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ABSTACT

HEMODYNAMIC MONITORING BY SYSTEM IDENTIFICATION

By

Zhenwei Lu

The hemodynamic variables, cardiac output (CO), left atrial pressure (LAP), and

left ventricular contractility in terms of the maximum elastance (BI:lax ), may be utilized

either individually or collectively to guide therapy in patients with cardiovascular disease.

However, the conventional methods for monitoring each of these variables are highly

invasive and/or operator dependent, thereby limiting their clinical application. In this

dissertation, we introduce three signal processing techniques for monitoring the

aforementioned hemodynamic variables. The unifying theme ofthe three techniques is

the analysis of subtle beat-to-beat variations in cardiovascular signals that may be

routinely measured in clinical practice using the system identification method in

conjunction with prior physiologic knowledge. The three techniques specifically aim to

monitor 1) CO changes from a single peripheral arterial blood pressure (ABP) waveform,

2) CO changes and absolute LAP from either a pulmonary artery pressure waveform or a

right ventricular pressure waveform, and 3) Ban" changes from random-interval,

respiratory-induced ABP variations. In this dissertation, we also initially validate each of

these techniques with respect to hemodynamic data obtained from realistic computer

simulations, animal subjects, human volunteers, and patients. With further successful

testing, the techniques may ultimately be employed to expand the monitoring of CO,



LAP, and 13:33" in clinical applications such as critical care, home health care, and even

combat casualty care.
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CHAPTER 1

INTRODUCTION

1.1 Hemodynamics

Cardiovascular disease is the number one cause of mortality in the United States. A

properly functioning, well-regulated cardiovascular system is essential to meet the

metabolic and mechanical demands of the various physiologic and pathophysiologic

situations. Hemodynamics is a branch of cardiovascular physiology studying the dynamic

properties ofblood: flow (velocity), pressure, volume, and their relationships. It is very

important for the body to maintain the hemodynamic parameters in a narrow range

despite a wide variety of physiological perturbations. Otherwise, the person may be in

serious status. For example, a very low arterial blood pressure (ABP) may cause the death

of the brain in a few seconds, and low cardiac contractility may cause heart failure.

Therefore, hemodynamic monitoring is extremely important for directing therapy in

patients with cardiovascular disease.

1.2 Conventional Hemodynamic Monitoring

Most current hemodynamic monitoring systems provide continuous, automatic

measurements ofblood pressures. Invasive fluid-filled catheters are broadly utilized in

critically ill patients to monitor the pressures in the radial artery and pulmonary artery.

Peripheral ABP may be measured non-invasively via tonometry and finger-cuff



photoplethysmography. Right ventricular pressure (RVP) could be measured by

implanted devices (e.g., two-lead pacemaker).

To a large extent, conventional patient monitoring systems simply measure and

display physiologic signals without attempting to interpret them. As a result, these

systems are limited in that they require a high level of invasiveness, necessitate an

operator, and/or provide nonspecific clinical information. For instance, the continuous

monitoring ofABP is commonly utilized to help physicians to assess the patients’

cardiovascular status. However, the main limitation of this monitoring is that the

measured ABP are multi-factorial and therefore not sufficiently specific to guide therapy.

For example, hypotension or low pressure may be caused by the inability of the heart to

fill or contract or the inability of the circulation to return blood to heart. To assess the

hemodynamic status, the measurement of other clinical parameters such as cardiac output

(CO) is desirable (Fig. 1.1). The thermodilution method is currently employed in most

intensive care units (ICU) and operating rooms to measure CO. This method involves

inserting a pulmonary artery catheter (PAC), injecting cold saline in the right atrium,

measuring temperature change downstream in the pulmonary artery, and then computing

CO using conservation ofmass laws. This method is very invasive and only warrants use

in a subset of critically ill patients. In addition, because an operator is required, the CO

cannot be monitored continuously. Finally, it is not very accurate due to the many

assumptions upon which it is based.

Other important specific hemodynamic parameters include left atrial pressure

(LAP) and cardiac contractility. Left atrial pressure (LAP), also known as left heart

filling pressure, can be utilized together with CO to distinguish between circulatory and



cardiac diseases. The standard LAP monitoring method is the pulmonary capillary wedge

pressure (PCWP) method. This method also requires an operator and is therefore discrete.

Left ventricular maxim elastance ( E13“) is a specific index heart contractility. The

monitoring of BS“ can help detect left ventricular systolic failure. The conventional

measurement method of ER?“ involves catheterizing the left ventricle through the aorta

to measure the left ventricular pressure and volume, altering the loading conditions by,

for example, inferior vena cava balloon occlusion, and then computing the slope of the

line that best fits the end-systolic pressure-volume points. This method is clearly too

invasive for routine use.

1.3 Hemodynamic Monitoring by System Identification

In this thesis, we seek to overcome limitations of conventional hemodynamic

monitoring systems. Our general approach to advancing the state—of-the-art of patient

monitoring systems is to reveal the significant, “hidden” information in routinely

measured blood pressure waveforms by employing system identification with physiologic

knowledge. In this way, the patient monitoring systems are possibly less invasive,

provide automated physiologic assessment, and/or indicate specific clinical parameters

that significantly contribute to therapeutic decision-making.

1.4 Thesis Organization and Contributions

The main contributions of this thesis is in the development and evaluation of three

techniques for monitoring CO, LAP and/or left ventricular contractility in terms of



Big“. Common to the three techniques is the analysis of continuous long time intervals

ofblood pressure waveforms.

In Chapter 2, we discuss the background for this thesis, namely, cardiovascular

physiology, hemodynamic models, and basic system identification algorithms. In chapter

3, we describe a previously developed technique for continuously monitoring CO from

peripheral ABP. We then describe the refinement of the technique and its validation, for

the first time, in humans. In chapter 4, we extend the algorithm of Chapter 3 to a PAP or

RVP waveform for continuously monitoring LAP and CO and describe its preliminary

evaluation in ICU patients and a canine experiment. In Chapter 5, we introduce a

technique to monitor changes in E133" from the ABP waveform variations induced by

respiratory activity during a random interval breathing protocol. We then describe its

evaluation with respect to beat-to-beat variability generated from a realistic human

cardiovascular simulator and a canine experiment. Finally, in chapter 6, we summarize

the thesis work and outline firture directions.
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Figure 1.1 A simple diagnostic algorithm based on the monitoring of cardiac output

(C0), left atrial pressure (LAP) and left ventricular maximum elastance (Ewax)

(Modified from Pinsky and Vincent, 2005).

 



CHAPTER 2

BACKGROUND

2.1 Cardiovascular System

The cardiovascular system serves to transport and distribute essential substances to

the tissues and to remove by—products of metabolism as well as regulate body

temperature, adjust oxygen and nutrient supply and etc. [Berne and Levy, 1998]. The

cardiovascular system includes the circulatory system and the nervous control system.

2.1.1 Circulations

The circulatory system consists of a pump (the heart), a series of distributing and

collecting tubes (blood vessels), and thin vessels for exchange between the tissues and the

vascular channels (capillaries). The vascular system is composed oftwo major

subdivisions in series with one another: the pulmonary circulation and systemic

circulation. Each subdivision consists of several types of vessels (e.g., arteries,

capillaries, veins) aligned in series with one another. In the pulmonary circulation, the

right ventricle propels oxygenated blood through the lungs for exchange of oxygen and

carbon dioxide. In the systemic circulation, the left ventricle propels blood to all other

tissues of the body.

There have been numerous models of the circulation. For example, Fig. 2.1 shows a

simple electrical analog model of the systemic circulation. Here, the left heart is

represented by a current source supplying the CO. The systemic arterial tree is

represented by a two-element Windkessel model accounting for the lumped compliance



of the large arteries (arterial compliance, AC) and the total peripheral resistance (TPR) of

the small arteries. The veins are not considered in the model, because due to the high

value ofTPR, the venous pressure is usually negligible with respect to ABP.

Similarly, the pulmonary circulation could also be modeled as an electrical circuit

as shown in Fig. 2.2. The right heart is represented by a current source supplying the CO;

puhnonary vessels (including arteries, capillaries and veins) are represented by a

Windkesssel model accounting for pulmonary vessel compliance (PVC) and pulmonary

vessel resistance (PVR). LAP must be considered in the model, because the pulmonary

circulation is a low pressure system.

ABP

 

co CD :: AC TPR

   

Figure 2.1 Two-element Windkessel model of systemic circulation in terms of its

electrical circuit analog. Left ventricle is represented by a current source with a value of

cardiac output (CO) and arterial tree is represented by total peripheral resistance (TPR)

and arterial compliance (AC). ABP, arterial blood pressure.



PAP

co CD :E PVC

 

PVR

LAP

   

Figure 2.2 Two-element Windkessel model ofpulmonary circulation in terms of its

electrical circuit analog. Right ventricle is represented by a current source with a value of

CO and pulmonary vessels are represented by pulmonary vessel resistance (PVR) and

pulmonary vessel compliance (PVC). LAP, left atrial pressure.
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Figure 2.3 Interaction between heart rate (HR) and ABP. NHR, NABp, noise disturbance of

HR and ABP.



2.1.2 Cardiovascular Regulation

A principle objective of the cardiovascular system is to maintain ABP within a

narrow range in order to drive blood through the tissues and provide oxygen and other

essential substances. This goal is realized by not only the mechanical system

(circulation), but also the cardiovascular regulatory system. In the short term (seconds to

minutes, which is the focus of this thesis), the arterial and cardiopulmonary baroreflex

feedback systems are normally responsible for extrinsic regulation over short time scales

of seconds to minutes. For example, ABP is sensed via baroreceptors that lie in the

carotid sinus and aortic arch and this pressure is transfered to the brainstem via afferent

nerve fibers. The brain then try to keep ABP near its desired value by adjusting heart rate

(HR), left ventricular contractility (i.e., E133" ), TPR, and systemic venous unstressed

volume (SVUV). If ABP decreases, then HR, ventricular contractility and TPR would

increase, while SVUV would decrease. Then, ABP would be increased back towards its

desired value via the mechanical system. Thus, the system is closed-loop. For example,

HR affects ABP through circulatory mechanics, while ABP also affects HR through the

baroreflex feedback control system (Fig. 2.3) [Mullen et al., 1997].

2.1.3 Hemodynamic Waveforms

Knowledge ofthe variability ofhemodynamic signals (blood pressures, flows and

volumes) and the electrocardiogram (ECG) is very important in this thesis. In this

section, we will discuss the waveform variability and the mechanisms underlying this

phenomenon.



Intra-Beat Variability

The cardiac cycle refers to the sequence of electrical and mechanical events

occurring in the heart during a single beat. These events result in the changes ofblood

pressures, volumes and flows, and the body surface potential that is usually monitored

with the ECG. The waveforms of aortic pressure (AOP, central ABP), left ventricular

pressure (LVP), LAP, left ventricular volume, and ECG during one cardiac cycle are

shown in Fig. 2.4. Ventricular systole (contraction) and diastole (relaxation) can be

defined in terms ofboth mechanical and electrical events. In mechanical terms, systole is

defined as the period between the closure of the mitral valve and the closure of the aortic

valve. In electrical terms, it is the period between the QRS complex and the end of the

“T” wave in the ECG signal. Ventricular diastole is remaining time of the cardiac cycle.

Systole is composed of the isovolumetric contraction phase and the ejection phase.

During the ejection phase, the aortic valve is opened and blood flows out from the

ventricle, thus the ventricular volume decreases and the waveforms ofAOP and LVP are

overlapped. In the remaining ofthe cardiac cycle, the aortic valve closes, thus the AOP

waveform is always above the LVP waveform due to the blood conservation effect of the

AC. Note that the “R” wave in the ECG waveform corresponds to the beginning of

isovolumetric contraction, when the LVP begins to increase rapidly and the mitral valve

closes. Two waves appear in LAP waveform during one beat: the “a” wave after the “P”

wave ofthe ECG and the “v” wave after the “T” wave of the ECG (Fig. 2.4). The “v”

wave corresponds to the end of the isovolumetric relaxation when the mitral valve opens.

PAP and right ventricular pressure (RVP) waveforms are very similar with AOP and

10



LVP respectively except that their values are much lower. As implied above, a left

ventricular pressure-volume loop of the cardiac cycle in Fig. 2.4 is shown in Fig. 2.5.

11
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andv“ ” waves are apparent in LAP waveform. “R” wave in ECG corresponds to the
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Beat-to-Beat Variability

Hemodynamic waveforms also vary from beat-to-beat due to various naturally

occurring physiological perturbations and the response of the short-term cardiovascular

regulation to these perturbations. For example, the beat-to-beat fluctuations in ABP due

to respiration are clearly seen in Fig. 2.6. These fluctuations are caused by both the

mechanical effects and the autonomic nervous system. The variation of intrathoracic

pressure caused by chest expansion (inspiration) or chest contraction (expiration)

mechanically perturbs the venous return, ventricular pressure, and the arterial pressure.

Autonomic mechanisms are responsible for the respiratory sinus arrhythmia phenomenon

in which HR and respiratory variations are in synchrony (Fig. 2.7) [Eckberg et al., 1984;

Saul and Cohen, 1994]. The HR changes will then cause ABP changes through

circulation. These mechanisms are mediated by the fast parasympathetic nervous system

and the slower sympathetic nervous system [Akselrod et al., 1981]. Another example of

an ongoing perturbation is fluctuations in the TPR as vascular beds regulate their own

resistance in order to match blood flow demand. These fluctuations in turn can perturb

arterial pressure and affect HR.

With the conventional power spectral analysis, we can study the frequency content

of the fluctuations in HR (Fig. 2.8). The short-tenn fluctuations are normally

concentrated in three principal spectral peaks: low-frequency peak (0.02-0.09 Hz), mid-

frequency peak (0.09-0.15Hz), and high-frequency peak (respiratory frequency). The two

lower frequency peaks in the power spectrum proves that other perturbations (e. g.,

autoregulation of local vascular beds) aside from respiration exist.
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Figure 2.6 Respiratory waves on ABP waveform.
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Figure 2.7 Illustration of respiratory sinus arrhythmia. The heart rate (ECG) is in

synchrony with the respiratory activity (Qlu, instantaneous lung volume).
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Figure 2.8 Power spectrum ofHR fluctuation featuring 3 main peaks: low-frequency

peak (0.02-0.09 Hz), mid-frequency peak (0.09—0.15Hz), and high-fiequency peak

(around respiratory frequency) [Akslrod et al., 1981].
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2.2 System Identification Analysis in Hemodynamics

The construction of the cardiovascular models described in Fig. 2.1 and Fig. 2.2 is

called forward modeling, which could be utilized in hemodynamic computation. For

example, the blood flow can be computed fiom ABP by solving differential equations

based on the systemic circulation model shown in Fig. 2.1. The inverse modeling

problem is to identify dynamic models from observed data. This approach is called

system identification and is the basis of signal processing methods used in this thesis.

System identification could be categorized into nonparametric and parametric methods.

2.2.1 Nonparametric Identification

Multivariable statistical methods such as cross-correlation functions, cross-spectra,

and nonparametric transfer functions have been used to analyze the relationships between

fluctuations in different cardiovascular signals [Mullen et al., 1997]. Consider an LTI

(linear time invariant) system whose input-output relationship can be expressed as

follows:

00

y(t) = Z h(k)u(t — k) + e(t), (2.1)

k=—oo

where t is discrete time; u(t), input; y(t), output; h(t), impulse response; and e(t),

unobserved, stochastic process that is uncorrelated to u(t). Thus, the output signal can be

computed by convolving the impulse response and the input signal plus an unobserved

noise signal. The impulse response is defined to be the system response to an arbitrarily

narrow, unit-area input and completely characterizes the LTI system. The Fourier
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transform of the impulse response, transfer function, may be estimated from input-output

data in closed-form as follows:

(2.2)

where Suy (ejznf) is the cross-spectrum from u(t) to y(t); Suu (ejan) , auto-spectrum of

u(t); and H(ej27If ) , optimal transfer function in the least squares sense [ijg, 1999],

which is also known as the Wiener filter. Since the cross-spectrum is generally complex,

H(ej2“f) provides both magnitude and phase characteristics of the system. The

nonparametric transfer function has been used to analyze the arterial heart rate baroreflex

system [Berger et al., 1989b] and respiratory sinus arrhythmia.

Nonparametric identification methods have proven to be powerful analytic tools

because they are easy to use and capable of giving unique results without assuming any

model structure. However, the major limitation is that they only can be utilized in

identifying systems operating in open-loop. For example, in Fig. 2.3, the nonparametric

transfer function analysis ofHR and ABP fluctuations would provide a single transfer

function relating the two variables and include the properties ofboth circulatory

mechanics and HR baroreflex. These two totally distinct physiological mechanisms

would thus be intertwined together. Therefore, neither circulatory mechanics cannot be

characterized due to the existence of the baroreflex system. Similarly, the HR baroreflex

characteristics cannot be obtained either.

2.2.2 Parametric Identification

18



On the other hand, the parametric identification may be even more illuminating.

The advantage of this approach is that it provides a quantitative characterization ofthe

open-loop hemodynamic mechanisms responsible for coupling the variability between

hemodynamic signals despite the pressure of the feedback. Beginning from the middle to

late 19808, parametric identification has become an increasingly popular approach for

quantitatively probing cardiovascular mechanisms. Next, we will introduce three

mathematical models popularly utilized for parametric identification.

ARXModel and MA model

Amongst different existing models, the autoregressive exogenous input (ARX)

model is perhaps the most widely employed parametric model in system identification.

For example, in Fig. 2.3, since each pathway of the closed-loop coupling is causal,

parametric identification has been utilized to estimate the circulatory mechanics and HR

baroreflex separately [Mullen et al., 1997]. Each channel can be represented by an ARX

model and quantitated with a limited number of parameters. The details of the ARX

modeling approach are described below.

Given an LTI causal system, where u(t) is the input, y(t) is the output, and e(t) is an

unobserved white noise disturbance that is uncorrelated with the input, the ARX model

can be conveniently represented as follows:

y(t)=Zaiy(t-i)+2biu(t—i)+e(t). (2.3)

i=l i=0

The unknown coefficients {(1,} and {b,-} are respectively referred to as the autoregressive

(AR) and exogeneous parameters. The AR part refers to the effect of the past values of

y(t) on the current value ofy(t); the exogeneous part refers to the effect of the past and
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current values of u(t) on the current value ofy(t). The constants m and n are model orders

limiting the number ofthese parameters. The coefficients may be estimated from

measured input-output data by minimizing the variance of e(t) via the closed form linear

least squares solution. The Z transform of the ARX model may be expressed with the

following equation:

_ B(Z) E(Z)
Y(z) _ ——1__ A(z) U(z) + 1 _ A(z) , (2.4) 

where A(z) = alz’l +azz‘2 +---+an , B(z) = b0 +blz'l + bzz’2 +~~+ bm, and E(z) is the

Z transform of the unobserved noise e(t). This equation illustrates that the influence of

the unobserved, white disturbance on the system output is colored by the AR coefficients.

Thus, the ARX model is able to represent LTI systems in the presence of colored noise.

The impulse response h(t) can be obtained by substituting u(t)=6(t) into Eq. 2.3. The

transfer firnction H(z) is the Z transform of the impulse response h(t) and may be

computed with the following equation:

I)

Zka—k

H(z) = “=0 . (2.5)
m

1— Zakfk

k=l

 

If the AR part is removed from Eq. 2.3, we obtain a finite impulse response (FIR)

model as follows:

y(t) = ibiuu — i) + e(t). (2.6)

i=0

Here, the output only depends on the input. For an LTI causal system represented by Eq.

2.6, the impulse response h(t) is actually the coefficients {b.-}. The coefficients {bi} could
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be estimated by the linear least squares solution from measured input-output data. The Z

transform ofthe FIR model is as follows:

Y(z) = B(z)X(z) + B(z) . (2.7)

OE Model

The relationship between x(t) and y(t) may also be represented by an output error

(OE) model given in Z transform as follows:

3(2)

———1_ A(z) X(z) + E(z). (2.8)Y(z) =

Comparison ofModels

Comparing Eq. 2.4, Eq. 2.7 and Eq. 2.8, we can see that the three models are

different based on the noise portion. The unobserved noise e(t) is “colored” by AR

coefficients in the ARX model, whereas e(t) is not limited by this assumptions in FIR and

DE model. One big advantage of the ARX and FIR models is that they can be

conveniently estimated by solving the linear equations 2.3 and 2.6 using the linear least

squares solution. In contrast, the parameters of the OE model have to be estimated

numerically by, for example, Newton’s iteration method. Another advantage of the FIR

model is that it does not make any assumptions about the model structure (no poles in Eq.

2.7) and therefore its impulse response has no restriction. However, accurate system

identification using an MA FIR model requires a large number ofparameters. Thus, the

FIR model can only characterize the system whose true impulse response is very short.

Model Order Selection
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In order to identify the coefficients of the models, the model orders m and it must be

determined. Because the ARX model is perhaps the most widely used, we describe model

order selection method based on the ARX model.

Assuming the true model orders in Eq. 2.3 are no and mo, and no=m0, if the selected

model order n<no, then the estimated model will not include all of the true parameters

and therefore lacks the degrees of freedom necessary to represent the system. On the

other hand, if the selected model order n>n0, then there would be extra parameters in the

estimated model that do not exist in the true model. These extra parameters serve only to

make the estimated model more sensitive to the noise during the particular time period

[Perrott and Cohen, 1996]. Thus, order selection is a tradeoffbetween completeness and

robustness.

To obtain the true model order, first, a set of candidate model orders are chosen

based on the physical properties of system. Next, the best model order is sought from the

candidate orders. We cannot choose the order corresponding to the minimum mean

square error (MSE) of e(t), because the MSE is a monotonically decreasing function of

model order. The most popular strategy is to minimize a theoretically derived formula or

criterion, which consists of a goodness-of-fit index such as MSE and a penalty factor for

model complexity. The Minimum Description Length (MDL) and Final Prediction Error

(FPE) [Ljung, 1999; Perrott and Cohen, 1996] are amongst the most widely used model

order selection criteria. The MDL value is computed via the following formula:

 

= log(N) llekllz
MDL(k)_(1+k N j N , (2.9)

where k is defined to be the number of parameters contained within the model, N is the

number of samples contains in the input and output data sets, and ||ek| [2 is the MSE.
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Model order selection using the MDL criterion amounts to finding the model amongst the

candidate set with the minimum MDL value. The FPE value is computed via the

following formula:

N+k IiekII2
FPE(k) _=_

N —k N

(2.10)

Similarly, model order selection using the FPE criterion aims to find the model order

with the minimum FPE value.
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CHAPTER 3

CONTINUOUS MONITORING OF CARDIAC OUTPUT FROM A

PERIPHERAL ARTERIAL BLOOD PRESSURE WAVEFORM

3.1 Background

Since cardiac output (CO) represents the total flow ofblood supplying all the tissue

beds of the body, it is perhaps the most valuable indicator of overall cardiovascular

health. For example, circulatory status is typically monitored through ABP, which is easy

to measure. However, in the early stages of a bleed, ABP is maintained while CO is

falling due to the body’s multiple feedback and control systems (Fig. 3.1) [Barcroft et al.,

1944]. Thus, continuous CO monitoring would provide an early indication of deleterious

changes in circulatory status and thereby provide sufficient time for successful therapy.

Due to the importance of CO, it is currently monitored in most ICUs and surgical

suites in order to guide therapy for critically ill patients. These patients include, for

example, those in shock (e.g., cardiogenic, septic, and hemorrhagic) or heart failure and

those during and after surgery (e.g., coronary artery bypass grafting or heart valve

replacement). An ideal method for CO measurement should be continuous (autonomous

operation), minimally invasive, accurate, and inexpensive. Although numerous

techniques have been developed for the measurement of CO, none of the conventional

techniques possesses all these characteristics (Table 3.1) [Ehlers et al., 1986]. Consider,

for example, the standard thermodilution technique, which is currently employed in most

ICUs and surgical suites. This technique involves introducing a pulmonary artery catheter

(PAC) [Swan et al., 1970] in the right heart, injecting cold saline in right atrium, and
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Figure 3.1 Comparison of the changes in blood pressure (BP) and cardiac output (CO)

during venesection and resulting faint. Until to the end of venesection, BP is maintained

by peripheral vasoconstriction (increased total peripheral resistance) in spite of falling

CO. During the faint, the cardiac output increases slightly and the fall in BP is therefore

due to the decrease in total peripheral resistance (TPR) [Barcroft et al., 1944].
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measuring the temperature downstream in the pulmonary artery (Fig. 3.2). The average

CO over the measurement period may then be computed based on conservation of mass

laws. Although the technique is relatively inexpensive, it is very invasive and does not

operate autonomously. Moreover, the measurement is not very accurate due to the many

assumptions upon which it is based (e.g., no saline recirculation and thorough blood

mixing) [Ehlers et al., 1986]. As a result, it is used in only a minority (e. g., 10-20%) of

all critically ill patients [Rapoport et al., 2000]. In fact, although PAC can be utilized to

measure pressures (right atrial, right ventricle, pulmonary capillary wedge pressure, and

pulmonary artery pressures) as well as other important hemodynamic parameters (e.g.,

CO, LAP, mixed venous oxygen saturation), the apparent failure to demonstrate

improvements in patient outcome and risks associated with the PAC use have long been

criticized and therefore the applications ofPAC are falling in this decade [Pinsky and

Vincent, 2005]. Another conventional technique for monitoring CO is transthoracic

impedance. Thoracic bioimpedance involves the placement of voltage sensing and

current transmitting electrodes on the chest, which may be regarded as a conductor whose

impedance is altered by changes in blood volume and velocity with each heartbeat.

Stroke volume is calculated from an equation involving baseline and maximum rate of

change in impedance, ventricular ejection time, and thoracic segment length. This

measurement technique is non-invasive and operates autonomously; however, it is

generally considered to be very inaccurate, especially in critically ill patients who often

have excessive lung fluids [Critchley et al., 1998]. Doppler ultrasound methods, which

measure the Doppler shift in the frequency of an ultrasound beam reflected from the

flowing aortic blood, require an expert operator to stabilize an external ultrasound
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transducer as well as expensive equipment. The most accurate, conventional technique

for measuring CO involves surgically implanting a flow probe, either electromagnetic or

ultrasonic, directly on the aorta. Although this technique operates autonomously, it does

require the drastic procedure of opening the chest. A practical, continuous, minimally

invasive or non-invasive CO monitoring method would benefit not only ICU and surgical

suite care but also potentially home health care, primary care, and even combat casualty

care.

Table 3.1: Advantages and disadvantages of some conventional cardiac output (CO)

measurement techniques [Ehlers et al., 1986]

 

 

 

 

 

CONVENTIONAL ADVANTAGES DISADVANTAGES

TECHNIQUES

Aortic Flow Probe most accurate; continuous thoracotomy; expensive

Doppler Ultrasound accurate; non-invasive expert operator; expensive

Oxygen Fick inexpensive two catheterizations;

inaccurate; discrete

Thermodilution inexpensive heart catheterization;

inaccurate; discrete

 

 Transthoracic Impedance  non-invasive; inexpensive;

continuous  inaccurate
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Figure 3.2 Illustration ofthermodilution CO and pulmonary capillary wedge pressure

(PCWP) measurements using pulmonary artery catheter (PAC). PAC is a flow-directed

balloon-tipped catheter. Thermodilution measurement steps: insert PAC into pulmonary

artery through right heart, inject cold saline from syringe to right atrium, measure the

temperature changes downstream in pulmonary artery and compute CO by the mass

conservation law. The curve on the bottom is the temperature measured in pulmonary

artery by a thermistor. CO measurement value is proportional to the reciprocal of the area

below the curve. PCWP measurement: after inserting PAC into puhnonary artery,

position the tip in a small branch ofpulmonary artery, and inflate the balloon to occlude

blood flow. The pressure measured is PCWP.
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While the measurement ofCO has proven to be difficult, peripheral arterial blood

pressure (ABP), which is related to CO through arterial tree, may be measured reliably

and continuously via minimally invasive radial artery catheterization. Indeed, this

relatively safe procedure is performed in a majority (e.g., 50-80%) of all critically ill

patients [Rhodes and Sunderland, 2005]. Moreover, totally non-invasive methods have

been developed to continuously measure peripheral ABP based on finger-cuff

photoplethymography [Imholz et al., 1998] and arterial tonometry. These non-invasive

methods are available as commercial systems at present, for example, Finapres Medical

System. Indeed, since at least 1904 [Erlanger and Hooker, 1904], numerous investigators

have therefore sought analysis techniques to monitor CO from ABP waveforms.

Techniques based on an adaptive aorta model, which require ABP waveforms measured

at two peripheral sites, have been proposed [Redling and Akay,l997; Welkovitz et al.,

1991]. Learning techniques, which require large training data sets consisting of

simultaneous measurements ofCO and ABP waveforms obtained over the entire

physiologic range, have also been suggested [Cerutti et al., 2001; Gratz et al., 1992;

Martin et al., 1994]. Finally, Wesseling et a1 [1993], Linton et a1 [2001], and other

investigators have proposed techniques requiring only the analysis of a single radial ABP

waveform. However, Linton et a1 only showed that their heuristic technique was accurate

over a narrow physiologic range, and several studies have demonstrated limitations ofthe

technique of Wesseling et a1 [Gerhardt et al., 2001; Houtman et al., 1999].

Although a wide variety of techniques have been proposed, they are all

conceptually the same to the extent the waveform analysis is performed only over time

scales within a cardiac cycle. However, over such short time scales, peripheral ABP
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waveforms are heavily corrupted by complex waves propagating back and forth in the

distributed arterial tree. Thus, the previous analysis techniques have generally proven to

be too inaccurate for clinical use. To date, no non-invasive method has been clinically

accepted as a replacement for thermodilution [Levett et al., 1979; Redling et al., 1997].

Our ongoing hypothesis is that CO may be accurately monitored from ABP

variations occurring over time scales greater than a cardiac cycle. This hypothesis

originates from transmission line theory, which predicts that the confounding effects of

wave reflection will diminish with increasing time scale [Noordergraaf, 1978]. Based on

the hypothesis, we previously developed a technique to monitor changes in CO by

analyzing a single peripheral ABP waveform over long time scales [Mukkamala et al.,

2003a, 2004, 2006]. In this study, we refined the technique and evaluated it, for the first

time, in humans based on previously published invasive and non-invasive hemodynamic

data sets [Elstad et al., 2001; Moody et al., 1996, 2001; Mukkamala et al., 2003b]. With

these data, we were specifically able to compare the application of the technique to 1)

invasive peripheral ABP waveforms obtained via radial artery catheterization with

reference thermodilution measurements in 15 intensive care unit (ICU) patients in which

CO was changing due to disease progression and therapy and 2) non-invasive peripheral

ABP waveforms obtained via a commercial finger-cuff photoplethysmography system

with reference Doppler ultrasound measurements made by an expert in ten healthy

subjects in which CO was altered through pharmacological and postural interventions.
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3.2 The Technique

Our technique builds upon the previous pulse contour analysis work of Bourgeois et

a1. [1976]. In the systemic circulation, arterioles and small arteries contribute 75% of the

total resistance, and the large arteries act as a capacitive reservoir [Beme and Levy,

1998]. Therefore, these investigators assumed that the arterial tree could be well

represents by a two-element Windkessel model accounting for the lumped compliance of

the large arteries (arterial compliance, AC) and the resistance of small arteries and

arterioles (total peripheral resistance, TPR) as shown in Fig. 3.3a. They further assumed

that TPR does not change within a diastolic interval since the autonomic nervous

mechanisms responsible for modulating TPR are relatively slow [Berger et al., 1989b]. In

addition, AC may be approximately constant over a wide pressure range and on the time

scale of days to months [Hallock, 1937; Bourgeois et al., 1976]. Based on these

assumptions, these investigators predicted that ABP may decay like a pure exponential

during each diastolic interval with a time constant (1) equal to the product of the TPR and

AC (Fig. 3.2b). Thus, their pulse contour technique involved fitting a mono—exponential

function to each ABP diastolic interval to measure I and then dividing the time-averaged

ABP with 1: to compute the proportional CO scaled by a constant factor of l/AC (Fig.

3.3b).

Bourgeois et al were able to successfully validate their technique with respect to

central ABP waveforms measured near the heart, because the diastolic interval of these

waveforms resembles an exponential decay (Fig. 3.4a). However, central ABP is rarely

measured clinically because of the risk ofblood clot formation and embolization. In

contrast, in readily available peripheral ABP waveforms, an exponential diastolic decay
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is not apparent (Fig. 3.4b). The reason is that the arterial tree is not simply a lumped

system like the two-element Windkessel model suggests but rather a complicated

distributed system with impedance mismatches,throughout due to vessel tapering,

bifurcations, and caliber changes. The diastolic (and systolic) intervals ofperipheral ABP

waveforms are therefore corrupted by the complex wave propagation and reflections

occuning at every site of impedance mismatch. Thus, the technique of Bourgeois et 21

cannot be applied to peripheral ABP waveforms.
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Figure 3.3 The technique of Bourgeois et al for monitoring CO from ABP waveform. (a),

 

two-element Windkessel model of artery including total peripheral resistance (TPR) and

arterial compliance (AC); (b), CO and ABP waveform. ABP decays like an exponential

during diastole with a time constant (T) equal to the product of TPR and the nearly

constant AC. The proportional CO is calculated by dividing the mean ABP with r

[Bourgeois et al., 1976].
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Figure 3.4 Comparison of central ABP measured in aorta (a) and peripheral ABP

waveforms measured in radial artery (b). The diastolic intervals of the central ABP

waveform resemble exponential decays; however, central ABP is rarely measured

clinically. In contrast, exponential diastolic decays are not visible in the peripheral ABP

waveforms, which are corrupted by complex wave reflections.

However, the two-element Windkessel model is a more valid representation of the

long time scale dynamics of the systemic arterial tree. That is, according to transmission

line theory, the confounding effects of complex waves in the arterial tree will diminish

with increasing time scale [Noordergraaf, 1978]. That is, the wave effects significantly

corrupt the peripheral ABP waveforms within a cardiac cycle (high frequencies) without

complicating the waveforms over long time scales (low frequencies). This important

concept is demonstrated in Fig. 3.5, which illustrates two ABP waveforms measured at

the same time but at different sites in the arterial tree. The short time scale (within a beat)
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variations are different in the two waveforms, as the characteristics of the complex wave

effects differ at the two measurement sites. In contrast, the long time scale (beat-to-beat)

variations are more similar, since the confounding effects ofwave phenomena are less

significant. (Note, the beat-to-beat variations are due to ongoing perturbations to the

cardiovascular system (e.g., breathing), and the dynamic, compensatory response of the

regulatory system (e. g., baroreflex)). Thus, the two-element Windkessel model is a more

valid representation ofthe long time scale behavior ofthe arterial tree. This implies that if

the pulsatile activity suddenly ceased, then a peripheral ABP waveform may eventually

decay like a pure exponential as soon as the faster wave reflections vanish. Similarly, the

peripheral ABP response to a single cardiac contraction would be corrupted in short time

and would appear like a pure exponential decay in long time. In Fig. 3.6, the peripheral

ABP waveform of an ICU patient is shown in the top panel, and the ABP responses to

cardiac contractions, which are located at the beginning of each beat, are shown in the

lower panels. The peripheral ABP waveform is actually the sum ofABP response to each

cardiac contraction.
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Figure 3.5 Two swine ABP waveforms measured at the same time but at different sites

in the arterial tree. (a), ABP waveform measured centrally in the aorta; (b), ABP

waveform measured peripherally in the radial artery. While the short time scale variations

(top panels) differ due to highly complex wave motion, the long time scale variations

(bottom panels) are more similar as the wave phenomena are only a high frequency

effect.

Figure 3.6 ABP waveform (top panel) can be viewed as a sum of a group ofblood

pressure responses (lower panels) to cardiac contractions. y(t), arterial blood

pressure; Rj, onset time of upstroke ofNo.j ABP wavelet; yj-(t), blood pressure

response located at Rj. In the short time (high frequency), y,-(t) oscillates vigorously;

while in the long time scale (low frequency), for example, longer than 2 see, it

decays like a pure exponential.
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Therefore, our technique analyzes a peripheral ABP waveform over time scales

greater than a cardiac cycle in order to determine the pure exponential decay in a

peripheral ABP response (h(t)) to a single cardiac contraction after the wave reflection

vanishes. In Fig. 3.6, in order to clearly illustrate the technique on a beat to beat basis, we

only show an eight-second segment of the peripheral ABP waveform. In the analysis, we

selected a time interval of about six-minute in order to provide enough beat to beat

variability for system identification. One may think h(t) could be estimated by computing

the nonparametric transfer function derived from power spectral of input and cross power

spectral of input and output using Eq. 2.2. However, as we explained in Chapter 2, the

circulatory mechanics cannot be obtained independently due to the existence of

baroreflex feedback mechanism (Fig. 2.3). Therefore, we must use system identification

to solely estimate the circulatory mechanics.

Fig. 3.7 illustrates the technique and indicates that the single contraction ABP

response h(t) is determined in two steps. First, a signal representing the cardiac

contractions (x(t)) is constructed from the ABP waveform based on a slightly modified

impulse ejection model. That is, x(t) is formed as an impulse train in which each impulse

is located at the onset of upstroke of an ABP pulse and has an area equal to the pulse

pressure determined after lowpass filtering the waveform (with a cutoff frequency of 2

Hz) to attenuate the wave effects (FPP, filtered pulse pressure). Then, the impulse

response function h(t) which when convolved with x(t) best fits the (unfiltered) ABP

waveform (y(t)) in the least squares sense is estimated according to the following

autoregressive exogenous (ARX) input equation:

y(t)=Zaky(t—k)+Zbkx(t—k)+e(t), (3.1)

k=i k=l
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where e(t) is the unobserved residual error, the parameters {ab bk} completely specify

h(t), and m and n limit the number of these parameters (model order) [Ljung, 1999]. For a

fixed model order, the parameters are closed form solution. The model order is

determined by minimizing the Minimum Description Length (MDL) criterion introduced

in Chapter 2. By definition, the estimated h(t) represents the (scaled) ABP response to a

single, solitary cardiac contraction.

Next, ris determined over the interval of h(t) ranging from two to four seconds

after the time of its maximum value based on the following exponential equation:

h(t) = Ae—y’ + w(t). (3.2)

(This time interval was established empirically by almost always observing a pure

exponential decay in h(t) over this period in the hemodynamic data sets studied herein.)

The parameters A and rare estimated through the least squares minimization of the

unmeasured residual error w(t). This optimization problem is solved in closed-form by

log transformation of h(t) [Ljung, 1999]. In theory, accurate determination ofthe

Windkessel time constant ris achieved by virtue of h(t) coupling the long time scale or

beat-to-beat variations in x(t) to y(t). That is, the technique is not just trivially

extrapolating the ABP waveform at the end of diastole.

Finally, CO is computed to within a constant scale factor equal to l/AC by

dividing the time-averaged ABP with 2'. Note that the above mathematical steps can

easily be implemented in near real time with only a delay on order of a few seconds with

a standard home PC.
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Figure 3.7 Illustration of identifying the time constant I from a peripheral ABP

waveform. FPP is pulse pressure of the filtered ABP (lowpass filter with cutting

frequency of 2Hz); R, onset time of upstroke of each ABP wavelet;j, beat number; x(t), a

constructed cardiac contractions signal; y(t), an ABP waveform; and h(t), an estimated

impulse response coupling x(t) to y(t). Then proportional CO is ratio ofmean y(t) to r.
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3.3 Technique Evaluation

To validate the technique, we applied it to invasive and non-invasive human data

and compared the results with corresponding reference CO measurements.

3.3.1 Invasive ICU Patient Data

The hemodynamic data utilized to evaluate the mathematical analysis technique

with respect to human invasive peripheral ABP waveforms were obtained from the

MIMIC (Multi-parameter Intelligent Monitoring for Intensive Care) database, which is

freely available from the PhysioNet website (www.physionet.org) and described in detail

elsewhere [Moody et al., 1996, 2001]. Briefly, this database includes 72 ICU patient

records, typically ranging from 24 to 48 hours in duration, which were archived from

patient monitors in the medical, surgical, and cardiac ICUs ofthe hospital formerly

known as the Beth Israel Hospital, Boston, MA. Each ofthese records consists of

continuous waveforms sampled at 125 Hz such as invasive peripheral ABP via radial

artery catheterization and surface ECG leads as well as one-minute trends such as

thermodilution CO, mean ABP (MAP), and heart rate (HR). 16 of the 72 patient records

were applicable to the present evaluation study, as they included radial ABP waveforms

and multiple, reference thermodilution CO measurements. Within each ofthese records,

CO was changing due to disease progression and therapy.

Based on these 16 MIMIC patient records, we created a data set for technique

evaluation as follows. First, we downloaded from these records all of the distinct, one-

minute thermodilution CO measurements and six-minute contiguous segments ofthe

corresponding radial ABP waveforms (from 2.5 minutes preceding the one-minute CO
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measurements to 2.5 minutes following these measurements). Then, we visually

examined each of the radial ABP waveforms and extracted the longest contiguous,

artifact-freed segment from each of these waveforms (see Discussion section). Finally,

we excluded from the study all radial ABP waveforms that were less than 5 minutes in

duration, had a significant linear trend (2 20 mmHg change), or represented the only

waveform segment within a patient record (as the technique estimates changes in CO). A

total of 101 pairs of simultaneous measurements of invasive radial ABP waveforms and

reference thermodilution CO from 15 ICU patients [ten men and five women; age: 67 i

12 yr (meaniSD)] remained for technique evaluation. Table 3.2 summarizes the clinical

class and hemodynamic data for each of these patients.

3.3.2 Non-Invasive Human Experimental Data

The hemodynamic data utilized to evaluate the technique with respect to human

non-invasive peripheral ABP waveforms were obtained from previous experiments

designed to address different specific aims and are described in detail elsewhere [Elstad

et al., 2001]. Here, we briefly present those aspects of the experiments that are relevant

to the present study.

Ten healthy human volunteers [five men and five women, age: 25 i 4 year

(meaniSD)] participated in the experiments. Each subject was instrumented for non-

invasive measurement of peripheral ABP, instantaneous CO, and other cardio-respiratory

signals. The peripheral ABP waveform was measured with a finger-cuffPPG system

(2300 Finapres Continuous Blood Pressure Monitor, Ohmeda; Englewood, CO), while

instantaneous CO was measured according to a previously described Doppler ultrasound
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technique [Eriksen et al., 1990] implemented by an expert. Specifically, aortic blood

velocity was measured with a bi-directional ultrasound Doppler velocimeter (CFM-750,

GE Vingrned; Horten, Norway), which was operated in pulsed mode at 2MHz with the

hand-held transducer placed on the suprastemal notch. The area of the rigid aortic ring

was determined in a separate session by parastemal sector-scanner imaging (CFM-750,

GE Vingrned). Instantaneous CO was then calculated via the product of the measured

instantaneous maximum blood velocity and the area of the aortic valve orifice.

Each instrumented subject was studied on two separate days before and after the

administration of atropine (0.04 mg/kg) and/or propranolol (14.6 mg) under different

postures to vary the experimental conditions. For each experimental condition,

approximately six-minute intervals of the non-invasive measurements were continuously

recorded at a sampling frequency of 50 Hz. In the present study, we specifically

analyzed the digitized recordings from the following six experimental conditions: 1)

supine, baseline, 2) supine, propranolol, 3) supine, propranolol+atropine, 4) 30° upright

tilt, baseline, 5) 30° upright tilt, atropine, and 6) 30° upright tilt, atropine+propranolol.

Based on these non-invasive recordings, we created a data set for technique evaluation

following a similar procedure as the invasive study. First, we visually examined each

non-invasive finger ABP waveform and instantaneous CO waveform and extracted the

longest contiguous, artifact free segment from each waveform. Then, we excluded from

the study the four instantaneous CO waveforms that were less than one minute in

duration and the three finger ABP waveforms that were less than five minutes in duration

or had unreasonably high-pressure values (see discussion). Finally, the reference CO

value corresponding to each of the remaining instantaneous CO waveforms was
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determined by computing its time-average. A total of 57 pairs of simultaneous

measurements of artifact-free, non-invasive finger ABP waveforms and reference

Doppler ultrasound CO values from the ten healthy subjects remained for technique

evaluation. Table 3.3 summarizes the hemodynamic data for each of the subjects.

3.3.3 Data Analysis

Before applying the technique to the invasive radial ABP waveforms, we resampled

ABP from 125Hz to 90Hz. In Eq. 3.1, we empirically chose the maxim orders m and n as

15. For the non-invasive finger ABP waveforms, we chose the maxim orders m and n as

10 due to the lower sampling frequency (50Hz).

After applying the mathematical analysis technique to all of the invasive and non-

invasive peripheral ABP waveforms in the two human data sets, we quantitatively

compared the resulting, proportional CO estimates with their reference, absolute CO

values in each data set as follows. First, we scaled the proportional CO estimates to have

the same mean value as the corresponding reference CO in each patient/subj ect. Then, we

pooled the data together from all the patients/subjects in each data set and computed the

root-mean—squared-normalized error (RMSNE) of the calibrated CO estimates

(normalized by their reference CO values and given in percent) as a metric for

comparison. (This metric indicates the ability of the technique to measure changes in CO

from its mean value within an individual.) We also computed the correlation coefficient

(p) between the pooled CO error and the corresponding CO, MAP, TPR, and HR values

in each data set to determine the extent to which the hemodynamic conditions affected

the performance of the technique.



3.4 Evaluation Results

Tables 3.2 and 3.3 respectively summarize the results of evaluating the

mathematical analysis technique based on the invasive and non-invasive human

hemodynamic data sets. These results indicate that the technique as applied to invasive

radial ABP waveforms was in strong agreement with thermodilution measurements with

an overall CO RMSNE of 15.3% in 15 ICU patients, while the technique as applied to

non-invasive finger ABP waveforms was in equally strong agreement with Doppler

ultrasound measurements made by an expert with an overall CO RMSNE of 15.1% in ten

healthy subjects. Figs. 3.8 and 3.9 provide visual examples of the correspondence

between the once calibrated CO estimates and their reference CO values in three

individuals from each data set. Moreover, as indicated in the table captions, the CO error

was only mildly correlated with MAP and even less correlated with CO, HR, and TPR.
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Table 3.2: Summary of the intensive care unit patient records and CO estimation results

of the invasive human hemodynamic data set. The technique was applied to 101 invasive

radial ABP waveform segments from 15 patients achieved an overall CO root-mean-

squared-nonnalized error (RMSNE) of 15.3% with respect to reference thermodilution

measurements. Moreover, the CO error here was essentially uncorrelated with CO (p=-

0.14) and heart rate (HR; p=0.04) and only mildly correlated with mean ABP (MAP;

p=0.4l) and TPR (p=0.38).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

NUMBER

PATIENT CLINICAL OF CO MAP TPR HR CO

RECORD CLASS COMPA- RANGE RANGE RANGE RANGE RMSNE

RISONS [UMINI [MMHGI [PRU] [13PM] {/0}

041 Bleed 2 8.5-9.5 74-81 0.5-0.6 78-104 0.5

055 Resp. failure 7 3.9-5.2 78-106 0.9-1.4 88-106 6.9

281 NA 4 3.7-4.9 94-99 1.2-1.6 100-114 6.8

410 Sepsis 7 4.3-9.4 74-97 0.6-1 .1 60-94 22.3

411 Resp. failure 6 3.2-4.6 84-94 1.2-1.7 50-61 14.4

451 CHF 5 4.1-5.8 51-58 0.5-0.9 74-84 15.0

453 Post-op valve 12 3.4-4.8 60-79 09-13 50-89 10.7

454 Post-op valve 5 3.7-4.8 67-74 0.9-1 .1 49-70 5.4

456 Post-op CABG 8 3.8-8.5 57-100 0.6-1 .0 67-108 22.5

474 NA 5 3.8-4.4 72-79 1.1-1.2 86-94 15.6

476 Post-op CABG 6 4.2-4.6 58-71 0.8-0.9 90-105 1 1.2

477 Post-op CABG 6 4.5-6 54-75 06-08 79-11 1 10.6

480 Post-op CABG 6 5-6.7 63-75 06-08 85-112 1 1.1

484 NA 9 5.1-7.5 62-78 06-08 79-96 12.4

485 NA 13 2.9-4.7 69-87 1.0-1.8 94-126 23.0

TOTAL 101 2.9-9.5 51-106 0.5-1.8 49-126 15.3       
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Figure 3.8 Visual examples ofCO estimation results in three intensive care unit (ICU)

patients. For each patient, the estimated and calibrated CO is plotted against

corresponding thermodilution measurement.
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Table 3.3: Summary of the healthy young adult records and CO estimation results of the

non-invasive human hemodynamic data set. The technique was applied to 57 non-

invasive finger ABP waveform segments from ten healthy young adults achieved an

overall CO root-mean-squared-normalized error (RMSNE) of 15. 1% with respect to

reference Doppler ultrasound measurements made by an expert. Moreover, the CO error

here was essentially uncorrelated with CO (p=-0. l 7), TPR (p=0.10) and heart rate (HR;

p=0.19) and only mildly correlated with mean ABP (MAP; p=0.37).

 

 

 

 

 

 

 

 

 

 

 

        

CO MAP TPR HR CO

SUBJECT NUMBER OF

RANGE RANGE RANGE RANGE RMSNE

RECORD COMPARISONS

[L/MIN] [MMHG] [PRU] [BPM] [%]

LD 5 3.6-6.8 82-128 1.0-1.9 43-108 13.0

WP 6 4363 68-93 0.7-1.1 60-113 16.9

CG 6 4.5-7.7 75-118 09-13 48-98 20.2

JE 6 4.5-8.2 85-125 0914 51-135 14.6

AB 6 3.5-5.3 79-124 1.2-1.5 32-72 18.3

DL 4 3.5-4.7 92-104 1.2-1.9 60-88 14.8

GB 6 4.6-7.2 65-83 0.6-1.0 56-126 13.3

LB 6 4.3-7.1 70-95 O.8-1.1 47-100 9.0

MR 6 4.4-6.8 75-102 08-12 50115 12.1

NB 6 3.7-8.4 72-116 08-15 48-99 15.3

TOTAL 57 3.5-8.4 65-128 0.6-1.9 32-135 15.1
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Figure 3.9 Visual examples ofCO estimation in three healthy subjects. For each patient,

the estimated and calibrated CO is plotted against corresponding DOppler ultrasound

measurement.

3.5 Discussion

In summary, we improved and further evaluated a previously developed CO

monitoring technique from a peripheral ABP waveform. The uniqueness of the technique

lies in the analysis of the peripheral ABP waveform over long time scales in which the

confounding effects of wave phenomena are attenuated. Here, to better reduce the short-

terrn reflection effect on the system identification, the pulse train representing the cardiac
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contractions (input of the system identification) was weighted by the pulse pressure of the

filtered ABP waveform; while in our previous technique, the pulse train was weighted

simply by the pulse pressure of the original ABP waveform. We evaluated the technique

in humans based on previously published invasive and non-invasive hemodynamic data

sets. With the former data set, we compared the application of the technique to invasive

radial ABP waveforms with reference thermodilution measurements in 15 ICU patients in

which CO was changing due to disease progression and therapy. With the latter data set,

we compared the application of the technique to non-invasive finger ABP waveforms

with reference Doppler ultrasound measurements made by an expert in 10 healthy

subjects during pharmacological and postural interventions. We report an overall CO

estimation error of about 15% with respect to each of these human data sets (see Tables

3.2 and 3.3 and Figs. 3.8 and 3.9). Although the evaluations described herein were

retrospective, it is noteworthy that neither of these data sets was designed for the

evaluation of our technique or any other pulse contour analysis technique.

3.5.1 Potential Sources of CO Error

The CO errors reported here could be partly explained by inadequacies in the

quality and accuracy of the hemodynamic measurements within the studied invasive and

non-invasive data sets. However, as described below, we excluded from the study all

data segments ofpoor quality (e.g., corrupted by significant noise artifact) so as to

benchmark technique performance. On the other hand, nothing could be done in this

retrospective study to improve upon the accuracy of the measurements, which is largely

intrinsic to the employed transducers.
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The radial ABP waveforms in the invasive data set were measured with generally

accurate, intra-arterial catheters. However, in the MIMIC database upon which this data

set was based, ABP waveform artifact was sometimes present. The artifact may have

been due to, for example, patient movement, arterial line flushing, catheter obstruction,

loss of signal, and proximal ABP cuff inflation. We excluded from the study all radial

ABP waveforms that were significantly corrupted by such artifact (~11% of the available,

simultaneous pairs of radial ABP waveforms and thermodilution measurements). While

we identified ABP artifact here by visual means, it may be possible to automatically and

reliably detect ABP artifact in real time (e.g., with a simultaneous surface ECG

measurement based on an algorithm recently introduced by long et a1. [2004]) so as to

warn the clinician that the CO estimate derived from the ABP analysis may not be valid

or preclude the output of such a CO estimate. Note that, for reasons described above, we

also excluded from the study all radial ABP waveforms with linear trends of220 mmHg

(~13% of the available, simultaneous pairs ofradial ABP waveforms and thermodilution

measurements).

In contrast to the radial ABP waveforms in the invasive data set, it was not

possible to assess the quality of the corresponding thermodilution measurements.

However, the error in clinical thermodilution measurements is known to be in the 15-20%

range [Levett et al., 1979; Stetz et al., 1982]. Assuming such an error, Critchley et a1.

argued that a new CO measurement method should be accepted as an alternative to

thermodilution provided that their limits of agreements are within i30% [1999]. We note

that the level of agreement between our technique and thermodilution measurements

from 15 ICU patients is essentially in this range (see Table 3.2 and Fig. 3.8).
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The non-invasive hemodynamic data utilized in this study were obtained from

controlled experiments, and none of the non-invasive finger ABP waveforms were

excluded from the study due to noise artifact. However, two non-invasive finger ABP

waveforms were excluded from the study because ofunreasonably high-pressure levels.

This artifact may have been due to an upward drift in finger ABP caused by prolonged

application of cuff pressure [Ristuccia et al., 1997]. Note that this finger-cuff

photoplethysmography artifact may be attenuated or eliminated by intermittent finger

exercise [Ristuccia et al., 1997] or with the currently available Portrapres system, which

alternates the application of cuffpressure between different fingers.

Although artifact in the non-invasive finger ABP waveforms was not a significant

factor here, the intrinsic level of accuracy of the employed Finapres system may have

affected our results. In a review of Finapres technology, Imholz et a1. gathered 43

previous studies comparing the Finapres system with intra-arterial or non-invasive,

discrete ABP measurements and reported that the systolic and mean pressure levels of the

Finapres system were not within the limits of accuracy suggested by the American

Association for the Advancement of Medical Instruments [Imholz etal., 1998]. On the

other hand, Omboni et al. showed that the Finapres system and radial artery

catheterization produce similar beat-to-beat (mean) ABP fluctuations [Omboni et al.,

1993]. That is, while the Finapres system distorts the peripheral ABP waveform over

short time scales, it may have little effect on the waveform over longer time scales. Thus,

since the technique analyzes the ABP waveform over long time intervals, the inherent

inaccuracies of the Finapres system may not have been a major contributor to the CO
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error reported herein. However, we cannot confirm this possibility, because simultaneous

intra-arterial ABP recordings were not available.

The reference Doppler ultrasound measurements in the non-invasive data set were

made by an expert, and only four of these CO measurements were excluded from the

study due to poor signal quality. Despite the generally excellent signal quality, the

assumptions underlying the Doppler ultrasound technique could have been partially

violated thereby affecting our results. These assumptions include the following: 1) the

velocity profile in the aortic valve orifice is rectangular and this velocity is conserved as

the central maximum velocity of a jet 3-4 cm downstream; 2) the insonication angle is

20°; and 3) the aortic valve is circular [Eriksen and Walloe, 1990]. However, these

assumptions are likely to have little effect on the accuracy of the measured relative

changes in CO. Since our technique is designed to measure relative changes in CO and

we evaluated it here as such (see Statistical Analysis section), we believe that the Doppler

ultrasound measurements serve as a reasonably accurate reference here (i.e., at least as

accurate as standard thermodilution measurements).

Other potential sources of the CO errors reported here are any violations to the

assumptions upon which the technique is based. These assumptions include the

following: 1) AC is constant within each individual; 2) peripheral venous pressure is

negligible with respect to ABP; 3) ABP exceeds the critical closing pressure; and 4) the

time constant governing arterial viscoelastic effects is negligible with respect to the

Windkessel time constant [Mukkamala et al., 2006]. The first of these assumptions is

perhaps the most controversial, since there is currently no generally accepted, gold

standard method for measuring in vivo AC. Nevertheless, we believe that in vivo AC
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must be nearly constant over a wide hemodynamic range in at least some animals based

on the success of the pulse contour analysis of Bourgeois et a1. and Osborn et a1. with

respect to canine central ABP waveforms [Bourgeois et al., 1974; Osborn et al., 1968]

and the present mathematical analysis technique with respect to swine peripheral ABP

waveforms [Mukkamala et al., 2006]. We are unaware of any existing in vivo data

likewise demonstrating constancy of the human AC. However, Hallock and Benson did

show that, although the compliance of excised human aortas of various ages at autopsy

(ranging from young adults to the elderly) decreased with increasing pressure, in vitro

aortic compliance could be approximated as constant over a wide pressure range [Hallock

and Benson, 1937]. If in vivo AC sharply changed in the opposite direction ofMAP

within each individual record of our study, then our technique would have grossly

overestimated CO at high MAP levels and underestimated CO at low MAP levels (i.e., a

strong, positive correlation between CO error and MAP). Although the correlation

between CO error and MAP is positive, the degree of correlation is mild (see above),

suggesting that in vivo AC within each of the] 5 ICU patient and ten healthy young adult

records may have been approximately constant.

3.5.2 Comparison to Intra—Beat Pulse Contour Analysis Techniques

In a previous paper introducing our mathematical analysis technique [Mukkamala et

al., 2006], we used signal-to-noise theory to argue that estimating the average Windkessel

time constant I (and thus average, proportional CO via Ohm’s law) by analyzing a

peripheral ABP waveform over time intervals greater than a cardiac cycle should be more

accurate than analyzing the ABP waveform over individual cardiac cycles and then

54



averaging the beat-to-beat results. To support this theoretical argument, we fitted

complex exponentials function(s) to individual diastolic decay intervals of swine

peripheral ABP waveforms to estimate 1: on a beat-to-beat basis, averaged the resulting

individual 1: estimates, and then computed average, proportional CO via Ohm’s law. The

best result we were able to achieve with this intra-beat analysis was an overall CO

RMSNE that was 52% larger than that obtained by our technique. We repeated this intra-

beat analysis with respect to the human invasive and non-invasive hemodynamic data sets

here and obtained overall CO RMSNEs that were respectively 23% and 81% higher than

those obtained by our technique. (Note that one possible reason that this intra-beat

analysis is much less effective with respect to the non-invasive hemodynamic data set is

that, as described above, the non-invasive ABP waveforms may suffer from high

frequency distortion due to the employed Finapres system). We believe that these

comparative studies confirm the theory that important information is indeed present in

beat-to-beat ABP variations and that analysis of these subtle variations leads to improved

average, proportional CO estimation in practice. However, we note that future studies

should also be conducted to compare our technique with the recent intra-beat techniques

of [Wesseling et al., 1993] and [Linton et al., 2001], which also require a single

peripheral ABP waveform for analysis.

3.5.3 Limitations of the Long Time Interval Analysis Techniques

Two limitations of the current form ofthe long time interval analysis technique are:

1) beat-to-beat CO monitoring is not feasible and 2) artifact is a more significant problem

(as compared to beat—to-beat pulse contour analysis techniques such as the
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aforementioned). With respect to the former limitation, we feel that attempts to improve

the accuracy of average, proportional CO estimation, even at the cost of temporal .

resolution, are worthwhile from a clinical point of view. For example, although many

previous pulse contour analysis techniques can offer beat-to-beat proportional CO

monitoring, they have still not been widely adopted in clinical practice presumably due to

accuracy concerns. Moreover, automatic estimation ofproportional CO at intervals on

the order of seconds but representing the last six-minutes (i.e., boxcar moving average)

would represent a significant improvement upon discrete, operator-required

determinations ofCO by the clinical thermodilution method (assuming similar accuracy).

With respect to the second limitation, the requirement of approximately six-minute

intervals of relatively artifact-free ABP waveforms does not substantially limit the

practical applicability of the technique. For example, only ~11% of the invasive radial

ABP waveforms from the real world MIMIC database were discarded in our study due to

artifact. Moreover, the six-minute intervals of analysis may be reduced to smaller

intervals (e. g., one minute) without materially affecting the accuracy of the estimates

(e.g., CO RMSNE of 15.1% in the invasive hemodynamic data set and 15.7% in the non-

invasive hemodynamic data set). Future formal studies are needed to determine the

minimum interval for analysis that does not significantly compromise the accuracy of the

technique.

3.5.4 Limitations of the Human Evaluation Study

In the invasive hemodynamic data set, CO was naturally changing within each ICU

patient record due to disease progression and therapy. Typical ICU therapy is known to
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include medications such as dobutamine, dopamine, intravenous fluids, and nitroprusside

(i.e., both cardiac and vascular interventions) [Marino, 1998]. However, since time-

stamped annotations were not available here, we were not able to evaluate the technique

in the ICU patients with respect to each of these common therapeutic interventions. In

contrast, in the non-invasive hemodynamic data set, CO was changing in each healthy

subject due to precisely known interventions of atropine, propranolol, and/or a 30°

upright shift in posture. As described above, the CO RMSNEs were largest during the

double blockade conditions, presumably because beat-to-beat HR variability was totally

abolished. While vascular changes (TPR and fluid shifts) occurred reflexively upon

administration of atropine and propranolol as well as via the postural shift (see Table 2),

we were not able to test the technique with respect to non-invasive ABP waveforms

during interventions that directly act on the vasculature (e. g., phenylephrine,

nitroprusside). Finally, since the reference thermodilution CO in the invasive

hemodynamic data set could not be assumed to be valid during unsteady conditions (e.g.,

ABP waveform segments with significant trends) and the non-invasive ABP waveforms

were only recorded during steady conditions (see above), we were not able to evaluate

the technique in humans during unsteady conditions (i.e., rapid changes in CO).

However, we have previously shown that the technique performs quite accurately during

unsteady conditions in swine instrumented with aortic flow probes measuring

instantaneous flow [Mukkamala et al., 2006]. Moreover, in the present human study, we

were at least able to show that the technique performed approximately the same

regardless of the size or direction of the CO change, as the correlations between the CO

error and ACO and |ACO| were only mild (see above).
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3.5.5 Potential Applications of the Mathematical Analysis Technique

Our technique mathematically analyzes a single peripheral ABP waveform over

long time intervals in order to continuously (i.e., automatically and without the need for

an operator) measure CO to within a constant scale factor. The technique may therefore

be utilized to quantitatively monitor relative changes in CO. The proportional CO may

be calibrated, if desired, with a single, absolute CO measurement (e. g., thermodilution).

For normal individuals, it may be possible to determine the proportionality constant from

a nomogram. However, we believe determination of the proportionality constant is

unnecessary in the context of continuous monitoring in the acute setting in which only

CO changes are clinically relevant.

The results of this retrospective human evaluation study indicate that the technique

may be sufficiently accurate in terms of estimating relative changes in CO with respect to

invasive radial ABP waveforms from critically ill patients and non-invasive finger ABP

waveforms from healthy subjects. With further mathematical analysis deve10pment

(including the incorporation of an automated artifact detector) and successful prospective

testing, the technique may potentially be applied to continuously monitor CO in the acute

setting. The most prominent such application is in critically ill patients in the ICU and

operating and recovery rooms. In critically ill patients instrumented with both puhnonary

and radial artery catheters, the technique could be calibrated with a single thermodilution

measurement to permit subsequent continuous monitoring of absolute CO. In the

numerous critically ill patients with only radial artery catheters installed (see above), the

technique could provide continuous, quantitative monitoring of relative changes in CO.

Other such applications in which non-invasive peripheral ABP transducers would be
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most appropriate include patients in the emergency room and the hospital ward, trauma

patients in transport, as well as soldiers in combat. The human evaluation study

described herein represents an initial step towards the realization of such applications.
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CHAPTER 4

CONTINUOUS MONITORING OF CARDIAC OUTPUT AND LEFT

ATRIAL PRESSURE FROM A PULMONARY ARTERY PRESSURE

OR RIGHT VENTRICULAR PRESSURE WAVEFORM

4.1 Background

Left atrial pressure (LAP) generally indicates the blood pressure attained in the left

ventricle during the cardiac filling phase. LAP can be utilized together with CO to

distinguish the two types of cardiovascular diseases. When both CO and LAP decrease

over time period, the disease should be circulatory problem such as hemorrhage; while

when CO decreases and LAP increases, the disease should be a cardiac problem due to,

for example, a heart attack. In the ICU, LAP is approximated with the pulmonary

capillary wedge pressure (PCWP), which is also known as the pulmonary artery wedge

pressure (PAWP) or the pulmonary artery occlusion pressure (PAOP). In order to

measure PCWP, a pulmonary artery catheter (PAC, see Chapter 3) is wedged in a branch

of the pulmonary artery and then a balloon is inflated at the tip of the catheter [Swan et

al., 1970]. The resulting non—pulsatile pressure tracing is the PCWP (Fig. 4.1). Under the

proper circumstances that a static column is created between the PAC tip and the left

atrium, this pressure approximately reflects the mean LAP. This approximation is correct

only if the PAC tip is in the proper lung zone and no vascular obstruction, such as

pulmonary vein stenosis, occurs downstream. In fact, the measurement ofPCWP is

associated with a high incidence of technical problems due to partial wedging, over
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inflation of the balloon, lack of fluid column continuity between the transducer and the

vascular lumen, and etc [Morris et al., 1984]. Moreover, recent researches has indicated

that the inadequate knowledge ofphysicians (and nurses) in using this technique might

lead to incorrect interpretation ofPCWP [Marik et al., 1998]. Even if the PCWP

measurement is proper, it can only be obtained every few hours, as it requires an operator

to inflate the balloon. Therefore, PCWP has ‘been criticized due to the apparent failure to

demonstrate improvements in patient outcome and risks associated with its use for a long

time [Pinsky and Vincent, 2005].

As a result, physicians may resort to, for example, crude estimates ofLAP through

pulmonary artery diastolic pressure (PADP) in order to obtain immediate feedback about

patient status. Although LAP may be measured continuously by direct catheterization of

the left heart, this procedure is too invasive and risky for clinical use. A few non-invasive

methods have been suggested for estimating LAP through physical signs, cardiac

imaging, and the Valsalva maneuver [McIntyre et al., 1992]. However, these methods are

evidently insensitive and inaccurate [Chakko etal., 1991; Diamond et al., 1993;

Stevenson et al., 1989]. Moreover, each of these methods can only provide discrete

estimates of LAP. Although the empirical techniques have been developed to monitor

LAP using Doppler ultrasound [Nishimura and Tajik, 1997; Dokainish et al., 2004], they

are proved to be not accuracy. A clinically usable technique for continuous LAP

monitoring is therefore needed to permit more optimal therapy.

In fact, with the PAC, pulmonary artery pressure (PAP), right atrial pressure and

right ventricular pressure (RVP) can be measured reliably and continuously (i.e.,

autonomous operation) via fluid-filled systems attached to external pressure transducers.
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Figure 4.1 Illustration of pulmonary capillary wedge pressure (PCWP) measurement.

PCWP is obtained by inserting pulmonary artery catheter into puhnonary artery, and

inflating its balloon at a branch of artery to occlude blood flow.
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Figure 4.2 Illustration of construction ofpulmonary artery pressure (PAP) from right

ventricular pressure (RVP) during ejection phase. Thin line, RVP; dash line, actual PAP;

thick line, RVP during ejection phase, which is used as a surrogate ofPAP.
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If PAP or other pressure measurements could be utilized to monitor LAP as well as CO,

this continuous monitoring technique could help doctors to, for example, assess the

effects of fluid and pharmaceutical interventions and be quickly altered to possible

complications. A few intra-beat techniques to monitor CO from PAP waveform (e. g.,

[Tajimi et al., 1983]). But these techniques faced the similar difficulty as technique

monitoring CO from peripheral ABP: distortion caused by the complex vascular structure

and mechanical character. Moreover, to our knowledge, no technique has yet been

developed to continuously monitor both CO and LAP from a PAP waveform. In Chapter

3, we have introduced a minimally invasive or non-invasive technique for continuously

monitoring CO changes from a single peripheral ABP waveform. Here, we extend the

technique in order to monitor CO and LAP simultaneously from a single PAP waveform.

We can further extend the technique to RVP. The implanted devices, such as two-

lead pacemaker, can measure both LAP and RVP. Similarly to LVP and ABP (Fig. 2.4),

during the ejection period of the right ventricle, RVP and PAP waveforms are ahnost

overlapped as shown in Fig. 4.2 provided there is no stenosis of the pulmonary valve.

Thus, the PAP waveform during the ejection period may be approximated by the RVP

waveform and therefore the technique for estimating CO and LAP from PAP may be

extended to RVP.

4.2 Monitoring of CO and LAP from PAP

4.2.1 The Technique

Unlike the systemic arterial tree, pulmonary circulation is a low resistance system

with high bifurcation. In a person breathing normally, the alveolar wall capillaries
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contribute up to 40% of the total resistance, the arteries about 50%, and the veins about

10% [Beme and Levy, 1998]. Pulmonary capillaries also contribute a large fraction of the

total pulmonary vessel compliance. These properties result in more serious wave

reflections (Fig. 4.3a). In addition, unlike right atrial pressure, LAP is a significant

fraction ofPAP due to the low resistance of the puhnonary microcirculation. Despite

these complications, we assume the simple two-element Windkessel model (Fig. 4.3b) is

a valid representation of the behavior ofpulmonary circulation over long time scales

greater than one cardiac cycle. Here, pulmonary vessel compliance (PVC) consists of the

compliances of all vessels (arteries, capillaries and veins), and pulmonary vessel

resistance (PVR) consists of the resistances of all vessels. We also assume that PVC is a

constant.

Thus, we have extended the technique in Chapter 3 to also account for the

contribution of LAP to PAP. The technique analyzes a PAP waveform over long time

intervals in order to determine the pure exponential decay to LAP that would eventually

result once pulsatile activity abruptly ceased. More specifically, the extension is to

estimate both the average LAP and the response ofPAP-LAP to a single cardiac

contraction. Fig. 4.4 illustrates the technique, which is applied to a PAP waveform of

duration of approximately 6 minutes. This technique is employed analogously to the

technique in Chapter 3, except that the contributions ofboth a cardiac contractions signal

(x(t)) and average LAP to the PAP waveform (y(t)) are incorporated.
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Figure 4.3 PAP waveform (a) and pulmonary circulation Windkessel model (b). PVC,
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Figure 4.4 Illustration of identifying the time constant rand LAP from a puhnonary PAP

waveform. PP is pulse pressure; R, onset time of upstroke of each PAP wavelet;j, beat

number; x(t), a constructed cardiac contractions signal; y(t), an PAP waveform; and h(t),

an estimated impulse response coupling x(t) to y(t). Then proportional CO is ratio of

mean PAP (MPAP)-LAP to z'.
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First, a cardiac contractions signal is constructed by formation of an impulse train.

Each impulse is located at the R-wave of a simultaneous surface electrocardiogram

(ECG) measurement and has unity area.

Second, the PAP waveform segment (y(t)) is fitted according to the sum of an

unknown constant term and the convolution between an unknown impulse response (h(t))

and the constructed cardiac contractions signal (x(t)). That is, the constant term and h(t)

are estimated so as to permit the best fit or prediction ofy(t) in the least squares sense.

The estimated constant term represents the average LAP, while the estimated h(t) is

defined to represent the PAP-LAP response to a single cardiac contraction. The impulse

response h(t) and average LAP are specifically estimated with the following

autoregressive exogenous (ARX) input equation with constant term c:

y(t)=c+2aky(t—k)+Zbkx(t—k)+e(t), (4.1)

k=1 k=l

where e(t) is the unmeasured residual error, {al., bk} are unknown parameters, and m and

n limit the number of these parameters (model order) [Ljung, 1999]. For a fixed model

order, the parameters including c are estimated fi'om x(t) and y(t) through the least-

squares minimization of e(t), which has a closed-form solution [Ljung, 1999]. With the

estimated parameters, average LAP is computed as follows:

LAP=——

1..

, (4.2)

M
a

..

ak

r

ll

where " indicates estimates.
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Next, r is computed similarly as in Chapter 3. Finally, proportional CO may be

computed by dividing the time-averaged PAP-LAP with r and calibrated with

thermodilution measurements.

We developed a new model order selection algorithm. Basically, we search the best

model order from a set of candidate orders within a pre-defined range by analyzing the

relationship between the mean square error (MSE) of the estimation and the model order.

The estimation MSE is equal to ||e||2/N, where e is the residual error in Eq. 4.1, N is the

length of the signals. As described in Chapter 2, the estimation MSE is a monotonically

decreasing function of model order, while the decreasing speed ofMSE becomes slower

as the model order increases. Irnportantly, at a certain model order (knee), the decreasing

speed dramatically becomes very slower. We regard this model order as the true model

order. This model order selection criterion is based on the fact that initially the MSE

decrease is caused by minimizing the estimation error due to the incompleteness ofthe

estimation model; while after the model order is greater than the true model order, the

MSE decrease is caused by minimizing the estimation error due to the noise.

Specifically, the best order is obtained as follows (Fig. 4.5). First we plotth the

estimation MSE=||e||2/N against the model order (r). Next, for each order r, we fit the

curve with two straight lines intercepted at the point (r,P,). The slopes of the two lines

and the value ofP, are chosen optimally to fit the curve best using the minimal square

error criterion. The mean square error of this fitting is f,.. Finally, among the candidate

model orders, the model order m with the minimum fitting error,fm, is selected as the true

model order. In addition to the knee selection criterion, we also constrained that the
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estimated h(t) must be positive and finite after its peak value, and the estimated LAP

must be greater than zero as well as smaller than PADP.

   

   

  

Best Fitting Lines

( r = m )

Fitting Lines

( r = i )

(m, Pm)

 

P
(
M
S
E

o
f
E
s
t
i
m
a
t
i
o
n
)
[
m
m
n
g
]

   
 

r ( Model Order )

Figure 4.5 Illustration of the “knee” order selection algorithm. The solid line is the

estimation mean square error (MSE) of Eq. 4.1 plotted against the MA model order (r).

The two dash lines are two fitting lines at r=i and r=m respectively. (i, Pi) and (m, Pm) are

interceptions of the fitting lines. Because the fitting error at r=m is minimum (could be

seen from the plot), the true model order is m.
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4.2.2 Technique Evaluation

We evaluated this technique with respect to puhnonary artery catheterization data

from the MIMIC database (see Chapter 3). We created a sub-database based on 8 patient

records including both PAP waveforms and multiple CO measurements and 5 patient

records including both PAP waveforms and PCWP measurements as follows.

Step 1, we downloaded all of the one-minute thermodilution CO values as well as

twelve-minute contiguous segments of the corresponding PAP waveforms (from 6

minutes preceding the beginning of the CO measurements to 6 minutes after the

beginning of the CO measurements). We downloaded the PCWP and PAP measurement

pairs in the same way.

Step 2, we visually examined each PAP waveform and extracted the longest

continuous segment of relatively artifact free data from each waveform. We discarded

those segments that were less than 5 minutes in duration. To this end, a total of 52 pairs

of simultaneous measurements ofPAP waveforms and thermodilution CO from 8 patient

records, and 33 pairs of simultaneous measurements ofPAP waveforms and PCWP from

7 patient records remain. For LAP estimation, we further evaluated the gold standard

PCWP measurements according to the next three steps.

Step 3, we looked through all of the PAP waveforms corresponding to the PCWP

measurements and eliminated those that apparently did not contain PCWP measurements

and those invalid measurements.

Step 4, we eliminated those PAP waveforms with misinterpreted PCWP

measurements. The timing ofPCWP measurement is critical because intrathoracic

pressures can vary widely with inspiration and expiration and are transmitted to the
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pulmonary vasculature. During spontaneous inspiration, the intrathoracic pressures

decrease (more negative); during expiration, intrathoracic pressures increase (more

positive). The situation is reversed by the positive pressure ventilation. In order to

minimize the effect of the respiratory cycle on intrathoracic pressure, measurements are

usually obtained at end-expiration, when intrathoracic pressure is closest to zero. To

simplify the measurement, the mean pressure during wedge measurement period could be

utilized as a rough approximation of end-expiratory pressure. Therefore, we used the

mean pressure during the wedging measurement period as a gold standard to evaluate the

PCWP measurement value in the database.

Step 5, we evaluated the PCWP measurements following the selection criteria

shown in Fig. 4.6. The physiologic principles behind the criteria are: a) mean PAP must

be higher than LAP to maintain uni-direction blood flow from right ventricle to left

atrium; b) under certain conditions, “a” and “v” waves on LAP must be visible on the

wedge pressure waveform while PAP pulses are not visible [ Morris et al., 1984;

Leatherman et al., 2003]. The possible reason of mean PAP<=PCWP may be the balloon

over-inflation. Pulmonary hypertension is defined as the condition that pulmonary artery

pressure higher than 25mmHg [Weir et al., 1998].

Finally, 26 pairs of simultaneous measurements ofPAP waveforms and PCWP

from 5 patient records, as well as 52 pairs of simultaneous measurements ofPAP

waveforms and thermodilution CO fiom 8 patient records, remained for the subsequent

evaluation of our mathematical analysis technique.
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Figure 4.6 PCWP measurement evaluation procedure. Pulmonary hypertension is

defined as the condition that puhnonary artery pressure higher than 25mmHg [Weir et al.,

1998].

We observed that, for the same patient record in the MIMIC database, the PAP

waveforms were generally much more corrupted than radial ABP waveforms, mainly

because the pulmonary circulation is a low pressure and low resistance system. In

addition, the phenomena ofbifurcation and tapering are much more serious than the

arterial tree. Moreover, the periodic respiration waves on the PAP waveforms were more

significant, because the whole pulmonary circulation is in the thorax and as a result, the

intrathoracic pressure (negative pressure in thorax) has bigger effect on the PAP than

ABP. The movement of the catheter due to respiration also causes big artifact. This

corruption introduced a problem was that sometimes the beginning of the upstroke of

PAP was difficult to determine. In contrast, the “R” wave in ECG signal (measured in

most ICU patients) was easy to identify and therefore used as a surrogate for the

beginning of the upstroke of PAP. Then, the input (x(t)) in Eq. 4.1 was constructed as a
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train of unit-area impulses located at the “R” waves. In fact, “R” wave represents the

beginning of the ventricular systole, which is a more valid representation of cardiac

contraction theoretically. For Eq. 4.1, we empirically set the AR order m to equal half of

the MA order n and searched the optimal MA order from 15 to 70.

We were then able to compare the technique as applied to each PAP waveform

segment with the corresponding thermodilution measurement or corresponding PCWP

measurement. After scaling the resulting proportional CO estimates to have the same

mean value as thermodilution in each patient record, we computed the CO RMSNE

(normalized by thermodilution measurement value and given in percent) as well as the

LAP RMSNE (normalized by PCWP and given in percent) as scalar metrics for

comparison.

4.2.3 Evaluation Results

Table 4.1 summarizes the study and shows that the technique achieved an overall

CO RMSNE of 14.6% and overall LAP RMSNE of 15.2%, which would be acceptable

levels of error according to Critchley [1998]. For comparison, LAP estimation via median

puhnonary artery diastolic pressure (PADP) resulted in an overall LAP RMSNE of

34.6%. Our estimated LAP values distribute evenly above and below the PCWP

measurements. Fig. 4.7a gives visual examples of the CO estimation results from 3

patients, in which the estimated and calibrated CO values are plotted against the

corresponding thermodilution measurements. Fig. 4.7b gives visual examples of the LAP

estimation results from 3 patients, in which the estimated LAP values are plotted against

72



the corresponding PCWP values. We believe that these estimation results demonstrate the

feasibility of the technique.

Table 4.1: Summary of the intensive care unit patient records and CO and LAP

estimation results of the human hemodynamic data set. The technique was applied to

PAP waveforms from 9 patient records and achieved an overall CO root-mean-squared—

normalized error (RMSNE) of 14.6% with respect to 52 thermodilution measurements

and an overall LAP error of 15.2% with respect to 26 PCWP measurements. MPAP is

 

 

 

 

 

 

 

 

 

 

  

mean PAP.

PATIENT CO MPAP PCWP HR CO LAP

RECORD RANGE RANGE RANGE RANGE RMSNE RMSNE

[L/MIN] [MMHG] [MMHG] [BPM] [%] [%]

253 --- 23-41 13-26 54-72 --- 13.2

410 4.3-6.8 19-23 --- 60-90 7.6 ---

411 3.2-4.6 30-37 --- 58-60 13.8 ---

456 4.4-8.5 22-33 13-22 78-108 14.8 11.4

474 3.8-4.9 21-26 9-14 84-108 15.7 12.7

476 3.8-4.8 15-20 --- 102-108 13.8 ---

482 4-4.3 25-28 13 84 5 25.4

484 5.1-6.8 28-31 --- 84-96 7.4 ---

485 3.0-4.1 23-44 19-30 102-114 21.9 16.3

TOTAL 3.0-10.5 15-44 9-30 50-116 14.6 15.2      
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Figure 4.7 Visual examples ofCO and LAP estimation from three intensive care unit

(ICU) patients. (a), for each patient, the estimated and calibrated CO is plotted against

corresponding thermodilution measurement; (b), for each patient, the estimated LAP is

plotted against corresponding puhnonary capillary wedge pressure (PCWP)

measurement.

4.2.4 Discussion

We have developed a technique to continuously monitor CO and LAP by analyzing

a PAP waveform measured with a PAC over time intervals of about 6 minutes. This

technique is an extension of the technique in Chapter 3: continuous monitoring ofCO

from a peripheral ABP waveform. We evaluated the technique in humans based on the

MIMIC database. With this database, we were able to compare the application of the

technique to PAP waveforms obtained from the PAC with reference thermodilution and

PCWP measurements in a total of a total of 9 ICU patients in which CO and LAP were

changing due to disease progression and therapy. We report an overall CO estimation

error of 14.6% and an overall LAP estimation error of 15.2% (see Table 4.1 and Fig. 4.7).

The technique is based on the assumption that the simple Windkessel model (Fig.

4.3b) is a valid representation of the long time scale behavior of the pulmonary
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circulation. The model has two important assumptions. The model ignores ITP which

contributes more to PAP than ABP because PAP is much lower than ABP. The model

also assumes that the PVC is constant over time scales ofhours to days. Any violation to

these assumptions may introduce CO and LAP estimation error. However, the

preliminary evaluation result implies that this assumption is valid at least to this data set.

The main advantage of this technique with respect to previous techniques for

monitoring CO from PAP is the additional capability of estimating the absolute value of

LAP. If the technique could estimate LAP accurately, then theoretically the CO

estimation would also be accurate. Thus, LAP estimation should actually help improve

the CO estimation.

Bourgeois et a1 may be utilized to compute the time constant I if the diastolic

pressure waveform ofone specific cardiac cycle resembles an exponential decay. It

works well especially when part of the waveform is very clean while the overall quality is

corrupted. However, it is hard to evaluate the waveform quality and extract the good part

automatically.

As discussed in the introduction, the clinical measurement methods, thermodilution

and PCWP, have questionable accuracy due to their assumptions, potentially poor

operation, and misinterpretation. In the MIMIC data, many PCWP waveforms have large

periodic artifact caused by respiration (e.g., movement of catheter). We also found that

there were significant differences in the quality ofPCWP measurements between

different patients. That is, the PCWP measurement quality was highly dependent upon

the experience of the operator, which is consistent with the findings of Morris et a1. For

example, for patient record 456, all of the wedging pressure waveforms were clean and
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all of the PCWP values were measured at the end-expiration. However, for patient record

485, most of the wedging pressure waveforms were affected by the respiration and the

PCWP values were computed by simply taking the averages of the pressure during the

wedging period. Because the PCWP waveform can be observed on the PAP waveform,

we can at least to some degree assess its quality. This is an advantage ofPCWP over

thermodilution.

The CO may be easily calibrated with thermodilution because a PAC has already

been used to measure PAP. However, the measurement of absolute CO value may be

unnecessary in the context of continuous monitoring in the acute setting in which only

CO changes are clinically relevant.

Comparison ofthe CO estimation results of this technique and the technique of

Chapter 3 is very interesting. As shown in Table 3.2 and Table 4.1, seven patients had

both radial ABP and PAP measurements and consisted ofmore than one thermodilution

measurement. In four patient records, 411, 474, 476, and 485 the estimation results from

the two techniques have equivalent accuracy. While in the other three patient records,

410, 456, and 484, the estimation ofCO from PAP is much better than from ABP. This

comparison is surprising, because the ABP signals are much “cleaner” than the PAP

signals (e.g., patient record 456). However, we note that the comparison is based on a few

data points.

The result of this ICU patient evaluation study indicates that our mathematical

analysis technique for continuously monitoring CO and LAP may be sufficiently accurate

with respect to PAP waveforms measured from critically ill patients. With further
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successful human testing, the technique may potentially be applied in ICU patients

instrumented with the PAC.

4.3 Monitoring of CO and LAP from RVP

4.3.1 The Technique

First, we rewrite the ARX model of Eq. 4.1 as follows:

m n

y(t) = c + Zakya — k) + Zbkxa — k) + w(t), (4.3)

k=l k=l

where, y(t) is the partially constructed the PAP waveform from RVP waveform (Fig. 4.2),

x(t) is a pulse train representing heart contractions, and c is reflective of the contribution

of LAP to PAP. The solution of this ARX model equation requires continuous

measurement of the PAP waveform. However, by constructing the PAP waveform from

RVP waveform, we can only obtain the PAP waveform during each ejection phase. Thus,

the {ak} and {bk} parameters cannot be identified, and the response ofPAP to a single

ventricular contraction and the average LAP cannot be obtained.

Instead of the ARX model in Eq. 4.3, the relationship between x(t) and y(t) may be

represented by an output error (OE) model in Z transform as follows:

Y(z) = E5)— X(z) + c + W(z) , (4.4)

A(z)

where A(z) =1 — 2 3,2'1 is the Z transform of the coefficients {ak} , B(z) = Z bkz'l is

1:1 k=l

the Z transform of the coefficients {bk} , and W(z) is the Z transform of the unobserved

noise [Ljung, 1999]. Note that the coefficients {ak}, {bk}, and c are different from those

parameters in Eq. 4.3.
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In order to solve the coefficients {0].}, {bk}, and c, we convert Eq. 4.4 to a linear

equation. Assuming for the moment that {art} is known, we establish a time series u(t)

with the Z transform as follows:

1 .

Then, by substituting Eq. 4.5 into Eq. 4.4, we obtain

Y(z) = B(z)U(z) + c + W(z) . (4.6)

The {bk} and c can then be estimated using the linear least square method.

To estimate the {ark} parameters, for the sake of simplicity, we assume that the poles

are composed oftwo components: a pure exponential decay (with time constant ti) and a

cosine (frequencyf) attenuated exponentially (with time constant Q). The first component

is due to the long time scale behavior of the pulmonary vessels, which are represented by

the pulmonary vessel resistance (PVR) and compliance (PVC) as shown in Fig. 4.3b. The

second component represents faster wave reflection and inertial effects. Thus, in Eq. 4.4,

the order of A(z) is n=3, and Z transform of {ca} is specifically:

A(z) = (1 — e_T/le—1)(1— 2e_T/12 cos(21rf1“)z_1 + €2th 2‘2 ) , (4.7)

where T is sampling period.

Therefore, in our estimation algorithm, we compute coefficients the {ca}, {bk} and c

as follows. First, we choose the values of r1, r; and fin Eq. 4.7 within a physiologically

reasonable range to compute A(z). Then, we compute u(t) using Eq. 4.5. Next, we

estimate {bk} and c in Eq. 4.6 using the linear least squares method by minimizing

||w(t)||2. LAP is given by c, and the time constant of the pulmonary artery is given by

r=m. We repeat these steps for a range of different time constants r; and r; and frequency
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f. The true {ak}, {bk} and c are those parameters that result in the minimal least square

error in Eq. 4.6. The proportional CO is then computed as the convolution of h(t) and u(t)

divided by r.

Fig. 4.8 illustrates the technique, which is an extension of the estimation technique

ofCO and LAP from a single PAP waveform. The difference here is that the PAP

waveform (y(t)) is known only during the ejection phase (thick solid line) while unknown

during the remaining time (thin dash line). The technique is basically to minimize the

estimation error of the PAP waveform constructed from the RVP waveform during the

ejection phase.

4.3.2 Pilot Evaluation of the Technique

To evaluate this technique, we conducted a pilot experiment in a female adult

anaesthetized dog on a ventilator. ECG, CO, aortic pressure, RVP, PAP and LAP were

measured and sampled at 1000Hz. The dog’s chest was open for measurements ofCO

with an aortic flow probe and LAP with a catheter in the left atrium. These signals were

recorded during the following four interventions: baseline, high dose dobutamine, low

dose dobutamine, and volume depletion. Each intervention was ten minutes long. The

experiment was done carefully and the measured waveforms were artifact-free (Fig.4.2).

We applied the technique in Section 4.2 to the measured PAP waveform and the

extended technique in this section. For the RVP waveform, we performed the estimation

as follows. First, the RVP signal was decimated down to 100Hz. The beginning of

ejection period was determined by finding the maximum slope of the RVP waveform for

heat, which conflicts with the assumption based on. Finally we obtained the best
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parameters {ak}, {bk} and c by minimizing the mean square error in Eq. 4.6.each beat

[Adamson et al., 2003]. We assumed that the ejection period ended at a time 0.02 seconds

after RVP reaches its peak value. The pulse train representing right ventricular

contractions is located at the beginning of ventricular systole with an area equal to the

ensuing pulse pressure of the constructed PAP.

The n, r; andfin Eq. 4.7 were selected within a physically valid range and

constrained with the criteria r1>tz andf> 1/r1. A total of 20000 different sets of 1'], r; and

f were evaluated. We then removed those parameters whose resulting impulse response

was physiologically unreasonable, for example, the impulse response became after one

4.3.3 Results

The estimation results of monitoring CO and LAP from the PAP and RVP

waveforms in the dog experiment are shown in Fig.4.9. For each technique, the CO

estimation error is very small, and the LAP estimation is fairly accurate except one data

point. The results demonstrate the potential of the techniques to be utilized in either ICU

patients instrumented with PAC or patients with implanted devices for monitoring RVP.

However, much more future animal testing is needed.
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Figure 4.8 Illustration of identifying the time constant rand LAP from RVP. The h(t)

and LAP are obtained by minimizing the mean square estimation error ofRVP ofthe

ejection phase. x(t), a cardiac contractions signal constructed from RVP; y(t), a systolic

PAP waveform (thick solid line) constructed from ejection phase ofRVP; and h(t), an

estimated impulse response coupling x(t) to y(t).
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Figure 4.9 Estimation results ofCO and LAP from long time-interval PAP waveform and

RVP waveform in a dog. (a), CO estimated from PAP waveform plotted against CO

measured by aortic flow probe, and LAP estimated from PAP waveform plotted against

LAP measured by direct catheterization; (b), CO estimated from RVP waveform plotted

against CO measured by aortic flow probe, and LAP estimated from RVP waveform

plotted against LAP measured by direct catheterization.
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CHAPTER 5

MONITORING LEFT VENTRICULARCONTRACTILITY FROM

RESPIRATORY-INDUCED BLOOD PRESSURE VARIABILITY

5.1 Background

The fastest growing cardiac disease is heart failure (the progressive weakening of

the heart), which can lead to exhaustion and disability. It currently affects nearly five

million Americans. Heart failure can be a life threatening condition; but if it is detected

early enough, it can be treated with life style changes, relatively inexpensive drugs such

as ACE inhibitors and beta-blockers, bypass surgery or angioplasty, and implantable

devices. Thus, it is becoming increasingly important to be able to measure a specific

index of left ventricular contractility so as to guide therapy.

The clinical approach for monitoring cardiac function usually involves employing

imaging techniques such as echocardiography and radionuclide ventriculography to

measure the ejection fraction (the ratio of the stroke volume to the ventricular end-

diastolic volume). Although the ejection fraction is relatively easy to estimate, it is

heavily dependent on the pressure in the ventricle prior to ejection (preload) and the

pressure against which the ventricle pumps blood (afterload). That is, ejection fraction is

not a specific or pure index of ventricular contractility. While other indices have been

introduced (e.g., maximum rate of change of left ventricular pressure [Katz et al., 1992]),

they all generally suffer from substantial load dependence as well.

Suga and Sagawa were able to identify a relatively specific index of left ventricular

contractility [Suga and Sagawa, 1974; Sagawa et al., 1977]. In their pioneering work,
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they demonstrated that the pressure-volume relationship of the isolated canine left

ventricle can be represented by a line whose slope (elastance) varies from its minimum

value at the end of diastole to its maximum value at the end of systole (Fig. 5.1). That is,

the left ventricle behaves analogously to a time-varying electrical capacitor whose

capacitance is simply the reciprocal of elastance. More importantly, the maximum

elastance is highly sensitive to the changes in ventricular contractility, but relatively

insensitive to the alterations of the loading conditions [Sagawa et al., 1977; Suga et al.,

1973b; Suga and Sagawa, 1974]. They referred to this specific index of left ventricular

contractility as Bf?“ (Fig. 5.1). While subsequent investigators corroborated this result

in intact dogs [Kass et al., 1986] and humans [Kass et al., 1989], others complicated the

ER?“ concept by reporting afterload dependence [Suga et al., 1973a; van der Velde et

al., 1991] and contractility-dependent curvilinearity of the ventricular end-systolic

pressure-volume relationship [Burkhoff et al., 1987; Kass et al., 1989; van der Velde et

al., 1991]. However, the most significant load-dependence and nonlinearity occurred over

a wide range of ventricular volumes and/or in vivo in which the accuracy of the

measurement technique is reduced (see below). Therefore, BE“ as determined over a

limited range of ventricular volumes, is generally considered to be a valuable index of

left ventricular contractility [Burkhoff et al., 1986; Chen et al., 2001; Kass et al., 1989;

Takeuchi et al., 1991].
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Figure 5.1 Illustration of left ventricular elastance (Erv) and the left ventricular maximum

elastance (Biz/lax ). The left ventricular pressure is plotted against the left ventricular

volume. Left ventricle can be represented by a time-varying capacitor, which is reciprocal

of Eh, (slope of lines). Bi?“ is a specific index of left ventricular contractility. [Suga and

Sagawa, 1974].
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Although the significance of BK,“ is well appreciated, it is rarely employed

because of the difficulties involved in its measurement. The conventional technique

involves measuring the multiple left ventricular pressure-volume loops during the

interventions that ideally alter the loading conditions without affecting the contractility

(Fig. 5.2a). Left ventricular pressure can be measured with high fidelity, but very

invasive methods are required to do so. Moreover, although left ventricular volume can

be estimated with non-invasive methods such as echocardiography, even highly invasive

methods are not reliable [Burkhoff, 1990]. An example of experimental left ventricular

pressure-volume loops is shown in Fig. 5.2b [Kass et al., 1988]. Finally, the adjustment

of loading conditions is not only invasive but also may change the contractile state.

Perhaps, as a consequence, Freeman et al reported that E1?“ was dependent on the

method utilized to adjust the loading conditions [Freeman et al., 1986].
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Figure 5.2 Illustration of conventional Elf?“ measurement method. (a), ideal left

ventricular loop changed by preload, and the slope of the line fitting the end systolic

pressure-volume points is Eff"; (b), an experimental result, where left ventricular

pressure-volume loop with loading condition were altered by drug administration and

inferior vena cava balloon occlusion [Kass et al., 1988].

88



Previous investigators tried to pursue less invasive methods to measure Eff".

Most ofthese methods aimed to estimate E {33" without adjusting the loading conditions

from only one single beat. These techniques must be based on strict assumptions, as they

are essentially attempting to measure a slope from only one single data point.

Investigators have specifically assumed the time evolution of left ventricular elastance

normalized in both amplitude and time is identical or very similar for all individuals

regardless of cardiac state [Chen et al., 2001; Senzaki et al., 1996; Shishido et al., 2000].

Researchers have also assumed that the maximal isovolumic pressure at a given end—

diastolic volume can be extrapolated from isovolumic phase pressure with an empirical

formula [Chang et al., 1997; Shih et al., 1997; Sunagawa et al., 1980; Takeuchi et al.,

1991]. Perhaps, as a result, it is not surprising subsequent investigators have found poor

agreement between the conventional multiple beat method and single beat methods

[Iwase et al., 1992; Kjerstad et al., 2002]. Moreover, only a few ofthe single beat

methods did not require the measurement of left ventricular volume [Chang et al., 1997;

Shishido et al., 2000], however, these methods do require aortic flow, which is not easy

to measure as well [Ehlers et al., 1986].

In this Chapter, we present a practical technique for monitoring Bi?“ which may

ultimately be employed to guide the clinical management ofheart failure patients. In

contrast to the previous multiple beat method and single beat methods, the novel

technique specifically estimate the changes in Big“ by mathematically analyzing the

beat-to-beat fluctuation of arterial blood pressure (Pa) and respiratory activities in terms

of instantaneous lung volume (ON) or intrathoracic pressure (Pm) during random-interval
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breathing protocol [Berger et al., 1989a] in approximately six minutes. The key idea of

this technique is based on the phenomenon named direct capacitive effect, which means

that the magnitude of the immediate drop of Pa mechanically induced by inspiration is

mainly due to changes in BE“. Irnportantly, minimally invasive or non-invasive

methods exist to continuously measure Pa (e.g., radial artery catheterization, arterial

tonomatry), Q... (chest-abdomen inductance plethysmography) and Pa, (esophageal

balloon). Moreover, the technique monitors Balm while the ventricular loading

conditions are varied via a random-interval breathing protocol. Thus, multiple data points

are effectively utilized to measure the Big“ slope. We then describe the performance of

the technique with respect to realistic beat-to-beat variability generated by a human

cardiovascular simulator [Mukkamala and Cohen, 2001]. We also conducted a pilot

vealuation of the technique with respect to an anesthetized closed-chest canine model.

Both experiments show the promise of the technique in monitoring changes in Big“.

5.2 Physiologic Basis

5.2.1 Respiratory-Induced P. Variability Mechanisms

Beat-to-beat fluctuations due to respiration are readily apparent in Pa waveforms

(Fig. 5.3). These fluctuations are usually slower than the heart rate (HR) and are caused

by multiple, distinct physiologic mechanisms operating over different time courses.

These mechanisms may be categorized into those mediated by the autonomic nervous

system and those governed by mechanical phenomena.
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Autonomic mechanisms are responsible for the well-known respiratory sinus

arrhythmia phenomenon in which HR and respiratory variations are in synchrony (Fig.

5.4) [Eckberg et al., 1984; Saul and Cohen, 1994]. It has been shown that HR variations,

which may initiate Pa variations through changes in cardiac output, actually precede the

respiratory variations [Mukkamala et al., 1999; Mullen et al., 1997]. Specific mechanisms

responsible for respiratory sinus arrhythmia may include direct neural coupling ofHR

and respiratory control centers in the brain (accounting for the non-causal effect) as well

as the baroreflex system, which is stimulated by the changes in Pa [Saul and Cohen,

1994]. These mechanisms are mediated by the fast parasympathetic nervous system and

the slower sympathetic nervous system [Akselrod etal., 1985]. Baroreflex excitation also

causes variations in ventricular contractility, systemic arterial resistance, and systemic

venous unstressed volume, which are solely mediated by the slow sympathetic nervous

system [Guyton and Hall, 1996].
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Figure 5.4 Illustration of respiratory sinus arrhythmia (RSA). The heart rate (ECG) is in

synchrony with respiratory activity (Qlu, instantaneous lung volume).
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The mechanical phenomena are initiated by changes in Pa, caused by chest

expansion (inspiration) or chest contraction (expiration) [Guyton and Hall, 1996]. For

example, the act of inspiration causes Pm to drop. This drop is immediately transmitted to

left ventricular pressure and Pa, which we refer to direct capacitive effects. Then after a

couple ofbeats Pa increases due to the enhanced venous return to the right heart [Saul

and Cohen, 1994]. For a given Pm drop, the extent to which the enhanced venous return

affects Pa is dependent on the properties of the right heart, puhnonary circulation, left

heart, and systemic circulation. Thus, it would not be possible to distinguish between, for

example, left and right ventricular failure or systolic and diastolic failure even if the

extent of increase in Pa due solely to the enhanced venous return to the right heart could

be quantified. In contrast, the direct capacitive effects essentially reflect only left

ventricular contractility. We will discuss the direct capacitive effects in the next section.

5.2.2 Direct Capacitive Effects

The two-compartment electrical analog model in Fig. 5.5a represents the left

ventricle and systemic arteries system. Each compartment consists of a conduit for

viscous blood flow, which is characterized by a resistance (R), and a volume storage

element, which is characterized by a capacitance (C). The external pressure (P) is Pa, for

left ventricle and X Pm for the systemic arteries, where X is the fraction of the total

arterial compliance (Ca) subject to Pm. (X is caused by only parts of arteries is inside the

chest and affected by Pm. X is typically about 1/3 in humans [Lawson, 1962]). The

capacitance of the left ventricle oscillates over time (t) and is responsible for driving the

flow ofblood. Finally, the ideal diode represents the aortic valve and ensures uni-
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Figure 5.5 Two-compartment model of the left ventricle and systemic arteries in terms

of the electrical circuit analog. (a), Model during one beat. R, resistance; C, compliance;

P, pressure; diode, aortic valve; A, changes; lv, left ventricle; a, artery; th, intrathoracic; t,

time. (b), Model during systole (diode representing aortic valve is shorted) in which

R1v=0 and CIv (t) z 1 / Eff" (as justified in the text). (c), Model during diastole (diode is

opened). The technique herein aims to estimate quantities derived from this model that

can reflect changes in left ventricular contractility in terms of Elf/13x.
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directional blood flow. (Note that fast inertial and distributed effects are not considered

here.) According to this model, when Pu1 increases suddenly, the arterial blood pressure

Pa would increase immediately because the capacitors C1v(t) and Ca always tend to

maintain blood volume, which is the reason why the phenomena are called Direct

Capacitive Effects. Increasing Pa, in a very short time requires very fast breathing, which

is difficult to realize practically. We will describe the direct capacitive effects during

normal breathing and then quantitate direct capacitive effects below.

First, we study the two-compartment model shown in Fig. 5.5a. We assume that 1)

R1v=0 (i.e. no stenosis of the aortic valve) and 2) Ch, (t) z NEE” during systole. Note

that any discrepancy in the second assumption is small and likely to be within the

estimation error of the technique (see below), as the systolic ejection time and time

derivative of left ventricular elastance (Ely) at the end of systole are both very small,

especially for failing hearts [Senzaki et al., 1996; Suga and Sagawa, 1974]. The nonlinear

model of Fig. 5.5c may be viewed as two distinct first-order linear systems with the input

z(t)APth(t) and the output APa(t), one during systole (Fig. 5.5b) and the other during

diastole (Fig. 5.5c). The input z(t)APm(t) of this model is

XC3‘EI'V“1x +1
 

APth (t) during systole, and

XAPth (t) during diastole.

The transfer function is

Mao/Eff" +C,)

1+ij,(1/E;{}a" +c,)

 during systole, and
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ijaCa

1+ijaCa

 
during diastole.

According to the above transfer function, this system works like a high pass filter with

the approximate cutting off frequency of mcm=(RaCa)".

Next we will prove that because the frequency components of input are much

higher than the cutting off frequency, the input signals will all transfer to output.

Assuming the fluctuations APth (t) = Ccos(21rt / Tr + 4)) , where Tr is the respiratory

period, to compute the lowest frequency in input, we utilize the exponential Fourier series

to expand z(t) as follows:

.2nn
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Then, the inputz(t)APth(t) = Z C—Dfi e T, T + Z Cfie T T’ .

n=—oo n=-oo

According to the equation, for Tr 2 2T, the smallest frequency of an exponential term in

S(t) is 27r/Tr. Thus, since 21r/Tr (~1.6 rad/sec) is usually larger than (R11Ca)'I (~0.5

rad/sec [Sato et al., 1974]), we arrive at the approximations

AP, (t) 5 z(t)APth (t). (5.1)
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Therefore, the response of Pa to a known change in Pm during systole as a result of

only the direct capacitive effects is approximately given as follows:

Apam ~ xcarafv‘a" +1

APmU) CaEffla" +1

 (5.2)

whereas the response of Pa to a known change in Pa, during diastole due to only direct

capacitive effects is approximately given as follows:

Effl- z X (5.3)

APth (0

Since Ca (and X) is relatively constant on the time scale of days to months and over a

wide pressure range [Bourgeois etal., 1976; Hallock and Benson, 1937; Mukkamala et

al., 2003b; Remington et al., 1945], any changes in the direct capacitive coupling

between Pu, and Pa must be specifically due to changes in E3“.

5.2.3 Ventilatory Mechanism

The measurement of Pa, is somewhat invasive. The instantaneous lung volume (Qlu)

may be measured non-invasively by placing belt around the chest and abdomen, as a

surrogate of Pm. We utilized the electrical analog model of ventilatory mechanics

depicted in Fig. 5.6. This model includes a resistor (Rafi) representing the viscous airways

and a capacitor (C1,) indicating the volume capability of the lungs. Based on this model,

changes in Pm are related to changes in Q11. as follows:

(31.411110 =—rd—A3—t'“—@—AQ1.(0. (5.4)
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where T=RairC|u represents the time constant governing ventilatory mechanics. If 1: were

known, the proportional Pa. changes could be obtained via Eq. 5.4 and act as a surrogate

ofPm in Eqs. 5.2 and 5.3 to compute the direct capacitive effects.

 

 

dQ lu(t)

dt :

F,alva)

Patmfl) O——l\/\/\l _|_

Rair

T
P111“) 0

Figure 5.6 Model of ventilatory mechanics in terms of its electrical circuit analog. air,

airway; lu, lung; atrn, atmosphere; alv, alveolar pressure. See Fig. 5.5 caption for

remaining variable definitions. This model is utilized to formulate a quantitative

mapping from Q... to proportional Pm in order to develop a.totally non-invasive technique

for monitoring index h3 derived from BE“.
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5.2.4 Three Indices Derived From E3“

Since this technique does not require measuring volume (or blood flow), the

absolute value of E1?“ cannot be measured. However, from the concept of ER)” we

derived three indices of left ventricular contractility, which are sufficient to monitor the

changes in left ventricular contractility under different circumstances.

The first index analyzes beat-to-beat Pa and Pa, fluctuations without regard to the

phase of the cardiac cycle (i.e., systole and diastole) in order to estimate a single lumped

index reflecting both Eqs. 5.2 and 5.3 (hr). The actual value of h. is determined by Ca,

E3” , X and the ratio of systolic period to diastolic period. This index is expected to

increase with decreasing E3“.

The second index is h2= C3E3” , which can be computed from Eqs. 5.2 and 5.3.

Since'Ca is a constant as stated above, this index is proportional to E13“. The direct

capacitive effects in systole and diastole are identified by analyzing beat-to-beat Pa and

Pth fluctuations separately.

In order to monitor E133" non-invasively, we utilize the Pa and Q1“ to identify a

specific index h3. With the proportional Pm (Eq. 5.4) and P,, the technique could then

estimate the two quantities in Eqs. 5.2 and 5.3, which would each be scaled by C1“. By

computing the ratio of the two estimated quantities, the scale factor C1,, would be

canceled and then the ratio, the third index h3, only reflects the changes in BE“ :

~ XCaEflfa" +1
113.. max .

XCaElv +X

 (5.5)
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This index would increase with decreasing E13“ .

5.3 Signal Processing Algorithm

The direct capacitive effects cannot be measured from beat-to-beat variability by

simply computing ratios of Pa fluctuations to Pm fluctuations (as indicated in Eqs. 5.2 and

5.3). The reason is that the Pa fluctuations are also due to the past histories ofPm

fluctuations (e.g., enhanced venous return to the right heart) and Pa fluctuations (e.g.,

baroreflex control ofR, and stroke volume) (Fig. 5.7). Moreover, unlike the other

baroreflex controllable parameters, the Pa fluctuations caused by HR variability may not

be as adequately reflected in the past histories of Pa (and Pa.) because ofnon-causal,

parasympathetically mediated respiratory sinus arrhythmia.

Thus, to measure the direct capacitive effects, our general approach is to employ a

system identification analysis to six-minute intervals ofthe beat-to-beat measurements

[Ljung, 1999]. This analysis is able to determine the effect ofpresent fluctuation in Pm on

present fluctuation in Pa) independent of all confounding input variables (past

fluctuations in Pa, and Pa and present and past HR fluctuations). Since system

identification is most effective when the input is rich in spectral content, we employ a

previous broadband excitation protocol in which the subject breathes according to a

sequence of randomly spaced auditory tones (with a mean of five seconds and a range of

one to fifteen seconds) [Berger et al., 1989a]. Fig. 5.8 shows that the Pm power spectrum

of random-interval breathing is much wider than that of spontaneous breathing. Since

BE“ may vary (to a small degree) over the six-minute analysis interval due to the
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baroreflex [Sagawa et al., 1977], the estimation result reflects the average BE“ value

over this interval.
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Figure 5.7 Illustration of enhanced venous return phenomenon. In the expiration, Pm

drops due to the expansion of chest, as a result the venous blood flow back to right atrium

increases. Then after a couple ofbeats, Pa increases. Therefore, Pa changes are not only

caused by direct elastic effects, but also by the past history of Pm. The phenomenon is

dependent on properties of the whole circulation.
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Based on this general approach, we now identify three indices for monitoring E

changes. The detailed signal processing steps are outlined below. The signals Pa and

respiratory activity in terms of either Pm or Q1“ are continuously recorded for six minutes

during random-interval breathing protocol and digitized at a sampling frequency of 90Hz.

Then the pulsatile components (i.e., HR variability) are removed from the Pa signal

according to the following steps [Mullen et al., 1997]. First, a pulsatile heart rate (Fp)

signal is defined to be a train of unit-area impulses located at the times of ventricular

contraction. Then the coupling between Pa and pulsatile Fp is identified based on the

following dual-input autoregressive exogenous input (ARX) equation [Perrott et al.,

1996l
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o P q

P, (t) = XaiPaa — i) + Zbina — i) + ZciRG - i) + wa(t) (5.6)

' i=1 i=0i=1

where R(t) = P,h (t) or Qlu (t) ; 0, p, and q limit the number of terms in the model (model

order); and wa(t) is an unobserved noise term. This equation includes three sets of

unknown parameters {a,-, b,, c,-} whose values are determined by minimizing the variance

of the unobserved noise term (linear least squares estimation). The model order is chosen

by minimizing the Final Prediction Error (FPE, see Chapter 2). Next, with the newly

estimated parameters {a , b, }, the blood pressure component due only to pulsatile heart

rate is calculated as follows:

F ° F p .

P,P(t)=Za,P,P(t—i)+Zbina—i). (5.7)

i=1 i=0

This portion is finally subtracted from the original blood pressure signal to arrive at the

blood pressure component not explained by pulsatile heart rate. That is,

F— F

Papa) =Pa(t)—Pap(t). (5.8)

To simplify the description, from now on we use Pa to represent the blood pressure

signal after removing the pulsatile components.

1) Index 1'11

We decimate Pa (without the pulsatile component) and Pth into 1.5Hz signals,

because the respiratory activity frequencies are much lower than pulsatile activity. Then

h] (similarly to the above) is estimated based on the following ARX equation:

APa (t) = Elam, (t — i) + ibiAPtha — i) + w(t). (5.9)

i=1 i=0
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The resulting estimate of the parameter b0 specifically represents the effects of APm(t) on

APa(t) independent ofHR and all the other regressor variables in the above equation.

Thus, the estimated index h1 (in) is be. The process to identify h] is shown in Fig. 5.9.

The impulse response from Pu, to Pa (without pulsatile component) is fully defined by the

parameters {ai,b,-} and reflect the mechanical effects (i.e., direct capacitive effects and

enhance venous return) and sympathetic baroreflex. The direct capacitive effect ho is the

estimated index h].
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Figure 5.9 Illustration of system identification of index hl. First, pulsatility components

are removed from Pa; then P3, and the blood pressure after removing pulsatile

components are decimated to 1.5Hz. the impulse response fi'om Pa, to the blood pressure

after removing pulsatile components is identified. The estimated h] is the value of

impulse response at time zero be.
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2) Index hz

We establish four 90Hz signals, P: , P: , Pfh and P31 , to identify the direct

capacitive effects of systole and diastole. For example, the 90Hz P: signal is formed as

follows. First, compute the average value of Pa during systole in each beat. Then assign

this value as the P: signal in this beat. That is, during one specific beat, P: signal is a

constant value. Pg , P:h and P31 signals are established similarly. Finally, we decimate

these four signals into 1.5Hz. To obtain an estimate ofthe quantity in Eq. 5.2, we identify

the following three input ARX equation:

m n q l'

APSU):ZaiAPasU—iHZbiAPgU-iHZCiAPf},(t-i)+2diAPg,(t-i)+ws(t). (5.10)

i=1 i=1 i=0 i=1

The resulting estimate of the parameter co specifically represents the effects of AP:h (t)

on AP: (t) independent ofHR and all the other regressor variables in the above equation.

Thus, co represents an estimate of the quantity in Eq. 5.2. Similarly, we identify the

following equation:

5 n V Y

Apg‘a) = ZeiAP§(t—i)+2fiAP§(t—i)+ ZgiAP3,(t-i)+ ZpiAPfh(t-i)+wd(t).(5.ll)

i=1 1:0 i=0 i=0

Here, the go parameter analogously represents an estimate of quantity in Eq. 5.3. Finally,

based on Eqs. 5.2 and 5.3, we obtain an estimate ofh; (CaEEax) from co and go as

follows:

 . (5.12)

C0 '80
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3) Index h;

We select an initial, physiologic value for I to obtain an estimate ofpr0portional Pm

(at 90Hz) from the observed Qlu signal according to Eq. 5.4. Then, we implement the

above steps outlined to identify h; using the candidate proportional Pu, signal to estimate

co and go. In this case, co and g0 respectively represent the estimates of the quantities in

Eqs. 5.2 and 5.3, each scaled by C1... We determine an optimal estimate of r (i) and the

ARX parameters by repeating the above steps over physiologic range of r (e.g. 0.2-1.2

sec) and selecting the resulting parameters that minimizes the joint FPE ofEqs. 5.10 and

5.11. This optimization problem may also be solved efficiently with the Golden Section

Search [Wilde et al., 1964]. Finally, we obtain an estimate of h3 via h3 = c0 / go.

5.4 Evaluation

5.4.1 Theoretical Evaluation

We theoretically evaluated the three techniques based on realistic short-term beat-

to-beat variability from a human cardiovascular simulator [Mukkamala and Cohen,

2001]. This simulator basically includes three parts: heart and circulation, short-term

regulation and resting physiologic perturbations (Fig. 5.10) [Mukkamala et al., 2003b].

The specific aims of our simulation experiments were to determine if 1) the technique as

applied to Pa and Pm signals could detect changes in BE“ via h]; 2) the technique as

applied to Pa and Pa, signals could determine the value of h; (C313:3“ ) and detect

changes in ER?“ via hz; and 3) the third technique as applied to Pa and Qlu signals could
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determine the value of h; and detect changes in ER)“ via h3 as well as determine

ventilatory constant I.

To address these specific aims, we conducted over 1000 simulation experiments

under different sets ofparameter values. For each set of investigated parameter values,

we specifically performed the following steps. First, we executed the simulator to obtain

six-minute intervals of90Hz Pa, Pm, and Q1u signals during simulated random-interval

breathing. Second, we modeled measurement noise by adding zero-mean Gaussian white

noise band—limited within 0.75Hz to each of these signals with a standard deviation (SD)

equal to 3% of the SD of the corresponding band-limited signals. Although this SD level

 

was chosen arbitrarily, our results were not significantly altered by at least a doubling of

this SD level). Third, we applied these three techniques to the noise corrupted signals.

Fourth, we repeated the above three steps 50 times to determine the mean and 95%

confidence intervals of each of the estimates (h1,h2 , h3 and %) according to a Gaussian

distribution-based method [Announdas et al., 2003]. In Eq. 5.6, the orders o=15, p=35,

and q=10; in Eq. 5.9, the orders m=n=10; in Eq. 5.10, the orders m=n=q$7; in Eq. 5.11,

the orders s=u=v=y=2. Once the above steps were completed for all of the investigated

parameter value sets, we finally compared the estimated results with corresponding actual

BE“ and r values that we knew exactly.
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Figure 5.10 Block diagram summarizing the human cardiovascular simulator (redrawn

from Mukkamala, et al., 2003b). It is utilized here as the basis for theoretically evaluating

the three techniques. The simulator, which generates realistic beat—to-beat hemodynamic

variability, includes a pulsatile heart and circulation, a negative feedback, setpoint (sp)

representation of a short—term regulatory system, and resting physiologic perturbations.

The blocks in the diagram are mathematically characterized as follows: pulsatile heart

and systemic and puhnonary circulations with a lumped parameter system accounting for

viscous and volume storage effects; sinoatrial (SA) node with an integrate and fire

device; each neural coupling and baroreflex block with impulse responses of varying

static gains and system dynamics; baroreflex saturation with arctan functions; and

airways and lungs with a lumped parameter system accounting for airway resistance and

lung compliance. HR, heart rate; Q: , systemic venous unstressed volume; HCT, HR

contraction times; Pra, right atrial pressure. See Figs. 5.5 and 5.6 captions for remaining

variable definitions. WHR is l/f noise (where f is frequency), and NHR is assumed to be an

unmeasured, physiologic disturbance to HR. NR3 is band-limited white noise that is

assumed to be an unmeasured, physiologic disturbance to Ra.
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5.4.2 Pilot Experimental Evaluation

We conducted a pilot experiment in an anesthetized intact canine model. A single

adult purpose-bred hound cross dog (25kg) was instrumented as follows. Afier induction

of anesthesia, the animal was intubated but allowed to maintain its own respiratory rate

and depth except during certain experimental interventions. The electrocardiogram

(ECG), instantaneous lung volume (integral of the airflow), intrathoracic pressure

(esophageal pressure), arterial blood pressure (thoracic aortic pressure), and left

ventricular pressure were measured. A syringe pump catheter was positioned in the

femoral vein for drug administration. The cardio-respiratory measurements were recorded

(at a sampling rate of lOOHz and 12-bit resolution) during the following three

interventions: 1) baseline; 2) high dose dobutamine (3ug/kg/min i.v.); and 3) lower dose

dobutamine (1 .Sug/kg/min i.v.). Dobutamine was utilized to increase the left ventricular

contractility. Each intervention included a spontaneous breathing period of six minutes

followed by a random-interval breathing (with a manual resuscitation bag and a sequence

ofrandomly spaced auditory tones with a mean of five seconds and a range ofone to

fifteen seconds) period of six minutes. A five to ten minute period ofhemodynamic

equilibration was allowed between each intervention.

We applied the first technique to the continuous measurements of arterial blood

pressure and intrathoracic pressure at 100Hz obtained during the six-minute random-

interval breathing period of each intervention. We resampled the signals to 3.3Hz in the

second system identification step. In Eq. 5.6, the orders were set as follows: o=15, p=40,

and q=10; in Eq. 5.9, the orders were set as m=n=5. Since we were not able to

independently determine Eff)“ , we computed the maximum rate of change of left
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ventricular pressure (ldP.v(t)/dt|max) as an independent measure of left ventricular

contractility for each intervention. We then compared the BE“ changes predicted by

index h] during the pharmacological interventions with the corresponding reference

measure of contractility determined from left ventricular pressure. Note only h was

predicted because other indices were less sensitive to the changes in BE“.

5.5 Evaluation Results

5.5.1 Theoretical Evaluation Results

Fig. 5.11 summarizes the theoretical evaluation results of the technique as applied

to realistic simulated signals. All of the estimated quantities are shown in terms of their

mean (x) and 95% confidence intervals (bar).

Fig. 5.113 shows the estimation results of the index h] as the technique is applied on

the Pa and P3, signals during random-interval breathing. This figure specifically illustrates

the estimated index h (in) plotted against the corresponding actual simulator value of

Big“. These results indicated that this technique was able to detect changes in BE” as

small as 10%.

Fig. 5.11b shows the h; estimation results of the technique applied on the Pa and Pm

signals during random-interval breathing but with a more sophisticated analysis so as to

provide more precise quantitative information. This figure specifically illustrated the

estimated index hz i.e., C Emax) lotted a ainst the corres ondin actual simulator
3 IV p g p g

value of BS“. The circles in the figure indicate the actual h; simulator value. These
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results demonstrate that our technique was able to determine CaEEax with little

estimation bias (close correspondence between crosses and circles). However, its

sensitivity in detecting changes in Eff" is reduced with respect to the estimation of h]

due to the increased mathematical complexity.

Fig. 5.11c and 5.11d show the h3 estimation results of the technique applied on the

Pa and Q1u signals during random-interval breathing. In contrast to the first two estimation

methods, this method could be employed in practice with totally non-invasive

measurements. These two figures specifically illustrate the resulting h, and i: (an

estimate of t=Rai,C.u) respectively against the corresponding actual BE” and Ram values.

The circles in the figures indicate the actual simulator values for the h3 and r respectively.

These results demonstrate that the technique was able to estimate each ofthese quantities

with small bias and detect actual changes in both Eff/m and Rair. However, its sensitivity

in detecting ER?” changes is the least amongst the three techniques, as it is the most

complex.
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Figure 5.11 Summary of theoretical evaluation results. The results are obtained by

applying the technique to realistic beat-to-beat variability generated by the human

cardiovascular simulator in Fig. 5.10. All of the estimated quantities are shown in terms

of their mean (x) and 95% confidence intervals (bar), whereas the corresponding actual

simulator values are indicated with circles. See Figs. 5.5 and 5.6 captions for variable

definitions. (a), h] (an estimate of a lumped index reflecting Eqs. 5.2 and 5.3) is plotted

against the corresponding actual simulator E133" value. (b), hz (an estimate of Ca BIT“)

is plotted against the corresponding actual simulator BE“ value. (c), H, (an estimate of

h3 in Eq. 5.5) is plotted against the corresponding actual Big“ simulator value. (d), ’r

(an estimate of T=Rairclu) is plotted against Rair-
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5.5.2 Pilot Experimental Evaluation Results

Fig. 5.12a shows example segments of the measured left ventricular and arterial

blood pressure waveforms obtained during baseline and high dose dobutamine

conditions. Fig. 5.12b shows example segments of changes in the measured intrathoracic

pressure waveform during spontaneous (negative-pressure) breathing and random-

interval (positive-pressure) breathing. This figure demonstrates that the canine respiratory

pattern can indeed be randomized manually with a resuscitation bag.

Fig. 5.13 shows the contractility changes predicted by the two methods. The cross

represents the value ofthe predicted h1 (h1 ), and the circle represents the value of dPlv/dt,

and the bars represent the standard deviation. The extent of hl increase from high dose to

low dose dobutamine is more significant than the decrease of the value of |dPlv(t)/dt|max.

These pilot results demonstrate that our technique may predict more precisely left

ventricular contractility changes than the more invasive method.
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Figure 5.12 Pressure signals in canine experiment of monitoring left ventricular

contractility. (a), comparison of left ventricular pressure (Ply) and aorta pressure (Pa) in

control and high dobutamine conditions. Ply: solid line, Pa: dash line. (b), comparison of

APth during spontaneous negative breathing and random-interval positive breathing.
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Figure 5.13 Comparison of our technique with a highly invasive measurement of canine

experiment. Estimated index h, and |dP1,,(t)/dt|max plotted against dobutamine dose. The

estimated quantities h, are shown in terms of their mean (x) and standard deviation (bar).

The measured quantities |dP1V(t)/dt|max are shown in terms of their mean (0) and standard

deviation (bar). When more dobutamine is injected, contractility increases, thus hl should

decrease and IdPh,(t)/dt|max should increase. However, hl is more sensitive than

ldP]V(t)/dtlmax .

117



5.6 Discussion

To formulate the technique, we restricted its applicability to patients without aortic

stenosis and did not model both inertial and distribution effects in arterial tree. While

inertial effects contribute to the detailed structure of Pa waveforms within a beat, they are

relatively insignificant in accounting for the slow beat-to-beat variations that are

considered here. For example, even if cardiac output increased by 50% from one beat to

the next, the Pa waveform in Fig. 5.5a would be in error by 0.5mmHg (inductance of

blood is typically ~0.015mmHg.52/ml [Gurarini et al., 1998]). It is likewise known that

distributed effects (e.g., wave reflections in peripheral Pa waveforms) do‘not confound

slow beat-to-beat variations [Noordergraaf, 1978]. This may be understood by

considering the limiting case in which the time scales are sufficiently long (i.e., slow

changes) such that the wavelengths of the propagating waves are much longer than the

dimension ofthe arterial tree. Under these circumstances, the arterial tree may be well

represented by the lumped model in Fig. 5.5a. Irnportantly, this implies that beat-to-beat

variability in Pa waveform is not significantly dependent on the site of its measurement in

the arterial tree. We also did not model these fast effects in the ventilatory system (Fig.

5.6), as similar arguments may likewise hold [Staub, 1991].

However, in considering the identification of the second and third indices, the

inertial and distribution effects in real experimental data does introduce difficulties. The

dicrotic notch which denotes aortic valve closure is apparent in central arterial blood

pressure waveform and could be utilized to identify the systolic and diastolic intervals.

While in the readily available peripheral Pa waveform the dicrotic notch is not apparent

due to distributed and viscous effects. It may be possible to determine the systolic and

118

 



diastolic intervals based on the cardiac cycle length using, for example, the well-known

Bazett formula [Bazett, 1920]. Alternatively, it may only be necessary to identify a single

systolic Pa and diastolic Pa sample for each beat. Studies with the human cardiovascular

simulator have shown that this approach does not materially affect our results.

Index hz (CaBalm) can be utilized to estimate the ventriculo-arterial energy

coupling. hz is closely related to BE“ / Biff , where Biff is the effective arterial

elastance characterizing both the viscous and capacitive properties of the arteries

[Sunagawa et al., 1983], not the reciprocal of Ca. The quantity Big“ /E§ff is a useful

index of ventriculo-arterial coupling [Chang et al., 1997; Sunagawa et al., 1983], and may

be essential for optimizing chronic heart failure therapy [Binkley et al., 1990]. h; may be

utilized to measure the value of Eff" if Ca is calibrated by the technique described in

Chapter 3.

In order to improve the efficiency of the system identification algorithm, a random-

interval breathing protocol is employed. However it is difficult for those severe patients.

The random-interval breathing then could be realized by a programmed ventilator.

Therefore the monitoring of E3” could be performed continuously. In the left ventricle

and artery model in Fig. 5.5a, we assumed X is equal to 1/3. Actually, we simulated with

X varying from 0.25 to 0.4 and applied the technique on the data. The results suggest that

the value ofX only affects the estimation results a little.

The results of this theoretical study indicate that the sensitivity in detecting changes

in Big“ is best when Pa and the somewhat invasive Pm signals are available for analysis.
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However, if only Pa and the non-invasive Q1u are available, an estimate of the ventilatory

system time constant I = Rai, C1u may also be obtained. Both Raj, and Ch, can vary in heart

failure patients as a result ofpuhnonary edema. Thus, the I estimate may possibly be

utilized as a quantitative index ofpuhnonary edema. However, in puhnonary edema, we

note that Raj]- may increase while Clu decreases. The estimate of I may therefore be more

useful in which only one of these parameters is altered (e.g., asthma). This is significant

to the extent that 1: here may potentially be measured non-invasively.

The precise theoretical evaluation could not be achieved in an experimental model

in which all of the actual parameter values would be difficult to ascertain. The theoretical

validation here indeed justifies and promotes experimental testing of the technique

against the traditional method for measuring Bf?“ during different levels of ventricular

contractile state.

In the pilot animal experiment, the hi estimates were obtained with an invasive

aortic blood pressure waveform. However, we contend that the estimates would not be

significantly altered, if a less invasive peripheral blood pressure waveform were

measured, because these two waveforms are similar on slow, beat-to-beat time scales.

One difference from the theoretical evaluation is that we only were able to increase the

contractility, while our technique works better when the contractility is small.

In summary, we present a novel technique to monitor the changes in lefi ventricular

contractility in terms of Eff)“ from only respiratory-induced Pa variations obtained

during a random-interval breathing protocol. The validation based on the simulated data

and the pilot animal study shows the promise of the technique. With experiments on
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animals and even humans in which the absolute values of Bf?“ are measured, this

technique may be potentially utilized in clinical practice to help guide therapy in heart

failure patients.
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CHAPTER 6

CONCLUSIONS

6.1 Summary

In this thesis, we introduced three novel techniques to monitor three hemodynamic

parameters, CO, LAP and left ventricular contractility in terms of Biz/m" by mathematical

analysis of long time intervals ofblood pressure waveforms. First, we refined a

previously developed technique for continuously monitoring CO from a peripheral ABP

waveform and validated it, for the first time, in humans. Second, we extended the first

technique to a PAP or RVP waveform to continuously monitor both LAP and CO and

evaluated it in ICU patients and a canine experiment. Third, we introduced a technique

for monitoring changes in BE“ from peripheral ABP waveform variability induced by

random-interval respiratory activity and evaluated it with respect to data sets generated

from a realistic human cardiovascular simulator and a canine experiment. Each of these

techniques estimate the hemodynamic parameters using system identification method

combined with physiologic knowledge. The advantages of these techniques over

conventional methods are that they may be realized in a less invasive, continuous, and/or

safer manner. The preliminary evaluations with respect to hemodynamic data obtained

from realistic computer simulations, animal subjects, human volunteers, and patients

demonstrate that these techniques may indeed be capable of accurately estimating CO,

LAP and E3“ with an acceptable accuracy in clinic. Table 6.1 summarizes the

developed techniques.

122

 



Table 6.1 Summary of three hemodynamic monitoring techniques. These techniques

analyze long time intervals ofblood pressure waveforms using system identification

combined with physiologic knowledge and are validated with different sets of

experimental data.

 

 

 

 

     
 

Objectives Measurements Physiologic Knowledge Advantage Validation

CO Peripheral Windkessel model can Less invasive, Healthy

ABP represent arterial tree in a continuous volunteers, ICU

long time scale patients

CO, LAP PAP or RVP Windkessel model can Continuous, ICU patients,

represent pulmonary artery safer dog experiment

in a long time scale

Emax ABP, Pth or Direct elastic effects Less invasive Simulated data,

1" Qlu dog experiment

6.2 Future Work

This thesis does not signify an end but only a beginning. I have come to realize that

there are several areas of future investigation that would be worthwhile. First, a universal

model order selection criterion for both the first and second techniques is needed.

Learning methods may be one possible option. We can also try to use the OE model

instead ofARX model to optimize full prediction. Second, it is very important to develop

an algorithm to identify the artifact-free segments from ABP and PAP waveforms in

order to have a truly automatic technique. Of course, a large number ofhigh quality

experimental measurements (both pressure waveforms and gold standard reference

measurements) from animals and humans under different physiologic conditions are

required to further evaluate and improve the techniques.
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By the end ofmy thesis work, I also formulated a new technique to compute

CaEmax and therefore quantitatively monitor changes in BE“. The advantage of this

technique is that it does not require random-interval breathings, but it does need an

invasive measurement of aortic pressure. More specifically, according the two-

compartment left ventricle and arterial tree model (Fig. 5.5), blood flow Qa to aorta is

given by:

_ dPa(t) Pa(t)
Qa-Ca dt + Ra . (6.1) 

 
Since the volume of left ventricle is C1v(t)P1V(t), the blood flow le from left ventricle is

  

 

given by:

le (t)__ d(Clv (t)PlV (t))_ dClv (t) Ply (0+ Ch: (I) dPIv (t) (62)

dt dt dt

During the ejection phase, assuming R1V=0 (no aortic stenosis), P.v(t)= Pa (t), and

Q1v(t) = -Qa (t) . Thus,

dClv (t) Padtz(t) _ dPa (0 Pa (0
dt——Pa(t)+ C1v(t)——— [Ca dt + Ra ]. (6.3)

At the time tm when Elv reaches its maximum value Ewax , Ch, reaches its minimum

 

dC t . .

value. Then Clv (tm) = “1m , 1:1: m) = 0. Substitutmg these two values 1nto Eq.

1v

6.3, we finally arrive at a simple equation for proportional Emax.

-l
Emax = . 4

Ca 1V 1+ Pa(tm)
(6 )

dPa(tm)

dt

 

 

RaCa
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Because tm is not genenally at the time of end-ejection [Sagawa, 1981], we would need to

find a method to determine it. Once tm is determined, CaEfl,lax could be computed at tm

using Eq. 6.4 without measuring left ventricular pressure and volume. As described in

Chapter 5, Ca is nearly a constant over a long time period, thus Eq. 6.4 could be utilized

max

Iv
to monitor changes in E . Here, RaCa could be computed using the method of Chapter

3 or direct exponential fitting. Note that Ca can be obtained with an additional

measurement of stroke volume or blood flow (e. g., flow probe, thermodilution, Doppler

ultrasound) and therefore the absolute value of Elf,“ could be computed.

It is our hope that this thesis sparks these future investigations and ultimately leads

to new hemodynamic monitoring systems in hospitals, at home, and with implanted

devices.
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