obtain the maximum value of the desired

TDMA period of all sensors in the network.

Task 3: Updating the TDMA period. Finally, regarding the third part,

once the base station learns the new TDMA period value, it can include this when

it initiates the next token circulation. Now, the sensors will learn the new TDMA

period value. When the base station initiates the subsequent token circulation, the

new TDMA period is used to determine the slots at which a sensor can send a message.

The above extension is intended to show that it is possible to dynamically update

the TDMA period based on the colors assigned in the distance 2 neighborhood of all

the sensors. However, we note that this approach may not improve the bandwidth

utilization of the sensors if the number of colors used in a distance 2 neighborhood

is equal to |K| (i.e, all d2 + 1 colors). In Section 4.4.2, we Show how sensors can

improve their bandwidth utilization by requesting for unused slots in its distance 2

neighborhood.

4.4.2 Local Negotiation Based Bandwidth Reservation

The algorithm in Section 4.3 allocates uniform bandwidth to all sensors. In this

section, we consider an extension Where a sensor can request for additional bandwidth,

52



if available. This extension is based on the traditional mutual exclusion algorithms

and it utilizes the fact that there is time synchronization and reliable timely delivery

provided by TDMA.

In our TDMA algorithm, each sensor is aware of the slots used by the sensors

in its distance 2 neighborhood. Hence, a sensor can determine the unused slots and

if necessary request for the same. Whenever a sensor (say, j) requires additional

bandwidth, it broadcasts a request.slot message in its TDMA slot. The message

includes the slot requested by j and the time when j made the request. Since the

message is broadcast, all distance 1 neighbors of j will receive the message. The

distance 1 neighbors of j rebroadcast the message immediately to their neighbors in

their earliest TDMA slots. If two or more request._slot messages are received before

the communication Slot assigned to a sensor, these messages are grouped and sent as

a Single request message.

Now, we Show that if j transmitted its request in timeslot x,- and it did not

receive any other request with timestamp ts such that ts < xj + P then j can

access the requested timeslot without collisions. Towards this end, observe that if j

transmits at slot 23-, all distance 1 neighbors of j can transmit at least once before

j ’3 next Slot, :13]- + P, where P is the TDMA period. Thus, if 234- is the slot when

j requests unused Slots, this request message is received by sensors in its distance 2

neighborhood within slot 11:,- + P. Likewise, if sensor l requests for the same slot such

that distancedj, l) S 2, j will learn about l’s request within time P of the request.

Hence, if j does not receive a request with earlier timestamp before :12,- + P then j can

use its requested slot without collisions. Furthermore, if j and I request for same slot

then only one of them would succeed as the slots in which they request are different

(due to collision-freedom of TDMA slots). Additionally, lease mechanisms [125] could

be used to avoid starvation, where a sensor is required to renew the additional slots

within a certain period of time.
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Thus, sensors can request for unused Slots when necessary using a simple local ne-

gotiation protocol. Furthermore, when a sensor requests unused slots, at most d + 1

request messages are transmitted, where d is the maximum degree of the communi-

cation graph. And, the sensor can determine whether or not it is allowed to use the

requested slots within P slots.

4.5 Optimizations for Token Circulation and Re-

covery

In this section, we propose mechanisms that allows sensors to improve the reliability

of token circulation. First, we note that in the algorithm in Section 4.3, whenever

the token is lost, recovery is initiated by the base station. However, it is possible that

the slots are still collision-free. This could happen if the token is lost due to message

corruption or synchronization errors. To deal with this problem, the base station

can choose to initiate recovery only if it misses the token for a threshold number of

consecutive attempts.

Additionally, to ensure that the token is not lost due to message corruption,

whenever a sensor (say, j) forwards the token, it expects its successor (say, k E N.j )

to forward the token within a certain interval. If j fails to receive such implicit

acknowledgment from k, j retransmits the token (in its TDMA slots) a threshold

number of times. If a sensor receives duplicate tokens, it ignores such messages. In

[79], we have used implicit acknowledgments in the context of data dissemination

across a large scale sensor network. Such data dissemination service is similar to

a token circulation algorithm as a given message (respectively, token) is required

to be disseminated reliably across the network. In [79], we Show that the implicit

acknowledgments improved the reliability of dissemination of messages by detecting

message losses (for example, due to corruption) and recovered quickly from them,
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with the help of simulations and real-world experiments. Based on our experiences

with the use of implicit acknowledgments, we expect that the reliability of token

circulation can be improved with the help of such implicit acknowledgments.

4.6 Optimizations for Controlled Topology

Changes

In our algorithm, controlled addition and removal of sensors do not affect the nor-

mal operation of the network. Let us first consider the removal/failure of sensors.

Whenever a sensor is removed or fails, the TDMA slots assigned to other sensors

are still collision-free and, hence, normal operation of the network is not interrupted.

However, the slots assigned to the removed/failed sensor are wasted. We refer the

reader to Section 4.4 for approaches on how to reclaim the wasted slots.

Suppose a sensor (say, q) is added to the network such that the assumption about

the maximum degree is not violated. Towards this end, we require that whenever a

sensor forwards the token, it includes its color and the colors assigned to its distance

1 neighbors. Before q joins the network and starts transmitting application messages,

we require q to learn the colors assigned to the sensors within its distance 2 neigh-

borhood. One way to achieve this is by listening to token circulation of its distance

1 neighbors. Once q learns the colors assigned to sensors within distance 2, it can

choose its color. Thus, q can determine the TDMA slots that it can use. Now, when q

sends a message, its neighbors learn the presence of q and include it in the subsequent

token circulations.

With this approach, if two or more sensors are added simultaneously then these

new sensors may choose conflicting colors and, hence, collisions may occur. Since

our algorithm is self-stabilizing, the network self-stabilizes to states where the colors

assigned to all sensors are collision-free. Thus, new sensors can be added to the

55



network. However, if adding new sensors violates the assumption about the maximum

degree of the communication graph, Slots may not be assigned to the sensors and/or

collisions may occur.

4.7 Discussion

In this section, we discuss some of the questions raised by this work.

Scalability. One of the questions about the transformation is scalability. While

the algorithm uses a token circulation approach for assigning initial colors (or recal-

culating them in the context of stabilization), we note that the algorithm provides

acceptable performance in a typical scenario where sensor networks are deployed.

To illustrate the issue of scalability, we consider a network with 100 Mica-2 sensors.

(Typically, networks with more than 100 sensors will be organized in sections to ensure

that the path to a base station is within acceptable limits [10]. Then, our algorithm

can be used independently for each section.) If such sensors are arranged in a 10x10

communication grid then five colors suffice [80]. The token circulation time (Pm)

in such networks is 0.99 minutes (where the timeslot interval is 30 ms = the time

required to transmit one message in Mica-2 motes) and, hence the recovery time is

3 * P“: 2.97 minutes.

Thus, the time required for the network to self-stabilize is small. Additionally, we

expect that the number of colors required to obtain distance 2 coloring is small for

random deployments. Therefore, our algorithm provides acceptable performance in

such deployments.

Local recovery. It is possible to extend our algorithm so that sensors can locally

correct the corrupted Slots when only a small number of sensors is corrupted. For

example, if a sensor learns that its color overlaps with its neighbor within distance 2, it

can change its color locally. Alternatively, if only a small set of sensors are corrupted
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then we could combine our algorithm with that in [60]. Specifically, whenever a

sensor detects that the slots are corrupted, initially, it could use the algorithm in

[60] to locally correct the slots. Thus, for the case where only a small subset of

sensors are corrupted, the Slots will be quickly restored. However, if it fails to assign

slots in a fixed interval then the recovery token from the base station will restore the

Slots. Local recovery is especially useful if the base station tries multiple tokens before

initiating recovery. Specifically, in this case, small perturbations are corrected locally.

However, if the corruption is excessive then our algorithm will ensure recovery in a

deterministic interval.

Edge coloring vs. vertex coloring. Our solution is based on vertex coloring

where timeslots are assigned to each sensor. An alternative approach is edge coloring

where timeslots are assigned to each edge. Formally, the problem of edge coloring is

stated as follows: Let f(a, b) be the color assigned to edge (a, b); then V(r,y) E E :

(f(x, y) E ({f(j,:1:)|j is a neighbor of x} U {f(l,y),f(y,l)|(a: 76 l) A (l is a neighbor

of y)}). Now, a sensor (say, as) can send messages at slots Ely : y is a neighbor of

:1: : f (x, y). Moreover, a; can send messages at slots f (as, y) + c :1: K, where c 2 0 and

K (the TDMA period) is the number of colors used in the network. Based on the

color assignments, whenever r sends a message in the slot f (9:, y) + c :1: K, sensor y

receives the message successfully (although it may cause collision elsewhere).

 

0: >3: >04 =f< >0

0 1 3 2

Figure 4.9: Sample time slots assigned for edges in a network. The number

associated with each edge indicates the slot at which a process can write to

the other process.

Figure 4.9 shows a sample computation slot assignment using edge coloring. In

this example, process :1: can execute in slots 0,1 and write the state of its neighbors
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j 1, j2 respectively. When process :1: executes in slot 0, process j2 can execute and

write the state of l2. We note that in this case, there will be a collision at processes

j2 and 3:. However, this does not interfere with the write actions at processes l2 and

jl. This is due to the fact that collisions do not occur at the receivers. Thus, edge

coloring can be used to design transformations for the WAC model.

One of the main drawbacks with edge coloring is energy-efficiency. More specifi-

cally, with edge coloring, a process has to execute up to d times in order to update

the state of all its neighbors, where d is the number of its neighbors. By contrast,

with vertex coloring, a process has to execute only once in order to update the state

of all its neighbors. Thus, slot assignment using edge coloring is not energy-efficient

when compared to vertex coloring.

Time synchronization. We assume that all the sensors have identical clocks.

Time synchronization can be achieved as follows: whenever a sensor receives the to-

ken, it synchronizes its clock with respect to its parent (i.e., the sensor from which

it receives the token for the first time). Thus, sensors can deal with clock drifts and

ensure that the slots are collision-free. Furthermore, in the case where TDMA Slots

are consistent, we can use time synchronization algorithms proposed in the literature

for sensor networks. For example, we can integrate a time synchronization service

(e.g., [45, 59, 127]) with the TDMA algorithm proposed in this chapter. The time

synchronization service synchronizes the clocks of the sensors within a few microsec-

onds. Moreover, we expect that the performance of the time synchronization service

will be improved as TDMA will ensure that the time synchronization messages are

transmitted successfully.

Violation of maximum degree assumption. AS discussed in Section 4.3,

whenever a sensor is added to the network, as long as the assumption about the

maximum degree, d, of the communication graph is not violated, the normal operation

of the network is not affected. However, if this assumption is violated then slots
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may not be assigned to the new sensors and/or collisions may occur. To deal with

this problem, whenever a sensor is added such that the maximum degree of the

communication graph is increased, we can use the approach proposed in Section 4.4.1

to increase the period between successive TDMA slots of the sensors. Towards this

end, the base station can update the TDMA period while circulating the token.

Additionally, if the base station is not aware of the violation of the maximum

degree, during stabilization, the sensors adjacent to the added sensors learn that the

maximum degree has changed. Now, the sensors can use the algorithm in Section 4.4.1

to change the TDMA period accordingly. Thus, if sensors are added to the network

in small numbers and in a controlled fashion, normal operation of the network will

not be affected.

Variability in degree. If the communication topology of the network is such

that the degree of sensors varies considerably in different parts of the network then

bandwidth is underutilized in some parts of the network. To address this problem,

in Section 4.4.1, we proposed a mechanism by which a sensor can calculate the ideal

TDMA period. Specifically, during token circulation, we can compute the maximum

difference in colors assigned in distance 2 neighborhood of all sensors, and update the

period accordingly. If a sensor requires additional bandwidth, it can request for more

slots using the local negotiation protocol proposed in Section 4.4.2.

4.8 Related Work

In this section, we compare and contrast the proposed algorithm with the related

work [7, 22, 26, 35, 57, 60, 80, 117, 121].

Self-stabilizing deterministic TDMA algorithms. Related work that deals

with self-stabilizing deterministic TDMA algorithms include [35, 80, 117].

SS- TDMA. In [80], Kulkarni and Arumugam propose a self—stabilizing TDMA (SS-
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TDMA) algorithm where the topology is known and cannot change. However, in our

algorithm, we allow addition/removal of sensors. Additionally, in our solution, we

require that the sensors are only aware of their local neighborhood.

Self-stabilizing philosophers. In [35], Danturi et al proposed a self—stabilizing solution

to dining philosophers problem where a process cannot share the critical section (CS)

with non-neighboring processes also. Such generalized dining philosophers problem

has application in distance-k coloring, where k is the distance up to which a process

cannot Share CS. In [35], each process p is assumed to maintain a tree (rooted at

p) that spans the processes with whom p cannot share CS using algorithms from

the literature. However, existing tree construction and maintenance algorithms are

not written for WAC model. On the contrary, in our algorithm, we show how a

token circulation algorithm can be used in WAC model in order to obtain distance 2

coloring. And, on the other hand, unlike our algorithm, the approach in [35] allows

concurrent coloring of processes.

BitMAC. In [117], the authors propose BitMAC, a deterministic, collision-free MAC

protocol for sensor networks. One of the important assumptions in this paper is that

when two writes collide the result is an OR operation between them. Moreover, the

algorithm in [117] is not self-stabilizing. Unlike [117], our algorithm is written for

WAC model and is also self—stabilizing.

Self-stabilizing randomized TDMA algorithms. In [60], Herman and Tixeuil

propose a randomized TDMA slot assignment algorithm where a probabilistic fast

clustering technique is used. In their algorithm, first, a maximal independent set is

computed. This set identifies the leaders that are responsible for obtaining distance

2 coloring. Further, addition/removal of nodes in their algorithm can cause local

collisions (and the effects are contained within distance 3 neighborhood). By contrast,

our approach uses a deterministic algorithm to assign timeslots.

In [22], Busch et al propose a randomized TDMA algorithm for sensor networks.
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In their approach, initially, a randomized algorithm is used to determine the slots.

Later, the sensors enter another phase where the TDMA period is reduced. Both these

phases are self-stabilizing and are interleaved. By contrast, we propose a deterministic

TDMA solution, where the sensors identify their timeslots without any collisions.

Other TDMA algorithms. Other TDMA algorithms include [7, 26, 57, 121]. In

[26], whenever a collision occurs during startup (synchronization phase), exponential

backoff is used for determining the time to transmit next. One of the important

assumption in [26] is that each node has a unique message length. By contrast, we

do not make any such assumption in our TDMA algorithm.

In [121], Sohrabi and Pottie pr0pose a network self-organization protocol, where

nodes identify the presence of other nodes and form a multi-hop network. In [7],

Arisha et al propose a clustering scheme to allot timeslots to different sensors. Each

cluster has a gateway node that informs the sensors in its cluster about the timeslots

in which the sensors can transmit. And, in [57], Heinzelman et a1 propose a clustering

algorithm. In these papers, initially, nodes are in random access mode and TDMA

slots are assigned during network organization. By contrast, in our solution, we use

a deterministic algorithm to assign timeslots. Unlike the algorithms proposed in

[7, 26, 57, 121], our algorithm is self-stabilizing.

4.9 Chapter Summary

In this chapter, we presented a self-stabilizing, deterministic time division multiple

access (TDMA) algorithm for sensor networks. As discussed in [81], such algorithms

suffice in transforming existing programs in shared-memory model into programs in

write all with collision (WAC) model. Thus, this algorithm can allow us to transform

existing distributed programs and evaluate them in sensor networks. It follows that

we can quickly prototype a sensor network protocol with such transformations.
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In addition, we presented approaches that allow one to reduce the TDMA period

and improve the bandwidth utilization of sensors. Specifically, we discussed an ap-

proach where the sensors are allowed to reduce the TDMA period depending on the

maximum difference in colors assigned in the distance 2 neighborhood of all sensors.

Furthermore, we presented another approach where sensors can request for additional

bandwidth whenever necessary. With this scheme, whenever a sensor requires addi-

tional bandwidth, we Showed that at most d + 1 messages are transmitted and it

learns whether or not it is allowed to use the additional bandwidth within d2 + 1

slots.
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Part II

Experimental Aspects
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Chapter 5

ProSe: Programming Tool for

Sensor Networks

In this chapter, we propose ProSe, a programming tool for sensor networks that will

allow the designers to concisely specify sensor network protocols. ProSe is based

on the theoretical foundation on computational model in sensor networks estab-

lished in Chapter 3. ProSe enables the designer to (1) Specify sensor network pro-

tocols and macroprogramming primitives in simple, abstract models considered in

distributed computing literature (cf. Chapter 2 for a brief introduction to these mod-

els), (2) transform the programs into WAC model while preserving properties such

as fault-tolerance and self-stabilization of the original programs, (3) reuse existing

fault-tolerance/self-stabilizing from the literature in the context of sensor networks,

and (4) automatically generate and deploy code. An advantage of ProSe is that it

will facilitate the designer to use existing algorithms for automating the addition of

fault-tolerance to existing programs. Moreover, Since abstract models are used to

specify protocols, ProSe allows the designer to gain assurance about the programs

deployed in the network using tools such as model checkers.

The rest of the chapter is organized as follows. In Section 5.1, we present an
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overview of ProSe. Then, in Section 5.2, we discuss the features of ProSe that allow

one to rapidly prototype fault—tolerant/self-stabilizing sensor network protocols. And,

in Section 5.3, we present additional features available with ProSe. In Section 5.4, we

compare and contrast ProSe with the related work. We present case studies on rapid

prototyping of sensor network protocols with ProSe in Chapter 6.

5. 1 ProSe: Overview

In this section, we present an overview of ProSe. Specifically, we discuss (1) the

programming architecture of ProSe, (2) the input to ProSe, (3) the output of ProSe,

and (4) how ProSe generates the nesC/TinyOS program.

5.1.1 Programming Architecture of ProSe

The programming architecture of ProSe is shown in Figure 5.1. Programs are specified

in ProSe using guarded commands [39] (cf. Chapter 2 for more details about the

structure of programs). ProSe transforms the input guarded commands program into

a program in WAC model (if the input program is specified in shared-memory or

read/write model), as discussed in Chapter 3. Once the input guarded commands

program is transformed into WAC model, ProSe generates the corresponding nesC

code (targeted for TinyOS). Furthermore, ProSe wires the generated code with a MAC

layer (e.g., [60, 80, 81, 134]) to implement the write-all action in the WAC model.

The MAC layer provides an interface for broadcasting (i.e., writing all neighbors) and

receiving WAC messages.

Now, the designer can use the TinyOS platform to build the binary of the nesC

code. This binary image can then be disseminated across the network using a network

programming service (e.g., [63, 79, 86]). Thus, sensor network protocols can be

prototyped and deployed across the network.
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Figure 5.1: ProSe programming architecture

     

5.1.2 ProSe: Input

The input to ProSe consists of the guarded commands program in shared-memory,

read/write, or WAC model, its initial states and (optionally) topology information.

For simplicity, we discuss the input guarded command program in shared-memory

model.

In the input guarded command program, the designer has to specify whether a

variable is public or private. In shared-memory or read/write model, a sensor can read

the public variables of its neighbors. Also, the designer has to identify the sensor to

which the variable belongs. For example, if sensor j accesses its local variable 11:, the

designer has to specify it as x.j . Now, we discuss the input/output of ProSe in the

context of an example.

Input guarded commands program. Consider the MAX program, where each
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sensor maintains a public variable 11:. The goal of MAX is to eventually identify the

maximum value of this variable across the network. Whenever :13.j is less than :c.k

(i.e., variable :1: at sensor k), j copies :1:.k to :r.j . This action allows j to update :v.j

whenever its guard holds and, thus, j eventually computes the maximum value of :1:

across the network. In the input file of ProSe, we specify the actions of j as shown

in Figure 5.2 (keywords are shown in bold font):

 

program max

sensor 3'

var public int x. j;

begin

(x.k > x.j) -> x.j = x.k;

end

init state x.j = j;‘
I
Q
M
Q
Q
N
H

   
Figure 5.2: MAX program in ProSe

Initial state. The designer also specifies zero or more initial states in the program.

If the program has zero initial states then ProSe initializes the program variables to

arbitrary values. In case of self-stabilizing programs, during execution, the sensors

recover to legitimate states. And, if the program contains more than one initial state

then ProSe initializes the variables to a randomly selected state from the input. In

the above example, :1:.j is initialized to j (i.e., the ID of the sensor).

Auxiliary variables. ProSe provides abstractions to deal with failure of sensors

and presence of Byzantine sensors. To determine whether a neighbor (say, k) is alive or

failed, sensor j can just access the public variable up.k; if up.k is TRUE (respectively,

FALSE) then k is alive (respectively, failed). ProSe provides implementation of this

variable using heartbeat protocol (e.g., [51]). For example, if j fails to receive update

messages (i.e., WAC messages) for a predetermined time interval from its neighbor k,

then j declares k as failed. Thus, designers can use this abstract variable to simplify

the design of sensor network protocols. Similarly, ProSe also allows designers to model
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Byzantine sensors through abstract variables (b.k).

Topology information. ProSe wires a component (NeighborStateM) that main-

tains the state information of the neighbors at each sensor, with the generated code.

Towards this end, each sensor should identify its neighborhood. ProSe allows the de—

signers to integrate a neighborhood abstraction layer (e.g., [132]) with the generated

code. Such an abstraction layer allows a sensor to learn its neighborhood dynamically.

Optionally, the designers can specify the static topology of the network as input to

ProSe using the topology file. This file includes the ID of the base station, size of the

network, and the communication topology. Based on the neighborhood information,

ProSe configures the MAC layer and NeighborStateM component.

5.1.3 ProSe: Output

ProSe generates the code for the input guarded commands program in nesC as follows.

AS mentioned in Chapter 3, the read action in shared-memory or read/write model

is simulated in WAC model using the write—all action. Towards this end, each sensor

maintains a copy vector for each public variable of its neighbor (in NeighborStateM,

the module that implements NeighborState interface to get/set public variables of the

neighbors). This copy vector captures the value of the corresponding variable at its

neighbors. The number of elements in this vector is determined using the information

on the neighborhood of each sensor.

The actions of the input program are executed whenever a timer fires. Once the

sensor executes each action for which the corresponding guard is enabled, it mar-

shals all the public variables as a message wacMsg and schedules it for transmission

(broadcast). Depending on the transformation algorithm and the MAC layer selected

by the user, it configures when the timer fires and how wacMsg is transmitted. In

case of a TDMA based transformation (e.g., [81]), ProSe configures the timer to fire

in every TDMA Slot assigned to the sensor and broadcasts wacMsg using a TDMA
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service (e.g., [60, 80, 81]). In case of a CSMA based transformation (e.g., [58]), it

configures the timer to fire in a random interval whenever the sensor receives a mes—

sage containing values of public variables at the sender. And, it uses a CSMA service

(e.g., [134]) to broadcast wacMsg.

ProSe also generates code to (1) initialize all the program variables, (2) config-

ure network services (e.g., TDMA, CSMA), and (3) configure and start middleware

services (e. g., Timer).

5.1.4 Execution of ProSe

In this section, we discuss (1) how the input guarded commands are translated into

nesC code and (2) how the sensors maintain the state of their neighbors.

ProSe generates five files: a configuration file, an interface file, 2 module files (one

for implementing the actions of the input program and another for maintaining the

state of the neighbors of a sensor), and a makefile. Figure 5.3 shows how ProSe

generates different files from the input program and topology information; these files

are required to generate the TinyOS binary.

Configuration file. Configurations wire components together, connecting in-

terfaces used by components to interfaces provided by others [47]. ProSe generates

pC.nc, given the input guarded commands program p. Specifically, pG.nc wires the

module file, pM.nc, NeighborStateM.nc (i.e., the module that implements the inter-

face NeighborState), network services (e. g., TDMA, CSMA, etc), and other interfaces

required by the module.

Interface and module files. Modules provide the application code and implement

one or more interfaces [47]. ProSe generates: (1) the implementation file pM.nc, given

the input guarded command program p and (2) NeighborStateM.nc, as follows (cf.
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Figure 5.3: Execution sequence of ProSe

Figure 5.3).

Steps 1-3: Initialization. First, ProSe identifies the public and private variables

of the input program. Next, for each public variable, in NeighborStateM.nc, it gen-

erates a copy vector (containing entries for all the neighbors of a sensor). ProSe

generates the interface NeighborState.nc that provides functions to get/set the pub-

lic variables of the input program. Subsequently, in NeighborStateM.nc, it generates

the code for initializing these variables. NeighborStateM.nc implements the interface

NeighborState.nc.
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In pM.nc, ProSe generates code to (1) initialize components (e.g., TDMA, CSMA,

Timer, NeighborStateM, etc) and (2) start network and middleware services (e.g.,

TDMA, CSMA, Timer). In case of a TDMA based transformation, in pM.nc, ProSe

sets the timer to fire during the TDMA slots assigned to the sensor. A sensor executes

each action for which the corresponding guard is enabled whenever this timer fires.

For example, Figure 5.4 Show the generated program segment for MAX to initialize

program variables (including the copy vectors in NeighborStateM) and initialize/start

TDMA and Timer services.

 

1command resu1t_t StdControl.init() {

sensorID = TOS_LOCAL_ADDRESS;

x.j = sensorID;

call NeighborState.init();

call SSTDMA.setParameters(sensorID, BASE_ID, SIZE_X,

INTERFERENCB_RANGE, BROADCAST);

return SUCCESS;4
&
0
"
w
a

8}

9

locommand result_t StdControl.start() {

11 call SSTDMA.start();

12 call Timer.start(TIMER_REPEAT, SSTDMA_SLOT);

13 return SUCCESS;

l4}   
Figure 5.4: Generated program segment in nesC for MAX: Initialization

Steps 4-6: Actions. ProSe generates the nesC code for the actions specified in the

input program in Timer.fired() event. For each action g ———+ st, first, it determines if

the guard g has any non-local variables (e.g., process j accessing public variable ask

of process k in the MAX program). If 9 contains no non-local variables, it generates

the corresponding nesC code of the form if(g){st; }.

If g has non-local variables, ProSe proceeds as follows. For each non-local variable,

it generates guard instances for each neighbor. For example, in MAX, it generates:

o s_i: copy-:1:_i = call NeighborState.get_a:(i);
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g’_i: copy_:1:_i > :r.j

(quantified over neighbors i of j)

If the index to a non-local variable is a local variable, ProSe generates a single

guard instance for the neighbor identified by the index. For example, if g is of the

form 3:.(p.j) > :r.j, it generates:

0 s_ndr: ndx = call NeighborState.getCopy Vectorlndea:(p_j);

COpyxrmdz = call NeighborState.get_r(nda:);

g’_nd.r: €0py_:1:_nd:1: > :1:_j

(where getCopy VectorInder(p_j) returns the index of p_j to the copy vectors)

Thus, the guard g in the input program is transformed into a set of type 3; 9’.

Now, for each s; g’ of g, ProSe generates the nesC code of the form 8; if(g ’){st;} (cf.

Figure 5.5 for an example).

Once the code for all actions are generated, ProSe generates code for implementing

the write-all action. Towards this end, first, it marshals all public variables into a

message. Then, it uses the MAC layer selected by the user to schedule transmission

of the message.

The nesC code segment for Timer.fired() event of MAX obtained using the TDMA

based transformation from [81] and SS-TDMA [80], is shown in Figure 5.5. (The

function getNoObersO in NeighborState returns the number of neighbors of the

given sensor.)

Steps 7-9: Receiving WAG messages. ProSe generates code for updating Neigh-

borStateM whenever it receives a message. Towards this end, ProSe generates code

for determining the sender of the message and the index of the sender to the copy

vectors (using getCopy Vector]nde:1:(sender)). Once the index is identified, the values

of the public variables of the sender are updated in the corresponding copy vectors

(cf. Figure 5.6 for more details). Thus, each sensor maintains up—to—date values of
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1event resu1t_t Timer.fired() {

2 uint8_t i, nbrs, msgSizeInBytes;

3 int copy_x_i;

4 if(sendDone == TRUE) {

5 nbrs = call NeighborState.getNoObers();

6 for(i = o; i < nbrs; i++) {

7 copy_x_i = call NeighborState.get_x(i);

a if((copy_x_i > x_j)) x-j = copy_x_i;

9 }

10 wacMsg.data[0] x_j;

11 wacMsg.data[1] = (x_j >> 8);

12 sendDone = FALSE;

13 msgSizeInBytes = 2;

14 call SSTDMA.send(msgSizeInBytes, hwacMsg);

.5}

16 return SUCCESS;

17}

Figure 5.5: Generated program segment in nesC for MAX: Timer fired event

  
 

the public variables of the neighbors. Furthermore, in case of CSMA based transfor-

mation, ProSe sets the timer to fire in a random interval whenever it receives a WAC

message. A sensor executes each action for which the corresponding guard is enabled

whenever this timer fires.

For example, Figure 5.6 shows the how the generated program updates Neigh-

borStateM.nc with the current state information of the neighbors for the MAX pro-

gram.

Steps 10—1 1: Auxiliary functions. Finally, ProSe adds the code for all auxiliary inter-

face functions of NeighborState (e.g., getCopy Vectorlnder(neighbor), getNoObers(),

etc) in NeighborStateM.

Makefile. To facilitate quick compilation and deployment, ProSe generates the

makefile for building the TinyOS binary of the generated code.

Thus, ProSe provides the designer with the different files required for building and

deploying the new binary image.
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1event SSTDMA_MsgPtr SSTDMA.receive(uint8_t size, SSTDMA_MsgPtr data) {

uint8_t type, nbr_index;

uint16_t senderID, *temp;

type = (uint8_t) data->type;

if(type == SSTDMA_MESSAGE) {

senderID = (uint16_t) data->senderID:

nbr_index = call NeighborState.getCopyVectorIndex(senderID);

temp = (uint16_t *) &data->data[0];

call NeighborState.set_x(nbr_index, *temp);‘
O
Q
Q
G
O
I
h
M
N

.0}

11 return data;    
Figure 5.6: Generated program segment in nesC for MAX: Receive event

5 .2 Generating Fault-Tolerant/Self-Stabilizing

Programs with ProSe

In this section, we discuss the properties and features of ProSe that enable the de-

signers to prototype fault-tolerant/self-stabilizing sensor network protocols easily.

Preserving fault-tolerance/self-stabilization properties. Properties such as

fault-tolerance and self-stabilization are important in sensor networks. Specifically,

since sensor networks are deployed in large numbers and in inaccessible fields, the

network should be able to self-stabilize [38, 40] after faults (e.g., message corruption,

message losses, synchronization errors, etc) stopped occurring. Towards this end,

ProSe preserves the fault-tolerance and self-stabilization properties of the program

in WAC model. Additionally, if the algorithm used in transforming a program (in

read/write or shared-memory model) into a program in WAC model preserves the

properties of interest then ProSe also preserves such properties. The transformation

algorithms presented in Chapter 3 and those in [58, 81] preserve the fault-tolerance

and self-stabilization properties in the transformed programs. Since we have imple-

mented these algorithms in ProSe, ProSe preserves fault-tolerance/self-stabilization
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properties of the input programs in read/write or shared-memory model.

Dealing with faults in sensor networks. The normal operation of a typical

sensor network is affected by (1) failure of sensors, (2) state corruption, and (3)

message loss. Regarding failure of sensors, ProSe provides abstractions to the designer

of a sensor network protocol. The designer can abstract sensor failures using the up

variables (cf. Section 5.1.2 for more details). Similarly, ProSe can model intermittent

faults, sensors sleeping to save energy, or Byzantine (malicious) sensors. Regarding

state corruption, ProSe permits arbitrary initial states. This allows the designer to

model systems that are perturbed to an arbitrary state. When used in the context

of a self—stabilization preserving transformation (e.g., [58, 81]), this feature enables

the design of self-stabilizing protocols for sensor networks. Finally, regarding message

loss, ProSe allows the designer to provide probability of transmission on any given

link. Thus, ProSe succinctly models failure of sensors, state corruption and message

loss.

5.3 Additional Features in ProSe

In this section, we discuss the additional features of ProSe. Specifically, we discuss

how the designer can (1) Specify priorities for each action, (2) combine actions Speci-

fied in WAC model with actions in other abstract models, and (3) invoke components

in guarded commands.

5.3.1 Priorities of Actions

In sensor networks, it is expected that the frequency of execution of different actions

may be different. For example, consider a routing protocol. The actions in a routing

protocol can be classified as either heartbeat actions or protocol actions. Heartbeat

actions are responsible for checking the status of the neighbors and protocol actions
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are responsible for construction and maintenance of the routing structure. During

execution, these two classes of actions may have different priorities. In other words,

the frequency of execution of heartbeat actions may be different from protocol ac-

tions. Typically, in a network where failures are common, heartbeat actions have

higher priority. To represent such actions, in ProSe, we allow the designer to specify

priorities for each action. Priority characterizes the frequency with which an action

would be executed. Priority of an action is listed along with the guarded command

corresponding to the action.

5.3.2 WAC Actions

During the design of sensor networks, it should be possible for the designer to leverage

on existing programs in WAC model. For example, consider the design of a routing

protocol. Suppose a link estimation program is available in WAC model. It should be

possible for the designer to combine this program with the routing program he/she

is designing. Towards this end, in ProSe, we allow the designer to specify actions in

WAC model together with other actions (in shared-memory or read/write model). In

order to specify an action in WAC model, a note is added in the guarded command

corresponding to the action. When presented with such a hybrid program, ProSe

transforms the actions in shared-memory or read/write model into WAC model. The

actions in WAC model (in the hybrid program) are implemented as is. Once the

hybrid program is transformed into a program in WAC model, the corresponding

nesC code is generated. Thus, the designer can leverage on existing programs in

shared-memory, read/write, or WAC models.

5.3.3 Local Component Invocations in Guarded Commands

Since ProSe allows the designers to specify programs in guarded commands format, it

makes protocol design highly intuitive and concise. However, it is not always desirable
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to use guarded commands to Specify protocols. For example, consider the design of

a routing protocol for sensor networks, where the sensors maintain a spanning tree

rooted at the base station. In this program, whenever the parent of a sensor fails,

it chooses one of its active neighbors for which the link quality is greater than a

certain threshold, as its parent. Towards this end, the sensor has to compute the

link quality of each of its neighbors. Specifying this action in guarded commands

is difficult. Moreover, nesC/TinyOS components may exist that provide the desired

functionality.

To simplify the design of sensor network protocols, ProSe allows component in-

vocations in guarded commands. In the design of routing protocol, in order to find

a neighbor that has a better link quality, the designer can invoke the component

LinkEstimator to compute the quality estimate of a given link. Thus, parent update

action in the routing protocol can be specified in guarded commands as shown in

Figure 5.7.

 

1// current parent (p.j) has failed and j-k link quality > threshold

2(up.(p.j) == FALSE) && (up.k == TRUE) as

  

3 (LinkBstimator.getQuality(k) > LINK_THRESHOLD)

4 -> p.j=k;

5 quality.j = LinkEstimator.getQuality(k);
 

Figure 5.7: Invoking components in guarded commands program

In the above action, the getQuality(k) method of LinkEstimator component re-

turns the quality of the link j — k. This component may need certain variables to

compute the quality estimate. For example, it may need counters that maintain the

number of messages successfully transmitted over each link. The action by which the

counters are updated would be specified in guarded commands. The variables used in

the guarded commands program and the copies of the public variables of the neighbors

(maintained in NeighborStateM) are made available to the invoked component.

The designer has to implement LinkEstimator in nesC/TinyOS platform. This
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component, however, uses only local data (i.e., it uses NeighborStateM). ProSe gen-

erates the code for NeighborStateM. And, it wires the component implemented by

the designer with the generated code.

5.4 Related Work

Related work that deals with programming abstractions include [91, 105, 131, 133],

tools for programming sensor networks include [2, 21, 44, 53, 55, 88, 96, 104, 132],

and network programming protocols include [63, 79, 86, 123].

Programming abstractions. In [91], a state centric approach is proposed that

captures algorithms such as sensor fusion, signal processing and control. This model

views the network as a distributed platform for in-network processing. Furthermore,

in this model, the abstraction of collaboration groups hides the designer from issues

such as communication protocols, event handling, etc. In [105, 131], macroprogram-

ming primitives that abstract communication, data sharing and gathering operations

are proposed. These primitives are exposed in a high-level language. However, these

primitives are application-specific (e.g., abstract regions for tracking and gathering

[131] and region streams for aggregation [105]). And, in [133], semantic services pro-

gramming model is proposed where each service provides semantic interpretation of

the raw sensor data or data provided by other semantic services. In this model, users

only specify the end goal on what semantic data to collect. Thus, users make less

low-level decisions on which operations to run or which data to run them over.

While [91, 105, 131, 133] are designed for simplifying programming application

services such as tracking, aggregation, etc, ProSe is designed to simplify programming

both network services (e.g., routing, clustering, leader election, distributed reset, etc)

and application services. Furthermore, ProSe allows the designer to evaluate existing

algorithms in the context of sensor networks. Moreover, since the programs are writ-
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ten in abstract models considered in distributed systems, ProSe permits the designer

to verify the correctness of the programs as well as to manipulate the programs to

meet new properties.

Programming tools. Techniques like virtual machine (e.g., Mate’ [88]), middle-

ware (e.g., EnviroTrack [2]), library (e.g., SNACK [53], TASK [21]), database (e.g.,

TinyDB [96]), and mobile agent (e.g., [44]) are proposed for Simplifying programming

sensor network applications. However, these solutions are (i) application-specific,

and/or (ii) restrict the designer to what is available in the virtual machine, middle-

ware, library, or network. By contrast, ProSe provides a simple abstraction while

allowing the designer to specify wide variety of protocols.

In [55], macroprogramming model, called Kairos, that hides the details of code-

generation and instantiation, data management, and control is proposed. Kairos

provides the programmer with three abstractions; (i) node-level abstraction that al-

lows the programmer to manipulate nodes and list of nodes, (ii) one-hop neighbor

list abstraction for performing operations on the neighbor list, and (iii) remote data

access that allows a sensor to read the named sensors. While ProSe provides similar

abstractions, it differs from Kairos. Specifically, unlike Kairos, ProSe hides low-level

details such as message collisions, corruption, sensor failures, etc. Moreover, ProSe

does not require any runtime support in the generated sensor network binary. Ad-

ditionally, unlike Kairos, ProSe enables reuse of existing algorithms while preserving

properties such as self-stabilization of the input program.

Network programming protocols. Complementary to the work on programming

abstractions and programming tools, in [63, 79, 86, 123], protocols for reprogramming

large scale networks in-place are proposed. Such protocols are orthogonal to the design

objective of ProSe but are useful in disseminating the code generated by ProSe across

the network in a reliable manner.
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5.5 Chapter Summary

In this chapter, we presented a tool, ProSe, for programming sensor networks. ProSe

allows one to (1) hide low—level details (e.g., message collisions, message losses, sensor

failures, synchronization, etc) of sensor networks from the designer, thereby, enabling

the designer to focus only on the functionality of the protocol, (2) reuse existing fault-

tolerant/self-stabilizing algorithms considered in distributed systems and traditional

networking in the context of sensor networks, and (3) automate code generation

and deployment. Since the programs are specified in abstract models considered in

distributed systems literature, ProSe allows the designer to verify the behavior of the

programs. Thus, ProSe allows the designer to gain assurance about the programs

deployed in a sensor network. Moreover, the abstract models let the designer to

manipulate the programs to meet new properties. In particular, approaches in [17,

49, 75, 103] can be used to modify the programs to meet new properties (including

fault-tolerance properties).
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Chapter 6

Case Studies on Rapid Prototyping

with ProSe

In this chapter, we illustrate ProSe to generate network and application services for

sensor networks. Specifically, in Section 6.1, we specify a routing tree maintenance

program in shared-memory model and evaluate the performance of the program gen-

erated by ProSe. And, in Section 6.2, we specify an intruder-interceptor program,

an application service for tracking intruders in the network, in shared-memory model

and evaluate the performance of the program generated by ProSe. Finally, in Section

6.3, we specify a power management program and evaluate the performance of pro—

gram generated by ProSe. In addition, in Section 6.4, we discuss the impact of the

proposed tool.

6.1 Network-Level Service: Routing Tree Mainte-

nance

In this section, we consider the routing program proposed in [25]. This program is

Similar to the routing program we used to illustrate our transformation algorithms
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in Chapter 3 (cf. Section 3.3). This program is a variation of the balanced routing

program [27].

6.1.1 Description of Routing Tree Maintenance Program

(RTMP)

We specify RTMP in shared-memory model in ProSe as Shown in Figure 6.1. In this

program, sensors are arranged in a logical grid. The program constructs a spanning

tree with the base station as the root. The base station is located at (0,0) of the

logical grid. Each sensor classifies its neighbors as high or low neighbors depending

on their (logical) distance to the base station. Also, each sensor maintains a variable,

called inversion count. The inversion count of the base station is 0. If a sensor

chooses one of its low neighbors as its parent, then it sets its inversion count to that

of its parent. Otherwise, it sets its inversion count to inversion count of its parent +

1. Furthermore, to deal with the problem of cycles, if the inversion count exceeds a

certain threshold (CMAX), the sensor removes itself from the tree.

In this program, each sensor (say, j) maintains three public variables: (i) inv.j, the

inversion count of j, (ii) dist.j , the (logical) distance of j to the base station, and (iii)

up.j, the status variable for j (indicates whether j has failed or not). ProSe provides

implementation of up.j using heartbeat protocol, as discussed in Section 5.1.2.

Whenever j finds a low/high neighbor that provides a better path (in terms of

inversion count) to the base station, it updates its private variable, p.j , the parent

of j, and inversion count inv.j . Whenever a sensor fails or inversion count is not

consistent with its parent, the sensor sets its parent to NULL and its inversion count

to CMAX (i.e., it removes itself from the routing tree). Subsequently, when it finds

a neighbor with a better inversion count value, it rejoins the tree.
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1 program RoutingTreeMaintenance

2 sensor j;

3 const int CMAX;

4 var

5 public int inv.j, dist.j;

6 public boolean up.j;

7 private int p.j;

8

9

begin

(dist.k < dist.j) && (up.k == TRUE) &&

10 (inv.k < CMAX) as (inv.k < inv.j)

11 -> p.j = k; inv.j = inv.k;

12l (dist.k < dist.j) && (up.k == TRUE) &&

13 (inv.k+1 < CMAX) && (inv.k+1 < inv.j)

14 -> p.j =k; inv.j = inv.k+1;

15I (p.j != NULL) as

16 ((up.(p.j) == FALSE) ll

17 (inv.(p.j) >= CMAX) ll

13 ((dist.(p.j) < dist.j) && (inv.j != inv.(p.j))) ll

19 ((dist.(p.j) > dist.j) at (inv.j 1= inv.(p.j)+1)))

20 -> p.j = NULL; inv.j = CMAX;

21l (p.' == NULL) && (inv.j < CMAX)

22 -> inv.j = CMAX;

23 end   
Figure 6.1: Routing tree maintenance program in Shared—memory model

6.1.2 Transformation of RTMP

We use ProSe to generate the corresponding nesC/TinyOS implementation and sub-

sequently use TinyOS platform to build the binary image. We use the TDMA based

transformation from Chapter 3 to transform the program into WAC model and gen-

erate the nesC/TinyOS code. We integrate SS-TDMA [80] with the generated pro-

gram to implement the write-all action. The memory footprint of the generated code

(routingM component) is shown in Table 6.1.2. As observed from the table, the

memory requirements of the generated code is significantly small.
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Table 6.1: Memory footprint of the generated routing

tree maintenance program
 

 

 

Program ROM RAM

(in bytes) (in bytes)

routingM + NeighborStateM 42 106

SS-TDMA 108 586

other components (Timer,

FramerM, LedsC, etc) 15934 404   
 

6.1.3 Experimental Results of Generated RTMP Program

We deploy the code generated by ProSe on 3x3 and 5x5 XSM [41] networks in a

classroom setting, where the inter-sensor separation is 8 ft and the base station is

located at top-left corner of the grid. Each sensor executes the write-all action of

the routing tree maintenance program once in every 1.95 seconds. We keep this

value intentionally high in order to reduce the frequency of execution of actions.

After the initial routing tree is constructed, we fail some sensors (simultaneously) to

determine how the sensors converge to a new routing tree. We measure the latency

for constructing the initial routing tree, convergence time (i.e., the time required to

converge to new tree after failure of some sensors), energy spent (in terms of number

of messages sent, number of messages received and active radio time), and latency in

transmitting a message from middle of the network (and the farthest sensor) to the

base station. The results of these experiments are presented in Table 6.2.

Figure 6.2 shows the initial tree and the converged tree (after sensors fail) on a

5x5 XSM network, where one of the sensors fail at the start of the experiment. After

the initial tree is constructed (cf. Figure 6.2(a)), we fail sensors 3, 6, 8, 10, 17, 18,

and 20 simultaneously. The active sensors then converge to the new routing tree (cf.

Figure 6.2(b)) within 21 seconds.

We note that the performance of the program generated by ProSe is within the ac-

ceptable performance guidelines of a typical sensor network application (e.g., [9, 10]).
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Table 6.2: Experimental results of the code generated by ProSe in presence of 2

(respectively, 7) failed sensors in case of 3x3 (respectively, 5x5) network

(a) Initial latency and convergence time
 

Network size Latency for initial tree

construction (no failures)

Convergence time

(after failures)
 

3x3

5x5  

83

203  

45

213   

(b) Energy consumption in maintaining the routing tree
 

Network Size Energy (every 10 8 per sensor)
 

Messages sent Messages received Active radio time
 

3x3

  5x5

5

5  

13.33

15.83  

550 ms

625 ms   

(c) Routing cost
 

Network size Routing cost
 

Sender: middle of network Sender: farthest sensor
 

3x3

5x5  

1.974 3

1.998 s  

1.998 8

2.046 s   

To illustrate this, we compare the convergence time and the number of messages

transmitted in the code generated by ProSe with that of MintRoute [135], a reliable

multi-hop routing program designed manually for sensor networks. We note that the

purpose of this comparison is to Show that program generated by ProSe is competitive

to manually designed protocols. Also, it shows that the generated program can be

used in practice. (We do not compare other parameters due to lack of implementa-

tion data about MintRoute.) The convergence time of the routing tree maintenance

program generated by ProSe is better than that of MintRoute (4 s with the code

generated by ProSe vs. 6 s with MintRoute for a 3x3 network). However, the average

number of message transmissions with MintRoute is less than that of the routing

tree maintenance program generated by ProSe (1.25 messages with MintRoute vs. 5

messages with the code generated by ProSe every 10 3 per sensor).
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Figure 6.2: Routing tree construction and maintenance on a 5x5 XSM network with

base station (filled circle) at the top-left corner. (a) initial tree and (b) converged

tree after failure of some sensors (Shown in gray circles)

6.1.4 Simulation Results of Generated RTMP Program

We also Simulated the generated routing tree maintenance program (ProSe-RTMP)

and MintRoute [135] using TOSSIM [89], a discrete event simulator for TinyOS sen-

sor networks. In our simulations, the base station is located at (0,0) (i.e., sensor

0) and the inter-sensor separation is 10 ft. In the absence of any interference, we

have observed that probability of successful communication is more than 98% among

the neighbors. However, random channel errors can cause the reliability to go down.

Hence, we choose conservative estimates of 95% and 90% link reliability (that corre-

spond to the analysis in [46, 141]) in our simulations.

Similar to the experimental setup, in ProSe-RTMP, each sensor executes the write-

all action of the program once in every 2 seconds. And, in MintRoute, the sensors

exchange routing information every 2 seconds. Once the initial routing tree is con-

structed, we simultaneously fail some sensors (up to 100 sensors in case of 20x20

network) and measure the convergence time. The simulation results of the gener-

ated routing program are Shown in Figure 6.3. (Please note that the images in this
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dissertation are presented in color.)

Figures 6.3(a)—(b) Show the results for the case where the link reliability is 95%.

The initial latency to construct the routing tree for ProSe-RTMP and MintRoute

are similar. MintRoute maintains link estimates of the active links of a sensor and

updates the estimate periodically. As a result, the radio is active all the time. By

contrast, with ProSe-RTMP, the active radio time of the sensors during this period

is significantly less (i.e., around 20% of the initial latency). Thus, ProSe-RTMP

provides an energy-efficient tree maintenance service.
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Figure 6.3: Simulations results of the generated program. With 95% link reliability:

(a) initial latency to construct the routing tree and (b) convergence time after failure

of some sensors. And, with 90% link reliability: (c) initial latency and (d) convergence

time. Note that the black bars in the convergence time graph shows the active radio

time during the convergence period.

Figure 6.3(b) presents the convergence time of the protocols in the presence of
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failed sensors. AS observed from Figure 6.3(b), MintRoute converges to a new routing

tree quickly. By contrast, ProSe-RTMP converges within 30-50 seconds. We note that

this behavior is not because of prototyping with ProSe. Rather, it is because of the

nature of the original protocol specified with ProSe. More specifically, MintRoute is

pessimistic in nature, i.e., it maintains a moving average of link estimates of all active

links of a sensor all the time. Hence, when sensors fail, it converges to a new tree

quickly. By contrast, the routing tree maintenance program specified in Figure 6.1 is

optimistic in nature. In other words, whenever a sensor chooses one of its neighbors

as its parent, it does not change its parent unless the parent has failed or the tree

is corrupted. AS a result, when sensors fail, it takes sometime for the protocol to

discover such sensors and update the tree. On the other hand, the active radio time

during recovery is small with ProSe-RTMP (i.e., in the order of the convergence time

with MintRoute).

Figures 6.3(c)-(d) Show similar results for the case where the link reliability is 90%.

In this case, the message loss is extensive and, hence, the initial latency increases

as the network Size increases. Also, the convergence time increases as the number

of failed sensors increases. Thus, the results shown in Figure 6.3 demonstrate the

potential of ProSe to generate competitive network-level services for sensor networks.

6.2 Application-Level Service: Pursuer-Evader

Tracking

Sensor networks are often used in intruder-interception games, where the sensors

guide the pursuer (e.g., a robot, a soldier, etc) to track and intercept the evader (e.g.,

intruder, hostile vehicle, etc). In this section, we demonstrate the potential of ProSe

to program such application level services. We consider the pursuer-evader tracking

program proposed in [37].

88



6.2.1 Description of Tracking Program

We specify the evader-centric program from [37] in shared-memory model as shown

in Figure 6.4. In this program, sensors maintain a tracking structure rooted at the

evader. The pursuer follows this tracking structure to intercept the evader. Whenever

the pursuer arrives at a sensor (say, k), it consults k to determine its next move.

Specifically, the pursuer moves to the parent of k. And, since the pursuer is faster

than the evader, it eventually intercepts the evader.

 

1 program PursuerEvaderTracking

2 sensor j;

3 var

4 public int dist2Evader.j, detectTimeStamp.j, p.j;

5 private boolean isEvaderI-lere.j;

a begin

7(isEvaderHere.j == TRUE)

3 -> p.j = j; dist2Evader.j = 0;

9 detectTimeStamp.j = TIME;

1ol (detectTimeStamp.k > detectTimeStamp.j) ll

11 ((detectTimeStamp.k == detectTimeStamp.j) &&

12 (dist2Evader.k+1 < dist2Evader.j))

13 -> p.j =k;

14 detectTimeStamp.j = detectTimeStamp.k;

15 dist2Evader.j = dist2Evader.k+1;

m enKl  
 

Figure 6.4: Pursuer-evader tracking program in Shared-memory model

In this program, each sensor (say, j) maintains three public variables: (i)

dist2Evader.j, distance to the root of the tracking structure, (ii) detectTimeStamp.j,

the timestamp that j knows when the evader was detected at the root, and (iii) p.j ,

the parent of j. Whenever j detects the evader, it sets detectTimeStamp.j to its cur-

rent clock value (using the TIME keyword), dist2Evader.j to 0 and p.j to itself. If it

finds one of its neighbors (say, k) has the latest detection timestamp, then it updates

its public variables accordingly and sets its p.j to k. In Figure 6.4, for simplicity, we

do not show the actions of the pursuer. Since the pursuer can listen to the messages
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transmitted by the sensors, whenever the pursuer is near j, it reads the public variable

p.j and moves to p.j.

6.2.2 Transformation of Tracking Program

We use the TDMA based transformation from [81] to transform the program into

WAC model. We integrate SS-TDMA [80] with the generated program to imple-

ment the write-all action. In this program, we need to wire components that detect

whether the evader is present near a sensor. For example, if the goal of the appli-

cation is to intercept vehicles then we need to integrate components that can signal

whether a vehicle is present or moving near a sensor (e.g., magnetometer components,

accelerometer components). Based on this signal, the variable isEvaderHere.j at sen-

sor j is either set to TRUE or FALSE. We assume that the intruder detection service

is independent of the tracking service.

The memory footprint of the generated code (trackingM component) is shown in

Table 6.3. The memory requirements of the generated code is significantly small.

Table 6.3: Memory footprint of the generated tracking program
 

 

Program ROM RAM

(in bytes) (in bytes)

trackingM + NeighborStateM N/A* 91

SS-TDMA 108 586

other components (Timer,

FfamerM, LedsC, etc) 14920 404     

* The per] script tinyos-l .x/contrib/SystemC/modu1e_1nemory_usage used to obtain the break-

down of program ROM and RAM used by various components only provides the RAM usage data

for trackingM; it does not report the ROM usage for trackingM. We expect this value to be small.

6.2.3 Simulation Results of Generated Tracking Program

We simulated the generated program using TOSSIM [89]. The inter-sensor separation

is 10 ft and the TDMA period in SS-TDMA is 0.78 seconds. Similar to Section 6.1,
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we choose the link reliability to be 95% and 90%.

In our simulations, we use a virtual pursuer and a virtual evader. Specifically, we

model the actions of pursuer and evader using global variables. In our simulations,

evader randomly moves in the network. We set the variable isEvaderHere.j at j to

TRUE or FALSE depending on where the evader is currently located. Whenever

the pursuer is at sensor j, it reads the public variable p.j of j and moves to p.j.

The ratio of the speed of pursuer movement to evader movement is 1:2. We did two

sets of simulations; one, the pursuer is initially located at (0, 0) (i.e., sensor 0) and

two, the pursuer is initially near the center of the network. In both these scenarios,

the evader is initially located at the corner (i.e., at (N — 1, N - 1) on a NxN grid).

The simulation results of the generated tracking program are shown in Figure 6.5.

(We note that the purpose of these Simulations is to demonstrate that the program

generated by ProSe is competitive to manually designed protocols and can be used

in practice.)

 

V O  V O 

-a— Pursuer initially at sensor 0 -B- Pursuer initially at sensor 0

  
  

      

711‘ 7:?
'O ‘0

g 60 -0- Puruser Initially at center 3 60 -0- Puruser initially at center

0 -’ O J

3 so- 3 50»

.E .5

E40» 8440’

C C

9 30* 2 30*

a: 111
.J _l

0020' 0120‘

.E .E

{‘48 101 ff: 10’

l- G . . . . . I— G . . . . 1

5x5 7x7 10x10 14x14 20x20 5x5 7x7 10x10 14x14 20x20

Network size Network size

(a) (b)

Figure 6.5: Tracking latency of the generated program: (a) with 95% link reliability

and (b) with 90% link reliability

Figure 6.5(a) Shows the tracking latency for the pursuer to intercept the evader,

where the link reliability is 95%. The latency increases as the network Size increases.

Also, as expected, the latency when the pursuer is initially near the center is Signif-
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icantly less than the case where the pursuer is initially at (0, 0). In addition, during

tracking, the active radio time is at most 20% of the time required by the pursuer

to intercept the evader. (We observe similar results with link reliability = 90%).

Thus, the results Shown in Figure 6.5 demonstrate the potential of ProSe to generate

competitive application-level services for sensor networks.

6.3 Prototyping Power Management Protocols

Sensor network applications require the network to operate for a long time (usually,

several weeks to several months). However, the sensors are typically battery-powered

(e.g., Mica [61], XSM [41], Telos [113]) and, hence, they can operate continuously

only for a few days. In addition, since the sensors are deployed in large numbers and

mostly in inaccessible fields, it is difficult to change the batteries after deployment.

Therefore, power management is crucial for extending the lifetime of the network.

To rapidly prototype and quickly evaluate protocols, the designers of existing

power management protocols (e.g., [54, 116, 126, 129, 130, 136, 137]) implement

their own simulators or model their protocols in specialized simulators (e.g., Glo-

MoSim [139]). However, it is desirable that the designers prototype their protocols

in nesC/TinyOS platform as it provides a framework for generating both simulation

as well as production code from the same source.

In this section, we model power management protocols with ProSe. Specifically,

we consider pCover [129], a simple power management protocol that provides partial

(but high) sensor coverage of the target field. pCover maintains a certain degree of

coverage through sleep-awake scheduling of sensors. By trading little sensor coverage

of the field, in [129], the authors show (using C++ discrete event simulator) that

pCover substantially improves the network lifetime.
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6.3.1 Description of pCover Program

The pCover program written in Shared-memory model is shown in Figure 6.6. The

basic idea of pCover is that a sensor should turn itself off if and only if its local

coverage is higher than a certain threshold, called OnThreshold. Local coverage of a

sensor is the percentage of the sensor’s sensing area that is covered by other awake

sensors.

In this program, each sensor is in one of 4 states: probe, awake, readyoff, and

sleep. Each sensor j maintains one public variable st.j that identifies the state of the

sensor. In addition, j maintains a copy of the public variables of its neighbors (in

NeighborStateM as described in Chapter 5). We discuss the actions of the pCover

program shown in Figure 6.6 in detail, next.

Probe state. A sensor in probe state probes the environment, determines whether

it should stay awake or go to sleep. After a timeout Y, the sensor computes its

local coverage. Note that the designer has to provide the LocalCoverage component

that returns the local coverage of a sensor. This component acts only on the state

information of the neighbors maintained at the sensor. The sensor starts working if

its local coverage is lower than the OnThreshold. Otherwise, the sensor switches to

sleep state. The timeout Y is used to ensure that when the sensor decides whether it

Should stay awake or go to Sleep, it has the fresh state information of its neighbors.

Awake state. A sensor in awake state actively monitors the area within its sensing

range. It remains active until the timer reaches the timeout value Z. Since we do

not want all awake sensors to timeout at the same time, the timer is initialized to a

random value. Once the awake timer expires, the sensor changes its state to readyofi.

Readyoff state. In readyoff state, the sensor still provides sensing coverage.

However, the neighbors of a readyoff sensor (say j) consider j as a sleeping sensor.

In other words, the neighbors of j do not count it when they compute local coverage.
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1 program pCover

2 sensor j

3 const int X, Y, Z, S, W, OnThreshold. OffThreshold;

4 var

5 public int st.j;

a private int timer.j;

7 component LocalCoverage;

3 begin

9 (st.j == SLEEP) && (timer.j >= X)

10 -> st.j = PROBE; timer.j = 0;

11 | (st.j == PROBE) && (timer.j >= Y) &&

12 (LocalCoverage.compute() > OnThreshold)

13 -> st.j = SLEEP; timer.j = 0;

14 l (st.j == PROBE) && (timer.j >= Y) &&

15 (LocalCoverage.compute() <= OnThreshold)

16 -> st.j = AWAKE; timer.j = RandomCO, S);

17 l (st.j == AWAKE) && (timer.j >= Z)

13 -> st.j = READYOFF; timer.j = 0;

19 l (st.j == READYOFF) && (timer.j >= W)

20 -> st.j = AWAKE; timer.j = Random(0, S);

21 I (st.j == READYOFF) && (LocalCoverage.compute() > foThreshold)

22 -> st.j = SLEEP; timer.j = O;

23 l ((st.j == SLEEP) && (timer.j <= X)) ll

24 ((31.3 == PROBE) as (timer.j <= Y)) II

20 ((st.j == AWAKE) && (timer.j <= 2)) ll

26 ((st.j == READYOFF) && (timer.j <= W))

27 -> timer.j = timer.j + 1;

zsend
 

Figure 6.6: pCover program in ProSe
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If a readyoff sensor finds that its local coverage is greater than OflThreshold, it will

change its state to sleep. Also, if a sensor is in readyoff state for a long duration, it

can switch to awake state. This action allows one to deal with the case where a lot

of sensors are in readyoff state although none of them can go to sleep state (due to

local coverage being less than OffThreshold).

Sleep state. A sensor in Sleep state wakes up every X minutes. When it wakes

up, it changes its state to probe and proceeds to execute actions in that state.

6.3.2 Transformation of pCover Program

We use ProSe to generate the nesC/TinyOS implementation of the pCover program

and subsequently build the binary image. Towards this end, we use the TDMA based

transformation from [81] to transform the program into WAC model and generate

the nesC/TinyOS code. We integrate SS-TDMA [80] with the generated program to

implement the write-all action. As mentioned in Chapter 5, since the pCover program

includes component invocation (LocalCoverage) in the actions, we require the designer

of the protocol to implement this component in nesC/TinyOS. We discuss how the

designer implements this component and how ProSe integrates it with the generated

code, next.

LocalCoverage component. Based on the state information of the neighbors of

a sensor (say, j), LocalCoverage component computes the percentage of j ’s sensing

area that is covered by its awake neighbors. This component provides a method

(compute()) that could be invoked in the guarded commands program. This method

returns the local coverage of the sensor.

In order to compute the local coverage of the sensor, LocalCoverage requires the

state information of the neighbors of the sensor. This information is maintained by

NeighborStateM component. Since, ProSe wires NeighborStateM with LocalCoverage
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when generating the nesC/TinyOS code for pCover, LocalCoverage component can

obtain the state information of the neighbors of the sensor by invoking NeighborState.

Note that all accesses to NeighborStateM are local and ProSe is responsible for up-

dating NeighborStateM with fresh values. Thus, the designer does not have to deal

with programming level challenges of nesC/TinyOS platform and low-level challenges

of sensor networks (e.g., communication, collisions, corruption, etc).

Memory footprint. The memory footprint of the generated code (pCoverM

component) is shown in Table 6.4. The memory requirement of the generated code

is small.

Table 6.4: Memory footprint of the generated pCover program
 

 

    

Program ROM RAM

(in bytes) (in bytes)

pCoverM + NeighborStateM N/A* 132

LocalCoverageM 322 432

SS-TDMA 108 586

other components (Timer,

FramerM, LedsC, etc) 14588 1057
 

* Again, the per] script tinyos-1 .x/contrib/SystemC/modu1e_me1nory_usage used to obtain the

breakdown of program ROM and RAM used by various components only provides the RAM usage

data for pCoverM; it does not report the ROM usage for pCoverM. We expect this value to be small.

6.3.3 Simulation Results of Generated pCover Program

We evaluate the performance of the generated nesC/TinyOS code for pCover with

TOSSIM [89].

Simulation settings. We use the simulation setting similar to [129]. We deploy

the sensors in a grid topology over a 100m X 100m area. We set the sensing range r of

the sensors to 10m and the radio interference range to 50m. We did two simulations:

one with sensor density of 1 node/r2 and the other with 2 nodes/r2. Inter-sensor

separation and the number of sensors deployed varies depending on the density. With
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1 node/r2 (respectively, 2 nodes/r2), the inter-sensor separation is 10m (respectively,

7m) and the network Size is 10x10 (respectively, 14x14). SS—TDMA [80] sets the

TDMA period depending on the number of sensors falling in the interference range

of a sensor. With 1 node/r2 (respectively, 2 nodes/r2), SS—TDMA sets the period to

50 (respectively, 100) slots, where one time Slot 2 30ms.

We assume that the lifetime of a sensor is 20 minutes. We choose this value

in order to ensure that the simulation completes within a reasonable time. (With

density of 2 nodes/r2, the simulation takes 3 days to complete. Typically, sensors are

expected to work continuously for 1000 minutes. Simulating a sensor lifetime of 1000

minutes in TOSSIM, however, would approximately take 150 days to complete.) We

simulate the lifetime of each sensor by maintaining a variable and decrementing it

appropriately in each time Slot.

In all our simulations, we set the timeout values for pCover as follows: X = 1

minute, Y = 2 TDMA slots, Z = 3 minutes, and S = W = 2 minutes. We randomly

initialize the state of each sensor. We set OnThreshold and OffThreshold to 0.7 and

0.6. We consider that a network is “dead” when the global coverage of the network is

less than a certain threshold even if all the alive nodes are working. Global coverage

(or degree of coverage) is the percentage of the field that is covered by the working

nodes. We define network lifetime as the duration from the beginning of deployment

until the network is dead. We use 50% as the threshold in our simulations.

In our simulations, each link in the network has a bit error probability, representing

the probability that a bit can be corrupted if it is sent along the link. Bit errors for

each link is decided independently (using LossyBuilder, a Java program in TinyOS

release) based on empirical loss data gathered from real world [46]. Next, we discuss

our simulation results.

Coverage and network lifetime. In Figure 6.7, we Show the degree of coverage

and number of active sensors over time. In our simulations, we compute the global
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coverage for the entire 100m X 100m field and for the inner 80m X 80m field. The

border sensors contribute only a part of their sensing range in the field and, hence, we

consider the inner 80m X 80m field, where there is no such edge effect. As we can see

from Figures 6.7(a) and 6.7(b), the sensors maintain the coverage at approximately

the same level. With density = 2 nodes/r2, initially (i.e., around 3 minutes), we

observe a drop in the coverage. This is due to the fact that large number of sensors

are initially set to active state (as a result of random initialization) and the number of

active sensors fluctuate before converging to an appropriate number that maintains

the coverage at a certain level (around 88.4%). Figure 6.7(c) shows the number of

active sensors over time. AS we can observe from the figure, this number remains at

the same level until the point where the coverage starts dropping.

From Figures 6.7(a) and 6.7(b), we observe that the coverage is well maintained

until one point, after which, the coverage drops suddenly, and the network dies in a

short period. This shows that pCover maintains a balanced energy consumption as

all sensors run out of power at around the same time. Also, we confirm the result

in [129]; by sacrificing little coverage, the network lifetime is extended. Specifically,

the lifetime with densities of 1 nodes/r2 (respectively, 2 nodes/r2) is around 39.55

minutes (respectively, 57.9 minutes).

Quality of coverage. AS mentioned in [129], in partially covered sensor networks,

quality of coverage is an important metric. For example, in surveillance networks, it

is measured in terms of how fast the sensors detect a target object. Since the sleep

interval (i.e., X) is 1 minute, time to detect stationary objects in the sensor field is

bounded by 1 minute. Additionally, since the sensors rotate their roles (working vs.

Sleeping), the set of active sensors changes continuously. Hence, an undetected “hole”

is likely to be detected as the set of active sensors changes. In Figure 6.8, we Show

the snapshots of the field at different times.

From Figure 6.8, we observe that the location of “holes” change continuously. In
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Figure 6.7: Coverage and number of active sensors over time; (a) coverage of entire

100m X 100m area, (b) coverage of inner 80m X 80m area, and (0) number of active

sensors.

surveillance networks, the intruder does not know the location of such holes. Hence, it

is unlikely that the intruder can choose to move along the uncovered path. Therefore,

the time to detect the intruder is small on average.

6.4 Chapter Summary

First, we note that protocols proposed in the literature can be reused with ProSe

as is (e.g., routing program in Figure 6.1 is similar to [25], tracking program in

Figure 6.4 is the same as the evader-centric program in [37], pCover program in
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Figure 6.8: Snapshot of the field with density = 2 nodes/r2 (dark regions are

covered). Coverage data below each subfigure shows the coverage of entire area

and the coverage of inner 80m X 80m area respectively at that time.

Figure 6.6 is the same as [129]). Based on the case studies discussed in Sections 6.1

and 6.2, we find that the programs generated by ProSe are competitive to manually

designed protocols. In this context, we note that properties of the protocol obtained

from ProSe depend upon the initial protocol in guarded commands. However, Since

ProSe allows the designer to automatically transform an abstract program to generate

the corresponding nesC/TinyOS code, it can be used to rapidly prototype a given

protocol. Thus, a designer can utilize ProSe for designing different protocols needed

for a given sensor network application. Of these, some protocols will meet the desired

constraints of the application. (Since the process of generating code for these protocols
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is automated, the development time for this is very small.) The designer will then

have to design only those protocols for which an acceptable protocol is not available.

Additionally, we observe that the abstract model used in ProSe is the same as that

is used in tools that automatically add new properties (e.g., FTSyn [84] that adds

fault-tolerance properties). Thus, ProSe can be integrated with such tools to add

properties of interest and generate nesC/TinyOS code that preserves such properties.

Furthermore, designers can gain assurance about their programs by verifying them

with model checkers. Since ProSe preserves several properties of interest, we expect

such verification to be highly valuable.
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Chapter 7

Infuse: Data Dissemination

Protocol for Sensor Networks

Sensor networks are usually deployed in hostile/inaccessible fields (e.g., battlefield,

national borders, hazardous Sites, etc). And, the sensors are deployed in large num-

bers over a large field. Hence, it is diflicult -if not impossible— to manually collect

them after deployment. As a result, to quickly deploy and evaluate sensor network

protocols and applications, sensors must be reprogrammed with a new program in

place over the wireless radio medium. Such reprogramming is important to deal with

bug—fixes, reconfigurations, and tuning application parameters. Towards this end, the

new program must be disseminated over the wireless radio medium.

Challenges in network reprogramming. Since the payload of a message in

the sensors (in the order of few bytes) is significantly less than the program (in the

order of KBs), the new program must be split into several small packets. Therefore,

reliable dissemination of such bulk data (e.g., new program) is important. One of

the important challenges in reliable dissemination of bulk data is that the network is

multi-hop in nature. The communication range of the sensors is limited and, hence,

they need to collaborate with each other to forward the data across the network. AS
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a result, approaches such as XNP [33], where the sensors are assumed to be within

the communication range of the base station, are not suitable.

Another challenge in sensor networks is the nature of message communication. As

mentioned in Chapter 1, the basic mode of communication in sensor networks is local

broadcast with collision. Thus, if multiple messages are sent to a sensor simultaneously

then, due to collision, it receives none. This can also occur due to the hidden terminal

efiect, where a given message may collide at one sensor and be correctly received at

other sensors.

To provide reliable message communication, different medium access control

(MAC) protocols are proposed for sensor networks. Collision-avoidance protocol like

carrier-sense multiple access (CSMA) offers only probabilistic guarantees about mes-

sage communication. Most of the existing solutions for multi-hop data dissemination

(e.g., [63, 64, 74, 86, 107, 123]) use CSMA and, hence, rely on other mechanisms such

as acknowledgments/negative—acknowledgments, advertise/request schemes, and/or

error correcting codes for reliability.

Collision-free MAC protocol like time division multiple access (TDMA) offers

deterministic guarantees about message communication and, hence, it is desirable for

reliable data dissemination. Other collision-free protocols include frequency division

multiple access (FDMA) and code division multiple access (CDMA). FDMA is often

used with TDMA where each sensor knows when to listen to a particular frequency.

CDMA requires special hardware for encoding/decoding messages and, hence, it is

not desirable for resource poor sensors.

In this chapter, we propose Infuse,l a TDMA based data dissemination protocol

for sensor networks. Specifically, in Sections 7.1 and 7.2, we present the protocol and

in Section 7.3, we present an optimization to reduce the energy consumption during

 

1infuse v.; to cause to be permeated with something (as a principle or quality) that alters usually

for the better (infuse the team with confidence). Source: Merriam-Webster Online, http://www.

m-w. com/.
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dissemination. Then, in Section 7.4, we discuss the properties of Infuse. Subsequently,

in Section 7.5, we present the simulation results.

7.1 Infuse: Protocol Architecture

In this section, we present the protocol architecture of Infuse. We assume that there

is a base station that is responsible for communicating with the outside world. The

base station initiates the bulk data transfer whenever it receives a startDissemination

message from the outside world (e.g., the monitoring/visualization station in the

Line in the Sand experiments [9, 10]). The data is split into fixed size packets called

capsules. The startDissemination message includes the ID of the new data and the

number of capsules. Additionally, it may include the location (in EEPROM) where

the sensors should store this data. Note that Infuse is not concerned with the contents

of the data. For example, in difference-based reprogramming [115], the data is the

difference between the old and the new programs. Moreover, the data could be

encrypted (e.g., using link-layer encryption mechanism like TinySec [68]) to prevent

malicious reprogramming or dissemination. Upon receiving the startDissemination

message, the base station sends the startDownload message (that includes the ID of

the new data, number of capsules, and optionally, the location where the sensors

should store the data) to all its neighbors; these neighbors, in turn, forward it to

their neighbors. Whenever a sensor receives the message, it initializes appropriate

data structures in order to store the new data. Furthermore, it signals the application

that a download is in progress. And, when the sensor receives the complete data, it

signals the application that the download is complete. Figure 7.1 shows the Infuse

protocol architecture.

TDMA Service. The dissemination layer relies on a TDMA service (e.g., [57,

60, 80]) that may in turn use a localization service (e.g., [56]). The TDMA service
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Figure 7.1: Protocol diagram of Infuse

identifies the Slots in which a sensor can transmit and the slots in which it Should

listen to its neighbors. We assume that the TDMA service provides a fair share of

bandwidth to each sensor. One way to achieve this is to ensure that between every

two Slots assigned to a sensor, at least one slot is assigned to its neighbors. The

TDMA service from [80] ensures fairness. Also, we assume that the slots assigned

to the sensors are periodically revalidated to deal with transient errors and/or clock

drift.

Ideal scenario. Once the base station sends the startDownload message, in its

subsequent TDMA slots, it sends data messages. Each message contains a capsule, say

c1, its sequence number, say 71,, and information for providing recovery (cf. Section

7.2). Whenever a sensor receives a capsule (say, c), it stores c at the appropriate

location and enqueues it in the TDMA queue; thus, c will be forwarded to additional

sensors farther from the base station.
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7. 1 . 1 Protocol Parameters

Infuse takes two (compile time) parameters: (1) the choice of recovery algorithm,

and (2) whether a sensor should listen to only a subset of its neighbors to reduce

active radio time (at the cost of increasing the latency). We describe the role of these

parameters, next.

Parameter 1: Recovery algorithm. Although TDMA guarantees collision-

freedom, background noise can cause random message losses. While dealing with these

problems, the padding added to a message should be minimized since the payload size

of a message is often limited (e.g., 29 bytes in Mica motes [61]). Also, the preamble

added to a message in the lower layers of communication stack is high (e.g., 20 bytes

in Mica). Hence, unnecessary communication (in terms of explicit acknowledgments)

needs to be avoided.

During dissemination, whenever the successors of a sensor (say, j) forward the

capsule (say, c), j gets an implicit acknowledgment for c. We use this information to

recover from lost capsules. We compare two recovery algorithms based on the sliding

window protocols [28, 125]. The recovery algorithms use implicit acknowledgments

unlike the explicit acknowledgments used in the traditional sliding window protocols.

The first algorithm, Go-back-N (cf. Section 7.2.1), does not add any padding to a

message. The second algorithm, selective retransmission (cf. Section 7.2.2), adds 2b

bits to a message, where 2b is the size of the window.

Parameter 2: Selective listening to neighbors. In the context of bulk data

dissemination, a sensor may receive a message several times, once from each of its

neighbors. To reduce duplicate messages, it is desirable that a sensor listens to only

a subset of its neighbors. However, in this case, the latency may increase Since the

duplicate messages may assist in dealing with random message losses. When such

selective listening is desired, each sensor classifies its neighbors as predecessors and
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successors. Initially, all neighbors are (potential) predecessors as well as (potential)

successors. Now, given two neighbors j and k, if k forwards a majority of new packets

before j then j marks k as its predecessor (i.e., removes k from successor list) and k

marks j as its successor (i.e., removes j from predecessor list). Once a sensor classifies

its neighbors, it can choose to listen to 1 or more predecessors (for new capsules) and

0 or more successors (for implicit acknowledgments and recovery). (Note that when

selective listening is not desired, all neighbors are treated as potential predecessors

and successors.)

Based on these parameters, we obtain four possible versions of Infuse. Note that

the version is selected at compile time, i.e., all sensors will be running the same

version in any given experiment. In Section 7.5, we compare these versions to assist

a designer in selecting the appropriate version based on the network characteristics.

7.2 Infuse: Recovery Algorithms

In our protocol, each sensor transmits a capsule in its TDMA slot. In order to

deal with channel errors, in this section, we consider two recovery algorithms; these

algorithms identify the capsule a sensor should forward in its TDMA slot. This is

unlike CSMA based dissemination protocols (e.g., Deluge [63], MNP [86]) where extra

steps (e.g., mechanism to reduce concurrent senders, transmitting meta-data about

the availability of new data using advertisements, etc) need to be taken to prevent

congestion and reduce collisions. Since there is no collision with TDMA, there is no

need for elaborate control and each sensor can independently decide what capsule to

send in its TDMA slot.
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7.2.1 Go-Back—N Based Recovery Algorithm

In this algorithm, a sensor transmits a capsule with sequence number nf iff it has re-

ceived all capsules with sequence number smaller or equal to nf. Thus, when a sensor

transmits a capsule with sequence number nf, it provides implicit acknowledgment for

all capsules 0, . . . ,nf. To provide recovery in presence of channel errors, each sensor

maintains (in RAM) a window of capsules with sequence number nia+1, . . . ,n,a+2b,

where nm is the highest sequence number for which the sensor has received an implicit

acknowledgment from all its successors and 2b is the size of the window. Note that

some of the window locations may be empty, if the corresponding capsules are not yet

received. When a sensor receives a capsule in this window, it stores the capsule both

in its RAM and EEPROM. Now, a sensor (say, j) will forward capsule c, (with se-

quence number nf) only when all its neighbors have forwarded capsules with sequence

number nf—b or higher (i.e., nm 2 nf—b). Otherwise, j will start retransmitting its

current window, i.e., it will transmit the capsule with sequence number n,-,, +1. This

creates a back pressure in the network and, hence, the rate of dissemination of new

capsules is reduced during recovery (cf. Figure 7.2 for the algorithm).

 

sensor j:

highest_acknowledged_seqno =min(highest sequence number for which

implicit acknowledgment is received from all successors of j);

next.seqno++;

if next.seqno > highest_acknow|edged_seqno+ b

// start retransmitting from the start of the current window

next_seqno = highest-acknow|edged_seqno + 1;

if the capsule with sequence number next_seqno has been received

enqueue it in the TDMA queue;    
Figure 7.2: Implicit acknowledgments and Go-back-N algorithm

Illustration. Consider the data dissemination process shown in Figure 7.3, where

the window size is 2. In Figure 7.3(i), sensors transmit capsules 10,9, 7,6 in time

slots 31,82,83,S4, 51 < 32 < 33 < 34, respectively. In Figure 7.3(ii), the second sensor
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forwards capsule 8 in slot 82+P, where P is the period between successive TDMA slots.

This is due to the fact that the second sensor did not receive implicit acknowledgment

for capsule 8 from its successor. Hence, instead of forwarding capsule 10, it goes back

and starts retransmitting from capsule 8. Similarly, in Figure 7.3(iii), the first sensor

forwards capsule 10 instead of 12. Thus, lost capsules are recovered.

 

 

. 10 9 7 5

(l) ------C O C .- .....

81 82 S3 S4 S1<32 <53 <84

11 8 8 7 Window size = 2

(II) ------C C O .- .....

sl+P $2+P s3+P S4+P

10 9 9 8

(111)— -----o o o e- -----

sl+2P sz+2P s3+2P s4+2P

 

Figure 7.3: Illustration of Go—back-N algorithm on a linear topology

Dealing with failed sensors. In the presence of failed sensors, neighboring sensors

will not get implicit acknowledgments. To deal with this problem, whenever a sensor

fails to get an implicit acknowledgment from its successors after a fixed number of

retransmissions, it declares that neighbor as failed. Now, a sensor will retransmit

a capsule only when it does not receive an implicit acknowledgment from its active

neighbors.

7.2.2 Selective Retransmission Based Recovery Algorithm

Similar to Go—back-N , in this approach, each sensor maintains a window of 2b capsules,

where b is any integer. However, unlike Go—back-N, a sensor (say, j) will transmit

the capsule with sequence number 71; even if it has not received some capsules with

sequence number smaller than nf. (This can happen due to channel errors.) Rather,

j transmits capsule with sequence number nf only if it has received all capsules with
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sequence number 0, . . . ,nf—b— 1. Also, the sensor piggybacks acknowledgments for

capsules with sequence number nf-b, . . . ,nf-1,nf +1, . . . ,nf+b. The piggybacked

acknowledgments are used by its predecessors to determine the highest sequence num-

ber for which acknowledgment is not yet received (nunacked) from some neighbor. To

recover from lost capsules, j will forward capsule Cf (with sequence number nf) only

if nunacked > (nf-b). Otherwise, j will retransmit the capsule containing the sequence

number nunacked. After retransmission, j will try to forward capsule with sequence

number nf in its next TDMA slot. The intuition behind selective retransmission is

that even if a sensor misses a capsule transmitted by one of its predecessors, it may

still receive the capsule from other neighbors. (This is due to the fact the sensors may

have more than one path to the base station.) Furthermore, the piggybacked acknowl-

edgments update the predecessors about the missing capsules at the successors. This

also allows the predecessors to listen infrequently to the implicit acknowledgment of

successors. Thus, it can be used to reduce message communication and active radio

time (cf. Figure 7.4 for the algorithm).

 

sensor j:

min_unacked_seqno=min(sequence number for which implicit acknowledgment

is not received by j from some of its successors);

next.seqno = smallest sequence number in the window

{min-unacked.seqno, min_unacked.seqno+l, min-unacked.seqno+2b-1}

for which the corresponding capsule has been received but not yet forwarded;

if min-unacked_seqno S next.seqno -b

// selectively retransmit the capsule with sequence number min-unacked.seqno

next.seqno = min-unacked.seqno;

enqueue [the capsule with sequence number next.seqno along with status flags for

sequence numbers next.seqno :l::1:, 1 S :1: S b] in the TDMA queue;   
 

Figure 7.4: Implicit acknowledgments and selective retransmission

Illustration. Consider the data dissemination process in Figure 7.5, where the

window size is 2. Each sensor is shown transmitting c[m|n], where c is the actual

capsule forwarded by the sensor, m and n are the piggybacked acknowledgments

110



for capsules c—1 and c+1 respectively. If m (respectively, n) is c—1 (respectively,

c+1), the predecessors get an implicit acknowledgment for the corresponding capsule.

If m or n is represented as “X”, it indicates that the sensor is yet to receive that

capsule. In Figure 7.5(i), sensors forward capsules 10, 9, 7, 6 in time slots 31,32,33,s4,

31 < 82 < 33 < 34 respectively. The second sensor missed capsule 10 due to channel

errors and it forwards 9[8lX] in slot 32. Since the window Size is 2 (i.e., b= 1), the

first sensor cannot forward capsule 11 in slot 31+P, where P is the period between

successive TDMA slots. Hence, the first sensor retransmits capsule 10 (cf. Figure

7.5(ii)). Similarly, the second sensor forwards capsule 9 in slot s2+P and s2+2P (cf.

Figure 7.5(ii-iii)). Thus, lost capsules are recovered through selective retransmissions.

 

, 10[9l11] 9[8lX] 7[6l8] 6[5|X]

1 ------o o o e -----

 

 

SI 32 S3 S4 Sl<82 <33 «4

,, 10 [9|11] 9 [8|10] 7 [6l8] 7 [6IX] window size = 2

(11) ------o o e a .....

sl+P 32+P s3+P s4+P

11 [10|12] 9 [8|10] 8 [719] 8 pm

(111)------o o o . .....

31+2P s2+2P s3+2P s4+2P

Figure 7.5: Illustration of selective retransmission based recovery algorithm on a

linear topology

Remark. In the presence of failed sensors, the modifications proposed for Go-

back-N algorithm can be applied for this approach as well. Also, we can make the

recovery algorithms proposed in this section self-stabilizing using the framework for

one-to-many sliding window protocol presented in [28].
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7.3 Infuse: Optimization to Reduce Energy Usage

As discussed in Section 7.1.1, a sensor (say, j) classifies its neighbors as its predecessors

and successors. Then, j selects one of the predecessors as the preferred predecessor.

Note that the choice of preferred predecessor of one sensor is independent of that

of others. This preferred predecessor is responsible for listening to implicit acknowl—

edgments and recovering lost capsules at j. Now, whenever j forwards a capsule, it

includes its preferred predecessor in the message. This can be achieved with log(q+1)

bits, where q is the number of neighbors that a sensor has (and the +1 term is for

the case where preferred predecessor is not yet chosen). Since the predecessors lis-

ten to the transmissions of their successors (to deal with channel errors), they learn

about the sensors for whom they are the preferred predecessors. Once the preferred

predecessor information is known, a sensor (say, k) will listen to the transmissions of

j only if j’s preferred predecessor is k. Otherwise, k will not listen in the time slots

assigned to j. Thus, during data dissemination, the number of message receptions is

reduced by allowing only the preferred predecessors to recover lost capsules at their

SUCCESSOI’S.

However, if the preferred predecessor of j fails, j cannot recover from lost capsules.

Towards this end, other predecessors will listen to the transmissions of their successors

occasionally. In other words, a sensor (say, I) will listen in the time slots assigned to

j with a small probability, if l is not the preferred predecessor of j. This will allow

the successors to change their preferred predecessors and recover from lost capsules.

Remark. We note that the number of messages can be reduced even further as

follows. If k is the preferred predecessor of j, k can choose to listen in the time Slots

assigned to j with a certain probability. This will allow k to listen to the transmissions

of j occasionally. However, this is sufficient to recover lost capsules at j, since k learns

about the lost capsules at j with the help of the implicit acknowledgments.
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7.4 Infuse: Properties

In this section, first, we discuss how the data is propagated in a pipeline and estimate

the latency in presence of no channel errors. Next, we argue that our approach is

energy-efficient.

Pipelining. In Infuse, whenever a sensor receives a capsule, it stores the capsule

in the flash at the appropriate address. Then, it forwards the capsule in the next

TDMA slot. Hence, the capsules are forwarded in a pipeline fashion. If P is the

period between successive TDMA slots, it takes at most d at P time to forward one

capsule across the network, where d is the diameter of the network (= 2(n — 1), in

case of n x 71 grid network). If ctot is the number of capsules in the data, as a

result of pipelining, once the first capsule is forwarded, the remaining capsules can

be forwarded within (cw, — 1) =1: P time. Thus, in the presence of no channel errors,

the time required to disseminate data with ctot capsules is «cm—1)+d) =1: P. This

provides an analytical estimate for the dissemination latency. For bulk data, ctot > d.

Therefore, dissemination latency is independent of the network size.

Energy-efficiency. In Infuse, the energy spent during dissemination is equal to

the sum of energy spent in ( 1) idle-listening, (2) message receptions, (3) message

transmissions, and (4) writing to EEPROM or external flash. Since all the sensors

are required to write the data to their external flash, the energy spent in writing to

external flash is a constant across the network. Additionally, in Infuse, each sensor

forwards every capsule at least once. Hence, the number of message transmissions re-

mains almost a constant across the network. Finally, in most sensor network platforms

(e.g., Mica-2 [61]), the energy spent in idle-listening is equal to the energy-spent in

receiving a message. Therefore, the energy spent during dissemination is determined

by the amount of active radio time.

With TDMA, a sensor remains in active mode only in its TDMA slots (if it
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needs to send any capsule) and in the TDMA slots of its neighbors. Hence, in the

remaining slots, sensors can save energy by turning their radio off. Additionally,

the use of preferred predecessor allows a sensor (say, j) to save energy by turning

the radio off in the Slots allotted to its successors for whom j is not the preferred

predecessor. In case of Mica-2 sensors, the energy savings from turning the radio off

in this manner is substantial, Since the energy spent in the off state is only 3 11W

whereas the energy spent in idle listening/message reception (respectively, message

transmission) is 24 mW (respectively, 48 mW) [41]. Also, the Mica-2 sensors can

switch to off (respectively, on or active) state instantaneously (respectively, in 2.5

ms) [41], whereas the timeslot interval in a typical TDMA algorithm is an order of

magnitude more (e.g., 30 ms in SS-TDMA).

7.5 Infuse: Results

We simulated Infuse in Prowler [119], a probabilistic wireless network simulator for

Mica motes [61]. The goal of these simulations is to validate the properties from

Section 7.4 and to evaluate the performance of different versions of Infuse to enable

a designer to choose the appropriate version of Infuse based on the network char-

acteristics. We use one of the TDMA algorithms from [80]. We disseminate data

consisting of 1000 capsules (unless specified otherwise) over a 3x3, 5x5, and 10x10

grid networks, where the base station is located at the top-left/north-west corner (i.e.,

location (0, 0)).

Simulation model and parameters. In our Simulations, we assume that the

inter-sensor separation is 10 m, communication range is 10 m, interference range is

32 m, interference ratio (i.e., y) used by the TDMA algorithm is 4, and the time slot

interval is 30 ms. These values correspond to our experience in the Line in the Sand

experiment [9, 10].
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In the absence of any interference, we have observed that the probability of suc-

cessful communication is more than 98% among the neighbors. Since we use TDMA

for message communication, interference from other sensors does not occur. How-

ever, random channel errors can cause the reliability to go down. Hence, we choose

a conservative estimate of 95% link reliability in our simulations. This value also

corresponds to the analysis in [46, 141].

Infuse parameters. In our simulations, the capsule size is 16 bytes. To deal

with failed sensors, whenever a sensor fails to receive implicit acknowledgment from

its successor, it retransmits 5 times before declaring failure. In case of preferred

predecessors, if I is not a preferred predecessor of j, l will listen to the slots assigned

to j with a probability of 20%. The parameters used in our Simulations are listed in

Table 7.1.

Table 7.1: Infuse simulation parameters
 

 

 

 

   

Parameter Value

Network parameters:

Inter-sensor separation 10 m

Link reliability 95%

Communication range 10 m

Interference range 35 m

TDMA parameters:

Interference ratio 4

Time slot (time to transmit one message) 30 ms

Infuse parameters:

Capsule size 16 bytes

Maximum number of retransmissions 5

Probability of listening to successors

by their non-preferred predecessors 20%
 

Analytical estimate. Now, we compute the analytical estimates for dissemination

using a specific TDMA algorithm [80] on n x n grid network. The estimate for (i)

latency is ((ctot — 1) + d) at P, where cm, is the number of capsules, d = 2(n - 1) is

the diameter of the network, and P is the TDMA period, (ii) active radio time is 1
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slot for forwarding the capsule and at most 4 slots for listening to the grid neighbors

per capsule, (iii) message transmissions are equal to the number of capsules, and (iv)

message receptions are 1 reception from the predecessor and 2 receptions for implicit

acknowledgments from 2 sensors farther from the base station per capsule. We use

the analytical estimate to compare the simulation results.

To disseminate 1000 capsules across a 10x10 network, where the timeslot interval is

30 ms and interference range = 4, the analytical estimate for (i) dissemination latency

is 13.22 minutes, (ii) active radio time is 2.5 minutes, (iii) the number of message

transmissions for each sensor is 1000, and (iv) the number of message receptions for

each sensor is 3000.

7.5.1 Pipelining of Data Capsules

In this section, we verify the pipelining property of Infuse and show that this result is

different from the dynamic behavior discussed in Deluge [63]. Figure 7.6(a—b) shows

the progress of data dissemination for a data sequence consisting of 1000 capsules

with Go—back-N algorithm. The window size used in these simulations is 6. At

5% (respectively, 50%) of time taken to disseminate 1000 capsules, all sensors have

received 49-50 capsules (respectively, 502-505 capsules). Thus, the program capsules

are transmitted in a pipeline.

The dissemination progress shown in Figure 7.6(a-b) contradicts the dynamic be-

havior presented in Deluge [63]. Specifically, in [63], it has been shown that the data

capsules reach the edge sensors in the network first before reaching the middle of the

network. This dynamic behavior causes congestion (due to CSMA based MAC) in

the middle and, hence, message communication and latency are increased. However,

with Infuse (cf. Figure 7.6(a—b)), we observe that all the sensors receive the data cap-

sules at approximately the same time. And, Figure 7.6(c-d) shows the dissemination

progress with selective retransmission algorithm. Again, this result Shows that the
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Figure 7.6: Dissemination progress for data of 1000 capsules with Go—back-N when

(a) 5%, and (b) 50% of the time elapsed, and with selective retransmission when

(c) 5%, and (d) 50% of the time elapsed. The radius of the circle at each sensor in

the figure is proportional to the number of capsules received by the corresponding

sensor.

dissemination latency along the edges is similar to the latency along the diagonal.

7.5.2 Performance of the Recovery Algorithms

In this section, we Show that (1) due to pipelining, dissemination latency remains

almost the same for different network Sizes, (2) active radio time is significantly less

than dissemination latency (and, hence, Infuse is energy-efficient), and (3) latency

and active radio time grow linearly with respect to the data size.

Go-back-N algorithm. Figure 7.7 shows the results for dissemination with 1000
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capsules for Go—back—N algorithm. With window size = 6, the latency is close to

the analytical estimate (cf. Figure 7.7(a)). If a sensor (say, j) missed a capsule,

its predecessor (say, k) will retransmit the capsule. Since j could still get the same

capsule from its other predecessors or its successors, unnecessary retransmissions are

reduced with window size = 6. Furthermore, the latency and the active radio time

remains almost the same for different network sizes. This result is also expected

based on the pipelining property of the proposed protocol (cf. Section 7.5.1) and

the analytical estimate, as ctot >> d. Additionally, when the window size increases,

the sensors have to transmit more messages during recovery, although most of the

retransmissions may not be necessary. As a result, the recovery is too slow and, hence

the latency increases. The same result can also be observed for message transmissions

and receptions.

Selective retransmission algorithm. Figure 7.8 shows the results for selective

retransmission algorithm. Once again, the latency is close to the analytical estimate

and remains almost the same for different network sizes (due to pipelining). If a

sensor misses a capsule, its predecessors selectively retransmit the capsule, thereby

reducing the number of retransmissions. Thus, the latency and the active radio time

are reduced. Likewise, message transmissions/receptions are reduced.

Latency and active radio time growth functions. Figure 7.9 shows how

latency and active radio time grow with respect to the data size for both Go—Back-N

and selective retransmission algorithms. As we can observe from the figure, both

latency and active radio time grow linearly with respect to the data size.

7.5.3 Use of Preferred Predecessors

Figure 7.10 shows the results for dissemination with 1000 capsules. The window size

used in these simulations is 6. As expected, selective retransmission (SR) and selective
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Figure 7.7: Simulation results for disseminating data with 1000 capsules using Go-

back—N algorithm. (a) dissemination latency and active radio time, (b) number of

message transmissions, and (0) number of message receptions

retransmission algorithm with preferred predecessors (SR—PP) perform better than

Go—back-N algorithm (GBN) and Go—back-N algorithm with preferred predecessors

(GBN-PP) respectively (cf. Figure 7.10(a)). This is due to the fact SR and SR-PP

selectively retransmits lost capsules unlike GBN and GBN-PP. Moreover, the latency

for SR—PP (respectively, GBN—PP) is more than SR (respectively, GBN).

For most situations, SR—PP (respectively, GBN-PP) has lower active radio time

than SR (respectively, GBN). Thus, as expected, the use of preferred predecessor

enables us to reduce the active radio time at the cost of increased latency. However,

for large networks, the advantage of GBN-PP is no longer available; this occurs
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Figure 7.8: Simulation results for disseminating data with 1000 capsules using

selective retransmission algorithm. (a) dissemination latency and active radio time,

(b) number of message transmissions, and (0) number of message receptions

due to excessive retransmissions, as a sensor receives capsules from only one of its

neighbors. By contrast, for GBN, the need for retransmissions is less, as a sensor

receives redundant copies of a capsule. This effect is not seen while comparing SR

and SR—PP, as unlike GBN and GBN-PP, a predecessor only retransmits the missing

capsules and not the whole window. Hence, the effect of lost capsules in GBN-PP

is more severe than that of SR-PP. With SR—PP, as the network size grows, active

radio time reaches closer to that of SR, as the number of retransmissions in SR-PP

is close to that of SR. (This is due to the fact the number of retransmissions by the

preferred predecessors alone becomes closer to the number of retransmissions by all
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Figure 7.10: Simulation results with preferred predecessors with 1000 capsules, (a)

dissemination latency and (b) active radio time. Note that the scale is different

for the two graphs.

the predecessors of a sensor in SR.) Based on this result, we prefer SR and SR—PP

compared to GBN and GBN-PP respectively. However, GBN and GBN—PP are easy

to implement and GBN does not add any overhead to a message.

7.5.4 Effect of Window Size

In these simulations, data consisting of 100 capsules are propagated across a 5x5

network. Figure 7.11(a) shows the dissemination latency and active radio time for
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Go—back-N algorithm. With window size = 2, whenever a sensor (say, k) observes

that its successor (say, j) misses a capsule, it initiates recovery by retransmitting

the corresponding capsule. However, j can still receive the capsule from its other

neighbors, as j has multiple paths to the base station. Hence, in this case, the

recovery is initiated too early. Therefore, the latency is higher for window size= 2. For

other values, predecessors allow the successors to recover from lost capsules through

other neighbors. However, from Figure 7.11(a), we observe that as the window size

increases, the latency also increases. This is due to the fact if j misses a capsule, its

predecessor k starts retransmitting the whole window from the lost capsule, although

most of the retransmissions are not necessary. Thus, with Go—back-N, we observe

that the window size should be chosen such that recovery is neither initiated too

early nor too late. In Figure 7.11(a), we note that with window size = 4,6,. . ., 12,

the latency remains almost the same. Hence, we choose window size = 6 in the rest

of the simulations.

    

      

 

      

l —+— latency. 3x5 . V —+— latency. 3x5

4 «Ir- latency, 5x5 ‘ 4“ 4- latency. 5x5

A ~O-- active radio time, 3x3 A -0‘ active radio time, 3x3

3 ---t3-~ active radio time. 5x5 93 -~-t:l~- active radio time. 5x5

.5 2* .E

E ' E

g 2. g 2. ‘ .

m a: ‘ - - -

.§ .§ ‘

'— 1*
l- 1.

<

5"0-«9-0-o-O-O-‘°"0"8“O"B , “~fi-o-o-o-o-o-o-a-o-o-o

o0 5 10 15 20 25 00 5 19 15 20 25

Window srze Window srze

(a) (b)

Figure 7.11: Effect of window size. (a) Go—back-N and (b) selective retransmission

algorithms.

Figure 7.11(b) shows the effect of window size on selective retransmission algo-

rithm. In this figure, we observe that the dissemination latency (and active radio

time) remains constant for window sizes 2 6. This is due to the fact that the pre-
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decessors selectively retransmit lost capsules, unlike Go—back-N algorithm. We note

that the dissemination latency for window size = 2, 4 is slightly higher than that of

other values. As discussed earlier in Go-back-N, in this case, if a sensor (say, j) misses

a capsule, its predecessor (say, k) retransmits the corresponding capsule immediately,

although j may receive the same capsule through other neighbors.

7.5.5 Effect of Failed Sensors

In these simulations, data consisting of 1000 capsules are propagated across the net-

work. The window size used in these simulations is 6. The number of failed sensors

in these simulations is 3 and 5 on a 5x5 network, and 3, 5,10, 20, and 27 on a 10x10

network. Figure 7.12 shows the effect of failed sensors on Go—back-N (GBN) and

selective retransmission (SR) algorithms. From Figure 7.12, the additional time re-

quired for dissemination in presence of failed sensors is small. When the number of

failed sensors increases, this additional time also increases. This is due to the fact

that the pipeline is disrupted when the sensors fail.
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Figure 7.12: Effect of failed sensors. (a) Go—back-N and (b) selective retransmis-

sion. * indicates bulk failure of 3 subgrids of size 3x3.

With GBN, whenever a sensor observes that its successors miss a capsule, it

retransmits the entire window. In other words, an inherent redundancy is available in
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GBN, where the sensor recovers all the successors (and possibly some predecessors)

that have missed a capsule in the current window. However, with SR, in order to

reduce the number of retransmissions, whenever a sensor observers that one of its

successors has missed a capsule, it retransmits only the corresponding capsule. In

other words, the level of redundancy is less in SR. Now, in presence of failed sensors,

the number of paths to base station is reduced. Due to the built in redundancy in

GBN, the effect of the reduction in paths in GBN is less severe than that in SR (cf.

Figure 7.12).

Additionally, we did a simulation, where 3 sub-grids of size 3x3 are randomly

selected as the failed sensors on a 10x10 network. From Figure 7.12, only 1.35 (re-

spectively, 2.38) additional minutes are required to disseminate the data with GBN

(respectively, SR). This value is close to the latency for dissemination in presence of 3

failed sensors. In other words, the cumulative effect of failure of nearby sensors shows

up as a single disturbance in the pipeline. Therefore, the additional time required is

less than the case where the failures are random.

Remark. In these simulations, we assumed that the sensors fail before the dissemi-

nation starts. Even if sensors fail during dissemination, the latency increases only by

a very small percentage. Specifically, the latency is less than or equal to the latency

in the case where the sensors have failed up front + the time required to detect the

failure of sensors independently. Based on our simulations, the time required to de-

tect failures is approximately 0.3 minutes. Thus, the latency in presence of dynamic

failures increases only by a small percentage.

7.5.6 Effect of Other TDMA Algorithms and Topologies

The goal of this section is to illustrate that Infuse could be used with different TDMA

algorithms and with different topologies. We compare the performance of Infuse on

a uniform deployment of 100 sensors in a 10x10 grid with a random deployment. For
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the uniform deployment, we use SS—TDMA, whereas we use the algorithm in [60]

for random topology. (We note that the number of colors used to obtain TDMA

schedule in both are approximately the same: 26 for grid topology and 31 for random

topology.) The window size used in both simulations is 6. Table 7.2 summarizes the

results of our simulations.

Table 7.2: Infuse on a random topology

Data size Dissemination latency (in minutes) Active radio time (in minutes)

(in capsules) Random topology 1 Grid topology Random topology I Grid tepology

Go—back-N (GBN)

 

 

  
 

 

    
 

 

    

50 0.85 0.78 0.14 0.15

100 2.15 1.66 0.31 0.31

Selective retransmission (SR)

50 1.34 0.72 0.36 0.14

100 2.86 1.54 0.57 0.29  
 

With Go—back-N algorithm (GBN), the latency required to disseminate 50 capsules

on a random topology is 0.85 minutes and the active radio time is 0.14 minutes. In

case of grid topology, the latency required is 0.78 minutes and the active radio time

is 0.15 minutes. For disseminating data with 100 capsules, the latency required in

grid topology is lesser than that of random topology. However, the active radio time

is less than that of SR in random topology.

With selective retransmission algorithm (SR), for random topology, the latency

required is higher than that of GBN. In case of GBN, during recovery, a sensor

retransmits all the capsules in the window. Hence, it helps the successors that have

missed a particular capsule in the current window to recover. By contrast, in case

of SR, when a sensor detects that one of its successors lags behind, it retransmits

the particular capsule. This helps only that successor to recover, unlike GBN, and,

hence, the sensor has to learn the status of other successors in future slots. Thus, with

random topologies, GBN performs better. We did not experience this behavior in case

of grid topology as a sensor has at most two successors and, hence, retransmitting
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the whole window is expensive. Therefore, SR performs better on a grid topology

and the active radio time is significantly less compared to random topology.

7.5.7 Comparison: Go-Back-N and Selective Retransmission

In this section, we compare the performance of our recovery algorithms. First, in

Section 7.5.1, we show that both Go—back-N and selective retransmission algorithms

provide a uniform, fine-grained pipelining service. This ensures that Infuse does not

have the dynamic behavior expressed in [63]. Also, in Section 7.5.2, we observe that

the latency and the active radio time grow linearly with respect to data size for both

the algorithms. Second, in Section 7.5.3, to our surprise, we observe that the use of

preferred predecessors does not significantly improve the performance of Go-back-N

algorithm. This is due to the fact that with preferred predecessors, duplicate sources

are reduced. As a result, the probability of successfully retransmitting the entire

window during recovery is reduced. By contrast, we do not observe this behavior

with selective retransmission algorithm, as a sensor selectively retransmits only lost

capsules during recovery. Third, in Section 7.5.4, we observe that the window size

should be chosen carefully in case of Go—back-N. On the contrary, window size (2 6)

does not affect the performance of selective retransmission algorithm. While selective

retransmission performs better on a grid topology with no failures, from Sections 7.5.5

and 7.5.6, we observe that Go—back—N performs better in presence of failed sensors

and on random topologies. Table 7.3 summarizes the results.

In general, in traditional networking, it is expected that selective retransmission

be better than Go—back-N. From Table 7.3, we observe that for a grid topology with

no failures, this is valid. However, if the network has a random topology or can be

affected by failures, Go—back-N is better than selective retransmission. This is due

to the fact that unlike SR, inherent redundancy is available in GBN, where a sensor

recovers all the successors that have missed a capsule in the current window during
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Table 7.3: Comparison of recovery algorithms
 

 

 

 

 

 

 

 

Go—back-N Selective retransmission

Message overhead none 2b bits, 2b = window size

Preferred predecessors does not reduce reduces active radio time

active radio time

Pipelining uniform, fine-grained uniform, fine-grained

Latency/active radio time linear linear

Window size affects latency does not affect latency

Failed sensors tolerates random failures increases latency considerably

Random topology does not increase increases active radio time

active radio time     
 

recovery. Thus, this shows a somewhat counter-intuitive result that if the deployment

may not be uniform or where sensors may fail, Go—back-N is preferable to selective

retransmission.

7.5.8 Effect of Interference Ratio

In [46, 141], it has been shown that a signal from a (Mica based) sensor (say, j) reaches

a sensor within distance 10 m (called, connected region or communication range) with

probability 2 98%. And, the sensors at distance 10 — 32 m (called, transitional region

or interference range) receive the signal from j with a reduced probability. Finally,

the sensors at distance > 32 m (called, disconnected region), do not receive the signal

from the sender. Based on this discussion, the ratio of the interference range to

communication range is around 3.2. If the network density increases (or a different

sensor/radio hardware is used) then this ratio may increase. As a result, more sensors

may fall in the transitional region. Therefore, the interference ratio would have to

be increased. Figure 7.13 shows the analytical estimate on dissemination latency

of Infuse with different interference ratios. As the ratio increases, the latency also

increases. For a given interference ratio, the latency grows linearly with respect to the

data size. Moreover, in case of grid topology, the number of slots for which a sensor

keeps its radio on is approximately 5x the number of capsules (one slot to forward,
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4 slots to listen to its grid neighbors). Hence, the active radio time is independent of

the interference ratio.
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Figure 7.13: Effect of interference ratio on dissemination latency

In case of even larger values of interference ratio, the probability that a given mes-

sage reaches a longer distance increases. Towards this end, we can use the SS—TDMA

algorithm customized for larger communication ranges [80]. In this approach, not all

sensors are required to forward the data. Specifically, the sensors that are farther

away from the sender can forward the data. In case of random topologies, we can

organize the network into clusters and elect cluster heads/leaders [57]. Alternatively,

we can compute the minimum connected dominating set or MCDS (similar to Sprin-

kler [102]). Once the leaders or the sensors in MCDS are identified, we can establish

a TDMA schedule (e.g., using [57, 60]) for them. The remaining sensors can then

listen to the slots assigned to their closest leaders or sensors in MCDS. Thus, Infuse

can be easily modified to disseminate data in high density networks.

7.5.9 Comparison with Related Work

Related work on dissemination has been addressed for wired networks in [69] where

reliable transmission of multicast messages using multiple multicast channels is pro-

posed. One of the important concerns in dissemination for wireless networks is the
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broadcast storm problem [106]. Specifically, in dissemination using naive flooding

based algorithms, a broadcast storm is created where redundant broadcasts, con-

tention, and collisions occur. Infuse is not affected by the broadcast storm problem

since contention/collisions are managed by TDMA.

Network programming. Related work on dissemination protocols, especially for

network programming in sensor networks, include Deluge [63] and multi—hop network

reprogramming (MNP) [86]. Deluge is an epidemic protocol for disseminating large

data objects that uses Trickle [90] to suppress redundant advertisements and requests,

and to minimize the set of concurrent senders. MNP is a network reprogramming

service that uses a sender selection algorithm to reduce the number of concurrent

senders. Additionally, in MNP, sensors are allowed to turn their radio off whenever

they are not transmitting or receiving new packets.

Comparison of Deluge and MNP with Infuse. In Table 7.4, we compare the sim-

ulation results of Deluge and MNP protocols with that of Infuse. Specifically, we

compare the latency and the active radio time during dissemination of data of size

5.4 KB on a 10x10 network, where the interference ratio = 4. (We have chosen the

data size as 5.4 KB based on the availability of results from [63, 86].) The latency

with Go—back-N (GBN) and selective retransmission (SR) algorithms is less than that

of Deluge and MNP. Furthermore, the active radio time with Infuse (= 1.0 minutes

for GBN) is significantly less than that of Deluge (= 11.67 minutes) and MNP (= 5.87

minutes). This is due to the fact that Infuse allows each sensor to turn its radio off in

the slots not assigned to itself and its neighbors. In particular, for the grid topology, a

sensor keeps its radio on only in the slots assigned to itself and to its 4 grid neighbors.

Therefore, Infuse offers an energy-efficient dissemination service.

If the network density increases or the radio hardware is different then the inter-

ference ratio increases. Since Deluge and MNP use a CSMA based communication

service, due to hidden terminal effect and network congestion, we expect that the
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Table 7.4: Go—back-N (GBN) and selective retransmission (SR) Vs.

Deluge and MNP for dissemination on a 10x10 grid, where interference

 

 

 

 

ratio = 4

Protocol Data size No. of packets Latency Active radio time

or capsules (in minutes) (in minutes)

Deluge [63] 5.4 KB 240 11.67 11.67

MNP [86] 5.6 KB 256 9.61 5.87

Infuse GBN 5.4 KB 345 5.21 1.0

SR 5.4 KB 345 4.83 0.93        

latency and the active radio time would increase in such cases. In Infuse, the TDMA

period increases with interference ratio. As a result, the latency increases. However,

the active radio time remains the same (cf. Table 7.5), as the sensor keeps its radio

on only for 5 slots in each TDMA period.

Table 7.5: Results for Go—back-N (GBN) and selective retransmission

(SR) for dissemination of data of size 5.4 KB (= 345 capsules) on a

10x10 network with different interference ratios (extrapolated from the

results for interference ratio = 4)
 

 

 

 

 

Recovery Algorithm [ Latency (in minutes) ] Active radio time (in minutes)

Interference ratio = 6

GBN 10.02 1.0

SR 9.29 0.93

Interference ratio = 8

GBN 16.43 1.0

SR 15.23 0.93      

Based on this comparison, we expect that Infuse will be highly beneficial in sce-

narios where the network is sparse and already deployed. However, in laboratory

environments and in dense networks, the TDMA period may be very high. Hence,

Infuse is not intended for such scenarios.

Other dissemination protocols. Other dissemination protocols include sensor

protocols for information via negotiation (SPIN) [74], multi—hop over the air program-

ming (MOAP) [123], and transport protocols [122, 128]. In SPIN, a 3—way handshake

protocol (ADV/REQ/Data) is used to disseminate the data. Furthermore, meta-data
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(i.e., high-level descriptors of data) is used to declare the availability of new data.

Infuse differs from SPIN in that no negotiations using meta-data are necessary and re-

liability is achieved through implicit acknowledgments. In MOAP, a publish-subscribe

interface similar to [64] is used to provide dissemination (especially, reprogramming)

service. In this scheme, a sensor has to receive the entire code before it can send

meta-data about the availability of new code. MOAP uses sliding window mecha-

nisms and negative acknowledgments for loss recovery. By contrast, with Infuse, each

capsule is forwarded as soon as possible. And, Infuse uses sliding window mechanisms

with implicit acknowledgments for loss recovery.

Work related to transport protocols in sensor networks is also used for data dis-

semination. Examples of transport protocols for sensor networks include pump slowly,

fetch quickly (PSFQ) [128] and reliable multi-segment transport (RMST) [122]. These

protocols rely on negative acknowledgments for loss recovery. By contrast, Infuse uses

implicit acknowledgments in order to recover lost capsules. Additionally, Infuse takes

advantage of the underlying TDMA based MAC in providing a pipelined service.

7.5.10 Application of Infuse in Reprogramming

We implemented Infuse on TinyOS for Mica-2 and XSM motes. In the DARPA NEST

meeting on extreme scaling in sensor networks (ExScal demonstration, Avon Park,

FL, December 2004) [10], we demonstrated Infuse on Mica-2 motes to reprogram the

network with a new program, using Go—back-N based recovery algorithm.

We demonstrated Infuse on a 5x5 grid in an outdoor setting, where the inter-sensor

separation of 8 ft and the base station is located at the top-left corner of the grid. We

integrated Infuse with SS-TDMA [80] to assign time slots to each sensor. We used a

conservative estimate of interference ratio, y=6. Initially, the base station contained

the new data (i.e., new program for the sensors). The size of the new program

was 2 KB (=128 capsules). First, the base station established the TDMA schedule
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according to the SS-TDMA algorithm. Then, it disseminated the program capsules,

one in each of its TDMA slots. In this experiment, the dissemination latency was 3.5

minutes. The active radio time during the dissemination process was approximately

25 seconds. These results are close to the analytical estimate for latency (= 3.37

minutes) and active radio time (= 19.2 seconds).

We found similar results in other experiments at Michigan State University. We

have experimented with Infuse for reprogramming the network with programs of

size from 2 KB—15 KB, interference ratio of 4-6 and window size of 6—12. In all

these experiments, the results were consistent with the analytical estimate/simulation

results.

7.6 Chapter Summary

In this chapter, we presented Infuse, a TDMA based data dissemination protocol

for sensor networks. To deal with random message losses caused by varying link

properties and message corruption, we considered two recovery algorithms based on

the sliding window protocols that use implicit acknowledgments. The first algorithm,

Go—back-N, adds no extra information to the payload of a message. With Go—back-N,

we showed that the window size should be chosen carefully. And, we observed that

Go—back-N tolerates failed sensors without significant degradation in performance.

The second algorithm, selective retransmission, adds 2b extra bits to the message,

where 2b is the size of the window. With selective retransmission, we showed that

window size (2 6) does not affect the protocol. However, in presence of failed sensors,

we showed that it increases latency considerably. Thus, we find a somewhat counter-

intuitive result that Go—back-N is preferable to selective retransmission if topology is

not uniform or if failures may occur.

In presence of no channel errors, we estimated the dissemination latency. We
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showed that the data is propagated in a pipeline and, hence, the latency is reduced.

We argued that Infuse is energy-efficient. Specifically, we showed that message trans-

missions/receptions are reduced. Since Infuse uses a TDMA based MAC protocol,

sensors need to listen to the radio only in the slots assigned to their neighbors. In the

remaining slots, sensors can turn off their radio. Moreover, we proposed an algorithm

to reduce messages receptions and the active radio time further by using the notion

of preferred predecessors.

Reliable data dissemination is a bandwidth intensive and time consuming oper-

ation. Hence, it has the potential to disrupt the communication of the underlying

application. In a CSMA based network, this disruption is expected to be severe,

as the network is highly congested. By contrast, a TDMA based protocol can pro—

vide some guarantees about the communication of the underlying application. Since

the application messages (e.g., event messages) are rare and are time critical, the

TDMA algorithm can be extended to provide high priority for such messages. The

TDMA algorithm can also be customized (e.g., using SS—TDMA) for the communica—

tion pattern of the application. Thus, the TDMA algorithm can communicate such

rare messages reliably. In this context, in [80], we have compared the performance

of CSMA with SS—TDMA. Specifically, if the only communication consists of event

messages, SS-TDMA improves the reliability from 50% to 100% with a only small in-

crease in the delay. It follows that if event messages have to compete with bandwidth

intensive dissemination then a TDMA based service such as Infuse will be especially

useful.
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Chapter 8

Tradeoffs in Sensor Communication

In the last three chapters, we developed tools and protocols that enable rapid proto-

typing and quick deployment of sensor network protocols and applications. In order

to facilitate the designers to quickly evaluate the performance of their protocols, it

is desirable to fine-tune the parameters of the protocols depending on the tradeoffs

in the execution environment. Specifically, the tradeoffs will permit the designers to

choose the appropriate operating point for their protocols.

In this chapter, we identify the tradeoffs in sensor communication. First, in Section

8.1, we identify the tradeoff between energy and latency in communicating event

messages (e.g., reporting the presence of intruders) to the external world, i.e., the

base station. Next, in Section 8.2, we identify the tradeoff between causal delivery

and timely delivery of messages to the base station. Finally, in Section 8.3, we discuss

the related work.

8.1 Energy Vs. Latency

The ability to reliably communicate an event of interest to the base station or the

outside-world is an essential function in sensor networks. For example, in applications

such as ExScal and A Line in the Sand [9, 10], where sensors detect, classify, track,
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and visualize intruders along an area, and habitat monitoring [124], where sensors

monitor the activities of a habitat, the sensors are required to communicate their

observed values to the base station. Such many-to—one (or source—to-sink) communi-

cation is often referred as convergecast. One of the important requirements in such

communication is that the latency involved during convergecast should be minimized.

As discussed in earlier chapters, an important constraint with sensor networks is

limited power. To deal with this constraint, as part of an energy management scheme,

sensors are allowed to turn their radio off or switch to low-power mode, where the

amount of idle listening and overbearing are reduced. For example, time division

multiple access (TDMA) algorithms proposed in [57, 60, 80] can be effectively used

to reduce the amount of idle listening by allowing a sensor to turn its radio off in the

time slots not assigned to itself and its neighbors.

It is easy to observe that there is a potential conflict between energy-management

and low-latency convergecast. Specifically, if the radio is always on then the latency

may be reduced. Similarly, if the sensors execute as part of an energy-management

scheme then the latency may increase.

With this motivation, in this section, we focus on the problem of energy-efficient

convergecast while ensuring that the latency is within the application requirements.

Specifically, we propose a TDMA based convergecast algorithm. With the help of

simulations, we analyze the performance of the proposed convergecast algorithm and

show that it provides a better energy-latency tradeoff.

8 . 1 . 1 Convergecast Algorithm

Suppose each sensor listens to the medium always. Whenever a sensor (say, j ) ob—

serves an event, it sends a convergecast message (say, me) to the base station. Now,

consider a sensor (say, k) that is on the path between 3' and the base station. We

observe that until k receives me from j, k spends time on idle listening and, hence,
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most of its energy is wasted. To provide a better energy-latency tradeoff, we propose

a TDMA based algorithm for convergecast in sensor networks.

In this algorithm, each sensor listens to the medium in the slots assigned to its

neighbors at certain distance. Whenever a sensor observes an event, it sends a con-

vergecast message in its TDMA slot. The sensors may use a routing algorithm (e.g.,

logical grid routing protocol or LGRP [25]) to forward the message to the base station

for visualization and monitoring. Since multiple sensors observe an event, a TDMA

based algorithm for reliably communicating all the messages to the base station in-

creases the latency considerably.

To improve the latency in convergecast, in this algorithm, each sensor operates in

one of the following two modes; TDMA mode or active mode. Initially, sensors execute

in the TDMA mode (to conserve energy and reduce the amount of idle listening).

Whenever a sensor receives a convergecast message, it forwards the message in its

TDMA slot, and switches to active mode after a timeout. Furthermore, the sensor

sets another timer, called TDMA timer; when this timer expires, the sensor returns

to TDMA mode. In the active mode, the sensor listens to the medium always and

forwards messages according to a CSMA protocol. The sensors may use a reliable

communication layer (e.g., ReliableComm [140]) on top of the TDMA layer. Thus,

the convergecast algorithm is shown in Figure 8.1.

8.1.2 Simulation Model

We simulated our algorithm in the framework based on Prowler [119], a probabilistic

wireless network simulator for MICA motes [61]. We use SS-TDMA [80] to provide

collision-free TDMA service. And, we use the logical grid routing protocol (LGRP)

from [25] for routing. Finally, we use ReliableComm [140] to provide the reliable

communication service to deal with message corruption and message collision (in

CSMA networks). Next, we give a brief overview of SS-TDMA and ReliableComm.
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j executes in TDMA mode

listen to the TDMA slots of neighbors;

if j receives a convergecast message mC

forward me in the next TDMA slot;

setup wakeup—timer

when timer fires. switch to active mode;

setup TDMA-timer

when timer fires, switch to TDMA mode;

j executes in active mode

listen to the medium always;

if 3' receives a message m

forward m using a CSMA based algorithm;   
Figure 8.1: TDMA based convergecast algorithm for sensor networks

(We refer the reader to Chapters 3 for more details on LGRP).

Self-stabilizing TDMA (SS-TDMA). We note that our algorithm does not

depend on a specific TDMA algorithm. We have chosen SS-TDMA [80] due to its

applicability in [9]. Moreover, SS-TDMA can be customized for convergecast. In [80],

the sensors are arranged in a 2 dimensional grid and the base station is located at

(0, 0). If the interference ratio of the sensors is y then the initial slot of a sensor

located at (i,j) is (P — 1)i+(P — (y+1))j, where P: (y+1)2+1 is the TDMA period.

If 13,, is the initial slot of sensor a then a can transmit in slots: $0 + c* P, where c 2 0.

ReliableComm (RComm). ReliableComm [140] is a CSMA based reliable com-

munication protocol, designed to improve per-hop and end-to—end reliability in pres-

ence of fading, collisions and congestion. It maintains a queue, where agiven message

is removed from the queue when the sensor receives an implicit acknowledgment from

its parent. If it fails to receive the acknowledgment within a timeout, it retransmits

the message. The number of retransmissions is bounded by a threshold. Since the

base station does not require to forward the messages, it explicitly acknowledges the

receipt of a message.

Simulation model and parameters. In our simulations, we assume that the
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base station is located at one corner of the grid and the sensors that observe an event

are located diagonally opposite to the base station. Furthermore, we require at least

50% of the messages to be delivered to the base station. This value is based on the

reliability requirements of the LITeS experiment [9].

We assume that the sensors can communicate with high reliability among their

neighbors. Also, we assume that the signal from a sensor may reach sensors within

distance 6 although the probability of successful communication is very low. However,

the actual radio propagation is based on the distance-fading model, where the strength

of a signal from a sensor is inversely proportional to the square root of the distance.

The parameters used in our simulations are listed in Table 8.1.

Table 8.1: Convergecast simulation parameters
 

 

Parameter Value

Network/event .

Network size 7x7 grid

Sub-grid sending event messages 1x1 - 5x5

Convergecast algorithm.

Wakeup timeout 1 s

TDMA timeout 20 s

SS-TDMA/LGRP/RComm.

Time slot interval 50 ms

Interference range 6

H 2

Maximum number of retransmissions 3

Retransmission timeout 55 ms    

8.1.3 Simulation Results

We compare the performance of our algorithm using LGRP and ReliableComm (i.e.,

SS-TDMA+RComm+LGRP) with (i) SS-TDMA+LGRP, where sensors execute in

TDMA mode always, and (ii) RComm+LGRP, where sensors execute in active mode

always.

Latency. In Figure 8.2, we show the time required to convergecast event messages
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to the base station. With SS-TDMA-l-RComm-l-LGRP and RComm+LGRP, only

50% of the event messages are delivered. The latency of the proposed convergecast

algorithm follows closely that of the RComm+LGRP scheme. This meets the require-

ment of the LITeS experiment, where the desired latency for reporting an event is

less than 13 seconds (with 50% reliability) [9].
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Figure 8.2: Latency during convergecast

With SS-TDMA+LGRP, all the messages are delivered to the base station. This

is due to the fact that SS-TDMA ensures collision-free communication. Moreover,

from Figure 8.2, we observe that the latency for delivering 50% of the messages with

SS-TDMA+LGRP is almost equal to the other two schemes. This is due to the

fact that SS—TDMA is customized for convergecast. Specifically, the slots assigned

to sensors closer to the base station are after the slots assigned to sensors farther

from the base station. Hence, whenever a sensor receives a message, it can forward

it within 50 ms (2 timeslot interval). Thus, the latency is close to RComm+LGRP

scheme.

Suppose TDMA is customized for broadcast. Whenever a sensor receives a mes-

sage, it has to wait at most P slots (=2.5 seconds, in our simulations) before it can

forward, where P is the TDMA period. This delay is added at each hop and for

each message. Hence, the latency may increase. With SS-TDMA+RComm+LGRP,

a sensor switches to RComm once it forwards the first message. Hence, it offers better
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latency.

Active radio time (ART). In Figure 8.3, we show the average ART of the

sensors. As expected, SS-TDMA+LGRP is energy-efficient, since the sensors listen

to the medium only in the slots assigned to their neighbors. In the remaining slots,

the sensors conserve energy by turning their radio off. Thus, ART is approximately

40% of the time required for convergecast.
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Figure 8.3: (a) Average ART and (b) ‘70 of average ART with respect to

latency. Note that the scale is different in each figure.

With SS-TDMA+RComm+LGRP, the sensors conserve energy until the actual

communication starts. From Figure 8.3(b), the sensors remain in active mode for

76.89% of the time (i.e., 5.13 seconds in 6.67 seconds), when a sub-grid of 3x3 sensors

send messages. With RComm+LGRP, the sensors spend 100% of the time in active

mode. Hence, it is not energy—efficient.

Message communication. In Figure 8.4, we show the number of transmis-

sions/receptions during convergecast. The number of transmissions is in order of

500 when a sub-grid of 3x3 sensors send messages with 50% reliability for different

schemes. Similarly, the number of receptions for different schemes is approximately

the same. In case of SS-TDMAi—LGRP, 100% reliability is achieved with increased
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communication.
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the scale is different in each figure.

Network lifetime. In Figure 8.5, we show the analytical estimate of network

lifetime with respect to the probability of occurrence of an event at any instant

for SS-TDMA+RComm+LGRP. If the probability is 0, the sensors execute in the

TDMA mode always. The sensors can turn their radio off in the slots not assigned to

itself and its neighbors. Thus, the network lifetime improves by 3.8 times (when the

interference range = 6 and H = 2). When the probability of occurrence of an event

increases, ART also increases. As a result, the network lifetime decreases. When

this probability is close to 1, the sensors start to operate in the active mode more

frequently and, hence, energy conservation is negligible.

In a typical application (e.g., LITeS [9, 10]), the probability of occurrence

of an event at any instant is less than 10 - 15%. From Figure 8.5, SS-

TDMA+RComm+LGRP improves the lifetime of the sensor network by approxi-

mately 3 fold.
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8.2 Causal Delivery Vs. Timely Delivery

The ability to observe distributed computations is one of the important problems in

many systems. Consider an application in sensor networks (e.g., MICA motes [61])

where a group of sensors need to track a moving object (e.g., [37]). In such a sys-

tem, the sensors communicate their observations about the object they are tracking

with each other. However, due to limited memory/computing power and small size, a

sensor cannot provide human readable output. Hence, these applications typically in-

clude a more powerful visualization unit (e. g., a PC) that is responsible for providing

the required human readable output. Thus, the visualization unit (or observer) ob-

serves the communication among sensors and uses its high computing power/memory

to display/interpret the communication among sensors.

Since the order in which the observer receives messages may be different from the

order in which the communication occurred in the underlying system, the observer

needs to reorder messages consistently. While it may be impossible to recreate the

exact scenario that occurred in the underlying system, it is desirable to obtain at

least a consistent view at the observer. One way to obtain such consistent view is to

ensure that the observer delivers the messages in a causal order.

One additional requirement for online observers is that they should be timely, i.e.,
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the observer needs to reconstruct the underlying computation quickly. Specifically,

the visualization of the underlying computation should be in real-time and, hence, the

visualization unit must act quickly on the messages received so that the visualization

does not significantly lag behind the original computation.

It is easy to observe that there is a potential conflict between achieving causal

delivery and delivering messages quickly. Causal delivery requires that a message be

buffered until all messages that causally depend on it are delivered. However, timely

delivery requires that a message be delivered as soon as possible. Since these goals

are contradicting, it is necessary to develop protocols where the observer can choose

the level of causality violations it can accept to ensure timely delivery of messages.

We call this the problem of approximate causal delivery. And, an observer that

provides approximate causal delivery is called approximate causal observer. With

this motivation, in this section, we adapt the algorithm in [85] to obtain approximate

causal delivery.

8.2.1 Logical Timestamps and Causal Delivery

In this section, we discuss the algorithms for logical timestamp and causal delivery

from [85]. We use the causal delivery algorithm for achieving approximate causal

delivery.

System Model

A distributed system (e.g., sensor networks) consists of finite set of processes (e.g.,

sensors) which communicate via passing messages. Each process j has a physical clock

rt.j . In the absence of faults, a distributed system must provide some guarantees

that will enable the observer to obtain a tradeoff between causal delivery and timely

delivery. In the presence of faults, these guarantees may be violated temporarily. We

focus on the following two guarantees about the bound on maximum clock drift (for
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example, using [58]) among different processes and the bound on message delay.

 

Guarantees of the distributed system.

G’ 1. The value of rt.j is non-decreasing, and at any time, the difference between

the clock values of any two processes is bounded by e. In other words,

‘v’j, k : |rt.j — rt.k[5€

G2. Let mj be a message sent by process j to k. Also, let stm denote the clock

value of 3' when j sent mj, and let rdm denote the clock value of j when It

received mj. We require that I: should receive mj within time 6 unless m,- is

lost. In other words,

  ((rdm g (stm+6)) V rdm=oo)

 

Execution of a process consists of a sequence of events; an event can be a local

event, a send event, or a receive event. In a local event, a process neither receives

nor sends a message. In a send event, a process sends one or more messages, and in

a receive event, a process receives one or more messages. For simplicity, we assume

that one clock tick of j corresponds to at most one event at process j. Note that, we

can weaken this assumption so that one clock tick corresponds to at most K events,

where K is any constant.

We assume that there is a special observer process in the system. A copy of

relevant messages sent by any process is also sent to the observer. The observer

buffers the messages and delivers them in such a way that the number of causality

violations is acceptable. Note that we do not assume that the observer can precisely

determine causal relations between two messages.

Notation. We use i, j, k and l to denote processes. We use e, f and g to denote

events. Where needed, events are subscripted with the process at which they occur,

thus, ej is an event at j. We use m to denote messages. Messages are subscripted

with the process that sends the message. Thus, m, is a message sent by j.

144



Logical Timestamp Program

Before presenting the program, we define the notion of happened-before, ——-> among

events.

Happened-before. The happened-before relation [87] is the smallest transitive

relation that satisfies, for any events 6, f, e ——+ f if (1) e and f are events on the

same process and e occurred before f, or (2) e is a send event in one process and f

is the corresponding receive event in another process. Cl

Solution to logical timestamp. In the solution to the logical timestamps pro-

posed in [85], the timestamp of an event ej at process j is of the form (rt.ej, c.eJ-, kn.ej),

where rt.ej denotes the physical clock value of j when ej was created. The variable

c.ej denotes the difference between the knowledge j had about the maximum clock

value in the system and the physical clock value of j. The variable kn.ej is an array of

size 26. The variable kn.ej [t], —e g t < e, captures the knowledge about the number

of events f such that r.f = T.€j +t and f —-+ e.

Each process 3' in the system maintains rt.3' , r.j , c.j and kn.j. (The algorithm

works correctly even if j maintains (rt.j mod B) instead of rt.j , where B 2 6+5+ 1.

Thus, the space required for maintaining rt.j is bounded.) The variable rt.j represents

the physical clock value at 3' and (r.j, c.j, kn.j) represents the timestamp of the last

event at 3'. The initial and update rules for different events are presented in Figure

8.6. Note that, for simplicity of presentation, we assume kn.j [t] = 0 if t < —e or

tZE.

Comparing timestamps. Let (r.e,-, c.ej, kn.ej) and (r. fk, c. fk, kn.fk) be two

timestamps. The less function for comparing timestamps based on the logical times—

tamp program in Figure 8.6 is as follows:

less((r.e,j c.eJ-, kn.ej), (r.fk, c.fk, kn.fk))

iff
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Initially:

rt.j,r.j,c.j = 0,

Vt : t 3A 0 : kn.j[t]=0,kn.j[0]=1

Local event 63- or Send event ej (message being sent is mj)

c.j := max(0,r.j + c.j — rt.j)

Vt : —e S t < e: kn.j[t] :2 kn.j[t + rt.j — r.j]

kn.j[0] := kn.j[0] + 1

r.j := rt.j

r.ej, c.eJ-, kn.ej := r.j, c.j, kn.j

if ej is 3 send event then r.mj, c.mJ-, kn.mj := r.j, c.j, kn.j

Receive event ej (message m received with timestamp (r.m, c.m, kn.m))

c.j := max(0, r.j + c.j — rt.j, r.m + c.m — rt.j)

‘v’ t: —e S t < c : kn.j[t] := max(0,kn.j[t + rt.j — r.j],kn.m[t + rt.j — r.m])

kn.j[0] := kn.j[0] + 1

r.j := rt.j

r.ej, c.ej, kn.ej :2 r.j, c.j, kn.j  
 

Figure 8.6: Logical timestamp program

(r.ej + c.ej,kn.ej[c.ej], kn.eJ-[eej — 1], . . .,

kn.eJ-[cej — 6 +1],j)

< // lexicographic comparison

(r.f;c + c.fk,kn.fk[c.fk], kn.fl,[c.f,c — 1], . . .,

kn.fk[c.fk — e + 1], k)

In the above comparison, kn values are compared only when r.e + c.e equals

r.f + c.f. Thus, kn.f [c. f] is compared with kn.e[r.f + c.f — r.e](= kn.e[c.e]). Since

kn.f [t] denotes the knowledge about events at r.f + t, the comparison of kn values

allows us to determine if f], was aware of more events than ej.

Properties of the logical timestamp program. The logical timestamp program

presented above has the following properties. (We refer the reader to [85] for proof.)

0 Ve,f :: e —> f

=> less((r.e, c.e, kn.e), (r.f, c.f, kn.f)).
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o The value of c.e is less than c and the value of each element in kn.e is less than

n, where n is the number of processes in the system. Hence, the space needed

by the timestamp is 0(6 log n + log 6). Further, it does not grow as the

computation proceeds.

Causal Delivery Program

The causal delivery program proposed in [85] is as follows: Whenever a process

j receives a message m, j buffers the message until delcond(m, j) = (rt.j =

r.m + c.m + 6 + e) is satisfied. As soon as the delcond(m, j) is satisfied, the mes-

sage is delivered. If two or more messages satisfy the delivery condition simultane-

ously then process j determines the causal relation among the messages and delivers

them accordingly. If mj and mi, satisfy the delivery condition simultaneously and

less((r.mj, em], kn.mj), (r.mk, c.mk, kn.mk)) is true, then mj is delivered before mk.

Properties of the causal delivery program. The causal delivery program

presented above has the following properties (cf. [85] for proof).

0 If process 3' sends a message m when its physical clock value was r.m then

the message would be delivered before the physical clock value of j reaches

r.m +6+ 36.

o If two messages m1 and m2 such that send(ml) —> send(mg) arrive at any

process j then m1 is delivered before m2.

0 The causal delivery program is self-stabilizing.

8.2.2 Approaches for Approximate Causal Delivery

The algorithm presented in Section 8.2.1 uses the delivery condition delcond(m, j) to

deliver a message m to process j. This condition is necessary for correctness, i.e.,
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to ensure all messages are delivered in causal order. In other words, there exists

messages for which this condition is optimal.

In the algorithm in Section 8.2.1, message m is delivered at process j when rt.j =

r.m+c.m+6+e. Thus, c.m+6+6 is the approximate delay in obtaining causal delivery.

We consider the case where messages are delivered before this delivery condition is

satisfied. However, instead of choosing fixed values for the reduced delay, we let the

delay be proportional to the underlying system guarantees and any other information

that m carries.

In the algorithm in Section 8.2.1, r.m+c.m captures the knowledge that the

sender of m had about the maximum clock in the system. Also, 6 and 5 depend on

the underlying system guarantees. Hence, we let the reduced delay to be a certain

percentage of the delay incurred while ensuring causal delivery. Thus, the actual

delay incurred by messages depends on the underlying system guarantees (e, 6) and

the knowledge (am) that m had ‘about the future’.

Based on this approach for reducing the delay, we present two algorithms for ap-

proximate causal delivery: (1) deliver after partial wait and (2) check before delivery.

Deliver After Partial Wait (DAPW)

In this algorithm, we use the following delivery condition: delcond(m, j) = (rt.j =

r.m + ¢(c.m + 6 + 6)), where 0% < a: < 100%. Thus, ¢=0% means that the messages

are delivered to the observer when the clock of observer is at least r.m, or as soon as

the message arrives at the observer, whichever is later. And, cl: = 100% means that

the messages are delivered in perfect causal order. Thus, by using different values for

c, the application can choose the delay in delivery.
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Check Before Delivery (CBD)

In DAPW, whenever a message, say m1 is about to be delivered to process j, if there

is a casually related message m2 such that send(mz) ——> send(ml) is true and m2 is

scheduled for delivery at a later time than m1 then a causality violation is inevitable.

Hence, we propose our second algorithm that checks the queue to determine causally

related messages. Specifically, whenever message m1 is about to delivered at process

j, j checks the message queue to determine if there is any message m2 such that

less((r.m2, c.m2, kn.mg), (r.m1,c.m1, kn.m1)) is true. If there exists such a message

m2 then j sets the delivery time of m1 as delcond(m1,j) = delcond(m2, j). If there

are no such messages then m1 is delivered based on the DAPW algorithm.

8.2.3 Simulation Model

Our simulation model consists of n ordinary processes and one special process (ob-

server). The ordinary processes communicate with each other. Every message sent

by an ordinary process is also sent to the observer. Now, we show how our simulation

model ensures system properties stated in Section 8.2.1.

Ensuring G1. At each step of the simulation, one process is selected at random

based on a uniform distribution of n + 1 processes (i.e., n ordinary process and a

special observer process). The selected process (say, j) can increment its physical

clock (rt.j ) and send messages to other processes. The simulation program ensures

G1 by selecting another process from the uniform distribution if incrementing rt.j

leads to violation of G1.

Ensuring G2. Whenever a process sends a message, the destination receives the

message within at, 0 S :1: S 5, unit(s) of time, thereby ensuring G2. Message delay is

determined using a normal distribution N(u, o), where u is the mean delay and o is

the standard deviation of the delay. In our simulations, we use N(g, %) (approximately
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95% messages are received in [0 . . .6]) and N(72—, g) (approximately 95% messages are

received in [0. . . g]) for message delay. If the random delay from the distribution is

greater than 6, we treat it as a lost message. Since the message delay cannot be less

than 0 in a real system, if the random delay from the distribution is less than 0, we

choose another random delay from the same distribution.

After the system properties are met, the selected process can increment its physical

clock and send messages to other processes.

Implementing message rate. Whenever a process (say, j) increments its physical

clock, it sends a message to other processes with certain probability. We implement

this using message rate. Process j chooses a random number between 1 and 1/message

rate. If the random number is 1, j sends a message to another process. Also, whenever

a process sends a message to another process, it sends a copy of the message to the

observer.

8.2.4 Simulation Results

For our simulation, we developed an event simulation program in Java. The program

takes number of ordinary processes, 6, 6, message rate, the mean of message delay,

the standard deviation of message delay and the type of algorithm as input. We

conducted experiments for 6 = 10 with the following values of e: 5, 10, 20, and 30.

Similarly, we conducted experiments for e: 10 with the following values of 6: 5, 10,

20, and 30. Note that, we have not associated a unit for c and 6. If 6:5 and 6= 10, it

can be used to represent a system where the maximum clock drift is 5ms (10ms) and

message delay is IOms (20ms), etc. Further, we find that the ratio f,- is important

than the individual parameters.

For these values of e and 6, we use the following values for message rate: 0.5,

0.1, and 0.01. Likewise, we use the following values for c: 100%, 80%, 60%, 40%,

20%, and 0%. For each input, we perform at least 3 experiments to compute the
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causality violations. The results presented here are average of these experiments.

For a given value of the input parameters, the percentage of causality violations in

different experiments are similar.

In these experiments, we compute the number of causality violations at the ob-

server as follows: For each m1, we compute the number of messages delivered before

m1 (say, m2) such that send(ml) ——-> send(mg) is true. We say that these messages

violate backward causality. Likewise, for each m1, we computer the number of mes-

sages delivered after m1 (say, m2) such that send(mg) —-> send(ml) is true. We say

that these messages violate forward causality. The number of causality violations is

obtained by taking the average of messages that violate backward/forward causality.

To compute these causality violations, for each event/message, we also maintain

vector timestamps [42, 99] in addition to the logical timestamps from Section 8.2.1.

These vector timestamps identify the actual causal relation among events in the

system. They are not used in any way to determine when messages are delivered.

Effect of Maximum Clock Drift

The effect of e on causal delivery of messages using DAPW and CBD is shown in

Figure 8.7. The graphs show the number of causality violations as a function of the

percentage of delay, a, used in delcond. In these experiments, we use 6 = 10 and

message rate =0.1. The simulation consists of 10 ordinary processes and the special

observer process.

DAPW. When the ratio g is larger, the number of causally dependent messages for

a given message m is large. Thus, for larger values of i, there is a higher probability

that one or more of these messages are delivered before m. Hence, as f;- increases, the

number of causality violations increase (cf. Figures 8.7 (a) and 8.7 (c)).

When message delay is determined from the distribution N(g, g), 95% of the

messages are received within %. By contrast, when message delay is determined from
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there exists a threshold T such that, the causality violations

increase suddenly when it < T. For example, in Figure 8.7 (a), for 6 = 5, there is

a sudden rise in causality violations for d: < 40%. The number of causally related

meSsages is less when the ratio-6 is small. When TS c< 100%, the delay in delivery

captures most of the causal relation among messages.

1 2

When this delay is reduced



(i.e., c > T), the messages are delivered faster and, hence, the causal relation among

messages is not captured. For larger values of g, more causally related messages are

present for a message m. Hence, the observer captures most causally related messages

even when the delay in delivery is less.

CBD. From Figures 8.7 (b) and 8.7 (d), we observe that as g ratio increases, the

number of causality violations decrease. This result is exactly opposite to DAPW. In

CBD, before delivering a message ml, the message queue is checked to determine if

there is any message, say m2 such that m1 causally depends on 711.2. If there is such

a message, CBD postpones the delivery of m1. Thus, as é ratio increases, CBD can

detect/prevent most of the causality violations since there is higher probability that

the message queue contains one or more causally related messages.

Contrary to the observation for DAPW, we note that the number of causality

violations is less when CBD is used with message delay of N(g, g). This is due to the

fact that there are more causally related messages for a given message m, and there

is a high probability that at least one of them will be present in the message queue

of the observer when m is about to be delivered.

Comparison. From Figure 8.7, we conclude that the number of causality violations

in CBD are an order of magnitude less than that in DAPW. For small values of g, CBD

performs almost similar to DAPW. When g is small, the number of causally related

messages for any message is less. Therefore, CBD has limited or no information

in the message queue to detect/prevent causality violations, as opposed to the case

where the ratio g is large. Thus, for small values of g, it may be better to use

DAPW and save the overhead of checking the queue as one in CBD. Also, we note

that the processing overhead with DAPW is significantly lower than that of CBD.

Hence, for small values of g, we recommend DAPW. As the ratio g increases, we

prefer CBD, since the small addition in processing overhead reduces the number of

causality violations considerably. (We observe similar results in Figure 8.8, where
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the effect of varying message delay is studied and in Figure 8.9, where the effect of

varying the message rate is studied.)

Effect of Maximum Message Delay

The effect of 6 on causal delivery of messages using DAPW and CBD is shown in

Figure 8.8. The graphs show the number of causality violations as a function of

percentage of delay, 4:, used in delcond. In these experiments, we use 6 = 10 and

message rate 20.1. The simulation consists of 10 ordinary processes and the special

observer process.
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DAPW. From Figures 8.8 (a) and 8.8 (c), we observe that as g increases, the

number of causality violations increase. These results are similar to that in Figure

8.7.

Further, in Figure 8.8 (c), we observe that the number of causality violations is

more when DAPW is used with message delay of N(g, g). Once again, these results

are similar to that in Figure 8.7.

Similar to Figure 8.7, for small values of g, there exists a threshold T such that

causality violations increase suddenly when a: < T. For example, in Figure 8.8 (a),

for 6 = 20 (respectively, 6 = 30), there is a sudden rise in causality violations when

it < 60% (respectively, c < 40%).

CBD. From Figures 8.8 (b) and 8.8 (d), we observe that as 3‘- increases, the number

of causality violations decrease. Once again, this is exactly opposite to DAPW.

Effect of Message Rate

The effect of message rate on causal delivery of messages using DAPW and CBD is

shown in Figure 8.9. The graphs show the number of causality violations as a function

of percentage of delay used in delcond. In these experiments, we use 6:6 = 10. The

simulation consists of 10 ordinary processes and the special observer process.

As the message rate increases, more causally dependent messages for a message

m are present in the system. Thus, the probability of causality violations is higher.

Further, the number of causality violations in CBD is significantly less than that in

DAPW.

When 6 is an overestimate of message delay (i.e., message delay of N(g, 3)), the

number of causality violations in CBD is in the order of 0% — 2% (cf. Figure 8.9

(d)). This is due to the fact most messages arrive within %, and, hence, CBD has

more information present in the message queue to detect/prevent causality violations
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before delivering a message.

Further, for small values of message rate, causality violations in DAPW and CBD

are nearly equal. This is due to the fact that at low message rates, CBD has very

limited information to exploit the messages in the queue. Further, as CBD incurs an

additional overhead of processing the message queue, we expect that DAPW will be

preferred for small values of message rate.
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Effect of Number of Processes

The effect of number of processes on causal delivery of messages using DAPW and

CBD is shown in Figure 8.10. The results are for c: 6 = 10 and message rate =0.1.

We use the following values for the number of ordinary processes: 5, 10 and 50.
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)

)

As the number of processes increases, more causally dependent messages for a

message m are present in the system. Thus, the probability of causality violations is

higher.

Furthermore, when 6 is an overestimate of message delay (i.e., message delay of

157



N(g, 3)), the number of causality violations in CBD is in the range of 0% — 3% (cf.

Figure 8.10 (d)). Since most messages arrive within %, CBD detects/prevents most

of the causality violations.

Physical Clocks Vs. Partial Timestamps

In this section, we argue that the information maintained in CBD, although small,

is important in reducing the number of causality violations. Towards this end, we

compute the causality violations for the case where only physical clock is used to

determine when a message should be delivered. To obtain an implementation that

uses physical clock alone, we set the e value and all elements in kn to 0. We call this

algorithm DPC1. We also consider the algorithm DPC2 where the e value is used

but kn values are reset to 0. Other points on this continuum can be obtained by

maintaining a subset of the kn values in the timestamp.

Notation. By “2 kn.e elements” we mean that the simulation uses kn.eJ-[eej] and

kn.eJ-[eej — 1] elements instead of the kn.ej array for an event ej. Similarly, by “k

kn.e elements” we mean that the simulation uses the first k kn.e elements.

Figure 8.11 shows the simulation results for 6:6 = 10, message rate 20.1 and 10

processes. (Figure 8.12 shows the results for 50 processes.)

From Figure 8.11, we observe that using physical clocks alone for causal delivery

of messages is not enough. Specifically, even when it: 100%, DPC1 and DPC2 have

around 30%—50% of causality violations. And, maintaining just 2 kn.e elements pro—

vides a significant reduction in number of causality violations (10 — 15%). Moreover,

if we increase the number of kn.e elements in the timestamp, the causality violations

can be further reduced. Maintaining just 6 kn.e elements gives the same result as

CBD. Thus, the timestamp provides a continuum in which the application developer

can choose the size of the timestamps based on the requirements. This result is es-

pecially important in sensor networks. Specifically, in MICA motes [61], the payload
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size is just 29 bytes. Hence, the overhead in achieving approximate causal delivery

should be small. Depending on the percentage of causality violations processes can

handle and the overhead involved, the developer can choose an appropriate size for

the timestamp. For example, choosing 2 kn.e elements (i.e., 4 bytes including rt.j

and c.j ) will result in 10 — 15% causality violations (as opposed to 30 — 50% causality

violations when using the physical clocks alone). Thus, small additional informa-

tion maintained in the timestamp plays a significant role in reducing the number of

causality violations.
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8.3 Related Work

In this section, we discuss the related work on identifying tradeoffs in sensor networks.

Energy vs. latency. Related work on analyzing the tradeoff between energy

and latency in convergecast communication include [5, 62, 71, 138]. In [5], a TDMA

based convergecast is investigated. Specifically, the paper proposes a tree construction

algorithm for convergecast. Once the tree is constructed, it assigns schedules to the

sensors for collision-free communication. By contrast, in our convergecast algorithm,

we use an existing TDMA algorithm. Moreover, our solution improves the network

lifetime by reducing the amount of idle listening.

In [62], a randomized convergecast algorithm is proposed. This paper identifies

the lower bound on the running time for an arbitrary network. Moreover, this paper

studies the energy-latency tradeoff. In [138], for an offline problem, dynamic pro—

gramming based approximation solution is proposed, where the energy dissipation of

sensors in the data aggregation tree is minimized. For a real-time scenario, this paper

proposes an online protocol for data aggregation. Unlike [62, 138], our solution uses

a TDMA based algorithm to conserve energy and to reliably switch to active mode

when the network observes events of interest. Furthermore, we show that the network

lifetime improves by 3 fold for a typical application.

In [71], a randomized algorithm for convergecast is proposed for ad hoc networks.

One of the assumptions in [71] is that the nodes have collision detection capability.

By contrast, we do not assume that collisions are detectable. Collision detection may

not be possible since the sensors have limited communication capabilities and limited

power.

Causality Vs. timeliness. Related work on causal delivery includes [3, 8, 18,

29, 30, 43, 58, 118, 120]. Based on [43], one cannot design solutions for approximate

causal delivery in pure asynchronous systems where process speeds, process clocks

and message delays are arbitrary. In other words, the underlying system must provide
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some simple guarantees that enable the observer to obtain the tradeoff between causal

delivery and timely delivery. Therefore, as identified in Section 8.2.1, we considered

two simple guarantees: (1) clock drift among different processes in the system is

bounded by e and (2) messages reach their destinations within some bound (6). The

first guarantee is met by using GPS clocks, network time protocol, atomic clocks or

clock synchronization programs (e.g., [8, 29, 58]). The second guarantee can by met

by using protocols that characterize messages as being timely or late (e.g., [30]).

One can use solutions such as matrix clocks [120] to solve the problem of approx-

imate causal delivery. However, this approach suffers from four problems; for one,

matrix clocks do not use the underlying physical clock and, hence, cannot easily han-

dle timely delivery. For two, the protocol in [120] cannot handle lost messages; all

subsequent messages that causally depend on the lost message become undeliverable.

Thirdly, the size of the timestamp used in [120] is 0(n2) where n is the number of

processes in the system. Such a large size could be especially problematic in systems

where the number of processes is large. Finally, in [120], as the computation proceeds,

the size of the timestamps grows without a bound. While solutions in [3, 18] deal with

the first two problems, these solutions still suffer from the overhead of timestamps

whose size is quadratic in the number of processes and whose size grows unbounded

as the computation proceeds.

Another related work on causal delivery in sensor networks is [118] where a tem-

poral message ordering service is proposed. In this approach, the senor network is

modified to achieve temporal message ordering at base station. Towards this end,

they send each message by multiple routes, one or more short and one or more long.

By contrast, in our work, we do not assume such multiple messages. In fact, we do

not modify the underlying communication in the sensor network. The reordering is

done only at the base station. It follows that our approach allows one to make use of

any optimizations that can be performed in the routing layer.
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8.4 Chapter Summary

In this chapter, we considered the tradeoffs in sensor communication. The analysis

presented in this chapter would assist the designers of sensor network protocols to

fine tune their protocols in order to quickly evaluate them. We presented two trade-

off studies in convergecast communication among the sensors: (1) tradeoff between

energy and latency and (2) tradeoff between causal delivery and timely delivery.

Energy Vs. latency. We presented a TDMA based convergecast algorithm for

sensor networks. In this algorithm, each sensor is allowed to save energy whenever

the network remains idle. And, whenever a sensor receives convergecast messages,

the algorithm switches to a CSMA based protocol after forwarding the first message.

Thus, it reduces the amount of idle-listening and improves the latency. We studied

the performance of our algorithm and showed that it meets the requirements of a

typical application (e.g., ExScal [9, 10]). We showed that active radio time is within

75% of the time required for convergecast (cf. Section 8.1.3). Moreover, for a typical

application where the probability of occurrence of an event is less than 10 — 15%, we

argued that our solution improves the network lifetime by approximately 3 fold.

Causality Vs. timeliness. We presented a solution for approximate causal

delivery that allows the designer to choose an acceptable level of causality violations

while ensuring timely delivery of messages. We discussed the effect of the parameters

such as maximum clock drift, maximum message delay, and message rate on causal

delivery of messages. We showed that by using physical clocks alone, the number of

causality violations increase significantly. By adding new variables to the timestamp,

the number of causality violations can be reduced. In other words, we showed that

our solution provides a continuum such that the application developer can choose the

size of timestamps used in the system based on the number of causality violations

the application can tolerate. This result is especially useful in sensor networks, since
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the sensors are resource constrained and the size of the payload in a message is very

limited (e.g., 29 bytes in MICA). We note that maintaining just 2 kn.e elements (i.e.,

4 bytes) provides a significant reduction in causality violations (10 - 15%) compared

to using physical clocks alone (30 — 50%). Hence, causal delivery of messages at the

base station can be achieved easily in sensor networks with a small message overhead.

To our knowledge, this result is the first of its kind for providing approximate causal

delivery in sensor networks.
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Chapter 9

Conclusion and Future Research

In this dissertation, we proposed theoretical models and algorithms and practical

tools to enable rapid prototyping and quick deployment of sensor network protocols.

In this chapter, first, in Section 9.1, we summarize the contributions made towards

defending the thesis. Then, in Section 9.2, we state the impact of the proposed

solutions. Finally, in Section 9.3, we discuss the open problems and future research

directions.

9. 1 Contributions

The contributions of this dissertation are two fold: foundational and experimental.

Regarding foundational contributions, we developed algorithms for reusing abstract

models and distributed programs developed using them from distributed systems

literature in the context of sensor networks. Regarding experimental contributions,

we developed a programming tool and middleware services that enable the designer

to rapidly prototype and quickly deploy sensor network protocols.
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9 . 1 . 1 Foundational Contributions

In this work, we first identified that (variations of) several problems considered in

sensor networks are already addressed in the context of distributed computing and

traditional networking. These include, but are not limited to, routing, spanning tree

maintenance, leader election, reliable broadcast, synchronization, distributed track-

ing, and consensus. Also, we observed that these programs are specified in abstract

models (cf. Chapter 2) that enable the designer to verify the correctness of these

programs as well as to manipulate them to meet new properties using the approaches

in [17, 49, 75, 103].

Since the abstract models do not meet the difficulties and challenges in sensor net—

works, in Chapter 3, we developed transformation algorithms that allow the designer

to transform programs written in abstract models into a model consistent with sensor

networks, i.e., write all with collision (WAC) model. We also showed that the trans-

formation algorithms preserve the self-stabilization [38, 40] property of the original

programs. In other words, we showed that if the original program is self-stabilizing

then the transformed program in WAC model is also self-stabilizing.

Additionally, in our transformation algorithms, we showed that any time division

multiple access (TDMA) algorithm can be effectively used to transform a program into

WAC model. We argued that if the TDMA algorithm is self-stabilizing and determin-

istic then the transformation provides deterministic guarantees about the transformed

program and preserves the self-stabilization property of the original program. To en-

able such deterministic transformation, in Chapter 4, we developed a self-stabilizing

deterministic TDMA algorithm in WAC model. To the best of our knowledge, this

is the first TDMA algorithm in WAC model to achieve such properties. Also, this is

the first TDMA algorithm to enable stabilization-preserving deterministic transfor—

mations for WAC model.
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9.1.2 Experimental Contributions

In order to enable the designer to rapidly prototype and quickly deploy protocols, we

developed the following: (1) a tool for simplifying the construction and deployment

of sensor network protocols and (2) a reliable data dissemination service for quick

deployment of protocols. In addition, we identified the tradeoffs in sensor communi-

cation that allows the designers to fine tune their protocols.

Programming tool for sensor networks. In Chapter 5, we presented ProSe,

a tool for programming sensor networks based on the theoretical foundations estab-

lished in this dissertation. We showed that ProSe enables the following: (1) specify

programs in abstract models (e.g., read/write model, shared-memory model) con-

sidered in distributed systems literature while hiding low-level concerns of sensor

networks (e.g., message collision, race conditions, synchronization) and programming

level challenges (e.g., manual stack management, manual buffer management, flow

control), (2) reuse existing fault-tolerance/self-stabilizing algorithms in the context of

sensor networks, (3) preserve properties such as fault-tolerance and self-stabilization

of the input program, (4) abstract failure of sensors and provide support to deal with

message corruption, arbitrary state corruption, and faulty/malicious sensors, and (5)

automate code generation and deployment.

We used ProSe to generate sensor network binaries for (i) network services such as

routing, leader election, and spanning tree maintenance, (2) distributed reset service

to reset the state of the network to a consistent global state, (3) application services

such as distributed tracking, and (4) power management protocols [11, 16]. Since

the programs are specified in abstract models, the development time of a typical

sensor network protocol is small. Furthermore, we showed that ProSe enables quick

deployment since the transformation is automated.

Data dissemination protocol for network reprogramming. Sensor networks
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are usually deployed in inaccessible fields and in large numbers. Hence, it is essen-

tial that the network is reprogrammed in place. Towards this end, in Chapter 7,

we presented Infuse, a TDMA based reliable data dissemination protocol for sensor

networks. We showed that Infuse provides quick deployment of sensor network pro-

tocols and ensures 100% reliability (both in terms of the number of sensors receiving

the program and the program image being delivered). In order to deal with arbi-

trary message loss (due to random channel errors), we adapted sliding window based

flow control mechanisms using implicit acknowledgments. Additionally, we proposed

optimizations in order to reduce energy usage during dissemination.

Tradeoffs in sensor communication. To assist the designers in quickly evalu-

ating their protocols, we identified tradeoffs in sensor communication, especially, in

convergecast [13, 77, 78]. The designers can fine tune the parameters of their applica-

tion by identifying appropriate operating points and protocols to achieve the desired

performance levels. In Chapter 8, we identified the tradeoff between: (1) energy and

latency and (2) causality and timeliness. In the first tradeoff analysis, we showed

that the lifetime of the sensor network can be improved by using a simple TDMA

based convergecast algorithm. For a typical sensor network, where the probability of

occurrence of an event is < 10 — 15%, this algorithm improves the lifetime by ap-

proximately 3 fold. In the second tradeoff analysis, we showed that the designer can

choose the time a message has to be buffered and the size of the timestamp used to

achieve causal delivery depending on the level of causality violations the application

can handle.

9.2 Impact

In this section, we discuss the impact of this dissertation. First, we note that most

of the current work in sensor networks is focused on developing: (1) applications for

167



a particular task (e.g., long-range surveillance [9, 10], habitat monitoring [98, 124],

environment monitoring [93]) and (2) middleware services (e.g., routing [25, 135],

power management [50, 110], TDMA [57, 60, 80]). These solutions focus on dealing

with constraints imposed by sensor networks.

To advance the state of the art in sensor networks, it is necessary to develop

abstractions that hide these constraints from the designer, thereby, enabling them to

simplify the protocol design. The importance of the need for such abstractions has

been identified in recent work [81, 97, 105, 131]. In this dissertation, we proposed

mechanisms to reuse abstract models considered in distributed systems literature.

Such models will make the protocol design highly intuitive and concise. Furthermore,

such models allow reuse of existing tools for verification and manipulation to add new

properties such as fault-tolerance. For these reasons, this dissertation work will make

it significantly simpler to design and deploy sensor network protocols as well as to

gain confidence in them.

Since the abstract models hide the low-level details from the designer, it would

enable the transition where protocols are designed by domain experts rather than ex-

perts in sensor networks. In addition, with the improvements in underlying wireless

technology, it would be possible to improve the efficiency of transformation algo-

rithms. As a result, this would improve the applications using them. Thus, this work

not only enables rapid prototyping and quick deployment of sensor network protocols

but also has the potential to allow the designer to automatically benefit from future

advances in underlying sensor network technology.
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9.3 Future Research

This dissertation has created the possibility of several new research directions. Some

of these are outlined below.

Foundational aspects. Regarding foundational aspects, we will focus on develop-

ing efficient transformation algorithms and designing fault-local stabilizing protocols

for sensor networks.

0 Efficient transformation algorithms for WAC model. In Chapter 3, we showed

the feasibility of stabilization preserving transformations for WAC model. To—

wards this end, we showed that a TDMA algorithm in WAC model can be

effectively used to obtain such transformation. The TDMA algorithm proposed

in Chapter 4 ensures stabilization preserving deterministic transformation for

WAC model. However, this algorithm is sequential in nature. In other words,

this algorithm assigns time slots to each sensor in a sequential fashion. Existing

TDMA algorithms [7 , 22, 26, 57, 60, 80, 121] for concurrent slot assignment

are randomized in nature and/or assume that the network has a grid topology.

Hence, an interesting future research direction is to investigate whether deter-

ministic concurrent coloring/time slot assignment is feasible in WAC model. We

expect that such algorithms allow the sensors to recover from arbitrary state

corruption quickly.

0 Wansfm‘mation algorithms for WAC model with collision detection capability.

Current transformation algorithms for WAC model assume that the collisions

are not detectable. Collision detection in wireless radio networks have been

addressed in [19, 20, 24]. Specifically, in [19, 20], the authors propose a proba-

bilistic algorithm that allows one to emulate a single-hop radio communication

with collision detection capability on a multi-hop radio network without colli-

sion detection capability. The authors show how this emulation can be applied
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in the design of efficient algorithms for multi-hop networks (e.g., leader elec-

tion). And, in [24], the authors augment the sensors with collision detection.

Unlike Ethernet networks [100] that allow transmitters to detect collision, the

collision detectors in [24] allow only receivers to detect them. Such collision

detectors are shown to be useful in solving problems such as consensus. Based

on the results from [19, 20, 24], an interesting future work is to develop efficient

transformations for WAC model using such collision detection approaches.

0 Fault-local stabilization. In order to improve the stability, availability, and

scalability of the network, it is desirable that the services designed for sensor

networks are fault-local stabilizing. Intuitively, a service is fault-local stabilizing

if the time taken to stabilize is proportional to the size of the network perturbed

by faults. Fault-local stabilization ensures that the effect of faults is contained

locally. Hence, another future direction to this dissertation is to design mid-

dleware services that achieves fault-local stabilization in the presence of faults.

These services will be useful in designing various network protocols and also

in the transformation for WAC model. Moreover, these services will assist in

achieving fault-local stabilization in the protocols and also in the transformed

programs.

Experimental aspects. Regarding experimental aspects, we plan to augment

ProSe with several new features to simplify the design of adaptive sensor network

protocols.

o High-level primitives to simplify protocol design. In this dissertation, we devel-

oped a tool that allows one to hide several low-level concerns of sensor networks

during prototyping. To simplify the design of sensor network protocols, high-

level primitives are highly useful. For example, primitives such as distance—k

broadcast, distance-k consensus, and distance-k leader election are found to be
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the basic building blocks of sensor networks in [24, 34, 94, 111, 132]. In [34, 111],

the authors argue that a single-hop reliable broadcast is an essential primitive in

order to reduce the complexity of the application software. In [24], the authors

show the importance of multi-hop consensus in sensor networks. With these

primitives, the design of several protocols (e.g., in-network aggregation, power

management, target detection and classification) can be simplified. Therefore,

an important future work is to identify such high-level primitives and develop

reliable and efficient protocols for them. Moreover, it would be worthwhile to

implement such primitives with ProSe to enable rapid prototyping and quick

deployment of sensor networks.

Adding an adaptation framework with ProSe. Since it is desirable that the

sensors adapt to given environment conditions, we plan to provide support

for component adaptation in sensor networks that ensures transparency and

provides assurance guarantees. To achieve this goal, we will investigate how

to ensure that the adaptation succeeds at all sensors and provides the required

level of functionality during adaptation. This work will leverage on existing

tools and protocols (e.g., [11, 15, 63, 72, 79, 82, 83, 86]) in generating sensor

network components and deploying them. Also, this work will extend ProSe to

build an adaptation framework for sensor networks.
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