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ABSTRACT

LAND COVER MAPPING AT SUB-PIXEL SCALES
By

Yasuyo Kato Makido

One of the biggest drawbacks of land cover mapping from remotely sensed
images relates to spatial resolution, which determines the level of spatial details depicted
in an image. Fine spatial resolution images from satellite sensors such as IKONOS and
QuickBird are now available. However, these images are not suitable for large-area
studies, since a single image is very small and therefore it is costly for large area studies.
Much research has focused on attempting to extract land cover types at sub-pixel scale,
and little research has been conducted concerning the spatial allocation of land cover
types within a pixel. This study is devoted to the development of new algorithms for

predicting land cover distribution using remote sensory imagery at sub-pixel level.

The “pixel-swapping” optimization algorithm, which was proposed by Atkinson
for predicting sub-pixel land cover distribution, is investigated in this study. Two
limitations of this method, the arbitrary spatial range value and the arbitrary exponential
model of spatial autocorrelation, are assessed. Various weighting functions, as
alternatives to the exponential model, are evaluated in order to derive the optimum
weighting function. Two different simulation models were employed to develop spatially
autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW,
the pixel swapping method improved classification accuracy compared with the initial

random allocation of sub-pixels. However the results suggested that equal weight could



be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these

more complex models of spatial structure.

New algorithms for modeling the spatial distribution of multiple land cover
classes at sub-pixel scales are developed and evaluated. Three methods are examined:
sequential categorical swapping, simultaneous categorical swapping, and simulated
annealing. These three methods are applied to classified Landsat ETM+ data that has
been resampled to 210 meters. The result suggested that the simultaneous method can be
considered as the optimum method in terms of accuracy performance and computation

time.

The case study employs remote sensing imagery at the following sites: tropical
forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both
sites are used to examine how the characteristics of the landscape affect the ability of the
optimum technique. Three types of measurement: Moran’s /, mean patch size (MPS), and
patch size standard deviation (STDEV), are used to characterize the landscape. All results
suggested that this technique could increase the classification accuracy more than

traditional hard classification.

The methods developed in this study can benefit researchers who employ coarse
remote sensing imagery but are interested in detailed landscape information. In many
cases, the satellite sensor that provides large spatial coverage has insufficient spatial
detail to identify landscape patterns. Application of the super-resolution technique
described in this dissertation could potentially solve this problem by providing detailed

land cover predictions from the coarse resolution satellite sensor imagery.
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Chapter 1

Introduction

1.1 Up- and Down- Scaling

Scale is one of the fundamental attributes in describing geographic data and yet
the word is ambiguous. The term “scale” has a variety of meanings and has been used in
various disciplines. There are at least four meanings of scale within the spatial domain:
the cartographic or map scale, the geographic (observational) scale, the operational scale,
and the measurement scale (resolution) (Cao and Lam, 1997). The fourth scale, the
spatial resolution, refers to the smallest distinguishable parts of an object (Tobler, 1988).
Pixels in a remote sensed imagery are defined by the combination of the height and
instantaneous field-of-view (IFOV) of the sensor (Atkinson and Curran, 1995), and limit
the quantitative potential of land cover information from remote sensing imagery. Land
cover is a fundamental variable that underpins much scientific research. Accurate land
cover information is both difficult and expensive to obtain. Remote sensing has the
potential to provide such information. Many researchers have conducted research that
focused on increasing accuracy of land cover classification from remote sensing imagery
(e.g., Justice and Townshend, 1981). The issue remains that land cover data provided by
remote sensing are limited by the spatial resolution of the sensor. Increasing the spatial
resolution generally reveals greater detail (Atkinson, 2005), and spatial resolution has
been the subject of research in remote sensing for many years (Woodcock and Strahler,
1987, Atkinson and Tate, 2000). The spatial variation observed in remote sensing

imagery is a function of both the property of interest and the sampling framework



(Atkinson, 2005). Researchers attempt to evaluate the effect of spatial resolution on
detectable spatial variation as characterized by functions, such as local variance and the
variogram (Woodcock and Strahler, 1987, Curran and Atkinson, 1998). Such research
confirmed that spatial resolution has a fundamental effect on the spatial variation in
remotely sensed imagery (Atkinson, 2005). Because of the limitation of data storage
capacity, large area studies are often associated with coarse resolution imagery (such as
MODIS and National Oceanic and Atmospheric Administration (NOAA) Advanced Very
High Resolution Radiometer (AVHRR)) and fine resolution imagery (such as IKONOS
and QuickBird) is the characteristic of small area studies (Cao and Lam, 1997). Such
coarse resolution imagery has high temporal frequency, but may not be fine enough for
monitoring environment. For example, the 1.1 km data from AVHRR are adequate for
mapping large scale phenomena but too coarse for mapping finer scale phenomena, such
as changes in wetland dynamics (Pelky er al.,, 2003), small burn scars (Hlavka and

Livingston, 1997), and typical agricultural fields in UK (Atkinson, et al., 1997).

Early techniques for land cover classification from remotely sensed imagery
employed hard classification in which each pixel was classified into one of many land
cover types, implying that land cover classes exactly fit within the bounds of one or more
pixels (Figure 1-1). However, many pixels consist of a mixture of multiple land cover
classes. Thus, remote sensing images contain a combination of pure and mixed pixels.
Fisher (1997) lists four cases of mixed pixels (Figure 1-2).

(a) small sub-pixel objects (a house or tree)

(b) boundaries between two or more mapping units (field-woodland boundary)

(c) the intergrade between central concepts of mappable phenomena (ecotone)



(d) linear sub-pixel objects (a road)
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Figure 1-1. The pixel view of the world (From Fisher,
1997)

Sub-pixel Boundary pixel

Linear sub-pixel

Figure 1-2. Four causes of mixed pixels (From Fisher, 1997)



The solution to the mixed pixel problem typically centers on soft (often termed
fuzzy in the remote sensing literature) classification, which allows proportions of each
pixel to be partitioned between classes. Sub-pixel class composition is estimated through
the use of techniques, such as mixture modeling (e.g., Kerdiles and Grondona, 1995),
supervised fuzzy c-means classification (e.g., Foody and Cox, 1994) and artificial neural
networks (e.g., Kanellopoulos e al., 1992). The output of these techniques generally
produces images that display the proportion of a certain class within each pixel. For
example, these techniques may predict that a certain pixel is comprised of 70 percent
forest and 30 percent non-forest. In most cases, this results in a more informative and less
error prone representation of land cover than that produced using a hard, one-class-per-
pixel classification (McKelvey and Noon, 2001). However, the spatial distribution of
these class components within the pixel remains unknown. It would be useful to know
where the class components are located spatially within the pixel, and this is a goal of this

thesis.

Much previous research has been focused on attempting to extract class
proportion of sub-pixel scale features, and very little research has been conducted
concerning the allocation of class proportions within a pixel. The objective of this study
is to overcome the mixed pixel problem by investigating a method for predicting sub-
pixel land cover distribution for multiple land cover classes. This innovative method can
produce a fine resolution land cover map without a need for any additional data. In the
following section, various sub-pixel mapping algorithms are discussed. This is followed

by the research objectives and the outlines of dissertation.



1.2 Literature Review

Several algorithms have been proposed for allocating classes of sub-pixels. Foody
(1998) introduced a simple regression based approach to create a sharpened fuzzy
classification image through the use of an additional finer spatial resolution image. The
approach was illustrated by refining a fuzzy classification with a sharpening image at a
resolution one half of that of the image used to derive the classification. This approach
was applied to a small lake with islands. The resulting sharpened fuzzy classification
provided a visually accurate representation of land cover. However, the areal extent of
the lake was not maintained, and it was not always possible to obtain two images at same
area of different spatial resolutions. Gavin and Jennison (1997) adopted a Bayesian
approach which incorporates prior information about the true image in a stochastic model
that attached higher probability to images with shorter total edge length. The model
produced accurate results, but the multistage operation was computationally intensive and
was most suitable for small objects. Aplin ef al. (1999) developed a set of techniques to
classify land cover on a per-field basis, rather than a traditional per-pixel basis, by
utilizing the Ordnance Survey land line vector data. They concluded that the per-field
classification technique was generally more accurate than the per-pixel classification.

However, the necessity of accurate vector data sets limited this technique.

Atkinson (1997) originally proposed super-resolution mapping using only the
output from a soft classification. The idea was to maximize the spatial autocorrelation
between neighboring sub-pixels while honoring the original pixel proportions. The
approach, which comprised two stages, was proposed for preparing remotely sensed

images so that sub-pixel vector boundaries in land cover might be mapped. The first stage



involved the application of a technique for estimating the land cover proportions for
individual pixels. The second stage involved a new technique to determine where the
relative proportions of each class occured within each pixel. The algorithm worked by
assuming spatial dependence within and among pixels. Verhoeye and De Wulf (2002)
adapted this assumption and introduced an approach that formulated the sub-pixel
mapping concept as a linear optimization problem to maximize spatial autocorrelation
within the image. They produced a sharpened crisp land cover map without the need for
finer spatial resolution data. However, this non-iterative solution produced linear artifacts
in the final map. Mertens et al. (2003) employed the same optimization function as
Verhoeye and De Wulf (2002), but used a procedure based on Genetic Algorithms (GA),
a fast search technique, based on principles of natural selection. This method can only be
used for small images with a few land cover classes and a small upscaling factor.
Kasetkasem er al. (2005) introduced a Markov random field (MRF) model based
approach to generate super-resolution land cover maps from remote sensing data. It was
assumed that a super-resolution map has MRF propertied, i.e., two adjacent pixels are
more likely to belong to the same land cover class than different classes. The results
showed a considerable increase in the accuracy of land cover maps over those obtained
from a linear optimization approach suggested by Verhoeye and De Wulf (2002). An
advantage of this method was that the algorithm used the image directly without
requiring the output of soft classification techniques, since the method included the step
to generate fraction images from the coarse resolution multi-spectral images. Tatem e? al.
(2001, 2002) examined the application of a Hopfield neural network (HNN) technique to

predict the spatial pattern of land cover features smaller and larger than the scale of a



pixel by using information about class composition determined from soft classification. A
Hopfield neural network was used as an optimization tool to make the output of a neuron
similar to that of its neighboring neuron in order to maximize the spatial autocorrelation
within the image. Tatem et al. (2003) applied the HNN technique to Landsat Thematic
Mapper (TM) agricultural imagery to derive accurate estimates of land cover and reduce
uncertainty inherent in such imagery, and demonstrated that the spatial resolution of
satellite sensor imagery did not necessarily represent a limit to the spatial detail
obtainable within land cover maps derived from such imagery. Boucher and Kyriakidis
(2006) introduced a non-iterative super-resolution land cover mapping using indicator
cokriging, that approximated the probability that a pixel at the fine resolution belonged to
a particular class, given the coarse resolution fractions and a sparse set of class labels at
some informed fine pixels. Such kriging-derived probabilities were used in sequential
indicator simulation to generate synthetic maps of class labels at the fine resolution pixels.
As authors stated this simulation procedure would be faster than the other iterative
procedures. However, it is not always possible to obtain a prior model of spatial structure

for the fine resolution.

Atkinson (2001, 2005) examined the “pixel-swapping” optimization algorithm
within a geostatistical framework as an alternative to the HNN algorithm. Like Verhoeye
and De Wulf (2002) and Tatem et al. (2001, 2002, 2003), Atkinson used the proportions
of each land cover within each pixel to map the location of class components within the
pixels. These class proportions can be derived from various soft classification methods,
which are described above. Unlike Verhoeye and DeWulf (2002) and Boucher and

Kyriakidis (2006), the “pixel-swapping” algorithm iteratively allocated sub-pixels to



maximize the contiguity of the landscape. This simple algorithm is similar in character to
simulated annealing. Simulated annealing is a family of optimization algorithms based on
the principle of stochastic relaxation. An initial image is gradually changed so as to
match user-specified constraints (Goovaerts, 1997). However, unlike the basic simulated
annealing approach, which randomly selects pairs of sites for swapping, Atkinson’s
optimization algorithm deterministically selects the two sites most in need of swapping
based on an attractiveness index, Oi. Consequently, the pixel-swapping algorithm is
relatively fast since convergence occurs in far less iterations. However, several aspects of
this algorithm deserve further investigation: the choice of the exponential weighting
function is arbitrary, and the value of the non-linear parameter of the exponential model
(a) is experimentally derived. Moreover, the algorithm is only applicable for binary

images.

Although the linear optimization approach (Verhoeye and De Wulf, 2002) can be
applied to multiple class land covers, the non-iterative solution produced the linear
artifacts. Both Foody’s (1998) and Aplin et al.’s (1999) approaches needed additional
images to create finer resolution images. The HNN approach was applicable for multiple
classes and did not require any additional images. However, it is not particularly
accessible to the remote sensing practitioner. A clear need exists for a new algorithm for
super resolution mapping that uses only class proportions information that can apply to

multiple land covers and is simple enough to implement in computer language.

This study adopts the assumption of spatial dependency both within and among

pixels, as do most existing algorithms. Therefore, the various algorithms introduced in



this study work best where the land cover features are larger than the sub-pixels and are

spatially autocorrelated.

1.3 Research Objectives

The overall objective of this research is to overcome the mixed pixel problem by
developing a method for predicting sub-pixel land cover distribution. The specific

objectives of my research are:

1. To improve the Atkinson pixel-swapping algorithm by developing soluctions to
the two specific limitations: the arbitrary spatial range value, and the arbitrary
exponential model for characterizing spatial autocorrelation

2. To develop new algorithms that can be applied to multiple land covers

3. To assess the quality of these methods using remotely sensed image based case

studies

The new approach for predicting sub-pixel land cover distribution for multiple
land cover classes can benefit researchers who employ remote sensing imagery. In many
cases, the satellite sensor that provides large spatial coverage has insufficient spatial
detail to identify landscape patterns. In other cases, there are only image archives
available with coarse resolution for previous time periods. Application of the super-
resolution technique described in this paper could solve these problems by providing

detailed land cover predictions from relatively coarse resolution satellite sensor imagery.

The dissertation is outlined as follows:



Chapter 2 (Objective 1) focuses on research to improve the pixel-swapping
algorithm proposed by Atkinson for predicting sub-pixel land cover distribution. Two
limitations of this method are assessed: the arbitrary spatial range value and the arbitrary
exponential model for characterizing spatial autocorrelation. For this assessment, two
different simulation models are employed to develop spatially autocorrelated binary class
raster maps. These models are then resampled to generate sets of representative medium

resolution class maps.

Chapter 3 (Objective 2) describes the development of new algorithms that are
applicable to multiple land covers for predicting the land cover distribution at sub-pixel
scales. Three methods are examined: sequential, simultaneous, and simulated annealing
(SA). An optimum method is selected based on its classification accuracy and

computation time.

Chapter 4 (Objective 3) focuses on the application of the optimum technique to
satellite imagery in Brazil and China. Landsat ETM+ imageries are classified into six
classes for Brazil and seven classes for China. Landsat MSS images with a corresponding
Digital Elevation Model in China are used to develop a 12-class scheme. Sub-areas for
these classified land cover maps are examined to determine how the characteristics of the
landscape affect the ability of the optimum technique. Three types of measurement,
Moran’s I, mean patch size (MPS), and patch size standard deviation (STDEV), are used

to characterize landscape structure.
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Chapter 5 contains the conclusions and challenges of this study. It summarizes
results and addresses the potential of the sub-pixel models to impact applications in GIS

research where observations or measurements are spatially aggregated are also addressed.
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Chapter 2

Modeling Binary Landscapes at Sub-pixel Scales

2.1 Current method

Atkinson (2001, 2005) introduced a pixel-swapping algorithm for predicting sub-
pixel land cover distribution. This algorithm successfully allocates class distributions
within a pixel and is simple enough to code in any computing language. Initially, the
algorithm randomly allocates class codes to sub-pixels. The attractiveness of each sub-
pixel location is calculated based on the current arrangement of sub-pixel classes. Then
the attractiveness metric is used to conduct subsequent cell swapping. In this algorithm,

the exponential weighting function is used to calculate the attractiveness:

Oi= S Aj - Z(X j) )
j=1
n: the number of neighbors
Z (Xj) : value of the binary class z at the jth pixel location Xj
A;i + a weight predicted as:
()

—h.:
Aj = exp(—l
a

hj; : the lag between the pixel location for Xi and Xj

a : the range parameter of the exponential model
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Once the attractiveness is predicted, the algorithm ranks the scores on a pixel-by-pixel
basis. For each pixel, the least attractive (Smallest Oi) location currently allocated to a 1
and the most attractive (Greatest Oi) location currently allocated to a 0 are stored. If
Smallest Oi is less than Greatest Oi then the classes are swapped. This procedure is
repeated either for a fixed number of iterations or until the optimization algorithm fails to
make a change. Thus, the spatial arrangement of sub-pixel values is iteratively changed in

order to maximize the correlation between neighboring sub-pixels.

2.2 Research Issues

The pixel-swapping algorithm is demonstrated to produce excellent results for
relatively simple images. However, several aspects of this algorithm deserve further
investigation: the choice of the exponential weighting function is arbitrary, and the value
of the non-linear parameter of the exponential model (a) is experimentally derived. This
chapter reports on research to improve the pixel-swapping algorithm by considering

alternatives to these two limitations.

In the following section, the method for testing the parameters of this algorithm is
described, including a discussion of the derivation of the test data, the measurement of
spatial structure, and the weighting schemes employed. This is followed by the
presentation of results exploring the relationship between spatial autocorrelation and sub-
pixel classification accuracy, as well as a comparison of alternative weighting function
performance. This chapter concludes with a discussion of implications for sub-pixel

classification and potential lines of subsequent research.
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2.3 New Modeling Methods

In this section, I introduce the data sets employed and discuss how various
parameters of the Atkinson algorithm were tested. The data sets employed in this research
were generated using C code developed by Dr. Shortridge, while the Atkinson algorithm
was implemented for this work by the author using custom code in the IDL programming

language 6.2 (Interactive Data Language, Research Systems Inc, Boulder Colorado).

2.3.1 Simulation of Autocorrelated Images

This case study employs simulated binary images that have 315 rows and columns
with substantial positive autocorrelation. Two methods are used to develop these images.
Both methods create binary raster files that are spatially autocorrelated at a level
specified by a target Moran’s [/ statistic set by the user (0.7, in both cases). Moran’s / is
an indicator of spatial autocorrelation for area data (Bailey and Gatrell, 1995). For a

spatial proximity matrix (W), spatial correlation in attribute values (yi) is estimated as:
n n
nYy. Y wi(i ==
i=1j=1 (3)

[ﬁ(n-ﬁ)z][ZwajJ

i=1 i#j

I=

The Moran index is positive when nearby areas tend to be similar in attribute, negative
when they tend to be more dissimilar than one might expect, and approximately zero
when attribute values are arranged randomly and independently in space (Goodchild,

1986).
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Method 1 uses an initially random distribution, while Method 2 uses a fractal
model (midpoint displacement) to rapidly initialize a highly autocorrelated surface. Then
a cell-swapping algorithm is employed to shift the spatial arrangement to arrive at the
specified /. Since these two methods result in notably different images despite the same
Moran’s / values, this study examines both simulated images (Figure 2-1, 2-2). I call the
neutral image that is created by method 1 as Neutral A and that is created by method 2 as
Neutral B. Both images contain 33% of 1 (forest) and 67% of 0 (non-forest). In Neutral
A, the forest patches are evenly distributed throughout the area. In Neutral B, the forest
patches are larger and clumped at some locations, which is a traditional fractal pattern.
These images are aggregated to obtain coarser resolution images (Figure 2-3, 2-4), which

£ .

will be the subject of super-resolution ing. Th T data” is

(Figure 2-1, 2-2) with which to test the results of these experiments on sub-pixel

swapping.

;“1Xj

Figure 2-2. Neutral B: Cell size 1




" _n ] el
Figure 2-3. Neutral A: Cell size 10

]
Figure 2-4. Neutral B: Cell size 10

2.3.2 Spatial Resolution

In this study, the attempt is made to derive the optimum weighting function based

on the degree of contiguity in the original map. Moran’s / is used to characterize the

b 1

structure of the landscape. However, lly are scale-

dependent, which means the analysis results could differ considerably if different pixel
resolutions are used. An important source of uncertainty in remotely sensed data is
caused by interactions between the scale of variation within the ground scene and the
spatial resolution of the sensor (Friedl er al., 2001). The relationship between the
Instantaneous Field of View (IFOV) of the sensor system and the spatial variability in the
landscape will influence the types of analyses that may be performed. Thus, Moran’s / is
a function of spatial resolution, and looking at a value calculated at the original pixel
resolution may be misleading. Therefore, I quantify the effect of spatial resolution on the

empirically calculated /.



The original Neutral A and B rasters, with cell sizes of 1, are resampled to cell
sizes 2, 3, 4, ..., 10. These reduced-resolution version of the images are generated by the
summation of the values of the input cells that are encompassed by the extent of the
output cell, as demonstrated in Figure 2-5. Note that the resulting cell value indicates the
proportion of the cell occupied by class 1, corresponding to the output of soft

classification techniques.

_
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OO 20

Figure 2-5. Resampled cell size 3

2.3.3 Identifying Neighbors

One important parameter of the pixel-swapping algorithm is the neighborhood
definition. There are many ways to measure the proximity (nearness) of observations
when dealing with area data. Some are distance-based, while others are neighbor-based.
The choice of measure may affect the results. With n zones, the measurement of
proximity takes the form of an » x n matrix W: the spatial proximity matrix. Each element
wij in the matrix measure the spatial proximity of 4i to 4j. For this study, the following

binary definition of wij is used (Bailey and Gatrell, 1995).
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1 centroid of 4j shares an edge with Ai
wij =

0 otherwise

A first-order neighbor under this definition would be one that directly borders Ai.
A second-order neighbor would be one that does not share a border directly with A4i, but
is a first-order neighbor with a zone Ak that does share a border with 4i (Bailey and
Gatrell, 1995). In this study, equally weighted first-and second-order neighbors are

employed for both simulated images. This corresponds to the 24 closest cells in a raster

grid.

2.3.4 Spatial Weighting Functions

The Atkinson weighting function employs the exponential model, which is a
standard covariance model. Therefore, I also tested another standard geostatistical
covariance model, the Gaussian (Bailey and Gatrell, 1995). Inverse distance weighting
(IDW) is a commonly employed interpolation technique that is both familiar and

straightforward to implement as a distance-based weighting function.

The Atkinson spatial weighting function can be expressed as an Exponential

covariance model:

-3h;
y ) @)

Ajj = exp( -

hj; : the lag between the pixel location for Xi and Xj
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r : practical range of the covariance
The range is the lag distance in cells at which pixels become independent of each
other. Earlier works on this function employed a parameter a, which was set to 5
(Atkinson, 2001, 2005); this is equivalent to a range » of 15. In this study, various range

values from 1 to 20 for the Exponential model are examined.

The weighting function using a Gaussian model is:

—3h..2
Ay = exp( 2” ) ©))
r

The inverse distance weighting function is:

P (6)

k : a real number
For the Gaussian model, various range values » from 1 to 20 are examined. For the IDW

model, various k values from 0 to 10 are examined.

In addition to testing the various distance weighting functions, a function applying
equal weights to all first- and second-order neighbors is examined, which means the total
24 sub-pixels are involved for the computation. Attractiveness Oi can be modeled simply

as the sum of the values at the nearest neighbors:

Oi= Zn:Z(Xj) @
j=I

n: the number of neighbors
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Z (Xj) : value of the binary class z at the jth pixel location Xj
This simplified attractiveness makes the algorithm simpler and probably faster. This

model is referred to subsequently as the Nearest Neighbor function.

In this study the resampled coarse spatial resolution images, which have cell sizes
of 5 and 7, are subjected to super-resolution mapping using the various functions
described to reproduce cell size 1, which is the original fine resolution image. The
algorithm employed 9 and 13 iterations for the coarse 5 and 7 resolution images,

respectively.

In all cases, Moran’s [ is used as an index of the spatial contiguity of the
landscape, and Percent Correctly Classified (PCC) is used as a classification accuracy
assessment. PCC is calculated as the ratio of the sum of correctly classified sub-pixels in
all classes to the sum of the total number of sub-pixels (Congalton and Green, 1999).
Reported PCC is the average of 20 trials for testing various range or k-values for

Gaussian, Exponential and IDW models.

2.4 Results

Figure 2-6 shows the relationship between Moran’s / and resampled coarse
resolution images for both neutral images. In the case of Neutral A, as the resolution
decreases, Moran’s I decreases, which means the image is less autocorrelated than the
original one. In the case of Neutral B, Moran’s I does not change much with the
resolution change, and all / values are higher than that for the original image, which
means the coarsened image is more autocorrelated than the original one. While the two

original neutral images have the same Moran’s / value, the pattern of spatial distribution
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are quite different; for Neutral A, the patches are distributed evenly throughout the area,
while for Neutral B, the patches exhibit at traditional fractal pattern. As the images are
coarsened, distribution differences become more apparent. Thus, the Moran’s 7 value for
any particular raster is dependent on the underlying process generating the autocorrelated
pattern and, therefore, characterizing the relationship between resolution and Moran’s /
will be challenging without knowing the sub-pixel distribution pattern of the landscape.
An underlying assumption of the Atkinson method is that land cover is dependent both
within and between pixels. The algorithm attempts to maximize the degree of contiguity.
However, as the relationship between Neutral A and B with respect to Moran's /
demonstrates, spatial structure is a function of pixel resolution and underlying process. It

may not always be desirable to maximize autocorrelation.

0.9
0.8 -
0.7
0.6 -

205 -

§ 041

=031
0.2
0.1 -

=&— Neutral A
—&— Neutral B

Resampled Cell Size

Figure 2-6. Moran’s / for various cell sizes
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Figure 2-7 demonstrates the effectiveness of the pixel-swapping method through
iteration using the Exponential model. Classification accuracy and Moran’s [ increase
until iteration 13 and level off for both neutral images for cell size 7. The results imply
that the algorithm successfully increases the degree of spatial autocorrelation, and
increases classification accuracy within a pixel. Cell size 5 images show similar results.
However, the appropriate iteration number increases as the resampled cell size increases,
since there are more sub-pixels to be swapped within a pixel. For the following

examination, 13 iterations for cell size 7 and 9 iterations for cell size 5 are used.

For the Exponential and the Gaussian model, range values from 1 to 20 are tested.
Moran’s I and classification accuracy increase initially and then level off (Figure 2-8, 2-
9). Although the plot for the IDW model has an appearance quite different from the other
models (Figure 2-10), a similar relationship with accuracy and spatial autocorrelation are
implied. In each case, as the weights become more similar, Moran’s / and overall
accuracy increase. Reported classification accuracies for all three figures are the average
of 20 trials. The standard deviations for 20 trials vary with the range values and
weighting functions employed; they range approximately from 0.3 to 0.6 percent for
Neutral A, and from 0.1 to 0.4 percent for Neutral B. This variability is caused by
different initial allocations, since the algorithm randomly creates different initial

allocations based on the class proportion.

I tested the Nearest Neighbor function (Figure 2-11, 2-12, 2-13), with equal
weights for each neighbor. The figures demonstrate that the Nearest Neighbor function
produces results similar to the original Exponential model. Classification accuracy and

Moran’s [ increase until iteration 13 and level off for both neutral images. I performed a
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paired two-sample student's t-test using 20 simulated images derived from method 1 and
2 (Table 2-1). The null hypothesis is that the classification accuracies using the Nearest
Neighbor function is equal to the one using the other models. Although the probabilities
for the empirically-derived t-statistics vary with range and k values, the probabilities tend
to exceed 0.05 for larger range values and smaller k values. The classification accuracies
using the Nearest Neighbor function could produce equal results to the other models at
90 % confidence level when the weights are similar. When the weights are not similar,
the Nearest Neighbor function tends to produce higher accuracy than the other models.
Employing a Nearest Neighbor scheme appears preferable to the more complex
alternatives since it can produce similar results and may also be computationally more
efficient than using a distance-based weighting function. For the Nearest Neighbor
function, the time taken for 13 iterations (cell 7 to 1) was less than 1 second on a P4

computer. It took approximately 50 seconds for the Exponential model.
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Figure 2-7. Moran’s I and accuracy (PCC (%)) for various iterations (Exponential, cell 7

to 1, range=15)
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2.5 Discussions

This study investigates the pixel-swapping optimization algorithm for modeling
sub-pixel land cover distribution. I examine the effect of spatial resolution on Moran’s /
and find that the relationship is highly image dependent: different underlying process
models may give rise to images with identical Moran's 7 values but with very different
spatial scaling properties. Two limitations of this method, the arbitrary spatial range value
and the arbitrary exponential model of spatial autocorrelation, are assessed. Various
weighting functions, as alternatives to the exponential model, are evaluated in order to
derive an optimum weighting function. In all tested models, Gaussian, Exponential, and
IDW, the pixel swapping method improves classification accuracy compared with the
initial random allocation of sub-pixels. However the results suggest that the Nearest
Neighbor function could be used to maximize accuracy and Moran’s / value instead of

using more complex models of spatial structure.

One limitation of the pixel-swapping method is that the algorithm works best for
highly contiguous landscapes like these in this study, since the algorithm attempts to
maximize the spatial autocorrelation. However, not all landscapes are highly contiguous.
Therefore, it is necessary to investigate methods to incorporate the degree of
autocorrelation of the landscape (if such information is available) without maximizing the

autocorrelation.

Several potential avenues for further research present themselves. In this study,

Moran’s I is used as an index of the spatial contiguity of the landscape, and Percent
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Correctly Classified (PCC) is used as a classification accuracy assessment. There are
alternative ways to characterize landscape. Various landscape indices, such as mean
patch size, number of patches, and total edge length, can be used. These indices are
employed to quantify landscape structure in terms of landscape configuration and
landscape composition (Haines-Young and Chopping, 1996). The effect of sub-pixel
models on these alternative metrics is unknown; they may show markedly different
behavior than the results for Moran's / identified in this work. Alternatively, the
employment of different metrics may provide a much richer basis for modeling landscape

pattern at the sub-pixel scale.

A second issue involves the complexity of the problem under examination. This
research only considered binary class maps (e.g. forest/non-forest). Since our models of
the landscape, in general, are composed of a variety of land cover types, it is vital to
investigate ways to handle multiple cover classes at the sub-pixel level. Thus, in the next
chapter, I will develop new algorithms that are applicable to multiple land covers for

predicting land cover distribution at sub-pixel scales.

32



Chapter 3

Modeling Multiple Class Land Cover at Sub-pixel Scales

3.1 Introduction

In Chapter 2, the pixel-swapping optimization algorithm was examined for
predicting sub-pixel land cover distribution. Various alternative weighting functions were
evaluated. For all tested weighting functions (Nearest Neighbor, Gaussian, Exponential,
and IDW), the pixel swapping method increased classification accuracy compared with
the initial random allocation of sub-pixels. I concluded that the Nearest Neighbor
function is not only simpler and computationally more tractable but also provides
equivalent results as the distance-based weighting functions. One limitation of this pixel-
swapping algorithm is that it is applicable to only binary class maps (e.g. forest/non-
forest). Since our landscape models, in general, are composed of a variety of land cover
types, it is vital to investigate ways to handle multiple cover classes at sub-pixel levels.
The objective of this chapter is to develop new algorithms for modeling the spatial
distribution of multiple land cover classes at sub-pixel scales. Next, I describe the various
algorithms for sub-pixel mapping, and this is followed by the presentation of
experimental results and discussion. The chapter concludes with some implications of

the findings.

3.2 Methods

In this section, I introduce three methods for sub-pixel mapping: sequential

categorical swapping, simultaneous categorical swapping, and simulated annealing. All
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three methods employ the notion of attractiveness using a Nearest Neighbor function.
These algorithms were implemented by the author using custom code in the IDL
programming language. In this study, Moran’s / is used as an index of the spatial
autocorrelation for the landscape (Bailey and Gatrell 1995). Moran’s I of each class is
weighted based on the number of pixels of the class. If class A occupies 30 percent of the
area and class B occupies 70 percent of area, the weighted Moran’s / is sum of Moran’s /

of A multiply by 0.3 and Moran’s / of B multiply by 0.7.

3.2.1 Sequential categorical swapping

Sequential categorical swapping is an extension of the binary pixel-swapping
algorithm proposed by Atkinson (2001, 2005). The algorithm allocates each class in turn
to maximize its internal spatial autocorrelation. The algorithm considers the landscape as
a binary scheme (class 1 and 0 (the other classes)). Once the first class is allocated, the
algorithm only uses the remaining cells to allocate the second class, and so on. The final
class is allocated to the remaining cells, and therefore, its class proportions are not
necessary as input data. Thus, the order of the input classes must be specified for this
method. Two input class orders are examined in terms of Moran’s / value: descending

(high 7 to low ]) and ascending (low 7 to high I) order.

Sequential categorical swapping benefits from a prior information about the class,
such as the Moran’s [ value. However, in general, Moran’ s / at the sub-pixel level is not
possible to obtain. Moreover, as detailed discussion is provided in Chapter 2, it is not
feasible to estimate the Moran’s  of each class at sub-pixel scales from coarse resolution

imagery, since the relationship between resolution and Moran’s / is unpredictable.
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3.2.2 Simultaneous categorical swapping

The second method simultaneously examines all pairs of cell-class combinations
within a pixel to determine the most appropriate pair of sub-pixels to swap. Initially the
algorithm randomly allocates classes to all cells in each pixel based on the class
proportion to sub pixels. In Figure 3-1, for example, prior soft classification probabilities
indicates that 66 % of the southwestern cell is class 2, while 33% of the southeastern cell
is class 2. Therefore 2/3 of the sub pixels in the southwestern cell are assigned to class 2,
and 1/3 of the sub pixels in the southeastern cell are assigned to class 2. Based on this

initial allocation, binary arrays for each class are created as shown in Figure 3-2.

Then, attractiveness Qi is calculated for each class (Figure 3-3). As mentioned in
Chapter 2, attractiveness Oi is simply the sum of the values at the nearest neighbors. The
example below uses the first-nearest neighbors. The center pixel of the northeastern cell
is occupied by class 3 and there are four sub-pixels of class 3 (includes the center pixel

itself) within nearest neighbors. Thus, the attractiveness of the center pixel is 4.

2111141113
1132133} 3
3l2|2g1]|1}|1
I-3-7 211132
213]|12})3|12]|1
211123 1]2

Figure 3-1. Initial random allocation
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Figure 3-3. Attractiveness Oi (Grey color i the pixel is pied by the class)

Based on the attractiveness Oi value, a decision rule table is created for each pixel
(Table 3-1). Index 1 is the minimum Oi value occupied by the class (class a, location x)
(Figure 3-3). Index 2 is the maximum Oi value occupied by the other class (class b,
location y). Index 3 is the Oi value at location y for class . Index 4 is the Oi value at
location x for class b. The index 5 and 6 are calculated using the results from index 1 to
4. The index 5 (index 2-1) indicates how much class a is more attracted to location y than
current location x. The index 6 (index 4-3) also indicates how much class b is more

attracted to location x than current location y. The index 7 is the sum of index 5 and 6.
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Thus, the larger the value of index 7, the greater the swapping attractiveness of this cell
pair. Subsequently, a row that shows maximum value at index 7 is selected. One pair of
sub-pixels (class a at location Y and class b at location Y) is swapped. This swapping
aims to increase the degree of contiguity for both classes. This procedure is repeated for

all pixels. Thus, this simultaneous method does not require any prior information about

relative class contiguity.
Table 3-1. Decision Rule Table
INDEX-> 1 2 3 4 5 6 7
oi_oa_minjoi ua max| oi ob | oi ub| 2-1 4-3 5+6
class 1 2 4 3 2 2 -1 1
class 2 1 4 2 1 3 -1 2
class 3 2 3 5 4 1 -1 0
num_class
Max

3.2.3 Simulated Annealing

Simulated annealing is a family of optimization algorithms based on the principle
of stochastic relaxation. An initial image is gradually perturbed via pixel swapping so as
to match constraints such as reproduction of a target histogram and covariance
(Goovaerts, 1997). Kasetkasem et al. (2005) employs the Simulated Annealing as the
optimization algorithm as a part of Markov random field model based approach to
generate super-resolution land cover map. However, Simulated Annealing has not been
commonly applied to super-resolution mapping techniques. There are different criteria
which can be used to decide whether a given perturbation is accepted or rejected during
the optimization process. In this study, the Maximum a Posteriori (MAP) model is used

(Goovaerts, 1997), and Moran’s / is employed as the objective.
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This MAP model only accepts swaps that increase the local Moran’s / value.

Prob {Accept ith swapping} = %:(l) :)f;lli\:t?\fvi!lsl;s 1(1) 2 Moran’s I(i -1)

The computation time will be exceedingly long if we calculate Moran’s / value
for each trial, especially for a large study site. Therefore, Moran’s I will be recalculated
only after a certain number of iterations for decision criteria. The basic steps involved in

the algorithm are given below:

1. Let / gpjective be the target Moran’s / value and Nyax be the maximum allowable number
of iterations
2. Randomly allocate sub-pixels within a pixel based on the class proportions
3.Calculate Moran’s [ for the current image (Zcurrent)
4. Repeat the following steps:
while (Zeumrent </ objective) AND (number of iterations < Nmax)
i. Calculate attractiveness Oi value for each class (oi_array)
ii. Repeat the following steps a and b for (1% of Npax) times
a. Randomly pick two sub-pixels within a pixel
b. Swap or un-swap based on the Oi value

iii. Calculate Moran’s / value for the current image (Zcument)(g0 back to Step 4)

At step 4-ii-b, sub-pixel X is currently occupied by class A and sub-pixel Y is
occupied by class B. The Oi value at sub-pixel X for class A and the Oi value at sub-pixel
Y for class B is added (Non_swap_Oi). The Oi value at sub-pixel X for class B and the
Oi value at sub-pixel Y for class A is added (Swap_Oi). If Swap_Oi is larger than

Non_swap_Oi, class A and class B are swapped. One advantage of this algorithm over
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the other simultaneous and sequential methods is that users can specify the target
Moran’s I, which means the algorithm does not always maximize the contiguity of the
landscape. However, as previously discussed, knowledge of Moran’ s I at sub-pixel
scales is generally not possible to obtain. Therefore, target / can be specified only if we
have a prior information of the landscape. In this study, the target Moran’ / is set to 1.0 to

maximize the autocorrelation so that results match the other methods.

One distinction of the simulated annealing algorithm relates to the fact that the
algorithm randomly selects two sites. In contrast, the sequential and simultaneous
algorithm deterministically selects two sites most in need of swapping based on the
attractiveness index Oi. Consequently, these two methods are relatively fast since
convergence occurs in far fewer iterations. Processing time will be an important aspect of
consideration since remotely sensed imagery are generally very large data sets. Thus,
three approaches, sequential categorical swapping, simultaneous categorical swapping,
and simulated annealing, are assessed in terms of their accuracy performance, and their

processing time.

3.3 Case study

A Landsat ETM+ image of East Lansing MI, USA (path21, row30) with a spatial
resolution of 30m acquired on 6 June, 2000, is used to evaluate the various algorithms. A
sub-image of 490 pixels by 490 pixels (14.7 km by 14.7 km) is extracted from the
original image, representing a variety of landscapes from urban to agricultural land. This

heterogeneity is ideal to test the “pixel-swapping” algorithm, since it might contain many
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mixed pixels. It is more likely to include more than one land cover type within a pixel for
a heterogeneous landscape than for a homogeneous landscape. b The sub-image is
classified into five classes by unsupervised classification using ERDAS Imagine 8.6
(ERDAS, 2002): Urban and built-up, residential, vegetation, water, and bare soil. Image
classification techniques, such as supervised, unsupervised, and hybrid classification, aim
to automatically categorize all pixels in an image into land cover classes or themes based
on their data file values (Lillesand et al., 2004). These purely spectrally based procedures
completely ignore the spatial pattern of the image and often result in a salt-and-pepper
appearance due to the inherent spectral variability encountered by a classifier when
applied on a pixel-by pixel basis. Post classification smoothing is generally applied to
“smooth” the classified output (Lillesand et al., 2004). Mode (majority) filter is one
method of classification smoothing. For example, within a sub-pixel classification studies,
Atkinson (2005) applied a 7 pixel by 7 pixel mode filter to the classified image, and
Verhoeye and DeWulf (2002) applied a mode filter to resulting super-resolution maps to
eliminate linear artifacts. As mentioned before, all three techniques examined in this
study should only be applicable as long as the basic assumptions about spatial
dependence are fulfilled. However, the degree of spatial dependency will be considerably
affected by the use of mode filters. Therefore, in addition to the non-filtered original
image, various mode filters, 3x3, 5x5 and 7x7, are applied to the original classified image.
These images are referred to subsequently as Non-filter, Mode 3, Mode 5, and Mode 7.
Figure 3-4 shows the image resulting from the 5x5 mode filter (Mode 5). Urban cells are
mainly located in the center of the study site and agricultural (vegetation) area and bare

soils are located on the surrounding areas. Residential areas are distributed through the
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entire area. The water features are mainly rivers and run through the center. These

filtered products and the original image serve as the reference data for the case study.

The image is then spatially degraded by a factor of 7 to a cell resolution of 210 m
by 210m, using the AGGREGATE function in ARCGRID of ARC/INFO 9.1 (ESRI,
2005). This function generates a reduced-resolution version of a raster data where each
output cell contains the sum of the input cells that are encompassed by the extent of the
output cell. This procedure is performed for each class. Therefore, there are five coarser
resolution images (Figure 3-5). These pixel-level proportions can be considered the
output of soft classification. These class wise fraction images are not easy to interpolate
into one classified image, and also they do not provide any indication as to how the
classes are spatially distributed within the pixel. Figure 3-6 illustrates a small portion of
the study region. The degraded image does not retain its original form of vegetation class,
and it is hard to visualize the original shape from the coarse image. The filtered and
non-filtered images of 490 pixels by 490 pixels are degraded to 70 pixels by 70 pixels.

Thus, four fine images area used as ‘reference data’ to test the various algorithms.

In order to contrast sub-pixel level classification images and traditional hard
classification images, possible results of hard classification are generated using reference
data. The image of hard classification is created by using the BLOCKMAJORITY
function in ARCGRID of ARC/INFO. This block function is used to control resampling
a grid from a finer resolution to a coarser one. In this study, the function finds the
majority value (the value that appears most often) for the 7x7 rectangle neighbor blocks,

and cell values within a block are changed to the majority value.
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Figure 3-5. Input images for five classes (Mode 5)
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For all three methods, attractiveness Oi is calculated using the equally weighted
Nearest Neighbor function. The number of nearest neighbors involved for the
computation is 48, which means all first- to third-order neighbors are incorporated.
Percent Correctly Classified (PCC) is used to measure classification accuracy in this
study. PCC (or overall accuracy) is calculated by the ratio of the sum of correctly
classified sub-pixels in all classes to the sum of the total number of sub-pixels (Congalton
and Green, 1999). Reported PCC is the average of 20 trials for Simultaneous and

Sequential method.

3.4 Results and Discussion

Figures 3-7~3-9 visually demonstrate the effectiveness of sub-pixel level mapping

in case of the 5x5 mode filter. Figure 3-7 shows an initial allocation of sub-pixels. Sub-
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pixels are randomly allocated based on a class proportions within a pixel. Spatial
dependency is minimum in this stage (Moran’s / = 0.39) and will be increased through
iterative cell swapping. Figure 3-8 is the output of the simultaneous method after 30
iterations. As a comparison, a possible result of hard classification using reference data is
displayed (Figure 3-9). This image can be regarded as a result of hard classification using
remote sensing imagery, which has 210 m resolution. More detailed shapes can be seen
from the output of the simultaneous method than the traditional hard classification image.

Some small features are missing from the hard classification image.

Figure 3-7. Initial random allocation (Mode 5)
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Figure 3-9. Example hard classification output (Mode 5)
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Figures 3-10 ~ 3-13 show the relationship between the number of iterations and
overall accuracy for various algorithms. The horizontal axes show the number of
iterations, while the vertical axes show classification accuracy. For SA, PCC increases
through several million iterations before leveling off. The number of iterations for the
simultaneous method is 30. For the sequential method, the number of iterations for each
class is 30, and there are four classes allocated (the fifth class is allocated to the
remaining cells). Therefore, a total of 120 iterations were used for the sequential method.
For this study, a fixed numbers of iterations were used for the sequential and
simultaneous method. These numbers are empirically derived; however, it is also possible
to stop the iteration when the algorithm fails to increase the accuracy. For interpretive
purposes, horizontal lines depict the accuracy of the simultaneous, sequential, and hard

classification.
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The results imply that all three methods increased classification accuracy over the
hard classiﬁcatidn for all mode-filtered images. For the non-filtered image, all sub-pixel
classification methods fail reach to the same accuracy as the hard classification. As
discussed before, the super-resolution techniques used in this study function by
increasing the spatial dependency of the image, and thus these techniques are better
suited for highly autocorrelated images. Therefore, we can assume that the resulting
accuracy will be higher for an image which has high Moran’s /. Table 3-2 shows Moran’s
I value for each image and resulting accuracy using simultaneous method. As Moran’s /
increases, PCC and its difference between the simultaneous and hard classification also
increases. For the non-filtered image, the simultaneous method failed to increase
accuracy compared to the hard classification. This could be caused by lower spatial
dependency of Non-filter image. Figure 3-14 shows images of the Non-filter, output of
simultaneous, and hard classification. The Non-filtered image has a salt-and-pepper
appearance due to the use of a non-spatial purely spectrally based classification procedure.
Output of the simultaneous method shows circular features, while the hard classification
captures the overall shape of the landscape. The small scattered features in the reference
data are clumped to larger features in the output image. This result suggests that solitary
features smaller than the pixel will deteriorate the effectiveness of the sub-pixel methods
and will create circular artifacts. Tatem et al.(2001) indicates that a limitation of the HNN
method is that the network will always converge to rounder corners than that of the actual

field. These phenomena are inevitable as long as we attempt to maximize the degree of

contiguity.
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For the sequential method, descending (high / to low /) input order shows higher
classification accuracy than ascending (low 7 to high /) input order (Table 3-3) for all
images. A two-sample student's t-test assuming unequal variance for 20 samples is
performed. The null hypothesis is that the mean of the classification accuracies, using
descending input order, is equal to the one using ascending order. Since the probabilities
for the empirically-derived t-statistics of all images are less than 0.05, I reject the null
hypothesis of equal means at a 95 % confidence level. Thus, the order of input classes
affects the classification accuracy for this study area. The input order should be started
from the class which has high Moran’ I to one which has low Moran’s /. Table 3-4 lists
Moran’s I values for each class in all images. The variance of Moran’s / decreases as the
size of mode filter increases. The increased variability of Moran’s  also increases the
effect of input order. Thus, if the range of Moran’s / value of the classes is large, care
must be taken in the order of input classes. However, as mentioned before, the degree of
contiguity at sub-pixel level is not possible to obtain from the original coarse map.

Moreover, the sequential method achieves lower overall accuracy than any other

methods.
Table 3-3. Accuracy comparison for Sequential method
Accuracy (PCC(%)) g o
Highto Low | Low to High Difference T-test probability
Non-filter 69.72 68.10 1.61 2.09E-28
Mode 3 79.93 78.49 1.43 6.88E-31
Mode 5 87.15 87.00 0.15 1.37E-05
Mode 7 92.12 91.65 0.47 7.08E-17
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Table 3-4. Moran’s / value for each class

Non-filter Mode 3 Mode § Mode 7
Urban builtup 0.689 0.814 0.858 0.896
Residential 0.631 0.797 0.859 0.892
Vegetation 0.740 0.838 0.885 0.904
Water 0.461 0.716 0.789 0.840
Bare soil 0.680 0.820 0.871 0.891
Variance 0.0116 0.0023 0.0014 0.0006

Simultaneous categorical swapping and simulated annealing show similar
maximum accuracy. However, the simultaneous method needs only 30 iterations to reach
the highest accuracy, while Simulated Annealing (SA) needs nearly eight million
iterations to reach the same accuracy for mode filtered images. For the simultaneous (and
sequential) algorithm, the algorithm visits all pixels per iteration. For SA, the algorithm
visits only one pixel per iteration. There are 4,900 pixels in the study area, and therefore
30 iterations for the simultaneous method can be considered as 147,000 attempts of pixel-
swapping. However, there still is a substantial difference of iterations between two
methods. As mentioned before, this is due to the fact that the SA randomly selects two
sites. In contrast, the simultaneous algorithm deterministically selects two sites most in
need of swapping based on the attractiveness. Thus, there is no unnecessary swapping for
the simultaneous method. Consequently, computation time for the SA is much longer
than for the simultaneous method. For the simultaneous method, the time taken for 30
iterations (cell 7 to 1) was about 20 seconds on a Pentium 4 computer. It took
approximately 10 minutes for the SA method using eight million iterations. As mentioned

before, one advantage of this algorithm over the other simultaneous and sequential
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methods is that the users can specify the target / instead of maximizing it. In this study,
target Moran’ / is set to 1.0 for SA in order to compare to the other methods which
attempt to maximize contiguity. Since Non-filter image has lowest Moran’s 7 (0.66), it
would not be best to maximize Moran’s /. Non-filter image is used to examine SA with
target Moran’s / =0.66. The algorithm stopped at around 1.4 million iterations when
current Moran’s / value exceeded the target Moran’s / value. The average PCC for 20
trials using same target Moran’s / is 68.8% (Figure 3- 10), which is still less than the
maximum PCC for SA (70%). Thus, although the output of SA has nearly same Moran’s
I value as the reference data, the accuracy is still low. Qutput of SA fails to generate the
similar spatial distribution as the reference data. This could be caused by the limitation of
Moran’s / that very different spatial scaling properties can have identical Moran’s /

values, discussed in Chapter 2.

3.5 Conclusions

Sub-pixel mapping uses the output of soft classification and transforms it into a
hard classification at the sub-pixel scale. The results are easier to interpret and more
accurate without using any extra data. A key challenge is to identify a plausible spatial
distribution of classes within a pixel. Several alternative algorithms have been proposed
for allocating classes of sub-pixels. However, many techniques such as Hopfield neural
network (HNN), Genetic Algorithms (GA), Markov random field (MRF) model based
approach are not easily accessible to the remote sensing practitioners. The algorithm
presented here can be coded easily in any scientific computing language, and can be used

for modeling the spatial distribution of multiple land cover classes. In this study, three
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methods were examined: sequential categorical swapping, simultaneous categorical
swapping, and simulated annealing. Method 1 is a modification of a binary pixel-
swapping algorithm introduced by Atkinson (2001, 2005) and explored by Makido and
Shortridge (2007). The algorithm allocates each class in turn to maximize its internal
spatial autocorrelation. Method 2 simultaneously examines all pairs of cell-class
combinations within a pixel to determine the most appropriate pairs of sub-pixels to
swap. Method 3 employs simulated annealing to swap cells. Simulated annealing is a
family of optimization algorithms based on the principle of stochastic relaxation. While
convergence is relatively slow, the method offers increased flexibility. It allows users to
specify the target Moran’s /, which is used an index of the spatial contiguity of the
landscape. Thus, this chapter investigated various methods for modeling the spatial

distribution of multiple land cover classes at sub-pixel scales.

The Landsat ETM+ image of East Lansing MI (42.72N / 84.47W) with a spatial
resolution of 30m is used to evaluate the various algorithms. A sub-image of 490 pixels
by 490 pixels is extracted from the original images. The sub-image is classified into 5
classes using unsupervised classification: Urban and built-up, residential, vegetation,
water, and bare soil. The Moran’s 7 for each class is 0.69, 0.63, 0.74, 0.46, and 0.68,
respectively. This indicates positive but different amounts of autocorrelation for all
classes. All three methods should be applicable as long as the basic assumptions about
spatial dependence are fulfilled. However, the degree of spatial dependency will be
considerably affected by the use of post classification smoothing used to reduce the salt-
and-pepper appearance. Various mode filters: non-filtered, 3x3, 5x5 and 7x7, are applied

to the classified image. This study examines how the degree of contiguity of the
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landscape affects sub-pixel mapping. The results imply that all three methods increased
classification accuracy over the hard classification for all mode-filtered images. For the
non-filtered image, however, none of the sub-pixel classification methods reach the same
accuracy as hard classification. All results suggest that, as the spatial dependency of the
landscape increases, the performance of the three techniques improves. For the
sequential method, results indicated the input order affected classification accuracy. In
any case, the observed PCC for the sequential method is not as high as that for the other
methods. Unlike the sequential method, the simultaneous method and simulated
annealing do not require an ordering of the input classes. Although both simultaneous and
simulated annealing result in similar accuracy, the number of iterations to reach the
maximum accuracy are notably different: 30 iterations for simultaneous method and 8
million iterations for SA. Therefore, for this study area, the simultaneous method can be
considered as the optimum method in terms of accuracy performance and computation

time.

In this study Moran’s / is used as an index of the spatial contiguity of the
landscape. An advantage of SA is that it allows the user to specify the target Moran’s /
value instead of maximizing it. Although the output image has a similar / value to the
reference image, specifying target / for SA does not improve the classification accuracy.
One possible reason is that the target / is a weighted Moran’s / based on the number of
pixels of the class. It completely ignores the difference of spatial contiguity between
classes. Specifying target I for each class would increase the classification accuracy.
Another possible reason is that Moran’s / is not sufficient to capture the spatial

characteristics of the landscape. As discussed in Chapter 2, Moran’s [ has the limitation
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that very different spatial scaling properties can have identical Moran’s / values. In
addition to Moran’s I, alternative ways to characterize landscape should be tested.
Various landscape indices, such as mean patch size and patch size standard deviation, can
be used. These indices are used as quantitative measures of spatial pattern in
heterogeneous landscapes (Cardille and Turner, 2002). Several researchers have
employed the variogram to capture more complex spatial patterns of the landscape.
Variograms are used as constraints in sub-pixel mapping algorithms, such as Hopfield
Neural Network (Tatem et al, 2002), linear optimization techniques (Verhoeye and
DeWaulf, 2002), and sequential indicator simulation (Boucher and Kyriakidis, 2006). The
employment of landscape indices or variogram models may provide markedly different
behavior than the results for Moran's 7 identified in this work. However, as Boucher and
Kyriakidis (2006) point out, per-pixel classification accuracy assessment fails to reveal
important aspects of spatial pattern. This means two output maps, which have same
classification accuracy, could have strikingly different spatial patterns. Therefore, it
depends on the object of study whether to maximize classification accuracy or to capture

the spatial structure.

The simultaneous categorical swapping is superior to the other methods in terms
of accuracy performance and efficiency. This innovative method can efficiently
maximize spatial contiguity without any additional data. More research is necessary to
test the technique for various landscapes. The techniques presented here should be
applicable to imagery from any remote sensing system as long as the basic assumptions
about spatial dependence are fulfilled, and the approach also has potential application in

many areas of GIS research where data are spatially aggregated.
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Chapter 4

Application to Real Landscapes

4.1 Introduction

Chapter 3 described the development of new algorithms that are applicable to
multiple land covers for predicting the land cover distribution at sub-pixel scales. Three
methods were examined: sequential categorical swapping, simultaneous categorical
swapping, and simulated annealing (SA). The results suggested that the simultaneous
method could be considered as the optimum method in terms of accuracy performance
and computation time. However, the degree of contiguity of the landscape significantly
affects the prediction ability of sub-pixel mapping. Additional research is necessary to
test the technique for various landscapes. Thus, Chapter 4 focuses on the application of
the simultaneous method to land cover derived from satellite imagery in Brazil and
China. These study sites are quite different in terms of climate zone; one is tropical and
the other is temperate. Both areas possess varied topography and are mainly covered by
vegetations. These areas are used to examine how the characteristics of the landscape
affect the ability of the optimum technique. Three types of measurement, Moran’s ],
mean patch size (MPS), and patch size standard deviation (STDEV), are used to

characterize the landscape.
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4.2 Study area
4.2.1 Tropical Forests in state, Brazil

A Landsat ETM+ imagery (path226, row68) with a spatial resolution of 30m
acquired on 18 June 2000 of State of Mato Grosso, Brazil is used to evaluate the
algorithm (Figure 4-1). This area is a major logging center in the Amazon and therefore,
the land covers has been significantly changed (Matricardi et al., 2005). There are natural
and selectively logged forests as well as clear-cuts. In dense natural forests, tree canopies
are the only detectable component. In selectively logged areas, both trees and bare soil
are observed (Wang, 2003). The image was taken during dry season from June through

September.

The Landsat imagery is classified using an unsupervised image classification
model into two major categories (forest and non-forest). Non-forest areas are
subsequently masked out of the image. A semi-automated textural algorithm is applied to
the forest areas in order to distinguish dense undisturbed forest and logged forest. Finally,
the image is classified into six classes: logged forest, undisturbed forest, deforestation,
burned forest, old logged forest, and water body (Figure 4-2). A detailed description of

the data production process is provided by Marticardi et al. (2005).

A sub-image of 4,725 pixels by 4,725 pixels (141.75km x 141.75km) was
extracted from the classified image (Figure 4-2). This sub image was spatially degraded
by a factor of 7 to a spatial resolution of 210 m by 210 m. At the coarser spatial
resolution of 210 m by 210 m, the contribution of each sub-pixel is summed to obtain a

pixel-level proportion for each class. These pixel proportions then formed the input to the
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sub-pixel mapping algorithm. One of the advantages of the above approach is the ability
to evaluate the sub-pixel mapping exhaustively, since the ground truth is known. The
other advantage is the ability to focus on the mapping algorithm rather than the soft

classification that would predict the class proportions.

4z,

S
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Mato Grosso |
: e d .

Figure 4-1. Study site location (Brazil: Landsat scene, path 226 and row 068)

59



01530 60 90 120 Kiometers
T .|

Il undisturbed forest
[ Deforestation N
[ Logged forest

[[] Bumed forest

[ Formaly logged forest

[ Water body

Figure 4-2. Left: Brazil, classified Landsat image, Right: Brazil sub image
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4.2.2 Temperate land mosaic in East China

Two study areas are located in south-western Zhejiang Province, China (Figure 4-
3). Zhejiang is located in China's southeast coast, south of the Yangtze River Delta. The
province covers a total continental area of 101,800 square km, and possesses varied
topography. Hills and mountains account for 71 percent of the total area in the province,
plains and basins make up 23 percent, while the rest 6 percent is water area composed of
rivers and lakes (Zhejiang China, 2003). Both study sites are located in the Qiantang
River watershed, where the river passes through Hangzhou; the capital of Zhejiang
province. The main land cover types are forests, which include both deciduous and

coniferous stands, and agricultural land, mainly paddy fields.

The classified vector data for 1978 is derived from Landsat MSS imagery with a
corresponding Digital Elevation Model (DEM) data. A detailed description of the data
production process is provided in Zhang et al. (2006). A sub-image of 123.2 km x 117.6
km is extracted from the vector data and converted to raster data with a pixel size of 80 m.
The image, China 1978, contains 12 land cover classes: paddy rice, upland crop, forest
land, sparse forest, urban, rural habitat, river, lake, reservoir, pond, swamp, and other
unused land (Figure 4-4). The other classified imagery is derived from Landsat ETM+
imagery acquired in 2004. The size of the image is 46.2 km x 44.1 km with a pixel size of
30 m. It contains 7 land cover classes: class 1 ~ class 7 (Figure 4-5). This image is
referred as China 2004 subsequently. Both China 1978 and 2004 images contain 1540
columns x 1470 rows with different pixel sizes. Both China images are spatially

degraded by a zoom factor of 7 to a spatial resolution of S60m by 560 m for China 1976
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and 210m by 210m for China 2004. At the coarser spatial resolution imagery, the
contribution of each sub-pixel is summed to obtain a pixel-level proportion for each class.

These pixel proportions then formed the input to the sub-pixel mapping algorithm.

Figure 4-3. Study site location for China
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Figure 4-5. China reference image 2004
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4.3 Methods

4.3.1 Characterizing landscape pattern

As discussed in the previous chapter, the simultaneous method works best for
highly autocorrelated images since the algorithm attempts to maximize the degree of
contiguity for both within and between the pixels. Therefore, I also examine how the
characteristics of the landscape affect the performance ability of sub-pixel mapping. In
addition to Moran’s /, which was used as an indicator of spatial autocorrelation for area
data in the previous section, two landscape indices, mean patch size (MPS) and patch size
standard deviation (STDEV), are used to characterize the landscape. Landscape indices
are quantitative measures of spatial pattern in heterogeneous landscapes (Cardille and
Turner, 2002). A patch is defined as a homogeneous area that differs from its
surroundings (Forman 1995). MPS is the arithmetic average size of each patch on the
landscape or each patch of a given cover type (Cardille and Turner, 2002). STDEYV is
simply the standard deviation of patch sizes (Haines-Young and Chopping, 1996). MPS
is sensitive to the number of patches within the area. STDEYV is sensitive not only to the
number of patches but also to scale (Haines-Young and Chopping, 1996). Scale is
measured by two factors: grain and extent. The grain is determined by the finest level of
resolution made in an observation. The spatial extent of an observation set is established
by the total area sampled (O’Neill and Smith, 2002). Both grain and extent are important
factors that can influence the results of a pattern analysis (Greenberg et al., 2002).
Changing the scale of observation can change the fundamental property of an object
(O’Neill and Smith, 2002). In this study, I examine various extent and grain to calculate

three types of measurements: Moran’s /, MPS, and STDEV. For Brazil, the classified
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image (4,725 x 4,725 pixels) is subdivided into 15 columns x 15 rows (315 x 315 pixels).
For China 1978 and 2004, the images (1,540 x 1,470 pixels) are subdivided into 15
columns x 15 rows (98 x 98 pixels). Since the sub-areas for China are considerably
smaller, larger sub-areas (315x315) are also examined. In this case, there are 4 x 4 sub-

areas in one image. Table 4-1 shows the various sizes of extent and grain for three images.

Table 4-1. Various extent and grains for entire and sub-areas

Brazil China 1978 China 2004
Extent (pixel) 4725x4725 1540x1470 1540x1470
. Extent (km) 141.75 x141.75 123.2x117.6 46.2x44.1
Entire area

Grain (m) 30 80 30
Total number of pixels 22,325,625 2,263,800 2,263,800
Extent (pixel) 315x315 315x315  98x98 315x315  98x98

Sub area Grain (m) 30 80 80 30 30
Number of samples 60 8 60 8 60

One problem of using sub-areas as samples is that these images are not
independent each other. Since sub-areas are taken from the same imagery, the possibility
exists for spatial correlation between them. In order to reduce spatial dependencies due to
sampling, 60 samples for 15x15 sub-areas and 8 samples for 4x4 sub-areas are
systematically selected as Figure 4-6. These sampled areas are used to calculate Moran’s
I, MPS and STDEV. However, many of landscape indices have been shown to be highly
correlated with one another (Riitters et al., 1995). Therefore, I also tested the correlation
between these three indices. Figure 4-7 shows examples of 315x315 sub-areas from the
China 1978 imagery. Although both sub-areas have similar MPS, the STDEV of the left
image is nearly three times larger than the right image. Since STDEV is sensitive not

only the number of patches but also the scale, STDEV can capture the variability of the
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patches. I exclud, ples, which are pied by only one class for this study. In order

to examine the simultaneous method, each sub-area is spatially degraded by a factor of 7
to a spatial resolution of 210 m by 210m for Brazil and China 2004, and 560 m by 560 m
for China 1978. Then, the Simultaneous method (Chapter 3) is applied using a pixel-level
proportion for each class. This approach is same as the one used in the Chapter 3. 20

iterations along with 48 nearest neighbors were used for the computation.

Figure 4-6. Systematic samples of sub-areas: 60 samples (Left), 8 samples (Right)
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Figure 4-7. China 1978 sub-areas (315x315) (Left: STDEV=11,482, MPS = 2,177,
Right: STDEV = 3,748, MPS =2,000)

4.3.2 Accuracy Assessment

Although many hods of Y have been discussed in the

remote sensing literature, the confusion matrix (sometimes called a error matrix or a
contingency table) is most widely used (Foody, 2002). The matrix compares the
relationship between known reference data (ground truth) and the corresponding results
of a classification on a category-by-category basis (Lillesand et al., 2004). The confusion
matrix can provide the basis on which to both describe classification accuracy and
characterize errors (Foody, 2002). One of most popular measures that is derived from a
confusion matrix is the overall accuracy or percent correctly classified (PCC) (Foody,
2002). PCC is calculated by the ratio of the sum of correctly classified sub-pixels in all

classes to the sum of the total number of sub-pixels (Lillesand et al., 2004). The Kappa

analysis is now a standard component of most every y (Ci Iton and

Green, 1999). The Kappa statistic is a measure of difference between the actual
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agreement between reference data and an automated classifier and the chance agreement
between the reference data and a random classifier (Lillesand et al., 2004). As true
agreement approaches 1 and chance agreement approaches 0, k approaches 1. X usually
ranges between 0 and 1; however & can take on negative values in cases where change

agreement is large enough (Lillesand et al., 2004).

There is no predefined standard for assessing the accuracy of sub-pixel mapping
(Mertens et al., 2003). Tatem et al. (2001, 2003) employ four measures of accuracy, area
error proportion, correlation coefficient, closeness and root mean square error, to assess
the difference between the prediction and the validation images. Verhoeye and De Wulf
(2002) created a confusion matrix and assessed the éccuracy by calculating the overall
accuracy and Kappa statistics. Mertens et al. (2003) employs an adjusted Kappa
coefficient (k) in addition to Kappa coefficient (k). The adjusted Kappa coefficient is
identical to Kappa except that it is calculated only for mixed pixels, which means it
ignores the sub-pixels that have a pure pixel as parent. Thes sub-pixels that all belong to
the same class will raise the Kappa coefficient regardless the prediction abilities of the
algorithm (Mertens et al. 2003). Thus, adjusted Kappa statistics provide an indication of
the ability of the algorithm to produce an accurate sub-pixel mapping while Kappa
statistics evaluates the result of the mapping (Mertens et al. 2003). Figure 4-8 indicates
the mixed pixels, which are used for calculate k’ for Brazil imagery. For the Brazil
imagery, approximately 5 million random points are used to estimate k£ and 1 million
random points are used to estimate k’. For China 1978, 550 thousand random points are
used for &k and 150 thousand random points are used for £’. For China 2004, 550 thousand

random points are used for k and 120 thousand random points are used for k.
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In this study, PCC, Kappa coefficient and adjusted Kappa coefficient are used to
evaluate the super-resolution technique for each entire study area. For each sub-area, the

improvement in PCC is calculated as:

PCC from simultaneous method — PCC from random allocation 8)
PCC from random allocation

Thus, in addition to PCC, the improvement from the random allocation is also calculated

for sub-areas.

Figure 4-8. Mixed pixels used for adjusted Kappa statistics for Brazil
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4.4 Results

4.4.1 Brazil

The following results describe the case where every pixel consists of 49 sub-
pixels. The output of the simultaneous algorithm was visually (figure 4-9, 4-10) more
accurately capture the shape of the boundaries than the hard classification. Figure 4-9
shows the output of the simultaneous method after 20 iterations. Figure 4-10 displays
subsets of figure 4-9 by comparing to the reference data, simultaneous method, and hard
classification. The algorithm successfully characterizes the curved features (river) and the
circled features (patios). Notice that the diameters of logged forest around patios are
about 500m and the width of the river is 400m. Thus, these features are larger than the

one pixel size (210m) of coarse resolution imagery.

Figure 4-11 shows the relationship between the number of iterations and the
classification accuracy. The result implies that the algorithm successfully increases the
classification accuracy. The maximum accuracy (98.59%) of the simultaneous method is
higher than that of the hard classification (95.53%). The optimum number of iterations
for this data set would be 20, since the accuracy does not increase after that. For the
Brazil image, the time taken for 20 iterations (cell 7 to 1) was approximately 20 minutes
on a P4 computer.

Table 4-2 shows the confusion matrix and Table 4-3 shows the accuracy of
degraded real imagery per class. Both user’s and producer’s accuracy of water is the

lowest among the classes, and water class is mainly confused with deforestation class.
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Table 4-4 shows the results of Kappa (k) and Adjusted Kappa statistics (k’). Although k’
is lower than £, both values are higher than 0.9. Figure 4-12 demonstrated the relationship
between PCC and Moran’s 7, MPS, STDEV for 60 sub-areas. PCC are positively related
to all three measurements of landscape patterns. Table 4-5 shows the correlation

coefficient. PCC is most correlated to Moran’s /.

Figure 4-9. Output of simultaneous method (after 20 iterations)
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Figure 4-10. Brazil sub set (2 different areas)

(Upper: Reference data, Middle: Simultaneous method after 20 iterations,
Lower: Hard classification )
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Figure 4-11. Brazil: simultaneous method and hard classification results

Table 4-2. Confusion matrix for the Brazil Data (actual values in rows, predictions in

columns)

Undisturbed Deforestatio Logged Burned Old logged Water body

forest n forest forest forest
Undisturbed forest 3034680 13903 7830 214 3632 356
Deforestation 13954 898974 361 260 1171 76
Logged forest 6921 468 639466 1545 42 2
Burned forest 184 336 1495 181846 910 5
Old logged forest 3357 1581 20 1002 182261 12
Water body 312 68 4 2 6 2671

Table 4-3. Accuracy of Simultaneous method for the Brazil Data per class

Undisturbed Deforestatio Logged Burned Old logged Water body
forest n forest forest forest
% (producer) 99.19 98.21 98.50 98.36 96.93 85.55
% (user) 99.15 98.27 98.62 98.41 96.83 87.20

Table 4-4. Accuracy of Simultaneous method for the Brazil Data

Entire area Mixed pixels
Number of pixels 22,325,625 4,268,341
PCC 98.30% 92.90%
k (left), k' (right) 0.976 0.908
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Table 4-5. Correlation coefficients between PCC and MPS, STDEV and Moran’s / using
60 sub-areas (315 x 315 pixels)

MPS STDEV Moran's |
correlation coefficient 0.541 0.699 0.819

4.4.2 China

Figure 4-13 shows the relationship between the number of iterations and the
classification accuracy. The results imply that the algorithm successfully increases the
classification accuracy. For both China 1978 and 2004, the maximum accuracies from
simultaneous method (97.97% (1978), 98.58% (2004)) are higher than that from the hard
classification (93.53% (1978), 95.04% (2004)). At any iteration, the accuracy for China
2004 is higher than China 1978. The optimum iteration for both data sets is 20, since the
accuracy does not increase after that iteration. The time taken for 20 iterations was

approximately 3 minutes for China 1978, and 2 minutes for China 2004 on a P4 computer.

Table 4-6~4-9 shows the confusion matrix and the accuracy of degraded real
imagery per class for China 1978 and 2004. Both user’s and producer’s accuracy of pond
and river are the two lowest values among the classes. Ponds are mainly confused with
Paddy rice, and Rivers are mainly confused with Paddy rice and Forest Land. Table 4-10
show the results of Kappa (k) and Adjusted Kappa (k") measures for China 1978 and
2004. Although &’ is lower than &, both values are still higher than 0.9. Table 4-11 shows

the correlation coefficient between PCC and Moran’s I, MPS, STDEV for two types of
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sub-areas (98x98 and 315x315) for China 1978 and 2004. All indices are positively
correlated to PCC at any case. The strongest correlation (0.884) can be seen between
Moran’s I and PCC for sub-area size 315x315 in China 1978. The striking result is very
low correlation coefficient (0.094) between PCC and Moran’s / for sub-area size 98x98
in China 1978. This relationship is demonstrated in Figure 4-14. One sub-area shows
particularly low Moran’s /. Figure 4-15 shows the image of the sub-area. There are only
two classes and the proportion of one class is very small; the other class occupies most of
the area. For this pathological case, MPS also does not convey much information. In this
study, MPS for multiple classes is simply calculated as total patch areas divided by total
number of patches including all classes. In the case of the figure 4-15, there are only two
classes; one class has two small patches (8, 32 pixels) and the other has a very large patch
(9,176 pixels). The MPS of this sub-area is the average of these three patches (3072
pixels). Figure 4-16 shows the example of histogram of patch size within sub-area size
315x315. The patch size distribution is positively skewed, and there are many small
patches and few large patches. MPS will not be informative when the patch size
distribution is not normal. For example, MPS will be same where two medium sized
patches exist and where one large patch and one small patch exist. STDEV is more

informative, since it can capture the variability of the patches.

Table 4-12 shows the correlation coefficient between increase rate of PCC from
random allocation and three indices. There are negative correlations at any case except
between PCC and Moran’s / for China 1978 with extent 98x98. Table 4-13 shows the
correlation coefficient between three indices. MPS and STDEV are positively correlated

in some degree at all cases. STDEV and Moran’s / do not show any strong correlations.

76



—_————e————

P
v

8

(3]
¥
L}

\l
[}
U
)
L}
L}
(]
L}
L}
L}
L}
(]
L}
(]
L}
(]
(]
(]
(]
(]
(]
(]
(]
(]

(]
(]
]
(]

L}

(]

(]

(]

L}

(]

[}

(]

(]

L}

Accuracy(PCC%)
B 8 &

o
pry

©
o

T T T T T

0 5 10 15 20 25 30 35 40
# of iteration

—g— China 78 Simultaneous China 78 Hard classification
— &= China 04 Simultaneous - = = = China 04 Hard classification

Figure 4-13. China 1978, 2004: simultaneous method and hard classification results
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Table 4-8. Confusion matrix for China 2004 (actual values in rows, predictions in

columns)
Class1 Class2 Class3 Class4 Class5 Class6 Class 7
Class 1 26279 64 54 2 0 164 20
Class 2 56 141654 578 49 0 1492 130
Class 3 39 532 102633 102 1 514 13
Class 4 2 32 95 31219 1 180 0
Class 5 0 0 0 2 359 1 0
Class 6 149 1483 534 183 1 227215 40
Class 7 12 117 9 0 0 57 13915

Table 4-9. Accuracy of Simultaneous Method for China 2004 per class

Class 1 Class2 Class3 Class4 Class5 Class6 Class7

% (producer)  99.03 98.45 98.78 98.93 99.17 98.95 98.55
% (user) 98.86 98.39 98.84 99.02 99.17 98.96 98.61

Table 4-10. Accuracy of Simultaneous Method

China 1978 China 2004
Entire area Mixed pixels Entire area Mixed pixels
Number of pixels 2,263,800 624,995 2,263,800 498,428
PCC 96.78% 88.89% 98.78% 93.81%
k, k' 0.982 0.928 0.983 0.917

Table 4-11. Correlation coefficient between PCC and MPS, STDEV and Moran’s /

China 1978 China 2004
Size of subarea  98x98 315x315 98x98 315x315
Number of samples 60 8 60 8
PCC and MPS 0.642 0.668 0.596 0.704
PCC and STDEV 0.645 0.247 0.323 0.556
PCC and Moran's | 0.094 0.884 0.483 0.607
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Figure 4-14. China 1978 (sub-area=98x98): Moran’s / at PCC

Figure 4-15. Sub-area (98x98) for China 1978: Moran’s I = 0.72, PCC =99.6%, MPS =
3072, STDEV = 5286
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Table 4-12. Correlation coefficient between Increase rate of PCC from random allocation

and MPS, STDEV and Moran’s /
China 1978 China 2004
Size of subarea 98x98 315x315 98x98 315x315
Number of samples 60 8 60 8
Increase rate and MPS -0.728 -0.619 -0.589 -0.834
Increase rate and STDEV -0.827 -0.874 -0.666 -0.683
Increase rate and Moran's | 0.209 -0.273 -0.096 -0.584

Table 4-13. Correlation coefficient between three indices (MPS, STDEV and Moran’s 1)

China 1978 China 2004 Brazil
Size of subarea  98x98 315x315 98x98 315x315 315x315
Number of samples 60 8 60 8 60
MPS and STDEV 0.899 0.615 0.298 0.916 0.931
MPS and Moran's I -0.059 0.713 0.403 0.130 0.509

STDEV and Moran's | -0.272 0.074 -0.254 0.093 0.523
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4.5 Discussion and Conclusions

The use of the simultaneous allocation method in sub-pixel mapping proved a
valuable alternative compared with already existing techniques. All results suggested
that this technique could increase the classification accuracy when compared with
traditional hard classification. Adjusted Kappa statistics (k”), which only evaluate the
mixed pixels, also support the results. As expected, k£’ value is lower than k value, since
k’ is estimated by excluding pure pixels. However, k’ is still above 0.9 for all Brazil and
China data set. Thus, the simultaneous method could accurately capture the landscape

patterns at sub-pixel scales.

At any iteration, the accuracy for China 2004 is higher than one for China 1978
Although two images have different pixel sizes, both images contain the same number of
pixels. Since two sites are in close proximity, their landscape pattern will be similar and
the degree of contiguity for both landscapes is very close. Moran’s I for China 1978 is
0.96 and China 2004 is 0.97. The reason for different accuracy at two study sites would
be related to the number of classes. There are 12 classes for China 1978 and 7 classes for
China 2004. It will cause less error to allocate few classes within a pixel than many
classes. Hence, the accuracy for China 2004 is higher than one for China 1978 at the
same number of iteration. There are 6 classes for Brazil, and the maximum accuracy for
Brazil is similar to one for China 2004. Thus, the number of classes of in the image will

be one important factor that affects the ability of sub-pixel mapping technique.

For Brazil, both user’s and producer’s accuracy of water is lowest among the

classes. For China 1978, both user’s and producer’s accuracy of pond and river are the
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first and second lowest among the classes. In the Brazil study area, most of patches in
water class are small and their shapes are long and narrow. In the China 1978 study area,
ponds are mostly small, with a MPS of 76 pixels and more than half of patches less than
30 pixels. Since the degraded image contains 49 fine pixels within a pixel, many ponds
are smaller than one coarse pixel. Many rivers in the study sites are narrow and less than
3 pixels wide. These narrow features converge to circular features. As I mentioned in
Chapter 3, these phenomena would be inevitable as long as we attempt to maximize the
degree of contiguity. The simultaneous allocation method would not be appropriate to
apply where the land cover patches are smaller or narrower than a pixel, since it focuses
on land cover features larger than the scale of a pixel by using the information contained

in surrounding pixels.

In this study, I examined how the characteristics of the landscape affect the ability
of sub-pixel mapping. One initial assumption was that PCC was high where Moran’s /
was high, since the simultaneous method attempts to maximize the autocorrelation.
Although the results from the Brazil and China Data set using relatively large sub-areas
(315x315) supports this assumption, it is not the case for small sub-areas (98x98). At
these smaller sub-areas, some areas contain only a few classes with small proportions.
Moran’s I tend to show relatively low values where the proportions between the classes
are large. However, it would be unusual to apply sub-pixel mapping to an area which
contains only a few classes with very different proportions such as figure 4-15. For this
case, the improvement in PCC is very low. As Table 4-12 shows, STDEV is strongly
negatively correlated to the increased PCC rate. This indicates that where the large

patches dominate the area, the increase rate of PCC is low since the landscape may not
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contain many mixed pixels. The application of the simultaneous method to a relatively
heterogeneous landscape can increase classification accuracy compared to the random
allocation. The results show that there was no particular index always most correlated to
PCC. However, Moran’s / does have the strongest positive relationship to PCC in most
cases. The simultaneous method would not be the best method for all types of
landscapes, since it attempts to maximize the degree of contiguity. The landscape
metrics provide valuable information about landscape characteristics. Moran’s 7 could be
used as a indicator for the overall accuracy and STDEV could be used as a indicator for

the increased rate of accuracy for testing the applicability of the simultaneous method.

In this study, Moran’s I, STDEV and MPS are used as indices to characterize
landscape. However, the results of these indices varied by extents and areas. It will be
more effective to apply indices which are scale independent such as Deviation from
Neutral (DfN). DfN measures the true distance between the pattern metric values of the
sample landscape and those of the pattern metric values of the neutral landscape (Messina
et al. 2006a). DIN can be used as a measurement base from which it becomes possible to
compare different landscapes with various grain sizes and extents, independent of place
(Messina et al. 2006b). DfN will be used to examine the applicability of the simultaneous

method.
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Chapter 5

Conclusions and Future Research

This dissertation is devoted to explore and develop new algorithms for predicting
land cover distribution using imagery at the sub-pixel levels. I investigated the “pixel-
swapping” optimization algorithm, which was introduced by Atkinson (2001, 2005) for
predicting sub-pixel land cover distribution. Two limitations of this method, the arbitrary
spatial range value and the arbitrary exponential model of spatial autocorrelation are
assessed. Various weighting functions, as alternatives to the exponential model, are
evaluated in order to derive the optimum weighting function. Two different simulation
models are employed to develop spatially autocorrelated binary class maps. In all tested
models, Gaussian, Exponential, and IDW, the pixel swapping method improve
classification accuracy compared with the initial random allocation of sub pixels.
However, the results suggest that equal weight, which give equal weight to its nearest
neighbors, could be used to maximize accuracy and sub-pixel spatial autocorrelation
instead of using these more complex models of spatial structure.

I develop and evaluate three distinct methods for modeling the spatial distribution
of multiple land cover classes at sub-pixel scales. Three methods are examined:
sequential categorical swapping, simultaneous categorical swapping, and simulated
annealing. These three methods area applied to classified Landsat ETM+ data resampled
to 210 meters. The result suggested that the simultaneous method was the optimum

method in terms of accuracy performance and computation time.
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The case study employs remote sensing imagery at the following sites: tropical
forests in Brazil and temperate multiple land mosaic in East China. Sub-areas of both
sites are used to examine how the characteristics of the landscape affect the ability of the
simultaneous method. Three types of measurement, Moran’s /, mean patch size (MPS),
and patch size standard deviation (STDEV), are used to characterize the landscape. The
landscape metrics provide valuable information about landscape characteristics. Moran’s
I could be used as a indicator for the overall accuracy and STDEV could be used as a
indicator for the increase rate of accuracy for testing the applicability of the simultaneous
method. All results suggested that the simultaneous categorical swapping technique could
increase classification accuracy in comparison with traditional hard classification for

different types of landscapes.

The methods developed in this study can benefit researchers who employ coarse
remote sensing imagery but are interested in detailed landscape information. In many
cases, the satellite sensor that provides large spatial coverage has insufficient spatial
detail to identify landscape patterns. Therefore, application of the super-resolution
technique described in this dissertation could potentially solve this problem by providing
detailed land cover predictions from the coarse resolution satellite sensor imagery. In this
study, one pixel is subdivided into 7 by 7 sub-pixels to obtain a finer resolution image.

“The algorithms developed in this study allow users to specify the number of subdivision.
However, the accuracy will decrease as the number of subdivision increase (Makido and
Qi, 2005). For example, if 77 percent accuracy is accepted, 1km resolution MODIS
images can be used to derive 30 meter resolution images (Makido and Qi, 2005). Thus,

the method developed here can be used to provide a sufficient spatial and temporal
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coverage with finer spatial resolution than the currently exist. It also can be applied to
image archives to increase the spatial resolution for revealing greater detail of land cover
information. Such information will be valuable for many researches such as monitoring

land cover land use change.

The techniques developed here should be applicable to imagery from any remote
sensing system as long as the basic assumptions about spatial dependence are fulfilled. In
addition, it should not be considered applicable exclusively in the field of land cover
mapping. The technique has potential in any area of GIS research where data are spatially
aggregated (Tatem et al., 2003). The method could be used dis-aggregate spatially
aggregated sociological data, such as health or crime statistics within enumeration

districts.

Additional research is necessary to extend the current algorithms to handle land
cover features that are smaller than a pixel. This study adopts the assumption of spatial
dependency both within and among pixels, as do most existing algorithms. Therefore, the
various algorithms introduced in this study work best where land cover features are larger
than the sub-pixels and are spatially autocorrelated (e.g., agricultural fields), since these
techniques employ the information contained in surrounding pixels. However, this source
of information is unavailable when examining imagery of land cover features that are
smaller than a pixel (e.g., trees). While these features can be detected within a pixel by
soft classification techniques, surrounding pixels do not hold any information for
inference of spatial relationships to aid their mapping (Tatem et al., 2002). One potential

scheme would be the employment of prior information on the spatial arrangement of land
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cover, such as a variogram for the target resolution. Instead of using Moran’s / as the
objective, reproduction of the variogram model could be used as the objective of the
Simulated Annealing technique. The technique could reproduce the prior structural
information given as variogram models. The spatial pattern of application-specific land
cover classes would be valuable information for managing and understanding the

environment.
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Appendix A (IDL program for pixel-swapping algorithm using exponential weighting

function)
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pro expo

; Sub-pixel Mapping for binary imagery using exponential weighting function

; Written by Yasuyo Makido

; Created July 2004 (Modified October 2006)

; This function employs pixel-swapping method to maximize the autocorrelation
; between sub-pixels

; Reference:

; Atkinson, P.M. (2005). Sub-pixel Target Mapping from Soft-classified,

; Remotely Sensed Imagery. Photogrammetric Engineering & Remote Sensing:
; 71(7), 839-846

time = systime(1)

9999999999999999999999999999999999999999999599999995595999999)9)

;; Input parameters

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

9999999999999999999999999999999999939999999999999999999999999959959)

;original coarse proportion array which contain the class proportion

coarse_prop = read_tiff('d:\Yasuyo\paper\p_pers\neutral\c7_315_2h.tif")
fine = read_tiff('d:\Yasuyo\paper\p_pers\neutral\neut3152h.tif")
;reference image

oooooooooooooooooooooooooooooooooooooooooooooooooooo

999999999999999995999999999999999593999999999939%99)

;the zoom factor (sub-pixels within 1 pixel)
zoom =7

...................................................................

9999999999999999999999999999999999999999999999999999399959999993%9)

;arbitrary a value for calculating Oi , Atkinson use a_val =5
a_val=5

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

999999999999999999999999959999999999999999999999%99%399399993)

; dx is the neighboring distance in sub-pixels (1:N=8, 2:N=24)
dx=2
dy=2

..........................................

99999999999995999999999999999999999992999)

; The number of iteration
iteration = 12

....................................................................

999999999999999%999999999999999999999999999999999999959939993%9%99))
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............................................................

--------------------------------------------------------------------

9992993999599999999999995999999999999999999999999995992959999959959)

n_col = N_ELEMENTS(coarse_prop[*,1]) ;# of column for prop
n_row = N_ELEMENTS(coarse_prop[1,*]) ;# of row for prop

sub_col =n_col * zoom
sub_row =n_row * zoom

arr_bi = MAKE_ARRAY(sub_col, sub_row, INTEGER, VALUE = 0)

....................................................................

............................................................

....................................................................

9999959999999999999999999999999999999999999999999999999995399999999)

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

prop = coarse_prop[x,y] ;prop is the class proportion
R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matric
IF prop EQ 0 THEN BEGIN
R[*,*]=0
ENDIF ELSE BEGIN
order = SORT(R)
index_1 = order[0: prop-1]
R[index_1]=1
index 0 = where(R NE 1, count)
IF count NE 0 THEN R[index 0] =0 ;To avoid the case of "where"
returns -1
ENDELSE
; Insert the alley R to the alley arr_bi

arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R
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ENDFOR
ENDFOR

....................................................................

------------------------------------------------------------

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

9999999999999999999999999999999939959999999999999399999999999393599))
;;Exponential weighting function is used

FOR i=0, iteration-1 DO BEGIN

print, 'iteration i+l

arr_oi = MAKE_ARRAY(n_col*zoom, n_row*zoom, /FLOAT, VALUE = 0.0)

FOR xcol = 0, (sub_col-1) DO BEGIN
FOR yrow =0, (sub_row-1) DO BEGIN
0i=0
sum 0i=0

FOR xcell=(0-dx), dx DO BEGIN
FOR ycell=(0-dy), dy DO BEGIN

IF ((xcol+xcell GE 0) AND (xcol+xcell LT sub_col)) AND ((yrow+ycell
GE 0)AND(yrow+ycell LT sub_row)) THEN BEGIN
dist=0
dist = SQRT(xcell*xcell+ycell*ycell)

IF (dist EQ 0) THEN oi = 0 ELSE oi = EXP((0-
dist)/a_val)*arr_bi[xcol+xcell, yrow+ycell]
sum_oi = sum_oi +oi
ENDIF
ENDFOR
ENDFOR

arr_oi[xcol,yrow] = sum_oi ; Put the oi value to the subpixel

ENDFOR
ENDFOR
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....................................................................

............................................................

....................................................................

999999999999999999999999999999995999999999999999939999999999995999))

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi = arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of

arr_bi

sub_oi = arr_oi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of

arr_oi

IF (MAX(sub_bi) NE MIN(sub_bi)) THEN BEGIN
bi_1 = where(sub_bi EQ 1)

min_oi = MIN(sub_oi[bi_1])

min_bi_1 = where((sub_oi EQ min_oi) AND (sub_bi EQ 1))

bi_0 = where(sub_bi EQ 0)

max_oi = MAX(sub_oi[bi_0])

max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))

; If Min Oi <Max Oi, min_bi_1=0and max_bi 0=1

IF (min_oi LT max_oi) THEN BEGIN

; If more than two index exist, use the smaller/larger one

sub_bi[MIN(min_bi 1)]=0
sub_bi[MAX(max_bi_0)] =1

ENDIF
ENDIF

; Insert the sub_bi to the alley arr_bi
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arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = sub_bi

ENDFOR
ENDFOR

ENDFOR ;End of iterations

WRITE_TIFF,'d:\Yasuyo\paper\p_pers\neutral\test.tif ,arr_bi ;out put file

............................................................................

----------------------------------------------------------------------------

9999299399999923995939999999329593999999999999999999999959999999599999399999)3)

pcc = (fine+1) - arr_bi ; add] to avoid (0-1=-1 ->255)

correct = N_ ELEMENTS(where(pcc EQ 1))
pec = float(correct)/(sub_col*sub_row)*100

print, PCC: ', pcc,' :% for iteration', iteration

print, 'time =', (systime(1) - time)/60, ' Minutes'
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Appendix B (IDL program for pixel-swapping algorithm using exponential weighting

function)
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pro nn

.
b

; Sub-pixel Mapping for binary imagery using Nearest Neighbor function
; Written by Yasuyo Makido
; Created July 2004 (Modified March 2005, November 2006)

; This function employs pixel-swapping method to maximize the autocorrelation

; between sub-pixels

; Reference:

Atkinson, P.M. (2005). Sub-pixel Target Mapping from Soft-classified,

Remotely Sensed Imagery. Photogrammetric Engineering & Remote Sensing:
71(7), 839-846

e Wwe we we e

time = systime(1)

-----------------------------------------------

-----------------------------------------------

...........................

9999999999299999992993999%)

;;sINPUT FILE (FINE RESOLUTION BINARY);;

filepatha ='d:\yasuyo\neutral\output\aneut'
filepathb ='d:\yasuyo\neutral\output\bneut'

; filepatha ='/home/yasuyo/Neutral/aneut' ; for lynux
; filepathb ='/home/yasuyo/Neutral/bneut' ; for lynux

filepath3 = ".tif
FOR file_num =1, 2 DO BEGIN ;2

IF file_num EQ 1 THEN filepathl = filepatha
IF file_num EQ 2 THEN filepathl = filepathb

FOR image_num = 1,20 DO BEGIN ;20

filepath2 = string(image num)
filepath2 = strtrim(filepath2, 2)
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filepath = filepath1 + filepath2 + filepath3
fine = read_tiff(filepath)

truth = fine

......................... secesssscessesssscnsee

999999995995999999999999999999999999999939993))

INPUT PARAMETER;;;;;;:

............

seccescsescccsccscsccsrrnvosones

’”,,,",,,””””9”,,,”’”””””,,9”,”9

........ I Y PR F R R T R R R R R R R RNy

99999999999999939999999959999999999999999995999999%9)

;the zoom factor (sub-pixels within 1 pixel)
zoom =7

............... ®sesescsesrecssrecscrerrteressressany

.
""",,,9",))’)"’,””9’,””9)”,”””’,”’,”’,)”,””’

; dx is the neighboring distance in sub-pixels (1:N=8, 2:N=24)
dx=2
dy =2

width = dx*2+1 ;3 for dx/dy=1, 5 for dx/dy=2

©0000000000000c00csscecersscenonoare e

S"")"”"”"””99””””,,”,”,””

; The number of iteration
; FOR iteration = 1,20 DO BEGIN ; 20

iteration = 20 ;20

R R Ry R R F RPN

",,’,’,,""",””””””””,””,,’

;;Check the size of the array

sub_col = N_ELEMENTS(fine[*,1]) ;# of column for the fine image
sub_row = N_ELEMENTS(fine[1,*]) ;# of row for fine image

n_col = sub_col/zoom
n_row = sub_row/zoom

................. 900000000 cerccsscsrsveseerenssressessePReRetEeR RO

,”””’,,’)””””””,,3””””9’,””’””””)’,”,,,),”,’,"

R Ry R PR Y T $9s0sescsssecseressrorrrrnnne

,’)””’9”’9,9”7”””’,”””’”””,””,’9)””’,””’39’,”’,’

coarse_prop = MAKE_ARRAY(n_col, n_row, /byte, VALUE = 0)

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN
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sub_arr = fine[(x*zoom):(x*zoom+zoom-1),
(y*zoom):(y*zoom+zoom-1)]
coarse_prop[x,y] = TOTAL(sub_arr)

ENDFOR
ENDFOR

---------------------------------------------------------------------

-------------------------------------------------------------

---------------------------------------------------------------------

93999999929999959999993999999595999999999995999999999959595999929399)

arr_bi = MAKE_ARRAY(sub_col, sub_row, INTEGER, VALUE = 0)

---------------------------------------------------------------------

.............................................................

---------------------------------------------------------------------

99999999999999939999999999999999999999993999999999999999999299999%9)

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN
; Create zoom x zoom alley R, which randomly allocate 1 by the class proportion
prop = coarse_prop[x,y] ;prop is the class proportion
R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matrix
;; IF prop=0, r=0, otherwise ....

IF prop EQ 0 THEN BEGIN
R[**]=0

ENDIF ELSE BEGIN
order = SORT(R)

index_1 = order[0: prop-1]
R[index 1]=1
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index_0 = where(R NE 1, count)
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"
returns -1

ENDELSE

; Insert the alley R to the alley arr_bi
arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R

ENDFOR
ENDFOR

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.............................................................

..... 0000000000000 0000000000000000000000IN0ersEsIOIIOIOITFOIOTIOIOIOIOIIOIOORIRRDTS
9999999999%999999999999999959999999999999999%992599999532999993993595)3

.
2

FOR i=0, iteration-1 DO BEGIN

------------------------------------

99999999999999999599999995999939993))9

;; make 0 buffer around the boundary
big_arr_oi = MAKE ARRAY(sub_col+dx+dx, sub_row+dy+dy)

big_arr oi[dx:dx+sub_col-1, dy:dy+sub_row-1] =arr_bi

99999999999959999995999999999599999999599999599999999959999999335999959%)

;; Calcuate Oi(the sum the neighboring pixel value) using moving window
big_arr oi = SMOOTH(big_arr_oi, width)* width*width

arr_oi = big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1]

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

.............................................................
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.....................................................................

999992959999999999999999959999999999999999959999999999999999999%%999)9

.
?

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi = arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of
arr_bi
sub_oi = arr_oi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of
arr_oi
IF (MAX(sub_bi) NE MIN(sub_bi)) THEN BEGIN

bi_1 = where(sub_bi EQ 1)

min_oi = MIN(sub_oi[bi_1])
min_bi_1 = where((sub_oi EQ min_oi) AND (sub_bi EQ 1))

bi_0 = where(sub_bi EQ 0)

max_oi = MAX(sub_oi[bi_0])

max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))
; If Min Oi < Max Oi, min_bi_1 =0 and max_bi_ 0 =1

IF (min_oi LT max_oi) THEN BEGIN

; If more than two index exist, use the smaller/larger one

sub_bi[MIN(min_bi_1)]=0
sub_bi[MAX(max_bi_0)]=1

ENDIF
ENDIF
; Insert the sub_bi to the alley arr_bi
arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = sub_bi

ENDFOR
ENDFOR
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9993999939993999)

; Iteration END

ENDFOR ; end for iteration

........................................................

........................................................

99957999999999992999293999999999999999999999999993995999)

; print, '
pcc = truth - arr_bi
correct = N_ELEMENTS(where(pcc EQ 0))
percent = float(correct)/(sub_col*sub_row)*100

print, 'PCC (%): ', percent , ' : iteration ', iteration

;ENDFOR ; end for various iteration

ENDFOR ; end for image num

ENDFOR ; end for file_num

print, 'time =', (systime(1) - time)/60, ' Minutes'

end
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Appendix C (IDL program for Sequential Categorical Swapping)
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pro seque

.
9

; Sequential Categorical Swapping (Sub-pixel Mapping for multiple classes imagery)
; Written by Yasuyo Makido

; Created May 2005 (Modified August 2006)

; This function employs pixel-swapping method to maximize the autocorrelation

; between sub-pixels

; Attractiveness Oi : Equal Weight function

; Number of class = 5

; Reference:

; Atkinson, P.M. (2005). Sub-pixel Target Mapping from Soft-classified,

; Remotely Sensed Imagery. Photogrammetric Engineering & Remote Sensing:
; 71(7), 839-846

time = systime(1)

x_times = 20 ;20
pec_arr = fltarr(x_times)

FOR test=1, x_times DO BEGIN

....................................................

99999999999999999999999995999399999999999999999%99)5)

;# of class
num_class =5

999%99299999959993999959999329999999999999%999955399)

;the zoom factor (sub-pixels within 1 pixel)
zoom =7

..............................................................

99999999999999299999999999999999999999999999%9999992%95999939)%)

; dx is the neighboring distance in sub-pixels (1:N=8, 2:N=24)
dx=3

dy=3

width = dx*2+1 ;3 for dx/dy=1, § for dx/dy=2

oooooooooooooooooooooooooooooooooooooooooo

999999999959999999999999999959959999599939)

; The number of iteration
iteration = 30 ;For classl ;30
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iteration2 = 30 ;For class2
iteration3 = 30 ;For class3
iteration4 = 30 ;For class4

9999999999999999999999999))

;;>INPUT FILE (FINE RESOLUTION BINARY)

;----FOR MODE FILTERED (7x7)
;fine(23154) for m7_h_1, fine(43512) form7_1 h

fine4 = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\binary\m7 1.tif');fine image for class1
fine3 = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\binary\m7_2.tif');fine image for class2
fine5 = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\binary\m7_3.tif");fine image for class3
finel = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\binary\m7_4.tif');fine image for class4
fine2 = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\binary\m7_5.tif');fine image for class5

truth = read_tiff('d:\Yasuyo\Atkinson\msu\mode7\m7_|_h.tif");groud truth file

........................................

99999999999999999999999999993%3999%39%3)

;;Check the size of the array

f col=N_ELEMENTS(finel[*,1]) ;# of column for the fine image
f row =N_ELEMENTS(finel[1,*]) ;# of row for fine image

n_col =f col/zoom
n_row = f_row/zoom

........................................

999999999999999999999%95299999999999959)

;;Stack up the original binay file
fine = Make_array(f col, f row, num_class, /byte, VALUE = 0)
fine(*,*,0)=finel
fine(*,*,1)=fine2
fine(*,*,2)=fine3

fine(*,*,3)=fine4
fine(*,*,4)=fine5

....................................................................

....................................................................

9999999999999999992999999999999999599999999999999939929999999%93999%)
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original prop = MAKE_ARRAY(n_col, n_row, num_class, /byte, VALUE = 0)
FOR class = 0, num_class-1 DO BEGIN

FOR x=0, n_col-1 DO BEGIN

FOR y=0, n_row-1 DO BEGIN

sub_arr = fine[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-
1),class]
original_prop[x,y,class] = TOTAL(sub_arr)

ENDFOR
ENDFOR

ENDFOR

;print, ' CLASS 1 '

coarse_prop = original_prop(*,*,0)

....................................................................

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

....................................................................

99999999999999999299959599999999999939999595993993939599559999999999)

sub_col =n_col * zoom
sub_row =n_row * zoom

arr_bi = MAKE_ARRAY(sub_col, sub_row, /INTEGER, VALUE = 0)

--------------------------------------------------------------------

............................................................

....................................................................

999999999999999999999999993999999999999%9999959%939993999399993933395)

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

; Creat zoom x zoom alley R, which randomly allocate 1 by the class proportion
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prop = coarse_prop[x,y] ;prop is the class proportion
R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matric

IF prop EQ 0 THEN BEGIN
R[**]=0
ENDIF ELSE BEGIN
order = SORT(R)
index_1 = order[0: prop-1]
R[index 1]=1
index_0 = where(R NE 1, count)
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"

returns -1

ENDELSE

; Insert the alley R to the alley arr_bi

arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R

ENDFOR
ENDFOR

--------------------------------------------------------------------

............................................................

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

999999999999999592999999999399999999999995999999999995999999959993))

FOR i=0, iteration-1 DO BEGIN

------------------------------------

999999999999999999999999999995933%9)

;> make O buffer around the boundary
big_arr_oi = MAKE_ARRAY(sub_col+dx+dx, sub_row+dy+dy)

big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1] = arr_bi
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.......................................................................

9293993929922599999999999999999999999999999959999995999799999999999999)

;; Calcuate Oi(the sum the neighboring pixel value) using moving window
big_arr_oi = SMOOTH(big_arr_oi, width)* width*width

arr_oi = big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1]

--------------------------------------------------------------------

------------------------------------------------------------

....................................................................

9999399959999999599999999999999999999999999993999999999999999395999)

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi = arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of

arr_bi

sub_oi = arr_oi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel of

arr_oi

IF (MAX(sub_bi) NE MIN(sub_bi)) THEN BEGIN ;Do only where both class 1&0 exist
bi_1 = where(sub_bi EQ 1)

min_oi = MIN(sub_oi[bi_1])
min_bi_1 = where((sub_oi EQ min_oi) AND (sub_bi EQ 1))

bi_0 = where(sub_bi EQ 0)

max_oi = MAX(sub_oi[bi_0])
max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))

; If Min Oi < Max Oi, min_bi_1=0and max_bi 0=1
IF (min_oi LT max_oi) THEN BEGIN
; If more than two index exist, use the smaller/larger one

sub_bi[MIN(min_bi_1)] =0
sub_bi[MAX(max_bi 0)]=1

ENDIF
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ENDIF
; Insert the sub_bi to the alley arr_bi
arr_bi[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = sub_bi

ENDFOR
ENDFOR

ooooooooooooooooo

999999929999%3999

; Iteration END

ENDFOR

-------------------------------------------------------------------------------------------------------

600000000 000000000000000000000000000000000000000000000 Etsencsssseisesseensosesenesssessnsosssnaess essee
99999%99999999999599595999999999999999999999399959932999999999999595999999999999395599999999993953993933)

;print, CLASS 2 '

coarse_prop2 = original_prop(*,*,1)

arr_bi2 = arr_bi

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

............................................................

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

;print, 'step 2-2, random allocation’

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

; Create zoom x zoom alley R, which randomly allocate 1 by the class proportion

prop = coarse_prop2[x,y] ;prop is the class proportion
R = RANDOMUJ(seed, zoom, zoom) ;make the random zoom*zoom matrix

R =R + arr_bi2[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)]
;it will exceed 1.0 where class 1 is already allocated
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IF prop EQ 0 THEN BEGIN
R[*’*] = 0

ENDIF ELSE BEGIN
order = SORT(R)
index_1 = order[0: prop-1] ;select small number with proportion
R[index_1]=2 ;Allocate class 2
index_0 = where(R NE 2, count) ;Allocate class 0 where class NE 2
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"

returns -1

ENDELSE

; Insert the alley R to the alley arr_bi2

arr_bi2[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R

ENDFOR
ENDFOR

--------------------------------------------------------------------

------------------------------------------------------------

--------------------------------------------------------------------

oooooooooooooooooooooooooooooooooooo

99992999999999999999999992999993559)

;; make 0 buffer around the boundary
big_arr 0oi = MAKE_ARRAY(sub_col+dx+dx, sub_row+dy-+dy,/int)
big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1] = arr_bi2

.......................................................................

9999992999999999999959999995995999999999999959999995999999992959999993))

;; Calcuate Oi(the sum the neighboring pixel value) using moving window
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big_arr_oi = SMOOTH(big_arr_0i/2.0, width)* width*width

arr_oi2 = big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1]

--------------------------------------------------------------------

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

....................................................................

999999929999999799999999999999999999399959959999999999999959999953)5)

arr_bi_12=arr_bi2+arr_bi

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi =arr bi 12[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub

pixel of arr_bi

sub_oi = arr_o0i2[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel

of arr_oi

IF (MAX(sub_bi) EQ 2) AND (MIN(sub_bi) EQ 0)) THEN BEGIN ;DO Only where

both class 0&2 exist

bi_2 = where(sub_bi EQ 2) ;Find the place where class=2

min_oi = MIN(sub_oi[bi_2]) ;Find the minimum Oi value within class=2
min_bi_2 = where((sub_oi EQ min_oi) AND (sub_bi EQ 2)) ;Find the place

where oi=minimum within class=2
bi_0 = where(sub_bi EQ 0)
max_oi = MAX(sub_oi[bi_0])
max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))
IF (min_oi LT max_oi) THEN BEGIN

sub_bi[MIN(min_bi_2)] =0
sub_bi[MAX(max_bi_0)] =2

ENDIF
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ENDIF
; Insert the sub_bi to the alley arr_bi_12
arr_bi_12[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = sub_bi

ENDFOR
ENDFOR

index_bi_01 = where(arr_bi_12 NE 2) ;create new arr_bi2
arr_bi2 =arr_bi_12
arr_bi2[index_bi_01]=0

ENDFOR

.......................................................................................................

.......................................................................................................

999999999999999999999999999999999999999999999992999995999999999999999999999999599999999999959999995999)

;print, ' CLASS 3 '

coarse_prop3 = original_prop(*,*,2)

arr_bi3 =arr_bi_12

---------------------------------------------------------------------

-------------------------------------------------------------

---------------------------------------------------------------------

99999999999999999999999559999999999999999999293999299599939393939339)
.
b

;print, 'step 3-2, random allocation'
FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN
; Creat zoom x zoom alley R, which randomly allocate 1 by the class proportion

prop = coarse_prop3[x,y] ;prop is the class proportion
R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matrix

R =R + arr_bi3[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)]
;it will exceed 1.0 where class 1&2 is already allocated
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IF prop EQ 0 THEN BEGIN
R[*,*]=0

ENDIF ELSE BEGIN
order = SORT(R)
index_1 = order[0: prop-1] ;select small number with proportion

R[index_1]=3 ;Allocate class 3

index_0 = where(R NE 3, count) ;Allocate class 0 where class 1&2 s

allocated
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"
returns -1
ENDELSE

; Insert the alley R to the alley arr_bi3
arr_bi3[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R

ENDFOR
ENDFOR

....................................................................

............................................................

....................................................................

9999999999999999995999999999999999299999999999%99999999999555995%9%)

;print,'step 3-3 calcuate oi'
;print,'=--=-=-eceeeeee Iteration Start '

....................................

9999999999999999999999999932%9999%9)

;; make 0 buffer around the boundary

big_arr_oi = MAKE_ARRAY(sub_col+dx+dx, sub_row-+dy+dy,/int)
big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1] = arr_bi3

.......................................................................

99999999992995999999399999999959999999999999999999999999999999999959995)

;; Calcuate Oi(the sum the neighboring pixel value) using moving window
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big_arr_oi = SMOOTH(big_arr_0i/2.0, width)* width*width

arr_0i2 = big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1]

--------------------------------------------------------------------

2999999999999999999999999999995999999999999999993959999299999999399))

arr_bi_123=arr_bi_12 +arr_bi3

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi = arr_bi_123[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub

pixel of arr_bi

sub_oi = arr_o0i2[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel

of arr_oi

IF (MAX(sub_bi) EQ 3) AND (MIN(sub_bi) EQ 0)) THEN BEGIN ;DO Only where

both class 0&3 exist

bi_3 = where(sub_bi EQ 3) ;Find the place where class=3

min_oi = MIN(sub_oi[bi_3]) ;Find the minimum Oi value within class=3
min_bi_3 = where((sub_oi EQ min_oi) AND (sub_bi EQ 3)) ;Find the place

where oi=minimum within class=3
bi_0 = where(sub_bi EQ 0)
max_oi = MAX(sub_oi[bi_0])
max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))
IF (min_oi LT max_oi) THEN BEGIN

sub_bi[MIN(min_bi_3)] =0
sub_bi[MAX(max_bi 0)] =3

ENDIF

ENDIF
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; Insert the sub_bi to the alley arr_bi_123
arr_bi_123[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = sub_bi

ENDFOR
ENDFOR

index_bi_01 = where(arr_bi_123 NE 3);create new arr_bi3
arr_bi3 =arr bi_123
arr_bi3[index_bi_01]=0

ENDFOR

---------- 0000000000000 0000000000000000recrreeretstereseoerertesesssessessosseeerseeseeesesesessssssee

’,’,)’,””””,,”’,’,’)9”’,’,”,”’”””””’!”””",’,’,’),”,”””""””,9””””””,””,
Ceetesssesensiennnns " eesesareseatinatiiatenatsentetutotrsstnsetassintstitsinees
9999999299999999999) CLASS 4 START ""' ””””””9”’,",""””’9”””””””””,”,,”””,’9

9”9,”,’,”””,,’9””,99,’9’9""""9"”""”’””””,”99’9””””!’,!9”9”,9,7’,””!”’!”)

;print, ' CLASS 4 '
coarse_prop4 = original_prop(*,*,3)

arr_bi4 = arr_bi_123

-------------------- eeessessevesecssrssstssseesessstsssssrere

cee
,””,’9””’)’9””’9””””9"",,",”")’),”,””’9”””9,””

veceee 9essssescscescscscesccee ssssssssscccns IRTRNY
99999 STEP 4 2 3""""’,","!""9””7’)””9”””””"9”’”)”

33333 Except where class 1&2&3 allocate

...................... eseveceveevcscscscescsssssererssssrss

,””"9,’,”’,’,,”’,’,””””’,""","””””””’”””””3”

’

;print, 'step 4-2, random allocation’
FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN
; Create zoom x zoomalley R, which randomly allocate 1 by the class proportion

prop = coarse_prop4[x,y] ;prop is the class proportion
R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matrix

R =R + arr_bi4[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)]
;it will exceed 1.0 where class 1&2&3 is already allocated
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IF prop EQ 0 THEN BEGIN
R[**]=0

ENDIF ELSE BEGIN
order = SORT(R)
index_1 = order[0: prop-1] ;select small number with proportion

R[index 1] =4 ;Allocate class 4

index_0 = where(R NE 4, count) ;Allocate class 0 where class 1&2&3 s

allocated
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"
returns -1
ENDELSE

; Insert the alley R to the alley arr_bi4

arr_bi4[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = R

ENDFOR
ENDFOR

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

--------------------------------------------------------------------

99999999999959999999999999999999999959999999995999999999999959%9939)

;print,'step 4-3 calcuate oi'
;print,'-=---=--ceee- Iteration Start

------------------------------------

99999999999999999999999999939999399)5)

;; make 0 buffer around the boundary

big_arr_oi = MAKE_ARRAY(sub_col+dx+dx, sub_row+dy+dy,/int)
big_arr oi[dx:dx+sub_col-1, dy:dy+sub_row-1] = arr_bi4

.......................................................................

9999999992999999999999999999999999999999999992999999939992999999999999)

;; Calcuate Oi(the sum the neighboring pixel value) using moving window
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big_arr_oi = SMOOTH(big_arr_0i/2.0, width)* width*width

arr_oi2 = big_arr_oi[dx:dx+sub_col-1, dy:dy+sub_row-1]

--------------------------------------------------------------------

----------------------------------------------------------

....................................................................

9993995999999995929999999999959999999929999999999999392399999995399999)9

arr_bi_1234=arr_bi_123 + arr_bi4

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

sub_bi = arr_bi_1234[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub

pixel of arr_bi

sub_oi = arr_o0i2[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] ;sub pixel

of arr_oi

IF (MAX(sub_bi) EQ 4) AND (MIN(sub_bi) EQ 0)) THEN BEGIN ;DO Only where

both class 0&4 exist

bi_4 = where(sub_bi EQ 4) ;Find the place where class=4

min_oi = MIN(sub_oi[bi_4]) ;Find the minimum Oi value within class=4
min_bi_4 = where((sub_oi EQ min_oi) AND (sub_bi EQ 4)) ;Find the place

where oi=minimum within class=4
bi_0 = where(sub_bi EQ 0)
max_oi = MAX(sub_oi[bi_0])
max_bi_0 = where((sub_oi EQ max_oi) AND (sub_bi EQ 0))
IF (min_oi LT max_oi) THEN BEGIN

sub_bi[MIN(min_bi_4)] =0
sub_bi[MAX(max bi 0)] =4

ENDIF
ENDIF

; Insert the sub_bi to the alley arr_bi_1234
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arr_bi_1234[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =

sub_bi

ENDFOR

ENDFOR
index_bi_01 = where(arr_bi_1234 NE 4);create new arr_bi4
arr_bi4=arr bi 1234
arr_bi4[index bi 01]=0

ENDFOR

............................................................................

............................................................................

pcc_map = truth - arr_bi_1234
correct = N_ELEMENTS(where(pcc_map EQ 0))

pce = float(correct)/(sub_col*sub_row)*100
pcc_arr[test-1] = pcc

ENDFOR

var_result = VARIANCE(pcc_arr)
mean_result = MEAN(pcc_arr)

print, transpose(pcc_arr)
print, "variance:", var_result, ": mean:", mean_result
print, 'time :', (systime(1) - time)/60, ": Minutes'

end
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Appendix D (IDL program for Simultaneous Categorical Swapping)
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pro simult

’

; Simultaneous Categorical Swapping (Sub-pixel Mapping for multiple classes imagery)
; Written by Yasuyo Makido
; Created Sept 2005 (Modified April 2006)

; Attractiveness Oi : Equal Weight function

; Reference:

Atkinson, P.M. (2005). Sub-pixel Target Mapping from Soft-classified,

Remotely Sensed Imagery. Photogrammetric Engineering & Remote Sensing:
71(7), 839-846

e we we we v

time = systime(1)

...............................................
-----------------------------------------------

....................................................

99999999999999999929999999999999999999999999999%99399)
;# of class
num_class = 12

----------------------------------------------------

99999999959999999999999999999999999599999999999993))

;the zoom factor (sub-pixels within 1 pixel)
zoom =7

..............................................................

999999999999999999999999999999999999999999999992%99993993%9959

; dx is the neighboring distance in sub-pixels (1:N=8, 2:N=24, 3:NN=48)
dx=3
dy=3

width = dx*2+1 ;3 for dx&dy=1, 5 for dx&dy=2

------------------------------------------

9999999995959999999999935999999932999%399)

; The number of iteration

iteration = 20

] ite_arr =[1,5,10,20,30,40] ;For testing various iteration
; FOR ite_num=0, n_elements(ite_arr)-1 DO BEGIN
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; iteration = ite_arr[ite_num)]
; print, ' !

; FOR t=1, 10 DO BEGIN ;number of test

-----------------------------------------------

...............................................

ooooooooooooooooooooooooooo

999999999955939999999999999

;;}INPUT FILE (FINE RESOLUTION BINARY)
finel = read_tiff('d:\Yasuyo\china\lc78\binary\china78_1.tif")
fine2 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_2.tif')
fine3 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_3.tif")
fine4 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_4.tif")
fineS = read_tiff('d:\Yasuyo\china\lc78\binary\china78_5.tif")
fine6 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_6.tif")
fine7 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_7.tif")
fine8 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_8.tif')
fine9 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_9.tif")
fine10 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_10.tif')
finel1 =read_tiff('d:\Yasuyo\china\lc78\binary\china78_11.tif")
fine12 = read_tiff('d:\Yasuyo\china\lc78\binary\china78_12.tif")

truth = read_tiff('d:\Yasuyo\china\lc78\china78_truth.tif');groud truth file

----------------------------------------

299999999999999999999399999599999399%9%9%)

;;Check the size of the array

f col=N_ELEMENTS(finel[*,1]) ;# of column for the fine image
f row=N_ELEMENTS(finel[1,*]) ;# of row for fine image

n_col =f_col/zoom
n_row = f_row/zoom

........................................

99999999999999999999995999997939%9539335)

;;Stack up the original binay file

fine = Make_array(f col, f row, num_class, /byte, VALUE = 0)
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........

fine(*,*,0)=finel
fine(*,*,1)=fine2
fine(*,*,2)=fine3
fine(*,*,3)=fine4
fine(*,* ,4)=fine$
fine(*,*,5)=fine6
fine(*,*,6)=fine7
fine(*,*,7)=fine8
fine(*,*,8)=fine9
fine(*,*,9)=finel0
fine(*,*,10)=finel1
fine(*,*,11)=finel2

............................................................

------------------------------------------------------------

999999999999999999999999999959999959999999999999999999959999%999399)

original_prop=MAKE_ARRAY(n_col, n_row, num_class, /byte, VALUE = 0)
FOR class = 0, num_class-1 DO BEGIN

FOR x=0, n_col-1 DO BEGIN

FOR y=0, n_row-1 DO BEGIN

sub_arr = fine[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1),class]
original_prop[x,y,class] = TOTAL(sub_arr)

ENDFOR
ENDFOR

ENDFOR

....................................................................

....................................................................

9999999999999999999999999999999999999999999999999959999999999999999)

fine1=0
fine2=0
fine3=0
fine4=0
fine5=0
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fine6=0
fine7=0
fine8=0
fine9=0
fine10=0
finel 1=0
fine12=0

fine =0

............. esecscssessssne ssesseevserssesssas st rrne

””””,9””’99””’9””””’””””””””9””,9”””3”””

..... STEPO R R R PP PP P PR T
99999 ”s”n””n””’”””””””””””””””””’”

R P T Y acscscscevsesvonse

”””),’,”,9”’9””,”""’,"’”"”9"’”,9””””!”7””””

test = MAKE_ARRAY(n_col, n_row, /BYTE , VALUE = 0)
FOR z=0, num_class-1 DO BEGIN

test = test + original prop(*,*,z)
proportion = total(original prop( *,*,z))

ENDFOR

IF max(test) NE min(test) THEN print, "WARNING!!! CLASS PROPORTION MAY
WRONG!!"

.......................................... sssecsscscsscressonces

””’””””7’9””’””””,9’”,,”’,,,"””””””””””””
teeeereerrrniereerarannraeeeertraneeeerrrrnnnneerres
2999 STEP ] ””,”””,,”,3’,’,””””’,””!””””,)”’””93
33333 Zoom up the number of pixels

$00000000000000000000000000000000000 0000000000 IIONOITRRGEETIETTS

e
””””’)""""’9’,”"”””!9’9”””””””””””9”9”’9’)

sub_col = n_col * zoom ; # of column for fine image
sub_row =n_row * zoom ; # of row for fine image

arr_multi = MAKE_ARRAY(sub_col, sub_row, /BYTE , VALUE = 0)

;print, ' Random allocation

000000000000 000000rsreEre0000000eeeereesssseeeesesesssssscenees

’””9”””’””””’”””””,”””””””””3””””””””

coeee PR R YRR
9999 STEP 2 ’””””’9”””’,””””9’,,”’9””””””9”,”9,
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...................................................................

9999999999999959999999999999999999999999999999999929999999999999999)

dummy = arr_multi

FOR z=0, num_class-2 DO BEGIN

FOR x=0, n_col-1 DO BEGIN
FOR y=0, n_row-1 DO BEGIN

; Create zoom x zoom alley R, which randomly allocate class number by the class
proportion

prop = original_prop[x,y,z]

R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matrix

R =R + dummy[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)]

IF prop EQ 0 THEN BEGIN
R[#,*] =0

ENDIF ELSE BEGIN

order = SORT(R) ;index # at ascending order
index_c = order[0: prop-1] ;get the index # for the number of prop

R[index c]=z+1
index_0 = where(R NE z+1, count)
IF count NE 0 THEN R[index_0] =0 ;To avoid the case of "where"
returns -1
ENDELSE
; Insert the alley R to the alley arr_bi

dummy|[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] =R

ENDFOR
ENDFOR

; print, '
arr_multi = arr_multi + dummy
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dummy = arr_multi * 10 ;Multiply by 10 where the class is already allocated
ENDFOR

index_0 = where(arr_multi EQ 0, count)
IF count NE 0 THEN arr_multi[index_0] = num_class

changeable_arr = arr_multi

--------------------------------------------------------------------

--------------------------------------------------------------------

99999999999999999999999999999999999999999999999999959995395595595%9))

original_prop =0
arr_ multi=0

....................................................................

99999999993959593999999525999999999997999999995929999999999959399999)3)

FOR i=0, iteration-1 DO BEGIN

....................................................................

9999999999999999999999999999995599999999599999999999999999999999%99)

oooooooooooooooooooooo P T R Y RN

.
9999 STEP 3 99995999999999999999999999%999999999999999999999933939)

....................................................................

9999999999999999999999993999999999999999999995999999999339999993599)

bi_arr = Make_array(sub_col, sub_row, num_class, /BYTE , VALUE = 0)

big_bi_arr = MAKE ARRAY(sub_col+dx+dx, sub_row+dy+dy, num_class, /BYTE,
VALUE =0)

temp = Make_array(sub_col, sub_row, /BYTE , VALUE = 0)

FOR class = 1, num_class DO BEGIN

index_1 = where(changeable_arr EQ class, count) ;if that class -> asisgn 1
IF count NE 0 THEN BEGIN

temp[index_1]=1

bi_arr[*,*,class-1] = temp
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ENDIF

big_bi_arr[dx:dx+sub_col-1, dy:dy+sub_row-1,class-1] = temp
;make 0 buffer around the boundary

temp[*,*] =0

ENDFOR

............... R PR R RN

""""””’9,"’,,,"",,’,’9’,’9’,””””””,,9’””””’9’,”,

;35555 Eliminate unnecessary arrays

.............. ®ececscctecesnseserensessssssessssssseenesesrrnse

9””,’!’9"",",,"’9"’,’),""””’,’),’,””,,”””)9””,’,,)

sssssssssscssccccne ®ecssesscsccscscreccocrsesssensssessessee e

----- D R R R R P RN
99999 STEP 4 ","""’,",")"9",,"’S,””,””’,,”””’,”’,”

;so0ss Calculate attractiveness Oi at each class
33355 EQUAL WEIGHT FUNCTION ' 55555555555335555533355555333355555533

’,’,’99””’9”’,”"",,””’,”,’,”,””’,”9”!,”,”””,’9”’9’

sesescescscsssscscntcsensone “esscescccscrccesresresssrssssssnanas

”"’),"3"")"",’)’,9",’,99”""’9"’,,"’”,”””’,’,’,”,”,”’

;3; Calculate Oi(the sum of the neighboring pixel value) using moving window

;33 SMOOTH function returns a copy of Array smoothed with a boxcar average of the
specified width

;33 DOES not work well for multiple layers -> DO separately

FOR class = 0, num_class-1 DO BEGIN
big_bi_arr[*,* class] = byte(SMOOTH(float(big_bi_arr[*,* class]),width)* width*width)
ENDFOR

oi_arr = big_bi_arr[dx:dx+sub_col-1, dy:dy+sub_row-1, *]

---------------- 9000000000000 scccsserrerrreseresssssstssses s RN

9939999999999999599999939999393993959993999993335993393333999333939)
333993 Eliminate unnecessary arrays

sevecessrsvescsrsresnsurerene Pecreeversesrresessesesssseresrnorer e

’,’,””,””’,’,””,’,9,’,’,’9’”,,””,,”",”””9,”””,”’,’

big_bi_arr=0

33533 STEP 5 55355553550335553355533555355533555335533355335553355 33
533555 Start swapping between the class which is in need most

99995
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--------------------------------------------------------

33555333355553335 CREAT RESULT ARRAY for each cell ;;5555555533555535

7”””’,”,,”””",,"’,9,")9’9,,’,9’,,"’”””””””””’,””

FOR x=0, n_col-1 DO BEGIN ;Start making tables
FOR y=0, n_row-1 DO BEGIN

9000000000000 000000000000008000000000000000000000000000sesseesessscncnees

””””’”’”9’,’,””9’9,9,””,”’,’,””,”””’9”’,”",,,”,”’3”,,’

;; MAKE array to store the result (col=11, row=num_class) *LOOK at the table

result = Make_array(11, num_class, /int, VALUE = 0)

990000000000 000eeressereresreeseersesscecessseseeesesressosssesoesssesernnne

.
999999999999995999999999999999992999999999999999999999999993999999999955325599)

;; Create sub array for changeable_arr
sub_arr = changeable_arr[(x*zoom):(x*zoom+zoom-1),
(y*zoom):(y*zoom+zoom-1)]

...................... $0000000000s000000serveereserressseectsserssressesscsens

999999999999999999999999999999999999999999599999999999993599999999999953399))9

;; Create sub Oi array which has multiple layers(# of classes) for Occuw/Unoccupied

»
;» create sub aITaY 533353533333333935

sub_bi = bi_arr[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1), *]
sub_oi = oi_arr[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1), *]

sub_oi_u=sub _oi

index_u = where(sub_bi EQ 1, count)
IF count NE 0 THEN sub _oi_u[index u] =0

.o
bR
0000000000000 000eeeetssserseeetsessssocseetesssssssssesssessossocsseroeves

””’,,)’,””,9,’,””’99”’,””’)”,’9’9””’,’,’,””’,9’9,7,’”’,,,””””””

;3 1. Find the MINIMUM Oi value at class A, Occupied by class A (LOCATION X)
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FOR class=0, num_class-1 DO BEGIN
result[7,class] = class
temp_o =sub_oi_o[*,*,class] ;create a temporary array

index_n0 = where(temp_o NE 0, count)
IF count NE 0 THEN BEGIN

oi_oa_min = Min(temp_o[index_n0]) ;0i_oa_min is minimum Oi value

locx = where(temp o EQ oi_oa_min)

...................................................................

99995999999999595999999999999959999999999939959999959995999995999%9)

;If there're more than one number, pick one randomly!!
W Pick one from vector locx

.o
2

num=N_ELEMENTS(locx)

random_num= FLOOR(RANDOMUJ(seed, 1)*num) ;create a random
integer(O~num-1)

locx= locx(random_num)

.....................................................................

99999999999999%999999999999929999299999299999599995939939393935333%99)

result[0,class] = oi_oa_min
result[8,class] = locx

;; 2. Find the MAXIMUM Oi value at class A, Unoccupied by class A (LOCATION Y)

temp_u=sub_oi_u[*,* class] ;create a temporary array
oi_ua_max = Max(temp_u) ;o0i_ua_max is maximum Oi value
locY = where(temp_u EQ oi_ua_max)

99999999999999999999999999999599999999999999999999995999999955599))

;If there're more than one number, pick one randomly!!
5 Pick one from vector locY

num=N_ELEMENTS(locY)
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random_num= FLOOR(RANDOMU(seed, 1)*num) ;create a random
integer(0O~num-1)
locY=locY(random_num)

---------------------------------------------------------------------

99999999999959999999999999999999999999599999999999999999999999599995)%

result[1,class] = o0i_ua max
result[10,class] = locY
;5 2'Find the CLASS (B) which currently occupied location Y (check the random_arr)
class_b = sub_arr[locY]-1
result[9,class] = class_b
;; 3. Find the Oi value at class B, occupied by class B at location Y

temp_o = sub_oi_o[*,*, class_b]
oi_ob = temp_o[locY]

result[2,class] = oi_ob
;» 4. Find the Oi value at class B, Unoccupied by class B at location X

temp_u =sub_oi_u[*,*, class_b]
oi_ub = temp_u[locx]

result[3,class] = oi_ub

result[4,class] = result[1,class] - result[2,class]

result[S,class] = result[3,class] - result[0,class]

result[6,class] = result[4,class] + result[5,class]
ENDIF

ENDFOR ;END of the class

----------------------------------------------------------------------

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

999999999999999929929999999999999995999999999992999999999999339993533)

largest6 = max(result[6,*]) ;Largest value of index 6
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IF largest6 GT 0 THEN BEGIN
candidate]l = where(result[6, *] EQ largest6)

------------------------------------------------------------------------

299

num=N_ELEMENTS(candidate1)

random_num= FLOOR(RANDOMUJ(seed, 1)*num) ;create a
random integer(0~num-1)

swap_class = candidatel(random_num)

print, 'num=', num
print, 'random_num=', random_num
; print, 'randomly picked candidatel =', swap_class

- e

- e

-------------------------------------------------------------------------

N (More Logical, but not produce better result)
; IF count EQ 1 THEN BEGIN
; swapp_class = candidatel
’ print,' come to herel’
; ENDIF ELSE BEGIN

; largest4 = max(result[4,candidate1]) ;get the largest4
VALUE within a candidate

; candidate2 = where(result[4,*] EQ largest4) ;get the
largest4 INDEX within a candidate

H

; swap_class = min(candidate2)

3 print, 'largest4 (value of largest 4 value)', largest4

5 print, ' candidate2 (index of the largset 4 index within
candidate)', candidate2

3 print,'swap_class is', swap_class

; ENDELSE

......................................................................

9999929999999999999999999593599999992999599299999999995999999399339999)>

class_a= result[7, swap_class]+1
locX = result[8, swap_class]
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class_b= result[9, swap_class]+1
locY =result[10, swap_class]

sub_arr[locX] = class_b
sub_arr[locY] =class_a

changeable_arr[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-
1)] = sub_arr

ENDIF

ENDFOR
ENDFOR

....................................................................

9999999999999999999999999999999999999999999999599999999%99999999999)

bi_arr=0
oi_arr=0

ENDFOR ; END OF iteration

--------------------------------------------------------

........................................................

9999999999999999299999999959999999999999929999999999399)

; print, '
pecc = truth - changeable_arr
correct = N_ELEMENTS(where(pcc EQ 0))
print, 'PCC (%): ', float(correct)/(sub_col*sub_row)*100, ': iteration :',iteration

; ENDFOR ;number of test
; ENDFOR ;various iteration test

; WRITE_TIFF,'d:\yasuyo\china\lc78\output\simult_78.tif', changeable arr
print, 'time =', (systime(1) - time)/60, ' Minutes'

end
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Appendix E (IDL program for Simulated Annealing)
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pro sa

.
b

; Simulated annealing (Sub-pixel Mapping for multiple classes imagery)
; Written by Yasuyo Makido
; Created October 2005 (Modified January 2006)

; Attractiveness : Equal Weight function

; Reference:

Atkinson, P.M. (2005). Sub-pixel Target Mapping from Soft-classified,

Remotely Sensed Imagery. Photogrammetric Engineering & Remote Sensing:
71(7), 839-846

Goodchild, M.A. (1986). Spatial Autocorrelation, CATMOG 47, Norwich, UK:
Geo Books.

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. NY: Oxford
University Press.

We We We We Ve Ve we Ue we we we

time = systime(1)

FOR trial=0, 14 DO BEGIN

....................................................

999999999999999999999599999999999999999999939999999)

;# of class
num_class =5

....................................................

9999999999999999999999999999999999999999%9999995999%)

;the zoom factor (sub-pixels within 1 pixel)
zoom =7

9999999999999999999999999999999999999999999999999959993999933)9

; dx is the neighboring distance in sub-pixels (1:N=8, 2:N=24, 3:NN=48)
dx=3
dy=3

width = dx*2+1 ;3 for dx&dy=1, 5 for dx&dy=2

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

99999999999999999999999999295999999999999999999999999999799993)

; SELECT EITHER NEIGHBORS for Moran's |
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w_matrix = [[0,1,0],[1,0,1],[0,1,0]] ;4 neighbors (faster)
;w_matrix = [[0.7,1,0.7],[1,0,1],[0.7,1,0.7]] ;8 neigobors

--------------------------------------------------------------

9999999999999999999999999999999999999999999999999999999239%%9)

; THE Max number of repetition

rep_max = 8000000

; rep_arr = [7000000, 8000000, 9000000, 10000000, 11000000, 12000000]
; FOR ite_num=0, n_elements(rep_arr)-1 DO BEGIN

rep_max = rep_arr[ite_num]

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

99999999999959999999999999999999999999999999999999959999%9939)

; THE number of trial for swapping

num_try = ULONG(0.01* rep_max)

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

9999999999999999929999999999999999999999999999999999999999999)

; The target Moran's 1

target_i = 0.661 ;original(0.661).m3(0.808),m5(0.866), m7(0.894)

---------------------------

9999999999999999999999939%)

;;sINPUT FILE (FINE RESOLUTION BINARY)

finel = read_tiff('d:\Yasuyo\Atkinson\msu\original\binary\msu_1.tif");fine image for
;2‘11::;1: read_tiff('d:\Yasuyo\Atkinson\msu\original\binary\msu_2.tif');fine image for
g§:§2= read_tiff('d:\Yasuyo\Atkinson\msu\original\binary\msu_3.tif");fine image for
;:‘11::‘843= read_tiff('d:\Yasuyo\Atkinson\msu\original\binary\msu_4.tif');fine image for
g:esgt read_tiff('d:\Yasuyo\Atkinson\msu\original\binary\msu_5.tif");fine image for
f:uaflfi read_tiff('d:\Yasuyo\Atkinson\msu\original\msu_truth.tif');groud truth msu origi

----------------------------------------

9999999999999999%99999999999999993999%9%)

;;Check the size of the array

f col =N_ELEMENTS(finel[*,1]) ;# of column for the fine image
f row=N_ELEMENTS(finel[1,*]) ;# of row for fine image
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n_col =f_col/zoom
n_row = f row/zoom

----------------------------------------

999999999999999999999999999599999999999%9

;;Stack up the original binay file
fine = Make_array(f_col, f row, num_class, /byte, VALUE = 0)

fine(*,*,0)=finel
fine(*,*,1)=fine2
fine(*,*,2)=fine3
fine(*,*,3)=fine4
fine(*,*,4)=fine5

-------------------------------------------------------- secsccscsens
9399999999999939999999999929999999999999993399999999939599999%935993%

....................................................................

999999999999999999999559999599959999999999999959999399999299999999)%)

original prop = MAKE_ARRAY(n_col, n_row, num_class, /byte, VALUE = 0)
FOR class =0, num_class-1 DO BEGIN

FOR x=0, n_col-1 DO BEGIN

FOR y=0, n_row-1 DO BEGIN

sub_arr = fine[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-
1),class]
original prop[x,y,class] = TOTAL(sub_arr)

ENDFOR
ENDFOR

ENDFOR

---------------------------------------------------------------------

.............................................................

---------------------------------------------------------------------

9999999999999999999929999999999999999999999999999999799999%39995939))

test = MAKE_ARRAY(n_col, n_row, /BYTE , VALUE = 0)
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Moran_arr = MAKE_ARRAY(num_class,2, value = 0.0)

FOR z=0, num_class-1 DO BEGIN

test = test + original_prop(*,*,z)
proportion = total(original_prop( *,*,z))

Moran_arr{z, 0] = proportion

ENDFOR

----- $0 0000 s00000000escsr0000 N0 00OrNOsOsPIOIIRIINIIIRIIOIRIRROEBROLTS

9999999%9999999%999999993999999299999999999959%99999999%999999999%)9%)

evesse STEP l RN T T
9999 9,,"””!’”,"””’,””9”,,’,””,,”,”’,””””,
;333 Zoom up the number of pixels

--------- “ececsscssccacet ot s sosece et PR PPICROEIIORITRRIEIIOOISIOIRLS

”,”),”9””9’)”’)”””””’,!,”’!””””””’,’,,’)”””””

sub_col =n_col * zoom ; # of column for fine image
sub_row =n_row * zoom ; # of row for fine image

big_col = sub_col+zoom+zoom ;Use for Moranl
big_row = sub_row+zoom+zoom ;Use for Moranl

arr_multi = MAKE_ARRAY(sub_col, sub_row, /BYTE , VALUE = 0)

;print, ' Random allocation '

.................... €0000000080000000000000000000000000ssccccncncsns

9999999999999999959999999999999999999999999999999999999993999999999)

seeee QTEHEDP 7)) cccccccccccesccscncens sssescsscsscsase eecscsceveccccne
,’9,’ STEP 2 ""’””””””””””””””,)’)”””””’9”””

............... ssesesssssessssssascce secscscescccscsccrcnee

”’,,””’,’,,,”,”’”””9””””9’)”,,9”’,”,”””9’!,99’)9”

dummy = arr_multi

FOR z=0, num_class-2 DO BEGIN

FOR x=0, n_col-1 DO BEGIN
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FOR y=0, n_row-1 DO BEGIN

; Create zoom x zoomalley R, which randomly allocate class number by the class
proportion

prop = original_prop[x,y,z]

R = RANDOMU(seed, zoom, zoom) ;make the random zoom*zoom matrix

R =R + dummy[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)]

IF prop EQ 0 THEN BEGIN
R[*,*]=0

ENDIF ELSE BEGIN

order = SORT(R) ;index # at ascending order
index_c = order[0: prop-1] ;get the index #. which has smallest

R[index_c] =z+1
index 0 = where(R NE z+1, count)
IF count NE 0 THEN R[index 0] =0 ;To avoid the case of "where"
returns -1
ENDELSE
; Insert the alley R to the alley arr_bi

dummy[(x*zoom):(x*zoom+zoom-1), (y*zoom):(y*zoom+zoom-1)] = R

ENDFOR
ENDFOR

; print, '
arr_multi = arr_multi + dummy

dummy = arr_multi * 10 ;Multiply by 10 where the class is already allocated
ENDFOR
index_0 = where(arr_multi EQ 0, count)

IF count NE 0 THEN arr_multi[index_0] = num_class

3
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random_arr = arr_multi

changeable_arr = random_arr ; INPUT array for the following iteration

..............................................................

5355 ITERATION START!! 555555505333555555333355555553333555553333

num_repeat = QUL
ave_moran = 0.0

WHILE ((ave_moran LT target i) AND (num_repeat LT rep_max)) DO BEGIN

sescssececscccssvsesessssccnse 40csssesssscssescesssssessacsssssene
7”,,9’!!”""’,,"""99’,"’,"””’,,,’,””’,””,’,,)””””’

........................................
9999 A Create a table (Ol) 99999999999999959999999599932999995))

-----------------------------------------------------------------

’)199’9”””"”’,,”7”9”””’,””"!’,’,,’,9”9’9”’,””””’,

esssccccevssscsesssennse seesececevssveevvsrssvenonee ssescen evescccsee

”’9””,’,’,,”””’,’)’,”,"’1",,)",’,’”””!”’,,””,,”’9”

............................... ee0sssesssseesssevsvscervnes

”’)7’9”’99””!”","""))’”","’)"9’,”’9,99”””,””””’

bi_arr = Make_array(sub_col, sub_row, num_class, /BYTE , VALUE = 0)

FOR class = 1, num_class DO BEGIN
temp = Make_array(sub_col, sub_row, /BYTE , VALUE = 0)

index_1 = where(changeable_arr EQ class, count) ;if that class -> asisgn 1
IF count NE 0 THEN BEGIN

temp[index_1]=1

bi_arr[*,* class-1] = temp

ENDIF

ENDFOR

-----------------------------------------------------------------

”””’)’,”9”,””””,’,””””!”’,,99””’9”’”””)”’9))’,”

;5055 Calculate attractiveness Oi at each class
33355 EQUAL WEIGHT FUNCTION  55555555335555555533335555555333335555

",””,’9"’”””,””””””””’”9”"’””’,9”””’,,,,,,,,”

.
b
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------------------------------------

999999999999999999997999%9299399999)

;> make 0 buffer around the boundary

big_bi_arr = MAKE_ARRAY(sub_col+dx+dx, sub_row+dy+dy, num_class,
/BYTE, VALUE =0)
big_bi_arr[dx:dx+sub_col-1, dy:dy+sub_row-1,*] =bi_arr

........................................................................

99999999999999999999999999299999999999999999999999999999995999999993993)

;s Calcuate Oi(the sum of the neighboring pixel value) using moving window
5»»  SMOOTH function returns a copy of Array smoothed with a boxcar average
of the specified width

FOR class = 0, num_class-1 DO BEGIN

big bi_arr[*,* class] =
byte(SMOOTH(float(big_bi_arr[*,* class]),width)* width*width)

ENDFOR

oi_arr = big_bi_arr[dx:dx+sub_col-1, dy:dy+sub_row-1, *]

count_swap = OU ;The # of swapping within num_try trial

.......................................

99399999999999999999999993999999999%999)

;;JITERATION Start !! :
;repeat num_try(1% of max iteration) times without recalcurating the oi
value

FOR unchange = 1UL, num_try DO BEGIN

--------------------------------------------------------------------

....................................................................

99999992999999959929959999999599999%99995999999999999999999999999399%)

;Pick two random number for x coordinate & y coordinate
rand = RANDOMU(seed, 4)

loc_xi = FLOOR(rand[0] * sub_col) ; index xi at entire image
loc_yi = FLOOR(rand[1] * sub_row) ; index yi at entire image
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;Find the location of the sub pixel

sub_x = loc_xi/zoom ; location of the sub x area
sub_y =loc_yi/zoom ; location of the sub y area

rand x = FLOOR(rand[2] * zoom)
rand_y = FLOOR(rand[3] * zoom)

loc_xj =sub_x * zoom + rand_x ; index xj at entire image
loc_yj =sub_y * zoom + rand_y ; index xj at entire image

....................................................................

....................................................................

9999999999992999999999999999999999999999999999999999993299999939999%)

class_a = changeable_arr[loc_xi,loc_yi] ;class # at loc i
class_b = changeable arr[loc_xj,loc_yj] ;class # at loc j

oi_a=oi_arr[loc_xi, loc_yi, class_a-1] ;oi value at array oi_a at loc i
oi_b=oi_arr[loc_xj, loc_yj, class_a-1] ;oi value at array oi_a at loc j

oj_a=oi_arr[loc_xi, loc_yi, class_b-1] ;oi value at array oi_b at loc i
0j_b = oi_arr[loc_xj, loc_yj, class_b-1] ;oi value at array oi_b at loc j

...............................................................

...............................................................

9999999999995999999999999999595992999999999999993399992%399995)

comp = (fix(oi_b) - fix(oi_a)) +(fix(oj_a) - fix(0j_b))
; the larger (fix(oi_b) - fix(oi_a)) value, the better for swapping (to
increase contiguity)

; the larger (fix(oj_a) - fix(oj_b)) value, the better for swapping (to
increase contiguity)
IF (comp GT 0) THEN BEGIN

changeable_arr[loc_xi, loc_yi] = class_b
changeable arr[loc_xj, loc_yj] =class_a

count_swap = count_swap + 1

ENDIF
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ENDFOR ;END OF The num_try

num_repeat = num_repeat + num_try

;ENDWHILE ;CHOICE A: Use this when maximizing the I(=Do max_repeat)

....................................................................

....................................................................

bi_arr = Make_array(sub_col, sub_row, num_class, /BYTE , VALUE = 0)

FOR class = 1, num_class DO BEGIN

temp = Make_array(sub_col, sub_row, /BYTE , VALUE = 0) ;creat empty
array

index_1 = where(changeable_arr EQ class, count) ;if that class -> asisgn 1
IF count NE 0 THEN BEGIN

temp[index_1]=1

bi_arr[*,*,class-1] = temp

ENDIF

ENDFOR

.............................................................................
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FOR class = 0, num_class-1 DO BEGIN
test = bi_arr[*,* class]
inside_arr = test[1:sub_col-2, 1:sub_row-2]

ave_z = MEAN(inside_arr) ;ave_z = mean attribute inside the boundary

cw_sum = 0.0
w_sum = 0.0

FOR r=1, sub_row-2 DO BEGIN ;avoide border
FOR c=1, sub_col-2 DO BEGIN ;avoide border
cr_ave = test[c,r] - ave_z
; clip the 3x3 pixels
clip=test[c-1:ct+1, r-1:r+1]
cw =cr_ave * (clip-ave_z)

cWW = cw * w_matrix
cww_total = TOTAL(cww)

w_total = TOTAL(w_matrix)

cW_sum = cw_sum + cww_total
w_sum =w_sum + w_total

ENDFOR
ENDFOR
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inside_arr = (inside_arr - ave_z)"2

zsum = TOTAL(inside_arr)
s2 = zsum/inside_pixel

Moranl = cw_sum / (s2*w_sum)
moran_arr{class, 1] = Moranl

ENDFOR ;For class

ave_moran = TOTAL(moran_arr[*,0] * moran_arr[*, 1])/inside_pixel

SeveevevvsreIs Il IeIIIPOPIITCIISITIOITITIOITIPITIRRIOITIOIROIOOITE sescccccsssnnne .

. .
995999999999999999999999999%9999999999999999999999979999999959999999)9
53 E. Decide quit or continue

©900000000000009900000000000ssssesOTIRITS esesssssesserssssscce

sese
2999999999999995999999%99999999299992399999999999999999999999999)9)

ENDWHILE ;CHOICE B;Use this when you want to use target I (not maximize I)

; WRITE_TIFF,'d:\Yasuyo\Atkinson\ssa\ssa_targetl.tif', changeable_arr

------------ ©0000000000000000000000000000000000 00000 s

99999999999999999299399999999399599959999999959999999%9)
cssseses 900000000000 eerenseseertssenrssssserane
””9”’ACCURACY 999999999995999999999999999%9999399939)
.......... D R R YR YN

. ssee
9999995992993999299599999999999999599993%995%9939999%99%)

pcc = truth - changeable arr
correct = N_ELEMENTS(where(pcc EQ 0))
print, num_repeat, float(correct)/(sub_col*sub_row)*100, ave_moran

ENDFOR;
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;ENDFOR ; for rep_max
print, 'time =', (systime(1) - time)/60, ' Minutes'

end
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