_ .. a... . = r L 3. 7 Fax 33%.... .,:a«-_...d.. «1953...: a fir. . .. .w 2 . 1 .s “Museum. ,Muxgham. . 3; as?! .31. :4 i . ”WT... an?» 453...: 1 ‘tx 2:. Eu; ‘ .w. 4.4-. cunt-fl ‘ , ‘ . . 91 _ r‘. , t ‘ $.11 ‘Kvndflow ‘ I . . u ‘I I . Ii V v .‘fiv. I . ‘ ‘ . , . . . \ , u 1,... .. ‘ .:.. ‘ JAIL . if: v «rye. . , fifig x» l... .J . . l . . . ; ,. . . u: . $15....ains, Lufinhu....._.nx. ., fit$§c§ 4.1:...” s a. , , . .. . w 1 u. . 2. 1‘. .IAI ‘ .‘II-U'v 4 1007 This is to certify that the thesis entitled Modeling the Transport of Salmonella Into Whole-Muscle Meat Products During Marination presented by Julie A. Rochowiak has been accepted towards fulfillment of the requirements for the MS. degree in Biosystems Engineering 64* V . or Prof ssor’s Signature 2/ DEC .2006 Date MSU is an Affirmative Action/Equal Opportunity Institution LIBRARY Michigan State University PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 6/07 p./ClRC/DateDueindd~p.1 MODELING THE TRANSPORT OF SALMONELLA INTO WHOLE- MUSCLE MEAT PRODUCTS DURING MARINATION By Julie A. Rochowiak A THESIS Submitted to Michigan State University in partial fulfillment of the requirements For the degree of MASTER OF SCIENCE Department of Biosystems and Agricultural Engineering 2007 ABSTRACT MODELING THE TRANSPORT OF SALMONELLA INTO WHOLE-MUSCLE MEAT PRODUCTS DURING MARIN ATION By Julie A. Rochowiak Salmonella is a harmful bacterium that can cause serious illness if contaminated meat is not properly processed. Recent research has shown that the assumption that the interior of intact whole-muscle meat products is sterile is not necessarily true for marinated products exposed to pathogens. Therefore, the objectives of this project were to: (1) develop a mechanistic mathematical model to describe the transport of Salmonella into intact whole-muscle meat products during marination, (2) estimate model parameters from laboratory trials, and (3) validate the model using independent data. The proposed model represents one-dimensional transport of Salmonella into whole-muscle meat products, assuming capillary diffusion of marinade and capsule-like transport of the Salmonella cells along with the marinade. The model solution was stable and yielded reasonable relationships between input and output variables (i.e., moisture uptake and Salmonella migration). In experimental trials, the total mass uptake was very low, < 1%, but significant numbers of Salmonella entered the product (counts > 101 at 4.5 cm from the surface in contact with marinade). However, the model did not predict the distribution of Salmonella in whole—muscle meat products during marination with sufficient accuracy to support the hypothesis regarding the underlying mechanism. This thesis is dedicated to my parents for the endless love and support that they have given me. iii ACKNOWLEDGMENTS I would like to express my sincere appreciation to Dr. Bradley Marks for the vast amount of guidance that he has given to me throughout my college career, as well as the many hours, that he has spent with me working on all aspects of this study. I would also like to thank my committee members: Dr. Alicia Orta-Ramirez, Dr. Alden Booren, Dr. Kirk Dolan, and Dr. Elliot Ryser for the support and advice that they have given to me throughout my project. Finally, I would like to thank my family and friends for their love and support. iv TABLE OF CONTENTS LIST OF TABLES ........................................................................................................... viii LIST OF FIGURES ........................................................................................................... ix KEY TO SYMBOLS ......................................................................................................... xi 1. INTRODUCTION .......................................................................................................... 1 2. LITERATURE REVIEW ............................................................................................... 4 2.1 Overview ................................................................................................................... 4 2.2 Salmonella ................................................................................................................ 4 2.2.1 Description ......................................................................................................... 4 2.2.2 Salmonellosis ..................................................................................................... 5 2.3 Marination ................................................................................................................. 6 2.4 Effects of Vacuum and Tumbling ............................................................................. 7 2.5 Surface Penetration and Bacteria Transport into Whole-Muscle ............................. 8 2.6 Flow through a Fibrous Porous Medium ................................................................ 11 2.6.1 Fluid Flow ........................................................................................................ 11 2.6.2 Particle Flow .................................................................................................... 12 2.7 Capillary Flow Models ........................................................................................... 13 2.8 Pipe Flow ................................................................................................................ 13 2.9 Capsule Flow Models ............................................................................................. 15 2.10 Summary ............................................................................................................... 18 3. METHODS AND MATERIALS .................................................................................. 20 3.1 Overview ................................................................................................................. 20 3.3 Moisture Concentration .......................................................................................... 30 3.4 Effective Gap Radius .............................................................................................. 31 3.5 Darcy’s Velocity ..................................................................................................... 31 3.6 Marinade Velocity .................................................................................................. 32 3.7 Salmonella Velocity ................................................................................................ 32 3.8 Salmonella Location ............................................................................................... 35 3.9 Salmonella Concentration Profile ........................................................................... 36 3.10 Model Inputs ......................................................................................................... 36 3.10.1 Meat Properties .............................................................................................. 36 3.10.2 Marinade Properties ....................................................................................... 37 3.10.3 Salmonella Properties .................................................................................... 37 3.10.4 Calculated Initial Values ................................................................................ 38 3.11 Validation .............................................................................................................. 38 3.11.1 Moisture content ............................................................................................ 38 3.11.2 Salmonella concentration ............................................................................... 39 3.12 Limitations ............................................................................................................ 41 4. RESULTS ..................................................................................................................... 42 4.1 Overview ................................................................................................................. 42 4.2 Model Outputs ........................................................................................................ 42 4.2.1 Moisture Concentration ................................................................................... 43 4.2.2 Effective Gap Radius ....................................................................................... 44 4.2.3 Darcy’s Velocity .............................................................................................. 45 4.2.4 True Marinade Velocity ................................................................................... 46 4.2.5 Salmonella Velocity ......................................................................................... 47 4.2.6 Salmonella Location ........................................................................................ 48 4.2.7 Salmonella Concentration Profile .................................................................... 49 4.3 Sensitivity Analysis ................................................................................................ 50 4.3.1 Saturation Moisture Concentration .................................................................. 51 4.3.2 Tortuosity ......................................................................................................... 52 4.3.3 Initial Effective Gap Radius ............................................................................. 54 4.3.4 Effective Length of Flagella ............................................................................ 55 4.4 Attempted Model Validation .................................................................................. 57 4.12 Summary ............................................................................................................... 60 5. CONCLUSION ............................................................................................................. 61 6. FUTURE RESEARCH ................................................................................................. 62 vi 7. APPENDICES .............................................................................................................. 64 Appendix 7.1: Derivative of Capillary Potential with Respect to Dry Basis Moisture Concentration ................................................................................................................ 65 Appendix 7.3: Moisture Concentration Test Results .................................................... 69 Appendix 7.4: Marinade Percent Uptake Test Results ................................................. 71 Appendix 7.5: Salmonella Concentration Experimental Results .................................. 72 Appendix 7.6: Calculation of Required Marinade Uptake to Achieve given Experimental Salmonella Log Counts .......................................................................... 74 Appendix 7.7: Master Input Page for Model ................................................................ 76 Appendix 7.8: Model Output for Moisture Concentration ........................................... 77 Appendix 7.9: Model Output for Effective Gap Radius ............................................... 82 Appendix 7.10: Mode] Output for Darcy’s Velocity .................................................... 87 Appendix 7.11: Model Output for Salmonella Velocity ............................................... 92 Appendix 7.12: Model Output for Salmonella Concentration Profile .......................... 97 Appendix 7.13: Three-Dimensional Graphs of Model Output ................................... 102 8. REFERENCES ........................................................................................................... 105 vii LIST OF TABLES Table 4.1: Input variable values used in the evaluation of the model. Starred (*) variables are analyzed in Section 4.3. ....................................................................... 43 Table 7.1: Moisture concentration results using the coring method described in section 3.11.1 ......................................................................................................................... 69 Table 7.2: Moisture concentration results using the slicing method described in section 3.11.1 ......................................................................................................................... 70 Table 7 .3: Marinade percent uptake test results ............................................................... 71 Table 7.4: Salmonella concentration experimental results. ............................................. 72 Table 7.5: Salmonella concentration average of all three replicates. .............................. 73 Table 7.6: Adjustable model input variables as they appear in the Excel Model ............ 76 Table 7.7: Predicted wet basis moisture concentration profile generated by Excel, given the input variables listed in Table 4.1. ...................................................................... 77 Table 7.8: Predicted effective gap radius profile generated by Excel, given the input variables listed in Table 4.1. ..................................................................................... 82 Table 7 .9: Predicted Darcy’s velocity profile generated by Excel, given the input variables listed in Table 4.1. ..................................................................................... 87 Table 7.10: Predicted Salmonella velocity profile generated by Excel, given the input variables listed in Table 4.1. ..................................................................................... 92 Table 7.11: Predicted Salmonella concentration profile generated by Excel, given the input variables listed in Table 4.1. ............................................................................ 97 viii LIST OF FIGURES Figure 2.1: Types of solid-liquid flow: (a) homogeneous flow, (b) heterogeneous flow, (c) intermediate flow, (d) saltation flow, and (e) capsule flow. This figure was replicated from Sastry and Zuritz’s (1987) figure 3. ................................................ 15 Figure 3.1: Conceptual image for the structure of meat as a bundle of small capillary tubes. ......................................................................................................................... 21 Figure 3.3: Steps and conceptual framework of the marination/migration model. ......... 23 Figure 3.5: Micrograph of non-marinated irradiated turkey breast (Photo courtesy of V. Tuntivanich, Michigan State University) .................................................................. 26 Figure 3.7: MATLAB’s threshold image of Figure 3.3. .................................................. 27 Figure 3.9: Schematic of Salmonella in a vertical pipe. .................................................. 34 Figure 4.1: Predicted wet basis moisture concentration profile ....................................... 44 Figure 4.3: Predicted effective gap radius profile ............................................................ 45 Figure 4.5: Darcy’s velocity profile. ................................................................................ 46 Figure 4.7: True marinade velocity profile. ..................................................................... 47 Figure 4.9: Salmonella velocity profile. .......................................................................... 48 Figure 4.11: Salmonella location wave profile. ............................................................... 49 Figure 4.13: Comparison of predicted Salmonella concentration at t = 4.35 min versus Warsow’s (2003) experimental results at t = 20 min. ............................................... 50 Figure 4.15: Wet basis moisture concentration with varying saturation moisture concentrations at t = 120 s. ....................................................................................... 51 Figure 4.17: Salmonella concentration profile with varying saturation moisture concentrations at t = 120 s. ....................................................................................... 52 Figure 4.19: Wet basis moisture concentration with varying tortuosity at t = 120 s. ...... 53 Figure 4.21: Salmonella concentration profile with varying r at t = 120 s ..................... 54 Figure 4.23: Salmonella concentration profile with varying initial effective gap radius at t= 120 s ..................................................................................................................... 55 ix Figure 4.25: Salmonella velocity with varying effective lengths of flagella at t = 120 s. 56 Figure 4.27: Salmonella concentration profile with varying effective length of flagella at t = 120 s ..................................................................................................................... 57 Figure 4.29: Comparison of predicted and experimental results for the Salmonella concentration profile of turkey breast. ...................................................................... 58 Figure 4.31: Comparison of smoothed (iZAx) and non-smoothed predicted Salmonella concentration profile at t = 261 s. ............................................................................. 59 Figure 7.1: Three-dimensional graph of the dry basis moisture content. ....................... 102 Figure 7.3: Three-dimensional graph of effective gap radius. ........................................ 103 Figure 7.5: Three-dimensional graph of Darcy’s velocity. ............................................. 103 Figure 7.7: Three-dimensional graph of marinade velocity ............................................ 104 Figure 7.9: Three-dimensional graph of Salmonella velocity. ....................................... 104 KEY TO SYMBOLS Lower-case Letters effective length of flagella, measured from centerline of the cell (m) diameter of Salmonella (m) gravitational force (msz) water potential (m) capsule to pipe diameter ratio, d/Dp empirical parameter Darcy ’s velocity (m3 '5" °m'2) initial effective gap radius (m) effective gap radius at time t (m) radius of pores in the ith pore size class (m) distance along flow (m) time (s) Upper-case Letters A ADM Asap. 0 Agap. t Amuscle,0 B Cdb, 0 Cdb, t Cs Cwb, 0 Cwb, t 2<2<,<..<<..’-< xii 1. INTRODUCTION Salmonella, a group of bacteria found in the intestinal tract of humans and other animals, can contaminate the outside of meat and poultry products through contact with feces or other possible sources of contamination. Salmonella is the second leading bacterial cause of food-bome illness in the US, after Campylobacter, and is responsible for an estimated 1.4 million cases of salmonellosis annually in the United States, resulting in more than 500 fatalities (CDC, 2005). Salmonella is the target organism in the United States Department of Agriculture (USDA) Food Safety Inspection Service (F SIS) lethality performance standards for ready-to-eat meat and poultry products (FSIS, 1999). Ready-to-eat products have been increasing in popularity, and marination is one means that is used to increase product flavor, quality, and value. Value-added processing, such as vacuum tumbling, is used to improve marinade uptake in whole-muscle meat products and can result in an increased number of Salmonella being transferred to the interior of the meat if the exterior of the meat or the marinade is contaminated (Warsow, 2003). Thus, marinated whole-muscle meat products might be at risk for Salmonella contamination both in the interior and on the exterior surfaces. Food processors producing marinated whole-muscle meat products are operating under the common assumption that the interiors of intact undamaged whole-muscle products are pathogen free (Elmossalami and Wasef, 1971). This belief is also reflected in federal regulations. Prior to 2005, F818 distinguished between intact beef cuts (e.g., steaks and roasts) and non-intact cuts when establishing policies regarding E. coli 0157:H7 contamination (F SIS, 2002). An intact piece of beef is defined as “a cut of whole muscle that has not been injected, mechanically tenderized, or reconstructed” (FSIS, 1999). The F SIS justified this distinction by stating, “. .. the interior of intact products remains essentially protected from pathogens migrating below the exterior. Consequently, customary cooking of intact products will destroy any E. coli 0157:H7” (FSIS, 2002). However, due to growing concern regarding the sterility of marinated whole-muscle meat products, FSIS issued a notice requiring all whole-muscle meat products “injected with marinade” to be treated as mechanically tenderized product (F SIS, 2005). Even though this notice states products “injected with marinade”, many inspectors are applying this rule to all marinated products (Booren, 2006). Recommendations of using known intervention techniques in these products is prudent. Also, recent research at Michigan State University has shown that the assumption of interior sterility may not be accurate (Warsow, 2003; Velasquez, 2006). These studies indicate that pathogens can indeed migrate into the interior of intact products, particularly if the product has been vacuum tumbled (Warsow, 2003). This interior contamination can be especially dangerous, because other tests have also shown that pathogens found inside whole-muscle products have a higher thermal resistance than those in ground products (Orta Ramirez et al., 2005; Tuntivanich et al., 2005; Velasquez et al., 2005; Velasquez, 2006). Thus, current cooking models may be ineffective at accurately predicting the time and temperature required to ensure adequate thermal processing. The limited knowledge and tools currently available makes it difficult for companies to perform reliable lethality predictions and process validations for whole- muscle products. No current model exists that predicts how pathogens can migrate into whole muscle meat products. A model would allow processors to understand better how far and fast Salmonella can contaminate the interior of whole-muscle meat products. Thus, it is important to develop a model that the industry can use to verify process effectiveness and ensure the microbial safety of whole-muscle products. The type of model influences the range and usefulness of the model. Empirical models, based entirely on experimental data, can give a very good representation of the process they represent. However, if any of the parameters in the process change, then the original empirical model cannot be presumed valid. Models based solely on theoretical principles provide a much broader range of use, but it can be difficult to describe complex materials and processes completely in theoretical terms. Therefore, the proposed model in this study was based on mechanistic principles, such as capillary flow, rather than solely statistical results, with the hope of giving it a broader range of applicability than an empirical model. The objective of this project was to develop a mechanistic mathematical model to describe the transport of Salmonella into intact whole-muscle meat products during marination, estimate model parameters from laboratory trials, and validate the model using independent data. 2. LITERATURE REVIEW 2.1 Overview This literature review is divided into nine sections that describe risks associated with Salmonella, the type of product at risk, the problem with bacterial transport into whole-muscle, and different types of models that could be used to represent this process. Section 2.2 describes Salmonella and the illness that it can cause to show why it is important to ensure that Salmonella is not found in cooked whole-muscle meat products. Sections 2.3 and 2.4 describe the processes of marination and vacuum tumbling to show how Salmonella may be transported into meat during processing. Section 2.5 describes surface penetration and bacterial transport of Salmonella and marinade into whole-muscle meat products. The remaining sections, 2.6 through 2.9, describe various models based on flow through a porous medium, capillary flow, pipe flow, and capsule flow. 2.2 Salmonella 2.2.1 Description Salmonella are enterobacteriaceae of the genus Salmonella. Salmonella are Gram-negative, non-sporeforming, rod shaped bacilli found in the intestinal tract of animals. The bacilli are straight rods that are approximately 0.5 pm wide and 2 pm long (Adams and Moss, 2000). They exist as a single, in pairs, or in short chains, and move by means of 1-5 uniformly distributed flagella. These flagella assist in the invasion of human cells (CDC, 2005). Salmonella is a facultatively anaerobic bacterium; it can survive and grow under conditions of reduced oxygen (Adams and Moss, 2000). Salmonella can survive and grow in temperature between 5 and 47 °C, with an optimum temperature for growth of 37 °C (Adams and Moss, 2000). The minimum water activity for growth of Salmonella is 0.93, but it can survive in foods with much lower water activities (Adams and Moss, 2000). The minimum pH for Salmonella growth is ~4.5 , with an optimum of 6.5 to 7.5 (Doyle et al., 1997). Salmonella is heat sensitive and can be killed through adequate pasteurization or cooking processes; therefore, it is critical that food processors know about Salmonella and the treatment required to eliminate it from contaminated foods. 2. 2.2 Salmonellosis Salmonellosis is the disease caused by ingesting Salmonella. Two thousand of the 2,500 Salmonella serotypes identified cause illness in humans (CDC, 2005). The serotypes S. Enteritidis and S. Typhimurium are responsible for half of all reported cases of salmonellosis (CDC, 2005). Because Salmonella is found in the intestinal tract of animals, the most common sources for contaminated food include meat, milk, poultry, and eggs. These contaminated foods cause illness in humans when they are consumed without proper cooking or if the food is cross-contaminated without further cooking (CDC, 2005). The typical infectious dose is as low as 1 to 10 cells, but varies depending on food source, susceptibility of individual, and the virulence of the serotype (Doyle et al., 1997). Symptoms of salmonellosis include fever, abdominal cramps, and diarrhea (sometimes bloody), which usually appear 12-72 h after infection (CDC, 2005). Everyone exposed to Salmonella is at risk of contracting salmonellosis; however, these symptoms are more severe in the elderly, young, and immune compromised (CDC, 2005). 2.3 Marination Marination is a process in which a solution is added to meat products, in order to improve water-holding capacity and thereby increase the juiciness, tenderness, and weight of the meat. A typical marinade is composed of water, salt, and phosphate. The effects of salt and phosphate vary depending on how much is added to the meat. High levels of salt (IO-15%) lower the water activity in the meat and act as a preservative to reduce the risk of microbial growth (Barbut, 2002). Low levels of salt have the reverse effect and increase the water holding capacity of meat (Barbut, 2002). High levels of phosphate can result in a decrease in the rate and depth of penetration compared to lower percentages (Xiong and Kupski, 1999a). The rate of phosphate transport into meat also depends on the type of phosphate, with larger phosphates diffusing more slowly than smaller phosphate molecules (Xiong and Kupski, 1999a). The combination of low levels of salt and phosphates creates a synergistic effect and results in decreased cooking loss and thereby greater yield than adding salt or phosphate alone (Froning and Sackett, 1985; Sheard and Tali, 2004). However, combining higher levels of salt (8%) and phosphate eliminates the benefits of phosphate (Xiong and Kupski, 1999a; Xiong and Kupski, 1999b). During marination, there is an initial outward flow of water and soluble proteins from the muscle to the marinade, due to the lower osmotic pressure of the marinade (Lawrie, 1985). However, as the salt diffuses into the meat and binds with the proteins, the osmotic pressure of the meat becomes less than that of the marinade, and the marinade begins to flow into the meat (Lawrie, 1985; Xiong and Kupski, 1999). The rate of diffusion depends on the strength of the marinade and the microstructure of the muscle tissue (Lawrie, 1985). It is clear that adding salt and phosphate can improve marinade uptake; however, no references were found that described the fundamental mechanism responsible for transporting plain water into whole-muscle meat products. 2.4 Effects of Vacuum and Tumbling Vacuum and tumbling are methods used by processors of marinated whole- muscle meat products to improve marinade uptake. Tumbling occurs in a rotating drum equipped with different ribbon designs on the sides (Barbut, 2002). Most commercial tumblers have vacuum capabilities, which help remove air bubbles from the exudates and assist in protein extraction (Barbut, 2002). The purpose of tumbling is to improve marinade distribution and protein extraction from whole and chunked muscle products (Barbut, 2002). The meat is subjected to a certain degree of agitation that assists in distributing the salt and myofibrillar proteins. Marinade absorption during tumbling is time dependent, because the marinade must overcome physical barriers in muscle in order to diffuse into muscle fibers and myofibril matrices (Xiong and Kupski, 1999). The effects of vacuum and tumbling were not considered in the current model, but if they were included, they would likely increase the rate of Salmonella uptake in the meat. 2.5 Surface Penetration and Bacteria Transport into Whole-Muscle Researchers have studied the effects of tenderization and marination treatments in which the surface of the whole muscle is penetrated by a needle, blade, or other mechanical device (Boyd et al., 1978; Johnston, 1978; Raccach and Henrickson, 1979). Boyd et al (1978) tested the sensory characteristics and microbial counts of mechanically tenderized beef and found that bacterial concentrations were higher in samples that had been tenderized four times compared to those tenderized once or twice or the untenderized control. Johnston (1978) summarized various aspects of a petition by the Community Nutrition Institute concerning the mechanical tenderization and packing of meat. The petition claimed that mechanical tenderization increases the microbial counts in meat by forcing bacteria, including Salmonella, into the interior of meat. Johnston (1979) also gave examples of outbreaks that occurred because of severe undercooking of meat that had surface Salmonella injected into the interior of the meat. Raccach and Henrickson (1979) showed that Salmonella and other bacteria can contaminate the interior of beef rounds and ribeyes during mechanical tenderization, but can be greatly reduced through proper sanitation of equipment. This research has shown that pathogens can migrate to the center of whole-muscle meat products if the surface of the meat is broken (Boyd et al., 1978; Johnston, 1979; Raccach and Henrickson, 1979). A few previous studies have measured the effects of various bacteria and meat characteristics during unidirectional migration of bacteria into surface-inoculated whole muscle meat under atmospheric conditions (Gill and Penney, 1977; Gill and Penney, 1982; Gupta et al., 1983; Maxcy, 1981; Sikes and Maxcy, 1980; Thomas et al., 1987). These studies have shown that the transport of pathogens into meat is affected by proteolytic activity, bacteria motility, water availability, and fiber orientation. The proteolytic ability of bacteria, (the ability to break down protein molecules), has been shown to increase the depth of bacterial penetration (Gill and Penney, 1977; Gill and Penney, 1982; Gupta et al., 1983; Thomas et al., 1987). Proteolysis is presumed to speed the process of penetration by breaking down the connective tissue between muscle fibers (Gill and Penney, 1977; Thomas et al., 1987). There have been some conflicting studies as to the effect of bacteria motility. Gill and Penny ( 1977) concluded that both motile and non-motile proteolytic bacteria could penetrate the surface of the meat. However, Thomas et al. (1987) found that motile bacterial strains were able to penetrate whole-muscle while non-motile strains remained on the muscle surface, regardless of the bacteria’s ability to produce proteolytic enzymes. The water-holding capacity of meat proteins also appears to have a significant effect on bacterial penetration into meat (Maxcy, 1981; Sikes and Maxcy, 1980; Thomas et al., 1987). Some researchers showed that freezing and thawing meat can lead to increased bacterial penetration (Maxcy, 1981; Sikes and Maxcy, 1980). They suggested that the loss of water molecules during freezing and thawing and the collapsed state of the muscle proteins result in the creation of larger pores for bacteria to move through (Maxcy, 1981; Sikes and Maxcy, 1980). Thomas et al. (1987) showed that high water contents increased the rates of penetration, presumably by increasing the inter-fiber distance in muscle and thereby decreasing the resistance to microbial movement within the tissue. The rate of bacterial invasion into intact whole-muscle pork was greater in samples where the inoculum pathway was parallel to the fiber orientation than in samples with the inoculum perpendicular to the fiber orientation (Maxcy, 1981; Sikes and Maxcy, 1980) Recent unidirectional marination trials with whole-muscle turkey breasts at Michigan State University indicated that Salmonella counts decreased with distance below the contaminated surface, increased with application of a vacuum, and increased with time (Warsow, 2003). Warsow’s Salmonella log counts from unidirectional marination tests were used to estimate parameters for the proposed model in this study; his procedure and results are given in sections 3.10.1 and 4.10, respectively. Multidirectional tests were also conducted with whole—muscle pork and turkey exposed to Salmonella-inoculated marinade, which entered the product from all directions. These experiments resulted in the same general conclusions as the unidirectional tests (Tuntivanich et al., 2006; Velasquez, 2006; Warsow, 2003). If Salmonella enters a whole-muscle product, thermal inactivation tests have shown that Salmonella exhibits greater heat resistance than in ground products (Orta- Ramirez et al., 2005; Tuntivanich et al., 2005 ; Velasquez et al., 2005; Velasquez, 2006). Those studies involved immersing core samples of irradiated whole-muscle meat in Salmonella-inoculated marinade for 20 min. The percent uptake was determined for the whole-muscle samples, so that the same amount of inoculated marinade could be mixed into the ground samples. There was no difference between the initial log counts of the whole and ground muscle samples. However, the thermal inactivation rate constants in ground muscle were double those in whole muscle at a given temperature. The 10 composition, bacterial load, and thermal history were identical among sample types; therefore, the difference in Salmonella thermal resistance was attributed to the different physical state of meat components in the sample. Thus, it was concluded that the ground meat thermal inactivation studies used to set performance standards for meat and poultry products may be insufficient for whole-muscle products (Orta—Ramirez et al., 2005; Tuntivanich et al., 2005; Velasquez et al., 2005; Velasquez, 2006). 2.6 Flow through a Fibrous Porous Medium 2.6.] Fluid Flow The process of marinade absorption into meat can be viewed as the flow of a liquid through a fibrous material. Several researchers have modeled various aspects of liquid flow through a fibrous medium (Davis and James, 1996; Dhotkar et al., 1999; Kolodziej et al., 1998; Papathanasiou, 2001). Most of these studies focused on modeling matrix properties, such as permeability (Davis and James, 1996; Kolodziej et al., 1998; Papathanasiou, 2001). Dhotkar et al. (1999) developed friction, pressure, and total drag coefficient equations for non-Newtonian fluid flow through a fibrous medium. None of these articles gives any details as to the driving force responsible for the movement of fluid. Zhong et al. in 2005 examined gravity driven flow of a fluid through a very porous fibrous medium. However, all the liquid can pass all the way through very porous media (meaning no capillary potential); therefore, this case would not accurately represent mass transfer through muscle tissue. 11 2. 6.2 Particle Flow Nilsson and Stenstrom (1994) investigated capillary gas diffusion of water vapor molecules through sheets of a fibrous porous medium. Multiple researchers have modeled the deposition of aerosol particles on fiber filters (Kirsh, 2004; Lebedev et al., 2002). However, these models are based on gas flow and very small particles; therefore, they do not provide the best representation of the current application. The rate of particle migration through granular filters also has been modeled under varying hydraulic loads (Indraratna and Vafai, 1997; Locke et al., 2001). Mauret and Renaud (1996) compared capillary and particulate representation of the drag force on a cylinder in a fiber bed. Li and Park (2000) modeled the flow of colloidal particles in a liquid through fibrous and granular material by convection and Brownian diffusion. The particles described in that paper were small colloidal particles that were usually a few orders of magnitude smaller than the filter. Koska et al. (1996) modeled osmotically driven flow of particles through a hollow fiber bioreactor. A hollow fiber bioreactor resembles a tissue-capillary system; however, the equations developed rely heavily on the specific dimensions of the bioreactor, which are unknown for the current application. A common problem with all of the articles on particle flow through a fibrous medium is that the particles are very small compared to the size of the pore space. In contrast, Salmonella particles are relatively large, on the same order of magnitude as the intercellular pore space in whole-muscle meat products. These models all represent a similar concept of the flow of particles through a fibrous medium; however, none of them combined the type of fluid, size of particle, and driving force needed for the present application. 12 2.7 Capillary Flow Models Capillary flow was assumed to be the major driving force responsible for drawing bacteria and marinade into whole-muscle products. There are limited models that describe capillary driven flow through a fibrous or porous medium. However, other models based on capillary flow exist that do not involve movement through a fibrous material. Fink and Muller (2000) compared the penetration depth of different viscous liquids in silicone rubber. The liquids used in the experiments were viscous solutions containing the corrosive alkali lithium hydroxide (LiOH) and therefore do not provide a good representation of the marinade used in the current model. Some published models have described the flow of red blood cells in capillary networks (Bruinsma, 1996; Schmid-Schonbein et al., 1980). Bruinsma (1996) focused on the rheology and shape transition of red blood cells under capillary flow, showing how particles move through a complex capillary; however, they did not model the velocity or concentration of the particles. Schmid-Schonbein et al. (1980) modeled the distribution of red blood cells in capillaries; however, their model is complex and does not yield a set of equations that can easily be applied to a different situation. 2.8 Pipe Flow Capillaries in general can be described as very small tubes; therefore, a very simplified model could describe Salmonella movement in meat as particle flow through bundles of tiny capillary tubes. Jean and Peddieson (2001) modeled the velocity, volume fraction distribution, and particle segregation patterns due to buoyancy of particulate l3 suspensions in vertical pipes. Unfortunately, this was for the steady-state flow of very small particles. Other researchers have studied the flow of food particles through a vertical pipe as it relates to aseptic processing (Lareo and Fryer, 1998; McCarthy et al., 1997; Sastry and Zuritz, 1987). However, these were all for liquid particle mixtures where the particle diameter was significantly smaller than the diameter of the pipe. Sastry and Zuritz (1987) classified the various types of solid-liquid flow in a pipe as homogeneous flow, heterogeneous flow, intermediate flow, saltation flow, and capsule flow (Figure 2.1). 14 a. . r . _ .- 1}. I '7 '. a. . I v .- ’ I.-.'. - '3'. ' .3 ‘5'," ’ I. ' .‘ .32 ' . .f - o ' .- 5‘. ' :z.‘ ...._fi _ ._ _ .-'.-" _'. . _ '2. . - t-o\ .-’ at“ " .‘-’ ..'-' _' \-~ - '. _c,.- ,. '4' .- ...'\'_\ .u ' ‘ ‘ .”\ ;.: ' 0'. . '5 ' .' 0 3‘ 0' 0., :3 27- " n. ' 0'. .' . ' .'. . ~‘-' '--3. -.-... -'.~-°'.'. Q n I .' .. ..., .u l‘, ., 5”,", \ u . . ..\ . a. ‘] _—+ ' ' "1“I.’ - , .. a ,\ .."’: \ - " f 0,: -' -'.. .FI._"JO': \.'. . ' '0 u a: '2'..." n " . -_ 'du'-”\} .I.. . I . ‘e..’: ‘J . I u .. - ’.. - .1 g I’ f“ \u‘ u. I". 0'." ,4 _ _‘ . ‘ .-‘ . ..-, v ... ’9 '. I" ~ . ‘ n; ..‘.: ‘ ) '3’ .- ..'.' 2 . 0.. ‘ :3". r" l. " " '. - ,'.\.',-.‘.\‘, :9 '~ ‘ . -' ' I'i/ZI ' 4: 'n... ‘ ".~' -\I ' L A I . . O . 1 . Q . . C 0 0 O O O a ' . . a . b __’ ' I 1' I a a I . a i ' l ' i o _a a I . .a I . a . . .0 a I . I I O I I O ' I I 0 1"0 1"0 I"O fl'o - . l . l . ', . I , . I . - . I . . .. . - p -‘I O I ’ ' 5.9 a ' . 3.? a. ' ". . .' 1 . '3 ‘ . :g 'u . ' D .. -. P . . . ’ .. . . . . 2" . .' . " o -= ' . '3' a . o ' ID 'i .‘ ..‘- e e e . I .- . 1'... ‘ z; ‘1'- .‘ ‘5". ‘ .q i"-- . .411"- ._ .'g I F-' .g .I l' . .1 D“ G A i 9‘ e—i Figure 2.1: Types of solid-liquid flow: (a) homogeneous flow, (b) heterogeneous flow, (c) intermediate flow, ((1) saltation flow, and (e) capsule flow. This figure was replicated from Sastry and Zuritz’s (1987) figure 3. Capsule flow involves the movement of an object through a pipe of roughly the same internal diameter. Therefore, this form of flow may be a reasonable model for the movement of Salmonella through muscle tissue. 2.9 Capsule Flow Models Capsule flow has been studied the most as it relates to capsule pipelining. Pipelining is a method of transporting material by enclosing it in a capsule and then 15 moving it through a pipe via the flow of fluid, usually water or air. In the 1960’s and 1970’s, the Research Council of Alberta (ARC) conducted theoretical and experimental research on capsule pipelining and published a series of 18 articles on their findings; however, only three of these articles included information on the velocity of a cylindrical capsule moving though a pipe (Charles, 1963; Ellis, 1964; Hodgson and Charles, 1963). The first paper in the series illustrated the various flow patterns of oil capsules moving in a horizontal pipe under low and high water velocities. Testing showed that the velocities of the oil drops exceeded the overall velocities, because the oil drops are located in the section of pipe where the linear velocity is significantly greater than the average velocity of the overall pipe flow (Hodgson and Charles, 1963). Unfortunately, they did not quantify or model the velocity of the capsules. Charles (1963) predicted the steady-state capsule velocity for a long cylindrical capsule moving through the center of a horizontal pipe under laminar and turbulent flow conditions. The proposed equation for capsule velocity under steady state laminar flow was: V =2V' (14(2) [2.1] C av where: V’av = hypothetical average velocity (m/s) k = capsule to pipe diameter ratio, d/D This equation could be used for the current application; however, an equation representing flow in a vertical pipe, rather than a horizontal pipe, was used instead. 16 Ellis (1964) compared Charles’ theoretical model to experimental velocity measurements for cylindrical and spherical capsules in a horizontal pipeline. The flow of single capsules of different sizes, shapes, and densities was tested in various liquids to determine the effects of length and end shape of the cylindrical capsules. Dimensional analysis showed that the velocity ratio was a function of four independent variables: average water velocity, diameter ratio, capsule length/ diameter ratio, and capsule end shape. Latto and Chow (1982) modeled the steady-state velocity of a cylindrical capsule in a vertical pipe. Experiments were conducted using a 7.6 cm inside diameter vertical steel pipe and aluminum and nylon cylindrical capsules of 0.49, 0.65, and 0.82 diameter ratio. The velocity of the water ranged from 0.3 to 5.5 m/s. They developed a semi- empirical equation for capsule velocity by first plotting the experimental results for capsule velocity against the average water velocity in a test section minus the suspension (threshold) velocity. The equation of best fit for the data was: V. = [(3'le (V... —V.) [2.21 where: Vc = capsule velocity k = capsule to pipe diameter ratio, d/D L = capsule length (m) d = capsule diameter (m) Vav = average water velocity (m's'l) v0 = threshold velocity (m-s") 17 An equation for threshold velocity was determined using dimensional analysis. 0.371 ] [2.3] Vo : 281309 *1)(1-k2)(§ where: g = acceleration due to gravity (9.806 my?) D = pipe diameter (m) S = capsule reality density Substituting equation 2.3 into equation 2.2 yielded the semi-empirical equation for capsule velocity through a vertical pipe. V, = ( 2017816)“ V.v — \/2gD(S—l(§-)(l—k2):l [2.4] Because this equation is for a small particle to pipe ratio in a vertical pipe, it offers a reasonable representation of the transport of Salmonella through the meat. Therefore, this equation is used in section 3.6 to calculate the velocity of a Salmonella bacterium moving through meat. 2.10 Summary 0 Salmonella is a harmful bacterium that can cause serious illness if contaminated meat is not properly processed (CDC, 2005). 0 Capillary diffusion was assumed to be the driving force transporting marinade into whole-muscle meat products. 18 Research has shown that pathogens can migrate to the center of the meat if the surface of the meat had been damaged by blades, needles, or known process techniques (Boyd et al., 1978; Johnston, 1979; Raccach and Henrickson, 1979). Unidirectional (Warsow, 2003) and multidirectional (Velasquez, 2006; Warsow, 2003) marination trials at Michigan State University indicated that Salmonella can contaminate the interior of whole-muscle meat products regardless of whether the outside had been damaged by blades, needles, or known process techniques. Thermal inactivation tests showed that Salmonella exhibits greater heat resistance in whole-muscle as compared to ground products (Orta-Ramirez et al., 2005; Tuntivanich et al., 2005; Velasquez et al., 2005; Velasquez, 2006) The equation by Latto and Chow (1982) for capsule flow through a vertical pipe represents a reasonable model for the velocity of Salmonella as it moves through or into a whole-muscle product. 19 3. METHODS AND MATERIALS 3.1 Overview The model proposed in this study represents one—dimensional transport of Salmonella into whole-muscle meat products, assuming capillary diffusion of marinade through small uniform tubes, and capsule-like transport of the Salmonella cells along with the marinade. The transport of Salmonella into whole-muscle meat during marination is a complex process; therefore, in developing s simplified one-dimensional model, a number of assumptions were needed. These assumptions were: 1. Capillary diffusion is the only driving force transporting marinade into the meat (Gravitational force was calculated to be ~ 1.2 % of capillary force for this case). The meat is composed of a bundle of capillaries that are uniform cylindrical tubes of the same size (Figure 3.1). All of the marinade transported into the meat is immediately absorbed into the cells of the meat, causing them to expand, thereby reducing intercellular space. When the intercellular space decreases below the size of a Salmonella cell, the migration of Salmonella within the meat stops. The physical properties of the marinade are equal to those of water. The density of Salmonella is equal to the density of water. All Salmonella are non-motile inert capsules of the same size. There are no physicochemical effects from salts and phosphates in the marinade. 20 Figure 3.1: Conceptual image for the structure of meat as a bundle of small capillary tubes. The overall solution consisted of eight steps, which sequentially estimated and/or solved for the following: 1. Physical and transport properties 2. Moisture concentration 3. Effective gap radius 4. Darcy 's velocity 5. True marinade velocity 6. Salmonella velocity 7. Salmonella location profile 8. Salmonella concentration profile Figure 3.2 contains a flow chart that describes the steps and conceptual framework of the model. The model was implemented completely in Microsofi Excel (Excel 2003, Microsoft Corp., Richmond, WA), using several user-defined functions and Palisade’s RISKOptimizer (RISKOptimizer trial version, Palisade Corp., Ithica, NY). Once the model was formulated, two experimental data sets (Salmonella concentration profiles) were used to estimate two model parameters and to validate the solution. 21 C START A Calculate initial diffusivitv (Eq. 3.15) INPUTS $ p: Y, pmarinade, 15, ADM, C0, Pmeat, Calculate At based on the parameters of the central Felt, 0, Agap ’ 0, d5, difference solution (Eq. 3.17) LS, S, g, AX H t = 0 H N Y Recalculate D given the new conditions (Eq. 3.15) END T Calculate Dry Basis Concentration at t based on the central difference solution of l-D capillary diffusion (Eq. 3.16) I ” 7 Convert to Wet Basis Concentration at t "‘ i I Calculate Effective Gap Radius at t based on the expansion of cells with marinade uptake (Eq. 3.8) O " --- I ’l I —-:=- 7 \ ’ Calculate Darcv’s Velocitv (Eq. 3.18) k ‘ —— 7 ‘\ Calculate Marinade Velocity in intercellular space (Ea. 3.19) \ ‘ --- V Calculate Salmonella Velocity based on capsule flow through intercellular space (Eq. 3.20) T Calculate Salmonella Location based on the previous Salmonella Location, the average Salmonella Velocity, and the change in time (Eq. 3.22) 7 Calculate Salmonella Concentration by treating the Salmonella entering the meat at each time step as separate groups and then adding up the number of Salmonella at a given location and time. (Eq. 3.23) 22 x=x+l Figure 3.2: Steps and conceptual framework of the marination/migration model. 3.2 Physical and Transport Properties Darcy ’3 Law describes the overall flow of a liquid through a porous medium: n" =Kfi [3.1] as where: nv = volumetric flux or Darcy’s velocity (m3 ~s'1-m'2) K = hydraulic conductivity (m-s'l) h = water potential (m) s = distance along flow (m) Written this way, Darcy ’3 Law is a generic equation for liquid flow through any type of porous material. Therefore, equation 3.1 was modified to better represent capillary flow through a bundle of small tubes. This was done in part by using the following equation for volumetric flow rate of Poiseuille’s flow through a tube of uniform radius (Datta, 2002): 4 7r-r. ~p'g Q, =_ _l__ (fll) [3.2] 1 8p 65 where: Qi = volumetric flow rate per pore (m3-s") fl = radius of the tube (m) p = density of (kg-m") g = acceleration due to gravity (9.806 m-s'z) 23 l4 = viscosity of the fluid (N 'S'm'z) The Poiseuille’s flow equation is for a single straight pipe; therefore, equation 3.2 was altered to take into account a distribution of pore sizes (Datta, 2002), such that: A3. = —L——' [3.3] where: ABi = volume fraction of pores with radius ri co; = number of pores in the ith pore size class r; = radius of pores in the ith pore size class (m) A = total cross-sectional area (m2) In addition, a tortuosity factor (I) was introduced to account for a non-straight travel path of the fluid; r is the ratio of the roundabout path along the pore to the straight flow path (Datta, 2002). Therefore, the volumetric flux, or Darcy’s velocity was represented by: n"=8—_'——"#g 2 Mr 3(2—3] [3.4] 2 Given the stated assumption of uniform pore size, 2 A'Biri simplifies to r2 , so that: efl,t v pa 2 6h] __. . . _ 3.5 n 8-p-r refit (as [ ] Pressure is related to head as P = pgh; therefore, terms in equation 3.4 can be combined to produce the following equation: 24 r2 n": ——eff” (31:) [3.6] 8-,u-r 6s Thus, the conductivity of the meat is represented by the following equation: 2 _ r 617,1 K— 8m [3.7] where: u = marinade viscosity (N -s-m'2) r = tortuosity of the meat rem t = effective radius of the pore space at time t, representing the intercellular gap (In) The effective gap radius of the pore space at time t was calculated based on the assumption that the effective gap radius is proportional to the area of the gap. _ (reflfl llAgapJ) 3 8 reflfit _ A [ ' ] gap,0 where: refl,0 = lnltlal effective gap radlus (m) Agap,0 = inltlal percent area of the gap Agap, t = percent area of the gap at tlme t The initial reff value was approximated from Figure 3.3 by measuring the area between cells (i.e., the thickness of the gap) at various locations. The measured 25 thicknesses were averaged and divided by two to get an initial value for the effective gap radius. Figure 3.3: Micrograph of non-marinated irradiated turkey breast (Photo courtesy of V. Tuntivanich, Michigan State University). The initial percent area of the gap (Asap, 0) was estimated using MATLAB’s Image Processing Toolbox (MatLab Image Processing Toolbox, The Mathworks, Natick, MA ). A thresholding value was used to determine the cutoff point between light and dark pixels. The meat’s pore space was represented by white pixels (pixels with a value below the threshold), while the meat’s cellular space was represented by the pixels above the threshold value (Figure 3.4). An optimum thresholding value (145) was 26 automatically calculated in MATLAB using the Otsu method for thesholding. The number of white pixels was divided by the total number of pixels in the image to yield the percentage of pore space. Figure 3.4: MATLAB’s threshold image of Figure 3.3. The percentage of pore space decreases as the moisture content of the meat increases and was calculated using: A A [3.9] Agaptfl‘ 1 C , — wb,t where: 27 ADM = percent area of dry matter in a piece of meat CW = wet basis moisture concentration at time t The percent area of dry matter in the meat was calculated from the initial wet basis moisture concentration and the initial percent area of the gap. The amount of dry matter in meat does not change with marinade uptake and, therefore, does not have to be recalculated at each time step. ADM =(i_aw,0)[i-igap0] a... where: C = initial wet basis moisture concentration wb,0 Agap,0 = lnltlal percent area of the gap The capillary-based Darcy '3 flow equation 3.6 was converted to a capillary diffusion based flow using the definition of capillary diffusivity (Chow et al., 1988): _ d‘I’ where: K = capillary conductivity of meat (m-s") ‘1’ = capillary potential (N °m'2) Cdb = dry basis moisture concentration 28 The capillary conductivity used in this equation was calculated using equation 3.7. Capillary potential was/expressed as (Datta, 2002): q! 2 2'7 [3.12] refl,t where: y = surface tension of the liquid (N 111'!) r = effective gap radius at time t (m) eff,t Based on this equation, [fl] from equation 3.11 can be rewritten as follows: db 6C db 6C db r [—‘N’ ]=——efl’t [3.13] The derivative of capillary pressure with respect to dry basis moisture content was solved using the chain rule. The complete derivation is included in Appendix 7.1, yielding: a[—27 r 2. -A -A efl : 7 gap,0 DM [3.14] a(M ) refl,O(MC,t -(1—ADM))2 Substituting this equation and equation 3.7 into equation 3.11 results in the completed equation for the diffusivity of the meat at any given time step: 2 2-7-A A D- refl,t gap,0. DM .. [3.15] 8-u-r refl,O(MCt-(l—ADM»2 29 3.3 Moisture Concentration Given D, the central difference solution for l-D unsteady-state diffusion (Merva, 1995) can be applied as follows: CW“) = A'C(i—1,t)+(1_2"l)c(i,t)”'C(i+1,t) [3.16] where lambda (A) is the following time and distance ratio: _ DAt ,1— Ax2 [3.17] and: At = time step (5) Ax = solution layer thickness (m) For solution stability, the time step and layer thickness were selected based on the rule that (Merva, 1995): 0<11=D—A2t30.5 Ax Following this rule, equation 3.17 was used to calculate At from the initial diffusivity and a reasonable guess for Ax, and setting the equation equal to 0.5. The value of Ax was adjusted until a reasonable time step value was found. Diffusivity of the meat decreases as the moisture concentration of the meat increases, because, as marinade diffuses into the muscle, the cells swell, and the percent area of the gap decreases along with the effective gap radius of the pores. The effective gap radius used in equation 3.15 is the effective gap radius at the previous time step. 30 Because it is not a fixed value, it must be recalculated at every time step. In order to do this, a user function was created (see appendix A.2). This user function calculates a new it for each position at each time step and enters it into equation 3.16, returning the dry basis moisture concentration for the given location and time. The solution for the moisture concentration profile had the following boundary conditions: 1. At the initial time step (t = 0), moisture concentration at all locations was set to the initial moisture concentration of the meat (Co). 2. At every other time step (t > 0) the moisture concentration in the first layer C(x = 0) was set to a saturation value consistent with the results of the moisture concentration tests described in section 3.11.1. 3.4 Effective Gap Radius The effective gap radius was calculated using equations 3.8 and 3.9. 3.5 Darcy’s Velocity Darcy ’s velocity of the marinade is the volumetric flow rate of the marinade, relative to the cross-sectional area of the meat. Darcy ’s velocity of the marinade was calculated using Fick’s Law (Datta, 2002): AC n" = —D.[—A%] [3.18] where: nv = Darcy 'S velocity of the marinade (mB'SJ'mQ) D = capillary diffusivity (mZ-s'l) 31 ACdb = change in dry basis moisture concentration Ax = layer thickness (m) 3.6 Marinade Velocity Darcy 's velocity does not reflect the true average velocity of the marinade within the pores, because the cross-sectional area of the pores (i.e., area available for flow) is smaller than the total cross-sectional area of the entire piece of meat. Thus, the true marinade velocity as it is drawn into the meat can be estimated by dividing Darcy ’s velocity by the porosity of the meat. In this case, porosity is defined as the fraction of cross-sectional area that is intercellular space. ( \ nv t x v . = , [3.19] d ,t, marina e x — A D M K 1 — CWOJ ) where: ”V t = Darcy ’s velocity at the given location and time (m3-s'l'm'2) x9 ADM = percent area of dry matter CW b t = wet basis moisture concentration at time t 3.7 Salmonella Velocity Velocity of a single Salmonella bacterium was calculated using Latto and Chow’s (1982) equation for a cylindrical capsule in water moving through a vertical pipe: 32 Vc = [#11128 ][(_§_]0-128 Vav — ngms - 1(30 — 19)] [3.20] where: Vc = capsule velocity (m-s") k = capsule to pipe diameter ratio, d/D L = capsule length (m) d = capsule diameter (111) Vav = average water velocity (m-s") Vo = threshold velocity (m'S'l) g = acceleration due to gravity (9.806 m-s'z) D = pipe diameter (m) S = capsule relative density However, equation 3.20 is for a smooth cylindrical capsule flowing through a larger smooth pipe; therefore, the capsule never slows down or stops because of reducing pipe diameter. A new term (dfl/I'eff, t) and two model parameters were added to equation 3.20 to take into account the flagella that could cause the Salmonella to slow down and stop in a manner that would occur with an idealized, smooth capsule, so that equation 3.20 was modified to become: 0.128 2-r " yea-[galls] V..—l2gD «a: DJ < Figure 3.5: Schematic of Salmonella in a vertical pipe. The current model assumes a capsule (Salmonella) relative density of one; therefore, part of equation 3.21 reduces to zero, resulting in the following simplified version of the equation: 34 n 0.128 2-r 1 L my V =B-( ][[—j V ]— [3.22] An optimization procedure (RISKOptimizer trial version, Palisade Corp., Ithica, NY) was used to find the best-fit estimate of B and 11 based on minimization of the sum of squared errors between the model and Warsow’s (2003) experimental data for Salmonella concentration profile. 3.8 Salmonella Location A wave profile of the location of Salmonella in the meat was created, where a new group (or wave) of Salmonella enters the meat at each time step, flowing along with marinade. The location of each existing wave is recalculated at each time step, based on the new velocity at the current location. Xt =Xt_ +V At [3.22] 1 c... where: X, = location of the Salmonella at time t XH = location of the Salmonella at the previous time step Vc x t = Salmonella velocity at the given location and time At = time step The algorithm by which VCM was determined within the model solution can be found in Appendix Al 1. 35 3.9 Salmonella Concentration Profile The number of cells entering the meat with each new wave was determined based on the velocity and concentration of the marinade. N=nv-C oAt-i [3.23] s Ax where: N = number of Salmonella cells entering the meat (cells/cm3) nv = Darcy ’s velocity of the marinade (m3's'l-m'2) CS = Salmonella concentration of the marinade (cells/ml) At = time step (8) Ax = layer thickness (m) A Salmonella concentration profile was created by summing the number of Salmonella in each layer at each time step. 3.10 Model Inputs 3.] 0.1 Meat Properties The initial percent area of muscle and pore spaces estimated from microscopy image (Figure 3.3) were: Areamuscle,0 = 0.87 Area = 0.13 gap,0 The percent area dry matter was calculated using equation 3.10 36 Area DM = 0.24 The tortuosity factor (I) introduced in equation 3.4 is an unknown variable; however, it was assumed to be three, because the pore space of the meat is not perfectly straight and therefore I must be greater than one. The density of the meat were assumed to be: _ kg 3.10.2 Marinade Properties The viscosity ([1), surface tension (y), and density (p) of the marinade was assumed equal to that of pure water at 4 °C: #:1519‘3M m2 N = .0 4— y 0 75 m p=1005—’5-g3— m These values are input values in the model and can be changed easily should more exact values for the marinade be found. 3.10.3 Salmonella Properties Adams and Moss (2000) reported the length and diameter of Salmonella as: Diameter of Salmonella = 5.E-07 111 Length of Salmonella = 2.E-06 m The relative density of Salmonella is approximately the same as pure water; therefore, a relative density of 1.0 was used. 37 3.10.4 Calculated Initial Values The initial capillary diffusivity calculated using equation 3.15 was: D = 1557151305 mz/s The time step and the thickness of the layers was calculated using equation 3.17: At = 0. ls Ax = 0.005m 3.1 1 Validation A moisture concentration test and a Salmonella log count test were conducted to validate the proposed model. These tests were conducted in a controlled temperature room at 4 °C. 3.11.1 Moisture content The marination procedure used for the moisture concentration trials was the same as the one used by Warsow (2003) for his unidirectional marination study. For the moisture concentration test, irradiated (10 kGy) whole-muscle, boneless, skinless turkey breast was used. The turkey breast was frozen and held in vacuum- packed bags at -15 ° C for ~2 years and then thawed for 48 h at 4 ° C. A 10x10x5 cm block was cut from a turkey breast and placed out side down in a 15 cm diameter Petri dish containing a round perforated stainless steel plate and 40 ml of sterile marinade. The marinade reached approximately 5 m up the side of the turkey breast. The marinade was composed of 95 % water (filtered and deionized), 3.3 % NaCl, and 1.7 % mixed phosphate solution. In order to limit the airflow around the marinating meat, the sample was sealed in a laboratory-scale tumbler during marination. After 20 min of marinating, 38 the sample was removed from the marinade and placed on a new 15 cm diameter Petri dish. Two different methods of removing samples from the turkey block, described below, were tested to determine the method with the smallest degree of error in determining moisture content: 1. Four one-inch diameter cores were removed from the center of the turkey block and sliced into three pieces. The meat segments were cut into smaller pieces and placed into aluminum weighing dishes. 2. The block of meat was sliced using a dry knife into three layers, and each layer was ground separately in a small Black and Decker chopper. Four 10-15 g samples from each layer were placed into aluminum weighing dishes. Before the meat was added to the dishes, the dishes were heated in a drying oven (Yamato DX400, Yamato Scientific America Inc., Santa Clara, CA) for 30 min at 120 °C to remove any moisture from the dish, placed in a desiccator to cool, and then weighed. The raw meat in the dish was weighed before being dried overnight (16 - 18 h) at 100 °C. After drying, the samples were allowed to cool in a desiccator before the final weight was taken. 3.11.2 Salmonella concentration The procedure used for the log count test was the same as that used by Warsow (2003) for his unidirectional Salmonella log count tests. The inoculum was a Salmonella cocktail that consisted of eight strains of Salmonella (S. Thompson FSIS 120, S. Enteriditis H3527 and H3502, S. Typhimurium DT 104 H3380, S. Hadar MF60404, S. Copenhagen 8457, S. Montevideo FSIS 051, and S. Heildelberg FSO38B61), previously 39 acquired from Dr. V.K. Juneja (Agricultural Research Service, Eastern Regional Research Center, USDA-ARS, Philadelphia, Penn, USA). The individual strains were stored in tryptic soy broth (TSB) containing 10% glycerol in a -80 °C freezer. The cultures were propagated by two consecutive daily transfers of one loopful of culture to 9 ml of fresh TSB in a 20 ml culture tube. The cultures were incubated 18-24 h at 37 °C between each transfer. On the day of the experiment, 9 ml of each of the eight serovars grown separately in TSB were combined and centrifuged at 6,000 x g for 20 min at 4 °C. The supernatant was poured off, and the cell pellet was resuspended in approximately 520 ml of sterile marinade to give a final Salmonella concentration of ~109 CFU/ml. The Salmonella population in the marinade was confirmed by serial dilution in 0.1% peptone water with duplicate plating on PetrifilmTM Aerobic Count Plates (3M Corp., St. Paul, Minn., U.S.A.). Four cores were removed from the block using a 1.23 cm inside diameter Warner- Bratzler hand coring device and placed in a disposable Petri dish containing a piece of sterile cotton gauze. The cored sample was cut into five 1 cm segments, starting from the end furtherest from the marinade, and placed in individual 4 oz Whirl-pakTM bags. Thereafter, 4 ml of 0.1 % peptone water was added to each bag to achieve the highest possible concentration while still adding sufficient peptone water for plating. The weight of each sample was taken before and after adding peptone. The samples were mechanically macerated for 180 s before being plated on PetrifilmTM Aerobic Count Plates. The plates were incubated for 48 h at 37 °C before enumeration. 40 3.12 Limitations Multiple assumptions were made about the structure of meat and its pore space in order to deve10p a sufficiently simple model, which resulted in several limitations. This model relies solely on capillary potential as the major driving force transporting Salmonella into meat, neglecting other possible driving forces contributing to marinade uptake, such as osmotic potential due to salt and phosphates in the marinade. This model calculated the initial effective gap radius and the initial area of the gap from only one turkey microscopy image. In order to get more reliable values for these variables, the initial effective gap radius and the initial area of the gap, a minimum of three microscopy images should be analyzed and averaged. This model assumes that the pore space in the meat was a bundle of uniform straight cylindrical capillaries, even though the area between the cells is actually irregular, interconnected interstices. This model uses the Latto and Chow (1982) equation for Salmonella velocity; however, their equation was based on experimental data that is outside the range of the capsule to pipe diameter ratios of Salmonella moving through a capillary. Latto and Chow’s equation was for capsule to pipe diameter ratios ranging from 0.49 to 0.82, while this model had capsule to pipe diameters ranging from 0.16 to 0.19. 41 4. RESULTS 4.1 Overview This chapter is divided into three main sections. The first section (4.2) describes the actual outputs of the model. The second section (4.3) describes the sensitivity of the model to various critical input parameters. The third section (4.4) describes the attempted validation of the model and the problems associated with the model. 4.2 Model Outputs The model outputs for moisture concentration, effective gap radius, Darcy ’s velocity, marinade velocity, Salmonella velocity, Salmonella location, and Salmonella concentration were based on a set of standard input variables values (Table 4.1). 42 Table 4.1: Input variable values used in the evaluation of the model. Starred ('1') variables are analyzed in Section 4.3. Variables Value Units Meat Properties * feff, o 3 . 12513-06 M Cwb, o 0.720 - * Cwb’ sat 0.726 "' Agap’ 0 0.13 - * r 3 - p] 1 120 kg/m3 ADM 0.2436 - Marinade Properties 11 1.5191303 N-s/m2 y 7.54E-02 N/m 9 1005 kg/m3 Salmonella Properties (18 5.E-O7 M LS 2.E-06 M s 1 - * df l.E-06 M Empirical Parameters B 0.216 - 11 0.770 - Misc. Ax 0.005 M At 1.03 S 4. 2.1 Moisture Concentration The moisture concentration of the meat was calculated using equation 3.15. As expected, the moisture concentration profile increased with time and decreased as the distance from the marinade exposed surface increased (Figure 4.1). Given the conditions in Table 4.1, the moisture concentration approached equilibrium (i 0.1%) at ~4 min. 43 0.727 - 0.726 2408 0.725 - 0.724 ~ 0.723 - 0.722 . 0.721 ~ 55 0.720 . 05 0.719 1 i i i 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) 120$ 605 305 Wet Basis Moisture Concentration Figure 4.1: Predicted wet basis moisture concentration profile. 4. 2.2 Effective Gap Radius Given the conditions defined in Table 4.1 and using equations 3.8 and 3.9, the effective gap radius decreased from the initial value of3. 125 pm to 2.671 um due to the increase in moisture concentration. The effective gap radius is derived from the moisture concentration profile; therefore, as expected, the effective gap radius profile is the inverse mirror of the moisture concentration profile (Figure 4.2). At equilibrium, the gap size shrinks to 85% of the initial gap size. 44 9° to 3.1 ~ OS 53 5.0 O l 303 2.9 603 I 120s N oo l 2403 .N N I Effective Gap Radius (pm) 2.6 l l T l l 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.2: Predicted effective gap radius profile. 4. 2.3 Darcy ’3 Velocity Darcy ’s velocity of the marinade is the volumetric flow rate of the marinade, relative to the cross-sectional area of the meat and was calculated using equation 3.17. Darcy ’s velocity of the marinade was found to decrease with time and distance into the meat. The non-smooth nature of the graph of Darcy ’s velocity at short time (Fig. 4.3) is because the thickness of the layers is such that a new velocity is calculated only every 0.005 m. 45 6.E-05 5.E—05 ~ 4.E-05 3.E-05 - 2.E-05 a Darcy Velocity (ma-s'1°m'2) 1.E-05 - 0.E+00 0 1 2 3 4 5 6 Distance from surface in contact with marinade (cm) Figure 4.3: Darcy’s velocity profile. 4. 2.4 True Marinade Velocity Because true marinade velocity was found by dividing the Darcy ’s velocity by the porosity of the meat, true marinade velocities had the same overall profile as the Darcy ’s velocities, but with larger magnitude (Figure 4.4). 46 6.E-04 5.E-04 — 58 E E, 4E 04 Q . o .2 g 3.E-04 o 308 B 2 1203 1.E-04 ~ 2403 0.E+00 l i \l W I 0 1 2 3 4 5 6 Distance from surface in contact with marinade (cm) Figure 4.4: True marinade velocity profile. 4.2.5 Salmonella Velocity The Salmonella velocity profile generated in Excel using the modified Latto and Chow equation (3.20) had the same overall trend as the true marinade velocity profile, but the values for Salmonella velocity are higher than those for marinade velocity (Figure 4.5). 47 7.504 55 6.E-04 « a E 5.504 E :6 4.504 g § 3.5.04. 305 O 2 0 603 E 2.5-04 8 1205 1.5-04 ~ 2405 \ 0.E+00 I i \l o 1 2 3 4 5 6 Distance from surface In contact with marinade (cm) Figure 4.5: Salmonella velocity profile. 4. 2. 6 Salmonella Location The location of Salmonella at any given time step was calculated using the wave theory described in section 3.8 (Figure 4.6). The wave profile shows that, as time increases, the velocity of the waves entering decreases; thus, each wave enters the meat at a slower velocity than the previous waves. The first wave of Salmonella travels the fastest and moves 0.035 m into the meat after 4.37 min. The decreasing velocity causes subsequent waves to get closer together, resulting in the majority of the waves being found in the first two layers of the meat after marination. 48 A 0.035 .0 o 00 o 0.025 ~ 0.020 . 0.015 ~ 0.010 - 0.005 ~ 0.000 0.00 50.00 100.00 150.00 200.00 250.00 300.00 time (s) Distance from surface in contact with marinade (m Figure 4.6: Salmonella location wave profile. 4.2. 7 Salmonella Concentration Profile As described in Section 3.9, the optimum predicted Salmonella concentration profile for the model was found by minimizing the sum of square errors between Warsow’s (2003) experimental log counts and the predicted values, by changing the empirical parameters B and It found in the Salmonella velocity equation. Unfortunately, Figure 4.7 shows that the optimized predicted profile was not able to achieve a very good fit to the experimental results. 49 1 .E+06 Predicted \ 1.E+05 . 1.E+04 - 1.5+03 . Expenmental 1 .E+02 1.E+01 - Salmonella Concentration (CFUIg) 1.E+00 . . . . 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.7: Comparison of predicted Salmonella concentration at t = 4.35 min versus Warsow’s (2003) experimental results at t = 20 min. 4.3 Sensitivity Analysis This model requires 18 input variables that can easily be adjusted to represent a specific case. Many of these inputs, such as the marinade properties, are reasonably well- known and should be very close to the actual values. However, there are other critical inputs used in the model that have a higher degree of uncertainty; therefore, changing them could have an unknown impact on the output of the model. This section evaluates the model sensitivity to changes in the saturation moisture concentration, tortuosity, initial effective gap radius, and the effective length of flagella. In order to compare the sensitivity to these variables, all runs were compared at t = 120 s, using a standard set of inputs (Table 4.1) and varying only one input variable at a time. 50 4.3.1 Saturation Moisture Concentration The saturation moisture concentration used in the model is only 1% higher than the initial moisture concentration, which coincides with the results of the moisture concentration laboratory trials that can be found in Appendix A.3. However, this is much lower than the expected saturation moisture concentration. Increasing the saturation moisture concentration increases the moisture concentration throughout the meat at any given time (Figure 4.8) and thereby results in a high Salmonella concentration deeper in the meat (Figure 4.9). 0.755 8 ‘5 § 0.745 - 8 Sat MC = 0.74 o 0.740 4 a .3 0.735 - 5 Sat MC = 0.73 .2 0.730 ~ 10 8 ; Sat MC = 0.726 0.720 i i i . O 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.8: Wet basis moisture concentration with varying saturation moisture concentrations at t = 120 s. 51 5 7.E+05 F” rn + O 01 Sat MC = 0.75 5.E+05 4.E+05 - 3.E+05 - Sat MC = 0.74 2.E+05 ~ 1.E+05 - Salmonella concentration (CFU . , at MC=0.72 . 0 1 2 3 4 5 6 Distance from surface in contact with marinade (cm) 1.E+04 Figure 4.9: Salmonella concentration profile with varying saturation moisture concentrations at t = 120 s. 4.3.2 T ortuosity The tortuosity of the meat is the most uncertain of the input variables, because the r of whole-muscle turkey breast is unknown, and the value used was simply a reasonable guess. Therefore, it is important to determine the sensitivity of the model to a change in r. Tortuosity represents the complexity of the path that the marinade travels; therefore, increasing r decreases the diffusivity of the meat and increases the required time step in the solution. This change causes the moisture concentration at a given time to decrease with increasing t (Figure 4.10). For example, an increase in 1: from 3 to 4 resulted in a decrease in the minimum moisture concentration from ~ 72.4 to ~ 72.3 %. 52 0.727 0.726 ~ 0.726 a 1': 0.725 - r=3 0.725 ~ 1; % 0.724 - 0.724 r 0.723 ‘ Wet basis Moisture Concentration 0.723 . i i i 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.10: Wet basis moisture concentration with varying tortuosity at t = 120 s. In addition, increasing I also decreases the velocity of the marinade and Salmonella and ultimately decreases the depth of Salmonella penetration (Figure 4.11). 53 1.E+05 1.E+05 ~ 1.E+05 - 8.E+04 - 6.E+04 , 4.E+04 2.E+04 Salmonella Concentration (CPU/g) 0.E+00 . , , 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.11: Salmonella concentration profile with varying 1: at t = 120 5. 4.3.3 Initial Effective Gap Radius The initial effective gap radius was estimated from only one micrograph; therefore, this parameter was also analyzed to see what effect changing this value might have on the overall solution. Increasing the initial effective gap radius causes the diffusivity of the meat to increase and, because the time step is calculated using the diffusivity of the meat, the time step decreases. The penetration depth of Salmonella decreases as the initial effective gap radius increases (Figure 4.12), due to a loss in capillary potential. 54 1.4E+05 1.2E+05 4 1.0E+05 1 8.0E+04 - rang = 6 rang = 3.125 Salmonella Concentration (CPU/g) 6.0E+04 - 4. E+04 - 0 reff_o=4.5 2.0E+04 ~ 0.0E+00 . i . . 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.12: Salmonella concentration profile with varying initial effective gap radius at t = 120 s. 4.3.4 Effective Length of F lagella The effective length of the flagella was combined with the effective diameter of the gap to form a dimensionless term that was added to the Salmonella velocity equation, to act as a “stickiness” term that would slow down the Salmonella velocity as the radius of the gap decreased. Figure 4.13 shows that, as the effective length of the flagella increases and the ratio of the effective diameter of the gap to effective length of flagella decreases, the slower the Salmonella move through the meat. 55 1 .6E-04 =7. 5 7 1.45.044 d‘ 5 4) 125'“ d.=1.05-06 1.0E-04 4 df = 1.5E-06 8.0E-05 - 6.0E-05 ~ 4.0E-05 - Salmonella velocity (mls) 20505 J 0.0E+OO . . . . 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.13: Salmonella velocity with varying effective lengths of flagella at t = 120 s. As the effective length of the flagella increases, velocity of the Salmonella decreases, and therefore the final penetration depth of the bacteria decreases (Figure 4.14). 56 1.5E+05 13505 1 df = 1.5E-06 1.1E+05 1 90504 , d,=1.0506 7.0E+04 - dr = 7.5E-07 5.0E+04 3.0E+04 ~ Salmonella Concentration (CFUIg) 1.0E+O4 . i 0 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.14: Salmonella concentration profile with varying effective length of flagella at t = 120 s. 4.4 Attempted Model Validation The Salmonella log count trials described in section 3.10.2 were used to validate this model. These experimental results, Warsow’s (2003) results, and the predicted Salmonella concentration profile are plotted together in Figure 4.15. Unfortunately, it is evident from Figure 4.15 that the predicted Salmonella concentration does not provide a good representation of the laboratory results. 57 1.E+08 g 1 E +07 - experimental iii . 3&3 1.E+06 . m ’ 8 a 1.E+04 . \ predicted $6“ 9 1.5+03 - 5 1.5+02 ~ W320“ E experimental ‘6 1.E+01 - (I) 1.E+00 i O 2 4 6 Distance from surface in contact with marinade (cm) Figure 4.15: Comparison of predicted and experimental results for the Salmonella concentration profile of turkey breast. Due to the limited number of columns in Excel, the predicted curve represents only the first 4 min of marination, while both sets of experimental data represent 20 min of marination. However, even if the predicted model were extended to 20 min it would still not provide an accurate representation of the Salmonella concentration, because the model is currently predicting a higher amount of Salmonella within the turkey breast after only 4 min of marination; therefore, extending the marination time would only increase the log counts. Most likely, the major reason why the predicted results do not match the experimental results is the wave theory used to predict the location of the Salmonella at a given time. The wave theory assumes that a new group, or wave, of Salmonella enters the whole muscle at each new time step. The number of cells entering the meat with each new wave was calculated by equation 3.22, which was based on the velocity of 58 Salmonella and the concentration of the marinade. This creates a problem because the velocity of Salmonella is greater at the initial time steps before the effective gap radius shrinks due to moisture uptake. The higher velocity results in large initial concentrations entering the meat. The current model for marination allows for these high concentrations of cells to move rapidly through the meat and produce an unexpected high concentration of Salmonella in the interior of the meat. Using the wave profile approach, the cells in each wave move together at the same rate through the meat, creating clusters of cells. However, in reality, there would be more of a distribution of the cells. By analogy, if dye were dropped in a river, the dye would not stay together and flow down the river, but would spread and fade out as it moves. In an attempt to correct this problem and create a smoother distribution of the Salmonella a moving average (i2Ax) at the final time step was found and graphed against the original predicted results in Figure 4.16. 1.6E+05 1.4E+05 - 1.2E+05 - 1.0E+05 - 8.0E+04 - 6.0E+O4 . Salmonella Concentration (C FUIg) l— — Srnoothed profili] 4-0E+04 L—fl-_—-Non-smooth profilel 2.0E+04 ~ \ \ 0.0E+OO ‘ l 1 r 1— o 1 2 3 4 5 Distance from surface in contact with marinade (cm) Figure 4.16: Comparison of smoothed (:tZAx) and non-smoothed predicted Salmonella concentration profile at t = 261 s. 59 Taking the moving average of the profile did smooth out the distribution of Salmonella in the meat; however, even the smooth profile did not provide an accurate representation of the experimental results. In addition, averaging the cells creates additional data points and gives a false representation of the predicted distance that Salmonella moves through whole muscle. 4.12 Summary The model was able to run and produce a result that reflects a logical relationship between input and output variables. In addition, the sensitivity analysis showed that the model was robust in the range of interest. Unfortunately, there was a problem in finding B and n values that resulted in a Salmonella concentration profile that resembled the experimental results. 60 5. CONCLUSION This model does not predict the distribution of Salmonella in whole-muscle meat products during marination with sufficient accuracy to support the hypothesis regarding the underlying mechanism. Some key problems are as follows: The wave theory used to determine the location and concentration of Salmonella in the meat does not allow a smooth distribution of Salmonella, but rather a clumped, unrealistic distribution. Exact values for input variables are unknown. Based on current inputs and Excel limitations, the total time does not correspond to the experimental marination time. However, even though this model does not provide a good representation of the experimental results for Salmonella transport into whole-muscle meat products during marination, there was some valuable information gained through this model. This model provides a good starting point on which to base future models. The results suggest that some of the model assumptions are incorrect. The moisture concentration tests performed in this study showed an immeasurable change after 20 min of marination. Prior to conducting these experiments, it was assumed that the meat was taking up more marinade during marination. With so little change in moisture concentration, the assumption that capillary diffusion is the primary driving force transporting the Salmonella into the meat may be incorrect. 61 6. FUTURE RESEARCH This model provides a good starting point for modeling the transport of Salmonella through whole-muscle meat products; however, there is significant research that could be done to improve this model. Suggestions for filture research include: Adjust the model so that capillary diffusion is not the only driving force transporting marinade into the meat. The moisture concentration tests conducted during this study showed that a very small amount of moisture uptake was needed to achieve Salmonella concentrations at the t0p of whole-muscle turkey breast. Therefore, capillary diffusion may not be the primary force responsible for the movement of Salmonella and marinade into meat. Conduct laboratory tests to determine whether Salmonella ’s flagella could transport Salmonella into meat without the aid of marinade. The model created in this study assumes that Salmonella are non-motile; therefore, if these tests reveal that the bacteria’s motility has significant impact on the pathogens transport into whole muscle, then they should be incorporated into the model. Conduct additional moisture concentration trials to verify the rate at which marinade is being absorbed into the meat and test to see if the species of meat has any impact on the amount of marinade absorbed. Adjust the model to take into account the effects of salt and phosphate. The effects of salt and phosphate were neglected in order to simplify the model; however, to make the model more accurate, the osmotic potential caused by these additives found in marinades should be considered. 62 Adjust the model so that it better represents the structure of meat. For simplicity, this model assumed that the meat is composed of a bundle of capillaries that are uniform cylindrical tubes of the same size, but instead the intercellular space in meat is actually various sized curvy flat spaces. Use micrographs taken after marination to compare the actual area gap change to the predicted change. In addition, additional premarination images are needed to find a more accurate initial effective gap radius and area of the gap. Improve the Salmonella velocity equation, so that it is more applicable to the range of parameters involved in marinade uptake. Confirm the effects of freezing and thawing meat on bacteria penetration and moisture uptake. Researchers have shown that freezing and thawing of meat can influence bacteria penetration (Maxcy 1981; Sikes and Maxcy 1980); however, it would be useful to fiirther quantify the effects and, if they are significant, then account for the difference between fresh and frozen meat in the model. The current model has limitations due to the column restrictions in Excel; therefore, future models should be created in a program such as MATLAB to minimize the limitations associated with program capabilities. Finally, converting a working one-dimensional model to a two-dimensional model would better represent the actual marination process where meat is surrounded by marinade. 63 7. APPENDICES The appendices are divided into the following 13 sections: Appendix 7.1: Derivative of Capillary Potential with Respect to Dry Basis Moisture Concentration Appendix 7.2: User Functions Appendix 7.3: Moisture Concentration Test Results Appendix 7.4: Marinade Percent Uptake Test Results Appendix 7.5: Salmonella Concentration Experimental Results Appendix 7.6: Calculation of Required Marinade Uptake to Achieve given Experimental Salmonella Log Counts Appendix 7.7: Master Input Page for Model Appendix 7.8: Mode] Output for Moisture Concentration Appendix 7.9: Model Output for Effective Gap Radius Appendix 7.10: Model Output for Darcy’s Velocity Appendix 7.11: Model Output for Salmonella Velocity Appendix 7.12: Model Output for Salmonella Concentration Appendix 7.13: Three-Dimensional Graphs of Model Output 64 Appendix 7.1: Derivative of Capillary Potential with Respect to Dry Basis Moisture Concentration Capillary pressure is expressed as two times the surface tension divided by the effective gap radius at time t (_2__-_}'_ ). Substituting in the equation for the effective gap ref]; radius at time t yields the following equation: / l) _1 2 —l 7 2'7 2.7.[Agap0i Cdb — . _ . _.___L__ -— l A 1 [7.1] r r DM 1+C efl" efi' db t 0 t t l The devivative of capillary pressure with respect to moisture concentration can be found using the chain rule. \ K 1) _ —3 a r2 7 A 2 c “1 7 ejft) _1 7 gapO db =_ -l——A .1_____ \ 2 rejf DM 1+Cdb t) \ l l \ —2 Cdbt {1+CdbtJ—Cdbt -(0+1) ADM. l—TE; - 2 [7.2] t 1+C ] db \ l t l Combining terms simplifies the equation to: 65 \ f ) r a 2'7 effo l r eflt) = \ l ADM ) 3 _ — C a[Caro C 1 2 db, t) dbt 1_I_C— l—ADM. 1— + db 1+Cdb ( t y t This simplifies to: r w 1 6 2'7 . A 3 (A ) {refit ) _ 7 gapO DM arc V f )1 2 \ dbl) C A db refl. -1— DM 1— ’ -[1+Cdb] 0 Cd”: 1+Cdbt I —1+Cdb \ t / Combining the terms in the denominator results in the final equation: 66 [7.4] 3 )2 ADM c _ dbt 1+C dbl ) l [7.51 67 Appendix 7.2: User Functions The user function used in equation 3.15 for calculating lambda was as follows: Function Lambda(refft, Ct, dt, dx, vis, tor, st, Agi, DM, reffi) D = (reffi " 2 / (vis * 8 * tor)) * (((st * Agi " 0.5 * DM)/reffi) / ((1 - DM / (1 - Ct/(1+ Ct») " (3 / 2») Lambda = (D * dt) / dx " 2 End Function The user function used in equation 3.22 for calculating the Salmonella concentration at a given location was as follows: Function Concentration(X, dx, Row, loc, cells) Concentration = 0 Column = l me = loc(Row, Column) Do While me > (X - dx) If Xwave <= X Then Concentration = Concentration + cells(Column) Column = Column + 1 me = loc(Row, Column) Loop End Function 68 Appendix 7.3: Moisture Concentration Test Results The exact moisture concentration profile of the meat after 20 min of marination could not be determined because the maximum change in moisture concentration was only 1% and that difference could be attributed to error associated with the procedure. However, these results do show that there is a lot less marinade being absorbed into the meat than was assumed. The results from the two different moisture concentration tests described in section 3.10.1 were: Table 7.1: Moisture concentration results using the coring method described in section 3.11.1. TOP Y BOTTOM Dish + Core - Dish +Raw Raw Dried Dried Moisture Slice Dish Meat Meat Meat Meat Content average_ 1-1 1 .2805 24.684 23.4035 7.5207 6.2402 0.733 0.731 21 1.2682 16.8176 15.5494 5.5645 4.2963 0.724 0.730 3-1 1.271 1 14.9505 13.6794 4.8558 3.5847 0.738 0.730 4-1 1.2691 14.1723 12.9032 4.7509 3.4818 0.730 1-2 1.2716 21.4134 20.1418 6.7785 5.5069 0.727 2-2 1.2809 16.2106 14.9297 5.3005 4.0196 0.731 3-2 1 .2773 14.4263 13.149 4.8333 3.556 0.730 4-2 1.267 13.6046 12.3376 4.5664 3.2994 0.733 1-3 1.2771 20.1615 18.8844 6.499 5.2219 0.723 2-3 1.2734 20.4605 19.1871 6.3614 5.088 0.735 3-3 1.2735 12.215 10.9415 4.2368 2.9633 0.729 4-3 1.2706 10.0752 8.8046 3.6174 2.3468 0.733 Wtial l 1.2692 I 15.3803 l 14.1111 l 5.2252 1 3.956 I 0.720 I 69 Table 7.2: Moisture concentration results using the slicing method described in section 3.11.1. Dish 1- Dish + Raw Dried Dried Moisture Dish Raw Meat Meat Meat Meat Content average_ TOP 1-1 1.2753 10.8599 9.5846 3.8741 2.5988 0.729 0.729 2-1 1.2758 15.3639 14.0881 5.0929 3.8171 0.729 0.718 3-1 1.2716 12.195 10.9234 4.2367 2.9651 0.729 0.722 4-1 1.255 11.7325 10.4775 4.0862 2.8312 0.730 1-2 1.2723 11.6699 10.3976 4.2168 2.9445 0.717 2-2 1.277 11.0314 9.7544 4.018 2.741 0.719 3-2 1.2686 13.8091 12.5405 4.8461 3.5775 0.715 4-2 1.2735 10.4544 9.1809 3.8164 2.5429 0.723 1-3 1 .2726 9.859 8.5864 3.6732 2.4006 0.720 V 23 1 .2864 1 1.2238 9.9374 4.0358 2.7494 0.723 3-3 1.273 14.0432 12.7702 4.8589 3.5859 0.719 BOTTOM 4-3 1.2685 10.7871 9.5186 3.8799 2.6114 0.726 Linitial H2692 l 15.3803 ] 14.1111 l 5.2252] 3.956 I 0.720 ] 70 Appendix 7.4: Marinade Percent Uptake Test Results A laboratory test was conducted in order to determine how much marinade was being absorbed into the meat during marination. This experiment was done by placing a piece of whole-muscle pork roast in a Petri dish containing a measured amount of marinade and removing the meat alter a set time and taking the weight of the remaining marinade. A new piece of meat was used for each of the time intervals. The result of this experiment is as follows: Table 7.3: Marinade percent uptake test results. Meat Marinade Marinade weight time time Initial Initial after marination Uptake Percent sample (s) (min) Weight (g) Wight (g) (g) (g) Uptake 1 20 0.33 106.89 20.1 19.41 0.69 0.65% 2 50 0.83 92.01 20.58 20.05 0.53 0.58% 3 105 1.75 90.73 20.03 18.91 1.12 1.23% 4 225 3.75 83.63 19.54 18.65 0.89 1.06% 5 450 7.5 95.63 18.78 18.00 0.78 0.82% 6 900 15 91.68 21.63 20.87 0.76 0.83% 7 1200 20 88.78 20.32 19.72 0.60 0.68% 71 Appendix 7.5: Salmonella Concentration Experimental Results The results of the Salmonella concentration tests described in section 3.11.2 are shown in Tables 7.4 and 7.5. Three trials were conducted where four cores were removed from each block of turkey and each core was sliced into five sections; therefore, the sample number corresponds to the rep number, core number, and the slice number. For example, sample 1-2-3 is rep 1 - core 2 — slice 3. The average for the second replication was based off from the results from two cores rather than four cores due to a problem with the initial sterility of two of the corers. Table 7.4: Salmonella concentration experimental results. Distance from Meat + Sample surface in contact Meat Peptone '09 '09 Average Adjusted with marinade (m) (g) (9) counts counts Average marinade 1 .22E+09 1 .36E+09 1 .29E+09 1-1-1 0.045 0.5 4.31 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-1-2 0.035 0.32 4.23 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-1-3 0.025 0.36 4.25 8.00E+01 1.30E+02 1.05E+02 4.46E+02 1-1-4 0.015 0.48 4.4 8.10E+03 9.40E+03 8.75E+03 3.85E+04 1-1-5 0.005 0.45 4.3 1.81 E+06 1.92906 1.87E+06 8.02E+06 1-2-1 0.045 0.41 4.37 1.50E+02 2.305102 1.90E+02 8.30802 1-2-2 0.035 0.31 4.18 6.1 OE+02 6.40E+02 6.25E+02 2.61E+03 1-2-3 0.025 0.28 4.17 1.56E+04 1.56E+04 1.56E+04 6.51 E+04 1-2-4 0.015 0.49 6.32 3.70E+05 5.20E+05 4.4SE+05 2.81 E+06 1-2-5 0.005 0.65 4.54 4.10E+06 5.00E+06 4.55E+06 2.07E+07 1-3—1 0.045 0.55 4.48 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-3-2 0.035 0.46 4.39 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-3-3 0.025 0.53 4.44 8.60E+03 8.60E+03 8.60E+03 3.82E+04 1-3-4 0.015 0.51 4.45 7.70E+05 6.70E+05 7.20E+05 3.20E+06 1-3—5 0.005 0.6 4.53 5.50E+06 5.20E+06 5.35E+06 2.42E+07 1-4-1 0.045 0.66 4.54 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-4-2 0.035 0.47 4.44 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1-4-3 0.025 0.5 4.3 1.00E+02 8.00E+01 9.00E+01 3.87E+02 1-4-4 0.015 0.55 4.38 1.98E+04 2.00E+04 1.99E+04 8.72E+04 1-4-5 0.005 0.76 4.62 2.60E+06 1.80E+06 2.20E+06 1.02E+07 marinade 1 .22E+09 1 .36E+09 1 .29E+09 2-1-1 0.045 0.71 4.67 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2-1-2 0.035 0.6 4.53 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2-1-3 0.025 0.6 4.53 8.60E+02 9.10E+02 8.85E+02 4.01E+03 2-1-4 0.015 0.7 4.57 8.50E+05 9.50E+05 9.00E+05 4.11E+06 2-1-5 0.005 0.65 4.66 8.7OE+06 7.10E+06 7.90E+06 3.68E+07 2-2-1 0.045 0.72 4.65 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2—2-2 0.035 0.51 4.41 0.00E+00 0.00E+00 0.00E+00 0.00E+00 72 Table 7.4 Continued 2-2-3 0.025 0.55 4.48 7.00E+01 1 .70E+02 1 .20E+02 5.38E+02 2-2-4 0.015 0.83 4.83 9.30E+04 8.10E+04 8.70E+04 4.20E+05 2-2-5 0.005 0.73 4.66 5.20806 4.1OE+06 4.65E+06 2.17E+07 marinade 1.53E+09 1 ASE-+09 1 .48E+09 3-1-1 0.045 0.9 4.8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3-1-2 0.035 0.7 4.6 0.00E+OO 0.00E+OO 0.00E+00 0.00E+00 3-1-3 0.025 0.9 4.9 0.00E+00 1.00E+01 5.00E+00 2.45E+01 3-1-4 0.015 1.1 4.9 3.80E+05 3.90E+05 3.85E+05 1.89E+06 3-1-5 0.005 1.1 5 9.30E+06 9.00E+06 9.1SE+06 4.58E+07 3-2-1 0.045 0.8 4.7 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3-2-2 0.035 0.8 4.6 2.30E+02 1 .SOE+02 1 .QOE+02 8.74E+02 3-2-3 0.025 0.9 4.8 1.12E+05 1 2554-05 1.19E+05 5.695+05 3-2-4 0.015 0.9 4.9 1.26E+06 1 .02E+06 1 .14E+06 55954-06 3-2-5 0.005 0.9 4.9 3.ZOE+06 3.10E+06 3.15E+06 1.54E+07 3—3—1 0.045 0.9 4.7 1.00E+01 0.00E+00 5.00E+00 2.35E+01 3-3-2 0.035 0.8 4.6 1.70E+02 2.60E+02 2.15E+02 9.89E+02 3-3-3 0.025 0.9 4.9 6.00E+01 7.00E+01 6.SOE+01 3.1QE+02 3-3-4 0.015 1 4.9 4.40E+03 4.60E+03 4.50E+03 2.21 E+04 3-3-5 0.005 1.1 5 1.685+06 1.34E+06 1.51 E+06 7.55E+06 3-4-1 0.045 1 4.8 1 .00E+01 0.00E+00 5.00E+00 2.4OE+01 3-4-2 0.035 1 4.8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3-4-3 0.025 0.09 4.8 8.80E+04 1 .1 1 E+05 9.95E+04 4.78E+05 3-4-4 0.015 0.8 4.7 8808-05 1 .09E+06 9.855405 4.63E+06 3-4-5 0.005 1 .2 5.1 2.20E+06 2.50E+06 2.35E+06 1 .20E+07 Table 7.5: Salmonella concentration average of all three replicates. Combined Average Distance from surface in contact with marinade (m) 7.32E+01 3.73E+02 9.67E+04 2.28E+06 2.17E+07 0.045 0.035 0.025 0.015 0.005 73 Appendix 7.6: Calculation of Required Marinade Uptake to Achieve given Experimental Salmonella Log Counts The moisture concentration tests resulted in a much smaller change in moisture concentration than was expected; therefore, the following calculations were done to detemrine how much uptake was required to achieve the experimental log count results based on the concentration of the marinade: Volume of meat layer = 100 cm3 Density of Turkey = 1.12 g/cm3 Based on the following experimental data from Table 7.5: 7 Slicel: 100cm3[1'12g][2'1710 CFU J: 2.43-109CFU g cm Slice 2: 100cm3 2.55-108CFU {.1 12g] 2. 28 106CFU]_ [.1 12g] 9.67 104cm Slice 3: 100cm3 3 ]=1.08-107CFU (cm -31 l 1 6151312 .73 102cm} (.31 Slice 4: 100cm3 4.18-104CFU Slice 5: 100cm3 8.20 - 103 CFU [1.12g] 7.32 101CFU]_ Total CFU’s per 10x10x5 cm3 turkey block = 2.70109 CFU Marinade concentration = 1.39109 CFU/ml 74 lml 1.39-109 CFU Required Salmonella Uptake = 2.70 - 109{ j = 1.94m] 75 Appendix 7.7: Master Input Page for Model The first sheet in Excel based model is a master page that contains all of the input variables and the graphs of the model outputs. The adjustable input variables are shown in Table 7.9, while the graphs are shown throughout this paper. Table 7.6: Adjustable model input variables as they appear in the Excel Model Meat Properties Marinade Properties Salmonella Properties 1...... (m) = 3.125506 11(N-slm2) = 1.519503 d. (m) = 5.507 C“, o = 0.72 y (Nlm) = 0.0754 L. (m) = 2.E-06 A9.” = 0.13 p (kg/m3) = 1005 s = 1 t = 3 d, (m) = 1.0E-06 p0 (kg/m3) = 1 120 p0 (glcm3) = 1.12 An! = 0.2436 Lg (m/s’) = 9.806 Ax (m) = 0.005 a ’11::1 ) Cwb in: C “t Cab. o 6(m 1+1 ) D (MAZIS) At (5) 0.726 2.65 2.57 45212.16 1.21505 1.03 76 Appendix 7.8: Model Output for Moisture Concentration Excel formula used to calculate the dry basis moisture concentration at t = 1.03 s and x = 0.005 m. (i.e. cell D5): D5 =LAMBDA('Effective Gap Radius'!D4,D4,dt,dx,MASTER!vis,MASTER! tor,MASTER! st,MASTER! Agi,MASTER!ADM,MASTER! reffi)*C4+( 1 -2*LAMBDA('Effective Gap Radius'!D4,D4,dt,dx,MASTER!vis,MASTER!tor,MASTER!st,MASTER! Agi,MASTER!ADM,MASTER!reffi))*D4+LAMBDA('Effective Gap Radius'lD4,D4,dt,dx,MASTER!vis,MASTER!tor,MASTER!st,MASTER! Agi,MASTER!ADM,MASTER!reffi)*E4 Conversion from dry basis to wet basis: D5 ='Moisture Content db'!D5/(1+'Moisture Content db'!DS) Table 7.7 : Predicted wet basis moisture concentration profile generated by Excel, given the input variables listed in Table 4.1. Moisture Content i => 0 1 2 3 4 5 6 7 8 9 10 j 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 0 0.726 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 1 1.03 0.726 0.723 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 2 2.06 0.726 0.723 0.722 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 3 3.10 0.726 0.724 0.722 0.721 0.720 0.720 0.720 0.720 0.720 0.720 0.720 4 4.13 0.726 0.724 0.722 0.721 0.720 0.720 0.720 0.720 0.720 0.720 0.720 5 5.16 0.726 0.724 0.722 0.721 0.720 0.720 0.720 0.720 0.720 0.720 0.720 6 6.19 0.726 0.724 0.723 0.721 0.721 0.720 0.720 0.720 0.720 0.720 0.720 7 7.22 0.726 0.724 0.723 0.722 0.721 0.720 0.720 0.720 0.720 0.720 0.720 8 8.26 0.726 0.724 0.723 0.722 0.721 0.720 0.720 0.720 0.720 0.720 0.720 9 9.29 0.726 0.725 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 0.720 10 10.32 0.726 0.725 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 0.720 11 11.35 0.726 0.725 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 0.720 12 12.39 0.726 0.725 0.723 0.722 0.722 0.721 0.721 0.720 0.720 0.720 0.720 13 13.42 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 14 14.45 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 15 15.48 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 77 Table 7.7 Continued 16 16.51 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.720 0.720 0.720 0.720 17 17.55 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.721 0.720 0.720 0.720 18 18.58 0.726 0.725 0.724 0.723 0.722 0.721 0.721 0.721 0.720 0.720 0.720 19 19.61 0.726 0.725 0.724 0.723 0.722 0.722 0.721 0.721 0.720 0.720 0.720 20 20.64 0.726 0.725 0.724 0.723 0.722 0.722 0.721 0.721 0.720 0.720 0.720 21 21.67 0.726 0.725 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.720 0.720 22 22.71 0.726 0.725 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.720 0.720 23 23.74 0.726 0.725 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.720 0.720 24 24.77 0.726 0.725 0.724 0.723 0.723 0.722 0.721 0.721 0.721 0.720 0.720 25 25.80 0.726 0.725 0.724 0.723 0.723 0.722 0.721 0.721 0.721 0.721 0.720 26 26.83 0.726 0.725 0.724 0.723 0.723 0.722 0.721 0.721 0.721 0.721 0.720 27 27.87 0.726 0.725 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 0.721 28 28.90 0.726 0.725 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 0.721 29 29.93 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 30 30.96 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 31 32.00 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 32 33.03 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 33 34.06 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 34 35.09 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.721 0.721 0.721 0.721 35 36.12 0.726 0.725 0.724 0.724 0.723 0.722 0.722 0.722 0.721 0.721 0.721 36 37.16 0.726 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 37 38.19 0.726 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 38 39.22 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 39 40.25 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 40 41.28 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.721 0.721 0.721 41 42.32 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.721 0.721 42 43.35 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.721 0.721 43 44.38 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.721 0.721 44 45.41 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.721 0.721 45 46.44 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.722 0.721 46 47.48 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.722 0.721 47 48.51 0.726 0.725 0.725 0.724 0.723 0.723 0.722 0.722 0.722 0.722 0.722 48 49.54 0.726 0.725 0.725 0.724 0.723 0.723 0.723 0.722 0.722 0.722 0.722 49 50.57 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 50 51.61 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 51 52.64 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 52 53.67 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 53 54.70 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 54 55.73 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 55 56.77 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 56 57.80 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.722 0.722 0.722 0.722 57 58.83 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 58 59.86 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 59 60.89 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 60 61.93 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 61 62.96 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 62 63.99 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.722 0.722 0.722 63 65.02 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.722 0.722 64 66.05 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.722 0.722 65 67.09 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.722 0.722 66 68.12 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.722 0.722 67 69.15 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.722 0.722 68 70.18 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 0.722 69 71.22 0.726 0.726 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 0.722 70 72.25 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 71 73.28 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 72 74.31 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 73 75.34 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 74 76.38 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 75 77.41 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 76 78.44 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 77 79.47 0.726 0.726 0.725 0.725 0.724 0.724 0.723 0.723 0.723 0.723 0.723 78 Table 7.7 Continued 78 80.50 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 79 81.54 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 80 82.57 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 81 83.60 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 82 84.63 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 83 85.66 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 84 86.70 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 85 87.73 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 86 88.76 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.723 0.723 0.723 0.723 87 89.79 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 88 90.83 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 89 91.86 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 90 92.89 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 91 93.92 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 92 94.95 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 93 95.99 0.726 0.726 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 0.723 94 97.02 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 95 98.05 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 96 99.08 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 97 100.11 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.723 0.723 98 101.15 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.723 99 102.18 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.723 100 103.21 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 101 104.24 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 102 105.27 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 103 106.31 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 104 107.34 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 105 108.37 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 106 109.40 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 107 110.44 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 108 111.47 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 109 112.50 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 110 113.53 0.726 0.726 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 0.724 111 114.56 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 112 115.60 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 113 116.63 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 114 117.66 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 115 118.69 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 116 119.72 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 117 120.76 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 118 121.79 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 119 122.82 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 120 123.85 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 121 124.88 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 122 125.92 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 123 126.95 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 0.724 124 127.98 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 125 129.01 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 126 130.05 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 127 131.08 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 128 132.11 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 129 133.14 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 130 134.17 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 131 135.21 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 132 136.24 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 133 137.27 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.724 0.724 0.724 0.724 134 138.30 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 135 139.33 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 136 140.37 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 137 141.40 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 138 142.43 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 139 143.46 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.724 0.724 0.724 79 Table 7.7 Continued 140 144.49 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.724 0.724 141 145.53 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.724 0.724 142 146.56 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.724 0.724 143 147.59 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.724 0.724 144 148.62 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.724 0.724 145 149.66 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.724 146 150.69 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.724 147 151.72 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 148 152.75 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 149 153.78 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 150 154.82 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 151 155.85 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 152 156.88 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 153 157.91 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 154 158.94 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 155 159.98 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 156 161.01 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 157 162.04 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 158 163.07 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 159 164.10 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 160 165.14 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 161 166.17 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 162 167.20 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 163 168.23 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 164 169.27 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 165 170.30 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 166 171.33 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 167 172.36 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 168 173.39 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 0.725 169 174.43 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 170 175.46 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 171 176.49 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 172 177.52 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 173 178.55 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 174 179.59 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 175 180.62 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 176 181.65 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 177 182.68 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 178 183.71 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 179 184.75 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 180 185.78 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 181 186.81 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 182 187.84 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 183 188.88 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 184 189.91 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 185 190.94 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 186 191.97 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 187 193.00 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 188 194.04 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 189 195.07 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 190 196.10 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 191 197.13 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 192 198.16 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 0.725 193 199.20 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 194 200.23 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 195 201.26 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 196 202.29 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 197 203.32 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 198 204.36 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 199 205.39 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 200 206.42 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 201 207.45 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 80 Table 7.7 Continued 202 208.49 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 203 209.52 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 204 210.55 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 205 211.58 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 206 212.61 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 207 213.65 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 208 214.68 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 209 215.71 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 210 216.74 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 0.725 211 217.77 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 212 218.81 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 213 219.84 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 214 220.87 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 215 221.90 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 216 222.93 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 217 223.97 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 218 225.00 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 219 226.03 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 220 227.06 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 221 228.10 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 222 229.13 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 223 230.16 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 0.725 224 231.19 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 225 232.22 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 226 233.26 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 227 234.29 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 228 235.32 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 229 236.35 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 230 237.38 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 231 238.42 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 232 239.45 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 233 240.48 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 0.725 234 241.51 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 235 242.54 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 236 243.58 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 237 244.61 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 238 245.64 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 239 246.67 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 0.725 240 247.71 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 241 248.74 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 242 249.77 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 243 250.80 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 244 251.83 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 0.725 245 252.87 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 246 253.90 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.725 247 254.93 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 248 255.96 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 249 256.99 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 250 258.03 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 251 259.06 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 252 260.09 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 253 261.12 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 254 262.15 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 81 Appendix 7.9: Model Output for Effective Gap Radius m. (i.e. cell D5): Excel formula used to calculate the effective gap radius at t = 1.03 s and x = 0.005 D5 =(reffi*(l-MASTER!ADM/(1-'Moisture Content wb '!D5)))/Agi Table 7.8: Predicted effective gap radius profile generated by Excel, given the input variables listed in Table 4.1. 0 1 2 Effective Gap Radius 3 4 5 6 8 9 10 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 2.66506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.89506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.89506 3.01506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.84506 3.01506 3.07506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.84506 2.95506 3.07506 3.10506 3.13506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.81506 2.95506 3.03506 3.10506 3.11506 3.13506 3.13506 3.13506 3.13506 3.13506 2.66506 2.81506 2.92506 3.02506 3.07506 3.11506 3.12506 3.13506 3.13506 3.13506 3.13506 2.66506 2.79506 2.92506 2.99506 3.07506 3.09506 3.12506 3.12506 3.13506 3.13506 3.13506 mummwa-Aow 2.66506 2.79506 2.89506 2.99506 3.04506 3.09506 3.11506 3.12506 3.12506 3.13506 3.13506 2.66506 2.78506 2.89506 2.97506 3.04506 3.08506 3.11506 3.12506 3.12506 3.12506 3.13506 2.66506 2.78506 2.88506 2.97506 3.02506 3.07506 3.10506 3.12506 3.12506 3.12506 3.12506 2.66506 2.77506 2.87506 2.95506 3.02506 3.06506 3.09506 3.11506 3.12506 3.12506 3.12506 2.66506 2.77506 2.86506 2.95506 3.00506 3.06506 3.08506 3.11506 3.11506 3.12506 3.12506 2.66506 2.76506 2.86506 2.93506 3.00506 3.04506 3.08506 3.10506 3.11506 3.12506 3.12506 2.66506 2.76506 2.85506 2.93506 2 .99506 3.04506 3.07506 3.10506 3.11506 3.12506 3.12506 2.66506 2.76506 2.85506 2.92506 2.99506 3.03506 3.07506 3.09506 3.11506 3.11506 3.12506 2.66506 2.76506 2.84506 2.92506 2.98506 3.03506 3.06506 3.09506 3.10506 3.11506 3.12506 2.66506 2.75506 2.84506 2.91506 2.97506 3.02506 3.06506 3.08506 3.10506 3.11506 3.12506 2.66506 2.75506 2.83506 2.90506 2.96506 3.02506 3.05506 3.08506 3.10506 3.11506 3.11506 2.66506 2.75506 2.83506 2.90506 2.96506 3.01506 3.05506 3.07506 3.09506 3.10506 3.11506 2.66506 2.75506 2.82506 2.89506 2.95506 3.00506 3.04506 3.07506 3.09506 3.10506 3.11506 2.66506 2.74506 2.82506 2.89506 2.95506 3.00506 3.04506 3.06506 3.09506 3.10506 3.11506 2.66506 2.74506 2.82506 2.88506 2.94506 2.99506 3.03506 3.06506 3.08506 3.10506 3.10506 2.66506 2.74506 2.81506 2.88506 2.94506 2.99506 3.03506 3.06506 3.08506 3.09506 3.10506 2.66506 2.74506 2.81506 2.88506 2.93506 2.98506 3.02506 3.05506 3.07506 3.09506 3.10506 2.66506 2.74506 2.81506 2 .87506 2.93506 2.98506 3.02506 3.05506 3.07506 3.08506 3.09506 2.66506 2.74506 2.80506 2.87506 2.92506 2.97506 3.01506 3.05506 3.07506 3.08506 3.09506 2.66506 2.73506 2.80506 2.86506 2.92506 2.97506 3.01506 3.04506 3.06506 3.08506 3.09506 2.66506 2.73506 2.80506 2.86506 2.92506 2.97506 3.00506 3.04506 3.06506 3.07506 3.08506 2.66506 2.73506 2.80506 2 .86506 2.91506 2.96506 3.00506 3.03506 3.06506 3.07506 3.08506 2.66506 2.73506 2.80506 2.86506 2.91506 2.96506 3.00506 3.03506 3.05506 3.07506 3.07506 2.66506 2.73506 2.79506 2 .85506 2.91506 2.95506 2.99506 3.02506 3.05506 3.06506 3.07506 2.66506 2.73506 2.79506 2.85506 2.90506 2.95506 2.99506 3.02506 3.04506 3.06506 3.07506 2.66506 2.73506 2.79506 2.85506 2.90506 2.95506 2.99506 3.02506 3.04506 3.05506 3.06506 2.66506 2.73506 2.79506 2.85506 2.90506 2.94506 2.98506 3.01506 3.04506 3.05506 3.06506 2.66506 2.73506 2.79506 2.84506 2.89506 2.94506 2.98506 3.01506 3.03506 3.05506 3.05506 2.66506 2.73506 2.78506 2.84506 2.89506 2.94506 2.97506 3.01506 3.03506 3.04506 3.05506 2.66506 2.72506 2.78506 2.84506 2.89506 82 2.93506 2.97506 3.00506 3.02506 3.04506 3.05506 Table 7.8 Continued 38 39.22 2.66506 2.72506 2.78506 2.84506 2.89506 2.93506 2.97506 3.00506 3.02506 3.04506 3.04506 39 40.25 2.66506 2.72506 2.78506 2.83506 2.88506 2.93506 2.96506 2.99506 3.02506 3.03506 3.04506 40 41.28 2.66506 2.72506 2.78506 2.83506 2.88506 2.92506 2.96506 2.99506 3.01506 3.03506 3.04506 41 42.32 2.66506 2.72506 2.78506 2.83506 2.88506 2.92506 2.96506 2.99506 3.01506 3.02506 3.03506 42 43.35 2.66506 2.72506 2.78506 2.83506 2.87506 2.92506 2.95506 2.98506 3.01506 3.02506 3.03506 43 44.38 2.66506 2.72506 2.77506 2.83506 2.87506 2.91506 2.95506 2.98506 3.00506 3.02506 3.02506 44 45.41 2.66506 2.72506 2.77506 2.82506 2.87506 2.91506 2.95506 2.98506 3.00506 3.01506 3.02506 45 46.44 2.66506 2.72506 2.77506 2.82506 2.87506 2.91506 2.94506 2.97506 2.99506 3.01506 3.02506 46 47.48 2.66506 2.72506 2.77506 2.82506 2.87506 2.91506 2.94506 2.97506 2.99506 3.01506 3.01506 47 48.51 2.66506 2.72506 2.77506 2.82506 2.86506 2.90506 2.94506 2.97506 2.99506 3.00506 3.01506 48 49.54 2.66506 2.72506 2.77506 2.82506 2.86506 2.90506 2.93506 2.96506 2.98506 3.00506 3.01506 49 50.57 2.66506 2.72506 2.77506 2.81506 2.86506 2.90506 2.93506 2.96506 2.98506 3.00506 3.00506 50 51.61 2.66506 2.72506 2.77506 2.81506 2.86506 2.90506 2.93506 2.96506 2.98506 2.99506 3.00506 51 52.64 2.66506 2.72506 2.76506 2.81506 2.85506 2.89506 2.93506 2.95506 2.97506 2 .99506 3.00506 52 53.67 2.66506 2.71506 2.76506 2.81506 2.85506 2.89506 2.92506 2.95506 2.97506 2.98506 2.99506 53 54.70 2.66506 2.71506 2.76506 2.81506 2.85506 2.89506 2.92506 2.95506 2.97506 2.98506 2.99506 54 55.73 2.66506 2.71506 2.76506 2.81506 2.85506 2.89506 2.92506 2.94506 2.96506 2.98506 2.98506 55 56.77 2.66506 2.71506 2.76506 2.80506 2.85506 2.88506 2.91506 2.94506 2.96506 2.97506 2.98506 56 57.80 2.66506 2.71506 2.76506 2.80506 2.84506 2.88506 2.91506 2.94506 2.96506 2.97506 2.98506 57 58.83 2.66506 2.71506 2.76506 2.80506 2.84506 2.88506 2.91506 2.93506 2.95506 2.97506 2.97506 58 59.86 2.66506 2.71506 2.76506 2.80506 2.84506 2.88506 2.91506 2.93506 2.95506 2.96506 2.97506 59 60.89 2.66506 2.71506 2.76506 2.80506 2.84506 2.87506 2.90506 2.93506 2.95506 2.96506 2.97506 60 61.93 2.66506 2.71506 2.75506 2.80506 2.84506 2.87506 2.90506 2.93506 2.95506 2.96506 2.96506 61 62.96 2.66506 2.71506 2.75506 2.80506 2.83506 2.87506 2.90506 2.92506 2.94506 2.96506 2.96506 62 63.99 2.66506 2.71506 2.75506 2.79506 2.83506 2.87506 2.90506 2.92506 2.94506 2.95506 2.96506 63 65.02 2.66506 2.71506 2.75506 2.79506 2.83506 2.86506 2.89506 2.92506 2.94506 2.95506 2.96506 64 66.05 2.66506 2.71506 2.75506 2.79506 2.83506 2.86506 2.89506 2.92506 2.93506 2.95506 2.95506 65 67.09 2.66506 2.71506 2.75506 2.79506 2.83506 2.86506 2.89506 2.91506 2.93506 2.94506 2.95506 66 68.12 2.66506 2.71506 2.75506 2.79506 2.82506 2.86506 2.89506 2.91506 2.93506 2.94506 2.95506 67 69.15 2.66506 2.71506 2.75506 2.79506 2.82506 2.86506 2.88506 2.91506 2.92506 2.94506 2.94506 68 70.18 2.66506 2.71506 2.75506 2.79506 2.82506 2.85506 2.88506 2.90506 2.92506 2.93506 2.94506 69 71.22 2.66506 2.71506 2 .75506 2.78506 2.82506 2.85506 2.88506 2.90506 2.92506 2.93506 2.94506 70 72.25 2.66506 2.71506 2.75506 2.78506 2.82506 2.85506 2.88506 2.90506 2.92506 2.93506 2.93506 71 73.28 2.66506 2.71506 2.74506 2.78506 2.82506 2 .85506 2.87506 2.90506 2.91506 2.93506 2.93506 72 74.31 2.66506 2.70506 2.74506 2.78506 2.81506 2.85506 2.87506 2.89506 2.91506 2.92506 2.93506 73 75.34 2.66506 2.70506 2.74506 2.78506 2.81506 2.84506 2.87506 2.89506 2.91506 2.92506 2.93506 74 76.38 2.66506 2.70506 2.74506 2.78506 2.81506 2.84506 2.87506 2.89506 2.91506 2.92506 2.92506 75 77.41 2.66506 2.70506 2.74506 2.78506 2.81506 2.84506 2.87506 2.89506 2.90506 2.91506 2.92506 76 78.44 2.66506 2.70506 2.74506 2 .78506 2.81506 2.84506 2.86506 2.88506 2.90506 2.91506 2.92506 77 79.47 2.66506 2.70506 2.74506 2.77506 2.81506 2.84506 2.86506 2.88506 2.90506 2.91506 2.91506 78 80.50 2.66506 2.70506 2.74506 2.77506 2.81506 2.83506 2.86506 2.88506 2.90506 2.91506 2.91506 79 81.54 2.66506 2.70506 2.74506 2.77506 2.80506 2.83506 2.86506 2.88506 2.89506 2.90506 2.91506 80 82.57 2.66506 2.70506 2.74506 2.77506 2.80506 2.83506 2.85506 2.88506 2.89506 2.90506 2.91506 81 83.60 2.66506 2.70506 2.74506 2.77506 2.80506 2.83506 2.85506 2.87506 2.89506 2.90506 2.90506 82 84.63 2.66506 2.70506 2.74506 2.77506 2.80506 2.83506 2.85506 2.87506 2.89506 2.90506 2.90506 83 85.66 2.66506 2.70506 2.73506 2.77506 2.80506 2.83506 2 .85506 2.87506 2.88506 2.89506 2.90506 84 86.70 2.66506 2.70506 2.73506 2.77506 2.80506 2.82506 2.85506 2.87506 2.88506 2.89506 2.90506 85 87.73 2.66506 2.70506 2.73506 2.77506 2.79506 2.82506 2.84506 2.86506 2.88506 2.89506 2.89506 86 88.76 2.66506 2.70506 2.73506 2.76506 2.79506 2.82506 2.84506 2.86506 2.88506 2.89506 2.89506 87 89.79 2.66506 2.70506 2.73506 2.76506 2.79506 2.82506 2.84506 2.86506 2.87506 2.88506 2.89506 88 90.83 2.66506 2.70506 2.73506 2.76506 2.79506 2.82506 2.84506 2.86506 2.87506 2.88506 2.89506 89 91.86 2.66506 2.70506 2.73506 2.76506 2.79506 2.82506 2.84506 2.86506 2.87506 2.88506 2.88506 90 92.89 2.66506 2.70506 2.73506 2.76506 2.79506 2.81506 2.84506 2.85506 2.87506 2.88506 2.88506 91 93.92 2.66506 2.70506 2.73506 2.76506 2.79506 2.81506 2.83506 2.85506 2.87506 2.87506 2.88506 92 94.95 2.66506 2.70506 2.73506 2.76506 2.79506 2.81506 2.83506 2.85506 2.86506 2.87506 2.88506 93 95.99 2.66506 2.70506 2.73506 2.76506 2.78506 2.81506 2.83506 2.85506 2.86506 2.87506 2.87506 94 97.02 2.66506 2.70506 2.73506 2.76506 2.78506 2.81506 2.83506 2.85506 2.86506 2.87506 2.87506 95 98.05 2.66506 2.70506 2.73506 2.75506 2.78506 83 2.81506 2.83506 2.84506 2.86506 2.87506 2.87506 Table 7.8 Continued 96 99.08 2.66506 2.70506 2.73506 2.75506 2.78506 2.80506 2.82506 2.84506 2.85506 2.86506 2.87506 97 100.11 2.66506 2.70506 2.72506 2 .75506 2.78506 2.80506 2.82506 2.84506 2.85506 2.86506 2.87506 98 101.15 2.66506 2.69506 2.72506 2.75506 2.78506 2.80506 2.82506 2.84506 2.85506 2.86506 2.86506 99 102.18 2.66506 2.69506 2.72506 2.75506 2.78506 2.80506 2.82506 2.84506 2 .85506 2.86506 2.86506 100 103.21 2.66506 2.69506 2.72506 2.75506 2.78506 2.80506 2.82506 2.83506 2.85506 2.86506 2.86506 101 104.24 2.66506 2.69506 2.72506 2.75506 2.77506 2.80506 2.82506 2.83506 2.84506 2.85506 2.86506 102 105.27 2.66506 2.69506 2.72506 2.75506 2.77506 2.80506 2.81506 2.83506 2.84506 2.85506 2.86506 103 106.31 2.66506 2.69506 2.72506 2.75506 2.77506 2.79506 2.81506 2.83506 2.84506 2.85506 2.85506 104 107.34 2.66506 2.69506 2.72506 2.75506 2.77506 2.79506 2.81506 2.83506 2.84506 2.85506 2.85506 105 108.37 2.66506 2.69506 2.72506 2.75506 2.77506 2.79506 2.81506 2.83506 2.84506 2.85506 2.85506 106 109.40 2.66506 2.69506 2.72506 2.74506 2.77506 2.79506 2.81506 2.82506 2.84506 2.84506 2.85506 107 110.44 2.66506 2.69506 2.72506 2.74506 2.77506 2.79506 2.81506 2.82506 2.83506 2.84506 2.85506 108 111.47 2.66506 2.69506 2.72506 2.74506 2.77506 2.79506 2.81506 2.82506 2.83506 2.84506 2.84506 109 112.50 2.66506 2.69506 2.72506 2.74506 2.77506 2.79506 2.80506 2.82506 2.83506 2.84506 2.84506 110 113.53 2.66506 2.69506 2.72506 2.74506 2.76506 2.78506 2.80506 2.82506 2.83506 2.84506 2.84506 111 114.56 2.66506 2.69506 2.72506 2.74506 2.76506 2.78506 2.80506 2.82506 2.83506 2.83506 2.84506 112 115.60 2.66506 2.69506 2.72506 2.74506 2.76506 2.78506 2.80506 2.81506 2.82506 2.83506 2.84506 113 116.63 2.66506 2.69506 2.72506 2.74506 2.76506 2 .78506 2.80506 2.81506 2.82506 2.83506 2.83506 114 117.66 2.66506 2.69506 2.71506 2.74506 2.76506 2.78506 2.80506 2.81506 2.82506 2.83506 2.83506 115 118.69 2.66506 2.69506 2.71506 2.74506 2.76506 2 .78506 2.80506 2.81506 2.82506 2.83506 2.83506 116 119.72 2.66506 2.69506 2.71506 2.74506 2.76506 2.78506 2.79506 2.81506 2.82506 2.83506 2.83506 117 120.76 2.66506 2.69506 2.71506 2.74506 2.76506 2.78506 2.79506 2.81506 2.82506 2.82506 2.83506 118 121.79 2.66506 2.69506 2.71506 2.74506 2.76506 2.77506 2.79506 2.80506 2.81506 2.82506 2.83506 119 122.82 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.79506 2.80506 2.81506 2.82506 2.82506 120 123.85 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.79506 2.80506 2.81506 2.82506 2.82506 121 124.88 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.79506 2.80506 2.81506 2.82506 2.82506 122 125.92 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.79506 2.80506 2.81506 2.82506 2.82506 123 126.95 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.78506 2.80506 2.81506 2.81506 2.82506 124 127.98 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.78506 2.80506 2.81506 2.81506 2.82506 125 129.01 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.78506 2.79506 2.80506 2.81506 2.81506 126 130.05 2.66506 2.69506 2.71506 2.73506 2.75506 2.77506 2.78506 2.79506 2.80506 2.81506 2.81506 127 131.08 2.66506 2.69506 2.71506 2.73506 2.75506 2.76506 2.78506 2.79506 2.80506 2.81506 2.81506 128 132.11 2.66506 2.69506 2.71506 2.73506 2.75506 2.76506 2.78506 2.79506 2.80506 2.81506 2.81506 129 133.14 2.66506 2.69506 2.71506 2.73506 2.75506 2.76506 2.78506 2.79506 2.80506 2.80506 2.81506 130 134.17 2.66506 2.69506 2.71506 2.73506 2.74506 2.76506 2.78506 2.79506 2.80506 2.80506 2.81506 131 135.21 2.66506 2.69506 2.71506 2.73506 2.74506 2.76506 2.77506 2.79506 2.80506 2.80506 2.80506 132 136.24 2.66506 2.69506 2.71506 2.73506 2.74506 2.76506 2.77506 2.79506 2.79506 2.80506 2.80506 133 137.27 2.66506 2.69506 2.71506 2.72506 2.74506 2.76506 2.77506 2.78506 2.79506 2.80506 2.80506 134 138.30 2.66506 2.69506 2.71506 2.72506 2.74506 2.76506 2.77506 2.78506 2.79506 2.80506 2.80506 135 139.33 2.66506 2.69506 2.70506 2.72506 2.74506 2.76506 2.77506 2.78506 2.79506 2.80506 2.80506 136 140.37 2.66506 2.68506 2.70506 2.72506 2.74506 2.76506 2.77506 2.78506 2.79506 2.79506 2.80506 137 141.40 2.66506 2.68506 2.70506 2.72506 2.74506 2.75506 2.77506 2.78506 2.79506 2.79506 2.80506 138 142.43 2.66506 2.68506 2.70506 2.72506 2.74506 2.75506 2.77506 2.78506 2.79506 2.79506 2.79506 139 143.46 2.66506 2 .68506 2.70506 2.72506 2.74506 2.75506 2.77506 2.78506 2.78506 2.79506 2.79506 140 144.49 2.66506 2.68506 2.70506 2.72506 2.74506 2.75506 2.76506 2.78506 2.78506 2.79506 2.79506 141 145.53 2.66506 2.68506 2.70506 2.72506 2.74506 2.75506 2.76506 2.77506 2.78506 2.79506 2.79506 142 146.56 2.66506 2.68506 2.70506 2.72506 2.74506 2.75506 2.76506 2.77506 2.78506 2.79506 2.79506 143 147.59 2.66506 2.68506 2.70506 2.72506 2.73506 2.75506 2.76506 2.77506 2.78506 2.78506 2.79506 144 148.62 2.66506 2.68506 2.70506 2.72506 2.73506 2.75506 2.76506 2.77506 2.78506 2.78506 2.79506 145 149.66 2.66506 2.68506 2.70506 2.72506 2.73506 2.75506 2.76506 2.77506 2.78506 2.78506 2.78506 146 150.69 2.66506 2.68506 2.70506 2.72506 2.73506 2.75506 2.76506 2.77506 2.78506 2.78506 2.78506 147 151.72 2.66506 2.68506 2.70506 2.72506 2.73506 2.75506 2.76506 2.77506 2.77506 2.78506 2.78506 148 152.75 2.66506 2.68506 2.70506 2.72506 2.73506 2.74506 2.76506 2.77506 2.77506 2.78506 2.78506 149 153.78 2.66506 2.68506 2.70506 2.72506 2.73506 2.74506 2.76506 2.77506 2.77506 2.78506 2.78506 150 154.82 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.77506 2.78506 2.78506 151 155.85 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.77506 2.78506 2.78506 152 156.88 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.77506 2.77506 2.78506 153 157.91 2.66506 2.68506 2.70506 2.71506 2.73506 84 2.74506 2.75506 2.76506 2.77506 2.77506 2.78506 Table 7.8 Continued 154 158.94 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.77506 2.77506 2.77506 155 159.98 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.77506 2.77506 2.77506 156 161.01 2.66506 2.68506 2.70506 2.71506 2.73506 2.74506 2.75506 2.76506 2.76506 2.77506 2.77506 157 162.04 2.66506 2.68506 2.70506 2.71506 2.72506 2.74506 2.75506 2.76506 2.76506 2.77506 2.77506 158 163.07 2.66506 2.68506 2.70506 2.71506 2.72506 2.74506 2.75506 2.76506 2.76506 2.77506 2.77506 159 164.10 2.66506 2.68506 2.70506 2.71506 2.72506 2.74506 2.75506 2.75506 2.76506 2.77506 2.77506 160 165.14 2.66506 2.68506 2.70506 2.71506 2.72506 2.74506 2.75506 2.75506 2.76506 2.77506 2.77506 161 166.17 2.66506 2.68506 2.70506 2.71506 2.72506 2.73506 2.74506 2.75506 2.76506 2.76506 2.77506 162 167.20 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.76506 2.76506 2.77506 163 168.23 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.76506 2.76506 2.76506 164 169.27 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.76506 2.76506 2.76506 165 170.30 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.76506 2.76506 2.76506 166 171.33 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.76506 2.76506 167 172.36 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2 .75506 2.75506 2.76506 2.76506 168 173.39 2.66506 2.68506 2 .69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.76506 2.76506 169 174.43 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.76506 2.76506 170 175.46 2.66506 2.68506 2.69506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.75506 2.76506 171 176.49 2.66506 2.68506 2.69506 2.70506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 2.76506 172 177.52 2.66506 2.68506 2.69506 2.70506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 2.75506 173 178.55 2.66506 2.68506 2.69506 2.70506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 2.75506 174 179.59 2.66506 2.68506 2.69506 2.70506 2.71506 2.73506 2.73506 2.74506 2.75506 2.75506 2.75506 175 180.62 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.75506 176 181.65 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.75506 2.75506 2.75506 177 182.68 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 178 183.71 2.66506 2.68506 2 .69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 179 184.75 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 180 185.78 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.75506 2.75506 181 186.81 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.74506 2.75506 182 187.84 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.74506 2.74506 2.74506 2.75506 183 188.88 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 2.75506 184 189.91 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.73506 2 .74506 2.74506 2.74506 185 190.94 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 2.74506 186 191.97 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 2.74506 187 193.00 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 2.74506 188 194.04 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.74506 2.74506 2.74506 189 195.07 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.74506 2.74506 2.74506 190 196.10 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.74506 2.74506 191 197.13 2.66506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.74506 2.74506 192 198.16 2.66506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 193 199.20 2.66506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.73506 2.73506 2.74506 2.74506 194 200.23 2.66506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.73506 2.73506 2.73506 2.74506 195 201.26 2.66506 2.68506 2.69506 2.70506 2.70506 2.71506 2.72506 2.73506 2.73506 2.73506 2.74506 196 202.29 2.66506 2.68506 2.69506 2.70506 2.70506 2.71506 2.72506 2 .73506 2.73506 2.73506 2.73506 197 203.32 2.66506 2.68506 2.69506 2.70506 2.70506 2.71506 2.72506 2 .73506 2.73506 2.73506 2.73506 198 204.36 2.66506 2.68506 2.69506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.73506 199 205.39 2.66506 2.68506 2.69506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.73506 200 206.42 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.72506 2 .72506 2.73506 2.73506 2.73506 201 207.45 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.73506 202 208.49 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.73506 203 209.52 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.73506 2.73506 2.73506 204 210.55 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.72506 2.72506 2.72506 2.73506 2.73506 205 211.58 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.73506 2.73506 206 212.61 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.73506 2 .73506 207 213.65 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.73506 2.73506 208 214.68 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.73506 2.73506 209 215.71 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 2.73506 210 216.74 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 2.73506 211 217.77 2.66506 2 .67506 2.68506 2.69506 2.70506 85 2.71506 2.71506 2.72506 2.72506 2.72506 2.72506 Table 7.8 Continued 212 218.81 2.66506 2.67506 2.68506 2.69506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 2.72506 213 219.84 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.72506 2.72506 2.72506 2.72506 214 220.87 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.72506 2.72506 2.72506 2.72506 215 221.90 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 216 222.93 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 217 223.97 2.66506 2.67506 2 .68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 218 225.00 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 219 226.03 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 220 227.06 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.72506 2.72506 2.72506 221 228.10 2.66506 2.67506 2.68506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.72506 2.72506 222 229.13 2 .66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.71506 2.71506 2.71506 2.72506 2.72506 223 230.16 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.71506 2.71506 2.71506 2.72506 2.72506 224 231.19 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.71506 2.71506 2.71506 2.72506 2.72506 225 232.22 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.71506 2.71506 2.71506 2.72506 2.72506 226 233.26 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.72506 227 234.29 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.72506 228 235.32 2.66506 2.67506 2 .68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 229 236.35 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 230 237.38 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 231 238.42 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 232 239.45 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 233 240.48 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 234 241.51 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 235 242.54 2.66506 2.67506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 2.71506 236 243.58 2.66506 2.67506 2.68506 2.68506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 2.71506 237 244.61 2.66506 2.67506 2.68506 2.68506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 2.71506 238 245.64 2.66506 2.67506 2.68506 2.68506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 2.71506 239 246.67 2.66506 2.67506 2.68506 2.68506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 2.71506 240 247.71 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 241 248.74 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2 .70506 2.70506 2.71506 2.71506 2.71506 242 249.77 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.71506 2.71506 2.71506 243 250.80 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 244 251.83 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 245 252.87 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 246 253.90 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.71506 2.71506 247 254.93 2.66506 2.67506 2.68506 2.68506 2.69506 2 .69506 2.70506 2.70506 2.70506 2.70506 2.71506 248 255.96 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2 .70506 2.70506 2.70506 2.70506 2.71506 249 256.99 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.70506 2.70506 250 258.03 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.70506 2.70506 251 259.06 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.70506 2.70506 252 260.09 2.66506 2 .67506 2.68506 2.68506 2.69506 2.69506 2.70506 2.70506 2.70506 2.70506 2.70506 253 261.12 2.66506 2.67506 2.68506 2.68506 2.69506 2.69506 2.69506 2.70506 2.70506 2.70506 2.70506 254 262.15 2.66506 2.67506 2.68506 2.68506 2.69506 2 .69506 2.69506 2.70506 2.70506 2.70506 2.70506 86 Appendix 7.10: Model Output for Darcy’s Velocity Excel formula used to calculate the Darcy ’s velocity at t = 1.03 s and x = 0.005 m. (i.e. cell D5): D5 =-('Effective Gap Radius'!DSAZ/(MASTER!vis*8*MASTER!tor)*(MASTER!st*MASTER! Agi"0.5*MASTER!ADM)/(MASTER!reffi*(l-MASTERlADM/(l- 'Moisture Content db'!D5/(1+'Moisture Content db'!D5)))"(3/2))*('Moisture Content db'!E5-'Moisture Content db'!D5))/dx Table 7.9: Predicted Darcy’s velocity profile generated by Excel, given the input variables listed in Table 4.1. Darcy's Velocity i=> 0 1 2 3 4 5 10 0 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350 0 0 0| 0 0.0500 1.76504 0 0 0 0 0 1.03 8.79505 9.16505 0 0 0 0 2.06 8.79505 4.58505 4.67505 0 0 0 3.10 6.67505 6.72505 2.33505 2.36505 0 0 4.13 6.59505 4.61505 4.54505 1.18505 1.18505 0 0000 5.16 5.58505 5.55505 2.94505 2.87505 5.92506 5.93506 0 00000 6.19 5.50505 4.33505 4.20505 1 .79505 1 .73505 2.97506 2.97506 0 7.22 4.89505 4.84505 3.10505 2.96505 1 .05505 1 .02505 1 .49506 1 .49506 0000000090 m‘laio'lwa-Kob- 8.26 4.81505 4.05505 3.89505 2.10505 1 .99505 6.01506 5.83506 7.43507 7.43507 00000000020 CD 9.29 4.41505 4.35505 3.11505 2.93505 1 .36505 1 .29505 3.38506 3.29506 3.72507 3.72507 .3 C 10.32 4.34505 3.79505 3.63505 2.25505 2.11505 8.52506 8.08506 1 .88506 1 .83506 1 .86507 A —L 11.35 4.04505 3.98505 3.05505 2.86505 1 .56505 1 .46505 5.21506 4.95506 1 .03506 9.15507 .3 N 12.39 3.98505 3.57505 3.41505 2.32505 2.16505 1 .05505 9.75506 3.13506 2.94506 5.17507 .3 03 13.42 3.75505 3.69505 2.97505 2.78505 1 .69505 1 .56505 6.82506 6.34506 1 .82506 1.47506 .3 § 14.45 3.69505 3.38505 3.23505 2.35505 2.17505 1.19505 1.10505 4.33506 3.91506 9.13507 .3 0" 15.48 3.52505 3.46505 2.88505 2.69505 1 .78505 1.63505 8.16506 7.44506 2.63506 1 .95506 .3 a) 16.51 3.46505 3.22505 3.07505 2.35505 2.16505 1 .30505 1.19505 5.41506 4.70506 1.31506 —L N 17.55 3.32505 3.27505 2.80505 2.61505 1 .83505 1.67505 9.26506 8.27506 3.37506 2.35506 .3 a 18.58 3.27505 3.08505 2.94505 2.33505 2.14505 1 .39505 1 .25505 6.33506 5.31506 1.68506 .3 (O 19.61 3.16505 3.11505 2.72505 2.53505 1.87505 1 .69505 1.01505 8.88506 4.01506 2.65506 N 0 20.64 3.11505 2.95505 2.82505 2.30505 2.11505 1 .44 505 1 .29505 7.09506 5.77506 2.01506 N .A 21.67 3.01505 2.97505 2.64505 2.46505 1 .88505 1 .70505 1 .08505 9.31506 4.56506 2.88506 N N 22.71 2.97 505 2.83505 2.71505 2.27505 2.07505 1 .49505 1 .31505 7.70506 6.10506 2.28506 N 0 23.74 2.89505 2.84505 2.56505 2.39505 1 .88505 1.69505 1.13505 9.60506 5.00506 3.04506 N & 24.77 2.85505 2.73505 2.62505 2.23505 2.04505 1.51505 1 .32505 8.18506 6.32506 2.50506 N 0| 25.80 2.78505 2.73505 2.49505 2.33505 1 .88505 1 .68505 1.17505 9.78506 5.35506 3.15506 N O) 26.83 2.74505 2.64505 2.53505 2.19505 2.00505 1 .53505 1.33505 8.54506 6.46506 2.67506 N N 27.87 2.68505 2.64505 2.42505 2.26505 1 .87505 1 .66505 1.19505 9.86506 5.62506 3.22506 N a) 28.90 2.64505 2.56505 2.45505 2.15505 1 .96505 1 .53505 1.32505 8.80506 6.54506 2.80506 N (D 29.93 2.59505 2.55505 2.36505 2.21505 1 .85505 1 .64505 1 .21505 9.89506 5.81506 3.26506 (3) 0 30.96 2.55505 2.48505 2.38505 2.11505 1 .92 505 1 .53505 1.31505 8.98506 6.57506 2.90506 O) .3 32 .00 2.50505 2.47505 2.30505 2.15505 1.83505 1.62505 1.22505 9.86506 5.95506 3.28506 0) N 33.03 2.47505 2.41505 2.31505 2.07505 1 .88505 1.53505 1.30505 9.08506 6.57506 2.97506 (a) (3) 34.06 2.43505 2.39505 2.24505 2.10505 1 .80505 87 1.59505 1 .22505 9.79506 6.04506 3.27506 0000000000000000000000000000000000 Table 7.9 Continued 34 35.09 2.40505 2.34505 2.25505 2.03505 1.84505 1.51505 1 .29505 9.13506 6.53506 3.01506 35 36.12 2.36505 2.32505 2.19505 2.04505 1 .77505 1 .56505 1 .22505 9.69506 6.08506 3.25506 36 37.16 2.33505 2.28505 2.19505 1 .98 505 1 .80505 1 .50505 1 .27505 9.14506 6.47506 3.03506 37 38.19 2.29505 2.26505 2.13505 2.00505 1 .74505 1.54505 1 .21505 9.57506 6.10506 3.22506 38 39.22 2.27505 2.22505 2.13505 1 .94505 1 .77505 1 .48505 1 .25505 9.10506 6.40506 3.03506 39 40.25 2.23505 2.20505 2.08505 1 .95 505 1.71505 1.51505 1 .20505 9.43506 6.08506 3.18506 40 41.28 2.20505 2.16505 2.07505 1 .90505 1 .73505 1.46505 1 .23505 9.04 506 6.31506 3.02506 41 42.32 2.17505 2.14505 2.03505 1 .90505 1 .68505 1 .48505 1.18505 9.28506 6.04506 3.13506 42 43.35 2.15505 2.11505 2.02505 1 .86 505 1 .69505 1 .43505 1 .20505 8.95506 6.21506 3.00506 43 44.38 2.12505 2.09505 1 .99505 1 .86 505 1 .65505 1 .45505 1.17505 9.12506 5.98506 3.08506 44 45.41 2.09505 2.06505 1 .97505 1 .82 505 1 .65505 1 .41505 1.18505 8.84506 6.11506 2.97506 45 46.44 2.07505 2.04505 1 .94505 1.81505 1 .62505 1 .42505 1.15505 8.96506 5.91506 3.03506 46 47.48 2.04505 2.01505 1 .93505 1 .78505 1 .62505 1 .39505 1.16505 8.71506 6.00506 2.94506 47 48.51 2.02505 1 .99505 1 .90505 1 .77505 1 .59505 1 .39505 1 .13505 8.79506 5.83506 2.98506 48 49.54 1.99505 1 .96505 1.88505 1 .74505 1 .58505 1 .36505 1.13505 8.58506 5.89506 2.89506 49 50.57 1.97505 1 .94505 1.85505 1 .73505 1 .55505 1 .36505 1.11505 8.62506 5.74506 2.92506 50 51 .61 1.95505 1.91505 1 .84505 1.71505 1.55505 1.33505 1.11505 8.43506 5.77506 2.85506 51 52.64 1.92505 1 .89505 1.81505 1 .69505 1.52505 1 .33505 1 .09505 8.45506 5.65506 2.86506 52 53.67 1 .90505 1 .87505 1 .80505 1 .67505 1.51505 1 .31505 1 .09505 8.28506 5.66506 2.80506 53 54.70 1 .88505 1 .85505 1 .77505 1 .66505 1 .49505 1 .30505 1.07505 8.28506 5.55506 2.80506 54 55.73 1 .86505 1.83505 1 .75505 1.63505 1 .48505 1 .28505 1 .07505 8.13506 5.54506 2.75506 55 56.77 1 .83505 1.81505 1 .73505 1 .62 505 1 .46505 1.27505 1.05505 8.11506 5.45506 2.74506 56 57.80 1.81505 1 .78505 1.71505 1 .60505 1 .45505 1.25505 1.04505 7.97506 5.43506 2.69506 57 58.83 1 .79505 1 .77505 1 .69505 1 .58505 1.43505 1.25505 1 .03505 7.94506 5.34506 2.69506 58 59.86 1 .77505 1 .74505 1 .68505 1.56505 1.42505 1 .23505 1 .02505 7.82506 5.32506 2.64506 59 60.89 1 .75505 1 .73505 1 .65505 1 .55505 1 .40505 1 .22505 1.01505 7.77506 5.24506 2.63506 60 61.93 1.73505 1.71505 1 .64505 1 .53505 1 .38505 1 .20505 9.99506 7.66506 5.20506 2.59506 61 62.96 1.71505 1 .69505 1 .62505 1.51505 1 .37505 1.19505 9.85506 7.60506 5.13506 2.57506 62 63.99 1 .70505 1 .67505 1 .60505 1 .49505 1 .35505 1.18505 9.77506 7.50506 5.09506 2.53506 63 65.02 1 .68505 1 .65505 1 .58505 1.48505 1.34505 1.17505 9.65506 7.44506 5.02506 2.51506 64 66.05 1 .66505 1.63505 1 .57505 1.46505 1.32505 1.15505 9.56506 7.34506 4.98506 2.48506 65 67.09 1 .64505 1.61505 1 .55505 1 .45505 1.31505 1.14505 9.44506 7.28506 4.92506 2.46506 66 68.12 1 .62505 1 .59505 1 .53505 1.43505 1 .29505 1 .13505 9.35506 7.19506 4.87506 2.43506 67 69.15 1 .60505 1 .58505 1.51505 1 .41 505 1 .28505 1.12505 9.24506 7.12506 4.81506 2.40506 68 70.18 1.59505 1.56505 1 .50505 1 .40505 1.27505 1.10505 9.15506 7.03506 4.77506 2.37506 69 71 .22 1.57505 1 .54505 1 .48505 1.38505 1 .25505 1 .09505 9.04506 6.96506 4.71506 2.35506 70 72.25 1 .55505 1 .53505 1 .46505 1.37505 1 .24505 1.08505 8.95506 6.88506 4.66506 2.32506 71 73.28 1 .53505 1.51505 1 .45505 1 .35505 1 .22505 1.07505 8.84506 6.81506 4.61506 2.30506 72 74.31 1 .52505 1 .49505 1 .43505 1 .34505 1 .21505 1.06505 8.75506 6.73506 4.56506 2.27506 73 75.34 1 .50505 1 .48505 1 .42505 1 .32505 1 .20505 1.04505 8.65506 6.66506 4.51506 2.25506 74 76.38 1 .48505 1 .46505 1 .40505 1.31505 1.18505 1 .03505 8.56506 6.59506 4.46506 2.22506 75 77.41 1 .47505 1 .44 505 1 .39505 1.29505 1.17505 1 .02505 8.46506 6.52506 4.41506 2.19506 76 78.44 1 .45505 1 .43505 1 .37505 1 .28505 1.16505 1.01505 8.37506 6.44506 4.36506 2.17506 77 79.47 1 .44505 1 .41505 1 .35505 1 .27505 1.15505 9.99506 8.28506 6.37506 4.31506 2.15506 78 80.50 1 .42505 1 .40505 1 .34505 1 .25505 1 .13505 9.88506 8.19506 6.30506 4.26506 2.12506 79 81.54 1 .40505 1 .38505 1 .33505 1 .24505 1.12505 9.77506 8.10506 6.23506 4.22506 2.10506 80 82.57 1 .39505 1 .37505 1.31505 1 .22505 1.11505 9.66506 8.01506 6.16506 4.17506 2.07506 81 83.60 1 .37505 1 .35505 1 .30505 1.21505 1 .10505 9.56506 7.92506 6.10506 4.12506 2.05506 82 84.63 1.36505 1.34505 1 .28505 1 .20505 1 .08505 9.45506 7.83506 6.03506 4.08506 2.03506 83 85.66 1.34505 1 .32505 1 .27505 1.18505 1 .07505 9.35506 7.75506 5.96506 4.03506 2.00506 84 86.70 1.33505 1.31505 1 .25505 1.17505 1 .06505 9.24506 7.66506 5.89506 3.99506 1.98506 85 87.73 1 .32505 1 .29505 1 .24505 1.16505 1 .05505 9.14506 7.58506 5.83506 3.94506 1.96506 86 88.76 1 .30505 1 .28505 1 .23505 1.15505 1.04505 9.04506 7.49506 5.77506 3.90506 1.94506 89.79 1 .29505 1 .27505 1 .21505 1.13505 1 .03505 8.94506 7.41 506 5.70506 3.85506 1.91506 90.83 1 .27505 1 .25505 1 .20505 1.12505 1.01505 8.84506 7.33506 5.64506 3.81506 1 .89506 91 .86 1.26505 1.24505 1.19505 1.11505 1 .00505 8.75506 7.25506 5.58506 3.77506 1 .87506 92.89 1 .25505 1.23505 1.17505 1.10505 9.93506 88 8.65506 7.17506 5.51506 3.73506 1 .85506 000000000000000000000000000000000000000000000000000000000 Table 7.9 Continued 91 93.92 1.23505 1.21505 1.16505 1 .08505 9.82506 8.56506 7.09506 5.45506 3.69506 1 .83506 92 94.95 1 .22505 1 .20505 1.15505 1.07505 9.71506 8.46506 7.01506 5.39506 3.64506 1.81506 93 95.99 1 .21505 1.19505 1.14505 1 .06505 9.60506 8.37506 6.93506 5.33506 3.60506 1 .79506 94 97.02 1.19505 1.17505 1.12505 1 .05505 9.50506 8.28506 6.86506 5.27506 3.56506 1.77506 95 98.05 1.18505 1.16505 1.11505 1.04505 9.40506 8.19506 6.78506 5.22506 3.52506 1.75506 96 99.08 1.17505 1.15505 1.10505 1.03505 9.29506 8.10506 6.71506 5.16506 3.49506 1.73506 97 100.11 1.16505 1.14505 1 .09505 1 .02505 9.19506 8.01506 6.63506 5.10506 3.45506 1.71506 98 101.15 1.14505 1.12505 1 .08505 1 .00505 9.09506 7.92506 6.56506 5.05506 3.41506 1.69506 99 102.18 1.13505 1.11505 1 .06505 9.94506 8.99506 7.83506 6.49506 4.99506 3.37 506 1.67506 100 103.21 1.12505 1.10505 1 .05505 9.83506 8.89506 7.75506 6.42506 4.93506 3.33506 1 .65506 101 104.24 1.11505 1 .09505 1.04505 9.72506 8.80506 7.66506 6.35506 4.88506 3.30506 1.63506 102 105.27 1 .09505 1 .08505 1 .03505 9.62506 8.70506 7.58506 6.28506 4.83506 3.26506 1.61506 103 106.31 1.08505 1 .06505 1 .02505 9.51506 8.61506 7.50506 6.21506 4.77506 3.22506 1 .59506 104 107.34 1 .07505 1 .05505 1.01505 9.41506 8.51506 7.41506 6.14506 4.72506 3.19506 1 .58506 105 108.37 1 .06 505 1.04505 9.97506 9.31506 8.42506 7.33506 6.07506 4.67506 3.15506 1 .56506 106 109.40 1 .05505 1 .03505 9.87506 9.21506 8.33506 7.25506 6.01506 4.62506 3.12506 1.54506 107 110.44 1.04505 1 .02505 9.76506 9.11506 8.24506 7.17506 5.94506 4.57506 3.08506 1 .52 506 108 111.47 1.03505 1.01505 9.65506 9.01506 8.15506 7.10506 5.88506 4.52506 3.05506 1.51506 109 112.50 1.02505 9.97506 9.55506 8.91506 8.06506 7.02506 5.81506 4.47506 3.01506 1 .49506 110 113.53 1 .00505 9.86506 9.45506 8.81506 7.97506 6.94506 5.75506 4.42506 2.98506 1 .47506 111 114.56 9.94506 9.75506 9.35506 8.72506 7.89506 6.87506 5.69506 4.37506 2.95506 1 .46506 112 115.60 9.83506 9.65506 9.24 506 8.62 506 7.80506 6.79506 5.62506 4.32506 2.92506 1 .44 506 113 116.63 9.73506 9.55506 9.15506 8.53506 7.71506 6.72506 5.56506 4.27506 2.88506 1 .42506 114 117.66 9.62506 9.44506 9.05506 8.44506 7.63506 6.64506 5.50506 4.23506 2.85506 1.41506 115 118.69 9.52506 9.34506 8.95506 8.35506 7.55506 6.57506 5.44506 4.18506 2.82506 1 .39506 116 119.72 9.42506 9.24506 8.85506 8.26506 7.47506 6.50506 5.38506 4.13506 2 .79506 1 .38506 117 120.76 9.32506 9.14506 8.76506 8.17506 7.39506 6.43506 5.32506 4.09506 2.76506 1 .36506 118 121.79 9.22506 9.04506 8.66506 8.08506 7.31506 6.36506 5.26506 4.04506 2.73506 1 .35506 119 122.82 9.12506 8.95506 8.57506 7.99506 7.23506 6.29506 5.21506 4.00506 2.70506 1 .33506 120 123.85 9.02506 8.85506 8.48506 7.91506 7.15506 6.22506 5.15506 3.96506 2.67506 1 .32506 121 124.88 8.92506 8.76506 8.39506 7.82506 7.07506 6.16506 5.09506 3.91506 2.64506 1 .30506 122 125.92 8.83506 8.66506 8.30506 7.74506 6.99506 6.09506 5.04506 3.87506 2.61506 1.29506 123 126.95 8.73506 8.57506 8.21506 7.65506 6.92506 6.02506 4.98506 3.83506 2.58506 1.27506 124 127.98 8.64506 8.48 506 8.12506 7.57506 6.84506 5.96506 4.93506 3.79506 2.55506 1.26506 125 129.01 8.55506 8.39506 8.03506 7.49506 6.77506 5.89506 4.88506 3.75506 2 .53506 1.24506 126 130.05 8.46506 8.30506 7.94506 7.41506 6.70506 5.83506 4.82506 3.70506 2.50506 1 .23506 127 131.08 8.37506 8.21506 7.86506 7.33506 6.62506 5.77506 4.77506 3.66506 2.47506 1 .22506 128 132.11 8.28506 8.12506 7.78506 7.25506 6.55506 5.70506 4.72506 3.62506 2.44506 1 .20506 129 133.14 8.19506 8.03506 7.69506 7.17506 6.48506 5.64506 4.67506 3.58506 2.42506 1.19506 130 134.17 8.10506 7.95506 7.61506 7.09506 6.41506 5.58506 4.62 506 3.55506 2.39506 1.18506 131 135.21 8.02506 7.86506 7.53506 7.02506 6.34506 5.52506 4.57506 3.51506 2.36506 1.16506 132 136.24 7.93506 7.78506 7.45506 6.94506 6.27506 5.46506 4.52506 3.47506 2.34506 1.15506 133 137.27 7.85506 7.70506 7.37506 6.87506 6.21506 5.40506 4.47506 3.43506 2.31506 1.14506 134 138.30 7.76506 7.61506 7.29506 6.79506 6.14506 5.34506 4.42506 3.39506 2.29506 1.13506 135 139.33 7.68506 7.53506 7.21506 6.72506 6.07506 5.28506 4.37506 3.36506 2.26506 1.11506 136 140.37 7.60506 7.45506 7.13506 6.65506 6.01506 5.23506 4.32506 3.32506 2.24506 1.10506 137 141.40 7.52506 7.37506 7.06506 6.58506 5.94506 5.17506 4.28506 3.28506 2.21506 1 .09506 138 142.43 7.44506 7.29506 6.98506 6.51506 5.88506 5.12506 4.23506 3.25506 2.19506 1 .08506 139 143.46 7.36506 7.22506 6.91506 6.44506 5.82506 5.06506 4.19506 3.21506 2.16506 1 .06506 140 144.49 7.28506 7.14506 6.83506 6.37506 5.75506 5.01506 4.14506 3.18506 2.14506 1.05506 141 145.53 7.20506 7.06506 6.76506 6.30506 5.69506 4.95506 4.10506 3.14506 2.12506 1.04506 142 146.56 7.13506 6.99506 6.69506 6.23506 5.63506 4.90506 4.05506 3.11506 2.09506 1.03506 143 147.59 7.05506 6.91506 6.61506 6.16506 5.57506 4.85506 4.01506 3.08506 2.07506 1 .02506 144 148.62 6.98506 6.84506 6.54506 6.10506 5.51506 4.79506 3.96506 3.04506 2.05506 1.01506 145 149.66 6.90506 6.77506 6.47506 6.03506 5.45506 4.74506 3.92506 3.01506 2.03506 9.96507 146 150.69 6.83506 6.69506 6.41506 5.97506 5.39506 89 4.69506 3.88506 2.98506 2.00506 9.85507 00000000000000000000000000000000000000000000000000000000 Table 7.9 Continued 147 151.72 6.76506 6.62506 6.34506 5.90506 5.33506 4.64506 3.84506 2.94506 1.98506 9.74507 148 152.75 6.68506 6.55506 6.27506 5.84506 5.28506 4.59506 3.80506 2.91506 1 .96506 9.64507 149 153.78 6.61506 6.48506 6.20506 5.78506 5.22506 4.54506 3.76506 2.88506 1.94506 9.53507 150 154.82 6.54506 6.41506 6.14506 5.72506 5.16506 4.49506 3.71506 2.85506 1 .92506 9.43507 151 155.85 6.47506 6.34506 6.07506 5.65506 5.11506 4.44 506 3.67506 2.82 506 1 .90506 9.32507 152 156.88 6.40506 6.28506 6.01506 5.59506 5.05506 4.40506 3.63506 2.79506 1 .88506 9.22507 153 157.91 6.34506 6.21506 5.94506 5.53506 5.00506 4.35506 3.60506 2.76506 1 .86506 9.12507 154 158.94 6.27506 6.14506 5.88506 5.48506 4.95506 4.30506 3.56506 2.73506 1 .84506 9.02507 155 159.98 6.20506 6.08506 5.82506 5.42506 4.89506 4.26506 3.52506 2.70506 1 .82 506 8.92507 156 161.01 6.14506 6.01506 5.75506 5.36506 4.84506 4.21506 3.48506 2.67506 1 .80506 8.82507 157 162.04 6.07506 5.95 506 5.69506 5.30506 4.79506 4.16506 3.44506 2.64506 1 .78506 8.73507 158 163.07 6.01506 5.89506 5.63506 5.24506 4.74 506 4.12506 3.41506 2.61506 1 .76506 8.63507 159 164.10 5.94506 5.82506 5.57506 5.19506 4.69506 4.08506 3.37506 2.59506 1 .74 506 8.54507 160 165.14 5.88506 5.76506 5.51506 5.13506 4.64506 4.03506 3.33506 2.56506 1 .72506 8.44507 161 166.17 5.82506 5.70506 5.45506 5.08506 4.59506 3.99506 3.30506 2.53506 1 .70506 8.35507 162 167.20 5.76506 5.64506 5.39506 5.02 506 4.54506 3.95506 3.26506 2.50506 1 .68 506 8.26507 163 168.23 5.70506 5.58506 5.34506 4.97506 4.49506 3.90506 3.23506 2.48506 1 .67506 8.17507 164 169.27 5.64506 5.52506 5.28506 4.92506 4.44506 3.86506 3.19506 2.45506 1 .65506 8.08507 165 170.30 5.58506 5.46506 5.22506 4.87506 4.39506 3.82506 3.16506 2.42506 1 .63506 7.99507 166 171.33 5.52506 5.40506 5.17506 4.81506 4.35506 3.78506 3.12506 2.40506 1.61506 7.90507 167 172.36 5.46506 5.35506 5.11506 4.76506 4.30506 3.74 506 3.09506 2.37 506 1 .59506 7.82507 168 173.39 5.40506 5.29506 5.06506 4.71506 4.25506 3.70506 3.06506 2.35506 1 .58506 7.73507 169 174.43 5.34506 5.23506 5.01506 4.66506 4.21506 3.66506 3.02506 2.32506 1 .56506 7.65507 170 175.46 5.29506 5.18506 4.95506 4.61506 4.16506 3.62506 2.99506 2.29506 1 .54506 7.57507 171 176.49 5.23506 5.12506 4.90506 4.56506 4.12506 3.58506 2.96506 2.27506 1 .53506 7.48507 172 177.52 5.17506 5.07506 4.85506 4.51506 4.08506 3.54506 2.93506 2.25506 1.51506 7.40507 173 178.55 5.12506 5.02506 4.80506 4.47506 4.03506 3.51506 2.90506 2.22506 1 .49506 7.32507 174 179.59 5.07506 4.96506 4.74 506 4.42506 3.99506 3.47506 2.87506 2.20506 1 .48506 7.24507 175 180.62 5.01506 4.91506 4.69506 4.37506 3.95506 3.43506 2.84506 2.17506 1 .46506 7.16507 176 181.65 4.96506 4.86506 4.64506 4.32506 3.90506 3.39506 2.81506 2.15506 1 .45506 7.09507 177 182.68 4.91506 4.81506 4.60506 4.28506 3.86506 3.36506 2.78506 2.13506 1 .43506 7.01507 178 183.71 4.85506 4.76506 4.55506 4.23506 3.82 506 3.32506 2.75506 2.11506 1 .42506 6.93507 179 184.75 4.80506 4.70506 4.50506 4.19506 3.78506 3.29506 2.72506 2.08506 1 .40506 6.86507 180 185.78 4.75506 4.65506 4.45506 4.14506 3.74506 3.25506 2.69506 2.06506 1 .39506 6.78507 181 186.81 4.70506 4.61506 4.40506 4.10506 3.70506 3.22506 2.66506 2.04506 1 .37506 6.71507 182 187.84 4.65506 4.56506 4.36506 4.06506 3.66506 3.18506 2.63506 2.02506 1 .36506 6.64507 183 188.88 4.60506 4.51506 4.31506 4.01506 3.62506 3.15506 2.60506 1 .99506 1 .34506 6.56507 184 189.91 4.55506 4.46506 4.26506 3.97506 3.58506 3.11506 2.57506 1 .97506 1 .33506 6.49507 185 190.94 4.51506 4.41506 4.22506 3.93506 3.55506 3.08506 2.55506 1 .95506 1.31506 6.42507 186 191.97 4.46506 4.37506 4.17506 3.89506 3.51506 3.05506 2.52506 1 .93506 1 .30506 6.35507 187 193.00 4.41506 4.32506 4.13506 3.84506 3.47506 3.02506 2.49506 1.91506 1 .28506 6.28507 188 194.04 4.37506 4.27506 4.09506 3.80506 3.43506 2.98506 2.47506 1 .89506 1 .27506 6.22507 189 195.07 4.32506 4.23506 4.04506 3.76506 3.40506 2.95506 2.44506 1 .87506 1 .26506 6.15507 190 196.10 4.27506 4.18506 4.00506 3.72506 3.36506 2.92506 2.41506 1 .85506 1 .24 506 6.08507 191 197.13 4.23506 4.14506 3.96506 3.68506 3.32506 2.89506 2.39506 1 .83506 1 .23506 6.02507 192 198.16 4.18506 4.10506 3.92506 3.64506 3.29506 2.86506 2.36506 1.81506 1 .22506 5.95507 193 199.20 4.14506 4.05506 3.87506 3.61506 3.25506 2.83506 2.34506 1 .79506 1 .20506 5.89507 194 200.23 4.10506 4.01506 3.83506 3.57506 3.22506 2.80506 2.31506 1 .77506 1.19506 5.82507 195 201.26 4.05506 3.97506 3.79506 3.53506 3.19506 2. 77506 2.29506 1 .75506 1.18506 5.76507 196 202.29 4.01506 3.93506 3.75506 3.49506 3.15506 2.74 506 2.26506 1 .73506 1.17506 5.70507 197 203.32 3.97506 3.88506 3.71506 3.45506 3.12506 2.71506 2.24 506 1 .72506 1.15506 5.64507 198 204.36 3.93506 3.84506 3.67506 3.42506 3.09506 2.68506 2.21506 1.70506 1.14506 5.58507 199 205.39 3.88506 3.80506 3.63506 3.38 506 3.05506 2.65506 2.19506 1.68506 1.13506 5.52507 200 206.42 3.84506 3.76506 3.60506 3.35506 3.02506 2.62506 2.17506 1.66506 1.12506 5.46507 201 207.45 3.80506 3.72506 3.56506 3.31506 2.99506 2.60506 2.14506 1 .64 506 1.10506 5.40507 202 208.49 3.76506 3.68506 3.52506 3.28506 2.96506 90 2.57506 2.12506 1.63506 1 .09506 5.34507 00000000000000000000000000000000000000000000000000000000 Table 7.9 Continued 203 209.52 3.72506 3.64506 3.48506 3.24506 2.92506 2.54506 2.10506 1.61506 1 .08506 5.28507 204 210.55 3.68506 3.61506 3.45506 3.21506 2.89506 2.51506 2.08506 1 .59506 1 .07506 5.23507 205 211.58 3.64506 3.57506 3.41506 3.17506 2.86506 2.49506 2.05506 1 .57506 1 .06506 5.17507 206 212.61 3.61506 3.53506 3.37506 3.14506 2.83506 2.46506 2.03506 1 .56506 1 .05506 5.11507 207 213.65 3.57506 3.49506 3.34506 3.11506 2.80506 2.44506 2.01506 1.54506 1 .04506 5.06507 208 214.68 3.53506 3.46506 3.30506 3.07506 2.77506 2.41506 1 .99506 1.53506 1 .02 506 5.01507 209 215.71 3.49506 3.42506 3.27506 3.04506 2.74506 2.38506 1 .97506 1.51506 1.01506 4.95507 210 216.74 3.46506 3.38506 3.23506 3.01506 2.71506 2.36506 1 .95506 1 .49506 1 .00506 4.90507 211 217.77 3.42506 3.35506 3.20506 2.98506 2.69506 2.33506 1 .93506 1 .48506 9.92507 4.85507 212 218.81 3.38506 3.31506 3.16506 2.94506 2.66506 2.31506 1.91506 1 .46506 9.82507 4.79507 213 219.84 3.35506 3.28506 3.13506 2.91506 2.63506 2.28506 1 .89506 1 .45506 9.71507 4.74507 214 220.87 3.31506 3.24 506 3.10506 2.88506 2.60506 2.26506 1 .87 506 1 .43506 9.61507 4.69507 215 221.90 3.28506 3.21506 3.07506 2.85506 2.57506 2.24506 1 .85506 1 .41506 9.51507 4.64507 216 222.93 3.24506 3.17506 3.03506 2.82506 2.55506 2.21506 1 .83506 1 .40506 9.40507 4.59507 217 223.97 3.21506 3.14506 3.00506 2.79506 2.52506 2.19506 1.81506 1 .38506 9.30507 4.54507 218 225.00 3.18506 3.11506 2.97506 2.76506 2.49506 2.17506 1 .79506 1 .37506 9.20507 4.49507 219 226.03 3.14506 3.07506 2 .94 506 2.73506 2.47506 2.14506 1 .77506 1 .36506 9.11507 4.45507 220 227.06 3.11506 3.04506 2.91506 2.70506 2.44506 2.12506 1 .75506 1 .34506 9.01507 4.40507 221 228.10 3.08506 3.01506 2.88506 2.68506 2.41506 2.10506 1.73506 1 .33506 8.91507 4.35507 222 229.13 3.04506 2.98506 2.85506 2.65506 2.39506 2.07506 1.71506 1.31506 8.82507 4.30507 223 230.16 3.01506 2.95506 2.82506 2.62506 2.36506 2.05506 1 .70506 1 .30506 8.72507 4.26507 224 231.19 2.98506 2.92506 2.79506 2.59506 2.34506 2.03506 1 .68506 1 .29506 8.63507 4.21507 225 232.22 2.95506 2.89506 2.76506 2.56506 2.31506 2.01506 1 .66506 1 .27506 8.54507 4.17507 226 233.26 2.92506 2.85506 2.73506 2.54506 2.29506 1 .99506 1.64506 1.26506 8.45507 4.12507 227 234.29 2.89506 2.82506 2.70506 2.51506 2.26506 1 .97506 1 .62506 1 .24506 8.36507 4.08507 228 235.32 2.86506 2.79506 2.67506 2.48506 2 .24506 1 .95506 1.61506 1 .23506 8.27507 4.04507 229 236.35 2.83506 2.77506 2.64506 2.46506 2.22506 1 .93506 1 .59506 1 .22506 8.18507 3.99507 230 237.38 2.80506 2.74506 2.61506 2.43506 2.19506 1.91506 1 .57506 1.21506 8.10507 3.95507 231 238.42 2.77506 2.71506 2.59506 2.41 506 2.17506 1 .89506 1 .56506 1 .19506 8.01507 3.91507 232 239.45 2.74506 2.68506 2.56506 2.38506 2.15506 1 .87506 1.54506 1.18506 7.92507 3.87507 233 240.48 2.71506 2.65506 2.53506 2.36506 2.12506 1 .85506 1 .52506 1.17506 7.84507 3.82507 234 241.51 2.68506 2.62506 2.51506 2.33506 2.10506 1 .83506 1.51506 1.16506 7.76507 3.78507 235 242.54 2.65506 2.59506 2.48506 2.31506 2.08506 1.81506 1 .49506 1.14506 7.67507 3.74507 236 243.58 2 .62506 2.57506 2.45506 2.28506 2.06506 1 .79506 1 .48506 1.13506 7.59507 3.70507 237 244.61 2.60506 2.54506 2.43506 2.26506 2.04506 1 .77506 1 .46506 1.12506 7.51507 3.66507 238 245.64 2.57506 2.51506 2.40506 2.23506 2.01506 1 .75506 1 .44506 1.11506 7.43507 3.62507 239 246.67 2.54506 2.49506 2.38506 2.21506 1 .99506 1 .73506 1.43506 1.10506 7.35507 3.59507 240 247.71 2.52506 2.46506 2.35506 2.19506 1 .97506 1.71506 1.41506 1 .08506 7.27507 3.55507 241 248.74 2.49506 2.44506 2.33506 2.16506 1 .95506 1 .69506 1 .40506 1 .07506 7.20507 3.51507 242 249.77 2.46506 2.41506 2.30506 2.14506 1 .93506 1 .68506 1 .38506 1 .06506 7.12507 3.47507 243 250.80 2.44506 2.38506 2.28506 2.12506 1.91506 1 .66506 1 .37506 1 .05506 7.05507 3.44507 244 251.83 2.41 506 2.36506 2.25506 2.10506 1 .89506 1 .64506 1 .36506 1 .04506 6.97507 3.40507 245 252.87 2 .39506 2.33506 2.23506 2 .07506 1 .87506 1 .62506 1.34506 1 .03506 6.90507 3.36507 246 253.90 2.36506 2.31506 2.21506 2.05506 1 .85506 1.61506 1 .33506 1 .02506 6.82507 3.33507 247 254.93 2.34506 2.29506 2.18506 2.03506 1 .83506 1 .59506 1.31506 1.01506 6.75507 3.29507 248 255.96 2.31506 2.26506 2.16506 2.01506 1.81506 1 .57506 1.30506 9.95507 6.68507 3.26507 249 256.99 2.29506 2.24506 2.14506 1 .99506 1 .79506 1 .56506 1 .29506 9.84507 6.61507 3.22507 250 258.03 2.26506 2.21506 2.11506 1 .97506 1 .77506 1 .54506 1 .27506 9.74507 6.54507 3.19507 251 259.06 2.24506 2.19506 2.09506 1 .95506 1 .75506 1 .52 506 1 .26506 9.64507 6.47507 3.15507 252 260.09 2.22506 2.17506 2.07506 1 .93506 1 .74 506 1.51506 1 .25506 9.53507 6.40507 3.12507 253 261.12 2.19506 2.14506 2.05506 1 .90506 1.72506 1.49506 1 .23506 9.43507 6.33507 3.09507 254 262.15 2.17506 2.12506 2.03506 1 .88506 1.70506 1 .48506 1 .22506 9.33507 6.27507 3.05507 0000000000000000000000000000000000000000000000000000 91 Appendix 7.11: Model Output for Salmonella Velocity Excel formula used to calculate the Salmonella concentration at t = 1.03 s and x = 0.005 m. (i.e. cell D5): D5 =B*(1/(MASTER!dsal/(2*'Effective Gap Radius' ! D5))"O. 128)*((MASTER!Lsal/MASTER!dsal)"0. 128*‘Marinade Velocity’!D5-SQRT(2*MASTER! g*(2*'Effective Gap Radius'!D5)*(MASTER!rdsal-1)*(MASTER!Lsal/MASTER!dsal))*(1- (MASTER!dsa1/(2*'Effective Gap Radius'!D5))"2))*((2*'Effective Gap Radius'!D5)/dt)"n Table 7.10: Predicted Salmonella velocity profile generated by Excel, given the input variables listed in Table 4.1. Salmonella Velocity n 1 9 '4 4 ‘3 R 7 R 0 1n 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 1 .5503 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0500 0.0500 0.0E+00 0.0E+00 0.0E+00 0.0E+00 7.4504 7.7504 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 2.75 7.4504 3.8504 3.9504 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 4.13 5.6504 5.6504 1 .9504 2.0504 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 5.50 5.6504 3.9504 3.8504 9.8505 9.9505 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 6.88 4.7504 4.7504 2.5504 2.4504 4.9505 4.9505 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 8.26 4.7504 3.6504 3.5504 1 .5504 1 .4504 2.5505 2.5505 0.0E+00 0.0E+00 0.0E+00 0.0E+00 9.63 4.1504 4.1504 2.6504 2.5504 8.7505 8.5505 1.2505 1.2505 0.0E+00 0.0E+00 0.0E+00 ONGUIJSQN-ioh- 11.01 4.1504 3.4504 3.3504 1.8504 1 .7504 5.0505 4.9505 6.2506 6.2506 0.0E+00 0.0E+00 (D 12.39 3.7504 3.7504 2.6504 2.5504 1.1504 1.1504 2.8505 2.7505 3.1 506 3.1506 0.0E+00 .3 o 13.76 3.7504 3.2504 3.0504 1 .9504 1.8504 7.1505 6.7505 1 .6505 1.5505 1 .5506 0.0E+00 A A 15.14 3.4504 3.4504 2.6504 2.4504 1.3504 1.2504 4.3505 4.1505 8.6506 7.6506 0.0E+00 .3 N 16.51 3.4504 3.0504 2.9504 1.9504 1.8504 8.7505 8.1 505 2.6505 2.4505 4.3506 0.0E+00 .3 O.) 17.89 3.2504 3.1504 2.5504 2.3504 1.4504 1.3504 5.7505 5.3505 1 .5505 1.2505 0.0500 .3 # 19.27 3.1504 2.9504 2.7504 2.0504 1 .8504 1.0504 9.1505 3.6505 3.3505 7.6506 0.0E+00 .3 01 20.64 3.0504 2.9504 2.4504 2.3504 1.5504 1.4504 6.8505 6.2505 2.2505 1.6505 0.0E+00 .3 a: 22.02 2.9504 2.7504 2.6504 2.0504 1.8504 1.1504 9.9505 4.5505 3.9505 1.1505 0.0500 .3 N 23.39 2.8504 2.8504 2.4504 2.2504 1.5504 1 .4504 7.7505 6.9505 2.8505 2.0505 0.0E+00 .3 m 24.77 2.8504 2.6504 2.5504 2.0504 1.8504 1.2504 1 .0504 5.3505 4.4505 1 .4505 0.0E+00 .3 (O 26.15 2.7504 2.6504 2.3504 2.1504 1.6504 1.4504 8.4505 7.4505 3.3505 2.2505 0.0E+00 N 0 27.52 2.6504 2.5504 2.4504 1.9504 1.8504 1.2504 1.1504 5.9505 4.8505 1.7505 0.0E+00 N .3 28.90 2.6504 2.5504 2.2504 2.1504 1.6504 1.4504 9.0505 7.8505 3.8505 2.4505 0.0E+00 N N 30.28 2.5504 2.4504 2.3504 1 .9504 1.7504 1.2504 1.1504 6.4505 5.1505 1.9505 0.0E+00 N (A 31.65 2.4504 2.4504 2.2504 2.0504 1.6504 1 .4504 9.4505 8.0505 4.2505 2.5505 0.05400 N # 33.03 2.4504 2.3504 2.2504 1.9504 1.7504 1.3504 1.1504 6.8505 5.3505 2.1505 0.0500 N U! 34.40 2.3504 2.3504 2.1504 2.0504 1 .6504 92 1.4504 9.8505 8.2505 4.5505 2.6505 0.0E+00 Table 7.10 Continued 26 35.78 2.3504 2.2504 2.1504 1.8504 1.7504 1.3504 1.1504 7.1505 5.4505 2.2505 0.0E+00 27 37.16 2.3504 2.2504 2.0504 1.9504 1.6504 1 .4504 1.0504 8.2505 4.7505 2.7505 0.0E+00 28 38.53 2.2504 2.2504 2.1504 1.8504 1.6504 1.3504 1.1504 7.3505 5.5505 2.3505 0.0E+00 29 39.91 2.2504 2.1504 2.0504 1.9504 1.5504 1.4504 1.0504 8.2505 4.8505 2.7505 0.0E+00 30 41.28 2.2504 2.1504 2.0504 1.8504 1 .6504 1.3504 1.1504 7.5505 5.5505 2.4505 0.0E+00 31 42.66 2.1 504 2.1504 1.9504 1 .8504 1.5504 1.4504 1.0504 8.2505 5.0505 2.7505 0.0E+00 32 44.04 2.1504 2.0504 1.9504 1.7504 1.6504 1.3504 1.1504 7.6505 5.5505 2.5505 0.0E+00 33 45.41 2.1504 2.0504 1.9504 1 .8504 1.5504 1.3504 1.0504 8.2505 5.0505 2.7505 0.0E+00 34 46.79 2.0504 2.0504 1.9504 1.7504 1.5504 1.3504 1.1504 7.6505 5.4505 2.5505 0.0E+00 35 48.16 2.0504 2.0504 1.8504 1.7504 1.5504 1.3504 1.0504 8.1505 5.1505 2.7505 0.0E+00 36 49.54 2.0504 1.9504 1.8504 1.7504 1.5504 1.3504 1.1504 7.6505 5.4505 2.5505 0.0E+00 37 50.92 1 .9504 1.9504 1.8504 1.7504 1.5504 1.3504 1.0504 8.0505 5.1505 2.7505 0.0E+00 38 52.29 1.9504 1.9504 1.8504 1.6504 1.5504 1.2504 1.0504 7.6505 5.3505 2.5505 0.0E+00 39 53.67 1 .9504 1.9504 1.8504 1.6504 1.4504 1 .3504 1.0504 7.9505 5.1 505 2.7505 0.0E+00 40 55.05 1 .9504 1 .8504 1.7504 1.6504 1.4504 1.2504 1 .0504 7.6505 5.3505 2.5505 0.0E+00 41 56.42 1.8504 1.8504 1.7504 1.6504 1.4504 1.2504 9.9505 7.8505 5.0505 2.6505 0.0E+00 42 57.80 1.8504 1.8504 1.7504 1.6504 1 .4504 1.2504 1.0504 7.5505 5.2505 2.5505 0.0E+00 43 59.17 1.8504 1.8504 1.7504 1.6504 1.4504 1.2504 9.8505 7.6505 5.0505 2.6505 0.0E+00 44 60.55 1.8504 1.7504 1.7504 1.5504 1 .4 504 1 .2504 9.9505 7.4505 5.1 505 2.5505 0.0E+00 45 61.93 1.75-04 1.7504 1.6504 1.5504 1.4504 1.2504 9.6505 7.5505 4.9505 2.5505 0.0E+00 46 63.30 1.7504 1.7504 1.6504 1.5504 1.4504 1.2504 9.7505 7.3505 5.0505 2.5505 0.0E+00 47 64.68 1.7504 1.7504 1 .6504 1.5504 1.3504 1.2504 9.5505 7.4505 4.9505 2.5505 0.0E+00 48 66.05 1.7504 1.7504 1.6504 1 .5504 1.3504 1.1504 9.5505 7.2505 4.9505 2.4505 0.0E+00 49 67.43 1.7504 1.6504 1.6504 1.5504 1.3504 1.1504 9.3505 7.2505 4.8505 2.4505 0.0E+00 50 68.81 1.6504 1.6504 1.5504 1.4504 1.3504 1.1504 9.3505 7.1505 4.8505 2.4505 0.0E+00 51 70.18 1.6504 1.6504 1.5504 1.4504 1.3504 1.1504 9.1505 7.1505 4.7505 2.4505 0.0E+00 52 71.56 1.6504 1.6504 1.5504 1.4504 1.3504 1.1504 9.1505 6.9505 4.7505 2.3505 0.0E+00 53 72.94 1.6504 1.6504 1.5504 1 .4504 1.3504 1.1504 9.0505 6.9505 4.6505 2.3505 0.0E+00 54 74.31 1.6504 1.5504 1.5504 1.4504 1.2504 1.1504 8.9505 6.8505 4.6505 2.3505 0.0E+00 55 75.69 1.6504 1.5504 1.5504 1.4504 1.2504 1.1504 8.8505 6.8505 4.6505 2.3505 0.0E+00 56 77.06 1.5504 1.5504 1.4504 1.3504 1.2504 1.1504 8.7505 6.7505 4.5505 2.3505 0.0E+00 57 78.44 1.5504 1.5504 1.4504 1.3504 1.2504 1.0504 8.6505 6.6505 4.5505 2.2505 0.0E+00 58 79.82 1.5504 1 .5504 1.4504 1.3504 1.2504 1.0504 8.6505 6.5505 4.4505 2.2505 0.0E+00 59 81.19 1.5504 1.5504 1 .4504 1.3504 1.2504 1.0504 8.4505 6.5505 4.4505 2.2505 0.0E+00 60 82.57 1.5504 1.4504 1 .4504 1.3504 1.2504 1.0504 8.4505 6.4505 4.4505 2.2505 0.0E+00 61 83.94 1.5504 1.4504 1 .4504 1.3504 1.1504 1.0504 8.3505 6.4505 4.3505 2.2505 0.0E+00 62 85.32 1 .4504 1 .4504 1 .4504 1.3504 1.1504 9.9505 8.2505 6.3505 4.3505 2.1 505 0.0E+00 63 86.70 1.4504 1.4504 1.3504 1.2504 1.1504 9.8505 8.1505 6.2505 4.2505 2.1 505 0.0E+00 64 88.07 1 .4504 1.4504 1.3504 1.2504 1.1504 9.7505 8.0505 6.2505 4.2505 2.1505 0.0E+00 65 89.45 1.4504 1.4504 1.3504 1.2504 1.1504 9.6505 7.9505 6.1505 4.1505 2.1505 0.0E+00 66 90.83 1.4504 1.3504 1.3504 1.2504 1.1504 9.5505 7.8505 6.0505 4.1505 2.0505 0.0E+00 67 92.20 1 .4504 1.3504 1.3504 1.2504 1.1504 9.4505 7.8505 6.0505 4.0505 2.0505 0.0E+00 68 93.58 1.3504 1.3504 1.3504 1.2504 1.1504 9.3505 7.7505 5.9505 4.0505 2.0505 0.0E+00 69 94.95 1.3504 1.3504 1.2504 1.2504 1.1504 9.2505 7.6505 5.8505 3.9505 2.0505 0.0E+00 70 96.33 1 .3504 1.3504 1.2504 1.2504 1.0504 9.1505 7.5505 5.8505 3.9505 1 .9505 0.0E+00 71 97.71 1.3504 1.3504 1.2504 1.1504 1.0504 9.0505 7.4505 5.7505 3.9505 1.9505 0.0E+00 72 99.08 1.3504 1 .3504 1.2504 1.1504 1.0504 8.9505 7.3505 5.6505 3.8505 1 .9505 0.0E+00 73 100.46 1.3504 1.2504 1.2504 1.1504 1.0504 8.8505 7.3505 5.6505 3.8505 1 .9505 0.0E+00 74 101.83 1.3504 1.2504 1.2504 1.1504 1.0504 8.7505 7.2505 5.5505 3.7505 1 .9505 0.0E+00 75 103.21 1.2504 1.2504 1.2504 1.1504 9.9505 8.6505 7.1505 5.5505 3.7505 1.8505 0.0E+00 76 104.59 1.2504 1.2504 1.2504 1.1504 9.8505 8.5505 7.0505 5.4505 3.7505 1.8505 0.0E+00 77 105.96 1.2504 1.2504 1.1504 1.1504 9.6505 8.4505 7.0505 5.3505 3.6505 1.8505 0.0E+00 78 107.34 1.2504 1.2504 1.1504 1.1504 9.5505 8.3505 6.9505 5.3505 3.6505 1.8505 0.0E+00 79 108.72 1.2504 1.2504 1.1504 1.0504 9.4505 8.2505 6.8505 5.2505 3.5505 1.8505 0.0E+00 80 110.09 1.2504 1.2504 1.1504 1.0504 9.3505 8.1 505 6.7505 5.2505 3.5505 1 .7505 0.0E+00 81 111.47 1.2504 1.1504 1.1504 1.0504 9.2505 8.0505 6.7505 5.1505 3.5505 1 .7505 0.0E+00 82 112.84 1.2504 1.1504 1.1504 1.0504 9.1505 7.9505 6.6505 5.1505 3.4505 1.7505 0.0E+00 83 114.22 1.1504 1.1504 1.1504 1.0504 9.0505 93 7.9505 6.5505 5.0505 3.4505 1.7505 0.05-00 Table 7.10 Continued 84 115.60 1.1504 1.1504 1.1504 9.9505 8.9505 7.8505 6.4505 4.9505 3.3505 1.7505 0.0E+00 85 116.97 1.1504 1.1504 1.0504 9.8505 8.8505 7.7505 6.4505 4.9505 3.3505 1.6505 0.0E+00 86 118.35 1.1504 1.1504 1.0504 9.7505 8.7505 7.6505 6.3505 4.8505 3.3505 1 .6505 0.0E+00 87 119.72 1.1504 1.1504 1.0504 9.6505 8.6505 7.5505 6.2505 4.8505 3.2505 1.6505 0.05-+00 88 121.10 1.1504 1.1504 1.0504 9.5505 8.5505 7.4505 6.2505 4.7505 3.2505 1.6505 0.0E+00 89 122.48 1.1504 1 .0504 1.0504 9.3505 8.5505 7.4505 6.1 505 4.7505 3.2505 1 .6505 0.0E+00 90 123.85 1.1504 1.0504 9.9505 9.2505 8.4505 7.3505 6.0505 4.6505 3.1505 1.6505 0.0E+00 91 125.23 1.0504 1.0504 9.8505 9.1505 8.3505 7.2505 6.0505 4.6505 3.1505 1.5505 0.0E+00 92 126.60 1.0504 1.0504 9.7505 9.0505 8.2505 7.1505 5.9505 4.5505 3.1505 1.5505 0.0E+00 93 127.98 1.0504 1 .0504 9.6505 8.9505 8.1505 7.0505 5.8505 4.5505 3.0505 1.5505 0.0E+00 94 129.36 1 .0504 9.9505 9.5505 8.9505 8.0505 7.0505 5.8505 4.4505 3.0505 1.5505 0.0E+00 95 130.73 1.0504 9.8505 9.4505 8.8505 7.9505 6.9505 5.7505 4.4505 3.0505 1.5505 0.0E+00 96 132.11 9.9505 9.7505 9.3505 8.7505 7.8505 6.8505 5.6505 4.3505 2.9505 1 .4505 0.0E+00 97 133.49 9.8505 9.6505 9.2505 8.6505 7.7505 6.7505 5.6505 4.3505 2.9505 1.4505 0.0E+00 98 134.86 9.7505 9.5505 9.1505 8.5505 7.7505 6.7505 5.5505 4.2505 2.9505 1.4505 0.0E+00 99 136.24 9.6505 9.4505 9.0505 8.4505 7.6505 6.6505 5.5505 4.2505 2.8505 1 .4505 0.0E+00 100 137.61 9.5505 9.3505 8.9505 8.3505 7.5505 6.5505 5.4505 4.1505 2.8505 1 .4505 0.0E+00 101 138.99 9.4505 9.2505 8.8505 8.2505 7.4505 6.5505 5.3505 4.1505 2.8505 1 .4505 0.0E+00 102 140.37 9.3505 9.1505 8.7505 8.1 505 7.3505 6.4505 5.3505 4.1505 2.7505 1 .4 505 0.0500 103 141.74 9.2505 9.0505 8.6505 8.0505 7.3505 6.3505 5.2505 4.0505 2.7505 1 .3505 0.0E+00 104 143.12 9.1505 8.9505 8.5505 7.9505 7.2505 6.2505 5.2505 4.0505 2.7505 1.3505 0.0E+00 105 144.49 9.0505 8.8505 8.4505 7.9505 7.1505 6.2505 5.1505 3.9505 2.6505 1 .3505 0.0E+00 106 145.87 8.9505 8.7505 8.3505 7.8505 7.0505 6.1505 5.1505 3.9505 2.6505 1 .3505 0.0E+00 107 147.25 8.8505 8.6505 8.2505 7.7505 6.9505 6.0505 5.0505 3.8505 2.6505 1.3505 0.0E+00 108 148.62 8.7505 8.5505 8.2505 7.6505 6.9505 6.0505 4.9505 3.8505 2.6505 1.3505 0.0E+00 109 150.00 8.6505 8.4505 8.1505 7.5505 6.8505 5.9505 4.9505 3.8505 2.5505 1.3505 0.0E+00 110 151.38 8.5505 8.3505 8.0505 7.4505 6.7505 5.8505 4.8505 3.7505 2.5505 1.2505 0.0E+00 111 152.75 8.4505 8.2505 7.9505 7.4505 6.6505 5.8505 4.8505 3.7505 2.5505 1.2505 0.0E+00 112 154.13 8.3505 8.2505 7.8505 7.3505 6.6505 5.7505 4.7505 3.6505 2.5505 1.2505 0.0E+00 113 155.50 8.2505 8.1505 7.7505 7.2505 6.5505 5.7505 4.7505 3.6505 2.4505 1.2505 0.0E+00 114 156.88 8.1 505 8.0505 7.6505 7.1505 6.4505 5.6505 4.6505 3.6505 2.4505 1.2505 0.0E+00 115 158.26 8.1505 7.9505 7.6505 7.0505 6.4505 5.5505 4.6505 3.5505 2.4505 1.2505 0.0E+00 116 159.63 8.0505 7.8505 7.5505 7.0505 6.3505 5.5505 4.5505 3.5505 2.3505 1.2505 0.0E+00 117 161.01 7.9505 7.7505 7.4505 6.9505 6.2505 5.4505 4.5505 3.4505 2.3505 1.1505 0.0E+00 118 162.38 7.8505 7.6505 7.3505 6.8505 6.2505 5.4505 4.4505 3.4505 2.3505 1.1505 0.0E+00 119 163.76 7.7505 7.6505 7.2505 6.7505 6.1505 5.3505 4.4505 3.4505 2.3505 1.1505 0.0E+00 120 165.14 7.6505 7.5505 7.2505 6.7505 6.0505 5.2505 4.3505 3.3505 2.2505 1.1505 0.0E+00 121 166.51 7.6505 7.4505 7.1505 6.6505 6.0505 5.2505 4.3505 3.3505 2.2505 1.1505 0.0E+00 122 167.89 7.5505 7.3505 7.0505 6.5505 5.9505 5.1505 4.2505 3.3505 2.2505 1.1505 0.0E+00 123 169.27 7.4505 7.2505 6.9505 6.5505 5.8505 5.1505 4.2505 3.2505 2.2505 1.1505 0.0E+00 124 170.64 7.3505 7.2505 6.9505 6.4505 5.8505 5.0505 4.2505 3.2505 2.1 505 1.1505 0.0E+00 125 172.02 7.2505 7.1505 6.8505 6.3505 5.7505 5.0505 4.1505 3.2505 2.1 505 1 .0505 0.0E+00 126 173.39 7.2505 7.0505 6.7505 6.3505 5.6505 4.9505 4.1505 3.1505 2.1505 1 .0505 0.0E+00 127 174.77 7.1505 6.9505 6.6505 6.2505 5.6505 4.9505 4.0505 3.1505 2.1505 1 .0505 0.0E+00 128 176.15 7.0505 6.9505 6.6505 6.1505 5.5505 4.8505 4.0505 3.1 505 2.1505 1 .0505 0.0E+00 129 177.52 6.9505 6.8505 6.5505 6.1505 5.5505 4.8505 3.9505 3.0505 2.0505 1 .0505 0.0E+00 130 178.90 6.9505 6.7505 6.4505 6.0505 5.4505 4.7505 3.9505 3.0505 2.0505 9.9506 0.0E+00 131 180.27 6.8505 6.6505 6.4505 5.9505 5.4505 4.7505 3.8505 3.0505 2.0505 9.8506 0.0E+00 132 181.65 6.7505 6.6505 6.3505 5.9505 5.3505 4.6505 3.8505 2.9505 2.0505 9.7506 0.0E+00 133 183.03 6.6505 6.5505 6.2505 5.8505 5.2505 4.6505 3.8505 2.9505 1 .9505 9.6506 0.0E+00 134 184.40 6.6505 6.4505 6.2505 5.7505 5.2505 4.5505 3.7505 2.9505 1.9505 9.5506 0.0E+00 135 185.78 6.5505 6.4505 6.1505 5.7505 5.1 505 4.5505 3.7505 2.8505 1.9505 9.4506 0.0E+00 136 187.15 6.4505 6.3505 6.0505 5.6505 5.1 505 4.4505 3.6505 2.8505 1.9505 9.3506 0.0E+00 137 188.53 6.4505 6.2505 6.0505 5.6505 5.0505 4.4505 3.6505 2.8505 1.9505 9.2506 0.0E+00 138 189.91 6.3505 6.2505 5.9505 5.5505 5.0505 4.3505 3.6505 2.7505 1.8505 9.1 506 0.0E+00 139 191.28 6.2505 6.1505 5.8505 5.4505 4.9505 4.3505 3.5505 2.7505 1.8505 9.0506 0.0E+00 140 192.66 6.2505 6.0505 5.8505 5.4505 4.9505 4.2505 3.5505 2.7505 1.8505 8.9506 0.0E+00 141 194.04 6.1505 6.0505 5.7505 5.3505 4.8505 94 4.2505 3.5505 2.6505 1 .8505 8.8506 0.0E+00 Table 7.10 Continued 142 195.41 6.0505 5.9505 5.7505 5.3505 4.8505 4.1505 3.4505 2.6505 1.8505 8.7506 0.0E+00 143 196.79 6.0505 5.8505 5.6505 5.2505 4.7505 4.1505 3.4505 2.6505 1.7505 8.6506 0.0E+00 144 198.16 5.9505 5.8505 5.5505 5.1505 4.6505 4.0505 3.3505 2.6505 1 .7505 8.5506 0.0E+00 145 199.54 5.8505 5.7505 5.5505 5.1505 4.6505 4.0505 3.3505 2.5505 1 .7505 8.4506 0.0E+00 146 200.92 5.8505 5.7505 5.4505 5.0505 4.6505 4.0505 3.3505 2.5505 1 .7505 8.3506 0.0E+00 147 202.29 5.7505 5.6505 5.4505 5.0505 4.5505 3.9505 3.2505 2.5505 1 .7505 8.2506 0.0E+00 148 203.67 5.7505 5.5505 5.3505 4.9505 4.5505 3.9505 3.2505 2.5505 1.7505 8.1506 0.0E+00 149 205.04 5.6505 5.5505 5.2505 4.9505 4.4505 3.8505 3.2505 2.4505 1.6505 8.0506 0.0E+00 150 206.42 5.5505 5.4505 5.2505 4.8505 4.4505 3.8505 3.1505 2.4505 1.6505 7.9506 0.0E+00 151 207.80 5.5505 5.4505 5.1505 4.8505 4.3505 3.7505 3.1505 2.4505 1 .6505 7.9506 0.0E+00 152 209.17 5.4505 5.3505 5.1505 4.7505 4.3505 3.7505 3.1505 2.4505 1.6505 7.8506 0.0E+00 153 210.55 5.4505 5.3505 5.0505 4.7505 4.2505 3.7505 3.0505 2.3505 1.6505 7.7506 0.0E+00 154 211.93 5.3505 5.2505 5.0505 4.6505 4.2505 3.6505 3.0505 2.3505 1 .5505 7.6506 0.0E+00 155 213.30 5.2505 5.1505 4.9505 4.6505 4.1505 3.6505 3.0505 2.3505 1 .5505 7.5506 0.0E+00 156 214.68 5.2505 5.1505 4.9505 4.5505 4.1505 3.6505 2.9505 2.3505 1 .5505 7.4506 0.0E+00 157 216.05 5.1505 5.0505 4.8505 4.5505 4.0505 3.5505 2.9505 2.2505 1 .5505 7.4506 0.0E+00 158 217.43 5.1 505 5.0505 4.8505 4.4505 4.0505 3.5505 2.9505 2.2505 1.5505 7.3506 0.0E+00 159 218.81 5.0505 4.9505 4.7505 4.4505 4.0505 3.4505 2 .8505 2.2505 1.5505 7.2506 0.0E+00 160 220.18 5.0505 4.9505 4.7505 4.3505 3.9505 3.4505 2.8505 2.2505 1 .5505 7.1506 0.0E+00 161 221.56 4.9505 4.8505 4.6505 4.3505 3.9505 3.4505 2.8505 2.1505 1 .4505 7.0506 0.0E+00 162 222.93 4.9505 4.8505 4.6505 4.2505 3.8505 3.3505 2.8505 2.1505 1 .4505 7.0506 0.0E+00 163 224.31 4.8505 4.7505 4.5505 4.2505 3.8505 3.3505 2.7505 2.1505 1 .4505 6.9506 0.0E+00 164 225.69 4.8505 4.7505 4.5505 4.2505 3.7505 3.3505 2.7505 2.1505 1.4505 6.8506 0.0E+00 165 227.06 4.7505 4.6505 4.4505 4.1505 3.7505 3.2505 2.7505 2.0505 1 .4505 6.7506 0.0E+00 166 228.44 4.7505 4.6505 4.4505 4.1505 3.7505 3.2505 2.6505 2.0505 1.4505 6.7506 0.0E+00 167 229.82 4.6505 4.5505 4.3505 4.0505 3.6505 3.2505 2.6505 2.0505 1.3505 6.6506 0.0E+00 168 231.19 4.6505 4.5505 4.3505 4.0505 3.6505 3.1505 2.6505 2.0505 1.3505 6.5506 0.0E+00 169 232.57 4.5505 4.4505 4.2505 3.9505 3.6505 3.1505 2.6505 2.0505 1 .3505 6.4506 0.0E+00 170 233.94 4.5505 4.4505 4.2505 3.9505 3.5505 3.1505 2.5505 1 .9505 1.3505 6.4506 0.0E+00 171 235.32 4.4505 4.3505 4.1505 3.9505 3.5505 3.0505 2.5505 1 .9505 1.3505 6.3506 0.0E+00 172 236.70 4.4505 4.3505 4.1505 3.8505 3.4505 3.0505 2.5505 1 .9505 1 .3505 6.2506 0.0E+00 173 238.07 4.3505 4.2505 4.1505 3.8505 3.4505 3.0505 2.4505 1 .9505 1.3505 6.2506 0.0E+00 174 239.45 4.3505 4.2505 4.0505 3.7505 3.4505 2.9505 2.4505 1 .9505 1.2505 6.1506 0.0E+00 175 240.82 4.2505 4.2505 4.0505 3.7505 3.3505 2.9505 2.4505 1 .8505 1.2505 6.0506 0.0E+00 176 242.20 4.2505 4.1505 3.9505 3.7505 3.3505 2.9505 2.4505 1 .8505 1.2505 6.0506 0.0E+00 177 243.58 4.2505 4.1505 3.9505 3.6505 3.3505 2.8505 2.3505 1 .8505 1.2505 5.9506 0.0E+00 178 244.95 4.1505 4.0505 3.8505 3.6505 3.2505 2.8505 2.3505 1.8505 1 .2505 5.8506 0.0E+00 179 246.33 4.1505 4.0505 3.8505 3.5505 3.2505 2.8505 2.3505 1.8505 1.2505 5.8506 0.0E+00 180 247.71 4.0505 3.9505 3.8505 3.5505 3.2505 2.7505 2.3505 1.7505 1.2505 5.7506 0.0E+00 181 249.08 4.0505 3.9505 3.7505 3.5505 3.1505 2.7505 2.2505 1.7505 1 .2505 5.7506 0.0E+00 182 250.46 3.9505 3.9505 3.7505 3.4505 3.1505 2 .7505 2.2505 1.7505 1.1505 5.6506 0.0E+00 183 251.83 3.9505 3.8505 3.6505 3.4505 3.1505 2.7505 2.2505 1.7505 1.1505 5.5506 0.0E+00 184 253.21 3.9505 3.8505 3.6505 3.4505 3.0505 2.6505 2.2505 1.7505 1.1505 5.5506 0.0E+00 185 254.59 3.8505 3.7505 3.6505 3.3505 3.0505 2.6505 2.1505 1.6505 1.1505 5.4506 0.05-00 186 255.96 3.8505 3.7505 3.5505 3.3505 3.0505 2.6505 2.1505 1 .6505 1.1505 5.4 506 0.0E+00 187 257.34 3.7505 3.7505 3.5505 3.2505 2.9505 2.5505 2.1505 1.6505 1.1505 5.3506 0.0E+00 188 258.71 3.7505 3.6505 3.5505 3.2505 2.9505 2.5505 2.1505 1.6505 1.1505 5.2506 0.0E+00 189 260.09 3.7505 3.6505 3.4505 3.2505 2.9505 2.5505 2.1505 1 .6505 1.1505 5.2506 0.0E+00 190 261 .47 3.6505 3.5505 3.4505 3.1505 2.8505 2.5505 2.0505 1 .6505 1 .0505 5.1506 0.0E+00 191 262.84 3.6505 3.5505 3.3505 3.1505 2.8505 2.4505 2.0505 1 .5505 1.0505 5.1 506 0.0E+00 192 264.22 3.5505 3.5505 3.3505 3.1505 2.8505 2.4505 2.0505 1.5505 1 .0505 5.0506 0.0E+00 193 265.59 3.5505 3.4505 3.3505 3.0505 2.7505 2.4505 2.0505 1 .5505 1.0505 5.0506 0.0E+00 194 266.97 3.5505 3.4505 3.2505 3.0505 2.7505 2.4505 2.0505 1 .5505 1.0505 4.9506 0.0E+00 195 268.35 3.4505 3.4505 3.2505 3.0505 2.7505 2.3505 1.9505 1 .5505 9.9506 4.9506 0.0E+00 196 269.72 3.4505 3.3505 3.2505 3.0505 2.7505 2.3505 1 .9505 1 .5505 9.8506 4.8506 0.0E+00 197 271.10 3.4505 3.3505 3.1505 2.9505 2.6505 2.3505 1.9505 1 .4505 9.7506 4.8506 0.0E+00 198 272.48 3.3505 3.3505 3.1505 2.9505 2.6505 2.3505 1.9505 1 .4505 9.6506 4.7506 0.0E+00 199 273.85 3.3505 3.2505 3.1 505 2.9505 2.6505 95 2.2505 1.9505 1 .4505 9.5506 4.7506 0.0E+00 Table 7.10 Continued 200 275.23 3.3505 3.2505 3.0505 2.8505 2.6505 2.2505 1.8505 1 .4505 9.4506 4.6506 0.0E+00 201 276.60 3.2505 3.1505 3.0505 2.8505 2.5505 2.2505 1 .8505 1 .4505 9.3506 4.6506 0.0E+00 202 277.98 3.2505 3.1 505 3.0505 2.8505 2.5505 2.2505 1.8505 1 .4505 9.2506 4.5506 0.0E+00 203 279.36 3.2505 3.1505 2.9505 2.7505 2.5505 2.1505 1 .8505 1 .4505 9.1506 4.5506 0.0E+00 204 280.73 3.1505 3.1 505 2.9505 2.7505 2.4505 2.1505 1.8505 1 .3505 9.0506 4.4506 0.0E+00 205 282.11 3.1505 3.0505 2.9505 2.7505 2.4505 2.1505 1.7505 1 .3505 8.9506 4.4 506 0.0E+00 206 283.48 3.1505 3.0505 2.9505 2.7505 2.4505 2.1505 1.7505 1 .3505 8.8506 4.3506 0.0E+00 207 284.86 3.0505 3.0505 2.8505 2.6505 2.4505 2.1505 1.7505 1 .3505 8.7506 4.3506 0.0E+00 208 286.24 3.0505 2.9505 2.8505 2.6505 2.3505 2.0505 1.7505 1 .3505 8.7506 4.2506 0.0E+00 209 287.61 3.0505 2.9505 2.8505 2.6505 2.3505 2.0505 1 .7505 1 .3505 8.6506 4.2506 0.0E+00 210 288.99 2.9505 2.9505 2.7505 2.5505 2.3505 2.0505 1 .6505 1 .3505 8.5506 4.1506 0.0E+00 211 290.37 2.9505 2.8505 2.7505 2.5505 2.3505 2.0505 1.6505 1 .2505 8.4506 4.1 506 0.0E+00 212 291.74 2.9505 2.8505 2.7505 2.5505 2.2505 2.0505 1 .6505 1.2505 8.3506 4.0506 0.0E+00 213 293.12 2.8505 2.8505 2.6505 2.5505 2.2505 1 .9505 1 .6505 1.2505 8.2506 4.0506 0.0E+00 214 294.49 2.8505 2.7505 2.6505 2.4505 2.2505 1 .9505 1 .6505 1.2505 8.1506 4.0506 0.0E+00 215 295.87 2.8505 2.7505 2.6505 2.4505 2.2505 1 .9505 1 .6505 1 .2505 8.0506 3.9506 0.0E+00 216 297.25 2.7505 2.7505 2.6505 2.4505 2.2505 1 .9505 1 .5505 1 .2505 7.9506 3.9506 0.0E+00 217 298.62 2.7505 2.7505 2.5505 2.4505 2.1505 1 .8505 1 .5505 1.2505 7.9506 3.8506 0.0E+00 218 300.00 2.7505 2.6505 2.5505 2.3505 2.1505 1 .8505 1 .5505 1 .2505 7.8506 3.8506 0.0E+00 219 301.37 2.7505 2.6505 2.5505 2.3505 2.1505 1 .8505 1 .5505 1.1505 7.7506 3.8506 0.0E+00 220 302.75 2.6505 2.6505 2.5505 2.3505 2.1505 1 .8505 1 .5505 1.1505 7.6506 3.7506 0.0E+00 221 304.13 2.6505 2.5505 2.4505 2.3505 2.0505 1 .8505 1.5505 1.1505 7.5506 3.7506 0.0E+00 222 305.50 2.6505 2.5505 2.4505 2.2505 2.0505 1.8505 1 .4505 1.1505 7.4506 3.6506 0.0E+00 223 306.88 2.5505 2.5505 2.4505 2.2505 2.0505 1.7505 1 .4505 1.1505 7.4506 3.6506 0.0E+00 224 308.26 2.5505 2.5505 2.4505 2.2505 2.0505 1.7505 1 .4505 1.1505 7.3506 3.6506 0.0E+00 225 309.63 2.5505 2.4505 2.3505 2.2505 2.0505 1.7505 1 .4505 1.1505 7.2506 3.5506 0.0E+00 226 311.01 2.5505 2.4505 2.3505 2.1505 1 .9505 1 .7505 1 .4505 1.1505 7.1506 3.5506 0.0E+00 227 312.38 2.4505 2.4505 2.3505 2.1505 1.9505 1.7505 1 .4505 1.1505 7.1506 3.4506 0.0E+00 228 313.76 2.4505 2.4505 2.3505 2.1505 1 .9505 1.6505 1 .4 505 1.0505 7.0506 3.4506 0.0E+00 229 315.14 2.4505 2.3505 2.2505 2.1505 1 .9505 1 .6505 1 .3505 1 .0505 6.9506 3.4506 0.0E+00 230 316.51 2.4505 2.3505 2.2505 2.1505 1.9505 1.6505 1 .3505 1 .0505 6.8506 3.3506 0.0E+00 231 317.89 2.3505 2.3505 2.2505 2.0505 1.8505 1 .6505 1.3505 1.0505 6.8506 3.3506 0.0E+00 232 319.26 2.3505 2.3505 2.2505 2.0505 1 .8505 1.6505 1.3505 1.0505 6.7506 3.3506 0.0E+00 233 320.64 2.3505 2.2505 2.1505 2.0505 1 .8505 1.6505 1 .3505 9.9506 6.6506 3.2506 0.0E+00 234 322.02 2.3505 2.2505 2.1505 2.0505 1.8505 1.5505 1 .3505 9.8506 6.6506 3.2506 0.0E+00 235 323.39 2.2505 2.2505 2.1505 1 .9505 1.8505 1.5505 1 .3505 9.7506 6.5506 3.2506 0.0E+00 236 324.77 2.2505 2.2505 2.1505 1 .9505 1.7505 1.5505 1 .2505 9.6506 6.4 506 3.1 506 0.0E+00 237 326.15 2.2505 2.1505 2.1505 1 .9505 1 .7505 1 .5505 1 .2505 9.5506 6.3506 3.1 506 0.0E+00 238 327.52 2.2505 2.1505 2.0505 1 .9505 1 .7505 1.5505 1 .2505 9.4506 6.3506 3.1 506 0.0E+00 239 328.90 2.2505 2.1505 2.0505 1 .9505 1 .7505 1 .5505 1.2505 9.3506 6.2506 3.0506 0.0E+00 240 330.27 2.1505 2.1505 2.0505 1.8505 1 .7505 1 .4505 1.2505 9.2506 6.1506 3.0506 0.0E+00 241 331.65 2.1505 2.1505 2.0505 1 .8505 1.6505 1 .4505 1 .2505 9.1506 6.1506 3.0506 0.0E+00 242 333.03 2.1505 2.0505 1 .9505 1.8505 1.6505 1 .4505 1.2505 9.0506 6.0506 2.9506 0.0500 243 334.40 2.1505 2.0505 1 .9505 1.8505 1.6505 1 .4505 1 .2505 8.9506 6.0506 2.9506 0.0E+00 244 335.78 2.0505 2.0505 1 .9505 1 .8505 1.6505 1 .4505 1.1505 8.8506 5.9506 2.9506 0.0500 245 337.15 2.0505 2.0505 1.9505 1 .8505 1.6505 1 .4505 1.1505 8.7506 5.8506 2.8506 0.0E+00 246 338.53 2.0505 2.0505 1.9505 1 .7505 1.6505 1 .4505 1.1505 8.6506 5.8506 2.8506 0.0E+00 247 339.91 2.0505 1 .9505 1 .8505 1.7505 1.5505 1 .3505 1.1505 8.5506 5.7506 2.8506 0.0E+00 248 341.28 2.0505 1 .9505 1 .8505 1.7505 1.5505 1 .3505 1.1505 8.4506 5.6506 2.8506 0.0E+00 249 342.66 1 .9505 1 .9505 1.8505 1.7505 1.5505 1 .3505 1.1505 8.3506 5.6506 2.7506 0.0E+00 250 344.03 1 .9505 1.9505 1.8505 1.7505 1 .5505 1 .3505 1.1505 8.2506 5.5506 2.7506 0.0E+00 251 345.41 1 .9505 1 .9505 1 .8505 1.6505 1.5505 1 .3505 1.1505 8.1506 5.5506 2.7506 0.0E+00 252 346.79 1 .9505 1.8505 1 .8505 1.6505 1.5505 1 .3505 1.1505 8.1506 5.4506 2.6506 0.0E+00 253 348.16 1 .9505 1 .8505 1.7505 1 .6505 1.5505 1 .3505 1 .0505 8.0506 5.4506 2.6506 0.0E+00 254 349.54 1.8505 1.8505 1.7505 1.6505 1.4505 1 .2505 1.0505 7.9506 5.3506 2.6506 0.0E+00 96 Appendix 7.12: Model Output for Salmonella Concentration Profile Excel formula used to calculate the Salmonella concentration at t = 1.03 s and x = 0.005 m. (i.e. cell D5): D5 =Concentration(D$3,dx,$A5,'Salmonella Location'!$C$5:$IV$258,$C$5:$C$258)*(l/MASTER!$B$9) Table 7.11: Predicted Salmonella concentration profile generated by Excel, given the input variables listed in Table 4.1. Salmonella Concentration Profile 1 => 0 1 2 3 4 5 6 7 8 9 10 j 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 .04 .04 0.05 0 0 # Entering cells/cm3 1 1.03 18139 16196 0 0 0 0 0 0 0 0 0 2 2.06 18139 32392 0 0 0 0 0 0 0 0 0 3 3.1 0 13775 44690 0 0 0 0 0 0 0 0 0 4 4.1 3 1 361 2 56844 0 0 0 0 0 0 0 0 0 5 5.16 1 1 524 671 34 0 0 0 0 0 0 0 0 0 6 6.19 11351 77268 0 0 0 0 0 0 0 0 0 7 7.22 10101 70092 16196 0 0 0 0 0 0 0 0 8 8.26 9938 78965 16196 0 0 0 0 0 0 0 0 9 9.29 9099 70893 32392 0 0 0 0 0 0 0 0 10 10.32 8949 78884 32392 0 0 0 0 0 0 0 0 1 1 1 1.35 8345 74036 44690 0 0 0 0 0 0 0 0 12 12.39 8208 81364 44690 0 0 0 0 0 0 0 0 13 13.42 7750 76131 56844 0 0 0 0 0 0 0 0 14 14.45 7626 72650 67134 0 0 0 0 0 0 0 0 15 15.48 7267 79138 67134 0 0 0 0 0 0 0 0 16 16.51 7152 75389 77268 0 0 0 0 0 0 0 0 17 17.55 6863 72498 86287 0 0 0 0 0 0 0 0 18 18.58 6758 78532 86287 0 0 0 0 0 0 0 0 19 19.61 6519 75479 95161 0 0 0 0 0 0 0 0 20 20.64 6423 73090 87089 16196 0 0 0 0 0 0 0 21 21 .67 6222 78645 87089 16196 0 0 0 0 0 0 0 22 22.71 6133 76131 95080 16196 0 0 0 0 0 0 0 23 23.74 5962 74003 86335 32392 0 0 0 0 0 0 0 24 24.77 5879 79253 86335 32392 0 0 0 0 0 0 0 25 25.80 5732 77042 81 364 44690 0 0 0 0 0 0 0 26 26.83 5654 75170 88284 44690 0 0 0 0 0 0 0 27 27.87 5525 73295 82939 56844 0 0 0 0 0 0 0 28 28.90 5453 78164 82939 56844 0 0 0 0 0 0 0 29 29.93 5339 76442 89427 56844 0 0 0 0 0 0 0 30 30.96 5270 74762 85524 671 34 0 0 0 0 0 0 0 31 32.00 5168 79376 85524 671 34 0 0 0 0 0 0 0 32 33.03 5104 77806 81517 77268 0 0 0 0 0 0 0 33 34.06 5012 76247 87551 77268 0 0 0 0 0 0 0 97 Table 7.11 Continued 34 35.09 4951 74847 84352 86287 0 0 0 0 0 0 0 35 36.12 4867 79192 84352 86287 0 0 0 0 0 0 0 36 37.16 4809 77751 81214 95161 0 0 0 0 0 0 0 37 38.19 4732 76421 78645 1 03285 0 0 0 0 0 0 0 38 39.22 4676 75120 84121 103285 0 0 0 0 0 0 0 39 40.25 4606 73909 81454 95080 16196 0 0 0 0 0 0 40 41 .28 4552 77973 81454 95080 16196 0 0 0 0 0 0 41 42.32 4486 76729 79253 102530 16196 0 0 0 0 0 0 42 43.35 4434 75570 84370 86335 32392 0 0 0 0 0 0 43 44.38 4373 74426 82090 93663 32392 0 0 0 0 0 0 44 45.41 4322 78285 82090 93663 32392 0 0 0 0 0 0 45 46.44 4265 77160 80103 88284 44690 0 0 0 0 0 0 46 47.48 4216 76056 84972 88284 44690 0 0 0 0 0 0 47 48.51 4162 75005 82930 95093 44690 0 0 0 0 0 0 48 49.54 41 15 78679 76442 89427 56844 0 0 0 0 0 0 49 50.57 4063 77601 81 148 89427 56844 0 0 0 0 0 0 50 51 .61 4017 76573 79376 95813 56844 0 0 0 0 0 0 51 52.64 3968 75559 83934 85524 67134 0 0 0 0 0 0 52 53.67 3923 74587 82281 91651 67134 0 0 0 0 0 0 53 54.70 3876 78048 82281 91651 67134 0 0 0 0 0 0 54 55.73 3833 77050 80667 87551 77268 0 0 0 0 0 0 55 56.77 3788 76086 79192 93372 77268 0 0 0 0 0 0 56 57.80 3746 751 37 83486 84352 86287 0 0 0 0 0 0 57 58.83 3702 78442 77751 90087 86287 0 0 0 0 0 0 58 59.86 3661 77486 81976 90087 86287 0 0 0 0 0 0 59 60.89 3619 76542 80596 86770 95161 0 0 0 0 0 0 60 61 .93 3579 75625 84708 86770 95161 0 0 0 0 0 0 61 62.96 3538 78784 79232 84121 1 03285 0 0 0 0 0 0 62 63.99 3499 77844 77973 89445 1 03285 0 0 0 0 0 0 63 65.02 3460 76927 81 978 89445 1 03285 0 0 0 0 0 0 64 66.05 3422 76023 80687 86704 1 1 1275 0 0 0 0 0 0 65 67.09 3383 75140 84592 86704 95080 161 96 0 0 0 0 0 66 68.12 3346 78127 79474 84370 102530 16196 0 0 0 0 0 67 69.15 3309 77222 78285 89419 102530 16196 0 0 0 0 0 68 70.18 3273 76336 82093 89419 102530 16196 0 0 0 0 0 69 71 .22 3236 75461 80925 87024 1 09859 161 96 0 0 0 0 0 70 72.25 3201 78320 80925 87024 93663 32392 0 0 0 0 0 71 73.28 3166 77430 79772 84972 1 00583 32392 0 0 0 0 0 72 74.31 31 31 76552 83446 84972 1 00583 32392 0 0 0 0 0 73 75.34 3097 75690 82307 82930 1 07392 32392 0 0 0 0 0 74 76.38 3063 78425 77601 87636 95093 44690 0 0 0 0 0 75 77.41 3030 77543 81188 87636 95093 44690 0 0 0 0 0 76 78.44 2997 76676 801 16 85763 1 01 581 44690 0 0 0 0 0 77 79.47 2964 75819 8361 9 85763 101581 44690 0 0 0 0 0 78 80.50 2932 78437 79062 83934 9581 3 56844 0 0 0 0 0 79 81 .54 2900 77565 82523 83934 9581 3 56844 0 0 0 0 0 80 82.57 2869 76704 81470 88409 9581 3 56844 0 0 0 0 0 81 83.60 2837 75856 80432 86701 101941 56844 0 0 0 0 0 82 84.63 2807 78362 80432 86701 91651 67134 0 0 0 0 0 83 85.66 2776 77497 79430 8501 3 97685 671 34 0 0 0 0 0 84 86.70 2746 76643 82736 8501 3 97685 671 34 0 0 0 0 0 85 87.73 2717 75800 8171 1 83486 1 03506 67134 0 0 0 0 0 86 88.76 2687 78200 81 71 1 83486 93372 77268 0 0 0 0 0 87 89.79 2658 77342 80717 8771 1 93372 77268 0 0 0 0 0 88 90.83 2630 76495 79737 86151 99106 77268 0 0 0 0 0 89 91 .86 2601 78817 79737 86151 99106 77268 0 0 0 0 0 98 Table 7.11 Continued 90 92.89 2573 77955 78784 84708 95643 86287 0 0 0 0 0 91 93.92 2545 77104 81908 84708 95643 86287 0 0 0 0 0 92 94.95 2518 76263 80933 88772 95643 86287 0 0 0 0 0 93 95.99 2491 78487 80933 83296 92246 95161 0 0 0 0 0 94 97.02 2464 77632 79982 87301 92246 951 61 0 0 0 0 0 95 98.05 2438 76788 83003 81 978 97569 95161 0 0 0 0 0 96 99.08 241 1 75953 82032 85937 97569 95161 0 0 0 0 0 97 100.1 1 2385 78083 82032 85937 89445 1 03285 0 0 0 0 0 98 101 .15 2360 77236 81082 84592 94694 103285 0 0 0 0 0 99 102.18 2334 76398 80144 88451 94694 103285 0 0 0 0 0 100 103.21 2309 78460 80144 83334 99812 103285 0 0 0 0 0 101 104.24 2285 77610 79226 87142 91821 1 1 1275 0 0 0 0 0 102 105.27 2260 76769 82084 87142 91821 1 1 1275 0 0 0 0 0 103 1 06.31 2236 78766 78320 85858 96870 1 1 1275 0 0 0 0 0 104 107.34 2212 77914 81146 85858 96870 111275 0 0 0 0 0 105 108.37 2188 77072 80226 84641 94352 1 18726 0 0 0 0 0 106 109.40 2165 76239 82991 84641 94352 1 18726 0 0 0 0 0 107 110.44 2141 78151 79317 88314 94352 118726 0 0 0 0 0 108 1 1 1 .47 21 18 77308 82052 83446 91892 126055 0 0 0 0 0 109 1 12.50 2096 76474 81 130 87074 91892 126055 0 0 0 0 0 1 10 1 13.53 2073 78325 81 130 82307 96659 109859 16196 0 0 0 0 1 1 1 1 14.56 2051 77481 80219 85894 96659 109859 16196 0 0 0 0 1 12 1 15.60 2029 76646 82865 85894 89739 1 16779 16196 0 0 0 0 1 13 1 16.63 2007 78438 79322 84731 94444 1 16779 16196 0 0 0 0 114 117.66 1986 77594 81940 84731 94444 116779 16196 0 0 0 0 1 15 1 18.69 1965 76759 81026 88234 94444 1 16779 16196 0 0 0 0 116 119.72 1944 78494 81026 83619 92251 123588 16196 0 0 0 0 1 17 120.76 1923 77650 80127 87080 92251 123588 16196 0 0 0 0 1 18 1 21 .79 1902 7681 5 82660 82523 96808 1 07392 32392 0 0 0 0 1 1 9 1 22.82 1 882 78495 79238 85945 96808 1 07392 32392 0 0 0 0 120 123.85 1862 77652 81744 85945 90320 1 13880 32392 0 0 0 0 121 124.88 1842 76818 80841 84852 94795 1 13880 32392 0 0 0 0 122 125.92 1822 78445 80841 84852 94795 1 13880 32392 0 0 0 0 123 126.95 1803 77603 79949 88196 94795 1 13880 32392 0 0 0 0 124 1 27.98 1784 76770 82374 83776 92829 1 07967 44690 0 0 0 0 125 129.01 1765 78346 79069 87081 92829 1 07967 44690 0 0 0 0 126 1 30.05 1746 77505 81468 87081 92829 1 07967 44690 0 0 0 0 127 131 .08 1727 76674 80573 86004 91047 1 14095 44690 0 0 0 0 128 1 32.1 1 1709 78200 80573 86004 91 047 1 14095 44690 0 0 0 0 1 29 1 33.14 1691 77361 79690 84942 95341 1 14095 44690 0 0 0 0 1 30 134.17 1673 78855 79690 84942 95341 1 14095 44690 0 0 0 0 131 135.21 1655 78010 82012 84942 95341 101941 56844 0 0 0 0 132 1 36.24 1637 77174 81 1 14 83912 93532 107975 56844 0 0 0 0 133 1 37.27 1620 78620 81 1 14 83912 93532 107975 56844 0 0 0 0 1 34 1 38.30 1603 77779 80228 87071 93532 107975 56844 0 0 0 0 1 35 1 39.33 1 585 76946 82476 82896 97707 107975 56844 0 0 0 0 1 36 140.37 1 569 78347 79352 86020 91886 1 13796 56844 0 0 0 0 1 37 141 .40 1 552 77508 81576 86020 91886 1 1 3796 56844 0 0 0 0 1 38 1 42 .43 1 535 78879 78487 84997 95998 103506 671 34 0 0 0 0 139 143.46 1519 78035 80687 84997 95998 103506 67134 0 0 0 0 140 144.49 1503 77201 82864 84997 90264 109241 67134 0 0 0 0 141 145.53 1487 78528 79809 83988 94328 109241 67134 0 0 0 0 142 146.56 1471 77689 81962 83988 94328 109241 67134 0 0 0 0 143 147.59 1455 76858 81071 87009 94328 109241 67134 0 0 0 0 144 148.62 1440 78144 81071 83003 92777 1 14796 67134 0 0 0 0 145 149.66 1425 77309 801 90 85991 92777 104662 77268 0 0 0 0 99 Table 7.11 Continued 146 1 50.69 1409 78568 801 90 85991 92777 104662 77268 0 0 0 0 147 1 51 .72 1 395 77729 82274 85991 92777 1 04662 77268 0 0 0 0 148 1 52.75 1 380 76899 81382 84986 96736 1 04662 77268 0 0 0 0 149 153.78 1365 78117 81382 84986 91260 110138 77268 0 0 0 0 150 154.82 1351 77283 80499 87908 91260 1 10138 77268 0 0 0 0 151 155.85 1336 78476 80499 84004 95165 1 10138 77268 0 0 0 0 152 156.88 1322 77639 82517 84004 95165 1 10138 77268 0 0 0 0 1 53 1 57.91 1308 78807 79628 86893 89841 1 06442 86287 0 0 0 0 1 54 1 58.94 1 294 77966 81624 83034 93701 106442 86287 0 0 0 0 1 55 159.98 1280 771 34 80740 85892 93701 1 06442 86287 0 0 0 0 1 56 161 .01 1267 78265 80740 85892 93701 106442 86287 0 0 0 0 1 57 162.04 1253 77431 82694 85892 93701 106442 86287 0 0 0 0 1 58 163.07 1240 78538 79867 8491 1 92259 1 1 1692 86287 0 0 0 0 159 164.10 1227 77701 81800 8491 1 92259 1 1 1692 86287 0 0 0 0 160 165.14 1214 78785 79004 87707 92259 102818 95161 0 0 0 0 161 166.17 1201 77945 80916 83942 96024 102818 95161 0 0 0 0 162 167.20 1 188 771 14 82808 83942 96024 102818 95161 0 0 0 0 163 168.23 1 176 78164 80043 86707 90906 107936 95161 0 0 0 0 164 169.27 1 163 77331 81914 86707 90906 107936 95161 0 0 0 0 165 170.30 1 151 78359 81914 82991 94622 107936 95161 0 0 0 0 166 171 .33 1 139 77524 81030 85726 94622 107936 95161 0 0 0 0 167 172.36 1 127 78530 81030 85726 94622 107936 95161 0 0 0 0 168 173.39 1 1 15 77694 80156 88431 89574 1 12985 95161 0 0 0 0 169 174.43 1 103 78679 80156 84758 93248 104860 103285 0 0 0 0 170 175.46 1091 77841 81968 84758 93248 104860 103285 0 0 0 0 1 71 1 76.49 1 080 78805 79292 87433 93248 1 04860 1 03285 0 0 0 0 172 177.52 1068 77967 81085 83805 96875 1 04860 103285 0 0 0 0 173 178.55 1057 78910 81085 83805 91942 1 09793 103285 0 0 0 0 174 179.59 1046 78071 8021 1 86452 91942 109793 103285 0 0 0 0 175 180.62 1035 77240 81966 86452 91942 1 09793 103285 0 0 0 0 176 181 .65 1024 78154 81966 82865 95529 101803 1 1 1275 0 0 0 0 177 182.68 1013 77323 81083 85483 95529 101803 1 1 1275 0 0 0 0 178 183.71 1002 78218 81083 85483 90660 106672 1 1 1275 0 0 0 0 1 79 184.75 992 77386 82800 85483 90660 1 06672 1 1 1275 0 0 0 0 180 185.78 981 78262 8021 1 84530 94203 1 06672 1 1 1275 0 0 0 0 181 186.81 971 77430 81910 84530 94203 106672 1 11275 0 0 0 0 182 187.84 960 78288 81910 84530 94203 106672 1 1 1275 0 0 0 0 183 188.88 950 77456 81029 87091 94203 106672 1 1 1275 0 0 0 0 184 189.91 940 78295 81029 87091 89437 1 1 1438 11 1275 0 0 0 0 1 85 190.94 930 77463 82691 83588 92940 1 03987 1 18726 0 0 0 0 186 191 .97 920 78285 80158 86121 92940 1 03987 1 18726 0 0 0 0 187 193.00 91 1 77453 81803 86121 92940 103987 1 18726 0 0 0 0 188 194.04 901 78258 81803 86121 92940 103987 1 18726 0 0 0 0 189 195.07 892 77427 80924 85166 96401 1 03987 1 18726 0 0 0 0 190 196.10 882 78214 80924 85166 91695 1 08693 1 18726 0 0 0 0 1 91 197.13 873 77384 82534 85166 91695 108693 1 18726 0 0 0 0 192 198.16 864 78155 80055 87645 91695 108693 1 18726 0 0 0 0 193 199.20 854 78918 80055 84223 951 17 108693 1 18726 0 0 0 0 194 200.23 845 78080 81647 84223 951 17 101365 126055 0 0 0 0 1 95 201 .26 836 78827 79195 86675 951 17 101365 126055 0 0 0 0 1 96 202.29 828 77990 80771 86675 90502 1 05979 1 26055 0 0 0 0 1 97 203.32 81 9 78721 80771 86675 90502 1 05979 1 26055 0 0 0 0 1 98 204.36 810 77886 82330 83293 93884 1 05979 126055 0 0 0 0 1 99 205.39 802 78601 79904 85719 93884 105979 1 26055 0 0 0 0 200 206.42 793 77767 81447 85719 93884 105979 126055 0 0 0 0 201 207.45 785 78468 81447 85719 93884 105979 126055 0 0 0 0 100 Table 7.11 Continued 202 208.49 777 77636 80573 881 18 93884 105979 126055 0 0 0 0 203 209.52 768 78322 80573 84774 92672 1 10536 126055 0 0 0 0 204 210.55 760 77491 82083 84774 92672 103616 1 32975 0 0 0 0 205 21 1 .58 752 78163 82083 84774 92672 103616 1 32975 0 0 0 0 206 212.61 744 78827 79709 87147 92672 103616 132975 0 0 0 0 207 213.65 736 77992 81203 87147 92672 103616 132975 0 0 0 0 208 214.68 729 78642 81203 83842 95977 103616 132975 0 0 0 0 209 215.71 721 77808 80332 86190 91502 108091 132975 0 0 0 0 210 216.74 713 78445 80332 86190 91502 108091 132975 0 0 0 0 211 217.77 706 77614 81794 86190 91502 108091 132975 0 0 0 0 212 218.81 698 78237 81794 86190 91502 108091 132975 0 0 0 0 21 3 219.84 691 78855 79472 85243 94770 1 08091 1 32975 0 0 0 0 214 220.87 684 78019 80918 85243 94770 108091 1 32975 0 0 0 0 215 221 .90 677 78623 80918 85243 94770 101283 1 39783 0 0 0 0 216 222.93 669 77790 82349 85243 94770 101283 1 39783 0 0 0 0 217 223.97 662 78381 80051 87541 90350 105703 1 39783 0 0 0 0 218 225.00 655 78966 80051 87541 90350 105703 1 39783 0 0 0 0 219 226.03 648 78130 81467 84310 93581 105703 139783 0 0 0 0 220 227.06 642 78703 81467 84310 93581 105703 1 39783 0 0 0 0 221 228.1 0 635 77869 80595 86582 93581 105703 1 39783 0 0 0 0 222 229. 1 3 628 78430 80595 86582 93581 105703 1 39783 0 0 0 0 223 230.16 622 77599 81980 86582 93581 105703 1 39783 0 0 0 0 224 231 .19 615 78149 81980 83387 96776 105703 139783 0 0 0 0 225 232.22 609 78692 79732 85635 92431 1 10049 139783 0 0 0 0 226 233.26 602 77859 81 103 85635 92431 103561 146271 0 0 0 0 227 234.29 596 78391 81 103 85635 92431 103561 1 30076 16196 0 0 0 228 235.32 590 78917 81 103 85635 92431 103561 130076 16196 0 0 0 229 236.35 583 78082 80235 87859 92431 103561 1 30076 161 96 0 0 0 230 237.38 577 78597 80235 84700 95590 103561 1 30076 16196 0 0 0 231 238.42 571 77765 81577 84700 95590 103561 1 30076 16196 0 0 0 232 239.45 565 78269 81577 84700 95590 103561 130076 16196 0 0 0 233 240.48 559 78769 81577 84700 91296 107854 130076 16196 0 0 0 234 241 .51 553 77935 80705 86900 91296 107854 130076 16196 0 0 0 235 242.54 547 78424 80705 86900 91296 107854 1 30076 16196 0 0 0 236 243.58 542 78907 80705 86900 91296 107854 1 30076 16196 0 0 0 237 244.61 536 78073 82018 83776 94420 1 07854 1 30076 16196 0 0 0 238 245.64 530 78546 79842 85952 94420 1 07854 1 30076 161 96 0 0 0 239 246.67 525 77715 81 141 85952 94420 101468 136462 16196 0 0 0 240 247.71 519 78179 81141 85952 94420 101468 136462 16196 0 0 0 241 248.74 514 78637 81 141 85952 94420 101468 1 36462 16196 0 0 0 242 249.77 508 77805 82427 85952 901 95 1 05693 1 36462 1 61 96 0 0 0 243 250.80 503 78255 80274 88105 90195 105693 136462 16196 0 0 0 244 251 .83 498 78699 80274 8501 7 93284 1 05693 1 36462 1 61 96 0 0 0 245 252.87 492 77867 81546 85017 93284 105693 136462 16196 0 0 0 246 253.90 487 78302 81546 85017 93284 105693 136462 16196 0 0 0 247 254.93 482 78732 81546 85017 93284 105693 136462 16196 0 0 0 248 255.96 477 77900 80675 87146 93284 105693 1 36462 16196 0 0 0 249 256.99 472 78321 80675 87146 93284 105693 1 36462 16196 0 0 0 250 258.03 467 78738 80675 87146 93284 1 05693 1 36462 1 61 96 0 0 0 251 259.06 462 77906 81920 84091 96339 105693 136462 16196 0 0 0 252 260.09 457 78314 81920 84091 92164 109868 136462 16196 0 0 0 253 261.12 452 78718 79813 86198 92164 103741 142589 16196 0 0 0 101 Appendix 7.13: Three-Dimensional Graphs of Model Output The following three-dimensional graphs show the complete profile created by the model for dry basis moisture concentration, effective gap radius, Darcy ’s velocity, marinade velocity, Salmonella velocity, Salmonella location, and Salmonella concentration at every time step. r 2.66 ~ 2.64 I ~ 2.62 2.60 Moisture ~2.58 Contentdb --2.56 tlme(s) , .254 § , .252 N 8 3 o AX “' o (m) Figure 7.1: Three-dimensional graph of the dry basis moisture content. 102 93p radiUs 3~1E-05 ./ - 3.0506 - 2.9E-06 - 2.8E.05 A 2715-06 4 2.6505 _ 2.5506 A - 2.4E-06 # (m) \‘\ H Elly".- ‘ -_\ 77‘57 2.E-O4 _ - -3 2.E-04 777\’ 1.E_04 -1504 DaI'Cy's ” 1.E.04 . b 8.E-05 veloc'ty b 6505 (m3°m 2s 1) ” 4.E.05 ” 2.E.05 “ 0.E+00 Figure 7.3: Three-dimensional graph of Darcy’s velocity. 103 - 7-:7:_:77f:“““‘““~ 1.6E-03 - - - M33 1.4503 < - ~ “"““\-~+ 1 .2503 “““ ** -~ ~1.0E-03 Marinade ~8.0E-04 Velocity ~6.0E-O4 (mls) 4.0504 2.0504 r-0.0E+OO Ax (m) 3.5.01 — __ ~ 3* *‘ -__ a. 2.501 - Salmonella 2501‘ VGIOCitYW’S) 1.E-O1 7 ~ -. g 5 . . ' \ \\\\‘\\:\‘\\:‘\x \\ \\\\‘7\ \ \\\ \\\\:\ \\~‘.¢\\ {7V i\7\\ \\\ , . \\\~ . \\ ‘\¢\\ \ \\ \» \ . “77;. '4'" :i\\\\\“\\\\‘\‘§ \‘ \\\\.\\\\\ \\: \\\\ 2“ll l i 5.E-02 ‘IEI‘WAV‘ “y r“? I O.E+OO . . i . . 'time (s) {3' 2' i distance q 0 I (m) 15.05 Figure 7.5: Three-dimensional graph of Salmonella velocity. 104 8. REFERENCES Adams, M.R., Moss, M.O., 2000. Food Microbiology. The Royal Society of Chemistry, Cambridge. Agranovski, I.E., Braddock, R.D., Kristensen, N.P., Crozier, S., Myojo, T., 2001. Model for Gas-Liquid Flow through Wet Porous Medium. Chemical Engineering Technology 24,1151-1155. Barbut, S., 2002. Poultry Products Processing: An Industry Guide. CRC Press, Boca Raton. Boyd, K.J., Ockerman, H.W., Plimpton, R.F., 1978. Sensory Characteristics and Microbiological Evaluation of Stored Mechanically Tenderized Beef Semimembranosus Muscle. Journal of Food Science 43, 670-672, 676. Bruinsma, R., 1996. Rheology and Shape Transitions of Vesicles under Capillary Flow. Physica A 234, 249-270. CDC., 2005. "Disease Information: Salmonellosis ". Centers of Disease Control and Prevention, Division of Bacterial and Mycotic Diseases. http://www.ch.gov/ncidod/dbmd/diseaseinfo/salmonellosisithtm. Last accessed December 5, 2006. Charles, ME, 1963. The Pipeline Flow of Capsules Part 2: Theoretical Analysis of the Concentric Flow of Cylindrical Forms. The Canadian Journal of Chemical Engineering 41, 46-51. Chow, V. T., Maidment D.R., Mays, L.W. 1988. Applied Hydrology. McGraw-Hill. Datta, A.K., 2002. Biological and Bioenvironmental Heat and Mass Transfer. Marcel Dekker Inc., New York. Davis, A.M.J., James, DR, 1996. Slow Flow Through a Model Fibrous Porous Medium. International Journal of Multiphase Flow 22, 969-989. Dhotkar, B.N., Chhabra, R.P., Eswaran, V., 2000. Flow of Non-Newtonian Polymeric Solutions Through Fibrous Media. Journal of Applied Polymer Science 76, 1171-1185. Ellis, HS, 1964. The Pipeline Flow of Capsules Part 3: An Experimental Investigation of the Transport by Water of Single Cylindrical and Spherical Capsules with Density Equal to that of the Water. The Canadian Journal of Chemical Engineering 42, 1-8. 105 Fink, D., Muller, M., 2000. Capillaric Penetration of Etchant Solution into Swift Heavy Ion-irradiated Silicone Rubber. Nuclear Instruments and Methods in Physics Research 170, 134-144. FSIS. 1999. Performance Standards for the Production of Certain Meat and Poultry Products. Federal Register. 64(3):732-749. Food Safety Inspection Service, US. Department of Agriculture, Washington, DC. FSIS. 2002. Comparative Risk Assessment of Intact (Non-Tenderized and Non-Intact (Tenderized) Beef: Technical Report. Food Safety Inspection Service, US. Department of Agriculture, Washington, DC. FSIS. 2005. Verification of Establishment’s Reassessment of HACCP Plans to Address Mechanically Tenderized Beef Products. Notice. Food Safety Inspection Service, US. Department of Agriculture, Washington, DC. Gill, C.O., Penney, N., 1982. A Research Note: Bacterial Penetration of Muscle Tissue. Journal of Food Science 47, 690-691. Gill, C.O., Penney, N., 1977. Penetration of Bacteria into Meat. Applied and Environmental Microbiology 33, 1284-1286. Gupta, L., Kalra, M.S., Singh, A., Singh, B., 1983. Penetration of Bacteria into Muscle of Goat, Pork and Poultry Meat. Journal of Food Science and Technology 20, 13-16. Hodgson, G.W., Charles, ME, 1963. The Pipeline Flow of Capsules Part 1: The Concept of Capsule Pipelining. The Canadian Journal of Chemical Engineering 41, 43-45. Johnston, R.W., 1978. Some Current Asppects of the Community Nutrition Institute’s Petition Concerning Mechanical Tenderization and Packing of Meat. Proc. Meat Ind. Res. Conf. Arlinton, VA., American Meat Institute Foundation, 137-140. Juneja, V.K., Eblen, B.S., Ransom, G.M., 2001. Thermal Inactivation of Salmonella spp. in Chicken Broth, Beef, Pork, Turkey, and Chicken: Determination of D- and Z-values. Journal of Food Science 66, 146-152. Kirsh, VA., 2004. The Deposition of Areosol Submicron Particles on Ultrafine Fiber Filters. Colloid Journal 66, 311-315. Kolodziej, J.A., Dziecielak, R., Konczak, Z., 1998. Permeability Tensor for Heterogeneous Porous Medium of Fibre Type. Transport in Porous Media 32, 1-19. Koska, 1., Bowen, B.D., Piret, J.M., 1997. Protein Transport in Packed-Bed Ultrafiltration Hollow-Fibre Bioreactors. Chemical Engineering Science 52, 2251-2263. 106 Lareo, C.A., Fryer, P.J., 1998. Vertical Flows of Solid-Liquid Food Mixtures. Journal of Food Engineering 36, 417-443. Latto, B., Chow, K.W., 1982. Hydrodynamic Transport of Cylindrical Capsules in a Vertical Pipeline. The Canadian Journal of Chemical Engineering 60, 713-722. Lawrie, R.A., 1985. Meat Science. Pergamon Press, Elmsford. Lebedev, M.N., Stechkina, I.B., Chemyakov, A.L., 2002. Deposition of Aerosol Particles on the Row of Polydisperse Fibers Due to Interception with Allowance for Slip Effect. Colloid Journal 64, 79-86. Lemos, A.L.S.C., Nunes, D.R.M., Viana, A.G., 1999. Optimization of the Still- Marinating Process of Chicken Parts. Meat Science 52, 227-234. Li, Y., Park, C.-W., 2000. Effective Medium Approximation and Deposition of Colloidal Particles in Fibrous and Granular Media. Advances in Colloid and Interface Science 87, 1-74. Locke, M., Indraratna, B., Adikari, G., 2001. Time-Dependent Particle Transport Through Granular Filters. Journal of Geotechnical and Geoenvironmental Engineering 127, 521-529. Mauret, E., Renaud, M., 1997. Transport Phenomena in Multi-Particle Systems-II. Proposed New Model Based on Flow Around Submerged Objects for Sphere and Fiber Beds -Transition Between the Capillary and Particulate Representations. Chemical Engineering Science 52, 1819-1834. Maxcy, RB, 1981. Surface Microenvironment and Penetration of Bacteria into Meat. Journal of Food Protection 44, 550-552. McCarthy, K.L., Kerr, W.L., Kauten, R.J., Walton, J.H., 1997. Velocity Profiles of Fluid/Particulate Mixtures in Pipe Flow using MRI. Journal of Food Process Engineering 20, 165-177. Merva, GE, 1995. Physical Principles of the Plant Biosystem. American Society of Agricultural Engineers, St Joseph. Nilsson, L., Stenstrom, S., 1995. Gas Diffusion Through Sheets of Fibrous Media. Chemical Engineering Science 50, 361-371. Orta-Ramirez, A., Marks, B.P., Warsow, C. R., Booren, A. M., Ryser, E. T., 2005. “Enhanced thermal resistance of Salmonella in whole muscle compared to ground beef.” Journal of Food Science 70(7): M359-M352. 107 Papathanasiou, T.D., 2001. Flow Across Structured Fiber Bundles: A Dimensionless Correlation. International Journal of Multiphase Flow 27, 1451-1461. Raccah, M., Henrickson, R.L. 1979. Microbial aspects of mechanical tenderization of beef. Journal of Food Protection. 42:971-973. Sastry, S.K., Zuritz, C.A., 1987. A Review of Particle Behavior in Tube Flow: Applications to Aseptic Processing. Journal of Food Process Engineering 10, 27-52. Schmid-Schonbein, G.W., Skalak, R., Usami, S., Chien, S., 1980. Cell Distribution in Capillary Networks. Microvascular Research 19, 18-44. Sheard, P.R., Tali, A., 2004. Injection of Salt, Tripolyphosphate and Bicarbonate Marinade Solutions to Improve the Yield and Tenderness of Cooked Pork Loin. Meat Science 68, 305-311. Sikes, A., Maxcy, RB, 1980. Postmortem Invasion of Muscle Food By a Proteolytic Bacterium. Journal of Food Science 45, 293-296. Thomas, C.J., O'Rourke, R.D., McMeekin, T.A., 1987. Bacterial Penetration of Chicken Breast Muscle. Food Microbiology 4, 87-95. Tuntivanich, V., Orta-Ramirez, A., Booren, A.M., Marks, BR, 2006. The migration pattern of Salmonella spp. into whole-muscle turkey breast during marination. IFT Annual Meeting. Orlando, F l. Tuntivanich, V., Velasquez, A., Orta-Ramirez, A., Ryser, E.T., Marks, BR, 2005. Enhanced thermal resistance of Salmonella and microstructure. IFT Annual Meeting. New Orleans, LA. Velasquez, A., Tuntivanich, V., Orta-Ramirez, A., Booren, A.M., Marks, B.P., Ryser, ET, 2005. Enhanced thermal resistance of Salmonella in marinated whole-muscle vs. ground pork. IFT Annual Meeting. New Orleans, LA. Warsow, CR, 2003. Penetration of Salmonella spp. into Whole-Muscle Turkey Breasts During Vacuum Tumbling Marination. Food Science and Human Nutrition. Michigan State University, East Lansing, p. 104. Xiong, Y.L., Kupski, DR, 1999. Time-Dependent Marinade Absorption and Retention, Cooking Yield, and Palatability of Chicken Filets Marinated in Various Phosphate Solutions. Poultry Science 78, 1053-1059. Xiong, Y.L., Kupski, DR, 1999. Monitoring Phosphate Marinade Penetration in Tumbled Chicken F ilets Using a Thin-Slicing, Dye-Tracing Method. Poultry Science 78, 1048-1052. 108 Zhong, W.H., Currie, I.G., James, DE, 2006. Creeping Flow Through a Model Fibrous Porous Medium. Experiments in Fluids 40, 119-126. Zuniga, A.G.D., Anderson, M.E., Marshall, R.T., Iannotti, EL, 1991. A Model System for Studying the Penetratuion of Microorganisms into Meat. Journal of Food Protection 54, 256-25 8. 109 u"glijilgiynggirjjlrimI