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ABSTACT
HEMODYNAMIC MONITORING BY SYSTEM IDENTIFICATION
By

Zhenwei Lu

The hemodynamic variables, cardiac output (CO), left atrial pressure (LAP), and
left ventricular contractility in terms of the maximum elastance (E{L‘ax ), may be utilized

either individually or collectively to guide therapy in patients with cardiovascular disease.
However, the conventional methods for monitoring each of these variables are highly
invasive and/or operator dependent, thereby limiting their clinical application. In this
dissertation, we introduce three signal processing techniques for monitoring the
aforementioned hemodynamic variables. The unifying theme of the three techniques is
the analysis of subtle beat-to-beat variations in cardiovascular signals that may be
routinely measured in clinical practice using the system identification method in
conjunction with prior physiologic knowledge. The three techniques specifically aim to
monitor 1) CO changes from a single peripheral arterial blood pressure (ABP) waveform,

2) CO changes and absolute LAP from either a pulmonary artery pressure waveform or a
right ventricular pressure waveform, and 3) E{/** changes from random-interval,

respiratory-induced ABP variations. In this dissertation, we also initially validate each of
these techniques with respect to hemodynamic data obtained from realistic computer
simulations, animal subjects, human volunteers, and patients. With further successful

testing, the techniques may ultimately be employed to expand the monitoring of CO,



LAP, and E /* in clinical applications such as critical care, home health care, and even

combat casualty care.
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CHAPTER 1

INTRODUCTION

1.1  Hemodynamics

Cardiovascular disease is the number one cause of mortality in the United States. A
properly functioning, well-regulated cardiovascular system is essential to meet the
metabolic and mechanical demands of the various physiologic and pathophysiologic
situations. Hemodynamics is a branch of cardiovascular physiology studying the dynamic
properties of blood: flow (velocity), pressure, volume, and their relationships. It is very
important for the body to maintain the hemodynamic parameters in a narrow range
despite a wide variety of physiological perturbations. Otherwise, the person may be in
serious status. For example, a very low arterial blood pressure (ABP) may cause the death
of the brain in a few seconds, and low cardiac contractility may cause heart failure.
Therefore, hemodynamic monitoring is extremely important for directing therapy in

patients with cardiovascular disease.

1.2 Conventional Hemodynamic Monitoring

Most current hemodynamic monitoring systems provide continuous, automatic
measurements of blood pressures. Invasive fluid-filled catheters are broadly utilized in
critically ill patients to monitor the pressures in the radial artery and pulmonary artery.

Peripheral ABP may be measured non-invasively via tonometry and finger-cuff



photoplethysmography. Right ventricular pressure (RVP) could be measured by
implanted devices (e.g., two-lead pacemaker).

To a large extent, conventional patient monitoring systems simply measure and
display physiologic signals without attempting to interpret them. As a result, these
systems are limited in that they require a high level of invasiveness, necessitate an
operator, and/or provide nonspecific clinical information. For instance, the continuous
monitoring of ABP is commonly utilized to help physicians to assess the patients’
cardiovascular status. However, the main limitation of this monitoring is that the
measured ABP are multi-factorial and therefore not sufficiently specific to guide therapy.
For example, hypotension or low pressure may be caused by the inability of the heart to
fill or contract or the inability of the circulation to return blood to heart. To assess the
hemodynamic status, the measurement of other clinical parameters such as cardiac output
(CO) is desirable (Fig. 1.1). The thermodilution method is currently employed in most
intensive care units (ICU) and operating rooms to measure CO. This method involves
inserting a pulmonary artery catheter (PAC), injecting cold saline in the right atrium,
measuring temperature change downstream in the pulmonary artery, and then computing
CO using conservation of ‘mass laws. This method is very invasive and only warrants use
in a subset of critically ill patients. In addition, because an operator is required, the CO
cannot be monitored continuously. Finally, it is not very accurate due to the many
assumptions upon which it is based.

Other important specific hemodynamic parameters include left atrial pressure
(LAP) and cardiac contractility. Left atrial pressure (LAP), also known as left heart

filling pressure, can be utilized together with CO to distinguish between circulatory and



cardiac diseases. The standard LAP monitoring method is the pulmonary capillary wedge

pressure (PCWP) method. This method also requires an operator and is therefore discrete.

Left ventricular maxim elastance (E[)"* ) is a specific index heart contractility. The
monitoring of Ei"}a" can help detect left ventricular systolic failure. The conventional

measurement method of Eg’ax involves catheterizing the left ventricle through the aorta

to measure the left ventricular pressure and volume, altering the loading conditions by,
for example, inferior vena cava balloon occlusion, and then computing the slope of the
line that best fits the end-systolic pressure-volume points. This method is clearly too

invasive for routine use.

1.3 Hemodynamic Monitoring by System Identification

In this thesis, we seek to overcome limitations of conventional hemodynamic
monitoring systems. Our general approach to advancing the state-of-the-art of patient
monitoring systems is to reveal the significant, “hidden” information in routinely
measured blood pressure waveforms by employing system identification with physiologic
knowledge. In this way, the patient monitoring systems are possibly less invasive,
provide automated physiologic assessment, and/or indicate specific clinical parameters

that significantly contribute to therapeutic decision-making.

1.4 Thesis Organization and Contributions

The main contributions of this thesis is in the development and evaluation of three

techniques for monitoring CO, LAP and/or left ventricular contractility in terms of



E;‘J“x . Common to the three techniques is the analysis of continuous long time intervals

of blood pressure waveforms.

In Chapter 2, we discuss the background for this thesis, namely, cardiovascular
physiology, hemodynamic models, and basic system identification algorithms. In chapter
3, we describe a previously developed technique for continuously monitoring CO from
peripheral ABP. We then describe the refinement of the technique and its validation, for
the first time, in humans. In chapter 4, we extend the algorithm of Chapter 3 to a PAP or
RVP waveform for continuously monitoring LAP and CO and describe its preliminary

evaluation in ICU patients and a canine experiment. In Chapter S, we introduce a
technique to monitor changes in E[7** from the ABP waveform variations induced by

respiratory activity during a random interval breathing protocol. We then describe its
evaluation with respect to beat-to-beat variability generated from a realistic human
cardiovascular simulator and a canine experiment. Finally, in chapter 6, we summarize

the thesis work and outline future directions.
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Figure 1.1 A simple diagnostic algorithm based on the monitoring of cardiac output

(CO), left atrial pressure (LAP) and left ventricular maximum elastance (E{,**)

(Modified from Pinsky and Vincent, 2005).




CHAPTER 2

BACKGROUND

2.1 Cardiovascular System

The cardiovascular system serves to transport and distribute essential substances to
the tissues and to remove by-products of metabolism as well as regulate body
temperature, adjust oxygen and nutrient supply and etc. [Bemne and Levy, 1998]. The

cardiovascular éystem includes the circulatory system and the nervous control system.

2.1.1 Circulations

The circulatory system consists of a pump (the heart), a series of distributing and
collecting tubes (blood vessels), and thin vessels for exchange between the tissues and the
vascular channels (capillaries). The vascular system is composed of two major
subdivisions in series with one another: the pulmonary circulation and systemic
circulation. Each subdivision consists of several types of vessels (e.g., arteries,
capillaries, veins) aligned in series with one another. In the pulmonary circulation, the
right ventricle propels oxygenated blood through the lungs for exchange of oxygen and
carbon dioxide. In the systemic circulation, the left ventricle propels blood to all other
tissues of the body.

There have been numerous models of the circulation. For example, Fig. 2.1 shows a
simple electrical analog model of the systemic circulation. Here, the left heart is
represented by a current source supplying the CO. The systemic arterial tree is

represented by a two-element Windkessel model accounting for the lumped compliance



of the large arteries (arterial compliance, AC) and the total peripheral resistance (TPR) of
the small arteries. The veins are not considered in the model, because due to the high
value of TPR, the venous pressure is usually negligible with respect to ABP.

Similarly, the pulmonary circulation could also be modeled as an electrical circuit
as shown in Fig. 2.2. The right heart is represented by a current source supplying the CO;
pulmonary vessels (including arteries, capillaries and veins) are represented by a
Windkesssel model accounting for pulmonary vessel compliance (PVC) and pulmonary
vessel resistance (PVR). LAP must be considered in the model, because the pulmonary

circulation is a low pressure system.

ABP

co Q) — AC TPR

Figure 2.1 Two-element Windkessel model of systemic circulation in terms of its
electrical circuit analog. Left ventricle is represented by a current source with a value of
cardiac output (CO) and arterial tree is represented by total peripheral resistance (TPR)

and arterial compliance (AC). ABP, arterial blood pressure.
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PVR

co <‘D = PVC
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Figure 2.2 Two-element Windkessel model of pulmonary circulation in terms of its
electrical circuit analog. Right ventricle is represented by a current source with a value of
CO and pulmonary vessels are represented by pulmonary vessel resistance (PVR) and

pulmonary vessel compliance (PVC). LAP, left atrial pressure.

Nase
v
CIRCULATORY
™ MECHANICS _’69
HR <+— ——» ABP
694— HR BAROREFLEX |e——

Figure 2.3 Interaction between heart rate (HR) and ABP. Nyg, Nagp, noise disturbance of

HR and ABP.



2.1.2 Cardiovascular Regulation

A principle objective of the cardiovascular system is to maintain ABP within a
narrow range in order to drive blood through the tissues and provide oxygen and other
essential substances. This goal is realized by not only the mechanical system
(circulation), but also the cardiovascular regulatory system. In the short term (seconds to
minutes, which is the focus of this thesis), the arterial and cardiopulmonary baroreflex
feedback systems are normally responsible for extrinsic regulation over short time scales
of seconds to minutes. For example, ABP is sensed via baroreceptors that lie in the
carotid sinus and aortic arch and this pressure is transfered to the brainstem via afferent

nerve fibers. The brain then try to keep ABP near its desired value by adjusting heart rate
(HR), left ventricular contractility (i.e., E{;’a" ), TPR, and systemic venous unstressed

volume (SVUYV). If ABP decreases, then HR, ventricular contractility and TPR would

increase, while SVUV would decrease. Then, ABP would be increased back towards its
desired value via the mechanical system. Thus, the system is closed-loop. For example,
HR affects ABP through circulatory mechanics, while ABP also affects HR through the

baroreflex feedback control system (Fig. 2.3) [Mullen et al., 1997].

2.1.3 Hemodynamic Waveforms

Knowledge of the variability of hemodynamic signals (blood pressures, flows and
volumes) and the electrocardiogram (ECG) is very important in this thesis. In this
section, we will discuss the waveform variability and the mechanisms underlying this

phenomenon.



Intra-Beat Variability

The cardiac cycle refers to the sequence of electrical and mechanical events
occurring in the heart during a single beat. These events result in the changes of blood
pressures, volumes and flows, and the body surface potential that is usually monitored
with the ECG. The waveforms of aortic pressure (AOP, central ABP), left ventricular
pressure (LVP), LAP, left ventricular volume, and ECG during one cardiac cycle are
shown in Fig. 2.4. Ventricular systole (contraction) and diastole (relaxation) can be
defined in terms of both mechanical and electrical events. In mechanical terms, systole is
defined as the period between the closure of the mitral valve and the closure of the aortic
valve. In electrical terms, it is the period between the QRS complex and the end of the
“T” wave in the ECG signal. Ventricular diastole is remaining time of the cardiac cycle.
Systole is composed of the isovolumetric contraction phase and the ejection phase.
During the ejection phase, the aortic valve is opened and blood flows out from the
ventricle, thus the ventricular volume decreases and the waveforms of AOP and LVP are
overlapped. In the remaining of the cardiac cycle, the aortic valve closes, ihus the AOP
waveform is always above the LVP waveform due to the blood conservation effect of the
AC. Note that the “R” wave in the ECG waveform corresponds to the beginning of
isovolumetric contraction, when the LVP begins to increase rapidly and the mitral valve
closes. Two waves appear in LAP waveform during one beat: the “a” wave after the “P”
wave of the ECG and the *“v” wave after the “T” wave of the ECG (Fig. 2.4). The “v”
wave corresponds to the end of the isovolumetric relaxation when the mitral valve opens.

PAP and right ventricular pressure (RVP) waveforms are very similar with AOP and

10



LVP respectively except that their values are much lower. As implied above, a left

ventricular pressure-volume loop of the cardiac cycle in Fig. 2.4 is shown in Fig. 2.5.

11
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Figure 2.4 Hemodynamic signals and el diogram (ECG) ms in one
cardiac cycle. Aortic pressure, left ventricular pressure, LAP, left ventricular volume and
ECG are shown from top to bottom. Ejection happens when the aortic valve is open. “a”

and “v” waves are apparent in LAP waveform. “R” wave in ECG corresponds to the

beginning of ventricular systole.
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Figure 2.5 Left ventricular pressure-volume loop. The pressure and volume corresponds
to the pressure and volume in the cardiac cycle shown in Fig. 2.4. The star marks the end

systole.
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Beat-to-Beat Variability

Hemodynamic waveforms also vary from beat-to-beat due to various naturally
occurring physiological perturbations and the response of the short-term cardiovascular
regulation to these perturbations. For example, the beat-to-beat fluctuations in ABP due
to respiration are clearly seen in Fig. 2.6. These fluctuations are caused by both the
mechanical effects and the autonomic nervous system. The variation of intrathoracic
pressure caused by chest expansion (inspiration) or chest contraction (expiration)
mechanically perturbs the venous return, ventricular pressure, and the arterial pressure.
Autonomic mechanisms are responsible for the respiratory sinus arrhythmia phenomenon
in which HR and respiratory variations are in synchrony (Fig. 2.7) [Eckberg et al., 1984;
Saul and Cohen, 1994]. The HR changes will then cause ABP changes through
circulation. These mechanisms are mediated by the fast parasympathetic nervous system
and the slower sympathetic nervous system [Akselrod et al., 1981]. Another example of
an ongoing perturbation is fluctuations in the TPR as vascular beds regulate their own
resistance in order to match blood flow demand. These fluctuations in turn can perturb
arterial pressure and affect HR.

With the conventional power spectral analysis, we can study the frequency content
of the fluctuations in HR (Fig. 2.8). The short-term fluctuations are normally
concentrated in three principal spectral peaks: low-frequency peak (0.02-0.09 Hz), mid-
frequency peak (0.09-0.15Hz), and high-frequency peak (respiratory frequency). The two
lower frequency peaks in the power spectrum proves that other perturbations (e.g.,

autoregulation of local vascular beds) aside from respiration exist.
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Figure 2.7 Illustration of respiratory sinus arrhythmia. The heart rate (ECG) is in

synchrony with the respiratory activity (Q,,, instantaneous lung volume).
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Figure 2.8 Power spectrum of HR fluctuation featuring 3 main peaks: low-frequency
peak (0.02-0.09 Hz), mid-frequency peak (0.09-0.15Hz), and high-frequency peak

(around respiratory frequency) [Akslrod et al., 1981].
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2.2 System Identification Analysis in Hemodynamics

The construction of the cardiovascular models described in Fig. 2.1 and Fig. 2.2 is
called forward modeling, which could be utilized in hemodynamic computation. For
example, the blood flow can be computed from ABP by solving differential equations
based on the systemic circulation model shown in Fig. 2.1. The inverse modeling
problem is to identify dynamic models from observed data. This approach is called
system identification and is the basis of signal processing methods used in this thesis.

System identification could be categorized into nonparametric and parametric methods.

2.2.1 Nonparametric Identification

Multivariable statistical methods such as cross-correlation functions, cross-spectra,
and nonparametric transfer functions have been used to analyze the relationships between
fluctuations in different cardiovascular signals [Mullen et al., 1997]. Consider an LTI
(linear time invariant) system whose input-output relationship can be expressed as
follows:

@
y(t)= Y h(k)u(t-k)+e(t), 2.1
k=—c0

where ¢ is discrete time; u(?), input; y(?), output; A(t), impulse response; and e(?),
unobserved, stochastic process that is uncorrelated to u(z). Thus, the output signal can be
computed by convolving the impulse response and the input signal plus an unobserved
noise signal. The impulse response is defined to be the system response to an arbitrarily

narrow, unit-area input and completely characterizes the LTI system. The Fourier
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transform of the impulse response, transfer function, may be estimated from input-output

data in closed-form as follows:

2.2)

where Suy(ejznf) is the cross-spectrum from u(?) to y(1); S, (ejznf) , auto-spectrum of

u(t); and I-I(ejz"f ), optimal transfer function in the least squares sense [Ljung, 1999],

which is also known as the Wiener filter. Since the cross-spectrum is generally complex,

H(e j27‘f) provides both magnitude and phase characteristics of the system. The
nonparametric transfer function has been used to analyze the arterial heart rate baroreflex
system [Berger et al., 1989b] and respiratory sinus arrhythmia.

Nonparametric identification methods have proven to be powerful analytic tools
because they are easy to use and capable of giving unique results without assuming any
model structure. However, the major limitation is that they only can be utilized in
identifying systems operating in open-loop. For example, in Fig. 2.3, the nonparametric
transfer function analysis of HR and ABP fluctuations would provide a single transfer
function relating the two variables and include the properties of both circulatory
mechanics and HR baroreflex. These two totally distinct physiological mechanisms
would thus be intertwined together. Therefore, neither circulatory mechanics cannot be
characterized due to the existence of the baroreflex system. Similarly, the HR baroreflex

characteristics cannot be obtained either.

2.2.2 Parametric Identification
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On the other hand, the parametric identification may be even more illuminating.
The advantage of this approach is that it provides a quantitative characterization of the
open-loop hemodynamic mechanisms responsible for coupling the variability between
hemodynamic signals despite the pressure of the feedback. Beginning from the middle to
late 1980s, parametric identification has become an increasingly popular approach for
quantitatively probing cardiovascular mechanisms. Next, we will introduce three

mathematical models popularly utilized for parametric identification.

ARX Model and MA model

Amongst different existing models, the autoregressive exogenous input (ARX)
model is perhaps the most widely employed parametric model in system identification.
For example, in Fig. 2.3, since each pathway of the closed-loop coupling is causal,
parametric identification has been utilized to estimate the circulatory mechanics and HR
baroreflex separately [Mullen et al., 1997]. Each channel can be represented by an ARX
model and quantitated with a limited number of parameters. The details of the ARX
modeling approach are described below.

Given an LTI causal system, where u(?) is the input, y(?) is the output, and e(?) is an
unobserved white noise disturbance that is uncorrelated with the input, the ARX model

can be conveniently represented as follows:
y(1) =Y a;y(t—i)+ D byu(t—i)+e(t). (2.3)
i=1 i=0

The unknown coefficients {a;} and {b;} are respectively referred to as the autoregressive
(AR) and exogeneous parameters. The AR part refers to the effect of the past values of

¥(t) on the current value of y(?); the exogeneous part refers to the effect of the past and
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current values of u(?) on the current value of y(z). The constants m and n are model orders
limiting the number of these parameters. The coefficients may be estimated from
measured input-output data by minimizing the variance of e(?) via the closed form linear
least squares solution. The Z transform of the ARX model may be expressed with the
following equation:

_ B(2) E(z)
Y@=~ A(z) UGz + 1- A(2)

, 2.4)

where A(z)=2a,z”' +a,2 2 +---+a,, B(z)=b,+bz" +b,z” +---+b_, and E(z) is the
Z transform of the unobserved noise e(?). This equation illustrates that the influence of
the unobserved, white disturbance on the system output is colored by the AR coefficients.
Thus, the ARX model is able to represent LTI systems in the presence of colored noise.
The impulse response 4(?) can be obtained by substituting u(?)=4(?) into Eq. 2.3. The
transfer function H(z) is the Z transform of the impulse response 4(?) and may be
computed with the following equation:

n
Zbkl_k

H(z)=—%0 | (2.5)

m
1- Zakz_k
k=1

If the AR part is removed from Eq. 2.3, we obtain a finite impulse response (FIR)

model as follows:
y(t)= ibiu(t -1)+e(t). (2.6)
i=0

Here, the output only depends on the input. For an LTI causal system represented by Eq.

2.6, the impulse response A(?) is actually the coefficients {b;}. The coefficients {b;} could

20



be estimated by the linear least squai'es solution from measured input-output data. The Z
transform of the FIR model is as follows:
Y(z) =B(z)X(z) + E(2) . 2.7
OE Model
The relationship between x(2) and y(z) may also be represented by an output error
(OE) model given in Z transform as follows:

B(z)
1- A(2)

Y(2) = X(z) + E(2). (2.8)

Comparison of Models

Comparing Eq. 2.4, Eq. 2.7 and Eq. 2.8, we can see that the three models are
different based on the noise portion. The unobserved noise e(?) is “colored” by AR
coefficients in the ARX model, whereas e(?) is not limited by this assumptions in FIR and
OE model. One big advantage of the ARX and FIR models is that they can be
conveniently estimated by solving the linear equations 2.3 and 2.6 using the linear least
squares solution. In contrast, the parameters of the OE model have to be estimated
numerically by, for example, Newton’s iteration method. Another advantage of the FIR
model is that it does not make any assumptions about the model structure (no poles in Eq.
2.7) and therefore its impulse response has no restriction. However, accurate system
identification using an MA FIR model requires a large number of parameters. Thus, the

FIR model can only characterize the system whose true impulse response is very short.

Model Order Selection
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In order to identify the coefficients of the models, the model orders m and #» must be
determined. Because the ARX model is perhaps the most widely used, we describe model
order selection method based on the ARX model.

Assuming the true model orders in Eq. 2.3 are ng and my, and ny=m,, if the selected
model order n<ny, then the estimated model will not include all of the true parameters
and therefore lacks the degrees of freedom necessary to represent the system. On the
other hand, if the selected model order n>ny, then there would be extra parameters in the
estimated model that do not exist in the true model. These extra parameters serve only to
make the estimated model more sensitive to the noise during the particular time period
[Perrott and Cohen, 1996]. Thus, order selection is a tradeoff between completeness and
robustness.

To obtain the true model order, first, a set of candidate model orders are chosen
based on the physical properties of system. Next, the best model order is sought from the
candidate orders. We cannot choose the order corresponding to the minimum mean
square error (MSE) of e(?), because the MSE is a monotonically decreasing function of
model order. The most popular strategy is to minimize a theoretically derived formula or
criterion, which consists of a goodness-of-fit index such as MSE and a penalty factor for
model complexity. The Minimum Description Length (MDL) and Final Prediction Error
(FPE) [Ljung, 1999; Perrott and Cohen, 1996] are amongst the most widely used model

order selection criteria. The MDL value is computed via the following formula:

MDL(k)_(1+k S ) N (2.9)

where £ is defined to be the number of parameters contained within the model, N is the

number of samples contains in the input and output data sets, and ||e;||* is the MSE.
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Model order selection using the MDL criterion amounts to finding the model amongst the
candidate set with the minimum MDL value. The FPE value is computed via the

following formula:

2
FPE(K) = _S_J_'_t "e;" . (2.10)

Similarly, model order selection using the FPE criterion aims to find the model order

with the minimum FPE value.
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CHAPTER 3
CONTINUOUS MONITORING OF CARDIAC OUTPUT FROM A

PERIPHERAL ARTERIAL BLOOD PRESSURE WAVEFORM

3.1 Background

Since cardiac output (CO) represents the total flow of blood supplying all the tissue
beds of the body, it is perhaps the most valuable indicator of overall cardiovascular
health. For example, circulatory status is typically monitored through ABP, which is easy
to measure. However, in the early stages of a bleed, ABP is maintained while CO is
falling due to the body’s multiple feedback and control systems (Fig. 3.1) [Barcroft et al.,
1944]. Thus, continuous CO monitoring would provide an early indication of deleterious
changes in circulatory status and thereby provide sufficient time for successful therapy.

Due to the importance of CO, it is currently monitored in most ICUs and surgical
suites in order to guide therapy for critically ill patients. These patients include, for
example, those in shock (e.g., cardiogenic, septic, and hemorrhagic) or heart failure and
those during and after surgery (e.g., coronary artery bypass grafting or heart valve
replacement). An ideal method for CO measurement should be continuous (autonomous
operation), minimally invasive, accurate, and inexpensive. Although numerous
techniques have been developed for the measurement of CO, none of the conventional
techniques possesses all these characteristics (Table 3.1) [Ehlers et al., 1986]. Consider,
for example, the standard thermodilution technique, which is currently employed in most
ICUs and surgical suites. This technique involves introducing a pulmonary artery catheter

(PAC) [Swan et al., 1970] in the right heart, injecting cold saline in right atrium, and
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Figure 3.1 Comparison of the changes in blood pressure (BP) and cardiac output (CO)
during venesection and resulting faint. Until to the end of venesection, BP is maintained
by peripheral vasoconstriction (increased total peripheral resistance) in spite of falling
CO. During the faint, the cardiac output increases slightly and the fall in BP is therefore

due to the decrease in total peripheral resistance (TPR) [Barcroft et al., 1944].

25



measuring the temperature downstream in the pulmonary artery (Fig. 3.2). The average
CO over the measurement period may then be computed based on conservation of mass
laws. Although the technique is relatively inexpensive, it is very invasive and does not
operate autonomously. Moreover, the measurement is not very accurate due to the many
assumptions upon which it is based (e.g., no saline recirculation and thorough blood
mixing) [Ehlers et al., 1986]. As aresult, it is used in only a minority (e.g., 10-20%) of
all critically ill patients [Rapoport et al., 2000]. In fact, although PAC can be utilized to
measure pressures (right atrial, right ventricle, pulmonary capillary wedge pressure, and
pulmonary artery pressures) as well as other important hemodynamic parameters (e.g.,
CO, LAP, mixed venous oxygen saturation), the apparent failure to demonstrate
improvements in patient outcome and risks associated with the PAC use have long been
criticized and therefore the applications of PAC are falling in this decade [Pinsky and
Vincent, 2005]. Another conventional technique for monitoring CO is transthoracic
impedance. Thoracic bioimpedance involves the placement of voltage sensing and
current transmitting electrodes on the chest, which may be regarded as a conductor whose
impedance is altered by changes in blood volume and velocity with each heartbeat.
Stroke volume is calculated from an equation involving baseline and maximum rate of
change in impedance, ventricular ejection time, and thoracic segment length. This
measurement technique is non-invasive and operates autonomously; however, it is
generally considered to be very inaccurate, especially in critically ill patients who often
have excessive lung fluids [Critchley et al., 1998]. Doppler ultrasound methods, which
measure the Doppler shift in the frequency of an ultrasound beam reflected from the

flowing aortic blood, require an expert operator to stabilize an external ultrasound
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transducer as well as expensive equipment. The most accurate, conventional technique

for measuring CO involves surgically implanting a flow probe, either electromagnetic or

ultrasonic, directly on the aorta. Although this technique operates autonomously, it does

require the drastic procedure of opening the chest. A practical, continuous, minimally

invasive or non-invasive CO monitoring method would benefit not only ICU and surgical

suite care but also potentially home health care, primary care, and even combat casualty

care.

Table 3.1: Advantages and disadvantages of some conventional cardiac output (CO)

measurement techniques [Ehlers et al., 1986]

CONVENTIONAL ADVANTAGES DISADVANTAGES
TECHNIQUES
Aortic Flow Probe most accurate; continuous thoracotomy; expensive
Doppler Ultrasound accurate; non-invasive expert operator; expensive
Oxygen Fick inexpensive two catheterizations;
inaccurate; discrete
Thermodilution inexpensive heart catheterization;

inaccurate; discrete

Transthoracic Impedance

non-invasive; inexpensive;
continuous

inaccurate
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Figure 3.2 Illustration of thermodilution CO and pulmonary capillary wedge pressure
(PCWP) measurements using pulmonary artery catheter (PAC). PAC is a flow-directed
balloon-tipped catheter. Thermodilution measurement steps: insert PAC into pulmonary
artery through right heart, inject cold saline from syringe to right atrium, measure the
temperature changes downstream in pulmonary artery and compute CO by the mass
conservation law. The curve on the bottom is the temperature measured in pulmonary
artery by a thermistor. CO measurement value is proportional to the reciprocal of the area
below the curve. PCWP measurement: after inserting PAC into pulmonary artery,
position the tip in a small branch of pulmonary artery, and inflate the balloon to occlude

blood flow. The pressure measured is PCWP.
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While the measurement of CO has proven to be difficult, peripheral arterial blood
pressure (ABP), which is related to CO through arterial tree, may be measured reliably
and continuously via minimally invasive radial artery catheterization. Indeed, this
relatively safe procedure is performed in a majority (e.g., 50-80%) of all critically ill
patients [Rhodes and Sunderland, 2005]. Moreover, totally non-invasive methods have
been developed to continuously measure peripheral ABP based on finger-cuff
photoplethymography [Imholz et al., 1998] and arterial tonometry. These non-invasive
methods are available as commercial systems at present, for example, Finapres Medical
System. Indeed, since at least 1904 [Erlanger and Hooker, 1904], numerous investigators
have therefore sought analysis techniques to monitor CO from ABP waveforms.
Techniques based on an adaptive aorta model, which require ABP waveforms measured
at two peripheral sites, have been proposed [Redling and Akay,1997; Welkovitz et al.,
1991]. Learning techniques, which require large training data sets consisting of
simultaneous measurements of CO and ABP waveforms obtained over the entire
physiologic range, have also been suggested [Cerutti et al., 2001; Gratz et al., 1992;
Martin et al., 1994]. Finally, Wesseling et al [1993], Linton et al [2001], and other
investigators have proposed techniques requiring only the analysis of a single radial ABP
waveform. However, Linton et al only showed that their heuristic technique was accurate
over a narrow physiologic range, and several studies have demonstrated limitations of the
technique of Wesseling et al [Gerhardt et al., 2001; Houtman et al., 1999].

Although a wide variety of techniques have been proposed, they are all
conceptually the same to the extent the waveform analysis is performed only over time

scales within a cardiac cycle. However, over such short time scales, peripheral ABP
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waveforms are heavily corrupted by complex waves propagating back and forth in the
distributed arterial tree. Thus, the previous analysis techniques have generally proven to
be too inaccurate for clinical use. To date, no non-invasive method has been clinically
accepted as a replacement for thermodilution [Levett et al., 1979; Redling et al., 1997].

Our ongoing hypothesis is that CO may be accurately monitored from ABP
variations occurring over time scales greater than a cardiac cycle. This hypothesis
originates from transmission line theory, which predicts that the confounding effects of
wave reflection will diminish with increasing time scale [Noordergraaf, 1978]. Based on
the hypothesis, we previously developed a technique to monitor changes in CO by
analyzing a single peripheral ABP waveform over long time scales [Mukkamala et al.,
2003a, 2004, 2006]. In this study, we refined the technique and evaluated it, for the first
time, in humans based on previously published invasive and non-invasive hemodynamic
data sets [Elstad et al., 2001; Moody et al., 1996, 2001; Mukkamala et al., 2003b]. With
these data, we were specifically able to compare the application of the technique to 1)
invasive peripheral ABP waveforms obtained via radial artery catheterization with
reference thermodilution measurements in 15 intensive care unit (ICU) patients in which
CO was changing due to disease progression and therapy and 2) non-invasive peripheral
ABP waveforms obtained via a commercial finger-cuff photoplethysmography system
with reference Doppler ultrasound measurements made by an expert in ten healthy

subjects in which CO was altered through pharmacological and postural interventions.
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3.2 The Technique

Our technique builds upon the previous pulse contour analysis work of Bourgeois et
al. [1976]. In the systemic circulation, arterioles and small arteries contribute 75% of the
total resistance, and the large arteries act as a capacitive reservoir [Berne and Levy,
1998]. Therefore, these investigators assumed that the arterial tree could be well
represents by a two-element Windkessel model accounting for the lumped compliance of
the large arteries (arterial compliance, AC) and the resistance of small arteries and
arterioles (total peripheral resistance, TPR) as shown in Fig. 3.3a. They further assumed
that TPR does not change within a diastolic interval since the autonomic nervous
mechanisms responsible for modulating TPR are relatively slow [Berger et al., 1989b]. In
addition, AC may be approximately constant over a wide pressure range and on the time
scale of days to months [Hallock, 1937; Bourgeois et al., 1976]. Based on these
assumptions, these investigators predicted that ABP may decay like a pure exponential
during each diastolic interval with a time constant (t) equal to the product of the TPR and
AC (Fig. 3.2b). Thus, their pulse contour technique involved fitting a mono-exponential

function to each ABP diastolic interval to measure T and then dividing the time-averaged

ABP with 1 to compute the proportional CO scaled by a constant factor of 1/AC (Fig.
3.3b).

Bourgeois et al were able to successfully validate their technique with respect to
central ABP waveforms measured near the heart, because the diastolic interval of these
waveforms resembles an exponential decay (Fig. 3.4a). However, central ABP is rarely
measured clinically because of the risk of blood clot formation and embolization. In

contrast, in readily available peripheral ABP waveforms, an exponential diastolic decay
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is not apparent (Fig. 3.4b). The reason is that the arterial tree is not simply a lumped
system like the two-element Windkessel model suggests but rather a complicated
distributed system with impedance mismatcheg, throughout due to vessel tapering,
bifurcations, and caliber changes. The diastolic (and systolic) intervals of peripheral ABP
waveforms are therefore corrupted by the complex wave propagation and reflections
occurring at every site of impedance mismatch. Thus, the technique of Bourgeois et al

cannot be applied to peripheral ABP waveforms.
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Figure 3.3 The technique of Bourgeois et al for monitoring CO from ABP waveform. (a),
two-element Windkessel model of artery including total peripheral resistance (TPR) and
arterial compliance (AC); (b), CO and ABP waveform. ABP decays like an exponential
during diastole with a time constant (t) equal to the product of TPR and the nearly
constant AC. The proportional CO is calculated by dividing the mean ABP with 1

[Bourgeois et al., 1976].
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Figure 3.4 Comparison of central ABP measured in aorta (a) and peripheral ABP
waveforms measured in radial artery (b). The diastolic intervals of the central ABP
waveform resemble exponential decays; however, central ABP is rarely measured
clinically. In contrast, exponential diastolic decays are not visible in the peripheral ABP

waveforms, which are corrupted by complex wave reflections.
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