

This is to certify that the
dissertation entitled

A SERVICE-ORIENTED APPROACH FOR
COLLABORATIVE PROCESS MANAGEMENT

presented by

Woongsup Kim

has been accepted towards fulfiliment
of the requirements for the

Ph.D. degree in Computer Science

e

Majgr Professor’s Signature
/;;//;/ o4

Date

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE

DATE DUE

DATE DUE

2/05 p:/CIRC/DateDue.indd-p.1

A SERVICE-ORIENTED APPROACH FOR
COLLABORATIVE PROCESS MANAGEMENT

By

Woongsup Kim

A DISSERTATION

Submitted to
Michigan State University
In partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Department of Computer Science and Engineering

2006

ABSTRACT

A SERVICE-ORIENTED APPROACH FOR COLLABORATIVE PROCESS
MANAGEMENT

By

Woongsup Kim

Service-oriented computing provides organizations with methodologies and technologies
that enable them to link multiple software systems using platform independent interfaces
and contracts thereby creating a so-called Virtual Organization (VO). Unfortunately, as
of today, there are challenges that can limit the implementation of a true service-oriented
environment. One of the most noticeable challenges is the issue of “trust”. During
service-oriented process integration, participants may face uncertainties due to the nature
of Web Service technologies. These uncertainties arise from the limitations of current
Web Service support that is required for collaboration between participants in the VO. As
a result, resolution of such limitations of Web Services is both very necessary and highly

desirable.

In this thesis, we propose a new framework that we call the Web Service Collaborative
Process Coordinator (WSCPC), which provides support for a reliable service-oriented
collaborative environment. Using our proposed approach, partners can share their
workspaces through Web Service semantics in heterogeneous processes. Behaviors in the
VO can be predicted, monitored, and analyzed so as to determine if a goal can be
successfully achieved. Such behaviors can also be enacted on-the-fly by partners based

on the needs.

To this end, we first propose a trustworthiness model that can be used to predict
performance and reliability of service behavior. The trustworthiness model employs a
probabilistic method called probabilistic Latent Sematic Analysis (pLSA) that eliminates
noise in the pool of service ratings. Using this methodology, service consumers can
expect a particular degree of satisfaction and estimate percentage measure that predicts to
what extent which they will be disappointed. Our trustworthiness model can also be
integrated into system analysis methodologies such as stochastic Petri nets, and hence

support run-time quantitative predictions.

Moreover, we propose several service models including a service definition model, a
service registry model, and a service interaction model. These service models are
described using the Ontology Web Language (OWL), an XML knowledge representation
based on Description Logic (DL). As a result, any peer’s capability and behavior can be
logically inferred and enacted in a heterogeneous, collaborative software environment.
Under these service models, collaborators in a VO can share communicational behaviors

and enact partners’ behavior in a flexible and platform neutral way.

Copyright (© 2006
By WOONGSUP KIM

All Right Reserved

To my wife Hyo-jeung,
daughter Hyunwoo,

father, and mother.

ACKNOWLEDGEMENT

I wish to thank the countless people—family, friends, colleagues, advisors, and

instructors—who have made my years in East Lansing the most precious of my life.

First and foremost I would like to thank my current and former advisors, Dr. Wayne
Dyksen and Dr. Moon Jung Chung, whose guidance and tireless support have proven
invaluable during my PhD studies throughout graduate school. I am very fortunate to
have had the opportunity to work with them and to be the beneficiary of their vast

knowledge and friendliness.

I am of course grateful to my thesis committee, Drs. Abdol-Hossein Esfahanian, Charles

Owen, Brian Pentland, and Wayne Dyksen.

Others with whom I have had the pleasure of collaborating include Yuan Zhang, Hong-
Suk Jung, Ravi Gopalan, Yonggang Qin, Un-Sang Park, Ming Wu, and the members of
the Korean Buddhist Association at Michigan State University. Yuan, Ravi, Yonggang,
and Hong-Suk worked with me in developing earlier versions of the WSCPC framework.
Discussions with Ming and Un-Sang helped me to build the WSCPC trustworthiness
model. Members of the Buddhist Association reinvigorated me whenever I felt tired. I am
also indebted to visiting professors Sang-Cheol Kim, Youn-Mo Chung, and Young Keun

Choi who gave me advice and motivation to further my research.

Finally, I would like to thank my family including my wife Hyo-Jeung and my daughter

Hyunwoo as well as my mother and father back in Seoul, Korea. They have provided an

vi

enormous amount of support and encouraged me to stick with my PhD studies as long as

I could. I dedicate this thesis to them.

My work had been supported in part by the National Science Foundation (NSF) Grant

Number DMI-0313174.

vii

TABLE OF CONTENTS

LIST OF TABLESoo ettt sttt sttt et ettt s se s saenan X
LIST OF FIGURES ..ottt sttt et e st sne st st e s e s e ssesasses xi
CHAPTER 1 INTRODUCTION........ccceotiiiiinieienitetereesteeteseeeeestessaestesseeseessessnenens 1
CHAPTER 2 BACKGROUND......cccoiiiiiiiciieiestresee ettt see st nesae s 7
2.1 Virtual OrganiZationc.coeeivuerrreeneeeieeniereseiseesseeesssesseeessessssesssseseesasssens 7

2.2 Trustworthiness Management...........co.cooeveiviiniincnnicniinininncreennes 10
2.2.1 CONSIAETALIONS......crcuieirereiieeereieceesstesitesestessteesnsesssessssaessassseesssessneseesnes 11

2.2.2 Potential Application of Concepts from Mobile Agent Systems............ 11

23 Service-Oriented COMPULINEG.......cccvveriieeiriereiirernieeeisieresieeesressissessreesssenss 13
2.3.1 What Are Web Services?ccooeriiieinernenniiienienientncseececse e 13

2.3.2 Web Service EnVironments..........cccceeveerveeiieininneeeceessenneesieesseesssesnes 15

2.3.3 Structural Layers in Web Services.......ccccceeverveirneeeninniiennenneenneeeeennen. 17

24 Process Management Based on Web Servicescccovevvervienciinnicnnecnienne 22
2.4.1 Using Meta Languagecccccevvvuinineineniiniiniiniiiiicnecsesncnessesnees 23

2.4.2 Web Services On Grids.........cocceeeveeieeiieenienieenieeeiensrenseeessesssessseessesnes 27

2.4.3 SemantiC APPrOAChES.........cceviiiiiniininiinienicnen s 31

25 Approaches Toward Trustworthy Service Oriented Computing................. 32
2.5.1 Service DISCOVETYccccervuirrreiniiiriiniiinienieniteneessreeeste s esssseesaessesesnesanes 32

2.5.2 Service Behavior Analysisccccceveririieeiinnienicniecinenenrecese e 35

2.5.3 SEIVICE SECUTILY.....cceeriuritiiiritinieirteite et seste b s s esraesae s 36

2.5.4 Service Reliablitycccccercuervieriirniriiiniienienieniccressicseesese e 38
CHAPTER3 SEMANTICS FOR SERVICE-ORIENTED COLLABORATION 41
3.1 Requirements for Service-Oriented Collaborative Process Management ... 41
3.2 A Grammar-Based APProOachccoocueeeererisreerssesssissssesesesesssesesesenens 44
3.3 Web Service Semantics for Collaborative Process.........cccccecceeveevernencnennee 47
3.3.1 The Process Definition Model............ccoccervieniniiiinicrniinenecnceicceene 48

3.3.2 The Process Enactment Model (PEM).......ccccoeevvviieecivereccrrenreeresscneenn 56

3.3.3 The Process Monitor Model (PMM).........ccovevrieriinneinniennenneenneennecnees 59

3.3.4 Service Registry Model..........cccocmveriininiininiininiiiinnnnienns 64

3.4 COMMUNICAON BENAVIOTooveereeeeceeeeeeeeereeeeeeeesseesaes s s sesssanees 69
3.4.1 Support for Interoperability.............cccecvvririiiniincneniirereneeee 69

viii

3.4.2 The Service Interaction MOdE].........cooveeeieeiiieieeeeeeieeeeeeeereee e eeeeeeeeees 71

3.4.3 WSDL SUPPOTL.....ccoorirririiiiitrieietetesteeeteeseeee st s e sesesessesessessessennens 75
CHAPTER 4 TRUSTWORTHY ENVIRONMENT FOR SERVICE-ORIENTED
COLLABORATION. ... ooiieteerrtrriereeeeeeeeeseesessseesssssssssssssssssssssssssesssssssssssssssssssssssssssss 78

4.1 Motivations for Trustworthiness in Service Oriented Environment 78
4.2 Predicting Risks from Recommendationscocceceevieniininieenccnneencnenne 81

4.2.1 Models for Expected Service Ratingscccceeveeveeniensencnniecncnseennencn. 82

4.2.2 Expectation Maximization Algorithm.........cccccecveveriirriernenreenrerieenenene 84

4.2.3 Service Selection and Estimated RiSKSueeuumeeeemmerereeeeeeiieereveveneeeees 89

4.3 Analysis Of Service COITECINESSccceervereeerrerrerneesersreeeeneeseessensesesssenne 91

4.3.1 Quantitative Analysis for Non-Functional Behaviorc.ccc........ 92

4.3.2 A Net Based Method to Predict Non-Functional Behavior 95
CHAPTER 5 IMPLEMENTATIONcootioiititieieeieeeeeeeeesseerisveeeseeseesessssessesssens 100

5.1 The WSCPC General ArChiteCture........coeeevvieiiieeeeeeeereeeeeersieeeeeseeeeeeeeseees 100
52 WSCPC Execution ENVIFONMENL...........ceuvvvvrereiiieieieeeeereeseerenssasssssssersseeeee 105
53 Authoring Environmentcccocvviiiininiiniininniinecrcieneenennesecnesnens 107

5.3.1 Defining @ PrOCESS....cccocvevviriivrerieiieneeientrceesiesreseceeeeeneneessesnessesaes 108

5.3.2 Deploying Web Servicecccceeveveiieiiiiiiiniininienicienerceeeeeeceeene 109

54 WSCPC Interactions in Collaboration...........coovvevemmeieerieerereenreeeeereeeeeereen 111

5.4.1 Frame Based MeSSaging........ccccccoceriiiiiirniriiinneicicncnnicctceceenes 111

5.4.2 Process ENACUMENL......couuuuuereiieiiiiiiiiiireeeiieeereeerreesssssesesesseeessssnnsesessens 115

5.4.3 Process Sharingccceeveiiiniiiniieneetceeeee et enas 119
CHAPTER 6 EVALUATION ..ottt sssssssssssassssssssssasenes 123

6.1 A SCENATIO ceeveereeeeeieeeeiiieieeeieceeeeeieisisssssssssssssasssasssssssssssssssssssssssssssnssssnssssnees 123
6.2 Prediction for Service TruStWOIthiNESSeeeeeeeueereeeereiereeasesseeeeeeeeees 130
CHAPTER 7 CONCLUSION ...ttt eeeesiirteeteessesssssssssssesesssssssssssssssssssssnes 136
BIBLIOGRAPHY ...ttt ettt ettt ettt e e et e reeeeeessesssessssssssssessssesesesssssssssssssnssssssns 138

iX

LIST OF TABLES

Table 1 Sample Data for Evaluation

...

Table 2 Prediction Of SErvice EXECULIONcuuveeieiiiiiiiiiiiiiieiieeeieeieeieeeeesesesesesessseseesessesasen

Table 3 Accuracy of Prediction

...

LIST OF FIGURES

Figure 1 Structural Layer of Web Services..........ccccecevveriniiriecinneneninieeeeeneseesieneeseennen 18
Figure 2 A SOAP MESSAZEc.covuiimiriiiiiiiiiiicitniet ettt st be st sese st saens 20
Figure 3 A WSDL EXample.........cocoviriiiiriiiininientenietestcee et estesnesre e seesessaesaeenas 22
Figure 4 An Example of Production Rule..........c.ccccoeciiiiiniiniiniiniiniieiciceceenceeeeneenenn 46
Figure 5 Ontology for the Process Definition Modelcc.oceeveivievininennieninnenenenenne. 49
Figure 6 An Example of Semantic Service Definitioncocccvvvviveniicincninccccnnncnnne 54
Figure 7 An Example of Semantic Definition of ServiceComposite.............cccecervuereernne 56
Figure 8 Ontology for the Process Monitor Model...........cccccovirviinieniiininninsencnienennens 60
Figure 9 Definition of Design ReqUIrements..............ceecvervieriencienieneniuenciesieeseeseesiennns 63
Figure 10 An Example of Output Specificationc..ccccevervreeieniecrennennienieencneeneeennns 64
Figure 11 Service Registry Modelcccociiiiniiiiiiiiiiieiicitcenccieneecseeseeeeee s 65
Figure 12 Entries in Service REGISIIYcccceviiiiiiiiiiiiciiinieniicnieciesccscse et 67
Figure 13 Messages Based on Service Interaction Model............ccocvenievrnicnnerneenenncnncnne. 73
Figure 14 A Message Example Exchanged During Service-Oriented Collaboration....... 75
Figure 15 A WSDL Declaration for Interactive Communication............c.ccceeceriereercruennes 77
Figure 16 Performance Comparisons (Average Prediction Errors)..........cccccevevceeenennenne. 90
Figure 17 Performance Comparisons (Root Square Prediction Errors)........c..ccccceceeuuennen. 91
Figure 18 Performance Comparison (Non-Acceptability Rate)cc.ccocevveervirsrenennnene. 92
Figure 19 Quantitative Parameters in Net Based Modelc.ccoceeviniininnininccniennens 96
Figure 20 Exponential DiStributionccccocevvinieininicninenenicenencsicesencsecsneesnennne 98
Figure 21 Non-functional Behavior in a Composite Service..........c.cocevevvrirnvcniisenennenes 99
Figure 22 WSCPC General ArChiteCtUIEccceviererierieniientecieesiesseeseeeseestesseesessennes 101 7
Figure 23 Service Selection and INVOCAtIONccccccevireeriinieniieiiineeereerctereneeeeennens 103
Figure 24 Web Service Module...........coccoeveeirieinieniieieenieresescrceee e 106

Xi

Figure 25 Deploying Web ServicCe.........coccevivviiniiniininiiniiniinicieiecnncnicnecncsnesnnennens 110

Figure 26 A Message for Process Enactmentccccecevvveniininniininniincninninnenene, 117
Figure 27 Service Enactment Using Service Interaction Model..............ccccevviiiinnnnne. 118
Figure 28 A Query Message for Execution Traces.........ccoccoovvvuivvireiiiiniincnicnicncnn. 120
Figure 29 Execution Trace RepOrting........c.cccoceecueviiviirivciiiinninnneniccicnciienecnnenennee 121
Figure 30 Sharing Display for Concurrent and Consistent Collaboration...................... 122
Figure 31 A Design and Manufacturing (D&M) Process Example.............cccoceeuennnnnee. 124
Figure 32 Design Requirements Written in OWL.cccoociviininniniininininicnninns 125
Figure 33 Output SpecifiCation...........ccccccevviririiiiiieniiniinrinicieecceece s 126
Figure 34 Dynamic Net Model ..ottt 133

Xii

CHAPTER 1 INTRODUCTION

Information technology is transforming every aspect of our world. In particular,
businesses are challenged to compete in rapidly changing environments. A significant
aspect of that challenge is the management of the change itself. One approach is that of

the agile enterprise.

A Virtual Organization (VO) is a temporary alliance of enterprises that come together to
share resources in order to respond to rapidly changing technologies and increasingly
complex market competition [1-4]. Organizations within a VO focus on their core
strengths, while, turning to partners for supplemental areas of expertise thereby enabling

them to read market changes and to react to them quickly.

VO’s must share processes in order to develop and deliver new products on demand. To
this end, VO’s are generally managed by software systems running on widely distributed,
heterogeneous computing environments. As a result, VO’s require a new paradigm that
allows applications to access and share resources across distributed networks. Besides
making them more competitive, companies are realizing that VO’s can save development
and maintenance costs by outsourcing these components to various service providers.
This trend has increased the importance of developing distributed applications and the

integration of heterogeneous systems.

Service-oriented computing was introduced to deliver methods and technologies to help
organizations link their software in order to support business partnerships [5-10]. A

Service-Oriented Architecture (SOA) is a component model that interrelates an

application’s different functional units—the services—through well-defined interfaces
and contracts between these services. The interface is defined in a neutral manner; that is,
ideally independent of the hardware platform, operating system, and programming
language in which the service is implemented. This allows services that are built on a

variety of such systems to interact with each other in a uniform and universal manner.

In a service-oriented architecture, the concept of a service that is not strongly tied to a
particular implementation is known as loose coupling. Loosely-coupled systems can
provide business applications with agility based upon the needs of the business to adapt
to its changing environment such as changing policies, business strengths, business focus,
partnerships, industry standing, and other business-related factors that influence the very
nature of the business. Such systems are agile because internal implementations
represented as services are used to build up the whole application. Tight-coupling, on the
other hand, implies that the interfaces between the different components of an application
are tightly interrelated in function and form, thus making them brittle when any change is

required to parts of or to the whole application.

As expected, there are challenges that can inhibit the implementation of collaboration
software based on a service-oriented paradigm. One of the most noticeable challenges is
the issue of “trustworthiness”. Trustworthiness is an integrative concept, which
encompasses the following attributes: availability (readiness of a service), reliability
(correctness of a service), safety (absence of catastrophic consequence from using a
service), integrity (absence of improper system state alterations), and maintainability

(ability to undergo repairs and modification).

During service-oriented collaborative processes, participants may face uncertainties in
terms of trustworthiness such as service availability, service reliability, service safety, or
service integrity. These uncertainties come from two major limitations of current web
service technology. In web services, description logics are used to describe functions and
capabilities of services. Description logics are well-suited for such tasks and proved
successful in a wide range of applications [11]. However, they are not well-suited for
representing quantitative knowledge in terms of performance and reliability. Moreover,
malicious attacks residing in a VO cannot be detected solely through description logics.
In addition, communications within web services rely on RPC-type messaging via the
Simple Object Access Protocol (SOAP); however, SOAP is not sufficient to implement

the complex communication required for collaboration between participants in a VO.

Uncertainties in a service oriented environment can be classified in two categories: pre-
purchase uncertainties and fulfillment uncertainties. Pre-purchase uncertainties occur
when service consumers cannot decide whether or not to purchase a certain service. Even
semantically well-written descriptions of a service may not be good enough for users to
be convinced of the service usability. Fulfillment uncertainties involve situations in
which a user invokes a service only to find out that the service cannot provide the
functionality claimed in the descriptions. Service consumers may have concerns about

defective or low quality services.

In response to pre-purchase uncertainty, recommender systems and third party
certification methods have been proposed [12-14]. Recommender systems are
methodologies that utilize evaluations records from past transactions in the community.

When a transaction finishes, users in a business community evaluate the results and the

evaluation is later made available to other users seeking to build a VO. Users within
recommender systems are evaluated and forced to offer reliable services in order to be
selected as partners in later transactions. Third-party certification is a traditional business
method. For example, some traditional business transactions require a Letter of Credit
(L/C) before the transaction begins. The L/C guarantees secure payment and proves its
availability and usability in the business transaction. Even though a L/C is issued by only
certified banks, third-party certification of other services rendered in e-business can be

provided by any organization within the community.

Although useful, these approaches only provide a list of recommended services. They are
not sufficient to provide parametric information in terms of performance or reliability. It
is thus hard to build the reliability models or the performance models, which are required

to predict and improve trustworthiness of the whole system.

To manage fulfillment uncertainty, agreement-based systems and assertion-based
monitoring have been designed [15, 16]. Agreement-based systems utilize a contract
created by both parties. The contract describes the required service quality metrics for
both parties. One specific example is the Service-Level Agreement (SLA) from IBM and
HP [17]. To check contract fulfillment, companies manage additional modules that can
send or receive reports regarding attributes described in the contract. Another approach is,
assertion-based monitoring, which makes use of assertions embedded in process logic. In
this approach, assertions are determined based on client’s requirements and then inserted
into specific locations before transactions begin [18]. When execution reaches each
embedded assertion point, a service fulfillment indication is reported to clients, and

analyzed through formal modeling languages like SPIN [19].

Even though these approaches are beneficial, intrinsic anonymity (i.e., the customer’s
lack of familiarity or relationship with services and the people involved) still makes users
hesitant to join a service-oriented collaborative environment. Complex interaction is a
way of testing new boundaries and seeing how far one can go when no one knows about
such boundaries. Instead of judging services through categories provided by some portal
sites, interactive communication allows a service consumer to choose which services to
use. Along with communications, service consumers must be able to predict performance
and reliability of services. Therefore, systems enabling intensive interactions and
behavior predictions between service consumers and providers are highly necessary in a

service-oriented environment.

In this thesis, we present a framework Web Service Collaborative Process Coordinator
(WSCPC) for supporting reliable, service-oriented collaborative environments. First, we
provide a trust model for predicting behaviors of service providers. Our trust model
provides probabilities that measure the extent to which a service is reliable. To estimate
such probability, we employ ratings by previous service users in order to expect how
much the user will be satisfied after the usage of service. The probabilities are used to
build the expectation ratings and the degree of service satisfaction. In our model, failure

or reliability is defined in terms of the degree of service satisfaction.

In order to support a complex level of interactions between peers, we propose a frame-
based approach, rather than the more conventional Finite-State Machine (FSM) approach,
which relies on pre-defined sequences and hence has limited flexibility for
reconfiguration or adaptation. In a frame-based approach, messages have slots to be filled,

and responses fill the appropriate slots. Slots are generated, analyzed, and filled due to

the semantic information provided from both service peers. Peers can create a message
with slots filled locally or by remote systems, in case they need to continue interaction.
Generating and filling slots requires semantic information from peers. The Process
Grammar [20, 21] proposed by Chung together with the Web Service Collaborative
Process Coordinator (WSCPC) developed herein work well for this approach as they

have hierarchical structure and alternative selection rules.

The remainder of this thesis is organized as follows. In Chapter 2, we present the current
paradigm of service oriented computing and the corresponding research issues and
solutions. In Chapter 3 we develop trustworthiness issues in terms of a service oriented
environment. In particular, we propose a methodology to be used for behaviors prediction
and run-time analysis in services. In Chapter 4 we propose service models to be used for
service behavior enactment and sharing. The implementation is discussed in Chapter 5.
Finally, we design and implement up an experiment to evaluate the proposed models. We
do this in the setting of a die casting manufacturing domain and assign artificial data for
performance parameters. The results demonstrate that our service model is effective in

terms of trustworthy collaboration.

CHAPTER 2 BACKGROUND

What follows in this chapter is a survey and summary of previous work that serves as a

springboard for our research regarding trustworthy service oriented collaboration.

2.1 Virtual Organization

A Virtual Organization (VO) is defined as a coordinated network of autonomous
production units (factories, firms, etc.) with the goal of producing a product while
exchanging all needed information via a computer network [22, 23]. In a VO,
organizations can virtualize--convert a tangible, physical aspect of a business to function
in a virtual environment—various functions and parts such as processes, operations,
groups, or individuals. This enables organizations to focus on their core strengths while
turning to partnerships for supplemental areas of expertise. Organizations participating in
VO’s are generally managed by software systems running in heterogeneous computing

environments. As such, they must share processes to deliver new products on demand.

Several studies [24, 25 , 26 , 27 , 28] identify a set of dimensions regarding VO-related

implementation issues. These dimensions are described as follows.

1) Tightness and Duration: Two partners are tightly coupled if they are dependent on
each other. Loosely coupled partners exchange business information on demand.

2) Similarity: Applications use different data structures and standards. There may also
be structural heterogeneity at the processing layer, such as use of API and document
exchange protocols. Organizations may use different strategies to conduct process

execution.

3)

4)

5)

6)

Autonomy: Partner systems may be autonomous in their design, communication, and
executions. More autonomous collaboration allows partners to have more local
control over implementation and operation of services resulting in flexibility to
change their processes without affecting each other.

External Manageability: In order to be effectively monitored by external partners, an
application must be defined in a way that facilitates the supervision and control of its
execution, measurement of its performance, and prediction of its status and
availability.

Adaptability: Applications operate in a highly dynamic environment where new
services can be initiated in the middle of process execution, existing services may be
removed, and the contents of services may be updated. A VO must be able to respond
to such dynamic changes.

Security: Security is a major concern for inter-organization applications. Security
measures must be in place to boost confidence between partners such that their

transactions are safely handled.

Research in VO’s focuses mainly on the aspects of cooperation and integration within

heterogeneous software environments. WISE [29, 30] is a paradigm that aims to provide

support for cross organizational business processes. In WISE, distribution is modeled in

each virtual process definition and defined as a building block that can be posted as an

entry of a catalog. WISE also creates an awareness model to be used for load balancing,

routing, quality of service, and analysis purposes. CrossFlow [31, 32] is intended to

provide high-level support for dynamic workflows in VO environments. The main

contribution of CrossFlow is in the use of the concept of a contract as a basic tool for

cooperation. A contract is made by filling out a template. Based on the contract, a service
enactment infrastructure is established. Business partners specify their interactions
through the resulting contract. The dynamically created modules can be removed after
contract completion. Mentor-Lite [33, 34] addresses the problem of distributing the
execution of workflow by partitioning the overall workflow specification into several
sub-workflows, each encompassing all the activities that are to be executed by a given
entity. The basic building block of Mentor-Lite is an interpreter for workflow based on
state charts. SELF-SERYV [35, 36] proposes a process based language for composing web
services based on state charts. SELF-SERYV also defines a peer-to-peer service execution
in which the responsibility of coordinating the execution of a composite service is
distributed across several peer components. Collaboration Management Infrastructure
(CMI) [37, 38] extends the traditional workflow concepts with advanced concepts such as
placeholder, which enables the dynamic establishment of trading relationships. A
placeholder activity is replaced at runtime with a concrete activity having the same input
and output. A selection policy is also specified to indicate the activity that should be
executed. eFlow [39] is a platform that supports the specification, enactment, and
management of composite services. A composite service is described as a process schema
and modeled by a graph that defines the order of execution among the nodes in the
process. There are service, decision, and event nodes: service nodes execute selection of a
reference to a specific service; decision nodes specify the alternatives and rules
controlling the execution flow; and event nodes enable service processes to send and
receive several types of events. To support heterogeneity of services, eFlow provides

adapters for services that support various interactions. WebBase of Internet-accessible

Services (WebBIS) [40] proposes a declarative language for composing Web Services.
WebBIS addresses the issue of adaptability by defining a mechanism to propagate
changes. All changes performed to a service are propagated to other services that rely on
it to ensure global consistency. To this end, WebBIS defines a meta-service called change
notifiers, which attach to each service and maintain information about the availability of

the related service.

2.2 Trustworthiness Management

The lifecycle of a VO—formation, communication, operation—is strongly connected
with the Internet. During communication in a VO, a huge amount of extremely valuable
technical data and information (development, product, and process data in addition to
business information) moves through the network, making security a vital concern.
Enhanced security can contribute to the growth of the number of realized VO solutions.
The basic network security aspects [41] are a security issue in a VO environment. The
communication between software and users should be protected. Software agents, users,
and even nonparticipating entities can potentially eavesdrop or tamper with the
communication or impersonate participating persons and organizations. Thus, the typical
cryptographic security services—entity authentication, data authentication, and data
confidentiality—should be provided. Standard mechanisms are available for this purpose
such as SSL/TLS [42] at the transport layer or IPsec [43] at the network layer. In addition,

malicious software agents should be prevented from stealing a host’s private keys.

10

2.2.1 Considerations

Since VO'’s are run primarily on open environments, it is to be expected that there will be
participants with malicious intentions. Hence, participants should be restricted to execute
in a sandbox environment in which they have limited privileges and in which they are
protected from one another [44]. Authentication allows a participant to identify partners.
In addition to authentication, partners can carry proof that enables a service provider to

determine whether it is safe to work with a particular partner.

Although the problem of identifying partners seems more and less easy to solve,
protecting participants from malicious attacks is a very difficult task. Malicious attacks
can include masquerading as a partner, denial of service, eavesdropping on interactions,

or returning wrong results of service calls.

222 Potential Application of Concepts from Mobile Agent Systems

Mobile software agents are agents that can travel from one computer to another computer.
They are sent by end-users and visit a series of hosts. The mobile agents are executed
locally on these hosts to perform their tasks, and will return to the end users to report
their results. The autonomous and coordinative nature of mobile agents resembles the

dynamics of a VO in that its membership is created and coordinated on demand.

Therefore, it would seem that an approach similar to that used by mobile agents might
offer potential solutions to the issues of trust within a VO. The purpose of this section is
to present open issues and ideas of mobile agents and secure electronic transactions on

untrusted hosts in the context of a VO environment since they are relevant to the specific

11

problem of trusted computing in a VO environment. These issues and ideas are

described as follows.

1)

2)

3)

4)

Insecure Networks : The security issues associated with mobile agents are similar to
the security issues of the underlying network itself. The communication between
agents and users as well as the communication between the agents themselves should
be protected. Thus, the typical cryptographic security services such as data

authentication, entity authentication, and data confidentiality should be provided.

Avoiding the Problem : The problem of malicious hosts can be avoided by simply not
working with untrusted hosts. Reputation can be used in a VO as a security
mechanism. Rasmusson and Johnson [45] describe this as a soft security approach
since each participant itself is responsible for the security, as opposed to hard security
in which security is forced by external third party. In reputation systems, participants

only work with a limited set of partners that they trust.

Minimizing the Risk : The basic idea of this scheme is to limit capabilities to that of
performing transactions. Romao et al. [46] propose proxy certificates, which restrict
access to private digital signature keys. Yi et al. [47] propose a one-time key pair,
where a private key is associated with each message and used exactly once. Bellare
and Miner [48] and Krawczyk [49] propose a scheme in which the public key is fixed
but the private key is updated regularly. All of these schemes are based on the fact

that services are executed with a limited amount of time.

Execution Integrity : Execution integrity is about ensuring the correctness of

execution. State appraisal is proposed to detect tampering to some extent. With state

12

appraisal, invariants can be expressed that each state must satisfy. Cryptographic
traces proposed by Vigna [50] are detailed digitally signed logs of the operations
performed by an agent during its lifetime. To reduce overhead, only the hashed log is

sent and verified.
23 Service-Oriented Computing

Service-oriented computing delivers methodologies and technologies to organizations so
as to link multiple software systems using platform independent interfaces and contracts
in order to create a Virtual Organization (VO). Service-oriented computing is commonly
implemented through the use of Web Services and software components that provide
self-contained functionality via internet-based interoperable interfaces. These services are
based on a common description of their characteristics, including how they are
dynamically discovered, selected, and accessed. The terms ‘“orchestration” and
“choreography” have been widely used to describe business process integration

comprised of Web Service-based software systems [51, 52].
23.1 What Are Web Services?

The World Wide Web Consortium (W3C) defines a Web Service as “a software system
designed to support interoperable machine-to-machine interaction over a network” [53].
Web Services are Web-based applications that utilize open XML-based standards and
transport protocols to exchange data. Web Services were first introduced in order to
enable consistent resource access across multiple heterogeneous platforms [9, 54], and
hence to support simple inter-organizational collaboration in process management [55-

57).

13

The purpose of a Web Service is to provide some functionality, either pre-existing or
newly defined, on behalf of its owner (e.g. a business or an individual). A Web Service

takes such functionality and makes it available to any system.

In order to promote interoperability and extensibility among these applications, as well as
to allow them to be combined in order to perform more complex operations, a standard
reference architecture is needed; Web Services technology provides such an architecture.
For example, a user might develop a purchasing application that can perform all of the
following functions: provide price information for various vendors, allow the user to
select a vendor and submit the order, and track the shipment until goods are received. The
vendor application, in addition to exposing its services on the Web, may in turn use Web
Services to check the customer's credit, charge the customer's account, and set up the

shipment with a shipping company.

Web Services provide an important instantiation of service-oriented computing and
include infrastructure for specifying service properties (WSDL) [58], interaction between
services (via SOAP) [59], service invocation through a variety of protocols and
messaging systems (Web Service invocation frameworks), support for a services registry
(via UDDI) [60], and scheduling through a Web Services Choreography Language [61-
63]. Web Services also play an important role in the Semantic Web [64]. By providing
semantic metadata to enable machine processing of information, Web Services can
provide a useful mechanism to enable automatic interaction between software, thereby

also providing a useful environment in which agent systems can interact.

14

Web Service technologies represent the evolution of distributed software component
technologies like RPC, DCOM, CORBA, Java RMI, and even Web applications like
Google.com [65]. As application developers struggle with interoperability between
various technologies, they turn to the evolving Web as a potential solution for these

challenges.

Web Services have two distinct advantages for heterogeneous distributed system
integration. First, Web Services enable dynamic discovery and composition of
heterogeneous distributed services by providing mechanisms for registering and
discovering platform-neutral interface definitions and endpoint implementation
descriptions. Second, the widespread adoption of Web Services mechanisms implies that
a framework based on Web Services can exploit numerous tools and services, such as
workflow systems that sit on top of the Web Service Description Language (WSDL) [58]

and hosting environments for Web Services (e.g. Microsoft .NET and Apache Axis).
2.3.2 Web Service Environments

The basic Web Services architecture defines an interaction between software agents as an
exchange of messages between service consumers and service providers [53]. Consumers
are software agents that request the execution of a service. Providers are software agents
that provide a service. Agents can be both service requesters and providers. Providers are
responsible for publishing a description of the service(s) they provide. Requesters must

be able to find the description(s) of the services.

While a Web Service is an interface described by a service description, its

implementation is the service. A service is a software module deployed on network

15

accessible platforms provided by the service provider. It exists to be invoked by or to
interact with a service requestor. The service description contains the details of the
interface and implementation of the service. This includes its data types, operations,
binding information, and network location. It could also include categorization and other
metadata to facilitate discovery and utilization by requestors. The complete description
may be realized as a set of XML description documents. The service description may be

published to a requestor directly or to a discovery agency.

Software agents in the basic Web Services architecture can take on one or all of the

following roles:

1) Service Requester, which requests the execution of a Web Service;

2) Service Consumer, which processes a Web Service request; and

3) Discovery Agent, which publishes and makes discoverable Web Service descriptions..

In order for an application to take advantage of Web Services, three actions must occur:
publication of service descriptions, finding and retrieval of service descriptions, and
binding or invoking of services based on the service description.

1) Publish: In order to be accessible, a service needs to publish its description such that
the requestor can subsequently find it. Where it is published can vary depending upon the
requirements of the application.

2) Find: In order to locate other services, a service requestor retrieves a service
description directly or queries the registry for the type of service required. The find

operation may be involved in two different phases for the service requestor: at design

16

time in order to retrieve the service’s interface description for program development, and
at runtime in order to retrieve the service’s binding and location description for
invocation.

3) Interact: Eventually, a service needs to be invoked. During the interact operation, the
service requestor invokes or initiates an interaction with the service at runtime using the

binding details in the service description to locate, contact, and invoke the service.

The essential part of Web Services is the interact relationship between a service provider
and service requestor. The interactions in service-oriented computing involve publish,
find, and bind operations. These roles and operations act upon the Web Service artifacts,
the Web Service software module and its description. In a typical scenario, a service
provider hosts a network accessible software module as an implementation of a Web
Service. The service provider defines a service description for the Web Service and
publishes it to a requestor or service discovery agency. The service consumer uses a find
operation to retrieve the service description locally or from a registry or repository, and
then uses that service description to bind with the service provider and invoke or interact
with the Web Service implementation. Together these components become an interface to
a vast world of data and query services that provide data about Web Services as well as

many other things.

233 Structural Layers in Web Services

Web Services interact by passing XML data, with types specified using XML schema.
Simple Object Access Protocol (SOAP) is commonly used as the communication

protocol and WSDL is often used to specify the I/O structures . The underlying structure

17

for the Web Services paradigm will most likely be guided by already established
standards and practices. Some of the current standards are illustrated by the layered
structure shown below. All of these can be defined before binding Web Services to each
other. Behavioral descriptions of Web Services can be defined using higher level
standards such as Business Process Execution Language for Web Services (BPEL) [63],
Web Service Choreography Interface (WSCI) [66], Business Process Management
Initiative (BPML) [67], or DARPA Agent Markup Language of Services (DAML-S) [68].

Figure 1 illustrates Web Services structural layers.

. o=

Behavior] BPEL, DAML-S, WSCL | % n
Ech

Interface WSDL om-
g m
=

Message SOAP g

Type XML Schema

Data XML

Figure 1 Structural Layer of Web Services

XML and XML Schema

Extensible Markup Language (XML) is an extensible, portable, and structured text
format [69]. XML plays an important role in the exchange of a wide variety of data on
the Web and elsewhere. XML schemas provides a means of creating a set of rules that

can be used to govern the validity of XML documents. Schemas provide a means of

18

defining the structure, content, and semantics of XML documents that can be shared

between different types of computers and documents [70, 71].

One important concern of Web Services is how to transmit data in an interoperable
manner. XML and XML schema provide a means of describing and using Web Services.
Messages and interfaces in Web Services are defined with XML schema and written with

XML such that platform neutral interoperability is possible.
SOAP

Simple Object Access Protocol (SOAP) is a communications protocol for Web Services
[59]. There are elements of the SOAP specification that describe how to represent
program data as XML and how to use SOAP to do Remote Procedure Calls (RPCs). A
SOAP message contains a callable function and the parameters to pass to that function.
SOAP also supports document style applications where the SOAP message is just a
wrapper around an XML document. Document-style SOAP applications are very flexible
and many new XML Web Services take advantage of this flexibility to build services that
would be difficult to implement using RPCs. What follows in Figure 2 below is an
example of a SOAP message [72]. The example illustrates a request of a method

GetStockPrice with a parameter StockName.

POST /InStock HTTP/1.1
Host: www.stock.org
Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

19

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/soap-

encoding">

<soap:Body xmlns:m="http://www.stock.org/stock">
<m:GetStockPrice>
<m: StockName>IBM</m: StockName>
</m:GetStockPrice>

</soap:Body>

</soap:Envelope>

Figure 2 A SOAP Message

The most distinct feature of SOAP is that it can be implemented on many different
hardware and software platforms. This means that SOAP can be used to link disparate
systems both inside and outside of an organization. Many attempts have been made in the
past to achieve a common communication protocol that could be used for system
integration but none of them has had as widespread adoption as SOAP. Since SOAP can
use existing XML parsers and HTTP libraries to do most of the hard work, a SOAP
implementation can be completed relatively easily. This is why SOAP is becoming so
widespread. The popularity of HTTP and the simplicity of SOAP make them an ideal

basis for implementing Web Services that can be called from almost any environment.

20

WSDL

WSDL stands for Web Services Description Language [58]. A WSDL file is an XML
document that defines the format of a set of SOAP messages and how those messages
should be exchanged. In other words, WSDL is to SOAP what Interface Definition
Language (IDL) is to Common Object Request Broker Architecture (CORBA). Since

WSDL is based on XML, it is readable and editable.

Figure 3 is a subset of a WSDL example [73]. The portType describes a single operation
GetStockPrice, which uses the message types for input and output.binding indicating that
the communication is through SOAP. Moreoever, portType associates the binding with

the URI http://sample/stockprice where the running service can be accessed.

<portType name="StockPricePortType">
<operation name="GetStockPrice">
<input message="tns:Name"/>
<output message="tns:Output"/>
</operation>
</portType>
<binding name="StockPriceSoapBinding"
type="tns:StockPricePortType">
<soap:binding style="document"
transport="http://sample" />
<operation name="GetStockPrice">
<soap:operation soapAction="http://sample "/>
<input>
<soap:body use="literal"/>
</input>

<output>

21

<soap:body use="literal"/>
</output>
</operation>
</binding>
<service name="StockPriceService">
<documentation>My service</documentation>
<port name="StockPricePort"
binding="tns:StockPriceSoapBinding" >
<soap:address location="http://sample/stockprice"/>
</port>
</service>
</definitions>

Figure 3 A WSDL Example

The fact that the format a WSDL file uses to describe messages is based on the XML
schema standard implies that it is both programming language neutral and standards-
based. This makes WSDL suitable for describing XML Web Service interfaces, which
are accessible from a wide variety of platforms and programming languages. In addition
to describing message contents, WSDL defines where the service is available and which
communication protocol should be used to talk to the service. Hence, the WSDL file

defines everything required to write a program to interact with a Web Service.

24 Process Management Based on Web Services

Web Services provide functional building blocks that can be discovered, selected, and
accessed. On the other hand, application services are composed typically of functional
parts coming from multiple service providers and hence include execution logic

resembling multilateral interaction procedures among service providers.

22

To this end, several Web Service based service composition frameworks have been
proposed. The field of Web Service composition provides means to assemble basic Web
Services into composite ones that constitute a considerable step towards application
services. Those frameworks are designed to integrate heterogeneous distributed systems
easily through Web Services, and hence they enable multi-organizational process
execution by allowing service-based collaboration of distributed organizations. Some of
the distinctive works are BPELAWS, BPML, OWL-S, GSFL, and GridAnt, [21, 61, 74-
76]. These frameworks can be categorized into three basic approaches: using meta

language, using Web Services on grids, and using a semantics approach.
24.1 Using Meta Language

This approach provides an open, standards-based methodology for connecting Web
Services together to create higher-level business processes. Distinct standards in this
category are Business Process Execution Language for Web Service (BPELAWS),
Business Process Modeling Language (BPML), and WS-Choreography Definition
Language (WS-CDL). The business process should be designed to be dynamic, flexible,
and adaptable in order to meet the changing needs of a business; these standards are

designed to support such dynamic business demands.

BPML is a meta-language for modeling business processes. BPML provides an abstract
execution model for collaborative and transactional business processes based on the
concept of a transactional finite-state machine. BPELAWS provides an XML-based

grammar for describing the control logic required to coordinate Web Services.

23

BPEL4WS

BPELAWS is a specification that models the behavior of Web Services in a business
process interaction [7]. The specification provides an XMlL-based grammar for
describing the control logic required to coordinate Web Services in a process flow. This
grammar can then be interpreted and executed by an orchestration engine, which is
controlled by one of the participating parties. The engine coordinates the various
activities in the process and compensates the system when errors occur. BPEL4WS is
essentially a layer on top of WSDL, with WSDL defining the specific operations allowed

and BPELAWS defining how the operations can be sequenced.

BPELAWS provides support for both executable and abstract business processes. An
executable process models the behavior of participants in a specific business interaction.
Abstract processes, modeled as business protocols in BPELAWS, specify the public
message exchanges between the parties. Business protocols are not executable and do not
convey the internal details of a process flow. Essentially, executable processes provide
the orchestration support described earlier while the business protocols focus more on the

choreography of the services.

The specification includes support for both basic and structured activities. Basic activity
is defined as a component that interacts with something external to the process. For
example, basic activities would handle receiving or replying to message requests as well
as invoking external services. By contrast, structured activities manage the overall
process flow, specifying which activities should be run and in what order. Structured

activities may specify that certain activities should be run sequentially or in parallel.

24

These activities also provide support for conditional looping and dynamic branching. One

can think of structured activities as the underlying programming logic for BPELAWS.

In BPELAWS, a set of activities can be grouped into a single transaction through the
scope tag. The scope tag signifies that the steps enclosed in the scope should either be all
completed or all failed. Within the scope, the developer can then specify compensation
handlers that should be invoked if there is an error. BPEL4WS also provides an exception

handling mechanism through the use of throw and catch clauses, similar to that in Java.

BPML

Business Process Management Language (BPML) is a meta-language for describing
business processes [74]. BPML was initially designed to support business processes that
can be executed by a BPMS system. BPML was subsequently expanded to incorporate
the WSCI protocol. Withing BPML, WSCI can be used to describe the public interactions

and choreographies, while the private implementations can be developed with BPML.

The specification can be compared to BPELAWS as they provide similar process flow.
Basic activities such as sending, receiving, and invoking services are available, along
with structured activities such as handling conditional choices, sequential and parallel
activities, joins, and looping. BPML also supports the scheduling of tasks at specific
times. Other features supported by BPML include persistence, roles, instance correlation,
and recursive decomposition. BPML also supports recursive composition, the ability to

compose sub-processes into a larger business process.

25

BPML includes both transactional support and exception handling mechanisms. Both
short and long running transactions are supported, with compensation techniques used for
more complex transactions. BPML uses a scoping technique similar to BPEL4WS in
order to manage the compensation rules. It also has the ability to nest processes and
transactions, a feature that BPEL currently does not provide. Finally, a robust exception
handling mechanism is available within BPML. Timeout constraints can also be specified

for specific activities defined within the process.

WS-CDL

The Web Services Choreography Description Language (WS-CDL) describes peer-to-
peer collaborations of Web Services participants by defining their common and
complementary observable behavior where ordered message exchanges result in
accomplishing a common business goal. In WS-CDL, there is no single controlling
process managing the interaction among process participants. WS-CDL provides for
sequencing and also offers a flexible systemic view of the process. The W3C positions
WS-CDL “as a necessary complement to BPEL, Java, and other programming languages

which describe one endpoint on a transaction, rather than the full system.”[77]

A WS-CDL document describes interoperable, cross-enterprise collaborations that allow
participants to perform business transactions. Their collaboration takes place via a
commonly agreed set of constraints, whereby documents are exchanged in a
synchronized fashion between the participants. Choreography allows constructing

compositions of Web Service participants by explicitly asserting their common

26

observable behaviors, where synchronized information is exchanged through their shared

contact-points.

24.2 Web Services on Grids

A grid is defined as a layer of network services that allows access to a distributed
collection of data and application resources. The grid services provide a collection of
services, which users can access from any location. However, many grid architectures
suffer from the heterogeneous nature of resource implementation. This is one reason why
approaches based on Web Services are gaining more and more attention. The key idea
here is to isolate resource deployment from the instantiation of a component in a

distributed environment.

OGSA

Open Grid Services Architecture (OGSA) provides technologies that enable people to
share computing power, databases, and other on-line tools securely across corporate,
institutional, and geographic boundaries without sacrificing local autonomy [78]. OGSA
is based on grid services, which are Web Services with additional features of grid
computing [79, 80]. OGSA uses WSDL to achieve self-describing and discovering
services. It defines a set of standard interfaces that a grid service may export and enables
features such as discovery, service lookup, lifetime management, notification, and
credential management. They are built from two main technologies: the Globus Toolkit,

which has been widely adopted as a grid technology and Web Services.

27

The Globus Toolkit is a community-based, open-architecture, open-source set of services
and software libraries [81]. The toolkit components are the Grid Resource Allocation and
Management (GRAM) protocol, its gatekeeper service, the Meta Directory Service
(MDS-2), and the Grid Security Infrastructure (GSI). MDS-2 provides information
discovery through soft state registration, data modeling, and a local registry (GRAM
reporter). The GSI supports single sign on, delegation, and credential mapping. Single
sign-on allows a user to authenticate with any remote service on the user’s behalf.
Delegation allows for the creation and communication to a remote service of delegated

proxy credentials that the remote service can use to act on the user’s behalf.

XCAT

XCAT is a Common Component Architecture (CCA) compliant application component
framework that is built on top of a Web Service [76, 82]. The CCA specification
describes the construction of portable software components that may be re-used in any
CCA compliant runtime framework. XCAT is designed to support applications built from
components that are distributed over a wide-area grid of resources and distributed
services. XCAT is based on Globus for its core security and remote task creation and it
uses RMI for its communication. XCAT components are software modules that provide
part of a distributed application’s functionality in a manner similar to that of a class

library in a conventional application.

A running instance of an XCAT component is a Web Service that has two types of ports.
One type of port, called a provides-port, is a normal Web Service port. A provides-port is

a service provided by the component. The provides-ports of an XCAT component can be

28

described by the Web Service Description Language (WSDL) and hence can be accessed
by any Web Service client that understands that port type. The second type of port is
called a uses-port. These are ports that are “outgoing only” and they are used by one
component to invoke the services of another, or, as will be described later, to send a
message to any waiting listeners. Within the CCA model, a uses-port on one component
may be connected to a provides-port of another component if they have the same port

interface type.

GridAnt

Makefiles play a role in automating the complex build process in software engineering. It
allows users to structure their code and to build sophisticated reusable libraries with ease.
For Java, a similar tool called Ant exists under the Apache Project. Ant provides Java
with a sophisticated build tool. Dependencies and parallelism can be easily expressed and

new tasks can be included with little effort.

The GridAnt [83, 84] is proposed to reuse the Ant framework to develop a client side
workflow system for grids. The philosophy adopted by the GridAnt project was to use the
workflow engine available with Ant to develop a grid. The GridAnt framework not only
allows clients to map complex client-side workflows, but also to test the functionality of
different grid services as a client. GridAnt identifies a set of essential grid tasks that
include setup, authenticate, copy, delete, execute, query, and checkpoint. GridAnt also
contains a control construct for expressing parallel and sequential tasks. Tasks
encapsulated in <sequential> are executed in sequential order. Tasks encapsulated in

<parallel> are executed in parallel.

29

GSFL

Grid Services Flow Language (GSFL) is an XML based language that allows the
specification of workflow descriptions for grid services in the OGSA framework
[Gannon03]. GSFL is defined using XML schemas and has the following important

features.

1) Service Providers are the list of services taking part in the workflow. The service
providers are identified throughout the GSFL document by a unique name, which is

specified as part of the definition.

2) An Activity Model lists all the operations that belong to the individual service
providers that have some role in the workflow. It contains a list of activities, each of
which has a name for identification purposes and a source, which is a reference to an

operation in a Web Service.

3) A Composition Model describes the interactions among the individual services. It
describes the control and data flow among the various operations of the services.

Communication occurs in a peer-to-peer fashion.

4) A Lifecycle Model describes the lifecycle for the various activities and services, which
are part of the workflow. It addresses the order in which the services and activities should

be executed.

30

243 Semantic Approaches

Semantic approaches are designed to integrate independently developed heterogeneous
resources using semantic information. Semantics helps to identify heterogeneous
resources and hence enables a certain level of automated interoperability [85, 86]. The
main purpose of a semantic approach is the automated discovery and search, selection,
matching, composition and interoperation, and invocation and execution monitoring.

OWL and OWL-S are proposed to represent web semantics.

The markup languages such as Ontology Web Language (OWL) [87] and OWL-S [68,
75] enable the creation of arbitrary domain ontologies that support the explicit description
of the Web content. These ontologies make Web Service machine understandable and
enable tasks such as locating Web Services, invocating Web Services, inter-operating
through semantics, composing services to create new functionality, verifying service

properties, and monitoring service execution [85, 88, 89].

OWL-S

OWL-S defines a set of classes and properties specific to the description of services
within OWL [64, 68, 75]. The class Service is at the top of the OWL-S ontology. Service
properties at this level are very general. From the top level, the taxonomy is structured
according to functional and domain differences and market needs. For example, one may
imagine a broad subclass B2C-transaction, which encompasses services such as
purchasing items from retail Web sites, tracking the status of the transaction, establishing

and maintaining accounts with the sites, and so on.

31

The ontology of services provides two essential types of knowledge about a service. The
one is ServiceProfile, which describes the capabilities and parameters of the service. The
other is ServiceModel, which describes the workflow énd possible execution paths of the
service. ServiceProfile provides information about a service that an agent can use to
determine if the service meets its rough needs, and whether the service satisfies
constraints such as security, locality, affordability, quality-requirements, etc. On the other
hand, ServiceModel enables an agent to do the following: 1) perform a more in-depth
analysis of whether the service meets its needs; 2) compose service descriptions from
multiple services to perform a specific task; 3) coordinate the activities of different
agents; and 4) monitor the execution of the service. Grounding of a service specifies the
details of how to work with protocol and message formats, serialization, transport, and
addressing. Grounding can be thought of as a mapping from an abstract to a concrete
specification of those service descriptions. In DAML-S, both ServiceProfile and
ServiceModel are conceived as abstract representations, while the service Grounding

deals with the concrete level of specification.
2.5 Approaches Toward Trustworthy Service Oriented Computing
25.1 Service Discovery

Web Service discovery is the process of locating Web Services so that they can be used
to request a service that fulfills some user needs [90, 91]. In order to achieve the
automated discovery of reliable Web Services, a requester must explicitly state two
things: 1) the information the requester wants to receive as the result of the service

provision (called “post-conditions”) such as airline schedules; and 2) the state of the

32

world resulting from it (called “effects”) such as the booking of a flight. Goals need to be

formalized in order to automate the Web Service discovery process.

Generally, Web Services are described using WSDL and cataloged using the Universal
Description Discovery and Integration (UDDI) protocol. UDDI registries contain so-
called white pages for each registered provider. References to concrete service
implementations are available for binding as template models (called “tModels”). Several
methodologies are proposed to use tModels to incorporate post-condition and effects into

UDDI [92-94].

Description Logics (DLs) are a good candidate for this purpose. Description logics are
knowledge representation languages tailored for expressing knowledge about concepts
and concept hierarchies. The basic building blocks are concepts, roles, and individuals.
Concepts describe the common properties of a collection of individuals and can be
considered as unary predicates, which are interpreted as sets of objects. Roles are
interpreted as binary relations between objects. DLs also defines a number of language
constructs such as intersection, union, and role quantification that can be used to define
new concepts and new roles. The main reasoning tasks are classification and satisfiability,

subsumption, and instance checking.

Once a set of DL descriptions has been classified, querying the relation of a new DL
description to the set of classified descriptions is efficient [95]. Such descriptions
characterize post-conditions and effects although they do not deal with how they relate to
the input given to the Web Service. Determining whether a Web Service is relevant to the

goal at hand is reduced to computing the subsumption relation between the goal

33

description in DL and the abstract services accessible through the correspondent Web
Services. While DLs are a good formalism for classification tasks, they have some
limitations [96, 97]. One of these limitations is their limited ability to express the relation
between the input given to a Web Service and the post-conditions and effects resulting

from the service determined by that input.

On the other hand, to minimize the intervention of designers and end users in trusted
service discovery steps, there are efforts that propose a reputation model in Web Service
discovery [12-14]. Reputation model provides for recording past transactions and
evaluations for each service so that clients can estimate available services to improve

future service discovery decisions.

For extended decision help, Quality of Service (QoS) factors are integrated into UDDI. In
this model, service behaviors regarding QoS factors are recorded in the service registry,
so that future users can refer to them during service selection. To this end, some
approaches extend the current UDDI tModel to accommodate QoS factors [93, 94, 98].
Moreover, there are many proposals to define QoS factors in service-oriented
environments. QoS factors can be classified largely into two classes, run-time and
quality-driven factors. Runtime QoS factors refer to service execution factors. Such
factors include capacity, response time, latency, throughput, and service accuracy.
Quality-driven QoS factors refer to the service outcomes such as execution prices, service

availability, and service reputation.

34

252 Service Behavior Analysis

The WSDL standard focuses on passing messages between Web Services. This leads
naturally to behavioral models that use messages as the “actions”, and use internal states

for individual Web Services as the state that messages transition.

The model used to represent the behavior of individual and composite Web Services has
fundamental implications on how they can be discovered, combined, and analyzed. When
considering a business system with multiple agents and multiple concurrent processes,
one would like to have an automated way of checking some fundamental questions.

e Will the process necessarily terminate?

e Will the service respond within a given time?

e Will the service ever deliver something as promised?

This perspective is closely related to work on process algebra such as m-calculus and
work in the verification community, both of which study distributed automata with
message passing of one form or another [99-102]. Process algebra is used to define
specifications from the system configuration and to analyze specifications in order to find

any violations from achieving high-level goals.

The workflow community has focused on activity-based models. These represent a
process by combining activities with some form of control flow. The typical examples are

flowcharts, Petri nets, and finite state machines [103-105].

The semantic Web Services community favors an activity-based perspective. Much of

that work assumes that atomic services perform activities, which have the effect of

35

changing the state of an “external world”. These approaches permit the use of logic-based
axiomatization and reasoning about how composite Web Services affect their external
world and thereby permit the use of goals-based planning algorithms for automated
construction of compositions. A situation calculus is typically used to provide formal

basis [9, 96, 106]. The PSL standard has also been advanced for this purpose [107].
253 Service Security

Threats to Web Services involve threats to the host system, the application, and the entire
network infrastructure. Web Services implementations may require point-to-point and/or
end-to-end security mechanisms, depending upon the degree of threat or risk. Traditional,
connection-oriented, point-to-point security mechanisms may not meet the end-to-end
security requirements of Web Services. However, security is a balance of assessed risk
and cost of implementation. Depending on the implementer’s risk tolerance, point-to-
point transport level security can provide security solutions. To secure Web Services, a
range of security mechanisms that accommodate the presence of intermediaries are
proposed to solve problems related to authentication, role-based access control,

distributed security policy enforcement, and message layer security.
Policy-Level Security

Policy-level security is principally concerned with the existence of guards and their role
in the architecture. There are fundamental concepts related to security from the
perspective of policy-level security including the resources that must be secured and the
mechanisms by which these resources are secured. The unauthorized access threat may

be countered by a mechanism that validates the identity of potential agents who wish to

36

access the controlled resource. That mechanism is, in turn, controlled by the policy
document that expresses what evidence must be offered by which agents before the
access is permitted. A given policy document usually contains a mix of obligation and
permission policy statements. These two kinds of policies have different enforcement
mechanisms including a permission guard and an audit guard. A permission guard is a
mechanism that can be used to verify that a requested action or access is permitted while

an audit guard can only verify after the fact that an obligation has not been met.

There have been many proposals regarding policy-level security. However, they focus
mainly on server-side policy. The server decides the access level to its own resources
from policy documents. In Web Service environments, services are spatially dispersed
such that the design of a policy-level security system on distributed objects on the
network is necessary. The most common approach is to separate policy logics from
business logic [108]. Clients obtain certifications from access control server for a specific
service. A service provider then examines certification from clients to decide access
level. In the Organization for the Advancement of Structured Information Standards
(OASIS), a centralized access policy server gets requests with client identification from a

service provider and makes a decision on the access level of the clients [109].

Message-Level Security

A common technique for securing SOAP exchanges is to rely on a traditional lower-level
secure tunnel between the endpoints such as the Secure Socket Layer/Transport Layer
Security (SSL/TLS), Virtual Private Networks (VPNs), and Internet Protocol Security

(IPSec). Although this approache works in many situations, it has a serious disadvantage

37

in relation to transport-level security in a service oriented environment. Web Services use
a message-based approach that enables complex interactions that can include the routing
of messages between and across various trust domains. A message might travel between
various intermediaries before it reaches its destination. Therefore, message-level security
is important as the requester agent may be communicating with the ultimate receiver
through the use of one or more intermediaries. The traditional lower-level security
mechanisms are not appropriate for secure end-to-end communication as the intermediary

domains may use different security tunnels.

WS-Security is designed to construct secure SOAP message exchanges though the use of
end-to-end security. WS-Security provides an XML vocabulary for designing
cryptographic protocols and is undergoing standardization at OASIS [109]. WS-Security
defines how to sign or encrypt SOAP messages without relying on a secure transport. A
central abstraction is the use of security tokens, which ensure security claims such as user
identification, cryptographic keys, or certificates. WS-Security provides syntax for
multiple token formats such as XML username tokens, and XML-encoded binary tokens

conveying X.509 public key certificates or symmetric keys.

254 Service Reliablity

In the context of Web Services, the focus on service reliability is not generally on issues
such as syntax errors or badly written applications., Rather, the issues of reliability are
addressed at several levels including the reliable and predictable delivery of services,
such as message transport and service discovery, reliable and predictable interactions

between services, and the reliable and predictable behavior of individual requester and

38

provider agents. This analysis is separate from concerns of fault tolerance, availability, or

security.

Regarding service reliability, one cannot guarantee that service provider agents and/or
service requester agents will always perform flawlessly. Particularly, since the different
agents may be owned by different organizations and subject to different policies and
management, it is not possible to engineer complete service reliability. Undesirable
behaviors include timeouts, runtime errors, and violation of functional contracts.
Therefore, there are efforts to enhance reliability and reduce the cost of failure. One way
to incorporate service level reliability would be to use standardized headers containing
information such as transactional bracket markers and context information. Such
information is added to messages exchanged between service requester agents and
service provider agents in such a way that intermediaries can process messages and
monitor transactions with only minimally impact on existing applications. Specialized
transactional intermediaries then process messages’ transaction-specific headers (such as
beginning of transaction, commitment, roll-back and so on) and mark messages that they

process with the results so that applications can respond appropriately.

Related to transactional monitoring is the monitoring of service choreographies. This
approach mainly utlizes annotations inside process logic [15, 18]. In this way, processes
like Business Process Execution Language for Web Services (BPEL) remain standard
and executable by any standards-compliant engine [63]. This requires steps of
incorporating assertions into the standards business logic. This also implies the need for a

module that can translate functional contracts into annotated choreography.

39

Another approach is to deploy specialized intermediary processes whose specific function
is to ensure that the choreographic as well as the static requirements of service usage are
being met. This is especially important when the provider agent of a service is not in the
same ownership domain as the requester agent. Such intermediary processes can be
delegated to third-party partners. The key property of the deployment of third-party
services is that neither the requesters of services nor the providers of services need to be
concerned, since monitoring and message processing are conducted and regulated by a
third-party [31]. This is possible because the architecture does not require messages to be
consumed by single agents but allows multiple agents to collaborate in the processing of
a given message. Each service role establishes a specific functionality, often encoded in

specific headers on the messages.

40

CHAPTER 3 SEMANTICS FOR SERVICE-ORIENTED COLLABORATION

Here we propose and develop our new framework, the Web Service Collaborative
Process Coordinator (WSCPC), which is designed to support collaborative processes to
integrate design engineering, process engineering, and business planning through Web
Services technologies. To this end, we design service models, which a VO can utilize to
discover and collaborate with diverse services of design, manufacturing, and logistics.
Our service models are a general framework from which to realize specific functionalities,

such as defining and enacting services, and monitoring the traces of service execution.

3.1 Requirements for Service-Oriented Collaborative Process Management

In service-oriented collaboration, companies decide which modules will be processed
internally versus which ones will be outsourced. Once the company decides to outsource
a module, the company searches possible module suppliers through a service registry.
Companies that aim to provide components of a product must register their components
into the service registry. To locate module suppliers, the company utilizes the functional
definitions and interfaces of entries in the service registry. In our service-oriented
collaborative process, companies’ capabilities are advertised and searched with semantic
information published in the service registry. Such semantic information includes service
name, type of service, input/output specifications, and pre-/post- conditions as described
in the Process Definition Model (PDM) model in Section 3.3. Since there can be multiple
service providers based on service requirements and capability matching, service
providers should be ranked numerically. One possible solution to the problem of ranking

service providers is to use recommender systems. Recommender systems adopt a static

41

view of a group of recommendations for a given item and use it to predict the value of the
item [110]. Through recommender systems, the service providers with the required
service capability can be evaluated, ranked, and selected based on the service requester’s

decision logic.

As partners are formed based on the public semantic information, the next steps in
collaborative processes involve monitoring, communication, and enacting between
partners. In a service oriented approach, such steps must be executed through platform
neutral, Web Service based implementations. Behaviors and messages between partners
are described based on universal semantic language so that partners can share them in a

heterogeneous software environment.

We describe the requirements that must be considered in order to realize service-oriented

collaboration in a heterogeneous VO environment [111, 112].

® Implementing and Deploying Web Services: The service provider's service must be
accessible through an interoperable Web interface. Therefore, the service provider's
functional capability needs to be implemented with public Web Service interfaces. In
addition, the implementation of functional capabilities must be separated from the
public interface accessible from the Web, such that an implementation-neutral
environment is possible and changes of the internal application logic do not affect the

collaborative global process.

® Registering and Discovering Service: The service requester must be able to match its
business requirement with what a service provider has posted. Service registration

and the discovery model should be able to match needs based on the semantics

42

exchanged between service requester and service provider. To this end, the published

description of functional capability should be well written and understandable.

Proactive Process Enactment: Process enactment corresponds to process execution.
The service-oriented framework should be able to execute the given process flow and
to configure process flow at run-time. Thus, the service model must provide sharing
functionality that can show the run-time changing configuration of process flow as

well as the task execution status.

Sharing Service Execution: A service-oriented framework should be able not only to
execute the given process flow, but also to configure process flow at run-time. Thus,
the service model must provide sharing functionality that can show the run-time
changing configuration of process flow as well as the task execution status. In
addition, side effects from process execution require run-time coordination between
partners in order to accomplish an optimal solution. Sharing service execution is
therefore necessary for proper collaboration to achieve optimal results. Such service

execution can be realized via predefined notification signals or proactive monitoring.

Support for Multi User Environment: For secure collaboration, it is necessary to have
appropriate access control support for multiple users in a distributed environment.
The resources and workspaces are distributed and shared at some level. However, the
level of sharing of resources must be restricted by certain policies. Based on user
policy, access levels such as writing, reading, or removing are assigned to each user.

Naturally, this access pattern should be regulated. Such access control must be

43

implemented in a service-oriented paradigm since the system must maintain platform

neutral characteristics.

3.2 A Grammar-Based Approach

Web Service Collaborative Process Coordinator (WSCPC) is a service oriented, web-
service based framework to exploit the benefits of modular product design derived with
collaborative suppliers in an integrated process. In VO environments, products may have
a complex structure assembled from a large number of modules and sub-systems, each
with complex and multiple relationships to other modules and systems. Functional sub-

systems also run across a number of modules as well as interface with each other.

The process in WSCPC begins with a high-level process design in which a company
defines requirements for its desired product. The design process then moves into defining
details. The process definition defines a product design process based on a process flow
graph and reflects all the external requirements and constraints of a product. Functional
sub-systems in a process flow are defined as production rules in Process Grammar [20,
21, 113] along with their relationship to each other. In addition, input and output
specifications describe how a module interfaces with other modules and its subsystems
and how it enables product variants. Functional subsystems in a process flow can also be
decomposed into a set of sub-functional subsystems. Groups of subsystems are also
represented with a flow graph; several flow graphs can correspond to one subsystem as

an alternative.

Our process flow graph depicts tasks, data, and the relationships among them, describing

the sequence of tasks for a large design and manufacturing (D&M) activity [112]. Four

44

basic symbols are used to represent the process flow: ovals represent logical tasks, two
concentric ovals represent atomic tasks, rectangles represent specifications, and diamonds

represent selectors. nodes).

A logical task can be decomposed into subtasks, while an atomic task cannot. An output
specification produced by a task can be consumed by subsequent tasks as an input
specification. These elements can be combined into a process flow graph using directed
arcs to indicate the specifications used and produced by each task. Specifications with no

incoming arcs are the first inputs to the process flow.

Figure 4 below illustrates the production rule used for a product casting process in a
D&M domain. The product casting process has a logical task “Casting Product”, three
input specifications “SelectedMaterial”, “Dies”, and “Trim Die” with “Finished Product”
as an output specification. We now consider three alternative processes as shown as (a),
(b), and (c). Figure 4 (a) depicts a task delegation, while (b) and (c) show two alternatives
of possible task decomposition. Figure 4 (b) represents a vacuum die casting process,

while (c) illustrates a high pressure die casting process.

Once a task is delegated, the “Casting Product” task is marked as “Outsourcing” and
engineers search the appropriate service provider [114]. When engineers decide to
decompose the “Casting Product” task, they consider input specifications, design
constraints, and properties of each alternative in order to determine the actual process

design.

45

Dies

SelectedMaterial Finished Product

Casting Product

Trim Die

Dies

SelectedMaterial Finished Product

Trim Die (a) Outsourcing

SelectedMaterial

Trim Die

Vacuum Casting

(b) Vacuum Assisted Casting

Dies

Trimming Quality Assurance

Finished Product

SelectedMaterial

Casted Product

rimmed Productl
Trim Die

Quality Asi@
igh Pressure
Casting !

(c) High Pressure Casting Finished Product

Figure 4 An Example of Production Rule

46

The grammar-based approach provides the mechanism for transforming a high-level
process flow graph into progressively more detailed process flow graphs. The grammar
consists of a set of production rules. A production is a substitution that permits the
replacement of a logical task node with a flow graph that represents a possible way of
performing the task. If there are several production rules with the same left side flow
graph, this implies that there are alternative production rules for the logical task. Several
production rules for a logical task imply that there are alternative production rules for that
task. For example, Casting and Machining may be, two alternative productions for the
task Manufacturing. This capability is critical to maintaining the usability and
effectiveness of the overall framework. Therefore, Process Grammar naturally captures
the hierarchical design methodology and allows systematic exploration of the D&M

space.

3.3 Web Service Semantics for Collaborative Process

To support collaborative processes in terms of service-oriented computing, we observed

the required characteristics that should be incorporated into service oriented collaborative

behavior modeling. To realize such a goal, we identify five types of aspects needed for

modeling collaborative process behavior to be shared among partners [114].

® The functional aspect describes how a process is decomposed into functional
subsystems.

® The behavioral aspect depicts process control flow such as when an activity is to be
executed.

® The informational aspect concerns data exchanged during process execution between

peers. Data can be either input/output specifications or activity execution status.

47

® The organizational aspect describes how a process is distributed to a group of
participants.

® The transactional aspect depicts activity execution and sharing.

Considering these five aspects, we define and propose three types of semantic service
description models, which are built on top of OWL-S. [64, 68]. The Process Definition
Model (PDM) describes functional and behavioral aspects. The Process Monitor Model
(PMM) represents informational and organizational aspects. The Process Enactment

Model (PEM) characterizes transactional aspects [111, 115].

3.3.1 The Process Definition Model

The Process Definition Model (PDM) is designed to represent functional and behavioral
aspects of services. Figure 5 below describes the ontology of service models that we have
developed. In PDM, a process is composed of a set of tasks or sub functional systems.
Tasks or sub functional systems can be defined as activities needed to complete a process.
Such activities describe functional semantics of a process. In a collaborative environment,
each task is associated with a certain role provider; hence, composition of tasks creates a
collaborative environment. An activity corresponds to a particular service provided by

collaborative partners. Such services can be selected or modified at run-time as needed.

Tasks can represent an internal activity implemented either as a service performed by a
single service provider or as composite activities by multiple collaborative partners. In
either case, services can be represented as an aggregated service, which is composed of

several services that can show all the sub functional units in a service. Since each service

48

has its own service description, one can infer the aggregated service by seeing all of its

sub-functional service descriptions.

hasSpecification

i
1
2

LogicalService

hasCondition

Provide

linkTo/ hasAlternativeChoice IsA
linkFrom
L\ composedOf
CompositeService » ComponentService
componentOf

Figure 5 Ontology for the Process Definition Model

Moreover, services in a composite service are related to each other in temporal order. The
temporal relation between services can represent interactions between sub functional

systems in a service, and hence describe behavioral semantics of a service.

These characteristics lead us to define a meta model CM = (T, D, U, S, DC, t, p, =,

®) capturing collaboration aspects in service oriented environment where the

components of the model are defined as follows [111, 113].

® Tis afinite set of abstract tasks needed for completing a collaborative process.

49

® D is afinite set of abstract shared data objects needed by multiple tasks.
® U s a finite set of users that can provide and consume services.

® S is a set of available services within a collaborative community. Services can be a
logical service that is composed of a set of functionalities or an atomic service that

represents one single non-decomposable functionality.

® DC c(TxD)u(DxT) is a set of arcs as a temporal relation connecting data and

abstract tasks. (7, D, DC) forms a directed graph.

® 7 :T— 25 , where task (t) = s represents that a finite set of services s are

available to execute task t € T.

® p: .U~ 2S , where service (s) = u represents that a finite set of service s C §
are provided by a community useru € U.

® rx : T — Sis an assignment function, which associates each task ¢t € T with the

best service s € S to complete the entire collaborative process.

T
® ¢ :§~— 2" isa composition relation, where a service S is represented through a

composite set of tasks T in order to describe its behavior.

Figure 5 gives a graphical representation for the ontology of the above meta model. Each
class in the diagram corresponds to a set and each relation corresponds to a relation in the

formal meta-model. The WSCPC process model follows a grammar based approach as

50

described in Section 3.2. Services can be decomposed by multiple sub components called
tasks and each task can represent a service. Therefore, a service can be structured

hierarchically based on services and tasks. Relations @ and 7z represent such
hierarchical relation among services and tasks. @ shows a service’s behavior by a

composition of multiple tasks. 7 represents which services are assigned to fulfill a
specific task. 7 stands for alternative relations between services and tasks. To execute a
task, a set of services based on 7 are considered before execution and an evaluation
function may be applied to choose the most appropriate one. In a service oriented

environment, each user provides one or more services based on their capability. o
exhibits such a users-service relationship in a service oriented environment. o enables
users to identify service providers and get provider information. o can be used to

enable direct contact when necessary or to predict service quality based on a service

provider’s reputation.

In order to support web service semantics, the actual behavior model is written in the
ordinary semantic language OWL. Figure 6 and Figure 7 illustrate examples of a service
description written with OWL based on the service behavior in Figure 4. A composite
service represented with PDM can be translated into a directed acyclic graph, which can
then determine temporal dependencies of services. If a service A is determined to be

dependent on another service B, then the execution of A will be affected by B.

The general ontology of our PDM is given in class Service, which refers to the definition
of a task that may consist of several other subtasks. Service is a super class of two

subclasses LogicalService and AtomicService. LogicalService represents the logical task

51

of Process Grammar. It is expanded into a detailed sub-process flow when it is applied by
a ServiceComposite. The hasAlternativeChoices lists the names of such available
ServiceComposites. Formally hasAlternativeChoices is defined by relation 7. Figure 6

shows how hasAlternativeChoices lists ServiceComposite.

AtomicService represents an atomic task in Process Grammar. Its semantic description is
similar to that of LogicalService except that AtomicService does not have the

hasAlternativeChoices property.

Service possesses four properties hasPreConditon, hasPostConditon, hasInput, and
hasOutput, which are used by a service consumer to identify and utilize the service.

These properties are inherited by their subclasses LogicalService and AtomicService.

In the service model of WSCPC, the representation of a relationship between complex
collaborating services is given in terms of ServiceComposite and its OWL descriptions.
The representation of activities occurring when services collaborate is given in terms of

the enacting service and monitoring.

The ServiceComposite collates one or more ServiceComponents (each being a service)
and is analogous to a production rule in Process Grammar. The properties of

ServiceComposite represent a ¢ relation. Every service component should be linked to

another service component. The ServiceComposite uses the linkTo and linkFrom
properties to describe the flow between service components when collected. In Figure 6,
a logical service DesignDies has three alternatives, VacuumAssistedCasting,
HighPressureCasting and SemiSolidCasting. Each alternative is a ServiceComposite, a

collection of several ServiceComponents. Figure 7 shows one ServiceComposite

52

VacuumAssistedCasting is declared as collection type and composed of several

ComponentService.

In OWL-S, the CompositeProcess is similar to the production rule but can have only one
composedOf property that appends a single ControlConstruct (Sequence, Split, Choice) to
a single CompositeProcess. This approach seriously restricts representing alternatives
with complex workflow clearly and efficiently as a single basic unit. Our model does not

have such restrictions

The tags providedBy and boundBy represent the relation o and 7. These relations are

initially empty and later filled in at run-time since such a relationship is defined during
the process enactment stage. The providedBy tag represents a service provider, not a
service itself. The tag boundBy tells which actual service is assigned to the logical or

atomic service.

. Figure § illustrates the general ontology of the Service Oriented Definition Model.

<!-definition of "DesignDies"-->
<service:LogicalService rdf:ID="DesignDies">
<service:providedBy/>
<service:boundBy/>
<service:hasPreCondition>
<service:condition rdf:resource="#Materials"/>
</service:hasPreCondition>
<service:hasPreCondition>
<service:condition rdf:resource="#Finishing"/>
</service:hasPreCondition>

<service:hasPostCondition>

53

<service:condition rdf:resource="#Certification"/>

</service:hasPostCondition>

<service:hasInput>

<service:Spec rdf:resource="#DesignRequirements"/>

</service:hasInput>

<service:hasOutput>
<service:Spec rdf:resource="#TrimDieDesign"/>
</service:hasOutput>
<service:hasOutput>
<service:Spec rdf:resource="#DesignedDies"/>

</service:hasOutput>

<service:hasAlternativeChoices>
<service:AlternativeChoice rdf:parseType="collection">
<service:ServiceComposite
rdf:resource="ServiceComposite.daml#VacuumAssistedCasting">
<service:ServiceComposite
rdf :resource="ServiceComposite.daml#HighPressureCasting">
<service:ServiceComposite
rdf :resource="ServiceComposite.daml#SemiSolidCasting">
</service:AlternativeChoice>
</service:hasAlternativeChoices>
</service:LogicalService>

Figure 6 An Example of Semantic Service Definition

<!-- definition of "VacuumAssistedCasting" -->

54

<service:ServiceComposite rdf:ID=""
rdf :parseType="collection">
<service:hasSCPreCondition>
<service:condiion rdf:resource="#Materials "/>
</service:hasSCPreCondition>
<service:hasSCPostCondition>
<service:condiion rdf:resource="# Certification "/>
</service:hasSCPostCondition>
<service:hasSCPostCondition>
<service:condiion rdf:resource="# EndMarkets "/>
</service:hasSCPostCondition>
<service:ComponentService
rdf:resource="Services.owl#DesignRunnersAndGates">
<service:linkFrom/>
<service:linkTo>
<service:LogicalService
rdf :resource="Services.owl#OverflowDesign" />
</service:1linkTo>

</service:ComponentService>

<service:ComponentService
rdf :resource="Services.owl#Finalizing">

<service:linkFrom>

55

<service:LogicalService
rdf:resource="Services.owl#SelectCooling"/>
</service:linkFrom>

<service:linkFrom>

<service:LogicalService

rdf : resource="Services.owl#OverflowDesign" />
</service:linkFrom>

<service:1linkTo/>
</service:ComponentService>
</service:ServiceComposite>

Figure 7 An Example of Semantic Definition of ServiceComposite

332 The Process Enactment Model (PEM)

In order to provide support for transactional aspects in a collaborative environment, we
propose the Process Enactment Model [114]. The PEM provides a standardized
representation to describe which actions are called on what services and what state
changes occur as result of the service call. As we have observed, transactional aspects are
about process enactment and sharing. By capturing the semantics of other users’
transactions, users in heterogeneous environments can understand the collaborating

partners’ intentions and then incorporate them into their workspace.

Services in collaborative processes should be defined to represent all the characteristics

as follows.

56

® The state of the process execution.

® The functionality represented as a set of operations building activities.

® An activity that is modeled as a transition of the states and functionalities involved.

® The provider that is associated with functionalities.

To this end, our Process Enactment Model defines classes of service states and properties
related to state changes due to service enactment. We define five basic classes related to
service states. Actions that users invoke tend to change states of services. We implement
transactional aspects by defining what service states are and what changes those states.

Users of WSCPC can control and capture task execution through this model.

The process execution status of each service is captured by the following five states:
Initial, Ready, Running, Finished, and Exception. These states are described as

follows.

® The Initial state indicates that nothing has been initialized in a service.

® The Ready state shows that input data has been bound to a service, but that service

execution is not yet invoked.

® The Running state indicates that execution of a task has been invoked and keeps on

going.

® The Finished state indicates that execution of a service has been finished. Two sub

states are success and fail.

57

® The Exception state indicates that an unexpected event has occurred during the

proceeding state.

The functionality affecting state changes in the Process Enactment Model are described

as follows.

® Providelnput delivers input data to a service.

® RetrieveOutput transports output data from a service to a viewer.

® [nvokeEnactment sets a cue to start process enactment.

® [Execution carries out the application of a production event or a tool execution event.

® Rollback instantiates a rollback event caused by exception or systems to a service.

® EnforcedRollback delivers an abort event by the user to a service.

The activity is modeledas ¢ = ¢’, where O is a target object representing either
0=<e,0>

a task or data specification, ¢ encapsulates properties of a target object O before

transition, ¢’ encapsulates properities of the object O after transition takes effect, and

0 shows a labeling function (enactment property e x target object O) that enables

transitions.

Assume a process is structured linearly in the order data d, as input to task ¢/ ,which
produces output dI. A few examples listed below show how activity is modeled in the

WSCPC environment.

® Providing necessary inputs to d0 before starting a task ¢/

58

initial = ready.
< providelnputs,d 0>

® Forcing task t] to execute

initial = ready.
<invokeEnactment.t 1>

® Confirm task ¢ in execution

ready = running
<execution,tT>

® Bind outputs from task ¢/ into a data object d1

finished = finished
<retrieveOQutput 11>
initial = ready

<providelnput,d 1>

® Cancel current transition and come back to former status

running = ready
<rollback t1>

333 The Process Monitor Model (PMM)

During the enactment of the process flow, the user may desire to know how their request

is being processed at the service provider. Users of WSCPC can monitor a process by

capturing traces of task executions. The Process Monitor Model (PMM) provides a

standardized way of capturing and delivering informational and organizational aspects to

users. Informational aspects concern data that involve execution trace and input/output

59

specification. Provisions of PMM enable service consumers to capture changes and
effects in a collaborative process environment. Figure 8 illustrates the Process Monitor

Model.

appliedBy

ServiceComposite

LogicalService

hasTool

erviceCompone

‘o

hasStates

hasinput/

hasOutput

States

Specification
oneOf | / Initial
Ready boundedBy
B Running
Exception
' Finished

Figure 8 Ontology for the Process Monitor Model

Since there are two kinds of services, the way to capture execution information should
vary depending on the service types. Based on the mathematical model of Process
Grammar, the execution of a logical task applies the production to the logical task.
Therefore, a logical task will be accompanied by a service composite as a mark of
execution. The execution marks regarding logical services are represented by the applied

property. The applied property represents production rules in Process Grammar that show

60

a relationship between a service and its components. The applied property shows the
selected service’s behavior in which services may use a variety of business logic to

complete its goal.

The execution of an atomic task executes a given tool for the atomic task. The execution
traces regarding atomic tasks are represented by the hasTool property. The atomic
service’s behavior is defined by external tool invocation. Based on the tool used, the

behavior of atomic services is defined.

Regarding input/output specification, the trace shows data given by and/or sent to others.
The data and specification relationship is explained with the boundBy property. Input
specifications are bound to input data before task execution and output specifications are
bound to output data after task execution. Both specifications can be written with OWL

so that the data can be understood in a universal way.

Therefore, PMM is modeled as a triplet M = (O, 8, G), where O € T U D, Tand D
are task and data objects, § € {applied, boundBy, hasTool}, and G is the grounding of
abstract objects T and D [116, 117]. For example, PMM information regarding vacuum
assisted casting method is applied for a task CastingProcess can be represented as
(castingProcess, applied, vacuumAssistedCasting). Certain requirements can be bound to
the data object designRequirements. Figure 9 illustrates the definition of
outputSpecification written in OWL. The boundBy and specifications properties are
defined in service as an object property and a class, respectively. Attributes that are
shared among partners are defined along with specification class. Those attributes include

things such as size, performance factors, and tolerance. Figure 10 shows an example of

61

an output specification bounded in outputSpecification. Partners can locate the meaning
of tags through process definition files written in OWL and extract information bounded

outputSpecification data objects.

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="&service;" />

<owl:imports rdf:resource="&specification;" />

</owl:0Ontology>

<owl:ObjectProperty rdf:about="&OutputSpecification;#
DesignSpec">
<rdfs:range rdf:resource="#Specification"/>
</owl:0ObjectProperty>
<owl:Class rdf:ID="Specification">
<rdfs:label>DefaultSpec</rdfs:label>
<rdfs:subClassOf rdf:resource="&owl;#Thing"/>
<rdfs:comment>
Specification represents a specification needed to
define a process requirement.
</rdfs:comment>

</owl:Class>

<owl :DatatypeProperty rdf:ID="Size">
<rdfs:domain rdf:resource="#Specification"/>
<rdfs:range rdf:resource="&xsd; #string"/>

</owl:DatatypeProperty>

62

<owl:DatatypeProperty rdf:ID="tolerance">
<rdfs:domain rdf:resource="#Specification"/>
<rdfs:range rdf:resource="&xsd;#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Density">
<rdfs:domain rdf:resource="#Specification"/>
<rdfs:range rdf:resource="&xsd;#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="email">
<rdfs:domain rdf:resource="#Specification"/>
<rdfs:range rdf:resource="&xsd;#string"/>
</owl:DatatypeProperty>
Figure 9 Definition of Design Requirements

<Service:BoundedBy>
<OutputSpecification:DesignSpec
rdf : ID="DesignRequirementsSpec”>
<Specification:Size Diameter="14" Weight="0.124" .. />
<Specification:Tolerance dimentional="0.005"
range="plusminus” />
<Specification:performanceFactor>high thermal
conductivity</DesignOutputSpec:performanceFactor >
<Specification:performanceFactor >uniform metal fill</
DesignOutputSpec:performanceFactor >
<Specification:Density range="LT”>10</
DesignOutputSpec:Density>
<Specification:TensilYieldStrenth range="GT”>20</

DesignOutputSpec Tensi- ..>

63

</Specification:Specification>
</Service:boundBy>

Figure 10 An Example of Output Specification

334 Service Registry Model

WSCPC includes a model for registering and discovering the semantics of services,
which should be written with OWL. The WSCPC service registry model provides
functionalities that allow service providers to register service capabilities and users to
locate the available services [111]. As illustrated in Figure 11, the service users can
reference the semantic information from the service registry and compare the pre; and
post-conditions as well as the input and output specifications with the semantics

presented.

Service information in the service registry includes the following: name, type of service,
input and output specifications, and the pre- and post-conditions. Pre- and post-
conditions are used for maintaining consistency in distributed design and manufacturing
processes. The principal idea of pre-/post- condition can be described as follows. The
service requester must request that the service provider guarantee certain qualities before
calling a service specialized on the component (pre-conditions. The service provider
also guarantees certain properties after the service returns outputs to the service requester

(post-conditions).

Entry form

=2

\Vi
i\ LD Essential semantics
&?“ { * name of service
F'-J \ * type of service * type of task
Service N\ . pre-conditjon . pre-oondit.ic')n
Provider R « post-condition . post-condltlon
* input * input
» output Compare « output
= . review
Link to OWL
Link to WSDL

O Link to Review V
1

WSDL Reviews

Access Info

References For Full Semantics

Figure 11 Service Registry Model

The service provider posts pre-conditions to inform the service requester of the
requirements that the service provider must satisfy to invoke the service. For example,
the service provider can restrict the qualifications of the service requester and specify the
quality of inputs to deliver service invocation results. On the other hand, the service

provider describes the quality matrix of service execution results in the post- condition

65

entry. The service provider can publish its quality of service level such as product

specifications and processing time.

Since the service registry does not provide full-scale semantics, the OWL bounding
provides the user with detailed semantics of a service. The full description of a service is
given by a separate document, and the link to this document is provided to service
searchers as well. The technical information of the service, such as the URL, the
operation list, and type of required parameters, is provided by a separate WSDL
document and URL links. Service users can see the technical information and full service

description by following the links provided in the individual service information

Figure 12 illustrates an example of a service entry that is registered into the service
registry. The example shows a die casting service that is posted by a company located in
Troy, Michigan. The service capability that the service provider can deliver is described

as a post-condition—in this example, machining, material support, etc.

<entry>
<entryID> 00001 </entryID>
<serviceType> CastingProducts </serviceType>
<profile>
<serviceName>Die Casting </serviceName>
<Address>Troy, MI, USA</Address>

<Telephone>517-xxx-xxxx</Telephone>

</profile>
<precondition>

<Materials>Aluminum</Materials>

66

<Machining>CNC</Machining>
<Machining>Tapping</Machining>

<Finishing>Powder Coating</Finishing>

</precondition>

<postcondition>
<Certifications>IS09002</Certifications>
<EndMarkets>Automotive</EndMarkets>

<EndMarkets>Furniture</EndMarkets>

</postconditon>
<inputSpec>TrimDies</inputSpec>
<inputSpec>Dies</inputSpec>
<inputSpec>SelectedMaterial</inputSpec>
<outputSpec> FinishedProduct </outputSpec>
<reviews>

<average/>

<standardDeviation/>

<detail_info> http://wscpc/review/detail.xml

</detail_info>
</reviews>
<wsdl_binding> http://wscpc/wsdl/DieDesign.wsdl
</wsdl_binding>
<owl_binding> http://wscpc/wsdl/services.daml
</owl_binding>
</entry>

Figure 12 Entries in Service Registry

67

To manage the design and manufacturing (D&M) process using Web Services, service
providers should register their functional capabilities into a public registry so that the
service consumer is able to discover it if it needs a collaborator. For this purpose, we
propose a service registry model for registration and discovery of the semantics of
services written on top of OWL-S [64]. The service consumer references the semantic
information in the entries of the service registry and compares the service type, the pre-
and post-conditions, and the input and output specifications of users’ activities with the
semantics presented. Pre- and post-conditions are used for maintaining consistency in a
distributed D&M process. A service requester is guaranteed certain qualities from the
service provider before calling a service (pre-condition), and the service provider
guarantees certain properties after the service return outputs to the service requester
(post-condition) [118]. The service provider posts pre-conditions to inform the service
requester of the requirements that the service provider must satisfy to invoke the service.
On the other hand, the service provider can describe the quality matrix of service
execution in the post- condition entry. The service registry model also includes reference
of the Semantic Service Description Model of services such that the service consumer

can understand the expected service behaviors using OWL-S inference engine [115].

However, semantics including pre- and post-conditions have limitations when used in the
collaborative process since semantics can at most provide the specifications of required
inputs/outputs and their descriptions of services. Due to the extreme competitiveness of
service providers, it is possible that multiple providers may claim they can deliver the
required services satisfying all the specifications. In such case, semantics may not support

service consumers’ selection processes sufficiently and consumers should do additional

68

work beyond the service oriented environment to find the right partners. Even if there are
not many choices from a consumer’s side, the service consumer may want to know how
the service performs as well as what the service delivers before one decides to use a
particular service. Therefore, the registry must offer an additional way to help with

selection when multiple providers present similar specs.

In WSCPC, reputation is used to assist with a consumer’s selection for that purpose.
After service usage, each peer (service consumer and provider) can score partners’
behaviors and leave evaluations inside the registry at will. Reviews are composed of three
parts: average, standard deviations, and a list of individual review scores. The average
and standard deviations are calculated and stored in order to enable a brief overview.
Whole reviews are also available to allow individual review analysis. The whole reviews
are stored in separate files assigned to each user, and a link is provided so they are

accessible. For privacy, a reviewer’s identity is hidden from outside view.
34 Communication Behavior
34.1 Support for Interoperability

Modem applications like electronic commerce and information retrieval require software
components to be interoperable. Most of these applications assume that components will
be added dynamically and that they will be autonomous and heterogeneous. Service-
oriented concepts are proposed to meet such requirements, by providing platform neutral
interfaces and self-encapsulation of functionality. Modulated components with platform

neutral interfaces can deliver software components that work autonomously in

69

heterogeneous environments and that can be composed dynamically in order to provide

aggregative services or value-added services.

These concepts set Web Services applications apart from conventional components-based
applications, which always fulfill any methods invoked on them. In a service oriented
environment, applications should be able to perceive their environments and act with
other software components. Web service applications should be able to refuse an action
when necessary. Applications should be able to communicate with each other to decide
what information to retrieve or what physical action to take, such as shutting down an

assembly line or avoiding a collision with another invocation.

Currently, many standards such as ARCOL [119], CNP [120], XLBC [121], KQML
[122], and FBCL [123] have been proposed for use in software collaboration. These
languages are designed for agents to talk with other agents and work together. Typically,
they concern inter-agent dependencies, namely the configuration of a system in terms of
the basic interaction means, agent generation and destruction, and organizations of the
environments. They are based on considering the collaboration process essentially as a
problem of communication [124] since communication play a fundamental role in
collaboration. These standards rely on agents communicating through asynchronous
messages that are structured in terms of a performative verb and contents [125, 126]. The
contents along with the performative verb associate a meaning with a message.
Structuring messages in terms of a performative verb and a content item is rooted in the
speed-act theory [127, 128]. Formal semantics for KQML have been proposed to
associate a meaning to a message [129]. The semantics are captured by feasibility

conditions and a rational effect. The feasibility condition states what must be true before

70

a message is sent, and rational effect shows what will be achieved with such a message.
Semantics enable a purely goal oriented coordination, i.e. interaction is performed only to

achieve goals and interaction itself is not an activity on its own.

However, even though these approaches can be employed in Web Service-based
applications, none are fully implemented. Furthermore, they have severe limitations when
used in certain environments such as collaborative design and manufacturing processes.
The reason comes from the fact that they are not designed to represent quantitative
aspects (e.g. performance) with the functional specification of such system. If semantics

allow arbitrary quantification, the reasoning process is unlikely to be practicable.

342 The Service Interaction Model

The Service Interaction Model is designed to assist service consumers during the service
invocation by controlling and guiding the invocation of the operations at each inter-action
step [116, 117]. The service interaction model represents communicative behaviors
between partners in distributed and heterogeneous collaborative process management. As
an elemental interaction model, we employ speech act theory [128], which is widely used

in agent communication languages.

The WSCPC interaction model is structured as a triple <Intention, Action, Target>.
Intention tells what semantic intention you have on the message. Intention is composed of
request, propose, accept, reject, query, answer, assertion, and declare. The receiver can
identify a message type by checking the Intention field. For example, if a message has
query as an intention, then a service provider may have to prepare answers. If a message

has request as an intention, then a service provider may consider it as a remote service

71

enactment or service invocation. If a service requester has the authority to control a
service provider, then it can use a stronger message such as declare. The service provider
can answer the query with a message with Intention of answer, and report its execution as
Intention of assertion. Intention of declare can be used for notification purposes.
Messages can be broadcasted through the declare message. The target can be any object

whose state/value can be changed by time.

Target can be anything instantiated such as output specifications, operations to perform,
message exchanged, etc. The Target field defines a namespace and is used to locate
ontology in the message. Target is designed to remove ambiguity in communication as
much as possible. Target may use OWL, RDF, or other standards specifications as long
as there is a definition that can be found and understood among partners. Target with the
WSCPC Service Interaction Model is modeled based on the Process Definition Model
described in Section 3.3.1. It can be easily translated into a Petri Net based model
together with the Process Monitor Model. Since Petri nets are widely used in quantitative
analysis of system behavior, the WSCPC Service Interaction Model can be used for
system behavior analysis and predictions, contrary to other communication languages.
Target’s can be described with attributes associated. Attributes and their bounded
data/tools use the Process Monitor Model. In case the target has no values associated with

its own attributes, then the message can be generated with empty attributes.

Action’s are classes that can change an object’s state or property. That is, actions are
classes that have some of the functional, behavioral, and transactional aspects described
in Section 3.3, which are neither informational nor organizational aspects. Action’s are

written with the Process Enactment Model presented in Section 3.3.2.

72

Service consumers can combine Target and Action to describe complex communicative
behaviors in collaborative process management. Figure 13 illustrates two users, A and B,
communicating using the WSCPC Service Interaction Model. Based on the scenario in
Figure 4, user A wants to enact a task CastingProcess by applying a composition service
VacuumAssisted casting. Assume both A and B know terminology CastingProcess,
VacuumAssisted, and finishedProcess. User A first creates a message indicating that A
wants task castingProcess to be a VacuumAssisted casting. Since A does not have full
authority to control B, A’s intention is marked as propose, which B later can accept or
refuse. A’s actual meaning is represented in the action field. (See Section 3.3.2). The
Target field describes what VacuumAssisted or finishedProcess entails, which A includes

in the message.

Message A — B
——
Intention Propose
Target LogicalTask CastingProcess

Logical Task VacuumAssisted

Action initial
=
<assign,casting Pr ocess>

appliedBy(VacuumAssisted)

Figure 13 Messages Based on Service Interaction Model

73

Figure 14 shows an example of message to be exchanged. Service consumers locate
where the service ontology is described and build messages with the intention, desirable
action, and target object information. The terminology used from user A is defined in
Target so that user B can locate information about the terminology that A is using. The
actual action A implies for B to do is described in Action. From the example in Figure 13,
only a logical task CastingProcess is affected by the desired action, while data
specification is not. So the example in Figure 14 shows the applied property is bound
only to the CastingProcess task while none of properties are bound to the finishedProcess
specification. In this way, complex dialogue between service provider and consumers is

possible and communicational behavior is enabled within the WSCPC environment.

<service:conversation rdf:ID="messagel">
<service:hasIntention>
<service:intention rdf:ID="intentionID">
<service:parameterType rdf:about="#propose"/>
</service:Intention>
</service:hasIntention>
<service:Target rdf:ID="objectClass">
<service:LogicalService
rdf :about="providerNS:#CastingProcess" />
<service:LogicalService
rdf :about="providerNS: #VacuummAssisted" />
<service:OutputSpecification
rdf :about="providerNS:#finishedProcess" />
</service:Target>
<service:Action rdf:ID="actionClass">
<service:InvokeEnactment

rdf : resource="consumerNS: #castingProcess">

74

<service:applied
rdf:resource="providerNS: #VacuummAssisted" />
<service:InvokeEnactment/>
<service:InvokeEnactment
rdf :resource="consumerNS: #finishedProcess" />
</service:Action>
</service:conversation>

Figure 14 A Message Example Exchanged During Service-Oriented Collaboration

343 WSDL Support

Collaboration requires support for complex interactions among companies. For example,
while the D&M process is being enacted aufonomously across the heterogeneous systems,
companies may want to force certain decision modification on partners or highlight
problematic parts from the design specification before they start the outsourced task.
However, Web Services are subject to several limitations that reduce their applicability to
enact such complex interactions. WSDL only supports the invocation of operations
characterized by very specific signatures that fail to enable the peers to dynamically
specify the realistic business interactions. Such characteristics in the WSDL interface do
not enable users to specify the management of interactions between service consumer and

provider.

To support interactions in service invocation, the ability of supporting interactive
invocation must be defined and declared at WSDL [116, 117]. Figure 15 shows a portion
of a WSDL declaration to support interactive service invocation based on the example
described in Figure 13. Given the public operational specifications in WSDL, the service

provider informs the references of the service semantic description, pointing out where

75

the ontology of a service description is located. Moreover, service providers should
explicitly declare that their services support interactive invocation. Service consumers

should prepare conversational input messages from the declaration of interaction type.

<definitions

xmlns:pns="url_where_object_ontology is_defined"

xmlns:tns="url_where_intention_is_defined" ... />
<types>
<schema ...>

<complexType name="interaction">
<element name="service:Intention"
type="tns:#intention"/>
<element name="service:Action" type = "anyType"/>
<element name="service:0bject" type =
"pns: #object" />
</complexType>
</schema>

</types>

<portType name='"invokeEnactment">
<operation name="enactment_operation" >
<input message="invoking" type="interaction" />
</operation>

</portType>

<service name="DieCastingService">

76

<port name="invokeEnactment"
binding="tns:conversationBinding">
<soap:address location="URL_of_Company D"/>
</port>
</service>

Figure 15 A WSDL Declaration for Interactive Communication

77

CHAPTER 4 TRUSTWORTHY ENVIRONMENT FOR SERVICE-ORIENTED

COLLABORATION

4.1 Motivations for Trustworthiness in Service Oriented Environment

Service-oriented computing is utilitzed by organizations to support business partnerships
by linking their software systemns. [5-10]. A Service-Oriented Architecture (SOA) is a
component model that inter-relates an application’s different functional units viewed as
serviced services through well-defined interfaces and contracts. This allows services that,
are built on a variety of such systems to interact with each other in a uniform and
universal manner. This concept of a service that is not strongly tied to a particular
implementation is known as loose coupling. Loosely-coupled systems can provide
business applications with agility based upon the needs of the business to adapt to its
changing environment since an entire, global application can be built out of a variety of

distributed, local implementations represented as services.

As expected, there are challenges that can limit the implementation of a true service-
oriented collaboration. One of the most noticeable challenges is that of “trustworthiness”.
Trustworthiness is the reliability of a person to others because of their integrity,
truthfulness and trustfulness, traits that can encourage someone to depend on them [130].
In a service oriented paradigm, trustworthiness can be defined as an ability to deliver

service that can be justifiably trusted.

In order to develop systems that are trustworthy, four techniques are used: fault
prevention, fault tolerance, fault removal, and fault forecasting [131]. Fault prevention

techniques are intended to prevent faults from ever occurring by using tools and fault-

78

preventing methodologies such as structured programming and modularization in
software development, design rules for hardware development, training for information
shielding, and firewalls for malicious attacks from hackers. Fault tolerance involves
techniques designed to preserve the delivery of correct service even in the presence of
active faults. Fault tolerance techniques generally involve two steps to deliver correct
services, error detection and subsequent error recovery. Through fault tolerance, fault
handling may be required for faults to be reactivated. Fault handling follows four stages
such as 1) fault diagnosis, 2) fault isolation, 3) system reconfiguration, and 4) system re-
initialization. Fault removal is performed during the development stage and operational
life of a system. System verification, validation, testing, and system updates fall into this
category. Fault forecasting performs evaluations of the system behavior with respect to
fault activation. Evaluation can be both qualitative and quantitative. Qualitative
evaluation identifies, classifies, and ranks the failure modes. Quantitative evaluation

computes the probabilities that some attributes of trustworthiness are satisfied.

In order to support a trustworthy service oriented environment, there have been several
efforts to reduce the number of faults and enhance reliability. These approaches can be

classified into two broad categories:

® Failures are anticipated and removed as much as possible at specification modeling
time. Potential obstacles are identified through model checking. (Section 2.5 discusses
this approach in a service oriented paradigm.)

® Failures are detected and resolved at runtime [15-18]. Resolution of trustworthiness

violations is resolved on-the-fly by making “acceptable” changes that satisfy the high-

79

level goals underpinning the requirements being violated. Detecting violation at

runtime sometimes may involve warning the users and reconfiguring the system.

Even though those solutions are valuable—perhaps even the best solution in many
cases—they are limited in their ability to remove and resolve failure. These limitations
are the result of three factors: 1) RPC based messaging, 2) distributed service control, and

3) restrictions of describing services.

Every time a failure is anticipated or happens, regulation of control and corresponding
information exchange is required since the overall process execution path might need a
modification to attain the final goal state. RPC-based invoke/return type communication
on which current Web Services rely is not capable of providing the information required
for data exchange and conflict resolution among partners. To resolve failures, current
RPC-based communication would require additional interfaces or shared modules for
fault removal and fault forecasting. However, having additional interfaces in the presence
of the activation of a new failure may harm consistency of the Web Service
implementation since interfaces needs to be updated whenever new fault factors are
activated. Moreover, sharing fault handling modules between partners may break the

philosophy of platform independency.

Furthermore, current Web Services cannot guarantee that service provider or requester
will always perform flawlessly as expected. This is especially the case when the different
agents are owned by different organizations and subject to varying policies and
capabilities. As a result, traditional fault removal approaches using models and

specifications cannot be directly applied in service oriented applications, since traditional

80

fault removal approaches work based on specifications in the development phase of a
process and system cannot guarantee functional correctness and non-functional

performance.

Moreover, Web Services are published in a service description language which is based
on formal description logic. The name description logic refers to concept descriptions
used to describe a domain and to the logic-based semantics which can be given by a
translation into first-order predicate logic. Therefore, although service description can be
used for qualitative evaluation such as effect analysis, it is hard to apply quantitative

evaluation or probabilistic performance prediction to service correctness.

To address these limitations, we propose a trust model that aims for reliability prediction
and performance evaluation used in service oriented environment. Our trust model
utilizes reputations from the user community to extract the expected degree of service
satisfaction and hence estimates risks to reach failure. We use Probabilistic Latent
Semantic Indexing to compute the expected degree of reliability in services and estimate
risks (the probability of a service failing or unsatisfied service delivery) based on our
probabilistic model. Risks from our trust model are then combined with net based
methods to analyze non-functional quantitative parameters and hence to improve system

trustworthiness.

4.2 Predicting Risks from Recommendations

Our trust model is designed to predict service risks before a particular user is actively
involved in a specific service. To predict risks, for each of the possible ratings for each of

the services available, we first estimate the probability that users will give a particular

81

rating to a particular service. These predicted risks will be used during the service
analysis stage for performance prediction. We compute an expected value for each user-
service pair before actual usage experience for that pair is known. Collaborators in the
WSCPC environment can use the expected value during the service selection stage. The

domains we consider consists of a set of users U= {uj,usy,...,u,}, a set of services
S={s1,52,..5,), and a set of ratings Re X, the set of natural numbers. We assume

that observations are available for user-service pair (u, s), and that users made explicit

ratings V as a part of an observation.

42.1 Models for Expected Service Ratings

The first step of our risk prediction is to compute the expected numerical ratings of (u, v)
before the actual ratings are known. To this end, we use a technique known as a
probabilistic Latent Semantic Analysis (pLSA) [132, 133]. This is a special case of a

collaborative filtering technique with implicit preference data.

The key idea of our prediction model is the introduction of an hypothesis space Z
consisting of hidden variables ze€ Z, so that users and services are set conditionally
dependent. The possible size of the space Z is assumed to be finite and of order k. In our
trust model, the hypothesis space Z is considered as a space for service evaluation pattern
considering non-functional aspects, and has the size of k features. For a given space, each

co-occurrence observation triplet (s;,u,,r,) is associated with the factor z;, € Z.

From the viewpoint of the pLSA model, it can be inferred that there are existing different
relationships among <user, service> pairs related to different factors, which can be

considered to represent users’ service evaluation patterns.

82

Consider first the following probability definitions.

o Let P(n|s;,u;) denote the conditional probability distribution of ratings 7 over the

condition that a service s ;€ S is evaluated by a user u; € U.

e Let P(n|sj,z;) denote the class-conditional probability distribution of ratings 7,

over the joint condition of the latent variable z; € Z, and service s;€S.

o Let P(z;|u;) denote a user specific probability distribution on the unobserved class

factor z; € Z.

Then, the dependency structure of the co-occurrence model with additional variable z is

formally given by

P(n|sju;) = Y P(y|zs;)P(z|u;). 4.1)
€7

In addition to specifying the dependency structure, we define a parametric form for

conditional probability density p(r|s,z). To this end, we use a Gaussian model for

p(r,s|z). Thus, we introduce a location parameter Hg , € R for the mean rating
and scale parameter 05, € R for the spread of ratings. This defines a Gaussian

mixture model given by

P(r|u,s)="Y P(z|u)p(rius ;05 ;). @.2)
€Z

83

where p(r,u,o0)=

—_n2
S L)
N2ro 202
Finally, the expected ratings can be calculated as

Elr|u,s]= IrP(r|u,s)dv=z:P(z|u),us,Z . 4.3)
R Z

In addition, the percentage r that a service s will be equal or less than ¢ is computed as

r=c

P(rating(u,s) <c) = Ic P(r|u,s)dv= Z P(z|u) Z p(r; u,o)

R Z R

4.4)
r=c
=2 2. Plu)p(rip,0).

Z r

422 Expectation Maximization Algorithm

In our trust model, we adopt a pLSA model to model the relationship among users,

services, and service ratings. Using the definition from Section 4.2.1, we define the

probability of an observed pair (u;, s j,n) by adapting the latent factor.

Following the likelihood principle, the total likelihood L can be determined by

L= [[Pr|s,2)Pz|u)PEs. 4.5)

<u,s,r>.

In order to maximize the total likelihood, we make use of the Expectation Maximization

(EM) algorithm to perform a maximum likelihood estimation in the latent variable model.

84

The Expected Maximization algorithm is a standard technique for statistical inference
that can be used to maximize log-likelihood [134-136]. Generally, two steps are needed
to implement this algorithm. First, in the Expectation step (E-step) one calculates
posterior probabilities for the latent factors based on the current estimates of conditional
probability. Second, in the Maximization step (M-step) one updates the estimated
conditional probabilities and uses them to maximize the likelihood based on the posterior
probabilities computed in the E-step. The first task in deriving an EM algorithm is to
specify a complete data model. A complete data model treats the hidden variables as if

they were actually observed.

In the E-step, we can simply apply Bayes’ formula to compute the posterior probabilities

based on ratings observations triplet <u,s,r >. Since we do not know the states of the

latent variable z, we introduce a posterior probability

p(z|u,s,r),suchthat Y p(z|u,s,r)=1,
z

which needs to be computed for triplets <u, s,r> that have actually been observed.

p(z|u,s) can be computed using Lagrange multipliers. To this end, we derive a new

likelihood function L’ given by

L =- HP(Zlu,s,r)P(ZI")P(rlz’s).
€2

Using Lagrange multipliers, we obtain

85

OBJ=log L’ =- Z P(z|u)P(r|z,s)log(z|u,s,r) + A(ZP(zlu,s,r)-l).
€Z €Z

At its maximum, the derivative of the function OB/J is zero. Thus, we have

d0BJ =_P(z|u)P(r|z,s)+l 0, where £’ € Z
op(Z'|u,s,r) p(Z'|u,s,r)

from which it follows that

P(rlz',s)P(2'|u)
g .

p(zlus,r) =

Next we need to compute A in order to compute p(z|u,s,r).
Again, from

P(Z'|u)P(r| z',s)__/1 -0
p(Z'|u,s,r)

it follows that
P(r|z,)P(z|lu) = Ap(z’|u,s,r)

so that

D P(rlzs)P(zlu) = 2 Y P(z|u,s,r).

€7 €Z

However, since

Y P(z|u,s,r)=1

€Z

86

it follows directly that

> P(rlzs)P(zlu) = A.
€Z

P(r|z',s)P(z'|u)

> P(rlz.s)P(z|u)
€Z

(4.6)

Hence, p(z'|lu,s,r) =

We can also obtain the parameter P(z|u) for the M steps using Lagrange multipler
addition in the log likelihood function L” maximizing the sum of log P(u,s,r). L” is

defined as follows.

L”=logL= Z log P(u, s, r)
<u,s,r>uclU,seS,reR

= > (log P(r|s,2)P(z|u)).

<u,s,r,>uel ,s€ S,reR

Using (4.1) and the fact that ZP(zlu,s, r) =1, it follows that
€2

L"= > D P(z|u,s,r)log(P(r|s,2)+ P(z|u))

<u,s,r.>ucl,s€S,reR z€Z

= D log(P(r|s,2)+ P(z|u)).
<u,s,r,>ucl ,s€S,reR

where log L is maximized w.rt. parameters P(z|lu) subject to the constraints

ZP(zlu) =1and ZP(rls,z) =1.
zeZ €Z

87

From (4.6), we obtain the for the parameters of the Gaussian distribution given by

> P(z|u,s,r)
<u,s,r>
P = = 4.7

2€Z <u,s,r>

and

ZP(zlu,s,r)

<u,s,r>
P(rls,2)= -
rls2) > D P(z|u,s,r)

2€Z <u,s,r>

from which it follows that

ZrP(z|u',s, r)

<u,s,r>u=u (48)

,ur,z = Z ZP(Zlu"s,r)

2€Z <u,s,r>u=u'

and

Z(r-,urz’z)P(zlu',s, r)

2 <u,s,r>u=u'

O rs= Z ZP(Zlu',S,r)

€Z <u,s,r>u=u'

Iterating over (4.6), (4.7), and (4.8) one can reach the maximal value of P(z|u,s,r), P(z|u),

and u,,. Hence, we can compute both the expected value E(r|u,s) and the failure

probability P(r|u,s).

88

4.2.3 Service Selection and Estimated Risks

Service selection steps involve utilizing expectation values and risk probabilities obtained
from (4.3) and (4.4). Service consumers may use service rating expectations E(r|u,s) and
service failure probabilities to select a service. Service failure probabilities can be
obtained by setting a threshold ¢, which specifies that ratings less than ¢ are considered as
failure. In other words, if a rating is scored less than the threshold, the service usage is

considered a failure.

In order to evaluate our probabilistic model, we first run our model on MovieLens [137].
MovieLens is a dataset that contains 100,000 ratings by 943 users on 1,682 movies. The
ratings were collected by the MovieLens web site from September 1997 to April 1998.

All of the users in this data set rated at least 20 movies.

To simplify the experiments, we used five base-test set split data instead of full data set.
The split data consists of 80% of base data and 20 % of test data. Each data set has
disjoint data set. We learned probabilities using base set, and estimate probabilities for
movies in test rating set. Difference is measured through comparison of ratings between
our expectation and ratings in test set. This results are from setting k£ = 30. Increasing k
improves the accuracy but the requires more memory size, and at k > 30 we cannot
conduct experiments due to limitation of system memory size. All the experiments are

conducted on a PC with Intel Pentium IV 2.8 GHz CPU and 1GB of RAM.

Then we compared our results with averaging methods (AVG). Averaging methods are a
method that computes each movie’s average ratings from test set and measures difference

between the average ratings of a particular movie and movie ratings in test data set. In

89

addition, we also compare root square of differences between average ratings and user
ratings. The resulting gain of pLSA is around 5.1% in terms of average and 11.2% of

square root differences, and .

Figure 16 Performance Comparisons (Average Prediction Errors)

The results are shown in Figure 16 and Figure 17. To evaluate our method, we define a
prediction to be acceptable if the difference between our prediction and the actual rating
is less than or equal to 1.0. That is, we assume that our prediction is acceptable if it is
within a certain range, here between 0.0 and 1.0). The comparison is shown in Figure 18.

pLSA also improves the acceptability rate compared to the averaging method.

90

43 Analysis of Service Correctness

Service correctness in a service-oriented environment focuses on detecting either
malicious or faulty behavior of collaborative services. Correctness can be classified into

two categories, functional and non-functional behavior. Functional behavior describes

Figure 17 Performance Comparisons (Root Square Prediction Errors)

what task the service accomplishes whereas non-functional behaviors describe how the
service accomplishes its task. Functional behavior is related to specifications published
by the service provider, while non-functional behavior includes QoS properties such as
timeliness, accuracy, and cost. Peers can see the functional correctness by examining

equality between the service description and execution status by checking possible

91

violation of constraints. Non-functional properties can be verified by checking

performance factors regularly reported from service providers.

Figure 18 Performance Comparison (Non-Acceptability Rate)

43.1 Quantitative Analysis for Non-Functional Behavior

In this thesis, we propose a methodology for analysis of non-functional behavior of
collaborative services. To this end, we adopt a net-based quantitative analysis technique
in a service oriented environment. Quantitative analysis enables one to trace, analyze and
predict quantitative information, by examining its numerical, measurable characteristics

like performance factors. Therefore non-functional behavior can be examined through

92

quantitative analysis. The target of quantitative analysis in service oriented environment

would include, for example, the following.

® The expected probability that a service is active.

® The expected value of the throughput of a service execution.

® The expected probability that a service is available.

® The expected probability that a service is invoked.

Current analysis methodologies for functional and non-functional behaviors have limited
usage since the analysis can only be carried out by checking violation of pre-determined
constraints [15-18, 138-140]. It is, however, hard to predict non-functional behavior

before service failure happens using current analysis methodology.

It is therefore imperative to investigate new methodologies. In the proposed methodology,
both functional and non-functional behaviors can be analyzed through the query-based
dialogue between partners. The functional correctness can be checked through the
answers from service providers. Malicious behavior or cheating can also be detected by

applying several agent-based methodologies already proposed [141, 142].

In WSCPC, the quantitative analysis is conducted based on the transformation from our
Process Grammar model to stochastic Petri nets with timing and stochastic extensions.
Petri nets are a widely accepted formalism for modeling and analysis of distributed
systems [143]. Although there are also other methods for quantitative analysis like

queuing networks [144] and stochastic process algebra [145]), Petri nets are still

93

considered to be the most useful in terms of efficiency and the number of available
existing tools [146]. Moreover, our Process Grammar is easily transformed due to its pre-

conditions, post-conditions, and bi-partite graphical structure.

Accordingly, we use stochastic Petri nets for non-functional behavior analysis support in
the WSCPC framework. Stochastic Petri nets generalize classical Petri nets by adding
rewards and by assigning guards and distributions of firing time to transitions [145]. By
definition, stochastic a Petri net is a 10-tuple consisting of: a finite set of places, a finite
set of transitions, a finite set of in-arcs, a finite set of out-arcs, an integer weight for every
arc, a guarding function for every transition, an initial marking, a distribution of the firing
time for every transition, a priority relation such as transitive among the transition, and a
finite set of measures. A stochastic Petri net transition is enabled if and only if i) the
guard is true, ii) no other transition has higher priority, and iii) at every place there are no
fewer tokens in a given marking than the weight of the in-arc from the place to the
transition. When a transition fires, the number of tokens increases by the number of in-arc

weights and decreases by the number of out-arcs weights.

The validation of quantitative properties in WSCPC is based on quantitative net models.
Stochastic Petri nets are used to model and predict the probability distribution of service
behaviors. The quantitative properties are provided by communications between partners,
using the WSCPC service interaction model. Queries and answers should be designed

based on the properties to be validated.

94

432 A Net Based Method to Predict Non-Functional Behavior

The quantitative parameters for non-functional behavior are classified as performance

parameters and reliability parameters defined as follows..

® Performance parameter is the (average) time or cost to execute a given set of

services. (See Figure 19 1]’;.)

® Reliability parameter is the probability of entering and executing successfully a

given service. (See Figure 19 p/ D)

The execution time or cost can be measured by monitoring services. The monitoring
process is explained below in Section 5.4. The probability of unsuccessful services
depends on the service consumer’s criterion. A service consumer may define a service as
a success whenever they get output regardless of the quality or whenever they experience
a particular level of flaws from the service. The probability can be assessed from past
experience of services such as testing the same services several times or having a history

of service usage.

Figure 19 illustrates a net structure evaluated by the WSCPC framework. Oval objects

connected to a rectangle object represent n service candidates available from an input

specification object i. The notation pi" j over the dashed arrow indicates the probability

that the service n can be executed successfully. Hence, p;' j represents service

95

reliability. The notation ti" j represents performance parameters such as cost, execution

time, etc. Thus, t,-" j represents service performance.

Figure 19 Quantitative Parameters in Net Based Model

Provided there is no information about the probability distribution of any inputs, then the
assumption of our model is that the probability of successful service execution is
determined by the expected ratings. In our trust model, a service consumer can set a
threshold as a required minimum level of service quality. If the threshold is set to ne X,
then, to be successful, the service consumer’s expected rating should be more than n. If
the threshold is not set, then the service is regarded as successful as long as service itself

does not fail in its operation. How to obtain such probability is explained in Section 4.2.

Obtaining t,-'f j 1s more complex. Assuming that a service provider posts their particular

service performance using a parameters 7, we wish to compute the delay of service

performance. The more reliable a service is, the less the service delay would be. We

model service performance by

Ao HE(r|su))
t/j =T +delay=T+ T- ,
’ K

where A= , C = threshold, K is constant, E(r|s,u) is an expected service rating

Or,s
from a user u for a service s, and 0, ; is the standard deviation for the probability

distribution of ratings r on a service s (see Section 4.2.1.)

. From the above equation, delay increases exponentially as the service expected rating
decreases. (See Figure 20.) For example, if the expectation is less than the threshold, the
the service delay will increase considerably so that the service will be deemeded as barely
useful. The basic consideration of the above equation is to maximize the expected delay
on a service whose expectation is mediocre. Moreover, we also note that very minor
factors (even if not related to non-functional behavior) can affect evaluation on high-
quality service. Here, A represents rate parameters of the exponential distribution. The
rate parameters become large when o is small. That means that services whose o is
small are assumed to have small degrees of performance variance when their service

qualities are expected as high or mediocre.

97

Figure 20 Exponential Distribution

Service oriented computing offers an aggregated service using a composite service.
Services in a composite service are structured with parallel and serial connected services.
To predict non-functional behavior in a composite service, we use the following equation
shown in Figure 21. Similarly we can estimate the performance of a sub-component in a
service, assuming that reliability and performance values of each sub-component are

evenly distributed.

98

Serial . R
Connection ! 1

pijk=P(2AUP(1) =p; ip;j«

ti,j,k =tf.j +tj,k

Parallel
Connection i

pi,j
1
t iyj l
Pij
2
pi,j
=y

Pik = P(Y2)P(12)=pi.j piipjk

1 2
tj=max(t,j, t%,j)+1k

tj,k

tj,k

Pjk

Pjk

Figure 21 Non-functional Behavior in a Composite Service

99

CHAPTER S IMPLEMENTATION

5.1 The WSCPC General Architecture

The Web Service Collaborative Process Coordinator (WSCPC) is a collaborative
engineering framework built on Java and Apache Axis. Figure 22 illustrates the WSCPC
general architecture. WSCPC utilizes the semantics of Process Grammar and OWL-S for
process specification and manipulation. Hence, WSCPC is capable of managing Design
and Manufacturing (D&M) processes that are distributed over enterprises. WSCPC

consists of the following basic components [112]:

® Process Engine (PE): The Process Engine’s primary purpose is to create, manage,
and enact a process instance. The Process Engine can load up a process definition
from two different sources, a user’s private repository and the publicly accessible
process library. The Process Engine instantiates the process after it loads up the
definition. Once instantiated, a process is managed and executed by the Process
Engine. The Process Engine handles the process execution and maintains the current
status of execution. It has two modules inside. One is the Communication Server and
the other is the Process Controller. The Communication Server handles all of the
message creation and reception. The messages through service invocation are passed
into the Communication Server and then processed. The Communication Server
delivers a user’s request to the Process Controller so that it can query services in the
Service Registry for the logical task. Matched results are first filtered out by the
Process Controller if there are too many available services and then sent to the

Cockpit waiting for user’s decision. Figure 23 illustrates steps in finding suitable

100

services for a particular logical task. After the user choses a particular service for

outsourcing, the Web Service Module invokes the corresponding Web

Jawosn) 7 2
SIUBWSINbos

5ads
LANHALINI

18pIAOId BOINBS

Ea ds 10}
] 201185 gam
|

JauBisaq Buussuibug

Liswoisny 10y

201M9G GOM || ——

e
SF)
3 ‘D
Aoideqg e
1 a|npoN
Buikojdeq /
82IM18S qaM xwﬁ P Ansibay

Areaqy oo

ERITVERYC T
yswadw) J— h
Buikojdag
CLIVESLETTNY IRTT L)
:.D::Ju:m _W\l_rnl\v_/
Jenpow Buyjed | <——— me
201M8S G9M fBuncyuopy

Aeiqy| ssedoid

Figure 22 WSCPC General Architecture

101

Service. The Communication Server maintains a message queue itself. All the
messages within a local group are placed in the message queue and then sent to the
message receivers. By maintaining the message queue, all of the events of a process
are ordered such that systems guarantee synchronization in collaborative workspace.
The Process Controller manages the process execution of a logical service. The
atomic task execution is also processed by the Process Controller. Figure 23 shows
how services are searched and invoked between the Cockpit and other components in
the WSCPC framework. The service search steps are marked as (1), and the
invocation steps as (2).

Process Library: Process design is organized and stored in process libraries as a
production rule and accessed through Web Services technology. The task browser in
the Cockpit queries information regarding a task and organizes the tasks in a
generalization-specialization hierarchy. The Process Library can show all the
productions available for each logical task. The Process Library is a kind of
repository that holds and distributes process flow definitions. The WSCPC
framework uses two kinds of process libraries, the JAVA RMI server-based library
and the Web Service-based library. The JAVA RMI server-based library is
implemented without a common interface. The access to the library must be done
only via a JAVA RMI client. On the other hand, the Web Service-based library can
be used for collaborative workflow management among heterogeneous systems. As
one might expect, the Web Service-based library provides a globally acceptable
common interface. Furthermore, the process definition will be distributed in an OWL

document in order to achieve interoperability.

102

Invoke
M
WSM Web Servi

Progress (2)

[Cockpit] A
Invoke .
Service (2) Progress (2) .
Deploy 5
Matched Apply Logical task

a
a
[]
[]
Service (1 (1)/Decision of
IProgress service partner (2)
(2)
Manufacturing
mmunlwuon Partner
Server .
a
[]
|]
Select Service Registerg
Apply Event (1) (1) Servioe -
Prot_:ess Query Service (1
Engine Prooess — Service
Controller Reglstuy

Service List (1

Figure 23 Service Selection and Invocation

® Service Registry: The Service Registry stores the descriptions of Web Services that
specify the design and manufacturing capabilities, represented in the Process
Definition Module (PDM). The service registry includes the type of a service, input
specification, output specification, pre- and post condition, and a link to service

evaluation results. Each collaborating organization has its own copy of each of the

103

components except for the Service Registry, which is shared among all of the
organizations.

Cockpit: The Cockpit is a communication interface connecting a user to the Process
Engine. It couples a user and an engine by transmitting the user’s decision on process
creation and enactment to the Process Engine. The Cockpit also provides graphical
information about the process definition and enactment to the user. The Cockpit
interacts with the human user when creating process definitions, displaying and
maintaining process information archivea, and when playing enactment sequences of
a process. When a user defines a process, the Cockpit provides a graphical authoring
environment. A user can actually draw a graph of a process flow, which the Cockpit
has the ability to document in OWL. The Cockpit has been implemented as a
downloadable JAVA applet. Since the Cockpit must connect to the JAVA RMI server,
which runs WSCPC process enactment engine, the Cockpit is a JAVA RMI client as
well.

Web Service Module (WSM): The Web Service Module connects the Process Engine
with Web Services, so the Process Engine can locate the suitable services for certain
task through the Web Service Module and invoke those services. The Web Service
Module includes OWL an inference engine, which captures user’s actions and
generates messages using the interaction model. The Web Service Module also polls
the invoked service,and captures runtime service execution through the Process
Monitoring Model (PMM). The Web Service Module includes two modules, the Web
Service Calling Module and the Web Service Deploying Module. The service

provider, after making the semantic description of a service (OWL), deploys the

104

service on its Web Service server and registers the service into the Service Registry
using the Web Service Deploying Module. WSCPC searches and calls the suitable

service using the Web Service Calling Module inside the Web Service Module.

5.2 WSCPC Execution Environment

The Web Service Module is composed of four components: the OWL-to-service
implementation tool, the Web Service deployment tool, the Web Service registry tool,
and the service requester [115]. Figure 24 illustrates the architecture of the Web Service

Module in detail. The components used in Web Service Module are as follows.

® The OWL-to-service implementation tool encodes the semantic description into the
service implementation. It has five operations. The operation providelnput() takes the
input specifications from the service user and delivers it to the Web Service. The
operation invokeEnacting() invokes the enactment of Web Services. The operation
getOutput() delivers output specifications to the service user. The operation
getGraph() delivers the graphical information of a workflow enacted to the service
user. Finally, the operation getServiceComposite() delivers the ServicComposite() in

the service provider’s local library to the service user.

® The Web Service deployment tool compiles the service implementation and deploys it

onto the Web Service server.

® The Web Service register tool reads WSDL documents and semantic model

descriptions from the service provider’s workspace and enrolls the service to the

registry.

105

® The Service requester discovers and executes Web Services by using the Web
Service Calling Module. It consists of the following components. The service
discovering tool discovers a Web Service by sending a query to the service registry.
The semantic reader helps the service user with browsing the service semantics. The
WSDL reader enables the service caller to understand documents written with WSDL
and stored in service registry. Finally, the service caller calls one of the operations of

a chosen Web Service.

Service Registry \
- » Web service
[i Service I 4 Lregister tool
iscover too Semgntlc. -...g'm:_-.-_-.-_-.-.-::"
J “‘.,o" moae .: LLTT9N
| K s OSWL-.To-
o . o ervice
(OWL browserjefrr=\ _wsefe{ WSDL [.+ 1 implementation
. tool
v L — {° o .
[Service browsa [WSDL parseu] '/ X
Service Web service
} Implementation | deploy tool
Semantic WSDL
reader reader dep\ov
[Service caller }—call @ereneee read
Web Service Web Service <4 - = write
Calling Module Deploying Module

Figure 24 Web Service Module

106

53 Authoring Environment

The primary goal of the WSCPC authoring environment is to provide a process flow
authoring facility to a user. In the WSCPC authoring environment, a user can create a
process definition by authoring logical tasks and atomic tasks, and then combining those
tasks into a process flow. Once a process definition has been created, the process

definition is stored into the private repository or public library.

The Cockpit is the major component that is responsible for the authoring process. The
Cockpit provides a user with a sophisticated authoring tool that includes a graphical
interface, which enables a user to create a process flow graph and convert the process

flow graph into a process definition document written in OWL.

The WSCPC authoring environment has the ability to deploy and publish a Web Service
to support the Web Service-oriented interoperability [112]. The WSCPC Web Service
Registering Module and Web Service Deploying Module together realize a Web Service-
oriented interoperability. The Web Service Deploying Module generates an
implementation of a Web Service based on the process definition. If the authoring
environment needs to advertise its Web Services, the Web Service Registering Module

registers Web Services to the public service registry.

Web Service registration is only necessary when inter-organizational collaboration
proceeds since the WSCPC framework assumes that every participant within one
organization know one another very well so that it is not necessary for them to advertise
any Web Services or tasks. However, during the collaboration between different

organizations, both organizations need a rendezvous point to meet with one another. So

107

in this case, the WSCPC authoring environment registers Web Services as a process flow

or a tool at the Service Registry.
5.3.1 Defining a Process

WSCPC provides users with a GUI-based process defining tool. Users can first draw
service definitions on the Cockpit and then convert it to an OWL-based process definition
using the Web Service Module. The final step is deploying the service definition into the

registry so that partners can locate the functionality that the service definition provides.

The WSCPC authoring environment supports two patterns of process definition in
association with a Web Service. Users can create a process definition either for an
atomic service or for a logical service and its service composites. These separate patterns
involve two different types of Web Services, either an atomic service in which Web
Service based software tools are invoked or a logical service in which a process is

assigned or a process library is used.

As discussed above in Section 3.2, an atomic task—an atomic service in terms of the
service-oriented model-is responsible for invoking a software tool. Hence, the first step
is to create an atomic task in the Cockpit. Through the Cockpit, a user creates an atomic
task by adding input data and output data specifications. After that, the atomic task must
be bound by an actual tool application. Once the atomic task has been created, the

Cockpit writes out the OWL document into temporary storage.

In addition to an atomic service, a logical service performs an important role in Web

Service oriented collaborative workflow management. A logical service is to be assigned

108

for process enactment or is to serve as a public process library function. In either case, a
logical service is designed to serve one or more service composites to the requester. So,
the process definition should be placed where the Web Service can reach it and get its

definitions.

The process definition for an atomic service is rather simple since it specifies only a
single tool application. By contrast, process definition for a logical service is not that
simple since one must specify service composites and its components. The Cockpit helps
users complete this complicated job easily and quickly. Before being combined into a
process graph, the user must prepare all of the tasks. Once the process flow graph is ready,

the Cockpit writes out a process definition in OWL and stores it in the repository.

532 Deploying Web Service

In the WSCPC framework, the deployment of a Web Service is accomplished by a
combination of the Web Service Deploying Module with the Tomcat-AXIS server system.
The Web Service Deploying Module prepares the Web Service implementation while the
Tomcat-AXIS server actually compiles the implementation and deploys it as a publicly
accessible Web Service on the Internet. Figure 25 illustrates the process for Web Service

creation and deployment.

The Web Service Deploying Module performs three steps to prepare a Web Service
deployment: 1) it reads a process definition; 2) it generates the implementation of the
Web Service from the definition; and 3) it copies the implementation of the Web Service
into a specialized directory of AXIS. Throughout Steps 1 and 2, the Web Service

Deploying Module uses the OWL parser to extract semantic information about the

109

process from the OWL document. Based on the semantic information, the Web Service

Deploying Module generates a Java Web Service (jws) file automatically. At Step 3, the

Web Service Deploying Module copies the Java Web Service = file into a specialized

directory of AXIS.
Web service (4) compiles Web
Deploying service implementation.
Module &
(3) export
(1) process
Process definition (6) generates WSDL.
Definition implemen-

N

OWL tation

process
definition

(2) generates

Web service implementation.

WSDL

Tomcat

AXIS

Figure 25 Deploying Web Service

(5) deploys
Web
services

As discussed in Section 3.3.4, the remote procedure that enrolls the service has been

implemented as part of the Service Registry. The Web Service Registering Module

interacts with that remote procedure of the Service Registry to enroll its service. As a

result of the remote procedure call, a new entry is registered in the registry.

110

5.4 WSCPC Interactions in Collaboration

54.1 Frame Based Messaging

As introduced in Section 3.4, WSCPC can support flexible message formats and hence
support complex communicative behaviors. In order to support automated interactions
between partners, the WSCPC interaction mechanism employs a frame-based approach in

order to exchange meaningful messages [147, 148].

A frame is defined as a data structure that represents a typical situation. A frame forms
the semantics of a concept. A frame consists of properties and the contents of each
property. A frame may have system-defined or user-defined properties. In WSCPC,
service models such as the Process Definition Model, the Process Enactment Model, and
the Process Monitor Model are represented as system-defined properties. User-defined
properties describe a specific feature for some concepts. For example, non-functional

parameters regarding QoS factors are represented as user-defined properties.

Formally a frame can be defined viaa A -expression.

Ax(Ayg oo Yoo (x 1) 1 & 22) .o Yp1 (6 2p=1)))s 5.1

where x is the frame name, y;, 0 <i < n are the property names, z;, 0 <i < n are

y; ’s contents bounded with types, and where n is the number of properties.

In WSCPC, a frame name is interpreted as a service name. Properties are services’
functional or non-functional process flow properties such as composeOf, hasStates, and

user-defined QoS. The frame name and its related properties are queried from the service

111

registry which stores the service provider’s semantic description. Some properties may be

acquired based on user-to-user agreements.

With a frame-based approach, an instance of WSCPC services can be defined with a

lambda expression as follows.

3 x (service (x) = 3 yo y1 ... yn-1 (propertyg (x, yg) A property; (x, y1)

A .. A propertyy1 (X, Yp-1)) (5.2)

where property; , 0 < i < n is either a property defined in a WSCPC service model or

user-defined non-functional parameters.

Consider a process in Figure 4 (b). A task VacuumAssistedCasting is created with a A4

expression as follows.

A x (service(x) = Ayg ... yp=1(Yo (x 20) M1 & 21) oo Y1 & Z2p=1)))

(composedOf hasStatus providedBy ... processingTime ...) VacuumAssistedCasting

where z; represents a content for a corresponding frame property and should be
associated with certain type. For example, zp should be typed as a list since the

composedOf property shows how a service can be decomposed. The property
processingTime must be typed as numeric type. These types should be predefined and
stored in public registry so that no erroneous typing happens in communication. Finally

the above expression is reduced as follows.

112

composedOf (VacuumAssistedCasting zo :@ type of String list) hasStatus
(VacuumAssistedCasting z| : type of states) providedBy (VacuumAssistedCasting z:

type of String) ... processingTime (VacuumAssistedCasting z; : type of Integer),

where the contents z; are filled with the following contents.

20 = (VacuumCasting Trimming QualityAssurance SelectedMaterial Dies TrimDies

CastedProduct TrimmedProduct FinishedProduct): type of String list

21 = initial : type of states (states are defined in PMM. see section 0)

29 = “John’s. Casting Inc.”: type of String

i = null

Some contents are defined and published before a service is deployed. On the other hand,

some contents have a null value since they will be set during run-time.

In a collaborative environment, it is necessary either to obtain behavioral semantics from
a list of service providing candidates before assigning tasks or to know current execution
traces after assigning tasks. Execution traces may be either functional behaviors such as
service composition, service assignment, and bounded data or they may be non-

functional behaviors such as processing time and operational costs. To this end, a service

113

consumer may need to generate automated querying and answering mechanisms to

monitor execution traces.

To create messages that can obtain behavioral semantics and execution traces from

partners, the query for the above example can be formally represented for (5.1) as follows.

Ax(Ayo o yk-1 (x 1) 1 & 22) o Y1 &6 2k-1))) Po P1 - Pk-1 S

where s is the service name and p;, 0 < i <k, are the properties to query.

For example, suppose that a partner wants to query the behavioral semantics of a service
vacuumAssistedCasting.such as service composition and the service’s execution status.

Then the corresponding query is given by

A x (A yon(Cy (x z9g) » (& 2z) composedOf hasStatus

vacuumAssistedCasting

=
B — reducti (composedOf (VacuumAssistedCasting, 0) hasStatus
— reduction

(VacuumAssistedCasting, z)).

To answer queries, partners can provide contents with values that can be called as needed.

The answering message is represented as follows.

(composedOf (VacuumAssistedCasting, (VacuumCasting Trimming QualityAssurance
SelectedMaterial Dies TrimDies CastedProduct TrimmedProduct FinishedProduct) :

type of String list) hasStatus (VacuumAssistedCasting, applied : type of states))

114

In order to query non functional behavior for each of the sub functional systems, for

example, the corresponding queries take the following forms.

A x(Ayg (yo (x, zg))) processingTime vacuumAssistedCasting

=
B reduction (processingTime (VacuumAssistedCasting, z())

To answer queries, a service provider can provide values for zg, which can be called as

needed by a service consumer. For example, the answer in this case will be

(processingTime (VacuumAssistedCasting, 15 : type of integer)).

Since in the WSCPC framework, a process is recursively defined and a service sub
component is recursively defined as an individual service, querying behaviors to sub
components involve a similar procedure. For example, to query processing time for a sub

component Trimming task, the query would be

A x(Ayo (yo (x zg))) processingTime Trimming.

The above example assumes both parties know that Trimming is a part of the
vacuumAssistedCasting process and that the namespace for Trimming is defined clearly

between both parties.

54.2 Process Enactment

Figure 27 illustrates a Web Service invocation and the corresponding message exchanges

in a WSCPC collaborative process enactment [114]. Once a service consumer decides to

115

outsource one of its functional subsystems and locates an appropriate outsourcing service,
the consumer needs to create a message to invoke the service. The service description is
located in the partner’s side linked by a registry entry from which the service consumer
fetches the necessary information. The invocation message is composed of three

components: intention, action and target.

To enact the partner’s execution, the intention field must be either request or propose.
The value propose is used to set up a negotiable rule or condition. For example, when a
message initiator offers a price, then the value of the intention field must be propose.
When the delivery time on a contract has not been decided by either side—service
consumer or service provider—and neither has full authority to decide, then propose can
be used. On the other hand, request is used to specify the desired actions on authorized
subject. The value request will be used when a message initiator has a certain level of
authority of task execution. For example, if a service consumer wants a die casting
method to be vacuumAssistedCasting and has the authority to choose a casting method,

then request will be used.

Formally, the action field can be defined based on (5.1) in Section 5.4.1. For example,
suppose that a service consumer creates a message proposing a die casting service price

for $10,000. Then the contents of action will be defined as follows.

A x(Ayo(Az9 (yo (x z9))) 10,00 price DieCasting

= (price (DieCasting 10,000))
B — reduction

116

Therefore the entire message that is sent to service provider will be formally a triplet
<propose, (price (DieCasting _)), price(DieCasting 10000)>. The message is composed
using the XML SOAP message format and sent to the service provider. Figure 26 shows
the example for the above message, which are sent to receiver. In Figure 26, price is a
user-defined property and described in the document which ProviderNS specifies. The

logical service DieCasting is also described in ProvideNS.

<service:conversation rdf:ID="message2">
<service:hasIntention>
<service:intention rdf:ID="intentionID">
<service:parameterType rdf:about="#propose"/>
</service:Intention>
</service:hasIntention>
<service:Target rdf:ID="objectClass">
<service:LogicalService
rdf :about="providerNS:#DieCasting" />
</service:Target>
<service:Action rdf:ID="actionClass">
<service:LogicalService
rdf :about="providerNS: #DieCasting" />
<service:price
rdf : resource="providerNS#contract">10.000</service:price>
<service:price/>
</service:LogicalService>
</service:Action>
</service:conversation>

Figure 26 A Message for Process Enactment

117

The enactment steps using communication model are illustrated in Figure 27. For
example, to suggest a service price, a message in Figure 27 is sent (Steps (1) — (4)). Then
the service provider figures out the semantics of the received message (Step (5)). The
service provider can either follow a service consumer’s action or initiate negotiation steps
based on a local decision logic. In either case, the service provider also creates a message

with its communicational decision and behavior, and sends it (Step (6)).

I —r
b=t \ '*-.\ Service
'S, Provider
property <> \
*Intention (5) Locate property
I 4

«Action before using it

(3) Create message «Object (6) Reply

using definitions and
properties %

(4) Send message

(2) Get the
definitions

Service
Consumer

Registry (1) Locate definition

N—

Figure 27 Service Enactment Using Service Interaction Model

In WSCPC, the negotiation proceeds through direct contact between a service consumer

and a service provider. Partners exchange messages using the Service Interaction Model

118

at each negotiation round. For example, a company can send message to initialize a
negotiation with <request, (price,A), rollback(A)>, where rollback is a property in PEM
and (price, A) is a class written with OWL-S. Negotiation ends when a partner sends the

message <accept, (price, A), none>.

543 Process Sharing

The platform neutral nature of Web Services enables supporting concurrent and
consistent access to heterogeneous software applications. Semantic integration of Web
Services provides semantic based process sharing, where people continue to use their

specialized applications but collaborative activities are shared with semantic information.

WSCPC utilizes query-based monitoring, where a service consumer builds a query based
on the service provider’s service representation and the service provider answers with
details about its internal behaviors [114]. In the WSCPC framework, organizational and
informational aspects are captured by the Process Monitor Model and hence process
sharing among multiple participants is possible through the semantics in the Process

Monitor Model class.

To monitor a partner’s execution, the intention field must be set to query. For example,
suppose that a service consumer creates a message querying Trimming service execution

time. Then the contents of action will be defined as follows.

A x(Ayy (yo (x zg))) executionTime Trimming

B — reduction (executionTime (Trimming z))

119

Therefore the entire message that is sent to service provider will be formally a triplet

<query, (executionTime (Trimming)), none>. In the query message, the zg field is

empty. Figure 28 shows the message example.

<service:conversation rdf:ID="message3">
<service:hasIntention>
<service:intention rdf:ID="intentionID">
<§ervice:parameterType rdf:about="#query"/>
</service:Intention>
</service:hasIntention>
<service:Target rdf:ID="objectClass">
<service:LogicalService
rdf :about="providerNS: #Trimming" />
</service:Target>
<service:Action rdf:ID="actionClass">
<service:LogicalService
rdf :about="providerNS: #Trimming" />
<service:executionTime
rdf : resource="providerNS#contract"/>
</service:LogicalService>
</service:Action>
</service:conversation>

Figure 28 A Query Message for Execution Traces

The corresponding answering message is generated by filling in the contents requested by
the query message. Figure 29 shows answering message for the monitoring request. Note

that most of the message contents are similar except those marked with boldface.

120

<service:conversation rdf:ID="messaged">
<service:hasIntention>
<service:intention rdf:ID="intentionID">
<service:parameterType rdf:about="#answer"/>
</service:Intention>
</service:hasIntention>
<service:Target rdf:ID="objectClass">
<service:LogicalService
rdf :about="providerNS: #Trimming" />
</service:Target>
<service:Action rdf:ID="actionClass">
<service:LogicalService
rdf :about="providerNS: #Trimming" />
<service:executionTime
rdf:resource="providerNS#contract">200
</service:executionTime>
</service:LogicalService>
</service:Action>
</service:conversation>

Figure 29 Execution Trace Reporting

Figure 30 illustrates how WSCPC supports process sharing. Once tasks are allocated to
geographically dispersed service providers, the Process Engine in WSCPC regularly polls
the service execution status through the Web Service Module. When the query for a
service execution status reaches the service provider, the current service execution status
is fetched from that software application tools and then sent to the service requester in the
form of a Proccess Monitor Model grounding. Since a Proccess Monitor Model
grounding is acceptable and understandable to all the participants, The Process Engine

can translate it for the domain specific applications and update the task status information.

121

Service Requester

(2) Send a message

<query,none,
property(A, _) >
(1) Request Web Service
Module
A
\

status

Process Engine

‘ (6)updates process

Service Provider

(3) Fetch
execution
traces

(4) Create a
message
<answer,none,

property(A,x) >

Figure 30 Sharing Display for Concurrent and Consistent Collaboration

122

CHAPTER 6 EVALUATION

In this section, we will discuss how WSCPC supports Web Service based collaboration.
As an illustration of our work, we consider a case study [149] that describes a die casting

process for thermoelectric fan housing.

6.1 A Scenario

Figure 31 illustrates this case study to test our implementation of WSCPC [112, 116].
The example in Figure 31 is from [21, 150]. The die casting process for thermoelectric
fan housings can be decomposed into several sub tasks with each task being distributed to
different companies. In Figure 31, four companies are collaborating at process startup
with each company having its own dedicated task such as defining requirements, material
selection, die making, and casting products. The left side of Figure 31 shows the initial
functional systems, while the right side illustrates task distribution results among the

participating companies.

Tasks in the process are interdependent since one task in one company affects other
companies’ tasks. At the requirements setting stage, company A designs a fan housing
product. Based on a study [149], the key factors of product considerations are high
thermal conductivity, uniform metal fill, free of porosity, and precise tolerance with +/-
0.005”. An ontology for the die casting process is defined with OWL. The design
requirements are translated into OWL and posted to be shared with companies B and C
together as output specifications. The sample OWL file is shown in Figure 32. Tolerance
and thermal conductivity are defined here while other requirements such as uniform

metal fill are described as additional_spec.

123

Design

Requirements

TrimDies l Dies

Part Analysis

Selected
Material

Produc

Finished

Product

Trim Die Design Dies

Designed

Make Dies

Selected
Material

TrimDies

|

|

|

I
s >
1 rimDie

|

1

|

|

\ 4

Finished
Product

Figure 31 A Design and Manufacturing (D&M) Process Example

124

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#" xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#"

xml :base="http://www.wscpc.fake/req ont#l">

<rdfs:Class rdf:ID="Requirements ">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#name"/>
<owl:allvaluesFrom
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:sﬁbC1assOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#tolerance"/>
<owl:allvValuesFrom
rdf:resource="http://www.w3.0rg/2001/XMLSchema#string"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>

</rdfs:subClassOf>

</rdfs:Class>

<owl:DatatypeProperty rdf:ID="tolerance"/>
<owl:DatatypeProperty rdf:ID="name"/>
</xrdf :RDF>

Figure 32 Design Requirements Written in OWL.

125

During the requirements setting task, company A designs the fan housing product and
sets performance specifications. Based on a study [149], company A designs the fan
housing with a diameter of 14”, a height of 10” and a weight of 7.5 lbs. The wall
thickness of the product ranges from 0.880” at the base to 0.124” on the side walls. The
key factors of product considerations are high thermal conductivity, uniform metal fill,
free of porosity, and precise tolerance with +/- 0.005”. In addition, company A sets the
material property requirements: Density < 0.10 (#/inch3), Thermal Conductivity > 120
(W/mK), Ultimate Tensile Strength > 40 ksi, Tensile Yield Strength > 20 ksi.
Terminologies for the manufacturing domain are defined with OWL. Design
requirements are translated into XML and sent to company B and C together as output
specifications. Figure 33 shows an example of output specifications created by

company A.

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:reg="http://www.wscpc. fake/req ont#">
<rdf:Description
rdf :about="http://www.wscpc. fake/Outputs ">
<reqg:name>Fan Housing</ req:name>
< req:tolerance>USA</ req:tolerance >
< reqg:height>10 inch </req:height >

< req:diameter>10 inch </req:diemeter >

</rdf :Description>

Figure 33 Output Specification

126

After company A constructs output data and sends it to B and C, company B needs to
select the right materials for the fan housing. Company B selects an Aluminum 130 alloy
among several alternatives. Subsequently, company C starts the die design process using
A’s design specifications and B’s material selections as described in the output
specifications. Company C’s task is decomposed into subtasks: DesignDies,
MakeTrimDies, and MakeDies. Each subtask owned by C can be decomposed into
detailed subtasks with several alternatives. For example, the DesignDies task has several
alternative processes such as VacuumAssistedCasting, highPressureCasting, and Semi-
SolidCasting. Figure 4 shows an example of a production rule for one alternative process
VacuumAssistedCasting for the DesignDies task. Company D’s is to implement the
casting process as per the output specifications provided by companies B and C.

Company D can make a “buy” or “make” decision.

Suppose that company D decides to outsource the CastingProduct task. Then D will
utilize WSCPC to locate and assign the CastingProduct task via Web Services. In our
scenario, company D is outsourcing the task ‘“casting product” and locating an
appropriate service provider. In order to outsource a CastingProduct task, the die casting
manufacturing capabilities must be published and advertised in an understandable way
such that every OEM will be able to find a provider that can satisfy the design

requirements.

When company D decides to outsource the CastingProduct task, the company defines the
desired attributes for the product and searches the service registry using such attributes.
The attributes include Materials, Finishing, and Certifications as described in our

Service Oriented Process Model. As illustrated in Figure 31, the Semantic Service

127

Definition defines pre-conditions and post-conditions that will be used for locating and
evaluating service providers. The reviews left in séwice registry will help to know the
trustworthiness of service providers. For our scenario, company D will create a query to
sthe ervice registry with “Materials=Aluminium,” “Certifications=IS09002,” and
“Finishing=power coating.” In WSCPC, such queries can be either generated

autonomously based on the predefined evaluation functions or typed manually.

After the appropriate search, the service registry notifies company D that the
manufacturing capability of a casting company in Troy, Michigan satisfies the query and
hence can fulfill the CastingProduct task. Subsequently, company D evaluates other
attributes including reputation (which is not part of the original query), starts negotiating
if necessary, and outsources CastingProduct by invoking the services offered by the
casting company in Troy. Our Service Enactment Model provides support for various
service invocation types and hence facilitates dynamic process enactment, which is
required for implementing collaborative processes in distributed and heterogeneous

manufacturing environments.

Collaborative interactions among multiple companies often encounter problems since
multiple decision centers may exist in the collaborative distributed environment. Each
company has its own local mechanism to decide how their tasks are executed. Decisions
from a single company may hinder the process of obtaining an efficient solution or even
result in a failure due to each company’s self-interested tendency. Therefore, decisions
should be coordinated between various functional groups. That is, task decision should be
allowed to be cancelled with an alternative in a distributed collaborative design and

manufacturing environment.

128

Consider the process in Figure 31. Company B completes the PartAnalysis task and
generates its output result. After a certain period, company C finishes the DieDesign task.
Company D then starts its task by outsourcing CastingProduct task. Support later that
company D faces a design problem on the final product. For example, suppose that the
final product fails in a mechanical stress testing. After a certain diagnosis, company D
concludes that the product should be designed stronger and that the materials used in the
product should be replaced. Company B then changes the material specifications into a
stronger one with a minimum loss in thermal conductivity. This change affects both
companies C and D’s process execution since they are using the A130 alloy originally
selected by company B. In such a case, companies C and D must rollback their task status
by re-initializing their process executions. Therefore, company B must send several

messages about its own rollback process. Messages by B are described as follows.

my = <declare, hasStatus(PartAnalysis), finished = ready>
< rollback, PartAnalysis >

my = <declare, hasStatus(PartAnalysis), ready =
< invokeEnactment, PartAnalysis >

running>

my = <declare, hasStatus(PartAnalysis), running = finished>
< apply, PartAnalysis >

129

myg = <declare, boundBy(SelectedMaterial),initial

= ready
< apply, SelectedMaterial >

6.2 Prediction for Service Trustworthiness

In this section, we apply our trustworthiness estimation scheme to the scenario depicted
in Figure 31. The prediction has three phases. First, we model service behaviors. The
service behavior can be published in the form of our Process Definition Model or
designed using a set of component services. For the die casting process example, Figure
31 provides the service behavior model. The next phase is to build the model of the

dynamic service behavior from the model in the first phase. In the second phase, new

properties are added such as rollback and selection with transition probabilities pjj and

transition costs tij .

Figure 34 illustrates an example of dynamic service behavior based on the scenario given
in the Section 6.1. We do not implement the actual net model given in Figure 34. Rather,
we introduce Figure 34 in order to show the dynamic properties that need to be added in

the second phase.

From the scenario of the previous section, tasks DieDesign and CastingProduct will be
outsourced by the invoking services. There are n and m available services for those tasks,
respectively. To represent tasks and their available services, we add dummy data objects
without breaking the WSCPC service model. The black dashed arrows represent

selections that are available and the grey dashed arrows indicate the probability of

130

satisfactory service execution. Roll back happens when a service fails or service
execution is not satisfied. Rollback arrows therefore include the probabilities, which are

based on ratings that users determine to be the minimum level of service quality.

The available services are also associated with performance parameters based on our
WSCPC trust model. Since DieDesign and CastingProduct are about to be outsourced,
their performance values are set to 0.0 and their tasks are filled with dots as a placeholder
for the future relationship. The grey data and task objects indicate the finished work. If
the model is evaluated before the execution begins, there will be no grey objects in the
graph. In the example of Figure 34, we assume that we are in the middle of execution of
the whole process. We are in the step where the task PartAnalysis is finished and the two
tasks DieDesign and CastingProduct need to be associated with particular services. The
probabilities and performances can be obtained through our trust model presented in the

Section 4.2.

The third phase of our prediction is to estimate the trustworthiness of the process. It is
also capable of offering analysis aimed at identifying the impact of various factors. To
this end, we can run simulations based on available choices or build the corresponding

Petri net models that can be run on the available stochastic Petri net tools.

In order to evaluate the scenario given in Section 6.1, we randomly chose 20 items from
MovieLens with average ratings between 3.0 and 4.0 [131] After extracting their ratings

and probabilistic distributions, ten items are assigned to DD; while the others are
assigned to CP; . Failure ratings are set to 2.5. We assume the service consumer satisfies

the service outcome when the consumer’s rating is over 3.5. Table 1 shows the sample

131

data and its associated expected probabilities used in our evaluation. The failure rate
indicates the expected probability that the service delivery brings a rating less than 2.5,
and the quality rate tells the expected probability that service consumer may like the

service quality (rating = 3.5).

We identify three types of evaluation criteria: 1) the least failure rate (LF), 2) the best
satisfaction (BS), and 3) the maximal quality (MQ). LF specifies the selection with the
minimum failure probability, BS indicates the selection for the best rated service, and
MQ gives the selection for maximum probability satisfying a certain rating. In order to
simplify the evaluation, we assume that all the service providers posted same values for
performance factors such as cost and delivery time. Table 2 shows the prediction results

based on each criteria. Table 3 illustrates the accuracy of prediction.

Based on Table 2, selections may vary based on criteria. Selection for “Casting Product”

may be either CPy or CPg based on the criteria. If more non functional factors are

considered, the selection may become more complex since a service consumer must build
a utility function to evaluate the expected performance matrix.. Table 3 illustrates the
ranking differences between predictions and actual results. Ranking provide the ordered
list of service recommendation. Therefore ranking correctness is also important as
ranking affects selection results. From the samples tested, the overall ranking errors for
the expected failure rate and the expected quality rate are 1.4 and 1.2 respectively. These

results demonstrate that our WSCPC methods are acceptable to predict trustworthiness.

132

-_———

ven,
..
.....
.
.
o
.
.
.
o

Part Analysis

v

Selected
Material

’
’
—_r}"
Dummy
\ ove
b \

>

N

N
~
~
Finished
Product |
P d s ’

Selection - - = =p» Finished Transition
Roll Back with .
<> Task with
e > Tesk
Transition > Task with
Transitionwith @2 Finished Task
p;;s 1.00
Figure 34 Dynamic Net Model

133

Task Expected | Expected Failure | Expected Quality
Rating Rate (%) Rate (%)
DD, 3.16 22.98 39.75
DD, 3.45 18.41 52.17
DD, 3.34 17.82 47.52
DD, 3.16 24.37 40.36
DDs 3.29 24.06 49.73
DDg 3.48 15.92 56.05
DD, 3.29 21.38 44.83
DDg 3.11 22.96 31.85
DDy 3.09 24.71 33.53
DDyg 3.32 22.52 49.01
Ch 3.37 19.42 46.76
CP, 3.42 18.99 51.48
CPs 3.14 32.08 40.57
CPy 2.77 39.53 27.91
CPs 3.39 18.24 49.06
CFe 3.45 16.54 48.87
CPy 3.31 19.64 43.93
Chy 3.24 21.85 45.38
Chy 3.10 26.19 33.33
Chyo 3,09 27.05 35.25

Table 1 Sample Data for Evaluation

134

Criteria | Selection | Failure Rate (%) | Quality Rate (%)
BS DD, CPg 0.70 0.27
LF DDg, CPs 0.70 0.27
MR DD, CP, 0.68 0.29
Table 2 Prediction of Service Execution
Selection anzi:;nlglai?e Qzaaqit;ngR;?e Diff;'aeglée in Diff;'aerlrllc(:e in
Failure Rate | Quality Rate
DDy 1 1 0 0
cP, 1 4 1 3
CPg 1 2 1 0
Table 3 Accuracy of Prediction

135

CHAPTER 7 CONCLUSION

In this thesis, we present a new framework to provide collaborative process management
for service-oriented computing. Our work focuses on issues of service trustworthiness.
There has been considerable work done in the area of trustworthiness issues covering
service behaviors, service securities and reliabilities. Some of this work has been
proposed as new standards. Other work has been proposed solely as extensions to current
systems and standards. Our work provides a new, solid foundation on which to develop
new methods for reliable and safe service-oriented computing in collaborative virtual

organization systems.

In particular, we have developed a framework that we call the Web Service Collaborative
Process Coordinator (WSCPC). = WSCPC is built on top of JAVA and the Axis
framework. We first provide service models for realizing a service oriented collaborative
environment. Then, we propose a methodology for predicting service behavior and hence
enhancing system trustworthiness. Based on the proposed methodology, service behavior
is analyzed stochastically. Adopting our frame-based approach enables partners to be
monitored and enacted so as to hold the status that the service is valid and that services
are appropriately configured based on the consumer’s needs through purely semantic
dialogue interpretation. Compositional services are also able to be scheduled such that
service behavior can ideally achieve an optimal outcome. Moreover, our proposed
approach is designed in a platform neutral way, retaining the spirit of a service-oriented
paradigm. We submit that our approach will satisfy the need of users to control ability

and customization availability in Web Services.

136

Our implementation is based on a standalone server-application. So the service based
collaboration and its reliability can be realized by using the WSCPC framework.
However, our proposed methods can also be integrated into current legacy systems or
existing Web Service based standards as we have proposed a platform neutral, message
oriented protocol and data formats. We believe that software modules can collaborate
with each other using our proposed methodologies. Since our messages follow the SOAP
format and since the semantics based on OWL is integrated into messages, software
modules or server applications with any inference engine can be implemented to support

the proposed method.

In addition, we provide an evaluation based on the example of a design and
manufacturing domain. Although the preliminary experiments on the artificial data sets
were conducted to evaluate the effectiveness of the proposed framework in the design
and manufacturing domain, we believe that our work will contribute to goal of realizing
true service oriented collaboration, not only in the design and manufacturing arena, but

also over broad ranges of collaborative process domains.

137

BIBLIOGRAPHY

[1] J.N.Lee and Y. G. Kim, "Exploring a Causal Model for the Understanding of
Outsourcing Partnership," HICSS 2003, vol. 268, 2003.

[2] T. D. Floyd, Winning the New Product Development Battle. New York:
Institution of Electrical and Electronics Engineers, 1993.

[3] A. Donald and O'Neill, "Offshore Outsourcing Takes Hold," Mortgage Bank Dec
2003.

[4] M. Terk, E. Subrahamanian, C. Kasabach, F. Prinz, D. P. Siewiorek, A. Smailagic,
J. Stivoric, and L. Weiss, "Rapid Design and Manufacture of Wearable
Computers," Communications of the ACM, vol. 38, pp. 63-70, 1996.

[5] R. Akkiraju, D. Flaxer, H. Chang, T. Chao, L. J. Zhang, F. Wu, and J. J. Jeng, "A
Framework for Facilitating Dynamic e-Business Via Web Services," in OOPSLA
2001 Workshop on Object-Oriented Web Services, Florida USA, 2001.

[6] S. Tsur, "Are Web Services the Next Revolution in E-commerce?," in the 27th
VLDB conference, Roma, Italy, 2001.

71 F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, "The Next Step in
Web Services," Communication of The ACM, vol. 46, pp. 29-34, 2003.

[8] F.Curbera, W. A. Nagy, and S. Weerawarana, "Web Services: Why and How," in
OOPSLA 2001 Workshop on Object-Oriented Web Services, Florida USA, 2001.

[9] S. Narayanan and S. Mcllraith, "Simulation, verification and automated
composition of web services," In Proceedings of the 11th international
conference of World Wide Web, pp. 77-88, 2002.

[10] M. Pierce, C. Youn, G. Fox, S. Mock, K. Mueller, and O. Balsoy, "Interoperable
Web Services for Computational Portals," in the IEEE/ACM SC2002 Conference,
Baltimore, USA, 2002.

138

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

F. Baader and W. Nutt, "Basic Description Logics," in The description logic
handbook: theory, implementation, and applications: Cambridge Uniersity Press,
2003, pp. 43-95.

J. Day and R. Deters, "Selecting the best web service," in the 2004 conference for
Advanced Studies on Collaborative research, Markham, Ontario Canada, 2004,
pp- 293-307.

Y. Liu, A. H. Ngu, and L. Z. Zeng, "QoS computation and policing in dynamic
web service selection,” in the 13th international World Wide Web conference on
Alternate track papers & posters, New York, NY, 2004, pp. 66-73.

E. Maximilien and M. Singh, "Agent-based trust model involving multiple
qualities," in the fourth international joint conference on Autonomous agents and
multiagent systems (AAMAS'05), Netherlands, 2005, pp. 519-526.

A. Lazovik, M. Aiello, and M. Papazoglou, "Associating assertions with business
processes and monitoring their execution," in the 2nd international conference on
service oriented computing New York NY USA, 2004, pp. 94-104.

W. Ma, V. Tosic, B. Esfandiari, and B. Pargurek, "Extending Apache Axis for
monitoring Web Service Offering," in international workshop on Business
services networks (BSN'05), Hong Kong, 2005, pp. 7-7.

L. J. Zhang and D. Anrdagna, "SLA based profit optimization in automatic
computing systems," in the 2nd international conference on Service oriented
computing, New York NY USA, 2004, pp. 173-182.

L. Baresi, C. Ghezzi, and S. Guinea, "Smart monitors for composed services," in
the 2nd international conference on service oriented computing, New York, NY
USA, 2004, pp. 193-202.

G. J. Holzmann, SPIN Sources, Version 3.4.1: available with SPIN, 2000.

R. Baldwin and M. J. Chung, "Design Methodology Management," IEEE
Computer, pp. 54-63, February 1995.

139

(21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

M. J. Chung, P. Kwon, and B. Pentland, "Making Process Visible: A
Grammartical Approach ot Managing Design Processes," ASME Transaction
Journal of Mechanical Design, vol. 124, pp. 364-374, 2002.

A. Mowshowitz, "Virtual Organization," Communications of the ACM, vol. 40, pp.
30-37, 1997.

M. Wolters and M. Hoogeweegen, "Management Support for Globally Operating
Virtual Organizations: the Case of KLM Distribution," in the 32th Hawaii
International Conference on System Science, 1999.

B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. Ngu, and A. K. Elmagarmid,
"Business-to-business interactions: issues and enabling technologies," The VLDB
Journal - The International Journal on Very Large Data Bases, vol. 12, May
2003.

S. Y. Choi, D. O. Stahl, and A. B. Whinston, The Economics of Electronic
Commerce. Indianapolis, IN: Macmilan Technical Publishing, 1997.

M. J. Cronin, Unchained Value: The New Logic of Digital Business. Boston, MA:
Harvard Business Press, 2000.

P. Timmers, Electronic Commerce: Strategies and Models for Business-to-
Business Trading. New York: John Wiley & Sons, 1999.

B. Travica, "Virtual Organization and Electronic Commerce," The DATABASE
for Advances in Information Systems, vol. 36, 2005.

A. Lazcano, G. Alonso, H. Schuldt, and C. Schulder, "The WISE approach to
electronic commerce," International Journal of System Science Engineering, vol.
15, pp. 343-355, 2000.

C. Schuler, H. Schuldt, G. Alonso, and H. J. Schek, "Workflows over workflows:
practical experiences with the integration of SAP R/3 business workflows in
WISE," in Informatik'99 Workshop: Enterprise-wide and Cross-enterprise
Workflow Management: Concepts, Systems, Applications, 1999.

140

[31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

H. Ludwig and Y. Hoffner, "Contract-based cross-organisational workflow - the
Crossflow Project," in International Joint Conference on Work Actitivies
Coordination and Collaboration (WACC'99), 1999.

Y. Hoffner, H. Ludwig, P. Grefen, and K. Arberer, "CrossFlow: integrating
workflow management and electronic commerce," ACM SIGecom Exchange, vol.
2, pp. 1-10, 2001.

J. Weissenfels, M. Gillmann, O. Roth, G. Shegalov, and W. Wonner, "The
mentor-lite prototype: a light-weight workflow management system," in ICDE
Conference, San Diego, CA USA, 2000, pp. 658-686.

G. Shegalov, M. Gillmann, and G. Weikum, "XML-enabled workflow
management for e-services across heterogeneous platforms," The VLDB Journal -
The International Journal on Very Large Data Bases, vol. 10, pp. 91-103, 2001.

H. Skogsrud, B. Benatallah, and F. Casati, "Trust-serv: model driven lifecycle
management of trust negotiation policies for web services," in International
World Wide Web Conference, New York, NY USA, 2004, pp. 53-62.

M. Shen, B. Benatallah, M. Dumas, and E. O. Y. Mak, "SELF-SERV: A platform
for rapid composition of web services in a peer-to-peer environment," VLDB
Conference, pp. 1051-1054, 2002.

D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker, "Managing process
and service fusion in virtual enterprises," Information Systems, vol. 24, pp. 429-
456, 1999.

H. Schuster, D. Baker, A. Cichocki, D. Georgakopoulos, and M. Rusinkiewicz,
"The collaboration management infrastructure,” in ICDE Conference, San Diego
CA USA, 2000, pp. 677-678.

F. Casati, S. Ilnicki, L. J. Jin, V. Krishnamoorthy, and M. C. Shan, "eFlow: a
platform for developing and managing composite e-services," in Technical Report
HPL-2000-36, H. Laboratoris, Ed. Palo Alto, CA, 2000.

B. Benatallah, B. Medjahed, A. Bouguettaya, A. K. Elmagarmid, and J. Beard,
"Composing and maintaining Web-based virtual enterprises," in 1st VLDB
workshop, Cairo, Egypt, 2000, pp. 71-90.

141

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

(49]

(50]

[51]

S. M. Bellovin, "Security problems in the TCP/IP protocol suite," Computer
Communication, vol. 19, pp. 32-48, 1989.

T. Dierks and C. Allen, "The TLS Protocol Version 1.0. IETF Request for
Comments " RFC 2246, 1999.

N. Doraswamy and D. Harkins, IPSec: The New Security Standard for the
Internet, Interanets, and Virtual Private Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1999.

P. Volpano and G. Smith, "Language issues in mobile program security," Mobile
Agents and Security, Lecture Notes in Computer Science, vol. 1419, pp. 137-153,
1998.

L. Rasmusson and S. Jansson, "Simulated social control for secure Internet
commerce," in ACM Workshop on New Security Paradigms, 1996, pp. 18-25.

A. Romao and M. M. Da Silva, "Proxy certification: A mechanism for delegating
digital signature power to mobile agents," in the Workshop on Agents in
Electronic Commerce, 1999, pp. 131-140.

X. Yi, C. K. Siew, and M. R. Syed, "Digital signature with one-time pair of keys,"
Electron Letter, vol. 36, pp. 130-131, 2000.

M. Bellare and S. K. Miner, "A forward-secure digital signature scheme,"
Advances in Cryptology-CRYPTO'99, Lecture Notes in Computer Science, vol.
1666, 1999.

H. Krawczyk, "Simple forward-secure signatures from any signature scheme," in
the Seventh ACM Conference on Computer and Communications Security, 2000,
pp- 108-115.

G. Vigna, "Cryptographic traces for mobile agents," Mobile Agents and Security,
Lecture Notes in Computer Science, vol. 1419, pp. 137-153, 1998.

M. Bravetti, C. Guidi, R. Lucci, and G. Zavattaro, "Supporting e-commerce
systems formalization with choreography languages," in the 2005 ACM
symposium on Applied computing, Santa Fe, New Mexico, 2005, pp. 831-835.

142

(52]

(53]

(54]

[55]

[56]

[57]

[58]

[59]

(60]

[61]

[62]

[63]

G. B. Chafle, S. Chandra, V. Mann, and M. G. Nanda, "Business processes and
conversations: Decentralized orchestration of composite web services," in the
13th international WWW on Alternate track paper and posters, New York USA,
2004, pp. 134-143.

"Web Service Architecture: W3C Working Draft 8,"
http://www.w3c.org/TR/2003/WD-ws-arch-20030808.

P. Sandoz, S. Pericas-Ceertsen, K. Kawaguchi, M. Hadley, and E. Pelegri-Llopart,
"Fast Web Services," Sun Microsystems, August 2003.

F. Casati, E. Shan, U. Dayal, and M. Shan, "Business-oriented management of
web services," Communication of The ACM, vol. 46, October 2003.

I. Foster, C. Kesselman, and S. Tuecke, "The anatomy of the grid: Enabling
scalable virtual organizations," Suppercomputer Application, vol. 15, 2001.

M. P. Papazoglou, "Service-Oriented Computing: Concepts, Characteristics and
Directions," in 4th International Conference on Web Information Systems
Engineering (WISE'03), Rome, Italy, 2003.

"Web Service Description Language (WSDL) 1.1,"
http:/fwww.w3c.org/TR/2001/NOTE-wsdl-20010305.

"SOAP: Simple Object Access Protocol 1.1," W3C Note, 2000.

"UDDI specification version 2.04," http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm.

C. Peltz, "Web Services Orchestration and Choreography," IEEE Computer
(October), pp. 46-52, 2003.

R. Shapiro, "A Comparison of XPDL, BPML, and BPEL4WS.,"
xml.coverpages.org/Shapiro-XPDL.pdf, 2002.

S. Weerawarana and C. Francisco, "Business Process with BPELAWS:
Understanding BPEL4AWS, Partl," IBM Developer Works., 2002.

143

(64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

(74]

[75]

[76]

"OWL-S," http://www.daml.org/services.

G. Alonso, "A Note About RPC: Myths Around Web Services," Data
Engineering, vol. 25(4), December 2002.

"Web Services Composition Interface 1.0,"
http./fifr.sap.com/wsci/specification/wsci-spec-10.htm.

A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani,
K. Riemer, S. Struble, P. Takacsi-Nagy, 1. Trickovic, and S. Zimek, "WSCIL,"
http.//www.w3.org/TR/2002/NOTE-wsci-20020808

M. Paolucci, N. Srinivasan, K. Sycara, M. Solanki, O. Lassila, D. McGuinness, G.
Denker, D. Martin, B. Parsia, E. Sirin, T. Payne, S. Mcllraith, J. Hobbs, M. Sabou,
and D. McDermott, "OWL-S," http:/fwww.daml.org/services/owl-s/1.0/owl-s.pdf
2003.

"Namespaces in XML," W3C Recommendation, 14 January 1999.

"XML Schema Part 1: Structures," W3C Recommendation, 2001.

"XML Schema Part 2: Datatypes," W3C Recommendation, 2001.

"SOAP Tutorial," http://www.w3schools.com/soap/default.asp, 2006.

"WSDL Tutorial," http://www.w3schools.com/wsdl/default.asp, 2006.

"BPML," http.//www.bpmi.org/bpml.esp.

I. Horrocks, "Daml+Qil: a description logic for the semantic web," IEEE Data
Engineering Bulletin, vol. 25(1), pp. 4-9, 2002.

D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakrishnan,
and A. Slominski, Grid Web Services and Application Factories, chapter 9, 2003.

144

(77]

(78]

[79]

[80]

(81]

(82]

[83]

[84]

[85]

(86]

(87]

N. Kavantzas, D. Butdett, and G. Ritzinger, "Web Services Choreography
Description Language Version 1.0, Working Draft WD-ws-cdl-10-20040427,"
April 2004.

G. Xue, M. Fairman, G. E. Pound, and S. J. Cox, "Implementation of a Grid
Computation Toolkit for Design and Optimization with Matlab and Condor," In
Euto-Par 2003 parallel Processing, Lecture Notes in Computer Science, pp. 357-
365, 2003.

S. Tuecke, K. Czajkowski, I. Foster, S. Graham, C. Kesselman, T. Maguire, T.
Sandholm, P. Vanderbilt, and D. Snelling, "Open Grid Services Infrastructure
(OGSI) Version 1.0," Global Grid Forum Draft Recommentation, 2003.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke, "Grid Services for Distributed
System Integration,” Computer, vol. 35(6), 2002.

R. A. v. Engelen and K. Gallivan, "The GSOAP toolkit for Web Services and
Peer-to-peer Computing Networks," in the 2nd IEEFE International Symposium on
Cluster Computing and the Grid (CCGrid2002), Berlin, Germany, May 2004, pp.
128-135.

S. Krishnan and D. Gannon, "Xcat3: A Framework for CCA Components as
OGSA Services," HIPS 2004, 9th International Workshop on High-Level Parallel
Programming Models and Supportive Environments, April 2003.

G. von Laszewski, B. Balunkal, A. Kaizar, S. Hampton, and S. Nijsure, GridAnt-
Client-side Workflow Management with Ant, 2002.

K. Amin and G. von Laszewski, "GridAnt: A Grid Workflow System," in Manual,
2003.

C. B. Trastour and C. Priest, "Semantic Web Support for the Business-to-business
E-commerce Lifecycle," in the 11th International Conference on World Wide
Web, Honolulu Hawaii, May 2002, pp. 89-98.

C. Goble and D. Roure, "The grid: an application of the semantic web," ACM
SIGMOD, vol. 31(4), pp. 65-70, 2002.

"OWL," http://iwww.w3c.org/2001/sw/WebOnt.

145

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, "Composing Web Services
on the Semantic Web," VLDB Journal, vol. 12(4), pp. 331-351, November 2003.

S. Mcllraith, T. Son, and H. Zeng, "Semantic Web Services," IEEE Intelligent
System, vol. 16(2), pp. 46-53, 2001.

J. Gonzaliz-Castillo, D. Trastour, and C. Bartolini, "Description logics for
matchmaking of services," in the KI-2001 workshop on applications of
description logics, Vienna, Austria, 2001.

M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara, "Semantic matching of
Web services capabilities,” in the international Semantic Web conference,
Sardinia, Italy, 2002, pp. 333-347.

A. Dogac, Y. Tambag, P. Pembecioglu, S. Pektas, G. Lateci, G. Kurt, S. Toprak,
and Y. Kabak, "An ebXML infrastructure implementation through UDDI
registries and RosettaNet PIPs," in the 2002 ACM SIGMOD international
conference on Management of data, Madison, Wisconsin, 2002, pp. 512-523.

M. Keidl and A. Kemper, "Towards context-aware adaptable web services," in the
13th international WWW conference on Alternate track papars and posters, New
York NY USA, 2004.

S. Ran, "A model for web services discovery with QoS," ACM SIGecom
Exchange, vol. 4, pp. 1-10, 2003.

B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Tourmani, "On automating
Web services discovery," VLDB Journal, vol. 14, pp. 84-96, 2005.

M. Solanki, A. Cau, and H. Zedan, "Semantic web services: Augmenting
semantic web service description with compositional specification," in the 13th
international conference on World Wide Web New York NY USA, 2004, pp. 544-
552.

B. Grosof, I. Horrocks, R. Volz, and S. Decker, "Description logic program
combining logic programs with description logic," in the 12th international
conference on World Wide Web, Budapest, Hungary, 2003, pp. 28-37.

146

(98]

[99]

(100]

(101]

[102]

[103]

(104]

[105]

[106]

[107]

[108]

E. Maximilien and M. Singh, "Reputation and endorsement for web services,"
ACM SIGecom Exchange, vol. 3, 2002.

H. Davulcu, M. Kilfer, C. R. Ramarkrishnan, and 1. V. Ramarkrishnan, "Logic
based modeling and analysis of workflows," in ACM symposium on Principles of
Database Systems, 1998, pp. 25-33.

A. Ferrar, "Web services: a process algebra approach," in the 2nd international
conference on service oriented computing, New York USA, 2004, pp. 242-251.

M. Singh, "Semantical considerations on workflows: An algebra for intertask
dependencies," in workshop on database programming langauge (DBPL), 1995.

J. A. Fisteus, L. S. Fernandez, and C. D. Kloos, "Applying model checking to
BPELAWS business collaboration," in the 2005 ACM symposium on Applied
computing, Santa Fe, New Mexico USA, 2005, pp. 826-830.

W. M. van der Alast, "On the automatic generation of workflow processes on
product structures,"” Computer in Industry, vol. 39, pp. 97-111, 1999.

H. Foster, S. Uchitel, J. Magee, and J. Kramer, "Model-based verification of web
service compositions," in the 13th international conference on World Wide Web,
New York, USA, 2003, pp. 621-630.

X. Fu, T. Bultan, and J. Su, "Analysis of interacting BPEL web services," in the
13th international conference on World Wide Web, New York USA, 2004, pp.
621-630.

R. Hull and J. Su, "Tools for composite web services: a short overview," ACM
SIGMOD record, vol. 34, 2005.

"PSL standards group," http://ats.nist.gov/psl.

K. Bhar, C. Fournet, and A. D. Gordon, "Verifying policy-based security for web
services," in the 11th ACM conference on Computer and communication security,
Washington DC USA, 2004, pp. 268-277.

147

[109]

[110]

[111]

(112]

[113]

[114]

[115]

[116]

[117]

[118]

[(119]

"Web Service Security (WS-Security) version 1.1," http:/fwww-
128.ibm.com/developerworks/webservices/library/ws-secure.

G. Shani, D. Heckerman, and R. Brafman, "An MDP-Based Recommender
System," Journal of Machine Learning Research, vol. 6, pp. 1265-1296, 2005.

M. J. Chung, W. Kim, H. S. Jung, R. Gopalan, and H. Kim, "Service Model for
Collaborating Distributed Design and Manufacturing,”" in WWW 2004 Workshop
on Application Design, Development and Implementation Issues in the Semantic
Web, New York NY, 2004.

W. Kim, M. J. Chung, S. C. Kim, and H. Kim, "Service Oriented Collaboration in
Design and Manufacturing Process," in FIDJI2004, Luxembourg, 2004.

M. J. Chung, W. Kim, H. S. Jung, and H. Kim, "Web Service Based Process
Management Model for Collaborative Product Commerce," in the 10th
International Conference on Concurrent Enterprising, Seville, Spain, 2004.

W. Kim and M. J. Chung, "A Web Service Support to Collaborative Process with
Semantic Information," in the 6th international conference on Web Information
System Engineering (WISE'05), New York, NY USA, 2005, pp. 217-230.

M. J. Chung, H. S. Jung, W. Kim, R. Gopalan, and H. Kim, "A Framework for
Collaborative Product Commerce Using Web Services," in IEEE International
Conference on Web Services (ICWS 2004), San Diego CA USA, 2004.

W. Kim, M. J. Chung, and J. Lloyd, "Automated Outsourcing Partnership
Management Using Semantic Web Service," Computer Supported Cooperative
Work in Design I, Lecture Notes in Computer Science 3865, pp. 184-193, 2006.

W. Kim and M. J. Chung, "Collaboration in Design and Manufacturing Process
Using Web Services Semantics," in the 9th International Conference on CSCW in
Design (CSCWD'05), Coventry, United Kingdom, 2005, pp. 247-252.

B. Meyer, "Building bug-free 0-0 software: An introduction to design by contract:
Object Currents," SIGS Publication, vol. 1(3), March 1996.

M. D. Sadek, "Dialogue acts are rational plans,"” in ESCA/ETRW Workshop on the
Structure of Multimedia Dialogue, Maratea, Italy, 1991, pp. 1-29.

148

[120] R. G. Smith, "The contract net protocols: High-level communication and control
in a distributed problem solver," IEEE Transactions on Computers, vol. C-29, pp.
1104-1113, 1981.

[121] W.J. v.d. Heuvel and Z. Maamar, "Intelligent Web services moving toward a
framework to compose," Communications of the ACM, vol. 46, 2003.

[122] T. Finin, R. Fritzson, D. McKay, and R. McEntire, "KQML as an agent
communication language," in the third international conference on Information
and knowledge management Gaithersburg, Maryland, United States 1994, pp. pp
465-463.

[123] H. Weigand and W. J. v. d. Heuval, "Meta-patterns for electronic commerce
transactions based on the formal language for business communication (FLBC),"
International Journal of Electronic Commerce, vol. 2, pp. 45-66, 1999.

[124] M. J. Wooldridge, "Agent-based software engineering," IEEE Proceedings
Software Engtineering, vol. 144, pp. 26-37, 1997.

[125] F. Bergenti and A. Rocci, "Coordination models, languages and applications:
Three approaches to the coordination of multiagent systems," in the 2002 ACM
symposium on Applied computing, Madrid, Spain, 2002, pp. 367 - 372.

[126] M. Schumacher, "Objective Coordination in Multi-Agent System Engineering-
Design and Implementation," LNAI, vol. 2039, 2001.

[127] K. Bach and R. M. Hamish, Linguistic Communication and Speech Acts: MIT
press, 1979.

[128] J. Shearle, "In direct Speech Act," Syntax and Semantics: Speech Acts, vol. 3, pp.
59-82, 1975.

[129] Y. Labrou and T. Finin, "Semantics for an agent communication language," LNCS,
vol. 1365, pp. 209-214, 1998.

[130] "Dependabily," http://en.wikipedia.org/wiki/Dependability.

149

[131] A. Aviziecaron, "Fault Tolerant Systems," IEEE Transaction of Computer, vol. C-
25, pp. 1304-1311, 1976.

[132] T. Hofmann, "Latent Semantic Models for Collaborative Filtering," ACM
Transactions of Information Systems (TOIS), vol. 22, pp. 89-115, 2004.

[133] T. Hofmann, "Probabilistic Latent Semantic Indexing," in the 22nd annual
international ACM SIGIR conference on Research and development in
information retrieval, Berkeley, California, 1999, pp. 50-57.

[134] A. Dempster, N. Laid, and D. Rubin, "Maximum likelihood from incomplete data
via the EM algorithm," Journal of the Royal Statistical Society, Series B, vol. 39,
pp. 1-38, 1977.

[135] R.Hogg, J. Mckean, and A. Craig, Introduction to Mathmatical Statistics. Upper
Saddle River, NJ: Pearson Prentice Hall, 2005.

[136] R. Neal and G. Hinton, A view of the EM algorithm that justifies incremental,
sparse, and other variants. Cambridge, MA: MIT Press, 1999.

[137] "MovieLens," http://movielens.umn.edu.

[138] H. Davulcu, M. Kifer, and I. V. Ramakrishnan, "CTR-S: a logic for specifying
contracts in a semantic web services," in International World Wide Web
Conference, New York, NY USA, 2004, pp. 144-153.

[139] A. Gupta, L. Zhang, and S. Kalyanaraman, "Simulations for risk management: a
two component spot pricing framework for loss-rate guaranteed internet service
contracts," in Winter Simulation Conference, New Orleans, Lousiana, 2003, pp.
372-380.

[140] L. G. Meredith and S. Bjorg, "Service-oriented Computing: Contracts and types,'
Communications of the ACM, vol. 46, pp. 41-47, 2003.

[141] J. Claessens, B. Preneel, and J. Vandewalle, "(How) can mobile agents do secure
electronic transactions on untrust hosts? A survey of the security issues and the
current solutions," ACM Transactions on Internet Technology (TOIT), vol. 3, pp.
28-48, 2003.

150

[142]

[143]

(144]

[145]

[146]

[147)

[148]

[149]

[150]

S. Pleisch and A. Schiper, "Approaches of fault-tolerant and transactional mobile
agent execution-an algorithmic view," ACM Computing Survey (CSUR), vol. 36,
pp- 219-262, 2004.

G. Huszerl, I. Majzik, A. Pataricza, K. Kosmidis, and M. D. Cin, "Quantitative
Analysis of UML Statechart Models of Dependable Systems," The Computer
Journal, vol. 45, 2002.

F. Bause, P. Buchholz, and P. Kemper, "Hierarchically combined queueing Petri
nets," in 1 1th International Conference on Analysis and Optimization of SystemsL
Discrete Event Systems, Sophia-Antipolis, France, 1994, pp. 176-182.

M. Bernardo and R. Gorrieri, "Extended Markovian process algebra," in 7th
International Conference on Concurrency Theory (CONCUR'96), Pisa, Italy,
1996, pp. 315-330.

S. Donatelli, J. Hillston, and M. Ribaudo, "A comparison of performance
evaluation process algebra and generalized stochastic Petri nets," in 6¢th
International Workshop on Petri Nets and Performance Models (PNPM'95),
Duke University, NC, 1995.

M. J. Chung, W. Kim, H. S. Jung, and H. Kim, "A Service-oriented Framework
for Collaborative Product Commerce," in the 8th International Conference on
Computer Supported Cooperative Work in Design (CSCWD 2004), Xiamen,
China, 2004.

W. Kim, M. J. Chung, K. Querishi, and Y.-K. Choi, "WSCPC: An Architecture
Using Semantic Web Services for Collaborative Product Commerce," Computers
in Industry, vol. 57, pp. 787-796, 2006.

"Steel Founder's Society of America,”" www.sfsa.org, 2004.

M. J. Chung, P. Kwon, B. Pentland, and S. Kim, "A process management system
for collaborative manufacturing," in IMECE'02, Symposium on Reconfigurable
Manufacturing Systems, 2002 ASME International Mechanical Engineering
Congress & Exposition, New Orleans, Louisiana, 2002.

151

i e
1R
3 1293

