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ABSTRACT

INTERMITTENCY AND THE VISCOUS SUPERLAYER IN A SINGLE STREAM

SHEAR LAYER

By

Aren Hellum

Time resolved velocity and vorticity measurements have been made in a high Rey-

nolds-number Single Stream Shear Layer (SSSL). This work was motivated by interest

in the Viscous Superlayer (VSL). The VSL is a thin interface region between vortical

and non—vortical fluid. Processing algorithms were developed which allowed vorticity

information to be used to locate the flow at time t on either the “vortical” or “non-vor-

tical” side cf the VSL. This information was used to create the time-resolved intermit—

tency function [(0 at a location in space. Post—processing of [(1‘) implies that the scales

characteristic of the VSL range from approximately 0.36 to 109 , where 9 is the

momentum thickness of the shear layer. Velocity statistics conditioned upon the value

of 1(t) were also obtained. These conditional statistics strongly imply that unsheared

fluid reaches the shear layer center from both the entrainment and primary streams.

Similar conditioning was used to compare vortical and non—vortical autocorrelations

and scales of motion near the high speed, irrotational flow domain. These observations

reveal a significantly longer period of correlation in the non-vortical fluid.
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1.0 Introduction

1.1 Motivation

An intermittent flow is one in which the motion at a given location is at times vortical

and other times non-vortical. Intermittency is a characteristic of free turbulent shear

flows and the turbulent boundary layer. A feature of intermittent flows termed the

Viscous Super-Layer (VSL) is a central feature of the present discussion. This feature,

the existance of which was first proposed by Corrsin (1943), is a thin interface

between rotational and irrotational fluid. Since non-vortical fluid can only become

vortical by the direct action of viscosity, the fluid on the “vortical” side of this inter-

face represents fluid that is subject to viscous effects. Additional physical insight can

be gained when statistics of these two vortical and non-vortical flow conditions are

separately evaluated. These “conditional statistics” are the subject of Chapter 4.

1.2 The Facility

The subject flow is a high Reynolds number single-stream shear layer (SSSL) located in

the Turbulent Shear Flows Laboratory at Michigan State University. This facility was

created by and used in the thesis work of SC. Morris (See Morris (2002)). A single

stream shear layer, depicted in general form in Figure 1.1, is a flow in which a bound-

ary layer has separated from its bounding wall. Following this separation, the sheared

portion of the fluid entrains the unsheared fluid present in the free stream and the

entrainment stream.

A schematic of the flow path and coordinate system of the SSSL used for the present

work is depicted in Figure 1.2. This particular tunnel is well—suited to the investigation

for several reasons. First, the large physical size of the tunnel allows hot-wire probes to



better approximate a point measurement. Second, since the vortical content of the

flow is a variable of interest, it is important that the vorticity of the primary and the

entrainment streams is very near zero. Two unique features of the facility were

designed with this requirement in mind. The primary flow (marked with a “1” in

Figure 1.2) at the separation lip has a very long (9.67 m) settling length following the

final flow conditioning element. This is to ensure that the residual vorticity in the pri—

mary free stream is very small. The entrainment flow (marked with a “2” in Figure 1.2)

is passed through flow treatment elements prior to entering the measurement region.

These turbulence manipulators lower the level of vorticity in the entrainment stream.

The pressure drop associated with these elements is recouped by driving the entrain—

ment flow with four large fans upstream of the flow treatment. The details of this sys-

tem are discussed in greater detail in Chapter 2.

Virtually all of the following discussion will be conducted in terms of non—dimen-

sional quantities; hence, a discussion of these quantities is merited. Downstream of the

separation lip (x = y = 0), the turbulent boundary layer that has built up on the plate

transitions into a free shear layer. The only flow scale that exists at this point is that of

the boundary layer. The momentum thickness of this boundary layer, 00, is the most

natural scaling parameter for the streamwise axis. In the tunnel used in the present

work, 00 was found to be 9.96 mm. The similarity variable which is used to scale the

transverse axis is:

y — J” I 2

W “-1)
Tl (I, y) =



In equation 1.1, yI [/2 is the transverse position at X where the streamwise component

of velocity is half of that of the free stream value, 0(x) is the momentum thickness of

the shear layer at a given streamwise location X.

It has been shown in numerous prior studies, including Morris (2002), that this simi-

larity variable can be used to collapse the data from different streamwise locations--

the domain for which this property holds is called the flow’s self-preserving region.

The present study verified this collapse. The results at several streamwise locations are

shown in Figure 1.3.

1.3 Document Overview

Chapter 2 of this document presents the experimental apparatus and techniques used

in the present study. Chapter 3 presents the process used to obtain the signal I(t),

where

.3

I(t) : I, iffluid at x at time t is vortical (1 2)

ii = constant . . 3 . . . .

0, Iffluld at x at time t (S non-vortical

Chapter 4 presents “conditional statistics" of the flow and measurements of the

motions and appearance of the VSL.
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2.0 Experimental Setup and Procedure

2.1 The Facility

2.1.1 Primary Flow

The primary flow is propelled by an axial fan at ground level. After leaving the fan, the

fluid goes though two sets of turning vanes, each turning the flow 90 degrees so that

the exit flow is brought to the level of the main tunnel, 2.1 m above the ground. This is

depicted in Figure 2.1. Directly ahead of the lower set of turning vanes are furnace fil-

ters, used to smooth out variations in the velocity profile. After the flow exits the sec-

ond set of turning vanes, it is delivered through a 2 meter by 2 meter opening covered

by “honeycomb” flow treatment and three fine (mesh size = 0.76 mm, open area =

80%) steel screens separated by 10.2 cm. The honeycomb, which is used to break up

large vortical motions, consists of cut soda straws (I/D = 8, L = 2.54 cm) pressed and

glued together. The screens serve to even out variations in the velocity profile and fur—

ther reduce the characteristic size of turbulent motions in their wakes.

After passing through the screens, the fluid passes through the portion of the tunnel

depicted in Figure 2.2. The flow goes through a nominal 2:1 contraction. The leading

edge of the boundary layer plate is offset from the end of this contraction by 2.5 cm

and fitted with an elliptical edge. This offset serves to remove the boundary layer that

has built up during the contraction. A boundary layer trip has been installed 30 cm

downstream of the boundary layer leading edge. Its purpose is to ensure that the loca-

tion of transition to turbulence is fixed in space. The resulting turbulent boundary

layer is then allowed to develop over a length of 5.4 meters from this trip. The Rey-

nolds number of the boundary layer at separation is Re(00) z 4500. This is quite a



large value for a laboratory single stream shear layer. The long (9.7 m) distance down-

stream from the final set of primary flow conditioners ensures that negligible vortical

motions remain in the potential stream.

The momentum thickness of the turbulent boundary layer at the separation lip is used

to scale the streamwise axis. This momentum thickness has been measured and was

found to be 9.96 mm. The profile of the boundary layer at separation is shown in

Figure 2.3 (a). The integrand of the expression

90 : Tt—O—4(y)(l __z_1__'(Ui)) IV (2.1)

is shown in Figure 2.3 (b). The smooth curve superimposed over the data in Figure 2.3

(b) is an interpolated piecewise cubic spline. The area under this curve was integrated,

yielding the above value of 9.96 mm for 00 .

2.1.2 Entrainment Flow

The location x = y = 0 is termed the separation edge. Downstream of this point, the

wall along which the boundary layer has developed no longer exists, and the boundary

layer transitions into a single stream shear layer. As this shear layer develops it will

widen, entraining fluid from both the high speed primary flow (y > 0) and from the

low speed region (y < 0). A typical SSSL facility allows this low—speed (entrainment)

flow to be induced directly from the laboratory environment, without benefit of flow

conditioning.



The MSU-TSFL facility is distinctive in that it introduces turbulence manipulators

between the laboratory environment and the flow of interest. Specifically, “honey-

comb” (L/D = 8, L = 2.54 cm) followed by three mesh (mesh size = 0.76 mm, open area

= 80%) screens separated by 10.2 cm are employed to deliver a low disturbance

entrainment flow. This flow treatment has the additional effect of imposing a pressure

drop on the entrainment flow. This pressure drop must be balanced by a momentum-

introducing element if the required zero pressure gradient in the streamwise direction

is to be preserved.

Four large (48” diameter) axial fans, driven by 3-phase AC motors, were used to pro-

vide this momentum. The entrainment velocity provided by these fans must be

adjusted such that the pressure gradient in the primary stream is equal to zero. If the

entrainment velocity is too high, the shear layer will be “overfed”, causing a negative

pressure gradient in the free stream. If the entrainment velocity is too low, the shear

layer will be “starved”, causing a positive pressure gradient in the free stream. To

ensure a zero pressure gradient condition, a Durapulse AC motor controller was used

to modulate the frequency of the line voltage driving the motors. This allowed the

fans’ rotational speed to be tuned to provide the required pressure-rise condition. The

zero pressure gradient condition was ensured by measuring the free stream speed with

a hot-wire at the exit plane (x = 0) and at a large distance (x /00 = 400) down—

stream. The fan speed was then adjusted until the two values were equal.

2.2 Hot-wire Techniques and Processing

2.2.1 Apparatus



Hot-wire anemometry has long been a standard tool of turbulence research. A good

overview of the technique is found in Bruun (1995). An overview of the techniques

and devices germane to the present document follows.

The anemometer used to collect the data presented in this document was a DISA 55M

Constant Temperature anemometer. This proven device uses a Wheatstone bridge and

compensating electronics to attempt to continuously maintain a constant temperature

at the sensor. The sensor forms one leg of the bridge, and the voltage required to main-

tain the desired overheat ratio is monitored and sampled at discrete times.

The basic sensor is depicted in Figure 2.4. It consists of a 5 micrometer diameter tung-

sten filament electroplated with copper on the ends to a diameter of 50 micrometers.

The unplated portion is commonly referred to as the wires “active region” and it is

approximately 1 mm in length. The copper is soldered to stainless steel jeweler

broaches fixed to the main body of the probe. The copper serves two purposes. First, it

allows the probe fabricator to solder, rather than weld, the wire to the broaches. Sec—

ond, and more importantly, it decreases the aerodynamic effect of the broaches on the

sensor. To clarify: the increased diameter in the plated region, as well as the choice of

copper, serves to greatly reduce the electrical resistance in the plated region, reducing

the temperature in this region. Since broach effects (boundary layer and wake) will be

confined to the area nearest the broach, a lower temperature near the broach reduces

the impact of these aerodynamic effects. This consideration is of particular importance

when the probe is a multi—wire probe.

10



A X-wire probe is depicted in Figure 2.5. It consists of two wires, as described above,

mounted at approximately right angles to each other. A hot-wire sensor is sensitive to

both the velocity and angle of the fluid cooling it. A single-sensor probe cannot

recover both of these quantities, whereas a two-sensor probe constructed as shown is

able to do so. The procedure to accomplish this will be discussed in Section 2.2.3.

The transverse vorticity probe, or Mitchell probe, is depicted in various views in

Figures 2.6, 2.7, and 2.8. It consists of two parallel straight wires at a known distance1

apart whose long axes are at a right angle to the plane of an X array. The four cooling

velocities measured can then be processed such that a measurement of transverse vor-

ticity is obtained. This processing procedure will be discussed in Section 2.2.4.

2.2.2 Calibration and Processing

The transfer function used to compute a cooling velocity from the measured voltage is

a modified version of what is known as King’s law:

152 = A + BQ" (2.2)

Where E is the measured voltage across the wire, Qis the cooling velocity and A, B and

n are empirically determined constants. In order to determine this relationship, the

wire must be calibrated. That is, the response of the wire must be known at certain

known velocities.

The basic method of calibrating a sensor involves placing the wire in a steady, inviscid,

incompressible flow. This flow is therefore amenable to velocity measurement via a

 

1. It is important that the measurement of this distance be very accurate. To ensure this. a procedure which will be

detailed in Section 2.2.4 is employed.
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pressure measurement and the Bernoulli principle. The hot—wire voltage and pressure

data are obtained, then the flow is adjusted, and voltage and pressure information are

measured at this new speed. This process is then repeated until the range of velocities

expected in the flow of interest have been covered with sufficient density to be confi-

dent in the obtained fit. An example of the curve to be fitted along with its accompa-

nying constants is depicted in Figure 2.9.

This procedure can be altered slightly to save calibration time. Rather than use a truly

steady flow, the flow can be continuously varied over the range of velocities. It is

worth noting that this does violate one of the assumptions of the Bernoulli principle;

however, if the rate of change of velocity is sufficiently small, the error introduced by

this effect is similarly small. In Figure 2.10, the calibrations obtained by the same wire

by both the “steady, point” method and the “quasi—steady” method are shown. The

continuous curve in this figure represents the transfer function found by the quasi-

steady method over the range of E2. The discrete points represent the mean values of

E2 found during the “steady, point” calibration which have been put through the

transfer function found by the “steady, point” method. It is clear that the error intro-

duced by the quasi-steady effect is negligibly small.

During either of the two above procedures, the local temperature near the wire is

monitored throughout. This measurement is made for two reasons. First, the local den-

sity must be known in order to establish local velocity by the Bernoulli relationship.

Second, a hot-wire is not able to measure simply a cooling velocity—it measures its

local cooling environment. The effect of ambient temperature change was examined in
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Abdel-Rahman et al (1987). The changes in ambient temperature between calibration

and data acquisition have been found to be small in the facilities used in the present

discussion; as such, a linear correction as described in Abdel-Rahman [1] was

employed.

2.2.3 X-array Probe

This procedure is fundamentally unchanged for an X—array probe, with the additional

consideration that the probe must now be placed at various angles2 to assess the effects

of flow angle on the response of each wire. The calibration facility shown in

Figure 2.11 was constructed to accomplish this. The facility is a “suction-side” unit—

that is, a jet is created by allowing a nozzle flow to exhaust into a sub-atmospheric ple-

num that is evacuated by a centrifugal blower. The wire is placed at the exit of this jet,

along with the supporting pressure and temperature measurements. The primary

advantage of a “suction—side” box (compared to a “pressure—side” unit, in which the

nozzle exhausts to atmospheric pressure) is a lower disturbance exit velocity. Elimina-

tion of fluctuations in the jet velocity is important, because these fluctuations directly

affect the uncertainty associated with the technique. It is this consideration which jus—

tifies the increased effort involved in the fabrication and operaion of a suction-side

unit.

A stepper motor has been mounted to the probe—holding fixture to allow adjustment of

the probe angle inside the plenum. A potentiometer has been affixed to this angular

 

2. It is this need to determine wire response at many angles which motivates the use of the quasi—steady calibra-

tion. Obtaining enough discrete data points to accurately assess wire response in two dimensions (orientation

angle and velocity) requires nominally an hour for a single probe. In contrast, the quasi-steady procedure

accomplishes this same task in about 15 minutes.
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traverse to provide a resistance which changes proportionally to the change in angle.

This potentiometer forms one side of a voltage divider circuit. The voltage across the

other side of the circuit was then measured. This voltage relates the angular position of

the probe.

The calibration procedure as it relates to X-array probes is therefore as follows: posi—

tion the probe at a known angle to the oncoming flow. Vary the oncoming flow veloc-

ity slowly per the quasi-steady procedure described above. Reposition the probe at a

new known angle and repeat the process, until a satisfactory number and range of

angles have been obtained. For the present work, 13 angles in 6 degree increments

from -36 degrees to 36 degrees were deemed satisfactory.

The result of this procedure is a set of 13 transfer functions in the form of Equation 2.2

for each wire--one function for each calibration angle. Given a voltage for each wire,

the velocity for each wire that would result from that voltage, at that angle, is com-

puted. Since the angles at which these possible velocities exist is also known, we can

View this calibration information as two sets of speed/angle pairs. These sets of pairs

are can be viewed on a Cartesian coordinate system, depicted in Figure 2.12. Since

each wire is (assumed to be) at the same angle to the flow and the fluid passing over

each is at the same velocity, the intersection of these curves determines the speed and

angle of the flow experienced by the probe3.

2.2.4 The transverse vorticity probe

 

3. This processing method is very similar to one introduced by Browne et a1. (1989). The method as described

above was independently developed by Morris (2002).
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A time-resolved measurement of transverse vorticity4 is also desired. The basic

method for accomplishing this with the probe depicted in Figures 2.6, 2.7, and 2.8

was originally communicated in Wallace and Foss (1995), but will be repeated here

with mention made of subsequent additions to and refinements of the method.

This four—wire probe can be considered to be comprised of two arrays: an X—array,

identical to that described in Section 2.2.3, and an array of parallel wires. The proce-

dure for calibrating the probe is similar to that of an X—array-—the probe is placed at

various angles to assess the effects of flow angle on the response of each wire. Some

previous iterations of this method did not take into account the effects of varying flow

angle on the array of parallel wires. These effects were accounted for in the present

work.

The vorticity measurement is made by approximating the relevant terms of the curl of

velocity. The following discussion concerns the spanwise component of vorticity. This

component of vorticity is best able to define the average behavior of the vorticity fila-

ments comprising the VSL. Since the mean flow field is homogenous in the spanwise

direction, and nearly homogenous in the streamwise direction, the only component of

vorticity having a non-zero mean value is the spanwise component. Note that the

other components may have distinctly non-zero fluctuations.

To approximate the spanwise component of vorticity, the terms which must be

approximated are the derivative of the streamwise component in the transverse direc-

 

4. The measurement procedure and supporting algorithms detailed describe a procedure which is time-resolved

and apprwa'maresa point measurement. Since the circulation is calculated about a finite volume, all derivatives

are approximations of their infinitesimal form.
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tion and the derivative of the transverse component in the streamwise direction. Or,

following the common nomenclature,

_ 5‘, (77115

a): — a; — (TV (2.3)

The above derivatives are not directly approximated. Instead, a construct known as the

“micro-circulation domain”, shown in Figure 2.14, is employed, along with Green’s

Theorem (Equation 2.4) in the approximation of vorticity.

Had/i = r = {it/.2 (24)

Equation 2.4 states that the average vorticity through the area IIKL (see Figure 2.14) is

equal to the circulation around the perimeter [JKL . The average vorticity through the

area IIKL is therefore:

 

r _ v(N)—v(M)+Il,,-(jf<)-ll_,.(1_1:)

= Z (ds)(dy) ([5 (1y (2'5)

  

(l)

The length dy = lljl = [1731 is the separation between the probe’s two parallel wires,

as shown in Figure 2.6. Measurement of the distance between the parallel wires is per-

formed by traversing a calibrated probe across a steep velocity gradient. A boundary

layer or a thin free shear layer is appropriate for this task. The velocity is recorded at a

series of known locations, and this information is plotted for each wire on a set of axes,

shown in Figure 2.13. The distance between these two curves is the separation

between the parallel wires.

The length ds is calculated iteratively:
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n+m l . 2 .

Z cos(y(t,.) — (yn)) x (I (t’) g (I (I') x At (2.6)

i=n—m

ds(m) =  

1

2m + 1

Where (yn) , the mean angle over a domain of size In about point n, is given by:

n + m

<v,.>(m) = Zn—‘fi Z in.) (2.7)

i=Ii—m

AI is the amount of time between acquired realizations. q] and q2 are the velocity

magnitudes at each time step. The value of m is increased until (15 > dy.
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FIGURE 2.4 Schematic representation of a single wire hot-wire probe
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FIGURE 2.6 Transverse vorticity probe, side view (parallel wires come out of the page)

 
FIGURE 2.7 hansverse vorticity probe, as seen by flow
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FIGURE 2.8 Transverse vorticity probe, 3D view
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Note: this traverse is capable of rotating the measurement region of the probe about
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respectively.
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3.0 Intermittency

3.1 Introduction

The curl of the Navier Stokes equation,

17))? = (momma (3.1)

is known as the vorticity transport equation. Flows which are bounded by fluid pos-

sessing negligible vorticity, that is, (0 z 0 , often exhibit “intermittent” properties.

Within the field of interest, there exist locations at which the fluid could at times be

described as vortical, and at other times, non-vortical. The boundary between vortical

and non-vortical fluid is known as the Viscous Superlayer (VSL).

It can be argued that the VSL is a sharp boundary by analysis of Equation 3.1. The term

1%“:- represents the time rate of change of vorticity for a fluid element. A non-vortical

fluid element can only become vortical via the direct action of viscosity, hence the

2 . D00 2 .
term VV 5 must be of the same order of magmtude as I)? . Note that V has units of

1/(length)2, where (length) characterizes the thickness of the VSL. Since v is

“small”, l/(length)2 must be “large”, and therefore (length) is “small”.

The result of this procedure is a function I(it, t) such that:

[(1‘) l‘ = 1, iffluid at a? at time t is vortical (3.2)

x = constant . . 3 . . .

0, zffluzd at x at time I IS non-vortical
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The time-mean of this function, <I>, therefore represents the fraction of time that the

fluid passing a point in space is vortical. Both the time record and the time-mean of

I(;, t) have application in characterizing the flow.

Those sections of flow deemed vortical can be separated from the rest of the record

and quantities representative of only the vortical portions determined. These condi-

tional statistics are the primary focus of Chapter 4. The number and frequency of tran-

sitions between vortical and non-vortical at a given point gives some measure of the

structure of the VSL.

3.2 Defining “vortical”: surrogate methods

Previous works have discussed the topic of intermittency. These works made use of a

different signal than vorticity to construct the function I(t). These surrogate methods

construct I(t) such that I(t) = 1 if % velocity is sufficiently large, and I(t) = 0 other-

wise. For reasons stated in the previous section, the author believes the current

method of constructing I(t) to be the most closely tied to the physics of the flow. How-

ever, the surrogates are appropriate indicators of dissipation and turbulent mixing.

They are therefore not without technical importance. Details of and comparisons

between the various methods follows.

3.2.1 Townsend

One of the earliest works on the topic of intermittency was Townsend (1956), who

used even powers of the spatial derivative of velocity and compares it to the analogous
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even powers of a known “fully turbulent” flow to obtain the average value of intermit-

tency at some location.l That is,

 l-
  

y— -!

(£14
(11:4

[is] iii—zit

The single bar notatation, (---), refers to the ordinary time mean, and the double bar

(3.3)
 

 

    

notation, (--——), refers to the mean taken only during the turbulent portion of the flow.

The claim is made in Townsend (l956y) that the flow being examined (planar wake

behind a cylinder) was always turbulent near its centerline, The “turbulent mean”

derivative is therefore computed at this location. Note that this method assumes

2

implicitly that (219 is the same in the turbulent flow regardless of distance fom the

mean position of the VSL. This will be further discussed in Section 4.5.1.

It is notable that this method is only able to estimate the mean value of intermittency

over some given period of time. Townsend (1956), also proposes a measure able to

recover I(t):

signal = (992 (3.4)

(7x.

 

1. It should be noted that in the 1976 edition of the Monograph, Townsend does not make

mention of the measures listed. It is not known whether this omission represents a retrac-

tion.
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If this signal passes some determined threshold at some time t, the flow is considered

to be turbulent. It is assumed that the unmodified “frozen-flow hypothesis” was used

to convert between the time derivative of velocity and the spatial derivative required.

This signal is physically interesting in that it is proportional to the dissipation in a

homogenous, isotropic turbulent flowz. Implicit in the use of this signal as an indicator

of turbulence is that dissipation in turbulent fluid is larger than in non-turbulent fluid,

which is a reasonable claim.

3.2.2 Wygnanski and Fiedler

Another measure was presented in Wygnanski and Fiedler (1970). The identifier used

in this work was the sum of squares of two time derivatives of velocity:

2 2

signal = [3%] + (27192 (3.5)

A threshold can then be set, such that if the signal exceeds said threshold, for a deter-

mined “dwell time” the value of I(t) = 1 at that time. Assuming that the measure

described in Townsend (1956) did indeed use an unmodified frozen-flow hypothesis to

obtain its spatial derivative, this measure is the same as Townsend’s with the addition

of the second-derivative term.

3.2.3 Hedley and Keffer

Another measure, similar to the Wygnanski and Fiedler measure, was presented by

Hedley and Keffer (1974). The identifier employed therein took into account both

 

2. A good derivation of this can be found on pp. 133-4 of Pope (2000).
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streamwise and transverse components of velocity, but was identical in principle to

the Wygnanski and Fiedler signal:

62 2 6 2. u u
= _ + _Signal ( 7] (at)

2 2

a v (01f
+ —— + — (3.6)

at“ 2 ‘7’(21

This signal contains two components of the dissipation and the accompanying second

derivative terms. The secund derivative is employed in both this signal and the Wygn-

anski and Fiedler signal to account for realizations which are near an instantaneous

“peak” in the u(t) time series. A sample time series which illustrates this is presented as

Figure 3.1. Note that the first and second derivatives are frequently “out of phase”, in

that one signal reaches a local maximum near the time of the other’s local minimum.

3.2.4 Activity Intermittency

An interesting “missing link” between the Wygnanski and Fiedler—type measure and

measures using the absolute value of vorticity was the notion of “activity intermit-

tency”. Certain portions of a time series of vorticity are observed to have a distinctly

non-zero vorticity while possessing little to no high frequency content. This observa-

tion is contrary to the notion that a vortical flow should possess, to paraphrase Rich-

ardson, “big whorls, which have smaller whorls, and so on to viscosity”. To separate

these apparently vortical, inactive regions from those regions clearly “vortical” both by

measure of vorticity and activity, a measure based on a local standard deviation level

was used. This method was employed by Haw et al. (1989).
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3.3 Defining vortical: detailed considerations

With the general technical review of Section 3.2 accepted, the task of constructing a

definition of what constitutes vortical flow remains. Ideally, all points in time not hav-

ing a zero vorticity would be deemed vortical. Measurement uncertainty requires

some non—zero threshold to be set. That is, if the vorticity at some time is beyond some

determined threshold, it is deemed vortical. Figure 3.2 is a sample portion of one of the

measured time series, and serves to illustrate this point. The question now arises as to

what this threshold ought to be.

In the present work, this value was set by the following method: compute I(t) for some

small threshold, with the understanding that all t having an (1)2 greater than threshold

shall have an I(t) value of 1. Use this I(t) to compute <I>, then increase the threshold

by some small increment. Compute I(t) for this new threshold and compute the new

<I>. This procedure is repeated at many thresholds”. Figure 3.3 illustrates the results of

such a procedure. Observethe sharp initial fall, followed by a “knee”, then a much

lower rate of descent. The initial fall can be viewed as the “noise” region of the

graph—the threshold is clearly too small. The slow fall in the higher threshold regions

indicates that the value of <I> is reasonably insensitive to changes in threshold. There-

fore, the appropriate threshold is at the beginning of this slow fall region, or at the end

of the “knee”. It should be noted that this precise location is not well defined, and is

subject to the data analyst’s interpretation.

 

3. The computational time associated with this procedure can become quite large. It is recom-

mended that the maximum threshold at which <I> is computed be no more than the stan-

dard deviation of vorticity at the measurement location. This value should be large enough

to observe the described trend in most flows.
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The need for another necessary consideration in this procedure is illustrated by

Figure 3.5. Clearly, the portions above and below the marked threshold limits are

deemed vortical. In a vortical field, there exists regions of strongly negative and

strongly positive vorticity. There also exists regions within this field which connect

these strongly vortical regions. These connecting regions are measured as having near-

zero vorticity (as shown in Figure 3.5). Despite their low magnitude of vorticity, these

regions are understood to lie on the “vortical” side of the VSL.

To separate these connecting regions from truly non—vortical fluid, it is necessary to

incorporate another consideration into the I(t) construction. Corrsin and Kistler (1955)

proposed that the thickness of the VSL should be on a “viscous” length scale, the K01-

mogorov scale. If the VSL has a characteristic thickness, it is easy to imagine that the

folds in the interface also have some characteristic length scale associated with them.

To the eye, this length scale would be characteristic of the smallest “lobe” of vortical

fluid capable of projecting itself into the non—vortical fluid. Figure 3.6 is intended to

clarify this point.

The most natural choice for this scale seems to be the local Taylor microscale (At).

This quantity is computed by finding the zero-crossing of the “osculating” parabola of

the initial portion of the autocorrelation of the transverse component of velocity. See

Figure 3.7 for clarification. Landahl and Mollo-Christensen (1994) view the length

analog of this scale (defined: Xv = A, x u) as characterizing the size of the smallest

“dynamically significant” eddies in the flow. Townsend (1956) proposed that since
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2 . . .

lv/t) lS proportional to the ratio of the total turbulent energy of the flow to the rate of

loss of turbulent energy by diss1pation, that ltv/U is best Viewed as a time scaling for

the dissipative motions. Both interpretations are interesting, but it is the first which is

perhaps most appropriate in the context of the current discussion.

If the smallest “dynamically significant” eddies in the flow are indeed characterized by

the Taylor microscale, it is likely that this scale also characterizes the smallest “lobe” of

vortical fluid capable of projecting itself into the non-vortical fluid. To separate the

previously discussed “connecting regions” from truly non-vortical fluid, the Taylor

time scale, 1,, is used to scale a “dwell” parameter. That is, the measured vorticity

must fall within the determined non-vortical thresholds for more than some (small)

multiple of it to be considered non-vortical.

Independent of an a priorinotion of the proper scale, a procedure for finding a numer-

ically appropriate “dwell” can be used. This is similar to the procedure used to deter-

mine the appropriate vorticity threshold. Figure 3.8 is intended to clarify this

procedure. Each curve in Figure 3.8 represents the <I> over a range of thresholds at

different dwell time, measured as a multiple of XI. The smaller the spacing between

curves, the less sensitive the measurement of <I> is to a change in dwell time near that

dwell time.

It should be noted that the character of Figure 3.3 is not preserved as the mean inter-

mittancy value approches 1. The algorithm is “trained” at a location where the <I> is
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near 0.3. This <I> ensures that there is enough vortical and non—vortical fluid passing

the probe to establish a rational threshold level. At this location, the appropriate

threshold is assessed from a plot like Figure 3.3, and this value is used as the threshold

for all transverse locations. The dwell time at each location was equal to 23.! , where 3.,

is the local Taylor time scale. The “2” multiplier was determined empirically, from

Figure 3.8.

3.4 Comparison of Methods

It is clear that the threshold for each time-resolved method at a given transverse loca-

tion can be set such that all of the methods yield very nearly the same mean. The “cor-

rect” level for each surrogate method can be set using the <I> that is derived from the

vorticity signal, as described in Section 3.3. Figure 3.9 depicts the <I> at each trans-

verse location after this setting procedure.

It should be noted that even though the values of <I> are very close--the difference

between each surrogate method and the “known” value from the absolute vorticity

method is less than 0.5%--the measured transitions between vortical and non—vortical

for I(t) are not the same for each processing method. The implications of this become

clear in the context of the conditional statistics, examined in Chapter 4.

It is interesting to compare these results to the values of <I> that are obtained when

one of the surrogate methods is used independently. The

It is of some interest to assess how amenable the alternate methods are to a “training”

procedure, as was employed for the vorticity—based method. Figure 3.10 shows, at each

transverse location, the threshold level required to make the <I> from the alternate
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method match that of the vorticity—based method. It is instructive to note the degree

to which the level changes as the measurement location moves in the transverse direc-

tion.
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FIGURE 3.2 Sample vorticity time series with illustrative non-zero triggering thresholds.

The transverse location from which these data were taken was t] = 2.46.

Figures 3.3, 3.4, 3.5, 3.7, and 3.8 were also created using data from this location.
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FIGURE 3.5 Portion of vorticity time series illustrating the need for a “dwell” criteria.
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bottom axes’ curve represent individual data points.
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FIGURE 3.6 Proposed structure ofVSL
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4.0 VSL properties and conditional statistics

4.1 Properties of the VSL

4.1.1 Description of the VSL

Phillips (1972), describes the VSL as consisting of “billows” of vortical fluid propagat-

ing into the vortical fluid separated by re-entrant “wedges” of non-vortical fluid. An

illustration of this is provided as Figure 4.1. An important result derived by Phillips is

that a region of positive curvature with respect to the non-vortical fluid—-a nascent

wedge-—will continue to increase its positive curvature until it becomes infinite or

reaches some physical maximum. A cartoon illustrating this process is provided as

Figure 4.2. This result is used to justify the view of the small-scale features of the VSL

proposed by Figure 3.6, and which will be further elaborated upon in the following

sections.

4.1.2 Condition Duration

Once a passage of the VSL has been detected, it is natural to ask for what amount of

time or space this particular vortical/non-vortical region lasts. The probability density

distributions of conditional duration in time at each transverse location are presented

on logarithmic axes in Figures 4.3, 4.4, 4.5, and 4.6. The values have been non-

dimensionalized by the local Taylor microscale XI.

As the duration becomes long, the probability that a condition’s region will last for a

particular time becomes extremely small. This leads to regions of zero probability in

the distribution, since the flow at each measurement location could not be sampled for

a long enough time to capture the true probability of these rare events. To better
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approximate the true (continuous) distribution, the probability of 20% of each decade

was averaged. These average probabilities form a more continuous distribution than

the “raw” computed probabilities. Notice that all distributions are strongly non-Gauss-

ian and positively skewed. The strong positive skewness of these distributions implies

that the VSL is rich in small-scale features. The mean values of each distribution,

shown as one vertical line in per condition, per distribution, demonstrate the expected

trend. Near the free stream, the mean duration for the non-vortical condition is very

long, and decreases as the shear layer center is approached. The mean duration for the

vortical condition is shorter near the free steam, and increases as the shear layer center

is approached.

The probability density distribution of conditional duration in space is presented in

Figures 4.7, 4.8, 4.9, and 4.10. The values have been non—dimensionalized by the

momentum thickness of the shear layer at x / 00 = 484. Figure 4.11 is intended to

clarify the method used to obtain these statistics. The durations in time were com-

puted, as for Figures 4.3- 4.6. Then the average streamwise velocity between the pass-

ings of the VSL was multiplied by each duration. These “durations in space” imply, per

a local Taylor approximation, the relative size of the “bulges” from Phillips’ model of

the VSL.

These figures have several interesting features. First, note the similar character of the

trends with respect to transverse location in mean duration length for each condition,

compared to the mean duration times from Figures 4.3- 4.6. The vortical mean length

becomes longer as the measurement location moves toward the shear layer center, and
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the non-vortical mean length becomes shorter. The vortical mean duration in time

increases by a factor of 8 as the measurement location moves from 11 = 3.04 to

n = 0.60. In contrast, the vortical mean duration in length increases by only a factor

of 2.5 over the same span.

4.1.3 Appearance of the VSL

A “rake" of hot-wire probes was used to obtain information about the geometry of the

VSL. An illustration of this rake, as well as a cartoon of the approaching VSL, is pro-

vided in Figure 4.12. The rake consists of a single vorticity probe flanked by two X

probes. The distance between neighboring probes’ measurement regions was 1 cm.

The Hedley and Keffer ( 1974) algorithm, from Section 3.2.3, was employed to obtain

an I(t) signal from the X probes.

The quantity measured by this rake was the angle of the VSL relative to the transverse

direction, as shown in Figure 4.12. The timing scheme used in computation is shown

in Figure 4.13. The angles 01 and 02 were computed as follows:

u(tb s t s I”) x 6t,

0] = atan , (4.1)

probe spacmg

 

u t _<_t_<_t )x 5!

02 = atan (c b _ 2 (4.2)

probe spacmg

 

As noted previously, probe spacing was 1 cm. Note that a “locally frozen” Taylor

hypothesis was employed. This hypothesis assumes that the velocity of the VSL rela-

tive to the local convection velocity is small with respect to the local convection veloc—
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ity. A restriction was also imposed on the measured “sharpness” of the front. Referring

back to Figure 4.12, the difference between 01 and 02 was capped at 45 degrees.

This result of this processing was two bodies of data. One body will consist of the

“entering” angles, when the VSL passage implies a change from non-vortical fluid to

vortical fluid. The other body of data comprises the “leaving” angles, when the VSL

passage implies a change from vortical fluid to non—vortical fluid. The result of this

processing is presented in Figure 4.14 as probability density distributions. It is notable

that an “entering” VSL is preferentially associated with positive angles and a “leaving”

VSL with negative angles. These data are qualitatively consistent with Phillips’ view of

the VSL. (Refer to Figure 4.1)

It is also interesting to View these data as the ratio of the probability “entering” to the

probability of a “leaving” for a given angle. This is presented in Figure 4.15, with a log-

arithmic ordinate. An example interpretation of this figure is as follows: if the VSL is

measured to have crossed at an angle of 60 degrees, it is approximately 10 times more

likely that the flow at the measrement location went from non-vortical to vortical

(entering).

4.2 Conventional Statistics

It is useful, prior to the discussion of the velocity field’s conditional statistics, to exam-

ine the unconditioned (conventional) statistics of the field. Comparisons to the data

presented in Morris (2002), henceforth “Morris”, will be the focus of this section.
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The mean value of streamwise velocity, non—dimensionalized by free stream velocity,

is shown in Figure 4.16. The matching data of Morris are also presented. These data

agree to within 1.5% of free stream speed.

The standard deviation values of the streamwise and the transverse components of

velocity, non-dimensionalized by free stream velocity, are presented in Figure 4.17

and Figure 4.18, respectively. The matching data of Morris are also presented. Note

that the peak streamwise value from the current work is slightly lower than that pre-

sented in Morris, while the peak transverse value from the current work is slightly

higher than that of Morris.

The skewness values of the streamwise component of velocity are presented in

Figure 4.19. Note that the skewness decreases from near the free stream to a minimum

value near n = 1.6. This is reasonable, since positive fluctuations are nominally

bounded by the free stream velocity, while negative fluctuations are bounded by zero.

The value of 17/ U0 at n = 1.6 is approximately 0.85. The increasing skewness in the

range —l.09 < r] < 1.6 is a reflection of the increasing positive excursions from the

mean relative to the negative excursions from the mean.

The Reynolds stress, 1-4'_v' , non-dimensionalized by the square of free stream velocity, is

presented in Figure 4.20. The matching data of Morris from two streamwise locations,

x/GO = 384 and x/BO = 675 are also presented. The spread of data within Morris

indicates that the agreement between Morris and the present work is not unreason-

able.
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4.3 Conditional Statistics

4.3.1 Description and Definition

Conditional statistics can be defined as follows: “Given a set of observations for which

condition A holds, what is the value of statistical measure B?” For example, one may be

interested in the skewness (measure) of the streamwise component of velocity during

the vortical (condition) portions of the record. The import of these types of statistics is

in separating effects unique to the vortical flow from those unique to the irrotational

flow.

The conditional properties discussed in the present work were computed as follows:

(understanding that a single overbar implies standard mean, shown below)

T N

-_ . 1 ~1
or — T131307, Ia dt ~ N20” (4.3)

0 1:1

where N is the number of samples.

Vortical mean:

174 : u(x, t)1(x, I)

 

 

 

 

m
(4.4)

I(x, ()

Vortical rms:

_ I /2

“:0 = (do, t) — umf lo. a] (4.5)
I(x, t)

Vortical skewness:
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: (u(x. t) — 27..)3I(x. z)
 

 

 

 

uwSk ~ 3 _— (4'6)

(um) I(xa 1)

Vortical cross—correlation coefficient:

Ev. : (11(X,t)—&(0)(V(x,t)—l-)m)1(x,t) (47)

1717 m u:ov(,,1(x,t)

The non-vortical conditional properties can be computed by substituting (l-I(x,t)) for

I(x,t), and the appropriate conditional mean and ms, where appropriate. The subscript

“(1) = 0 “ will be used to designate these conditional statistics.

Note that the conditional mean and standard deviation have been used in the defini-

tion of the higher-order statistics. This is to remove the effects of any offset between

these conditional statistics and those statistics taken from the total record.

4.3.2 Conditional Mean, Streamwise Component

The streamwise vortical mean and streamwise non-vortical mean velocity are pre-

sented in Figure 4.21. Several features are evident. In the high—speed region, vortical

fluid has a lower mean streamwise velocity, and in the low-speed region, vortical fluid

has a higher mean streamwise velocity. This is reasonable--consider that the sheared

fluid comprising the flow’s vortical region has reached this state by the mixing of high

velocity fluid with low velocity fluid. The mixed fluid at any location contains some

amount of accelerated low speed fluid and decelerated high—speed fluid. Thus, the

mixed fluid should be expected to have a velocity closer to the average velocity

between the potential streams (0.5 U0) than will the nearby unmixed fluid.
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4.3.3 Conditional Mean, Transverse Component

The transverse vortical mean and transverse non—vortical mean velocity are presented

in Figure 4.22. Several features are evident. Mean transverse vortical velocity goes

from a positive value near the free stream, to a negative value as the shear layer center

is approached. This result is reasonable. Since vorticity is imparted to a fluid element

only through the direct action of viscosity, a vortical fluid element cannot originate in

the free stream. The mean positive transverse velocity of these vortical elements is

likely a reflection of these elements’ origin nearer the shear layer center.

The mean transverse non-vortical velocity goes from near zero to a strong negative

value to a positive value as the measurement location moves from n = 3.04 to n = 0.

These results are reasonable, especially when viewed in the context of the VSL. Since a

non-vortical fluid element originated in either the high—speed free stream or the

entrainment stream, it is reasonable that a non—vortical fluid element which exists

near the shear layer center has a large (positive or negative) transverse velocity reflect-

ing its origin in one of the two non-vortical streams]. The increasingly negative mean

transverse velocity as the measurement location approaches the shear layer center is a

likely indication that a large fraction of the non—vortical elements at these locations

originated in the free stream. Similarly, the increasing sign in the region

-—0.37 S. n S 0.75 is a likely indication that an increasing fraction of the non-vortical

elements originated in the entrainment flow.

 

1. Figure 4.24 and its accompanying discussion provides further evidence of this claim.
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4.3.4 Conditional Standard Deviation, Streamwise and Transverse Velocity

Components

The vortical and non-vortical streamwise velocity standard deviations are presented in

Figure 4.23. The vortical standard deviation is considerably higher than the non-vorti-

cal value in the region 0.60 S n S 3.04. This is rational in the sense that fluid elements

comprising the non-vortical ensemble near the free stream all originated in the free

stream, whereas the vortical ensemble is comprised of fluid elements having a much

wider range of velocity histories.

The vortical and non-vortical steamwise standard deviation values are of comparable

magnitude in the region —1 .13 S n S 0.43 . The likely explanation for this phenomenon

is that the comparatively large non-vortical values are the result of the unsheared fluid

entering from both the entrainment stream and the primary stream. Under this

hypothesis, the large measured standard deviation is the result of two distinct “pro-

cesses” bringing unsheared fluid at two widely disparate speeds to the shear layer cen-

ter.

This explanation is supported by the measured values of the standard deviation of the

transverse component of velocity, presented in Figure 4.24. The non-vortical value is

smaller than the vortical value in the region 3.04 2 n 2 0.65 . In the region

0.65 _>. 11 Z 1.13 , the conditions have similar standard deviation.

To assess whether large streamwise fluctuations are correlated with large transverse

fluctuations, a joint probability density distribution of the non-vortical streamwise

and transverse velocity fluctuations at n = 0.05 was evaluated. It is presented in
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Figure 4.25. The character of this plot supports the “two-process" explanation of the

large standard deviation values. The “island" in Quadrant II is composed of lower than

mean streamwise velocities and higher than mean transverse velocities. The ensemble

of fluid elements this island represents likely originated in the entrainment flow. Con-

versely, the "island” in Quadrant IV is composed of higher than mean streamwise

velocities and lower than mean transverse velocities, indicating that the ensemble of

fluid elements it represents likely originated in the primary flow.

4.3.5 Conditional Skewness, Streamwise Velocity Component

The vortical and non-vortical streamwise velocity skewness values are presented in

Figure 4.26. Note that the skewness of the vortical streamwise component of velocity

increases approximately monotonically from the free stream to the low speed side.

This result is reasonable. Near the free stream, the distribution is negatively skewed.

The nominal upper bound of streamwise velocity (velocity of the free stream) is closer

to these distributions’ mean than is the streamwise velocity lower bound (zero).

Therefore, it is reasonable that the magnitude of negative deviations from the mean

are larger than positive deviations from the mean. As the observation point moves

toward the center of the shear layer, the distribution becomes more symmetric. Near

the entrainment stream, the distribution is positively skewed. Since the streamwise

velocity lower bound (zero) is closer to these distributions’ mean than is the stream-

wise velocity upper bound (velocity of the free stream), a positive skewness in this

region is reasonable. Three representative histograms that demonstrate these skewness

values are presented in Figure 4.27.
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The skewness of the non-vortical streamwise component of velocity is nearly zero in

the free stream, and remains so until 11 z 1.85 . This is reasonable, since the fluid ele-

ments making up the non-vortical ensemble in the near free stream locations likely all

originated in the free stream. These elements have not undergone shearing, and thus

variations in the non-vortical velocity values are random and unskewed.

For values of n < 1.85 , the skewness of the non—vortical streamwise velocity decreases

to a minimum at approximately 11 = 0.92, then increases, becoming positive at

approximately 1] = 0.24. A hypothesis explaining this behavior is as follows: the

increasingly negative skewness for 1.85 2 r] _>_ 0.92 implies that an increasing amount

of the non-vortical fluid at these locations has come to the measurement location from

the entrainment stream. Near n = 0.92, the number of “entrainment elements” is

sufficiently small that the mean is not greatly affected. As a statistical moment’s order

increases, it is affected more by large excursions from the mean. Therefore, the skew-

ness is made negative by these entrainment elements.

As the measurement location moves toward the shear layer center from 11 = 0.92 , an

increasingly larger fraction of the non-vortical ensemble is composed of fluid which

originated in the entrainment stream. This decreases the mean non-vortical stream-

wise velocity. The “bounding” arguments proposed earlier regarding the vortical

skewness are again useful. A decrease in an ensemble’s mean value likely causes the

magnitude of positive deviations from the mean to be larger than negative deviations
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from the mean. This effect increases the skewness of the distribution representing the

ensemble. The non-vortical streamwise skewness is approximately zero at n = 0.24 2.

4.3.6 Reynolds Stress

The vortical and non—vortical kinematic Reynolds shear stresses, divided by the prod-

uct of the transverse and streamwise standard deviation--that is, the conditional corre-

lation coefficients--are presented in Figure 4.29. It is interesting to see that the vortical

coefficient remains reasonably constant as the measurement location moves in the

transverse direction. This implies that the vortical flow is of reasonably universal char-

acter throughout. Per the Prandtl argument (see Potter and Foss (1975)) as it applies to

this geometry, flow with a higher streamwise velocity than the vortical average pos—

sesses a lower than average transverse velocity, and vice-versa. Thus, the mean prod-

uct of the streamwise and transverse fluctuations will have a negative sign. The non-

dimensional Reynolds stress is presented in Figure 4.30.

It is also instructive to note that the correlation between streamwise and transverse

fluctuations in the non—vortical fluid near the free stream is not as strong as for vortical

fluid. The likely explanation for this is that the vortical fluid’s fluctuations are

increased by both the pressure field and shear forces, whereas the non—vortical fluid’s

fluctuations result only from the pressure field. It is interesting to note that the non-

vortical correlation coefficient is non-zero at the measurement location nearest the

free stream (n = 3.04). Since the non-vortical velocity fluctuations near the free

 

2. It is interesting to note that the location of peak mean shear corresponds very closely with

I] = 0.24 . This is shown in Figure 4.28.
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stream are a result only of fluctuations in the pressure field, the model of fluctuations

presented in Figure 4.31 could have been reasonably expected. In this scenario, the

velocity magnitude would have remained relatively constant, with fluctuations in

velocity components resulting from fluctuations in the flow direction. Since the sce-

nario shown in Figure 4.31 is not reflected in the data, it is likely that the pressure field

is related to the large-scale structure of the vortical region.

In contrast to its small values near the free stream, the non-vortical coefficient is

strongly negative near the shear layer center, more so than the vortical flow there. The

previous discussion of Figure 4.25 (see Section 4.3.4) is useful for explaining this obser-

vation. This figure shows the strong correlation between negative transverse/positive

streamwise fluctuations and vice-versa. Furthermore, Figure 4.25 supplies more evi-

dence in support of the hypothesis that the strong correlation near the shear layer cen-

ter is not the result of one ensemble of fluid with strongly coupled streamwise and

transverse fluctuations, but instead of two ensembles of fluid which together create a

strong correlation.

4.4 Conditional Autocorrelation

The standard short time averaged autocorrelation is defined (Bendat and Piersol

(1986)) as follows:

(’1 + T)

Ruzl(t1’ ’1 + I) = 7‘ Iu(1)l.l(t + T)dt (4'8)

’1
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A conditional autocorrelation can also be defined, provided some care is taken. The

number of time steps to which the correlation was computed was half of the dwell

time (described in Section 3.3 on page 34).

N

1 z :-

n=0

In Equation 4.9, N = (dwell time) x (datafi'equemy), (1 is N/2 samples after the

crossing of the VSL. The complete autocorrelation for one vortical or non-vortical

(-N/2, ~(N/2)+1, (N/2)- I, N/Z)

(datafrequency)
- The result

 burst is given by computing Ru l‘ for t =

ing autocorrelation can then be averaged at each time lag over the set of all bursts. This

average is analogous to the averaged autocorrelation of the entire (conditioned) signal.

Note the use of the conditional average rather than that of the full record.

Figure 4.32 depicts the vortical and non-vortical autocorrelation of streamwise fluctu-

ations at several transverse locations on the high speed side of the shear layer. Two

things are immediately evident. First, the non-vortical velocity remains more corre-

lated over time than does the vortical velocity. This is result is reasonable, since the

strongly irregular nature of the vortical field will cause the vortical flow at some time

t + At to look less like the flow at time tthan would have been the case in a non—vorti-

cal flow.

Second, the non—vortical correlation is far less sensitive to transverse position than is

the vortical correlation. This relative insensitivity of the non-vortical correlation is
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likewise reasonable-~a patch of non-vortical fluid looks essentially uniform through-

out its duration. The relative sensitivity to position of the vortical fluid is perhaps best

examined in light of Figure 4.23. As the measurement location approaches the shear

layer center, the magnitude of fluctuations in the vortical fluid increases, increasing

the rate at which its autocorrelation descends. It is important to note that this same

process is not in effect on the non-vortical flow at these central locations, despite the

fact that the conditional standard deviation of the non—vortical fluid (Figure 4.23) is

similar in magnitude to that of the vortical fluid at these locations. This is further sup-

port of the hypothesis that the large magnitude of non-vortical fluctuations near the

shear layer center is not the result of one highly—fluctuant process but instead of non—

vortical fluid being brought to near the center from both the low-speed and high-

speed sides.

4.5 Components of the Turbulence Kinetic Energy (TKE) Equation

The turbulence kinetic energy (TKE) equation is written a53:

_ 6U.—§1<+ 6K = . l 5 — 2 a 2

'— -— ~ «— —-— . + V —_ . . _

6t Jar] 6x]. u,uj 8 pan-(Pu) v K 0-x].(u-’(u' /2)) (4 10)

where i,j = 1, 2, 3, and 1,2,3 are understood to refer to the streamwise, transverse

and spanwise directions, respectively.

A small subset of these terms will be considered in the present work. A more complete

treatment of the terms of this equation in the SSSL can be found in Morris (2002). The

 

3. A derivation of the equation in its presented form can be found in Bernard 8t Wallace

(2002).
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disspation 8, will be modeled using an isotropic assumption. Components of the tur-

. . . . , . . 2 2

bulent d1ffusron that are contained in that term 3 transverse derivative, u v, uv and

3 . .

v , Will also be con31dered.

4.5.1 Dissipation

Dissipation is defined as

 

_ 614,. 2+ 011,. flu]. 411

8 — V 5;] V 'a—YIXE'
(‘ )

where the second term of Equation 4.11 is identically zero in homogeneous turbu-

lence“. In homogenous turbulence, the identity

= (of (4.12)

<
1
0
)

also holds. If a further simplification to isotropy is also made, the relation

8 = 3V0): (4-13)

holds. This final relation was conditionally evaluated and is presented as Figure 4.33.

The large difference between vortical and non-vortical dissipation are clear from this

N
M

figure. This result was expected since a) is by definition larger in vortical fluid. That

the dissipation is not measured to be zero in non-vortical fluid is a relic of the non-

zero threshold and finite dwell time used to determine whether the fluid at time t is

vortical. These considerations were detailed in Section 3.3.

 

4. Bernard and Wallace (2002) presents evidence that the magnitude of this term is very small

even in the presenceof large mean shear.
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It is of interest to know whether the values of 8 obtained by the above approximation

are reasonable. To assess this, the unconditioned dissipation was compared to four

measures computed in Morris (2002). This is shown in Figure 4.34. Note that the

unconditioned isotropic approximation of dissipation computed (see Equation 4.13) for

the present work lies relatively close to the isotropic approximation of Morris (2002).

This agreement gives some confidence that the conditional measures are reasonable.

4.5.2 Components of turbulent diffusion

The triple products of unconditioned and vortical fluctuating velocity are presented in

Figure 4.35 and Figure 4.36 respectively. These figures show a strong resemblance to

one another, with the major qualitative difference being the larger magnitudes of the

vortical value near the free—stream. The difference between vortical and uncondi-

tioned values is shown in Figure 4.37. The larger magnitude in the vortical values near

the free stream is intuitively reasonable--it is expected that terms characteristic of tur-

bulent kinetic energy will be larger in vortical fluid.

The triple products of non-vortical fluctuating velocity are presented in Figure 4.38.

Comparison to Figure 4.36 reveals that the analogous products for the vortical condi-

tion are approximately half the magnitude of the non-vortical condition. This result,

contrary to what might be expected, is likely related to the “two-process” behavior

proposed previously in light of Figure 4.25. Under this hypothesis, the large values of

these triple products are not the result of what would be called true turbulent diffu-

sion, but are instead the result of the non-vortical ensemble being composed of fluid

which originated from two sources of different velocity.
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FIGURE 4.1 Illustration of a conceptual view of the VSL proposed by Phillips (1972)
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FIGURE 4.2 Illustration of a nascent wedge increasing its positive curvature with respect

to the non-vortical fluid.
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FIGURE 4.3 Probability density distribution of conditional duration in time, non-

dimensionalized by local Taylor microscale. The vertical lines in each distribution

represent the mean value of each distribution.

67



—
I

l 1 1

q
=

1
5
7
5

1 e-2

1e-4

 

 
1e-6 - - ,

1O 1O 1O 10

W

1e-2

1e-4  

1
1
:
1
.
4
1
3

 1e-6' . ,, ~

10 1O

1. . wzf...
' I

1 e-2 M

1
.
2
5
0

1e-4

 n

1e—6  
1 e-2

1
.
0
8
8

1e-4

'
1

1e-6

1O

1:' . v- v—-v——1--q~nu -—-—v~——- - v - v ‘ - ~ vvv' ——~———~>‘

0.. l

 

1 e_2 W.......

1 e-4

0
.
9
2
5

 

n
:

 1e-6 . ' . is. ".7. . . A -4 i 3 .

1O 10 1O 10

1 --. ..-.. -f_,
"—‘““_'1

:
le>o

19-2 " :"° ....."on. I(D|=0

1e—4 : ' —\

16-6 , . , .i. -. . . . - .3141 .

1O 10 10 10

time / Av

 
 

0
.
7
6
3

 

n
:

 

FIGURE 4.4 Probability density distribution of conditional duration in time, non-

dimensionalized by local Taylor microscale. The vertical lines in each distribution

represent the mean value of each distribution. Note that the upper axes of this figure are

the same as the lower axes of Figure 4.3.
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FIGURE 4.11 Sample time series of streamwise component of velocity and intermittency.

The measurement location is n = 2.46 .

The vortical duration in time represented by the first two marked times is 0.0503 s. The

mean streamwise component of velocity during this time is 7.16 m/s. The vortical duration

in space during this time is therefore:

dm = 0.0503 x 7.16 = 0.358m (4.14)

The non-vortical duration in time represented by the second and third marked times is

0.0475 s. The mean streamwise component of velocity during this time is 7.57 m/s. The

non-vortical duration in space during this time is therefore:

d = 0.0475 x 7.57 = 0.363m (4.15)
”—0)
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relative to the transverse direction. The front angle is given by (01 + 02) /2 .

76



 

1
—
1

   

C

1
-
1

9
3

l

 
I
(
t
)
,
X

P
r
o
b
e
2

 

0
0

F
?

1
—
1

—
-

-
_

—
—

—
_

d
b
—

—
.

 

V
o
r
t
i
c
i
t
y

’
P
r
o
b
e

p
—
s

  

O

  

I
(
t
)

 

0
0

1
-
1

M

—
-
—
—
—
—
—
—
q
y
—

 

   

I
(
t
)
,
X

P
r
o
b
e

1

 
 

FIGURE 4.13 Timing scheme used in the algorithm to compute front angle. The pattern

shown would be viewed as an “entering” edge.
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mean value of intermittency is presented on the upper axis for reference.)
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FIGURE 4.31 Model of non-vortical velocity fluctuations near the free stream--discredited

by Figure 4.29’s communication of distinctly non—zero correlation coefficient in non-

vortical velocity near the free stream. In this model, negative streamwise fluctuations

would have been equally associated with both positive and negative transverse

fluctuations.
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Morris B is an isotropic measure:

= 15vi’— (4.16)
8isotropy

Morris D, E, and G are all “semi—isotropic”:

   

] (4.17)

2,; = 3v[(%)2+2@f)2+(gg)2] (4.18)

= {(392%)21392.(g’fugj

  

  
  

] (4.19)
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