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ABSTRACT

DIFFERENTIAL EXPRESSION ANALYSIS OF DNA MICROARRAY DATA WITH

APPLICATION TO THE HEAT SHOCK RESPONSE OF ARABIDOPSIS THALIANA

By

William R. Swindell

DNA microarrays are widely used research tools that allow the expression level of

thousands of genes to be monitored simultaneously. A common interest arising in the

context ofmicroarray data is to determine whether a gene’s expression level differs

between two conditions. Differential expression anlaysis provides a means for addressing

such interests, but several aspects ofmicroarray data complicate the application of

standard two-sample methods. The Lima software package utilizes a Bayesian linear

model approach to differential expression analysis, which has gained considerable

popularity within the research community. In Chapter 1, the primary statistical challenges

associated with differential expression analysis are reviewed, and the Bayesian linear

model approach to these challenges is outlined. It is concluded that the statistical methods

implemented in Lima are useful in the absence of ideal procedures, but that attention

should be paid to several key assumptions that may not be satisfied by the data. Chapter 2

presents a detailed application of the Lima procedure (and other methods) to microarray

data generated from experiments performed with Arabidopsis thaliana. In particular, the

heat shock transcription factor and protein network ofArabidopsis is profiled under a

wide range of abiotic and biotic stress treatments in multiple cell types. The analysis

characterizes the interaction between Arabidopsis heat shock genes with heat and other

types of stress, and identifies several heat shock gene expression patterns that have not

been previously described.
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CHAPTER 1

DIFFERENTIAL EXPRESSION ANALYSIS OF MICROARRAY DATA WITH

LINEAR MODELS AND BAYESIAN STATISTICS

Summary

DNA microarrays are increasingly popular research tools that allow the expression level

of thousands of genes to be monitored simultaneously. Statistical tests of differential

expression are widely used in conjunction with DNA microarray data, but there are

several approaches to identifying differentially expressed genes. The goal in differential

expression analysis is to determine whether sufficient evidence exists to declare that a

given gene’s expression level differs between two conditions ofmeasurement. The

Limma software package is a recently developed tool that utilizes a Bayesian approach to

differential expression analysis. The software, moreover, is implemented within a highly

flexible linear model fiamework, which allows investigators to evaluate complicated

microarray experiments with little difficultly. In this chapter, an overview of the

challenges entailed by differential expression analysis is provided, and the statistical

methods by which the Lima procedure addresses these challenges are presented. In

particular, the basic t-test as applied to differential expression is developed within the

context of linear models. The main ideas underlying the moderated t-statistic and

posterior odds are then presented, with the aim of drawing attention to the key data

assumptions upon which statistical inferences depend. The performance of the Lima

procedure as evaluated by Smyth (2004) is then discussed in conjunction with remaining

issues that await resolution. The main conclusion emerging from this review is that

statistical inferences based upon the Lima procedure are dependent upon several

assumptions that may not be satisfied by microarray datasets. In the absence of ideal

methods, therefore, inferences generated by Limma should be made with appropriate

caution. These considerations underscore the challenges entailed by the complexity of

DNA microarray data.



Section 1 Introduction

DNA microarrays are a widely used tool for simultaneously monitoring the

expression level ofthousands of genes throughout a genome (Brown and Botstein 1999;

Lander 1999). As the application ofmicroarray technology has become increasingly

widespread, the statistical analysis ofmicroarray data has become a topic of considerable

importance. Critical statistical issues arise in almost every phase ofmicroarray

processing, including the experimental design stage (Yang and Speed 2002), extraction of

expression intensities from microarray images (Jain et a1. 2002), data preprocessing and

normalization (Quackenbush 2002), and most especially, the post-processing phase

during which a multitude of analyses are possible depending on the biological questions

under consideration (e.g., Eisen et a1. 1998, Alter et a1. 2000, Brown 2000). At the post-

processing stage, standard differential expression analysis is perhaps the most basic

procedure that is most widely implemented. The objective in differential expression

analysis is to determine whether there is sufficient evidence to claim that expression

levels differ between two samples (e.g., tumor vs. benign tissue) for individual genes.

Although this basic problem is analogous to that commonly addressed by the two-sample

t-test procedure (Welch 1947), several complicating factors arise in the context of

microarray data, such that only rough agreement now exists regarding the best approach

for identification of differentially expressed genes (Allison et a1. 2006).

The biological and technical variability commonly associated with gene

expression estimates is, at a fundamental level, a key factor that complicates differential

expression analysis. If such variability was not present or trivial, simple analytical

methods would prove robust when applied to microarray datasets. Unfortunately,



however, gene expression estimates are inherently variable, since mixtures of cell types

and possibly genotypes are common RNA sources in experiments, and the technical

processes ofmRNA extraction, amplification, and probe hybridization are subject to

various sources of noise and interference. In light of these challenges, a wide range of

approaches have been suggested and implemented in the biological literature. The first

and most straightforward approach is to avoid hypothesis testing altogether, and identify

genes on the basis of their expression level fold-change between samples. There are, in

fact, several advantages to this approach, including a focus on effect size, non-

dependency on modeling assumptions, minimal estimation of parameters, and

importantly, straightforward interpretation. Ultimately, however, this approach is

problematic since it does not account for the sources of variation mentioned above, which

can impact different genes to varying extents. The standard two sample t-test is perhaps

the next simplest alternative to fold-change, since it does account for biological and

technical variability. The ordinary t-statistic, however, varies inversely with the standard

deviation of expression estimates, such that significant statistics can arise for effect sizes

that are arbitrarily small. Furthermore, the standard t-test requires that the variance

associated with gene expression levels (02) be estimated for each gene based upon what

is typically a small number of replicates. While the former difficulty can be addressed by

adding a constant term to the denominator ofthe t-statistic (e.g., Efron et a1. 2001; Tusher

et a1. 2001; Broberg 2003), alternative methods are necessary to avoid independent

estimation of 0'2 for all genes represented on a microarray.

Bayes and empirical Bayes methods provide one possible way of circumventing

the gene-by-gene estimation ofoz. Bayesian methods assume a prior distribution that



characterizes how a2 (and possibly other parameters) varies across all genes considered

in an analysis. The key advantage of this approach lies in its effective use of the

replication that exists among all genes represented on a microarray, which is not

otherwise utilized in the standard t-test procedure. The empirical Bayes approach, in

particular, minimizes strict reliance on priors by estimating the parameters ofprior

distributions (i.e., the hyperparameters) from the microarray dataset under consideration.

This Bayesian framework is the basis of the differential expression procedures

implemented in the Limma software package (Smyth 2004), which is part of the R

Bioconductor project and freely available online at http://www.bioconductor.org

(Gentleman et a1. 2004). The Lima package implements Bayesian approaches within a

highly flexible linear model framework, which allows complex experiments to be

analyzed with relative ease by researchers without extensive statistical background. This

practical simplicity is a primary factor underlying the increasingly widespread application

Limma to a wide range ofresearch problems involving gene expression data (e.g.,

Boutros et a1. 2004; Golden and Melov 2004; Renn et a1. 2004; Rodriguez et a1. 2004;

Peart et a1. 2005; Rensink et a1. 2005).

In this chapter, the basic features of the linear model framework that underlie the

methodology implemented in Lima are explained, and the empirical Bayesian model

utilized in differential expression testing is outlined. Particular attention is given to the

assumptions upon which inferences are based. In section 1, the basic t-test as applied to

differential expression analysis is presented within the context of linear models. In

section 2, the main ideas underlying the posterior odds and moderated t-statistic are

presented. The final section provides a discussion of simulations and comparative



analyses in which Limma has been applied and provides an overview of persisting

problems associated with differential expression analysis.



Section 2 Linear Models

Linear models represent an efficient way of combining data from multiple arrays

into a single analysis, and provide considerable flexibility that allows for the analysis of

microarray experiments of arbitrary complexity. In this section, the simple two-sample t-

test will be developed in the framework of linear models. The analysis will consist of a

gene-by-gene approach in which a linear model is fit to the expression values associated

with each gene individually. The response variable under consideration will thus be

represented as yg , where the subscript denotes that the linear model is being fit to

expression values associated with gene g. The meaning of yg will differ depending upon

whether the gene expression data has been generated from two-color or one-color (e.g.,

Affymetrix) microarray platforms. It will generally be assumed below that expression

data has been generated from a two-color microarray platform, such that the response yg

represents the relative expression intensities oftwo RNA sources that have been labeled

with red (Rg ) or green (08) dyes. In particular, y8 will represent the log-ratio of the

distinct expression intensities.

R

yg =1082[‘6§'] =1082(Rg) _10g2(Gg)

8

For the case ofhigh density oligonucleotide platforms, the response variable y8

will be absolute log-intensities rather than relative log-ratios. This modification, however,

does not alter the formulation to follow, which will focus on the two-color case. It will

be assumed that each gene has been represented on a total of n arrays, such that n



replicate values of yg are available. In vector format, these n replicate measurements are

represented by the random vector y; = (ygl ,..., ygn ). Replicates represent RNA samples

that have been obtained from independent sources (biological replicates), rather than

multiple samples that have been taken from the same individual (technical replicates). It

is further assumed that the data have been normalized to prevent systematic variation

from influencing the results of the differential expression analysis.

The first step towards building a linear model is construction of an appropriate

design matrix (X) that serves to specify the RNA targets used on arrays. The design

matrix used is generally non-unique and can vary according to the parameters included in

the model. The systematic component of the model is represented byXag , where ug is a

vector of coefficients representing a series of contrasts. The coefficient vector ug can be

viewed as the eflects of interest in the linear model analysis. In the familiar context of

multiple regression, these coefficients are the ,6, most often estimated by least-squares

methods. The model partially explains the variance among the elements of yg

with E(yg) = Xag. The (18 can be estimated by least-squares, maximum likelihood, or

robust regression.

Consider as an example a saturated direct design for two-color microarrays with

three sources ofRNA. This example was provided by Smyth (2004) and is illustrated in

Figure 1-1. Given this design, one possible design matrix and coefficient vector are the

following.



 

AB BC CA 

   
Array #1 Array #2 Array #3

   
Figure 1-1. Saturated direct design for two-color microarray with three samples.

Three RNA sources are considered (A, B, and C) using three microarrays (l, 2, and 3).

The figure inset on the left provides a summary of the RNA-array hybridization scheme,

in which the RNA source at the base of each arrow is labeled green, while the source at

the tip of each arrow is labeled red (example from Smyth 2004).

B—A

X: 0 l a :

lc—Bl

The design matrix and coefficient vector given above can then be used to

calculate the expected value of the random response vector y R . In accordance with the

definitions of y, presented above for two-color microarray platforms, this expectation

represents relative log—ratios among the three sources of RNA.

y“ 0 B'—A

B—A

y —1 —l A—C



The contrast matrix (C) serves to specify which comparisons are of interest. In

general, only some of a larger number ofpossible contrasts of the coefficients will be of

biological importance for any one experiment. These selected contrasts are represented

by [i g , which is obtained by applying the transposed contrast matrix to the coefficient

vector ag.

Returning to the example presented in Figure 1-1 , the simplest possible case is

that in which only one specific contrast is of interest. Suppose, for instance, that a

researcher wishes to compare the RNA abundance in sample C to that of sample A. This

particular contrast is obtained by choosing the vector (1, 1) as the contrast matrix.

C = (1 1)

Applying this contrast matrix (vector) to the coefficient vector then yields the

desired comparison.

pg =(1 1{B_A]=C—A
C—B

Typically, more than one contrast among RNA sources will be of interest. Such

scenarios, however, are easily accommodated by an alternative specification of the



contrast matrix. For example, referring again to Figure 1-1, it may be of interest to

evaluate all possible contrasts among the three sources ofRNA. In this case, the

following contrast matrix yields the appropriate set of contrasts [3 g .

The contrast matrix yields the following comparisons of interest.

The numerical values of [I g are simply the log-ratio fold changes that are of

interest. In the above example, therefore, [3 g is a vector that represents the log; fold-

change in expression between RNA sources B/A, C/B, and C/A. While more complex

hypotheses are possible, the main interest is to determine whether the elements of [I g are

significantly different from zero, i.e., whether expression values differ between RNA

samples. For thejtlr entry of [3 g , therefore, it is of interest to test the null hypothesis

H0:,8g,- = 0 versus the alternativeHA:,Bg]. at 0.

The standard t-statistic makes two basic assumptions regarding the distribution of

the fig]. and s: for any given gene. Additional assumptions will be required in the

context of the moderated t-statistic (see section 3). Let tig represent the coefficient

10



estimator of mg , and suppose that (“18 has covariance matrix Vgs: . Since we wish to

make inferences regarding the elements of [3 g , it is necessary to obtain the covariance

matrix of fig (Smyth 2004).

var(|3g) = var(CT&g)= CT var(&gk' = CTVng:

Hence, Ii 8 has covariance matrix CTVgCs: . The elements of this matrix are a

sub-sarnple ofthose from Vgs: , and thus depend on VAR(&) for individual effects that

are of interest (as specified by the contrast matrix). The variance associated with thejth

contrast of interest (i.e., fig}. ) is therefore proportional to 0': times thejth diagonal

T . . . .

element of C VgC . Letting thrs latter quantity be represented by vgl. , the variance

associated with thejth contrast of interest is vgi 0:. It is assumed that the estimated value

ofthejth contrast of interest approximates a normal distribution with mean fig,- and

variance vgio': (see Smyth 2004).

flame”: ~ Nagoya":

If dg represents the degrees of fi'eedom associated with error term in the linear

model, then dgs: / 0': ~ 2'3, from sampling theory (Rice 1995). Rearranging this

distributional equality yields the sampling distribution of s: .

ll



2

a
2 2 g 2

Sglag [d ]ng

g

The elements of [3 8 therefore approximate a normal distribution, and the variance

of each element follows a scaled chi-square distribution. The ratio of fig]. to sg , ivy. thus

represents a normally distributed random variable divided by a chi-square random

variable with dg degrees of freedom, and is therefore a t-distribution with dg degrees of

freedom (Rice 1995).

 

The above represents the ordinary t-statistic and has been used in a number of

studies in which the interest has been to determine whether differential expression has

occurred between two RNA sources (e.g., tumor versus normal tissue). The two primary

problems with this statistic are immediately upon inspection. First, if the value of

sg ,lvgj is small by chance for a particular gene, then very large values of t8,. may result

even if the estimated fold-change (38,-) is relatively small. Such genes are unlikely to be

ofbiological importance, but would nonetheless be identified as differentially expressed

based on the above statistic. The second problem lies in the estimation of s: based upon

what is a sample size equal to the number of arrays involved in the study, which would

12



most often not exceed six in a simple two sample case. Although additional assumptions

regarding the data are required, these issues are addressed by the statistics implemented

in the Lima linear modeling procedure.

13



Section 3 The moderated t and posterior odds statistics

The Limma linear modeling package evaluates hypotheses associated with

contrasts of interest based upon two different test statistics. The moderated t-statistic (7 )

is an extension of the standard t-statistic introduced in section 1, while the posterior odds

statistic (0) is based upon the work of Lonnstedt and Speed (2002), and provides an

indication of the likelihood of differential expression with respect to a given contrast. The

moderated t-statistic is generally used as a basis for obtaining p-values, while the

posterior odds is primarily used for ranking genes according to evidence for differential

expression. Gene rankings based upon the posterior odds are identical to those based

upon the moderated t-statistic if the microarray data under consideration does not have

missing values. Ofthe two statistics, the moderated t statistic may be of greater practical

utility, since it is based upon fewer assumptions in comparison to the posterior odds. As

discussed below, both statistics are based upon certain hyperparameters that must be

estimated from the data. One particular hyperparameter upon which the posterior odds is

based requires knowledge regarding the proportion of genes that are differentially

expressed, which is unknown and difficult to estimate from the data. The posterior odds

is therefore ultimately dependent upon an assumed value regarding the proportion of

differentially expressed genes. The moderated t-statistic, however, is not dependent upon

voj. Another advantage of the moderated t-statistic is that it is easily extendable to

multiple testing ofmultiple contrasts using the F distribution. The central ideas leading to

the moderated t-statistic and posterior odds statistics are discussed below, with particular

attention to the assumptions that underlie their probabilistic interpretation. It should be

mentioned that some notations and concepts are introduced below without immediately

14



stating a complete and precise definition. This has been done for clarity and allows for an

initial focus on the main results and ideas, subsequently followed by details where

appropriate.

The moderated t-statistic

The central difficulty associated with the standard t-statistic is the low number of

observations available for individual genes. This low replication leads to poor estimates

of the standard deviation associated with each gene (sg ). In microarray datasets,

however, while replication associated with individual genes is low, there is ample

replication with respect to the thousands of genes that are represented on an array. The

advantage of the moderated t-statistic over the standard t-statistic lies in the manner in

which this source of replication is utilized to obtain most stable estimates of sg for

individual genes. The moderated t-statistic (7 ) is thus identical to the standard version,

except that an improved estimator of SE (3g ) is substituted into the denominator (Smyth

2004)

~ fig,-

tgj 34v
g gt

 

The estimator 3g is improved in the sense that it represents a weighted average

between the observed sg for each individual gene and a prior value so. The critical

choice of s0 is made within an empirical Bayesian framework, utilizing information from

15



all genes, and is explained below. Ultimately, this shrinkage towards a prior estimate so

prevents problems associated with very large or very small sg , thereby increasing the

stability of associated with the denominator of t~ . A reflection of this added stability is

that 7 is now associated with degrees of freedom dg + do , where do represents the prior

degrees of freedom associated with so. For a fixed level of a , therefore, a smaller

observed value of ITI is required to obtain a significant result.

The "532 is a weighted value between the observed and prior variance for

individual genes, with the weighting determined by the relative magnitudes of dg and

do (Smyth 2004).

2 2
doso +dgsg

do +dg

~2
 

The value of dg represents the residual degrees of freedom associated with the

linear model fit to gene g, and is therefore proportional to the replication that is available.

The value of dg will be identical among all genes if no values are missing from the data.

The prior degrees of fi'eedom do is estimated based upon how .6 are distributed among
g

all genes represented on arrays (see below). In particular, do will be large when

variances are homogenous among all genes, and conversely, do will be small in

magnitude if variances differ greatly among genes. If the s; are similar among genes,

therefore, 3'; is nearly equal to the prior so for all genes, in which case 7 is directly

l6



proportional to the observed fold-change. If the s“: differs considerably among genes,

however, 382 is determined by the 5; associated with individual genes to a greater extent,

shrinkage towards the prior so is limited, and 7 becomes increasingly similar to the

standard t-statistic discussed in section 1.

The moderated t-statistic can be viewed as a type of offset t-statistic along the

lines ofthose developed by Tusher et a1. (2001), Efron et a1. (2001) and Brobery (2003).

Offset t-statistics include an added (constant) term in the denominator to prevent small

variances from leading to significant differential expression calls. In particular, for the

moderated t-statistic, if do < co and dg > 0 then,

 

2

tog
In the above formulation of the moderated t-statistic, the moderated variance 3

includes the term (do / dg )53 , which sets a lower limit on the magnitude of the

denominator. In contrast to the statistics proposed by Tusher et a1. 2001 , Efron et a1. 2001

and Brobery 2003, however, the constant term (do /dg )53 is not arbitrary, but is instead

estimated from the data based upon an underlying distributional theory (described

below).

17



All advantages of 7 over t cited above are attained at the expense of an additional

assumption, as well as the having to estimate hyperpararneters upon which the term '5;

depends (i.e., so and do). The primary assumption introduced is that the estimators [i g

and s: are independent for different genes, which is not likely to be valid for most

microarray datasets. The estimation of so and do is somewhat less problematic, due to

the well developed distributional framework in which these parameters are embedded,

which allows stable estimates based on information borrowed from all genes considered

in the analysis. A sketch of the manner in which estimators of so and do are derived is

provided below, further details of which can be found in Smyth (2004).

A hierarchical model is assumed that describes the manner in which a: varies

across all genes. Given the prior estimator so with do degrees of freedom, and noting the

relationship ks2/02 ~ Xi expected under sampling theory (Rice 1995), it is assumed that

0: follows a scaled chi-square distribution across genes.

 

2

2 doso
0 ~

g 2

Id,

If it is further assumed that the fig,- approximate a normal distribution, the joint

distribution of the observed s; and fly. under the null hypothesis can be derived by

carrying out the following integration (Smyth 2004).

18



P(“,,-.s:I/3g,- =0) = jP(/§g,-|02.flg,- =omega010(02)ch2

All three probability terms in the integrand are known by the assumptions stated

above. Following substitution ofthe appropriate normal or chi-square distributions and

integration of the resulting term, it can be shown based upon the joint distribution

P(fizz-$21412 = 0) that that the 3: among genes is expected to follow a surprisingly

simple distribution (Smyth 2004).

S: ~ 83Fdg vdo

The distributional result stated above allows for estimation of the Sti and do

hyperparameters based upon the observed distribution of s: among all genes. In

particular, if 2g = log s: and f(o) to represents the digarnma function (Smyth 2004),

define the following quantity eg for each gene.

eg =zg —f(dg /2)+log(dg /2)

Lastly, letting G represent the number of genes present on arrays and h(o)

represent the trigarnma function, a closed form estimators of do and so are provided by

the following equations (Smyth 2004).

19



—1 eg—E
d0=2h mean G —6——1— —h(dg/2)

s5 = exp{§+ f(do /2) — log(do /2)}

The posterior odds statistic

The posterior odds statistic provides a convenient summary measure for

comparing the probability that a gene is differentially expressed (fig,- ¢ 0) to the

probability that a gene is not differentially expressed ( fig,- = 0) with respect to thejth

contrast of interest. This statistic was originally developed by L6nnstedt and Speed

(2002) and is primarily intended to provide a means ofranking genes, rather than as a

device upon which formal inferences can be based. The limitations ofthe posterior odds

(08,.) statistic are immediately apparent from its definition below (Smyth 2004), in which

pj represents the proportion of genes that are differentially expressed.

    

_ ng, ¢q?g,,s§) = ng, ¢0,Tg,,s§) = p1. Pool/98,. :0)

8’ Pm, =0I?,,-.s:) Pm,- =0.?',..s:) 1— p,- Peg-w, =0)

The last ratio reveals that the posterior odds are dependent upon the value of pj ,

which is unknown and cannot be reliably estimated from the data. Moreover, substituting

the distribution of t3,- into the last ratio reveals that 08,. is dependent upon an additional

hyperparameter voj .
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The value voj represents the unsealed variance of 16y , such that vog-2 08 is the

standard deviation of the log fold-changes associated with differentially expressed genes.

Smyth (2004) derived a closed form estimator of V0; , which had not previously been

obtained in the original formulation of Lonnstedt and Speed (2002). This estimator,

however, is based only on genes that are differentially expressed, rather than on all genes

represented on the array (as with do and so ). Given that estimates of voj are based upon

a smaller number of genes, it is likely that these estimates are less stable than those

obtained for other hyperpararneters. In support of this conjecture, low stability of voj

estimates was, in fact, observed in simulation studies carried out by Smyth (2004). These

concerns, however, are compounded by the dependency of 0g,- on pj , for which no

estimator is available.

Arguably, it is conceivable that researchers could, in some cases, have a rough a

priori idea regarding what fraction of genes ( pj) should be differentially expressed in a

particular experiment. It is clear that some treatments should have a larger impact on a

transcriptome than other treatments. It is reasonable, for example, to suppose that treating

an Arabidopsis plant with a genotoxic stress will have much smaller effect on expression

levels than prolonged temperature stress. Nevertheless, there does seem to belittle basis
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for specifying particular values of pj , such as whether 10%, 20% or 30% of the genome

should be differentially expressed by genotoxic stress. These considerations become

especially awkward given the expected dependence of pj on the number of arrays used

in an experiment and consequent levels of statistical power.

In light of the above considerations, Ogi is directly proportional to 7g]. , and for

this reason, rankings of genes based upon 0g]. are in agreement of those based upon 7g,-

(when there are no missing values in the data). The statistic 08,. therefore remains a

useful tool for ranking genes, despite its limitations as a tool for drawing statistical

inferences.
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Section 4 Discussion

Statistical tests for differential expression are widely used throughout the research

community and are a starting point in the analysis ofmost microarray datasets. A number

ofprocedures have now been developed that represent considerable improvements over

methods employed in early studies of gene expression. The Lima package allows

researchers to test hypotheses for two sample comparisons, but also provides a flexible

linear model implementation that permits testing ofhypotheses that are of considerably

greater complexity. This chapter has reviewed the basic framework of linear models as

applied to microarray data, as well as the statistics used by Limma to rank genes and

carry out inferences regarding differential expression. Perhaps the most critical point

emerging from this review is that statistical inferences based upon Limma’s statistics are

dependent upon key distributional assrnnptions, and should therefore be applied with

some caution. It is clear, for example, that the posterior odds statistic should only be used

as a tool for ranking genes with respect to evidence for differential expression. The

moderated t-statistic, in contrast, is of greater potential utility as an inferential statistic.

However, as noted by Smyth (2004), the moderated t-statistic assumes that variances

associated with gene expression measurements are independent across genes, in addition

to a number of distributional requirements that need to be approximately valid for the

dataset under consideration. Like the posterior odds, therefore, the moderated t-statistie is

best used as a means for ranking genes according to evidence of differential expression.

Overall, these considerations underscore the challenges entailed by the complexity of

microarray data. For some experimental designs, especially those for which a small

23



number of arrays have been used, ideal methods for drawing inferences regarding

differential expression remain to be developed.

Simulation analyses are an important part of evaluating the efficiency of statistical

procedures, and provide a useful means to compare new and pre-existing methodologies.

Smyth (2004) carried out simulation analyses to explore how results obtained using the

statistics implemented in Lima compared with those based upon fold-change, the

ordinary t-statistic, an offset t-statistie (Efron et al. 2001), and the B-statistic developed

by Lonnstedt and Speed (2002) (implemented in the SMA package for R). Several

different sets of simulated data were generated, with each set exhibiting a different

pattern of variance (02) among genes. The results of these investigations revealed that,

when variances are homogenous among genes, alternative methods were comparable in

terms of false discovery rates. Differences among alternative methods, however, were

more substantial when variances were heterogeneous among genes. In such cases, it was

found that the moderated t-statistie exhibited superior performance to alternative methods

in terms of false discovery rates and the area underneath ROC curves. The second main

finding from Smyth (2004)’s simulation analyses was that estimation of the

hyperpararneters 56 and do was very accurate, while in contrast, estimation of vo could

be poor if the proportion of differentially expressed genes is specified incorrectly. In

particular, if the proportion of differentially expressed genes is not correctly specified,

then vo is generally overestimated by as much as 73% (when variances are highly similar

among genes). Since the posterior odds statistic is dependent upon the vo

hyperparameter, the simulations illustrate why this statistic provides a poor basis for

inferences about differential expression.
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It should be noted that the simulations carried out by Smyth (2004) used data

generated under the assumptions of the hierarchical model, such that variances among

genes followed an inverse chi-square distribution and contrast coefficients were

approximately normal in distribution. In an important sense, therefore, simulations were

tailored to the statistics implemented in the Limma package, such that the relative

performance ofthe Lima procedure could be inflated beyond that typically observed on

real datasets. A second important point is that the P-values associated with the moderated

t-statistie were not explicitly checked for accuracy. Hence, although the relative

performance of the moderated t-statistic was superior to that of other methods, the

accuracy associated with p-values is not guaranteed (especially with respect to real

datasets for which hierarchical model assumptions may not be valid).

In addition to simulation analyses, evaluating the relative performance ofnew

methods on real datasets is critical to judge how well underlying assumptions conform to

biological variability. When applied to real datasets, Smyth (2004) found that the

moderated t-statistic and posterior odds yielded rankings that were consistent with prior

biological knowledge associated with the genes being analyzed. Alternative methods, in

contrast, were in some cases not consistent with preexisting biological knowledge. In

Figures 1-2 and 1-3, the associations between gene rankings based upon fold-change, the

ordinary t-statistic, and the moderated t-statistic are shown. These plots were constructed

from the top 30 genes that emerged fiom Smyth (2004)’s analysis of the Swirl dataset

(Dudoit and Yang 2003). There was a weak overall association between ranks based upon

fold-change and the moderated t-statistic (r = 0.402), although there was an overall

stronger association between ranks based upon the ordinary and moderated t-statisties (r
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= 0.765). An interesting difference evident from Figures 1-2 and 1-3 is that, with respect

to fold-change, differences from Lima rankings are of the same magnitude for both

large and small rankings. With respect to the ordinary t-statistie, however, differences

from Lima rankings are large for strongly upregulated genes, but rather small for

strongly downregulated genes. This distinction most likely reflects the shrinkage of large

ordinary t-statistics that arise from spuriously low variance estimates associated with

some genes.

An ideal procedure for differential expression analysis would be powerful enough

to reliably detect differentially expressed genes, but at the same time, not critically

dependent upon distributional assumptions that are unlikely to be valid for most

microarray datasets. It could be argued, for example, that ifp-values generated by a

differential expression procedure are not meaningful due to heavy dependence upon

shaky assumptions, the purpose behind developing a probabilistic framework has been

defeated. At the other extreme, however, two-sample non-parametric methods, which are

free ofrestrictive assumptions, often lack the power to detect many differentially

expressed genes ofbiological relevance and are therefore not useful. The moderated t-

statistic and posterior odds have a number ofpositive aspects that represent

improvements over earlier approaches, even if all properties associated with the

hypothetical “ideal statistic” are not satisfied. Since differential expression analysis

remains an active area of investigation, there are prospects for continued improvement

through the development ofnew methodologies (e.g., Pan 2003; Lu et a1. 2005; Zen and

Hastie 2005).
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Although differential expression analysis has been the primary focus of this

review, it is important to note that, in most experiments, biologically important

transcriptional changes will occur that are undetected. Differential expression analysis

effectively divides the transcriptome into “important” versus “non-important” genes

(with regard to the biological phenomena under consideration). While this schism is a

convenient summary device for the human mind seeking to understand a given process, it

may often be an inappropriate characterization. The true importance of genes with regard

to a particular process (e.g., stress response, cancer proliferation) is likely to be as

continuous as the p-values generated by a differential expression analysis. As the number

of arrays used to investigate a particular treatment increases, the effect sizes declared

significant by differential expression analysis become increasingly small, and

correspondingly, the list of “important genes” will grow in length. The concept of

differential expression, therefore, is relative in a key sense, and in most cases, it will be

misleading to believe that genes not declared differentially expressed are unimportant. An

important future goal is to develop investigative methodologies that go beyond

differential expression. Such methods will utilize whole-genome datasets more efficiently

by recognizing small transcriptional changes below the differential expression threshold,

yielding outputs of greater depth than the “list of genes” approach, which (hopefully) can

be interpreted in a biologically meaningful way.

An additional issue relevant to all differential expression analysis methods is the

means by which multiple comparisons are accounted for. Regardless of the test statistic

that is used, differential expression analysis involves performing as many tests as there

are genes represented on a given array. The p-values generated by a given test statistic
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must therefore be adjusted to account for the large number of tests that are being

performed. The Bonferroni method is the simplest approach to controlling for a large

number of hypothesis tests. Bonferroni p-value adjustments control the family-wise error

rate by dividing p-values associated with each gene by n, where n is the number of genes

being tested in the differential expression analysis. Following this adjustment, genes

associated with P-values less than a nominal type-I error rate of a can be declared as

differentially expressed at level a. The Bonferroni approach seems to perform

moderately well in many applications in the biological sciences (Sokal and Rohlf 1995).

In the context of differential expression analysis, however, it is generally agreed that it

yields results that are far too conservative, and may lead to a failure to detect genes that

are ofbiological importance (Allison et a1. 2006). To remedy this short-coming, it was

proposed that controlling the false discovery rate would be more appropriate in the

context of differential expression analysis (Benjamini and Hochberg 1995). This proposal

has been well-received, such that the Benjamini-Hochberg approach to adjusting for

multiple testing via control ofthe false discovery rate has become widely applied. The

Benjamini-Hochberg method, however, assumes that p-values generated for each

individual gene are independent of one another. This assumption is unlikely to be valid in

most cases, although it has been argued that the method is robust to certain types of

dependency structures among genes (Reiner et al. 2003). Some recent approaches have

attempted to relax the independence assumption by developing resarnpling methods to

control for false discovery rate (Pollard and van der Laan 2004; van der Laan et a1. 2004).

In addition, a large number ofmethods have been developed based upon mixture model

distributions (Pounds and Morris 2003; Datta and Datta 2005; Do et a1. 2005), which are
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not free of assumptions, but are generally more powerful than the Benjamini-Hochberg

method (Allison et al. 2006).

The generation of biological knowledge from DNA microarray technology

depends critically on the statistical validity that underlies differential expression

procedures. Differential expression, however, is just one of several issues that arise in the

context ofDNA microarray data analysis. Apart from differential expression, the

reliability associated with data preprocessing and normalization, clustering methods, and

classification algorithms are also of considerable importance. There are several reasons

for optimism regarding the prospects for future improvements ofprocedures applied to all

phases of nricroarray data analysis. The transition time between algorithm development

and implementation, for example, should be considerably reduced in light of a freely

available user-friendly statistical computing environment (Gentleman et al. 2004). A

second positive development is the widespread adoption ofthe MIAME (minimum

information about a microarray experiment) standards (Brazrna et al. 2001), which will

increase the efficiency with which analyses can be carried out, and when necessary,

independently repeated by new investigators. With the abundance of tools now available,

the volumes of data generated by microarrays will serve as an increasingly valuable

resource for addressing biologically significant research questions.
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Figure 1-2. Comparison of ranks based on the moderated t-statistic with ranks

based on fold-change. Smyth (2004) calculated both the moderated t-statistie and fold-

change for genes within the Swirl dataset (Dudoit and Yang 2003). The scatterplot above

displays the association among ranks calculated based on the two methods for the top 30

genes. Open circles represent strongly down-regulated genes, while closed circles

represent strongly up-regulated genes.
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Figure 1-3. Comparison of ranks based on the moderated t-statistic with ranks

based on ordinary t-stastistic. Smyth (2004) calculated both the moderated t-statistic

and the ordinary t-statistic for genes within the Swirl dataset (Dudoit and Yang 2003).

The scatterplot above displays the association among ranks calculated based on the two

methods for the top 30 genes. Open circles represent strongly down-regulated genes,

while closed circles represent strongly up-regulated genes.
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CHAPTER 2

TRANSCRIPTIONAL PROFILING OF ARABIDOPSIS HEAT SHOCK GENES

Summary

The heat shock response ofArabidopsis thaliana is dependent upon a complex regulatory

network involving twenty-one known transcription factors and several heat shock protein

families. It is known that heat shock proteins (Hsps) and transcription factors (Hsfs) are

involved in cellular response to various forms of stress besides heat. However, the role of

Hsps and Hsfs under cold and non-thermal stress conditions is not well understood, and it

is unclear which types of stress interact least and most strongly with Hsp and Hsf

response pathways. We have examined transcriptional response profiles ofArabidopsis

Hsfs and Hsps to a range of abiotic and biotic stress treatments (heat, cold, osmotic stress,

salt, drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, and pathogen

infection) in three different types of tissue (roots, shoots, leaves). Our findings

demonstrate that nearly all stress treatments interact with Hsf and Hsp response

pathways, suggesting considerable cross-talk between heat and non-heat stress regulatory

networks. We identified several heat shock gene expression pattems that have not been

previously described. First, with respect to the Hsp20 protein family, large expression

responses occurred under all types of stress, with striking similarity among expression

response profiles. Second, a number of Hsp20, Hsp70 and HsplOO genes were

specifically upregulated twelve hours after wounding in root tissue, and exhibited a

similar expression response pattern during recovery fiom heat stress. Lastly, among all

protein families, large expression responses occurred under ultraviolet-B light stress in

shoot tissue but not root tissue. These findings have implications regarding the molecular

basis of cross-tolerance in plant species, and raise several new questions to be pursued in

future experimental studies of the Arabidopsis heat shock response network.
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Section 1 Introduction

The heat shock response network ofArabidopsis thaliana involves temperature

perception mechanisms, an intricate array of signal transduction networks, and twenty-

one known transcription factors that activate heat shock proteins and other heat-stress

related genes (Never et al. 2001; Sung et al. 2003; Larkindale et al. 2005). The

availability of genome sequence data has considerably advanced our understanding of

this heat shock response pathway, as well as the molecular basis of regulatory networks

that underlie other forms of environmental stress in Arabidopsis (e.g., cold, salinity,

drought). One result of this development has been increased recognition of the cross-talk

or overlap that exists among cellular responses to different environmental stress

treatments (e.g., Cheong et al. 2002; Rensink et al. 2005; Ma et al. 2006; Mittler 2006;

Rossel et al. 2006). In this respect, heat shock proteins (and their associated transcription

factors) are of special interest. Heat shock proteins are molecular chaperones that regulate

the folding, localization, accumulation, and degradation ofprotein molecules in both

plant and animal species (Feder and Hofinann 1999). Heat shock proteins are therefore

believed to play a broad role in many cellular processes, which may impart a generalized

role in tolerance to multiple environmental stress treatments apart fiorn heat stress.

Understanding the role ofheat shock proteins under cold and non-thermal stress

conditions may therefore provide insight into multiple stress tolerance mechanisms

(Hoffrnann and Parsons 1991). This may be of considerable importance for improving the

production of agriculturally important crop species under field conditions, which are best

characterized as an interaction of several different types of stress, rather than just a single

stress treatment in isolation (Mittler 2006).
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The Arabidopsis heat shock proteins (Hsps) and transcription factors (Hsfs) have

been well characterized on the basis of genome sequence information (Agarwal et al.

2001; Lin et al. 2001; Never et al. 2001; Krishna and Gleer 2001; Scharf et al. 2001). In

addition to the twenty-one known transcription factors (Never et al. 2001), the

Arabidopsis heat shock response is partly mediated by thirteen Hsp20 proteins (Scharf et

al. 2001), eighteen Hsp70 proteins (Lin et al. 2001), seven Hsp90 proteins (Krishna and

Gleer 200.1), and up to eight members ofthe Hsp100 protein family (Agarwal et al.

2001). The molecular pathways leading to Hsp expression are not entirely understood

(Sung et al. 2003), but involve temperature perception mechanisms coupled with multiple

signal transduction pathways (Larkindale et al. 2005), which together lead to the

activation of Hsfs that induce expression ofheat shock genes by binding to heat shock

elements (Scheffl et al. 1998). There are several levels at which this molecular pathway

may overlap with those underlying response to cold and non-thermal stress treatments.

However, since Hsps play a uniquely broad role in cellular processes, they are

particularly likely to underlie interactions between heat and non-heat stress response

pathways. A role of heat shock proteins in cellular response to cold and non-heat stress

treatments, for instance, has been supported by several gene expression studies. In

Arabidopsis and other plant species, various Hsps have been induced by low temperature

(Sabehat et al. 1998), osmotic stress (Sun et al. 2001), salt (Liu et al. 2006a), oxidative

stress (Banzet et al. 1998; Lee et al. 2000; Volkov et al. 2006), desiccation (Liu et al.

2006b), exposure to intense light (Desikan et al. 2001; Hihara et al. 2001; Rossel et al.

2002), wounding (Cheeng et al. 2002), and heavy metal exposure (Gyorgyey et al. 1991).
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While a number of studies have shown the Hsp expression can be induced under

cold and non-thermal stress treatments, no comparative analyses have been carried out to

identify which particular stress treatments are the weakest and strongest inducers of Hsp

expression. It therefore remains unclear which stress-response pathways overlap most

extensively with this important part of the Arabidopsis heat shock regulatory network. If

the primary stress conditions interacting with Hsp response pathways can be identified, it

would be of considerable interest to understand how Hsfs and Hsps contribute to

tolerance under such stress conditions. The physiological role of Hsfs and Hsps in

promoting tolerance may differ depending on the nature ofthe stress imposed upon the

cell. Heat stress, for instance, leads directly to denaturatien of cellular proteins. It is

therefore clear how molecular chaperone activity may contribute to high temperature

tolerance via prevention of deleterious protein conformations and elimination ofnon-

native aggregations. With respect to cold and non-thermal stress treatments, however, the

impact on cellular protein conformations is less direct and not as well understood. The

role ofHsps as molecular chaperones, therefore, may not strictly parallel their function

under heat stress, and it is possible that their cellular function extends beyond the

chaperone activity that has been well characterized in vitro (e.g., Lee et al. 1997; Lee and

Vierling 2000). One possibility, for example, is that Hsps limit damage resulting from

accumulation of reactive oxygen species, which are generated as messengers and

elements of signal transduction pathways under a wide range of stress conditions (Pastori

and Foyer 2002). In both plant and animal species, for instance, there is evidence to

suggest that Hsps protect against reactive oxygen species (Mehlen et al. 1993; Fleming et

al. 1992; Wheeler et al. 1995; Hamdahl et al. 1999; Preville et al. 1999; Ding and Keller
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2001; Martindale and Helbrook 2002; Kregel 2002; Neta—Sharir et al. 2005). This

hypothesis is particularly intriguing in light of the considerable interconnectivity that

exists between heat shock and oxidative stress response pathways in plant species

(Desikan et al. 2001; Panchuk et al. 2002; Miller and Mittler 2006; Volkov et al. 2006).

DNA microarray technology offers a promising approach for better understanding

the functional role ofArabidopsis heat shock proteins and transcription factors under both

heat and non-heat stress conditions. Recently, a number of genome-wide microarray

datasets have been generated and made publicly available by the AtGenExpress

consortium. These resources provide an opportunity to profile Hsf and Hsp expression

over a wide range of stress conditions simultaneously. In this study, we utilized

AtGenExpress datasets to analyze transcriptional responses ofArabidopsis Hsfs and Hsps

to a total of ten different abiotic and biotic stress treatments (cold, osmotic stress, salt,

drought, genotoxic stress, ultraviolet light, oxidative stress, wounding, high temperature,

and pathogen infection). The gene expression data we consider was generated fiom three

different types ofplant tissue (roots, shoots, leaves), with expression measurements

obtained at up to six different time points of stress exposure (0.5, l, 3, 6, 12, and 24

hours). With respect to each of five protein families (Hsf, Hsp20, Hsp70, Hsp90, and

Hsp100), we evaluated whether expression responses of each family to each stress were

significantly large in comparison to other Arabidopsis genes. This analysis provided

indication ofwhich types of stress interacted most and least with each protein family. In

addition, we characterized Hsf and Hsp stress-response patterns at the level of protein

families, as well as among individual genes within protein families. This allowed

identification of family-level expression patterns under each stress, gene sub-groups
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within families exhibiting similar expression patterns, and individual Hsf/Hsp genes with

large expression responses to several different stress treatments.
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Section 2 Results

An overview ofhow strongly each stress treatment impacted expression levels for

each heat shock gene family is provided in Tables 1 and 2 for root and shoot tissue,

respectively. To compare the effect of each stress, a summary statistic was developed (I)

that represents the median level of fold-change induced by each stress among members of

a given protein family (see Equation 2 in Methods). For the Hsp20, Hsp70 and Hsp90

protein families, the largest expression responses were associated with the high

temperature treatment, with median levels of fold-change in each family (T) ranging from

one to above four (Tables 1 and 2). However, for the Hsf and Hsp100 protein families,

the largest magnitude expression responses were associated with osmotic stress (Table 1).

For each stress, it was of interest to determine whether median-level expression responses

of each gene family were large in comparison to all other genes represented on the ATHl

array. A resampling procedure was therefore carried out to evaluate the likelihood of

observed T statistics under a null hypothesis ofrandom sampling fi'om the genome (see

Table 1 caption and Methods). Significant T statistics were found with respect to each

type of stress we considered, indicating that for one or more protein families, each stress

induced expression responses that were large in comparison to other Arabidopsis genes

(see Tables 1 and 2). High temperature was associated with a significant T statistic for all

protein families except Hsp100 in both roots and shoot. The second strongest elicitor of

expression responses was oxidative stress, since it was associated with a significant T

statistic for most families in both tissue types. Interestingly, for the pathogen stress

treatment (not shown in Tables 1 and 2), significant T statistics were associated with
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respect to the Hsp70 and Hsp90 families (P = 0.001 and 0.018, respectively), while T

statistics were non-significant for the Hsf, Hsp20 and Hsp100 families (P > 0.096).

Protein families exhibiting strong expression responses to many stress treatments

exhibit a generalized expression response pattern. The Hsf and Hsp20 were associated

with the most stress-general expression patterns, since for both families, T was significant

for nearly all types of stress (see Tables 1 and 2). In contrast, the Hsp70, Hsp90, and

Hsp100 families were not so widely responsive across all stress treatments. Family-level

expression response patterns specific to each tissue-treatment combination and variation

among individual heat shock genes are described in the following sections.

Heat Shock Transcription Factors

Heat shock transcription factors were most strongly upregulated under heat, cold,

osmotic, and salt stress treatments. Figure 2-1 displays gene expression response profiles

for all Hsf genes in roots, while Figure 2-2 displays response profiles of Hsfgenes in

sheets. In both tissues, expression responses to cold, osmotic, and salt treatment primarily

occur over the late stages of stress exposure between 6 and 24 hours (see Figs. 2-1 and 2-

2, parts A - C). This pattern contrasts with that observed under heat stress treatment, in

which Hsfs were strongly up-regulated during early stages of stress exposure, with the

effect diminishing after the heat stress was removed beyond the 6 hr. time point (Figs. 2-

1 and 2-2, part I). A general trend among all five heat shock gene groups was a difference

between the effects ofUV-B stress in sheet tissue in comparison to root tissue. With

respect to the Hsf genes, UV-B stress induced strong up-regulation over most time points
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in sheet tissue (Fig 2-2G), but yielded comparatively low gene expression responses in

roots (Fig. 2-1G).

Considerable variation was observed among expression response patterns

associated with individual Hsf genes. To discern which Hsf genes were the least and most

stress-responsive across all stress treatments, we ranked genes according to an index (d)

(see Table 3). The value ofd represents the mean proportion of time points, among all

stress and tissue types we considered, at which a gene was differentially expressed (see

Methods). Highly stress-responsive genes were associated with large values of d, while

genes less responsive to stress were associated with low values ofd. The seven least-

stress responsive Hsf genes were all Class A type Hsfs, and were associated with values

ofd less than or equal to 0.167. The most stress responsive Hsf gene, in contrast, was the

one class C transcription factor in the Hsf family (Hstl , d = 0.456). Cluster analysis

using the HOPACH algorithm identified three multi-member clusters ofHsf genes with

respect to stress-responses across all tissue-treatment-time combinations (stress-clusters

451, 452, and 470) (see Table 2). The heatrnap corresponding to this clustering solution is

provided in section 1C of supplemental data file 1. For comparison, the Hsfs were also

clustered with respect to their expression patterns across the developmental series

conditions analyzed by Schmid et al. (2005) (see Table 3). Members ofdevelopmental-

cluster 60 (see Table 2) exhibited a pattern of tissue-specificity that was found among

certain genes from each of the four Hsp families. The expression pattern was

characterized by strong upregulation specific to seed stages 6 — 10 (ATGE conditions 81

— 84), roots (17 days) (ATGE condition 9), flowers stage 12 (ATGE conditions 34 — 37),
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and flowers stage 15 (ATGE conditions 41 — 45) (see section 1C of supplemental data

file 1).

Hsp20 Protein Family

The Hsp20 protein family exhibited the strongest overall responsiveness to

environmental stress treatments, as well as the most cohesive family-level expression

patterns among member genes. Expression response profiles are displayed in Figures 2-3

and 4 for all Hsp20 proteins in root and shoot tissues respectively. Tissue-specific

patterns ofHsp20 stress-response can be discerned fi'orn a comparison of Figures 2-3 and

24. With respect to the UV-B treatment, for example, strong downregulation ofHsp20

genes occurred between the 3 — 6 hr. time points in roots (Fig. 2-3G). In shoots, however,

UV-B stress induced strong upregulation over this same time period (Fig. 2-4G). With

respect to the cold stress treatment, Hsp20 genes were downregulated between the 3 — 6

hr. time points in roots (Fig. 2-3A), while no such response pattern was associated with

sheets (Fig. 2-4A). More subtle tissue differences were associated with wounding and

heat stress. Hsp20 proteins were responsive to both stress treatments, but the temporal

dynamics of expression differed between the two tissue types (see Figs. 2-3H, 2-31, 2-4H

and 2-4I).

The expression responses of Hsp20 proteins under wounding and heat stress

revealed surprising family-level patterns within root tissue. Nearly all Hsp20 proteins

exhibited strong upregulation 12 hrs. following wounding ofroot tissue (see Fig. 2-3H).

Under the heat treatment, Hsp20 upregulation also occurred at the 12 hr. time point (Fig

2-3 I), which represented the heat stress recovery period (9 hrs. following cessation of



heat stress). These expression responses during heat stress recovery were a unique aspect

ofthe Hsp20 family, since generally, all other heat shock genes were responsive only

while heat stress was directly applied (0.5 — 3 hrs.). For a number of Hsp20 genes,

moreover, the 12 hr. upregulation under heat strongly coincided with that observed under

the wounding stress treatment. This synchrony between expression response profiles

under wounding and heat treatment in root tissue is evident from Figure 2-5, which

displays response profiles of nine Hsp20 genes under wounding and heat stress

treatments.

Most Hsp20 proteins exhibited strong expression responses to several types of

stress. AtHsp14.2-P(r) exhibited the weakest overall responsiveness to stress (d = 0.096),

while in contrast, AtHsp18.5-Cl(r) showed the strongest expression responses to stress

treatments (d = 0.325) (see Table 4). Cluster analyses revealed strong similarities among

Hsp20 genes with respect to stress-response patterns and the developmental series of

Schmid et al. (2005) (see section 2C of supplemental data file 1). Members of stress-

cluster 30 (AtHsp23.6-M, AtHsp25.4-P) and stress-cluster 42 (AtHsp26.5-P(r),

AtI-Isp15.7-Cl(r), AtHsp22.0-ER) were highly responsive to stress treatments in root

tissue. The other multi-gene stress-cluster (21) consisted ofHspl 7 proteins entirely

(AtHsp17.4-CI, AtHspl7.6-CII, AtHsp17.6B-CI, AtHsp17.6C-CI, AtHsp17.7-CII), and

similar to stress-clusters 30 and 42, exhibited large expression responses to all stress

treatments, except that strong responses were present in both roots and sheets. The

members of all three of these stress-clusters, and most Hsp20 proteins in general,

exhibited a similar expression profile among developmental stages (see section 2C of

supplemental data file 1). As among certain Hsfs, this developmental expression profile
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consisted of high expression levels with respect to roots (17 days), flowers stage 12,

flowers stage 15, and seed stages 6 — 10.

Hsp70, Hsp90, and Hsp100 Protein Families

The Hsp70, Hsp90, and Hsp100 protein families were generally associated with

smaller magnitude expression responses across stress conditions. However, members of

these families were stress-responsive, since differential expression occurred under most

stress conditions for nearly every Hsp within these families. Members of Hsp70, Hsp90,

and Hsp100 families were most strongly induced by heat, primarily over the early portion

of the time course (0.5 -3 hrs.), although several genes within each family exhibited large

responses to the cold, osmotic, and salt stress treatments. The Hsp70, Hsp90, and Hsp100

families were all associated with a similar tissue-specific pattern under the UV-B stress

condition (see Fig. 2-6). In particular, expression levels ofmember genes increased at the

3 — 6 hr. time points in sheet tissue, with little or no transcriptional induction in root

tissue. In addition, the expression response pattern identified following wounding and

heat stress in root tissue was also evident with respect to AtHsp70-5, AtI-Isp70-8,

AtHsplOO-l, and to a lesser extent, AtHsp90-1 (see Fig. 2-7).

The individual gene members of the Hsp70, Hsp90, and Hsp100 families are

listed in tables 4, 5, and 6, respectively. On the basis of differential expression, these

families contained both the least and most stress responsive Arabidopsis Hsps. The most

stress-responsive was AtHsp70-4 (d = 0.439), which was differentially expressed under

all stress treatments, including all three time points of exposure to pathogen stress. In

contrast, AtHsp100-2 was the least stress-responsive Arabidopsis Hsp (d = 0.009), and
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was differentially expressed with respect to just one time point under the heat stress

treatment.

Clustering of Hsp90 genes with respect to stress-response patterns assigned five

members to one group (AtHsp90-2, 4, 5, 6, and 7), since these genes were all associated

with highly similar (and weak) expression response patterns in root tissue (see section 4C

of supplemental data file 1). The remaining AtHsp90-l exhibited a strong expression

response pattern distinct from all other AtI-Isp90 genes, and was therefore assigned to a

singleton cluster (see Table 6). Within Hsp70 and Hsp100 families, clustering with

respect to stress-response patterns identified few sub-groups among member genes (see

Tables 5 and 7).

Various members of the Hsp70, Hsp90, and Hsp100 families were associated with

the same developmental expression pattern found among certain Hsfand Hsp20 genes.

This pattern was best exhibited by AtHsp70—4, AtHsp70-11, AtHsp90-l , and AtHsplOO-

1, all ofwhich were highly expressed in roots (17 days), flowers stage 12, flowers stage

15, and seed stages 6 — 10 (see sections 3C, 4C, and 5C of supplemental data file 1).
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Table 1. Oveview. Root tissue. Values of the T statistic associated with each tissue-

treatrnent combination with respect to each of five protein families (Hsf, Hsp20, Hsp70,

Hsp90, Hsp100) in the root tissue type. The value of T is proportional to the median level

of log fold-change induced by a given stress treatment among the n gene members

within a protein family (see Equation 2 in Methods). The P-values associated with each

statistic were obtained by genome-wide resampling and represent the probability of

obtaining an equal or larger value of Tbased on 10,000 random samples of n genes from

the N = 22746 genes represented on the ATHI array. P-values exceeding 0.0245 in the

table below are non-significant following the Benjamini-Hochberg adjustment for

multiple testing (with nominal type I error rate of a = 0.05).

Treatment

cold

osmotic

salt

drought

genotoxic

oxidative

UV-B

wounding

heat

Hsf

(n=21)

0.52(0.001)

0.75(< 0.001)

1.17(< 0.001)

0.33(o.001)

O.24(0.246)

0.23(0.035)

0.27(0.050)

0.27(o.043)

0.49(0.003)

Hsp20

(n = 18)

1.24(< 0.001)

2.12(< 0.001)

1.70(< 0.001)

0.56(< 0.001)

0.72(< 0.001)

O.61(< 0.001)

O.96(< 0.001)

1.18(< 0.001)

4.32(< 0.001)
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Hsp70

(n = 13)

O.45(0.026)

O.48(0.089)

0.45(0.341)

0.26(0.087)

O.31(0.061)

0.26(0.021)

0.27(0.107)

0.35(0.007)

1.55(< 0.001)

Hsp90

(n = 6)

O.32(0.364)

O.74(0.025)

O.64(0.133)

0.15(0.824)

O.27(O.258)

0.19(0.417)

0.17(O.797)

0.32(0.069)

1.02(< 0.001)

Hsp100

(n = 7)

O.25(0.660)

O.66(0.040)

0.52(O.269)

0.20(0.432)

0.27(O.243)

O.31(0.021)

O.24(0.288)

0.35(0.030)

0.50(0.048)



Table 2. Oveview. Shoot tissue. See Table l caption.

Treatment

cold

osmotic

salt

drought

genotoxic

oxidative

UV-B

wounding

heat

Hsf

(n = 21)

0.62(0.001)

0.83(< 0.001)

0.52(0.oo1)

0.36(0.002)

0.22(0.343)

O.29(0.005)

0.50(0.011)

O.33(0.018)

0.55(< 0.001)

Hsp20

(n = 18)

0.51(0.023)

l.35(< 0.001)

1.00(< 0.001)

O.66(< 0.001)

0.35(0.001)

0.78(< 0.001)

O.69(< 0.001)

0.62(< 0.001)

4.66(< 0.001)
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Hsp70

(n = 13)

O.44(O.136)

O.76(0.008)

0.44(0.017)

O.31(0.057)

0.20(0.607)

0.48(< 0.001)

0.53(0.024)

0.27(0225)

1.34(< 0.001)

Hsp90

(n = 6)

0.57(0.070)

0.46(0.276)

0.39(O.116)

O.28(0.198)

O.23(O.374)

0.22(0.344)

O.69(0.020)

0.35(0.099)

1.45(< 0.001)

Hsp100

(n = 7)

0.35(0.423)

0.65(0.078)

0.3 1 (0.275)

O.28(0.192)

O.23(O.363)

O.33(0.016)

O.32(O.499)

O.28(O.248)

O.32(0.339)



Table 3. Hsf protein family. Genes are ordered from least to most stress-responsive

(according to d). The value ofd represents the mean proportion of time points, among the

19 tissue-treatment combinations considered, at which a gene was differentially

expressed. Cluster IDs represent gene groupings determined by the HOPACH clustering

algorithm (see Methods). The development cluster analysis was carried out with respect

to the developmental series conditions of Schmid et al. (2005). The stress cluster analysis

was carried out with respect to expression responses observed under each of the 111

tissue-treatment-time combinations examined in this study. Thejth digit in each cluster

ID indicates the group to which a gene was assigned in thejth iteration of the HOPACH

algorithm (see Pollard and van der Laan 2005).
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Gene Name Cluster ID (Development) Cluster ID (Stress) d

Hsz9 31 452 0.018

HszS 50 452 0.061

Hsz1 a 32 452 0.070

Hsz7b 60 440 0.088

Hsz7a 80 300 0.123

Hsz6a 31 420 0.149

Hszlb 70 452 0.167

Hsz3 40 430 0.184

Hsz4c 40 452 0.193

Hsz1d 10 451 0.202

Hsz2 60 200 0.228

Hsz4 90 451 0.228

Hsz1 e 60 460 0.237

HszB 20 410 0.272

Hsz6b 31 100 0.307

Hsz2b 60 470 0.316

Hsz4a 20 490 0.351

Hsz8 20 480 0.395

HszZa 60 470 0.439

Hsz1 40 500 0.447

Hst1 80 600 0.456
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Table 4. Hsp20 protein family. Genes are ordered from least to most stress-responsive

(according to d). See Table 3 caption for an explanation of clustering procedures and the

value of d.

Gene Name Cluster ID (Development) Cluster ID (Stress) d

AtHsp14.2-P(r) 50 60 0.096

AtHsp25.4-P 24 30 0.167

AtHsp17.6-CII 25 21 0.184

AtHsp23.6-M 22 30 0.184

AtHsp22.0-ER 22 42 0.193

AtHsp23.5-M 30 10 0.193

AtHsp17.6B-Cl 28 21 0.202

AtHspl7.7-CII 27 21 0.219

AtHsp21.7-Cl(r) 70 44 0.219

AtHsp26.5-P(r) 26 42 0.219

AtHsp17.6A-Cl 23 22 0.228

AtHspl 8.1-C1 40 41 0.237

AtHsp17.6C-Cl 27 21 0.254

AtHsp17.4-Cl 27 21 0.263

AtHsp15.7-Cl(r) 21 42 0.263

AtHsp17.4-CIII 10 43 0.307

AtHsp15.4-Cl(r) 60 70 0.316

AtHspl 8.5-Cl(r) 70 50 0.325
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Table 5. Hsp70 protein family. Genes are ordered from least to most stress-responsive

(according to d). See Table 2 caption for an explanation of clustering procedures and the

value of d.

Gene Name Cluster ID (Development) Cluster ID (Stress) d

AtHsp70-15 5 54 0.202

AtHsp70-5 2 80 0.21 1

AtHsp70-8 2 70 0.219

AtHsp70-6 7 53 0.228

AtHsp70-17 6 54 0.228

AtHsp70-9 5 52 0.254

AtHsp70-1 5 54 0.272

AtHsp70-10 4 40 0.281

AtHsp70-1 1 1 60 0.333

AtHsp70-7 7 51 0.3 51

AtHsp70-3 4 20 0.368

AtHsp70-2 3 30 0.386

AtHsp70-4 1 21 0.439
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Table 6. Hsp90 protein family. Genes are ordered from least to most stress-responsive

(according to d). See Table 2 caption for an explanation of clustering procedures and the

value of d.

Gene Name Cluster ID (Development) Cluster ID (Stress) d

AtHsp90-6 3 2 0.28 1

AtHsp90-4 3 2 0.298

AtHsp90-5 2 2 0.307

AtHsp90-7 4 2 0.3 l 6

AtHsp90-1 1 1 0.333

AtHsp90-2 3 2 0.342
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Table 7. Hsp100 protein family. Genes are ordered from least to most stress-responsive

(according to d). See Table 2 caption for an explanation of clustering procedures and the

value of d.

Gene Name Cluster ID (Development) Cluster ID (Stress) d

AtHsp100-2 2 3 0.009

AtHsp100-5 3 3 0.140

AtHsp100-1 1 1 0.228

AtHsp100-8 3 5 0.246

AtHsp100-4 l 2 0.254

AtHsp100-3 4 3 0.316

AtHsp100-7 3 4 0.368
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Figure 2-1. Hsf expression response profiles in roots. Plots shew profiles associated

with (A) cold stress, (B) osmotic stress, (C) salt stress, (D) drought, (E) genotoxic stress,

(F) oxidative stress, (G) UV-B light, (H) wounding, and (I) heat. Class A, B, and C

transcription factors are represented by black, red, and blue lines, respectively. The

horizontal axis of each subplot corresponds to time points at which gene expression

measurements were taken under each stress treatments (0.5, l, 3, 6, and 12 hrs.). The

vertical axis of each subplot indicates the log; fold-change associated with each Hsf (see

Equation 1). The dotted horizontal line in each plot indicates a log; fold-change of zero

(no expression response to stress). [This image is presented in color]
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Figure 2-2. Hsf expression response profiles in sheets. See Figure 2-1 caption.
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Figure 2-3. Hsp20 expression response profiles in roots. Plots show profiles associated

with (A) cold stress, (B) osmotic stress, (C) salt stress, (D) drought, (E) genotoxic stress,

(F) oxidative stress, (G) UV-B light, (H) wounding, and (1) heat. The cytoplamic/nuclear

Hsp205 (classes I— III) are represented by black lines. Plastidial, endoplasmic reticulum,

and mitochondrial Hsp205 (classes P, ER, and M) are represented by red lines. Class I

and Class P related Hsp205 are indicated by blue lines. The horizontal axis of each

subplot corresponds to time points at which gene expression measurements were taken

under each stress treatments (0.5, l, 3, 6, and 12 hrs.). The vertical axis of each subplot

indicates log: fold-change (see Equation 1). The dotted horizontal line in each plot

indicates a leg: fold-change of zero (no expression response to stress).
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Figure 2-4. Hsp20 expression response profiles in sheets. See Figure 2-3 caption.
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Figure 2-5. Expression response profiles of select Hsp20 genes under wounding

and heat stress treatments. Expression response profiles ofnine selected Hsp20

proteins under wounding (solid line) and heat (dotted line) treatments are shown.

Subplots display response profiles associated with (A) 17.6A-CI, (B) 17.4-CI, (C) 17.6C-

CI, (D) 17.6-CII, (E) 17.7-CII, (F) 25.4-P, (G) 23.6-M, (H) 15.7-Cl(r), and (I) 26.5-P(r).

The horizontal axis corresponds to time points at which gene expression measurements

were obtained, while the vertical axis indicates the log fold-change. The dotted

horizontal line in each plot indicates a log fold-change of zero (no expression response

to stress). For the heat stress treatment, roots were exposed to heat until the 3 hr. time

point, such that the 3-24 hr time interval represents a recovery period.
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Figure 2-6. Hsp70, Hsp90 and Hsp100 expression response profiles under

ultraviolet-B light stress treatment. Expression response profiles associated with all

members of the Hsp70 family (A and B), Hsp90 family (C and D), and Hsp100 family (E

and F). Profiles associated with root tissue are shown in A, C, and E, while expression

response profiles associated with shoot tissue are shown in B, D, and F. The horizontal

axis corresponds to time points at which genes expression measurements were obtained,

while the vertical axis indicates the log; fold-change. The dotted horizontal line in each

plot indicates a log fold-change of zero (no expression response to UV-B light). Hsps

were localized to the cytoplasm (black lines), plastid (red lines), chloroplast (green line),

mitochondria (blue lines), or endoplasmic reticulum (dashed blue line).
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Figure 2-7. Expression response profiles of selected Hsp70, Hsp90 and Hsp100

genes under wounding and heat stress treatments. Expression response profiles of

four selected proteins (Hsp70, Hsp90, or Hsp100) under wounding (solid line) and heat

(dotted line) treatments are shown. Subplots display response profiles associated with (A)

AtHsp70-5, (B) AtHsp70-8, (C) AtHsp90-1, and (D) AtHsp100-1. The horizontal axis

corresponds to time points at which gene expression measurements were obtained, while

the vertical axis indicates the log fold-change. The dotted horizontal line in each plot

indicates a log; fold-change of zero (no expression response to stress). For the heat stress

treatment, roots were exposed to heat until the 3 hr. time point, such that the 3-24 hr time

interval represents a recovery period.
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Section 3 Discussion

Heat shock proteins (Hsps) and transcription factors (Hsfs) are central components of the

Arabidopsis thaliana heat shock regulatory network. It has long been recognized that

these elements are also involved in response to cold and non-thermal stress treatments

(Feder and Hofinann 1999), but the types of stress that most strongly elicit Hsp/Hsf

expression responses have not been identified, and the physiological role of these

proteins under non-heat stress treatments is unclear. The findings of this study support the

hypothesis that Hsps and Hsfs represent an intersection point between heat and non-heat

stress response pathways. Our results indicate that, to varying extents, each of nine cold

and non-thermal stress treatments interact with Hsfs and Hsps at the level of gene

expression. Several prominent family-level expression response patterns were identified.

These included highly similar stress-response profiles among Hsp20 proteins, a number

of Hsps specifically upregulated 12 hours after wounding and during recovery following

heat stress, and upregulation ofheat shock genes to UV-B stress in shoot but not root

tissue. Our findings raise important questions to be pursued in future experimental studies

of the Arabidopsis heat shock response network.

Genome-wide transcriptional profiling allowed the expression ofHsf and Hsp

genes under many stress conditions to be examined within the same context. This

facilitated identification ofwhich stressors interact with each protein family most

strongly, which provides insight into the nature and degree of cross-talk that exists

between heat and other forms of stress. The osmotic, cold, and salt treatments were

among the strongest inducers ofheat shock gene expression. These stress treatments

induced expression responses ofheat shock genes that were large in comparison to other
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Arabidopsis genes (see Table l), and also large in an absolute sense, since these stressors

induced strong fold-changes and differential expression of individual Hsf and Hsp genes

(see Figs. 2-1 to 2-4 and supplemental data). Expression response patterns were very

similar under each ofthese treatments, with upregulation primarily occurring over the

late stages of stress exposure (3 — 24 hours). Since osmotic, cold, and salt stress

treatments are each believed to have a deleterious impact on cellular water potential

(Kreps et al. 2002; Verslues et al. 2006), it is possible that their impact on heat shock

genes is related to this common effect. In support of this notion, several previous studies

in plant species have implicated Hsp20 proteins in tolerance to water stress treatments

(Alrnoguera ct al. 1993; Coca et al. 1996; Sun et al. 2001). Among other stress

treatments, wounding and UV-B stress induced moderately large expression responses of

heat shock genes (with strong differences among families and between tissue types). The

pathogen infection treatment was unique, since in contrast to other types of stress, it

elicited strong expression responses among the Hsp70, Hsp90, and Hsp100 families,

while most members of the Hsfand Hsp20 family were not responsive. Overall, drought

and genotoxic stress treatments were associated with weak induction ofheat shock genes,

although some individual genes can be cited as an exception to this trend (e.g., Hsz8,

AtHsp15.4-Cl(r), AtHsp100-7).

The degree to which oxidative stress impacted heat shock gene expression is

difficult to discern. In comparison to other Arabidopsis genes, all protein families (except

Hsp90) exhibited large expression responses to oxidative stress (see Table 1). However,

since genomic expression responses to oxidative stress were generally small, absolute

fold-changes induced by oxidative stress were nonetheless of small magnitude. Only one
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transcription factor, for instance, was differentially expressed under oxidative stress

(Hszld). These results were surprising, since there is considerable evidence that heat

shock transcription factors can function as reactive oxygen species sensors in plants

(reviewed by Miller and Mittler 2006), and extensive interactions have been identified

between heat and oxidative stress molecular pathways (e.g., Hiimdahl et al. 1999;

Panchuk et al. 2002; Pnueli et al. 2003; Davletova et al. 2004; Neta-Sharir et al. 2005).

Moreover, since the generation ofreactive oxygen species is a general response under

many types of stress (Pastori and Foyer 2002), Hsf activation by reactive oxygen species

may provide the best hypothesis to explain why heat shock genes are induced by so many

stress treatments. In view of this, an important factor to consider is the means by which

oxidative stress was experimentally induced. For data we analyzed, oxidative stress was

induced by exogenous application of methyl viologen, which is a generator of superoxide

anion radical (Laloi et al. 2004). The impact of this reactive oxygen species on heat shock

gene expression may differ item that of others (op den Camp et al. 2003; Gadjev et al.

2006). In a recent study, for instance, Gadjev et al. (2006) demonstrated that arneng

genes upregulated more than two-fold under heat stress, relatively few were responsive to

superoxide anion radical, while most were instead responsive to the singlet oxygen

reactive oxygen species. These considerations suggest that, although the oxidative stress

treatment examined by this study may not have had a strong impact on heat shock genes,

the production of different types of reactive oxygen species (e.g., H202), leading to Hsf

activation and consequently Hsp expression, remains a pathway through which cellular

responses to heat and other forms of stress may be linked.
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Heat shock transcription factors are of fundamental importance to understanding

stress response networks, since these proteins coordinate the expression of Hsps and

other stress-responsive genes. The Arabidopsis Hsf family is larger than that which has

been described in any other plant or animal system (Never et al. 2001), and at present, no

single Hsfhas been identified as a primary trigger of the heat shock response. The

emerging picture is one of considerable complexity, with extensive interactions among

individual Hsfs and sensitivity to a diverse range of environmental signals (Miller and

Mittler 2006). We found that seven Hsfs (six class A, one class B) exhibited very weak

expression responses to heat and all other stress conditions (see Table 2, stress-clusters

451 and 452), while the remaining 14 Hsfs were strongly induced by several stress

treatments. The most distinctive expression response patterns we observed were

associated with Hsz6b and HstI (see supplemental data file 2). In root tissue, Hsz6b

exhibited approximately five-fold induction to salt and osmotic treatments across all time

points of gene expression measurement (0.5 - 24 hours). This pattern contrasted with that

observed among other Hsfs, most of which responded to salt and osmotic stress over the

late stages of stress exposure only. This early response ofHsz6b to salt and cold

treatments was, in fact, unique among all the heat shock genes that we examined,

suggesting that Hsz6b may interact with elements outside ofthe Hsf/Hsp response

pathway. On the basis of differential expression analysis, Hstl was the most stress-

responsive of all Hsfs. Among all treatments and tissues that we examined, this

transcription factor was, on average, differentially expressed with respect to nearly half of

the time points at which gene expression was measured. This strong expression response
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pattern is particularly noteworthy in light of the large structural dissinrilarities between

Hst1 and all other Arabidopsis Hsfs (Never et al. 2001).

The Hsp20 family exhibited the most stress-general expression response pattern

of all the protein groups that we examined. Our results therefore suggest that this protein

family is ofpotential importance as a factor contributing to multiple stress tolerance in

plant species. These findings are also consistent with those of previous studies, which

have found that certain Hsp20 proteins are involved in cellular responses to a wide

variety of environmental treatments besides heat, such as alcohol (Kuo et al. 2000), cold

(Sabehat et al. 1998), heavy metals (Lin et al. 1984; Tseng et al. 1993; Guan et al. 2004;

Sun et a1. 2002), osmotic stress (Sun et al. 2001), desiccation (Wehrneyer and Vierling

2000), and oxidative stress (Neta-Sharir et al. 2005). At present, little is known regarding

how Hsp20 proteins are integrated with molecular networks that underlie cellular

responses to these stress treatments. Increasingly, it has been recognized that Hsp20

proteins can engage in a wide range of cellular processes under stress, including ATP-

independent stabilization of substrate proteins undergoing confonnatienal disruption (Sun

et al. 2002), or associating with lipid molecules to regulate fluidity of the membrane

structure (Tsvetkova et al. 2002). This latter function suggests that Hsp203 could be

involved in the perception of stressful stimuli leading to the activation of signal

transduction pathways. Under temperature extremes, the role ofmembrane fluidity as a

means of stress perception and activation of signal transduction pathways has been well

established (Sun et al. 2002). However, since non-thermal stressors may also alter

membrane fluidity or lead to various types ofmembrane damage, interactions ofHsp205
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with membranes could partly account for the overall stress-responsiveness of the Hsp20

family.

A striking aspect of the Hsp20 family was the similarity among the expression

response patterns ofmember genes. This similarity was demonstrated by our clustering

analysis (see section 2C of supplemental data 1), which interestingly, revealed a cluster

of five 17 kDa Hsp20 proteins that included both class I and II nuclear/cytosolic proteins.

This result is consistent with findings ofprevious studies, which have identified

functional similarities between class I and II Hsp203 (e.g., [5w et al. 2000), despite

marked differences between the amino acid sequences ofthe two classes (Vierling 1991).

If analysis is restricted to stress responses occurring in the root tissue type only, the

overall homology of Hsp20 expression response patterns is considerably enhanced. In

root tissue, expression patterns of 17 kDa Hsp20s are very similar to those ofthe 18 — 20

kDa HspZOS, including those localized to the mitochondria and endoplasmic reticulum

(see section 2C of supplemental data file 1). The similarity of expression patterns among

the Hsp20 proteins may reflect shared induction mechanisms, and possibly extensive

coordination among Hsp20s as cellular chaperones, such as that observed during the

formation ofheat-stress granules (Nover et al. 1983). Shared induction mechanisms

among Hsp20 proteins may include accumulation of denatured proteins in the cytoplasm

(Sung et al. 2003), generation ofreactive oxygen species (Miller and Mittler 2006), or

changes in membrane lipid composition and fluidity (Tsvetkova et al. 2002). These

processes are thought to be upstream signals leading to the activation of critical Hsfs,

which are most likely the direct inducers ofHsp20 expression under stress.
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A number of Hsps were upregulated 12 hours after wounding, with a parallel

expression response pattern during recovery from heat stress in root tissue. While the

majority ofthese proteins were members of the Hsp20 family (see Fig.2-5), some

members ofthe Hsp70, Hsp90, and Hsp100 families also exhibited this distinctive

expression pattern (see Fig. 2-7). The upregulation ofmultiple Hsps following wounding

and during heat stress recovery has not been previously documented in Arabidopsis or

other plant species, and is therefore an important finding of this study. The first indication

that Hsps are involved in the wounding response pathway was provided by the study of

Cheong et al. (2002), in which the effect ofwounding on expression levels of 8,200

Arabidopsis genes was surveyed in leaf tissue. Cheong et al. (2002) identified one Hsf

upregulated 0.5 hours following wounding (AtHsz4a), along with another upregulated

both 0.5 and 6 hours after wounding (Atl-lszl). In addition, three Hsp70 proteins were

upregulated 6 hours after wounding (HSP70, HSC70-G8, HSC70-G7), as well as two 17

kDa sHSPs (AtHsp17.8-CII and AtHspl7.7-CII). We found that the most interesting

wounding-response patterns occurred in root tissue, but our results are consistent with

those ofCheong et a1. (2002), since Hsp upregulation also occurred after wounding in

aerial shoot tissue. Overall, our findings suggest that Hsp involvement in wounding

response is greater than previously recognized, and by profiling Hsps simultaneously

under multiple types of stress, our results show that late wound-responsive genes are also

active during recovery from heat stress. These results point to a broad role of some Hsps

during stress recovery or acclimation, i.e., the process by which plants increase stress-

tolerance following an initial period of exposure. Following wounding ofplant tissue,

both local and systemic signals are generated that coordinate defense responses aimed at
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limiting further injury (e.g., by pathogen) (Leon et al. 2001). Acclimation to heat stress

has been especially well studied, and is characterized by an increased tolerance or

hardening to high temperatures following initial exposure (Sung et al. 2003). The

functional role of Hsps upregulated as part of the post-wounding and post-heat stress

response is unclear and warrants further investigation. With respect to heat stress

recovery, one recent study found that mutant plants lacking a 32 kDa heat shock

associated protein (Hsa32) exhibited an elevated decay in thennotolerance following

exposure to heat stress (Chamg et a1. 2006).

Ultraviolet-B radiation resulted in upregulation ofheat shock proteins and

transcription factors in sheets, but did not have this effect in root tissue. This distinction

between aerial and subterranean tissue types was most marked with respect to the Hsp20

group, in which nearly all Hsp203 were upregulated in sheets and downregulated in roots.

Similar to other stress treatments, exposure to ultraviolet-B light has been associated with

the production ofreactive oxygen species (Amott and Murphy 1991; Green and Fluhr

1995). Specifically, ultraviolet light stress has been found to increase cellular

concentrations of H202 (Shiu and Lee 2005), which has been thought to activate Hsf

expression (Miller and Mittler 2006), especially that ofHsz4a and Hsz8 (Davletova et

al. 2005). We found that both Hsz4a and Hsz8 were strongly induced by UV-B stress

in sheets but not in roots (see supplemental data file 2). These observations are consistent

with the notion that Hsp expression in sheets results fi'om UV-B induced activation of

Hsfs, possibly Hsz4a and Hsz8, with the generation of H202 as an intermediary signal.

Given the tissue-specific effect we observed, however, the generation ofH202 could be

dependent upon interactions between UV-B stress and photosynthetic processes taking
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place in chloroplast. In previous models, it has been suggested that UV-B generated

reactive oxygen species are upstream components that act upon photosynthetic genes

(i.e., H202 —> photosynthesis) (A.-H.-Mackerness et al. 1999; John et al. 2001). Our

results, however, suggest that the reverse is also plausible, in which photosynthetic

processes are upstream components leading to the generation of reactive oxygen species

under UV-B stress (i.e., photosynthesis —2 H202).

Recently, it has been emphasized that the generation of agricultural varieties

tolerant to a range of stress conditions should be a primary goal in biotechnological

applications, since under field conditions, plants may encounter different types of stress

in combination (Mittler 2006). Focusing on overlapping elements among response

pathways that underlie diverse forms of stress may advance our knowledge of cross-

tolerance in plant species (Bowler and Fluhr 2000). The Arabidopsis heat shock proteins

and transcription factors exhibit expression responses under a wide range of stressfirl

stimuli, and are therefore a natural model for developing our understanding of integration

between regulatory networks associated with different kinds of stress. The findings of

this study have identified which types of stress interact least and most strongly with Hsfs

each Hsp family at the transcriptional level. In addition, new family-level expression

response patterns related to wounding and ultraviolet-B light stress have been uncovered.

These results provide insight into the nature and degree ofcross talk between heat and

non-heat stress conditions, and represent a basis for further experimental investigations

into the involvement ofHsf and Hsp proteins under cold and non-thermal stress.
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Section 4 Methods

All microarray data analyzed in this study were generated using the ATHl

Affymetrix microarray platform (Hennig et al. 2003; Redman et al. 2004), with

expression estimates obtained by gcRMA nerrnalization (Wu et al. 2004). A total of

22,810 probes were included on the ATHl platform, along with 64 control probes not

corresponding to Arabidopsis genes. Our analysis is therefore based on a total of 22,746

genes, representing approximately 80% of all known Arabidopsis genes (Schmid et al.

2005). Gene expression datasets were downloaded fiom AtGenExpress at

http://www.weigelworld.org/resources/microarray/AtGenExpress/ (abiotic stress and

pathogen series). Complete protocols associated with these data can be obtained from

TAIR (http://www.arabidopsis.org/) (submission numbers: ME00325, ME00326,

ME00327, ME00328, ME00329, ME00330, ME00338, ME00339, ME00340,

ME00342). In brief, the abiotic stress series data consists of gene expression

measurements performed on Arabidopsis thaliana (col-0) roots and shoots under a benign

control condition and nine enviromnental stress conditions. For each stress condition,

expression measurements were obtained from 16 to 18-day old plants at six different time

points of stress-exposure (1/2, 1, 3, 6, 12, and 24 hours). All expression measurements

were performed with duplicate biological replications. Stress treatments included cold

(4°), osmotic stress (300 mM Mannitol), salt (150 mM NaCl), drought (15 min. dry air

stream leading to 10% loss of fresh weight), genotoxic stress (1.5 )4ng bleomycin, 22

ug/ml mitomycin), oxidative stress (10 uM methyl viologen), ultraviolet-B light stress

(15 min. exposure, 1.18 W/m2 Phillips TL40W/12), wounding (pin puncture), and high

temperature (3 hrs. at 38° followed by 21 hrs. recovery at 25°). From the pathogen series
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dataset, we considered experiments involving P. infestans infection of 5-week old

Arabidopsis leaves, along with corresponding control treatments in which H20 was

applied to leaves. Expression measurements were obtained from three biological

replications at each of three post-infection time points (6, 12, and 24 hours). Pathogen

infections used 10'8 efu/ml in MgCl2 with 5 x 105 P. infestans spores applied to leaf

surfaces.

The heat shock proteins and transcription factors analyzed in this study were

selected based upon the genomic sequence analyses performed by Agarwal et al. (2001),

Lin et al. (2001), Never et al. (2001), Krishna and Gleer (2001), and Scharf et al. (2001).

Our analysis includes all of the twenty-one Hsfs identified by Never et al. (2001). Several

Hsps identified by the above-cited studies were not represented on the ATHl array

(AtHspl7.8-Cl, AtHsp70-12, AtHsp70-l3, AtHsp70-14, AtHsp70-16, AtHsp70-18,

AtHsp90-3, and AtHsp100-6), and therefore could not be included in this study. In total,

our heat shock protein analysis is based upon 18 of 19 members of the Hsp20 family (12

sHsps and 6 related sHsp-like proteins), 13 of 17 members ofthe Hsp70 family (11 DnaK

and 2 SSE subfamily), 6 of 7 members of the Hsp90 family, and 7 of 8 members of the

Hsp100 family (AtHsplOO-l and six homologues). The expression response patterns of

each Hsf and Hsp gene was analyzed with respect to nine abiotic stress treatments

(applied to root and shoot tissue), in addition to pathogen infection treatment (applied to

leaf tissue). In total, therefore, the expression response of each Hsf and Hsp was

examined under 19 tissue-treatment combinations.

The T statistic represents the median level of fold-change induced by a given

stress treatment among members of a given protein family. Let To,“ represent the mean
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gcRMA normalized expression intensity of the ith gene under thejth experimental

treatment (abiotic stress or pathogen) within the kth tissue following t hours of stress

exposure (i = l...N,j = 1... 10, k = l...3, and t = 0.5... 24). For every tissue-treatment-

time combination, values of foo were associated with a corresponding control

measurement designated as You (i = 0). Log2 fold-changes (M) at each tissue-treatment-

time combination were thus calculated as the difference between expression intensities in

thejth stress treatment and corresponding control treatments.

Mijkr : Ijkr ' XiO/rr (1)

The average value of |M| occurring over all time points under a given tissue-

treatrnent combination reflects the overall stress-responsiveness associated with a gene’s

expression profile. Letting this average value for gene i under treatmentj in tissue k be

represented by Wtkl , a test statistic T was defined as the median value of WWI among

the n gene members of a given protein family.

n= mgfliflnflM I) (2)

The magnitude of Treflects how large expression responses of a protein family

are, on average, with respect to a given tissue-treatment combination. The significance of

observed T statistics was evaluated under the null hypothesis that the n genes in each

protein family are a random sample of the N = 22746 genes represented on the ATHl
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array, versus the alternative that the n genes are a non-random sample yielding a T

statistic larger than expected within a random sample. This hypothesis was evaluated by

the following resampling procedure. With respect to each tissue-treatment combination

and each protein family, a total of 103 random samples of n genes were drawn from

among all N = 22746 genes, and the value of T was calculated from each of the 103

random samples. This yielded null distributions specific to each tissue-treatment

combination and protein family, which were used to evaluate the significance of observed

T statistics. An observed T statistic was significant if the proportion ofrandom samples

yielding a larger or equal T statistic was less than a = 0.05. A significant Tstatistic

indicates that the expression responses among the n members of a protein family (with

respect to a given tissue-treatment combination) are larger than expected within a random

sample of n genes.

Hsf and Hsp expression response patterns within protein families and among

individual genes were analyzed by differential expression analysis and clustering.

Differential expression analysis was carried out using the Lima linear modeling

package available in the R Bioconductor software suite (Smyth 2004). In this approach, a

linear model was fit for all genes with respect to each of the 19 tissue-treatment

combinations. This allowed heat shock related genes to be tested for differential

expression at every time point associated with each tissue-treatment combination. For

each ofthe 19 linear model analyses performed, P-values were adjusted for multiple

comparisons using the Benjamini and Hochberg method (Benjamini & Hochberg 1995;

Reiner et al. 2003). The differential expression analysis was used to construct the index

(d) introduced in Results section.
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The hierarchical ordered partitioning and collapsing hybrid (HOPACH) clustering

algorithm was used to identify sub-groups of genes with similar expression response

patterns in each protein family (van der Laan and Pollard 2003). In this algorithm, the

number of clusters appropriate in the final clustering solution is determined automatically

according the median split silhouette criterion (Pollard and van der Laan 2005). The

HOPACH algorithm is particularly well-suited for finding homogenous clusters of small

size among a limited number of genes. Stress-clusters were formed by grouping Hsf/Hsp

genes with respect to their expression responses (M) under all 111 tissue-treatment-time

combinations included in our analysis (18 tissue-treatment combinations with 6 time

points + l tissue-treatment combination with 3 time points). The Euclidean distance

metric was used to measure similarity between vectors of expression responses (M)

associated with each Hsf/Hsp gene. To form developmental-clusters, genes were centered

to have a mean expression intensity of zero across the 79 developmental series

conditions, and the cosine angle similarity metric was used to cluster expression profiles

of Hsf/Hsp genes within each family.
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Appendix

The following R code was used to carry out differential expression analyses using the

LIMMA linear modeling package. The matrix “X” is a 22746 x 24 matrix that contains

all expression data associated with a single stress-tissue combination (stress and control

treatments, 6 time points, 2 replicates per time point).

> library(limma)

> X = read.table("ExpressionMatrix.txt")

>wa=X

> design = model.matrix(~ -1+factor(c(l, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,

10,11,11,12,12)))

> colnames(design) =

c("controll ","contr012","centrol3","control4","centrolS","control6","timel ",

"time2","time3","time4","time5","time6")

> fit = lmFit(eset, design)

> contrastmatrix = makeContrasts(timel-controll, time2-contr'012,time3-control3,

time4-control4, time5-controlS, time6-control6,levels=design)

> fit2 = contrasts.fit(fit, contrastmatrix)

> fit2 = eBayes(fitZ)

> result = decideTests(fitZ, method = "separate", adjustmethod = "BH", p.value=0.05)

> resultl = abs(result[,l])

> result2 = abs(result[,2])

> result3 = abs(result[,3])

> result4 = abs(result[,4])

> result5 = abs(result[,5])

> result6 = abs(result[,6])
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The following is an example of the R-Code used to construct Figures 2-1 to 2-4 of

Chapter 2. The matrices X1, X2, ..., X9 have six rows each (one for each time point at

which measurements were obtained). The column number of each matrix corresponds to

the number of genes represented in a given figure (i.e., 21 in Figures 2-1 and 2-2, 18 in

Figures 2-3 and 2-4).

> par(mfrow == c(3,3))

> linetypes = rep(1,21)

> thecolors = c(rep(l,15),rep(2,5),4)

>

> par(mai = c(0.05, 0.27, 0.10, 0))

> X1 = data.fiame(Xl)

> I'OW.naInCS(X1) = c(II().5rr,Irl "’II3II,II6","1201,1024")

> matplot(Xl, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> axis(2)

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(A)", pos=4)

>

> par(mai = c(0.05, 0.10, 0.10, 0.05))

> X2 = data.frame(X2)

> I'OW.naInCS(x2) = C("O.5","1","3 "’116","12","24")

> matplot(X2, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(B)", pos=4)

>

> par(mai = c(0.05, 0.05, 0.10, 0.10))

> X3 = data.frame(X3)

> TOW.I'IalneS(X3) ___ C("0.5","1","3","6","12","24")

> matplot(X3, axes=F, frame—T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels=”(C)", pos=4)

>

> par(mai = c(0.10, 0.25, 0.05, 0))

> X4 = data.frame(X4)

> TOW.nameS(X4) = C("O.5","1","3","6","12","24")

> matplot(X4, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> axis(2)

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(D)", pos=4)

>

> par(mai = c(0.10, 0.10, 0.05, 0.05))

> X5 = data.frame(X5)
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> row.names(XS) = c("0.5","1","3","6","12","24")

> matplot(XS, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(E)", pos=4)

>

> par(mai = c(0.10, 0.05, 0.05, 0.10))

> X6 = data.frame(X6)

> row.names(X6) = c("0.5","l","3","6","12","24")

> matplot(X6, axes=F, fi'ame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(F)", pos=4)

>

> par(mai = c(0.27, 0.27, 0, 0))

> X7 = data.fiarne(X7)

> row.names(X7) = C(IIO.5","1II,fl3II,II6II,II1211,1124")

> matplot(X7, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9)) '

> axis(2)

> axis(1,1 :6,row.names(X7))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(G)", pos=4)

>

> par(mai = c(0.27, 0.10, 0, 0.05))

> X8 = data.frame(XS)

> row.names(X8) = c("0.5","l ","3","6","l2","24")

> matplot(X8, axes=F, frame=T, lty=linetypes, col=thecolors, type:

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> axis(l ,1 :6,row.names(X8))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(H)", pos=4)

>

> par(mai = c(0.27, 0.05, 0, 0.10))

> X9 = data.frame(X9)

> row.names(X9) = c("0.5","1","3","6","12","24")

> matplot(X9, axes=F, frame=T, lty=linetypes, col=thecolors, type="l",

xlab="Time(hrs.)",ylab="M", ylim=c(-2,9))

> axis(l ,1 :6,row.names(X9))

> abline(h = 0, lty = 2)

> text(0.75, 8.6, labels="(l)", pos=4)

"l",
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