MA 115:“. ,\ .. .u: .pw .2... v ‘ . I H 2., h n‘ . 1'59! ' ,- qfiég; ‘x . “é? . _ .. $2 . .g' x ‘ (E 5’ 23:2};4 i :0 ' 431:1“ ?‘ 9 3m. ‘. h Tar-6:49.5- Z '— "_l 2 vol .LIFRARY I Mtchngan State 9 University ._ _J This is to certify that the thesis entitled IMPLICATIONS OF CLAW MORPHOLOGY FOR POSSIBLE AQUATIC LOCOMOTION IN PTERANODON presented by AMY C SMITH has been accepted towards fulfillment of the requirements for the MS. degree in Geological Sciences -. ,, -, ._..- h ,/.' .‘ ‘ KM’I ' f , -‘} K _,’ I . - L “I.. f“ “r p --r u -\ Major Professor’s Signature 1 WW} 7:112? Date MSU is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 2/05 c:/ClRC/DateDue.lndd-p.15 IMPLICATIONS OF CLAW MORPHOLOGY FOR POSSIBLE AQUATIC LOCOMOTION IN PTERANODON By Amy C. Smith A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Geological Sciences 2007 ABSTRACT IMPLICATIONS OF CLAW MORPHOLOGY FOR POSSIBLE AQUATIC LOCOMOTION IN PTERANODON By Amy C Smith Previous studies (Bennett 2001 , Bramwell and Whitfield 1974) have suggested that Pteranodon may have been capable of aquatic locomotion in the epicontinental seaway that covered Kansas during the Cretaceous. Quantitative morphometrics were employed here to examine pteranodont pes claw morphology to ascertain how the morphologies of the claws of this genus relate morphometrically to the claws found on the pedes of various birds and crocodylians, which served as extant phylogenetic bracketing taxa for pterosaurs. These taxa included four species of swimming birds, one wading bird, one terrestrial/perching bird, two species of crocodile, and one species of alligator, along with one species of Pteranodon. Homologous landmarks were placed on digital photographs of avian, crocodylian, and pteranodont claws. Once these landmarks were transformed into Bookstein coordinates, morphometric data were derived for all specimens. These data were then analyzed through the use of the programs SYSTAT and Excel in search of statistically significant differences between homologous claws at significance level a = 0.05. ANOVA calculations indicated that pteranodont claws are most statistically similar to those of Scarlet Ibis and the Peacock, somewhat similar to those of Crocodylus acutus and the Great Auk, and least similar to the Pelican, Whistling Swan, and alligator. These results indicate that Pteranodon did not actively propel through the water, but may have been capable of floating or treading water at the surface. Dedicated to Dr. William Chaisson, whose continued support has always helped me maintain focus and persistence in pursuing my career. iii ACKNOWLEDGEMENTS This project would not have been possible without the help of many professionals at several different institutions. The author wishes to thank Michael Gottfried and Danita Brandt of Michigan State University for guidance and support during this research, and Robert Anstey of Michigan State University for guidance, support, and instruction in morphometric methodology. Thanks are also due to S. Christopher Bennett of the Fort Hays State University Stemberg Museum (Kansas) for advice. The author thanks Laura Abraczinskas for assistance in accessing extant bird and crocodilian specimens at the Michigan State University Museum. The author also thanks Janet Hinshaw of the University of Michigan Zoological Museum of Natural History and Mary Hennen, Paul Baker, and David Willard of the Field Museum (Chicago) for assistance in accessing extant bird specimens. Alan Resetar and James Ladonski of the Field Museum facilitated access to extant crocodilian specimens. The author also acknowledges Larry Martin and Daniel Williams of the University of Kansas, John Rebar Jr., Richard Zakrzewski, and Scott Moses of the Stemberg Museum, and Walter Joyce of the Yale Peabody Museum for allowing access to Pteranodon specimens. The author would like to thank Juan Alvarez for his time and assistance in fixing and printing the poster used to present this study at the 2006 GSA conference. This work was supported by a Stephen J. Gould Student Grant from the Paleontological Society as well as a Shell Oil Company Fellowship. iv TABLE OF CONTENTS LIST OF TABLES ................................................................................... vii LIST OF FIGURES ................................................................................. xii LIST OF EQUATIONS ........................................................................... xvii INTRODUCTION .................................................................................... 1 Pteranodont Habitat and Food ............................................................. 1 Proposed Terrestrial and Aerial Locomotion of Pteranodon .......................... 2 The Possibility of Pteranodont Aquatic Locomotion ................................... 4 The Extant Phylogenetic Bracket Surrounding Pteranodon ........................... 5 Avian Locomotion .......................................................................... 7 Crocodylian Locomotion .................................................................. 9 The Use of Quantitative Morphometrics .............................................. 10 MATERIALS AND METHODS ................................................................. ll Specimens Studied ........................................................................ 1 1 Photograph Acquisition and Organization .............................................. 13 Photograph Manipulation ................................................................. 13 Raw Landmark Placement and Claw Orientation ...................................... 14 Raw Landmark Coordinate Input and Transformation ............................... 15 Morphometric Calculations ............................................................... 17 Curvature Equations ....................................................................... 20 Variable Correlation Calculations ....................................................... 22 Organization of Samples for Statistical Analyses ..................................... 22 Creation of Principal Components ...................................................... 23 Claw Phenogram Creation ............................................................... 24 ANOVA Analyses ........................................................................ 24 RESULTS ........................................................................................... 28 Bookstein Coordinates of Claw Landmarks ........................................... 28 Claw Centroid Locations and Sizes ..................................................... 31 Distances Between Claw Bookstein Landmarks ...................................... 32 Angles Between Claw Bookstein Landmarks ......................................... 33 Aspect and Angle Ratios of Claws ...................................................... 34 Claw Curvature Polynomial Coefficients .............................................. 35 Principal Component Variables Generated for Each Claw .......................... 37 Claw Phenograms ........................................................................ 38 ANOVA Results ......................................................................... 42 DISCUSSIONS ..................................................................................... 51 Conclusions Drawn from ANOVA Analyses ......................................... 51 Consistencies and Inconsistencies of the Study ....................................... 54 Arguments for Other Pterosaur Aquatic Locomotion: Soft Part Preservation Evidence .............................................................................. 55 Arguments for Other Pterosaur Aquatic Locomotion: Ichnological Evidence.....57 Summary and Future Work ............................................................... 58 APPENDICES ....................................................................................... 60 Appendix 1: Photographs with Landmarks Used in Study ........................... 60 Appendix H: Notes on Photographs ..................................................... 65 Appendix III: Raw Coordinates of Claw Landmarks .................................. 66 Appendix IV: Claw Curvature Coordinates and Plots ................................ 67 Appendix V: Lists of Pairs of Correlated Variables ................................. 137 Appendix VI: Principal Component Data within Each Cluster of Each Claw Phenogram ........................................................................ 139 Appendix VII: Morphometric Data from the Four Pteranodont Claws of Unknown Articulation ....................................................................... 143 Appendix VIII: Tangential Claw Phenograms ........................................ 154 BIBLIOGRAPHY ................................................................................. 156 vi LIST OF TABLES TABLE 1. Classifications of animals used in study ............................................. 6 TABLE 2. Specimen pes types and characteristics .............................................. 7 TABLE 3. Specimens examined. ................................................................. 12 TABLE 4. The Bookstein coordinates of claw landmarks .................................... 29 TABLE 5. Claw centroid locations and sizes ................................................... 31 TABLE 6. Distances between the Bookstein landmarks of each claw ....................... 33 TABLE 7. Angle calculations (in degrees) between Bookstein landmarks l, 2, and 3 of each claw ................................................................................ 34 TABLE 8. Aspect ratios and ratios of a to [3 of each claw .................................... 35 TABLE 9. Coefficients from polynomial (Y = AX2+BX+CX0) equations of outside and inside curves with their R2 values, derived from Bookstein coordinates. . .....36 TABLE 10. Principal component variables generated for claw 1 using SYSTAT.........37 TABLE 11. Principal component variables generated for claw 2 using SYSTAT.........37 TABLE 12. Principal component variables generated for claw 3 using SYSTAT. . . . .....38 TABLE 13. Principal component variables generated for claw 4 using SYSTAT.........38 TABLE 14. ANOVA results of claw 1 ........................................................... 43 TABLE 15. ANOVA results of claw 2 ........................................................... 44 TABLE 16. ANOVA results of claw 3 ........................................................... 45 TABLE 17. AN OVA results of all clusters in phenogram, for all principal components of claw 4 .................................................................................... 47 TABLE 18. List of pairs of clusters in the phenogram of the first claw with one or more statistically different principal components ........................................ 48 TABLE 19. List of pairs of clusters in the phenogram of the second claw with one or more statistically different principal components ................................. 49 vii TABLE 20. TABLE 21. TABLE 22. TABLE 23. TABLE 24. TABLE 25. TABLE 26. TABLE 27. TABLE 28. TABLE 29. TABLE 30. TABLE 31. TABLE 32. TABLE 33. TABLE 34. TABLE 35. List of pairs of clusters in the phenogram of the third claw with one or more statistically different principal components......................................50 Summary of AN OVA results for clusters containing claws of other taxa in comparison with clusters containing the claws of Pteranodon longiceps, with key ......................................................... . ...................... 51 Notes on photographs used in study ............................................... 65 Raw coordinates of all claw landmarks ........................................... 66 Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 1 ............................................................. 67 Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 2 .............................................................. 69 Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 3 ............................................................. 71 Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 4 .............................................................. 73 Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 1 ......................................................................... 75 Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 2 ......................................................................... 77 Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 3 ......................................................................... 79 Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 4 ........................................................................ 81 Raw and Bookstein coordinates taken from the outer and inner curves of UM-WS, claw 2 ...................................................................... 83 Raw and Bookstein coordinates taken from the outer and inner curves of UM—WS, claw 3 ...................................................................... 85 Raw and Bookstein coordinates taken from the outer and inner curves of UM-WS, claw 4 ...................................................................... 87 Raw and Bookstein coordinates taken from the outer and inner curves of C- GBBG, claw 2 ........................................................................ 89 viii TABLE 36. TABLE 37. TABLE 38. TABLE 39. TABLE 40. TABLE 41. TABLE 42. TABLE 43. TABLE 44. TABLE 45. TABLE 46. TABLE 47. TABLE 48. TABLE 49. TABLE 50. Raw and Bookstein coordinates taken from the outer and inner curves of C- GBBG, claw 3 ........................................................................ 90 Raw and Bookstein coordinates taken from the outer and inner curves of C- GBBG, claw 4 ....................................................................... 91 Raw and Bookstein coordinates taken from the outer and inner curves of C- PI claw 2 .............................................................................. 93 Raw and Bookstein coordinates taken from the outer and inner curves of C- PI claw 3 .............................................................................. 95 Raw and Bookstein coordinates taken from the outer and inner curves of C- PI claw 3 .............................................................................. 97 Raw and Bookstein coordinates taken from the outer and inner curves of C- 81 claw 1 .............................................................................. 98 Raw and Bookstein coordinates taken from the outer and inner curves of C- 81 claw 2 .............................................................................. 99 Raw and Bookstein coordinates taken from the outer and inner curves of C- 81 claw 3 ............................................................................ 101 Raw and Bookstein coordinates taken from the outer and inner curves of C- SI claw 4 ............................................................................ 102 Raw and Bookstein coordinates taken from the outer and inner curves of C- PC claw 3 ............................................................................ 103 Raw and Bookstein coordinates taken from the outer and inner curves of C- PC claw 4 ........................................................................... 104 Raw and Bookstein coordinates taken from the outer and inner curves of MSU—PA claw l .................................................................... 106 Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 2 .................................................................... 108 Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 3 .................................................................... 110 Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 4 .................................................................... l 13 ix TABLE 51. TABLE 52. TABLE 53. TABLE 54. TABLE 55. TABLE 56. TABLE 57. TABLE 58. TABLE 59. TABLE 60. TABLE 61. TABLE 62. TABLE 63. TABLE 64. TABLE 65. Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 1 ...................................................................... l 16 Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 2 ..................................................................... 119 Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 3 ...................................................................... 122 Raw and Bookstein coordinates taken from the outer and inner curves of C213395 claw l .................................................................... 124 Raw and Bookstein coordinates taken from the outer and inner curves of C- CAD claw 2 .......................................................................... 126 Raw and Bookstein coordinates taken from the outer and inner curves of C- CAD claw 3 .......................................................................... 128 Raw and Bookstein coordinates taken from the outer and inner curves of C3101] claw 3 ...................................................................... 130 Raw and Bookstein coordinates taken from the outer and inner curves of C3132] claw l ..................................................................... 132 Raw and Bookstein coordinates taken from the outer and inner curves of C3132l claw 3 ...................................................................... 134 List of pairs of positively correlated morphometric variables ................ 137 List of pairs of negatively correlated morphometric variables ................ 138 Principal component data within each cluster in the phenogram of claw l ...................................................................................... 139 Principal component data within each cluster in the phenogram of claw 2 ...................................................................................... 140 Principal component data within each cluster in the phenogram of claw 3 ....................................................................................... 141 Principal component data within each cluster in the phenogram of claw 4 ....................................................................................... 142 TABLE 66. Claw centroid locations and sizes of the four claws of unknown articulations ............................................................................ 143 TABLE 67. Distances between the Bookstein landmarks of each claw of unknown articulation .......................................................................... 143 TABLE 68. Angles (in degrees) between Bookstein landmarks 1, 2, and 3 of each claw of unknown articulation .............................................................. 143 TABLE 69. Aspect ratios and ratios of a to B of each claw with unknown articulation .......................................................................... 143 TABLE 70. Coefficients from polynomial (Y = AX2+BX+CX0) equations of outside and inside curves of the four claws with unknown articulations with their R2 values, derived from Bookstein coordinates .................................... 144 TABLE 71. Raw and Bookstein coordinates taken from the outer and inner curves of KU49399, unknown claw 1 ....................................................... 145 TABLE 72. Raw and Bookstein coordinates taken from the outer and inner curves of KU49399, unknown claw 2 ....................................................... 146 TABLE 73. Raw and Bookstein coordinates taken from the outer and inner curves of YPM2554, unknown claw 3 ...................................................... 149 TABLE 74. Raw and Bookstein coordinates taken from the outer and inner curves of YPM2436, unknown claw 4 ...................................................... 151 xi LIST OF FIGURES FIGURE 1. Relationships of genera used in study ............................................... 6 FIGURE 2. Locations of the four landmarks on avian, crocodilian, and pteranodont claws after reorientation ............................................. 15 FIGURE 3. Claw landmarks with an example set of Bookstein coordinates ................ 17 FIGURE 4. A. Example of superposition of a triangle (shown in dashed lines) drawn from connecting landmarks l, 2, and 3. B. Locations of angle and line designations in the triangle between landmarks 1, 2, and 3 .................... 19 FIGURE 5. The inner and outer curve of any given claw ...................................... 21 FIGURE 6. Bookstein coordinates of landmark 3 of all claws ................................ 30 FIGURE 7. Bookstein coordinates of landmark 4 of all claws ................................ 30 FIGURE 8. Phenogram of digit 1 claws, based on principal components .................. 39 FIGURE 9. Phenogram of digit 2 claws, based on principal components ................... 40 FIGURE 10. Phenogram of digit 3 claws, based on principal components ................. 41 FIGURE 1 1. Phenogram of digit 4 claws, based on principal components ................. 42 FIGURE 12. Photographs of FHSM-VP2062 left pes claws with landmarks ............... 60 FIGURE 13. Photographs of KU49399 left pes claws with landmarks ...................... 60 FIGURE 14. Photograph of YPM2554 left pes Unknown Claw 3 with landmarks ........ 61 FIGURE 15. Photograph of YPM2436 left pes Unknown Claw 4 with landmarks ........ 61 FIGURE 16. Photographs of UM-P left pes claws with landmarks .......................... 61 FIGURE 17. Photographs of UM-WS left pes claws with landmarks ....................... 62 FIGURE 18. Photographs of C—GBBG left pes claws with landmarks ...................... 62 FIGURE 19. Photographs of GP left pes claws with landmarks ............................ 62 FIGURE 20. Photographs of C-SI left pes claws with landmarks ............................ 62 xii FIGURE 21. Photographs of C-PC left pes claws with landmarks ........................... 63 FIGURE 22. Photographs of MSU-PA left pes claws with landmarks ...................... 63 FIGURE 23. Photographs of C22026 left pes claws with landmarks ........................ 63 FIGURE 24. Photograph of C213395 left pes Claw 1 with landmarks ....................... 63 FIGURE 25. Photographs of C—CAD left pes claws with landmarks ......................... 64 FIGURE 26. Photograph of C3101] left pes Claw 3 with landmarks ........................ 64 FIGURE 27. Photographs of C3132] left pes claws with landmarks ......................... 64 FIGURE 28. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 1, with trend lines and matching equations.............68 FIGURE 29. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM—VP2062 claw 2, with trend lines and matching equations.............70 FIGURE 30. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 3, with trend lines and matching equations... ..........72 FIGURE 31. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 4, with trend lines and matching equations. . . . . . . ......74 FIGURE 32. Plotted Bookstein coordinates taken from the inner and outer curves of UM- P claw ], with trend lines and matching equations .............................. 76 FIGURE 33. Plotted Bookstein coordinates taken from the inner and outer curves of UM- P claw 2, with trend lines and matching equations .............................. 78 FIGURE 34. Plotted Bookstein coordinates taken from the inner and outer curves of UM- P claw 3, with trend lines and matching equations .............................. 80 FIGURE 35. Plotted Bookstein coordinates taken from the inner and outer curves of UM- P claw 4, with trend lines and matching equations .............................. 82 FIGURE 36. Plotted Bookstein coordinates taken from the inner and outer curves of UM- WS claw 2, with trend lines and matching equations ........................... 84 FIGURE 37. Plotted Bookstein coordinates taken from the inner and outer curves of UM- WS claw 3, with trend lines and matching equations ........................... 86 FIGURE 38. Plotted Bookstein coordinates taken from the inner and outer curves of UM- WS claw 4, with trend lines and matching equations ........................... 88 xiii FIGURE 39. Plotted Bookstein coordinates taken from the inner and outer curves of C- GBBG claw 2, with trend lines and matching equations ....................... 89 FIGURE 40. Plotted Bookstein coordinates taken from the inner and outer curves of C- GBBG claw 3, with trend lines and matching equations ....................... 9] FIGURE 41. Plotted Bookstein coordinates taken from the inner and outer curves of C- GBBG claw 4, with trend lines and matching equations ....................... 92 FIGURE 42. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 2, with trend lines and matching equations ................................ 94 FIGURE 43. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 3, with trend lines and matching equations ................................ 96 FIGURE 44. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 4, with trend lines and matching equations ................................ 97 FIGURE 45. Plotted Bookstein coordinates taken from the inner and outer curves of C-SI claw 1, with trend lines and matching equations ................................ 99 FIGURE 46. Plotted Bookstein coordinates taken from the inner and outer curves of C-SI claw 2, with trend lines and matching equations ............................... 100 FIGURE 47. Plotted Bookstein coordinates taken from the inner and outer curves of C-SI claw 3, with trend lines and matching equations .............................. 102 FIGURE 48. Plotted Bookstein coordinates taken from the inner and outer curves of C—SI claw 4, with trend lines and matching equations .............................. 103 FIGURE 49. Plotted Bookstein coordinates taken from the inner and outer curves of C- PC claw 3, with trend lines and matching equations .......................... 104 FIGURE 50. Plotted Bookstein coordinates taken from the inner and outer curves of C- PC claw 4, with trend lines and matching equations .......................... 105 FIGURE 51. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 1, with trend lines and matching equations ................... 107 FIGURE 52. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 2, with trend lines and matching equations .................. 109 FIGURE 53. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 3, with trend lines and matching equations .................. 112 xiv FIGURE 54. FIGURE 55. FIGURE 56. FIGURE 57. FIGURE 58. FIGURE 59. FIGURE 60. FIGURE 61. FIGURE 62. FIGURE 63. FIGURE 64. FIGURE 65. FIGURE 66. FIGURE 67. FIGURE 68. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 4, with trend lines and matching equations .................. 115 Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 1, with trend lines and matching equations .................... 1 18 Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 2, with trend lines and matching equations .................... 121 Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 3, with trend lines and matching equations .................... 123 Plotted Bookstein coordinates taken from the inner and outer curves of C213395 claw 1, with trend lines and matching equations .................. 125 Plotted Bookstein coordinates taken from the inner and outer curves of C- CAD claw 2, with trend lines and matching equations ........................ 127 Plotted Bookstein coordinates taken from the inner and outer curves of C- CAD claw 3, with trend lines and matching equations ........................ 129 Plotted Bookstein coordinates taken from the inner and outer curves of C3101] claw 3, with trend lines and matching equations .................... 131 Plotted Bookstein coordinates taken from the inner and outer curves of C3132] claw l, with trend lines and matching equations .................... 134 Plotted Bookstein coordinates taken from the inner and outer curves of C3132] claw 3, with trend lines and matching equations .................... 136 Plotted Bookstein coordinates taken from the inner and outer curves of KU49399 unknown claw ], with trend lines and matching equations......146 Plotted Bookstein coordinates taken from the inner and outer curves of KU49399 unknown claw 2, with trend lines and matching equations......148 Plotted Bookstein coordinates taken from the inner and outer curves of YPM2554 unknown claw 3, with trend lines and matching equations...... 150 Plotted Bookstein coordinates taken from the inner and outer curves of YPM2436 unknown claw 4, with trend lines and matching equations. .....]53 Phenogram of all claws regardless of articulation, without the four pteranodont claws of unknown articulation ..................................... 154 XV FIGURE 69. Phenogram of all claws regardless of articulation, with the four pteranodont claws of unknown articulation .................................................... 155 xvi LIST OF EQUATIONS EQUATION 1. Transformation from raw coordinates to standardized. coordinates in any given claw ........................................................................ 16 EQUATION 2. Transformation from standardized coordinates to Bookstein coordinates in any given claw ................................................................ 16 EQUATION 3. Calculation of coordinates of centroid location in any given claw ........ 18 EQUATION 4. Calculation of the size of the centroid in any given claw ................... 18 EQUATION 5. Equation used for determining the distance between any two landmarks ........................................................................ 18 EQUATION 6. Calculation of angle a in any given claw (in degrees) ...................... 19 EQUATION 7. Calculation of angle [3 in any given claw (in degrees) ...................... 19 EQUATION 8. Calculation of angle 7 in any given claw (in degrees) ...................... l9 EQUATION 9. Calculation oF-Ratio of angle a to angle [3 ................................... 20 EQUATION 10. Aspect ratio of any given claw ................................................ 20 EQUATION 1]. Transformation of raw coordinates to Bookstein coordinates, used for determining the Bookstein coordinates of points found along claw curves ............................................................................. 21 EQUATION 12. Calculation of degrees of freedom for use in Pearson correlation coefficient table .................................................................. 22 EQUATION 13. Calculation of degrees of freedom within each cluster .................... 25 EQUATION 14. Calculation of the mean of a single cluster .................................. 25 EQUATION 15. Calculation of variance within a single cluster ............................. 25 EQUATION 16. Calculation of the sum of squared deviations within a single cluster. . .25 EQUATION 17. Calculation of the sum of all cluster sums of squared deviations ........ 25 EQUATION 18. Calculation of the sum of the degrees of freedom of all clusters... ......25 xvii EQUATION l9. Calculation of the variance within all clusters ............................ 25 EQUATION 20. Calculation of the mean between all clusters .............................. 26 EQUATION 2]. Calculation of the between clusters sum of squared deviations weighted by the clusters’ sample sizes ..................................... 26 EQUATION 22. Calculation of the degrees of freedom between clusters ................ 26 EQUATION 23. Calculation of the variance between clusters ............................. 26 xviii INTRODUCTION As with any extinct organism, the various aspects of the functional morphology of Pteranodon must be inferred through multiple studies and testable hypotheses. One convention for such a study is the use of an extant phylogenetic bracket (W itmer 1995). Using this technique with the relatively novel technique of quantitative morphometrics, this thesis explores the possibility that Pteranodon was capable of swimming on the epicontinental seaway that covered the Western Interior of North America during the Cretaceous period. Pteranodont Habitat and Food Two lines of evidence indicate that Pteranodon lived and fed in an oceanic environment. First, Pteranodon fossils to date have been found only in the Cretaceous chalk beds of Kansas. All four pteranodont specimens used in this study came from the Niobrara Chalk Formation (Bennett 1994), which has also yielded fossils of mosasaurs (the most commonly found vertebrate fossils in this formation), fish, the piscivorous birds Hesperornus and Enionus (Bramwell and Whitfield 1974), plesiosaurs, and turtles (Bennett 2000). Secondly, fossil evidence indicates that Pteranodon fed on fish in the epicontinental seaway. This evidence includes a pteranodont specimen that contains fish scales and bones in its stomach (Bramwell and Whitfield 1974), and a second specimen that has a bolus of fish caught between its mandibular rami (Bennett 2001, part 2). Proposed Terrestrial and Aerial Locomotion of Pteranodon One of the more frequently discussed aspects of pteranodont terrestrial locomotion has been the issue of plantigrade versus digitigrade stance. Although all birds are digitigrade (Ede 1964), it was determined that Pteranodon, like crocodylians (Parrish 1987), was plantigrade (Bennett 2001, part 2). This is supported by the morphology of the tarsal, metatarsal, and interphalangeal joints. For example, the joint found between the distal tarsals and metatarsals (which were not fused to each other as is the condition in birds (Padian 1983)) are thought to have permitted flexion of the pes in the vertical plane, as well as permitting some lateral flexion. Furthermore, the metatarsal and interphalangeal joints are simple ginglymoid joints that could not only permit flexion, but probably extension as well (Bennett 2001, part 2). The question of whether Pteranodon was bipedal or quadrupedal has been more intensely debated. The argument for bipedalism can be supported first by examining the terrestrial locomotion of large birds. For example, the limb disparity (the ratio of wing length to leg length) of Pteranodon, which is 9: 1, is closest to that of the albatross, which is 8:1 (Padian 1983). Although the hind limbs of both the albatross and Pteranodon are small compared to their respective wingspans, the albatross is able to walk normally with a bipedal gait. The possible bipedalism of Pteranodon can also be compared to the bipedalism of birds with regards to the positioning of the femur. If the pteranodont femur were positioned horizontally and parasagittally, then most of the puboischiadic would lie behind and below the femur and the acetabulum, as is the condition in birds (Padian 1983). Additionally, it is possible that the weight of the body of Pteranodon could be held over its feet, giving it adequate balance in a bipedal stance. To further promote balance in a bipedal stance, flexion of the carpus and the subsequent rotation of the radius, ulna, and humerus may have allowed for the wing to fold against the body with the fourth manus digit directed posterodorsally (Bennett 2001, b). On the other hand, several lines of evidence support the argument for a quadrupedal stance in Pteranodon. Such evidence includes the reduction of the post- acetabular part of the pelvis, which is thought to eliminate the possibility of bipedalism in Pteranodon. This structure, in addition to the posterior position of the acetabulum, hypothetically allowed the femur to move dorsally and ventrally, so that Pteranodon could move along the ground by sliding on its stomach and pulling itself forwards with its feet (Bramwell and Whitfield 1974). Although Bramwell and Whitfield (1974) have suggested that Pteranodon could hang from cliff edges like a bat, it has since been concluded that its claws were unsuitable for climbing or perching, and were instead more suited to terrestrial locomotion due to their minimal curvature (Bennett 2001, a). Furthermore, Pteranodon lacks the uniformly parallel foot bones used for grasping branches as seen in bats (Padian 1983). These evidences strongly indicate that Pteranodon could not perch or grab onto any surface. Hypotheses of pteranodont aerial locomotion tend to correlate with hypotheses of terrestrial locomotion. If Pteranodon were strictly quadrupedal, then it would not have been able to run in order to take off for flight (Bramwell and Whitfield, 1974). Because its wing finger was four times the length of its humerus and radius combined (Padian 1983), Pteranodon would have needed to take off from an object that was high enough to prevent its wings from hitting the ground on the first downwards stroke. Moreover, Bramwell and Whitfield (1974) hypothesized that Pteranodon could take off from the ground by facing winds at speeds of at least seven meters per second and spreading its wings, similar to the method of take-off used by the albatross. The Possibility of Pteranodont Aquatic Locomotion The possibility that Pteranodon landed on the water to feed has been mentioned briefly (Bramwell and Whitfield 1974, Bennett 2001, b), but until now it has not been examined as a hypothesis. The aquatic feeding habits of Pteranodon are most often involved in the argument for pteranodont aquatic locomotion. Originally, most hypotheses regarding methods of feeding suggested that Pteranodon fed by plunge diving, or by sticking the beak into the water as it glided above the surface. Plunge diving and feeding while gliding are congruent with the structure of the jaws, which indicate that prey was caught between the jaws (Bennett 2001, b). Furthermore, Pteranodon had strong neck bones with flexion thought to be suitable for striking into the water (Bramwell and Whitfield 1974). However, both methods of feeding seem improbable due to the lack of teeth or other structures in the jaw that would facilitate catching fish in this manner. Additionally, the premaxilla extends forwards beyond the tip of the mandible (Bennett 2001, b). If Pteranodon were a glider, it would not have been able to gain enough speed necessary to plunge into the water (Bramwell and Whitfield 1974). An alternative hypothesis suggests that Pteranodon fed by floating on the surface of the water and plunging its beak below the surface in order to grab fish (Bramwell and Whitfield 1974). It is presumed that Pteranodon could dip its head 90 centimeters (Bennett 2001, b) below the water’s surface with a range of roughly 1.2 meters (Bramwell and Whitfield 1974), and could have used its elongate maxilla to slash through the water and disorient fish (Bennett 2001, b). The disadvantages to this style of feeding are that Pteranodon would be vulnerable to underwater predators and would not be able to pursue quickly moving fish (Bramwell and Whitfield 1974). The means by which Pteranodon may have launched into the air are also used in the argument for possible aquatic locomotion. It is proposed that if Pteranodon could take off directly from the ground, then it could probably take off from the surface of the water in like manner (Bennett 2001, b). For example, if there were sufficient wind to facilitate lift, Pteranodon may have either flapped its wings from the crest of a wave, or launched itself form the crest of a wave as a glider (if Pteranodon could indeed glide). In these two cases, the large expanse of the wings would permit a flapping downwards without hitting the surface of the water or catching unfavorable air currents (Bramwell and Whitfield 1974). The Extant Phylogenetic Bracket Surrounding Pteranodon The Extant Phylogenetic Bracket (EPB) method was developed by Witmer ( 1995) primarily to test hypotheses regarding placement and/or functional morphologies of the soft tissues of fossil organisms by comparing the tissues of at least two extant outgroups to the fossil under study. However, an EPB can also be used to test hypotheses regarding other topics of paleobiology, including the hypothesis that pteranodont claws have functionally morphological characteristics similar to claws of the extant groups Aves and Crocodylia (in regards to aquatic locomotion). In this case, the hypothesis was tested by first examining the known swimming behaviors of the extant taxa, and then by making inferences of the swimming ability of Pteranodon by comparing and contrasting claw morphologies. These inferences are considered to be Level I inferences, due to the homologies of the claws studied across all taxa. Level I inferences can generate a decisive positive assessment, which minimizes speculation through the presence of morphological congruence (Witmer 1995). Order rowdy/us porosus ia ' rocodvlus acutus [11' r eranodon longiceps lecaniformes lecanidae lecaniformes lecanidae us 'formes 0r columbianus marinas formes guzms iconiiformes r ube r iformes ' cristatus TABLE I. Classifications of animals used in study (Brochu 2003, Raikow 1985, Bennett 1994). «\‘S W‘s «“5 05°? toi “'5 Lows 9w?" $0906 pave“ 0W" 9090 ‘3th a“ ”“9," C FIGURE 1. Relationships of genera used in study (Compiled from Thomas et. al 2004, Brochu 2003, Mayr 2003, Hedges and Sibley 1994, and Bennett 2003). Genus/species (1:313:23: ngfillriliezi Webbinlg) Piesent on Foot type on Pes Pes es. (bll‘dS) Crocodylus porosus 4 2-3—4-4 significant webbing N/A Crocodylus acutus 4 2-3-4-4 significant webbing N/A Alligator mississippiens 4 2-3-4-4 ~2/3 webbed N/A Pteranodon 4 2-3-4-5 N/A N/A Pteranodon longiceps 4 2-3-4-5 N/A N/A Pelecanus 4 2-3-4—5 totipalmate ectropodactyl Olor columbianus 4 2-3-4-4 almate anisodactyl Larus marinas 3 0-3-4-5 almate tridactyl Pinguinis 3 0-3-4—5 almate tridactyl Eudocimus ruber 4 2-3-4-4 basally anisodactyl Pavo cristatus 4 2-3-4-4 none anisodactyl TABLE 2. Specimen pes types and characteristics (Raikow 1985, Bennett 2001 part 1, Bellairs 1969). It should be here noted that although Pinguinis (the Great Auk) is now extinct, it is used as part of the EPB because its behavior has been observed and documented before its extinction. Avian Locomotion Of the six different bird species used in this study (assuming that the two Pelican specimens are either similar in functional morphology to each other, or are the same species), two species swim by paddling along the water’s surface, two species swim/swam both along the water’s surface and under the water, one species wades in marshy areas, and one species is a terrestrial bird that occasionally perches. Olor columbianus and Larus marinas perform most of their aquatic locomotion at the surface of the water. Olor columbianus, the Whistling Swan, swims at the surface and feeds by dipping its beak down into the water, usually in shallow areas (Wallace and Mahan 1975). larus marinas, the Great Black-Backed Gull, floats on the water more than it actively swims (Wallace and Mahan 1975). However, when it does swim, it does so by paddling along the surface with its legs. Gulls occasionally dive into the water, reaching depths no deeper than one to two meters below the water’s surface. When gulls walk on the ground, it is with a lumbering gait, but they can sometimes hop onto perches (Good 1998). Pinguinis, the Great Auk, swam mostly underwater by propelling itself with its flightless wings. The Auk could also flap its wings efficiently to plane along the surface of the water. In spite of its skill in the water, however, the Auk walked clumsily on land (Montevecchi and Kirk 1996). Like Pinguinis, Pelecanus has broad feet and webbing between the toes that allow fast underwater swimming (Lockley 1974). However, Pelicans feed mostly by flying close over the water and suddenly plunge diving into the water to scoop up fish (Géroudet 1965). Eudocimus ruber, the Scarlet Ibis, is similar to the White Ibis in both behavior and choice of habitat. It walks slowly when feeding in shallow marshes, but walks more quickly when feeding in aquatic habitats. The Scarlet Ibis can fly, and does so with rapid beats of the wing; however, it swims only when pressed by danger (Kushlan and Bildstein 1992). Pavo cristatus, the Peacock, is a mostly terrestrial, non-swimming bird that is used as a control in this study. It travels mainly by walking on the ground, but can run when threatened. Furthermore, the Peacock flies only when crossing a ravine or alighting into roost trees. Thus, the peacock spends most of its time on the ground, perching in trees only when roosting (Ragupathy 1998). Crocodylian Locomotion Extant crocodylians are secondarily aquatic, in contrast to their terrestrial ancestors (Parrish 1987). They perform many of their daily activities such as feeding, social interactions, and reproduction, in the water (Seebacher et a1. 2003). As such, crocodylian feet are webbed as an adaptation to their aquatic environment. Although both the crocodylian manus and pes have webbing between the digits, the pes is extensively more webbed than is the manus (Bellairs 1969). For example, the manus digits of Alligator mississippiens are webbed almost halfway, whereas the pes digits are webbed along two-thirds of their length. Similarly, Crocodylus acutus has slight webbing on the third and fourth digits of its manus, whereas it has more extensive webbing on the outer digits of its pes (Cope 1900). Despite the presence of webbing, the feet are not the main source of propulsion in adult crocodylian aquatic locomotion. Only hatchling crocodylians swim entirely by paddling their feet, using their hind limbs to do so between 77% and 98.9% of the time. On the other hand, medium—sized crocodylians paddle with their feet only at very slow speeds, using their hind limbs between 71.3% and 92.9% of the time. Large crocodylians do not use their feet for aquatic propulsion at all. Instead, the webbed feet of large and medium-sized crocodylians that are swimming quickly are used to help maintain balance and facilitate maneuverability in the water, while the tail facilitates propulsion (Seebacher et al. 2003). The Use of Quantitative Morphometrics In contrast to qualitative descriptions, morphometrics are a quantitative way to examine and compare shape data of organisms. These data can be then be analyzed using algebra and statistics based on homologous landmarks placed on images of specimens. Furthermore, using landmarks for shape comparison when performing morphometrics better assures homology of data across specimens or taxa. However, landmarks can omit data about curvature, unless another method is used to study curvature. Variation of the coordinates of landmarks across studied specimens is removed by mathematically removing the differences in specimen positions, sizes, and orientations (Zelditch et a1 2004). Morphometrics were used in this thesis to maintain homology across specimens, and permit statistical analyses of these data. 10 MATERIALS AND METHODS Specimens Studied The two extant outgroups used in the EPB with the extinct genus Pteranodon were Aves and Crocodylia. From one to four homologous claws were compared and contrasted among the nine genera in this study. Sixteen total specimens (photographs of which are shown in Appendix I) were examined, as described in Table 3. The four pteranodont claws of unknown articulation were not used in the study, and were retained in the overall data set (their data listed in Appendix VII) only for the creation of the tangential claw phenograms in Appendix VIII. 1] Body Parts Used in Specimen Specimen Location Genus or Species Description Study Fort Hays Stemberg . ‘ iarticulated foot in FHSM-VP2062 Museum Pteranodon longzteps chalk block claws l, 2, 3, & 4 University of Kansas disarticulated left tibia. tarsals, two disarticulated KU49399 Museum Pteranodon metatarsals, and claws halanges in chalk iarticulated tarsals Yale Peabody _ metatarsals, and one distarticulaled YPM2554 Pteranodon lMuseum disarticulated claw claws in chalk Yale Peabod disarticulated one distarticulated YPM2436 Museum y Pteranodon metatarsals and claw i claw in chalk University of articulated (UM-P) lMichigan Zoological Pelecanus skeleton claws l, 2, 3. & 4 Museum University of . (UM-WS) ichigan Zoological Olor columbianus flagged claws 2. 3, & 4 Museum (C-GBBG) lags; F'e'd Larus marinas 23:52:“ claws 2, 3. a 4 (CPD Egg]: F‘e'd Pinguinis 3:63:15? claws 2, 3, & 4 (C-SI) 33:25; Field Eudocimus ruber :Eélcelifged claws l, 2, 3, & 4 (C-PC) hicago Field Pelecanus conspicillatus articulated claws 3 & 4 Museum skeleton lMichi s ' _ gan tate . articulated (MSU PA) University Museum Pavo crtstatus skeleton claws l, 2, 3, & 4 C22026 £11335; Field C rocodylus porosus jgliglceliljrjed klaws l, 2 & 3 Chicago Field ‘ articulated C213395 [Museum C mood; [as acutus skeleton claw 1 (C-CAD) Mtggf; Field C rocodylus acutus 23:53:“ claws 2 & 3 Chicago Field . . . . . articulated C310] 1 Museum Alligator missrssrpprens skeleton claw 3 C3132] 133:5; Field Alligator mississippiens $5513“ claws ] & 3 TABLE 3. Specimens examined. Specimens that have no catalog number are given an informal abbreviation for reference in this paper (shown above in parentheses). Photograph Acquisition and Organization All photographs of specimens used in this study were taken with a Canon Powershot A40 Digital Camera. Photographs were taken of the fronts of the specimens, 12 and where possible, also of both the left and right side and of the back of the specimen. A Geological Society of America cardboard scale (in centimeters) was placed in the photographs of many of the specimens. All photographs were taken in color, with the highest possible resolution and with the camera set to automatically adapt to the lighting conditions. Once acquired, the photographs were then labeled and organized according to their location and catalog number or label on a computer hard drive. Notes about these photographs can be found in Appendix 11. Photograph Manipulation Single elements of avian, crocodylian, and pteranodont feet had to be isolated and then oriented in a manner that would allow for the placing of landmarks and for morphometric measurement. Adobe Photoshop CS] was used for all manipulations and calculations performed on the avian, crocodylian, and pteranodont claws. This program has the advantages of the ability to adjust brightness, contrast, and other aspects of photographs, a tool that measures distances between two points, and a built-in XY coordinate system. The first step was to load the photograph of a crocodylian, avian, or pteranodont pes into Adobe Photoshop. Next, in instances where the cardboard scale was present in the photograph, the photograph was first increased or decreased in percentages until one centimeter of the scale measured as one centimeter in the program. (It should be noted, however, that this is not a necessary step, as all size data were removed once certain morphometric calculations of the landmarks were performed as shown below.) Each claw image was then cropped and placed in its own file, and labeled by the specimen to which 13 it belonged and the number of the digit to which it corresponds. In order to define the edges of the claw as precisely as possible, the brightness and contrast aspects of the image were adjusted to make the claw stand out against its background, then the edges of the claw were sharpened using the sharpen tool. The pictures remained in color because it was easier to see the claw edges in color than in black and white. This method was applied to 36 claws from 15 specimens. Raw Landmark Placement and Claw Orientation Once the claw image has been isolated and its edges had been sharpened, landmarks were placed on homologous areas on each claw. Four landmarks were placed on every claw (Figure 1); one landmark each was placed on the two proximal comers of each claw where the claw meets the digit, a third was placed at the distal tip of the claw, and the fourth was placed at the middle of the proximal edge of the claw where the claw meets the digit. The claws were examined under a high magnification in order to place the landmarks on the most specific coordinates possible. Although landmarks l, 2, and 3 were of the most interest, landmark 4 was included in morphometric computations and was used to help determine the centroid coordinates and size. Once landmarks were placed on the claw, the image was then reoriented so that landmarks 1 and 2 rested parallel to each other on a horizontal baseline. This was done with each claw. Furthermore, claws that curved upwards and towards the right were left in this orientation, but claws that curved upwards to the left were flipped horizontally so that all claws were in the same orientation. An assumption held here is that a horizontally l4 flipped image of one side of the claw appears similar enough to the other side of said claw that calculations will not significantly vary. FIGURE 2. Locations of the four landmarks on avian, crocodylian, and pteranodont claws after reorientation. Raw Landmark Coordinate Input and Transformation With the claws in their homologous orientation, the next step was to record the XY coordinates of the landmarks from Photoshop’s XY display (see Appendix III). This step was also performed in high zoom for accuracy in landmark coordinates. The line along which landmarks 1 and 2 rested was the baseline, which was then considered to occur at Y=0. The pencil tool and the measure tool work equally as well for pinpointing the coordinates of landmarks; the XY coordinates are shown in the Info window. Y coordinates for landmarks 3 and 4 were determined by subtracting the Y coordinate of landmark 1 from the Y coordinates of landmark 3 and 4 respectively. The raw landmark coordinates for each claw were placed in a Microsoft Excel spreadsheet, organized by specimen and digit number. 15 Although equations exist to directly transform raw landmark data to Bookstein (shape) data, the raw coordinates of each claw were first transformed into standardized coordinates with Equation 1. This equation was placed directly into the cells of an Excel spreadsheet for each set of coordinates. Transformation of landmarks from raw coordinates to standardized coordinates placed all of the claws in a common plane of existence, with all the landmarks l occurring at the coordinate (0, 0). Shape differences, however, had not yet been removed from the landmark data. Xs=X—X1 Ys=Y—Yr EQUATION 1. Transformation from raw coordinates to standardized coordinates in any given claw. Next, the standardized coordinates of the claw landmarks were transformed into Bookstein coordinates with Equation 2. This equation was also placed directly into the Excel worksheet and the calculations were carried out by the program. Transformation of landmarks from standardized coordinates to Bookstein coordinates removed differences between claw sizes by placing their baseline landmarks within a plane between X = O and X = 1, as shown in Figure 3. X3 = Xs/Ss 2 Y3 = Ys/Xs 2 EQUATION 2. Transformation from standardized coordinates to Bookstein coordinates in any given claw. 16 (1.343, 1.486) (0.500, 0.125) FIGURE 3. Claw landmarks with an example set of Bookstein coordinates. The Bookstein coordinates of landmark 1 and landmark 2 for every claw involved in the study are (0,0) for landmark 1, and (0,1) for landmark 2. Morphometric Calculations Several variables to be used in later calculations were extracted from geometric and trigonometric calculations made with the Bookstein coordinates of the claw landmarks. All of the equations for these calculations were placed directly into Excel and computed by the program. First, the locations of the centroid coordinates in the center of each claw were calculated, followed by the calculation of centroid size (Zelditch et al 2004). The centroid coordinates of each claw were calculated by averaging the X and Y coordinates of the four landmarks, as demonstrated in Equation 3. The centroid size of each claw was then determined by taking the square root of the sum of distances from each of the four landmarks to the centroid, as in Equation 4. XB1+XBZ+XB3+XB4 YBI+YBZ+YB3+YB4 XCT= 4 YCT= 4 EQUATION 3. Calculation of coordinates of centroid location in any given claw (Zelditch et al 2004). 17 centroid size = J2 [(XB— Xcr)2 + (YB+ Ycr)2] EQUATION 4. Calculation of the size of the centroid in any given claw (Zelditch et al 2004). The next set of calculations made with the Bookstein coordinates were the distances between the four landmarks of each claw. The distances between landmarks 1 and 2, 1 and 3, l and 4, 2 and 3, and 3 and 4 were determined using the general distance formula given in Equation 5. It should be noted that because size data were removed once the landmark coordinates were transformed into Bookstein coordinates, the centimeter was no longer an accurate metric for these distances. Instead, these distances represented a set of data that was compared to the homologous distances of other claws, as apposed to an absolute measurement. D:\fi(XBr-Xaz)2 +(YBl—YBZ)2] EQUATION 5. Equation used to determine the distance between any two landmarks. Once the distances between landmarks were calculated, the angles between landmarks 1, 2 and 3 were calculated. Angle 312 was labeled as angle (1, angle 123 was labeled as angle [3, and angle 132 was labeled as angle 7, as demonstrated in Figure 4. All angles were calculated and recorded in degrees; the equations used to calculate these angles are shown in Equations 6, 7 and 8. 18 C FIGURE 4. A. Example of superposition of a triangle (shown in dashed lines) drawn from connecting landmarks l, 2, and 3. B. Locations of angle and line designations in the triangle between landmarks l, 2, and 3. BZ+C2—A2 2BC Cosa = EQUATION 6. Calculation of angle a in any given claw (in degrees). A2+C2—B2 2AC CosB = EQUATION 7. Calculation of angle B in any given claw (in degrees). A2+B2—C2 2AB Cosy = EQUATION 8. Calculation of angle 7 in any given claw (in degrees). Another variable used for claw comparison was the ratio of angle a to angle B. This was calculated by dividing angle a by angle B (Equation 9). This ratio represents the 19 amount of slant towards the right in each claw; for example, a smaller ratio implies that the claw leans less towards the right, whereas a larger ratio implies that the claw leans more towards the right. a : B ratio = 0t/ B EQUATION 9. Calculation oF-Ratio of angle a to angle B. The last variable determined from the Bookstein landmarks of each claw was the aspect ratio of the claw (Equation 10). For this variable, the X coordinate of landmark 2 was used to represent the width of the claw (which in all cases equaled one due to the previous step of transforming all landmarks into Bookstein coordinates), and the Y coordinate of landmark 3 was used to represent the height of the claw. It was assumed that that any points on the claw outline that were higher than the Y coordinate of landmark 3, or farther than the X coordinate of landmark 2, would not significantly change the outcome of this calculation. Thus, an approximate ratio of width to height of each claw was determined. . X13 2 1 aspect 1'3th 2 = YB 3 YB 3 EQUATION 10. Aspect ratio of any given claw. Curvature Equations Each claw was recognized as having two curves; the inner curve was the curve that formed the right side of the claw, and the outer curve was the curve that formed the left side of the claw (Figure 5). For each curve of each claw, raw coordinates of the curve were extrapolated under high magnification in Photoshop and then recorded in the Excel 20 spreadsheet. The top and bottom ends of the curve were determined to occur at coordinates where the curve began to change its direction (as shown in Figure 5). Once a set of coordinates for a curve had been recorded, each coordinate was transformed into Bookstein coordinates by placing Equation 11 (Zelditch et al 2004) into the spreadsheet. OuterCm've InnerCurve FIGURE 5. The inner and outer curve of any given claw. : (X2-X1)(X3—Xi)+(Y2—Y1)(Y3—Y1) X8 2 2 (Xz-Xr) +(Y2—Y1) ___ (X2-Xi)(Y3-X1)—(Y2-Y1)(Y3—Y1) Y B (X2—X1)2+(Y2—Yr)2 EQUATION 1]. Transformation of raw coordinates to Bookstein coordinates (Zelditch et al 2004) used in curvature calculations. These calculations are based on the raw coordinates of landmarks l, 2 and 3. The resulting Bookstein coordinates of each separate curve were plotted on their own XY Scatter graph in Excel (listed in Appendix IV). Next, a polynomial (Y = AX2+BX1+CX0) trend line of the data was plotted, with the equation for the trend line and its R2 value shown on the graph. The coefficients of X2, X', and X0 were then recorded as variables for both curves of every claw. 21 Variable Correlation Calculations Before any statistical comparisons among variables could be completed, all variables found from the above calculations (for all claws) had to be processed to identify which variables significantly correlated with each other, in order to eliminate redundant data. This process was carried out in a statistical analysis computer program called SYSTAT. In the ANALYSIS menu, the command CORRELATIONS —> SIMPLE... was selected. A Pearson analysis was selected, with the options continuous data, two sets, and list wise deletion checked. All morphometric variables were added with the exception of the X and Y baseline coordinates of landmarks 1 and 2, and the distance between these coordinates. These five variables were excluded because they were identical throughout all taxa, and thus could not be included in the correlation analysis. When the analysis was run, a Pearson correlation value was produced for every combination of variable pairs. The absolute values of these numbers were then compared to values found on the Pearson correlation coefficient table (Upton and Cook 2004) at 26 degrees of freedom (see Equation 12) and p = 0.05. Any pair of variables with an absolute value equal to or above 0.374, the correlation coefficient, denoted a significant correlation with each other. These pairs are listed in Appendix V. degrees of freedom = sample size - 2 EQUATION 12. Calculation of degrees of freedom for use in Pearson correlation coefficient table. Organization of Samples for Statistical Analyses Because this study examines the morphometric similarities and differences between homologous claws across taxa, it was necessary to separate the data from digits 22 1, 2, 3, and 4 of all taxa into four data files to be used in statistical analyses. Each file was individually processed in the following statistical procedures to ensure a comparison of the same digit across taxa in each analysis. As an aside, statistical analyses were performed on the data file that includes all digits from all taxa except the pteranodont claws of unknown articulation, as well as the data files that include all digits from all taxa with the pteranodont claws of unknown articulation; however, because these tests do not compare strictly homologous structures, they are present in this study only for tangential speculation. Creation of Principal Components In SYSTAT, a factor analysis was used to create uncorrelated principal. component variables to be used in later statistical comparisons within each of the six data files. This step removed redundant data by producing mathematical variables that did not correlate with each other. Analysis —> Multivariate Analysis -—> Factor Analysis... was selected from the menu bar. In the Model tab, the principal components method was used with the correlation method of extraction. In the Rotation tab, varimax was selected; in the Save tab, Factor Scores were selected to be saved with the option checked to save data with scores. All other settings were left at their defaults. Next, all claw variables except the X and Y values of the Bookstein coordinates of landmarks l and 2 as well as the distance between these landmarks (these five variables omitted because they remain constant throughout taxa) were added to the Model variable(s) field. When OK was clicked, a data file containing the new principal component variables was created. This process was performed on each of the individual digit data sets, yielding 4 new data files containing principal component variables for each digit. 23 Claw Phenogram Creation In order to create a phenogram of claw morphologies for each digit, 3 cluster analysis was run in SYSTAT for each data file containing the newly created principal components. Analysis ——> Multivariate Analysis —> Cluster Analysis —> Hierarchical... was selected from the menu bar. In the Main tab, Ward Linkage, Euclidean Distance, and Join: Rows were selected. Next, the principal component variables were entered into the Selected Variables field. All other settings in this window were left at their defaults. When OK was clicked, a dendrogram was created that had the taxa as its endpoints, with a measure of distance below. This distance described where clusters joined together in the dendrogram, in the sense that the shorter the distance was before two clusters joined, the morphometrically closer to each other the clusters were. This process was performed for all four individual claw data sets. It was also performed for the two all-inclusive data sets for speculative purposes. ANOVA Analyses AN OVA was used to look for statistically significant similarities and differences between the clusters produced within each of the four claw dendrograms. Each principal component was analyzed individually, and all calculations were performed by entering the necessary formulas into an Excel spreadsheet. Within each principal component, each cluster was listed as an individual sample, and then calculations were performed in order to find the degrees of freedom within each cluster (Equation 13), the mean of the cluster (Equation 14), the variance within the cluster (Equation 15), and the sum of squared deviations in the cluster (Equation 16). 24 df = n— 1, where n is the cluster sample size EQUATION 13. Calculation of degrees of freedom of each cluster. 11 2.. Xj = i=1 n EQUATION l4. Calculation of the mean of a single cluster. 32 _ ECG—XV _ 02 n—l dfwc EQUATION 15. Calculation of variance within a single cluster. 202 =s2 odfwc EQUATION 16. Calculation of the sum of squared deviations within a single cluster. Next, seven calculations involving all of the clusters together were performed. The sums of all cluster sums of squared deviations (Equation 17), as well as the sum of all cluster degrees of freedom (Equation 18) were calculated. The variance within clusters was then calculated using Equation 19. k nj ‘— sum of all clusters'z 02 = 21:1 21:1 (Xij— x02 EQUATION l7. Calculation of the sum of all cluster sums of squared deviations. (if... = 2 df EQUATION l8. Calculation of the sum of the degrees of freedom within clusters. 25 EQUATION l9. Calculation of the variance within all clusters. The four remaining calculations yielded values between the clusters. The mean between all clusters was first found with Equation 20. The between clusters sum of squared deviations weighted by the clusters’ sample sizes was then found for the group of clusters with Equation 21. Once the between clusters degrees of freedom was determined with Equation 22, the between clusters variance was calculated using Equation 23 (Kachigan 1991). With these calculated values, it was then possible to determine and analyze the F-ratios of cluster pairs for each principal component variable. _ n 2 Xbc = Z; # clusters EQUATION 20. Calculation of the mean between all clusters. k _ _ Z 0'; =2 nj(Xj — Xbc)2 j=l EQUATION 2]. Calculation of the between clusters sum of squared deviations weighted by the clusters’ sample sizes. dfbc =# clusters -1 EQUATION 22. Calculation of the degrees of freedom between clusters. 22 2: Che S “C as. EQUATION 23. Calculation of the variance between clusters. 26 The F-ratio for a group of clusters within a principal component variable was calculated by dividing the variance between clusters by the variance within clusters (Equation 24). Accordingly, the degrees of freedom for the F-ratio were the degrees of freedom between clusters as the first number, followed by the degrees of freedom within clusters as the second number. Upon holding the null hypothesis to be that there are no significant differences between the clusters under each principal component variable, all calculated F-ratios were compared to the F distribution values (at or =0.05) generated by the >calc fif(0.95, dfbc, dfwc) command in SYSTAT, where dfbc represents the degrees of freedom between clusters, and dfwc represents the degrees of freedom within clusters. In the cases that the absolute value of the F—ratio was less than the critical value, the null hypothesis was supported and the clusters were found not to be statistically different from one another. However, in the cases when the absolute value of the calculated F-ratio was equal to or greater than the critical value, the alternative hypothesis that the clusters are significantly different from one another was instead supported (Kachigan 1991). Clusters that yielded statistically significant F-ratio values within their first comparison to the rest of the clusters as a group underwent analyses individually paired with every other cluster in order to determine specific F-ratio values between pairs of clusters. 2 S _ bc F_ 2 SWC EQUATION 24. Calculation of the F-ratio of two or more clusters. 27 RESULTS Bookstein Coordinates of Claw Landmarks Once homologous landmarks were placed on all claws used in the study, their coordinates were transformed into standardized coordinates, which were then transformed into Bookstein coordinates (Table 4). Because the Bookstein coordinates of landmarks 1 and 2 are constant in all claws, only the Bookstein coordinates of landmarks 3 and 4 of all claws have been plotted on Figures 6 and 7 respectively for visual comparison. (NOTE: Images in this thesis are presented in color.) 28 Specimen Pes Claw Bookstein Coordinates Landmark l Landmark 2 Landmark 3 Landmark 4 X Y X Y X Y X Y FHSM—VP2062 Left 0.500 3.321 0.464 0.107 0.973 3.405 0.459 -0.08 l 0.065 2.848 0.500 L0. 130 0.529 3.706 0.471 0.176 UM-P Left 1.313 2.813 0.500 0.125 2.300 3.600 0.500 0.133 1.707 0.634 0.439 -0.085 1.692 1.173 0.577 0.135 UM-WS Left 0.630 4.074 0.593 b0.148 1.941 3.765 0.471 -0. 147 0.795 4.077 0.590 -—0.256 C-GBBG Left 0.900 2.500 0.500 ~0.100 1.179 2.128 0.436 -0. 154 0.565 2.826 0.565 —0. l 74 C-PI Left 1.000 4.143 0.429 -0.476 1.061 4.182 0.485 -0.242 1 .667 6.333 0.583 -0.167 C-SI Left -2.650 3.450 0.600 -0.300 1.588 3.059 0.412 -0.353 1.550 3.400 0.450 -0.400 1.333 2.500 0.556 00.333 C-PC Left 0.719 2.063 0.500 0.094 1.261 3.261 0.478 -0.217 MSU—PA Left 2.537 0.642 0.493 0.045 2.136 4.955 0.409 0.000 3.859 1.592 0.423 #0070 3.170 1.274 0.481 0.113 C22026 Left 1.566 2.823 0.496 0.142 1.944 3.204 0.500 0.000 1.810 2.983 0.569 +0.069 C213395 Left 1.282 2.373 0.473 -0.109 C-CAD Left 0.896 2.167 0.573 0.156 0.392 2.608 0.431 -0.31 C3101] Left 1 .465 2.433 0.446 0.015 C3132] Left 1 .505 3.126 0.526 ~0.137 'fiHWWN—WN-‘hWN—‘hWbUJN—wahWNhWNhWN—&WN— COCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO COOCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO -H~_-—~fl~—~_—-_H—_flH_H_H_H_H—-- COCOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 0.449 3.808 0.385 —0.077 TABLE 4. The Bookstein coordinates of claw landmarks. 29 Bookstein Coordinates of Landmark 3 7 , 6 . x , A, , L $.03 5 . o I O Claw l “-5 4< ‘- ‘5 g 3 g ’o'fif ‘A Claw 3 8 ‘3‘. ‘ X Claw 4 >-‘ 2 ‘ A“; A 0 Unknown Articulation 1 ‘ x x _._._. M W A o -4 -2 0 2 4 6 X Coordinates FIGURE 6. Bookstein coordinates of landmark 3 of all claws (data from Table 4). Bookstein Coordinates of Landmark 4 0.3 0.2 - x i 0.1 o! ”Agg _ V L 3 0-- IL; T , ., lOClawl E -01 0 0.2 0. 0.6 0.8 1 1' Claw 2 E “ >4! A Claw 3 o -0.2 J U )3 x . X Claw 4 V -03 *4 -° x ° ., °_ UslgoaaArtisslatim , -0.4 3 A -0.5 - I -O.6 X Coordinates FIGURE 7. Bookstein coordinates of landmark 4 of all claws (data from Table 4). 30 Claw Centroid Locations and Sizes The (X, Y) coordinates and the size of the centroid of the claws (based on Bookstein coordinates) yielded two more variables for each claw, shown in Table 5. Specimen Pes Claw Centrord Location Centroid Size X Y 1 0.491 0.857 2.934 FHSM-VP20 62 Le ft 2 0.608 0.831 3.085 3 0.391 0.679 2.631 4 0.500 0.971 3.240 1 0.703 0.734 2.601 UM-P Left 2 0.950 0.933 3.525 3 0.787 0.137 1.402 4 0.817 0.327 1.578 2 0.556 0.981 3.644 UM-WS Left 3 0.853 0.904 3.606 4 0.596 0.955 3.687 2 0.600 0.600 2.332 C-GBBG Left 3 0.654 0.494 2.109 4 0.533 0.663 2.601 2 0.607 0.917 3.839 C-PI Left 3 0.636 0.985 3.796 4 0.813 1.542 5.667 1 -0.263 0.788 4.197 C-Sl Left 2 0.750 0.676 3.015 3 0.750 0.750 3.290 4 0.722 0.542 2.487 C-PC Left 3 0.555 0.492 1.957 4 0.685 0.761 3.05] 1 1.007 0.172 1.979 MSU-P A Left 2 0.886 1.239 4.583 3 1.320 0.380 3.325 4 1.163 0.347 2.651 1 0.765 0.741 2.673 C22026 Left 2 0.861 0.801 3.125 3 0.845 0.728 2.920 C213395 Left 1 0.689 0.566 2.309 C-CAD Left 2 0.617 0.581 1.994 3 0.456 0.574 2.468 C3101] Left 3 0.728 0.605 2.384 C3132] Left 1 0.758 0.747 2.967 3 0.458 0.933 3.396 TABLE 5. Claw centroid locations and sizes. 31 Distances Between Claw Bookstein Landmarks The morphometric distances between each landmark yielded a total of 6 variables (shown in Table 6) to be used in statistical analyses. Because the coordinates of landmarks l and 2 remained constant throughout all claws, the distance between these landmarks also remained constant. 32 S . Distances Between Landmarks (Bookstein) peclmen Pes Claw L1-L2 L2-L3 L1-L3 L3-L4 L1-L4 L2-L4 1 1 3.359 3.359 3.214 0.476 0.546 FHSM-VP2062 Left 2 1 3.406 3.542 3.524 0.467 0.547 3 1 2.997 2.849 3.010 0.517 0.517 4 1 3.736 3.744 3.530 0.503 0.558 1 1 2.830 3.104 2.808 0.515 0.515 UM-P Left 2 1 3.828 4.272 3.906 0.517 0.517 3 1 0.950 1.821 1.458 0.447 0.567 4 1 1.362 2.059 1.524 0.592 0.444 2 1 4.091 4.122 4.222 0.611 0.434 UM-WS Left 3 1 3.881 4.236 4.179 0.493 0.549 4 1 4.082 4.154 4.338 0.643 0.484 2 1 2.502 2.657 2.631 0.510 0.510 00330 Left 3 1 2.136 2.433 2.400 0.462 0.585 4 1 2.859 2.882 3.000 0.591 0.468 2 1 4.143 4.262 4.654 0.641 0.744 0131 L60 3 1 4.182 4.314 4.462 0.542 0.569 4 1 6.368 6.549 6.590 0.607 0.449 1 1 5.022 4.350 4.962 0.671 0.500 C-SI Left 2 1 3.1 15 3.447 3.609 0.542 0.686 3 1 3.444 3.737 3.956 0.602 0.680 4 1 2.522 2.833 2.938 0.648 0.556 C-PC Left 3 1 2.082 2.184 2.167 0.509 0.509 4 1 3.271 3.496 3.565 0.525 0.565 1 1 1.666 2.617 2.130 0.495 0.509 MSU-P A Left 2 1 5.083 5.396 5.247 0.409 0.591 3 1 3.272 4.174 3.817 0.428 0.582 4 1 2.516 3.416 2.928 0.494 0.531 1 1 2.879 3.228 2.887 0.515 0.524 C22026 Left 2 1 3 .340 3 .748 3.514 0.500 0.500 3 1 3.091 3.489 3.295 0.573 0.437 C213395 Left 1 1 2.389 2.697 2.610 0.485 0.538 C-C AD Left 2 1 2.169 2.345 2.036 0.594 0.455 3 1 2.678 2.637 2.922 0.533 0.649 C310] 1 Left 3 1 2.477 2.840 2.651 0.446 0.554 C 31321 Left 1 1 3.167 3.470 3.407 0.544 0.493 3 1 3.847 3.834 3.885 0.392 0.620 TABLE 6. Distances between the Bookstein landmarks of each claw. Angles Between Claw Bookstein Landmarks The angles described in Figure 4 were found by using the distances calculated in Table 6. These yield three additional variables for each claw and are presented in Table 7. 33 Specimen Pes Claw An les (degrees) O B Y FHSM-VP2062 Left 81.439 81.439 17.122 74.055 89.545 16.400 88.688 71.828 19.484 81.870 82.763 15.367 UM-P 64.983 96.340 18.677 57.426 109.855 12.719 20.376 138.122 21.501 34.729 120.548 24.723 UM-WS Left 81.215 84.806 13.980 62.723 104.036 13.241 78.968 87.120 13.913 C-GBBG Left 70.201 87.709 22.089 61.004 94.821 24.175 78.690 81.254 20.056 C—PI Left 76.430 90.000 13.570 75.769 90.830 13.401 75.256 96.009 8.735 C—Sl Left 127.528 43.386 9.085 62.560 100.886 16.554 65 .493 99.189 15.319 61.928 97.595 20.478 C-PC Left 70.787 82.235 26.978 68.860 94.574 16.566 MSU-PA Left 14.195 157.341 8.456 66.675 102.918 10.408 22.412 150.897 6.691 21.890 149.589 8.522 C22026 Left 60.976 101.344 17.680 58.745 106.425 14.830 58.745 105.199 16.056 C213395 Left 61.621 96.774 21.606 C-CAD Left 67.537 87.248 25.216 81.448 76.880 21 .672 C3101] Left UJDJN—WN—-§UJN—bWAWN—bWNAWNhWNh'JN—AWNH 58.948 100.819 20.233 C3132] Le ft 64.290 99.181 16.529 w— 83.279 81.762 14.959 TABLE 7. Angle calculations (in degrees) between Bookstein landmarks l. 2. and 3 of each claw. Aspect and Angle Ratios of Claws The aspect ratio and the ratio of a to B yielded one variable each for all claws and are presented in Table 8. 34 Specimen Pes Claw Aspect Ratio Ratio of a to B I 0.301 1.000 FHSM-VP2062 Left 2 0294 0327 3 0.351 1.235 4 0.270 0.989 I 0.356 0.675 UM-P Left 2 0.278 0.523 3 1.577 0.148 4 0.852 0.288 2 0.245 0.958 UM-WS Left 3 0.266 0.603 4 0.245 0.906 2 0.400 0.800 C-GBBG Left 3 0.470 0.643 4 0.354 0.968 2 0.241 0.849 C-PI Left 3 0.239 0.834 4 0.158 0.784 1 0.290 2.939 C-SI Left 2 0.327 0.620 3 0.294 0.660 4 0.400 0.635 C-PC Left 3 0.485 0.861 4 0.307 0.728 1 1.558 0.090 MSU-P A Left 2 0.202 0.648 3 0.628 0.149 4 0.785 0.146 1 0.354 0.602 C22026 Left 2 0.312 0.552 3 0.335 0.558 C213395 Left 1 0.421 0.637 C-C AD Left 2 0.462 0.774 3 0.383 1.059 C3101] Left 3 0.411 0.585 C3 1321 Left 1 0.320 0.648 3 0.263 1.019 TABLE 8. Aspect ratios and ratios of a to B of each claw. Claw Curvature Polynomial Coefficients The coefficients for functions in the format of Y = AX2+BX1+CXO that when plotted, most closely match the inner and outer curvature of the claws, are detailed in Table 9. The R2 value is also listed with the coefficients as a measure of accuracy. 35 Curvature Equation Coefficients S , Outer Curve Inner Curve peclmen Pes Claw X2 X x0 R2 XI X x0 R2 Coeff. Coeff. Coeff. Value Coeff. Coeff. Coeff. Value (A) (B) (C) (A) (B) (C) 1 -15.455 7.681 2.625 0.836 -0.595 -3.749 5.024 0.969 FHSM- 2 -3.515 4.931 1.571 0.934 -28.809 48.784 -18.602 0.055 Left VP2062 3 6.265 —0.0681 1.569 0.014 0934 -5999 3.540 0.966 4 -4.664 6.368 2.091 0.799 3.077 -1 1.171 9.538 0.957 1 -l .819 3.559 0.968 0.923 -3.088 7.371 -2.425 0.039 UM-P Left 2 -0.955 3.205 0.884 0.968 2.330 -7.246 7.878 0.260 3 -0.552 1.190 0.172 0.984 -1 . 172 4.941 -2.914 0.971 4 -0.334 1.179 0.169 0.985 0.844 -1.180 0.829 0.608 2 -3.86 2.815 3.278 0.876 -1 1.562 17.706 -3.753 0.325 UM-WS Left 3 -1.034 3.404 0.785 0.982 -9.132 35.312 -30.955 0.935 4 -1.640 3.394 2.764 0.856 -27.085 41.063 -12.265 0.236 2 -4.340 4.756 0.700 0.89] 24.194 -51.157 27.556 0.863 00330 L60 3 -1.809 3.496 0.243 0.965 -34.266 69.085 -33.466 0.101 4 -4.950 3.494 2.197 0.644 12.141 -19.406 8.749 0.571 2 -3.088 4.842 2.034 0.923 -2.278 1.816 2.713 0.341 C-PI Left 3 -3.622 5.538 1.936 0.869 -l].757 21.063 -6.011 0.117 4 -1.495 4.055 3.382 0.932 -3.427 8.851 -1.171 0.315 1 -0.014 -1 .246 0.059 0.996 0.010 -0.805 1.151 0.994 0 SI Left 2 -0.629 2.546 0.671 0.986 1.031 0.817 -0.217 0.552 3 -1.022 3.451 0.515 0.997 1.894 -0.789 0.719 0.581 4 -l .262 3.164 0.465 0.989 4.087 —6.873 4.199 0.1 15 C-PC Left 3 -5.31 1 4.867 0.863 0.704 -3.715 2.715 1.270 0.678 4 -2.422 3.795 1.660 0.820 -2. 165 2.736 1.209 0.069 1 -0.472 1 .370 0.269 0.994 -0.747 2.950 -2.168 0.993 MSU-PA Left 2 -0.829 2.076 3.794 0.831 -1.111 4.511 0.379 0.649 3 -0.231 1.159 0.687 0.996 -0.233 1.473 -0.812 0.992 4 -0.032 1.147 0.822 0.994 -0.496 2.429 -1.689 0.976 1 -1.084 3.322 0.120 0.987 -1.966 9.825 -7.914 0.966 C22026 Left 2 —0.682 2.848 0.174 0.996 -0.408 3.836 -3. 152 0.989 3 -0.994 3.082 0.455 0.989 2.177 -2.723 0.834 0.977 C213395 Left 1 - l .569 3.392 0.472 0.991 -1.570 7.826 —5.1 19 0.646 C-C AD Left 2 0.171 1.888 0.279 0.996 6.754 -7.017 1.696 0.418 3 6.975 3.398 0.488 0.977 -3.75] 2.004 2.436 0.931 C310] 1 Left 3 -0.830 2.557 0.547 0.998 -0.634 4.310 -3095 0.982 C3 1321 Left 1 -0.669 2.303 1.176 0.946 1.618 -0.718 0.753 0.607 3 3.371 5.436 2.326 0.763 7.725 -16.428 9.065 0.755 TABLE 9. Coefficients from polynomial (Y = AX2+BX+CXO) equations of outside and inside curves with their R2 values, derived from Bookstein coordinates. 36 Principal Component Variables Generated for Each Claw A principal component analysis run in SYSTAT for each individual claw from the above variables rendered principal component variables (shown in the data as PC], PC2, etc.) for each claw. These variables, listed in Tables 10 through 13, were later used in ANOVA analyses. Specimen PCl PC2 PC3 FHSM-VP2062 0.332 - l .974 1.024 UM-P 0.067 -0.219 -0.900 C-Sl 1.519 1.197 1.010 MSU-PA - l .871 0.667 1.036 C22026 0.024 0.109 -1 . 170 C213395 -0.229 -0.158 -0.800 C3 1321 0.158 0.379 -0. 199 TABLE 10. Principal component variables generated for claw 1 using SYSTAT. Specimen PCl PC2 PC3 PC4 PCS FHSM-VP2062 -0.376 -0.349 -0.082 1.969 -1 .632 UM-P 0.308 1.302 -0.503 -0.389 -0. 100 UM-WS 0.948 -1 .622 -1.027 0.236 0.705 C-GBBG -0.830 -0.561 -0.233 -1.906 -1.463 C-P 0.591 -0.962 1.834 -0.256 0.217 C-SI -0.611 0.593 1.513 0.194 0.731 MSU-PA 1.781 0.786 -0.362 -0.254 0.010 C22026 -0.338 1.1 19 -0.256 0.331 0.082 C-CAD - l .473 -0.305 -0.884 0.075 1.449 37 TABLE 1 1. Principal component variables generated for claw 2 using SYSTAT. Specimen PCl PC2 PC3 PC4 PCS FHSM-VP2062 0.019 1.396 -1.032 0.613 -0.615 UM-P -2.002 -1 .103 -0.254 -0.225 —0.2 16 UM-WS 1.116 -0.381 1.163 0.250 -0.230 C-GBBG -0.899 0.298 2.492 -0.408 -0.3 1 8 OP 1.384 0.267 0.603 0.369 0.743 C-SI 0.418 —0.339 -0.574 -1.247 2.013 C-PC -0.993 0.630 0.178 1.21 1 0.547 MSU-PA 0.606 -2.247 -0.439 -0.4 l 7 -0.745 C22026 0.216 -0.485 -0.475 2.094 0.705 C-CAD -0.553 0.973 -0.565 - l .381 0.850 C3101] -0.328 0.111 —0.899 -0.009 -1.318 C3132] 1.016 0.881 0199 -0.849 -1.416 TABLE 12. Principal component variables generated for claw 3 using SYSTAT. Specimen PCl PC2 PC3 PC4 PCS FHSM-VP2062 0.171 1.251 -0.943 -0.446 -1.386 UM-P -1.338 -0.594 1.396 0.021 -0.718 UM-WS 0.083 0.674 0.396 2.237 0.261 C-GBBG -0.349 0.901 0.816 -1.155 0.049 C-P 2.161 -0.424 0.883 -0.370 0.21 l KI-Sl -0.615 -0.168 -0.399 -0.539 1.932 C-PC -0.070 0.245 -1 .284 0.156 0.397 MSU-PA -0.043 -1 .884 -0.865 0.096 -0.746 TABLE 13. Principal component variables generated for claw 4 using SYSTAT. Claw Phenograms The principal component variables underwent cluster analyses in SYSTAT and a phenogram for each individual claw was produced. In the phenograms, taxa were paired first to other taxa with the most morphometrically similar claws, then to other taxa or clusters with claws in the order of decreasing morphometric similarity. The distance metrics below the phenograms show at what distances the taxa and clusters join, and represent the phenetic distances between the claws of the taxa. The phenogram of claw 1, shown in Figure 8, pairs the claw of Pteranodon longiceps most closely with that of the Scarlet Ibis. This cluster is then joined to the 38 Peacock, and these three claws are then joined to a group of clusters containing the two crocodile species, the alligator, and the Pelican. Ptaranodon longiceps Eudocimus rubcr Pavo cn'srams Alligator mmissrppim Crocodylus acutu: E Pelecanus Crocodylus poms-us D 6 i 2 1 Distance FIGURE 8. Phenogram of digit 1 claws based on principal components. Clusters are labeled with capital letters. The phenogram of claw 2, shown in Figure 9, pairs P. longiceps with the Great Black-Backed Gull. This cluster is then paired most closely with the cluster containing one species of crocodile and the Whistling Swan. The next closest cluster to these contains the Great Auk and Scarlet Ibis, and this cluster, combined with the aforementioned clusters, joins group of nested clusters containing the Peacock, Pelican, and the other species of crocodile. 39 Larus marinas - A Pteranodon longiceps C Olor columbianus Crocodylus acutus Eudocimus ruber Pinguinis l Pave cn’status "’“""“‘ :r—J Crocodylia porosus r 1 I I 0.0 0.5 1.0 1.5 2.0 Distance FIGURE 9. Phenogram of digit 2 claws based on principal components. Clusters are labeled with capital letters. P. longiceps is most closely joined to the two specimens of alligator in the third claw phenogram (Figure 10). These nested clusters are equally joined to the clusters containing the Pelican and Peacock and Crocodylus acutus and the Scarlet Ibis. The combination of these clusters is then joined to clusters containing the other crocodile and Pelican specimens, as well as the Great Black-Backed Gull, the Great Auk, and the Whistling Swan, in nested configurations. 40 Lat-us marinas B Olor columbianus—-1A l—_1 Pinguinis ——1 _ D Crocodylus porosus 1C Pelecamrs conspicillatus I Pteranodon longiccps E Alligator mminippim p Alligator mississippim I Pavo cnstarus G Pelecarrus Crocodylus acutus IE I r l Eudocimus rubcr I O Distance FIGURE 10. Phenogram of digit 3 claws based on principal components. Clusters are labeled with capital letters. The phenogram of the fourth claw, shown in Figure 11, places the fourth claw of P. longiceps mostly closely to the cluster containing the fourth claws of the Pelican and the Great Black-Backed Gull. These three taxa are joined at equal distances to the cluster containing that Great Auk and the Whistling Swan, and the cluster containing the Peacock, the Scarlet Ibis, and the other specimen of Pelican. 41 Pteranodon longiceps B . Lams marinas - . A I Pelecanus Olor columbianus F21 Pinguinis Pavo cnlstatus ‘ E Pelecamrs conspicillatus D Eudocimus ruber I l l 1 1 0.0 0.5 1.0 1.5 2.0 Distance FIGURE 1 1. Phenogram of digit 4 claws based on principal components. Clusters are labeled with capital letters. ANOVA Results In order to determine which clusters of claws were significantly similar or different to each other, ANOVA was performed on groups of clusters within each phenogram (see Appendix V1 for the cluster data used in these analyses). These analyses were performed individually for each principal component variable. In the phenogram for claw 1, all of the clusters were found to be statistically similar to each other for two of the three principal components, as shown in Table 14A. However, principal component 3 contained a statistically significant difference somewhere within the group of all of the clusters in the phenogram. Narrowing down the clusters tested for statistical differences yielded data in Table 14B, which shows a statistically significant difference only for the group of clusters that contains cluster B. Table 14C shows the AN OVA results for all clusters paired with clusters A and B. Of 42 these pairs, only clusters A and B were found to be significantly similar to each other; all other tested cluster pairs revealed a significant difference. A. Claw 1 Principal Components PCl PC2 PC3 F-Ratio of {A, B, Q D, E} 0.527 0.056 43.993 F-Ratio DegLees of Freedom 4, 9 4, 9 4, 9 At a = 0.05, Significant Value is 3.630 3.630 3.630 Statistically Different? no no es B. Claw 1, Principal Component 3 F-Ratio of {B, C, D, E} 36.439 F-Ratio Degrees of Freedom 3, 8 At a = 0.05, Significant Value is 4.070 Statistically Different? es F-Ratio of {C, D, E} 0.321 F-Ratio Degrees of Freedom 2, 6 At a = 0.05, Significant Value is 5.140 Statistically Different? no F -Ratio of (D, E} 0.544 F-Ratio Dggrees of Freedom 1, 5 At a = 0.05, Significant Value is 6.610 Statistically Different? no C. Claw 1, Principal Component 3 Clusters in Comparison A+B A+C A+D A+E B+C B+D B+E F-Ratio of {A, B, C, D, E} 0.356 1358.293 199.609 37.959 2452.385 320.375 55.719 F-RatioDegreesofFreedom 1,3 1,2 1,3 1,4 1,3 1,4 1,5 At a = 0.05, Significant Value is 10.13 18.51 10.13 7.71 10.13 7.71 6.61 Statistically Different? no es es es yes es es TABLE 14. ANOVA results of claw l. A. ANOVA results of all clusters in phenogram, for all principal components. B. ANOVA results for decreasing groups of clusters for principal component 3. C. ANOVA results of cluster pairs for principal component 3. Table 15A shows that all of the principal components except principal component 2 had statistical similarities among all of the clusters in the phenogram of claw 2. In spite of narrowing down the clusters in each ANOVA analysis shown in Table 15B, all groups 43 of clusters in this table contain a statistically significant difference. Among the specific pairs of clusters that were analyzed (their results shown in Table 15C), several pairs of clusters show statistical differences between the two tested clusters. A. Claw 2 Principal Component PCl PC2 PC3 PC4 PCS F-Ratio of {A, B, C, D, E, F, G} 0.441 4.562 2.716 0.012 1.156 F-Ratio Degees of Freedom 6, l4 6. l4 6, 14 6, l4 6, 14 At a = 0.05, SMcant Value is 2.850 2.850 2.850 2.850 2.850 Statistically Different? no es no no no B. Claw 2, Principal Component 2 F-Ratio oflB, C, D, E, F, G} 5.077 F-Ratio Degrees of Freedom 5, 13 At a = 0.05, Significant Value is 3.030 Statistically Different? es F-Ratio of {C, D, E, F, G} 6.254 F -Ratio Dgrees of Freedom 4, 12 At a = 0.05, Significant Value is 3.260 Statistically Different? es F -Ratio of {D, E, F, G} 6.253 F-Ratio Degrees of Freedom 3, 9 At a = 0.05, Significant Value is 3.860 Statistically Different? es F-Ratio of {E, F, G} 12.478 F-Ratio Degees of Freedom 2. 8 At a = 0.05, Significant Value is 4.460 Statistically Different? es F-Ratio of {F, G} 14.154 F-Ratio Dgrees of Freedom 1, 7 At a = 0.05, Significant Value is 5.590 Statistically Different? yes 44 C. Claw 2, Principal Component 2 Clusters in Comparison A+B A+C B+C A+B A+F B+E B+F C+E F-Ratio oflA, B, C, D, E} 0.58] 0.331 0.192 141.831 54.766 10.691 15.429 18.979 F-RatingLeesofFreedom 1,2 1,4 1,4 1.2 1,3 1,2 1,3 1.4 At a = 0.05, Sigiificant Value is 18.51 7.71 7.71 18.51 10.13 18.51 10.13 7.71 Statistically Different? no no no es es no yes es Clusters in Comparison C+F E+F A+D B+D C+D D+E D+F A+G F-Ratio of {A, B, QQ E} 21.534 0.488 0.1 19 0.585 0.701 3.176 4.380 0.027 F-RatioDegreesofFreedom 1,5 1,3 1,2 1,2 1,4 1,2 1,3 1,6 At a = 0.05, finificant Value is 6.61 10.13 18.51 18.51 7.71 18.51 10.13 5.99 Statistically Different? yes no no no no no no no Clusters in Comparison B+C C+G D+G E+G F+G F-Ratio of {A, B, C, D, E} 0.615 0.158 0.373 13.329 14.154 F-Ratio Degrees of Freedom 1, 6 1, 8 1, 6 1, 6 1, 7 At a = 0.05, Significant Value is 5.99 5.32 5.99 5.99 5.59 Statistically Different? no no no yes yes TABLE 15. ANOVA results of claw 2. A. ANOVA results of all clusters in phenogram, for all principal components. B. ANOVA results for decreasing groups of clusters for principal component 2. C. ANOVA results of cluster pairs for principal component 2. In the phenogram of claw 3 (Figure 10), two of the five principal components contained statistically significant differences within the group of all ten clusters (Table 16A). When this group was repeatedly narrowed down and analyzed, principal components 3 and 4 showed significant differences only in groups that included clusters B, C, and D (Table 16B and 16C). Table 16D shows which cluster pairs yielded significant differences between the clusters. A. Claw 3 Principal Component PC 1 PC2 PC3 PC4 PCS F -Ratio of {A, B, C, D, E, F, G, H, I, J} 0.646 1.261 5.263 4.093 1.790 F-Ratio Degrees of Freedom 9, 22 9, 22 9, 22 9, 22 9, 22 At a = 0.05, Sijnificant Value is 2.340 2.340 2.340 2.340 2.340 Statistically Different? no no yes yes no 45 B. Claw 3, Principal Component 3 F-Ratio of {B, C, D, E, F, G, H, I, J} 5.170 F-Ratio Degees of Freedom 8, 21 At a = 0.05, Significant Value is 2.420 Statistically Different? yes F-Ratio 0113, D, E, F, G, H, I, J} 3.559 F-Ratio Dgegrees of Freedom 7, 19 At a = 0.05, Significant Value is 2.540 Statistically Different? es F-Ratio of {D, E, F, G, H, I, J} 4.083 F -Ratio Degrees of Freedom 6, 18 At a = 0.05, Significant Value is 2.660 Statistically Different? es F-Ratio of {E, F, G, H, I, J} 1.372 F -Ratio Degrees of Freedom 5. 14 At a = 0.05figgificant Value is 2.960 Statistically Different? no F-Ratio of {F, G, H, I, J} 0.605 F-Ratio Degrees of Freedom 4, 13 At a = 0.05, Significant Value is 3.180 Statisticaglly Different? no F-Ratio of {G, H, I, J} 0.563 F-Ratio Degrees of Freedom 3, l 1 At a = 0.05, Significant Value is 3.590 Statistically Different? no F-Ratio of {11, I, J} 0.255] F-Ratio Degrees of Freedom 2. 10 At a = 0.05, Significant Value is 4.100 Statistically Different? no F-Ratio of {1, J} 0.449 F -Ratio Degrees of Freedom 1, 9 At a = 0.05, Significant Value is 5.120 Statistically Different? no 46 C. Claw 3, Principal Component 4 F-Ratio of {B, C, D, E, F, G, H, I, J} 4.308 F-Ratio Defies of Freedom 8. 21 At a = 0.05, Significant Value is 2.420 Statistically Different? es F -Ratio of {C, D, E, F, G, H, I, J} 4.596 F -Ratio Degrees of Freedom 7, 19 At a = 0.05, Significant Value is 2.540 Statistically Different? yes F-Ratio of {D, E, F, G, H, I, J} 3.072 F-Ratio Degrees of Freedom 6, 18 At a = 0.05, Siggificant Value is 2.660 Statistically Different? yes F-Ratio of {E, F, G, H, I, J} 1.900 F-Ratio Degrees of Freedom 5, 14 At a = 0.05, Shflficant Value is 2.960 Statistically Different? no F-Ratio of {F, G, H, I, J} 1.421 F-Ratio Degrees of Freedom 4, 13 At a = 0.05, Significant Value is 3.180 Statistically Different? no F-Ratio of {G, H, I, J } 1.289 F-Ratio Degrees of Freedom 3, 11 At a = 0.05, Significant Value is 3.590 Statistically Different? no F-Ratio of (H, I, J} 1.711 F-Ratio Degrees of Freedom 2, 10 At a = 0.05, Significant Value is 4.100 Statistically Different? no F-Ratio of {I, J} 0.610 F-Ratio Degrees of Freedom 1, 9 At a = 0.05, Significant Value is 5.120 Statistically Different? no .v as. m «2.2.2.88 .365... 8.. when 3.3.0 .o 3.30.. <>OZ< .n. .v 80:258.. .365... 8.. p.83... .0 3.6% 3.823.. 8.. 3.30.. <>OZ< .0 .m Becomes .863... 8.. «.82.? .o 339% 3.828.. 8.. 3.32 <>OZ< .m .acoaoaaoo 39.05.... E. 8.. .EEonE a. £82.... ..e ..o 3.30.. <>OZ< .< .m >63 ..o 3.32 <>OZ< 6. mama... we» mo 8 o: o: 9. me mo 8.. mo 2. o: o: o: o: 8:93....— .anzagum 6a... 3.3 .66 .66 3.3 .66 38 3... 3.». 3.... 2.... 3.». .66 N03 .66 a. 33> 333m 6...: .I. a «a. o. .. i. .0... n.. e.. m. 4.. 4.. N. N... m. N. m. a; .0... 56825383.. 23.-.. >36 36... >36 63mm .03.. an»... Eula 8.6m «6.4% 5.6. 36.5 3N6 ”8.. 5.... 3.3 .55 3.3.0 .o 055.-.... Th. .+Q :5 0+9 m3 m5 .. +0 .+0 :+0 0+0 n+0 m+0 C+D Tm Tm. canteen—o0 :. 283.0 8% o: o: o: o: 8 o: 2. mo» me» o: o: o: o: o: Sachets Eastmafim 2.... 2.... 36 2.... 3.3 2.... 3.3 .56 3.x. 3.x. 2.... 3.». .66 3.x. 2.... 39......» Esquiwfi “media... .1. m. 4.. m.. e.. ms. i. 4.. N. m.. Q. ~.. Q. N.. m.. 588...:aselwan 23.-.. aoodm 33.. now... cum... 3... 36.2 cm...” 66...... .6. .53 3N3 c3... .8... N62. 2...... .56... .5... 3.0.20 .6 3.5—lb m+m O+m "Tm m+m Q+m U+m ..+< .+< ...+< 0+< m+< m+< n.+< 0+< m+< cont—2.8.00 :. 282.0 v 0:32.980 132.....— .n 350 me» o: o: o: o: o: o: o: o: o: o: o: 0.. mo» 3.. 8:98.05 3.8.3.33 6a... 3.3 .66 .66 3.3 .66 .5... 3.5 3.». 3.». 2.... 3.». .66 ~03 .66 a. 2...; 38......w3 .3... u e 3. o. .. .... 3.. 3.. 6.. 3.. .2. .1. ~.. N.. m.. N.. 3.. M... 3.. 5:63;... manageme— ommd ”3... End newm 33... .303 2:3 3.3 366.. men... 98.. 686 at... Eodm 30.6 . at... .3320 .o .55.-..— ..+Q .+n. ma C+G ....+Q m.+n. ..+0 .+0 :+0 0+0 To m+0 n+0 ..+m .+m neat—5:50 a. m582:0 o: c: we no» 2. o: no» we» me» o: no me o: o: o: Enough... 5.3.3....3 2.... 2.... 2.... 2.... $6 2.... 3.3 2..» 3.x. 3.x. 2.... 3.». .66 3.». 2.... a. 02.5 2.3...in Waste: Q. m. .1. m; 6.. m. 51. .1. N. N. m. N.. 3.. N... m.. 588......2855 6.3m-.. own... 3.6 36.3 Km... 36... mom... 3 . 6.. SN...» 686m .460... 3...... 3a.... 3.... 33.6 an... .5... .9320 no .55.... ...+m 0+m “Tm. m+m D+m. 0+m. ..+< .+< I+< 0+< n.+< m+< Q+< 0+4. m+< Satan—60 :. E0220 m E28950 392.....— .m 320 d 47 The phenogram for claw 4 showed no significant differences between any of the five clusters analyzed (shown in Table 17). Thus, it was not necessary to perform further ANOVA analyses on these clusters. Claw 4 [Principal Component PC 1 PC2 PC3 PC4 PCS [F-Ratio of {A, B, C, D, E} 1.952 0.549 3.204 1.032 1.454 [fiatio Degrees of Freedom 4, 7 4, 7 4, 7 4, 7 4, 7 At a = 0.05, Significant Value is 4.120 4.120 4.120 4.120 4.12 Statistically Different? no no no no no TABLE I7. ANOVA results of all clusters in phenogram, for all principal components of claw 4. Tables 18 through 20 summarize the number of statistically different principal components for each cluster pairs with one or more differences. One or more significantly different principal components indicate a statistical difference between the morphologies of the claws within those clusters. In the phenogram of claw 1 (Figure 8), cluster A was found to be statistically different from every other cluster except for cluster B; likewise, cluster B was found to be statistically different from all clusters except cluster A. However, clusters C, D, and E are statistically similar to each other. These results separate the phenogram into two groups: the group containing Pteranodon, the Scarlet Ibis, and the Peacock, and the group containing two species of crocodile, the alligator, and the Pelican. Cluster A+C A+D A+E B+C B+D B+E Number of Different PCs (out of 3) l l l l l l TABLE 18. List of pairs ofclusters in the phenogram ofthe first claw with one or more statistically dif- ferent principal components. 48 Table 19 shows that in the phenogram of claw 2 (Figure 9), clusters E and F are significantly different from clusters A, B, C, and G in one principal component. This indicates a difference between the claws of the Peacock, Pelican, and C rocodylus porosus and those of the Great Black-Backed Gull, Pteranodon, Whistling Swan, and Crocodylus acutus. Furthermore, because cluster D is not found to be statistically different from any of the other clusters, the second claws of the Great Auk and the Scarlet Ibis are statistically similar to those of all other taxa in the analysis. Cluster Number of Different PCs (out of 5) A+E l A+F B+F C+E C+F E+G F+G -_-— TABLE I9. List of pairs of clusters in the phenogram of the second claw with one or more statistically dif- ferent principal components. Table 20 shows all of the pairs of clusters in the phenogram of claw 3 (Figure 10) that have significant differences. Cluster pairs A+H and D+J are different in two principal components, but the rest of the pairs listed in Table 20 are different in only one principal component. 49 Clusters Number of Different PCs (out of 5) A+B l A+F l A+H 2 A+I 1 A+J l B+E l B+F 1 8+1 1 8+] 1 D+J 2 A+G l B+C l B+H l C+G l C+H l C+I l C+J 1 D+H l D+I l TABLE 20. List of pairs of clusters in the phenogram of the third claw with one or more statistically dif- ferent principal components. 50 DISCUSSION Conclusions Drawn from AN OVA Analyses The ANOVA results between clusters for each of the four claws are graphically summarized in Table 21 to facilitate comparison. Taxon __ Claw l Claw 2 Claw 3 Claw 4 Pavo cristatus i i . E udocimus ruber i G O O Larus marinas * i Olor columbianus 1' . Pinguinis . i Pelecanus i O Pelecanus conspicillatus i t Alligator mississippiens Crocodylus acutus Crocodylus porosus Claw not analysed Found in cluster statistically difl‘erent from cluster containing pteranodont claw f ‘ Found in cluster statistically similar to cluster containing pteranodont claw TABLE 21. Summary of ANOVA results for clusters containing claws of other taxa in comparison with clusters containing the claws of Pteranodon longiceps, with key. As shown in Table 21, the Scarlet Ibis (Eudocimus ruber) is the only taxon that has all four claws in clusters found to be significantly similar to clusters containing the pteranodont claws. The next taxon with the most similarity in pes claw morphometrics to that of Pteranodon is the Peacock (Pavo cristatus), as its first, third, and fourth claws are found in clusters that are statistically similar to those containing the homologous pteranodont claws. Two out of three claws of the Great Black-Backed Gull (Larus 51 marinus), the Great Auk (Pinguim's), and Crocodylus acutus are morphometrically similar to their pteranodont counterparts. Of the examined claws, the Whistling Swan (Olor columbianus) and both specimens of Pelican (Pelecanus and Pelecanus conspicillatus) were found to have only two out of four possible claws in clusters that were statistically similar to clusters containing homologous pteranodont claws. The remaining two specimens, Alligator mississippiens and C rocodylus acutus, each have only one out of three possible claws (of the claws tested) in clusters found to be statistically similar to clusters containing the homologous claws of Pteranodon. One should bear in mind the both the various pes structures of different taxa as well as their differing methods of aquatic locomotion when comparing and contrasting claw morphometrics. For example, in spite of the similarities in claw morphometrics, it is necessary to bear in mind that Pteranodon and the Scarlet Ibis have differing pes structures, because the first digit of the Scarlet Ibis’s pes points backwards and is elevated from the ground (Raikow 1985), whereas the first digit of the pteranodont pes points forwards with the rest of the digits. The Scarlet Ibis has basally webbed pes, and although it can swim, does so quite rarely (Kushlan and Bildstein 1992). Moreover, like that of the Scarlet Ibis, the first digit of the Peacock’s pes is fully reversed and elevated (Raikow 1985). However, there is no webbing present on the pes of the Peacock, and it cannot swim under any circumstance (Ragupathy 1998). Of the Great Black-Backed Gull, the Great Auk, and the crocodile, only the Great Black-Backed Gull uses its webbed feet to paddle at the surface of the water. The Great Auk instead propelled itself underwater with its wings (Montevecchi and Kirk 1996), and the crocodile uses its tail for propulsion (Seebacher et al. 2003). The Whistling Swan and 52 the Pelican, in contrast, use their fully webbed feet to paddle through the water (Wallace and Mahan 1975). Although Alligator mississippiens and Crocodylus acutus have extensively webbed pes like the Whistling Swan and the Pelican, adult crocodiles and alligators propel themselves in water with their tails, using their feet for balance and stability (Seebacher et al. 2003). If conclusions in regards to aquatic locomotion can be made from the comparison of pteranodont claw morphometrics to those of extant organisms with known methods of locomotion, then the significant similarities and differences among these claws indicate that Pteranodon did not habitually paddle at or under the water’s surface with its pes. First, the morphometrics of its claws most closely resemble those of the Scarlet Ibis, which only swims when in danger, and second most closely resemble those of the Peacock, which does not swim at all. Furthermore, clusters containing pteranodont claws have found to be statistically different for two out of four claws for the Pelican and Whistling Swan specimens, which use their feet to actively paddle through the water. Therefore, it is highly unlikely that Pteranodon actively swam in the epicontinental seaway that once covered Kansas. On the other hand, it is possible that Pteranodon may have floated and/or treaded water at the surface of the seaway. This is suggested because Crocodylus acutus and the Great Auk, which both swim/swam by methods other than propulsion with the pes, have two of their three claws in clusters that are statistically similar to clusters containing pteranodont claws. These similarities indicate the option of some aquatic locomotion, even if that locomotion is not actively traveling. Hypothetically, Pteranodon could alight upon the water’s surface to feed, then float or tread water efficiently enough to not sink 53 but without forward motion, and then take off from the water with a method discussed in the introduction. Not all results of this analysis are exactly consistent with the above explanation. For example, in contrast with Crocodylus acutus, Crocodylus porosus and Alligator mississippiens only have one claw each in clusters statistically similar to clusters containing pteranodont claws. It is presently unknown if part of this inconsistency is due to the data missing from the missing claw 2 of Alligator mississippiens. This inconsistency contradicts the idea that Pteranodon probably used its pes only for balance in the water, and not for propulsion. A second inconsistency is that two of the three claws of the Great Black-Backed Gull being in clusters that are statistically similar to those containing pteranodont claws. Although the Great Black-Backed Gull floats at the suface more often than it paddles through the water with its feet, these similarities somewhat contradict the idea that Pteranodon probably did not actively paddle at the water’s surface. Consistencies and Inconsistencies of the Study Several consistencies in the claw phenograms lend support to the validity of this study. For example, in the phenogram of claw 1, the two species of crocodile and one species of alligator are clustered closely together, as would be expected (in spite of the presence of the Pelican in that cluster). A similar consistency is present in the phenogram of claw 3, where the two alligator specimens are clustered closely together. However, some inconsistencies are present in this study as well. One such inconsistency lies in the significant difference between the cluster containing the second Peacock claw and the cluster containing the second pteranodont claw. Examination of the 54 second Peacock claw in different lighting offers the possibility that the second and fourth landmarks may be misplaced on the claw. If this is indeed the case, then this mistake may have affected the data enough to cause the second claw of the Peacock to differ morphometrically from that of Pteranodon. Other apparent inconsistencies lie within the placement of taxa within the claw phenograms. Although the phenogram of claw 3 has the two alligator specimens clustered closely together, the two species of crocodile are in separate, different clusters. Likewise, the phenogram of claw 4 places the two Pelican specimens in separate clusters. The phenogram of claw 2 shares a similar situation with the two crocodile species. However, since claws can be some variable in shape, it should be considered that no two specimens from a single taxon will have identically-shaped claws, and this may account for the apparent separation of phenotypically close taxa in the phenogram clusters. Potential sources of error in this study lie in the missing data that are represented in Table 21 as solid black boxes. It was not possible to obtain clear, useful photographs of Olor columbianus claw 1, Pelecanus conspicillatus claws l and 2, and Alligator mississippiens claw 2 because these specimens were stored in glass case, which made photography difficult. Furthermore, some data were missing due to a lack of homologous claws among some of the taxa. Larus marinas and Pinguinis did not have their first claw analyzed because these taxa do/did not possess a first digit. Likewise, the three crocodylian taxa do not have a claw on their fourth digit. Arguments for Other Pterosaur Aquatic Locomotion: Soft Part Preservation Evidence Aquatic locomotion has been suggested as a possibility for at least three species in 55 addition to Pteranodon. These three suggestions stem from the observation of soft tissue preservation found in specimens of Rhamphorhynchus muensteri, Pterodactylus sp., and a specimen of ?Azhardichidae indet. studied by Frey et al (2003). All three of these specimens show what appear to be imprints of webbing between the pes digits. The Rhamphorhynchus muensteri specimen shows distinct traces of webbing between metatarsals I through IV and digits I through V of the right pes. This webbing extends all the way to the bases of the claws. The webbing found in the pes of the Pterodactylus sp. specimen extends to the base of the ungula phalanx, and is thickest between digits HI and IV. The ?Azhardchidae indet. specimen shows traces of webbing on its pes in the form of a geotithic stain. It also shows these traces on its manus, implying that the manus was webbed as well (Frey et al 2003). The formations that yielded these three specimens are consistent with aquatic paleoenvironments. The Rhamphorhynchus muensteri and Pterodactylus Sp. specimens were both found in the Solnhofen formation (Frey et al 2003), which was deposited in a marine environment during the Jurassic (Kemp and Trueman 2003). The ?Azhardchidae indet. specimen was found in the Crato Formation (Frey et a1 2003), which consists of lacustrine sediments deposited in the Early Cretaceous (Heimhofer et al 2006). It is logical that webbing present between the pes digits implies the capability for aquatic locomotion in pterosaurs within different clades and from different formations, because although most aquatic birds have independently evolved, they all tend to have feet that are expanded with partial or full webbing between the toes (Wallace and Mahan 1975). In fact, pterosaur phylogeny lends support to the idea of independent evolution of pes structures designed for aquatic locomotion. Rhamphorhynchus and Pterodactylus are 56 primitive clades found closely together at the base of the pterosaur phylogeny. In contrast, Azhdarcho is found in a separate, more derived clade (6 steps from Pterodactylus) (Bennett 1994). Since it is improbable that webbing on the pes has persisted throughout pterosaur evolution, this condition was likely an independently acquired adaptation to aquatic environments in these taxa. This information does not indicate whether or not Pteranodon also had webbing on the pes, but it does suggest a possibility of webbing and/or some other form of adaptation to its aquatic environment. Arguments for Other Pterosaur Aquatic Locomotion: Ichnological Evidence Ichnofossils found in the western United States have also been proposed as evidence supporting the possibility that some pterosaurs could swim or float in water. The late Jurassic Sundance and Summerville formations contain tracks proposed by Lockley and Wright (2003) to be the traces of pterosaurs floating in the shallow sea that was regressing from the area at that time. The most definitive swim tracks were found at the Del Monte Mines and Alcova lake localities. Some of these tracks show what appear to be impressions of claws, phalangeal pads, and heels of floating pterosaurs. Other tracks are proposed to be between one and four short toe impressions and elongate scratch marks. These parallel scratch marks are interpreted as toe-tip traces in the substrate. Additionally, some rocks containing these traces also show ripple marks. The combination of these structures present in the rock are interpreted by Lockley and Wright (2003) as the tracks of a buoyant pterosaur floating in shallow water. It would be impossible to find any such ichnofossils in the Niobrara chalk, since the Cretaceous epicontinental seaway was deep enough to serve as a habitat for 57 mososaurs and plesiosaurs (Bennett 1994, 2000). However, the interpretation of pterosaur swim traces in the Sundance and Summerville formations opens the possibility that some pterosaurs may have been able to float in the water. If this were to be the case, then it is not unreasonable that Pteranodon could tread the water’s surface. Summary and Future Work The similarities of the morphometrics of pteranodont claws to those of the Scarlet Ibis and the Peacock, along with the dissimilarities to those of the Whistling Swan and the Pelican indicate that Pteranodon could not propel itself through the water with its feet. However, the similarities between the morphometrics of pteranodont claws and those of Crocodylus acutus and the Great Auk suggest the possibility that Pteranodon could stay afloat and/or tread water at the surface, without necessarily moving forward. This possibility is not unique to Pteranodon, as other pterosaurs (Rhamphorhynchus, Pterodactylus, and ?Azhdarcho indet.) have shown what appear to be traces of webbing on the pes. Proposed ichnofossils of pterosaurs treading water in what were once shallow seas during the Jurassic also suggest the possibility of aquatic locomotion in pterosaurs. Continuations of this work can be taken in several different directions. For example, the techniques of morphometrics with use of an EPB can be applied to the morphological analysis of the metatarsals and/or digits of Pteranodon in the question of its potential for aquatic locomotion. However, the study of possible pteranodont aquatic locomotion does not have to focus only on the pes of Pteranodon. The femoral index of Pteranodon may be compared to that of swimming birds, birds of prey, wading birds, etc., as presented in Zeffer et a1 (2003). It may also be possible to compare the beak of 58 Pteranodon to those of extant birds who feed in the water, to see if Pteranodon was capable of plunging or diving based on beak morphology. A tangential project could be performed on the pteranodont claws of unknown articulation. These claws, included in the phenogram in Figure 69, can be compared to the claws of known articulations in the phenogram in order to propose to which digit each unknown claw may correspond. The morphometrics of the unknown claws may also be included in digit-specific cluster analyses so that a more specific examination of their possible placements may be performed. 59 APPENDIX I PHOTOGRAPHS OF CLAWS WITH LANDMARKS Note: The following images are not to scale. FIGURE 12. Photographs of FHSM-VP2062 left pes claws with landmarks. A. Claw l. B. Claw 2. C. Claw 3. D. Claw 4. A. 3' FIGURE 13. Photographs of KU49399 left pes claws with landmarks. A. Unknown Claw l. B. Unknown Claw 2. 6O FIGURE 14. Photograph of YPM2554 left pes Unknown Claw 3 with landmarks. FIGURE 15. Photograph of YPM2436 left pes Unknown Claw 4 with landmarks. A. B. FIGURE 16. Photographs of UMP left pes claws with landmarks. A. Claw 1. B. Claw 2. C. Claw 3. D. Claw 4. C. 61 B. . CI FIGURE 17. Photographs of UM—WS left pes claws with landmarks. A. Claw 1. B. Claw 2. C. Claw 3. BA CB FIGURE 18. Photographs of C-GBBG left pes claws with landmarks. A. Claw 2. B. Claw 3. C. Claw 4. t t as FIGURE 19. Photographs of C-P left pes claws with landmarks. A. Claw 2. B. Claw 3. C. Claw 4. .\ .1 at .1 FIGURE 20. Photographs of 081 left pes claws with landmarks. A. Claw 1. B. Claw 2. C. Claw 3. D. Claw 4. A. A. 62 I A. B. FIGURE 21. Photographs of C—PC left pes claws with landmarks. A. Claw 3. B. Claw 4. FIGURE 22. Photographs of MSU-PA left pes claws with landmarks. A. Claw 1. B. Claw 2. C. Claw 3. D. Claw 4. C. FIGURE 23. Photographs of C22026 left pes claws with landmarks. A. Claw 1. B. Claw 2. C. Claw 3. I , FIGURE 24. Photograph of C213395 left pes Claw l with landmarks. 63 B. FIGURE 25. Photographs of C-CAD left pes claws with landmarks. A. Claw 2. B. Claw 3. FIGURE 26. Photograph of C3101] left pes Claw 3 with landmarks. A. B. FIGURE 27. Photographs of C31 321 left pes claws with landmarks. A. Claw l. B. Claw 3. APPENDIX II NOTES ON PHOTOGRAPHS Specimen Pes Claw Notes 1 FHSM-VP2062 Left 3 4 KU49399 Unknown UNKl Unknown UNK2 YPM2554 Unknown UNK3 Image flipped horizontally YPM2436 Unknown UN K4 1 Image flipped horizontally UM-P Left 3 Image flipped horizontally 4 2 UM-WS LCfl 3 Imagflipped horizontally 4 Image flipped horizontally 2 C-GBBG Left 3 Image flipped horizontally 4 Image flipped horizontally 2 Image flipped horizontally C-PI Left 3 Imagg flipped horizontally 4 Image fljped horizontally 1 Strange shaped claw 051 Left 2 , , 3 Image flipped horizontally 4 Image flipped horizontally C-PC Left 3 Image flipped horizontally; no scale 4 Image flipped horizontally; no scale 1 2 MSU-Pa Left . , 3 Image flipped horizontally 4 Image flipped horizontally 1 No scale C22026 Left 2 N0 scale 3 No scale C213395 Left 1 Image flipped horizontally; no scale C—C AD Left 2 Image flipped horizontally; no scale 3 Image flipped horizontally; no scale C310] 1 Left 3 No scale C3132] Left 1 Image flipped horizontally; no scale 3 Image flipped horizontally; no scale TABLE 22. Notes on photographs used in study. 65 APPENDD( IH RAW COORDINATES OF CLAW LANDMARKS Raw Coordinates Specimen Pes Claw Landmark l Landmark 2 Landmark 3 Landmark 4 X Y X Y X Y X Y 1 1.58 0 1.86 0 1.72 0.93 1.71 0.03 FHSM-VP2062 Left 2 1.74 0 2.1 'l 0 2.1 1.26 1.91 -0.03 3 2.81 0 3.27 0 2.84 1.31 3.04 -0.06 4 0.36 0 0.7 0 0.54 1.26 0.52 0.06 KU49399 Unknown UNKl 1.2 0 1.56 O 1.23 1.64 1.38 0.04 Unknown UNK2 0.52 0 0.95 0 1.1 2.17 0.77 0.08 YPM2554 Unknown UNK3 0.71 0 1.23 0 1.09 1.62 0.97 -0.08 YPM2436 Unknown UNK4 0.4 0 1.8 0 2.28 2.08 1.14 -0.16 1 0.83 0 1.31 0 1.46 1.35 1.07 0.06 UM-P Left 2 0.76 0 1.06 0 1.45 1.08 0.91 0.04 3 0.6 0 1.42 0 2 0.52 0.96 -0.07 4 0.75 0 1.27 0 1.63 0.61 1.05 0.07 2 0.54 0 0.81 0 0.71 1.1 0.7 -0.04 UM-WS LCfl 3 0.32 0 0.66 0 0.98 1.28 0.48 -0.05 4 0.36 0 0.75 0 0.67 1.59 0.59 -0.1 2 0.41 0 0.61 0 0.59 0.5 0.51 -0.02 C-GBBG Left 3 0.25 0 0.64 0 0.71 0.83 0.42 -0.06 4 0.75 0 0.98 0 0.88 0.65 0.88 -0.04 2 0.31 0 0.52 0 0.52 0.87 0.4 -0.1 0131 LCft 3 0.26 0 0.59 0 0.61 1.38 0.42 -0.08 4 0.22 0 0.34 0 0.42 0.76 0.29 -0.02 1 1.05 0 1.25 0 0.52 0.69 1.17 -0.06 C-SI Left 2 0.5 0 0.67 0 0.77 0.52 0.57 -0.06 3 0.5 0 0.7 0 0.81 0.68 0.59 -0.08 4 0.46 0 0.64 0 0.7 0.45 0.56 -0.06 C-PC Left 3 0.24 0 0.56 0 0.47 0.66 0.4 -0.03 4 0.23 0 0.46 0 0.52 0.75 0.34 -0.05 1 0.32 0 0.99 0 2.02 0.43 0.65 0.03 MSU-PA Left 2 0.86 0 1.3 0 1.8 2.18 1.04 0 3 2.32 0 3.03 0 5.06 1.13 2.62 -0.05 4 1.23 0 2.29 0 4.59 1.35 1.74 0.12 l 0.57 0 1.7 O 2.34 3.19 1.13 0.16 C22026 Left 2 0.56 0 1.64 0 2.66 3.46 1.1 0 3 1.93 0 2.51 0 2.98 1.73 2.26 -0.04 C213395 Left 1 0.63 0 1.73 0 2.04 2.61 1.15 -0.12 C-CAD Left 2 1.02 0 1.98 0 1.88 2.08 1.57 0.15 3 0.87 0 1.38 0 1.07 1.33 1.09 -0.16 C3101 1 Left 3 1.02 0 2.59 0 3.32 3.82 1.72 -0.023 C31321 Left 1 1.12 0 2.07 0 2.55 2.97 1.62 -0.13 3 0.84 0 1.62 0 1.19 2.97 1.14 -0.06 TABLE 23. Raw coordinates of all claw landmarks. 66 Note: In the following tables, “outer” refers to the left side curve of each claw, whereas APPENDIX IV CLAW CURVATURE COORDINATES AND PLOTS “inner” refers to the right side curve of each claw. TABLE 24. Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 1. FHSM-VP2062 Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.700 0.910 0.429 3.250 1.720 0.910 0.500 3.250 1.650 0.890 0.250 3.179 1.740 0.860 0.571 3.071 1.600 0.860 0.071 3.071 1.740 0.790 0.571 2.821 1.590 0.810 0.036 2.893 1.740 0.750 0.571 2.679 1.570 0.750 -0.036 2.679 1.720 0.730 0.500 2.607 1.570 0.710 -0.036 2.536 1.740 0.720 0.571 2.571 1.570 0.650 -0.036 2.321 1.750 0.690 0.607 2.464 1.560 0.620 —0.071 2.214 1.760 0.660 0.643 2.357 1.550 0.550 -0.107 1.964 1.760 0.610 0.643 2.179 1.540 0.510 -0.143 1.821 1.780 0.570 0.714 2.036 1.540 0.430 -0. 143 1.536 1.780 0.540 0.714 1.929 1.530 0.370 -0.179 1.321 1.800 0.510 0.786 1.821 1.540 0.330 -0. 143 1.179 1.800 0.490 0.786 1.750 1.540 0.290 -0.143 1.036 1.810 0.430 0.821 1.536 1.550 0.220 -0.107 0.786 1.830 0.370 0.893 1.321 1.540 0.180 -0.143 0.643 1.830 0.330 0.893 1.179 1.530 0.130 -0.179 0.464 1.840 0.290 0.929 1.036 1 .530 0.090 -0.179 0.321 1.850 0.240 0.964 0.857 1.860 0.200 1.000 0.714 1.860 0.150 1.000 0.536 1.870 0.1 10 1.036 0.393 1.890 0.070 1.107 0.250 67 y = -15.455x3 + 7.6814x + 2.625 FHSM-VP2062 Claw 1 R2 = 0.8363 , 4.000 9 Outer Curve (BS) 3500 I Inner Curve (BS) . I i—Poly. (Outer Curve (B8)) 4 . ‘ 3.000 —Po]y. (Inner Curve (B8)) 2.500 , ' ’ _ if I! 2.000 5 1.500 ' 1.000 . 0.500 “ : 0.000 1 ~ “—4 -0.500 0.000 0.500 1.000 1.500 , y = -().5952x“ - 3.7491x + 5.0239 R3 = 0.9694 Y Coordinates X Coordinates FIGURE 28. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 1, with trend lines and matching equations. 68 TABLE 25. Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 2. FHSM-VP2062 Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.050 1.260 0.838 3.405 2.1 10 1.220 1.000 3.297 2.020 1.240 0.757 3.351 2.080 1.200 0.919 3.243 2.000 1.220 0.703 3.297 2.060 1.170 0.865 3.162 1.970 1.200 0.622 3.243 2.040 1.140 0.81 1 3.081 1.950 1.180 0.568 3.189 2.020 1.090 0.757 2.946 1.940 1.150 0.541 3.108 2.020 1.050 0.757 2.838 1.920 1.120 0.486 3.027 2.020 0.990 0.757 2.676 1.910 1.090 0.459 2.946 2.020 0.910 0.757 2.459 1.890 1.060 0.405 2.865 2.020 0.840 0.757 2.270 1.870 1.020 0.351 2.757 2.020 0.810 0.757 2.189 1.840 0.990 0.270 2.676 2.020 0.740 0.757 2.000 1.830 0.960 0.243 2.595 2.020 0.700 0.757 1.892 1.820 0.920 0.216 2.486 2.030 0.640 0.784 1.730 1.810 0.880 0.189 2.378 2.010 0.590 0.730 1.595 1.790 0.840 0.135 2.270 2.010 0.550 0.730 1.486 1.780 0.800 0.108 2.162 2.000 0.510 0.703 1.378 1.760 0.770 0.054 2.081 2.010 0.460 0.730 1.243 1.750 0.700 0.027 1.892 1.990 0.420 0.676 1.135 1.740 0.650 0.000 1.757 2.010 0.390 0.730 1.054 1.730 0.610 -0.027 1.649 2.020 0.330 0.757 0.892 1.720 0.570 -0.054 1.541 2.020 0.270 0.757 0.730 1.710 0.520 -0.081 1.405 2.030 0.260 0.784 0.703 1.700 0.480 -0.108 1.297 2.050 0.180 0.838 0.486 1.690 0.430 -0.135 1.162 2.080 0.150 0.919 0.405 1.690 0.400 -0.135 1.081 2.090 0.120 0.946 0.324 1.700 0.340 -0.108 0.919 2.120 0.100 1.027 0.270 1.700 0.290 -0.108 0.784 1.680 0.240 -0.162 0.649 1.680 0.170 -0.162 0.459 1.690 0.120 -0.135 0.324 1.710 0.070 -0.081 0.189 69 y = 3515218 + 4.9313x + 1.5713 FHSM.vp2062 Claw 2 R2 = 0.934 4.000 3.500 — 3.000 ~ 2.500 1 2.000 - 1.500 . 1.000 - 3:383. .2- . 2" -0.500 0.000 0.500 1.000 1.500 . y = —2s.s09\- + 48.784x — 18.0112 123:0.0552 0 Outer CurVe (B8) I Inner Curve (BS) — Poly. (Outer Curve (B8)) —Poly. (Inner Curve (B8)) Y Coordinates X Coordinates FIGURE 29. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 2, with trend lines and matching equations. 70 TABLE 26. Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 3. FHSM-VP2062 Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.810 1.300 0.000 2.826 2.900 1.290 0.196 2.804 2.790 1.260 -0.043 2.739 2.890 1.250 0.174 2.717 2.760 1.230 -0.109 2.674 2.900 1.210 0.196 2.630 2.750 1.190 -0. 130 2.587 2.910 1.180 0.217 2.565 2.750 1.150 -0.130 2.500 2.910 1.150 0.217 2.500 2.740 1.120 -0.152 2.435 2.920 1.110 0.239 2.413 2.750 1.080 —0.130 2.348 2.920 1.070 0.239 2.326 2.740 1.040 -0. 152 2.261 2.920 1.040 0.239 2.261 2.730 1.000 -0.174 2.174 2.930 1.000 0.261 2.174 2.730 0.970 -0.174 2.109 2.920 0.970 0.239 2.109 2.720 0.930 -0.196 2.022 2.920 0.940 0.239 2.043 2.730 0.910 -0.174 1.978 2.920 0.910 0.239 1.978 2.730 0.880 -0.174 1.913 2.940 0.880 0.283 1.913 2.730 0.840 -0. 174 1.826 2.940 0.850 0.283 1.848 2.730 0.800 -0.174 1.739 2.960 0.810 0.326 1.761 2.730 0.760 -0.174 1.652 2.970 0.780 0.348 1.696 2.730 0.710 -0.174 1.543 2.980 0.750 0.370 1.630 2.720 0.660 —0. 196 1.435 3.000 0.720 0.413 1.565 2.730 0.620 —0. 174 1.348 3.010 0.680 0.435 1.478 2.730 0.580 -0.174 1.261 3.020 0.650 0.457 1.413 2.720 0.510 -0. 196 1.109 3.020 0.620 0.457 1.348 2.740 0.480 -0. 152 1.043 3.040 0.590 0.500 1.283 2.770 0.450 -0.087 0.978 3.060 0.570 0.543 1.239 2.790 0.430 -0.043 0.935 3.070 0.530 0.565 1.152 2.800 0.390 -0.022 0.848 3.090 0.490 0.609 1.065 2.790 0.310 -0.043 0.674 3.100 0.450 0.630 0.978 2.780 0.250 -0.065 0.543 3.120 0.420 0.674 0.913 2.760 0.150 -0.109 0.326 3.140 0.370 0.717 0.804 3.160 0.320 0.761 0.696 3.190 0.290 0.826 0.630 3.230 0.240 0.913 0.522 3.260 0.200 0.978 0.435 3.280 0.170 1.022 0.370 71 y = 6.2651x2 - 0.0681x + 1.5694 FHSM-VP2062 Claw 3 R2 = 0.0136 3.000 .0 0 Outer Curve (B8) 2500 I Inner Curve (BS) g 2000 —Poly. (Outer Curve (B8)) .5 —Poly. (Inner Curve (88)) g 1.500 ’ * c: U ‘5 1.000 . >7 } 3 : 3.9339x” - 5.999% + 3.5399 0500 .. R3 = 0.9656 0.000 ~ -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 30. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 3, with trend lines and matching equations. 72 TABLE 27. Raw and Bookstein coordinates taken from the outer and inner curves of FHSM-VP2062, claw 4. FHSM-VP2062 Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.480 1.240 0.353 3.647 0.590 1.220 0.676 3.588 0.460 1.200 0.294 3.529 0.590 1 . 190 0.676 3.500 0.450 1.170 0.265 3.441 0.580 1.160 0.647 3.412 0.430 1.140 0.206 3.353 0.590 1.130 0.676 3.324 0.420 1.100 0.176 3.235 0.600 1 . 100 0.706 3.235 0.430 1.060 0.206 3.1 18 0.600 1.060 0.706 3.1 18 0.420 1.030 0.176 3.029 0.610 1.030 0.735 3.029 0.410 1.000 0.147 2.941 0.620 1.000 0.765 2.941 0.380 0.980 0.059 2.882 0.620 0.970 0.765 2.853 0.380 0.940 0.059 2.765 0.620 0.940 0.765 2.765 0.380 0.900 0.059 2.647 0.620 0.900 0.765 2.647 0.370 0.860 0.029 2.529 0.630 0.840 0.794 2.471 0.380 0.810 0.059 2.382 0.640 0.790 0.824 2.324 0.360 0.790 0.000 2.324 0.650 0.750 0.853 2.206 0.340 0.760 -0.059 2.235 0.660 0.700 0.882 2.059 0.340 0.730 -0.059 2.147 0.690 0.670 0.971 1.971 0.330 0.680 -0.088 2.000 0.700 0.640 1.000 1.882 0.330 0.640 -0.088 1.882 0.700 0.590 1.000 1.735 0.320 0.590 -0.1 18 1.735 0.710 0.540 1.029 1.588 0.330 0.550 -0.088 1.618 0.700 0.490 1.000 1.441 0.320 0.510 -0.1 18 1.500 0.700 0.440 1.000 1.294 0.320 0.470 -0.1 18 1.382 0.700 0.400 1.000 1.176 0.320 0.410 -0.1 18 1.206 0.710 0.350 1.029 1.029 0.320 0.370 -0.1 18 1.088 0.720 0.290 1.059 0.853 0.340 0.340 -0.059 1.000 0.730 0.250 1.088 0.735 0.350 0.310 -0.029 0.912 0.760 0.200 1.176 0.588 0.360 0.270 0.000 0.794 0.790 0.160 1.265 0.471 0.330 0.230 -0.088 0.676 0.300 0.190 -0.176 0.559 0.280 0.150 -0.235 0.441 73 y = -46635x’ + 6.3678x + 2.0906 FHSM-VP2062 Claw 4 R2 = 0.7986 4.000 - 0 Outer Curve (B8) 3.500 3000 I Inner Curve (BS) 53 2'500 —Poly. (Outer Curve (BS)) 3:- ' —Poly. (Inner Curve (B8)) 5 2.000 ‘ 55* 5555 5 8 1.500 >’ 1.000 §'2.3.()7(15\3- 1 1.171x + 9.5381 0.500 R3 = 0.9574 0.000 - ~ *- -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 31. Plotted Bookstein coordinates taken from the inner and outer curves of FHSM-VP2062 claw 4, with trend lines and matching equations. 74 UM-P Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.410 1.330 1.208 2.771 1.440 1.320 1.271 2.750 1.390 1.320 1.167 2.750 1.420 1.280 1.229 2.667 1.360 1.300 1.104 2.708 1.400 1.260 1.188 2.625 1.330 1.290 1.042 2.688 1.390 1.230 1.167 2.563 1.300 1.270 0.979 2.646 1.380 1.200 1.146 2.500 1.280 1.260 0.938 2.625 1.370 1.170 1.125 2.438 1.250 1.250 0.875 2.604 1.360 1.150 1.104 2.396 1.220 1.230 0.813 2.563 1.340 1.120 1.063 2.333 1.200 1.220 0.771 2.542 1.340 1.090 1.063 2.271 1.180 1.200 0.729 2.500 1.320 1.070 1.021 2.229 1.160 1.180 0.688 2.458 1.310 1.030 1.000 2.146 1.150 1.170 0.667 2.438 1.290 1.010 0.958 2.104 1.130 1.160 0.625 2.417 1.280 0.970 0.938 2.021 1.110 1.140 0.583 2.375 1.280 0.950 0.938 1.979 1.080 1.110 0.521 2.313 1.260 0.920 0.896 1.917 1.060 1 . 100 0.479 2.292 1.260 0.890 0.896 1.854 1.040 1 .080 0.438 2.250 1.260 0.860 0.896 1.792 1.020 1.040 0.396 2.167 1.260 0.860 0.896 1.792 1.000 1.020 0.354 2.125 1.260 0.810 0.896 1.688 0.990 0.990 0.333 2.063 1.260 0.770 0.896 1.604 0.970 0.960 0.292 2.000 1.270 0.740 0.917 1.542 0.950 0.930 0.250 1.938 1.270 0.720 0.917 1.500 0.940 0.910 0.229 1.896 1.290 0.680 0.958 1.417 0.930 0.870 0.208 1.813 1.300 0.650 0.979 1.354 0.910 0.830 0.167 1.729 1.320 0.630 1.021 1.313 0.910 0.800 0.167 1.667 1.330 0.600 1.042 1.250 0.900 0.760 0.146 1.583 1.350 0.570 1.083 1.188 0.890 0.730 0.125 1.521 1.370 0.550 1.125 1.146 0.890 0.700 0.125 1.458 1.380 0.520 1.146 1.083 0.880 0.680 0.104 1.417 1.420 0.510 1.229 1.063 0.880 0.650 0.104 1.354 1.450 0.490 1.292 1.021 0.870 0.620 0.083 1.292 0.870 0.590 0.083 1.229 0.860 0.550 0.063 1.146 0.870 0.510 0.083 1.063 0.870 0.480 0.083 1.000 0.880 0.430 0.104 0.896 0.890 0.390 0.125 0.813 75 TABLE 28. Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 1. y = -1.8185x2 + 3.5593x + 0.9675 UM-P Claw 1 R2 2 0.9228 3.000 2.500 5 I 0 63121 Curve(BS) I Inner Curve (BS) 1—Poly. (Outer Curve (B8)) '—_~ Poly. (Inner Curve (B8)) Y Coordinates La” 1 0.500 1 0.000 5 W5 0.000 0.500 1.000 1.500 3 ,_ v : ~3.0879.\'~ + 7.371x - 2.425 X Coordinates ' . R” = 0.0392 FIGURE 32. Plotted Bookstein coordinates taken from the inner and outer curves of UM-P claw 1, with trend lines and matching equations. 76 UM—P Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.380 1.090 2.067 3.633 1.420 1.010 2.200 3.367 1.340 1.080 1.933 3.600 1.400 1.000 2.133 3.333 1.320 1.070 1.867 3.567 1.390 0.970 2.100 3.233 1.290 1.060 1.767 3.533 1.370 0.940 2.033 3.133 1.260 1.050 1.667 3.500 1.350 0.930 1.967 3.100 1.230 1.040 1.567 3.467 1.340 0.910 1.933 3.033 1.200 1.020 1.467 3.400 1.320 0.880 1.867 2.933 1.180 1.000 1.400 3.333 1.290 0.860 1.767 2.867 1 . 150 0.990 1.300 3.300 1.270 0.830 1.700 2.767 1.130 0.970 1.233 3.233 1.250 0.810 1.633 2.700 1.090 0.960 1 . 100 3.200 1.240 0.790 1.600 2.633 1.070 0.930 1.033 3.100 1.220 0.750 1.533 2.500 1.040 0.920 0.933 3.067 1.210 0.710 1.500, 2.367 1.010 0.890 0.833 2.967 1.210 0.690 1.500 2.300 0.990 0.860 0.767 2.867 1.200 0.650 1 .467 2.167 0.970 0.830 0.700 2.767 1.210 0.620 1.500 2.067 0.950 0.800 0.633 2.667 1.210 0.590 1.500 1.967 0.930 0.780 0.567 2.600 1.230 0.570 1.567 1.900 0.920 0.750 0.533 2.500 1.260 0.550 1.667 1.833 0.910 0.710 0.500 2.367 1.280 0.530 1.733 1.767 0.900 0.680 0.467 2.267 1.320 0.520 1.867 1.733 0.880 0.650 0.400 2.167 1.350 0.510 1.967 1.700 0.870 0.610 0.367 2.033 1.380 0.500 2.067 1.667 0.860 0.570 0.333 1.900 0.850 0.530 0.300 1.767 0.840 0.500 0.267 1.667 0.830 0.460 0.233 1.533 0.820 0.430 0.200 1.433 0.830 0.380 0.233 1.267 0.820 0.340 0.200 1.133 77 TABLE 29. Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 2. y = .0.9551x2 + 3.2045x + 0.8839 UM-P Claw 2 R2 = 0.9678 4.000 . , 3.500 9 If, 0 Outer Curve (BS) 3 3.000 5 I Inner Curve (BS) ’g 2,500 -‘ —Poly. (Outer Curve (B8)) '2 2,000 —Poly. (Inner Curve (B8)) 8 ..___ ~ - m 0 1.500 - >7 1 000 O. . j 53‘ - ,3 ‘3 . 1 . * y:_.n_)5.\ — 7._46l\ +7.877‘) 0.500 - R3 = 0.3598 0.000 5* 555 5 ' 5 7" 0.000 0.500 1.000 1.500 2.000 2.500 X Coordinates FIGURE 33. Plotted Bookstein coordinates taken from the inner and outer curves of UM-P claw 2, with trend lines and matching equations. 78 UM-P Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.860 0.560 1.537 0.683 1.940 0.510 1.634 0.622 1.830 0.580 1.500 0.707 1.900 0.520 1.585 0.634 1.800 0.580 1.463 0.707 1.860 0.510 1.537 0.622 1.770 0.600 1.427 0.732 1.820 0.510 1.488 0.622 1.740 0.620 1.390 0.756 1.790 0.510 1.451 0.622 1.710 0.630 1.354 0.768 1.770 0.510 1.427 0.622 1.690 0.650 1.329 0.793 1.720 0.520 1.366 0.634 1.650 0.660 1.280 0.805 1.690 0.510 1.329 0.622 1.630 0.660 1.256 0.805 1.670 0.500 1.305 0.610 1.600 0.660 1.220 0.805 1.650 0.490 1.280 0.598 1.570 0.670 1.183 0.817 1.620 0.480 1.244 0.585 1.540 0.680 1.146 0.829 1.590 0.460 1.207 0.561 1.520 0.690 1.122 0.841 1.570 0.440 1.183 0.537 1.480 0.690 1.073 0.841 1.540 0.430 1.146 0.524 1.450 0.680 1.037 0.829 1.530 0.410 1.134 0.500 1.420 0.690 1.000 0.841 1.510 0.400 1.1 10 0.488 1.390 0.670 0.963 0.817 1.490 0.380 1.085 0.463 1.360 0.670 0.927 0.817 1.470 0.350 1.061 0.427 1.330 0.660 0.890 0.805 1.460 0.330 1.049 0.402 1.300 0.640 0.854 0.780 1.450 0.310 1.037 0.378 1.290 0.630 0.841 0.768 1.440 0.270 1.024 0.329 1.260 0.620 0.805 0.756 1.420 0.250 1.000 0.305 1.230 0.600 0.768 0.732 1.410 0.220 0.988 0.268 1.210 0.600 0.744 0.732 1.400 0.190 0.976 0.232 1.170 0.590 0.695 0.720 1 . 150 0.570 0.671 0.695 1 . 120 0.560 0.634 0.683 1 . 100 0.540 0.610 0.659 1.060 0.520 0.561 0.634 1.040 0.500 0.537 0.610 1.010 0.500 0.500 0.610 0.980 0.490 0.463 0.598 0.940 0.490 0.415 0.598 0.920 0.470 0.390 0.573 0.910 0.460 0.378 0.561 0.880 0.450 0.341 0.549 0.850 0.420 0.305 0.512 0.830 0.400 0.280 0.488 0.810 0.380 0.256 0.463 0.780 0.350 0.220 0.427 0.750 0.320 0.183 0.390 0.740 0.290 0.171 0.354 0.710 0.260 0.134 0.317 0.690 0.230 0.1 10 0.280 79 TABLE 30. Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 3. y = 05522112 + 1.1902x + 0.1724 UM.p Claw 3 R2 = 0.9835 0.900 ._ __ 0 800 A 0 Outer Curve (BS) 0.700 4 I Inner Curve (BS) m . —Pol .(Outer Curve BS)) 30600 —1>1y I C (BS ._§ 0.500 . oy.( nnergrve( )) 8 0.400 5 U 0300 « >~ ~ , 0.200 . ° )* = —‘ 1.712315 + 4.9406x — 2.914 0.100 a R“ 21.1.9709 0.000 - 55 ~ 5 - 57 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 34. Plotted Bookstein coordinates taken from the inner and outer curves of UM-P claw 3, with trend lines and matching equations. 80 UM-P Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.580 0.620 1.596 1.192 1.620 0.590 1.673 1.135 1.540 0.620 1.519 1.192 1.580 0.570 1.596 1.096 1.510 0.620 1.462 1.192 1.560 0.550 1.558 1.058 1.480 0.620 1.404 1.192 1.530 0.530 1.500 1.019 1.440 0.600 1.327 1.154 1.500 0.510 1.442 0.981 1.420 0.600 1.288 1.154 1.480 0.490 1.404 0.942 1.390 0.580 1.231 1.1 15 1.450 0.470 1.346 0.904 1.360 0.570 1.173 1.096 1.420 0.440 1.288 0.846 1.330 0.550 1.1 15 1.058 1.400 0.420 1.250 0.808 1.310 0.540 1.077 1.038 1.380 0.400 1.212 0.769 1.280 0.510 1.019 0.981 1.350 0.390 1.154 0.750 1.260 0.500 0.981 0.962 1.330 0.350 1.1 15 0.673 1.230 0.480 0.923 0.923 1.330 0.320 1.1 15 0.615 1.190 0.470 0.846 0.904 1.340 0.290 1.135 0.558 1.150 0.450 0.769 0.865 1.360 0.250 1.173 0.481 1 . 100 0.430 0.673 0.827 1.380 0.220 1.212 0.423 1.060 0.420 0.596 0.808 1.400 0.200 1.250 0.385 1.030 0.390 0.538 0.750 1.420 0.170 1.288 0.327 1.010 0.370 0.500 0.712 0.980 0.340 0.442 0.654 0.950 0.320 0.385 0.615 0.930 0.300 0.346 0.577 0.920 0.270 0.327 0.519 0.900 0.240 0.288 0.462 0.880 0.210 0.250 0.404 0.870 0.180 0.231 0.346 81 TABLE 31. Raw and Bookstein coordinates taken from the outer and inner curves of UM-P, claw 4. y = 03338112 + 1.1788x + 0.169 UM-P Claw 4 R2 = 0.985 1.400 ; 1.200 I p 0 Outer Curve(BS) 3‘3 1.000 . I Inner Curve (BS) (6 .5 0,300 o —Poly. (Outer Curve (BS)) g 0,600 —Poly. (Inner Eurve (BS)) >- 0.400 7'1. . 0 200 , ' y = 0s444x5 — 1.1796x + 0.14294 ' ‘ R2 = 0.6076 0.000 ~ - - . -_ .- 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 35. Plotted Bookstein coordinates taken from the inner and outer curves of UM-P claw 4, with trend lines and matching equations. 82 UM-WS Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.700 1.060 0.593 3.926 0.770 0.980 0.852 3.630 0.680 1.040 0.519 3.852 0.760 0.940 0.815 3.481 0.660 1.010 0.444 3.741 0.760 0.920 0.815 3.407 0.650 0.990 0.407 3.667 0.760 0.900 0.815 3.333 0.640 0.970 0.370 3.593 0.740 0.870 0.741 3.222 0.620 0.950 0.296 3.519 0.730 0.840 0.704 3.1 1 1 0.600 0.930 0.222 3.444 0.730 0.810 0.704 3.000 0.570 0.910 0.1 1 1 3.370 0.740 0.780 0.741 2.889 0.550 0.880 0.037 3.259 0.740 0.750 0.741 2.778 0.540 0.860 0.000 3.185 0.750 0.720 0.778 2.667 0.520 0.840 -0.074 3.1 11 0.760 0.690 0.815 2.556 0.510 0.820 -0.1 1 1 3.037 0.770 0.670 0.852 2.481 0.500 0.800 -0.148 2.963 0.780 0.650 0.889 2.407 0.480 0.770 -0.222 2.852 0.810 0.630 1.000 2.333 0.480 0.730 -0.222 2.704 0.820 0.620 1.037 2.296 0.470 0.710 -0.259 2.630 0.460 0.670 -0.296 2.481 0.460 0.630 -0.296 2.333 0.450 0.590 -0.333 2.185 0.450 0.550 -0.333 2.037 0.430 0.530 -0.407 1.963 0.430 0.490 —0.407 1.815 0.430 0.440 -0.407 1.630 0.420 0.400 -0.444 1.481 0.430 0.360 -0.407 1.333 0.430 0.310 -0.407 1.148 0.430 0.260 -0.407 0.963 0.430 0.220 -0.407 0.815 0.440 0. 1 80 -0.370 0.667 83 TABLE 32. Raw and Bookstein coordinates taken from the outer and inner curves of UM-WS, claw 2. y = -3.8604x2 + 2.8148x + 3.2779 UM-WS Claw 2 R2 = 0.8758 4.500 6 Outer Curve (BS) 4.000 5 ,0 I Inner Curve (B8) w 3500 ‘ o 0’ .- —Poly. (Outer Curve (B8)) 9423 3.000 1 3 m ‘-—Poly. (Inner Curve (BS))___ 5:5 2.500 55 g 8 2.000 - if 1.500 - , 1,000 : y z -1 1.56215 + 17.706x - 3.7353 0.500 5 ’ R2 = 0.325 -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 36. Plotted Bookstein coordinates taken from the inner and outer curves of UM-WS claw 2. with trend lines and matching equations. 84 UM-WS Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.950 1.270 1.853 3.735 1.010 1.160 2.029 3.412 0.920 1.250 1.765 3.676 0.990 1 . 120 1.971 3.294 0.900 1.240 1.706 3.647 0.990 1.070 1.971 3.147 0.870 1.230 1.618 3.618 0.980 1.040 1.941 3.059 0.840 1.210 1.529 3.559 0.960 1.010 1.882 2.971 0.820 1.200 1.471 3.529 0.940 0.970 1.824 2.853 0.800 1.180 1.412 3.471 0.920 0.930 1.765 2.735 0.780 1.160 1.353 3.412 0.910 0.890 1.735 2.618 0.760 1.130 1.294 3.324 0.890 0.860 1.676 2.529 0.730 1.1 10 1.206 3.265 0.890 0.820 1.676 2.412 0.710 1.090 1.147 3.206 0.870 0.790 1.618 2.324 0.690 1.070 1.088 3.147 0.860 0.750 1.588 2.206 0.680 1.050 1.059 3.088 0.850 0.720 1.559 2.1 18 0.660 1 .030 1.000 3.029 0.850 0.680 1.559 2.000 0.640 1.010 0.941 2.971 0.840 0.640 1.529 1.882 0.620 1.000 0.882 2.941 0.830 0.600 1.500 1.765 0.600 0.970 0.824 2.853 0.820 0.560 1.471 1.647 0.580 0.940 0.765 2.765 0.820 0.520 1.471 1.529 0.560 0.930 0.706 2.735 0.820 0.490 1.471 1.441 0.550 0.900 0.676 2.647 0.810 0.440 1.441 1.294 0.540 0.880 0.647 2.588 0.810 0.400 1.441 1 . 176 0.520 0.850 0.588 2.500 0.810 0.380 1.441 1.118 0.510 0.820 0.559 2.412 0.810 0.350 1.441 1.029 0.500 0.790 0.529 2.324 0.810 0.320 1.441 0.941 0.480 0.760 0.471 2.235 0.810 0.290 1.441 0.853 0.460 0.730 0.412 2.147 0.810 0.250 1.441 0.735 0.440 0.690 0.353 2.029 0.810 0.200 1.441 0.588 0.430 0.670 0.324 1.971 0.800 0.150 1.412 0.441 0.420 0.630 0.294 1.853 0.800 0.100 1.412 0.294 0.410 0.600 0.265 1.765 0.800 0.060 1.412 0.176 0.400 0.560 0.235 1.647 0.390 0.540 0.206 1.588 0.380 0.500 0.176 1.471 0.360 0.460 0.1 18 1.353 0.360 0.430 0.1 18 1.265 0.350 0.390 0.088 1.147 0.340 0.340 0.059 1.000 0.340 0.300 0.059 0.882 0.330 0.260 0.029 0.765 0.320 0.240 0.000 0.706 0.310 0.200 -0.029 0.588 0.320 0.160 0.000 0.471 0.320 0.1 10 0.000 0.324 85 TABLE 33. Raw and Bookstein coordinates taken from the outer and inner curves of UM-WS, claw 3. y = -1.034x2 + 3.40411 + 0.7846 UM-WS Claw 3 R2 = 0.9824 4.000 5 3.500 - ’ .61.... carting) 3.000 - p I Inner Curve (BS) 2.500 55 —Poly. (Outer Curve (BS)) Y Coordinates 2-000 ‘ —Poly. (Inner Curve (BS)) 1 1.500 , I ' I ‘7 *T ”T" 1.000 44‘ y = 91319.15 + 35.3121 - 30.955 0.500 3 R5 = 0.9354 0.000 44 ~ 444. . 41 0.000 0.500 1.000 1.500 2.000 2.500 X Coordinates FIGURE 37. Plotted Bookstein coordinates taken from the inner and outer curves of UM-WS claw 3, with trend lines and matching equations. 86 UM—WS Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.580 1.590 0.564 4.077 0.700 1.520 0.872 3.897 0.560 1.570 0.513 4.026 0.680 1.500 0.821 3.846 0.540 1.550 0.462 3.974 0.670 1.470 0.795 3.769 0.520 1.530 0.410 3.923 0.660 1.440 0.769 3.692 0.510 1.500 0.385 3.846 0.650 1.400 0.744 3.590 0.500 1.470 0.359 3.769 0.640 1.370 0.718 3.513 0.490 1.440 0.333 3.692 0.630 1.320 0.692 3.385 0.480 1.410 0.308 3.615 0.630 1.290 0.692 3.308 0.470 1.390 0.282 3.564 0.620 1.250 0.667 3.205 0.450 1.370 0.231 3.513 0.620 1.230 0.667 3.154 0.440 1.340 0.205 3.436 0.610 1.200 0.641 3.077 0.430 1.310 0.179 3.359 0.610 1.170 0.641 3.000 0.420 1.260 0.154 3.231 0.610 1.140 0.641 2.923 0.410 1.270 0.128 3.256 0.620 1.120 0.667 2.872 0.400 1.240 0.103 3.179 0.620 1.080 0.667 2.769 0.390 1.190 0.077 3.051 0.640 1.060 0.718 2.718 0.380 1 . 150 0.051 2.949 0.650 1.040 0.744 2.667 0.370 1.130 0.026 2.897 0.670 1.000 0.795 2.564 0.360 1.090 0.000 2.795 0.680 0.970 0.821 2.487 0.340 1.060 -0.051 2.718 0.700 0.950 0.872 2.436 0.330 1.030 -0.077 2.641 0.720 0.920 0.923 2.359 0.310 1.000 -0.128 2.564 0.730 0.890 0.949 2.282 0.310 0.970 -0.128 2.487 0.300 0.940 -0.154 2.410 0.280 0.910 -0.205 2.333 0.260 0.870 -0.256 2.231 0.260 0.840 -0.256 2.154 0.250 0.800 -0.282 2.051 0.250 0.770 -0.282 1.974 0.230 0.720 -0.333 1.846 0.230 0.680 -0.333 1.744 0.220 0.640 -0.359 1.641 0.210 0.600 -0.385 1.538 0.200 0.550 -0.410 1.410 0.200 0.520 -0.410 1.333 0.210 0.470 -0.385 1.205 0.220 0.430 -0.359 1.103 0.220 0.370 -0.359 0.949 0.230 0.310 -0.333 0.795 0.240 0.280 -0.308 0.718 0.260 0.240 -0.256 0.615 0.290 0.200 —0. 179 0.513 87 TABLE 34. Raw and Bookstein coordinates taken from the outer and inner curves of UM-WS, claw 4. y = —l.6399x2 + 3.3943x + 2.7639 UM-WS Claw 4 R2 = 0.856 4.500 5 L M L-.. 4,000 - 0 Outer Curve (BS) m 3.500 I Inner Curve (B8) #3 3.000 5 1—Poly. (Outer Curve (B8)) Ta 250° ‘ . _—P09-(1nverC9mBS>) 8 2.000 5 31.5005 [fl )_3 _ .., - 1.000 - y = -_7.()1\5x‘ + 41,063.31 - 12.263 0.500 . .0 R" = 0.236 0.000 - ~ - - -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 38. Plotted Bookstein coordinates taken from the inner and outer curves of UM-WS claw 4, with trend lines and matching equations. 88 C-GBBG Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.540 0.410 0.650 2.050 0.570 0.450 0.800 2.250 0.520 0.400 0.550 2.000 0.570 0.420 0.800 2.100 0.510 0.380 0.500 1.900 0.580 0.380 0.850 1.900 0.490 0.370 0.400 1.850 0.580 0.350 0.850 1.750 0.480 0.350 0.350 1.750 0.580 0.300 0.850 1.500 0.470 0.330 0.300 1.650 0.580 0.260 0.850 1.300 0.450 0.310 0.200 1.550 0.580 0.220 0.850 1 . 100 0.430 0.280 0.100 1.400 0.600 0.180 0.950 0.900 0.420 0.230 0.050 1.150 0.610 0.130 1.000 0.650 0.410 0.200 0.000 1.000 0.620 0.090 1.050 0.450 0.410 0.170 0.000 0.850 0.410 0.140 0.000 0.700 0.410 0.110 0.000 0.550 0.410 0.090 0.000 0.450 0.410 0.050 0.000 0.250 TABLE 35. Raw and Bookstein coordinates taken from the outer and inner curves of C-GBBG, claw 2. y = 4.3399112 + 4.7561 x + 0.6955 (3.9333 Claw 2 R2 = 0.8913 2.500 I 0 Outer Curve (BS) w 2'000 . I I Inner Curve (BS) ‘3 —Poly. (Outer Curve (BS)) 1: 1.500 - '-§ ° q—Poly. (Inner Curve (BS)) 0 _._ 3- __ _- __ 5 1.000 t ' > v = 24.194.\'3 - 51.15731 + 27.556 0.500 . R3 = 0.8625 0.000 L 0.000 0.200 0.400 0.600 0.800 X Coordinates 1.000 1.200 FIGURE 39. Plotted Bookstein coordinates taken from the inner and outer curves of C-GBBG claw 2, with trend lines and matching equations. 89 C-GBBG Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.630 0.770 0.974 1.974 0.680 0.790 1.103 2.026 0.600 0.760 0.897 1.949 0.670 0.760 1.077 1.949 0.580 0.740 0.846 1.897 0.650 0.730 1.026 1.872 0.540 0.720 0.744 1.846 0.640 0.700 1.000 1.795 0.510 0.700 0.667 1.795 0.640 0.670 1.000 1.718 0.500 0.690 0.641 1.769 0.640 0.630 1.000 1.615 0.480 0.670 0.590 1.718 0.630 0.590 0.974 1.513 0.450 0.650 0.513 1.667 0.630 0.550 0.974 1.410 0.440 0.630 0.487 1.615 0.610 0.510 0.923 1.308 0.430 0.600 0.462 1.538 0.610 0.490 0.923 1.256 0.420 0.570 0.436 1.462 0.610 0.460 0.923 1.179 0.410 0.450 0.410 1.154 0.610 0.430 0.923 1.103 0.400 0.520 0.385 1.333 0.620 0.400 0.949 1.026 0.490 0.490 0.615 1.256 0.620 0.370 0.949 0.949 0.380 0.460 0.333 1.179 0.630 0.340 0.974 0.872 0.360 0.430 0.282 1.103 0.640 0.320 1.000 0.821 0.350 0.390 0.256 1.000 0.650 0.300 1.026 0.769 0.340 0.370 0.231 0.949 0.650 0.260 1.026 0.667 0.330 0.340 0.205 0.872 0.670 0.240 1.077 0.615 0.320 0.300 0.179 0.769 0.690 0.210 1.128 0.538 0.300 0.280 0.128 0.718 0.690 0.180 1.128 0.462 0.290 0.250 0.103 0.641 0.290 0.230 0.103 0.590 0.270 0.190 0.051 0.487 0.270 0.160 0.051 0.410 0.260 0.120 0.026 0.308 0.270 0.1 10 0.051 0.282 TABLE 36. Raw and Bookstein coordinates taken from the outer and inner curves of C-GBBG, claw 3. 90 y = -1.8089x2 + 3.4958x + 0.2431 C-GBBG Claw 3 R2 = 0.9647 2500 o OutefCurve (BS) 2 000 1 I Inner Curve (BS) 8 —Poly. (Outer Curve (BS)) is 0 g 1.500 . p—Poly1.(lnner Curve(BS)) E o O 1.000 >1 0.500 ' l y 2 342666 + 69.0.35x - 33.466 0000 i ' " " ' .__ R2 = 0.1009 0.000 0.200 0.400 0.600 0.800 1.000 1.200 X Coordinates FIGURE 40. Plotted Bookstein coordinates taken from the inner and outer curves of C- GBBG claw 3, with trend lines and matching equations. C-GBBG Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.840 0.640 0.391 2.783 0.870 0.620 0.522 2.696 0.810 0.630 0.261 2.739 0.870 0.570 0.522 2.478 0.790 0.610 0.174 2.652 0.860 0.530 0.478 2.304 0.780 0.590 0.130 2.565 0.870 0.470 0.522 2.043 0.760 0.580 0.043 2.522 0.870 0.450 0.522 1.957 0.750 0.560 0.000 2.435 0.870 0.410 0.522 1.783 0.740 0.530 -0.043 2.304 0.870 0.380 0.522 1.652 0.730 0.500 —0.087 2.174 0.870 0.360 0.522 1.565 0.720 0.470 -0.130 2.043 0.870 0.330 0.522 1.435 0.710 0.430 -0.174 1.870 0.880 0.300 0.565 1.304 0.700 0.390 -0.217 1.696 0.900 0.290 0.652 1.261 0.700 0.350 —0.2 1 7 1.522 0.910 0.270 0.696 1.174 0.700 0.320 -0.217 1.391 0.930 0.260 0.783 1.130 0.700 0.300 -0.217 1.304 0.960 0.250 0.913 1.087 0.700 0.260 -0.217 1 . 130 0.700 0.220 -0.217 0.957 0.700 0.180 -0217 0.783 0.710 0.150 -0.174 0.652 0.730 0.120 0087 0.522 91 TABLE 37. Raw and Bookstein coordinates taken from the outer and inner curves of C-GBBG, claw 4. y = 41.950438 + 3.493511 + 2.1969 C-GBBG Claw 4 R2 = 0.6436 3.000 I L . i 2.500 I 0 Outer Curve (B8) so; 2000 I Inner Curve (BS) g l—Poly. (Outer Curve (BS)) E 1500 '- 1—Poly.(1nner;Curve(BS)) : 1.000 7 ' \ = 12141.12 — 19.406x + 8.7488 0.500 5 . _ R” = (1.571 0.000 ‘ 5 ~0.500 0.000 0.500 1.000 X Coordinates FIGURE 41. Plotted Bookstein coordinates taken from the inner and outer curves of C-GBBG claw 4, with trend lines and matching equations. 92 C-PI Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.490 0.850 0.857 4.048 0.510 0.830 0.952 3.952 0.480 0.840 0.810 4.000 0.500 0.810 0.905 3.857 0.460 0.800 0.714 3.810 0.490 0.780 0.857 3.714 0.440 0.790 0.619 3.762 0.490 0.760 0.857 3.619 0.430 0.780 0.571 3.714 0.470 0.740 0.762 3.524 0.410 0.760 0.476 3.619 0.480 0.720 0.810 3.429 0.410 0.740 0.476 3.524 0.410 0.700 0.476 3.333 0.390 0.710 0.381 3.381 0.470 0.670 0.762 3.190 0.370 0.680 0.286 3.238 0.470 0.640 0.762 3.048 0.370 0.650 0.286 3.095 0.460 0.620 0.714 2.952 0.360 0.630 0.238 3.000 0.460 0.590 0.714 2.810 0.340 0.610 0.143 2.905 0.450 0.570 0.667 2.714 0.340 0.570 0.143 2.714 0.460 0.530 0.714 2.524 0.330 0.530 0.095 2.524 0.460 0.500 0.714 2.381 0.320 0.500 0.048 2.381 0.460 0.470 0.714 2.238 0.320 0.470 0.048 2.238 0.470 0.450 0.762 2.143 0.300 0.440 -0.048 2.095 0.480 0.420 0.810 2.000 0.300 0.410 -0.048 1.952 0.470 0.400 0.762 1.905 0.290 0.390 —0.095 1.857 0.490 0.370 0.857 1.762 0.280 0.270 -0.143 1.286 0.500 0.340 0.905 1.619 0.280 0.340 -0.143 1.619 0.510 0.310 0.952 1.476 0.270 0.310 -0. 190 1.476 0.530 0.290 1.048 1.381 0.270 0.280 -0. 190 1.333 0.550 0.260 1.143 1.238 0.270 0.260 -0.190 1.238 0.580 0.230 1.286 1.095 0.270 0.230 -0.190 1.095 0.610 0.200 1.429 0.952 0.270 0.190 -0. 190 0.905 0.280 0.150 -0.143 0.714 0.280 0.100 —0. 143 0.476 0.280 0.060 0143 0.286 93 TABLE 38. Raw and Bookstein coordinates taken from the outer and inner curves of C-PI claw 2. y = -3.0883x2 + 4.8421x + 2.0337 (3.1)} Claw 2 R2 = 0.9234 4.500 - ——»-— —- -—- 4.000 0 Outer Curve (BS) m 3.500 5 1 I Inner Curve (B8) 5% 3.000 5 —Poly. (Outer Curve (BS)), "§ 2500 ‘ —Poly.(InnerCurve (BS)) 8 2.000 1 T v "' 7* u -_ o 7 >5 1338“ I. y = —2.2779.\5 + 1.8156x + 2.7134 0.500 1 § 16203407 0.000 5 *5 5i i i -0.500 0.000 0.500 '1 .000 1.500 2.000 X Coordinates FIGURE 42. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 2, with trend lines and matching equations. 94 CePI Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.590 1.370 1.000 4.152 0.600 1.360 1.030 4.121 0.560 1.350 0.909 4.091 0.590 1.330 1.000 4.030 0.550 1.330 0.879 4.030 0.580 1.320 0.970 4.000 0.520 1.310 0.788 3.970 0.570 1.290 0.939 3.909 0.510 1.290 0.758 3.909 0.550 1.260 0.879 3.818 0.480 1.270 0.667 3.848 0.540 1.240 0.848 3.758 0.470 1.260 0.636 3.818 0.530 1.210 0.818 3.667 0.450 1.240 0.576 3.758 0.520 1.170 0.788 3.545 0.430 1.220 0.515 3.697 0.510 1.140 0.758 3.455 0.420 1 . 190 0.485 3.606 0.500 1.130 0.727 3.424 0.400 1.170 0.424 3.545 0.500 1.1 10 0.727 3.364 0.390 1 . 140 0.394 3.455 0.490 1.080 0.697 3.273 0.380 1.120 0.364 3.394 0.490 1.050 0.697 3.182 0.360 1 . 100 0.303 3.333 0.490 1.020 0.697 3.091 0.350 1.060 0.273 3.212 0.490 0.990 0.697 3.000 0.340 1.030 0.242 3.121 0.490 0.960 0.697 2.909 0.320 1.000 0.182 3.030 0.500 0.930 0.727 2.818 0.320 0.980 0.182 2.970 0.510 0.910 0.758 2.758 0.310 0.950 0.152 2.879 0.510 0.880 0.758 2.667 0.300 0.930 0.121 2.818 0.520 0.850 0.788 2.576 0.290 0.890 0.091 2.697 0.530 0.830 0.818 2.515 0.290 0.860 0.091 2.606 0.550 0.820 0.879 2.485 0.280 0.830 0.061 2.515 0.580 0.800 0.970 2.424 0.270 0.900 0.030 2.727 0.610 0.790 1.061 2.394 0.270 0.780 0.030 2.364 0.640 0.780 1 . 152 2.364 0.250 0.740 -0.030 2.242 0.250 0.700 -0.030 2.121 0.250 0.670 -0.030 2.030 0.240 0.640 -0.061 1.939 0.230 0.600 -0.091 1.818 0.220 0.560 -0.121 1.697 0.220 0.530 -0.121 1.606 0.220 0.480 -0.121 1.455 0.220 0.440 -0.121 1.333 0.220 0.400 -0.121 1.212 0.220 0.360 -0.121 1.091 0.220 0.320 -0.121 0.970 0.220 0.290 -0.121 0.879 0.230 0.240 -0.091 0.727 0.240 0.210 -0.061 0.636 0.240 0.160 -0.061 0.485 0.250 0.120 -0.030 0.364 95 TABLE 39. Raw and Bookstein coordinates taken from the outer and inner curves of C-PI claw 3. y = -3.6221x2 + 5.5375x + 1.9363 (3-121 Claw 3 R2 = 0.8693 4.500 ‘ 0 Outer Curve(BS) ' 22$ 4 I Inner Curve (BS) g 3.000 —Poly. (Outer Curve (BS)) '5 2.500 ‘ t—Poly. (Inneir Curve (B8)) ‘ ‘9 2.000 if 1.500 « 3 = -11.757\3+ 21.063x - 6.0107 1000 ' 143:0.1165 0.500 . \ 0.000 ~+—~ -- --A, -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 43. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 3, with trend lines and matching equations. 96 TABLE 40. Raw and Bookstein coordinates taken from the outer and inner curves of GP] claw 3. C-PI Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.390 0.760 1.417 6.333 0.400 0.740 1.500 6.167 0.370 0.740 1.250 6.167 0.390 0.720 1.417 6.000 0.360 0.730 1.167 6.083 0.380 0.710 1.333 5.917 0.350 0.710 1.083 5.917 0.380 0.690 1.333 5.750 0.330 0.690 0.917 5.750 0.370 0.680 1.250 5.667 0.320 0.660 0.833 5.500 0.370 0.650 1.250 5.417 0.300 0.640 0.667 5.333 0.360 0.620 1.167 5.167 0.290 0.620 0.583 5.167 0.350 0.590 1.083 4.917 0.280 0.590 0.500 4.917 0.350 0.560 1.083 4.667 0.270 0.560 0.417 4.667 0.340 0.530 1.000 4.417 0.250 0.530 0.250 4.417 0.330 0.500 0.917 4.167 0.240 0.500 0.167 4.167 0.330 0.470 0.917 3.917 0.230 0.470 0.083 3.917 0.330 0.450 0.917 3.750 0.220 0.450 0.000 3.750 0.340 0.420 1.000 3.500 0.210 0.420 -0.083 3.500 0.350 0.390 1.083 3.250 0.210 0.390 —0.083 3.250 0.360 0.370 1.167 3.083 0.200 0.350 -0.167 2.917 0.380 0.350 1.333 2.917 0.190 0.320 -0.250 2.667 0.400 0.340 1.500 2.833 0.180 0.290 -0.333 2.417 0.420 0.310 1.667 2.583 0.180 0.260 -0.333 2.167 0.420 0.280 1.667 2.333 0.170 0.210 -0.417 1.750 0.470 0.270 2.083 2.250 0.180 0.180 -0.333 1.500 0.490 0.250 2.250 2.083 0.180 0.130 -0.333 1.083 0.190 0.080 -0.250 0.667 y = — 1 4949112 + 4.0549x + 3.382.. C-PI Claw 4 R2 = 0.9317 ---_ 7.000 0 Outer Curve (BS) 6.000 I Inner Curve (BS) g 5000 ‘ —Poly. (Outer Curve (BS)) ".3 4.000 5 15 —Poly. (Inner Curve (BS)) 0 3.000 1 .- U >1 2.000 - . o . ”’00 o 3 = —3.4266\" + 8.8508x— 1.1712 0000 4 ' ' R“ -.: 0.3146 -0.500 0.500 1.500 2.500 X Coordinates FIGURE 44. Plotted Bookstein coordinates taken from the inner and outer curves of C-PI claw 4. with trend lines and matching equations. 97 C-SI Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.530 0.660 -2.600 3.300 0.540 0.680 -2.550 3.400 0.550 0.630 -2.500 3.150 0.550 0.660 -2.500 3.300 0.560 0.610 -2.450 3.050 0.580 0.630 -2.350 3.150 0.570 0.590 -2.400 2.950 0.590 0.610 -2.300 3.050 0.580 0.580 -2.350 2.900 0.620 0.590 -2.150 2.950 0.600 0.560 -2.250 2.800 0.630 0.560 -2. 100 2.800 0.610 0.530 -2.200 2.650 0.660 0.540 -1.950 2.700 0.630 0.510 -2. 100 2.550 0.680 0.510 -1.850 2.550 0.650 0.490 -2.000 2.450 0.710 0.490 -1.700 2.450 0.670 0.460 -1.900 2.300 0.730 0.480 -1.600 2.400 0.690 0.440 -1.800 2.200 0.770 0.450 -1.400 2.250 0.710 0.420 -1.700 2.100 0.790 0.430 -1.300 2.150 0.730 0.400 -1.600 2.000 0.830 0.410 -1 . 100 2.050 0.750 0.370 -1.500 1.850 0.860 0.380 -0.950 1.900 0.780 0.350 -1.350 1.750 0.900 0.360 -0.750 1.800 0.800 0.330 -1.250 1.650 0.920 0.340 -0.650 1.700 0.820 0.300 -1 . 150 1.500 0.950 0.320 -0.500 1.600 0.850 0.280 -1 .000 1.400 0.980 0.300 -0.350 1.500 0.870 0.250 -0.900 1.250 1.010 0.280 -0.200 1.400 0.900 0.220 -0.750 1 . 100 1.030 0.260 -0. 100 1.300 0.910 0.190 -0.700 0.950 1.050 0.240 0.000 1.200 0.930 0.160 -0.600 0.800 1.070 0.220 0.100 1 . 100 0.940 0.140 -0.550 0.700 1.1 10 0.190 0.300 0.950 0.960 0.1 10 -0.450 0.550 1.140 0.170 0.450 0.850 0.980 0.080 -0.350 0.400 1.160 0.140 0.550 0.700 1.010 0.060 -0.200 0.300 1 . 190 0.100 0.700 0.500 1.220 0.070 0.850 0.350 98 TABLE 41. Raw and Bookstein coordinates taken from the outer and inner curves of C-81 claw 1. y = 00144312 — 1.2461x + 0.0589 (3.310,,W 1 R2 = 0.9956 4,000 0 Outer eerie (BS) 3.500 g . I Inner Curve (BS) 3 3.000 - l—Poly. (Outer Curve (BS)) 2 2.500< emly.(hflrCuge(BS))_ “g 2.000 - O 1 o 1.500 1 >3 1.000 . ,x=0.(10<_16,\341.80474 + 1.1513 0.500 1 R2 20.9939 0.000 -. V V 5* -3500 -1500 0.500 2.500 X Coordinates FIGURE 45. Plotted Bookstein coordinates taken from the inner and outer curves of C-81 claw 1, with trend lines and matching equations. TABLE 42. Raw and Bookstein coordinates taken from the outer and inner curves of C-81 claw 2. C-SI Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.720 0.500 1.294 2.941 0.740 0.490 1.412 2.882 0.710 0.490 1.235 2.882 0.730 0.470 1.353 2.765 0.700 0.480 1.176 2.824 0.730 0.460 1.353 2.706 0.690 0.460 1.1 18 2.706 0.710 0.440 1.235 2.588 0.670 0.440 1.000 2.5 88 0.700 0.420 1.176 2.471 0.660 0.420 0.941 2.471 0.690 0.410 1.1 18 2.412 0.650 0.400 0.882 2.353 0.680 0.390 1.059 2.294 0.630 0.370 0.765 2.176 0.670 0.350 1.000 2.059 0.610 0.350 0.647 2.059 0.670 0.350 1.000 2.059 0.600 0.330 0.588 1.941 0.660 0.330 0.941 1.941 0.580 0.310 0.471 1.824 0.660 0.300 0.941 1.765 0.570 0.290 0.412 1.706 0.650 0.280 0.882 1.647 0.560 0.260 0.353 1.529 0.650 0.260 0.882 1.529 0.550 0.220 0.294 1.294 0.640 0.230 0.824 1.353 0.530 0.200 0.176 1.176 0.640 0.200 0.824 1.176 0.510 0.170 0.059 1.000 0.640 0.170 0.824 1.000 0.510 0.130 0.059 0.765 0.650 0.150 0.882 0.882 0.510 0.100 0.059 0.588 0.660 0.130 0.941 0.765 0.670 0.100 1.000 0.588 0.680 0.080 1.059 0.471 99 y = -O.6288x3 + 2.5457x + 0.6705 (3.3] Claw 2 R2 = 0.9859 3.500 3.000 0 Outer Curve (BS) E), 2500 I Inner Curve (BS) 2 2.000 fl —Poly. (Outer Curve (BS)) '2 —Poly. (Inner Curve (BS)) 0 - A _ o 1.500 ' U , > 1.000 . y : H)?» I \' + 0.817-ix - 0.217 0.000 5 7* - -- * 0.000 0.500 1.000 1.500 X Coordinates FIGURE 46. Plotted Bookstein coordinates taken from the inner and outer curves of 081 claw 2, with trend lines and matching equations. 100 C-SI Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.790 0.690 1.450 3.450 0.790 0.670 1.450 3.350 0.770 0.670 1.350 3.350 0.780 0.650 1.400 3.250 0.760 0.650 1.300 3.250 0.770 0.640 1.350 3.200 0.740 0.630 1.200 3.150 0.760 0.630 1.300 3.150 0.730 0.6l0 l . 150 3.050 0.760 0.610 1.300 3.050 0.720 0.600 1 . 100 3.000 0.750 0.590 1.250 2.950 0.700 0.580 1.000 2.900 0.740 0.570 1.200 2.850 0.680 0.560 0.900 2.800 0.730 0.540 1.150 2.700 0.670 0.540 0.850 2.700 0.720 0.520 1 . 100 2.600 0.660 0.530 0.800 2.650 0.710 0.490 1.050 2.450 0.650 0.510 0.750 2.550 0.700 0.470 1.000 2.350 0.640 0.490 0.700 2.450 0.690 0.440 0.950 2.200 0.630 0.470 0.650 2.350 0.690 0.410 0.950 2.050 0.610 0.440 0.550 2.200 0.680 0.380 0.900 1.900 0.600 0.410 0.500 2.050 0.680 0.350 0.900 1.750 0.590 0.380 0.450 1.900 0.680 0.320 0.900 1.600 0.580 0.360 0.400 1.800 0.680 0.290 0.900 1.450 0.580 0.340 0.400 1.700 0.680 0.260 0.900 1.300 0.570 0.310 0.350 1.550 0.680 0.230 0.900 1.150 0.560 0.280 0.300 1 .400 0.690 0.190 0.950 0.950 0.550 0.250 0.250 1.250 0.710 0.170 1.050 0.850 0.540 0.220 0.200 1 . 100 0.730 0.140 1 . 150 0.700 0.530 0.200 0.150 1.000 0.520 0.170 0.100 0.850 0.510 0.140 0.050 0.700 0.500 0.1 10 0.000 0.550 101 TABLE 43. Raw and Bookstein coordinates taken from the outer and inner curves of C-SI claw 3. y = -1 021818 + 3.450011 + 0.5149 C-SI Claw 3 0 Outer Curve (BS) R2 = 0.9968 4.000 I Inner Curve (BS) 3500 ” —Poly. (Outer Curve (BS)) .0 3.000 {‘23 2.500 -—_Poly.(InnerCurve(BS)) E 2.000 . 8 1.500 , . . _ > 1.000 - I } : 1894\1-(7894x + 0.7185 0.500 ' R" = 0.5807 0.000 + ~ 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 47. Plotted Bookstein coordinates taken from the inner and outer curves of C-SI claw 3, with trend lines and matching equations. C-SI Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.680 0.450 1.222 2.500 0.690 0.430 1.278 2.389 0.670 0.440 1.167 2.444 0.680 0.420 1.222 2.333 0.650 0.420 1.056 2.333 0.670 0.410 1.167 2.278 0.630 0.410 0.944 2.278 0.660 0.390 1.11 1 2.167 0.610 0.400 0.833 2.222 0.640 0.370 1.000 2.056 0.590 0.380 0.722 2.1 1 1 0.640 0.360 1.000 2.000 0.580 0.370 0.667 2.056 0.630 0.350 0.944 1.944 0.570 0.340 0.61 1 1.889 0.620 0.330 0.889 1.833 0.550 0.320 0.500 1.778 0.600 0.310 0.778 1.722 0.540 0.300 0.444 1.667 0.590 0.290 0.722 1.61 1 0.530 0.270 0.389 1.500 0.590 0.270 0.722 1.500 0.520 0.250 0.333 1.389 0.580 0.260 0.667 1.444 0.510 0.230 0.278 1.278 0.580 0.230 0.667 1.278 0.510 0.200 0.278 1.1 11 0.590 0.220 0.722 1.222 0.480 0.170 0.1 1 1 0.944 0.590 0.190 0.722 1.056 0.480 0.140 0.1 1 1 0.778 0.610 0.160 0.833 0.889 0.470 0.100 0.056 0.556 0.620 0.130 0.889 0.722 0.640 0.110 1.000 0.611 0.660 0.090 1.1 1 1 0.500 0.670 0.060 1.167 0.333 102 TABLE 44. Raw and Bookstein coordinates taken from the outer and inner curves of 081 claw 4. y = -1.2624x2 + 3.1642x + 0.4648 031 Claw 4 R2 = 0.9891 3.000 2.500 7 0 Outer Curile (BS) § 2 000 ‘ I Inner Curve (BS) 2 ' —Poly. (Outer Curve (BS)) E 1.500 —Poly. (Igng Curve 03,8» 0 if 1.000 . y : 4.1)866x‘ - 6.87% + 4.1989 0500 ‘ R3 20.1146 0.000 a - 0.000 0.500 1.000 1.500 X Coordinates FIGURE 48. Plotted Bookstein coordinates taken from the inner and outer curves of OS] claw 4, with trend lines and matching equations. TABLE 45. Raw and Bookstein coordinates taken from the outer and inner curves of C-PC claw 3. C-PC Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.430 0.630 0.594 1.969 0.460 0.640 0.688 2.000 0.410 0.610 0.531 1.906 0.440 0.600 0.625 1.875 0.380 0.600 0.438 1.875 0.430 0.580 0.594 1.813 0.350 0.590 0.344 1.844 0.420 0.550 0.563 1.719 0.330 0.570 0.281 1.781 0.420 0.510 0.563 1.594 0.310 0.550 0.219 1.719 0.430 0.490 0.594 1.531 0.300 0.530 0.188 1.656 0.430 0.460 0.594 1.438 0.290 0.510 0.156 1.594 0.430 0.420 0.594 1.313 0.280 0.490 0.125 1.531 0.440 0.390 0.625 1.219 0.260 0.460 0.063 1.438 0.450 0.360 0.656 1.125 0.240 0.430 0.000 1.344 0.470 0.420 0.719 1.313 0.240 0.400 0.000 1.250 0.490 0.310 0.781 0.969 0.240 0.350 0.000 1.094 0.500 0.280 0.813 0.875 0.230 0.310 0031 0.969 0.520 0.250 0.875 0.781 0.240 0.250 0.000 0.781 0.530 0.220 0.906 0.688 0.230 0.200 -0.031 0.625 0.540 0.200 0.938 0.625 0.240 0.150 0.000 0.469 0.240 0.1 10 0.000 0.344 0.250 0.070 0.031 0.219 103 y = 5.311112 + 4.8667x + 0.8625 R2 = 0.7037 Y Coordinates 2.500 2.000 1 1.500 . 1.000 0.000 * -0.500 0.000 C-PC Claw 3 0.500 0 Outer Curve (BS) I Inner Curve (BS) i — Poly. (Outer Curve (BS)) — Poly. (Inner Curve (BS)) y = 5.71.11“3 + 2.71451 +1.2701 182116785 1.000 FIGURE 49. Plotted Bookstein coordinates taken from the inner and outer curves of C-PC claw 3, with X Coordinates trend lines and matching equations. C-PC Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.470 0.730 1.043 3.174 0.500 0.730 1.174 3.174 0.440 0.720 0.913 3.130 0.470 0.710 1.043 3.087 0.410 0.710 0.783 3.087 0.450 0.690 0.957 3.000 0.390 0.690 0.696 3.000 0.430 0.680 0.870 2.957 0.370 0.670 0.609 2.913 0.410 0.650 0.783 2.826 0.350 0.640 0.522 2.783 0.400 0.620 0.739 2.696 0.330 0.630 0.435 2.739 0.390 0.590 0.696 2.565 0.320 0.620 0.391 2.696 0.380 0.560 0.652 2.435 0.300 0.600 0.304 2.609 0.370 0.530 0.609 2.304 0.290 0.580 0.261 2.522 0.370 0.510 0.609 2.217 0.270 0.570 0.174 2.478 0.370 0.470 0.609 2.043 0.260 0.550 0.130 2.391 0.370 0.450 0.609 1.957 0.250 0.530 0.087 2.304 0.370 0.410 0.609 1.783 0.230 0.500 0.000 2.174 0.380 0.380 0.652 1.652 0.230 0.470 0.000 2.043 0.390 0.350 0.696 1.522 0.220 0.430 -0.043 1.870 0.400 0.320 0.739 1.391 0.210 0.400 -0.087 1.739 0.420 0.290 0.826 1.261 0.200 0.340 -O.130 1.478 0.430 0.260 0.870 1.130 0.210 0.310 -0.087 1.348 0.450 0.230 0.957 1.000 0.210 0.270 -0.087 1 . 174 0.460 0.210 1.000 0.913 0.210 0.230 -0.087 1.000 0.470 0.170 1.043 0.739 0.210 0.190 -0.087 0.826 0.490 0.150 1.130 0.652 0.210 0.160 -0.087 0.696 0.510 0.120 1.217 0.522 0.220 0.130 -0.043 0.565 104 TABLE 46. Raw and Bookstein coordinates taken from the outer and inner curves of C-PC claw 4. y = -2.4215x3 + 3.7945x + 1.6597 0pc Claw 4 R2 = 0.82 3.500 f _ 7 . 3.000 , 0 Outer Curve (BS) I Inner Curve (BS) 3 2.500 1 ‘g '— Poly. (Outer Curve (BS)) '9 2'00” \—Poly- (61.16.16.166) 8 1.500 ~ U > , . 1.000 } = —2.l()—19\‘ + 2.7357x + 1.21186 0500 ‘ #:1111691 0.000 - 7* -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 50. Plotted Bookstein coordinates taken from the inner and outer curves of C-PC claw 4, with trend lines and matching equations. 105 MSU-PA Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.980 0.490 2.478 0.731 1.960 0.400 2.448 0.597 1.970 0.510 2.463 0.761 1.910 0.420 2.373 0.627 1.940 0.540 2.418 0.806 1.880 0.440 2.328 0.657 1.910 0.570 2.373 0.851 1.860 0.450 2.299 0.672 1.890 0.590 2.343 0.881 1.830 0.450 2.254 0.672 1.860 0.610 2.299 0.910 1.800 0.460 2.209 0.687 1.830 0.640 2.254 0.955 1.770 0.470 2.164 0.701 1.800 0.660 2.209 0.985 1.740 0.480 2.1 19 0.716 1.770 0.690 2.164 1.030 1.720 0.490 2.090 0.731 1.740 0.710 2.1 19 1.060 1.690 0.490 2.045 0.731 1.720 0.730 2.090 1.090 1.650 0.500 1.985 0.746 1.690 0.740 2.045 1.104 1.600 0.500 1.910 0.746 1.650 0.760 1.985 1.134 1.560 0.500 1.851 0.746 1.620 0.780 1.940 1.164 1.520 0.480 1.791 0.716 1.580 0.790 1.881 1 . 179 1.490 0.470 1.746 0.701 1.550 0.810 1.836 1.209 1.450 0.450 1.687 0.672 1.510 0.820 1.776 1.224 1.420 0.440 1.642 0.657 1.480 0.830 1.731 1.239 1.390 0.430 1.597 0.642 1.440 0.840 1.672 1.254 1.370 0.410 1.567 0.612 1.400 0.860 1.612 1.284 1.330 0.390 1.507 0.582 1.350 0.860 1.537 1.284 1.300 0.380 1.463 0.567 1.320 0.860 1.493 1.284 1.280 0.350 1.433 0.522 1.270 0.860 1.418 1.284 1.250 0.320 1.388 0.478 1.220 0.850 1.343 1.269 1.220 0.310 1.343 0.463 1.170 0.840 1.269 1.254 1.200 0.280 1.313 0.418 1 . 140 0.830 1.224 1.239 1 . 160 0.260 1.254 0.388 1.1 10 0.820 1 . 179 1.224 1 . 140 0.230 1.224 0.343 1.070 0.810 1.119 1.209 1.130 0.210 1.209 0.313 1.030 0.790 1.060 1.179 1.1 10 0.180 1.179 0.269 0.990 0.760 1.000 1.134 1.090 0.140 1.149 0.209 0.960 0.750 0.955 1.119 1.070 0.110 1.119 0.164 0.930 0.730 0.910 1.090 0.900 0.720 0.866 1.075 0.870 0.700 0.821 1.045 0.850 0.680 0.791 1.015 0.820 0.670 0.746 1.000 0.790 0.650 0.701 0.970 0.770 0.640 0.672 0.955 0.740 0.620 0.627 0.925 0.720 0.600 0.597 0.896 0.680 0.590 0.537 0.881 0.640 0.570 0.478 0.851 106 TABLE 47. Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 1. TABLE 47 (cont’d) 0.630 0.550 0.463 0.821 0.600 0.520 0.418 0.776 0.580 0.490 0.388 0.731 0.550 0.460 0.343 0.687 0.530 0.440 0.313 0.657 0.510 0.420 0.284 0.627 0.470 0.390 0.224 0.582 0.440 0.360 0.179 0.537 0.420 0.330 0.149 0.493 0.400 0.290 0.1 19 0.433 0.380 0.260 0.090 0.388 0.350 0.220 0.045 0.328 0.340 0.180 0.030 0.269 y = -0.4722x2 + 1.3696x + 0.2689 MSU-PA Claw 1 Y Coordinates R2 = 0.9942 1.400 - 1200 if 0‘ Outer—Curye (BS) 1.000 ~ 1 I Inner Curve (BS) I—Poly. (Outer Curve (BS)) 1 0.800 —Poly. (Inner Curve (BS)) 0.600 1 ‘ ’ 7 “‘ ' 0-400 - _\= = —0.7471x3+ 2.94991 — 2.1684 0.200 ~' 83 : 0.9932 0.000 ~ ~ ~ . 7 . __2 0.000 1 .000 2.000 3.000 X Coordinates FIGURE 51. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 1, with trend lines and matching equations. 107 MSU-PA Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.720 2.230 1.955 5.068 1.650 2.100 1.795 4.773 1.670 2.220 1.841 5.045 1.610 2.080 1.705 4.727 1.630 2.220 1.750 5.045 1.580 2.060 1.636 4.682 1.590 2.220 1.659 5.045 1.540 2.030 1.545 4.614 1.540 2.210 1.545 5.023 1.520 2.010 1.500 4.568 1.510 2.190 1.477 4.977 1.480 2.000 1.409 4.545 1.460 2.180 1.364 4.955 1.460 1.980 1.364 4.500 1.420 2.170 1.273 4.932 1.430 1.960 1.295 4.455 1.380 2.160 1.182 4.909 1.400 1.930 1.227 4.386 1.350 2.150 1.114 4.886 1.370 1.910 1.159 4.341 1.310 2.130 1.023 4.841 1.360 1.870 1.136 4.250 1.270 2.100 0.932 4.773 1.330 1.840 1.068 4.182 1.220 2.080 0.818 4.727 1.310 1.820 1.023 4.136 1.190 2.050 0.750 4.659 1.290 1.780 0.977 4.045 1 . 160 2.020 0.682 4.591 1.270 1.750 0.932 3.977 1 . 130 2.010 0.614 4.568 1.250 1.730 0.886 3.932 1.1 10 1.990 0.568 4.523 1.230 1.700 0.841 3.864 1.080 1.970 0.500 4.477 1.220 1.660 0.818 3.773 1.050 1.940 0.432 4.409 1.200 1.630 0.773 3.705 1.020 1.910 0.364 4.341 1 . 180 1.590 0.727 3.614 0.990 1.880 0.295 4.273 1 . 160 1.550 0.682 3.523 0.970 1.860 0.250 4.227 1 . 140 1.510 0.636 3.432 0.940 1.830 0.182 4.159 1.110 1.470 0.568 3.341 0.910 1.800 0.114 4.091 1.100 1.440 0.545 3.273 0.860 1.770 0.000 4.023 1.080 1.400 0.500 3.182 0.840 1.740 -0.045 3.955 1.070 1.360 0.477 3.091 0.810 1.710 -0.114 3.886 1.060 1.310 0.455 2.977 0.780 1.670 -0. 182 3.795 1.060 1.270 0.455 2.886 0.750 1.650 -0.250 3.750 1.060 1.230 0.455 2.795 0.730 1.620 -0.295 3.682 1.060 1.200 0.455 2.727 0.710 1.580 -0.341 3.591 1.060 1.160 0.455 2.636 0.690 1.540 -0.386 3.500 1.060 1 . 130 0.455 2.568 0.680 1 .500 -0.409 3.409 1.060 1.080 0.455 2.455 0.670 1.460 -0.432 3.318 1.060 1.040 0.455 2.364 0.650 1.420 -0.477 3.227 1.060 0.990 0.455 2.250 0.630 1.390 -0.523 3.159 1.050 0.960 0.432 2.182 0.620 1.360 -0.545 3.091 1.050 0.920 0.432 2.091 0.600 1.320 -0.591 3.000 1.050 0.880 0.432 2.000 0.580 1.270 -0.636 2.886 1.050 0.850 0.432 1.932 0.580 1.220 -0.636 2.773 1.050 0.810 0.432 1.841 0.560 1.180 -0.682 2.682 1.060 0.770 0.455 1.750 0.560 1 . 140 -0.682 2.591 1.060 0.740 0.455 1.682 108 TABLE 48. Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 2. TABLE 48 (cont’d) 0.540 1.090 -0.727 2.477 1.080 0.720 0.500 1.636 0.540 1.040 -0.727 2.364 1.090 0.680 0.523 1.545 0.540 1.010 -0.727 2.295 1 . 100 0.660 0.545 1.500 0.540 0.970 -0.727 2.205 1.120 0.620 0.591 1.409 0.530 0.920 -0.750 2.091 1 . 140 0.600 0.636 1.364 0.530 0.880 -O.750 2.000 1 . 150 0.570 0.659 1.295 0.520 0.840 -0.773 1.909 1.170 0.540 0.705 1.227 0.520 0.800 -0.773 1.818 1.180 0.510 0.727 1.159 0.510 0.750 -0.795 1.705 0.510 0.720 -0.795 1.636 0.520 0.680 -0.773 1.545 0.520 0.630 -0.773 1.432 0.520 0.580 -0.773 1.318 0.520 0.550 -0.773 1.250 0.540 0.500 -0.727 1.136 0.540 0.460 -0.727 1.045 0.560 0.420 -0.682 0.955 0.560 0.380 -0.682 0.864 0.570 0.330 -0.659 0.750 0.580 0.290 -0.636 0.659 0.600 0.260 -0.591 0.591 0.620 0.210 -0.545 0.477 y = -0.8294x2 + 2.0764x + 3.7941 MSU-pA Claw 2 R2 = 0.8306 6.000 5.000 - 0 Outer Curve (BS) — m g I Inner Curve (BS) 55:: 4'000 1 l—Poly. (Outer Curve (BS)) ‘g 3.000 . L—Poly. (Inner Curve (BS)) 8 >1 2.000 1 y =—1.1 109x- +4.511.\'+().3785 ””0 ' R:=().6485 0.000 1 AAA - ~ -1 .000 0.000 1.000 2.000 3.000 X Coordinates FIGURE 52. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 2, with trend lines and matching equations. 109 MSU-PA Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 5.020 1.200 3.803 1.690 4.930 1.060 3.676 1.493 4.990 1.240 3.761 1.746 4.890 1.060 3.620 1.493 4.960 1.260 3.718 1.775 4.850 1.060 3.563 1.493 4.930 1.280 3.676 1.803 4.820 1.060 3.521 1.493 4.890 1.320 3.620 1.859 4.770 1.060 3.451 1.493 4.860 1.340 3.577 1.887 4.730 1.060 3.394 1.493 4.830 1.370 3.535 1.930 4.680 1.070 3.324 1.507 4.800 1.390 3.493 1.958 4.640 1.060 3.268 1.493 4.770 1.390 3.451 1.958 4.590 1.070 3.197 1.507 4.720 1.410 3.380 1.986 4.550 1.070 3.141 1.507 4.680 1.430 3.324 2.014 4.500 1.070 3.070 1.507 4.650 1.440 3.282 2.028 4.440 1.070 2.986 1.507 4.620 1.450 3.239 2.042 4.390 1.070 2.915 1.507 4.590 1.470 3.197 2.070 4.340 1.070 2.845 1.507 4.550 1.480 3.141 2.085 4.290 1.060 2.775 1.493 4.500 1.490 3.070 2.099 4.210 1.040 2.662 1.465 4.470 1.480 3.028 2.085 4.220 1.040 2.676 1.465 4.430 1.490 2.972 2.099 4.190 1.020 2.634 1.437 4.380 1.490 2.901 2.099 4.150 1.010 2.577 1.423 4.340 1.500 2.845 2.113 4.110 1.010 2.521 1.423 4.300 1.510 2.789 2.127 4.070 1.000 2.465 1.408 4.250 1.520 2.718 2.141 4.040 0.980 2.423 1.380 4.210 1.520 2.662 2.141 4.000 0.970 2.366 1.366 4.170 1.520 2.606 2.141 3.970 0.950 2.324 1.338 4.130 1.520 2.549 2.141 3.940 0.940 2.282 1.324 4.100 1.520 2.507 2.141 3.900 0.920 2.225 1.296 4.060 1.510 2.451 2.127 3.860 0.910 2.169 1.282 4.020 1.510 2.394 2.127 3.830 0.890 2.127 1.254 3.980 1.510 2.338 2.127 3.790 0.880 2.070 1.239 3.950 1.510 2.296 2.127 3.750 0.860 2.014 1.211 3.910 1.500 2.239 2.113 3.720 0.850 1.972 1.197 3.880 1.490 2.197 2.099 3.680 0.830 1.915 1.169 3.860 1.490 2.169 2.099 3.650 0.800 1.873 1.127 3.820 1.490 2.1 13 2.099 3.620 0.790 1.831 1.113 3.800 1.480 2.085 2.085 3.580 0.780 1.775 1.099 3.770 1.470 2.042 2.070 3.560 0.760 1.746 1.070 3.750 1 .460 2.014 2.056 3.520 0.740 1.690 1.042 3.700 1.450 1.944 2.042 3.490 0.720 1.648 1.014 3.680 1.440 1.915 2.028 3.460 0.700 1.606 0.986 3.650 1.440 1.873 2.028 3.440 0.680 1.577 0.958 3.620 1.430 1.831 2.014 3.400 0.650 1.521 0.915 3.590 1.420 1.789 2.000 3.370 0.620 1.479 0.873 110 TABLE 49. Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 3. TABLE 49 (cont’d) 3.560 1.410 1.746 1.986 3.330 0.600 1.423 0.845 3.530 1.400 1.704 1.972 3.310 0.570 1.394 0.803 3.510 1.390 1.676 1.958 3.280 0.540 1.352 0.761 3.470 1.380 1.620 1.944 3.250 0.500 1.310 0.704 3.440 1.380 1.577 1.944 3.230 0.460 1.282 0.648 3.410 1.360 1.535 1.915 3.230 0.410 1.282 0.577 3.380 1.340 1.493 1.887 3.340 1.330 1.437 1.873 3.310 1.320 1.394 1.859 3.280 1.300 1.352 1.831 3.250 1.280 1.310 1.803 3.220 1.270 1.268 1.789 3.190 1.260 1.225 1.775 3.170 1.240 1.197 1.746 3.140 1.220 1.155 1.718 3.110 1.210 1.113 1.704 3.080 1.200 1.070 1.690 3.060 1 . 180 1.042 1.662 3.030 1 . 160 1.000 1.634 3.010 1 . 150 0.972 1.620 2.980 1 . 140 0.930 1.606 2.960 1.1 10 0.901 1.563 2.920 1.090 0.845 1.535 2.890 1.060 0.803 1.493 2.860 1.040 0.761 1.465 2.840 1.020 0.732 1.437 2.820 1.000 0.704 1.408 2.780 0.970 0.648 1.366 2.760 0.950 0.620 1.338 2.730 0.920 0.577 1.296 2.710 0.900 0.549 1.268 2.690 0.880 0.521 1.239 2.660 0.850 0.479 1.197 2.630 0.820 0.437 1.155 2.610 0.790 0.408 1.113 2.580 0.760 0.366 1.070 2.550 0.730 0.324 1.028 2.530 0.700 0.296 0.986 2.500 0.680 0.254 0.958 2.490 0.640 0.239 0.901 2.470 0.590 0.21 1 0.831 111 y = -0.2308x2 + 1.1591 x + 0.6866 MSU-” Claw 3 R2 = 0.9957 2.500 . 2.000 ONOuter Curve (BS) 6’5 I Inner Curve (BS) E 1500 '7 —Poly. (Outer Curve (BS)) g —Poly. (Inner Curve (BS)) 81.00098 W —* - >‘ ‘ ‘3 y = —().2326\“ + 1.473711 - (1.81 16 0.500 - 3 R = (1.992 0.000 3 0.000 1 .000 2.000 3.000 4.000 X Coordinates FIGURE 53. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 3, with trend lines and matching equations. 112 MSU-PA Claw 4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 4.530 1.530 3.113 1.443 4.450 1.210 3.038 1.142 4.500 1.570 3.085 1.481 4.400 1.240 2.991 1 . 170 4.450 1.600 3.038 1.509 4.340 1.260 2.934 1.189 4.420 1.630 3.009 1.538 4.310 1.270 2.906 1.198 4.380 1.660 2.972 1.566 4.280 1.280 2.877 1.208 4.340 1.690 2.934 1.594 4.250 1.280 2.849 1.208 4.290 1.720 2.887 1.623 4.210 1.300 2.811 1.226 4.260 1.750 2.858 1.651 4.170 1.300 2.774 1.226 4.210 1.760 2.811 1.660 4.130 1.310 2.736 1.236 4.170 1.780 2.774 1.679 4.090 1.310 2.698 1.236 4.120 1.810 2.726 1.708 4.040 1.320 2.651 1.245 4.090 1.820 2.698 1.717 4.000 1.330 2.613 1.255 4.040 1.850 2.651 1.745 3.960 1.330 2.575 1.255 3.990 1.860 2.604 1.755 3.900 1.330 2.519 1.255 3.960 1.880 2.575 1.774 3.870 1.330 2.491 1.255 3.910 1.890 2.528 1.783 3.830 1.340 2.453 1.264 3.870 1.900 2.491 1.792 3.790 1.340 2.415 1.264 3.830 1.920 2.453 1.811 3.750 1.340 2.377 1.264 3.790 1.930 2.415 1.821 3.700 1.340 2.330 1.264 3.740 1.940 2.368 1.830 3.650 1.340 2.283 1.264 3.710 1.960 2.340 1.849 3.600 1.330 2.236 1.255 3.660 1.980 2.292 1.868 3.550 1.310 2.189 1.236 3.620 1.990 2.255 1.877 3.510 1.300 2.151 1.226 3.570 2.000 2.208 1.887 3.470 1.290 2.113 1.217 3.510 2.010 2.151 1.896 3.420 1.270 2.066 1.198 3.450 2.030 2.094 1.915 3.380 1.260 2.028 1.189 3.410 2.040 2.057 1.925 3.350 1.240 2.000 1.170 3.370 2.040 2.019 1.925 3.310 1.230 1.962 1.160 3.320 2.030 1.972 1.915 3.260 1.210 1.915 1.142 3.280 2.030 1.934 1.915 3.220 1.190 1.877 1.123 3.240 2.030 1.896 1.915 3.190 1.170 1.849 1.104 3.190 2.030 1.849 1.915 3.150 1.150 1.811 1.085 3.130 2.030 1.792 1.915 3.110 1.140 1.774 1.075 3.100 2.030 1.764 1.915 3.080 1.120 1.745 1.057 3.050 2.030 1.717 1.915 3.040 1.100 1.708 1.038 2.990 2.030 1.660 1.915 3.000 1.080 1.670 1.019 2.910 2.040 1.585 1.925 2.960 1.060 1.632 1.000 2.870 2.020 1.547 1.906 2.930 1.030 1.604 0.972 2.830 2.010 1.509 1.896 2.900 1.000 1.575 0.943 2.790 1.990 1.472 1.877 2.860 0.980 1.538 0.925 2.750 1.970 1.434 1.858 2.830 0.940 1.509 0.887 2.700 1.950 1.387 1.840 2.790 0.920 1.472 0.868 113 TABLE 50. Raw and Bookstein coordinates taken from the outer and inner curves of MSU-PA claw 4. TABLE 50 (cont’d) 2.660 1.920 1.349 1.81 1 2.760 0.890 1.443 0.840 2.620 1.900 1.31 1 1.792 2.730 0.850 1.415 0.802 2.600 1.880 1.292 1.774 2.710 0.820 1.396 0.774 2.570 1.860 1.264 1.755 2.690 0.770 1.377 0.726 2.530 1.840 1.226 1.736 2.660 0.740 1.349 0.698 2.500 1.820 1.198 1.717 2.650 0.690 1.340 0.651 2.460 1.800 1 . 160 1.698 2.630 0.640 1.321 0.604 2.420 1.780 1.123 1.679 2.610 0.600 1.302 0.566 2.370 1.760 1.075 1.660 2.600 0.560 1.292 0.528 2.320 1.750 1.028 1.651 2.590 0.520 1.283 0.491 2.290 1.740 1.000 1.642 2.260 1.710 0.972 1.613 2.230 1.690 0.943 1.594 2.200 1.680 0.915 1.585 2.160 1.660 0.877 1.566 2.120 1.640 0.840 1.547 2.090 1.620 0.811 1.528 2.040 1.600 0.764 1.509 2.000 1.570 0.726 1.481 1.960 1.550 0.689 1.462 1.920 1.530 0.651 1.443 1.870 1.500 0.604 1.415 1.830 1.470 0.566 1.387 1.780 1.450 0.519 1.368 1 .750 1.420 0.491 1.340 1.710 1.400 0.453 1.321 1.680 1.380 0.425 1.302 1.650 1.350 0.396 1.274 1.610 1.320 0.358 1.245 1.590 1.280 0.340 1.208 1.560 1.260 0.311 1.189 1.530 1.230 0.283 1.160 1.490 1.190 0.245 1.123 1.460 1.170 0.217 1.104 1.430 1.130 0.189 1.066 1.400 1.100 0.160 1.038 1.380 1.050 0.142 0.991 1.350 1.010 0.113 0.953 1.300 0.970 0.066 0.915 1.270 0.930 0.038 0.877 1.230 0.890 0.000 0.840 1.210 0.840 -0.019 0.792 1.190 0.810 -0.038 0.764 1 . 160 0.760 -0.066 0.717 I . 150 0.720 -0.075 0.679 1.130 0.670 -0.094 0.632 114 y = 0302112 + 1.1469x + 0.8216 Msu.pA Claw 4 R2 = 0.9938 2.500 2.000 ” ' ’ 0 Outer Curve (BS) 5.5 I Inner Curve (BS) 2 1.500 - -.§ —Poly. (Outer Curve (BS)) 0 — 8 1.000 . . mil-Elmer Curve (BS): >_‘ 1 0.500 ~ 524149633 + 2.4293x — 1.6894 R3 = 0.9763 0.000 ~ -' - — ** -0.500 0.500 1.500 2.500 3.500 X Coordinates FIGURE 54. Plotted Bookstein coordinates taken from the inner and outer curves of MSU-PA claw 4, with trend lines and matching equations. 115 C22026 Claw l Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.240 3.210 1.478 2.841 2.350 3.090 1.575 2.735 2.210 3.190 1.451 2.823 2.340 3.040 1.566 2.690 2.170 2.170 1.416 1.920 2.310 3.000 1.540 2.655 2.140 3.150 1.389 2.788 2.300 2.970 1.531 2.628 2.130 3.120 1.381 2.761 2.260 2.930 1.496 2.593 2.100 3.100 1.354 2.743 2.240 2.880 1.478 2.549 2.080 3.070 1.336 2.717 2.250 2.830 1.487 2.504 2.070 3.030 1.327 2.681 2.250 2.780 1.487 2.460 2.050 3.000 1.310 2.655 2.230 2.730 1.469 2.416 2.020 2.980 1.283 2.637 2.220 2.680 1.460 2.372 2.000 2.960 1.265 2.619 2.210 2.650 1.451 2.345 1.970 2.930 1.239 2.593 2.200 2.590 1.442 2.292 1.950 2.900 1.221 2.566 2.210 2.550 1.451 2.257 1.920 2.870 1.195 2.540 2.210 2.500 1.451 2.212 1.890 2.850 1.168 2.522 2.220 2.470 1.460 2.186 1.870 2.820 1.150 2.496 2.240 2.440 1.478 2.159 1.840 2.800 1.124 2.478 2.260 2.400 1.496 2.124 1.820 2.770 1.106 2.451 2.240 2.370 1.478 2.097 1.800 2.740 1.088 2.425 2.230 2.330 1.469 2.062 1.770 2.720 1.062 2.407 2.220 2.300 1.460 2.035 1.750 2.680 1.044 2.372 2.200 2.270 1.442 2.009 1.720 2.650 1.018 2.345 2.180 2.240 1.425 1.982 1.710 2.620 1.009 2.319 2.170 2.200 1.416 1.947 1.690 2.600 0.991 2.301 2.160 2.150 1.407 1.903 1.680 2.570 0.982 2.274 2.150 2.120 1.398 1.876 1.650 2.540 0.956 2.248 2.140 2.080 1.389 1.841 1.630 2.510 0.938 2.221 2.130 2.040 1.381 1.805 1.610 2.490 0.920 2.204 2.130 2.000 1.381 1.770 1.590 2.460 0.903 2.177 2.1 10 1.970 1.363 1.743 1.570 2.430 0.885 2.150 2.100 1.920 1.354 1.699 1.550 2.400 0.867 2.124 2.080 1.890 1.336 1.673 1.520 2.380 0.841 2.106 2.070 1.860 1.327 1.646 1.490 2.350 0.814 2.080 2.060 1.810 1.319 1.602 1.460 2.320 0.788 2.053 2.060 1.770 1.319 1.566 1.440 2.270 0.770 2.009 2.040 1.730 1.301 1.531 1.400 2.240 0.735 1.982 2.030 1.690 1.292 1.496 1.380 2.200 0.717 1.947 2.010 1.640 1.274 1.451 1.350 2.160 0.690 1.912 2.000 1.600 1.265 1.416 1.340 2.140 0.681 1.894 1.980 1.560 1.248 1.381 1.310 2.090 0.655 1.850 1.960 1.520 1.230 1.345 1.290 2.060 0.637 1.823 1.950 1.470 1.221 1.301 1.270 2.030 0.619 1.796 1.940 1.430 1.212 1.265 116 TABLE 51. Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 1. TABLE 51 (cont’d) 1.240 1.980 0.593 1.752 1.940 1.390 1.212 1.230 1.230 1.950 0.584 1.726 1.930 1.350 1.204 1.195 1.210 1.920 0.566 1.699 1.920 1.300 1.195 1.150 1.200 1.880 0.558 1.664 1.910 1.270 1.186 1.124 1 . 180 1.850 0.540 1.637 1.910 1.220 1.186 1.080 1.160 1.820 0.522 1.611 1.900 1.180 1.177 1.044 1.150 1.790 0.513 1.584 1.900 1.140 1.177 1.009 1 . 140 1.760 0.504 1.558 1.890 1.090 1.168 0.965 1.120 1.710 0.487 1.513 1.890 1.050 1.168 0.929 1 . 100 1.670 0.469 1.478 1.890 1.010 1.168 0.894 1.080 1.640 0.451 1.451 1.880 0.970 1 . 159 0.858 1.070 1.600 0.442 1.416 1.880 0.930 1 . 159 0.823 1.060 1.570 0.434 1.389 1.870 0.880 1 . 150 0.779 1.050 1.530 0.425 1.354 1.860 0.830 1.142 0.735 1.040 1.490 0.416 1.319 1.850 0.800 1.133 0.708 1.030 1.430 0.407 1.265 1.840 0.760 1.124 0.673 1.010 1.400 0.389 1.239 1.830 0.710 1.115 0.628 0.990 1.350 0.372 1 . 195 1.830 0.670 1.1 15 0.593 0.980 1.320 0.363 1.168 1.820 0.620 1.106 0.549 0.970 1.270 0.354 1.124 1.830 0.580 1.115 0.513 0.950 1.240 0.336 1.097 1.830 0.540 1.1 15 0.478 0.930 1.200 0.319 1.062 1.830 0.500 1.1 15 0.442 0.910 1.160 0.301 1.027 1.850 0.450 1.133 0.398 0.900 1 . 120 0.292 0.991 1.850 0.400 1 . 133 0.354 0.870 1.080 0.265 0.956 0.850 1.040 0.248 0.920 0.840 0.990 0.239 0.876 0.830 0.950 0.230 0.841 0.810 0.900 0.212 0.796 0.800 0.860 0.204 0.761 0.790 0.820 0.195 0.726 0.780 0.790 0.186 0.699 0.770 0.740 0.177 0.655 0.750 0.700 0.159 0.619 0.730 0.670 0.142 0.593 0.720 0.640 0.133 0.566 0.710 0.590 0.124 0.522 0.710 0.550 0.124 0.487 0.690 0.530 0.106 0.469 0.690 0.490 0.106 0.434 0.670 0.440 0.088 0.389 0.660 0.400 0.080 0.354 0.640 0.360 0.062 0.319 0.630 0.310 0.053 0.274 0.620 0.270 0.044 0.239 0.610 0.230 0.035 0.204 117 y = —1.0837x2 + 3.3219x + 0.1195 C22026 Claw 1 R2 = 0.9871 3.000 . . 2, .7 . 2 ,2- 2.500 1 0 Outer Curve (BS) g 2.000 I Inner Curve (BS) .5. —Poly. (Outer Curve (BS)) -o (E; 1500 ' —Poly. (Inner Curye (BS)) if 1.000 W 5 = —l.9659.\"+9.82~15x - 7.9137 0500 R3 = 0.9663 0.000 4. - - — 7" 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 55. Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 1, with trend lines and matching equations. 118 C22026 Claw 2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.520 3.410 1.815 3.157 2.720 3.340 2.000 3.093 2.480 3.390 1.778 3.139 2.730 3.310 2.009 3.065 2.440 3.370 1.741 3.120 2.730 3.260 2.009 3.019 2.410 3.350 1.713 3.102 2.730 3.210 2.009 2.972 2.370 3.320 1.676 3.074 2.720 3.180 2.000 2.944 2.350 3.290 1.657 3.046 2.720 3.130 2.000 2.898 2.320 3.280 1.630 3.037 2.710 3.090 1.991 2.861 2.290 3.250 1.602 3.009 2.700 3.050 1.981 2.824 2.250 3.220 1.565 2.981 2.700 3.020 1.981 2.796 2.220 3.190 1.537 2.954 2.680 2.990 1.963 2.769 2.190 3.150 1.509 2.917 2.660 2.960 1.944 2.741 2.170 3.120 1.491 2.889 2.650 2.930 1.935 2.713 2.130 3.080 1.454 2.852 2.630 2.900 1.917 2.685 2.1 10 3.050 1.435 2.824 2.620 2.850 1.907 2.639 2.080 3.030 1.407 2.806 2.600 2.810 1.889 2.602 2.050 3.000 1.380 2.778 2.590 2.770 1.880 2.565 2.020 2.960 1.352 2.741 2.570 2.750 1.861 2.546 1.990 2.930 1.324 2.713 2.560 2.720 1.852 2.519 1.970 2.900 1.306 2.685 2.540 2.690 1.833 2.491 1.930 2.850 1.269 2.639 2.530 2.660 1.824 2.463 1.910 2.820 1.250 2.611 2.510 2.630 1.806 2.435 1.890 2.780 1.231 2.574 2.500 2.600 1.796 2.407 1.860 2.740 1.204 2.537 2.490 2.560 1.787 2.370 1.830 2.710 1.176 2.509 2.480 2.530 1.778 2.343 1.790 2.680 1.139 2.481 2.470 2.490 1.769 2.306 1.760 2.640 1.1 1 1 2.444 2.460 2.460 1.759 2.278 1.740 2.610 1.093 2.417 2.440 2.440 1.741 2.259 1.710 2.570 1.065 2.380 2.420 2.410 1.722 2.231 1.680 2.530 1.037 2.343 2.410 2.380 1.713 2.204 1.650 2.490 1.009 2.306 2.390 2.350 1.694 2.176 1.630 2.460 0.991 2.278 2.380 2.330 1.685 2.157 1.600 2.420 0.963 2.241 2.370 2.290 1.676 2.120 1.560 2.370 0.926 2.194 2.350 2.260 1.657 2.093 1.540 2.330 0.907 2.157 2.340 2.220 1.648 2.056 1.510 2.290 0.880 2.120 2.330 2.180 1.639 2.019 1.470 2.260 0.843 2.093 2.320 2.150 1.630 1.991 1.450 2.220 0.824 2.056 2.310 2.110 1.620 1.954 1.430 2.190 0.806 2.028 2.290 2.070 1.602 1.917 1.410 2.160 0.787 2.000 2.280 2.030 1.593 1.880 1.390 2.120 0.769 1.963 2.260 1.990 1.574 1.843 1.370 2.090 0.750 1.935 2.240 1.940 1.556 1.796 1.350 2.050 0.731 1.898 2.220 1.890 1.537 1.750 119 TABLE 52. Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 2. TABLE 52 (cont’d) 1.330 2.030 0.713 1.880 2.200 1.840 1.519 1.704 1.310 2.010 0.694 1.861 2.180 1.800 1.500 1.667 1.290 1.980 0.676 1.833 2.170 1.760 1.491 1.630 1.280 1.960 0.667 1.815 2.150 1.720 1.472 1.593 1.260 1.930 0.648 1.787 2.140 1.680 1.463 1.556 1.240 1.900 0.630 1.759 2.130 1.640 1.454 1.519 1.230 1.880 0.620 1.741 2.100 1.600 1.426 1.481 1.220 1.860 0.61 1 1.722 2.080 1.550 1.407 1.435 1.200 1.820 0.593 1.685 2.060 1.510 1.389 1.398 1 . 180 1.790 0.574 1.657 2.040 1.460 1.370 1.352 1.160 1.760 0.556 1.630 2.020 1.410 1.352 1.306 1.140 1.730 0.537 1.602 2.000 1.370 1.333 1.269 1.120 1.700 0.519 1.574 1.980 1.330 1.315 1.231 1 . 100 1.650 0.500 1.528 1.950 1.300 1.287 1.204 1.080 1.610 0.481 1.491 1.930 1.260 1.269 1.167 1.070 1.560 0.472 1.444 1.920 1.240 1.259 1.148 1.060 1.520 0.463 1.407 1.900 1.200 1.241 1.111 1.040 1.480 0.444 1.370 1.880 1.160 1.222 1.074 1.030 1.450 0.435 1.343 1.870 1.1 10 1.213 1.028 1.020 1.420 0.426 1.315 1.850 1.080 1.194 1.000 1.020 1.390 0.426 1.287 1.830 1.030 1. 176 0.954 1.020 1.360 0.426 1.259 1.840 0.990 1.185 0.917 1.010 1.330 0.417 1.231 1.830 0.930 1.176 0.861 1.000 1.230 0.407 1.139 1.800 0.890 1.148 0.824 0.990 1.240 0.398 1 . 148 1.780 0.850 1.130 0.787 0.970 1.210 0.380 1.120 1.780 0.830 1.130 0.769 0.970 1 . 170 0.380 1.083 1.770 0.780 1 . 120 0.722 0.950 1 . 130 0.361 1.046 1.770 0.750 1.120 0.694 0.920 1.100 0.333 1.019 1.760 0.710 1.111 0.657 0.900 1.070 0.315 0.991 1.740 0.660 1.093 0.61 1 0.880 1.040 0.296 0.963 1.740 0.630 1.093 0.583 0.860 1.000 0.278 0.926 1.730 0.600 1.083 0.556 0.860 0.960 0.278 0.889 1.720 0.550 1.074 0.509 0.860 0.920 0.278 0.852 1.730 0.510 1.083 0.472 0.820 0.880 0.241 0.815 1.730 0.470 1.083 0.435 0.800 0.840 0.222 0.778 1.720 0.420 1.074 0.389 0.770 0.790 0.194 0.731 1.720 0.390 1.074 0.361 0.750 0.750 0.176 0.694 1.720 0.350 1.074 0.324 0.740 0.710 0.167 0.657 1.730 0.310 1.083 0.287 0.730 0.680 0.157 0.630 1.730 0.260 1.083 0.241 0.710 0.680 0.139 0.630 1.720 0.220 1.074 0.204 0.700 0.590 0.130 0.546 0.690 0.540 0.120 0.500 0.680 0.510 0.1 l 1 0.472 0.670 0.450 0.102 0.417 0.660 0.420 0.093 0.389 120 TABLE 52 (cont’d) 0.650 0.380 0.083 0.352 0.640 0.330 0.074 0.306 0.640 0.290 0.074 0.269 0.640 0.260 0.074 0.241 y = 06817142 + 2.847911 + 0.1736 C22026 Claw 2 R2 = 0.9962 3.500 - 3000 o OuteFC-urve (BS) 33 2.500 « g 2000 4 I Inner Curve (BS) ‘5 8 L500 —Poly. (Outer Curve >- 1.0001 ,__ (BS)) 0500 - ‘ '—P61y. (Inner Curve (BS)) 0.000 4 - . . -22. 0.000 0.500 1.000 1.500 2.000 2.500 X Coordinates FIGURE 56. Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 2, with trend lines and matching equations. 121 C22026 Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.930 1.720 1.724 2.966 2.980 1.670 1.810 2.879 2.890 1.710 1.655 2.948 2.970 1.630 1.793 2.810 2.870 1.690 1.621 2.914 2.960 1.590 1.776 2.741 2.840 1.670 1.569 2.879 2.950 1.570 1.759 2.707 2.800 1.650 1.500 2.845 2.930 1.530 1.724 2.638 2.770 1.630 1.448 2.810 2.920 1.490 1.707 2.569 2.740 1.600 1.397 2.759 2.910 1.450 1.690 2.500 2.720 1.590 1.362 2.741 2.900 1.420 1.672 2.448 2.690 1.580 1.310 2.724 2.890 1.400 1.655 2.414 2.660 1.560 1.259 2.690 2.890 1.370 1.655 2.362 2.630 1.540 1.207 2.655 2.880 1.340 1.638 2.310 2.610 1.520 1.172 2.621 2.860 1.320 1.603 2.276 2.600 1.510 1.155 2.603 2.870 1.280 1.621 2.207 2.580 1.500 1.121 2.586 2.870 1.250 1.621 2.155 2.550 1.480 1.069 2.552 2.850 1.220 1.586 2.103 2.540 1.460 1.052 2.517 2.840 1.180 1.569 2.034 2.520 1.440 1.017 2.483 2.840 1.160 1.569 2.000 2.350 1.410 0.724 2.431 2.830 1.130 1.552 1.948 2.470 1.390 0.931 2.397 2.820 1.100 1.534 1.897 2.450 1.360 0.897 2.345 2.820 1.070 1.534 1.845 2.420 1.330 0.845 2.293 2.810 1.040 1.517 1.793 2.400 1.300 0.810 2.241 2.800 1.010 1.500 1.741 2.370 1.270 0.759 2.190 2.800 0.980 1.500 1.690 2.350 1.260 0.724 2.172 2.790 0.960 1.483 1.655 2.330 1.230 0.690 2.121 2.800 0.930 1.500 1.603 2.320 1.200 0.672 2.069 2.800 0.900 1.500 1.552 2.290 1.180 0.621 2.034 2.800 0.860 1.500 1.483 2.290 1.150 0.621 1.983 2.790 0.830 1.483 1.431 2.260 1 . 120 0.569 1.931 2.790 0.800 1.483 1.379 2.240 1.090 0.534 1.879 2.770 0.760 1.448 1.310 2.230 1.060 0.517 1.828 2.760 0.730 1.431 1.259 2.220 1.030 0.500 1.776 2.740 0.690 1.397 1 . 190 2.200 1.000 0.466 1.724 2.730 0.660 1.379 1.138 2.190 0.970 0.448 1.672 2.730 0.620 1.379 1.069 2.170 0.940 0.414 1.621 2.710 0.580 1.345 1.000 2.160 0.910 0.397 1.569 2.700 0.550 1.328 0.948 2.150 0.880 0.379 1.517 2.670 0.530 1.276 0.914 2.130 0.860 0.345 1.483 2.640 0.490 1.224 0.845 2.1 10 0.830 0.310 1.431 2.630 0.440 1.207 0.759 2.100 0.800 0.293 1.379 2.600 0.400 1.155 0.690 2.090 0.760 0.276 1.310 2.590 0.360 1.138 0.621 2.080 0.720 0.259 1.241 2.580 0.320 1.121 0.552 122 TABLE 53. Raw and Bookstein coordinates taken from the outer and inner curves of C22026 claw 3. TABLE 53 (cont’d) Y Coordinates 2.070 0.680 0.241 1.172 2.580 I 0.290 I 1.121 | 050M 2.060 0.640 0.224 1.103 2.050 0.610 0.207 1.052 2.030 0.580 0.172 1.000 2.020 0.550 0.155 0.948 2.010 0.520 0.138 0.897 2.000 0.490 0.121 0.845 1.990 0.450 0.103 0.776 1.990 0.420 0.103 0.724 1.970 0.380 0.069 0.655 1 .960 0.350 0.052 0.603 1.960 0.300 0.052 0.517 1.950 0.260 0.034 0.448 1.950 0.220 0.034 0.379 1.950 0.180 0.034 0.310 y = 09939112 + 3.0815x + 0.4545 C22026 Claw 3 R2 = 0.9893 3.500 3.000 -' . . - 2 500 0 Outer Curve (BS) ’ ° . I Inner Curve (BS) 2000 " —Poly. (Outer Curve (BS)) . 1.500 *1 —Poly. (Inner Curve (BS)) _ 1.000 - , = 2. (8.“ - 2. 33.4 1.83 0500‘ ) 171\ 7 51+( 41 R" = 0.9708 0.000 ‘ 2 2 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 57. Plotted Bookstein coordinates taken from the inner and outer curves of C22026 claw 3, with trend lines and matching equations. 123 C213395 Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.940 2.610 1.191 2.373 2.060 2.550 1.300 2.318 1.910 2.600 1.164 2.364 2.040 2.520 1.282 2.291 1.870 2.590 1.127 2.355 2.030 2.500 1.273 2.273 1.830 2.580 1.091 2.345 2.020 2.470 1.264 2.245 1.800 2.560 1.064 2.327 2.020 2.430 1.264 2.209 1.770 2.540 1.036 2.309 2.010 2.380 1.255 2.164 1.750 2.520 1.018 2.291 1.990 2.360 1.236 2.145 1.720 2.490 0.991 2.264 1.980 2.330 1.227 2.118 1.700 2.470 0.973 2.245 1.970 2.300 1.218 2.091 1.670 2.460 0.945 2.236 1.950 2.260 1.200 2.055 1.640 2.430 0.918 2.209 1.940 2.230 1.191 2.027 1.600 2.410 0.882 2.191 1.910 2.190 1.164 1.991 1.550 2.380 0.836 2.164 1.890 2.160 1.145 1.964 1.510 2.360 0.800 2.145 1.880 2.130 1.136 1.936 1.490 2.340 0.782 2.127 1.850 2.090 1.109 1.900 1.460 2.300 0.755 2.091 1.830 2.040 1.091 1.855 1.430 2.270 0.727 2.064 1.820 2.010 1.082 1.827 1.410 2.240 0.709 2.036 1.820 1.960 1.082 1.782 1.380 2.220 0.682 2.018 1.800 1.930 1.064 1.755 1.350 2.180 0.655 1.982 1.790 1.870 1.055 1.700 1.320 2.150 0.627 1.955 1.780 1.830 1.045 1.664 1.300 2.1 10 0.609 1.918 1.770 1.800 1.036 1.636 1.280 2.080 0.591 1.891 1.770 1.760 1.036 1.600 1.250 2.040 0.564 1.855 1.760 1.720 1.027 1.564 1.220 2.020 0.536 1.836 1.750 1.690 1.018 1.536 1.200 1.980 0.518 1.800 1.740 1.640 1.009 1.491 1 . 190 1.940 0.509 1.764 1.730 1.590 1.000 1.445 1.170 1.900 0.491 1.727 1.720 1.560 0.991 1.418 1 . 140 1.870 0.464 1.700 1.720 1.510 0.991 1.373 1 . 120 1.840 0.445 1.673 1.710 1.470 0.982 1.336 1.090 1.800 0.418 1.636 1.710 1.430 0.982 1.300 1.070 1.770 0.400 1.609 1.700 1.390 0.973 1.264 1.040 1.720 0.373 1.564 1.700 1.350 0.973 1.227 1.030 1.690 0.364 1.536 1.690 1.320 0.964 1.200 1.010 1.660 0.345 1.509 1.690 1.280 0.964 1 . 164 0.980 1.620 0.318 1.473 1.680 1.230 0.955 1.1 18 0.970 1.590 0.309 1.445 1.680 1.190 0.955 1.082 0.950 1.540 0.291 1.400 1.670 1 . 150 0.945 1.045 0.930 1.500 0.273 1.364 1.650 1.1 10 0.927 1.009 0.920 1.450 0.264 1.318 1.650 1.060 0.927 0.964 0.900 1.410 0.245 1.282 1.640 1.010 0.918 0.918 0.900 1.370 0.245 1.245 1.640 0.980 0.918 0.891 124 TABLE 54. Raw and Bookstein coordinates taken from the outer and inner curves of C2 1 3395 claw l. TABLE 54 (cont’d) 0.880 1.340 0.227 1.218 1.630 0.930 0.909 0.845 0.870 1.300 0.218 1 . 182 1.630 0.890 0.909 0.809 0.860 1.260 0.209 1.145 1.630 0.850 0.909 0.773 0.840 1.220 0.191 1.109 1.620 0.800 0.900 0.727 0.820 1 . 170 0.173 1.064 1.640 0.760 0.918 0.691 0.800 1 . 140 0.155 1.036 1.650 0.720 0.927 0.655 0.790 1.090 0.145 0.991 1.660 0.680 0.936 0.618 0.790 1.050 0.145 0.955 1.660 0.630 0.936 0.573 0.790 1.000 0.145 0.909 1.660 0.600 0.936 0.545 0.760 0.970 0.1 18 0.882 1.670 0.560 0.945 0.509 0.750 0.920 0.109 0.836 1.680 0.510 0.955 0.464 0.730 0.880 0.091 0.800 1.690 0.470 0.964 0.427 0.730 0.830 0.091 0.755 1.710 0.430 0.982 0.391 0.720 0.790 0.082 0.718 1.730 0.390 1.000 0.355 0.710 0.760 0.073 0.691 1.750 0.350 1.018 0.318 0.710 0.730 0.073 0.664 1.770 0.310 1.036 0.282 0.700 0.670 0.064 0.609 1.780 0.280 1.045 0.255 0.680 0.630 0.045 0.573 1.800 0.250 1.064 0.227 0.680 0.580 0.045 0.527 0.680 0.530 0.045 0.482 0.680 0.480 0.045 0.436 y = - 1 5693113 + 3.391911 + 0.4716 C213395 Claw 1 R7- = 0.9913 3.000 - 0 Outer Curve (BS) 2500 I Inner Curve (BS) U) 54,; 2.000 —Poly. (Outer Curve (BS)) : E 1. 5 00 :Pgly. (Inner Curve (BS)) 8 1.000 - 1 >‘ y = — 1 .57021- + 7.8262.\ — 5.1189 0.500 7 113 = 0.6459 1 0.000 « - ~ 4 0.000 0.500 1.000 1.500 X Coordinates FIGURE 58. Plotted Bookstein coordinates taken from the inner and outer curves of C213395 claw 1, with trend lines and matching equations. 125 C-CAD Claw 2 Outer Raw Outer Bookstein lnner Raw Inner Bookstein X Y X Y X Y X Y 1.870 2.040 0.885 2.125 1.910 2.030 0.927 2.115 1.860 2.000 0.875 2.083 1.930 2.000 0.948 2.083 1.830 1.960 0.844 2.042 1.940 1.980 0.958 2.063 1.830 1.930 0.844 2.010 1.960 1.960 0.979 2.042 1.810 1.910 0.823 1.990 1.980 1.940 1.000 2.021 1.760 1.870 0.771 1.948 1.990 1.900 1.010 1.979 1.790 1.830 0.802 1.906 1.990 1.860 1.010 1.938 1.770 1.780 0.781 1.854 2.000 1.840 1.021 1.917 1.760 1.740 0.771 1.813 2.000 1.810 1.021 1.885 1.760 1.710 0.771 1.781 2.010 1.780 1.031 1.854 1.740 1.670 0.750 1.740 2.010 1.750 1.031 1.823 1.730 1.640 0.740 1.708 2.010 1.730 1.031 1.802 1.710 1.610 0.719 1.677 2.010 1.700 1.031 1.771 1.690 1.570 0.698 1.635 2.020 1.660 1.042 1.729 1.680 1.530 0.688 1.594 2.020 1.620 1.042 1.688 1.640 1.490 0.646 1.552 2.020 1.560 1.042 1.625 1.620 1.440 0.625 1.500 2.020 1.520 1.042 1.583 1.590 1.400 0.594 1.458 2.020 1.460 1.042 1.521 1.590 1.360 0.594 1.417 2.020 1.420 1.042 1.479 1.570 1.340 0.573 1.396 2.020 1.370 1.042 1.427 1.550 1.300 0.552 1.354 2.010 1.320 1.031 1.375 1.530 1.270 0.531 1.323 2.010 1.280 1.031 1.333 1.510 1.240 0.510 1.292 2.000 1.240 1.021 1.292 1.500 1.220 0.500 1.271 2.000 1.200 1.021 1.250 1.490 1.190 0.490 1.240 1.990 1.160 1.010 1.208 1.470 1.160 0.469 1.208 1.990 1.100 1.010 1.146 1.450 1.130 0.448 1.177 1.990 1.090 1.010 1.135 1.430 1.1 10 0.427 1.156 1.970 1.060 0.990 1.104 1.410 1.070 0.406 1.1 15 1.970 1.030 0.990 1.073 1.390 1.030 0.385 1.073 1.950 0.990 0.969 1.031 1.370 1.000 0.365 1.042 1.940 0.960 0.958 1.000 1.360 0.970 0.354 1.010 1.920 0.930 0.938 0.969 1.250 0.710 0.240 0.740 1.910 0.910 0.927 0.948 1.220 0.670 0.208 0.698 1.900 0.870 0.917 0.906 1.210 0.630 0.198 0.656 1.880 0.850 0.896 0.885 1 . 190 0.590 0.177 0.615 1.870 0.820 0.885 0.854 1 . 170 0.560 0.156 0.583 1.870 0.790 0.885 0.823 1.160 0.530 0.146 0.552 1.860 0.760 0.875 0.792 1.140 0.490 0.125 0.510 1.860 0.730 0.875 0.760 1.1 10 0.440 0.094 0.458 1.860 0.700 0.875 0.729 1 .090 0.390 0.073 0.406 1.860 0.670 0.875 0.698 1.080 0.370 0.063 0.385 1.850 0.620 0.865 0.646 126 TABLE 55. Raw and Bookstein coordinates taken from the outer and inner curves of C-CAD claw 2. TABLE 55 (cont’d) y = 0.1713112 + 1.8876x + 0.2786 OCAD Claw 2 1.060 0.330 0.042 0.344 1.850 0.580 0.865 0.604 1.040 0.290 0.021 0.302 1.850 0.550 0.865 0.573 1.020 0.260 0.000 0.271 1.860 0.500 0.875 0.521 1.860 0.460 0.875 0.479 1.880 0.420 0.896 0.438 1.910 0.380 0.927 0.396 1.930 0.350 0.948 0.365 1.940 0.320 0.958 0.333 1.950 0.270 0.969 0.281 1.960 0.220 0.979 0.229 R2 = 0.9963 2.500 2.000 0 Outer Curve (BS) {3 ' I Inner Curve (BS) E 1500 —Poly. (Outer Curve (BS)) 1% ‘—Poly. (Inner Curve (BS)) 5 1.000 ~ - - -+- w» v >— . , 0.500 1 }'=(1.75—l—1.\’ — 7.071211" + 1.6959 R’- = 0.4184 0.000 - , . 0.000 0.500 1.000 1.500 X Coordinates FIGURE 59. Plotted Bookstein coordinates taken from the inner and outer curves of C-CAD claw 2, with trend lines and matching equations. 127 C-CAD Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.050 1.290 0.353 2.529 1.080 1.290 0.412 2.529 1.050 1.270 0.353 2.490 1 . 100 1.270 0.451 2.490 1.040 1.240 0.333 2.431 1 . 120 1.240 0.490 2.431 1.030 1.210 0.314 2.373 1.140 1.210 0.529 2.373 1.030 1.180 0.314 2.314 1.160 1.180 0.569 2.314 1.020 1.150 0.294 2.255 1 . 190 1 . 160 0.627 2.275 1.020 1.120 0.294 2.196 1.220 1.120 0.686 2.196 1.020 1.100 0.294 2.157 1.230 1.100 0.706 2.157 1.010 1.070 0.275 2.098 1.240 1.060 0.725 2.078 1.010 1.040 0.275 2.039 1.260 1.020 0.765 2.000 1.010 1.010 0.275 1.980 1.260 1.000 0.765 1.961 1.010 0.980 0.275 1.922 1.270 0.970 0.784 1.902 1.010 0.940 0.275 1.843 1.280 0.940 0.804 1.843 1.010 0.920 0.275 1.804 1.290 0.910 0.824 1.784 1.000 0.890 0.255 1.745 1.290 0.880 0.824 1.725 1.000 0.860 0.255 1.686 1.290 0.860 0.824 1.686 1.000 0.840 0.255 1.647 1.300 0.830 0.843 1.627 0.990 0.810 0.235 1.588 1.300 0.800 0.843 1.569 0.990 0.790 0.235 1.549 1.310 0.760 0.863 1.490 0.990 0.760 0.235 1.490 1.310 0.740 0.863 1.451 0.980 0.740 0.216 1.451 1.310 0.700 0.863 1.373 0.970 0.720 0.196 1.412 1.310 0.670 0.863 1.314 0.970 0.700 0.196 1.373 1.320 0.640 0.882 1.255 0.960 0.670 0.176 1.314 1.320 0.610 0.882 1.196 0.950 0.650 0.157 1.275 1.320 0.590 0.882 1.157 0.940 0.590 0.137 1 . 157 1.320 0.550 0.882 1.078 0.930 0.560 0.1 18 1.098 1.320 0.530 0.882 1.039 0.930 0.540 0.1 18 1.059 1.330 0.500 0.902 0.980 0.930 0.520 0.1 18 1.020 1.330 0.470 0.902 0.922 0.920 0.490 0.098 0.961 1.340 0.430 0.922 0.843 0.910 0.470 0.078 0.922 1.340 0.400 0.922 0.784 0.910 0.430 0.078 0.843 1.350 0.380 0.941 0.745 0.910 0.400 0.078 0.784 1.350 0.340 0.941 0.667 0.890 0.380 0.039 0.745 1.370 0.320 0.980 0.627 0.890 0.340 0.039 0.667 1.370 0.290 0.980 0.569 0.890 0.320 0.039 0.627 1.390 0.270 1.020 0.529 0.890 0.290 0.039 0.569 1.400 0.240 1.039 0.471 0.880 0.270 0.020 0.529 1.410 0.210 1.059 0.412 0.880 0.230 0.020 0.451 1.430 0.170 1.098 0.333 0.880 0.200 0.020 0.392 1.440 0.150 1.1 18 0.294 1.440 0.120 1.118 0.235 128 TABLE 56. Raw and Bookstein coordinates taken from the outer and inner curves of C-CAD claw 3. y = 0.9749112 + 3.39831 + 0.4878 C.CAD Claw 3 R2 = 0.9771 3.000 ’ '7 i ‘ . q o OuterCurve (BS) 2500 I Inner Curve (BS) g 2.000 —Poly. (Outer Curve (BS)) .5 —Poly. (Inner Curve (BS)) "15’ 1.500 ‘ * “ '“" ’ 8 >" 1'000 ‘ _\= = 37506113 + 2.00411 + 2.43.64 0.500 R3 = (1.93119 1 0.000 *- 0.000 0.500 1.000 1.500 X Coordinates FIGURE 60. Plotted Bookstein coordinates taken from the inner and outer curves of C-CAD claw 3, with trend lines and matching equations. 129 C31011Claw3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.960 3.840 1.236 2.446 3.510 3.440 1.586 2.191 2.920 3.820 1.210 2.433 3.510 3.370 1.586 2.146 2.870 3.800 1.178 2.420 3.510 3.330 1.586 2.121 2.820 3.780 1.146 2.408 3.490 3.290 1.573 2.096 2.790 3.750 1.127 2.389 3.480 3.270 1.567 2.083 2.740 3.720 1.096 2.369 3.460 3.230 1.554 2.057 2.700 3.690 1.070 2.350 3.430 3.190 1.535 2.032 2.650 3.670 1.038 2.338 3.410 3.160 1.522 2.013 2.620 3.610 1.019 2.299 3.390 3.110 1.510 1.981 2.610 3.570 1.013 2.274 3.380 3.070 1.503 1.955 2.580 3.530 0.994 2.248 3.350 3.020 1.484 1.924 2.560 3.500 0.981 2.229 3.330 2.960 1.471 1.885 2.520 3.470 0.955 2.210 3.310 2.910 1.459 1.854 2.490 3.430 0.936 2.185 3.280 2.850 1.439 1.815 2.450 3.410 0.911 2.172 3.260 2.800 1.427 1.783 2.400 3.380 0.879 2.153 3.250 2.750 1.420 1.752 2.370 3.340 0.860 2.127 3.230 2.700 1.408 1.720 2.350 3.290 0.847 2.096 3.210 2.640 1.395 1.682 2.310 3.270 0.822 2.083 3.190 2.580 1.382 1.643 2.290 3.230 0.809 2.057 3.180 2.510 1.376 1.599 2.260 3.180 0.790 2.025 3.160 2.430 1.363 1.548 2.220 3.150 0.764 2.006 3.140 2.400 1.350 1.529 2.190 3.090 0.745 1.968 3.110 2.350 1.331 1.497 2.150 3.050 0.720 1.943 3.100 2.300 1.325 1.465 2.1 10 3.010 0.694 1.917 3.070 2.240 1.306 1.427 2.070 2.970 0.669 1.892 3.050 2.180 1.293 1.389 2.040 2.930 0.650 1.866 3.020 2.130 1.274 1.357 2.010 2.880 0.631 1.834 3.000 2.070 1.261 1.318 1.980 2.830 0.61 1 1.803 2.970 2.020 1.242 1.287 1.950 2.790 0.592 1.777 2.930 1.990 1.217 1.268 1.920 2.740 0.573 1.745 2.910 1.940 1.204 1.236 1.900 2.680 0.561 1.707 2.890 1.900 1.191 1.210 1.870 2.650 0.541 1.688 2.860 1.850 1.172 1.178 1.850 2.600 0.529 1.656 2.850 1.820 1.166 1 . 159 1.830 2.560 0.516 1.631 2.830 1.760 1.153 1.121 1.810 2.530 0.503 1.611 2.820 1.710 1.146 1.089 1.790 2.490 0.490 1.586 2.810 1.650 1.140 1.051 1.750 2.440 0.465 1.554 2.790 1.600 1.127 1.019 1.730 2.400 0.452 1.529 2.780 1.540 1.121 0.981 1.710 2.350 0.439 1.497 2.780 1.490 1.121 0.949 1.680 2.320 0.420 1.478 2.770 1.450 1.1 15 0.924 1.660 2.280 0.408 1.452 2.770 1.400 1.1 15 0.892 130 TABLE 57. Raw and Bookstein coordinates taken from the outer and inner curves of C31011 claw 3. TABLE 57 (cont’d) 1.630 2.240 0.389 1.427 2.770 1.370 1.115 0.873 1.610 2.210 0.376 1.408 2.780 1.320 1.121 0.841 1.590 2.170 0.363 1.382 2.800 1.290 1.134 0.822 1.570 2.140 0.350 1.363 2.820 1.240 1.146 0.790 1.540 2.100 0.331 1.338 1.520 2.060 0.318 1.312 1.510 2.020 0.312 1.287 1.480 1.960 0.293 1.248 1.460 1.920 0.280 1.223 1.430 1.870 0.261 1.191 1.410 1.830 0.248 1.166 1.380 1.780 0.229 1.134 1.360 1.740 0.217 1.108 1.350 1.680 0.210 1.070 1.330 1.630 0.197 1.038 1.320 1.580 0.191 1.006 1.310 1.530 0.185 0.975 1.290 1.490 0.172 0.949 1.270 1.450 0.159 0.924 1.260 1.400 0.153 0.892 1.240 1.340 0.140 0.854 1.220 1.290 0.127 0.822 1.200 1.240 0.1 15 0.790 1.180 1.190 0.102 0.758 1.150 1.150 0.083 0.732 1.130 1.1 10 0.070 0.707 y = 0.8299113 + 2.5568x + 0.5469 C31011 Claw 3 R2 = 09984 O OUICI'CUI’VE (BS) 3000 l I Inner Curve (BS) 2.500 ~ w ' — Poly. (Outer Curve 0 . "g 1,500 1 —Poly. (Inner Curve (BS)) 0 I U >_‘ 1.000 *- 0.500 - y = 41.634111" + 4.311991 — 3.0953 0.000 . R2 = (1.9818 0.000 0.500 1.000 1.500 2.000 X Coordinates FIGURE 61. Plotted Bookstein coordinates taken from the inner and outer curves of C3101 1 claw 3. with trend lines and matching equations. 131 C3132] Claw 1 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.420 2.950 1.368 3.105 2.530 2.930 1.484 3.084 2.400 2.930 1.347 3.084 2.510 2.880 1.463 3.032 2.370 2.910 1.316 3.063 2.490 2.840 1.442 2.989 2.340 2.890 1.284 3.042 2.470 2.810 1.421 2.958 2.310 2.860 1.253 3.011 2.460 2.780 1.411 2.926 2.270 2.840 1.21 1 2.989 2.440 2.760 1.389 2.905 2.240 2.820 1 . 179 2.968 2.420 2.720 1.368 2.863 2.220 2.800 1.158 2.947 2.410 2.680 1.358 2.821 2.190 2.770 1.126 2.916 2.390 2.660 1.337 2.800 2.170 2.750 1.105 2.895 2.380 2.620 1.326 2.758 2.130 2.720 1.063 2.863 2.360 2.580 1.305 2.716 2.100 2.700 1.032 2.842 2.340 2.560 1.284 2.695 2.070 2.680 1.000 2.821 2.330 2.530 1.274 2.663 2.050 2.650 0.979 2.789 2.310 2.500 1.253 2.632 2.020 2.620 0.947 2.758 2.300 2.470 1.242 2.600 2.000 2.590 0.926 2.726 2.290 2.450 1.232 2.579 1.970 2.560 0.895 2.695 2.270 2.410 1.211 2.537 1.940 2.530 0.863 2.663 2.260 2.370 1.200 2.495 1.910 2.510 0.832 2.642 2.250 2.340 1 . 189 2.463 1.890 2.480 0.811 2.611 2.240 2.310 1.179 2.432 1.860 2.460 0.779 2.589 2.220 2.280 1.158 2.400 1.830 2.430 0.747 2.558 2.200 2.230 1.137 2.347 1.810 2.400 0.726 2.526 2.180 2.200 1.116 2.316 1.800 2.360 0.716 2.484 2.170 2.160 1.105 2.274 1.780 2.320 0.695 2.442 2.160 2.120 1.095 2.232 1.780 2.280 0.695 2.400 2.140 2.080 1.074 2.189 1.750 2.250 0.663 2.368 2.130 2.050 1.063 2.158 1.740 2.220 0.653 2.337 2.120 2.020 1.053 2.126 1.720 2.180 0.632 2.295 2.1 10 1.990 1.042 2.095 1.700 2.140 0.611 2.253 2.100 1.940 1.032 2.042 1.670 2.100 0.579 2.211 2.080 1.900 1.011 2.000 1.650 2.050 0.558 2.158 2.070 1.860 1.000 1.958 1.620 2.020 0.526 2.126 2.050 1.810 0.979 1.905 1.590 1.990 0.495 2.095 2.040 1.770 0.968 1.863 1.560 1.960 0.463 2.063 2.030 1.730 0.958 1.821 1.530 1.920 0.432 2.021 2.010 1.690 0.937 1.779 1.500 1.890 0.400 1.989 2.000 1.650 0.926 1.737 1.480 1.850 0.379 1.947 1.990 1.610 0.916 1.695 1.450 1.790 0.347 1.884 1.980 1.560 0.905 1.642 1.420 1.760 0.316 1.853 1.980 1.520 0.905 1.600 1.400 1.720 0.295 1.81 1 1.960 1.480 0.884 1.558 1.380 1.680 0.274 1.768 1.940 1.440 0.863 1.516 132 TABLE 58. Raw and Bookstein coordinates taken from the outer and inner curves of C31 321 claw 1. TABLE 58 (cont’d) 1.360 1.660 0.253 1.747 1.940 1.410 0.863 1.484 1.340 1.620 0.232 1.705 1.940 1.380 0.863 1.453 1.310 1.600 0.200 1.684 1.920 1.340 0.842 1.41 1 1.280 1.570 0.168 1.653 1.910 1.300 0.832 1.368 1.260 1.540 0.147 1.621 1.890 1.270 0.811 1.337 1.230 1.510 0.116 1.589 1.890 1.220 0.811 1.284 1.220 1.480 0.105 1.558 1.880 1 . 190 0.800 1.253 1.200 1.440 0.084 1.516 1.890 1.160 0.811 1.221 1.170 1.390 0.053 1.463 1.890 1.130 0.811 1.189 1.160 1.340 0.042 1.411 1.900 1.100 0.821 1.158 1.140 1.300 0.021 1.368 1.890 1.060 0.811 1.116 1.110 1.260 -0.011 1.326 1.910 1.000 0.832 1.053 1.080 1.220 -0.042 1.284 1.920 0.960 0.842 1.01 1 1.050 1 . 190 -0.074 1.253 1.920 0.930 0.842 0.979 1.030 1 . 150 -0.095 1.21 1 1.940 0.890 0.863 0.937 1.020 1.1 10 -0.105 1 . 168 1.960 0.860 0.884 0.905 1.000 1.070 -0.126 1.126 2.120 0.530 1.053 0.558 0.970 1.030 -0.158 1.084 2.150 0.490 1.084 0.516 0.970 1.000 -0.158 1.053 2.170 0.460 1.105 0.484 0.940 0.950 -0. 189 1.000 2.190 0.430 1.126 0.453 0.930 0.900 -0.200 0.947 2.210 0.400 1.147 0.421 0.930 '0.870 -0.200 0.916 0.910 0.820 -0.221 0.863 0.910 0.770 -0.221 0.811 0.910 0.710 -0.221 0.747 0.910 0.660 -0.221 0.695 0.910 0.610 -0.221 0.642 0.920 0.570 -0.21 1 0.600 0.930 0.530 -0.200 0.558 0.930 0.480 -0.200 0.505 0.950 0.440 -0. 179 0.463 0.960 0.380 -0. 168 0.400 0.980 0.340 -0.147 0.358 0.990 0.300 -0.137 0.316 1.000 0.260 -0.126 0.274 1.020 0.220 -0.105 0.232 1.040 0.180 -0.084 0.189 133 y = 06693113 + 2.303311 + 1.1758 C31321 Claw 1 R2 = 0.9459 3.500 * 3.000 . 0 Outer Curve (BS) 0:3 2.500 , I Inner Curve (BS) E 2 000 —Poly. (Outer Curve (BS)) ‘5 ' I 15 —Poly. (Inner Curve (BS)) 0 1.500 1 ‘ ' A ‘7 " U >‘ 1-000 3 = 1.6183“: — (1.717711 + (1.7531 0.500 1 \ 123:0.6072 0.000 - 1 ~ ' 7-. 7 -0.500 0.000 0.500 X Coordinates 1.000 1.500 2.000 FIGURE 62. Plotted Bookstein coordinates taken from the inner and outer curves of C3 1 321 claw 1, with trend lines and matching equations. C3132] Claw 3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.060 2.850 0.282 3.654 1.270 2.790 0.551 3.577 1.020 2.810 0.231 3.603 1.280 2.750 0.564 3.526 1.010 2.770 0.218 3.551 1.270 2.710 0.551 3.474 0.990 2.730 0.192 3.500 1.270 2.670 0.551 3.423 0.980 2.680 0.179 3.436 1.270 2.620 0.551 3.359 0.970 2.630 0.167 3.372 1.260 2.560 0.538 3.282 0.960 2.590 0.154 3.321 1.270 2.500 0.551 3.205 0.970 2.540 0.167 3.256 1.260 2.420 0.538 3.103 0.950 2.500 0.141 3.205 1.250 2.370 0.526 3.038 0.940 2.450 0.128 3.141 1.250 2.320 0.526 2.974 0.940 2.390 0.128 3.064 1.250 2.270 0.526 2.910 0.920 2.360 0.103 3.026 1.240 2.230 0.513 2.859 0.910 2.310 0.090 2.962 1.240 2.190 0.513 2.808 0.900 2.270 0.077 2.910 1.230 2.140 0.500 2.744 0.880 2.230 0.051 2.859 1.230 2.090 0.500 2.679 0.870 2.190 0.038 2.808 1.230 2.060 0.500 2.641 0.850 2.130 0.013 2.731 1.230 2.000 0.500 2.564 0.850 2.090 0.013 2.679 1.240 1.940 0.513 2.487 0.840 2.040 0.000 2.615 1.250 1.880 0.526 2.410 0.840 1.990 0.000 2.551 1.250 1.830 0.526 2.346 0.830 1.950 -0.013 2.500 1.260 1.790 0.538 2.295 0.830 1.910 -0.013 2.449 1.270 1.750 0.551 2.244 134 TABLE 59. Raw and Bookstein coordinates taken from the outer and inner curves of C31 321 claw 3. TABLE 59 (cont’d) 0.820 1.860 -0.026 2.385 1.270 1.700 0.551 2.179 0.800 1.830 -0.051 2.346 1.280 1.650 0.564 2.1 15 0.780 1.790 -0.077 2.295 1.280 1.610 0.564 2.064 0.770 1.750 -0.090 2.244 1.270 1.570 0.551 2.013 0.760 1.710 -0.103 2.192 1.270 1.530 0.551 1.962 0.750 1.670 -0.1 15 2.141 1.260 1.480 0.538 1.897 0.740 1.630 -0.128 2.090 1.270 1.450 0.551 1.859 0.720 1.570 -0.154 2.013 1.260 1.400 0.538 1.795 0.710 1.510 -0.167 1.936 1.260 1.350 0.538 1.731 0.700 1.460 -0. 179 1.872 1.260 1.320 0.538 1.692 0.690 1.420 -0. 192 1.821 1.260 1.270 0.538 1.628 0.690 1.350 -0. 192 1.731 1.270 1.230 0.551 1.577 0.680 1.290 -0.205 1.654 1.290 1.180 0.577 1.513 0.680 1.250 -0.205 1.603 1.310 1 . 120 0.603 1.436 0.680 1.210 -0.205 1.55] 1.320 1.080 0.615 1.385 0.670 1 . 170 -0.218 1.500 1.330 1.030 0.628 1.32] 0.650 1 . 150 —0.244 1.474 1.350 1.000 0.654 1.282 0.640 1.1 10 -0.256 1.423 1.370 0.960 0.679 1.231 0.620 1.060 -0.282 1.359 1.390 0.920 0.705 1.179 0.600 1.020 -0.308 1.308 1.410 0.880 0.731 1.128 0.590 0.970 -0.321 1.244 1.440 0.840 0.769 1.077 0.590 0.930 -0.321 1.192 1.450 0.790 0.782 1.013 0.610 0.870 -0.295 1.1 15 1.470 0.760 0.808 0.974 0.630 0.820 -0.269 1.051 1.490 0.730 0.833 0.936 0.640 0.770 -0.256 0.987 1.510 0.680 0.859 0.872 0.640 0.720 -0.256 0.923 1.520 0.640 0.872 0.821 0.670 0.660 -0.218 0.846 1.530 0.590 0.885 0.756 0.680 0.600 -0.205 0.769 1.530 0.550 0.885 0.705 0.700 0.540 -0. 179 0.692 1.530 0.510 0.885 0.654 0.700 0.490 -0.179 0.628 1.540 0.470 0.897 0.603 0.700 0.440 -0. 179 0.564 1.560 0.420 0.923 0.538 0.710 0.380 -0.167 0.487 1.560 0.380 0.923 0.487 0.730 0.330 -0.141 0.423 1.560 0.350 0.923 0.449 0.750 0.290 -0.1 15 0.372 1.570 0.310 0.936 0.397 0.770 0.250 -0.090 0.321 1.580 0.270 0.949 0.346 1.600 0.230 0.974 0.295 1.620 0.180 1.000 0.231 1.640 0.130 1.026 0.167 135 y = 3.3709112 + 5.436111 + 2.3259 (331321 Claw 3 R3=07629 4.500 :233 .4. Outer Curve—(BS) 8 ‘3'000 I Inner Curve (BS) 2 ' ‘_Poly. (Outer Curve (BS)) {5. 2.500 1 P1 In C BS 8 2.000 ~ -- _°.Y-( film“ )1, if 1.500 « 3 1,000 - )1: 7.7248x‘ - 16.428x + 9.0653 0500 4 ' R3 = 0.7547 0.000 - ‘ 74* ~ : ~ +-~ -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 63. Plotted Bookstein coordinates taken from the inner and outer curves of C3132] claw 3, with trend lines and matching equations. 136 APPENDIX V LIST OF PAIRS OF CORRELATED VARIABLES Positively Correlated Variable Pairs centroid X coordinate EBookstein L3 X coordinate beta {Bookstein L3 X coordinate centroid Y coordinate :Bookstein L3 Y coordinate centroid size EBookstein L3 Y coordinate distance from L2 to L3 gBookstein L3 Y coordinate distance from L1 to L3 :Bookstein L3 Y coordinate distance from L3 to L4 EBookstein L3 Y coordinate [alpha iBookstein L3 Y coordinate [alpha/beta ratio EBookstein L3 Y coordinate outer curve C coefficient EBookstein L3 Y coordinate distance from L1 to L4 iBookstein L4 X coordinate centroid X coordinate Ebeta centroid Y coordinate {centroid size distance from L2 to L3 Ecentroid Y coordinate distance from L1 to L3 Scentroid Y coordinate distance from L3 to L4 zcentroid Y coordinate A centroid Y coordinate {algha centroid Y coordinate Ealpha/beta ratio centroid Y coordinate iouter curve B coefficient centroid Y coordinate :outer curve C coefficient distance from L2 to L3 distance from L1 to L3 Ecentroid Size Ecentroid Size distance from L3 to L4 Ecentroid Size Ialpha Ecentroid Size afipha/beta ratio icentroid Size outer curve C coefficient Ecentroid Size distance from L1 to L3 Edistance from L2 to L3 distance from L3 to L4 idistance from L2 to L3 [alpha alpha/beta ratio 1distance from L2 to L3 Edistance from L2 to L3 outer curve C coefficient idistance from L2 to L3 distance from L1 to L3 idistance from L3 to L4 outer curve C coefficient idistance from L1 to L3 Ialpha Ialpha/beta ratio Edistance from L3 to L4 Edistance from L3 to L4 outer curve C coefficient Edistance from L3 to L4 alpha/beta ratio idistance from L1 to L4 TABLE 60. List of pairs of positively correlated morphometric variables. 137 TABLE 60 (cont’d) alpha/beta ratio {alpha outer curve C coefficient Ealpha aspect ratio Ebeta outer curve coefficient A :outer curve coefficient B outer curve coefficient C :outer curve coefficient B inner curve coefficient A Einner curve coefficient C Negatively Correlated Variable Pairs Bookstein L3 X coordinate Ealpha Bookstein L3 X coordinate Ealpha/beta ratio Bookstein L3 Y coordinate Ebeta Bookstein L3 Y coordinate Egamma Bookstein L3 Y coordinate Easpect ratio Bookstein L4 X coordinate Edistance from L2 to L4 Bookstein L4 Y coordinate Edistance from L1 to L4 Bookstein L4 Y coordinate Tdistance from L2 to L4 centroid X coordinate Ealpha centroid X coordinate Ealpha/beta ratio centroid Y coordinate fieta centroid Y coordinate Egamma centroid Y coordinate :aspect ratio centroid size igamma centroid size Easpect ratio distance from L2 to L3 Ebeta distance from L2 to L3 {gamma distance from L2 to L3 gaspect ratio distance from L1 to L3 :gamma distance from L1 to L3 faspect ratio distance from L3 to L4 :gamma distance from L3 to L4 Easpect ratio [alpha ibeta lalpha gaspect ratio beta Ealpha/beta ratio amma iouter curve C coefficient aspect ratio Ealpha/beta ratio laspect ratio :outer curve C coefficient inner curve coefficient A Einner curve coefficient B inner curve coefficient B :inner curve coefficient C TABLE 61. List of pairs of negatively correlated morphometric variables. 138 APPENDD( VI PRINCIPAL COMPONENT DATA WITHIN EACH CLUSTER OF EACH CLAW PHENOGRAM Claw 1 l A B C 0.332 0.332 0.067 Component 1.519 1.519 -0 -1.871 'pal Component 0.] 0.3 A B E 1.024 1.02 - . . -0. Component 1.01 1.01 . - . -0. 1. - . -1.1 -0.1 TABLE 62. Principal component data within each cluster in the phenogram of claw 1. 139 Claw 2 l A B C D -0.37 0.948 ~0.37 0.591 -0.8. -1.473 -0.8- -0.61 1 pa] Component 0.948 -1.473 A B E F -0.34 -1.622 1.- 1. -O.56l -0.305 1.11 1.11 ipal Component 0. A B -0.082 -1.02 -0.233 -0. ipal Component 'ncipal Component 5 D E P 0.217 01 -0.1 -1.63 0.731 0.082 0.08 -1.463 'ncipal Component 0.01 0.705 1.44 0.21 0.731 TABLE 63. Principal component data within each cluster in the phenogram of claw 2. 140 Claw3 l A B C D E F I .1 1.11 1.11 -0.99. 1.11 0.01 1.01 . -2.002 1.01 1.3 —0.8 0.21 -0. -0.32 0.01 . 0. 0.019 'ncipal 1.3 1. 0.328 0.418 -0.328 mponent -0.993 -0.553 -2.002 0.21 0. 0.418 -0.553 A B G H -O.381 -0.381 .. 4.103 0.973 0.26 0.298 . .- -2.24 -0.33 'ncipal 0.267 mponent A B G H 1.163 1.16. -0.43 -0.57 0.603 2.4 . -0 -0.565 0.603 G H -0. -1.381 -0.41 -1.24 -0. TABLE 64. Principal component data within each cluster in the phenogram of claw 3. 141 TABLE 64 (cont’d) 5 A B C D E F G H I -0.2- -0.2. 0.547 -O -0.615 -1.41 -0.745 2.013 -0.745 0.743 -0.318 0.705 -0.31 -1.318 -0.615 -0.21 0.8 -0.21 0.743 0.74- -1.318 2.013 0.54 0. 0. Claw 4 ipal Component USICI’ 'ncipal Component USICI‘ Principal Component uster 'ncipal Component -0. 5 er B C D -0.71 0.261 1.93 1.93 0.04 0.21 1 0.3 0.- -1.3 -0.7 'ncipal Component TABLE 65. Principal component data within each cluster in the phenogram of claw 4. 142 APPENDIX VH UNKNOWN ARTICULATION Specimen Pes Claw Centrond Location Centroid X Y Size KU49399 Unknown UNKl 0.396 1.167 3.994 Unknown UNK2 0.733 1.308 4.435 YPM2554 Unknown UNK3 0.558 0.74 2.842 YPM2436 Unknown UNK4 0.718 0.343 1.665 MORPHOMETRIC DATA FOR THE FOUR PTERANODONT CLAWS OF TABLE 66. Claw centroid locations and sizes of the four claws of unknown articulations. . Distances between Landmarks (Bookstein) Specimen Pes Claw L1-L2 L2-L3 Ll-L3 L3-L4 Ll-L4 L2-L4 KU49399 Unknown UNK] 1 4.647 4.556 4.464 0.512 0.512 Unknown UNK2 1 5.059 5.224 4.921 0.61 0.458 YPM2554 Unknown UNK3 1 3.127 3.2 3.277 0.523 0.523 YPM2436 Unknown UNK4 1 1.525 2.003 1.795 0.541 0.485 TABLE 67. Distances between the Bookstein landmarks of each claw of unknown articulation. . An os(degrees) Specimen Pes Claw a B v KU49399 Unknown UNK] 88.952 78.623 12.425 Unknown UNK2 75.036 93.954 1 1.01 YPM2554 Unknown UNK3 76.799 85.061 18.14 YPM2436 Unknown UNK4 47.891 102.995 29.114 TABLE 68. Angle calculations (in degrees) between Bookstein landmarks 1, 2, and 3 of each claw of unknown articulation. Specimen Pes Claw Aspect Ratio Ratio of a to B KU49399 Unknown UNK] 0.22 1.131 Unknown UNK2 0.198 0.799 YPM2554 Unknown UNK3 0.321 0.903 YPM2436 Unknown UN K4 0.673 0.465 143 TABLE 69. Aspect ratios and ratios of a to B of each claw with unknown articulation. Curvature Equation Coefficients Outer Curve Inner Curve Specimen Pes Claw x2 X X0 R2 x2 x x0 R2 Coeff. Coeff. Coeff. Value Coeff. Coeff. Coeff. Value (A) (B) (C) (A) (B) (C) KU49399 Unknown UNK] 24.814 20.535 5.804 0.51 2.215 —5.851 4.716 0.829 Unknown UNK2 -0.931 2.908 2.876 0.928“ -8.348 19.477 -6.933 0.521 YPM2554 Unknown UNK3 -2.771 4.188 1.492 0.991' -0.501 —3.169 5.12 0.884 YPM2436 Unknown UNK4 -0.48 1.54 0.325 0.998“ -2.888 9.447 -6.254 0.598 TABLE 70. Coefficients from polynomial (Y = AX2+BX+CXO) equations of outside and inside curves of the four claws with unknown articulations (with their R2 values), derived from Bookstein coordinates. 144 TABLE 71. Raw and Bookstein coordinates taken from the outer and inner curves of KU49399, unknown claw 1. KU49399 UNKl Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1 . 190 1.590 -0.028 4.417 1.270 1.600 0.194 4.444 1.170 1.570 -0.083 4.361 1.270 1.560 0.194 4.333 1.160 1.530 -0.1 1 1 4.250 1.290 1.520 0.250 4.222 1.160 1.490 -0.1 1 1 4.139 1.290 1.500 0.250 4.167 1 . 160 1.450 -0.1 1 1 4.028 1.290 1.450 0.250 4.028 1 . 160 1.420 -0.1 1 1 3.944 1.300 1.400 0.278 3.889 1.150 1.400 -0.139 3.889 1.300 1.330 0.278 3.694 1.140 1.350 -0.167 3.750 1.310 1.280 0.306 3.556 1.130 1.310 -0.194 3.639 1.310 1.220 0.306 3.389 1.120 1.270 -0.222 3.528 1.290 1.140 0.250 3.167 1.120 1.230 -0.222 3.417 1.290 1.090 0.250 3.028 1.1 10 1.190 -0.250 3.306 1.290 1.070 0.250 2.972 1.110 1.150 -0.250 3.194 1.300 1.030 0.278 2.861 1.110 1.110 -0.250 3.083 1.290 1.010 0.250 2.806 1 . 100 1.060 -0.278 2.944 1.290 0.940 0.250 2.611 1 . 100 1.020 -0.278 2.833 1.300 0.910 0.278 2.528 1 . 100 0.980 -0.278 2.722 1.310 0.860 0.306 2.389 1.100 0.930 -0.278 2.583 1.330 0.820 0.361 2.278 1.100 0.900 -0.278 2.500 1.350 0.780 0.417 2.167 1 . 100 0.850 -0.278 2.361 1.360 0.750 0.444 2.083 1.080 0.810 -0.333 2.250 1.380 0.720 0.500 2.000 1.070 0.770 -0.361 2.139 1.400 0.690 0.556 1.917 1.060 0.730 -0.389 2.028 1.430 0.660 0.639 1.833 1.060 0.700 -0.389 1.944 1.460 0.630 0.722 1.750 1.060 0.660 -0.389 1.833 1.480 0.600 0.778 1.667 1.060 0.610 -0.389 1.694 1.520 0.560 0.889 1.556 1.070 0.570 -0.361 1.583 1.570 0.510 1.028 1.417 1.090 0.530 -0.306 1.472 1.610 0.480 1.139 1.333 1.080 0.500 -0.333 1.389 1.640 0.440 1.222 1.222 1.070 0.470 -0.361 1.306 1.660 0.390 1.278 1.083 1.080 0.430 -0.333 1.194 1.680 0.340 1.333 0.944 1.080 0.390 -0.333 1.083 1.700 0.300 1.389 0.833 1.1 10 0.350 -0.250 0.972 1.710 0.250 1.417 0.694 1 . 120 0.320 -0.222 0.889 1.720 0.200 1.444 0.556 1.110 0.270 -0.250 0.750 1.700 0.150 1.389 0.417 1 . 100 0.230 -0.278 0.639 1.1 10 0.190 -0.250 0.528 1.120 0.150 -0.222 0.417 145 y = 24.814112 + 20.35311 + 5.8039 KU49399 UNK1 R2 = 0.5101 6.000 -- ,- O 5.000 _ Outer Curve (BS) m I Inner Curve (BS) 13 4.000 7 —Poly. (Outer Curve (BS)) 1: E 3000 , —Poly. (Inger Curve (BS)) 13 > 2.000 1. - 1 I y = 2.2148\" - 5.851.15x + 4.7156 1.000 ~ ( R“ = 0.8294 0.000 4 ~ ~ -1 .000 0.000 1.000 2.000 X Coordinates FIGURE 64. Plotted Bookstein coordinates taken from the inner and outer curves of KU49399 unknown claw 1, with trend lines and matching equations. TABLE 72. Raw and Bookstein coordinates taken from the outer and inner curves of KU49399, unknown claw 2. KU49399 UNK2 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 0.970 2.140 1.047 4.977 1 . 190 2.080 1.558 4.837 0.940 2.1 10 0.977 4.907 1.200 2.030 1.581 4.721 0.920 2.080 0.930 4.837 1.200 1.990 1.581 4.628 0.900 2.050 0.884 4.767 1.200 1.910 1.581 4.442 0.890 2.020 0.860 4.698 1 . 180 1.880 1.535 4.372 0.870 1.990 0.814 4.628 1 . 180 1.850 1.535 4.302 0.870 1.960 0.814 4.558 1.170 1.810 1.512 4.209 0.850 1.940 0.767 4.512 1.180 1.770 1.535 4.1 16 0.830 1.900 0.721 4.419 1.180 1.730 1.535 4.023 0.810 1.880 0.674 4.372 1.180 1.710 1.535 3.977 0.790 1.850 0.628 4.302 1.170 1.680 1.512 3.907 0.790 1.830 0.628 4.256 1.150 1.650 1.465 3.837 0.760 1.790 0.558 4.163 1 . 140 1.620 1.442 3.767 0.740 1.750 0.512 4.070 1 . 140 1.580 1.442 3.674 0.720 1.730 0.465 4.023 1 . 150 1.540 1.465 3.581 0.710 1.690 0.442 3.930 1 . 160 1.500 1.488 3.488 0.700 1.670 0.419 3.884 1.170 1.460 1.512 3.395 0.680 1.630 0.372 3.791 1.180 1.420 1.535 3.302 0.660 1.590 0.326 3.698 1.180 1.380 1.535 3.209 0.650 1.540 0.302 3.581 1.170 1.350 1.512 3.140 0.630 1.510 0.256 3.512 1.170 1.310 1.512 3.047 146 TABLE 72 (cont’d) 147 0.610 1.480 0.209 3.442 1.170 1.280 1.512 2.977 0.600 1.450 0.186 3.372 1.170 1.250 1.512 2.907 0.580 1.410 0.140 3.279 1.180 1.210 1.535 2.814 0.570 1.360 0.116 3.163 1.180 1.180 1.535 2.744 0.550 1.320 0.070 3.070 1.180 1.140 1.535 2.651 0.520 1.290 0.000 3.000 1.190 1.100 1.558 2.558 0.490 1.250 -0.070 2.907 1.190 1.060 1.558 2.465 0.480 1.210 -0.093 2.814 1.180 1.020 1.535 2.372 0.470 1.170 -0.116 2.721 1.180 0.980 1.535 2.279 0.450 1.120 -0.163 2.605 1.190 0.950 1.558 2.209 0.440 1.080 -0.186 2.512 1.190 0.910 1.558 2.116 0.430 1.040 -0.209 2.419 1.190 0.860 1.558 2.000 0.420 1.000 -0.233 2.326 1.210 0.830 1.605 1.930 0.400 0.940 -0.279 2.186 1.230 0.790 1.651 1.837 0.390 0.920 -0.302 2.140 1.240 0.740 1.674 1.721 0.370 0.880 -0.349 2.047 1.260 0.700 1.721 1.628 0.360 0.840 —0.372 1.953 1.270 0.650 1.744 1.512 0.340 0.800 -0.419 1.860 1.270 0.610 1.744 1.419 0.320 0.760 -0.465 1.767 1.290 0.560 I .791 1.302 0.310 0.710 -0.488 1.65] 1.300 0.500 1.814 1.163 0.280 0.670 -0.558 1.558 1.300 0.460 1.814 1.070 0.270 0.610 -0.581 1.419 1.300 0.410 1.814 0.953 0.270 0.560 -0.581 1.302 0.270 0.520 -0.58] 1.209 0.270 0.470 -0.581 1.093 0.260 0.410 -0.605 0.953 0.270 0.370 -0.581 0.860 0.270 0.310 -0.581 0.721 0.280 0.260 -0.558 0.605 0.280 0.210 -0.558 0.488 0.300 0.160 -0.512 0.372 0.320 0.120 -0.465 0.279 0.330 0.070 -0.442 0. 163 0.360 0.030 —0.372 0.070 y = 09306112 + 2.907811 + 2.8755 KU49399 UNK2 R2 = 0.9283 6.000 5-000 0 Outer Curve (BS) g 4.000 . I Inner Curve (BS) .5 —Poly. (Outer Curve (BS)) ‘3 3000 . 8 ' —P0'Y- (InnsrCurve> if 2.000 - . v = -8.3481.\" + 19.477\ - (1.9331 1.000 . ' w - R" = (1.5212 0.000 1 - ~ ~ ~ - -1.000 0.000 1.000 2.000 X Coordinates FIGURE 65. Plotted Bookstein coordinates taken from the inner and outer curves of KU49399 unknown claw 2, with trend lines and matching equations. 148 TABLE 73. Raw and Bookstein coordinates taken from the outer and inner curves of YPM2554, unknown claw 3. YPM2554 UNK3 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 1.010 1.590 0.577 3.058 1 . 100 1.580 0.750 3.038 0.990 1.570 0.538 3.019 1.1 10 1.540 0.769 2.962 0.980 1.530 0.519 2.942 1.110 1.500 0.769 2.885 0.960 1.510 0.481 2.904 1.1 10 1.470 0.769 2.827 0.960 1.480 0.481 2.846 1.1 10 1.430 0.769 2.750 0.950 1.450 0.462 2.788 1.100 1.380 0.750 2.654 0.950 1.420 0.462 2.731 1 . 100 1.340 0.750 2.577 0.930 1.400 0.423 2.692 1.090 1.290 0.73 ‘1 2.481 0.900 1.370 0.365 2.635 1.090 1.250 0.731 2.404 0.880 1.330 0.327 2.558 1.070 1.210 0.692 2.327 0.870 1.290 0.308 2.481 1.080 1 . 170 0.712 2.250 0.850 1.250 0.269 2.404 1.090 1 . 130 0.731 2.173 0.830 1.220 0.231 2.346 1.1 10 1.090 0.769 2.096 0.830 1.170 0.231 2.250 1 . 120 1.050 0.788 2.019 0.810 1.140 0.192 2.192 1.140 1.020 0.827 1.962 0.790 1.110 0.154 2.135 1.150 1.000 0.846 1.923 0.780 1.080 0.135 2.077 1.150 0.960 0.846 1.846 0.770 1.050 0.1 15 2.019 1 . 160 0.930 0.865 1.788 0.770 1.020 0.1 15 1.962 1 . 170 0.900 0.885 1.731 0.770 0.990 0.1 15 1.904 1.190 0.860 0.923 1.654 0.760 0.950 0.096 1.827 1.200 0.830 0.942 1.596 0.760 0.910 0.096 1.750 1.220 0.800 0.981 1.538 0.740 0.860 0.058 1.654 1.230 0.770 1.000 1.481 0.720 0.830 0.019 1.596 1.240 0.740 1.019 1.423 0.710 0.800 0.000 1.538 1.260 0.700 1.058 1.346 0.690 0.770 -0.038 1.481 1.270 0.670 1.077 1.288 0.700 0.720 -0.019 1.385 1.280 0.640 1.096 1.231 0.680 0.680 -0.058 1.308 1.280 0.600 1.096 1.154 0.660 0.640 -0.096 1.231 1.280 0.550 1.096 1.058 0.660 0.610 -0.096 1 . 173 1.270 0.510 1.077 0.981 0.650 0.570 -0.1 15 1.096 1.290 0.460 1.1 15 0.885 0.660 0.530 -0.096 1.019 1.300 0.440 1.135 0.846 0.650 0.480 -0.1 15 0.923 1.320 0.410 1 . 173 0.788 0.640 0.430 -0. 135 0.827 1.330 0.380 1.192 0.731 0.640 0.380 -0.135 0.731 1.330 0.340 1.192 0.654 0.630 0.340 -0.154 0.654 1.330 0.300 1.192 0.577 0.620 0.290 -0.173 0.558 1.310 0.250 1.154 0.481 0.600 0.260 -0.212 0.500 0.590 0.210 -0.231 0.404 149 y = 2.7714112 + 4.187611 + 1.492 YPM2554 UNK3 R2 = 0.9906 3.500 3.000 6 Outer Curve (BS) 33 2.500 I Inner Curve (BS) 2 2 000 . —Poly. (Outer Curve (BS)) -o . 8 1. 500 g—Poly. (Inner Cuere (BS)) U >‘ 1.000 , \-' : -().5(1(,)9.\‘ - 3.16888 + 5.1 195 0.500 . ’ 1 . R' = (1.8838 0.000 ~ - + ., - , *—- -0.500 0.000 0.500 1.000 1.500 X Coordinates FIGURE 66. Plotted Bookstein coordinates taken from the inner and outer curves of YPM2554 unknown claw 3, with trend lines and matching equations. 150 TABLE 74. Raw and Bookstein coordinates taken from the outer and inner curves of YPM2436, unknown claw 4. YPM2436 UNK4 Outer Raw Outer Bookstein Inner Raw Inner Bookstein X Y X Y X Y X Y 2.190 2.100 1.279 1.500 2.360 1.790 1.400 1.279 2.160 2.100 1.257 1.500 2.340 1.740 1.386 1.243 2.120 2.100 1.229 1.500 2.320 1.720 1.371 1.229 2.080 2.1 10 1.200 1.507 2.280 1.690 1.343 1.207 2.040 2.100 1.171 1.500 2.240 1.660 1.314 1.186 2.010 2.070 1.150 1.479 2.220 1.620 1.300 1.157 1.980 2.060 1.129 1.471 2.190 1.590 1.279 1.136 1.960 2.030 1.114 1.450 2.150 1.560 1.250 1.114 1.920 2.030 1.086 1.450 2.120 1.530 1.229 1.093 1.900 1.980 1.071 1.414 2.090 1.510 1.207 1.079 1.860 1.960 1.043 1.400 2.060 1 .470 1 .186 1.050 1.830 1.940 1.021 1.386 2.030 1.440 1.164 1.029 1.810 1.930 1.007 1.379 2.020 1.420 1.157 1.014 1.760 1.920 0.971 1.371 1.990 1.380 1.136 0.986 1.720 1.910 0.943 1.364 1.970 1.330 1.121 0.950 1.700 1.890 0.929 1.350 1.960 1.270 1.1 14 0.907 1.670 1.840 0.907 1.314 1.960 1.200 1.1 14 0.857 1.650 1.820 0.893 1.300 1.920 1 . 150 1.086 0.821 1.630 1.790 0.879 1.279 1.910 1.090 1.079 0.779 1.590 1.760 0.850 1.257 1.890 1.020 1.064 0.729 1.560 1.740 0.829 1.243 1.860 0.960 1.043 0.686 1.530 1.710 0.807 1.221 1.860 0.870 1.043 0.621 1.490 1.700 0.779 1.214 1.840 0.810 1.029 0.579 1.470 1.670 0.764 1.193 1.860 0.750 1.043 0.536 1.450 1.660 0.750 1.186 1.880 0.700 1.057 0.500 1.420 1.640 0.729 1.171 1.890 0.650 1.064 0.464 1.390 1.620 0.707 1 . 157 1.890 0.600 1.064 0.429 1.350 1.590 0.679 1 . 136 1.880 0.560 1.057 0.400 1.320 1.570 0.657 1.121 1.880 0.520 1.057 0.371 1.300 1.540 0.643 1 . 100 1.910 0.480 1.079 0.343 1.270 1.520 0.621 1.086 1.940 0.430 1 . 100 0.307 1.250 1.510 0.607 1.079 1.950 0.380 1.107 0.271 1.220 1.510 0.586 1.079 1.950 0.320 1.107 0.229 1 . 190 1.480 0.564 1.057 1.970 0.260 1.121 0.186 1 . 160 1.460 0.543 1.043 1.980 0.220 1.129 0.157 1 . 140 1.440 0.529 1.029 1.120 1.420 0.514 1.014 1.090 1.390 0.493 0.993 1.080 1.360 0.486 0.971 1.050 1.350 0.464 0.964 151 TABLE 74 (cont’d) 1.020 1.320 0.443 0.943 1.000 1.290 0.429 0.921 0.980 1.260 0.414 0.900 0.960 1.230 0.400 0.879 0.950 1.210 0.393 0.864 0.920 1.180 0.371 0.843 0.900 1.150 0.357 0.821 0.890 ] . 120 0.350 0.800 0.830 1 . 100 0.307 0.786 0.820 1.070 0.300 0.764 0.790 1.040 0.279 0.743 0.780 1.000 0.271 0.714 0.770 0.960 0.264 0.686 0.720 0.910 0.229 0.650 0.710 0.880 0.221 0.629 0.690 0.860 0.207 0.614 0.660 0.830 0.186 0.593 0.640 0.790 0.171 0.564 0.620 0.770 0.157 0.550 0.610 0.740 0.150 0.529 0.590 0.710 0.136 0.507 0.570 0.690 0.121 0.493 0.540 0.650 0.100 0.464 0.530 0.610 0.093 0.436 0.510 0.590 0.079 0.421 0.480 0.570 0.057 0.407 0.450 0.540 0.036 0.386 0.430 0.500 0.021 0.357 0.400 0.470 0.000 0.336 0.370 0.410 -0.021 0.293 152 y = 04799113 + 1.539911 + 0.325 YPM2436 UNK4 R2 = 0.9976 1.600 1 1.400 1 3 1.200 0 Outer Curve(BS) g 1.000 1‘ I Inner Curve (BS) :2 0.800 !—Poly. (Inner Curve (BS)) 8 0.600 . —Poly. (Outer Cu:ve (BS)) ‘ >‘ 0.400 4 1 - \r‘ = —2.887‘)\~ + 9.4473); - 6.2537 0.200 - ' 1 R” = (1.5976 0.000 . - < - f 0.000 0.500 1.000 1.500 X Coordinates FIGURE 67. Plotted Bookstein coordinates taken from the inner and outer curves of YPM2436 unknown claw 4, with trend lines and matching equations. 153 APPENDIX VIII TAN GENTAL CLAW PHENOGRAMS Figures 68 and 69 are claw phenograms calculated without regard to homologous articulation. They are provided here as tangential ideas. Ptaunadan longiccps claw l——-1 A -_ Pteranodon langicqps claw 4——-—-' N rus marmus claw 8. D Palacanus canspicillqhas claw 31:|B_J£F ma 1 5.521%... ru '61:: Pelee-anus claw 4:};— Croc Ius acums claw 2 R All My??? claw :{ator Mississippicns I [Po ecanus melaw 2—— HH Crocodyhgd porosus claw 1 J I decanus claw } K ]M M 1.1..me yam... ‘1" br. guinis c X. Pave cmtarus 4 444 w: odor: ongic c w us ca: w Eudocimusmbcrclaw _.—1.nwwwu U O O u—n N W :5 FIGURE 68. Phenogram of all claws regardless of articulation, without the four pteranodont claws of unknown articulation. Clusters are labeled with capital letters. 154 [(043933 inborn claw l H zsclaw 4 " Pin KU43933 wn claw % A Olor columbianus claw :l—L Olor columbianus claw‘ 1 nis claw Olor colP' ianus c Pteranodon ongieqn Larus marinas claw 3 LL Polocanus claw" J Pavo onstarus claw l Pavo cristarus claw J Pavo cnsranu claw3 Q Pinguim's claw I! ocimus rubar claw. 7 ocimus rubar claw I! Croc 'lus acutus claw 3 jlj I 1:413:14: mba'gm Alligator misssissippisns claw 3 {4160 claw l wn claw V Polocama co oicillanrs claw Pteranodon orificaps Polocanus comic: lotus claw 3 Palocanus claw l lus wporosus claw Alligaro wippions ”“213: l Z WWIPJO tetanus mgflwg (KR Pavo cristam: claw " Alligator missisippians claw 3 Pramnodon longicops claw 41 Praranodon longicops claw 1 JJ man'nusclaw . I 1 l 0 1 2 ‘— w— I‘— he FIGURE 69. Phenogram of all claws regardless of articulation, with the four pteranodont claws of unknown articulation. Clusters are labeled with capital letters. 155 BIBLIOGRAPHY Bellairs, Angus. 1969. The Life of Reptiles, Volume I. Unwin Bros. Ltd., Great Britain. Bennett, S. Christopher. 1994. Taxonomy and Systematics of the Late Cretaceous Pterosaur Pteranodon (Pterosauria, Pterodactyloidea). Occasional Papers of the Natural History Museum: The University of Kansas, Lawrence, Kansas. 169: 1- 70. Bennett, S. Christopher. 1996. The phylogenetic position of the Pterosauria within the Archosauromorpha. Zoological Journal of the Linnean Society. 118: 261-308. Bennett, S. Christopher. 2000. Inferring Stratigraphic Position of Fossil Vertebrates from the Niobrara Chalk of Western Kansas. Current Research in Earth Sciences, Kansas Geo]. Survey Bull. 1-26. Bennett, S. C. 2001, a. The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon. Part I. General Description of Osteology. Palaeontogr. Abt. A 260, 1-112. Bennett, S. C. 2001, b. The osteology and functional morphology of the Late Cretaceous pterosaur Pteranodon. Part 11. Size and Functional Morphology. Palaeontogr. Abt. A 260, 113-153. Bennett, S. Christopher. 2003. Morphological evolution of the pectoral girdle of pterosaurs: myology and function. Pages 191-215 in E. Buffetaut and J-M. Mazin, editors. Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications, London, England. Bramwell, C. D. and Whitfield, G. R. 1974. Biomechanics of Pteranodon. Philadelphia Royal Transactions of the Society of London, (B), 267: 503—581. Brochu, Christopher A. 2003. Phylogenetic Approaches to Crocodylian History. Annual Review of Earth Planetary Sciences, 31: 357-397. Cope, Edward Drinker. 1900. The Crocodylians, Snakes, and Lizards of north America in Annual report of the Board of Regents of the Smithsonian Institution, Year Ending June 30, 1898. Government Printing Office, Washington DC. Ede, D. A. 1964. Bird Structure: an approach through evolution, development, and function in the fowl. Hutchinson Educational, New York, New York, USA. 156 Frey, Eberhard, Helmut Tischlinger, Marie-Celine Buchy, and David M. Martill. 2003. New specimens of pterosaur (Reptilia) with soft parts with implications for pterosaurian anatomy and locomotion. Pages 233-266 in E. Buffetaut and J -M. Mazin, editors. Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications, London, England. Ge’roudet, Paul. 1965. Water Birds with Webbed Feet. Blandford Press, London, England. Good, Thomas P. 1998. Great Black-Backed Gull in Poole, A. and F. Gill, eds. The Birds of North America, 9(330): 1-32. Hedges, S. Blair, and Charles G. Sibley. 1994. Molecule vs. Morphology in Avian evolution: The Case of the “Pelecaniform” Birds. Proceedings of the National Academy of Sciences of the United States of America, 91(21): 9861—9865. Heimhofer, U., D. Ariztegui, S. P. Hesselbo, R. D. Pancost, and P. A. Hochuli. 2006. High-resolution multiproxy records from Early Cretaceous lacustrine deposits (Araripe Basin, NE Brazil) and their palaeoenvironmental significance. Geophysical Research Abstracts, 8: 1—2. Kachigan, Sam Kash. 1991. Second Edition Multivariate Statistical Analysis: A Conceptual Introduction. Raduis Press, New York, New York, USA. Kemp, Richard A. and Clive N. Trueman. 2003. Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sedimentary Geology, 155: 109-127. Kushlan, James A. and Keith L. Bildstein. 1992. White Ibis in Poole, Alan F., Peter Stettenheim, and Frank B. Gill, eds. The Birds of North America, 1(9): 1-20. Lockley, Martin G. and Joanna L. Wright. 2003. Pterosaur swim tracks and other ichnological evidence of behavior and ecology. Pages 297-313 in E. Buffetaut and J -M. Mazin, editors. Evolution and Palaeobiology of Pterosaurs. Geological Society, London, Special Publications, London, England. Lockley, R. M. 1974. Ocean wanderers: The Migratory Sea Birds of the World. Stackpole Books, Harrisburg, Pennsylvania, USA. Mayr, Gerald. 2003. The phylogenetic affinities of the Shoebill (Balaeniceps rex). Journal of Ornithology, 144: 157-175. Montevecchi, William A. and David A, Kirk. 1996. Great Auk in Poole, A. and F. Gill, eds. The Birds of North America, 7(260): 1-20. 157 Padian, Kevin, 1983. A functional analysis of flying and walking in pterosaurs. Paleobiology. 9(3): 218-239. Parrish, J. Michael. 1987. The Origin of Crocodylian Locomotion. Paleobiology, 13(4): 396-414. Ragupathy, Kannen and Douglas A. James. 1998. Common Peafowl in Poole, A. and F. Gill, eds. The Birds of North America, 10(377): 1-16. Raikow, Robert J. 1985. Locomotor System in King, AS. and J. McLelland, eds. Form and Function in Birds, volume 3. Academic Press, New York, New York, USA. Seebacher, Frank, Peter G. Elsworth, and Craig E. Franklin. 2003. Ontogenetic changes of swimming kinematics in a semi-aquatic reptile (Crocodylus porosus). Australian Journal of Zoology, 51: 15-54. Thomas, Gavin H., Matthew A. Wills, and Tamas Székely. 2004. A supertree approach to shorebird phylogeny. BMC Evolutionary Biology, 4(28). Wallace, George J. and Harold D. Mahan. 1975. An Introduction to Ornithology, Third Edition. Macmillan Publishing CO., Inc., New York, New York, USA. Witmer, L. M. 1995. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils. Pages 19-33 in Thomason, J .J ., ed. Functional Morphology in Vertebrate Paleontology. Cambridge University Press, New York, New York, USA. Zeffer, Anna, L. Christoffer Johansson, and Asa Marmebro, 2003. Functional correlation between habitate use and leg morphology in birds (Aves). Biological Journal of the Linnean Society, 79: 461-484. Zelditch, Miriam Leah, Donald L. Swiderski, H. David Sheets, and William L. Fink. 2004. Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, New York, New York, USA. 158 IIIIIIIIIIIIIIIIIIIIIIIIIIIII 1111111111111111111111111114411