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ABSTRACT 

NONLINEAR IDENTIFICATION OF THE TOTAL 

BAROREFLEX ARC 

By 

Mohsen Moslehpour 

The baroreflex is one of the most important regulatory mechanisms of blood 

pressure in the body, and the total baroreflex arc is defined to be the open-loop system 

relating carotid sinus pressure (CSP) to arterial pressure (AP).  This system is known 

to exhibit nonlinear behaviors.  However, few studies have quantitatively 

characterized its nonlinear dynamics.  The aim of this thesis was to develop a 

nonlinear model of the sympathetically-mediated total arc without assuming any 

model form in both healthy and hypertensive rats.   

Normal and spontaneously hypertensive rats were studied under anesthesia.  

The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were 

isolated and attached to a servo-controlled piston pump.  CSP was perturbed using a 

Gaussian white noise signal.  A second-order Volterra model was developed by 

applying nonparametric identification to the measurements.  The second-order kernel 

was mainly diagonal.  Hence, a reduced second-order model was similarly developed 

comprising a linear dynamic system in parallel with a squaring system in cascade 

with a slower linear dynamic system.  This “Uryson” model predicted AP changes 12-

43% better than conventional linear dynamic in response to new Gaussian white noise 



 

 

CSP.  The model also predicted nonlinear behaviors including thresholding and mean 

responses to CSP changes about the mean.  The linear and nonlinear terms of the 

validated model between normotensive and hypertensive rats were compared.  While, 

the linear gain was similar between these two groups, the nonlinear gains for the 

hypertensive rats were significantly larger.  Hence, nonlinear dynamic functioning of 

the sympathetically-mediated total arc may enhance baroreflex buffering of AP 

increases more in spontaneously hypertensive rats than normotensive rats. 

The importance of higher-order nonlinear dynamics was also assessed via 

development and evaluation of a third-order nonlinear model of the total arc.  Third-

order Volterra and Uryson models were developed by employing several 

nonparametric and parametric identification methods.  The R2 values between the 

measured AP and AP predicted by both the best third-order Volterra and the third-

order Uryson model in response to new Gaussian white noise CSP were not 

statistically different from the corresponding values for the previously established 

second-order Uryson model neither in normotensive nor in hypertensive rats.  Further, 

none of the third-order models were able to predict important nonlinear behaviors 

better than the second-order Uryson model.  Additional experiments suggested that 

the unexplained AP variance was partly due to higher brain center activity.  

In conclusion, the second-order Uryson model sufficed to represent the 

sympathetically-mediated total arc under the employed experimental conditions and 

the nonlinear part of this model showed significant changes in hypertensive rats 

compared to normotensive rats. 
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CHAPTER 1. INTRODUCTION 

Background 

Cardiovascular system consists of the heart, blood, and the vessels and it is 

responsible for maintaining blood flow to the body tissues.  Heart and blood vessels 

are controlled in particular to provide the required cardiac output (CO) and arterial 

blood pressure (ABP).  The extrinsic or global control of cardiovascular system is 

almost entirely through the autonomic nervous system (ANS).  In fact, the main 

function of cardiovascular regulation is to maintain ABP within a narrow range under 

a wide range of situations.   

Different sensory mechanisms are working together in a feedback loop to 

regulate arterial blood pressure through ANS.  These sensory monitoring mechanisms 

entail blood pressure sensors (arterial baroreceptors), blood volume sensors 

(cardiopulmonary baroreceptors or volume receptors), blood chemistry 

(chemoreceptors), and plasma osmolarity (osmoreceptors).  These receptors can be 

categorized in general two categories of mechanical (barosensory) and chemical 

(chemosensory) [1], [2].  Effects of these sensory mechanisms are called baroreflex 

and chemoreflex respectively.  Based on the inputs from these sensors, ANS regulates 

the blood pressure mostly via sympathetic nervous system (SNS) and less through 

parasympathetic nervous system (PNS).  SNS affects regulation by innervating the 

blood vessels and the heart.  It passes through two main routes toward the circulation, 

through specific sympathetic nerves that innervate mainly the vasculature of the 
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internal viscera and the heart, and also through peripheral portions of the spinal 

nerves where it distributes to the vasculature of the peripheral areas [1].  It affects 

heart activity by both innervating the sinoatrial node (SA node) to increase the heart 

rate and also innervating cardiac muscles to elevate the VC.  In addition to heart, SNS 

innervates small arteries and arterioles by increasing their resistance to blood flow 

and thereby increasing blood pressure.  It also innervates large vessels (e.g. veins) by 

decreasing their volume, thus translocating more blood to heart.  PNS plays a minor 

role in regulation of the circulation by mainly adjusting the heart function through 

innervation of the SA node.  PNS fibers are carried to the heart via the vagus nerves.  

Principally, stimulation of PNS causes marked decrease in HR.  This has been 

illustrated in Figure 1 (adapted form [5]) along with other hormonal loops which are 

not in the scope of this thesis. 

 

Figure 1: Autonomic and hormonal control of cardiovascular function (Adapted from [5]) 
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Arterial Baroreflex 

The focus of this thesis is on the most important blood pressure regulator, i.e. 

the arterial baroreflex mechanism (i.e. regulation through arterial baroreceptors).  The 

arterial baroreflex system is primarily responsible for maintaining blood pressure in 

the short-term (seconds to minutes) and also appear to contribute to longer-term blood 

pressure regulation [3], [4], [14].  It is well known that the arterial baroreflex buffers 

changes in ABP via stretch receptors belonging to spray type ending nerves lying in 

the carotid sinus and aortic arch (i.e. carotid sinus baroreflex and aortic arch 

baroreflex) and maintains the blood pressure near its normal operating level by 

providing negative feedback to central nervous system.  Fluctuations in blood 

pressure cause changes in firing patterns of the arterial baroreceptors.  This signal is 

conveyed to the medulla oblongata within the brainstem (cardiac center in the 

autonomic nervous system) via afferent nerve fibers.  This signal is deciphered and 

compared to a set-point for arterial pressure and the proper command is send though 

efferent fibers.   

When ABP increases (decreases), the arterial baroreceptor stretches more 

(less).  This stretch increases (decreases) the signal going to nervous system through 

afferent nerves.  Baroreceptors in carotid sinus are transmitted to brain through 

glossopharyngeal by a small Hering’s nerve.  However, baroreceptors at aortic arch 

are transmitted to brain via afferent vagus nerves.  ANS responds to this reflex signal 

by decreasing (increasing) β-sympathetic nerve fibers and reverse effect of efferent 

parasympathetic nerve on SA node to adjust HR.  β-sympathetic nerve fibers also 

affect ventricles to decrease (increase) VC.  Efferent α-sympathetic nerve fibers 
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decrease (increase) total peripheral resistance (TPR) by affecting arterioles and 

increase (decrease) system venous unstressed volume (SVUV) by affecting veins.  

These changes, decrease (increase) ABP as a result (Figure 1).  For instance, in 

postural change and when standing from supine position, due to blood pressure drop 

in head and upper body, the arterial baroreceptors initiate a reflex so that a reaction of 

ANS in entire body mediates this blood pressure drop in head and prevents fainting.   

This system is negative feedback system.  Hence, it works in closed loop 

system and this makes it difficult to identify the system ([4]).  Assuming that carotid 

sinus baroreflex has the same effects as aortic arch baroreflex, one way to handle this 

problem is to isolate the carotid sinus region from the systemic circulation which 

causes an open loop preparation ([5]–[7]) and the pressure in that region is changed 

independently to identify the open loop system in anesthetized animals.  It should be 

noted that opening the arterial baroreflex loop can abolish Mayer waves and make the 

identification more accurate [8].  In this open loop preparation, the baroreflex system 

is divided into a controller and effector sub-systems, neural arc and peripheral arc 

respectively [19].  Neural arc represents the relationship between carotid sinus 

pressure (CSP) and efferent sympathetic nervous activity (SNA).  Peripheral arc is the 

system from SNA to arterial blood pressure (ABP).  In the open loop regime the 

cascade of these two systems is called total baroreflex arc – defined to be the open-

loop system relating carotid sinus pressure (CSP) to arterial pressure (AP).   

Linear dynamic analysis has been widely applied to identify these systems 

[19], [15], [20], [21].  This type of analysis results in linear transfer function of the 

system and not only it can elucidates the physiological roles of these arcs but also it 
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helps designing artificial vasomoter center for replacing natural neural arc [22].  Our 

collaborators others have identified the linear dynamics of the three baroreflex arcs in 

the form of transfer functions (i.e., gain and phase as a function of frequency) [15]–

[18].  These linear models can capture the dynamic behavior of the systems to a 

significant extent.  They previously showed that the linear dynamics of the total arc 

are preserved in spontaneously hypertensive rats (SHR) despite resetting of mean AP 

[15].  However, the nonlinear dynamics of this system, which have been less 

investigated, could possibly respond differently to the chronic hypertension model.  

Some recent studies showed that arterial baroreflex is not merely a linear system and 

there are nonlinear behavior with respect to that [20], [23].  Besides, the hypothesis 

that arterial baroreceptors can also play a role in genesis of hypertension reinforce 

nonlinear modeling of total arc system [3], [24], [25].   

Quantifying Reflexes 

There are numerous diseases which are affecting neural cardiovascular 

regulatory reflexes and their functioning.  Therefore, quantifying these system is 

important in order to understand their functions in health and disease.  Besides, bionic 

devices can be designed to function as a replacement of neural regulatory mechanism 

in case of failure in the natural system.   

The conventional approach for quantifying ANS regulation of blood pressure 

is to use an external stimulus (e.g. controlled carotid sinus pressure) to perturb the 

system and measure the regulatory response.  There are two general types of stimulus, 

selective and nonselective [27].  Selective stimulus (e.g. controlled carotid sinus 

pressure) helps quantifying the open loop system and change the normal operation, 
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therefore its interpretation should be done cautiously.  However, it helps 

characterizing one mechanism alone.  On the other hand, nonselective stimulus (e.g. 

supine and standing position) is done in a normal closed loop system.  Therefore, all 

mechanisms are functional and affect each other and since the physiological signals 

are usually highly correlated, these stimuli may not the reveal the mechanism under 

study perfectly.  Furthermore, the conventional methods could only quantify the 

steady-state gain values of the feedback mechanisms while their dynamic 

characteristics such as overall time constants and delays are undiscovered.  Here, we 

used the first approach and designed a specific complex experiment along with 

utilizing signal processing and system identification techniques to identify the system 

perfectly.  Briefly, we stimulated carotid sinus pressure independently while 

eliminating other reflexes and measured the regulated arterial blood pressure in an 

open loop preparation.  Then, the nonlinear model was developed to identify arterial 

baroreflex dynamics. 

Scope and Organization  

The main goal of this thesis is to use system identification techniques 

reinforced with signal processing in order to quantitatively characterize the arterial 

baroreceptor reflexes and investigate the nonlinear dynamic model of the total 

baroreflex arc under open loop conditions. There are five chapters here. The current 

chapter (first chapter) gave an introduction and background for the total baroreflex arc.   

In chapter two, we developed the second order Volterra and Uryson models of the 

total baroreflex arc in normotensive Wistar Kyoto rats using non-parametric 

identification method.  The goal of chapter three is to illustrate the importance of the 
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nonlinearity in chronic hypertension.  Hence, the second order Volterra and Uryson 

models were estimated for spontaneously hypertensive rats using the same 

identification method as in normotensive rats and the estimated model was compared 

with the estimated model for normotensive rats developed in chapter two.  In chapter 

four, we assessed the importance of higher-order nonlinear dynamics via development 

and evaluation of a third-order nonlinear model of the total arc using the same 

experimental data.  Third-order Volterra and Uryson models were developed by 

employing several nonparametric and parametric identification methods.  Finally, in 

chapter five perspective and significance of the work is explained. 
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CHAPTER 2. DATA COLLECTION AND PRE-

PROCESSING 

Data Collection 

In this thesis we used the data that has been already collected by our Japanese 

collaborators.  Animals were studied according to a protocol that was approved by the 

Animal Subjects Committee at the National Cerebral and Cardiovascular Center of 

Japan.  The procedures are described in detail elsewhere [15].  Briefly, under general 

anesthesia (urethane and -chloralose mixture) and mechanical ventilation, the 

bilateral vagal and aortic depressor nerves were sectioned to eliminate confounding 

reflexes from the aortic arch and cardiopulmonary region.  (Hence, the model of the 

total arc developed herein precisely represents the sympathetically-mediated carotid 

sinus baroreflex.)  The carotid sinus regions were isolated from the systemic 

circulation to open the loop between CSP and AP/SNA.  A servo-controlled piston 

pump was interfaced to the carotid sinus regions filled with warmed Ringer solution 

via catheters to control CSP.  A femoral artery catheter was placed to measure AP.  A 

pair of electrodes was positioned on a postganglionic branch of the splanchnic 

sympathetic nerve to measure SNA.  The pre-amplified SNA was band-pass filtered 

with cutoff frequencies of 150 and 1,000 Hz.  It was then full-wave rectified and low-

pass filtered with cutoff frequency of 30 Hz.  CSP was controlled for about 15 min 

using a Gaussian white noise signal with mean of 120 mmHg and standard deviation 

of 20 mmHg (with values more than three standard deviations from the mean being 

skipped).  So, the signal ranged from about 90 to 150 mmHg for 90% of the 
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stimulation.  A different realization of this signal was employed for each subject.  The 

switching interval of the noise was 0.5 sec to yield relatively flat input spectral power 

up to 1 Hz (see Figure 4).  To investigate static system behavior, CSP was also 

controlled using a staircase signal that started at 60 mmHg and then increased, step by 

step, in increments of 20 mmHg every 1 min up to 180 mmHg.  So, for example, CSP 

was held flat at 100 mmHg in the third step of this signal.  Thirteen normotensive 

Wistar-Kyoto rats (weight 397.8±18.5 grams) were studied according to this protocol.  

All measurements were recorded at a sampling rate of at least 200 Hz (In half of the 

subjects, data were sampled at the rate of 1kHz and in the other half, they were 

sampled at the rate of 200Hz).  We refer to this stimulation as WKY.   

To study the hypertension, another set of experiments were performed in eight 

SHR (22.2±4.5 weeks in age) under the same protocol.  CSP was stimulated with two 

different means but the same otherwise as described above.  First, to establish models 

for SHR at the same CSP level as the previous models for WKY, the Gaussian white 

noise CSP stimulation was at mean of 120 mmHg and standard deviation of 20 

mmHg for about 15 min.  Again, the switching interval of the noise was 500 ms to 

produce relatively flat CSP spectral power up to 1 Hz (see Figure 13).  Second, to 

establish models for SHR at the normal CSP level of SHR, the Gaussian white noise 

CSP stimulation was at mean of 160 mmHg but the same otherwise.  Hereafter, we 

refer to the former stimulation as SHR120 and the latter stimulation as SHR160.  All 

signals were continuously recorded at a sampling rate of 200 Hz while CSP was 

controlled using two different Gaussian white noise stimulations.   
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Data Pre-Processing 

The measurements during Gaussian white noise stimulation were first low-

pass filtered using a high-order filter and then down-sampled to 2 Hz.  For each 

subject, a 6-min segment of stationary data after linear de-trending was selected for 

model development or training, while a separate 3-min segment of stationary data 

after linear de-trending was selected for model testing.  Data from three of the WKY 

subjects, one SHR120 subject, and three SHR160 subjects were highly non-stationary 

and were thus excluded from further analysis.  In some of the subjects, a peak in the 

AP power spectrum around 0.7 to 0.8 Hz was visible.  This peak was likely caused by 

spontaneous respiratory effort rather than the CSP stimulation, so AP of all subjects 

was low-pass filtered again using a high-order filter but with a cutoff frequency of 0.7 

Hz.  This filtering had no significant impact on the kernel estimates of those subjects 

that did not reveal such a peak (results not shown).  Finally, since the magnitude of 

the SNA measurement heavily depended on the electrode contact, SNA was 

calibrated per subject so that the models of the neural and peripheral arcs could be 

meaningfully averaged over the subjects.  In particular, SNA was calibrated per 

subject such that the average gain of the linear kernel of the neural arc was unity for 

frequencies < 0.03 Hz in the training data [15].  For the SHR subjects, this calibration 

was done based on the SHR120 training data. 

The measurements during the staircase stimulation were averaged over the last 

10 sec of each step.  The average values of a system input and output were then 

plotted against each other. 
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CHAPTER 3. NONLINEAR IDENTIFICATIOND OF THE 

TOTAL BAROREFLEX ARC USING SECOND ORDER 

VOLTERRA MODEL  

The total baroreflex arc – defined to be the open-loop system relating carotid 

sinus pressure (CSP) to arterial pressure (AP) – is a well-known contributor to 

cardiovascular regulation.  When stimulated in a controlled manner, this system 

exhibits thresholding and saturation (i.e., maximal and minimal AP responses) [20], 

[30], [31], mean responses (i.e., direct current or DC responses) to input changes 

about the mean (i.e., alternating current or AC changes) [23], [30], [32], [33], as 

shown in Figure 2, and other nonlinear behaviors [34]–[36].  Interestingly, the system 

also displays DC responses to AC changes in Thrasher’s chronic baroreceptor 

unloading model of hypertension [3] as shown in Figure 3.  This model does not 

significantly alter mean CSP but does cause reductions in CS pulse pressure (i.e., a 

selective AC change), which, in turn, leads to a sustained, baroreflex-mediated 

increase in mean AP (i.e., a DC response).  Hence, total arc nonlinearity could 

possibly play a role in the genesis of hypertension.  Yet, most system identification 

studies of the total arc have been based on a linear dynamic model [19], [15], [20], 

[33], [37], [16]–[18].  Further, the few studies that have represented the total arc with 

a nonlinear dynamic model assumed a particular form for the model [20], [35]. 
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Figure 2: The total baroreflex arc (open-loop system relating carotid sinus pressure (CSP) to arterial pressure 

(AP)) has been shown to exhibit nonlinear behaviours in previous studies including mean responses to input 

changes about the mean (adapted from [23]).  CSP here was controlled using a binary white noise signal of the 

same mean but increasing amplitude.  Mean AP and sympathetic nerve activity (SNA) both decreased with 

the increasing CSP amplitude. 

This latter behavior could play a role in the genesis of hypertension, as 

indicated by chronic unilateral baroreceptor unloading study [3] shown in Figure 3.  

In this figure, it is shown that while CSP is kept constant while baroreceptors are 

unloaded, mean AP and CSP pulsatility increases in coarse of days.   
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Figure 3: Total baroreflex arc can play a role on genesis of Hypertension [adapted from [3]] 
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Our aim was to establish a second-order, nonlinear dynamic model of the total 

arc without making a priori assumptions about the model form.  To achieve this aim, 

we employed the powerful Gaussian white noise approach for nonlinear system 

identification [38].  In particular, we applied Gaussian white noise CSP stimulation, 

while measuring AP and sympathetic nerve activity (SNA), in an open-loop rat 

preparation followed by nonparametric identification to estimate first- and second-

order kernels of a Volterra model of the total arc from the measurements.  We also 

likewise identified two sub-systems of the total arc, namely the neural arc, which 

relates CSP to SNA, and the peripheral arc, which relates SNA to AP.  Since this 

approach requires long data records to yield accurate kernel estimates [39], our 

strategy for the obtained short data records was as follows.  First, we examined the 

Volterra kernel estimates to define a reduced second-order, nonlinear dynamic model.  

Then, we applied nonparametric identification to estimate the kernels of this reduced, 

yet potentially more predictive, model.  Finally, we assessed its output predictions.  

The nonlinear model of the total arc that we report here significantly improved upon 

AP predictions over a standard linear model and helped reveal the structure of the 

total arc. 

Nonlinear Model and Identification Technique 

In general, a time-invariant system with fading memory can be written in the 

form of a Volterra series to within arbitrary precision [40].  For such systems that are 

also causal and discrete-time, the Volterra series is given as follows: 

𝑦[𝑛] = ∑ ∑ … ∑ ℎ𝑙[𝑘1, … , 𝑘𝑙]𝑥[𝑛 − 𝑘1] ⋯ 𝑥[𝑛 − 𝑘𝑙]𝑀
𝑘𝑙=0

𝑀
𝑘1=0

𝐿
𝑙=0            (1) 
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where 𝑛 is discrete-time, 𝑦[𝑛] is the output, 𝑥[𝑛] is the input, h𝑙[𝑛1, … , 𝑛𝑙] is the lth 

order system kernel, L is the order of nonlinearity, and M is the system memory 

(which can be different for each kernel but is the same for all kernels here for 

convenience).  In this model, the output is expanded in terms of the input samples and 

the interactions amongst input samples of different lags.  These input terms affect the 

output through the kernels of the system.     

In this study, the total arc and its sub-systems were assumed to be represented 

by a second-order Volterra series as follows: 

𝑦[𝑛] =  ℎ0 + ∑ ℎ1[𝑘1] 𝑥[𝑛 − 𝑘1]𝑀
𝑘1=0 + ∑ ∑ ℎ2[𝑘1, 𝑘2] 𝑥[𝑛 − 𝑘1]𝑥[𝑛 − 𝑘2]𝑀

𝑘2=0
𝑀
𝑘1=0      

(2) 

where 𝑥[𝑛] and 𝑦[𝑛] are the system input and output (i.e., CSP and AP for the total 

arc, CSP and SNA for the neural arc, and SNA and AP for the peripheral arc) with 

𝑥[𝑛] precisely denoting the input after removing its mean value.  The zeroth-order 

kernel ℎ0, which is the mean value of 𝑦[𝑛], along with the mean value of the input 

define the system operating point.  The first-order or linear kernel ℎ1[𝑛1]  indicates 

how the present and past input samples affect the present output sample.  The second-

order kernel ℎ2[𝑛1, 𝑛2] indicates how the interaction or cross-talk between two input 

samples that are 𝑛1 and 𝑛2 samples in the past affect the present output sample.   

The kernels of the total, neural, and peripheral arcs were estimated from the 

Gaussian white noise training data using a nonparametric, frequency-domain method 

[41].  This method was more effective than other nonparametric methods (see 

Discussion).  The memory M was set to 25 sec, which is twice the length of the linear 
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kernel of the total arc reported in previous studies [15].  This value was able to 

capture the memory of all systems (see Results).  The second-order kernel estimates 

were then visually examined to ultimately arrive at reduced, yet potentially more 

predictive, nonlinear models (see Results).  

Note that nonparametric identification was employed, because it does not 

impose a particular form for the kernels.  However, the trade-off is that long data 

records are needed to accurately estimate higher-order kernels.  Since the training 

data here were relatively short, the Volterra series had to be limited to second-order.  

However, this limitation may not be too serious, as many physiologic systems can be 

well represented with a second-order Volterra series [38].  

The kernels of the Volterra model in Eq. (2), ℎ0, ℎ1[𝑛1] , and ℎ2[𝑛1, 𝑛2], were 

estimated from the measured zero-mean input 𝑥[𝑛] and measured output 𝑦[𝑛] using a 

frequency-domain method.  This method is described in detail elsewhere [41].  

Briefly, the kernels were estimated in succession.  First, the zeroth-order kernel was 

estimated as the mean of the output as follows: 

ℎ0 = 𝐸(𝑦[𝑛]) 

where 𝐸(∙) is the expectation operator.  Next, the first-order kernel was estimated by 

first subtracting the contribution of the zeroth-order kernel from the output and then 

computing the cross-spectrum divided by the input spectrum (i.e., Wiener filter) as 

follows: 

𝑦1[𝑛] = 𝑦[𝑛] − ℎ0 

𝑅𝑦1𝑥(𝜆) =  ℎ1(𝜆) ⊛ 𝑅𝑥𝑥(𝜆)  →   ℱ{ℎ1(𝜆)} =
ℱ{𝑅𝑦1𝑥(𝜆)}

ℱ{𝑅𝑥𝑥(𝜆)}
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where 𝑅(∙) is the auto- or cross-correlation function between the indicated signals, ⊛ 

is the convolution operator, and ℱ(∙) is the Fourier Transform operator.  Finally, the 

second-order kernel was estimated by first subtracting the contribution of the zeroth- 

and first-order kernels from the output and then computing a two-dimensional 

generalization of the Wiener filter as follows:   

𝑦2[𝑛] = 𝑦1[𝑛] − 𝑥[𝑛] ⊛ 𝑘1[𝑛] 

𝑅𝑦2𝑥𝑥(𝜆1, 𝜆2) =  ℎ2(𝜆1, 𝜆2) ⊛ (2𝑅𝑥𝑥(𝜆1)𝑅𝑥𝑥(𝜆2))  →   ℱ2{ℎ2(𝜆1, 𝜆2)}

=
ℱ2{𝑅𝑦2𝑥𝑥(𝜆1, 𝜆2)}

2ℱ{𝑅𝑥𝑥(𝜆1)}ℱ{𝑅𝑥𝑥(𝜆2)}
 

where 𝑅(∙) is again the correlation function amongst the indicated signals, ⊛ is the 

two-dimensional convolution operator, and ℱ(∙)  and ℱ2(∙)  are one- and two-

dimensional Fourier Transform operators, respectively.  Note that 𝐸(∙)  and 𝑅(∙) 

above were computed via the standard sample mean and unbiased correlation function 

estimates. 

The kernels of the Uryson model of Figure 6, ℎ0 , ℎ1[𝑛], and ℎ2[𝑛], were 

estimated analogously.  First, the zeroth- and first-order kernels were estimated, as 

described above.  Then, the contribution of these kernels was subtracted from the 

output, also as described above.  Finally, the second-order kernel was estimated by 

first squaring the input and then computing the Wiener filter as follows:    

𝑥2[𝑛] = 𝑥2[𝑛] 

𝑅𝑦2𝑥2
(𝜆) =  ℎ2(𝜆) ⊛ 2𝑅2

𝑥𝑥(𝜆)  →   ℱ{ℎ2(𝜆)} =
ℱ{𝑅𝑦2𝑥2

(𝜆)}

ℱ{2𝑅2
𝑥𝑥(𝜆)}

 



17 

 

While these steps actually yield the kernels of a Wiener model, for a second-order 

nonlinear system, the first- and second-order kernels of Volterra and Wiener models 

are the same [38]. 

Model Evaluation 

The merit of the resulting nonlinear models with the first- and second-order 

kernel estimates and linear models with only the first-order kernel estimates was 

evaluated as follows.  First, the inputs from the Gaussian white noise training and 

testing data were applied to the models, and R2 values between the predicted and 

measured outputs and squared coherence functions (the power spectrum of the 

predicted output divided by the power spectrum of the measured output) were 

computed.  Then, the inputs from the staircase data were applied to the models, and 

the predicted and measured outputs were compared qualitatively.  Finally, binary 

white noise CSP with mean of 95 mmHg but amplitudes of 5, 10, 20, and 40 

mmHg and switching interval of 0.5 sec were applied to the models of the total and 

neural arcs, and the predicted outputs were qualitatively compared to the 

corresponding measured data from a previous study shown in Figure 3 [23].    

Statistical Comparison 

The R2 values from linear and nonlinear models were compared using paired t-

tests.  Before applying these tests, the R2 values were log transformed for more 

normally distributed data [42].  A p < 0.0125 was considered statistically significant 

based on a Bonferroni correction for up to four pairwise comparisons.   
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Results 

Gaussian White Noise Data 

Figure 4 shows the pre-processed CSP, AP, and calibrated SNA from the 

Gaussian white noise training data of one subject.  Table 1 shows the group average 

(meanSE) of the mean and standard deviation of these measurements and the pulse 

rate (PR).  The mean of CSP, AP, and SNA were 120.30.2 mmHg, 97.14.4 mmHg, 

and 80.711.8 au, respectively.  These levels define the operating points of the 

models of the total arc and its sub-systems developed herein.  The standard deviation 

of CSP, AP, and SNA were 16.50.3 mmHg, 6.6.0.2 mmHg, and 20.70.6 au, 

respectively.  These values indicate the range of validity of the models about their 

operating points.  The mean of PR was 39711 bpm, which corresponds to 6-7 Hz.  

Hence, the systems were mainly stimulated at sub-pulsatile frequencies (i.e., 

frequencies beneath the PR).  

 

Table 1: Group average (meanSE) of the mean and standard deviation of the pre-processed variables during 

Gaussian white noise CSP stimulation in the training data. 

 CSP AP SNA PR 

Mean 120.3±0.2 97.1±4.4 80.7±11.8 397.3±11.1 

Standard Deviation 16.5±0.3 6.6±0.2 20.7±0.6 2.8±0.3 

CSP is carotid sinus pressure (mmHg); AP, arterial pressure (mmHg); SNA, calibrated sympathetic nerve 

activity (au), and PR, pulse rate (bpm).   
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Figure 4: Gaussian white noise training data from one subject.  The left plots show pre-processed CSP, AP, 

and calibrated SNA versus time, while the right plots illustrate the power spectrum and histogram of un-

processed CSP.  CSP here was controlled using a Gaussian white noise signal of mean of 120 mmHg and 

standard deviation of 20 mmHg.   

 

Total Arc 

Figure 5 shows the group average (meanSE) of the first- and second-order 

kernels of a Volterra model of the total arc estimated from the Gaussian white noise 

training data.   
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Figure 5: Group average of first- and second-order kernel estimates of a Volterra model of the total arc.  The 

second-order kernel was approximately diagonal, and the diagonal differed in shape from the first-order 

kernel.  The solid and dashed lines here and in subsequent figures respectively represent mean and mean±SE 

over the ten subjects for study. 

There are two points to note.  First, the second-order kernel revealed small off-

diagonal values.  Indeed, none of the off-diagonal static gains (i.e., sums of 

ℎ2[𝑛1, 𝑛1 + 1], ℎ2[𝑛1, 𝑛1 + 2], … )  were significantly different from zero based on 

one-sample t-tests, except for the static gain of ℎ2[𝑛1, 𝑛1 + 4] (p < 0.01).  However, 

the static gain of this fourth off-diagonal was less than 25% of that of the main 

diagonal.  Hence, the second-order kernel was approximately diagonal, thereby 

indicating that cross-talk between pairs of input samples of different lags (i.e., 

𝑘1 ≠ 𝑘2 in Eq. (2)) hardly contributed to the output.  Second, the diagonal of the 

second-order kernel appeared different in shape from the first-order kernel.  Both of 

these findings were largely consistent for the individual subject kernel estimates 
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(results not shown).  The findings suggested to set 𝑘1 = 𝑘2 in Eq. (2) to arrive at the 

following reduced, yet potentially more predictive, second-order nonlinear model: 

𝑦[𝑛] =  ℎ0 + ∑ ℎ1[𝑘1] 𝑥[𝑛 − 𝑘1]𝑀
𝑘1=0 + ∑ ℎ2[𝑘1] 𝑥2[𝑛 − 𝑘1]𝑀

𝑘1=0            (3) 

h1[n]

h2[n](·)
2

x[n]
+

y[n]h0

 

Figure 6: Reduced, second-order Uryson model of the total arc derived by examination of the Volterra kernel 

estimates in Figure 5.  In this model, x[n] is the input, y[n] is the output, and h0, h1[n], and h2[n] are the 

zeroth-, first-, and second-order kernels of the system.  The model is a parallel connection of a linear dynamic 

system characterized by the first-order kernel and a Hammerstein system (squarer followed by a linear 

dynamic system characterized by the second-order kernel). 

Figure 6 shows a block diagram of the reduced model, which may be 

categorized as a Uryson model [43].  This model is a linear dynamic system in 

parallel with a squarer in cascade with another linear dynamic system.  The kernel of 

the former system is the linear kernel, whereas the kernel of the latter system is the 

second-order kernel.  The kernels of this reduced model were re-estimated using a 

nonparametric, frequency-domain method.  Figure 7 shows the resulting group 

average kernel estimates.  Both kernels showed low-pass or integral characteristics 

and similar dynamics.  That is, an impulsive increase in CSP at time zero would cause 

AP to initially decrease and then return to baseline.  The static gain of the first-order 

kernel (i.e., change in steady-state output divided by change in steady-state input) was 

-0.70 (unitless).  The static gain of the second-order kernel, unlike the first-order 

kernel gain, depends on the size and sign of the input change due to the squaring 

operation.  The static gain of this kernel was -0.22 (unitless) for an average step CSP 
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increase of 16 mmHg or +0.22 for a CSP decrease of 16 mmHg.  The dominant time 

constants (computed robustly via the kernel sum divided by the peak kernel amplitude 

[44]) of the first- and second-order kernels were about 4.1 and 6.2 sec, respectively.  
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Figure 7: Group average of first- and second-order kernel estimates of the reduced Uryson model of the total 

arc.  Both kernels show integral or low-pass characteristics, but the second-order kernel is more sluggish than 

the first-order kernel. 

Table 2 shows the group average of the R2 values between the AP predicted by 

the individual subject models when stimulated by the Gaussian white noise CSP in 

the training and testing data and the measured AP.  The training data results actually 

reflect model fitting rather than model prediction capabilities.  The Volterra model 

achieved the best model fit, as indicated by the higher R2 values, simply because it 

was a superset of the other models.  For the testing data, which do indicate model 

prediction abilities, the linear model achieved a fairly high R2 value of 0.640.03.  

While the Volterra model did not improve upon this value, the Uryson model, which 
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is simpler and may thus include more accurate kernel estimates, attained an R2 value 

of 0.710.03.  So, the Uryson model improved AP prediction over the linear model by 

12% (p < 0.01).   

Table 2: Group average of the R
2
 values between AP predicted by three models of the total arc and measured 

AP during Gaussian white noise CSP stimulation. 

 

Linear 

Second-

order 

Volterra 

Second-

order 

Uryson 

Training Data 0.73±0.03 0.85±0.01
*
 0.79±0.03

*
 

Testing Data 0.64±0.03 0.64±0.04 0.71±0.03
*
 

*
denotes p < 0.01 for paired t-test between indicated linear and nonlinear models after log transformation of 

the R
2
 values. 

Figure 8 shows the group average of the squared coherence functions for the 

linear and Uryson models in the testing data.  As can be seen, the improved AP 

prediction afforded by the Uryson model was in the low frequency regime.  Hence, 

the system nonlinearity was at low frequencies.     
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Figure 8: Group average of squared coherence functions for the Uryson model and a standard linear model of 

the total arc in the testing data.  The improved AP prediction offered by the Uryson model was in the low 

frequency regime.  Hence, the system nonlinearity was at low frequencies.  
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Figure 9 shows the group average of the static behavior of the total arc 

predicted by the individual subject Uryson models in response to the staircase CSP 

(wherein each CSP step or level was flat) and the measured static behavior.  The 

model predicted thresholding (qualitatively) but not saturation.   
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Figure 9: Group average of the static behavior of the total arc predicted by the Uryson model in response to 

the staircase CSP (wherein each CSP step or level was flat) and the measured static behavior.  The Uryson 

model was able to predict thresholding but not saturation. 

Figure 10 shows the AP predicted by the group average Uryson model when 

stimulated by the binary white noise CSP of increasing amplitude.  Like the measured 

AP from a previous study [23] shown in Figure 3, the model predicted significant 

mean AP reductions with increasing amplitude.  But, unlike the measured AP, the 

model also predicted increases in AP variance as the amplitude increased.  Note that 

the linear model cannot predict any of these nonlinear behaviors. 
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Figure 10: Predicted AP by the group average Uryson model of the total arc in response to the same binary 

white noise CSP signal from a previous study shown in Figure 3.  Like the measured AP in Figure 3, the 

model predicted reductions in mean AP with increasing CSP amplitude.  But, unlike this measured AP, the 

model predicted increases in AP variance as the CSP amplitude increased.  

Neural and Peripheral Arcs  

The first- and second-order kernels of a Volterra model of the neural arc 

estimated from the Gaussian white noise training data also suggested a reduced 

Uryson model (results not shown).  Figure 11 shows the group average of the first- 

and second-order kernels of the Uryson model of the neural arc estimated from these 

data.  Both kernels showed high-pass or derivative characteristics and similar 

dynamics.  The static gain of the first-order kernel was -0.57 (au/mmHg), while the 

static gain for the second-order kernel was -0.12 (au/mmHg) for an average step CSP 

increase of 16 mmHg or +0.12 for a CSP decrease of 16 mmHg.  The dominant time 

constants of the first and second-order kernels were about 0.3 and 0.6 sec, 
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respectively.  While these small time constants may not have been accurately 

estimated due to the 2 Hz sampling rate, it is clear that the neural arc was much faster 

than the total arc.   
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Figure 11: Group average of first- and second-order kernel estimates of a reduced, second-order Uryson 

model of the neural arc.  Both kernels show derivative or high-pass characteristics.  The kernels are much 

faster than those of the total arc (see Figure 7).   

Table 3 shows the group average of the R2 values between the SNA predicted 

by the individual subject models when stimulated by the Gaussian white noise CSP in 

the training and testing data and the measured SNA.  Again, as expected and indicated 

by the training data results, the Volterra model achieved the best model fit.  However, 

the R2 values were only modestly higher than those of the linear and Uryson models 

here.  For the testing data, the linear model attained a high R2 value of 0.770.02.  

The nonlinear models did not significantly improve upon this value.  Hence, the 

neural arc was approximately linear.  Indeed, even though the neural arc exhibits the 
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nonlinear behaviors of thresholding and saturation [20] and DC responses to AC 

changes, as indicated via SNA in Figure 3, the nonlinear models of the neural arc 

showed predictions of these behaviors that were not that different from the linear 

model (results not shown). 

Table 3: Group average of the R
2
 values between SNA/AP predicted by models of the neural and peripheral 

arcs and measured SNA/AP during Gaussian white noise CSP stimulation. 

 
Neural Arc 

Peripheral 

Arc 

 

Linear 

Second-

order 

Volterra 

Second-

order 

Uryson 

Linear 

Training Data 0.80±0.01 0.84±0.01
*
 0.82±0.01 0.87±0.02 

Testing Data 0.77±0.02 0.80±0.01 0.79±0.02 0.81±0.04 

*
denotes p < 0.01 for paired t-test between indicated linear and nonlinear models after log transformation of 

the R
2
 values. 
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Figure 12: Group average of the kernel estimate of a linear model of the peripheral arc.  The kernel shows 

integral or low-pass characteristics and is similar in speed to those of the total arc (see Figure 7). 

Figure 12 shows the group average of the first-order kernel of a linear model 

of the peripheral arc estimated from the Gaussian white noise training data.  A 

reliable second-order kernel could not be estimated, since SNA, which is the input to 
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the peripheral arc, was not Gaussian white noise.  The linear kernel showed low-pass 

or integral characteristics and the expected, positive open-loop dynamics.  That is, an 

impulsive increase in SNA at time zero would cause AP to initially increase and then 

return to baseline.  The static gain was 1.6 mmHg/au.  Its dominant time constant was 

5.8 sec, so, as expected, the peripheral arc was more sluggish than the neural arc. 

Table 3 shows the group average of the R2 values between the AP predicted by 

the individual subject linear model when stimulated by the SNA in the Gaussian 

white noise training and testing data and the measured AP.  For both the training and 

testing data, the R2 value was high.  In particular, for the more meaningful testing data, 

the R2 value was 0.810.04.  Hence, the peripheral arc was likely approximately 

linear anyhow.   

Discussion 

We developed a second-order, nonlinear dynamic model of the 

sympathetically-mediated total baroreflex arc by employing Gaussian white noise 

stimulation and nonparametric identification.  We validated the model by showing 

that it could predict (i) AP appreciably better than a standard linear model when 

stimulated by a new Gaussian white noise realization and (ii) the important nonlinear 

behaviors of thresholding and DC responses to AC changes.  The validated model 

illustrates that the form of the second-order nonlinearity of the total arc is close to 

diagonal.  This result, which represents the major finding herein, means that the 

square of zero-mean CSP (i.e., 𝑥2[𝑛]) causes changes in AP (i.e., 𝑦[𝑛]), but the 

products of, or “cross-talk” between, zero-mean CSP at different lags (e.g., 
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𝑥[𝑛] 𝑥[𝑛 − 1] or 𝑥[𝑛 − 2] 𝑥[𝑛 − 4]) have little impact on AP.  To shed light on the 

sources of nonlinearity, we likewise developed and tested models of the neural and 

peripheral arcs.  But, the models of these two sub-systems of the total arc showed 

approximately linear behaviors.     

Gaussian White Noise Approach for Nonlinear System Identification     

Application of white noise inputs allows systems to be accurately identified 

over the entire frequency range.  Such inputs are useful for both linear and nonlinear 

system identification.  However, white noise inputs specifically generated from a 

Gaussian distribution are needed for nonlinear identification.  In particular, since 

nonlinear systems do not obey the amplitude scaling property (e.g., if 𝑦[𝑛] results 

from 𝑥[𝑛], then 2𝑦[𝑛] will result from 2𝑥[𝑛]), a broad range of amplitude excitation 

is required for reliable identification of nonlinear systems.  Gaussian inputs provide 

such a range, whereas binary inputs, for example, only provide two amplitude levels.  

Furthermore, Gaussian inputs facilitate nonlinear system identification in other ways 

including orthogonalization of the functionals so that each kernel can be estimated 

independently.  We refer the reader to [38] for more information on the powerful 

Gaussian white noise approach. 

Nonparametric Identification Method 

We estimated the first- and second-order kernels of the models using short 

periods (6 min) of Gaussian white noise stimulation.  Hence, the inputs were not 

exactly Gaussian and white.  We specifically applied a frequency-domain method to 

estimate the kernels without assuming any form [41].  Other nonparametric 
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identification methods were available.  The most popular is Lee and Schetzen’s cross-

correlation method [45].  This method assumes that the input is strictly Gaussian 

white noise and thus requires long data records [39].  Korenberg’s method, which is 

also well known, efficiently solves the normal equations [46], [47].  This method only 

assumes that the input is broadband.  However, by not assuming a Gaussian input, it 

must compute higher-order correlations (to form the normal equations), which also 

requires long data records [39].  Also note that this method can only produce an 

estimate, if the data length is at least equal to the number of kernel samples for 

estimation.  The frequency-domain method for estimating the Volterra kernels 

assumes that the input is Gaussian but broadband and may thus be a good 

compromise between these methods.  We actually applied all three methods.  While 

the kernel estimates of the methods were similar on average, the frequency-domain 

method yielded the smoothest estimates (results not shown).   

The frequency-domain method provides the optimal estimates of the linear and 

nonlinear kernels in the least squares sense without assuming a model form [48].  The 

resulting kernels of this nonparametric identification method are thus the best 

unbiased estimates.  In other words, the linear part of the nonlinear model and the best 

linear model are one in the same.  Parametric identification methods could provide 

better estimates of both the linear and nonlinear kernels by trading off bias for 

precision.  However, these methods assume a particular model form.  Our purpose 

here was not to assume a model form but rather to discover the form.  Nevertheless, 

we also applied standard autoregressive exogenous input (ARX) identification to 

estimate the linear kernels [28].  However, this parametric identification method did 



31 

 

not yield more predictive linear kernels than the frequency-domain method (results 

not shown).  Regardless of this finding, comparison between the linear and nonlinear 

models estimated by the frequency-domain method may be considered fair, since 

neither model assumes a particular form.          

Total Arc Model 

We arrived at the second-order, nonlinear dynamic model of the total arc 

shown in Figure 6 and Figure 7 in two steps.  First, we applied the frequency-domain 

method to estimate the kernels of a Volterra model.  The resulting second-order 

kernel shown in Figure 5 was approximately diagonal.  Hence, only the past values of 

the square of the input, rather than the product of input samples of different lags, 

contributed to the output.  Further, this diagonal differed in shape from the first-order 

kernel (see Figure 5).  So, the Volterra model may be reduced to an Uryson model 

(see Figure 6).  Second, we again applied the frequency-domain method with the aim 

of more accurately estimating the kernels of the reduced model (see Figure 7).  The 

resulting model is a linear system in parallel with a squarer in cascade with another 

linear system.  The kernel of the former system (ℎ1[𝑛]) is the linear kernel, while the 

kernel of the latter system (ℎ2[𝑛])  is the second-order kernel, which was more 

sluggish.  We tried to further simplify the total arc model by assuming that ℎ1[𝑛] =

ℎ2[𝑛].  However, the resulting Hammerstein model did not improve AP predictions 

over a linear model (results not shown).  We also tried to derive a more accurate total 

arc model by estimating the second-order kernel with a non-zero diagonal and a non-

zero fourth off-diagonal (whose gain was statistically different from zero in the 
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Volterra model).  However, this model did not improve AP predictions over the 

Uryson model (results not shown). 

We assessed the validity of the Uryson model of the total arc.  In particular, 

we applied three different CSP inputs to the model, and compared the predicted AP to 

the measured AP.   

First, we applied a Gaussian white noise input that was not utilized to develop 

the model.  As shown in Table 2, the linear model with only the first-order kernel was 

able to predict 64% of the measured AP variance, while the Uryson model with both 

kernels predicted 71% of the variance.  Although the linear model was quite 

explanatory, the nonlinear model significantly improved the AP prediction by 12% (p 

< 0.01).  The squared coherence function of Figure 8 indicated that this AP 

improvement was at low frequencies.  Hence, the system nonlinearity was in the low 

frequency regime.  While the Uryson model did improve the prediction, 29% of the 

measured AP variance remained unexplained.  These variations were not white 

(results not shown) and could be due to higher-order nonlinearity, non-stationarity, 

SNA from higher brain centers, and fast-acting hormonal loops.  Note that 

measurement noise may not have been a factor, as AP was invasively measured and 

then low-pass filtered and down-sampled all the way to 2 Hz.  Also note that low 

frequency AP may be similar regardless of the site of measurement [49] .   

Second, we applied a staircase input to predict static system behavior.  As 

shown in Figure 9, the model was able to predict thresholding.  The mechanism for 

this prediction is as follows.  When CSP increases relative to its mean value, the 

second-order kernel enhances the magnitude of the AP drop.  However, when CSP 
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decreases relative to its mean value, the second-order kernel blunts the AP increase.  

On the other hand, the model did not predict saturation. One reason is that the 

Gaussian white noise stimulation used to develop it (mean and standard deviation of 

120 and 16.5 mmHg) hardly excited the saturation regime (CSP > 160 mmHg).  

Quantitative differences between predicted and measured thresholding may have been 

due to differences in the operating points of the data used to develop the model (mean 

CSP and AP of 120 and 97 mmHg as shown in Table 1) and test the model (mean 

CSP and AP of 120 and 120 mmHg as shown in Figure 9).  

Third, we applied binary white noise of increasing amplitude.  As illustrated in 

Figure 10, the model predicted reductions in mean AP, but increases in AP variance, 

with increasing amplitude.  While the corresponding measured AP from a previous 

study (see Figure 3) [23] likewise indicated mean AP reductions, it revealed little 

change in AP variance.  Higher-order nonlinearity may be needed to blunt the AP 

variance.  Another possible reason for the difference between the prediction and 

measurement may be variations in the range of CSP input used to develop and test the 

model.   

As implied above, the Uryson model developed herein can only be expected to 

be valid over the range of data utilized in its development.  This range is defined by a 

CSP of 120±16.5 mmHg (mean±SD) and mostly < 1 Hz and an AP of 976.6 mmHg.  

The model should be considered only over this range. 

A few other nonlinear dynamic models of the total arc have been previously 

conceived.  After finding that neither a Hammerstein model (a static nonlinearity 
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followed by a linear dynamic system) nor a Wiener model (a linear dynamic system 

followed by a static nonlinearity) could explain data, a sandwich model – a Wiener 

model (to represent the neural arc) in cascade with a linear model (to represent the 

peripheral arc) – was proposed to represent the total arc [20].  A more complicated 

nonlinear model, which may also be viewed as a sandwich model, was developed 

earlier [35].  The main difference between these previous efforts and the present study 

is that we did not assume a certain model form.  Rather, we let the data dictate the 

form via Gaussian white noise stimulation and nonparametric identification.  Indeed, 

we found that the total arc could be represented with an Uryson model, which 

contradicts a sandwich, Hammerstein, and Wiener model.  That is, a sandwich model 

with a static nonlinearity that is odd about the operating point (similar to a 

thresholding and saturation curve) would show an identically zero second-order 

kernel; a Hammerstein model would reveal identical first- and second-order kernels; 

and a Wiener model would show a second-order kernel with non-zero off-diagonal 

values [50].   

Neural Arc and Peripheral Arc Models 

We arrived at the second-order Uryson model of the neural arc shown in 

Figure 11 using a similar two step approach and likewise assessed the model.  

However, this model (and a Volterra model) displayed approximately linear behavior.  

In particular, when stimulated by a new realization of Gaussian white noise, it could 

not predict SNA better than a linear model, as shown in Table 3.  Indeed, the linear 

model could already explain much (77%) of the SNA variance.  The unexplained 
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variations could be due to the aforesaid factors as well as measurement noise.  In 

addition, while the neural arc shows thresholding and saturation [20] and DC 

responses to AC changes (see SNA response in Figure 3), the Uryson model of the 

neural arc could not well predict these behaviors.  We could not develop a reliable 

nonlinear model of the peripheral arc, because the SNA input was not Gaussian white 

noise.  We thus settled upon the linear model shown in Figure 12.  When stimulated 

by new Gaussian white noise, this model was also able to predict much (81%) of the 

AP variance, as shown in Table 3. 

In sum, while the total arc exhibited appreciable nonlinear behaviors, its two 

sub-systems displayed approximately linear behavior.  Hence, identification of the 

neural and peripheral arcs did not shed light on the sources of total arc nonlinearity.  

One possible explanation for this seemingly contradictory finding is that splanchnic 

SNA, which was used to construct the sub-system models, did not represent whole 

body SNA, which actually determined total arc behavior.  However, we performed 

pilot experiments and found similar cardiac and splanchnic SNA responses to 

controlled CSP stimulation (results not shown).  So, these experiments did not support 

this explanation.  Another explanation may be that the neural arc is actually nonlinear 

but its nonlinearity was not well identified.  In particular, as indicated in Figure 8, the 

nonlinearity was in the low frequency regime.  However, SNA power was 

predominantly in the high frequency band due to the derivative characteristics of the 

neural arc.  Hence, the little SNA power at low frequencies may have been dominated 

by SNA from higher brain centers rather than from the baroreflex.  As described in 

[38], this “physiologic noise” may have had a linearizing effect in the identification 
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process such that neural arc nonlinearity was masked over the low frequency regime.  

Note that afferent C-fibers could be responsible for neural arc nonlinearity.  These 

fibers are slow acting nerves [51], [52] that are highly nonlinear with respect to 

stretch [52].  Such behaviors are congruent with the findings here that the nonlinear 

behavior of the total arc was in the low frequency regime.   

As indicated above, a Wiener model of the neural arc was previously proposed 

[20], [23].  We also tried to represent this system with Wiener and Hammerstein 

models.  But, neither model appreciably improved SNA predictions over a linear 

model (at most 4% when stimulated by new Gaussian white noise).  The reason for 

the difference between this and past studies could possibly be variations in the 

amplitude of the CSP stimulation employed.  

Study Limitations 

Our study has several limitations.  First, the use of anesthesia and open-loop 

conditions surely impacted the models.  However, closed-loop identification has its 

own challenges [53].  Second, CSP excitation was limited to an amplitude range that 

hardly reached the saturation regime, a short time period, and frequencies mainly 

within 1 Hz.  Hence, saturation and DC responses to long-term, pulsatile changes 

could not be modeled.  However, note that increasing the amplitude, time period, and 

switching rate of CSP stimulation could damage the baroreceptors and cause major 

non-stationarity. Third, the vagal arm of the total arc was abolished.  However, 

inclusion of this arm would also bring in the confounding effects of the 

cardiopulmonary baroreflex.  Finally, the model was restricted to second-order 
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nonlinearity due to the short data records.  However, parametric identification 

methods, which assume a particular model form, may be required to estimate higher-

order kernels from short data records [50]. 
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CHAPTER 4. NONLINEAR IDENTIFICATION OF THE 

TOTAL BAROREFLEX ARC: CHRONIC HYPERTENSION 

MODEL 

In the previous chapter, we employed the Gaussian white noise approach for 

nonlinear system identification to develop a second-order, nonlinear dynamic model 

of the total arc in normotensive Wistar Kyoto rats (WKY).  The model predicted AP 

12% better than a linear dynamic model in response to new Gaussian white noise and 

important nonlinear behaviors including baroreflex thresholding and mean responses 

to input changes about the mean.  The validated model revealed that the structure of 

the total arc is a linear dynamic system in parallel with a cascade combination of a 

squaring system and a different linear dynamic system, as shown in Figure 6.  This 

structure falls within the category of “Uryson” models [56].   

In this chapter, we aimed to likewise establish second-order, nonlinear 

dynamic models of the total arc as well as its sub-systems in spontaneously 

hypertensive rats (SHR) and to compare these models to our previously published 

models for WKY.  Our results indicate that the second-order nonlinear dynamics of 

the total arc in SHR, which showed the same structure as in WKY, are augmented 

significantly more than the linear dynamics.  Hence, nonlinear dynamic functioning 

of the total arc may enhance baroreflex buffering of AP increases more in SHR than 

WKY. 
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Nonlinear Model and Estimation Method 

Nonlinear models of the total arc and its sub-systems were developed as 

likewise outlined in the previous chapter.  As described therein, each system was 

assumed to be represented by a second-order Volterra series as Eq. (2) that we 

repeated here: 

𝑦[𝑛] =  ℎ0 + ∑ ℎ1[𝑘1] 𝑥[𝑛 − 𝑘1]𝑀
𝑘1=0 + ∑ ∑ ℎ2[𝑘1, 𝑘2] 𝑥[𝑛 − 𝑘1]𝑥[𝑛 − 𝑘2]𝑀

𝑘2=0
𝑀
𝑘1=0       

Again, 𝑛 is discrete-time; 𝑥[𝑛] and 𝑦[𝑛] are the measured input and output (i.e., CSP 

and AP for the total arc, CSP and SNA for the neural arc, and SNA and AP for the 

peripheral arc) with 𝑥[𝑛] precisely denoting the input after removing its mean value; 

and ℎ0, ℎ1[𝑛1], ℎ2[𝑛1, 𝑛2] are the system kernels, with memory M, for estimation.  

The zeroth-order kernel ℎ0 is simply the mean value of 𝑦[𝑛].  As before, the first-

order or linear kernel ℎ1[𝑛1], which is the time-domain version of the conventional 

transfer function, indicates how the present and past input samples (e.g., 𝑥[𝑛] and 

𝑥[𝑛 − 3]) affect the current output sample 𝑦[𝑛].  The second-order nonlinear kernel 

ℎ2[𝑛1, 𝑛2] indicates how the interaction between, or product of, two input samples 

that are 𝑛1 and 𝑛2 samples in the past (e.g., 𝑥2[𝑛 − 1] or 𝑥[𝑛 − 2]𝑥[𝑛 − 4]) impact 

𝑦[𝑛].  While this model neglects higher order nonlinearity, many physiologic systems 

can be well represented with a second-order Volterra series [38].   

The kernels of the total, neural, and peripheral arcs were estimated from the 

pre-processed SHR120 and SHR160 training data using a nonparametric, frequency-

domain method as explained in the previous chapter ([41]).  The memory M was set 

to 25 sec, which is twice the length of the linear kernel of the total arc reported in our 
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previous study [15].  This value captured the memory of all systems (see Results).  

The second-order kernel estimates were then visually examined to ultimately arrive at 

reduced nonlinear models with potentially more accurate kernel estimates (see 

Results).  Note that the second-order Uryson model of Figure 6 is one example of a 

reduced nonlinear model.  In this simpler model, the product of the present and past 

input samples of the same lag (e.g., 𝑥2[𝑛 − 1]) affect 𝑦[𝑛] but not the product of past 

input samples of different lags (e.g., 𝑥[𝑛 − 2]𝑥[𝑛 − 4]).  Hence, while the second-

order Volterra kernel is a function of two variables (i.e., ℎ2[𝑛1, 𝑛2] as indicated in the 

above equation), the second-order Uryson kernel is only a function of one variable 

(i.e., ℎ2[𝑛] as indicated in Figure 6).  Further, in a second-order Uryson model, the 

second-order kernel (i.e., ℎ2[𝑛]) differs in shape from the first-order kernel (ℎ1[𝑛]), 

as implied in Figure 6.  This means that a second-order Volterra model may be 

reduced to a second-order Uryson model, if (a) the off-diagonal values of the second-

order Volterra kernel are zero (i.e., ℎ2[𝑛1, 𝑛2] = 0 for 𝑛1  𝑛2) and (b) the diagonal 

values (i.e., ℎ2[𝑛1, 𝑛2]  for 𝑛1  = 𝑛2 ) are not simply proportional to the first-order 

kernel (i.e., ℎ2[𝑛, 𝑛]  aℎ1[𝑛], where a is an arbitrary constant).      

Model Testing 

The resulting nonlinear models with the first- and second-order kernel 

estimates and linear models with only the first-order kernel estimates were evaluated.  

First, the inputs from the SHR120 and SHR160 training and testing data were applied to 

the models. Then, R2 values between the predicted and measured outputs were 

computed.  Finally, the R2 values from linear and nonlinear models were compared 
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after log transformation via paired t-tests with Holm’s correction for multiple 

comparisons [57].  

Model Comparison to WKY 

The resulting validated models for SHR120 and SHR160 were compared to 

models for WKY (last chapter as well as [58]).  The models for WKY were developed 

and validated by applying similar methodology to ten age-matched WKY except that 

the Gaussian white noise stimulation was employed only at a mean of 120 mmHg, 

which is the normal CSP level of WKY.  In particular, first- and second-order kernel 

estimates for SHR120, SHR160, and WKY were characterized in terms of three 

parameters: area, to indicate the steady-state gain; absolute peak amplitude, to 

indicate the maximal gain; and dominant time constant (via a robust rectangular 

method [44]), to indicate the speed in reaching steady-state.  The area and absolute 

peak amplitude of the second-order kernel estimates were scaled by the standard 

deviation of the input so that they could be meaningfully related to the corresponding 

parameters of the first-order kernel estimates.  The kernel parameters for SHR120, 

SHR160, and WKY were then compared after log transformation using unpaired t-tests 

again with Holm’s correction.   

Results 

Gaussian White Noise Data 

Figure 13 shows the pre-processed CSP, AP, and calibrated SNA from the 

SHR120 and SHR160 training data of one subject.  The group average (meanSE) mean 

and standard deviation of the pre-processed AP in the training data were 176.3±15.5 
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and 9.4±1.1 mmHg for SHR120 and 143.7±15.1 and 10.6±1.7 mmHg for SHR160, 

respectively.  The corresponding values for WKY from the previous chapter were 

97.1±4.4 and 6.6±0.2 mmHg [58].  The mean of AP for SHR120 and SHR160 was 

significantly higher than that of WKY, which suggests baroreceptor resetting in SHR.  

The standard deviation of AP for SHR120 and SHR160 tended to be higher than that for 

WKY, which hints at enhanced total arc dynamics in SHR.  The group average mean 

and standard deviation of the pre-processed SNA in the training data were 123.6±17.5 

and 25.0±2.0 arbitrary units (au) for SHR120, 90.6±16.7 and 28.9±2.8 au for SHR160, 

and, again from the previous chapter, 80.7±11.8 and 20.7±0.6 au for WKY, 

respectively.  (Note that SNA cannot be compared between different subjects due to 

the SNA calibration step.)  These mean values with corresponding CSP levels and the 

standard deviation values define the operating point and range of applicability, 

respectively, of the models of the baroreflex arcs reported herein. 
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Figure 13:  Gaussian white noise training data from one subject.  SHR120 and SHR160 are spontaneously 

hypertensive rats during Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of 120 and 

160 mmHg, respectively.  



44 

 

Total Arc Model 

Figure 14 shows the group average first- and second-order kernels of Volterra 

models of the total arc estimated from the SHR120 and SHR160 training data.  Note that 

the inputs for the first-order and second-order kernels are CSP and CSP2, respectively, 

while the output for both kernels is AP.  Hence, in discrete-time, the units are 

mmHg/mmHg (unitless) for the first-order kernel and mmHg/mmHg2 (mmHg-1) for 

the second-order kernel.  

The kernels are qualitatively similar to those of WKY in two ways (last 

chapter as well as [58]).  First, the second-order kernels revealed small off-diagonal 

values.  In fact, the off-diagonal energies (i.e., sums of squares of ℎ2[𝑛1, 𝑛1 + 1], 

ℎ2[𝑛1, 𝑛1 + 2], …) were typically less than 10% of the diagonal energy (i.e., sum of 

squares of ℎ2[𝑛1, 𝑛1]), and all of the off-diagonal energies were statistically smaller 

than the diagonal energy via t-tests (p < 0.0003).  Hence, the second-order kernels 

were approximately diagonal.  Second, the diagonals of the second-order kernels were 

different in shape from the first-order kernels (see Figure 15 for clear view).  As 

described above, these two attributes of the second-order kernel mean that the 

Volterra model may be reduced to the Uryson model of Figure 6 for both SHR120 and 

SHR160.  The kernels of the reduced models were re-estimated using a non-parametric 

frequency-domain method [58] with M again set to 25 sec.  (This procedure yielded 

somewhat different and likely more accurate second-order Uryson kernel estimates 

than the diagonal of the second-order Volterra kernel estimates.)  Figure 15 shows the 

resulting group average Uryson kernel estimates, while the Appendix provides the 

numerical values of the kernel estimates including for WKY.  The four kernels were 
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similar in shape to each other as well as to the corresponding kernels for WKY (see 

[58]).  These kernels indicated low-pass characteristics and similar dynamics with 

each other (i.e., an impulse increase in CSP at time zero would cause AP to decrease 

and then return to baseline without oscillation). 

 

Figure 14:  Group average first-order (linear) and second-order kernel estimates (meanSE) of complete 

Volterra models (see Equation) of the total baroreflex arc in SHR120 and SHR160.  The inputs for the first-

order and second-order kernels are CSP and CSP2, respectively, while the output for both kernels is AP.  

Hence, in discrete-time, the units are mmHg/mmHg (unitless) for the first-order kernel and mmHg/mmHg2 

(mmHg-1) for the second-order kernel.  Front view precisely means the view point with azimuth of 135° and 

elevation of 0° with respect to the axis origin.   
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Figure 15:  Group average first- and second-order kernel estimates of reduced Uryson models of the total arc 

in SHR120 and SHR160. 

 

Table 4: Group average R
2
 values between arterial pressure (AP) predicted by models of the total baroreflex 

arc and measured AP. 

 
Linear 

Second-order 

Volterra 

Second-order 

Uryson 

SHR12

0 

Training 

Data 
0.53±0.05 0.81±0.02* 0.69±0.04* 

Testing 

Data 
0.45±0.04 0.52±0.07 0.64±0.04* 

SHR16

0 

Training 

Data 
0.63±0.05 0.82±0.03* 0.71±0.05* 

Testing 

Data 
0.59±0.06 0.63±0.06 0.71±0.05* 

*
 denotes statistical significance for paired t-test comparison with corresponding linear model after Holm’s 

correction for three comparisons.   

Table 4 shows the group average R2 values between the AP predicted by the 

individual subject models when stimulated by the Gaussian white noise CSP in the 

SHR120 and SHR160 training and testing data and the measured AP.  The training data 

results actually indicate model fitting ability, whereas the testing data results truly 

indicate model prediction capacity.  In the testing data, the linear models achieved an 

R2 value of only 0.450.04 for SHR120 but 0.590.06 for SHR160.  The Uryson models 

significantly improved upon these values by 43% for SHR120 and 21% for SHR160.  

The linear and Uryson model predictive capacities for WKY were more similar to 
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those for SHR160 than SHR120 (see [58]).  Note that the predictive capacity of the 

Volterra models was worse than that of the Uryson models in the testing data due to 

overfitting in the training data.         

Table 5: Group average parameters of the kernels of the validated Uryson model of the total arc. 

  WKY SHR
120

 SHR
160

 

Linear    

Kernel 

Area/Gain (unitless) -0.70±0.11 -0.61±0.15 -0.76±0.09 

Absolute Peak Amplitude 

(unitless) 
0.085±0.011 0.127±0.022 0.165±0.029 

Time Constant (s) 4.1±0.5 2.4±0.4 2.4±0.2 

Second-order 

Uryson Kernel 

Area/Gain (unitless) -0.22±0.03 -0.37±0.05 -0.38±0.04 

Absolute Peak Amplitude 

(unitless) 
0.020±0.004 0.053±0.007 0.037±0.006 

Time Constant (s) 6.2±0.8 3.5±0.4 5.5±0.6 

p
-v

a
lu

es
 

Linear 

Kernel 

 

WKY vs 

SHR120 

WKY vs 

SHR160 

SHR120 vs 

SHR160 

Area/Gain (unitless) 0.49 0.41 0.23 

Absolute Peak Amplitude 

(unitless) 
0.12 0.021 0.31 

Time Constant (s) 0.10 0.007* 0.57 

Second-

order 

Uryson 

Kernel 

Area/Gain (unitless) 0.019* 0.006* 0.65 

Absolute Peak Amplitude 

(unitless) 
<0.001* 0.013* 0.091 

Time Constant (s) 0.006* 0.75 0.014* 

WKY, Wistar Kyoto rats during Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of 

120 mmHg; and SHR120 and SHR160, spontaneously hypertensive rats during the same CSP stimulation with 

mean of 120 and 160 mmHg, respectively.  The WKY values are from last chapter, and the p-values were 

obtained via unpaired t-tests.  * denotes statistical significance after Holm’s correction for three comparisons.   

 

Table 5 shows group average parameters of the first- and second-order kernels 

of the validated Uryson models of the total arc for SHR120 and SHR160.  This table 

also includes the corresponding values for WKY from last chapter.  The absolute peak 

amplitude and time constant of the linear kernel for SHR160 were nearly twice as large 

and almost half as small as those for WKY, respectively.  These differences were 

either significant or close to significant.  However, the area (or gain) of the linear 

kernel for SHR160 and all three parameters of this kernel for SHR120 were not 
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significantly different from those for WKY.  The gains and absolute peak amplitudes 

of the second-order kernels indicated a 20 to 60% magnitude of effect relative to their 

linear kernel counterparts, whereas the time constants of the second-order kernels 

generally indicated a slower effect than the linear kernels.  The parameters of the 

second-order kernels for SHR120, SHR160, and WKY were more significantly different 

than those of the linear kernels.  In particular, the gains and absolute peak amplitudes 

of the second-order kernels for SHR120 and SHR160 ranged from about 170 to 270% 

larger than those for WKY.  In addition, the time constant of the second-order kernel 

for SHR120 was about 60% smaller than those for WKY and SHR160.  All of these 

differences were significant.  In sum, the second-order kernel of the total arc was 

augmented significantly more in SHR relative to WKY than the linear kernel.  

Neural Arc and Peripheral Arc Models 

Like our finding in WKY (last chapter as well as [58]), the first- and second-

order kernels of Volterra models of the neural arc estimated from the SHR120 and 

SHR160 training data likewise suggested reduced Uryson models (results not shown).  

Figure 16 shows the group average kernels of the Uryson models of the neural arc 

estimated from these data.  The four kernels appeared similar in shape to each other as 

well as to the corresponding kernels for WKY (see last chapter as well as [58]).  

These kernels indicated high-pass characteristics and similar dynamics with each 

other (i.e., an impulse increase in CSP at time zero would cause SNA to decrease and 

then return to baseline with oscillation) and were much faster than their total arc 

counterparts (see Figure 15).  
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Reliable second-order kernels of Volterra models of the peripheral arc could 

not be estimated, because the input of this system (SNA) was not Gaussian white 

noise.  Figure 17 shows the group average kernels of linear models of the peripheral 

arc estimated from the SHR120 and SHR160 training data.  The two kernels were 

similar overall to each other and to the corresponding kernel for WKY (see last 

chapter as well as [58]).  These kernels indicated low-pass characteristics and 

expected open-loop dynamics (i.e., an impulse increase in SNA at time zero would 

cause AP to increase and then return to baseline without oscillation) and were similar 

in speed to their total arc counterparts. 
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Figure 16:  Group average first- and second-order kernel estimates of Uryson models of the neural arc in 

SHR120 and SHR160. 
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Figure 17:  Group average first-order kernel estimates of linear models of the peripheral arc in SHR120 and 

SHR160. 
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Table 6 shows the group average R2 values between the SNA predicted by the 

individual subject models of the neural arc when stimulated by the Gaussian white 

noise CSP in the SHR120 and SHR160 training and testing data and the measured SNA.  

In the testing data, the linear models achieved high R2 values of 0.650.03 for SHR120 

and 0.820.01 for SHR160.  The Uryson and Volterra models significantly improved 

upon the value for SHR120 by 8 to 9% but did not appreciably improve the value for 

SHR160 (1%).  So, the neural arc for SHR160 was approximately linear.  Table 6 also 

shows the group average R2 values between the AP predicted by the individual 

subject linear model when stimulated by the SNA in the SHR120 and SHR160 training 

and testing data and the measured AP.  For both the training and testing data, the R2 

values were high.  In particular, in the testing data, the R2 values were 0.830.03 for 

SHR120 and 0.780.10 for SHR160.  Hence, the peripheral arc was approximately 

linear anyhow.  The predictive capacities of the models of the neural arc for SHR160 

and the models of the peripheral arc for both SHR120 and SHR160 were similar to those 

for WKY (see last chapter as well as [58]).       

Table 6: Group average R
2
 values between efferent sympathetic nerve activity (SNA)/AP predicted by models 

of the neural and peripheral arcs and measured SNA/AP. 

 
Neural Arc Peripheral Arc 

 
Linear 

Second-order 

Volterra 

Second-order 

Uryson 
Linear 

SHR12

0 

Training 

Data 
0.65±0.03 0.76±0.02* 0.73±0.02* 0.82±0.04 

Testing 

Data 
0.65±0.03 0.71±0.03* 0.70±0.03* 0.83±0.03 

SHR16

0 

Training 

Data 
0.82±0.01 0.85±0.01* 0.84±0.01* 0.83±0.07 

Testing 

Data 
0.82±0.01 0.83±0.01 0.83±0.01* 0.78±0.10 

*
 denotes statistical significance for paired t-test comparison with corresponding linear model after Holm’s 

correction for three comparisons.   
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As described in our previous study, extensive report on the linear dynamics of 

the baroreflex arcs in SHR [15], the parameters of the kernels of the validated linear 

models of the neural and peripheral arcs for SHR120 and SHR160 were mostly not 

significantly different from those for WKY to the extent that they could be compared 

(i.e., the gains and absolute peak amplitudes of these kernels cannot be compared 

between different subjects due to the SNA calibration step).  Finally, the linear and 

second-order kernels of the validated Uryson model of the neural arc for SHR120 were 

characterized by gains of -0.550.09 and -0.270.06 au/mmHg, absolute peak 

amplitudes of 0.930.02 and 0.270.04 au/mmHg, and time constants of 0.300.05 

and 0.480.06 s, respectively. 

Discussion 

The major finding of this study is that nonlinear dynamic functioning of the 

sympathetically-mediated carotid sinus baroreflex is enhanced significantly more in 

SHR than its linear dynamic functioning.  We arrived at this result by developing and 

validating dynamic models of the total baroreflex arc and its sub-systems in SHR via 

Gaussian white noise CSP stimulation and nonlinear system identification and then 

comparing these models to our previously established models for age-matched WKY 

[58]. 

Nonlinear Identification Method 

This study falls within the large body of literature on system identification 

analysis of cardiovascular variability interactions (see, e.g., [59]–[61]).  Amongst the 
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various identification methods that have been employed, we chose a frequency-

domain method [41] to estimate the kernels of the nonlinear models.  This 

nonparametric method assumes that the input is Gaussian and broadband but makes 

no assumptions on the form of the kernels.  The method yields the best unbiased 

estimates of the linear and nonlinear kernels in the least squares sense.  Hence, the 

linear term of the nonlinear model and the optimal linear model are one in the same.  

Parametric identification methods, which have been widely employed in this area [59], 

[61], [62], could provide better estimates of the kernels by assuming a particular 

kernel form so as to trade off bias for precision.  This possibility could especially hold 

in the identification of the peripheral arc whose input was not as broadband as the 

other investigated systems.  However, our goal was to determine the form of the 

kernel.  Even so, we did apply conventional autoregressive exogenous input 

identification to estimate the linear kernels, and this method did not yield more 

predictive linear kernels than the frequency-domain method (results not shown).        

Total Arc Model in SHR 

We applied the frequency-domain method to develop second-order nonlinear 

dynamic models of the total arc for both SHR120 (SHR with Gaussian white noise 

stimulation at the normal CSP level for WKY) and SHR160 (SHR with the same 

simulation but at the prevailing CSP level for SHR) (see Figure 13).  These models 

were qualitatively similar to the corresponding model for WKY.  In particular, they 

generally indicated that the total arc may be represented as a linear dynamic system in 

parallel with a cascade combination of a squarer and a slower, linear dynamic system 



53 

 

(see Figure 6, Figure 14, and Figure 15).  Hence, total arc nonlinearity, which was 

captured by the squaring and slower, linear dynamic systems, was in the low 

frequency regime.    

These “Uryson” models significantly improved AP prediction over standard 

linear models by 43% for SHR120 and 21% for SHR160 (see Table 4).  The predictive 

capacity of the Uryson model relative to a linear model for SHR120 was superior to 

those for WKY and SHR160.  The reason for the relatively stronger nonlinearity in 

SHR120 may pertain to the operating point.  That is, the CSP levels for WKY and 

SHR160 are in the linear regimes of their respective static sigmoidal CSP-AP 

relationships, while the CSP level for SHR120 is near the nonlinear thresholding 

regime of its relationship [63].  In this sense, comparisons between WKY and SHR160, 

as opposed to SHR120, may actually be more appropriate.  

The validated models of the total arc for SHR120 and SHR160 were, however, 

quantitatively different from the corresponding model for WKY (see Table 5).  More 

specifically, the linear kernel (time-domain version of the transfer function of the 

faster, dynamic system) for SHR160 showed significantly augmented transient 

dynamics in terms of magnitude and speed than the corresponding kernel for WKY.  

The linear kernel for SHR120 showed some tendency for similarly enhanced transient 

dynamics.  However, the linear kernels for SHR120, SHR160, and WKY revealed 

steady-state gains, which are more meaningful, of very similar values.  By contrast, 

the nonlinear kernels (time-domain version of the transfer function of the slower, 

dynamic system) for SHR120 and SHR160 showed enhanced steady-state gains by 

about 170% and significantly augmented transient dynamics in terms of magnitude 
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(and speed for SHR120) relative to the corresponding kernel for WKY.  Note that 

while the linear kernels change AP in the opposite direction of CSP, the nonlinear 

kernels always reduce AP due to the squaring of CSP (see Figure 6).  Hence, in 

normal, closed-loop conditions, the nonlinear steady-state gain of the total arc may 

augment buffering of AP increases, while blunting buffering of AP decreases, to a 

greater extent in SHR than WKY.  Further, the nonlinear steady-state gain of the total 

arc may decrease mean AP in response to increases in the AP variance to greater 

extent in SHR than WKY. 

Neural Arc and Peripheral Arc Models in SHR 

We also developed second-order Uryson models of the neural arc for SHR120 

and SHR160 (see Figure 16).  However, linear models of the neural arc showed good to 

excellent SNA prediction, so the Uryson model for SHR160 did not improve upon the 

SNA prediction (see Table 6).  Likewise, a linear model of the neural arc sufficed for 

WKY [58].  While the neural arc model for SHR120 was able to improve SNA 

prediction perhaps due to relatively stronger nonlinearity at the different operating 

point (see Table 6), the 8% improvement achieved was small compared to the 43% 

AP prediction improvement attained by the Uryson model of the total arc for SHR120.  

Similar to WKY, we could only develop linear models of the peripheral arc for 

SHR120 and SHR160 (see Figure 17), as the SNA input to this system was not Gaussian 

white noise.  However, these standard models showed excellent AP prediction 

anyhow.  As we described in a previous, extensive report [15], the kernels of the 

validated linear models of the neural and peripheral arcs for SHR120 and SHR160 were 
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mostly not significantly different from those for WKY.  However, comparisons of 

these kernels were substantially limited due to the SNA calibration step.           

In sum, the total arc models showed nonlinear behaviors, while the models of 

the neural and peripheral arc sub-systems, especially for WKY and SHR160, showed 

approximately linear behaviors.  As we discussed earlier [58], one explanation for this 

puzzling result is that the neural arc was nonlinear, but its nonlinearity was not well 

identified due to a linearizing effect caused by confounding SNA from higher brain 

centers.  Note that the improved predictive capacity of the Uryson model of the neural 

arc for SHR120, wherein nonlinearity may have been relatively stronger, supports the 

contention that the neural arc was nonlinear. 

Potential Physiologic Mechanisms 

This study does not reveal the mechanisms underlying the more significant 

enhancement of nonlinear dynamic functioning of the total arc in SHR.  However, 

previous studies shed a bit of insight.  Firstly, the carotid artery stiffens in SHR [64].  

Since the carotid sinus baroreflex precisely responds to stretch, such stiffening alone 

would suggest blunted total arc functioning in SHR.  Hence, enhanced functioning 

downstream in the total arc must have occurred in terms of linear dynamics and, to a 

greater extent, nonlinear dynamics.  Secondly, baroreflex control of heart rate is 

blunted in SHR after vagal block [15], [65].  So, downstream dynamic functioning 

pertaining to the control of vascular properties and/or cardiac contractility must have 

specifically been enhanced.  Finally, we note that it may be possible that the linear 

component (faster dynamic system) and nonlinear component (squaring and slower 
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dynamic systems) of the Uryson model correspond to myelinated and unmyelinated 

fibers pathways of the total arc [51], [52] and that these pathways are differentially 

impacted in SHR relative to WKY. 

Study Limitations 

As we outlined previously, this study has experimental and mathematical 

limitations.  More specifically, our experimental procedures included the use of 

anesthesia, opening the baroreflex loop, and elimination of the vagal component of 

the baroreflex, while our mathematical procedures neglected higher-order 

nonlinearity.  These procedures are limitations for sure.  At the same time, they may 

have permitted as accurate identification of the sympathetically-mediated total arc as 

possible without assuming any form for the nonlinearity. 
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CHAPTER 5. NONLINEAR IDENTIFICATIOND OF THE 

TOTAL BAROREFLEX ARC: HIGHER-ORDER 

NONLINEARITY 

A major assumption of in the previous two chapters on total arc nonlinearity was 

that only second-order nonlinear dynamics were present.  In this chapter, our aim was 

to assess the importance of higher-order nonlinear dynamics via development and 

evaluation of a third-order Volterra model using the same experimental data.  Our 

results indicate that a second-order Uryson model indeed sufficed to represent the total 

arc under the employed experimental conditions. 

Nonlinear Model and Estimation Method 

As discussed earlier, any time-invariant system with fading memory can be 

represented with a Volterra series to within arbitrary precision [40].  For a causal, 

discrete-time system, the Volterra series is given as follows: 

𝑦[𝑛] = ∑ ∑ … ∑ 𝑘𝑙[𝑛1, … , 𝑛𝑙]𝑥[𝑛 − 𝑛1] ⋯ 𝑥[𝑛 − 𝑛𝑙]𝑀
𝑛𝑙=0

𝑀
𝑛1=0

𝐿
𝑙=0   

          =  𝑘0 + ∑ 𝑘1[𝑛1]𝑥[𝑛 − 𝑛1]𝑀
𝑛1=0 + ∑ ∑ 𝑘2[𝑛1, 𝑛2]𝑥[𝑛 − 𝑛1]𝑥[𝑛 − 𝑛2]𝑀

𝑛2=0
𝑀
𝑛1=0   

              + ∑ ∑ ∑ 𝑘3[𝑛1, 𝑛2, 𝑛3]𝑥[𝑛 − 𝑛1]𝑥[𝑛 − 𝑛2]𝑥[𝑛 − 𝑛3]𝑀
𝑛3=0

𝑀
𝑛2=0

𝑀
𝑛1=0 + ⋯      (4) 

Here, 𝑛 is discrete-time, 𝑥[𝑛] is the input, 𝑦[𝑛] is the output, 𝑘𝑙[𝑛1, … , 𝑛𝑙] is the 𝑙 th-

order system kernel with memory M, and L is the order of nonlinearity.  This model 

expands the present output sample in terms of the present and past input samples and 

products of an increasing number of present and past input samples of various lags.  

These input terms affect the output via the kernels.   
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In previous chapters ([58], [66]), a second-order model (i.e., L = 2, which 

corresponds to the first three terms in Eq. (4)) of the total arc was assumed.  The 

second-order kernel was found to be diagonal and not proportional to the first-order 

kernel (i.e., 𝑘2[𝑛1, 𝑛2] = 0  for 𝑛1 ≠ 𝑛2  and = 𝑘2
𝐷[𝑛] , which is not proportional to 

𝑘1[𝑛], for 𝑛1 = 𝑛2 = 𝑛), thereby indicating an Uryson structure.  In this study, the 

contribution of higher-order nonlinearity was explored by including the fourth term in 

Eq. (4) and thereby representing the total arc with the following third-order model (i.e., 

L = 3): 

𝑦[𝑛] = 𝑘0 + ∑ 𝑘1[𝑛1]𝑥[𝑛 − 𝑛1]𝑀
𝑛𝑙=0 + ∑ 𝑘2

𝐷[𝑛1]𝑥2[𝑛 − 𝑛1]𝑀
𝑛1=0   

             + ∑ ∑ ∑ 𝑘3[𝑛1, 𝑛2, 𝑛3]𝑥[𝑛 − 𝑛1]𝑥[𝑛 − 𝑛2]𝑥[𝑛 − 𝑛3]𝑀
𝑛3=0

𝑀
𝑛2=0

𝑀
𝑛1=0        (5) 

Here, 𝑥[𝑛] is the pre-processed CSP after removing its mean value and 𝑦[𝑛] is the pre-

processed AP, while 𝑘0, 𝑘1[𝑛], 𝑘2
𝐷[𝑛], and 𝑘3[𝑛1, 𝑛2, 𝑛3] are the system kernels for 

estimation.  The zeroth-order kernel 𝑘0 is a constant that affects the mean value of 

𝑦[𝑛].  The first-order or linear kernel 𝑘1[𝑛], which is the time-domain version of the 

conventional transfer function, indicates how the present and past input samples (e.g., 

𝑥[𝑛] and 𝑥[𝑛 − 3]) affect the current output sample 𝑦[𝑛].  The second-order kernel 

𝑘2
𝐷[𝑛], which is Uryson in structure (i.e., diagonal) based on the previous work, 

indicates how the present and past squared input samples (e.g., 𝑥2[𝑛] and 𝑥2[𝑛 − 2]) 

affect 𝑦[𝑛].  Note that because of the Uryson structure, products of pairs of present 

and past input samples of different lags (e.g., 𝑥[𝑛]𝑥[𝑛 − 3]) do not impact 𝑦[𝑛].  

Finally, the third-order kernel 𝑘3[𝑛1, 𝑛2, 𝑛3] indicates how the product of three input 

samples of lags 𝑛1 , 𝑛2 , and 𝑛3  samples in the present and past affects 𝑦[𝑛]  (e.g, 
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𝑥[𝑛 − 1]𝑥[𝑛 − 2]𝑥[𝑛 − 3]  is scaled by 𝑘3[1, 2, 3]  and 𝑥2[𝑛]𝑥[𝑛 − 3]  is scaled by 

𝑘3[0, 0, 3] and then summed in the formation of 𝑦[𝑛]).  Note that this latter kernel is 

symmetric about its arguments (i.e., 𝑘3[𝑛1, 𝑛2, 𝑛3] = 𝑘3[𝑛1, 𝑛3, 𝑛2] = 𝑘3[𝑛2, 𝑛1, 𝑛3] =

𝑘3[𝑛2, 𝑛3, 𝑛1] = 𝑘3[𝑛3, 𝑛1, 𝑛2] = 𝑘3[𝑛3, 𝑛2, 𝑛1]).  The kernels of higher-order Volterra 

models are difficult to estimate directly.  To facilitate system identification, the 

following orthogonal representation of the third-order nonlinear model of Eq. (5) for 

Gaussian inputs [38], [67] was employed: 

𝑦[𝑛] = ∑ 𝐾𝑙[ℎ𝑙[𝑛1, … , 𝑛𝑙]; 𝑥[𝑛′], 𝑛′ ≤ 𝑛]3
𝑙=0   

          = ℎ0 + ∑ ℎ1[𝑛1] 𝑥[𝑛 − 𝑛1]𝑀
𝑛1=0 + ∑ ℎ2[𝑛1] {𝑥2[𝑛 − 𝑛1] − 𝑅𝑥𝑥[0]}𝑀

𝑛1=0   

             + ∑ ∑ ∑ ℎ3[𝑛1, 𝑛2, 𝑛3] {𝑥[𝑛 − 𝑛1]𝑥[𝑛 − 𝑛2]𝑥[𝑛 − 𝑛3] −𝑀
𝑛3=0

𝑀
𝑛2=0

𝑀
𝑛1=0

𝑥[𝑛 − 𝑛1]𝑅𝑥𝑥[𝑛2 − 𝑛3] − 𝑥[𝑛 − 𝑛2]𝑅𝑥𝑥[𝑛1 − 𝑛3] − 𝑥[𝑛 − 𝑛3]𝑅𝑥𝑥[𝑛1 − 𝑛2]}          (6) 

Here, 𝐾𝑙[·] is the 𝑙 th-order functional; ℎ0, ℎ1[𝑛], ℎ2[𝑛], and ℎ3[𝑛1, 𝑛2, 𝑛3] are system 

kernels, which are symmetric with respect to their arguments; and 𝑅𝑥𝑥(𝑛)  is the 

autocorrelation function of the zero-mean Gaussian input 𝑥[𝑛].  Since the functionals 

are orthogonal to each other, the kernels of this equation may be estimated sequentially.  

That is, each kernel was estimated, one at a time and in order, using the measured 𝑥[𝑛] 

and 𝑦[𝑛] after subtracting the contribution of all previous kernel estimates from 𝑦[𝑛].  

The Volterra kernels in Eq. (5) may then be computed from the estimated quantities and 

𝑅𝑥𝑥(𝑛) as follows: 

𝑘0 = ℎ0 − 𝑅𝑥𝑥[0] ∑ ℎ2[𝑛1] 𝑀
𝑛1=0   

𝑘1[𝑛] = ℎ1[𝑛] − 3 ∑ ∑ ℎ3[𝑛, 𝑛2, 𝑛3] 𝑅𝑥𝑥[𝑛2 − 𝑛3]𝑀
𝑛3=0

𝑀
𝑛2=0   

𝑘2
𝐷[𝑛] = ℎ2[𝑛]  
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𝑘3[𝑛1, 𝑛2, 𝑛3]  = ℎ3[𝑛1, 𝑛2, 𝑛3]  
 

The kernels ℎ0, ℎ1[𝑛] , ℎ2[𝑛], and ℎ3[𝑛1, 𝑛2, 𝑛3] in Eq. (6) were estimated 

from 𝑥[𝑛] after removing its mean value and 𝑦[𝑛] using the frequency-domain 

method for Gaussian inputs.  This method, which minimizes the mean-squared output 

prediction error and yielded relatively smooth kernel estimates, is described in detail 

elsewhere [68].  Briefly, the kernels were estimated in succession according to the 

following four steps:   

1. ℎ0 = 𝐸(𝑦[𝑛]) 

where 𝐸(∙) is the expectation operator.  

2. 𝑦1[𝑛] = 𝑦[𝑛] − ℎ0 

       𝐻1(𝑓) = ℱ{ℎ1[𝑛]} =
ℱ{𝑅𝑦1𝑥(𝑛)}

ℱ{𝑅𝑥𝑥(𝑛)}
 

where 𝑅(∙) is the auto- or cross-correlation function between the indicated signals, 

and ℱ(∙) is the standard Fourier Transform operator. 

3. 𝑦2[𝑛] = 𝑦1[𝑛] − ∑ ℎ1[𝑛1] 𝑥[𝑛 − 𝑛1]𝑀
𝑛1=0  

𝑥2[𝑛] = 𝑥2[𝑛] 

𝐻2(𝑓) = ℱ{ℎ2[𝑛]} =
ℱ{𝑅𝑦2𝑥2

(𝑛)}

ℱ{2𝑅2
𝑥𝑥(𝑛)}

 

4. 𝑦3[𝑛] = 𝑦2[𝑛] − ∑ ℎ2[𝑛1] {𝑥2[𝑛 − 𝑛1] − 𝑅𝑥𝑥[0]}𝑀
𝑛1=0  

𝐻3(𝑓1, 𝑓2, 𝑓3)} = ℱ3{ℎ3[𝑛1, 𝑛2, 𝑛3]} =
1

6
{

ℱ3{𝑅𝑦3𝑥𝑥𝑥(𝑛1, 𝑛2, 𝑛3)}

ℱ{𝑅𝑥𝑥(𝑛1)} ℱ{𝑅𝑥𝑥(𝑛2)} ℱ{𝑅𝑥𝑥(𝑛3)}
} 

where ℱ3(∙) is the three-dimensional Fourier Transform operator.  Note that 𝐸(∙) and 

𝑅(∙) above were computed via the standard sample mean and unbiased correlation 
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function estimates.  We also tried the cross-correlation method for Gaussian white 

noise inputs [50] to estimate kernels.  However since the results were not smooth, we 

just described the frequency domain method.   

The third-order kernel estimates were then examined to arrive at reduced 

nonlinear models (see Results).  The reduced models were re-estimated to yield 

potentially more predictive models.  Several kernel estimation methods were again 

applied including the frequency-domain method for Gaussian inputs, Laguerre 

expansion method for Gaussian and arbitrary inputs [50], [69], and cross-correlation 

method for Gaussian white noise inputs.  An orthogonal representation of the third-

order Uryson model of Eq. (6) for Gaussian inputs was likewise employed.  The 

equations are the same as in before but with the following two adjustments: 

𝐾3[ℎ3[𝑛]; 𝑥[𝑛′], 𝑛′ ≤ 𝑛] = ∑ ℎ3[𝑛1]𝑥3[𝑛 − 𝑛1]

𝑛1

− 3𝑅𝑥𝑥[0] ∑ ℎ3[𝑛1]𝑥[𝑛 − 𝑛1]

𝑛1

 

𝑘1[𝑛] = ℎ1[𝑛] − 3ℎ3[𝑛] 𝑅𝑥𝑥[0]  

The kernels ℎ0, ℎ1[𝑛] , ℎ2[𝑛], and ℎ3[𝑛] were again estimated from 𝑥[𝑛] after 

removing its mean value and 𝑦[𝑛] using the frequency-domain method for Gaussian 

inputs.  This method yielded relatively smooth kernel estimates.  The kernels were 

estimated in succession according to the first three steps in the last paragraph and then 

the following fourth step: 

4.  𝑦3[𝑛] = 𝑦2[𝑛] − ∑ ℎ2[𝑛1] {𝑥2[𝑛 − 𝑛1] − 𝑅𝑥𝑥[0]}𝑀
𝑛1=0  

𝑥3[𝑛] = 𝑥3[𝑛] 

𝐻3(𝑓) = ℱ{ℎ3[𝑛]} =
ℱ{𝑅𝑦3𝑥3

(𝑛)}

6ℱ{𝑅3
𝑥𝑥(𝑛)}
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The four kernels were also estimated from the same data using the Laguerre 

expansion method for Gaussian inputs [50].  This more parsimonious method 

produced similar kernel estimates.  More specifically, the first-, second-, and third-

order kernels were assumed to be represented by a linear combination of B Laguerre 

basis functions as follows:  

ℎ𝑖[𝑛] = ∑ 𝑎𝑖𝑗𝑏𝑗[𝑛]

𝐵

𝑗=1

 ,      𝑖 = 1,2,3 

Here, 𝑎𝑖𝑗 is the jth coefficient of the ith-order kernel for estimation, and 𝑏𝑗[𝑛] is the jth 

Laguerre basis function.  This function is given as follows: 

𝑏𝑗[𝑛] = 𝛼(𝑛1−𝑗)/2(1 − 𝛼)1/2 ∑(−1)𝑘 (
𝑛
𝑘

) (
𝑗
𝑘

) 𝛼𝑗−𝑘(1 − 𝛼)𝑘

𝑗

𝑘=0

 

where α (0 < α < 1) is a smoothing parameter that determines the rate of exponential 

decay of the Laguerre function.  The coefficients of each kernel were estimated in 

succession by minimizing the mean-squared output prediction error.  That is, for fixed 

B and α values, the B coefficients for each kernel were estimated via solution of the 

following BB linear system of normal equations:   

∑ 𝑏𝑗0
[𝑘′]𝑅𝑥𝑖𝑦𝑖

[𝑘′]𝑘′ = (𝑖!) ∑ 𝑎𝑖𝑗 ∑ ∑ 𝑏𝑗[𝑘]𝑏𝑗0
[𝑘′]𝑅𝑖

𝑥𝑥[𝑘 − 𝑘′]𝑘′𝑘
𝐵
𝑗=1  for 𝑗0 = 1, … , 𝐵 

where 𝑅(∙) is the auto- or cross-correlation function between the indicated signals, 

and 𝑦𝑖  is the output after subtracting the contribution of all previously estimated 

kernel.  To determine 𝐵 and 𝛼, the same 𝛼 value was assumed for all kernels, and the 

𝐵 value was assumed to be between 1 and 10.  For a fixed 𝛼 value, the value of 𝐵 was 

determined for each kernel by finding the value for which the mean-squared output 

prediction error no longer significantly decreased.  This calculation was repeated for 
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each 𝛼 value between 0 and 1, and the value that minimized the mean-squared output 

prediction error was selected.  

See the Discussion section for commentary on the various methods.  In all 

cases, the kernel memory M was set to 25 sec based on our previous studies [58], [66].   

Model Evaluation 

The resulting third-order nonlinear models were evaluated as follows.  First, the 

CSP inputs from the training and testing data were applied to the models.  Then, the R2 

values between the predicted and measured AP outputs were computed.  Finally, these 

R2 values and the previously reported R2 values for the second-order Uryson and linear 

models [58], [66] were compared after log transformation via paired t-tests with Holm’s 

correction for multiple comparisons [57]. 

 

Results 

Similar to previous chapters, the frequency-domain method for Gaussian inputs  

yielded the smoother  estimates of the kernels in the total arc model of Eq. (5).  The 

newly estimated third-order kernels are four-dimensional and cannot be visualized.  So, 

all two-dimensional slices of these kernels (e.g., 𝑘3[𝑛, 𝑛, 𝑛], 𝑘3[𝑛, 𝑛, 𝑛 + 1], 𝑘3[𝑛, 𝑛 +

2, 𝑛 + 3]) were examined.  Figure 18 shows the three slices of the group average third-

order kernel estimates with the largest energies for WKY, SHR120, and SHR160.  The 

diagonal slices (𝑘3[𝑛, 𝑛, 𝑛]) clearly exhibited the largest energies.  Figure 19 shows the 

group average energy of each two-dimensional slice, normalized by the diagonal 

energy, in descending order of value for WKY, SHR120, and SHR160.  For comparison, 
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this figure includes the analogous result for the second-order Volterra kernel estimates 

from previous chapters.  The normalized energies of the third-order kernels were 

smaller than unity both in a statistical sense (p-value typically less than 0.01 via t-tests) 

and a magnitude sense, especially for SHR120.  Hence, the third-order kernel was 

virtually diagonal for SHR120 and approximately diagonal for WKY and SHR160.  As a 

result, the model of Eq. (5) was reduced to the following third-order Uryson model:  

𝑦[𝑛] = 𝑘0 + ∑ 𝑘1[𝑛1]𝑥[𝑛 − 𝑛1]𝑀
𝑛𝑙=0 + ∑ 𝑘2

𝐷[𝑛1]𝑥2[𝑛 − 𝑛1]𝑀
𝑛1=0 + ∑ 𝑘3

𝐷[𝑛1]𝑥3[𝑛 −𝑀
𝑛1=0

𝑛1]                  (6) 
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Figure 18: Group average two-dimensional (2D) slices of the estimated (four-dimensional) third-order 

kernels (k3[n1, n2, n3]) in Eq. (5).  WKY, Wistar Kyoto rats during Gaussian white noise carotid sinus 

pressure (CSP) stimulation with mean of 120 mmHg; and SHR120 and SHR160, spontaneously 

hypertensive rats during the same CSP stimulation with mean of 120 and 160 mmHg, respectively.  The 

diagonal slice (k3[n1, n1, n1]) was largest in magnitude. 
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Figure 19: Group average energy of each 2D slice of the estimated second-order Volterra kernels from [58], 

[66] and third-order kernels, normalized by the diagonal energy, in descending order of value for WKY, 

SHR120, and SHR160. The second-order kernel was always diagonal, while the third-order kernel was 

virtually diagonal for SHR120 and approximately diagonal for WKY and SHR160.   
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Figure 20: Group average first-, second-, and third-order kernel estimates (meanSE) of reduced Uryson 

models of the total arc for WKY, SHR120 and SHR160 via the frequency-domain (black) and Laguerre 

expansion (gray) methods for Gaussian inputs.  The three kernels were not proportional to each other, 

thereby indicating that the model could not be further reduced. 

 

The kernels in this model were re-estimated.   The frequency-domain method 

and more parsimonious Laguerre method for Gaussian inputs yielded the visually 

smoother kernel estimates.  Figure 20 shows the resulting group average kernel 
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estimates (meanSE).  The first- and second-order kernel estimates from the frequency-

domain method were the same as the last two chapters and similar to the corresponding 

estimates from the Laguerre method.  The newly estimated third-order kernels did not 

appear proportional to the first- and second-order kernels, thereby suggesting that the 

model cannot be further reduced in general.  The third-order kernel estimates appeared 

qualitatively similar for WKY and SHR160 but different for SHR120.  The former two 

kernels showed a positive, open-loop contribution to AP regulation (i.e., an increase in 

CSP would increase AP), whereas the latter kernel showed a negative, open-loop 

contribution (i.e., an increase in CSP would decrease AP).  However, the overall 

contribution of the three kernels was of negative, open-loop character for WKY, 

SHR120, and SHR160.   

The Table 7 shows the group average R2 values between the AP predicted by the 

individual subject third-order nonlinear models and the measured AP when stimulated 

by Gaussian white noise CSP in the training and testing data.  This table also includes 

the corresponding, previously reported results for the second-order Uryson and linear 

models (also in [58], [66] and Table 2 and Table 4).  Compared to the second-order 

Uryson model, the third-order model of Eq. (5) improved the R2 value for the training 

data but not the testing data.  This result indicated that the third-order model was not 

better than the second-order model in terms of AP prediction and was actually over-

fitted.  The third-order Uryson model of Eq. (6) also did not improve upon the R2 value, 

thereby likewise indicating that it was not better than the second-order Uryson model.  

Finally, it should be noted that the third-order models also did not predict baroreflex 
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thresholding and saturation and mean responses to input changes about the mean better 

than the second-order Uryson model (results not shown). 

Table 7:  Group average R
2 
values between arterial pressure (AP) predicted by models of the total 

baroreflex arc and measured AP. 

Values represent meanSE.  Third-order Volterra model refers to Eq. (5).  WKY, Wistar Kyoto rats during 

Gaussian white noise carotid sinus pressure (CSP) stimulation with mean of 120 mmHg; and SHR120 and 

SHR160, spontaneously hypertensive rats during the same CSP stimulation with mean of 120 and 160 mmHg, 

respectively.  * and † denote statistical significance for paired t-test comparison (after Holm’s correction for 

three comparisons) with corresponding linear model and second-order Uryson model, respectively. 

 

Discussion 

This chapter represents part three of a series of studies on nonlinear 

identification of the total baroreflex arc – the sympathetically-mediated carotid sinus 

baroreflex relating CSP to AP in open-loop conditions.  In parts one and two (previous 

chapters and also [58], [66]), we applied Gaussian white noise CSP stimulation and 

nonparametric system identification to measured CSP and AP to establish a second-

order Uryson model (i.e., Volterra model with diagonal kernels) of the total arc for 

WKY and SHR.  However, a major assumption therein was that only second-order 

nonlinear dynamics were important.  In part three herein, we investigated the 

 

Linear 
Second-order 

Uryson 

Third-order 

Volterra  

Third-order 

Uryson 

(Frequency-

domain) 

Third-order 

Uryson  

(Laguerre 

expansion) 

WKY 

Training 

Data 
0.73±0.03 0.79±0.03* 0.90±0.01*† 0.80±0.03*† 0.80±0.03*† 

Testing 

Data 
0.64±0.03 0.71±0.03* 0.69±0.03*† 0.71±0.03* 0.71±0.03* 

SHR120 

Training 

Data 
0.53±0.05 0.69±0.04* 0.88±0.01*† 0.72±0.05*† 0.71±0.04*† 

Testing 

Data 
0.45±0.03 0.64±0.03* 0.64±0.04* 0.65±0.04* 0.66±0.04* 

SHR160 

Training 

Data 
0.63±0.05 0.71±0.05* 0.88±0.03*† 0.72±0.05* 0.72±0.05* 

Testing 

Data 
0.59±0.04 0.71±0.03* 0.70±0.03* 0.73±0.03* 0.72±0.03* 
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contribution of higher-order nonlinearity by developing a third-order nonlinear model 

using the same data for analysis.   

 We used a third-order Volterra model but with a second-order Uryson kernel 

(see Eq. (5)).  We estimated the first- and second-order kernels using the frequency-

domain method for Gaussian inputs, which we previously found to yield the 

smoothest kernels based on visual assessment [58], [66].  Since estimation of higher-

order kernels from short data periods (6 min) is challenging, we applied several 

identification methods to estimate the third-order kernels.  The nonparametric 

identification methods, which do not assume a particular kernel form, included the 

frequency-domain method for Gaussian inputs and cross-correlation method [50], 

which assumes the input is Gaussian and white.  We again found that the frequency-

domain method for Gaussian inputs was most effective, as the CSP input was not 

strictly white due to the finite data periods.  The resulting third-order kernel estimates 

likewise revealed a simpler Uryson structure for WKY, SHR120 (SHR with Gaussian 

white noise stimulation at the normal CSP level for WKY), and SHR160 (SHR with 

the same stimulation at the prevailing CSP level for SHR) but not as strongly for 

WKY and SHR160 (see Figure 18 and Figure 19).  It is possible that the diagonal 

nature of the third-order kernels for WKY and SHR160 was partially masked by noise 

arising from the identification of higher-order kernels from short data periods in the 

presence of stronger linearity (see Table 7).  Further, since the second-order kernel, 

which is easier to estimate, is surely Uryson (see Figure 19), the third-order kernel 

may indeed likewise show such structure.  At the same time, we acknowledge the 

possibility of nontrivial error in the third-order kernel estimates, which could have 
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confounded the interpretation of the results.  Parametric identification methods could 

possibly improve kernel estimation from short data periods by reducing the number of 

estimated parameters via assumption of a particular kernel form.  We also applied 

such methods including popular Laguerre expansion methods [50].  However, these 

methods artificially smoothed the kernels so as to obfuscate a diagonal appearance. 

 We therefore moved to a reduced, third-order Uryson model (see Eq. (7)).  We 

again applied various identification methods to re-estimate the kernels of this model 

with potentially greater accuracy.  The methods included the frequency-domain 

method for Gaussian inputs, cross-correlation method, and Laguerre expansion 

methods for Gaussian and arbitrary inputs.  We found that the frequency-domain 

method and Laguerre expansion method for Gaussian inputs yielded the smoothest 

estimates based on visual inspection, as the input was not strictly white and the 

requisite computation of higher-order correlations was more robust by leveraging the 

Gaussian nature of the inputs.  The resulting kernel estimates were not proportional to 

each other (see Figure 20), thereby indicating that the third-order model could not be 

further reduced to a Hammerstein model [43].  The Laguerre expansion method for 

Gaussian inputs represented the third-order Uryson model with only 19 parameters on 

average (6 parameters for each of the three kernels plus 1 smoothing parameter).  For 

comparison, the frequency-domain method for Gaussian inputs represented the 

second-order Uryson model with 100 parameters (M = 25 sec times 2 Hz sampling 

rate for each of the two kernels; see Eq. (7)).  Hence, the third-order Uryson model 

was likely well estimated. 

 Neither the third-order Uryson model nor the more complete third-order 



70 

 

nonlinear model of Eq. (5) predicted AP in response to new Gaussian white noise 

CSP better than the previously established second-order Uryson model (see Table 7).  

Further, both of the third-order models could not offer added value in predicting well-

known nonlinear behaviors over the second-order Uryson model (results not shown).  

Since there is a possibility that the third-order kernel was actually not Uryson, we 

formed a set of third-order kernels using the highest energy slices of the third-order 

Volterra kernel estimate (see Figure 19).  These kernels are less simplified than the 

Uryson kernel but more simplified than the Volterra kernel.  However, the third-order 

models with these kernel estimates also did not improve the AP prediction in any way 

(results not shown).  Hence, even though the third-order kernels were not merely 

noise (see Figure 20), they may be interpreted as small in magnitude in the sense of 

contributing relatively little to AP prediction.  Note that a nonlinear model including 

only the first- and third-order kernels would not have performed better due to 

orthogonality arising from use of Gaussian inputs.  Also note that while fourth-order 

and even higher-order kernels could possibly contribute to AP prediction, since the 

first-order kernel, which is odd, and the second-order kernel, which is even, both 

contributed significantly, we doubt that kernels of order exceeding three would be 

important here. 

Higher-order nonlinearity therefore does not appear to be a contributing factor 

to the unexplained AP variance of about 30% during the Gaussian white noise CSP 

stimulation (see Table 7), as we had previously hypothesized (11).  These variations, 

which were not white (results not shown), could instead be due to non-stationarity of 

the CSP and AP data, sympathetic nerve activity (SNA) from higher brain centers, and 
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other fast-acting regulatory mechanisms.  Note that measurement noise may not be a 

contributing factor, as the data were invasively measured and then low-pass filtered and 

down-sampled all the way to 2 Hz.   

To shed further light on the sources of the unexplained AP variance, we 

performed additional experiments in six WKY with CSP fixed to 120 mmHg followed 

by Gaussian white noise CSP stimulation.  Figure 21 shows the measured CSP, AP, and 

SNA for one subject along with the corresponding group average power spectra.  The 

spectral powers in AP and SNA within 0.03 Hz were similar for fixed and Gaussian 

white noise CSP.  These results suggest that SNA from higher brain centers indeed 

contributed to the unexplained AP variance, particularly in the low frequency regime.  

Note that turning the CSP input “off” changed the mean AP and thus the system 

operating point.  Hence, the AP variability at fixed CSP and the unexplained AP 

variability of the nonlinear models may not be comparable. 

We conclude that a second-order Uryson model of the total arc surely suffices 

compared to a third-order Uryson model and may likely suffice compared to higher-

order nonlinear models in general.  This conclusion is only valid over the range of 

CSP and AP data utilized to develop the models.  Since this range did not include the 

baroreflex saturation regime, the nonlinear models could only predict baroreflex 

thresholding but not saturation [58].  Higher order nonlinear models would be needed 

to represent the total arc over the entire system operating range, with odd-order 

nonlinearity apparently required to account for thresholding and saturation.  In sum, 

this third part of a series of studies on nonlinear identification of the total arc justified 
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the earlier assumption of second-order nonlinearity under the employed experimental 

conditions.  
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Figure 21: Representative time series for arterial pressure (AP) and sympathetic nerve activity (SNA; 

measured from splanchnic nerve and then normalized as described elsewhere [58]) in response to fixed and 

Gaussian white noise CSP stimulations for one WKY (left panel).  A.u. is arbitrary units.  Group average 

power spectra (mean±SE) for CSP, AP, and SNA (right panel).  The gray and black lines indicate the fixed 

and Gaussian white noise CSP inputs, respectively. 
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CHAPTER 6. CONCLUSIONS 

The baroreflex was long believed to regulate AP only on the time scales of 

seconds to minutes [54].  However, chronic baroreceptor stimulation and other studies 

have now indicated that this system could contribute to long-term AP regulation [3], 

[4], [25], [55], [14].  Hence, the baroreflex could play a causative or protective role in 

hypertension and heart failure.  As indicated by Thrasher’s chronic baroreceptor 

unloading model of hypertension [3], nonlinearity of the baroreflex, in particular, 

could induce sustained increases in AP.  However, baroreflex nonlinearity is not well 

understood.   

In the first part of this thesis, we developed a second-order, nonlinear dynamic 

model of the sympathetically-mediated total baroreflex arc by employing Gaussian 

white noise stimulation and nonparametric identification for Wistar Kyoto rats (WKY).  

We validated the model by showing that it is able to predict AP appreciably better 

than a conventional linear model and some important nonlinear behaviors including 

thresholding and DC responses to AC changes.  A key advantage of nonlinear 

identification over linear identification is that it can indicate the structure of the 

system under study.  For example, consider a system that is composed of a static 

nonlinearity in cascade with a linear dynamic system.  Nonlinear identification of the 

overall system can not only yield a more accurate model than linear identification but 

also reveal whether the static nonlinearity precedes or follows the linear dynamic 

system.  The validated nonlinear model likewise provides information about the 

structure of the internal components of the total arc.  In particular, the model 
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illustrates that the structure is not a previously proposed cascade connection of 

systems (e.g., Hammerstein, Wiener, or sandwich model) but rather a parallel 

connection of a linear system and Hammerstein system.  In addition to providing 

information about the structure of the total arc, the model also indicates that the 

second-order nonlinear dynamics are slower than the linear dynamics and not 

insignificant in magnitude of effect compared to these dynamics.  While system 

identification cannot reveal the physical basis of the nonlinearity, it is interesting to 

speculate that the parallel connection of a fast linear system and a slower nonlinear 

system corresponds to the structure of anatomical components.  In particular, the 

linear system may correspond to the fast, afferent A-fiber pathway, whereas the 

nonlinear system could correspond to slower, afferent C-fiber pathway.  However, the 

model is only valid over the CSP range covered by the Gaussian white noise.  This 

range essentially did not include the saturation regime or pulsatile frequencies.   

In the second part, we showed the pitfall in ignoring baroreflex nonlinearity by 

developing the second-order, nonlinear dynamic model of the sympathetically-

mediated total baroreflex arc utilizing Gaussian white noise stimulation and 

nonparametric identification in spontaneously hypertensive rats.  Results herein 

indicate that the nonlinear gain of the sympathetically-mediated total baroreflex arc 

was enhanced in SHR relative to WKY, while its linear gain was preserved.  Hence, 

the nonlinear dynamic functioning of this system may enhance steady-state baroreflex 

buffering of AP increases more in SHR than WKY, perhaps to compensate for 

malfunctioning of other regulatory systems.  If the common linearity assumption were 

invoked here, the story would have been different.  This study is not the first to 
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demonstrate the significance of baroreflex nonlinearity in hypertension.  In Thrasher’s 

chronic baroreceptor unloading model of hypertension [3], [4], mean CSP did not 

change but carotid sinus pulse pressure decreased, which, in turn, led to a sustained, 

baroreflex-mediated increase in mean AP.  This nonlinear behavior of the carotid 

sinus baroreflex, by contrast, played a causative rather than protective role in the 

hypertension model.   

In the last part, we buttressed the major previous assumption that the 

baroreflex nonlinearity did not extend beyond second-order under the employed 

experimental conditions.  We assessed the importance of higher-order nonlinear 

dynamics via development and evaluation of a third-order Volterra model using the 

same experimental data.  Our results indicate that a second-order Uryson model indeed 

sufficed to represent the total arc under the employed experimental conditions. 

Future studies are needed to:  (1) elucidate baroreflex nonlinearity over a 

wider system operating range than that attained by the experimental conditions herein 

(i.e. cover saturation, thresholding, and pulsatile frequencies); (2) investigate 

baroreflex nonlinearity in closed-loop conditions (via parametric identification [29] 

and the established second-order Uryson model); and (3) discover the mechanism of 

baroreflex nonlinearity (which may be related to the slow, afferent C-fiber pathway 

[51], [52]) including the unexplained AP variations.  Such future nonlinear modeling 

endeavors may enhance our understanding of the baroreflex in health and disease.  

Specifically, further investigations of baroreflex nonlinearity in hypertension may 

improve our understanding of the role of the baroreflex in this prevalent disease 

process.   
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APPENDIX 

The numerical values specifying the group average kernel estimates of the 

Uryson model (i.e. ℎ1[𝑛] and ℎ2[𝑛]) of the total arc for SHR120 and SHR160 as well as 

for WKY in [58] are provided in Table 8.  Please note that only 17 sec of values were 

needed to capture these kernels. 
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Table 8: Kernel values of Uryson model of the total baroreflex arc in WKY, SHR120, and SHR160 

Time (s) 

WKY SHR
120

 SHR
160

 

First-

order 

(unitless) 

Second- 

order 

(mmHg
-1

)
 

First-

order 

(unitless) 

Second- 

order 

(mmHg
-1

) 

First-

order 

(unitless) 

Second- 

order 

(mmHg
-1

) 

0 0.0053441 0.0000888 0.0106978 0.0004215 0.0141826 0.0003052 

0.5 -0.0113258 -0.0000093 -0.0317528 -0.0005482 -0.0305524 0.0001441 

1 -0.0606674 -0.0004854 -0.1130225 -0.0024845 -0.1424666 -0.0005875 

1.5 -0.0846313 -0.0009561 -0.1186430 -0.0032550 -0.1650641 -0.0015852 

2 -0.0690056 -0.0010924 -0.0644120 -0.0027865 -0.1032691 -0.0021265 

2.5 -0.0594982 -0.0010686 -0.0475934 -0.0024280 -0.0786241 -0.0021722 

3 -0.0595114 -0.0010640 -0.0530959 -0.0022385 -0.0783448 -0.0021070 

3.5 -0.0531564 -0.0010605 -0.0433527 -0.0019858 -0.0578963 -0.0020268 

4 -0.0487779 -0.0010096 -0.0361096 -0.0016735 -0.0485531 -0.0018949 

4.5 -0.0458009 -0.0009050 -0.0308038 -0.0012624 -0.0435933 -0.0017367 

5 -0.0385619 -0.0007954 -0.0182875 -0.0010134 -0.0269673 -0.0015018 

5.5 -0.0335319 -0.0007345 -0.0118544 -0.0009023 -0.0166916 -0.0013480 

6 -0.0287025 -0.0006717 -0.0086836 -0.0007416 -0.0123483 -0.0012249 

6.5 -0.0227861 -0.0005876 -0.0047388 -0.0006102 -0.0073592 -0.0009416 

7 -0.0198903 -0.0005125 -0.0026564 -0.0004946 -0.0053071 -0.0007900 

7.5 -0.0164859 -0.0004362 0.0015160 -0.0003245 -0.0015483 -0.0007129 

8 -0.0117555 -0.0003785 0.0052325 -0.0002953 0.0016648 -0.0004655 

8.5 -0.0089331 -0.0003444 0.0029448 -0.0002883 0.0016336 -0.0003715 

9 -0.0063109 -0.0002790 0.0018112 -0.0001505 0.0026040 -0.0004274 

9.5 -0.0033516 -0.0002317 0.0018556 -0.0000881 0.0023051 -0.0003040 

10 -0.0010963 -0.0002079 -0.0005557 -0.0000920 0.0017833 -0.0001827 

10.5 0.0016547 -0.0001710 -0.0010800 -0.0000583 0.0040070 -0.0002130 

11 0.0020230 -0.0001363 -0.0019769 -0.0000554 0.0051331 -0.0001643 

11.5 0.0008485 -0.0001073 -0.0036355 0.0000160 0.0042096 -0.0000540 

12 0.0018865 -0.0000624 -0.0031750 0.0000851 0.0046813 -0.0000425 

12.5 0.0020187 -0.0000454 -0.0030819 0.0000508 0.0038249 -0.0000237 

13 -0.0001120 -0.0000472 -0.0040712 0.0000144 0.0027484 -0.0000296 

13.5 -0.0011690 -0.0000349 -0.0024378 0.0000264 0.0029665 -0.0000446 

14 -0.0014246 -0.0000237 -0.0006728 0.0000344 0.0022949 -0.0000434 

14.5 -0.0019218 -0.0000164 -0.0005096 0.0000342 0.0016824 -0.0001204 

15 -0.0017010 -0.0000233 -0.0005132 0.0000203 0.0011306 -0.0001845 

15.5 -0.0018849 -0.0000378 -0.0015177 0.0000214 0.0003206 -0.0001653 

16 -0.0023700 -0.0000380 -0.0025900 0.0000599 -0.0000272 -0.0001353 

16.5 -0.0021489 -0.0000316 -0.0028518 0.0000561 -0.0001561 -0.0000861 

17 -0.0020097 -0.0000260 -0.0031153 0.0000217 -0.0000403 -0.0000537 
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