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ABSTRACT

NONLINEAR IDENTIFICATION OF THE TOTAL
BAROREFLEX ARC

By

Mohsen Moslehpour

The baroreflex is one of the most important regulatory mechanisms of blood
pressure in the body, and the total baroreflex arc is defined to be the open-loop system
relating carotid sinus pressure (CSP) to arterial pressure (AP). This system is known
to exhibit nonlinear behaviors.  However, few studies have quantitatively
characterized its nonlinear dynamics. The aim of this thesis was to develop a
nonlinear model of the sympathetically-mediated total arc without assuming any
model form in both healthy and hypertensive rats.

Normal and spontaneously hypertensive rats were studied under anesthesia.
The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were
isolated and attached to a servo-controlled piston pump. CSP was perturbed using a
Gaussian white noise signal. A second-order Volterra model was developed by
applying nonparametric identification to the measurements. The second-order kernel
was mainly diagonal. Hence, a reduced second-order model was similarly developed
comprising a linear dynamic system in parallel with a squaring system in cascade
with a slower linear dynamic system. This “Uryson” model predicted AP changes 12-

43% better than conventional linear dynamic in response to new Gaussian white noise



CSP. The model also predicted nonlinear behaviors including thresholding and mean
responses to CSP changes about the mean. The linear and nonlinear terms of the
validated model between normotensive and hypertensive rats were compared. While,
the linear gain was similar between these two groups, the nonlinear gains for the
hypertensive rats were significantly larger. Hence, nonlinear dynamic functioning of
the sympathetically-mediated total arc may enhance baroreflex buffering of AP
increases more in spontaneously hypertensive rats than normotensive rats.

The importance of higher-order nonlinear dynamics was also assessed via
development and evaluation of a third-order nonlinear model of the total arc. Third-
order Volterra and Uryson models were developed by employing several
nonparametric and parametric identification methods. The R? values between the
measured AP and AP predicted by both the best third-order Volterra and the third-
order Uryson model in response to new Gaussian white noise CSP were not
statistically different from the corresponding values for the previously established
second-order Uryson model neither in normotensive nor in hypertensive rats. Further,
none of the third-order models were able to predict important nonlinear behaviors
better than the second-order Uryson model. Additional experiments suggested that
the unexplained AP variance was partly due to higher brain center activity.

In conclusion, the second-order Uryson model sufficed to represent the
sympathetically-mediated total arc under the employed experimental conditions and
the nonlinear part of this model showed significant changes in hypertensive rats

compared to normotensive rats.



Dedicated to my loving wife, Sanaz,
and my wonderful parents, Robabeh and Ali Akbar



ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Ramakrishna Mukkamala for his continuous
guidance and support since | joined Michigan State University at May 2010. | will be
forever grateful for the opportunities he provided me in my career. | am also thankful
for the trust he deposited in my work, for the motivation demonstrated along this
arduous course, and for teaching the way of being an independent researcher.

I would also like to express appreciation to my dissertation committee members, Dr.
Lalita Udpa, Dr. Selin Aviyente, and Dr. Gregory Fink who were more than generous
with their expertise and precious time.

The realization of this work was only possible due to the several people's
collaboration, to which I desire to express my gratefulness. | would like to thank Dr.
Toru Kawada, Dr. Masaru Sugimachi, and Dr. Kenji Sunagawa for providing the data
as well as their efforts and their help in discussion and interpreting the results
presented in this thesis.

I would also like to thank all my colleagues and friends for the all the discussions and
great times that | had during my PhD studies at Michigan State University, Dr.
Guanqun Zhang, Mingwu Gao, Jiankun Liu, Anand Chandrasekhar, and Keerthana
Natarajan.

Finally, I would like to express my special thanks to my lovely wife, Sanaz
Behbahani, for her unconditional love and support who has stood by me through the
long nights and hard days during this journey. | am also thankful to my parents,
Robabeh Rasoolzadeh and Ali Akbar Moslehpour, my brother and my sister, Mehdi

\Y



and Mahnaz, for their everlasting supports. | would never have been able to

accomplish what | have without them.

Vi



TABLE OF CONTENTS

LIST OF TABLES ... bbbttt IX
LIST OF FIGURES .....otoiiee ettt sttt st sne e X
CHAPTER 1.  INTRODUCTION ..ottt st 1
BACKGIOUNG ...t r bbb 1
ATTErial BarorefleX .......coiiiiiiciee e 3
QUANTITYING REFIEXES.......c e 5
Scope and OrganiZation ..........ccccveiueiiieiieie e e e re e e e sae e sneees 6
CHAPTER 2. DATA COLLECTION AND PRE-PROCESSING........c.cccecvvvivrnannne 8
Data COIBCTION........eitiiieiiieieiie e bbbttt see bt sbe b aneas 8
Data Pre-PrOCESSING .....oiuiiieeiieieieitesie sttt bbb 10
CHAPTER 3. NONLINEAR IDENTIFICATIOND OF THE TOTAL BAROREFLEX
ARC USING SECOND ORDER VOLTERRA MODEL ......cccovviviieieierece e 11
Nonlinear Model and Identification TEChNIQUE .........c.covevieiieiieie e 13
MOAEI EVAIUALION ......eeiieiiieie ettt nne e 17
StatistiCal COMPAISON.........ciieiieeie ittt re e e e sreeanas 17
RESUILS L.ttt bbb bbbttt bbb r e 18
Gaussian White NOISE Data..........cccecueiieieiieneiie e eie e e eee e sie e sree e snee e neas 18
TOLAI ATC.ciie ettt bbbttt sttt b neene s 19
Neural and Peripheral AICS .........ooviiiii e 25
[ o011 (0] o RSP PR 28
Gaussian White Noise Approach for Nonlinear System Identification..................... 29
Nonparametric Identification Method .............cccooiiii i 29
LI N (o 1Y o T L= S 31
Neural Arc and Peripheral Arc Models...........cooveiiiiiieii e 34
STUAY LIMITALIONS ...ttt 36
CHAPTER 4. NONLINEAR IDENTIFICATION OF THE TOTAL BAROREFLEX
ARC: CHRONIC HYPERTENSION MODEL ......cccoieiiiiiiiieseseeeeeiesie e 38
Nonlinear Model and Estimation Method ... 39
MOTEI TESTING. ...ttt bbb b 40
Model ComparisSON 10 WKY .....couiiiiiiciieie ettt 41
RESUILS ...ttt ettt s b e st e e s be e s b e e s b e e et e e be e e be e aaeeanbeereas 41
Gaussian White NOISE Data..........c.eiueiieieiieieeie e 41
TOtal ATC MOGEI ... 44
Neural Arc and Peripheral Arc Models...........cccooiiiiiiiiii e 48
[ 1T 1517 o] OSSPSR 51
Nonlinear ldentification Method ..o 51
Total Arc Model iN SHR ..o 52
Neural Arc and Peripheral Arc Models in SHR ... 54

vii



Potential Physiologic MEChaNISMS. ..........oiiiiiiiiiieii e e 55

StUAY LIMITALIONS ....vevieiicic et ra et e e nns 56
CHAPTER 5. NONLINEAR IDENTIFICATIOND OF THE TOTAL BAROREFLEX
ARC: HIGHER-ORDER NONLINEARITY oot 57

Nonlinear Model and Estimation Method ..........coooee oo, 57
MOAEI EVAIUALION ..ottt e e e e e e e e eeeaeeeeeaan 63
RESUIES ..o, 63
DIESCUSSTON .ottt et e e ettt e e e e et e et et e e e e e ee e e et eeeeeeeseeneeeneeens 67
CHAPTER 6. CONCLUSIONS. ...ttt 73
AP P E N D X e e ————————————— 76
BIBLIOGRAPHY .ottt ettt e et e ettt et e e e e e e e ae et eeeeeeereeeereeaeaeeaaaaas 78

viii



LIST OF TABLES

Table 1: Group average (mean+SE) of the mean and standard deviation of the pre-
processed variables during Gaussian white noise CSP stimulation in the training data... 18

Table 2: Group average of the R? values between AP predicted by three models of the
total arc and measured AP during Gaussian white noise CSP stimulation....................... 23

Table 3: Group average of the R? values between SNA/AP predicted by models of the
neural and peripheral arcs and measured SNA/AP during Gaussian white noise CSP
10 00 F= U o PO R U S P PRUTPRPRN 27

Table 4: Group average R? values between arterial pressure (AP) predicted by models of
the total baroreflex arc and MeasUred AP. .......cc.ooir e 46

Table 5: Group average parameters of the kernels of the validated Uryson model of the
L0] £= LI 1 o3OS PR PRPSN 47

Table 6: Group average R? values between efferent sympathetic nerve activity (SNA)/AP
predicted by models of the neural and peripheral arcs and measured SNA/AP. .............. 50

Table 7: Group average R?values between arterial pressure (AP) predicted by models of
the total baroreflex arc and MeasUred AP. .......ccvoiiiierie e 67

Table 8: Kernel values of Uryson model of the total baroreflex arc in WKY, SHR1,, and
SH R 180 ettt ettt 77



LIST OF FIGURES

Figure 1: Autonomic and hormonal control of cardiovascular function (Adapted from [5])

Figure 2: The total baroreflex arc (open-loop system relating carotid sinus pressure (CSP)
to arterial pressure (AP)) has been shown to exhibit nonlinear behaviours in previous
studies including mean responses to input changes about the mean (adapted from [23]).
CSP here was controlled using a binary white noise signal of the same mean but
increasing amplitude. Mean AP and sympathetic nerve activity (SNA) both decreased
with the increasing CSP amplitude. ...t 12

Figure 3: Total baroreflex arc can play a role on genesis of Hypertension [adapted from

Figure 4: Gaussian white noise training data from one subject. The left plots show pre-
processed CSP, AP, and calibrated SNA versus time, while the right plots illustrate the
power spectrum and histogram of un-processed CSP. CSP here was controlled using a
Gaussian white noise signal of mean of 120 mmHg and standard deviation of 20 mmHg.
........................................................................................................................................... 19

Figure 5: Group average of first- and second-order kernel estimates of a VVolterra model
of the total arc. The second-order kernel was approximately diagonal, and the diagonal
differed in shape from the first-order kernel. The solid and dashed lines here and in
subsequent figures respectively represent mean and mean+SE over the ten subjects for

] (010 | OSSP PSUTOSURTN 20

Figure 6: Reduced, second-order Uryson model of the total arc derived by examination of
the Volterra kernel estimates in Figure 5. In this model, x[n] is the input, y[n] is the
output, and hy, h;[n], and h,[n] are the zeroth-, first-, and second-order kernels of the
system. The model is a parallel connection of a linear dynamic system characterized by
the first-order kernel and a Hammerstein system (squarer followed by a linear dynamic
system characterized by the second-order Kernel). ........ccccooeiveieiiiniiie e 21

Figure 7: Group average of first- and second-order kernel estimates of the reduced
Uryson model of the total arc. Both kernels show integral or low-pass characteristics, but
the second-order kernel is more sluggish than the first-order kernel.............c.ccoeoveenenin 22

Figure 8: Group average of squared coherence functions for the Uryson model and a
standard linear model of the total arc in the testing data. The improved AP prediction
offered by the Uryson model was in the low frequency regime. Hence, the system
nonlinearity Was at oW FreQUENCIES. ........coviiie it 23

Figure 9: Group average of the static behavior of the total arc predicted by the Uryson
model in response to the staircase CSP (wherein each CSP step or level was flat) and the

X



measured static behavior. The Uryson model was able to predict thresholding but not
Y- LU LA o] USSP SUPSPSN 24

Figure 10: Predicted AP by the group average Uryson model of the total arc in response
to the same binary white noise CSP signal from a previous study shown in Figure 3. Like
the measured AP in Figure 3, the model predicted reductions in mean AP with increasing
CSP amplitude. But, unlike this measured AP, the model predicted increases in AP
variance as the CSP amplitude INCreased...........coouiieieieiiniiesisie e 25

Figure 11: Group average of first- and second-order kernel estimates of a reduced,
second-order Uryson model of the neural arc. Both kernels show derivative or high-pass
characteristics. The kernels are much faster than those of the total arc (see Figure 7). .. 26

Figure 12: Group average of the kernel estimate of a linear model of the peripheral arc.
The kernel shows integral or low-pass characteristics and is similar in speed to those of
the tOtal Arc (SEE FIGQUIE 7). .ot bbb 27

Figure 13: Gaussian white noise training data from one subject. SHR129 and SHR14, are
spontaneously hypertensive rats during Gaussian white noise carotid sinus pressure (CSP)
stimulation with mean of 120 and 160 mmHg, respectively. .......cccccccvevevvievveiesieinenns 43

Figure 14: Group average first-order (linear) and second-order kernel estimates
(mean+SE) of complete Volterra models (see Equation) of the total baroreflex arc in
SHR1,0 and SHR16p. The inputs for the first-order and second-order kernels are CSP and
CSP?, respectively, while the output for both kernels is AP. Hence, in discrete-time, the
units are mmHg/mmHg (unitless) for the first-order kernel and mmHg/mmHg? (mmHg™)
for the second-order kernel. Front view precisely means the view point with azimuth of
135° and elevation of 0° with respect to the axis origin. ..........ccccceevevieve e 45

Figure 15: Group average first- and second-order kernel estimates of reduced Uryson
models of the total arc in SHR 120 NG SHR160. «.ovcvvvieiiiriiee et eree e 46

Figure 16: Group average first- and second-order kernel estimates of Uryson models of
the neural arc in SHR 120 QN0 SHR10. «oovovviieiieeiee ettt e e 49

Figure 17: Group average first-order kernel estimates of linear models of the peripheral
arcin SHR129 and SHRIG0: teiiiiiiiiiii e 49

Figure 18: Group average two-dimensional (2D) slices of the estimated (four-dimensional)
third-order kernels k5 (n,,n,,n3) in Eq. (5). WKY, Wistar Kyoto rats during Gaussian
white noise carotid sinus pressure (CSP) stimulation with mean of 120 mmHg; and
SHR120 and SHR14p, spontaneously hypertensive rats during the same CSP stimulation
with mean of 120 and 160 mmHg, respectively. The diagonal slice (k;(n,, n,,n,) Was
1argest iN MAGNTTUGE. .......oiuiiiiie et 64

Figure 19: Group average energy of each 2D slice of the estimated second-order Volterra
kernels from [58], [66] and third-order kernels, normalized by the diagonal energy, in
descending order of value for WKY, SHR12, and SHR160. The second-order kernel was

Xi



always diagonal, while the third-order kernel was virtually diagonal for SHR1,0 and
approximately diagonal for WKY and SHR160. ....covveriiieiieiiiie e 65

Figure 20: Group average first-, second-, and third-order kernel estimates (mean+SE) of
reduced Uryson models of the total arc for WKY, SHR1,0 and SHR1¢0 Vvia the frequency-
domain (black) and Laguerre expansion (gray) methods for Gaussian inputs. The three
kernels were not proportional to each other, thereby indicating that the model could not
DE TUMNET TEAUCEM. ... bbb 65

Figure 21: Representative time series for arterial pressure (AP) and sympathetic nerve
activity (SNA; measured from splanchnic nerve and then normalized as described
elsewhere [58]) in response to fixed and Gaussian white noise CSP stimulations for one
WKY (left panel). A.u. is arbitrary units. Group average power spectra (mean+SE) for
CSP, AP, and SNA (right panel). The gray and black lines indicate the fixed and
Gaussian white noise CSP inputs, reSpectively. ........ccovviveiiiie i 72

xii



CHAPTER 1. INTRODUCTION

Background

Cardiovascular system consists of the heart, blood, and the vessels and it is
responsible for maintaining blood flow to the body tissues. Heart and blood vessels
are controlled in particular to provide the required cardiac output (CO) and arterial
blood pressure (ABP). The extrinsic or global control of cardiovascular system is
almost entirely through the autonomic nervous system (ANS). In fact, the main
function of cardiovascular regulation is to maintain ABP within a narrow range under
a wide range of situations.

Different sensory mechanisms are working together in a feedback loop to
regulate arterial blood pressure through ANS. These sensory monitoring mechanisms
entail blood pressure sensors (arterial baroreceptors), blood volume sensors
(cardiopulmonary  baroreceptors or volume receptors), blood chemistry
(chemoreceptors), and plasma osmolarity (osmoreceptors). These receptors can be
categorized in general two categories of mechanical (barosensory) and chemical
(chemosensory) [1], [2]. Effects of these sensory mechanisms are called baroreflex
and chemoreflex respectively. Based on the inputs from these sensors, ANS regulates
the blood pressure mostly via sympathetic nervous system (SNS) and less through
parasympathetic nervous system (PNS). SNS affects regulation by innervating the
blood vessels and the heart. It passes through two main routes toward the circulation,

through specific sympathetic nerves that innervate mainly the vasculature of the



internal viscera and the heart, and also through peripheral portions of the spinal
nerves where it distributes to the vasculature of the peripheral areas [1]. It affects
heart activity by both innervating the sinoatrial node (SA node) to increase the heart
rate and also innervating cardiac muscles to elevate the VC. In addition to heart, SNS
innervates small arteries and arterioles by increasing their resistance to blood flow
and thereby increasing blood pressure. It also innervates large vessels (e.g. veins) by
decreasing their volume, thus translocating more blood to heart. PNS plays a minor
role in regulation of the circulation by mainly adjusting the heart function through
innervation of the SA node. PNS fibers are carried to the heart via the vagus nerves.
Principally, stimulation of PNS causes marked decrease in HR. This has been
illustrated in Figure 1 (adapted form [5]) along with other hormonal loops which are
not in the scope of this thesis.
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Figure 1: Autonomic and hormonal control of cardiovascular function (Adapted from [5])



Arterial Baroreflex

The focus of this thesis is on the most important blood pressure regulator, i.e.
the arterial baroreflex mechanism (i.e. regulation through arterial baroreceptors). The
arterial baroreflex system is primarily responsible for maintaining blood pressure in
the short-term (seconds to minutes) and also appear to contribute to longer-term blood
pressure regulation [3], [4], [14]. It is well known that the arterial baroreflex buffers
changes in ABP via stretch receptors belonging to spray type ending nerves lying in
the carotid sinus and aortic arch (i.e. carotid sinus baroreflex and aortic arch
baroreflex) and maintains the blood pressure near its normal operating level by
providing negative feedback to central nervous system. Fluctuations in blood
pressure cause changes in firing patterns of the arterial baroreceptors. This signal is
conveyed to the medulla oblongata within the brainstem (cardiac center in the
autonomic nervous system) via afferent nerve fibers. This signal is deciphered and
compared to a set-point for arterial pressure and the proper command is send though
efferent fibers.

When ABP increases (decreases), the arterial baroreceptor stretches more
(less). This stretch increases (decreases) the signal going to nervous system through
afferent nerves. Baroreceptors in carotid sinus are transmitted to brain through
glossopharyngeal by a small Hering’s nerve. However, baroreceptors at aortic arch
are transmitted to brain via afferent vagus nerves. ANS responds to this reflex signal
by decreasing (increasing) p-sympathetic nerve fibers and reverse effect of efferent
parasympathetic nerve on SA node to adjust HR. [-sympathetic nerve fibers also

affect ventricles to decrease (increase) VC. Efferent a-sympathetic nerve fibers
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decrease (increase) total peripheral resistance (TPR) by affecting arterioles and
increase (decrease) system venous unstressed volume (SVUV) by affecting veins.
These changes, decrease (increase) ABP as a result (Figure 1). For instance, in
postural change and when standing from supine position, due to blood pressure drop
in head and upper body, the arterial baroreceptors initiate a reflex so that a reaction of
ANS in entire body mediates this blood pressure drop in head and prevents fainting.

This system is negative feedback system. Hence, it works in closed loop
system and this makes it difficult to identify the system ([4]). Assuming that carotid
sinus baroreflex has the same effects as aortic arch baroreflex, one way to handle this
problem is to isolate the carotid sinus region from the systemic circulation which
causes an open loop preparation ([5]-[7]) and the pressure in that region is changed
independently to identify the open loop system in anesthetized animals. It should be
noted that opening the arterial baroreflex loop can abolish Mayer waves and make the
identification more accurate [8]. In this open loop preparation, the baroreflex system
is divided into a controller and effector sub-systems, neural arc and peripheral arc
respectively [19]. Neural arc represents the relationship between carotid sinus
pressure (CSP) and efferent sympathetic nervous activity (SNA). Peripheral arc is the
system from SNA to arterial blood pressure (ABP). In the open loop regime the
cascade of these two systems is called total baroreflex arc — defined to be the open-
loop system relating carotid sinus pressure (CSP) to arterial pressure (AP).

Linear dynamic analysis has been widely applied to identify these systems
[19], [15], [20], [21]. This type of analysis results in linear transfer function of the

system and not only it can elucidates the physiological roles of these arcs but also it
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helps designing artificial vasomoter center for replacing natural neural arc [22]. Our
collaborators others have identified the linear dynamics of the three baroreflex arcs in
the form of transfer functions (i.e., gain and phase as a function of frequency) [15]-
[18]. These linear models can capture the dynamic behavior of the systems to a
significant extent. They previously showed that the linear dynamics of the total arc
are preserved in spontaneously hypertensive rats (SHR) despite resetting of mean AP
[15]. However, the nonlinear dynamics of this system, which have been less
investigated, could possibly respond differently to the chronic hypertension model.
Some recent studies showed that arterial baroreflex is not merely a linear system and
there are nonlinear behavior with respect to that [20], [23]. Besides, the hypothesis
that arterial baroreceptors can also play a role in genesis of hypertension reinforce
nonlinear modeling of total arc system [3], [24], [25].

Quantifying Reflexes

There are numerous diseases which are affecting neural cardiovascular
regulatory reflexes and their functioning. Therefore, quantifying these system is
important in order to understand their functions in health and disease. Besides, bionic
devices can be designed to function as a replacement of neural regulatory mechanism
in case of failure in the natural system.

The conventional approach for quantifying ANS regulation of blood pressure
is to use an external stimulus (e.g. controlled carotid sinus pressure) to perturb the
system and measure the regulatory response. There are two general types of stimulus,
selective and nonselective [27]. Selective stimulus (e.g. controlled carotid sinus

pressure) helps quantifying the open loop system and change the normal operation,
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therefore its interpretation should be done cautiously.  However, it helps
characterizing one mechanism alone. On the other hand, nonselective stimulus (e.g.
supine and standing position) is done in a normal closed loop system. Therefore, all
mechanisms are functional and affect each other and since the physiological signals
are usually highly correlated, these stimuli may not the reveal the mechanism under
study perfectly. Furthermore, the conventional methods could only quantify the
steady-state gain values of the feedback mechanisms while their dynamic
characteristics such as overall time constants and delays are undiscovered. Here, we
used the first approach and designed a specific complex experiment along with
utilizing signal processing and system identification techniques to identify the system
perfectly.  Briefly, we stimulated carotid sinus pressure independently while
eliminating other reflexes and measured the regulated arterial blood pressure in an
open loop preparation. Then, the nonlinear model was developed to identify arterial
baroreflex dynamics.
Scope and Organization

The main goal of this thesis is to use system identification techniques
reinforced with signal processing in order to quantitatively characterize the arterial
baroreceptor reflexes and investigate the nonlinear dynamic model of the total
baroreflex arc under open loop conditions. There are five chapters here. The current
chapter (first chapter) gave an introduction and background for the total baroreflex arc.
In chapter two, we developed the second order Volterra and Uryson models of the
total baroreflex arc in normotensive Wistar Kyoto rats using non-parametric

identification method. The goal of chapter three is to illustrate the importance of the
6



nonlinearity in chronic hypertension. Hence, the second order Volterra and Uryson
models were estimated for spontaneously hypertensive rats using the same
identification method as in normotensive rats and the estimated model was compared
with the estimated model for normotensive rats developed in chapter two. In chapter
four, we assessed the importance of higher-order nonlinear dynamics via development
and evaluation of a third-order nonlinear model of the total arc using the same
experimental data. Third-order Volterra and Uryson models were developed by
employing several nonparametric and parametric identification methods. Finally, in

chapter five perspective and significance of the work is explained.



CHAPTER 2. DATA COLLECTION AND PRE-

PROCESSING

Data Collection

In this thesis we used the data that has been already collected by our Japanese
collaborators. Animals were studied according to a protocol that was approved by the
Animal Subjects Committee at the National Cerebral and Cardiovascular Center of
Japan. The procedures are described in detail elsewhere [15]. Briefly, under general
anesthesia (urethane and a-chloralose mixture) and mechanical ventilation, the
bilateral vagal and aortic depressor nerves were sectioned to eliminate confounding
reflexes from the aortic arch and cardiopulmonary region. (Hence, the model of the
total arc developed herein precisely represents the sympathetically-mediated carotid
sinus baroreflex.) The carotid sinus regions were isolated from the systemic
circulation to open the loop between CSP and AP/SNA. A servo-controlled piston
pump was interfaced to the carotid sinus regions filled with warmed Ringer solution
via catheters to control CSP. A femoral artery catheter was placed to measure AP. A
pair of electrodes was positioned on a postganglionic branch of the splanchnic
sympathetic nerve to measure SNA. The pre-amplified SNA was band-pass filtered
with cutoff frequencies of 150 and 1,000 Hz. It was then full-wave rectified and low-
pass filtered with cutoff frequency of 30 Hz. CSP was controlled for about 15 min
using a Gaussian white noise signal with mean of 120 mmHg and standard deviation
of 20 mmHg (with values more than three standard deviations from the mean being

skipped). So, the signal ranged from about 90 to 150 mmHg for 90% of the



stimulation. A different realization of this signal was employed for each subject. The
switching interval of the noise was 0.5 sec to yield relatively flat input spectral power
up to 1 Hz (see Figure 4). To investigate static system behavior, CSP was also
controlled using a staircase signal that started at 60 mmHg and then increased, step by
step, in increments of 20 mmHg every 1 min up to 180 mmHg. So, for example, CSP
was held flat at 100 mmHg in the third step of this signal. Thirteen normotensive
Wistar-Kyoto rats (weight 397.84£18.5 grams) were studied according to this protocol.
All measurements were recorded at a sampling rate of at least 200 Hz (In half of the
subjects, data were sampled at the rate of 1kHz and in the other half, they were
sampled at the rate of 200Hz). We refer to this stimulation as WKY.

To study the hypertension, another set of experiments were performed in eight
SHR (22.2+4.5 weeks in age) under the same protocol. CSP was stimulated with two
different means but the same otherwise as described above. First, to establish models
for SHR at the same CSP level as the previous models for WKY, the Gaussian white
noise CSP stimulation was at mean of 120 mmHg and standard deviation of 20
mmHg for about 15 min. Again, the switching interval of the noise was 500 ms to
produce relatively flat CSP spectral power up to 1 Hz (see Figure 13). Second, to
establish models for SHR at the normal CSP level of SHR, the Gaussian white noise
CSP stimulation was at mean of 160 mmHg but the same otherwise. Hereafter, we
refer to the former stimulation as SHR1,9 and the latter stimulation as SHRg,. All
signals were continuously recorded at a sampling rate of 200 Hz while CSP was

controlled using two different Gaussian white noise stimulations.



Data Pre-Processing

The measurements during Gaussian white noise stimulation were first low-
pass filtered using a high-order filter and then down-sampled to 2 Hz. For each
subject, a 6-min segment of stationary data after linear de-trending was selected for
model development or training, while a separate 3-min segment of stationary data
after linear de-trending was selected for model testing. Data from three of the WKY
subjects, one SHR;,, subject, and three SHR;¢, subjects were highly non-stationary
and were thus excluded from further analysis. In some of the subjects, a peak in the
AP power spectrum around 0.7 to 0.8 Hz was visible. This peak was likely caused by
spontaneous respiratory effort rather than the CSP stimulation, so AP of all subjects
was low-pass filtered again using a high-order filter but with a cutoff frequency of 0.7
Hz. This filtering had no significant impact on the kernel estimates of those subjects
that did not reveal such a peak (results not shown). Finally, since the magnitude of
the SNA measurement heavily depended on the electrode contact, SNA was
calibrated per subject so that the models of the neural and peripheral arcs could be
meaningfully averaged over the subjects. In particular, SNA was calibrated per
subject such that the average gain of the linear kernel of the neural arc was unity for
frequencies < 0.03 Hz in the training data [15]. For the SHR subjects, this calibration
was done based on the SHR,, training data.

The measurements during the staircase stimulation were averaged over the last
10 sec of each step. The average values of a system input and output were then

plotted against each other.
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CHAPTER 3. NONLINEAR IDENTIFICATIOND OF THE

TOTAL BAROREFLEX ARC USING SECOND ORDER

VOLTERRA MODEL

The total baroreflex arc — defined to be the open-loop system relating carotid
sinus pressure (CSP) to arterial pressure (AP) — is a well-known contributor to
cardiovascular regulation. When stimulated in a controlled manner, this system
exhibits thresholding and saturation (i.e., maximal and minimal AP responses) [20],
[30], [31], mean responses (i.e., direct current or DC responses) to input changes
about the mean (i.e., alternating current or AC changes) [23], [30], [32], [33], as
shown in Figure 2, and other nonlinear behaviors [34]-[36]. Interestingly, the system
also displays DC responses to AC changes in Thrasher’s chronic baroreceptor
unloading model of hypertension [3] as shown in Figure 3. This model does not
significantly alter mean CSP but does cause reductions in CS pulse pressure (i.e., a
selective AC change), which, in turn, leads to a sustained, baroreflex-mediated
increase in mean AP (i.e., a DC response). Hence, total arc nonlinearity could
possibly play a role in the genesis of hypertension. Yet, most system identification
studies of the total arc have been based on a linear dynamic model [19], [15], [20],
[33], [37], [16]-[18]. Further, the few studies that have represented the total arc with

a nonlinear dynamic model assumed a particular form for the model [20], [35].
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Figure 2: The total baroreflex arc (open-loop system relating carotid sinus pressure (CSP) to arterial pressure
(AP)) has been shown to exhibit nonlinear behaviours in previous studies including mean responses to input
changes about the mean (adapted from [23]). CSP here was controlled using a binary white noise signal of the
same mean but increasing amplitude. Mean AP and sympathetic nerve activity (SNA) both decreased with

the increasing CSP amplitude.

This latter behavior could play a role in the genesis of hypertension, as

indicated by chronic unilateral baroreceptor unloading study [3] shown in Figure 3.

In this figure, it is shown that while CSP is kept constant while baroreceptors are

unloaded, mean AP and CSP pulsatility increases in coarse of days.
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Figure 3: Total baroreflex arc can play a role on genesis of Hypertension [adapted from [3]]
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Our aim was to establish a second-order, nonlinear dynamic model of the total
arc without making a priori assumptions about the model form. To achieve this aim,
we employed the powerful Gaussian white noise approach for nonlinear system
identification [38]. In particular, we applied Gaussian white noise CSP stimulation,
while measuring AP and sympathetic nerve activity (SNA), in an open-loop rat
preparation followed by nonparametric identification to estimate first- and second-
order kernels of a Volterra model of the total arc from the measurements. We also
likewise identified two sub-systems of the total arc, namely the neural arc, which
relates CSP to SNA, and the peripheral arc, which relates SNA to AP. Since this
approach requires long data records to yield accurate kernel estimates [39], our
strategy for the obtained short data records was as follows. First, we examined the
Volterra kernel estimates to define a reduced second-order, nonlinear dynamic model.
Then, we applied nonparametric identification to estimate the kernels of this reduced,
yet potentially more predictive, model. Finally, we assessed its output predictions.
The nonlinear model of the total arc that we report here significantly improved upon
AP predictions over a standard linear model and helped reveal the structure of the
total arc.

Nonlinear Model and Identification Technique

In general, a time-invariant system with fading memory can be written in the

form of a Volterra series to within arbitrary precision [40]. For such systems that are

also causal and discrete-time, the Volterra series is given as follows:

y[n] = Yo Xk =0 - im0 lulks, o, K lx[n = k] - x[n — k] (1)
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where n is discrete-time, y[n] is the output, x[n] is the input, A;[ny, ..., n;] is the I”
order system kernel, L is the order of nonlinearity, and M is the system memory
(which can be different for each kernel but is the same for all kernels here for
convenience). In this model, the output is expanded in terms of the input samples and
the interactions amongst input samples of different lags. These input terms affect the
output through the kernels of the system.

In this study, the total arc and its sub-systems were assumed to be represented
by a second-order Volterra series as follows:
y[nl = ho + Z¥ co halkq] x[n — kq] + Zi 2o X, =0 halkq, k2] x[n — ky]x[n — k]
)
where x[n] and y[n] are the system input and output (i.e., CSP and AP for the total
arc, CSP and SNA for the neural arc, and SNA and AP for the peripheral arc) with
x[n] precisely denoting the input after removing its mean value. The zeroth-order
kernel hy, which is the mean value of y[n], along with the mean value of the input
define the system operating point. The first-order or linear kernel h,[n,] indicates
how the present and past input samples affect the present output sample. The second-
order kernel h,[n4, n,] indicates how the interaction or cross-talk between two input
samples that are n, and n, samples in the past affect the present output sample.

The kernels of the total, neural, and peripheral arcs were estimated from the
Gaussian white noise training data using a nonparametric, frequency-domain method
[41]. This method was more effective than other nonparametric methods (see

Discussion). The memory M was set to 25 sec, which is twice the length of the linear
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kernel of the total arc reported in previous studies [15]. This value was able to
capture the memory of all systems (see Results). The second-order kernel estimates
were then visually examined to ultimately arrive at reduced, yet potentially more
predictive, nonlinear models (see Results).

Note that nonparametric identification was employed, because it does not
impose a particular form for the kernels. However, the trade-off is that long data
records are needed to accurately estimate higher-order kernels. Since the training
data here were relatively short, the Volterra series had to be limited to second-order.
However, this limitation may not be too serious, as many physiologic systems can be
well represented with a second-order Volterra series [38].

The kernels of the Volterra model in Eq. (2), hy, hy[n4], and h,[n,,n,], were
estimated from the measured zero-mean input x[n] and measured output y[n] using a
frequency-domain method. This method is described in detail elsewhere [41].
Briefly, the kernels were estimated in succession. First, the zeroth-order kernel was
estimated as the mean of the output as follows:

ho = E(y[n])
where E (+) is the expectation operator. Next, the first-order kernel was estimated by
first subtracting the contribution of the zeroth-order kernel from the output and then
computing the cross-spectrum divided by the input spectrum (i.e., Wiener filter) as
follows:
yi[n] = y[n] = ho

F{Ry,x (D}

Ryx@ = () @ R () > Fl W} = Fp s
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where R(*) is the auto- or cross-correlation function between the indicated signals, ®
is the convolution operator, and F () is the Fourier Transform operator. Finally, the
second-order kernel was estimated by first subtracting the contribution of the zeroth-
and first-order kernels from the output and then computing a two-dimensional
generalization of the Wiener filter as follows:
y2[n] = y1[n] — x[n] ® kq[n]
Ry,xx(A1,22) = hy(A41,22) ® (2Ryx (AR (42)) = Fatha (14, 42)}

_ Fa{Ry (11, 25)}
T 2F (R AIF (R (1)}

where R(+) is again the correlation function amongst the indicated signals, ® is the
two-dimensional convolution operator, and F(-) and F,() are one- and two-
dimensional Fourier Transform operators, respectively. Note that E(-) and R(")
above were computed via the standard sample mean and unbiased correlation function
estimates.

The kernels of the Uryson model of Figure 6, hy, hy[n], and h,[n], were
estimated analogously. First, the zeroth- and first-order kernels were estimated, as
described above. Then, the contribution of these kernels was subtracted from the
output, also as described above. Finally, the second-order kernel was estimated by
first squaring the input and then computing the Wiener filter as follows:

xz[n] = x*[n]

F{Ry,x, (D}

Ryzxz (/1) = hz(/D @ 2R2xx(/1) - T{hZ(A)} = T{ZRZ (ﬂ)}
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While these steps actually yield the kernels of a Wiener model, for a second-order
nonlinear system, the first- and second-order kernels of Volterra and Wiener models

are the same [38].

Model Evaluation

The merit of the resulting nonlinear models with the first- and second-order
kernel estimates and linear models with only the first-order kernel estimates was
evaluated as follows. First, the inputs from the Gaussian white noise training and
testing data were applied to the models, and R? values between the predicted and
measured outputs and squared coherence functions (the power spectrum of the
predicted output divided by the power spectrum of the measured output) were
computed. Then, the inputs from the staircase data were applied to the models, and
the predicted and measured outputs were compared qualitatively. Finally, binary
white noise CSP with mean of 95 mmHg but amplitudes of +5, £10, £20, and +40
mmHg and switching interval of 0.5 sec were applied to the models of the total and
neural arcs, and the predicted outputs were qualitatively compared to the

corresponding measured data from a previous study shown in Figure 3 [23].

Statistical Comparison

The R? values from linear and nonlinear models were compared using paired t-
tests. Before applying these tests, the R? values were log transformed for more
normally distributed data [42]. A p < 0.0125 was considered statistically significant

based on a Bonferroni correction for up to four pairwise comparisons.
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Results

Gaussian White Noise Data

Figure 4 shows the pre-processed CSP, AP, and calibrated SNA from the
Gaussian white noise training data of one subject. Table 1 shows the group average
(mean+SE) of the mean and standard deviation of these measurements and the pulse
rate (PR). The mean of CSP, AP, and SNA were 120.3+0.2 mmHg, 97.1+4.4 mmHg,
and 80.7+11.8 au, respectively. These levels define the operating points of the
models of the total arc and its sub-systems developed herein. The standard deviation
of CSP, AP, and SNA were 16.5+0.3 mmHg, 6.6.+0.2 mmHg, and 20.7+0.6 au,
respectively. These values indicate the range of validity of the models about their
operating points. The mean of PR was 397+11 bpm, which corresponds to 6-7 Hz.
Hence, the systems were mainly stimulated at sub-pulsatile frequencies (i.e.,

frequencies beneath the PR).

Table 1: Group average (mean+SE) of the mean and standard deviation of the pre-processed variables during
Gaussian white noise CSP stimulation in the training data.

CSP AP SNA PR
Mean 120.3+0.2 97.1+4 .4 80.7+11.8 397.3+11.1
Standard Deviation 16.5+0.3 6.6+0.2 20.7+0.6 2.840.3

CSP is carotid sinus pressure (mmHg); AP, arterial pressure (mmHg); SNA, calibrated sympathetic nerve
activity (au), and PR, pulse rate (bpm).
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Figure 4: Gaussian white noise training data from one subject. The left plots show pre-processed CSP, AP,
and calibrated SNA versus time, while the right plots illustrate the power spectrum and histogram of un-
processed CSP. CSP here was controlled using a Gaussian white noise signal of mean of 120 mmHg and

standard deviation of 20 mmHg.

Total Arc

Figure 5 shows the group average (mean+SE) of the first- and second-order
kernels of a VVolterra model of the total arc estimated from the Gaussian white noise

training data.
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Figure 5: Group average of first- and second-order kernel estimates of a Volterra model of the total arc. The
second-order kernel was approximately diagonal, and the diagonal differed in shape from the first-order
kernel. The solid and dashed lines here and in subsequent figures respectively represent mean and mean+SE
over the ten subjects for study.

There are two points to note. First, the second-order kernel revealed small off-
diagonal values. Indeed, none of the off-diagonal static gains (i.e., sums of
h,[ny,ny + 1], hy[ng, ny + 2], ...) were significantly different from zero based on
one-sample t-tests, except for the static gain of h,[n,,n; + 4] (p < 0.01). However,
the static gain of this fourth off-diagonal was less than 25% of that of the main
diagonal. Hence, the second-order kernel was approximately diagonal, thereby
indicating that cross-talk between pairs of input samples of different lags (i.e.,
ki # k, in Eq. (2)) hardly contributed to the output. Second, the diagonal of the
second-order kernel appeared different in shape from the first-order kernel. Both of

these findings were largely consistent for the individual subject kernel estimates
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(results not shown). The findings suggested to set k; = k, in Eq. (2) to arrive at the

following reduced, yet potentially more predictive, second-order nonlinear model:

y[n] = ho + 211\31:0 hylk,] x[n —ky] + Z%:o holky] x%[n — k4] 3)
* ha[n]
x[n] ho A YI[N]

\ 4

\ 4

()’ ha[n]

Figure 6: Reduced, second-order Uryson model of the total arc derived by examination of the Volterra kernel
estimates in Figure 5. In this model, x[n] is the input, y[n] is the output, and hy, h;[n], and h,[n] are the
zeroth-, first-, and second-order kernels of the system. The model is a parallel connection of a linear dynamic
system characterized by the first-order kernel and a Hammerstein system (squarer followed by a linear
dynamic system characterized by the second-order kernel).

Figure 6 shows a block diagram of the reduced model, which may be
categorized as a Uryson model [43]. This model is a linear dynamic system in
parallel with a squarer in cascade with another linear dynamic system. The kernel of
the former system is the linear kernel, whereas the kernel of the latter system is the
second-order kernel. The kernels of this reduced model were re-estimated using a
nonparametric, frequency-domain method. Figure 7 shows the resulting group
average kernel estimates. Both kernels showed low-pass or integral characteristics
and similar dynamics. That is, an impulsive increase in CSP at time zero would cause
AP to initially decrease and then return to baseline. The static gain of the first-order
kernel (i.e., change in steady-state output divided by change in steady-state input) was
-0.70 (unitless). The static gain of the second-order kernel, unlike the first-order
kernel gain, depends on the size and sign of the input change due to the squaring

operation. The static gain of this kernel was -0.22 (unitless) for an average step CSP
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increase of 16 mmHg or +0.22 for a CSP decrease of 16 mmHg. The dominant time
constants (computed robustly via the kernel sum divided by the peak kernel amplitude

[44]) of the first- and second-order kernels were about 4.1 and 6.2 sec, respectively.

h,[n]
[unitless]

-0.1+ .

Figure 7: Group average of first- and second-order kernel estimates of the reduced Uryson model of the total
arc. Both kernels show integral or low-pass characteristics, but the second-order kernel is more sluggish than
the first-order kernel.

Table 2 shows the group average of the R? values between the AP predicted by
the individual subject models when stimulated by the Gaussian white noise CSP in
the training and testing data and the measured AP. The training data results actually
reflect model fitting rather than model prediction capabilities. The Volterra model
achieved the best model fit, as indicated by the higher R? values, simply because it
was a superset of the other models. For the testing data, which do indicate model
prediction abilities, the linear model achieved a fairly high R* value of 0.6440.03.

While the Volterra model did not improve upon this value, the Uryson model, which
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is simpler and may thus include more accurate kernel estimates, attained an R* value
of 0.71+0.03. So, the Uryson model improved AP prediction over the linear model by

12% (p < 0.01).

Table 2: Group average of the R? values between AP predicted by three models of the total arc and measured
AP during Gaussian white noise CSP stimulation.

Second- Second-
Linear order order
Volterra Uryson
Training Data 0.73+0.03 0.85£0.01°  0.79+0.03"
Testing Data 0.64+0.03 0.64+0.04  0.71+0.03"

“denotes p < 0.01 for paired t-test between indicated linear and nonlinear models after log transformation of
the R? values.

Figure 8 shows the group average of the squared coherence functions for the
linear and Uryson models in the testing data. As can be seen, the improved AP
prediction afforded by the Uryson model was in the low frequency regime. Hence,

the system nonlinearity was at low frequencies.

1

Linear model
= Uryson model

Squared Coherence
o
)]
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Figure 8: Group average of squared coherence functions for the Uryson model and a standard linear model of
the total arc in the testing data. The improved AP prediction offered by the Uryson model was in the low
frequency regime. Hence, the system nonlinearity was at low frequencies.
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Figure 9 shows the group average of the static behavior of the total arc
predicted by the individual subject Uryson models in response to the staircase CSP
(wherein each CSP step or level was flat) and the measured static behavior. The

model predicted thresholding (qualitatively) but not saturation.
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Figure 9: Group average of the static behavior of the total arc predicted by the Uryson model in response to
the staircase CSP (wherein each CSP step or level was flat) and the measured static behavior. The Uryson
model was able to predict thresholding but not saturation.

Figure 10 shows the AP predicted by the group average Uryson model when
stimulated by the binary white noise CSP of increasing amplitude. Like the measured
AP from a previous study [23] shown in Figure 3, the model predicted significant
mean AP reductions with increasing amplitude. But, unlike the measured AP, the
model also predicted increases in AP variance as the amplitude increased. Note that

the linear model cannot predict any of these nonlinear behaviors.
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Figure 10: Predicted AP by the group average Uryson model of the total arc in response to the same binary
white noise CSP signal from a previous study shown in Figure 3. Like the measured AP in Figure 3, the
model predicted reductions in mean AP with increasing CSP amplitude. But, unlike this measured AP, the
model predicted increases in AP variance as the CSP amplitude increased.

Neural and Peripheral Arcs

The first- and second-order kernels of a Volterra model of the neural arc
estimated from the Gaussian white noise training data also suggested a reduced
Uryson model (results not shown). Figure 11 shows the group average of the first-
and second-order kernels of the Uryson model of the neural arc estimated from these
data. Both kernels showed high-pass or derivative characteristics and similar
dynamics. The static gain of the first-order kernel was -0.57 (au/mmHg), while the
static gain for the second-order kernel was -0.12 (au/mmHg) for an average step CSP
increase of 16 mmHg or +0.12 for a CSP decrease of 16 mmHg. The dominant time

constants of the first and second-order kernels were about 0.3 and 0.6 sec,
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respectively. While these small time constants may not have been accurately
estimated due to the 2 Hz sampling rate, it is clear that the neural arc was much faster

than the total arc.
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Figure 11: Group average of first- and second-order kernel estimates of a reduced, second-order Uryson
model of the neural arc. Both kernels show derivative or high-pass characteristics. The kernels are much
faster than those of the total arc (see Figure 7).

Table 3 shows the group average of the R? values between the SNA predicted
by the individual subject models when stimulated by the Gaussian white noise CSP in
the training and testing data and the measured SNA. Again, as expected and indicated
by the training data results, the VVolterra model achieved the best model fit. However,
the R? values were only modestly higher than those of the linear and Uryson models
here. For the testing data, the linear model attained a high R? value of 0.77+0.02.
The nonlinear models did not significantly improve upon this value. Hence, the

neural arc was approximately linear. Indeed, even though the neural arc exhibits the
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nonlinear behaviors of thresholding and saturation [20] and DC responses to AC
changes, as indicated via SNA in Figure 3, the nonlinear models of the neural arc

showed predictions of these behaviors that were not that different from the linear

model (results not shown).

Table 3: Group average of the R? values between SNA/AP predicted by models of the neural and peripheral
arcs and measured SNA/AP during Gaussian white noise CSP stimulation.

Peripheral
Neural Arc eriphera
Arc
Second- Second- Linear
Linear order order
Volterra Uryson

Training Data 0.80+0.01 0.84+0.01°  0.82+0.01  0.87+0.02

Testing Data 0.77+0.02 0.80+0.01 0.79+0.02  0.81+0.04

“denotes p < 0.01 for paired t-test between indicated linear and nonlinear models after log transformation of
the R? values.
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Figure 12: Group average of the kernel estimate of a linear model of the peripheral arc. The kernel shows
integral or low-pass characteristics and is similar in speed to those of the total arc (see Figure 7).

Figure 12 shows the group average of the first-order kernel of a linear model

of the peripheral arc estimated from the Gaussian white noise training data. A

reliable second-order kernel could not be estimated, since SNA, which is the input to
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the peripheral arc, was not Gaussian white noise. The linear kernel showed low-pass
or integral characteristics and the expected, positive open-loop dynamics. That is, an
impulsive increase in SNA at time zero would cause AP to initially increase and then
return to baseline. The static gain was 1.6 mmHg/au. Its dominant time constant was
5.8 sec, so, as expected, the peripheral arc was more sluggish than the neural arc.

Table 3 shows the group average of the R? values between the AP predicted by
the individual subject linear model when stimulated by the SNA in the Gaussian
white noise training and testing data and the measured AP. For both the training and
testing data, the R? value was high. In particular, for the more meaningful testing data,
the R® value was 0.81+0.04. Hence, the peripheral arc was likely approximately
linear anyhow.
Discussion

We developed a second-order, nonlinear dynamic model of the
sympathetically-mediated total baroreflex arc by employing Gaussian white noise
stimulation and nonparametric identification. We validated the model by showing
that it could predict (i) AP appreciably better than a standard linear model when
stimulated by a new Gaussian white noise realization and (ii) the important nonlinear
behaviors of thresholding and DC responses to AC changes. The validated model
illustrates that the form of the second-order nonlinearity of the total arc is close to
diagonal. This result, which represents the major finding herein, means that the
square of zero-mean CSP (i.e., x2[n]) causes changes in AP (i.e., y[n]), but the

products of, or “cross-talk” between, zero-mean CSP at different lags (e.g.,
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x[n]- x[n — 1] or x[n — 2]- x[n — 4]) have little impact on AP. To shed light on the
sources of nonlinearity, we likewise developed and tested models of the neural and
peripheral arcs. But, the models of these two sub-systems of the total arc showed

approximately linear behaviors.

Gaussian White Noise Approach for Nonlinear System Identification

Application of white noise inputs allows systems to be accurately identified
over the entire frequency range. Such inputs are useful for both linear and nonlinear
system identification. However, white noise inputs specifically generated from a
Gaussian distribution are needed for nonlinear identification. In particular, since
nonlinear systems do not obey the amplitude scaling property (e.g., if y[n] results
from x[n], then 2y[n] will result from 2x[n]), a broad range of amplitude excitation
is required for reliable identification of nonlinear systems. Gaussian inputs provide
such a range, whereas binary inputs, for example, only provide two amplitude levels.
Furthermore, Gaussian inputs facilitate nonlinear system identification in other ways
including orthogonalization of the functionals so that each kernel can be estimated
independently. We refer the reader to [38] for more information on the powerful

Gaussian white noise approach.

Nonparametric Identification Method

We estimated the first- and second-order kernels of the models using short
periods (6 min) of Gaussian white noise stimulation. Hence, the inputs were not
exactly Gaussian and white. We specifically applied a frequency-domain method to

estimate the kernels without assuming any form [41]. Other nonparametric
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identification methods were available. The most popular is Lee and Schetzen’s cross-
correlation method [45]. This method assumes that the input is strictly Gaussian
white noise and thus requires long data records [39]. Korenberg’s method, which is
also well known, efficiently solves the normal equations [46], [47]. This method only
assumes that the input is broadband. However, by not assuming a Gaussian input, it
must compute higher-order correlations (to form the normal equations), which also
requires long data records [39]. Also note that this method can only produce an
estimate, if the data length is at least equal to the number of kernel samples for
estimation. The frequency-domain method for estimating the Volterra kernels
assumes that the input is Gaussian but broadband and may thus be a good
compromise between these methods. We actually applied all three methods. While
the kernel estimates of the methods were similar on average, the frequency-domain
method yielded the smoothest estimates (results not shown).

The frequency-domain method provides the optimal estimates of the linear and
nonlinear kernels in the least squares sense without assuming a model form [48]. The
resulting kernels of this nonparametric identification method are thus the best
unbiased estimates. In other words, the linear part of the nonlinear model and the best
linear model are one in the same. Parametric identification methods could provide
better estimates of both the linear and nonlinear kernels by trading off bias for
precision. However, these methods assume a particular model form. Our purpose
here was not to assume a model form but rather to discover the form. Nevertheless,
we also applied standard autoregressive exogenous input (ARX) identification to

estimate the linear kernels [28]. However, this parametric identification method did
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not yield more predictive linear kernels than the frequency-domain method (results
not shown). Regardless of this finding, comparison between the linear and nonlinear
models estimated by the frequency-domain method may be considered fair, since

neither model assumes a particular form.

Total Arc Model

We arrived at the second-order, nonlinear dynamic model of the total arc
shown in Figure 6 and Figure 7 in two steps. First, we applied the frequency-domain
method to estimate the kernels of a Volterra model. The resulting second-order
kernel shown in Figure 5 was approximately diagonal. Hence, only the past values of
the square of the input, rather than the product of input samples of different lags,
contributed to the output. Further, this diagonal differed in shape from the first-order
kernel (see Figure 5). So, the Volterra model may be reduced to an Uryson model
(see Figure 6). Second, we again applied the frequency-domain method with the aim
of more accurately estimating the kernels of the reduced model (see Figure 7). The
resulting model is a linear system in parallel with a squarer in cascade with another
linear system. The kernel of the former system (h,[n]) is the linear kernel, while the
kernel of the latter system (h,[n]) is the second-order kernel, which was more
sluggish. We tried to further simplify the total arc model by assuming that h,[n] =
h,[n]. However, the resulting Hammerstein model did not improve AP predictions
over a linear model (results not shown). We also tried to derive a more accurate total
arc model by estimating the second-order kernel with a non-zero diagonal and a non-

zero fourth off-diagonal (whose gain was statistically different from zero in the
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Volterra model). However, this model did not improve AP predictions over the
Uryson model (results not shown).

We assessed the validity of the Uryson model of the total arc. In particular,
we applied three different CSP inputs to the model, and compared the predicted AP to
the measured AP.

First, we applied a Gaussian white noise input that was not utilized to develop
the model. As shown in Table 2, the linear model with only the first-order kernel was
able to predict 64% of the measured AP variance, while the Uryson model with both
kernels predicted 71% of the variance. Although the linear model was quite
explanatory, the nonlinear model significantly improved the AP prediction by 12% (p
< 0.01). The squared coherence function of Figure 8 indicated that this AP
improvement was at low frequencies. Hence, the system nonlinearity was in the low
frequency regime. While the Uryson model did improve the prediction, 29% of the
measured AP variance remained unexplained. These variations were not white
(results not shown) and could be due to higher-order nonlinearity, non-stationarity,
SNA from higher brain centers, and fast-acting hormonal loops. Note that
measurement noise may not have been a factor, as AP was invasively measured and
then low-pass filtered and down-sampled all the way to 2 Hz. Also note that low
frequency AP may be similar regardless of the site of measurement [49] .

Second, we applied a staircase input to predict static system behavior. As
shown in Figure 9, the model was able to predict thresholding. The mechanism for
this prediction is as follows. When CSP increases relative to its mean value, the

second-order kernel enhances the magnitude of the AP drop. However, when CSP
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decreases relative to its mean value, the second-order kernel blunts the AP increase.
On the other hand, the model did not predict saturation. One reason is that the
Gaussian white noise stimulation used to develop it (mean and standard deviation of
120 and 16.5 mmHg) hardly excited the saturation regime (CSP > 160 mmHpg).
Quantitative differences between predicted and measured thresholding may have been
due to differences in the operating points of the data used to develop the model (mean
CSP and AP of 120 and 97 mmHg as shown in Table 1) and test the model (mean
CSP and AP of 120 and 120 mmHg as shown in Figure 9).

Third, we applied binary white noise of increasing amplitude. As illustrated in
Figure 10, the model predicted reductions in mean AP, but increases in AP variance,
with increasing amplitude. While the corresponding measured AP from a previous
study (see Figure 3) [23] likewise indicated mean AP reductions, it revealed little
change in AP variance. Higher-order nonlinearity may be needed to blunt the AP
variance. Another possible reason for the difference between the prediction and
measurement may be variations in the range of CSP input used to develop and test the
model.

As implied above, the Uryson model developed herein can only be expected to
be valid over the range of data utilized in its development. This range is defined by a
CSP of 120+16.5 mmHg (mean+SD) and mostly < 1 Hz and an AP of 97+6.6 mmHg.
The model should be considered only over this range.

A few other nonlinear dynamic models of the total arc have been previously

conceived. After finding that neither a Hammerstein model (a static nonlinearity

33



followed by a linear dynamic system) nor a Wiener model (a linear dynamic system
followed by a static nonlinearity) could explain data, a sandwich model — a Wiener
model (to represent the neural arc) in cascade with a linear model (to represent the
peripheral arc) — was proposed to represent the total arc [20]. A more complicated
nonlinear model, which may also be viewed as a sandwich model, was developed
earlier [35]. The main difference between these previous efforts and the present study
is that we did not assume a certain model form. Rather, we let the data dictate the
form via Gaussian white noise stimulation and nonparametric identification. Indeed,
we found that the total arc could be represented with an Uryson model, which
contradicts a sandwich, Hammerstein, and Wiener model. That is, a sandwich model
with a static nonlinearity that is odd about the operating point (similar to a
thresholding and saturation curve) would show an identically zero second-order
kernel; a Hammerstein model would reveal identical first- and second-order kernels;
and a Wiener model would show a second-order kernel with non-zero off-diagonal

values [50].

Neural Arc and Peripheral Arc Models

We arrived at the second-order Uryson model of the neural arc shown in
Figure 11 using a similar two step approach and likewise assessed the model.
However, this model (and a Volterra model) displayed approximately linear behavior.
In particular, when stimulated by a new realization of Gaussian white noise, it could
not predict SNA better than a linear model, as shown in Table 3. Indeed, the linear

model could already explain much (77%) of the SNA variance. The unexplained
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variations could be due to the aforesaid factors as well as measurement noise. In
addition, while the neural arc shows thresholding and saturation [20] and DC
responses to AC changes (see SNA response in Figure 3), the Uryson model of the
neural arc could not well predict these behaviors. We could not develop a reliable
nonlinear model of the peripheral arc, because the SNA input was not Gaussian white
noise. We thus settled upon the linear model shown in Figure 12. When stimulated
by new Gaussian white noise, this model was also able to predict much (81%) of the
AP variance, as shown in Table 3.

In sum, while the total arc exhibited appreciable nonlinear behaviors, its two
sub-systems displayed approximately linear behavior. Hence, identification of the
neural and peripheral arcs did not shed light on the sources of total arc nonlinearity.
One possible explanation for this seemingly contradictory finding is that splanchnic
SNA, which was used to construct the sub-system models, did not represent whole
body SNA, which actually determined total arc behavior. However, we performed
pilot experiments and found similar cardiac and splanchnic SNA responses to
controlled CSP stimulation (results not shown). So, these experiments did not support
this explanation. Another explanation may be that the neural arc is actually nonlinear
but its nonlinearity was not well identified. In particular, as indicated in Figure 8, the
nonlinearity was in the low frequency regime. However, SNA power was
predominantly in the high frequency band due to the derivative characteristics of the
neural arc. Hence, the little SNA power at low frequencies may have been dominated
by SNA from higher brain centers rather than from the baroreflex. As described in

[38], this “physiologic noise” may have had a linearizing effect in the identification
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process such that neural arc nonlinearity was masked over the low frequency regime.
Note that afferent C-fibers could be responsible for neural arc nonlinearity. These
fibers are slow acting nerves [51], [52] that are highly nonlinear with respect to
stretch [52]. Such behaviors are congruent with the findings here that the nonlinear
behavior of the total arc was in the low frequency regime.

As indicated above, a Wiener model of the neural arc was previously proposed
[20], [23]. We also tried to represent this system with Wiener and Hammerstein
models. But, neither model appreciably improved SNA predictions over a linear
model (at most 4% when stimulated by new Gaussian white noise). The reason for
the difference between this and past studies could possibly be variations in the

amplitude of the CSP stimulation employed.

Study Limitations

Our study has several limitations. First, the use of anesthesia and open-loop
conditions surely impacted the models. However, closed-loop identification has its
own challenges [53]. Second, CSP excitation was limited to an amplitude range that
hardly reached the saturation regime, a short time period, and frequencies mainly
within 1 Hz. Hence, saturation and DC responses to long-term, pulsatile changes
could not be modeled. However, note that increasing the amplitude, time period, and
switching rate of CSP stimulation could damage the baroreceptors and cause major
non-stationarity. Third, the vagal arm of the total arc was abolished. However,
inclusion of this arm would also bring in the confounding effects of the

cardiopulmonary baroreflex. Finally, the model was restricted to second-order
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nonlinearity due to the short data records. However, parametric identification
methods, which assume a particular model form, may be required to estimate higher-

order kernels from short data records [50].
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CHAPTER 4. NONLINEAR IDENTIFICATION OF THE

TOTAL BAROREFLEX ARC: CHRONIC HYPERTENSION

MODEL

In the previous chapter, we employed the Gaussian white noise approach for
nonlinear system identification to develop a second-order, nonlinear dynamic model
of the total arc in normotensive Wistar Kyoto rats (WKY). The model predicted AP
12% better than a linear dynamic model in response to new Gaussian white noise and
important nonlinear behaviors including baroreflex thresholding and mean responses
to input changes about the mean. The validated model revealed that the structure of
the total arc is a linear dynamic system in parallel with a cascade combination of a
squaring system and a different linear dynamic system, as shown in Figure 6. This
structure falls within the category of “Uryson” models [56].

In this chapter, we aimed to likewise establish second-order, nonlinear
dynamic models of the total arc as well as its sub-systems in spontaneously
hypertensive rats (SHR) and to compare these models to our previously published
models for WKY. Our results indicate that the second-order nonlinear dynamics of
the total arc in SHR, which showed the same structure as in WKY, are augmented
significantly more than the linear dynamics. Hence, nonlinear dynamic functioning
of the total arc may enhance baroreflex buffering of AP increases more in SHR than

WKY.
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Nonlinear Model and Estimation Method

Nonlinear models of the total arc and its sub-systems were developed as
likewise outlined in the previous chapter. As described therein, each system was
assumed to be represented by a second-order Volterra series as Eq. (2) that we
repeated here:
y[nl = ho + Z¥ co halkd] x[n — kq] + Zi o Xk, =0 halkq, k2] x[n — ky]x[n — k]
Again, n is discrete-time; x[n] and y[n] are the measured input and output (i.e., CSP
and AP for the total arc, CSP and SNA for the neural arc, and SNA and AP for the
peripheral arc) with x[n] precisely denoting the input after removing its mean value;
and hy, hy[n,], h,[nq,n,] are the system kernels, with memory M, for estimation.
The zeroth-order kernel hy is simply the mean value of y[n]. As before, the first-
order or linear kernel hy[n;], which is the time-domain version of the conventional
transfer function, indicates how the present and past input samples (e.g., x[n] and
x[n — 3]) affect the current output sample y[n]. The second-order nonlinear kernel
h,[n,,n,] indicates how the interaction between, or product of, two input samples
that are n, and n, samples in the past (e.g., x2[n — 1] or x[n — 2]-x[n — 4]) impact
y[n]. While this model neglects higher order nonlinearity, many physiologic systems
can be well represented with a second-order Volterra series [38].

The kernels of the total, neural, and peripheral arcs were estimated from the
pre-processed SHRi,, and SHRyg training data using a nonparametric, frequency-
domain method as explained in the previous chapter ([41]). The memory M was set

to 25 sec, which is twice the length of the linear kernel of the total arc reported in our
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previous study [15]. This value captured the memory of all systems (see Results).
The second-order kernel estimates were then visually examined to ultimately arrive at
reduced nonlinear models with potentially more accurate kernel estimates (see
Results). Note that the second-order Uryson model of Figure 6 is one example of a
reduced nonlinear model. In this simpler model, the product of the present and past
input samples of the same lag (e.g., x?[n — 1]) affect y[n] but not the product of past
input samples of different lags (e.g., x[n — 2]-x[n — 4]). Hence, while the second-
order Volterra kernel is a function of two variables (i.e., h,[n,,n,] as indicated in the
above equation), the second-order Uryson kernel is only a function of one variable
(i.e., h,[n] as indicated in Figure 6). Further, in a second-order Uryson model, the
second-order kernel (i.e., h,[n]) differs in shape from the first-order kernel (h,[n]),
as implied in Figure 6. This means that a second-order Volterra model may be
reduced to a second-order Uryson model, if (a) the off-diagonal values of the second-
order Volterra kernel are zero (i.e., h,[ny,n,] = 0 for n; #n,) and (b) the diagonal
values (i.e., h,[n,,n,] for n; = n,) are not simply proportional to the first-order

kernel (i.e., h,[n,n] # a-hy[n], where a is an arbitrary constant).

Model Testing

The resulting nonlinear models with the first- and second-order kernel
estimates and linear models with only the first-order kernel estimates were evaluated.
First, the inputs from the SHR15 and SHR ¢, training and testing data were applied to
the models. Then, R? values between the predicted and measured outputs were

computed. Finally, the R? values from linear and nonlinear models were compared
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after log transformation via paired t-tests with Holm’s correction for multiple

comparisons [57].

Model Comparison to WKY

The resulting validated models for SHR;,, and SHR;s were compared to
models for WKY (last chapter as well as [58]). The models for WKY were developed
and validated by applying similar methodology to ten age-matched WKY except that
the Gaussian white noise stimulation was employed only at a mean of 120 mmHg,
which is the normal CSP level of WKY. In particular, first- and second-order kernel
estimates for SHRi,9, SHRie, and WKY were characterized in terms of three
parameters: area, to indicate the steady-state gain; absolute peak amplitude, to
indicate the maximal gain; and dominant time constant (via a robust rectangular
method [44]), to indicate the speed in reaching steady-state. The area and absolute
peak amplitude of the second-order kernel estimates were scaled by the standard
deviation of the input so that they could be meaningfully related to the corresponding
parameters of the first-order kernel estimates. The kernel parameters for SHR,
SHR g9, and WKY were then compared after log transformation using unpaired t-tests
again with Holm’s correction.

Results

Gaussian White Noise Data
Figure 13 shows the pre-processed CSP, AP, and calibrated SNA from the
SHR, and SHR¢ training data of one subject. The group average (mean+SE) mean

and standard deviation of the pre-processed AP in the training data were 176.3+£15.5
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and 9.4+1.1 mmHg for SHRyy and 143.7£15.1 and 10.6+1.7 mmHg for SHR4,
respectively. The corresponding values for WKY from the previous chapter were
97.1+4.4 and 6.6£0.2 mmHg [58]. The mean of AP for SHR;5, and SHR;g, was
significantly higher than that of WKY, which suggests baroreceptor resetting in SHR.
The standard deviation of AP for SHR,q and SHR 4, tended to be higher than that for
WKY, which hints at enhanced total arc dynamics in SHR. The group average mean
and standard deviation of the pre-processed SNA in the training data were 123.6£17.5
and 25.0+2.0 arbitrary units (au) for SHRyy, 90.6+16.7 and 28.9+2.8 au for SHR 4,
and, again from the previous chapter, 80.7+11.8 and 20.7+0.6 au for WKY,
respectively. (Note that SNA cannot be compared between different subjects due to
the SNA calibration step.) These mean values with corresponding CSP levels and the
standard deviation values define the operating point and range of applicability,

respectively, of the models of the baroreflex arcs reported herein.
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Figure 13: Gaussian white noise training data from one subject. SHR120 and SHR160 are spontaneously
hypertensive rats during Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of 120 and
160 mmHg, respectively.
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Total Arc Model

Figure 14 shows the group average first- and second-order kernels of Volterra
models of the total arc estimated from the SHR;,, and SHR 4 training data. Note that
the inputs for the first-order and second-order kernels are CSP and CSP?, respectively,
while the output for both kernels is AP. Hence, in discrete-time, the units are
mmHg/mmHg (unitless) for the first-order kernel and mmHg/mmHg? (mmHg™) for
the second-order kernel.

The kernels are qualitatively similar to those of WKY in two ways (last
chapter as well as [58]). First, the second-order kernels revealed small off-diagonal
values. In fact, the off-diagonal energies (i.e., sums of squares of h,[n,,n, + 1],
h,[ns,ny + 2], ...) were typically less than 10% of the diagonal energy (i.c., sum of
squares of h,[n,,n,]), and all of the off-diagonal energies were statistically smaller
than the diagonal energy via t-tests (p < 0.0003). Hence, the second-order kernels
were approximately diagonal. Second, the diagonals of the second-order kernels were
different in shape from the first-order kernels (see Figure 15 for clear view). As
described above, these two _attributes of the second-order kernel mean that the
Volterra model may be reduced to the Uryson model of Figure 6 for both SHR;,, and
SHRs. The kernels of the reduced models were re-estimated using a non-parametric
frequency-domain method [58] with M again set to 25 sec. (This procedure yielded
somewhat different and likely more accurate second-order Uryson kernel estimates
than the diagonal of the second-order Volterra kernel estimates.) Figure 15 shows the
resulting group average Uryson kernel estimates, while the Appendix provides the

numerical values of the kernel estimates including for WKY. The four kernels were
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similar in shape to each other as well as to the corresponding kernels for WKY (see
[58]). These kernels indicated low-pass characteristics and similar dynamics with
each other (i.e., an impulse increase in CSP at time zero would cause AP to decrease

and then return to baseline without oscillation).
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Figure 14: Group average first-order (linear) and second-order kernel estimates (mean+SE) of complete
Volterra models (see Equation) of the total baroreflex arc in SHR120 and SHR160. The inputs for the first-
order and second-order kernels are CSP and CSP2, respectively, while the output for both kernels is AP.
Hence, in discrete-time, the units are mmHg/mmHg (unitless) for the first-order kernel and mmHg/mmHg2
(mmHg-1) for the second-order kernel. Front view precisely means the view point with azimuth of 135° and
elevation of 0° with respect to the axis origin.
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Figure 15: Group average first- and second-order kernel estimates of reduced Uryson models of the total arc
in SHR120 and SHR160.

Table 4: Group average R? values between arterial pressure (AP) predicted by models of the total baroreflex
arc and measured AP.

. Second-order  Second-order
Linear

Volterra Uryson
Training * *
SHRy, Data 0.53£0.05  0.81+0.02 0.69+0.04
0 Testing (454004 0524007 0642004
Data
Training * *
SHRy. Data 0.63+0.05  0.82:0.03 0.710.05
) _
Testing (591006 063006  0.71005*
Data

“ denotes statistical significance for paired t-test comparison with corresponding linear model after Holm’s
correction for three comparisons.

Table 4 shows the group average R? values between the AP predicted by the
individual subject models when stimulated by the Gaussian white noise CSP in the
SHR,q and SHR 4 training and testing data and the measured AP. The training data
results actually indicate model fitting ability, whereas the testing data results truly
indicate model prediction capacity. In the testing data, the linear models achieved an
R? value of only 0.45+0.04 for SHR;, but 0.59+0.06 for SHR;4,. The Uryson models
significantly improved upon these values by 43% for SHR,, and 21% for SHR .

The linear and Uryson model predictive capacities for WKY were more similar to
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those for SHR5 than SHR,, (see [58]). Note that the predictive capacity of the

Volterra models was worse than that of the Uryson models in the testing data due to

overfitting in the training data.

Table 5: Group average parameters of the kernels of the validated Uryson model of the total arc.

WKY SHR120 SHR160
Linear Area/Gain (unitless) -0.70+0.11 -0.61+0.15 -0.76x0.09
Absolute Peak Amplitude + + .
Kernel (unitless) 0.085+0.011 0.127+0.022 0.165+0.029
Time Constant (s) 4.1+0.5 2.4+0.4 2.4%0.2
Area/Gain (unitless) -0.22+0.03 -0.37+0.05 -0.38+0.04
Second-order Absolute Peak Amplitud
Uryson Kernel solute Feax AMPHLUCE () 62040004 0.053+0.007 0.037+0.006
(unitless)
Time Constant (s) 6.2+0.8 3.5+0.4 5.5+0.6
WKY vs WKY vs SHRyy Vs
SHRIZO SHR]_GO SHRIGO
Linear Area/Gain (unitless) 0.49 0.41 0.23
" Kernel Absolute Peak Amplitude 012 0.021 0.31
g (unitless)
g Time Constant (s) 0.10 0.007* 0.57
= Second- Area/Gain (unitless) 0.019* 0.006* 0.65
order ;
Uryson Abso'”te(frfft‘ﬁ SAS)’“p"t“de <0.001* 0.013% 0.001
Kernel Time Constant (s) 0.006* 0.75 0.014*

WKY, Wistar Kyoto rats during Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of
120 mmHg; and SHR1,, and SHR 4, spontaneously hypertensive rats during the same CSP stimulation with
mean of 120 and 160 mmHg, respectively. The WKY values are from last chapter, and the p-values were

obtained via unpaired t-tests. * denotes statistical significance after Holm’s correction for three comparisons.

Table 5 shows group average parameters of the first- and second-order kernels
of the validated Uryson models of the total arc for SHR;», and SHRg. This table
also includes the corresponding values for WKY from last chapter. The absolute peak
amplitude and time constant of the linear kernel for SHR 5, were nearly twice as large
and almost half as small as those for WKY, respectively. These differences were
either significant or close to significant.

However, the area (or gain) of the linear

kernel for SHRys and all three parameters of this kernel for SHR;,, were not
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significantly different from those for WKY. The gains and absolute peak amplitudes
of the second-order kernels indicated a 20 to 60% magnitude of effect relative to their
linear kernel counterparts, whereas the time constants of the second-order kernels
generally indicated a slower effect than the linear kernels. The parameters of the
second-order kernels for SHR 1,9, SHR1¢0, and WKY were more significantly different
than those of the linear kernels. In particular, the gains and absolute peak amplitudes
of the second-order kernels for SHR,, and SHR;¢, ranged from about 170 to 270%
larger than those for WKY. In addition, the time constant of the second-order kernel
for SHR1,9 was about 60% smaller than those for WKY and SHRig,. All of these
differences were significant. In sum, the second-order kernel of the total arc was

augmented significantly more in SHR relative to WKY than the linear kernel.

Neural Arc and Peripheral Arc Models

Like our finding in WKY (last chapter as well as [58]), the first- and second-
order kernels of Volterra models of the neural arc estimated from the SHR1,, and
SHR ¢ training data likewise suggested reduced Uryson models (results not shown).
Figure 16 shows the group average kernels of the Uryson models of the neural arc
estimated from these data. The four kernels appeared similar in shape to each other as
well as to the corresponding kernels for WKY (see last chapter as well as [58]).
These kernels indicated high-pass characteristics and similar dynamics with each
other (i.e., an impulse increase in CSP at time zero would cause SNA to decrease and
then return to baseline with oscillation) and were much faster than their total arc

counterparts (see Figure 15).

48



Reliable second-order kernels of Volterra models of the peripheral arc could
not be estimated, because the input of this system (SNA) was not Gaussian white
noise. Figure 17 shows the group average kernels of linear models of the peripheral
arc estimated from the SHRi,; and SHR;¢, training data. The two kernels were
similar overall to each other and to the corresponding kernel for WKY (see last
chapter as well as [58]). These kernels indicated low-pass characteristics and
expected open-loop dynamics (i.e., an impulse increase in SNA at time zero would

cause AP to increase and then return to baseline without oscillation) and were similar

in speed to their total arc counterparts.
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Figure 16: Group average first- and second-order kernel estimates of Uryson models of the neural arc in

SHR1,0 and SHR 4.
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Table 6 shows the group average R? values between the SNA predicted by the
individual subject models of the neural arc when stimulated by the Gaussian white
noise CSP in the SHR,, and SHR¢, training and testing data and the measured SNA.
In the testing data, the linear models achieved high R? values of 0.65+0.03 for SHR 5
and 0.82+0.01 for SHR¢. The Uryson and Volterra models significantly improved
upon the value for SHR1,, by 8 to 9% but did not appreciably improve the value for
SHRg (1%). So, the neural arc for SHRg, was approximately linear. Table 6 also
shows the group average R? values between the AP predicted by the individual
subject linear model when stimulated by the SNA in the SHR;,, and SHR 4 training
and testing data and the measured AP. For both the training and testing data, the R?
values were high. In particular, in the testing data, the R? values were 0.83+0.03 for
SHRy,, and 0.78+0.10 for SHRy5. Hence, the peripheral arc was approximately
linear anyhow. The predictive capacities of the models of the neural arc for SHR 4
and the models of the peripheral arc for both SHR 1,5 and SHR;¢, were similar to those

for WKY (see last chapter as well as [58]).

Table 6: Group average R? values between efferent sympathetic nerve activity (SNA)/AP predicted by models
of the neural and peripheral arcs and measured SNA/AP.

Neural Arc Peripheral Arc
. Second-order  Second-order .
Linear Linear
Volterra Uryson
Training . 000 0 00 +
SHRy, Data 0.65+0.03 0.76+0.02 0.73+0.02 0.82+0.04
0 .
Testing (654003 0.71+0.03* 0.70£0.03* 0.83£0.03
Data
Training * *
SHRy Data 0.82+0.01 0.85+0.01 0.84+0.01 0.83+0.07
0 .
Tgs;gg 0.82£0.01  0.830.01 0.83£0.01* 0.78£0.10

“ denotes statistical significance for paired t-test comparison with corresponding linear model after Holm’s
correction for three comparisons.
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As described in our previous study, extensive report on the linear dynamics of
the baroreflex arcs in SHR [15], the parameters of the kernels of the validated linear
models of the neural and peripheral arcs for SHR;», and SHRi5, were mostly not
significantly different from those for WKY to the extent that they could be compared
(i.e., the gains and absolute peak amplitudes of these kernels cannot be compared
between different subjects due to the SNA calibration step). Finally, the linear and
second-order kernels of the validated Uryson model of the neural arc for SHR,, were
characterized by gains of -0.55+0.09 and -0.27+0.06 au/mmHg, absolute peak
amplitudes of 0.93+0.02 and 0.27+0.04 au/mmHg, and time constants of 0.30+0.05
and 0.48+0.06 s, respectively.

Discussion

The major finding of this study is that nonlinear dynamic functioning of the
sympathetically-mediated carotid sinus baroreflex is enhanced significantly more in
SHR than its linear dynamic functioning. We arrived at this result by developing and
validating dynamic models of the total baroreflex arc and its sub-systems in SHR via
Gaussian white noise CSP stimulation and nonlinear system identification and then
comparing these models to our previously established models for age-matched WKY

[58].

Nonlinear Identification Method
This study falls within the large body of literature on system identification

analysis of cardiovascular variability interactions (see, e.g., [59]-[61]). Amongst the
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various identification methods that have been employed, we chose a frequency-
domain method [41] to estimate the kernels of the nonlinear models. This
nonparametric method assumes that the input is Gaussian and broadband but makes
no assumptions on the form of the kernels. The method yields the best unbiased
estimates of the linear and nonlinear kernels in the least squares sense. Hence, the
linear term of the nonlinear model and the optimal linear model are one in the same.
Parametric identification methods, which have been widely employed in this area [59],
[61], [62], could provide better estimates of the kernels by assuming a particular
kernel form so as to trade off bias for precision. This possibility could especially hold
in the identification of the peripheral arc whose input was not as broadband as the
other investigated systems. However, our goal was to determine the form of the
kernel. Even so, we did apply conventional autoregressive exogenous input
identification to estimate the linear kernels, and this method did not yield more

predictive linear kernels than the frequency-domain method (results not shown).

Total Arc Model in SHR

We applied the frequency-domain method to develop second-order nonlinear
dynamic models of the total arc for both SHR1, (SHR with Gaussian white noise
stimulation at the normal CSP level for WKY) and SHRs (SHR with the same
simulation but at the prevailing CSP level for SHR) (see Figure 13). These models
were qualitatively similar to the corresponding model for WKY. In particular, they
generally indicated that the total arc may be represented as a linear dynamic system in

parallel with a cascade combination of a squarer and a slower, linear dynamic system
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(see Figure 6, Figure 14, and Figure 15). Hence, total arc nonlinearity, which was
captured by the squaring and slower, linear dynamic systems, was in the low
frequency regime.

These “Uryson” models significantly improved AP prediction over standard
linear models by 43% for SHR,q and 21% for SHR¢, (see Table 4). The predictive
capacity of the Uryson model relative to a linear model for SHR1,, was superior to
those for WKY and SHR;¢,. The reason for the relatively stronger nonlinearity in
SHR,q may pertain to the operating point. That is, the CSP levels for WKY and
SHRs are in the linear regimes of their respective static sigmoidal CSP-AP
relationships, while the CSP level for SHR;,, is near the nonlinear thresholding
regime of its relationship [63]. In this sense, comparisons between WKY and SHR 4,
as opposed to SHR;,,, may actually be more appropriate.

The validated models of the total arc for SHR;,, and SHR;¢, were, however,
quantitatively different from the corresponding model for WKY (see Table 5). More
specifically, the linear kernel (time-domain version of the transfer function of the
faster, dynamic system) for SHRis showed significantly augmented transient
dynamics in terms of magnitude and speed than the corresponding kernel for WKY.
The linear kernel for SHR,, showed some tendency for similarly enhanced transient
dynamics. However, the linear kernels for SHR,,, SHRys, and WKY revealed
steady-state gains, which are more meaningful, of very similar values. By contrast,
the nonlinear kernels (time-domain version of the transfer function of the slower,
dynamic system) for SHRy,, and SHR;¢, showed enhanced steady-state gains by

about 170% and significantly augmented transient dynamics in terms of magnitude
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(and speed for SHR;,) relative to the corresponding kernel for WKY. Note that
while the linear kernels change AP in the opposite direction of CSP, the nonlinear
kernels always reduce AP due to the squaring of CSP (see Figure 6). Hence, in
normal, closed-loop conditions, the nonlinear steady-state gain of the total arc may
augment buffering of AP increases, while blunting buffering of AP decreases, to a
greater extent in SHR than WKY. Further, the nonlinear steady-state gain of the total
arc may decrease mean AP in response to increases in the AP variance to greater

extent in SHR than WKY.

Neural Arc and Peripheral Arc Models in SHR

We also developed second-order Uryson models of the neural arc for SHR 5
and SHR ¢, (see Figure 16). However, linear models of the neural arc showed good to
excellent SNA prediction, so the Uryson model for SHR4, did not improve upon the
SNA prediction (see Table 6). Likewise, a linear model of the neural arc sufficed for
WKY [58]. While the neural arc model for SHR,,, was able to improve SNA
prediction perhaps due to relatively stronger nonlinearity at the different operating
point (see Table 6), the 8% improvement achieved was small compared to the 43%
AP prediction improvement attained by the Uryson model of the total arc for SHR 5.
Similar to WKY, we could only develop linear models of the peripheral arc for
SHR5 and SHR 4 (see Figure 17), as the SNA input to this system was not Gaussian
white noise. However, these standard models showed excellent AP prediction
anyhow. As we described in a previous, extensive report [15], the kernels of the

validated linear models of the neural and peripheral arcs for SHR,, and SHR ¢, were
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mostly not significantly different from those for WKY. However, comparisons of
these kernels were substantially limited due to the SNA calibration step.

In sum, the total arc models showed nonlinear behaviors, while the models of
the neural and peripheral arc sub-systems, especially for WKY and SHR4,, showed
approximately linear behaviors. As we discussed earlier [58], one explanation for this
puzzling result is that the neural arc was nonlinear, but its nonlinearity was not well
identified due to a linearizing effect caused by confounding SNA from higher brain
centers. Note that the improved predictive capacity of the Uryson model of the neural
arc for SHR,, wherein nonlinearity may have been relatively stronger, supports the

contention that the neural arc was nonlinear.

Potential Physiologic Mechanisms

This study does not reveal the mechanisms underlying the more significant
enhancement of nonlinear dynamic functioning of the total arc in SHR. However,
previous studies shed a bit of insight. Firstly, the carotid artery stiffens in SHR [64].
Since the carotid sinus baroreflex precisely responds to stretch, such stiffening alone
would suggest blunted total arc functioning in SHR. Hence, enhanced functioning
downstream in the total arc must have occurred in terms of linear dynamics and, to a
greater extent, nonlinear dynamics. Secondly, baroreflex control of heart rate is
blunted in SHR after vagal block [15], [65]. So, downstream dynamic functioning
pertaining to the control of vascular properties and/or cardiac contractility must have
specifically been enhanced. Finally, we note that it may be possible that the linear

component (faster dynamic system) and nonlinear component (squaring and slower
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dynamic systems) of the Uryson model correspond to myelinated and unmyelinated
fibers pathways of the total arc [51], [52] and that these pathways are differentially

impacted in SHR relative to WKY.

Study Limitations

As we outlined previously, this study has experimental and mathematical
limitations. More specifically, our experimental procedures included the use of
anesthesia, opening the baroreflex loop, and elimination of the vagal component of
the baroreflex, while our mathematical procedures neglected higher-order
nonlinearity. These procedures are limitations for sure. At the same time, they may
have permitted as accurate identification of the sympathetically-mediated total arc as

possible without assuming any form for the nonlinearity.
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CHAPTER 5. NONLINEAR IDENTIFICATIOND OF THE
TOTAL BAROREFLEX ARC: HIGHER-ORDER

NONLINEARITY

A major assumption of in the previous two chapters on total arc nonlinearity was
that only second-order nonlinear dynamics were present. In this chapter, our aim was
to assess the importance of higher-order nonlinear dynamics via development and
evaluation of a third-order Volterra model using the same experimental data. Our
results indicate that a second-order Uryson model indeed sufficed to represent the total
arc under the employed experimental conditions.

Nonlinear Model and Estimation Method

As discussed earlier, any time-invariant system with fading memory can be
represented with a Volterra series to within arbitrary precision [40]. For a causal,
discrete-time system, the Volterra series is given as follows:
y[nl = Xico Xn 20 - Zm=o kilng, ., mylx[n — ny] - x[n — ny]

= ko + Z%Fo kilnglx[n —ny] + ZrA{IFo Z‘rA{IZ=O ky[ny, nplx[n —nqlx[n — n,]

+ 20 20 Ziy=0 Zmg=0 ka[ny, nz, n3lx[n — nyJx[n — nylx[n —ngl + -+ (4)
Here, n is discrete-time, x[n] is the input, y[n] is the output, k;[n,, ..., n;] is the I"-
order system kernel with memory M, and L is the order of nonlinearity. This model
expands the present output sample in terms of the present and past input samples and

products of an increasing number of present and past input samples of various lags.

These input terms affect the output via the kernels.
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In previous chapters ([58], [66]), a second-order model (i.e., L = 2, which
corresponds to the first three terms in Eq. (4)) of the total arc was assumed. The
second-order kernel was found to be diagonal and not proportional to the first-order
kernel (i.e., ky[ny,n,] = 0 for n; # n, and = kP [n], which is not proportional to
ki[n], for n; = n, = n), thereby indicating an Uryson structure. In this study, the
contribution of higher-order nonlinearity was explored by including the fourth term in
Eq. (4) and thereby representing the total arc with the following third-order model (i.e.,
L=73):

y[n] = ko + Z%:o ki[nilx[n —n.] + Z%Fo k3 [nq]x?[n — ny]

+ X0 —0 Xm0 Xm0 k3[ny, g, n3lx[n — nylx[n —nylx[n —nz]l  (5)
Here, x[n] is the pre-processed CSP after removing its mean value and y[n] is the pre-
processed AP, while kg, k;[n], k2[n], and k3[n,,n,,n3] are the system kernels for
estimation. The zeroth-order kernel k, is a constant that affects the mean value of
y[n]. The first-order or linear kernel k,[n], which is the time-domain version of the
conventional transfer function, indicates how the present and past input samples (e.g.,
x[n] and x[n — 3]) affect the current output sample y[n]. The second-order kernel
k2 [n], which is Uryson in structure (i.e., diagonal) based on the previous work,
indicates how the present and past squared input samples (e.g., x?[n] and x?[n — 2])
affect y[n]. Note that because of the Uryson structure, products of pairs of present
and past input samples of different lags (e.g., x[n]x[n — 3]) do not impact y[n].
Finally, the third-order kernel k3[n,, n,, n3] indicates how the product of three input

samples of lags ny, n,, and ns samples in the present and past affects y[n] (e.g,
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x[n — 1]x[n — 2]x[n — 3] is scaled by k3[1,2,3] and x?[n]x[n — 3] is scaled by
k4[0,0,3] and then summed in the formation of y[n]). Note that this latter kernel is
symmetric about its arguments (i.e., ks[nq, ny, n3] = k3[ng, ng, n,] = kg[n,, ny,ng] =
ks[n,, ns, nyl = k3[ns, ny,n,| = kz[ng, ny,ny]). The kernels of higher-order Volterra
models are difficult to estimate directly. To facilitate system identification, the
following orthogonal representation of the third-order nonlinear model of Eq. (5) for
Gaussian inputs [38], [67] was employed:
yinl = 2o Killulny, .., il x[n'],n" < n]

= ho + X3 —o hi[ng] x[n — ny ] + X3 2o ha[ng] {(x?[n — ny] — Ry, [0}

+ Z%Fo 2%2:0 2%:0 hs[ny, np,n3] {x[n — nylx[n — ny]x[n — ng] —

x[n = n]Ryx [Ny — N3] — x[n — n3]Ryx[ny — N3] — x[n — n3]Ryx[n1 — 3]} (6)
Here, K;[] is the ["™-order functional; hy, hy[n], h,[n], and hz[n,, ny, n3] are system
kernels, which are symmetric with respect to their arguments; and R,,(n) is the
autocorrelation function of the zero-mean Gaussian input x[n]. Since the functionals
are orthogonal to each other, the kernels of this equation may be estimated sequentially.
That is, each kernel was estimated, one at a time and in order, using the measured x[n]
and y[n] after subtracting the contribution of all previous kernel estimates from y[n].
The Volterra kernels in Eq. (5) may then be computed from the estimated quantities and
R, (n) as follows:
ko = ho — Ryx[0] Z%Fo ha[ny]

ki[n] = hy[n] -3 Z%Fo Z%:o h3[n, ny, n3] Ryx[n, — nsl
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ks[nq,ny,n3] = hs[ng, ny, nsl

The kernels hy, hy[n], hy[n], and h3[nq, n,, ns] in Eq. (6) were estimated
from x[n] after removing its mean value and y[n] using the frequency-domain
method for Gaussian inputs. This method, which minimizes the mean-squared output
prediction error and yielded relatively smooth kernel estimates, is described in detail
elsewhere [68]. Briefly, the kernels were estimated in succession according to the
following four steps:
1. ho=E(y[n])
where E (+) is the expectation operator.
2. yi[n] = y[n] = ho

PRy, ()
~ FRer ()

Hy(f) = F{hy[n]}
where R(+) is the auto- or cross-correlation function between the indicated signals,
and F(*) is the standard Fourier Transform operator.

3. y2[n] = y1[n] - Z%fo hi[nq] x[n —n4]

xz[n] = x*[n]

FIR, .
o) = Flralnl) = o282

4. yz[n] = y,[n] — Z%ﬁo ha[ng] {x?[n — ny] — Ry [0]}

1{ F3{Rysxxx (M1, 12, 13)} }
6 T{Rxx(nl)} T{Rxx(nz)} T{Rxx(n3)}

H3(f1, f2, f3)} = Fslhs[ng, np,nzl} =

where F5(+) is the three-dimensional Fourier Transform operator. Note that E'(-) and

R(-) above were computed via the standard sample mean and unbiased correlation
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function estimates. We also tried the cross-correlation method for Gaussian white
noise inputs [50] to estimate kernels. However since the results were not smooth, we
just described the frequency domain method.

The third-order kernel estimates were then examined to arrive at reduced
nonlinear models (see Results). The reduced models were re-estimated to yield
potentially more predictive models. Several kernel estimation methods were again
applied including the frequency-domain method for Gaussian inputs, Laguerre
expansion method for Gaussian and arbitrary inputs [50], [69], and cross-correlation
method for Gaussian white noise inputs. An orthogonal representation of the third-
order Uryson model of Eq. (6) for Gaussian inputs was likewise employed. The

equations are the same as in before but with the following two adjustments:

Kalha[nlixfln' <l = D halng i ln = my] = 3Ry [0] ) hgfJxln = ]
nq ng
ki[n] = hi[n] — 3h3[n] Ry, [0]

The kernels hgy, hy[n], h,[n], and h;[n] were again estimated from x[n] after
removing its mean value and y[n] using the frequency-domain method for Gaussian
inputs. This method vyielded relatively smooth kernel estimates. The kernels were
estimated in succession according to the first three steps in the last paragraph and then
the following fourth step:

4. ys[n] = ya[n] — ¥ _o ho[ny] {x?[n — ny] = Ryy[0]}

x3[n] = x°[n]

F{Ry.x
Hy(f) = Fihs[nl} = 6;{,!?3—((:?)}}
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The four kernels were also estimated from the same data using the Laguerre
expansion method for Gaussian inputs [50]. This more parsimonious method
produced similar kernel estimates. More specifically, the first-, second-, and third-
order kernels were assumed to be represented by a linear combination of B Laguerre

basis functions as follows:

B

hl[n] = Z an][n] , i = 1,2,3
=1
Here, a;; is the j" coefficient of the i"-order kernel for estimation, and b;[n] is the j"

Laguerre basis function. This function is given as follows:

J
bi[n] = am=D/2(1 — a)1/? Z(—l)" (%) (i) @k (1 — a)k
wherea (0 < a < 1)isa smokozt(r)]ing parameter that determines the rate of exponential
decay of the Laguerre function. The coefficients of each kernel were estimated in
succession by minimizing the mean-squared output prediction error. That is, for fixed
B and a values, the B coefficients for each kernel were estimated via solution of the
following BxB linear system of normal equations:
Y bjo [k'IR iy, [K'] = (i) Y21 ai; i X b[k1by [k 1R [k — k'] for jo = 1,...,B
where R(*) is the auto- or cross-correlation function between the indicated signals,
and y; is the output after subtracting the contribution of all previously estimated
kernel. To determine B and «, the same « value was assumed for all kernels, and the
B value was assumed to be between 1 and 10. For a fixed « value, the value of B was

determined for each kernel by finding the value for which the mean-squared output

prediction error no longer significantly decreased. This calculation was repeated for
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each a value between 0 and 1, and the value that minimized the mean-squared output
prediction error was selected.
See the Discussion section for commentary on the various methods. In all

cases, the kernel memory M was set to 25 sec based on our previous studies [58], [66].

Model Evaluation

The resulting third-order nonlinear models were evaluated as follows. First, the
CSP inputs from the training and testing data were applied to the models. Then, the R?
values between the predicted and measured AP outputs were computed. Finally, these
R? values and the previously reported R* values for the second-order Uryson and linear
models [58], [66] were compared after log transformation via paired t-tests with Holm’s

correction for multiple comparisons [57].

Results

Similar to previous chapters, the frequency-domain method for Gaussian inputs
yielded the smoother estimates of the kernels in the total arc model of Eq. (5). The
newly estimated third-order kernels are four-dimensional and cannot be visualized. So,
all two-dimensional slices of these kernels (e.g., ks[n, n,n], ks[n,n,n + 1], k3[n,n +
2,n + 3]) were examined. Figure 18 shows the three slices of the group average third-
order kernel estimates with the largest energies for WKY, SHR,,, and SHR 4. The
diagonal slices (k3[n, n, n]) clearly exhibited the largest energies. Figure 19 shows the
group average energy of each two-dimensional slice, normalized by the diagonal

energy, in descending order of value for WKY, SHR,,, and SHR 4. For comparison,
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this figure includes the analogous result for the second-order Volterra kernel estimates
from previous chapters. The normalized energies of the third-order kernels were
smaller than unity both in a statistical sense (p-value typically less than 0.01 via t-tests)
and a magnitude sense, especially for SHR;,. Hence, the third-order kernel was
virtually diagonal for SHR,, and approximately diagonal for WKY and SHR 4. Asa
result, the model of Eq. (5) was reduced to the following third-order Uryson model:
y[n] = ko + X o kalnilx[n — ny] + 37 o k2 [n]x? [n — ny] + X8 o k3 [n4]x3[n —
] (6)

Third-Order Volterra Kernel
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Figure 18: Group average two-dimensional (2D) slices of the estimated (four-dimensional) third-order
kernels (k3[ny, n,,n3]) in Eq. (5). WKY, Wistar Kyoto rats during Gaussian white noise carotid sinus
pressure (CSP) stimulation with mean of 120 mmHg; and SHR120 and SHR160, spontaneously
hypertensive rats during the same CSP stimulation with mean of 120 and 160 mmHg, respectively. The
diagonal slice (k3[n;, ny, ny]) was largest in magnitude.
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Figure 19: Group average energy of each 2D slice of the estimated second-order Volterra kernels from [58],
[66] and third-order kernels, normalized by the diagonal energy, in descending order of value for WKY,
SHR120, and SHR160. The second-order kernel was always diagonal, while the third-order kernel was

virtually diagonal for SHR120 and approximately diagonal for WKY and SHR160.
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Figure 20: Group average first-, second-, and third-order kernel estimates (meanSE) of reduced Uryson
models of the total arc for WKY, SHR120 and SHR160 via the frequency-domain (black) and Laguerre
expansion (gray) methods for Gaussian inputs. The three kernels were not proportional to each other,
thereby indicating that the model could not be further reduced.

The kernels in this model were re-estimated. The frequency-domain method
and more parsimonious Laguerre method for Gaussian inputs yielded the visually

smoother kernel estimates. Figure 20 shows the resulting group average kernel
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estimates (meantSE). The first- and second-order kernel estimates from the frequency-
domain method were the same as the last two chapters and similar to the corresponding
estimates from the Laguerre method. The newly estimated third-order kernels did not
appear proportional to the first- and second-order kernels, thereby suggesting that the
model cannot be further reduced in general. The third-order kernel estimates appeared
qualitatively similar for WKYY and SHR 4, but different for SHR,,. The former two
kernels showed a positive, open-loop contribution to AP regulation (i.e., an increase in
CSP would increase AP), whereas the latter kernel showed a negative, open-loop
contribution (i.e., an increase in CSP would decrease AP). However, the overall
contribution of the three kernels was of negative, open-loop character for WKY,
SHR 5, and SHR .

The Table 7 shows the group average R” values between the AP predicted by the
individual subject third-order nonlinear models and the measured AP when stimulated
by Gaussian white noise CSP in the training and testing data. This table also includes
the corresponding, previously reported results for the second-order Uryson and linear
models (also in [58], [66] and Table 2 and Table 4). Compared to the second-order
Uryson model, the third-order model of Eq. (5) improved the R* value for the training
data but not the testing data. This result indicated that the third-order model was not
better than the second-order model in terms of AP prediction and was actually over-
fitted. The third-order Uryson model of Eq. (6) also did not improve upon the R? value,
thereby likewise indicating that it was not better than the second-order Uryson model.

Finally, it should be noted that the third-order models also did not predict baroreflex
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thresholding and saturation and mean responses to input changes about the mean better

than the second-order Uryson model (results not shown).

Table 7: Group average R? values between arterial pressure (AP) predicted by models of the total
baroreflex arc and measured AP.

Third-order Third-order

Linear Second-order  Third-order Uryson Uryson
Uryson Volterra (Frequency- (Laguerre
domain) expansion)
LG 073:003  0794003*  090:001%f  0.80s003*F  080:0.03%f
WKY
Testing  0.64+0.03  071#0.03*  0.60£0.03*F  0.71+0.03*  0.71x0.03*
Data
Lening 0531005 0690.04%  088001%F  0.724005%F  0.71:004*F
ata
SHRIZO .
E‘ftgng 045:0.03  0.64+0.03*  0.64£0.04*  0.65:0.04*  0.66£0.04*
LG 0631005  0.714005%  088+003*f  0.724005¢  0.72:005*
ata
E‘ftgng 059+0.04  071#0.03*  0.70:0.03*  0.73:+0.03*  0.72+0.03*

Values represent mean+SE. Third-order Volterra model refers to Eq. (5). WKY, Wistar Kyoto rats during
Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of 120 mmHg; and SHR15, and
SHR1, Spontaneously hypertensive rats during the same CSP stimulation with mean of 120 and 160 mmHg,
respectively. * and { denote statistical significance for paired t-test comparison (after Holm’s correction for
three comparisons) with corresponding linear model and second-order Uryson model, respectively.

Discussion

This chapter represents part three of a series of studies on nonlinear
identification of the total baroreflex arc — the sympathetically-mediated carotid sinus
baroreflex relating CSP to AP in open-loop conditions. In parts one and two (previous
chapters and also [58], [66]), we applied Gaussian white noise CSP stimulation and
nonparametric system identification to measured CSP and AP to establish a second-
order Uryson model (i.e., Volterra model with diagonal kernels) of the total arc for
WKY and SHR. However, a major assumption therein was that only second-order

nonlinear dynamics were important. In part three herein, we investigated the
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contribution of higher-order nonlinearity by developing a third-order nonlinear model
using the same data for analysis.

We used a third-order Volterra model but with a second-order Uryson kernel
(see Eqg. (5)). We estimated the first- and second-order kernels using the frequency-
domain method for Gaussian inputs, which we previously found to yield the
smoothest kernels based on visual assessment [58], [66]. Since estimation of higher-
order kernels from short data periods (6 min) is challenging, we applied several
identification methods to estimate the third-order kernels. The nonparametric
identification methods, which do not assume a particular kernel form, included the
frequency-domain method for Gaussian inputs and cross-correlation method [50],
which assumes the input is Gaussian and white. We again found that the frequency-
domain method for Gaussian inputs was most effective, as the CSP input was not
strictly white due to the finite data periods. The resulting third-order kernel estimates
likewise revealed a simpler Uryson structure for WKY, SHR 15, (SHR with Gaussian
white noise stimulation at the normal CSP level for WKY), and SHR5 (SHR with
the same stimulation at the prevailing CSP level for SHR) but not as strongly for
WKY and SHR4, (see Figure 18 and Figure 19). It is possible that the diagonal
nature of the third-order kernels for WKY and SHR4, was partially masked by noise
arising from the identification of higher-order kernels from short data periods in the
presence of stronger linearity (see Table 7). Further, since the second-order kernel,
which is easier to estimate, is surely Uryson (see Figure 19), the third-order kernel
may indeed likewise show such structure. At the same time, we acknowledge the

possibility of nontrivial error in the third-order kernel estimates, which could have
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confounded the interpretation of the results. Parametric identification methods could
possibly improve kernel estimation from short data periods by reducing the number of
estimated parameters via assumption of a particular kernel form. We also applied
such methods including popular Laguerre expansion methods [50]. However, these
methods artificially smoothed the kernels so as to obfuscate a diagonal appearance.

We therefore moved to a reduced, third-order Uryson model (see Eq. (7)). We
again applied various identification methods to re-estimate the kernels of this model
with potentially greater accuracy. The methods included the frequency-domain
method for Gaussian inputs, cross-correlation method, and Laguerre expansion
methods for Gaussian and arbitrary inputs. We found that the frequency-domain
method and Laguerre expansion method for Gaussian inputs yielded the smoothest
estimates based on visual inspection, as the input was not strictly white and the
requisite computation of higher-order correlations was more robust by leveraging the
Gaussian nature of the inputs. The resulting kernel estimates were not proportional to
each other (see Figure 20), thereby indicating that the third-order model could not be
further reduced to a Hammerstein model [43]. The Laguerre expansion method for
Gaussian inputs represented the third-order Uryson model with only 19 parameters on
average (6 parameters for each of the three kernels plus 1 smoothing parameter). For
comparison, the frequency-domain method for Gaussian inputs represented the
second-order Uryson model with 100 parameters (M = 25 sec times 2 Hz sampling
rate for each of the two kernels; see Eq. (7)). Hence, the third-order Uryson model
was likely well estimated.

Neither the third-order Uryson model nor the more complete third-order
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nonlinear model of Eq. (5) predicted AP in response to new Gaussian white noise
CSP better than the previously established second-order Uryson model (see Table 7).
Further, both of the third-order models could not offer added value in predicting well-
known nonlinear behaviors over the second-order Uryson model (results not shown).
Since there is a possibility that the third-order kernel was actually not Uryson, we
formed a set of third-order kernels using the highest energy slices of the third-order
Volterra kernel estimate (see Figure 19). These kernels are less simplified than the
Uryson kernel but more simplified than the Volterra kernel. However, the third-order
models with these kernel estimates also did not improve the AP prediction in any way
(results not shown). Hence, even though the third-order kernels were not merely
noise (see Figure 20), they may be interpreted as small in magnitude in the sense of
contributing relatively little to AP prediction. Note that a nonlinear model including
only the first- and third-order kernels would not have performed better due to
orthogonality arising from use of Gaussian inputs. Also note that while fourth-order
and even higher-order kernels could possibly contribute to AP prediction, since the
first-order kernel, which is odd, and the second-order kernel, which is even, both
contributed significantly, we doubt that kernels of order exceeding three would be
important here.

Higher-order nonlinearity therefore does not appear to be a contributing factor
to the unexplained AP variance of about 30% during the Gaussian white noise CSP
stimulation (see Table 7), as we had previously hypothesized (11). These variations,
which were not white (results not shown), could instead be due to non-stationarity of

the CSP and AP data, sympathetic nerve activity (SNA) from higher brain centers, and
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other fast-acting regulatory mechanisms. Note that measurement noise may not be a
contributing factor, as the data were invasively measured and then low-pass filtered and
down-sampled all the way to 2 Hz.

To shed further light on the sources of the unexplained AP variance, we
performed additional experiments in six WKY with CSP fixed to 120 mmHg followed
by Gaussian white noise CSP stimulation. Figure 21 shows the measured CSP, AP, and
SNA for one subject along with the corresponding group average power spectra. The
spectral powers in AP and SNA within 0.03 Hz were similar for fixed and Gaussian
white noise CSP. These results suggest that SNA from higher brain centers indeed
contributed to the unexplained AP variance, particularly in the low frequency regime.
Note that turning the CSP input “off” changed the mean AP and thus the system
operating point. Hence, the AP variability at fixed CSP and the unexplained AP
variability of the nonlinear models may not be comparable.

We conclude that a second-order Uryson model of the total arc surely suffices
compared to a third-order Uryson model and may likely suffice compared to higher-
order nonlinear models in general. This conclusion is only valid over the range of
CSP and AP data utilized to develop the models. Since this range did not include the
baroreflex saturation regime, the nonlinear models could only predict baroreflex
thresholding but not saturation [58]. Higher order nonlinear models would be needed
to represent the total arc over the entire system operating range, with odd-order
nonlinearity apparently required to account for thresholding and saturation. In sum,

this third part of a series of studies on nonlinear identification of the total arc justified
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the earlier assumption of second-order nonlinearity under the employed experimental

conditions.
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Figure 21: Representative time series for arterial pressure (AP) and sympathetic nerve activity (SNA;
measured from splanchnic nerve and then normalized as described elsewhere [58]) in response to fixed and
Gaussian white noise CSP stimulations for one WKY (left panel). A.u. is arbitrary units. Group average
power spectra (mean+SE) for CSP, AP, and SNA (right panel). The gray and black lines indicate the fixed
and Gaussian white noise CSP inputs, respectively.
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CHAPTER 6. CONCLUSIONS

The baroreflex was long believed to regulate AP only on the time scales of
seconds to minutes [54]. However, chronic baroreceptor stimulation and other studies
have now indicated that this system could contribute to long-term AP regulation [3],
[4], [25], [55], [14]. Hence, the baroreflex could play a causative or protective role in
hypertension and heart failure. As indicated by Thrasher’s chronic baroreceptor
unloading model of hypertension [3], nonlinearity of the baroreflex, in particular,
could induce sustained increases in AP. However, baroreflex nonlinearity is not well
understood.

In the first part of this thesis, we developed a second-order, nonlinear dynamic
model of the sympathetically-mediated total baroreflex arc by employing Gaussian
white noise stimulation and nonparametric identification for Wistar Kyoto rats (WKY).
We validated the model by showing that it is able to predict AP appreciably better
than a conventional linear model and some important nonlinear behaviors including
thresholding and DC responses to AC changes. A key advantage of nonlinear
identification over linear identification is that it can indicate the structure of the
system under study. For example, consider a system that is composed of a static
nonlinearity in cascade with a linear dynamic system. Nonlinear identification of the
overall system can not only yield a more accurate model than linear identification but
also reveal whether the static nonlinearity precedes or follows the linear dynamic
system. The validated nonlinear model likewise provides information about the

structure of the internal components of the total arc. In particular, the model
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illustrates that the structure is not a previously proposed cascade connection of
systems (e.g., Hammerstein, Wiener, or sandwich model) but rather a parallel
connection of a linear system and Hammerstein system. In addition to providing
information about the structure of the total arc, the model also indicates that the
second-order nonlinear dynamics are slower than the linear dynamics and not
insignificant in magnitude of effect compared to these dynamics. While system
identification cannot reveal the physical basis of the nonlinearity, it is interesting to
speculate that the parallel connection of a fast linear system and a slower nonlinear
system corresponds to the structure of anatomical components. In particular, the
linear system may correspond to the fast, afferent A-fiber pathway, whereas the
nonlinear system could correspond to slower, afferent C-fiber pathway. However, the
model is only valid over the CSP range covered by the Gaussian white noise. This
range essentially did not include the saturation regime or pulsatile frequencies.

In the second part, we showed the pitfall in ignoring baroreflex nonlinearity by
developing the second-order, nonlinear dynamic model of the sympathetically-
mediated total baroreflex arc utilizing Gaussian white noise stimulation and
nonparametric identification in spontaneously hypertensive rats. Results herein
indicate that the nonlinear gain of the sympathetically-mediated total baroreflex arc
was enhanced in SHR relative to WKY, while its linear gain was preserved. Hence,
the nonlinear dynamic functioning of this system may enhance steady-state baroreflex
buffering of AP increases more in SHR than WKY, perhaps to compensate for
malfunctioning of other regulatory systems. If the common linearity assumption were

invoked here, the story would have been different. This study is not the first to
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demonstrate the significance of baroreflex nonlinearity in hypertension. In Thrasher’s
chronic baroreceptor unloading model of hypertension [3], [4], mean CSP did not
change but carotid sinus pulse pressure decreased, which, in turn, led to a sustained,
baroreflex-mediated increase in mean AP. This nonlinear behavior of the carotid
sinus baroreflex, by contrast, played a causative rather than protective role in the
hypertension model.

In the last part, we buttressed the major previous assumption that the
baroreflex nonlinearity did not extend beyond second-order under the employed
experimental conditions. We assessed the importance of higher-order nonlinear
dynamics via development and evaluation of a third-order Volterra model using the
same experimental data. Our results indicate that a second-order Uryson model indeed
sufficed to represent the total arc under the employed experimental conditions.

Future studies are needed to: (1) elucidate baroreflex nonlinearity over a
wider system operating range than that attained by the experimental conditions herein
(i.e. cover saturation, thresholding, and pulsatile frequencies); (2) investigate
baroreflex nonlinearity in closed-loop conditions (via parametric identification [29]
and the established second-order Uryson model); and (3) discover the mechanism of
baroreflex nonlinearity (which may be related to the slow, afferent C-fiber pathway
[51], [52]) including the unexplained AP variations. Such future nonlinear modeling
endeavors may enhance our understanding of the baroreflex in health and disease.
Specifically, further investigations of baroreflex nonlinearity in hypertension may
improve our understanding of the role of the baroreflex in this prevalent disease

process.
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APPENDIX

The numerical values specifying the group average kernel estimates of the
Uryson model (i.e. h,[n] and h,[n]) of the total arc for SHR,, and SHR 4, as well as
for WKY in [58] are provided in Table 8. Please note that only 17 sec of values were

needed to capture these kernels.
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Table 8: Kernel values of Uryson model of the total baroreflex arc in WKY, SHR1,4, and SHR ¢

Time (s)

0.5
15
25
35
45
55
6.5
7.5
8.5

9.5
10
10.5
11
115
12
125
13
135
14
145
15
155
16
16.5
17

WKY SHR
First- Second- First-  Second-
order order order  order

(unitless) (mmHg™) (unitless) (mmHg™)
0.0053441 0.0000888 0.0106978 0.0004215
-0.0113258  -0.0000093  -0.0317528  -0.0005482
-0.0606674  -0.0004854  -0.1130225  -0.0024845
-0.0846313  -0.0009561  -0.1186430  -0.0032550
-0.0690056  -0.0010924  -0.0644120  -0.0027865
-0.0594982  -0.0010686  -0.0475934  -0.0024280
-0.0595114  -0.0010640  -0.0530959  -0.0022385
-0.0531564  -0.0010605  -0.0433527  -0.0019858
-0.0487779  -0.0010096  -0.0361096  -0.0016735
-0.0458009  -0.0009050  -0.0308038  -0.0012624
-0.0385619  -0.0007954  -0.0182875  -0.0010134
-0.0335319  -0.0007345  -0.0118544  -0.0009023
-0.0287025  -0.0006717  -0.0086836  -0.0007416
-0.0227861  -0.0005876  -0.0047388  -0.0006102
-0.0198903  -0.0005125  -0.0026564  -0.0004946
-0.0164859  -0.0004362  0.0015160  -0.0003245
-0.0117555  -0.0003785  0.0052325  -0.0002953
-0.0089331  -0.0003444  0.0029448  -0.0002883
-0.0063109  -0.0002790  0.0018112  -0.0001505
-0.0033516  -0.0002317  0.0018556  -0.0000881
-0.0010963  -0.0002079  -0.0005557  -0.0000920
0.0016547  -0.0001710  -0.0010800  -0.0000583
0.0020230  -0.0001363  -0.0019769  -0.0000554
0.0008485  -0.0001073  -0.0036355  0.0000160
0.0018865  -0.0000624  -0.0031750  0.0000851
0.0020187  -0.0000454  -0.0030819  0.0000508
-0.0001120  -0.0000472  -0.0040712  0.0000144
-0.0011690  -0.0000349  -0.0024378  0.0000264
-0.0014246  -0.0000237  -0.0006728  0.0000344
-0.0019218  -0.0000164  -0.0005096  0.0000342
-0.0017010  -0.0000233  -0.0005132  0.0000203
-0.0018849  -0.0000378  -0.0015177  0.0000214
-0.0023700  -0.0000380  -0.0025900  0.0000599
-0.0021489  -0.0000316  -0.0028518  0.0000561
-0.0020097  -0.0000260  -0.0031153  0.0000217

77

SHR1 60
First- Second-
order order
(unitless) (mmHg™)
0.0141826 0.0003052
-0.0305524  0.0001441
-0.1424666  -0.0005875
-0.1650641  -0.0015852
-0.1032691  -0.0021265
-0.0786241  -0.0021722
-0.0783448  -0.0021070
-0.0578963  -0.0020268
-0.0485531  -0.0018949
-0.0435933  -0.0017367
-0.0269673  -0.0015018
-0.0166916  -0.0013480
-0.0123483  -0.0012249
-0.0073592  -0.0009416
-0.0053071  -0.0007900
-0.0015483  -0.0007129
0.0016648  -0.0004655
0.0016336  -0.0003715
0.0026040  -0.0004274
0.0023051  -0.0003040
0.0017833  -0.0001827
0.0040070  -0.0002130
0.0051331  -0.0001643
0.0042096  -0.0000540
0.0046813  -0.0000425
0.0038249  -0.0000237
0.0027484  -0.0000296
0.0029665  -0.0000446
0.0022949  -0.0000434
0.0016824  -0.0001204
0.0011306  -0.0001845
0.0003206  -0.0001653
-0.0000272  -0.0001353
-0.0001561  -0.0000861
-0.0000403  -0.0000537
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