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ABSTRACT

USING DIGITAL ELEVATION DATA TO PREDICT SLOPES OF COASTAL SAND

DUNES 1N BERRIEN COUNTY, MICHIGAN

By

Iuliegh R. Bookout

In 1989 the state of Michigan amended the Sand Dune Protection and Management

Act to include the designation of critical dunes. Some of the most spectacular dunes

along the Lake Michigan shore are also the most vulnerable; therefore, the distinction

of critical dunes is given to these areas in an effort to mitigate the negative impacts of

change. The Michigan Department of Environmental Quality is the agency charged

with regulating all site alterations in these areas. The MDEQ’S decision to approve or

deny a property owner a permit is based primarily on the slope of the dune, which is

collected in the field. Using a digital elevation model and land cover data, I believe

that MDEQagents could quickly and efficiently gather the slope measures they need

to complete the permit process. In the past, accuracy issues have hindered the

widespread use of DEMS in management; however, in recent years the accuracy of

the underlying elevation data has Significantly improved with the development of

lidar. I propose that lidar used in conjunction with calculated slope and land cover, in

a linear regression model, could enable users to predict true slope more accurately

than a model that uses NED as its source data and those same variables.



This thesis is dedicated to my son Jackson who made the final days ofmy journey

more beautiful than all of the ones that came before.
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I. INTRODUCTION

Coastal sand dunes are common along the southeastern shore of Lake

Michigan. These sand dunes collectively form the largest complex of freshwater

dunes in the world and are highly valued for the scenic, recreational, ecological, and

economic opportunities that they provide (Buckler 1979; Iichter 1995; Arbogast and

Loope 1999; VanOort et al. 2001; Arbogast et al. 2002). For this reason, the State of

Michigan has designated nearly 480 km of the shoreline critical dunes (covering

nearly 32,000 hectares) in an effort to mitigate the negative impacts of human-

induced change and prevent irreversible damage to the ecosystem (MDEQAtlas of

Critical Dunes 1989; Bemd-Cohen and Gordon 1999).

The significance of the sand dune ecosystem is evident by the presence of

several rare plant and animal species, including the Pitcher’s thistle (C'inlsium

Pitcben), a threatened plant species, and the Piping Plover, a federally endangered

bird species (lake Michigan Federation 1999). From a recreational standpoint,

residents, visitors, and the state and local economy benefit from the many national,

state, and county parks that occur within Michigan’s coastal dunes (lake Michigan

Federation 1999; Arbogast et al. 2002). In addition to the revenue generated from

tourism, the dunes are also highly valued by industry as a source of foundry sand

(Lake Michigan Federation 1999).



Beginning in the early 1900’s, Lake Michigan sand dunes were targeted by

local industries primarily for creating foundry casting molds. Not only were the

physical and chemical properties of Lake Michigan dune sand ideal for this use, it was

also widely available and convenient. Over the next few decades Michigan’s

automobile industry flourished and, in turn, the sand mining industry intensified. In

the most extreme cases, entire dune systems were completely destroyed by

overzealous mining practices (Buckler 1979; Lake Michigan Federation 1999; Albert

2006). In the early 1950s, Michigan residents began to take notice of the

disappearing dunes. This culminated in an outpour of public concern that lead to the

eventual passing of the SandDunes Protection andManagementAct in 1976 (Act No.

222, Public Acts of 1976; lake Michigan Federation 1999).

In the years that followed, concerns also grew over other developmental

pressures on the dunes, such as recreation and construction. These new concerns,

combined with the continued destruction of the dunes from mining, lead to

amendments to the act in 1989, which resulted in the critical dune designation. The

1989 amendments also included the addition of a program that established standards

and a permitting program for development in areas designated critical dunes

(Michigan State Legislature Acts No. 146 and 147, Public Acts of 1989). More

recently, Michigan reorganized its environmental acts dividing the 1976 Sand Dune

Protection and Management Act into Part 353, Sand Dune Protection and



Management, and Part 637, Sand Dune Mining (Michigan State Legislature Act No.

451, Public Acts of 1994).
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Figure 1-1 Map ofthe coastal dunes in lower Michigan and NW Indiana including the location ofthe

study area (modified from Arbogast et al. 2002).

The administration and management of critical dune policies is divided

between two branches of the Michigan Department of Environmental Qiahty

(MDEQ). Sand dune mining (Act No. 451, Part 637, Public Acts of 1994) is regulated

by the Office of Geological Survey, while all other matters concerning critical dunes,

including the permitting process, are handled by the land and Water Management



Division (Michigan State Legislature Act No. 451, Public Acts of 1994). The focus of

this research is on residential and commercial site alteration, therefore, from hereafter

I will be referring only to the land and Water Management Division unless otherwise

Specified.

Problem Statement

The decision of the MDEQto deny or reject an application for a permit to alter

a site in critical dunes is based primarily on the slope of the dune that will be affected.

This stipulation requires agents to conduct an onsite inspection, which can be very

time consuming depending on the scope of the project. At present, the State of

Michigan employs eleven agents to cover nearly forty counties. As such, these agents

are constantly pressed for time. Further, the effectiveness of this program has never

been evaluated. It is estimated, however, that of the hundreds of sites permitted

every year, only about 10% of ever receive follow-up visits from permitting staff

(Warner, personal comm., 2002).

The lack of accountability is troubling given the results of a number of studies

assessing the impact of development on natural dune systems in other coastal locales

(Gares 1990; Nordstrom 1994; Nordstrom et al. 2000; Brown and McLachlan 2002;

Nordstrom et al. 2002). Gares (1990) Studied dunes along a stretch of developed shore

in New Jersey and concluded that residential development there is severely altering



the naturally functioning dune system. Overall he found that the dunes had a

gentler slope, lower elevation, and lower sediment transport than their undeveloped

counterparts in the same area. He attributed these differences to less vegetation, the

construction of sand fences, and the presence of houses, all ofwhich are

anthropogenic. Parking lots and roadways are impermeable surfaces that provide

unobstructed pathways for entrained sand, while buildings may alter the local flow of

wind as well as the location of accretion on beaches and dunes (Nordstrom 1994).

With a host of threats facing coastal ecosystems and increasing developmental

pressures increase, there is an urgent need for improved legislation and protection

(Brown and Mclachlan 2002).

Research (Bemd-Cohen and Gordon 1999; Hershman et al. 1999) also shows

that Michigan is not alone in respect to the problems faced managing development in

the coastal zone. Hershman et al. (1999) report that all coastal mangers are

overburdened with implementation tasks and, when combined with the political and

legal pressures of managing a valuable resource, the focus is almost always on the

current decision processes, not monitoring and evaluating past actions (Hershman et

al. 1999). In order for a coastal program to change or improve, program managers

must have the time and resources available to evaluate the state of coastal resources

and make that information available to policy makers (Bemd-Cohen and Gordon

1999; Hershman et al. 1999).



At this time, a majority of states with a coastal zone management (CZM)

program do incorporate digital technology to track permits, however, none of these

states employs a database directly related to the extent to which resources are affected

by permits or policies (Bemd-Cohen and Gordon 1999). In Michigan, the key to

achieving a more objective assessment of the coastal zone may lie in integrating the

use of digital and remotely sensed data, such as a digital elevation model (DEM), with

the current sand dune protection and management program. Much like the current

permitting process, gathering the data necessary to do that using traditional means,

such as ground based surveys or photogrammetry, could become prohibitively time

consuming and expensive. However, remote sensing can provide spatially dense

quantitative data over regional scales. If sufficiently accurate this data, when used in

a Geographic Information System (GIS), could be invaluable in determining and

understanding patterns and magnitudes of dune development (Sallenger et al. 2003).

The National Elevation Dataset, or NED, is one digital data source that is

presently available to all potential users on the United States Geological Survey

(USGS) website (Gesch et al. 2002). It is a compilation of many data sources, deemed

the “best available”, including 7.5 minute, 15-minute, 2-arc-second, and 3-arc second

DEMs (Smith and Sandwell 2003). The metadata that accompanies NED allows users

to calculate accuracy statistics based on source DEM characteristics; however, the

actual error in any one dataset may differ from what is stated depending on several

factors including local terrain characteristics, the application for which it is being

6



used, and any parameters besides elevation (Bolstad and Stowe 1994; Gesch et al.

2002; Hodgson et al. 2003). Although NED may be sufficient in some areas and for

some applications, the recent shift has been toward models that require a more

detailed and spatially explicit representation of process, which requires a better

quality source for topographic data (French 2003; Barber and Shortridge 2004).

Light Detection and Ranging, or lidar, is a technology that can produce high-

resolution elevation datasets; it is also the technology that may be able to better meet

the needs of coastal zone managers. This technology can quickly gather spatially

dense elevation data over a large area and is generally regarded as a more accurate,

more efficient, and less expensive collection method for the creation of DEMs than

alternative methods (Woolard and Colby 2002; Sallenger et al. 2003; Barber and

Shortridge 2004).

The decision for any agency to incorporate remotely sensed data into their

current practices and standards and decide between lidar, NED, and any other dataset

for a particular application can depend on any number or combination of factors,

including accuracy requirements, purpose, cost, and availability. In the case of the

MDEQ, the accuracy of the terrain characteristic slope is of primary importance given

that their permit decision is based on this measure and there could be legal

consequences associated with an erroneous decision based on inaccurate

measurements.



Although researchers have recommended using either a lidar or USGS Level 2

digital elevation model over other elevation products if an application requires

accurate slope measures, investigations have been unable to provide evidence that

either product is suitable for such uses, based on study area characteristics (Hodgson

et al. 2003). While research (Barber and Shortridge 2005) has Shown that slope is

particularly sensitive to and greatly affected by resolution and, therefore, a high-

resolution dataset like lidar may be a better choice, the researchers in that case also

stipulate that this is more true in areas of low relief. This added condition begs the

question, “What role do terrain attributes play in the measurement of elevation and

its derivations?”

It has been previously established (Chang and Tsai 1991; Bolstad and Stowe

1994; Bowen and Waltermire 2002; Hodgson et al. 2003) that elevation, land cover,

and slope influence remote collection methods, leading researchers to seek a better

understanding of how in Situ terrain attributes affect the quality of a digital elevation

model and its derivatives. For example, researchers have determined that both

elevation error and modeled slope error increase when slopes on the ground are

steeper (Chang and Tsai 1991; Bolstad and Stowe 1994; Hodgson et al. 2003). Bolstad

and Stowe (1994) also determined that, for a USGS Level 1 DEM, the largest errors

were found in areas exhibiting the highest and lowest elevations for the study area.

Further, error in elevation and Slope measurements derived from both lidar and USGS

DEMs increases to varying degrees based on land cover attributes, including forest

8



canopy, stem obstruction, and understory vegetation (Bolstad and Stowe 1994;

Hodgson et al. 2003).

Research Purpose

Given that errors are generally systematic and influenced by patterns of land

cover, elevation, and gradient, it may be possible to determine actual slope if land

cover, elevation, and calculated slope are known variables. The purpose of my

research, therefore, is to determine:

1.) What terrain variables, or combination of variables, when used in a regression

model, most closely predict true slope?

2.) What is the error in the predicted slope values?

3.) To what degree do the source, or collection method, and/or resolution of the

elevation data influence the model?

By conducting this research and answering these questions, I am hoping to

better understand how digital data can be used to aid management decisions that

would typically require data collection in the field. Further, I hope to explore the

relationships between digital data collection methods, data resolution, and the true

slope values at any given point. Given the fairly recent emergence of lidar technology

in the collection of elevation measures, a greater knowledge of its potential to model

topography and its relationship with terrain characteristics that influence the



elevation and derived slope values, could be beneficial to agencies like the MDEQaS

well as other environmental applications.

10



II. LITERATURE REVIEW

The topic of this research concerns coastal sand dunes and their management,

as well as remote sensing and terrain modeling, therefore, each of these areas will be

addressed in this review of relevant literature. This chapter can be divided into two

distinct parts. The first will cover coastal sand dune formation, focusing specifically

on the origin of the dunes found in Michigan, and the history of sand dune protection

and management from the national level down to the state level. The latter half of

the chapter is devoted to digital elevation data including its collection, processing,

and use, particularly as it relates to modeling applications.

Comtal Sand Dune Formation

Knowledge of coastal dunes and dune geomorphology is essential to

understanding the spatial relationships between elevation, gradient, and vegetation

on a coastal eolian landscape. Coastal dunes are located above the high water marks

on sandy beaches of oceans and lakes, and can be found across all latitudes. Dunes

range in size from small, transient features to very large, stabilized dune fields, and

can exist in almost any climate (Nordstrom et al. 1990).

11



Many studies have explored eolian sediment transport and deposition in

relation to the coastal environment. Dune formation is a function of sediment grain

size, the beach profile, and wind regime. In general, the development of coastal

dunes is dependent upon 1) a source of sandy sediments, 2) a prevailing, onshore

wind with a veloCity sufficient to move those sediments, and 3) an area of land

partially protected from wave action (Smith 1988; Nordstrom et al. 1990; Orme 1990;

Sherman and Hotta 1990). Dunes most readily form on gently sloping shorelines

under dissipative wave conditions where the foreshore dries out at low water. Ideal

eolian sands are well-rounded, sand-sized (2 to .2 mm) quartz grains with a specific

gravity in air of 2.65 g cm‘3 (Nordstrom et al. 1990).

Eolian forces cause sediment movement when shear stress exceeds a threshold

value, or the velocity required to entrain a particle of sand. Momentum is then

transferred from the air to the sand grains and initiates movement by suspension,

saltation, or creep. On beaches and coasts sediments are most often transported by

saltation or creep because sand-sized particles are generally too large to be carried in

true suspension (Sherman and Hotta 1990). Saltation, the dominate process of eolian

sand movement, occurs when sand grains bounce or skip along the ground (s 1 cm

above the surface) by repeated lifting and deposition. As the saltating grains skip

along the surface they dislodge smaller particles, which may then become saltating

grains, and/or larger particles that slowly roll forward along the ground. The latter

12



process, which accounts for a somewhat smaller portion of eolian sand movement, is

called traction or creep (Figure 2-1; Gabler et al. 2004).

Forces that oppose the initial motion include a cohesive agent (moisture) and

gravity. Once in motion, however, with sufficient velocity the sand can continue to

move until it encounters either topographic obstructions or surface obstacles, when it

is deposited and may accumulate in drifts. These drifts, or dunes, create a topographic

barrier that further reduces the winds velocity. A dune will only grow as long as its

size does not impede the wind’s ability to feed sand to the dune (Gabler et al. 2004).

Sand dunes have three main features, a back slope, which is erosional and

faces upwind, a crest, and a slipface or leeward Slope (Figure 2-1). A dune will

migrate as long as winds are strong enough to carry sand up the windward slope to

the crest (Gabler et al. 2004). As sand is deposited over the crest, the angle of the lee

slope continues to build until it reaches the steepest angle dry sand can hold without

falling or the angle of repose (~ 30 -— 35°). Once the angle of repose is met, sand will

slide down the slip face causing the dune to advance downwind (Figure 2-1). A new

slipface is created as the dune advances layer by layer. Small dunes (< 10 m high) can

migrate up to 40 meters in a year while larger dunes move more slowly (Gabler et al.

2004). Sand will continue to move until the net transport rate decreases, which can

be initiated by an increase in slope, decrease in wind velocity, and/or an encounter

with vegetation (Sherman and Hotta 1990). Likewise, dune stability is enhanced by a
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reduction in the sediment supply or wind velocity, typically reflecting changes in the

environment or an increase in vegetation (Gares 1990; Orme 1990).
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Figure 2-1 Wind movement by saltation and surface creep resulting from the impact of saltating grains.

Thewindmovessandupthewindwardslopeofthedunetowardthecrest.Thesandthenslidesdown

thesteeperleewardsideorslipface, cansingthedunetoadvanceflnodified fi'omGableretal. 2004).

Vegetation, if present, acts in three ways, specifically it 1) reduces wind

velocity, 2) prevents wind from being directed against the land surface, and 3) secures

sediments with its root network (Gabler et al. 2004). Sedimentation in the coastal

environment is often limited by the density and growth rate of vegetation (Nordstrom

et al. 1990). Vegetation serves to encourage deposition (trapping sand) and stabilize
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deposits by dissipating the energy of the wind and forcing it to deposits its load (Olson

1958c; Orme 1990; Robertson-Rintoul 1990; Sherman and Hotta 1990). Dunes in

more developed areas often have sparse vegetation cover due to heavy pedestrian

traffic and, therefore, little Stability in the long term (Gares 1990).

Coastal Dunes of lake Michigan

Coastal dunes are common along the eastern shore of Lake Michigan, with the

most numerous being those that mantle lake terraces extending south from Manistee,

MI and into Indiana (Figure 2-2). These sand dunes may collectively be the largest

complex of freshwater dunes in the world (VanOort et al. 2001; Arbogast et al. 2002).

The earliest published research on lake Michigan sand dunes focused on ecology,

specifically the vegetation found in and among the dunes in Indiana Dunes State Park

along the southern shores of lake Michigan (Cowles 1899). While studies of the

plant species and the role of vegetation on the dunes continued (Olson 1958a, 1958c),

a growing number of studies began to focus on dune geomorphology by concentrating

on the processes, controls, and timing of dune development with an emphasis on

lake-level oscillations (Dow 1937; Scott 1942; Olson l958d; Buckler 1979; Thompson

1992; Lichter 1995; Thompson and Baedke 1995, 1997; Arbogast and Loope 1999;

Baedke and Thompson 2000; Loope and Arbogast 2000; VanOort et al. 2001; Arbogast

et al. 2002).

15



 

 

  

  
 

  

I I

90° W 85° W

0 Eolian Sand

46° N ""

43° N —‘

Study Area

Indiana 50 “1“

I . J.
50mm

90°1W 85°lW  
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Both Dow (1937) and Scott (1942) recognized that fluctuations in lake level

were the dominant control of the sand supply to the dunes on the eastern shore of

lake Michigan. Dow’s (1937) work centered on what he called “perched” dunes at

Sleeping Bear Point in Empire, MI. He used the term perched dunes to refer to eolian

bedforms elevated above the present lake—level, often on high headlands, and

overlaying non-eolian sediments. This includes dunes that mantle lacustrine
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sediments of post-glacial beaches as well as dunes found much higher above the lake

on moraines. He found that when lake levels are high, waves undercut the bases of

the bluffs exposing a fresh supply of sediments that can then be entrained by the wind

and deposited at the top of the bluff.

Olson (l958d) expanded on the idea of lake-level oscillations as the dominant

control of sediment supply, and recognized two basic dune forms on the southern

shore of lake Michigan: primary and secondary (Figure 2-3). This classification is

loosely based on positional, morphological, stability, and age factors. Primary dunes

(also called “incipient” or “embryo” dunes) are young and located near the lake, while

secondary dunes, which include established foredunes, parabolic dunes, and

blowouts, are positioned farther inland (Nordstrom et al. 1990).

In 1958, Olson (1958a, 1958b, 1958c, 1958d) published a series of four articles

describing the development of lake Michigan coastal dunes. While the first three

articles focus on the role ofvegetation in dune building and stability, in the fourth,

Olson (l958d) describes the formation of foredunes on the shore of lake Michigan.

He states that the process is contingent upon periodic fluctuations of the lake level

occurring roughly every 30 years. During periods of low or receding lake levels, the

beach widens and new dune growth begins as colonizing plants intercept eolian sand.

If these primary dunes become sufficient enough to withstand wave erosion, when

average or high lake levels return they become a new foredune ridge. Secondary

dune building, on the other hand, generally occurs when the lake level is high or
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winds are strong. At this time, the previously established foredune ridges are

destabilized by wave and wind erosion and sediment removed from the ridge can

then be returned to the slope faces of the secondary dunes (Olson 1958d).

The next significant study of the geologic characteristics of lake Michigan

coastal dunes was conducted by Buckler (1979) in response to the State of Michigan

SandDune Protection andManagementAct (Michigan State Legislature Act No. 222,

Public Acts of 1976). He inventoried and classified nine dune forms found along the

lake Michigan shore including parabolic dunes, linear dune ridges, dune terraces,

dune platforms, domol dunes, complex dune fields, dune flats, marginal sand aprons,

and interdune lowlands. The classification scheme proposed by Buckler (1979)

combined several dune attributes including dune form, relative relief, orientation,

arrangement, and the stratigraphic relationship of the dune to the underlying

sediments.

The well-developed dune fields on the southeastern shore of lake Michigan

are large parabolic dunes (> 60 m) that may be separated from the lake by small

foredunes (Figure 2-3; VanOort et al. 2001; Arbogast et al. 2002). Buckler (1979)

described parabolic dunes as non-elevated, with a parallel orientation and high relief,

often occurring in groups and overlapping. Widths, he noted, can be more than

400 m with lengths exceeding 900 m. On its windward side, a parabolic dune has a

concave shape with a gentle slope that becomes steeper closer to the crest. The

convex landward side has a steeper slope that descends abruptly from the crest at the
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angle of repose. Blowouts, or unvegetated, depressions created by deflation, may exist

between the tails of the dune, which are often stabilized by vegetation (Buckler 2001;

Gabler et al. 2004). Two generations of parabolic dunes are frequently found adjacent

to one another with the shoreward group being higher, more individually well-

defined forms while the landward group is lower, more dispersed, and less distinctive.

The sand dune formation, or assemblage of dunes, that separates the present coastal

zone from inland activities is also given the term barrier dune by the Michigan

Legislature (Buckler 1979) .
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Figure2-3CrosssectionofatypimllakeMichigandunefield(modifiedfiomWflson2001).

In the 1990’s several geomorphic Studies of lake Michigan dunes directed at

lake level oscillations and beach ridge development were published (Thompson 1992;

Thompson and Baedke 1995, 1997). Together, these studies focused on five beach



ridge complexes around lake Michigan, including sites at Toleston Beach, IN,

Sleeping Bear Dunes National Lakeshore, MI, Wilderness State Park, MI, Manistique,

MI, and Ridges Sanctuary, WT, and used vibracores collected from the bases of

wetlands between the ridges to reconstruct four late Holocene (from 200 to 4,700 cal.

yrs. BP) relative lake level curves. In 2000, Baedke and Thompson compared the

radiocarbon dates of samples collected in all five complexes and determined that,

when isostatic rebound is accounted for, all four curves Show similar variations in

lake-levels. Small beach ridges could be linked to ~ 33-year fluctuations of .5 - .6 m,

while larger groups of ridges (4 - 6) corresponded to ~ l60-year fluctuations of .8 - .9

m.

The most current research on dune geomorphology (Arbogast and Loope 1999;

Loope and Arbogast 2000; VanOort et al. 2001 ; Arbogast et al. 2002) focuses

specifically on the evolution of some of the largest coastal dunes, many ofwhich are

found along the southeastern shore of lake Michigan. It is significant because it

challenges previous beliefs about the timing of dune development (Dorr and Eschman

1970; Buckler 1979; Eschman 1985) as well as the broad applicability of Olson’s

(l958d) foredune model by comparing dates obtained from buried soils to the

historical lake-level curve. Arbogast and Loope (1999) first conducted a study of

buried soils at three sites along the lakeshore to test the theory that all of the dunes

along the western coast developed between 6,000 and 4,000 yrs BP during the

Nipissing high stand of ancestral lake Michigan (Dorr and Eschman 1970; Buckler
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1979; Eschman 1985). The researchers found that although dune building at one of

the sites began during the Nipissing transgression, dune formation at the other two

sites began following the transgression (between 4,300 and 3,900 cal. yr BP and 3,300

and 2,900 cal. yr BP). They concluded that the sand supply to these lake-terrace

dunes originated from bluff destabilization related to minor peaks in lake-level that

occurred post—Nipissing.

A second study conducted by Loope and Arbogast (2000) aimed to distinguish

between the origin of foredunes (~ 5 m thick) on the south and southeastern shore

initially described by Olson (1958d) and that of larger dunes (~ 50 m thick) mantling

lake terraces along the eastern shore, by comparing the dates of buried soils at 32 sites

to a late Holocene lake-level curve (Baedke and Thompson 2000). The smaller

foredunes occur close to the lake, are subject to direct wave action, and, as Olson

(l958d) suggested, form as the lake level falls and the beach widens (the quasi-

periodic ~ 30 yr regressions documented by Baedke and Thompson 2000). The

larger dunes that Sit higher on the landscape and are remote from direct wave action

build as the lake-level rises and waves cut into bluffs and previously established

dunes. Using radiocarbon dating they were able to correlate dominant periods of

sand accumulation at a majority of the sites with ~150 yr lake highstands that have

occurred over the past 1500 years, making the age of many of the larger dunes

younger than previously thought (Loope and Arbogast 2000).

21



Two studies of buried soils found in sand dunes south of Holland, M1 were

conducted by Van Oort et al. (2001) and Arbogast et al. (2002) and found that

deposition of eolian sand began there during the Nipissing high stand (~ 5500 cal. yr

BP) and lasted for ~ 3500 years. Arbogast et al. (2002) found that a dominant period

of rapid dune building occurred between ~ 4000 and 2500 cal. years BP, and was only

punctuated by brief periods of stability. Subsequently, the dunes were stable for

~2000 years before becoming active again between ~1000 and 500 cal. yr BP (similar

to findings north of the study area). They hypothesize that the increase in sand

supply as lake levels fell immediately following the Nipissing transgression most

likely accounts for the onset of the initial growth period, while later growth

(occurring ~ 3200, 2400, and 900 cal. years BP) is associated with intervals of higher

lake levels and wave destabilization of bluffs.

National Coastal Zone Management

In the early part of the twentieth century, states began recognizing the value

of the shoreline as both a natural resource and an economic commodity. In response

to the rapid development of coastal resources during this time, the United States

Congress enacted the Coastal Zone Management Act (CZMA). The CZMA had two

primary objectives: 1) the protection of natural resources within the coastal zone and

2) the management of coastal development to minimize loss of life and property
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caused by improper development, including the destruction of natural protective

features such as beaches and dunes (United States Legislature Coastal Zone

Management Act of 1972, Sec. 303). Following the enactment of the CZMA, all

coastal states (including Great Lakes states and island territories) were offered policy

guidance, financial resources, and legal tools as incentives to upgrade their capacity

for coastal zone management. By the early 1980’s most state programs had been

approved and implementation began thereafter (Figure 2-4). As of 1999, federal

funding for CZM was approximately $50 million dollars, with a 50% state or local

matching requirement for most programs (Hershman et al. 1999).

Under the CZMA, states determine the coastal zone boundary, key coastal

problems, the policies and laws that will address them, and the state and local

organizations to be involved in enforcement. The federal, state, and local

governments are all given roles in CZM with considerable flexibility given to defining

the extent of those roles, which has lead to many unique management programs

around the country (Hershman et al. 1999). Although there are specific objectives of

the CZMA, conflicting trends and policies are continually challenging the ability of

States to protect natural resources. States are under pressure to balance the need for

public access and recreation, the high economic value of coastal property, the

protection of private property rights, and the preservation of natural resources

(Bemd—Cohen and Gordon 1999).
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Twelve of the twenty—nine States with CZM programs have amended their

CZM program in the past two decades to increase the protection of beaches, dunes,

bluffs, and rocky shores (Bemd-Cohen and Gordon 1999). For example, several states

including Florida, Hawaii, Michigan, New Hampshire, New Jersey and North

Carolina have expanded CZM jurisdiction landward and extended inland setback

requirements. California, Maine, and New Jersey have all amended their CZM

programs to further limit development on dunes and bluffs, while Connecticut, North

Carolina, and South Carolina all added amendments to reduce the number of

shoreline protection structures built (Bemd-Cohen and Gordon 1999).

In addition to improving their policies, states also use a wide range of tools to

implement CZM. land acquisition, coastal zoning, permit programs, research, and

public education and awareness programs are common methods used in CZM

programs (Bernd-Cohen and Gordon 1999; Hershman et al. 1999). Most States have

also developed and/or incorporated digital technology to track permits; however no

States employ a database on coastal statistics or resources affected by permits or

policies (Bernd-Cohen and Gordon 1999).
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Figure 2-4 Map of the twenty-nine states with CZM programs approved by the federal government.

Illinois, the one state with approval pending. is currently seeking to reinstate their former program.

Sand Dune Protection & Management in Michigan

Nearly all of the studies mentioned earlier in this chapter (Cowles 1899;

Buckler 1979; Lichter 1995; Arbogast and Loope 1999; Loope and Arbogast 2000;

VanOort et al. 2001; Arbogast et al. 2002) noted the importance of lake Michigan

sand dunes for the unique scenic, recreational, ecological, and economic opportunities

they provide. This section begins with a brief description of those qualities which

increase the value of the dunes, to establish why they deserve and require legislative

protection. It will end with a summary of the current management scheme in place
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to mitigate the effects of ongoing development, as well as some of the challenges of

coastal zone management in Michigan.

Cowles (1899) was first to state the value of the dune habitat in the study of

plant succession and ecology, due to the dynamic and often extreme physical

conditions that exist there, including temperatures, sunlight, and ongoing wave and

wind action. The importance of sand dunes as habitat is evident by the several rare

plant and animal species found there, including the threatened plant species Pitcher’s

Thistle ( Czhlsium Pitcben) and the Piping Plover, a federally endangered bird species

that relies on the shoreline for nesting (lake Michigan Federation 1999). In addition

to the preservation of plant species, the vegetation found in and among the dunes is

an important dune building agent that often dictates the area, shape, and height of a

dune by trapping sand and altering surface roughness (Cowles 1899; Olson 1958c).

From a recreational standpoint the dunes contain many national, state, and

county parks that are enjoyed year-round by visitors (Figure 2-5; Arbogast et al.

2002). For example, P.J. Hoffmaster State Park in Muskegon County, MI attracts

nearly 500,000 visitors each year with miles of hiking and cross country ski trails. A

larger park like the Sleeping Bear Dunes National Lakeshore in Leelanau County, MI

draws an estimated 1 million visitors annually with a financial benefit estimated at

more than $39 million since its creation in 1970 (lake Michigan Federation 1999).

In addition to the revenue generated from tourism, the dunes are also highly

valued as a source of foundry sand. Since the early 1900’s lake Michigan sand dunes
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have been intensively mined, and in some cases completely destroyed, primarily for

use as foundry cores and molding sands in the automobile industry (Buckler 1979;

lake Michigan Federation 1999). Although severe restrictions had been placed on

the mining of coastal dune areas in other states, under the control of local

government, intensive mining continued on the shore of Lake Michigan with little

regulation (Buckler 1979). It was not until the middle of the twentieth century that

residents began to notice the disappearance of some of the highest and most

magnificent dunes, which had once been local landmarks, and in the 1970’s, public

outcry finally lead to the passing of the SandDunes Protection andManagementAct

in 1976 (lake Michigan Federation 1999).

Although Michigan’s SandDunes Protection andManagementActwas

initially enacted to regulate the mining industry, subsequently, concerns grew over

other developmental pressures on the dunes like recreation, silviculture, and

residential and commercial construction (Holt 2002). In response to the continued

destruction of the dunes from mining, and the added pressure of various other uses,

the act was amended in 1989 to include these activities (Michigan State Legislature

Acts No. 146 and 147, RA. 1989). At that time the Michigan State Legislature found

that:

(a) The critical dune areas of this state are a unique, irreplaceable, and fragile resource

that provide significant recreational, economic, scientific, geological, scenic,

botanical, educational, agricultural, and ecological benefits to the people of this

state and to people from other states and countries who visit this resource.
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(b) Local units ofgovernment should have the opportunity to exercise the primary

role in protecting and managing critical dune areas in accordance with this part.

(c) The benefits derived from alteration, industrial, residential, commercial,

agricultural, silvicultural, and the recreational use of critical dune areas shall occur

only when the protection of the environment and the ecology of the critical dune

area for the benefit ofthe present and future generations is assured (Michigan

State Legislature Acts No. 146 and 147, Public Acts of 1989).
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Figure 2-5 Map ofthe areas designated 'critical dunes' in Lower Michigan.
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At present Michigan has designated nearly 480 km of critical dunes (covering

nearly 32,000 hectares), 400 km of natural preserves, and 500 km of high risk erosion

areas along its shores (Figure 2-5; Bemd-Cohen and Gordon 1999). However, one of

the biggest imperatives of this legislation is that a permit is required before any of the

included activities can be carried out in an area designated as critical dunes (Holt

2002).

The Michigan Department of Environmental Qiality is the state agency that

administers all activities within critical dune areas. Within the MDEQ, management

responsibilities are shared by two separate branches. Sand dune mining is regulated

by the Office of Geological Survey, while all other matters concerning critical dunes

are handled by the land and Water Management Division (Michigan State Legislature

Act No. 451, Public Acts of 1994). Various means are used to administer CZM

including regulatory and planning tools (permits and restrictions), direct land

management, restoration and acquisition, investment restrictions and incentives,

education outreach programs, and mandated research (Bemd-Cohen and Gordon

1999). At the forefront of sand dune management is a permit program that prohibits

any new development or modifications in critical dune areas on slopes measuring

33% or greater and on the first lakeward facing slope, and requires a variance for

projects affecting slopes greater than 25%. Further, an environmental impact

statement is required for all special use projects such as the building of condominiums
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or subdivisions (Holt 2002). With the exception of sand mining, the overall

effectiveness of this program has never been evaluated.

Digital Elevation Data: Collection, Processing, 8: Use

Nordstrom et al. (1990) concluded that the management of dunes everywhere

should not be based on subjective assessments, using words like ‘fragile’ and

‘vulnerable’ that have no quantitative meaning to describe a dune system, but rather a

scientific approach is both possible and necessary. In Michigan, the key to achieving

a more objective assessment may lie in integrating the use of remotely sensed data,

such as digital slope and elevation models, with the current sand dune protection and

management program. Remote sensing provides spatially dense quantitative data over

regional scales that, if sufficiently accurate, would be invaluable in determining and

understanding patterns and magnitudes of dune development (Sallenger et al. 2003).

The importance of accurately characterizing topography is well established in

geomorphological research (Krabill et al. 2000; Wise 2000; Spinney 2001; Bowen and

Waltermire 2002; Woolard and Colby 2002; Sallenger et al. 2003; White and Wang

2003; Barber and Shortridge 2004; Nagihara et al. 2004; Barber and Shortridge 2005).

Two areas where topographic models have proved to be an invaluable resource

include quantifying beach morphology and shoreline mapping (Krabill et al. 2000;

Woolard and Colby 2002; Sallenger et al. 2003; White and Wang 2003) and drainage
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network and watershed delineation (\Nise 2000; Spinney 2001). Gathering this data

using traditional means, such as ground based surveys or photogrammetry, can be

prohibitively time consuming, expensive, and sometimes inaccurate based on

environmental conditions (Sallenger et al. 2003). So in response to the need for

reliable and accessible topographic data, in the mid to late-nineties the USGS began

developing a seamless mosaic of the best available elevation data for the conterminous

United States. By the year 2000, work was complete on the National Elevation

Dataset and 30-meter raster elevation files were available for download free of charge

from the USGS website (Gesch et al. 2002).

Over the past few years, however, the shift has been toward models that

require a more detailed and Spatially explicit representation of process, such as

determining the rate shoreline erosion and the volumetric change of a coastline

(Woolard and Colby 2002; Sallenger et al. 2003; White and Wang 2003), and this has

created the need for greater quality topographic data (French 2003; Barber and

Shortridge 2004). Lidar is a technology that can produce high-resolution elevation

datasets; it is also the technology that may be able to meet that need. Several

collection methods as well as digital elevation products exist, and selecting one may

depend on the application, purpose and/or availability to the end user. Lidar and

NED are possibly the two most common sources of elevation data available yet they

are considerably different from one another.
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The National Elevation Dataset

NED is a Seamless elevation model produced and distributed by the USGS that

covers the United States at a 1 arc second (approximately 30-meter) resolution for

most areas. It is a compilation of many data sources, deemed “best available”,

including 7.5 minute, 15-minute, 2-arc-second, and 3-arc second DEMs that, in some

cases, date back to 1978. Further, the production method, horizontal datum, map

projections, and elevation units of the initial elevation data may vary within the

dataset (Smith and Sandwell 2003).

The USGS has used four primary methods of producing the underlying DEMS

including: 1) manual profiling, 2) automatic correlation, 3) contour-to-grid

interpolation, and 4) integrated contour-to-grid interpolation. Each method uses a

different combination of source materials and production methods resulting in varied

data quality, artifacts, and accuracy. A DEM is categorized Level 1 or Level 2 based

on the way it was produced (Hodgson et al. 2003). Level 1 DEMS are typically older

and created using automated correlation, while Level 2 DEMS are derived from

manual profiling of contours (1:24:000 scale digital line graphs) or aerial photography

and have higher accuracy specifications (Shortridge 2003).

During assembly, procedures to remove production artifacts and minimize

elevation discrepancies at the transition between different sources are used to

improve the quality of the dataset. Every two months NED is updated and any new
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source DEMS that have become available are incorporated, which typically means

replacing the oldest and least accurate source data (Gesch et al. 2001; Gesch et al.

2002). NED can be downloaded free of charge or ordered on hard media for the cost

of reproduction from the NED data distribution system on the USGS website.

Spatially referenced metadata included with NED allows users to calculate

accuracy statistics based on source DEM characteristics such as resolution, age, level,

contour interval, and production method (Gesch et al. 2002). While the USGS

encourages the use of Level 2 DEMS for surface modeling, there is not a stated

accuracy standard for parameters such as slope, aspect, and drainage (Hodgson et a1.

2003). Further, when using an elevation dataset for a specific site or application and

in regions with varying terrain or vegetation, error may differ (Bolstad and Stowe

1994). Investigations ofNED include error assessments of the elevation surface and

its impact on the derivative slope and aspect surfaces (Bolstad and Stowe 1994;

Holmes et al. 2000; Gesch et al. 2001). More recently, studies have compared the

accuracy ofNED to that of lidar in areas with varying relief during leaf-on conditions

(Hodgson et al. 2003) and for surface hydrologic modeling (Hodgson et al. 2003;

Barber and Shortridge 2005). These studies may provide insight into the strengths

and weaknesses of the different production methods ofUSGS DEMS, and how an

older dataset with a coarser resolution compares to newer, high resolution lidar

elevation data.
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Bolstad and Stowe (1994) compared elevation, slope, and aspect derived

from a USGS Level 1 DEM to that of a DEM developed using a proprietary stereo-

correlation technique developed by a private firm. The Level 1 DEM used was created

using automated Stereo-correlation of a l:40,000-scale leaf-off aerial photographs with

a Gestalt Photomapper (GPM) and has a reported vertical accuracy of 7 In (target

RMSE) with a maximum acceptable RMSE of 15 m. The study compared the DEM

elevation values to those of 40 “ground-truth” values collected from National

Geodetic Survey (NGS) control points and carrier-phase GPS surveys. Slope values

were calculated as a percent using the Horn algorithm, a third-order finite difference

method, and compared to slope values measured using a hand-held clinometer.

Significant findings from this study include: 1) the USGS DEM meets the

reported accuracy for Level 1 DEMS, with the largest errors found in areas exhibiting

the highest and lowest elevations for the study area, 2) on average, the USGS DEM

under-estimated elevation, 3) a positive correlation between slope errors and slope,

indicates larger errors on steeper slopes. Areas with the steepest terrain are typically

forested and, using photogrammetric techniques, fewer postings are collected in

forested areas. When interpolation is used to calculate elevation values it tends to

smooth microtopography. Bolstad and Stowe (1994) believe that this may be the

reason larger slope errors are associated with more rugged terrain . Further, when the

terrain is more varied with steeper slopes, field collection methods may be hampered
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due to stem obstruction, understory vegetation, and other factors, which also lend to

larger slope errors between sources (Bolstad and Stowe 1994).

Holmes et al. (2000) used geostatistics to evaluate the distribution of error in a

USGS DEM in relation to data collected using a GPS with the intent of determining

the affect of DEM error on a landslide modeling application. The USGS DEM used in

their study is a Level 2 dataset produced by digitizing contours, either

photogrammetrically or from existing topographic maps. In Level 2 DEMS, the

maximum allowable error (RMSE) is up to one half of the contour interval, in this

case 5 In. Their study area includes about 1000 m of relief, including floodplains, low

rolling hills, and mountains.

The researchers (Holmes et al. 2000) did not find a statistically significant

correlation between DEM error and terrain attributes, including slope, elevation and

roughness. The strongest correlation value was .325 between slope and error. They

report that the USGS Level 2 DEMS are generally accurate given the reported error

estimates. However, they conclude that accounting for error can greatly enhance the

value of an environmental model given that the error in an elevation surface can

compound in derivative measures such as slope, aspect, and flow accumulation.

The Collection of Lidar Data

Lidar is an advanced remote sensing technology that is widely used to collect

high-resolution terrain data (Lloyd and Atkinson 2002). Mounted to a small aircraft,
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the lidar instrument uses a fast-firing laser light (typically between 10,000 and 50,000

hertz) to transmit a light pulse to a target on the ground. The round-trip travel time

of the pulse and the arrival of the pulse reflection are recorded by the sensor’s

receiver (Bowen and Waltermire 2002; Lefsky et al. 2002; Barber and Shortridge

2004). In 1999, at least 5 companies manufactured lidar systems and roughly 40

private firms offered lidar data collection services (Baltsavias 1999).

 

Direction of Flight

(parallel to beach)   
 

Figure 2-6 Schematic of lidar data acquisition from a twin engine aircraft (modified from Woolard and

Colby 2002).

An outline of the ground surface can be captured when the vertical distance

between the sensor, located in a level-flying aircraft, and the Earth’s surface is

repeatedly measured along a transect (Lefsky et al. 2002). The laser scans the terrain
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surface perpendicular to the flight path, gathering up to five measurements per square

meter, although the density will vary depending upon the local topography and the

scan angle (Adams and Chandler 2002; French 2003). Lidar can quickly gather

spatially dense elevation data within a survey swath hundreds of meters wide

(Woolard and Colby 2002; Sallenger et a1. 2003; Barber and Shortridge 2004). For

coastal mapping applications, the common aircraft altitude is around 700 m, with an

individual swath width of roughly half of the altitude (Figure 2-6). The rotating

mirror has an elliptical swath pattern with an approximately 30° scan angle (Woolard

and Colby 2002; Sallenger et al. 2003).

The lidar system is typically used in combination with instruments for locating

the source of the return signal in three-dimensional space (Baltsavias 1999; Lefsky et

al. 2002). These instruments include a differential Global Positioning System (dGPS)

receivers to obtain the position of the platform, an Inertial Navigation System (INS) to

monitor the pitch, roll, and altitude of the aircraft, and angle encoders for the

orientation of the scanning mirrors (Baltsavias 1999; Adams and Chandler 2002;

Lefsky et al. 2002; Sallenger et al. 2003; Barber and Shortridge 2004). When

combined, they may be referred to as an Airborne Laser Scanning (ALS) system. Since

an AIS has the potential to determine the 3—D location of the target, it is commonly

used for terrain mapping (Adams and Chandler 2002; Barber and Shortridge 2004).

Several application specific laser scanning systems have been developed in recent

years including the US Army Corps of Engineers’ (USACE) Scanning Hydrographic
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Operational Airborne Lidar Surveying (SHOALS) system for surveying bathymetry

and NASA’S Airborne Topographic Mapper (ATM) for global climate change

applications (Sallenger et al. 2003).

Post-Processing of Lidar Data

The data returned using an ALS system is a point cloud represented by a series

of xyz data points, which describes the location of the observations in three-

dimensional space (Figure 2-7). The elevations, or z-values, associated with each

point can represent a myriad of features including the ground, buildings, clouds, the

canopy, or anything else that the laser pulse may come in contact with (Lefsky et al.

2002; Barber and Shortridge 2004). Although lidar appears to be useful in obtaining

data points in leaf- on conditions, a closed canopy can result in significantly fewer

ground hits and lower accuracy. Ackerman (1996) estimates an overall penetration

rate of 24-29% for coniferous forests and 22-25% for deciduous forests during the

growing season. While Cowen et al. (2000) report that in canopy closures of 30 -

40%, 80-90 % of lidar pulses will reach the ground, but when forest cover increases to

80-90% the number of bare ground hits Significantly decreases to 10%.

For use in applications that require bare-earth results, data must undergo post-

processing to remove points returned from vegetation, buildings, and any other above

the ground component (Lefsky et al. 2002). This process involves a combination of

highly automated processes, typically filtering algorithms, with some manual
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correction (Kraus and Pfeifer 1998; Bowen and Waltermire 2002; Lefsky et al. 2002;

Barber and Shortridge 2004). Less is known about the affects of a dense understory

on the quality of the data set. Research shows that traditional methods of removing

points that hit trees and buildings may not work with vegetation below the canopy

and a systematic vertical shift may be more appropriate (Pfeifer et al. 2004).

When data are collected by a contractor or engineering firm, algorithms and

programs used in post-processing are generally proprietary and vary between firms

(Bowen and Waltermire 2002; Lefsky et al. 2002; Barber and Shortridge 2004). Firms

are often reluctant to describe their methods in detail and this can present problems

for scientists using the data for research (Lefsky et al. 2002). Methods commonly used

include some form of linear prediction and/or data segmentation. Linear prediction

techniques use knowledge of the terrain to classify points based on their z-values.

Kraus and Pfeifer (2001) developed a method they call robust interpolation or robust

linear prediction. This technique combines a filtering algorithm with surface

interpolation. It uses the residuals, or vertical distance between point values to the

surface, to assign a weight to each z-value. The surface is then re-interpolated using

the weights and if the points fall outside of a certain value, they are thrown out and

the process repeated until all gross errors are eliminated. Lee and Younan (2003)

further modified the work of Kraus and Pfeifer (2001) combining linear prediction

with adaptive processing to derive bare earth points in vegetated areas. Data

segmentation, on the other hand, separates entire features from ground points as a

39



whole instead of point by point, by generating texture maps to identify the comers of

buildings and trees (Barber and Shortridge 2004).

 

  

   

 

  
 

 

 

330 r

5

3
370 g

2‘

r u"

E

g360

9

2"

N  
    

/
/
/
/
/
/
/

 
0‘9

  
 

Figure 2-7 Representative illustration of the three-dimensional and

vertical distributions of lidar returns within a 25—m footprint (from

Lefsky et al. 2002).

A second step in post-processing, which is commonly performed by the user of

the data, is interpolation to a raster grid. The data collected via lidar, being a set of

irregularly spaced points, requires interpolation if an elevation surface or digital
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elevation model is to be derived (Lloyd and Atkinson 2002). Research, typically based

on cross-validation of the data, shows that there is some discrepancy on which

interpolation method of the many available is most accurate. Inverse distance

weighting (IDW), ordinary kriging, and universal kriging have proven to result in a

relatively high degree of accuracy in the interpolated surface (Lloyd and Atkinson

2002; Woolard and Colby 2002; Rosso et al. 2003).

The interpolation method that will work best is usually dependant on the data

itself and terrain characteristics. If large voids exits or the data is generally sparse

interpolation with kriging may be the more suitable method (Lloyd and Atkinson

2002; Barber and Shortridge 2004). However, in most cases the simpler IDW method

is appropriate and may even be preferable (Rosso et al. 2003; Barber and Shortridge

2004). Although the point data may be carefully edited, once interpolated, it is

important to consider that investigations into using lidar for surface modeling show

that features such as elevated roadways, bridges, and railroad grades may remain

leaving large Sinks in the dataset (Barber and Shortridge 2004; Barber and Shortridge

2005).

The Application of Lidar Data

As previously mentioned, the primary disadvantage of ground surveys is the

large time and labor expense, while the alternative photogrammetric methods are

inaccurate when the ground is under a forest canopy and in areas of low relief and
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texture, like that of wetlands and coastal dune systems (Lefsky et al. 2002). Lidar is

generally regarded as a more accurate, more efficient, and less expensive collection

method for the creation of DEMS than these conventional methods (Hill et al. 2000;

Bowen and Waltermire 2002; Lefsky et al. 2002; Woolard and Colby 2002; Sallenger

et al. 2003; Barber and Shortridge 2004). Published accuracies for lidar data range

anywhere from 5 cm to l m vertically, with some consensus between 15 and 20 cm,

and l m to 2 m horizontally (Hill et al. 2000; Bowen and Waltermire 2002; Woolard

and Colby 2002; French 2003; Sallenger et al. 2003; Barber and Shortridge 2004;

Davenport et al. 2004). The cost of obtaining lidar data ranges from $500 to $1500 per

square mile, which is substantially lower than traditional methods (Bowen and

Waltermire 2002; Sallenger et al. 2003).

Given the benefits of using lidar data, its use has been and continues to be

examined for many purposes. In terms of environmental applications, Lefsky et al.

(2002) broadly divide lidar research into three categories: 1) remote sensing of ground

topography, 2) measurement of the three dimensional structure and function of forest

canopies, and 3) prediction of forest stand attributes. In addition to ecosystem

management there are also several commercial uses of lidar including

telecommunications, transportation, and urban development, all ofwhich use lidar to

map landscape components including buildings, infrastructure, topography, and

vegetation (Hill et al. 2000). While these categories may fall short of describing the
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actual extent to which lidar technology has been applied, the remote sensing of

ground topography alone covers numerous scientific fields and applications.

Specific topographic applications of lidar data that have been examined

include hydraulic modeling and watershed delineation (Spinney 2001; Bowen and

Waltermire 2002; French 2003; Barber and Shortridge 2004), analysis of the

volumetric change and erosion of the coastal zone (Krabill et al. 2000; Adams and

Chandler 2002; Woolard and Colby 2002; Sallenger et al. 2003; White and Wang

2003), near shore bathymetry and seafloor mapping (Irish and White 1998; Irish and

Lillycrop 1999; Guenther et al. 2000), mapping the morphology and distribution of

landforms (Rango et al. 2000; Nagihara et al. 2004), land cover classification (Jelaska

et al. 2003; Rosso et al. 2003; Davenport et al. 2004), and habitat management (Blott

and Pye 2004).

One of the most prevalent topics in the literature is coastal zone mapping. The

coastal zone is the zone of interaction between land and ocean where the

hydrosphere, lithosphere, and atmosphere are in constant interaction with one

another (White and Wang 2003; Gabler et al. 2004). These interactions make it one

of the most dynamic environments, operating on a variety of time scales ranging from

a few hours to hundreds of years (Krabill et al. 2000). The US. coastline stretches

more than 20,000 km in length, making remotely sensed data an invaluable resource

for monitoring the constant shifts and changes occurring there (Krabill et al. 2000;

Sallenger et al. 2003). Further driving the need for research is the heavy
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anthropogenic pressure placed on this margin when you consider that over half of the

US. population resides there and the heavy economic cost of severe erosion events

(Nordstrom et al. 1990; Bernd-Cohen and Gordon 1999; White and Wang 2003).

Coastal erosion is a topic well suited for the spatially dense lidar data,

demonstrated by the ALACE (Airborne Lidar Assessment of Coastal Erosion) project,

a joint venture of NOAA’S Coastal Services Center, the USGS Center for Coastal

Geology, and NASA. Using NASA’S ATM, annual surveys of the Atlantic, Pacific,

Great lakes, and Gulf of Mexico shorelines were conducted between the years of

1997 and 2000 primarily to examine and measure coastal erosion (Figure 2-8) (Krabill

et al. 2000; Lefsky et al. 2002; Sallenger et al. 2003). In a field experiment called

Sandy Duck, researchers used an extensive set of ground measurements to verify that

the data collected by the ATM was fit for coastal change applications. The researchers

found that the accuracy of the data was sufficient to determine the magnitude of

beach erosion following a severe Storm event (Sallenger et al. 2003). A similar study

was conducted on Assateague Island off the coast of Maryland, to measure the net

change in beach morphology between the fall of 1995 and 1996. With the exception

of areas affected by overwash, the measurements collected by the lidar system were

comparable to those collected using ground survey techniques. Finding a vertical

RMSE of 10 -20 cm, this study shows that lidar data can represent detailed beach

morphology (Krabill et al. 2000).
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While most coastal studies, like the ones described above, have focused on the

validation of lidar as a mapping tool or its ability to profile erosion rates and trends,

Woolard and Colby (2002) used lidar to assess the volumetric change in sand dunes

between 1996 and 1997. They concluded that lidar (interpolated to a 1-2 m

resolution grid using IDW) is able to accurately represent the topographic variability

found on a dune covered landscape and provides sufficient information to analyze the

net sediment change year over year. They suggest that their methods could be used to

compare volumetric change from season to season in order to better understand the

changes taking place in a dune system.
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Figure 2-8 Lidar representation of pre- and post hurricane beach topography (right) for a transect

on Topsail Island, North Carolina (left) (from the ALACE project in Lefsky et al. 2002).

White and Wang (2003) performed a similar study on barrier islands in North

Carolina. Using lidar data from nearly one hundred study sites over three time
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periods (1997-1998, 1998-1999, and 1999-2000), and grid resolutions ranging from 1

In to 5 111, they were able to assess morphologic changes in the barrier islands from

year to year and at different resolutions. They were also able to relate the differences

in sediment volume to contrasting management techniques (developed, undeveloped,

and nourished). The authors concluded that the increase in development and

different management practices greatly affect the coastline’s response to storm events

from year to year. While both of these studies confirm the value and suitability of

using lidar as a tool for evaluating and managing the coastal zone, there is Still a need

to study the use of lidar derivatives to further characterize topography in this setting.

The Comparison of Lidar DEMS to NED DEMS

Research comparing USGS Level 1 and Level 2 DEMS to lidar datasets is

limited. Two such published studies were done by Barber and Shortridge (2005) and

by Hodgson, Jensen et al. (2003). Barber and Shortridge (2005) initially intended to

compare a 30-m NED dataset to a corresponding lidar dataset for two watersheds in

North Carolina. However, the USGS had used lidar data in an update of the DEM for

the study area, so a comparable 30-m dataset was obtained from a mosaic of USGS 7.5

minute quadrangles and used in lieu of the NED data. The second study, performed

by Hodgson, Jensen et al. (2002), compares elevation data collected by lidar during

leaf-on to that of both Level 1 and Level 2 DEMS in relation to slope and land cover.
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Barber and Shortridge (2005) were interested in determining whether the use

of lidar over traditional data collection methods improved terrain representation and

hydrologic modeling. In their study three areas of investigation were considered

including: 1) the dense forest cover that is often associated with riparian

environments (although all survey methods may be affected by this, lidar is especially

sensitive to heavily vegetated areas), 2) production artifacts that are present in any

elevation dataset and are of particular challenge to hydrologic modeling; and 3) spatial

scale or the difference in resolution between a lidar-based DEM and a medium-

resolution datasets. They presented three “testing challenges” to resolve the

differences between the two sets of elevation measures in relation to the three areas

of investigation, considering whether lidar elevations were more similar to the USGS

elevations in upland areas, whether lidar surfaces are hindered by manmade

obstructions, and whether the differences between lidar and USGS elevations were a

matter of spatial resolution as opposed to production methods.

The authors (Barber and Shortridge 2005) found that post-processing of the

lidar data, in this case, was successful in removing man-made obstructions from the

data set, and although there were numerous sinks, which are a reflection of non-

ground hits, they were very small in area. Findings on the issue of scale versus source

were less conclusive and the authors determined that this is likely dependent upon

the terrain derivative in question. Slope, for example, is greatly affected by resolution

and not as affected by source. The paper concludes that the while the benefits of

47



using lidar rather than DEMS like NED are marginal, some operations may be

sensitive to resolution and therefore lidar may be a better choice, particularly in areas

of low relief (Barber and Shortridge 2005).

The aim of the research conducted by Hodgson et al. (2003) was to determine

the overall accuracy of elevation and slope measures of four different DEMs,

including one derived from lidar and two from NED (Levell and Level 2). One

further goal was to establish if land cover and terrain variability impacted the

accuracy of those measures. Elevations in their study area range from 44 to 136 m,

s10pes range from 0° to 14°, and land cover is primarily deciduous and pine forest

(60%). Sampling took place along 23 transects ranging in length from 100 to 840 m,

and over 1,470 elevation points were collected using GPS and conventional surveying

techniques. Slope was computed as the degree of slape between adjacent transect

points, with the average distance between points being 6.88 In. Land cover data was

collected at 1,195 of the survey points.

Of the four elevation surfaces studied, only the USGS Level 2 DEM fell within

its reported accuracy range of 1 to 2 111. Although, the accuracy of the lidar data

surpassed that of the Level 2 DEM, it more than quadrupled the RMSE that is

generally advertised for the product (93 cm versus 15 to 20 cm). In forested areas the

error jumped to 113 - 122 m, keeping in mind that the data was collected during the

growing season. The researchers found that although elevation errors were less
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related to Slope than they were to land cover class, error and slope were positively

correlated. However, they conclude that if the environmental application in question

is in an area of rugged terrain, greater elevation errors should be expected. Further,

the authors recommend using either a lidar or USGS Level 2 DEM over other

elevation products if an application requires accurate slope measures but, based on the

topography of their study area, are unable to provide evidence that either product is

suitable for such uses (Hodgson et al. 2003).
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III. STUDY AREA

The study area for this investigation is a 300-meter wide Strip of land,

approximately 3.25 sq km in total area, spanning the shoreline of lake Michigan in

lake Township (T68, R20\7V), Berrien County, MI (Figure 3-1). Berrien County marks

the southern reach of the eastern shore of Lake Michigan in Michigan and contains

over 1,600 hectares of the state’s 32,000 hectares designated crin'cal dunes. Of those

1,600 hectares, approximately 900 are in lake Township (MDEQAtlaS of Critical

Dunes 1989). Also located within the township are Warren Dunes State Park,

spanning a little more than 4 km of the shoreline, and Weko Beach recreation area.

land use in the rest of the township is primarily residential with some

industrial development, most notably the Cook nuclear power facility. Combined

there are approximately 340 taxable parcels of land on record, with at least some

portion of the lot contained within the study area. Although the SandDunes

Protection andManagementAct (Michigan State Legislature Act No. 451, Public Acts

of 1994) allows the local unit of government to assume management of the dunes, at

this time the MDEQmanages all of the critical dune land in Lake Township.
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Figure 3—1 Map of the study area, Lake Township, Berrien County, MI.

History

Throughout the Pleistocene, Michigan’s landscape was repeatedly overrun by

glacial ice with initial ice flow into the region controlled by the local geology. In the

southern, lowland region of the Great lakes, which includes the Lake Erie and Lake

Michigan basins and most of the Huron and Ontario basins, the ice was channeled
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over top weaker sedimentary rocks into bedrock valley systems already present in the

region (Larson and Schaetzl 2001). Subsequent ice flows into the area followed a

Similar path and, therefore, a highly lobate front developed each time ice advanced,

scouring and further incising the Great lakes’ basins (Eschman 1985; larson and

Schaetzl 2001). Present day lake Michigan fills the large depression that was heavily

eroded by the multiple ice advances and retreats, and last occupied by the lake

Michigan lobe of the Laurentide ice sheet (Eschman 1985).

Early in the history of geomorphic studies on the coastal dune complexes of

lake Michigan, researchers (Dow 1937; Scott 1942; Olson 1958d) recognized the

relationship between the elevation of the lake and the adjacent landforms.

Throughout the Pleistocene and into the Holocene, the level of Lake Michigan has

fluctuated in response to ice advances, retreats, and isostatic changes in elevation.

Some have even reported differences of as much asl8 m higher and 61 m lower than

the mean present day lake level of 177 m (Chrzastowski and Thompson 1992). On a

smaller scale, lake level may also vary from year to year depending on temperature

and precipitation and over time, patterns develop given that any year’s water balance

is dependant upon that of the preceding years (Olson 1958d). Both Dow (1937) and

Scott (1942) hypothesized that fluctuations in lake level were the dominant control of

the sand supply to the dunes on the eastern shore of Lake Michigan. Olson (l958d)

further expanded this idea, and developed a cycle of dune development controlled

primarily by the rising and falling of the lake level.
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Although Olson’s (1958d) work remains the foundational model of foredune

development in the region, work by Arbogast and Loope (1999) and Van Oort et a1.

(2001) provided evidence in the form of radiocarbon dates from buried soils within

the dunes that the evolution of the massive dunes located atop lacustrine sediments is

directly linked to the historical lake level curve. Prior to this research, Dorr and

Eschman (1970) and Eschman (1985) hypothesized that major dune development

along the lake largely occurred during the Nipissing Phase of the Great Lakes (~ 6000

to 4000 years B.P.) when lake levels peaked at 184 In. More recent studies of Lake

Michigan dune fields (Arbogast and Loope 1999; Loope and Arbogast 2000; VanOort

et al. 2001; Arbogast et al. 2002), however, provide evidence that dune building began

during that high stand, but that the most significant growth occurred later at episodic

intervals. Van Oort et al. (2001) studied large parabolic dunes at Van Buren State

Park approximately 60 km north of the study area, and their results also indicate that

there were several periods of dune growth marked by intervals of Stability when soils

developed. A rapid decline in lake level following the Nipissing transgression led to

an increase in sand supply and to a dominant period of dune building between ~ 4000

and 2500 years B.P. This time of rapid growth was followed by a long period of

Stability sufficient for soil development until the dunes remobilized again between

1140 and 790 cal. yr B.P.

In studies conducted elsewhere on the eastern shore it seems that while

receding lake levels account for the onset of the initial growth period, later periods of
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dune growth (~ 3200, 2400, and 900 years B.P.) are often associated with intervals of

higher lake levels (Figure 3-2; Arbogast et al. 2002). One hypothesis is that the

presence of a broad beach and foredunes during lower lake levels protect the large

parabolic dunes and a narrow beach and the absence of foredunes during high lake

levels subject the dunes to increased wave erosion (VanOort et al. 2001). Given the

Similarities of dunes in Van Buren State Park and those found in the study area, this

research can be used to infer a history of the large parabolic dunes found in the study

area.
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Figure 3-2 Graph showing the residual lake level curve of Lake Michigan as determined by Baedke

and Thompson (2000), plotted with the historical average. A. marks the dominant time period of

dune building along the eastern shore, while a, b, and c are used to note times of dune growth

associated with higher lake levels (Arbogast et al. 2002; modified from Baedke and Thompson 2000).
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Dune Topography

Dunes within the township are classified as barrier dunes by the MDEQ

(1994), a term first defined by the MDNR (1976) and later refined by Buckler (1979)

to describe an assemblage of dunes that form a physiographic boundary marked by

great relief between the aesthetically pleasing shore zone and the interior. In more

specific terms, Arbogast et al. (2002) noted that the dunes along the Lake Michigan

shoreline can generally be divided into two universal categories 1) foredunes (~ 5m

high), which are relatively small sublinear dunes, and 2) large dunes (> 20 m high),

which tend to be parabolic in form and occur within many well-developed dune

fields along the lake. The largest dunes in the study area are parabolic dunes over

50 m high. Other dune features that exist within the study area include but are not

limited to blowouts, dune flats, and interdune lowlands (Buckler 1979). The margin

of the study area is lined by small hills and low ridges of glacial till that are part of the

Lake Border morainic system (Figure 3-3; Schaetzl 2006). Dunes are absent in areas

where moraines approach the lake or where the shore is composed of glacial till or

outwash (VanOort et al. 2001).

Where not altered by development, foredunes, parabolic dunes, blowouts,

dune flats, and interdune lowlands are found throughout the study area and give dune

fields the distinction of having very diversified topography. Elevation in Lake

Township ranges from a low of 176 m at the shoreline to a high of 233 m on the
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largest dunes. The mean elevation of the study area is near 190 In, with most heights

not varying more than 10 m from the mean (0 = 9.04 m). The gradient ranges from

flat (0% or 0°), typically near the shore, on dune flats, and interdune lowlands, to

>300% (70°) on the steepest slopes (all values were calculated using Arc Info and lidar

elevation data).
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Figure 3—3 Physiography of Berrien County as depicted in the Soil Survey of Berrien County. The

inset highlights the landforms found within and around the study area including the dunes, Lake

Border morainic system, and glacial lake plain that underlies most of the study area (Larson 1980).

Climate

A unique characteristic of coastal locales to the east of Lake Michigan is a

maritime influence on climate despite the continental location. In these areas,

climate is classified as mixed marine, continental, whereas areas further inland are
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classified as humid continental, hot summer, which is noted for its large range in

temperature (Eichenlaub et al. 1990; Gabler et al. 2004). Average annual

temperatures for the area range from about -5° C in January to 21° C in July, and

annual precipitation totals are near 81 cm (Eichenlaub et a1. 1990). The closest

coastal weather station to the study area is located approximately 20 km to the north

in Benton Harbor, MI. In the 30-year period from 1951 to 1980, average daily

temperatures ranged from — 4° C in January to 23° C in July. The annual precipitation

average during this time was 92.7 cm with a little more than half falling as rain in the

spring and summer (Andresen et al. 2005).

Winds are multidirectional and follow a seasonal pattern, with winter and

summer winds being northwesterly and southwesterly, respectively (Eichenlaub et al.

1990). Near the study area, south-south-westerly winds tend to dominate and

average wind speeds are near 10 mph (Andresen et al. 2005). Prevailing westerly

winds coming off the lake are a key factor in the development of large sand dunes on

the eastern and southern shore of the lake (Cowles 1899; Gabler et al. 2004). Climate

reconstruction during the time of major dune building episodes shows both a slight

decrease in precipitation and an increase in seasonality from that of the early

Holocene, however, when compared to climate reconstruction elsewhere in the

region, this climate change is negligible (Davis et al. 2000).
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Land Use / Land Cover

According to the most recent available data (MDNR land use / land cover

(LULC) classification of 1978), LULC in the study area includes areas of deciduous

forest (code 41), residential (code 11), transportation, communication and utilities

(code 14), and barren land (code 7) (level 11 categories). These classifications are

based on the dominant LULC type in an area no smaller than one hectare.

An on the ground inspection of LULC classes at individual sample sites also

revealed areas of dune grass and mixed forest including pines, however, there was no

attempt to determine whether or not these areas met the minimum mapping unit of

one hectare. Further, the limited width of the study area from the shore (300 m)

combined with the selection of 46 sample points from within that area greatly limited

the number of possible LULC classifications found at any of the sample locations.

In general, the distribution of land cover types moving from the shore inland

is beach, barren land (including sand other than beaches), and forest (both hardwoods

and pine), which is the dominant land cover on many of the largest and most well

established dunes. land use outside of the state park and recreation area includes

many single family homes, which are scattered throughout, and a large nuclear power

facility located in the northern half.
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Soils

The predominant soil series within the study area is Oakville fine sand, which

is found primarily in forested dune areas. A narrow margin of gently sloping beach

stretches along the coast with projections of dune land extending back into the

forested areas (Larson 1980). Areas mapped as beach remain in the swash zone and

are repeatedly overrun by wave action. The primary use of the beach is recreation and

that, combined with the absence of notable relief, made the areas mapped as beach an

unfavorable choice for sampling.

The Oakville series corresponds with the deciduous forest land cover and

developed areas (mainly residential). The Oakville series is well drained with rapid to

very rapid permeability and weakly developed with A / E / B / C horizonation. In

some areas, this soil is prone to instability and its best use is for woodland and wildlife

habitat. In those places where it has been used for building construction, slope

instability can be controlled with retaining structures (Larson 1980). Further, when

compared to areas mapped dune land, in places where Oakville is found, it is

generally safe to assume that the soil is older than its bare sand counterpart and has

moderate to fairly stable (slopes < 18%; Arbogast 2004).

The sediment found in areas classified as dune land was derived largely from

glacial drift and is composed chiefly (~90%) of quartz sand, which is extremely

resistant to erosion (Santer 1993). Due to the sorting ability of wind, the dune sand is
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remarkably uniform in size when compared with beach sand. The sand is still

actively shifting and has little to no protective vegetation cover and, therefore, soils

are yet to develop (Larson 1980; Santer 1993). Vegetation where present is primarily

dune grass with some trees and woody shrubs. In the areas with stabilizing

vegetation, it is likely too recent for a soil profile to develop (Larson 1980).
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IV. METHODS

The methods used in this study are designed to determine which digital terrain

attributes, or combination of attributes, when used in a linear regression model will

most closely predict true slope. Further, I will use data from two different sources,

lidar and NED, to determine whether the source of the data influences the outcome of

the model. My hypothesis is that lidar, when used in conjunction with calculated

slope and land cover, will more accurately predict true slope than a model that uses

NED and the same variables.

The first steps toward answering my research questions and testing my

hypothesis are the collection of field data, primarily slope, and processing of digital

data, including elevation, slope, and land cover. Once prepared, variables from each

data set will be used in the design of multiple regression models. This chapter begins

with an account of the methods used to collect field data, followed by a description of

each digital data set and its preparation. Once this discussion is complete, I will

conclude with an overview of multiple regression.

Collection of Field Data

Perhaps the most important variable in the regression equation is the set of

observations (or the sample) that is used to construct the model. Generally a large
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sample size representative of the entire population creates an equation that is more

stable or replicable across samples from that same population (Osborne 2000). While

there are many different opinions on what number of observations is the appropriate

amount for creating a model, several authors (Park and Dudycha 1974; Cohen and

Cohen 1983; Tabachnick and Fidell 1996) agree that the size of the sample should be

based on the number of independent variables used. The sample size used in this

research is 46, which is a small number by some standards, but based on the literature

should be sufiicient to create a model using up to three predictor variables

(Tabachnick and Fidell 1996; Osborne 2000).

Sites selected for field sampling needed to accurately represent the entire study

area, which includes everything from expanses of level ground to near vertical slopes,

but at the same time be suitable for the purpose of this study (to predict slope). Prior

to entering the field 100 sample points were generated using a random point

generator in Arc Map. Once in the field, a point was discarded if it was not accessible

due to property rights or terrain conditions, such as dense vegetation combined with

steep slopes, too close to the water line (in the swash zone), or within 5 meters of

another sampling point.

Property rights were a much bigger issue than expected, specifically with

respect to private roads that limited access. As a result I was unable to select points

distributed over the entire study area. Given the field limitations encountered, I was

ultimately able to sample 46 sites. At each of these sites, I collected three terrain
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attributes: slope, land cover, and elevation. Slope is the dependant variable in the

multiple regression model, while elevation and land cover were collected only for

assessing the accuracy of their respective digital data sets.

Figures 4-1 and 4-2 are maps showing the locations of the sample points in the

northern and southern extents of the township. A majority of points in the

northernmost cluster (Figure 4-1) were collected in a private residential area where I

was granted access by a property owner. All points to the south of this area (Figures

4-1 and 4-2) are located either on publicly owned Weko Beach in the central part of

the study area or on state land in the south, which includes Warren Dunes State Park.

large gaps represent areas were access was restricted by land ownership or terrain

conditions (i.e., dense forest and/or understory combined with slopes too steep to

traverse).

Vertical and horizontal measurements were collected with a Trimble

Pathfinder Pro XRS GPS unit, which uses both point averaging and built-in, real-time

differential correction. When point averaging of approximately 100 observations and

real-time differential correction are used, the documented error of both

measurements is reduced to sub—meter (Trimble Navigation Limited 2005).-
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Figure 4—1 Map ofthe sample points collected in the northern halfof Lake Township, Berrien County,

MI.
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Figure +2 Map ofthe sample points collected in the southern halfoflake Township, Berrien Cmmty,

MI.
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When conducting a field inspection, a MDEQagent locates visual breaks in

the affected dune and uses a clinometer to measure slope across the distance of each

discemable slope. Given the resolution of the digital slope grid (2 m), slope values

collected in the field had to be measured across a more precise distance than the

method currently employed by the MDEQ(Shortridge 20043; Warner 2005). Instead,

slope measurements were collected using a 2-meter piece of flat, wood trim and a

compass with an internal level and slope measuring device (Figure 4—3). After loose

debris such as branches and leaves were cleared, the piece of trim was laid on the

ground parallel to the steepest gradient at the geographic location (point) being

sampled. The slope measuring device was then placed on the center of the board and,

with the aid of the internal level, a percent slope value was obtained.

 
Figure 4—3 Photograph showing the method and equipment used to collect slope

measurments in the field.
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The horizontal (point locations) and vertical (elevation) measures collected

with the GPS were tabulated and projected from the unit into a database using

Pathfinder software. As a projected database of values, the elevation measures were

converted to a point coverage in Arc Toolbox and the corresponding slope and land

cover values collected in the field entered into the attribute table manually. The field

data was then joined to the attribute table containing the NED and lidar slope and

elevation measures and the NLCD based on geographic location.

Selection of the Independent Variables

Osborne (2000) stated that, when a multiple regression equation is designed

for prediction, the goal is to arrive at the model that best estimates the value of the

dependant variable at unsampled locations, regardless of the relationship it has with

the independent variables. Although the variables are not required to make

conceptual sense, theory is quite helpful for identifying which predictor variables

should be included in the equation (Osborne 2000). I chose to go with the latter

approach and chose three independent variables, elevation, calculated slope, and land

cover, based primarily on the potential relationship each has with the dependant

variable.

The influence of land cover on remote collection methods has long been and

will continue to be the subject of much research (Hodgson et al. 2003). However,
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more recent studies (Bolstad and Stowe 1994; Bowen and Waltermire 2002; Hodgson

et al. 2003) have tended to focus more specifically on the relationship that the

collection method has with elevation, land cover, and slope to gain a better

understanding ofhow in situ terrain attributes affect the quality of a digital elevation

model and its derivatives.

For example, research has found that both elevation error and modeled slope

error increase when slopes on the ground are steeper (Chang and Tsai 1991; Bolstad

and Stowe 1994; Hodgson et al. 2003). If the terrain surface is variable, then any

horizontal errors in position created by the lidar instrument will typically result in

vertical (elevation) errors (Hodgson et al. 2003). A major part of post-processing raw

points collected with lidar includes identifying ground returns to weed out those from

other objects. This typically involves a combination of highly automated processes,

such as filtering algorithms, with some manual correction (Kraus and Pfeifer 1998;

Bowen and Waltermire 2002; Lefsky et al. 2002; Barber and Shortridge 2004). In

addition to affecting the instrument, sloping terrain can also make it difficult for

automated weeding algorithms to reliably identify ground returns, which will result

in increased error in the lidar dataset. If rugged terrain is found in conjunction with

multi-story vegetation, the increase in error can be even more significant (Hodgson et

al. 2003).

Research has found a positive relationship between true elevation and

elevation error and true slope and slope errors in USGS level 2 DEMS as well (Bolstad
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and Stowe 1994). During the production process, level 2 DEMS, like the one used in

this study, are checked for consistency in slope and often smoothed. This process can

remove naturally occurring high frequency terrain variability (Hodgson et al. 2003).

land cover may also play a role in the accuracy of both data sources for a few

different reasons. First, terrain is generally more varied and rugged on steeper

mountain- and hillsides, making point estimation more difficult, which leads to error

in the interpolated elevation surface. This error then propagates in the derivative

slope calculations. Second, larger errors are expected in forested terrain due to a

lower posting density. For example, in the lidar data set, many of the returns (2-

values) that would be present on barren land would be removed because they hit the

canopy, and if not they would remain in the dataset. In USGS DEMs, a dense forest

cover makes stereo-correlation more difficult due to the lack of clearly defined

features such as roads and buildings, resulting in fewer or less accurate elevation

measures (Bolstad and Stowe 1994). Land cover patterns in the study area may also

play a role, as some of the oldest and largest dunes tend to be forested, while many of

the younger, smaller dunes are colonized by dune grass if at all. While collecting

field measurements, land cover was documented at each site and any attenuating

conditions such as nearby elevated roadways that could affect the accuracy of

elevation or slope measures were noted for further analysis.

It is known that DEM errors generally exhibit a distinct spatial distribution or

pattern, and in most cases are not random (Fisher 1998; Liu and Jezek 1999;
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Shortridge 2003; Pfeifer et al. 2004). Given that errors are systematic and influenced

by patterns of land cover, elevation, and gradient, it may be possible to determine

actual slope if land cover, elevation, and calculated slope are known variables.

Based on the source of the data, either lidar or NED, the elevation and slope

data will be used to construct separate models. Further, from each of these sources

slope was calculated in two different ways, the Horn algorithm and maximum

gradient. The result being two models (lidar and NED) with four potential

independent variables for each model: elevation, Horn slope, maximum gradient

slope, and land cover. All of the independent variables in the model were obtained

by remote sensing, reducing the time and cost of data collection and with the

exception of lidar data, each dataset is available at present in a digital format to all

potential users. In the near future it is highly probable that lidar elevation data will

also be widely available to users. The following sections outline the steps taken to

obtain and, where necessary, modify the source data of the independent variables

used in the multiple regression models.

Lidar Elevation Data

The lidar point data was collected and processed in April of 2001 by Woolpert

LLP, a private firm that specializes in the collection of spatial data, for distribution by

the Detroit District, USACE. In its raw form, the data was three individual text files

in an x,y,z format with a documented horizontal accuracy between 1 and 2 meters
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and a vertical accuracy of approximately 15 cm, suitable for use in applications that

require bare-earth elevation measures (lidar FGDC metadata). The data was

converted from the text file tables to point shapefiles in Arc Toolbox and merged into

one file in Arc Map. It was then reprojected from the Universal Transverse Mercator

(UTM) projection into the Michigan GeoRef projection based on the North American

Datum of 1983 (NAD83).

In contrast to the 30.meter NED data, which comes in the appropriate format

(raster grid) for calculating terrain derivatives such as slope, the lidar data are a cloud

of irregularly spaced points and interpolation is required to create a continuous

elevation surface (Lloyd and Atkinson 2002; Barber and Shortridge 2004).

Interpolating to create a grid involves the selection and use of an interpolation

algorithm. Given a set of discrete points, the most appropriate spatial interpolation

algorithm will be the one that best represents the known values and is able to predict

the elevation values where they are unknown (Lam 1983). For this study I selected

inverse distance weighting (IDW'). It is a relatively simple approach that has been

shown to result in minimal error in the interpolated surface (Lloyd and Atkinson

2002; Rosso et al. 2003; Barber and Shortridge 2004). The formula used to interpolate

the value at an unsampled location is expressed as:

1 zwdz.
a, Wd =— . =_I_I.

’ d" M Z zwd
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The first equation, a., is used to calculate the weight given to each known

point where wdis the weighting factor applied to the known value, dis the distance

from the known value to the unknown value, and k is a user-selected power factor.

Equation b. uses Wdto determine the value of the interpolated point, where Z is the

known value and Zis the value of the interpolated point.

IDW is an exact interpolator, meaning that all known elevation values remain

in the output surface (Lam 1983; Shortridge 2004b). The IDW equation requires that

the user select two variables: I: and n. The variable denoted k is equal to the power of

the weight as a function of distance and the variable 11 is equal to the number of

nearby known elevation values that will be used to compute the unknown elevation

at the center of a grid cell. As the value of 1: increases, the influence of nearby points

also increases and that of distant points decreases. likewise, as the number of

neighbors increases, the resulting elevation surface becomes smoother or less variable.

Both 11 and I: have a large impact on the output surface and therefore each must be

chosen carefully. Cross validation was used to determine the power and number of

neighbors that would minimize the RMSE in the interpolated grid (Figure 4-4; Lloyd

and Atkinson 2002; Shortridge 2004b). In essence, the error introduced during the

interpolation process can be ascertained using only the dataset. This method is

favorable when working with a data source for which no other available dataset is

known to be more accurate (Shortridge 2004a).
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Figure 4—4 Schematic illustrating the cross validation process.

 

In order to use the cross validation algorithm, a representative sample of the

dataset had to be selected due to limitations on computing power and time. A sample

of 20,000 points was selected based upon a comparison of maximum elevation,

minimum elevation, mean elevation, and standard deviation across the point sets

(Table 4—1). The points selected depict a small, but representative area of the 400,000

total data points.

Next, using an R—GUI (Chambers 1991) source code written by Shortridge

(2004a), I created a matrix in which the x—axis represents the power and the y—axis the

number of neighbors used by the IDW algorithm. In R-GUI statistical software, I ran

the code on the subset of points using a sequence of powers from .05 to 4.05, in
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increments of .50, and a sequence of neighbors from 1 to 10. The output was a 9 x 10

matrix of values equal to the RMSE of each combination. In this case, the resulting

matrix showed that using a power of 3.05 and 9 neighbors would minimize the

combined RMSE in the surface interpolated with IDW (RMSE = 39.2 cm).

Table +1 A Comparison ofthe descriptive statistics for the point

subset to those ofthe complete dataset.
 

 

 

 

 

 

    

Subset Dataset

No. ofcases 25,107 334,861

Range 175.7—232.8 m 1783-2328 In

Mean 190.86 In 194.57 In

Standard Dev. 9.04 m 10.43 m

Variance 81.78 m 108.79 In
 

In addition to the weight and number of neighbors, interpolation also requires

the user to select the appropriate cell resolution of the output raster grid. As with the

interpolation method, the level of error in a surface can vary greatly with different

grid sizes (Smith et al. 2003). I employed a second code written by Shortridge

(2004a) in R— GUI (Chambers 1991) to compute the nearest neighbor statistics of the

point subset. This enabled me to determine an appropriate cell size based on the

frequency interval of each data point within the representative sample. The results of

the nearest neighbor operation showed that the distance between the points ranged

from .326 m to 10.73 m, with a mean spacing of 1.85 m. Smith et al. (2003) suggest

that the optimal resolution for minimizing error is that which is closest to the original
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point spacing. Therefore, based on the nearest neighbor statistics and data presented

in that study as well as data storage and computation requirements, I selected a 2 x 2

m cell resolution.

The final interpolation from a point shape file to a raster grid was performed in

Arc Map and the three individual grids were combined using the mergecommand in

Arc Info. Figure 4-5 shows the steps taken to process the lidar data beginning at data

collection and ending with the creation of the slope grids.
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30-meter National Elevation Data

The 30-meter elevation data was collected by the USGS EROS Data Center and

originally came from the USGS NED website. It is classified as a level 2 dataset, .

comprised of the best available elevation data (7.5 minute resolution). The data,

which is available for all Michigan counties on the Michigan Center for Geographic

Information (MICGI) website, underwent post-processing at MSU’s RS&GIS for use in

their proprietary mapping software, Michigan Maplmage Viewer. Processing steps

included clipping the dataset to match the extent of Michigan counties, merging the

county data to create a statewide mosaic, and projecting the data in the Michigan

GeoRef projection, NAD83 datum. After processing, the most recent publication date

for the data is 2002.

Although the use ofNED is widespread, one big disadvantage of using pre-

processed DEMs is that, in general, little information is provided to the end user in

terms of data collection, processing, and error distribution (Holmes et al. 2000). It is

known from the metadata that the DEM used in this study was produced using

manual profiling of photogrammetric stereomodels, derived from either digitized

cartographic map contour overlays or scanned National Aerial Photography Program

(NAPP) photographs. No estimate of accuracy is given apart from the USGS level 2

global accuracy standard of one half of the contour interval of the source DEM, which

could not be found (Berrien County —NED FGDC metadata). A spot check of vertical
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accuracy at the 46 points sampled using a Trimble Pro XRS GPS unit revealed that,

while the lidar dataset fell within its reported accuracy range, the error in the NED

DEM was much higher than what is expected even in a level 1 DEM (Table 4-3).

Overall, the NED elevation values at these points consistently overestimated the

elevation by more than 10 m compared to both the GPS data and the lidar data.

Based on the production method and the terrain, there are several possible reasons

why the DEM error is larger than expected. These reasons, as well as the implications

for the derivative slope values, will be discussed further in the following chapter.

The decision was made to use NED as the primary source of 30-meter

elevation data over elevation data collected more recently (2001) by the Shuttle Radar

Topography Mission (SRTM). For the end user, there are potential benefits of using

SRTM data including its newness (although NED employs the “best available” data

upon upgrades), an increase in vertical accuracy, and one common collection method

(Gesch et al. 2001). However, one of the objectives of this research is investigate the

relationship between land cover and two different collection methods and while

SRTM technology is different than that of lidar, the reflection of the SRTM radar

signal off of a tree canopy is reminiscent of the reflection of the lidar laser. Further,

the systems used for lidar and SRTM data collection, ALS and Synthetic Aperture

Radar (SAR), are complimentary to one another when used in conjunction (Sun et al.

2003).
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Radar (SAR), are complimentary to one another when used in conjunction (Sun et a1.

 

 

 

 

 

 

2003).

Table 4—2 Descriptive statistics ofthe elevation datasets

Elevation Lidar NED

Elevation Elevation

Minimum 176.87 In 177.74 111 189.38 m

Maximum 218.16 in 213.81 in 221.71 in

Mean 192.15 111 191.44 in 206.55 m

Standard Dev. 9.45 m 8.48 m 7.47 m

Variance 89.28 71.97 55.80    
 

Table 4-3 Error statistics ofthe lidar and NED datasets
 

 

 

 

 

   

Lidar NED

Elevation (m) Elevation (m)

RMSE 1.66 m 17.91 m

MAE 1.18 m 15.09 m

MAX 5.43 m 36.75 m

MIN 2.7 cm 35.4 cm  
 

Creating the lidar and NED Slope Grids

 

On a natural landscape, slope is commonly measured in the direction of the

maximum perceived elevation gradient. In contrast to calculating slope in nature,

however, modeling slope using a digital raster model is a bit more complicated. The

direction of the steepest slope on a landscape and the straight line slope between grid

cell centers most often do not match up. The fastest and simplest approach in Arc

Info determines the maximum change in elevation between the processing cell and its
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eight surrounding neighbors, and divides this difference by the distance between the

centers of the two cells (Shortridge 2003). The maximum gradient approach is not

commonly used in applications that require slope measures because it is sensitive to

error, creates a rough surface, and generally achieves poorer results than alternate

methods.

In this study, the slope values for both elevation surfaces were calculated using

both maximum gradient, the drop option when using the flowdirection command in

Arc Info, and the Horn algorithm or slopecommand in Are Info. The Horn algorithm

calculates slope as the average change in elevation from north to south (rise) and east

to west (rise), divided by the distance between cell centers in a 3 x 3 cell

neighborhood (Figure 4-6). Although other methods of calculating slope exist, studies

have shown that using a third-order finite difference approach like the Horn

algorithm is best in variable terrain (Bolstad 2002). The output is a grid of slope

values measured as percent slope (the unit used by the MDEQ) where values can

range from 0 where elevation is constant across all cells, to values that approach

infinity (or 90°). At 100% slope, the rise is equal to the run and the angle of

inclination is 45°. Values measured as a percent do not have a linear relationship and

a difference in values may not accurately depict the difference in on the ground slope,

likewise, a difference in 1% does not equal a 1° change in gradient (Bolstad 2002).
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In one final processing step, the values of the two slope grids were rounded to

the nearest whole percent. This step reduces the precision of values; however, whole

values are more comparable to those obtained in the field (also measured to the

nearest whole percent). The descriptive statistics of each slope dataset at the 46

sample points, including the measures collected in the field and those calculated from

the DEMs, are shown in Table 4-4. Table 4-5 presents the error statistics of each of

the digital slope datasets compared to the actual slope measurements obtained in the

field.
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Table 4—4 Descriptive statistics ofthe slope datasetsl
 

 

 

 

 

 

      
 

 

 

 

 

 

      
 

Sl lidar NED lidar NED

ope Slope Slope Drop Drop

Minimum 0 1% 2% 1% 17%

Maximum 79% 87% 36% 45% 67%

Mean 30.5% 29.3% 13.2% 13.9% 30.7%

Standard Dev. 21.6% 19.3% 7.8% 9.1% 13.9%

Variance 464.6 372.5 61.5 82.8 193.3

Table 4—5 Error statistics of the slo datasets

Lidar Slope NED Slope lidar Drop NED Drop

RMSE 14.9% 27.8% 16.2% 27.2%

MAE 9.9% 21.6% 12.4% 21.8%

MAX 44% -67% 42% -69%

MIN 1% 0 0% 0

Land Cover Data

 

As previously mentioned, many studies (Lefsky et al. 2002; Rosso et al. 2003;

Chasmer et al. 2004) have examined the presence of vegetation in the return signal

and resultant dataset of an ALS. In some instances the goal may be to measure

biomass (Lefsky et al. 2002) or map vegetation (Rosso et al. 2003), and therefore bare-

earth returns are not desirable. In other applications, however, particularly those that

require accurate elevation measures, such as surface hydrology, landform, or slope

 

‘ The second column, labeled “slope”, is the dependent variable in the subsequent models, while the

remaining four columns represent the independent slope variables.
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mapping, bare-earth returns are necessary and feature removal is key (Bowen and

Waltermire 2002; Woolard and Colby 2002; French 2003; Barber and Shortridge

2004). In either case it is clear that the presence or absence ofvegetation may

interfere with the collection of lidar data, influencing the accuracy of both elevation

and derivative slope values, and to some degree affect USGS level 2 DEMs as well.

For this reason I included land-cover, more specifically a categorical dummy variable

for presence (1) or absence (0) of forest cover, as a possible variable in the multiple

regression model Although herbaceous or understory vegetation can also intercept

the laser signal, lower vegetation tends to have a much smaller standard deviation of

height than trees and, therefore, these types ofground covers are less likely to

influence slope measurements (Pfeifer et al. 2004). likewise, it does not interfere

with stereo-correlation or affect the posting density of Level 2 elevation measures.

The land cover data used in this study was adapted from the USGS National

Land Cover Data (NLCD 1992) set. It uses a 21-class classification scheme and was

derived from the early to mid-19908 Landsat Thematic Mapper satellite data. It is

freely available from the USGS as a 30-meter raster data set for the conterminous

United States (NLCD FGDC metadata). The NLCD for the state of Michigan is also

available from the MICGI. It is essentially the same data except that it has been

repackaged for each county as a shape file projected in the MI GeoRef projection,

NAD83.
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I reclassified the original land cover classes of the study area, which included

Barren (31), Forested Upland (41, 42), Shrub land (51), Herbaceous Upland

Natural/Semi-natural Vegetation (71), Herbaceous Planted/Cultivated (81, 82), and

Wetlands (91, 92), into the forest (1)/non—forest (0) variable for the purposes of this

study. Forested Upland (41, 42) and Wetlands (91 Woody Wetlands) were

reclassified as forest while all other classes were considered non-forest (Figure 4—8).

Table 4-6 is a land cover confusion matrix that summarizes how often the

classifications of the NLCD dataset correctly matched those observed in the field.

The overall accuracy of the dataset, as noted in the table, is 85%, which means that of

those 46 sites sampled, 39 sites were correctly classified as forest/non—forest by the

NLCD. Also noted in the table is the number of sites that have a canopy (28),

compared to those without (18).

 

  

  
a. b.

Figure 4-8 Photographs showing two land cover types found on Lake Michigan sand dunes. Photo a. is

an .mple ofthe Herbaceous Upland Natural/Semi-natural Vegetation (71) land cover class, which

would be reclassified as non-forest in contrast to photo b. an example of Forested Upland (41. 42).
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Table 4—6 Confusion matrix comparing ground truth land cover (observed)

classifications to the NLCD (expected) classifications.

 

 

 

 

 

 

 

       

Observed Class

Forest Non-forest Row Total

5 Forest 25 4 29

E Non-forest 3 l4 l7

Column Total 28 18 46

Producer Accuracy 89% 78%

User Accuracy 86% 82%

Overall Accuracy 85%

Overview of Multiple Regression

Multiple regression is a statistical method designed in most cases to either

predict or explain a variable of interest in order to reach one of two research goals,

either: 1) to make valid projections concerning an outcome (prediction), or 2) to make

an attempt to understand a phenomenon by examining a variable’s correlates on a

group level (explanation; Osborne 2000). The aim of this study is to predict an actual

or true slope measurement based on variables that can be obtained from or calculated

in a GIS. In order to do this, a multiple regression model was constructed in SYSTAT

statistical software package to predict the dependant variable (Y ), in this case actual

slope, based on the value of at least one independent variable (Xl ,. . . ,Xn ).
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The multiple regression equation takes the form of:

n

Y]. =a+2f b1. oXI. +8

1:

Where,

' Y] is the value of the dependent variable;

° a is the constant or intercept;

' b). is the standardized regression coefficient for Xi;

’ X1. is the independent variable (accounting for the variance in Y); and

' 8 is the error, resulting from the effect ofunspecified independent

variables and/or a totally random element.

Assumptions of Multiple Regression

In order to achieve reliable results with a regression model, Poole and

O’Farrell (1971) state that six “critical assumptions” must be met. Of these six

assumptions, they note, any one can be either more or less important depending on

the research purpose. While it is not essential to meet the assumptions of

measurement error and multicollinearity, when the research goal is prediction, the

authors say that it is most important that: 1) The relationships between Y, and each

of the independent variables XI. are linear; 2) the variance of the conditional

distribution of 8 is constant for all such distributions (homoscedastic); and 3) the

values of 8 are not autocorrelated (Poole and O'Farrell 1971).
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If the relationship between the dependent and independent variable(s) is non-

linear, it is likely that the regression equation will not correctly estimate the

relationship between variables. A graph of each independent variable plotted against

the dependent variable can indicate whether or not the relationship is linear. It is

also important to plot the standardized residuals to identify extreme

heteroscedasticity, which can distort findings and seriously weaken the analysis

(Osborne and Waters 2002).
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V. RESULTS AND DISCUSSION

This chapter will begin with a discussion of the independent variables as they

relate to the assumptions of regression. Next, I will present the summary statistics

for each model, which will determine if my hypothesis is correct, followed by an

analysis of the residuals. I will then conclude the chapter with a discussion of the

results, including the error in the best model.

As first noted in the previous chapter, the variables used in a multiple

regression model need to meet certain key assumptions for the results to be reliable.

Again, when the research goal is prediction the most important assumptions are: 1)

the relationships between Y, and each of the independent variables XI. are linear; 2)

the variance of the conditional distribution of 8 is constant for all such distributions

(homoscedastic); and 3) the values of 8 are not autocorrelated (Poole and O'Farrell

1971). Of these three, only the first assumption can be tested prior to generating the

model. To do this I plotted each of the independent variables including calculated

slope (LDSLOPE, NDSLOPE, LDDROP, and NDDROP) and elevation (LDELEV and

NDELEV), against the dependent variable true slope (FDSLOPE). Figures 5-1 and 5-2

show a regression line superimposed on scatterplots ofLDSLOPE and FDSLOPE and

NDSLOPE and FDSLOPE. The remainder of the graphs can be seen in Appendix A.
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LDSLOPE

Figure 5-1 Graph showing LDSLOPE plotted against FDSLOPE. With the exception of a

few outlying points, LDSLOPE exhibits a linear relationship with FDSLOPE.

 

0 10 20 30 40 50

NDSLOPE

Figure 5—2 Graph ofNDSLOPE plotted against FDSLOPE. The relationship depicted in this

graph is not linear and therefore the NDSLOPE data does not meet the first ass-uption.



When plotted with the dependent variable, only LDSLOPE and LDELEV

displayed a linear relationship with FDSLOPE. A comparison of the LDSLOPE graph

to the NDSLOPE graph in Figures 5-1 and 52 illustrates the very different

relationship each has with the dependent variable. If the relationship between the

dependent and independent variable(s) is non-linear, it is likely that the regression

equation will not correctly estimate the actual relationship between variables (Poole

and O'Farrell 1971). In some cases a data transformation can correct this issue. I

performed a log transformation on the FDSLOPE, NDSLOPE, and NDELEVATION

data sets, yet their respective relationships remained non-linear. Similar data issues

arose with the LDDROP and NDDROP datasets’.

Univariate Regression

Testing the first assumption ruled out all potential regression models with the

exception of those that employ lidar slope (LDSLOPE), lidar elevation (LDELEV), and

the dummy variable, land cover (NLCD_92). Since the independent variable slope is

used to estimate the actual slope at a location on the ground, the first thing I did was

regress the dependent variable true slope (FDSLOPE) against the independent slope

 

2 Both slope datasets were calculated using the maximum gradient This method determines the maximum

change in elevation between the processing cell and its eight surrounding neighbors and divides that

difference by the distance between the centers of the two cells. Using a raster grid, the distance is

always the same, so unless there are extreme elevation diflerences across cells and throughout the

dataset, the result is a limited number of slope measurements.
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variable (LDSLOPE). The summary statistics of the univariate analysis are shown in

Table 5-1 .

Table 5—1 Summary statistics of the univariate reggssion model.
 

 

    

Variable Constant (a) (13:18!“ t—value P (l-tail) Adj. R2

LDSLOPE 6.476 0.822 1.621 0.000 0.530    

The R72 value is an indicator of how well the model fits the data (e.g., R2 close

to 1.0 indicates that the model accounts for nearly all of the variance in the

independent variables). The adjusted R2 is a good statistic to summarize the fit of the

regression model because it corrects for the number of coefficients and sample size, as

well as a small degree of error, to more closely fit the model estimated from a sample

to the entire population (Wilkinson et al. 1996). The univariate model in this study

produced an adjusted R2 of .530, or 53%.

Multivariate Regression

My initial hypothesis was that lidar elevation data used in conjunction with

calculated slope and land cover would more accurately predict true slope than the

same model that used NED as its source. Since the NED data did not meet the

assumption of a linear relationship it may not yield a reliable model; however, I
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decided to proceed with the NED data for the sole purpose of comparing the two

models and evaluating my hypothesis. In the second phase ofmy analysis, I

performed a standard multivariate analysis regressing true slope against, elevation,

calculated slope, and land cover for each data source. The regression equation for

both the lidar and NED models can be stated as:

Y FDSLOPE = a + bISLOPE + szLEV + b3NLCD_92

The summary statistics of these models are presented in Table 5-2 and 5-3. The

adjusted R2 for the lidar model is equal to .595, meaning that slope, elevation, and

land cover account for 59.5% of the variation in true slope, compared to only 14.2%

for the NED model. Tolerance values for all variables are above .60, which indicates

that there is little co-linearity among the variables.

In both the lidar and NED models, land cover was not a significant variable in

the equation at the 95% confidence level; therefore I removed this variable and

generated the models again using only slope and elevation. Again, the NED model

yielded poor results, with an adjusted R2 value of .127. Further, NDSLOPE was not

found to be a significant variable. Of the three models presented, the best model for

predicting true slope was one that used LDSLOPE and LDELEV, with an adjusted R2

value of .603 (Table 5-4).
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slope, elevation, and land cover as independent variables.
 

 

 

  

 

 

 

 

 

      
 

 

 

        

Dep Var: FDSLOPE N: 46

Mufiple R: 0.789 Squared multiple R: .622

Adjusted squared multiple R: 0.595 Standard error of estimate: 13.713

Variable “‘3?” Std Error 3 SE?, t Tolerance T P (l-Tail)

CONSTANT -146.229 51.206 0 . -2.856 0.004

LDSLOPE 0.688 0.1 16 0.616 0.829 5.916 0.000

LDELEV 0.824 0.277 0.325 0.754 2.972 0.003

NLCD_92 -1.967 4.567 -0.045 0.841 —0.431 0.335

Analysis ofVariance

Source Ssum-of- Df :13 F-ratio P

Mession 13007.548 3 4335.849 23.058 0.000

Residual 7897.865 42 188.044
 

Table 5-3 Summary statistics of the multivariate regression model employing NED source data, and

slope, elevation, and land cover as independent variables.
 

 

 

 
 

 

 

 

 

 

 
 

 

 

        

Dep Var: FDSLOPE N: 46

Multiple R: 0.446 Squared multiple R: 0.199

Adjusted squared multiple R: 0.142 Standard error of estimate: 19.969

Variable Coeflicient Std Error Std: Tolerance T P (1 -Tail)

Coefficient

CONSTANT -137.914 83.139 0.000 0.000 —1.659 0.053

NDSLOPE 0.696 0.382 0.253 0.986 1.822 0.038

NDELEV 0.746 0.407 0.259 0.958 1.833 0.037

NLCD_92 8.096 6.191 0.183 0.971 1.308 0.099

Analysis of Variance

Source siu‘Mf’ Df :23; F-ratio P

Mession 4157.208 3 1385.736 3.475 0.024

Residual 16748.205 42 398.767
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Table 5-4 Summary statistics ofthe multivariate regression model employing lidar source data. and

slope and elevation as independent variables.
 

 

 

 
 

 

 

 

 

      
 

 

 

        

Dep Var: FDSLOPE N: 46

Multiple R: 0.788 Squared multiple R: 0.621

Adjusted squared multiple R: 0.603 Standard error of estimate: 13.582

Variable Coeficient Std Error Std' Tolerance T P (1 —Tail)

Coeficient

CONSTANT -139.989 48.645 0.000 . —2.878 01116

LDSLOPE 0.682 0.1 14 0.61 1 0.840 5.963 0.000

LDELEV 0.786 0.260 0.309 0.840 3.019 0.1112

Analysis ofVariance

Sum-of— Mean-

Source Df F-ratio P

Squares Square

Regression 12972.676 2 6486.338 35.16 0.000

Residual 7932.737 43 184.482
 

Table 5-5 Summary statistics of the multivariate regression model employing NED source data, and

slope and elevation as independent variables.
 

 

 

 
 

 

 

 

 

      
 

 

 

 

Dep Var: FDSLOPE N: 46

Multiple R: 0.788 multiple R: 0.621

Adjusted squared multiple R: 0.603 Standard error of estimate: 13.582

Variable Coefficient Std Error Std' Tolerance T P (1-Tail)

Coeficient

CONSTANT -151 .446 83.170 0.000 . -1 .821 0.076

LDSLOPE .701 0.385 0.255 0.986 1.820 0.076

LDELEV .836 0.405 0.290 0.986 2.067 0.045

Analysis ofVariance

Sum-of- Mean-

Source Df F—ratio P

Squares Square

Regression 3475.422 2 1737.71 1 4.287 0.020

Residual 17429.991 43 405.349      
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Analysis of the Residuals

The section above provided an assessment of each model based on key

statistics such as the adjusted R2. These numbers are useful for model validation, but

it is also important to employ graphical methods. Graphical methods have one

advantage over numerical methods in that they are able to show the relationship

between the model and the data. A graph of the residuals can also uncover trends in

the data that are not apparent in the statistical output (NTST/SEMATECH e-

Handbook of Statistical Methods 2006). Further, the last two critical assumptions, the

variance of the conditional distribution of 8 is homoscedastic and the values of 8 are

not autocorrelated, rely solely on the residual values.

If the model’s fit to the data is correct, the residuals should approximate the

random errors that make the relationship between the explanatory variables and the

response variable a statistical relationship. Therefore, if the residuals appear to behave

randomly, it suggests that the model fits the data well. A scattergram of the

regression residuals plotted against the regression estimates is shown in Figure 5-3.

While there are several outlier cases, the residuals appear to be homoscedastic, which

means the variance of the error values does not appear to be related to the size of the

estimate. Graphs ofthe residuals plotted against each independent variable can also

reveal patterns of heteroscedasticity. An examination of these two plots also revealed

no obvious patterns (Appendix C).
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Figure 5-3 Graph showing the regression estimates plotted against the residuals.

The regression output can indicate if there are any outliers including large

residuals, high leverage points, and influential points, all ofwhich can distort the

regression model. The studentized residuals, leverage, and Cook’s distance are three

statistics that can identify if any of these problems are present in the data. In general,

95% of the studentized residuals should fall between 1 2, and 99% between :t3

(Wilkinson et al. 1996). There were five points that fell outside of this range. An

examination of the Cook’s D statistic showed one case that was influential at the 95%

level (compared to an F—distribution), while there were no cases that had unusually

high leverage (Figure 5—4).
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LDSLOPE

Figure 5-4 Graph showing the independent variable LDSLOPE plotted against the dependent variable

FDSLOPEwithoutliercaseshighlighted. Theredpoints notewesthathavealarge studentized

residuaLwiththelargerredpointindicatingtheeasethatalsohasalargeinflnence.

Discussion

The first conclusion that can be drawn from the results of this research is that

the NED level 2 DEM for the study area is not fit for use in applications that require

accurate slope measurements. While the sampling method used to collect the field

slope measurements was more comparable to the resolution of the lidar data, it is still

reasonable to expect that the relationship between the two datasets, which represent

the same variable, to be linear with a fairly strong positive relationship. A graph of

FDSLOPE and NDSLOPE showed that this was not the case3.

 

3 The Pearson correlation coefficient further confirmed the lack of a positive linear relationship

between the two variables.
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There is a large difference in the resolution of the lidar data (2 m) versus the

NED data (30 m) and in a study comparing lidar data to NED, Barber and Shortridge

(2005) found that slope in particular is more affected by resolution and less affected

by source. To test this theory on my data, I resampled the NED dataset to a finer

resolution (5 m), calculated the slope variables, and plotted the resampled NED slope

variable against true slope to see if there were any obvious improvements. An

examination of the resampled NED data and the new graph (Appendix B) showed no

improvement whatsoever, nor did the models that employed this data. This leads me

to conclude that the resolution of this dataset is inherently tied to its source and,

therefore, the source of the data, in this case, is as important as the resolution.

Although some researchers (Holmes et al. 2000; Gesch et al. 2002) have found

USGS Level 2 DEMs to be generally accurate, the elevation measures used in this

research on average were in error by more than 10 m. Compounding this problem,

the error that exists in the elevation surface typically propagates in derivative

measures such as slope (Holmes et al. 2000). While I cannot determine why the NED

data was of such poor quality or conclude anything about the overall accuracy of the

entire DEM, terrain attributes within the study area (i.e. slope and land cover), and

the resolution (posting density) of the source data may account for the lack of

correlation between FDSLOPE and NDSLOPE.

Research has found that USGS Level 2 production methods can be hampered

when the ground is under a forest canopy. A dense forest makes stereo—correlation
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more difficult due to the lack of clearly defined features such as roads and buildings

and when using photogrammetric techniques, fewer postings are collected in forested

areas (Bolstad and Stowe 1994; Lefsky et al. 2002). A positive correlation has been

shown between true elevation and elevation errors and true slope and slope errors‘.

Areas with the steepest terrain are often times forested, which further compounds

this issue (Bolstad and Stowe 1994).

One final problem is post-processing. If interpolation has been used to

calculate elevation values, it tends to smooth microtopography and this could be the

reason why such large slope errors are associated with more variable terrain. Most of

the sample points were collected on the sides of dunes and point estimation in these

areas is very difficult. Again, this leads to error in the interpolated elevation surface,

which then propagates itself in the derivative slope (Bolstad and Stowe 1994).

The results of the regression analysis showed that the best model for

predicting true slope employs slope (calculated using the Horn algorithms) and

elevation. The land cover dummy variable was found to be insignificant and did not

improve the model. I found this surprising because larger errors are expected in

forested terrain due to a lower posting density. Many of the returns that would be

present on barren land would be removed from forested areas because they hit the

canopy and if not, they would remain in the dataset (Bolstad and Stowe 1994).

 

‘ The Pearson correlation coefficient for FDSLOPE and slope error indicated a very strong positive

correlation between the two variables. I found a strong negative correlation between elevation error and

true elevation, indicating that as elevation increased, error decreased.

5 For a review ofthe Horn Algorithm, see chapter IV.
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In this particular data set, it is probable that post-processing was successful in

removing man-made obstructions from the data set, similar to findings made by

Barber and Shortridge (2005). When you consider the collection method, a lower

posting density for lidar is still much greater than that of NED. So while similar

issues with terrain attributes and error persist in lidar data, the collection method

(source), posting density (resolution), and post-processing of the raw data points could

explain why land cover was not a significant variable as well as the difference

between lidar and NED.

The second point to address is why LDELEV was a significant variable and

improved the equation. Research has found that both elevation error and modeled

slope error increase when slopes on the ground are steeper, suggesting that there is a

connection between true slope and elevation (Chang and Tsai 1991; Bolstad and

Stowe 1994; Hodgson et al. 2003). Further establishing that relationship, both

FDSLOPE and absolute slope error (equal to |FDSLOPE - LDSLOPEI) were strongly

correlated with LDELEV at the 99% confidence level. This means that steeper slopes

are associated with higher elevations in the study area and the difference between

FDSLOPE and LDSLOPE is at least in part explained by LDELEV, as the regression

equation would suggest. Although I found that land cover did not have an impact on

the model, based on past research it still may be reasonable to expect that certain land

cover attributes are associated with increase in error in the digital data sets. Forest is

the dominant land cover on many of the highest and most well established dunes,

99



which could explain the positive linear relationship between elevation and error in

the 'slope dataset.

One final point to address is the problems that could arise by using elevation

and one of its derivatives, slope, in the same model. Slope, as discussed in the methods

section, is calculated as the average change in elevation from north to south and east

to west, across a nine cell neighborhood. Although the tolerance statistics of the

model that used LDSLOPE and LDELEV indicated that there was not a statistical

relationship between the two variables, they certainly are interdependent. When two

variables are collinear, or providing the same information to the regression equation,

the standard errors may be inflated and, therefore, the estimated coefficients may not

be representative of the population coefficients Wilkinson et al. 1996).

Conceptually speaking, slope, as it is calculated, is dependent on the difference

in elevation values, not the actual elevation values. For example, the gradient from 10

m to 12 In over a distance of l m and the gradient from 100 m to 102 m over a

distance of l m are the same; however, the elevation at each of those points is very

different. Aside from the model’s tolerance values, there is no way to know if the

relationship between elevation and slope has affected the model apart from

conducting further research from the same population.
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Discussion of Model Error

Like graphical methods, analysis of the error terms including describing,

classifying, and mapping the residuals, can uncover trends in the data. The error in

remotely sensed data sets and models derived from them is as important, if not more

important, than the data itself, which is made evident by previous research (Chang

and Tsai 1991; Bolstad and Stowe 1994; Fisher 1998; Liu and Jezek 1999; Holmes et al.

2000; Lefsky et al. 2002; Woolard and Colby 2002; Hodgson et al. 2003; Rosso et al.

2003; Sallenger et al. 2003; White and Wang 2003; Nagihara et al. 2004). Key

statistics of the model’s error values are found in Table 5-6 shown below. While some

error values were very high, the RMSE for the model was 13% with over half of the

residuals below 7%. As noted in the previous chapter, values measured as a percent

do not have a linear relationship and a difference in values may not accurately depict

the difference in on the ground slope, likewise, a difference in 1% does not equal 3 1°

change in gradient (Bolstad 2002). Consequently it is difficult to quantify the error

terms“.

Table 5-6 Model error statistics

Minimum Maximum Mean MAE RMSE Standard Dev.

0.007 38.009 0.00 9.38 13.132 9.29

 

 

        

 

6 I will address this point again in the “Research Problems” section ofChapter 6.
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Three of the five largest studentized residuals are associated with slopes

greater than 40% (Figure 5-5). This finding is similar to previous research which

found that modeled slope error increases when slopes on the ground are steeper

(Chang and Tsai 1991; Bolstad and Stowe 1994; Hodgson et al. 2003). The two

remaining outliers are found where on the ground slope is less than 5%. Collectively

these findings suggest that the model is more accurate when true slopes are moderate

and less accurate when slopes are either gentle or steep. A graph of the average root

mean square error broken down by slope class illustrates this point (Figure 5-6).
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Figure 5-5 Graph showing FDSLOPE plotted against the residuals; points with the largest studentized

residuals are shown in red.
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Figure 545 Graph of the average RMSE by slope class.

A map of the residuals shown in Figure 5-7 revealed that several larger

residuals are clustered in the northern portion of the study area (inset a.). Here, more

than half of the points have error values that are more than one standard deviation

above the mean. However, an investigation revealed that there is no spatial

autocorrelation between the residuals here or elsewhere in the study area.

The two northernmost points were collected off of a utility access road

beneath a forest canopy. One of these points had a residual value of 27.44%, with the

model significantly underestimating the slope of this point. The cluster of points to

the immediate south was collected in a residential area and within highly variable,

forested terrain. Given the number of houses present there, this area is perhaps the

most representative of sites inspected by the MDEQ. The mean absolute error (MAE)

in this area was 10.88%, which is slightly higher than the overall average of 9.38%.
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Figure 5-7 Map showing the spatial distribution of the residuals. Points were classified by the number

of standard deviations the residual at that point fell above or below the mean. The map was broken

into three geographic extent: (a. north, b. central, and c. south) based on the proximity of the points to

one another.
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Three of the four largest residuals (> 3 Standard Deviations) are all located in

the same geographic extent (Figure 5-7, inset b.). Based on the surrounding points

and my field notes, this is likely the result of site specific characteristics rather than

spatial autocorrelation. Two of the three points are located within 200 meters of one

another near Weko Beach. Of those, one was collected on a large dune bordering the

lake. The front of the dune is primarily dune grass, while the slipface is forested. The

dune is also topped by an elevated boardwalk, which runs the length of its crest. The

other point was taken just south of that dune in a deflation hollow, surrounded on

three sides by forest. Both points are classified by the NLCD as having a canopy, but

neither is located under a canopy. Both are also flat or near flat areas and lie near

steeper slopes. The three points closest to them all have slopes greater than 23%, yet

have small residuals.

The southernmost extent had the lowest overall error and only one large

residual value out of the twelve points collected there (Figure 5-7, inset c.). It is also

important to note that of those twelve points, nine were classified as bare sand and

dune grass. The one point that exceeded the mean error by more than three standard

deviations (32.02%) was collected on the side of an exceptionally steep dune

(FDSLOPE = 79%), beneath a forest canopy. In this case the lidar dataset and the

model both underestimated the slope. That being said, the estimate of a nearby point

with nearly identical slope and terrain characteristics was in error by less that 1%.
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This indicates that the problem with the lidar dataset may be inconsistency as

opposed to terrain characteristics.

Summary

The results of my study revealed several findings that are both interesting and

relevant. The lack of a linear relationship between NDSLOPE and FDSLOPE

indicated that slope derived from the NED DEM for the study area does not

accurately depict true slope. To a degree this could be a reflection of the method used

in this study to collect slope measurements. However, the production method of

USGS level 2 DEMS, resolution (posting density), post-processing, and terrain

characteristics within the study area are most likely the cause of this discrepancy.

The univariate model, which employed lidar slope, and the multivariate

model, which employed lidar slope and lidar elevation, produced adjusted R2 values of

.530 and .603 respectively. While the elevation variable improved the model, the

land cover dummy variable was not found to be a significant part of the regression

equation and therefore discarded. The strong positive correlation between elevation

and slope error is likely the reason that elevation improved the model. However,

given the collection method and past research (Bolstad and Stowe 1994; Bowen and

Waltermire 2002; Hodgson et a1. 2003), it is unclear why land cover did not account

for a greater part of the variance. I believe this is due to a superior resolution, even

when taking into account fewer postings, and successful post-processing methods.
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Based on the studentized residuals, six points were classified as outliers. While

some of the terrain characteristics at these locations were described, the reason for

these large errors cannot be determined. It is plausible that there may be greater

inconsistencies in the lidar data based on certain terrain characteristics. It is also

interesting to note that the largest errors occurred on slopes less than 5% or greater

than 40% and on average, error was larger for these two slope classes than for any

other. Slope error is expected to increase when slopes are steeper and terrain is more

variable, but finding two of the largest errors at places on the landscape with little or

no slope is unusual.
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VI. CONCLUSION

Collectively, the State of Michigan contains what may be the largest complex of

freshwater dunes in the world (VanOort et al. 2001; Arbogast et al. 2002). The

conditions that existed at the time these sand dunes formed were unique and led to

the development of some ofthe most magnificent parabolic dunes. Since the early

1900’s, dune sand has been prized for its use as foundry cores in the automobile

industry. From that time on, the sand dunes found along the eastern shore of lake

Michigan have been threatened by sand mining and, in some cases, completely

destroyed by intensive mining practices (Buckler 1979; i lake Michigan Federation

1999).

Initially it was the public’s concern over mining that led to the passing of the

SandDunes Protection andManagementAct (Act No. 222, Public Acts of 1976), but

as human and developmental pressures increased, the act was amended to include the

critical dune designation (Lake Michigan Federation 1999; Michigan State Legislature

Acts No. 146 and 147, Public Acts of 1989). These amendments also established

standards and a permitting program for development in areas designated critical

dunes (Michigan State Legislature Acts No. 146 and 147, Public Acts of 1989). At

present, the MDEQis charged with the management and administration of critical

dune policy and employs eleven agents to implement the permitting program in
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nearly forty counties (Warner, personal com., 2002). Today, the sand dunes that

those agents work to protect are highly valued for the scenic, recreational, ecological,

and economic opportunities that they provide (Buckler 1979; Lichter 1995; Arbogast

and Loope 1999; VanOort et al. 2001; Arbogast et al. 2002).

Intrigued by the management issues surrounding Lake Michigan’s sand dunes

and inspired by their evolution, I designed a research project that could potentially be

beneficial to agencies like the MDEQas well as other environmental applications. In

Michigan, the key to achieving a more objective assessment of the coastal zone may

lie in integrating the use of digital and remotely sensed data with the current sand

dune protection and management program. While the results of this study were

focused on one regression model, the research I conducted fell directly at the juncture

of several different disciplines including geomorphology, terrain modeling, and

environmental policy and management.

I began by selecting a study area that was both suitable for what I intended to

study and for which two different sources of digital data were available, including low

resolution NED and high resolution lidar data. I found both of these attributes in

lake Township, which is located along the southern extent of the lakeshore in

Berrien County, Michigan and contains 2,200 acres of the state’s critical dunes.

Next, I outlined several research questions that I intended to explore in the

hope of better understanding how digital data could be used to aid management

decisions that typically require data collection in the field. The first question I
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considered was: What terrain variables, or combination of variables, when used in a

regression model, most closely predict true slope? Of the three models I presented in

the Results and Discussion chapter, the best model for predicting true slope was one

that used lidar as the source data and calculated slope and elevation as the

independent variables. This model had an adjusted R2 value of .603.

The next question I planned to address was: What is the error in the predicted

slope values? While some error values were very high, the RMSE for the model was

about 13% with over half of the residuals below 7%. The MAE was equal to 9.38%,

with a minimum error value of .007 and a maximum error value of 38.009. The

RMSE and MAE as well as a majority of the individual errors seem to be reasonable,

but there were several residuals in excess of 25 %. This indicates that the model is not

consistent at predicting slope.

lastly, I hoped to determine to what degree the source, or collection method,

and/or resolution of the elevation data influenced the model. I originally planned to

use both lidar and NED as the source of the elevation and slope variables and compare

the models generated from each. After plotting the slope values calculated using NED

against the field slope values, I discovered that the relationship was not linear and

therefore violated one of the critical assumptions of multiple regression. Despite this

violation, I generated two models using the NED data strictly for comparison.

However, in the end, the lack of a linear relationship as well as the results of those

models led me to the conclude that the NED level 2 DEM for the study area is not fit
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for use in applications that require accurate slope measurements. Further, since the

resolution of the data is inherently tied to its source and collection method, I also

concluded that the source of the data is as important as the resolution.

Research Problems

Over the course of conducting and documenting my research I encountered

several problems that I could not overcome. I discovered the first major obstacle to

my research the day I entered the field to collect sample points. Prior to entering the

field, I generated 100 random sampling points across the entire study area. Although I

knew that I would need to eliminate some of those points due to their proximity to

one another or site-specific characteristics, I had no idea just how many of them

would be inaccessible. Primarily due to private ownership, there were large portions

of the study area that I could not even get close to. Moreover, many of these areas

were residential and therefore perhaps the most representative of sites visited by the

MDEQ.

The second problem is one of measurement. I chose to measure slope as a

percent, both in the field and digitally, because I felt that I needed to use the same

scale used by the MDEQwhen measuring slope in the field. Unfortunately calculating

it as a percent eventually led to issues in the analysis. Measured as a percent, slope

has an upper limit of infinity and the difference between an 8% and 9% slope and a
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70 and 71% slope may not be the same. On the other hand, when measured in

degrees, the difference between an 8° and 9° slope and a 70° and 71° slope is an equal

difference. Once I recognized the problem I could have converted all of my data

from percent slope to degree slope, but at that point I chose not to. For future

research I would recommend using degree slope from start to finish.

The next research problem I encountered was bureaucratic. No matter what

the outcome of my research was, there is no way to judge whether or not it is good

enough to be used by the MDEQ, or even what good enough is. Regardless, given

my results, I would not recommend that agents replace measures obtained in the field

with those from digital data sources. However, with that said, it is possible that there

is an alternate use of lidar for predicting whether or not slope measures are above or

below a certain threshold, which may be more useful to an agency like the MDEQ.

The last issue I will discuss is not so much of a problem as it is a reality. While

some dunes exist within large, stabilized dune fields, dunes are transient features that

can migrate up to 40 meters in a year and a dune will continue to migrate as long as

winds are strong enough to carry sand up the windward slope to the crest (Nordstrom

et al. 1990; Gabler et al. 2004). In addition to the wind, when working near the

shoreline, water is also a factor in destabilizing the coast. What this means is that, on

a variety of time scales, what is true of the coastal zone today may not be true

tomorrow, and slopes that are present today may not be present in the future.
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Directions for Future Research

The goal of this study was to determine which terrain attributes, or

combination of attributes, when used in a regression model would most closely

predict true slope. Predictability, in this context, also refers to the replication of the

regression results (such as the R2) for other samples from the same population. In an

ideal situation, a second sample would exhibit nearly identical results. More often,

however, the test sample’s results are very different (usually worse, not better) than

those for the model’s sample, because the regression model is data dependent

(Osborne 2000). This may also suggest that the sample used to build the model is not

representative of the population in question. Neter et al. (1996) state that, “By far the

preferred method to validate a regression model is through the collection of new

data.” While gathering additional data to test the models’ predictive ability was

desirable, given the considerable time and effort required to collect more data, it was

not possible. Future research would benefit from collecting a much larger dataset

that could be used to test this model or generate a new model.

Although lidar appears to be useful in obtaining data points in leaf-on

conditions, a closed canopy can result in significantly fewer ground hits and lower

accuracy. Ackerman (1996) estimates an overall penetration rate of 24-29% for

coniferous forests and 22-25% for deciduous forests during the growing season.

While Cowen et al. (2000) report that in canopy closures of 30 - 40%, 80-90% of lidar
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pulses will reach the ground, but when forest cover increases to 80-90% the number

of bare ground hits significantly decreases to 10%. The results of this study did not

show conclusive evidence that a canopy or lack there of had any influence on the

quality of the lidar data; however, I did not measure the forest cover. Future studies

may benefit from classifying the forest by the degree of canopy closure.

While I ruled out NED as a potential data source for the model, every two

months NED is updated and any new source DEMs that have become available are

incorporated (Gesch et al. 2001; Gesch et al. 2002). In a study conducted by Barber

and Shortridge (2005), the researchers sought to compare lidar data to its NED

counterpart. Once they had access to the NED data they discovered that the source of

the NED DEM was lidar. There may come a time when all NED DEMs use higher

resolution source data, thereby eliminating the need to compare lidar to NED. While

this may not be a direction for future research, it is certainly something that future

research should take into consideration.

The US. coastline stretches more than 20,000 km in length, making remotely

sensed data an invaluable resource for monitoring the constant shifts and changes

occurring there (Krabill et al. 2000; Sallenger et al. 2003). Further driving the need

for research is the heavy anthropogenic pressure placed on this margin, considering

that over half of the US. population resides near the coast (Nordstrom et al. 1990;

Bernd-Cohen and Gordon 1999; White and Wang 2003). Lidar has proven potential
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as a valuable a tool for evaluating and managing the coastal zone, yet there is still a

need to study using lidar derivatives to further characterize topography in this setting.
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APPENDIXA

Graphs of the independent variables plotted against the dependent variable

FDSLOPE.
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APPENDIX B

Graphs ofthe independent variables derived from the resampled, 5-m NED data

plotted against the dependent variable FDSLOPE.
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APPENDIX C

Graphs ofthe residuals plotted against each independent variable.
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