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ABSTRACT 

 

THREE ESSAYS ON ESTIMATING THE EFFECTS OF SCHOOL AND STUDENT 

IMPROVEMENT INTERVENTIONS 

By 

Guan Saw 

   This dissertation consists of three chapters that examine the effects of school and students 

improvement interventions. The first chapter investigates whether, for whom, and under which 

conditions high school mathematics and science course graduation requirements (CGRs) affect 

student achievement and educational attainment. Drawing on data from the High School 

Longitudinal Study of 2009 (HSLS:09), fixed effects results show that higher math CGRs have a 

positive, but modest, impact on student test scores while no impact on college enrollment. 

Suggestive evidence indicates that higher science CGRs may have a negative, unintended effect 

on on-time postsecondary attendance. The positive effect of higher math CGRs is largely 

concentrated among students who are in the lowest and highest end of the math ability 

distribution, whereas the negative effect of higher science CGRs is primarily driven by students 

from high-middle socioeconomic families. The effects of CGRs appear to be moderated by 

institutional contexts in which schools with greater academic and social organizations have the 

strongest positive impacts.          

  The second chapter evaluates whether postsecondary remediation influences college 

persistence, transfer, and attainment, and if effects vary by racial and socioeconomic subgroups. 

Using data from the National Longitudinal Survey of Youth of 1997 (NLSY97), propensity score 

analysis results indicate that while remediation in only mathematics or only English has no 

impact on student outcomes, the effect of remediation in both subjects is positive for students 

who started postsecondary education in two-year colleges but it is negative for their four-year 
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college counterparts. Sensitivity tests show that the estimates for four-year colleges are quite 

robust but they are less so for two-year colleges. Subgroup analyses reveal that in two-year 

colleges high-socioeconomic students benefited the most from remediation in the long run, 

whereas in four-year colleges remediation appears to hinder nonwhite and low-socioeconomic 

students from completing college. Findings suggest that postsecondary remediation plays a 

critical role in the social stratification process in higher education.   

  The third chapter, co-authored with Barbara Schneider, Ken Frank, I-Chien Chen, 

Venessa Keesler, and Joseph Martineau, explores the differential effects of “consequential 

labeling” versus “non-consequential labeling” in the context of school accountability. Since the 

No Child Left Behind Act was enacted, grading and labeling low-performing schools has been 

increasingly used as a means to incentivize failing schools to raise student achievement. Using 

state-wide high school data from Michigan, our regression discontinuity analyses show that the 

bottom 5% schools identified as Persistently Lowest Achieving (PLA), which was publicly 

announced and has imminently threatening accountability, increased their student performance in 

writing and to a lesser extent in mathematics and social studies. The PLA effect in writing is 

quite robust, based on various sensitivity analyses. We find no improvement in student 

achievement for those bottom 6-20% schools labeled as "watch list" that received no actual 

penalties and little public attention. Our findings suggest that schools respond differently to 

varying forms of low-performing labeling, depending on the accountability pressure and social 

stigmatization process.  
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CHAPTER 1 
 

THE IMPACT OF HIGH SCHOOL MATHEMATICS AND SCIENCE COURSE 

GRADUATIONREQUIREMENTS: SCHOOL STRUCTURAL, ACADEMIC, AND 

SOCIAL ORGANIZATIONAL FACTORS1 

 

 

1.1  Introduction 

  Every year about half of high school seniors graduate without the minimal requirements 

needed to apply to a four-year college (ACT Inc., 2010; Greene & Foster, 2003). Graduates who 

are low-income, black, and Hispanic are particularly less likely to be academically prepared for 

postsecondary education (Adelman, 2004; Long, Iatarola, & Conger, 2009). To improve student 

college readiness while ensuring the opportunity to learn for all, state lawmakers and school 

leaders have been working to increase high school course graduation requirements (CGRs), 

especially in mathematics and science (Smerdon & Borman, 2012; The Center for Public 

Education, & Change the Equation, 2013; see Figure 1.A1 for the increasing trends in high 

school math and science CGRs in 50 states and District of Columbia from 1980 to 2013). The 

existing evidence on the effects of high school CGRs, however, is scarce due to the 

methodological challenges such as lack of reliable and consistent data, and isolating the CGR 

impact from potential confounding factors with non-experimental data. Few studies have 

attempted to address these challenges, yet the findings are inconsistent (e.g., Jacob, Dynarski, 

Frank, Schneider, 2016; Lillard & DeCicca, 2001; Plunk, Tate, Bierut, & Grucza, 2014).   

                                                           
1 This research was supported by a grant from the American Educational Research Association (AERA) which 

receives funds for its “AERA Grants Program” from the National Science Foundation (NSF) under Grant #DRL-

0941014. Opinions reflect those of the author and do not necessarily reflect those of the granting agencies. 
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In the limited literature on high school CGRs, there has been little theoretical attention to 

or empirical research on the school organizations that may influence the CGR effects in schools. 

This has resulted in part from the fact that policymakers and evaluators tend to be interested in 

the average treatment effects of high school CGRs while overlooking the potential moderating 

effects of school context (e.g., teacher composition, school climate). A growing body of 

sociological literature has demonstrated that school organizational factors play a crucial role in 

facilitating the implementation of school reform and policy (Hedges & Schneider, 2005; Frank, 

Zhao, & Borman, 2004; Spillane & Louis, 2005). Thus, examining whether and how schools 

differ in the influences of high school CGRs on student outcomes can enhance our understanding 

of how CGR effects, if any, are generated and what interventions needed to be made to improve 

the policy and practice. 

  This study contributes to research and policy discussions on high school course 

graduation requirements in several respects. First, building upon the literature on school effects 

and social stratification, this study formulates a theoretical framework and develops a series of 

hypotheses to test the main and differential effects of high school CGRs, which help interpret the 

seemingly mixed findings in prior studies. Second, in contrast to most previous studies that 

estimated the effects of CGRs by subject at the district or state level, this study classifies schools 

into different comparison and treatment groups, which consider the numbers of years of 

coursework required in both math and science. Defining the treatment of CGRs at the school 

level allows for examination of differential effects by school context. Finally, this study 

empirically tests the hypotheses using a nationally representative sample of recent high school 

students, which yields greater generalizability. Findings suggest that higher CGRs in math and 
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science have both intended positive and unintended negative consequences on student outcomes 

and the effects vary by student and school characteristics.  

1.2  Theoretical Framework 

  The effort to hold all high school students to high academic standards has a century old 

history in American education (Angus & Mirel, 1999). Raising high school CGRs is a recent 

move in this long tradition of curriculum intensification and standardization. The primary policy 

rationale for raising CGRs is that all high school students need to have the necessary academic 

knowledge and skills to succeed either in higher education or in the workplace (US Department 

of Education, 2004). The policy or practice of high school CGRs, however, is not without 

controversy. The concern focuses on two issues in relation to educational productivity and 

equality. The first is whether CGRs have a positive or negative impact on student outcomes. The 

second is whether CGRs reduce or increase gaps of student outcomes.  

  The debate on CGRs is fed by assumptions about how graduation requirements influence 

student coursetaking, which in turn affects achievement and attainment (Chaney, Burgdorf, & 

Atash, 1997). Citing studies on coursetaking (e.g., Adelman, 2006; Attewell & Domina, 2008; 

Schneider, Swanson, Catherine, 1998), proponents of high school CGRs argue that students who 

complete more advanced academic courses have greater achievement gains, and are more likely 

to graduate from high school and attend a postsecondary institution. The positive correlations 

between coursetaking and student outcomes, however, may simply reflect self-selection effects. 

It could be the case that highly-motivated students are more likely to take more advanced course 

sequences. Thus it is unclear whether pressing all students, particularly those who are 

academically disadvantaged, toward high academic standards through such policy as high school 

CGRs would increase student performance.  
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  To some extent, raising high school CGRs for all can be seen as a form of detracking 

because all students will be exposed to challenging academic courses providing them with more 

rigorous opportunities to learn (Sorensen, 1970; Domina & Saldana, 2012). In theory, therefore, 

intensified CGRs could improve overall student performance while narrowing the achievement 

gap, especially when those traditionally underserved students (i.e., low-income, minority, and 

low-performing students) who would have been excluded from academic-oriented programs are 

now taking more advanced classes and potentially attending classrooms with higher skilled peers 

(Adelman, 1999; Gamoran, 1996; Lee & Smith, 2001). Yet, this conjecture has not been 

supported by empirical studies. Thus far, no direct evidence shows that systems sorting students 

into academic tracks have been reduced as a result of high school CGRs (Heck, Price, & Thomas, 

2004; Wilson & Rossman, 1993). Additionally, there are concerns that high school CGRs may 

have unanticipated, negative consequences. For example, if disadvantaged students were forced 

out of school by such graduation requirements or difficult academic classes, the principle of 

equal educational opportunity is violated (Mirel & Angus, 1994).   

  With these considerations and given the policy goals of high school CGRs, this study 

empirically tests the following hypotheses:  

  H1a: High school CGRs boost the average achievement and educational attainment of all  

                     students (educational productivity hypothesis).  

  H1b: High school CGRs narrow the achievement and educational attainment gaps  

                     between racially, socioeconomically, and academically disadvantaged students and  

                     their counterparts (educational equality hypothesis). 

  Raising high school CGRs is a commonly used policy instrument to impose certain 

academic expectations on student coursetaking and performance. Whether institutionalized 
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expectations are sufficient to improve student outcomes is a research question that has been the 

focus of many past studies (e.g., Chaney et al., 1997; Jacob et al., 2016; Teitelbaum, 2003). This 

study extends beyond prior work by examining whether high school CGRs interact with the 

social structure and activities in schools to produce different outcomes. Drawing upon research 

literature on school effects and social stratification, a set of hypotheses is developed to test the 

moderating effects of school context on the relationship between high school CGRs and student 

outcomes. The concepts of opportunity to learn (OTL) and social organization of schools are 

used to conceptualize how high school CGRs can be functioning differently at school level and 

to account for variations in student performance vis-à-vis differences in school structural and 

organizational factors (Bidwell, 1965; Bryk & Driscoll, 1988; Hedges & Schneider, 2005; 

McDonnell, 1995; McPartland & Schnieder, 1996; Schmidt & Maier, 2009). Three distinct but 

overlapping school-based dimensions of OTL are examined: school structure, academic 

organization, and social organization (see Figure 1.A2 for the hypothesized conceptual 

framework of school moderating effects).  

  In the conventional literature, school structural measures that are related to student’s OTL 

include school sector (Bryk, Lee, & Holland, 1993; Coleman, Hoffer, & Kilgore, 1982), 

urbanicity (Roscigno & Crowley, 2001; Roscigno, Tomaskovic-Devey, & Crowley, 2006), and 

enrollment size (Lee & Smith, 1995, 1997). Student composition is another key school structural 

feature. A large body of research has demonstrated that students learn more when surrounded by 

peers who are academically, socially, or economically advantaged (Coleman et al., 1966; 

Hanushek, Kain, Markman, & Rivkin, 2003; Muller, Riegle-Crumb, Schiller, Wilkinson, & 

Frank, 2010; Southworth & Mickelson, 2007). Therefore, it is hypothesized that peer 

composition in school may moderate the impact of high school CGRs. 
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  H2a: High school CGRs affect student outcomes more positively in schools with  

                     higher concentration of advantaged peers (school structure hypothesis) 

   The academic organization is a prime dimension of OTL and to this study. One typical 

form of school academic organization is curriculum structure which can be represented by 

components such as course offerings (Gamoran, 1987) and content standards or coverage 

(Schmidt et al., 2001). Prior research has shown that students perform better in schools with a 

more constrained curriculum composed mostly of academic courses (Bryk et al., 1993; Lee, 

Croninger, & Smith, 1997). Apart from curriculum structure, many scholars argue that teachers 

are the key agents in implementing curricular policies or reforms (Schwille et al., 1983; Spillane 

& Louis, 2005). This study thus adds instructional capacity as an important feature of academic 

organization, focusing on teachers’ professional qualifications and knowledge that have been 

documented to be associated with student learning gains (Goldhaber & Brewer, 2000; Hill, 

Rowan, & Ball, 2005). Therefore, the following hypotheses are proposed: 

  H2b: High school CGRs affect student outcomes more positively in schools with  

                     greater academic/instructional capacity (academic organization hypothesis) 

  Beyond structural and academic contexts, social organizations of schools can also play a 

crucial role in facilitating school reform and improving student achievement (Bryk & Schneider, 

2005; Hedges & Schneider, 2005; Frank et al., 2004). Social organizations of schools can be 

characterized by measuring social interactions/relationships and shared norms/beliefs within 

school. Several social organizational factors in schools that are likely to interact with the CGRs 

effects are academic press as measured by teachers’ expectation for student learning (Lee & 

Smith, 1999; Muller, 1998), school climate (Lee & Bryk, 1989; Thapa, Cohen, Guffey, & 

Higgins-D’Alessandro, 2013), and student engagement (Finn & Zimmer, 2012; Newmann, 1992).  
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H2c: High School CGRs affect student outcomes more positively in schools with  

                     stronger academic norms/climate (social organization hypothesis). 

1.3  Prior Findings on the Impact of High School CGRs  

 Lawmakers and school leaders who initiate policy to raise high school CGRs must expect 

to see improvement in student academic performance and educational attainment. Yet, there is 

little empirical evidence supporting this policy rationale. More disturbing, some unintended, 

negative consequences of high school CGRs on student schooling careers have been revealed in 

recent research. At present, there are only five causal studies that isolate the impact of high 

school CGRs from the potentially confounding effects of other factors. One early study by 

Lillard and DeCicca (2001) found that increased total CGRs (all academic subjects) led to higher 

dropout rates among high school students. The conclusion is established based on both nationally 

representative individual data on dropout decisions and state-level aggregate data on 

dropout/attrition rates over fifteen years. Three recent studies analyzing data at the district, state, 

and national level also found similar results, showing that intensified CGRs, particularly in math 

and science, lowered the high school graduation rates (Jacob et al., 2016; Montgomery & 

Allensworth, 2010; Plunk et al., 2014).  

  The empirical evidence in regard to the CGR effects on student achievement is not 

encouraging either. Montgomery and Allensworth (2010), for example, found that science CGRs 

mandated in the Chicago Public Schools in 1997, which required high school students to take 

three years of science coursework, had null effect on student science grades. Their analysis 

suggested that those graduates who completed the required science courses did improve in 

science learning but the overall effect of the policy is offset by the relatively higher dropout rates 

among students from the same cohort. Buddin and Croft (2014), following nine cohorts of 11th-
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graders (from 2005 to 2013) in all Illinois school districts other than Chicago, found that the 

2005 state-mandated math and science CGRs were not associated with student ACT scores in the 

two subjects. Examining a set of statewide college-bound CGRs enacted in Michigan in 2007, 

Jacob et al. (2016) concluded that higher CGRs generally have little impact on student test scores, 

except in science and for lowest achieving students. 2 

  With respect to post-secondary outcomes, the empirical findings on the CGR effects are 

mostly mixed. The study by Buddin and Croft (2014) indicated that while higher math CGRs had 

a positive effect on college attendance rates, higher science CGRs did not. Montgomery and 

Allensworth (2010) also presented evidence showing that increased science CGRs was not 

associated with college-going rates. Furthermore, analyzing a decade of data from the US Census 

Bureau, Plunk et al. (2014) reported that higher math and science CGRs had no overall impact on 

both college enrollment and completion, but there are some differential effects across racial 

subgroups. For Black women and Hispanic men and women, it appears that higher math and 

science CGRs were negatively associated with the likelihood of college attendance. However, 

conditioned on college enrollment, intensified math and science CGRs in high school had a 

positive effect on obtaining a college degree for Black women and Hispanic men and women.      

  Mixed findings for the CGR effects on student outcomes may be well understood from 

theoretical and methodological perspectives. Current research efforts tended to assess the effects 

by defining or identifying high school CGRs at the district or state level, which has limited 

number of treatment and comparison groups that may not yield sufficient statistical power to 

detect an effect. Moreover, prior studies have focused almost exclusively on whether high school 

CGRs have an impact on student outcomes. None of them examined the conditions under which 

                                                           
2 Two early correlational studies by Chaney et al. (1997) and Teitelbaum (2003), based on national datasets, also 

found that math and science CGRs had no effects on student test scores.    
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high school CGRs might be effective or ineffective in influencing student achievement and 

schooling careers. While researchers recognize the potential differential effects of high school 

CGRs, they explored it only by student subgroups (e.g., academic ability, race/ethnicity, or 

family background) but not by school structural and organizational characteristics, which may be 

moderating the influences of CGRs. School contextual factors, which are overlooked in prior 

research, may help explain the inconsistent findings of CGR effects in the literature. 

1.4  Methodological Approach 

1.4.1  Data and Sample 

  This study analyzes the restricted data from the High School Longitudinal Study of 2009 

(HSLS:09), which is specifically designed to explore policy-relevant issues with respect to 

school contextual factors that may affect student educational trajectories and outcomes. HSLS:09 

is the most recent national high school longitudinal study that can provide the information on 

high school course graduation requirements in several academic subjects (i.e., math, science, 

English, social studies, and foreign language) at the school level. Another valuable benefit 

offered by HSLS:09 is that the rich survey data on students, teachers, and schools allow for 

constructing a comprehensive set of school contextual factors, which are crucial for determining 

whether and how schools differ in high school CGRs effects. 

  The HSLS:09 sample is generated by a two-stage sampling design with schools selected 

first the students from the target population, ninth graders in the fall semester of the 2009-2010 

school year, within those schools selected second. In this study, a number of sample restrictions 

are imposed on the data. First, the analytic sample is limited to those respondents who 

participated in both 2009 base-year and 2012 follow-up survey and with valid information on 

their high school CGRs. Second, this study focuses only on first-time ninth graders, thus 
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excluding those students who were repeating ninth grade in fall 2009. Third, the analytic sample 

excludes non-regular high schools, including special education, technical/alternative, and special 

focus schools (e.g., math or science, arts/talented, gifted education). The remaining sample 

includes 16,081 students from 843 schools.  

1.4.2  Measures 

  This study focuses on evaluating the impact of high school math and science CGRs. As 

shown in Figure 1.A1, the majority of states have raised their high school CGRs to at least three 

years of math and science. Given the importance of college readiness and science, technology, 

engineering, and mathematics (STEM) education, the current policy debates on CGRs are 

primarily focusing on whether to increase math and science CGRs from three years to four years. 

Thus, there are four potential treatment/comparison groups of schools with varying level of 

CGRs in math and science that are of interest to this study, including schools with CGRs of: (a) 

three years of math and science (3M3S), (b) three years of math and four years of science 

(3M4S), (c) four years of math and three years of science (4M3S), and (d) four years of math and 

science (4M4S). The 3M3S schools have CGRs that are equal to the “new basics” standard, a set 

of college readiness curriculum, which was recommended by the report A Nation at Risk, 

released more than three decades ago (U.S. Department of Education, 1983). The other three 

groups of schools (i.e., 3M4S, 4M3S, and 4M4S) have a higher standard of math and/or science 

CGRs compared to the “new basics” standard. 

  Two HSLS:09 survey items responded to by school administrators about “how many 

years of coursework in [math/science] are required to meet high school graduation requirements?” 

are used to identify the treatment and comparison schools. A majority of schools surveyed by the 

HSLS:09 can be classified into the four potential treatment/comparison groups: (a) 3M3S (257 
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schools), (b) 3M4S (2 schools), (c) 4M3S (252 schools), and (d) 4M4S (186 schools). The 

remaining 146 schools, “all other patterns,” have math and science CGRs that are fewer than 

three years in both or at least one of the two subjects. The “all other patterns” group consists of a 

very heterogeneous set of schools with various combination of CGRs in math and science. The 

impact estimates on the high school CGRs for this “all other patterns” group will be difficult to 

interpret and have little information to offer for policy and practice. Therefore, these “all other 

patterns” schools, together with the only two schools in 3M4S group, are excluded in the 

following analysis (deleting 17.7% of students and 17.8% of schools). The final analytic sample 

includes 13,240 students from 695 schools.  

  Advocates of increasing high school CGRs believe that pushing students to take and 

complete more academic courses will improve their academic ability and will well prepare them 

to transition to and to succeed in postsecondary education. To empirically test this proposition, 

this study uses both measures on cognitive skills and college enrollment as student outcomes. 

The cognitive outcome measure is a continuous variable that is constructed based on a 

standardized assessment test in math for HSLS:09 respondents in the spring of 2012. The 

postsecondary outcome is a measure of college enrollment status as of November 2013 (roughly 

after four years since students entered ninth grade). It is a measure of on-time college attendance 

status, which is available in the most recently released data from the HSLS:09. The college-

going measure is coded as a binary variable indicating whether a student attended a four-year 

college.  

   Guided by the theoretical framework and hypotheses regarding moderating effects, this 

study created several school level variables measuring school structural, academic, and social 

organizational factors. The first set of school moderators on structural characteristics includes: (a) 
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percentage of poverty students (who received free/reduced lunch), (b) percentage of minority 

students (who are non-white), and (c) percentage of Advanced Placement (AP) students. The 

second set of school moderators on academic organizations includes: (a) requiring a math 

competency test, (b) offering AP courses, (c) math/science full time teacher ratio in school 

(computed using measures on number of full-time teachers, and number of full-time math and 

science teachers). The third set of school moderators on social organizations includes: (a) 

academic press (a composite score of teacher, counselor, and principal expectations as perceived 

by counselor; three set of seven survey items), (b) school climate (a construct combined 14 

survey items such as frequency of physical conflicts in school and student in-class misbehavior, 

responded by school administrator), and (c) student engagement (a construct combined 14 survey 

items such as student tardiness and absenteeism, responded to by school administrator).    

  Students who attend schools with higher CGRs are likely to be systematically different 

from their counterparts who go to schools with lower CGRs. Similarly, schools that have higher 

CGRs may systematically differ from those that have lower CGRs. To effectively account for the 

differences in student and school baseline characteristics when estimating the effects of CGRs, 

this study includes a series of individual and institutional covariates that are collected in the 

base-year surveys (see Appendix Table 1.C1 for the descriptive statistics of all covariates). 

Student covariates include demographics (e.g., gender, race/ethnicity), family background (e.g., 

socioeconomic status [SES], family structure), initial academic ability (i.e., 9th grade math 

standardized test score), pre-high school academic preparation (e.g., most advanced math course 

taken in 8th grade), educational and occupational aspirations (e.g., STEM career), subjective 

measures on schooling experience (e.g., academic commitment, sense of school belonging) and 

on math and science (e.g., math self-efficacy, science identity). School covariates are school 
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sector, geographic region, urbanicity, school type, Adequate Yearly Progress (AYP) status, 

student body (e.g., percent of English language learners, percent of special education students), 

teacher composition (e.g., percent of full time teachers), academic and special programs (e.g., 

having a General Educational Diploma [GED] test preparation program, offering dropout 

prevention programs), and college-going counseling activities (e.g., organizing student visits to 

colleges, assisting students with finding financial aid for college).    

 Table 1.B1 presents descriptive statistics of key analysis variables by high school math 

and science CGRs as categorized into three major school groups (i.e., 3M3S, 4M3S, and 4M4S). 

The HSLS:09 data provides new statistics on the distribution of students by high school math 

and science CGRs of their schools. In fall 2009, about three-quarters of first-time 9th graders 

(weighted estimates) were attending high schools with math and science CGRs that were 

equivalent to or higher than “new basics” standard (i.e., three years of math and science, 3M3S). 

Of these students, 21.5% of them were attending 4M4S schools, 23.7% were in 4M3S schools, 

and 30.7% were in 3M3S schools.  About one-quarter of students (24.1%) were in “all other 

patterns” schools that had lower math and science CGRs than “new basics.” Students who are 

black, Hispanic, low-socioeconomic, and low-achieving tend to attend schools with higher CGRs. 

In terms of school structural, academic, and social organizational factors, on average there are 

little differences across the three school groups analyzed in this study.          

1.4.3  Analytic Strategy 

 To test the productivity hypothesis of CGRs (H1a), this study first estimates the overall 

impact of high school math and science CGRs on student achievement and educational 

attainment by employing ordinary least squares (OLS) regression models that take the following 
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form:  

          𝑌𝑖𝑐𝑡 = 𝛽0 + 𝛽14𝑀3𝑆𝑖𝑐𝑡0
+ 𝛽24𝑀4𝑆𝑖𝑐𝑡0

+ 𝑺𝑻𝑼𝒊𝒄𝒕𝟎
𝜞𝟏

′ + 𝑺𝑪𝑯𝒄𝒕𝟎
𝜞𝟐

′ + 𝜇𝑠 + 𝜀𝑖𝑐𝑡               (1) 

where 𝑌𝑖𝑠𝑡 is the student outcomes (i.e., 11th grade math score, attending a four-year college) for 

student i in school c. 4𝑀3𝑆𝑖𝑐𝑡0
 and 4𝑀4𝑆𝑖𝑐𝑡0

 are dummy variables denoting whether a student 

attended a school with CGRs of (a) four years of math and three years of science, and (b) four 

years of math and science, in the fall of 2009 (𝑡0; the omitted school group is 3M3S). 𝑺𝑻𝑼𝒊𝒄𝒕𝟎
 is 

a vector of student characteristics for student i in school c as measured in time 𝑡0, whereas 

𝑺𝑪𝑯𝒄𝒕𝟎
 is a vector of school factors for school c as measured in time 𝑡0. The OLS models 

include state fixed effects (𝜇𝑠) to control for unobserved time-invariant characteristics that may 

be unique for each state, for example, state-specific differences in education investment in high 

schools and the likelihood of college-going that are stagnant over time (Appendix Table 1.C2 

shows the distribution of HSLS:09 high schools with different math and science CGRs by states). 

𝜀𝑖𝑐𝑡 is assumed a zero mean normally distributed error term. The OLS models are estimated by 

clustering at the school level in order to obtain robust standard errors. The normalized follow-up 

panel weights for each outcome (W2W1STU for 11th grade math score and W3W1W2STU for 

college enrollment status) are applied to the data to adjust for the oversampling of certain groups 

(i.e., Asian students) while minimizing the effects of large sample sizes on standard errors and 

tests of statistical significance. 

Given the postsecondary enrollment outcome is a binary measure of attending a four-year 

college, equation (1) is estimated with a linear probability model (LPM). The use of LPMs rather 

than logit or probit models has several advantages. Unlike logit or probit models, which are non-

linear transformations of linear regressions, LPMs require weaker distributional assumptions 

(Wooldridge, 2010). Nonetheless, additional analyses showed that the primary results in this 
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study are not sensitive to selection among logit, probit, and linear probability models. While all 

the three binary response models may violate the heteroskedasticity assumption, the issue can be 

addressed by computing robust standard errors in LPMs, but not in logit or probit models. More 

importantly, coefficients of LPMs are easier and more straightforward to interpret, especially 

when comparing estimates across models. This advantage of LPMs is particularly critical for this 

study as one of the research goals is to compare the estimated effects of postsecondary 

remediation across different student subgroups. 

  When testing the equality hypothesis of CGRs (H1b), equation (1) is re-estimated using 

subsamples of students restricted to a specific subgroup as defined by racial/ethnic (i.e., white, 

black, Hispanic, Asian, and multirace), socioeconomic (four quartiles: lowest SES, low-middle 

SES, high-middle SES, and highest SES), and academic ability status (four quartiles: lowest-

ability, low-middle ability, high-middle ability, and highest ability). To explore whether and the 

extent to which the effects of CGRs are moderated by school factors (hypotheses H2a, H2b, and 

H2c), equation (1) is re-estimated separately by including interaction terms of the two dummy 

variables of interest, 4𝑀3𝑆𝑖𝑐𝑡0
 and 4𝑀4𝑆𝑖𝑐𝑡0

, with each of the following school contextual 

variables: (a) structural characteristics: percentage of poverty students, percentage of minority 

students, and percentage of AP students; (b) academic organizations: requiring a math 

competency test, offering AP courses, and full-time math/science teacher ratio in school; and (c) 

social organizations: academic press, school climate, and student engagement.   

1.5  Results 

1.5.1 The Estimated Impact of High School Math and Science CGRs  

 One of the primary goals of this study is to evaluate whether high school CGRs improve 

the overall outcomes of students (H1a: educational productivity hypothesis). Table 1.B2 presents 
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findings from covariate adjustment regression models with state fixed effects that estimates the 

effects of CGRs on 11th grade math standardized test scores and 4-year college enrollment status. 

Results suggest that higher CGRs have both intended positive and unintended negative effects on 

student outcomes. Compared with schools requiring students to complete three years of math and 

science coursework to graduate (3M3S), schools with CGRs of four years of math and three 

years of science (4M3S) increased student math test scores in 11th grade by 0.6 points 

(corresponding to 0.06 standard deviation for this outcome measure). The estimate is statistically 

significant at the critical level of 5 percent. The results lend support to the educational 

productivity hypothesis that higher CGRs improve student achievement overall. Interestingly, 

there is no significant difference in 11th grade math scores between students who attended 

schools that also have CGRs of four years of math, along with even higher standard of science 

CGRs (4M4S), and their peers in schools with CGRs of only three years of math and science 

(3M3S). 

 When examining the postsecondary outcome, results show that the likelihood of enrolling 

in a four-year college immediately after high school senior year is comparable between students 

in schools with CGRs of four years of math and three years of science (4M3S) and their 

counterparts attending schools with CGRs of three years of math and science (3M3S). 

Surprisingly, schools with the highest CGRs in math and science (4M4S) reduced the probability 

of enrolling in a four-year college for their students by 5.4 percentage points, compared with 

those students in schools with CGRs of three years of math and science (3M3S; statistically 

significant at the critical level of 5 percent). The empirical results from linking CGRs in math 

and science to college enrollment do not support the educational productivity hypothesis, yet 

they suggest that higher CGRs both in math and science may lead to unintended adverse 
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consequences on on-time college attendance among students.  

  In addition, it is worth noting that the estimates on the association between student/school 

characteristics and outcomes are very consistent with current literature. For example, compared 

with white counterparts, black students had significantly lower math achievement while Asian 

students had significantly higher math test scores. Both student socioeconomic status and math 

ability as measured in 9th grade were positively correlated with 11th grade math test scores and 

probability of attending a four-year college. Students who attended schools with higher 

concentrations of low-income, minority students scored lower in math tests whereas students 

enrolling in schools with higher levels of academic press performed better in standardized tests 

and college going measures.     

1.5.2  Sensitivity Analyses 

1.5.2.1   Sensitivity to Specification and Sample Selection  

  To assess the robustness of the primary results, the impact estimates of CGRs are re-

estimated (a) using an alternative specification without weighting and (b) using a subsample 

restricted to only public school samples. The primary estimation models use panel weights 

provided by HSLS:09 to adjust for the oversampling of certain student groups and to achieve 

consistent estimation in the potential presence of endogenous sampling in which the likelihood 

of selection varies with the outcome measures even after conditioning on the explanatory 

variables. However, if the sampling probabilities vary exogenously instead of endogenously, 

weighting might be inappropriate for consistency and detrimental for precision (Wooldridge, 

1999). Therefore, re-estimating the effects of CGRs without weighting can serve as a useful 

procedure to test possible misspecification of model and/or misunderstanding of the sampling 

process (Solon, Haider, & Wooldridge, 2015). Panel A in Appendix Table 1.C3 displays the 
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results. For the estimated positive effect of CGRs on math test scores, both weighted and 

unweighted estimates are quite consistent for the parameters, suggesting the primary regression 

models with weighting are correctly specified. However, they are less so for the estimated 

negative effect of CGRs on postsecondary attendance. 

 The main analytic sample in this study consists of students attending both public and 

private high schools (i.e., Catholic and non-religious schools). Prior studies have shown that 

private high schools tend to have stronger academic and social organizations that might facilitate 

the effects of higher curriculum standards such as CGRs. To evaluate whether the estimated 

positive effects of CGRs on student achievement is largely driven by private school samples, 

additional analyses using only public school samples are conducted. Panel B in Appendix Table 

1.C3 reports the findings (both with and without weighting). The results do not qualitatively 

change the main conclusions of the primary analysis using full samples (the following results on 

the heterogeneous effects of CGRs by student subgroups and the moderating effects of school 

contextual factors using full samples are also successfully replicated in additional analyses using 

only public school samples).  

1.5.2.2   Quantifying the Robustness of Fixed Effects Inferences  

  Although an extensive set of student and school controls are included, the covariate 

adjustment regression models (with state fixed effects) employed in this study might suffer from 

the threats of omitted variable bias. To address this potential confounding issue, this study 

follows the sensitivity analysis procedures outlined by Frank, Maroulis, Duong, and Kelcey 

(2013) to quantify how much bias there must be in the estimates to invalidate the inferences, 

focusing only on the key findings—the estimated positive effect of CGRs on test score (i.e., 

4M3S vs. 3M3S) and the negative effect of CGRs on attending in a four-year college (i.e., 4M4S 
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vs. 3M3S). As defined by Frank et al. (2013), the calculation of proportion of bias to make an 

inference invalid is the following: 

       % bias necessary to invalidate an inference = 1 – threshold for inference/estimated effect, 

where the threshold for inference = s.e. × 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑑𝑓. Applied to the estimates of this study, to 

invalidate the inference of the positive effect of higher math CGRs on student math score, bias 

must have accounted for (1 – 1.96 ×.280/.601 = .087) about 8.7% of the estimated effect. Similar 

calculations suggest that about 23.8% bias must be present to invalidate the inference of the 

estimated negative effect of higher math and science CGRs on enrolling in a four-year college. 

According to Frank et al. (2013), the median level of robustness is about 30% for observational 

studies in education. Thus, in this study the estimated negative impact of CGRs on postsecondary 

attendance is quite robust while it is less so for the estimated positive effect of CGRs on student 

math scores.   

1.5.3  Heterogeneous Effects of High School CGRs across Student Subgroups 

  The second part of this analysis explores whether and to what extent CGRs narrow or 

widen the gaps in student outcomes by examining the heterogeneous effects of math and science 

CGRs between advantaged and disadvantaged students (H1b: educational equality hypothesis). 

The subgroup analyses provide empirical evidence partially supporting the educational equality 

hypothesis of CGRs, yet some unexpected findings. Table 1.B3 presents the estimated 

differential impacts of CGRs on math test scores and postsecondary attendance by student 

subgroups as defined by racial/ethnic (shown in Panel A1 and A2), socioeconomic (shown in 

Panel B1 and B2), and academic ability status (shown in Panel C1 and C2). Following Cohen 

(1983), Z tests of the differences between coefficients are conducted. The following discusses 

only those differences between subgroups that are statistically significant at the critical level of 5 
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percent. 

  Schools with higher math CGRs (4M3S vs. 3M3S) boosted the probability of attending a 

four-year college for multiracial students by about 14 percentage points, as compared with their 

white and black peers. However, such benefits are not observed for multiracial students attending 

schools with the highest math and science CGRs (4M4S). For socioeconomic subgroups, the 

results reveal that the estimated negative effect of 4M4S CGRs on attending a four-year college 

is largely concentrated among high-middle SES students (a decrease by 14.5 percentage points), 

who also had significantly lower math test scores (a decrease by 1.158 points, corresponding to 

0.12 standard deviation), as compared with their counterparts from lowest, low-middle, and 

highest SES families. For student academic subgroups as categorized based on 9th grade math 

ability, the findings uncover that the estimated positive effect of higher math CGRs (4M3S vs. 

3M3S) is largely driven by students in the lowest and highest end of the academic ability 

distribution (about 1.2-1.5 points, corresponding to 0.12-0.15 standard deviations), as compared 

to low-middle ability students. The above conclusions on the differential effects of CGRs remain 

unchanged even when students are divided into five quintiles, instead of four quartiles, based on 

the socioeconomic status and initial math ability measures (see Appendix Table 1.C4).  

1.5.4  Moderating Effects of School Contextual Factors 

  Examining the potential moderating effects of school contextual factors on the 

association between high school CGRs and student outcomes is of major interest to this study. 

The results are reported in Table 1.B4 where Panel A, B, and C, respectively, show the estimated 

interaction effects of the two higher CGRs school groups (i.e., 4M3S and 4M4S) with each of (a) 

school structural characteristics: percentage of poverty students, percentage of minority students, 

and percentage of AP students; (b) school academic organizations: requiring a math competency 
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test, offering AP courses, and full-time math/science teacher ratio in school; and (c) school social 

organizations: academic press, school climate, and student engagement.   

  As is revealed in Table 1.B4, the H2a hypothesis that the effects of CGRs are moderated 

by school structural characteristics finds no empirical support, at least for the three school 

structural variables used in this study, including percentage of poverty students, percentage of 

minority students, and percentage of AP students. However, there is some evidence supporting 

the hypotheses of H2b and H2c that CGRs influence student outcomes more positively in schools 

with stronger academic and social organizations. The estimated positive effects of higher math 

CGRs (4M3S vs. 3M3S) is largely concentrated in schools that offer on-site AP courses (an 

increase by 1.441 points, corresponding to 0.14 standard deviation). On the other hand, for those 

schools offering no AP courses, the estimate is negative although not statistically significant. For 

schools with highest math and science CGRs (4M4S), a one-standard deviation increase in the 

scale of school-level student engagement drives growth up by 0.46 points in student math scores 

(corresponding 0.05 standard deviation). While several school contextual factors are moderators 

for a positive relationship between CGRs and student academic performance, such moderation 

effects are not found on the linkage between CGRs and postsecondary enrollment.  

1.6  Discussion 

 The purpose of this study is to determine whether, for whom, under which conditions 

high school course graduation requirements influence student educational outcomes. The 

empirical results from analyzing the HSLS:09 data point to three main conclusions. First, on the 

one hand higher math CGRs had intended positive effect on student math cognitive improvement 

and on the other hand higher CGRs both in math and science had no impact on student test 

scores yet decreased the likelihood of students attending a four-year college in the semester after 
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high school senior year. The findings seem conflicting. One possible explanation is that while 

students in 4M3S schools were taking more math courses to improve their math ability, students 

in 4M4S schools were struggling to cope with the high graduation standard in both academic 

subjects that are often perceived by students as most difficult subjects. Additional analyses show 

that students attending 4M4S schools did complete more and higher levels of science courses. 

However, spending more time and putting more effort to take more than three years of science 

coursework in high school may not pay off in college admission because typical four-year 

colleges only require applicants to have completed three years of science courses in high school.   

  The second set of key findings of this analysis is that students who are multiracial, 

lowest- and highest-achieving benefited the most by enrolling in schools with higher math and 

science CGRs while high-middle SES students who attended higher math and science schools 

had significantly lower math scores and lower probability of enrolling in a four-year college. The 

first part of the results are consistent with a few previous studies that suggested CGRs typically 

have little overall impact on student outcomes, but it could have a meaningful positive effect for 

certain traditionally disadvantaged student groups (e.g., Jacob et al., 2016; Plunk et al., 2014). In 

contrast to the study by Plunk et al. (2014), which documented that higher math and science 

CGRs reduced the likelihood of postsecondary enrollment for black and Hispanics students, this 

study found no differential effects of math and science CGRs on college attendance for the two 

minority groups. Adding to the high school CGRs literature, findings from this study analyzing 

the HSLS:09 data show that high-middle socioeconomic families struggled most in schools with 

highest CGRs both in math and science.  

  The third important conclusion of this study is that school contexts play a significant role 

in moderating the effects of CGRs on student performance. Two key school moderators 
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identified in this analysis are advanced course offering and student engagement in school. There 

could be many other school contextual factors that may be facilitating or impeding the positive 

impacts of high school CGRs or other types of curricular reform programs. The findings of 

moderation effects in this study implies that mixed findings of CGR effects presented across 

current studies could be well understood if contextual factors are taken into account. It also 

highlights for policymakers and school leaders the need to invest in and develop greater 

academic and social organizations in schools. The reason is that only introducing 

institutionalized expectation policies such as higher CGRs or high school exit exams may 

ultimately not suffice to improve student outcomes. 

  The findings presented in this study offer new national longitudinal evidence to the 

research and policy literature on high school CGRs, yet they need to be interpreted with some 

cautionary limitations. The information on high school course graduation requirements are 

reported by school administrators, hence, there could be measurement errors in the key 

independent variables used in this analysis. Although HSLS:09 provided an extensive set of 

survey items on students, teacher, counselors, and schools for constructing various school 

contextual factors, there still are some important school characteristics concerning school 

structural, academic, and social organizations missing in the data set, which may be potential 

school moderators for CGR effects (e.g., teacher mobility rate and principal instability). 

Relatedly, while the covariate adjustment regression with state fixed effects models employed in 

this study have controlled for as many student and school observables as possible when 

estimating effects, there could be important confounding factors unmeasured and unaccounted 

for, which could bias the results.    

 Despite a number of limitations, this study adds to a growing body of evidence that high 
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school course graduation requirements could serve as a policy tool to improve student 

achievement by increasing opportunities to learn for traditionally underserved students. Yet 

policymakers and school leaders need to be aware of and to address the potential unintended 

negative consequences on certain student outcomes and for specific student subgroups, as 

documented in this analysis and others. This study also emphasizes that identifying and studying 

the moderating role of school contextual factors can be useful to conceptually and empirically 

better understand the linkage between high school CGRs or similar school reform programs and 

student outcomes.        
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                                 (a) Mathematics                                                                       (b) Science  

       

  

Figure 1.A1 High school mathematics and science course graduation requirements in 50 states and 

District of Columbia from 1980 to 2013, by year and years of coursework required. 

Source. National Center for Education Statistics (2016); Medrich, Brown, Henke, Ross, and McArthur (1992). 
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Figure 1.A2 The hypothesized relationship between the course graduation requirements (CGRs) and 

student outcomes, and the moderating role of school contextual factors. 
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Table 1.B1 Summary Statistics for Key Variables by High School Mathematics and Science Course 

Graduation Requirements 
 

All 

High School  

Course Graduation Requirements 

3M3S 4M3S 4M4S 

Number of students 13,240 4,728 4,905 3,607 

Number of schools 695 257 252 186 

     

Race/ethnicity     

   White .598 .659 .627 .479 

   Black .129 .102 .114 .184 

   Hispanic .164 .129 .147 .232 

   Asian .026 .030 .019 .027 

   Multirace .074 .072 .076 .074 

   Other race .010 .008 .017 .004 

Socioeconomic status .020 .087 -.011 -.040 

 (.750) (.747) (.755) (.744) 

9th grade math test score 51.101 51.589 50.581 50.976 

 (9.659) (9.765) (9.863) (9.238) 

School structural organizations     

   % of poverty students .367 .320 .397 .404 

 (.243) (.239) (.245) (.237) 

   % of minority students .332 .281 .315 .424 

 (.290) (.292) (.287) (.269) 

   % of AP students .152 .140 .137 .186 

 (.126) (.120) (.108) (.145) 

School academic organizations     

   Requiring a math competency test .695 .659 .746 .688 

   Offering AP courses .899 .898 .905 .896 

   Math/science teacher ratio .244 .239 .243 .253 

 (.051) (.049) (.051) (.053) 

School social organizations     

   Academic press -.037 -.060 -.040 .000 

 (1.040) (1.010) (1.095) (1.012) 

   School climate -.432 -.469 -.557 -.218 

 (.971) (.923) (1.003) (.980) 

   Student engagement -.051 -.055 -.178 .104 

 (.958) (.988) (.900) (.954) 

Student Outcomes      

   11th grade math test score 50.452 51.175 50.025 49.894 

 (9.866) (10.036) (9.900) (9.516) 

   Attending a 4-year college .342 .383 .311 .318 

Source. High School Longitudinal Study of 2009 (HSLS:09) 

Note. 3M3S = 3 years of math and science; 4M3S = 4 years of math and 3 years of science; 4M4S = 4 years of math and science; 

AP = Advanced Placement. Sample is restricted to first-time ninth graders in fall 2009, whose schools has valid information on 

math and science course graduation requirements. Estimates are weighted using base-year student analytic weight 

(W1STUDENT). Standard deviations appear in the parentheses below means of continuous variables. 
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Table 1.B2 Effects of High School Math and Science Course Graduation Requirements 

 11th grade math test score Attending a 4-year college 

HS Course graduation requirements 

   (ref: 3 years of math and science; 3M3S) 

    

   4 years of math, 3 years of science (4M3S) 0.601 * (0.280) -0.006 (0.018) 

   4 years of math and science (4M4S) 0.017 (0.347) -0.054 * (0.021) 

     

Race/ethnicity (ref: white)     

   Black -0.617 * (0.278) -0.001 (0.020) 

   Hispanic -0.336 (0.243) -0.001 (0.017) 

   Asian 2.226 *** (0.358) 0.066 ** (0.025) 

   Multirace -0.238 (0.319) -0.023 (0.019) 

   Other race -1.605 (0.981) 0.044 (0.063) 

Socioeconomic status 0.850 *** (0.144) 0.125 *** (0.009) 

9th grade math test score 0.518 *** (0.013) 0.009 *** (0.001) 

     

School structural organizations     

   % of poverty students -1.683 * (0.656) 0.012 (0.042) 

   % of minority students -0.898 † (0.470) 0.009 (0.040) 

   % of AP students -0.904 (0.785) -0.036 (0.063) 

     

School academic organizations     

   Requiring a math competency test 0.217 (0.203) -0.015 (0.013) 

   Offering AP courses 0.723 * (0.291) 0.024 (0.017) 

   Math/science teacher ratio 3.763 † (1.960) 0.231 * (0.115) 

     

School social organizations     

   Academic press 0.221 ** (0.085) 0.015 ** (0.005) 

   School climate 0.001 (0.109) 0.007 (0.007) 

   Student engagement -0.030 (0.133) 0.007 (0.008) 

   

Number of students 13,240 10,509 

Number of schools 695 695 

R-squared .607 .358 

Note. HS = high school; AP = Advanced Placement. All models estimated with state fixed effects. Models also include student 

and school covariates presented in Table 1.C1. Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10.     
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Table 1.B3 Effects of High School Course Graduation Requirements for Student Subgroups 

Racial Subgroups White Black Hispanic Asian Multirace 

Panel A1: 11th Grade Math Test Score      

   4 years of math, 3 years of science  0.636* 0.238 1.141 † 1.859 † 1.060 

      (4M3S) (0.313) (0.893) (0.687) (0.946) (0.896) 

   4 years of math and science (4M4S) 0.245 -0.473 -0.603 -0.576 -0.534 

 (0.372) (1.073) (0.799) (1.138) (1.082) 

   Number of students 7,822 1,257 1,918 1,006 1,113 

Panel A2: Attending a Four-Year College 

   4 years of math, 3 years of science  0.002 -0.111 † 0.015 0.120 † 0.142* 

      (4M3S) (0.022) (0.058) (0.045) (0.070) (0.062) 

   4 years of math and science (4M4S) -0.046 † -0.085 -0.004 0.125 -0.077 

 (0.028) (0.069) (0.055) (0.083) (0.072) 

   Number of students 6,289 960 1,475 826 866 

Socioeconomic Subgroups Lowest SES 
Low-Middle 

SES 

High-Middle 

SES 
Highest SES 

Panel B1: 11th Grade Math Test Score     

   4 years of math, 3 years of science  0.626 0.709 0.448 0.991 * 

      (4M3S) (0.527) (0.547) (0.447) (0.436) 

   4 years of math and science (4M4S) 0.376 0.722 -1.158 * 0.495 

 (0.727) (0.717) (0.524) (0.537) 

   Number of students 3,316 3,304 3,310 3,310 

Panel B2: Attending a Four-Year College 

   4 years of math, 3 years of science  0.013 0.044 0.011 -0.022 

      (4M3S) (0.027) (0.031) (0.037) (0.033) 

   4 years of math and science (4M4S) 0.028 -0.030 -0.145 ** -0.009 

 (0.040) (0.042) (0.047) (0.042) 

   Number of students 2,437 2,503 2,615 2,954 

Math Ability Subgroups Lowest Ability 
Low-Middle 

Ability 

High-Middle 

Ability 

Highest 

Ability 

Panel C1: 11th Grade Math Test Score     

   4 years of math, 3 years of science  1.495 ** -0.211 0.738 1.149 ** 

      (4M3S) (0.457) (0.511) (0.480) (0.415) 

   4 years of math and science (4M4S) 1.023 † -0.597 0.372 -0.803 

 (0.617) (0.610) (0.504) (0.602) 

   Number of students 3,310 3,310 3,310 3,310 

Panel C2: Attending a Four-Year College 

   4 years of math, 3 years of science  -0.015 -0.022 -0.006 0.068 † 

      (4M3S) (0.026) (0.034) (0.035) (0.035) 

   4 years of math and science (4M4S) -0.042 -0.006 -0.089 * -0.037 

 (0.034) (0.042) (0.043) (0.044) 

   Number of students 2,419 2,541 2,672 2,877 

Note. Each cell in the table shows the estimate on the effect of high school course graduation requirement in math or science 

(comparison group: 3 years of math and science). All models estimated with state fixed effects. Models include student and 

school covariates presented in Table 1.C1. Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 1.B4 Effects of High School Course Graduation Requirements by School Organizations 

 11th Grade Math Test Score Attending a Four-Year College 

Panel A: School Structural 

Organizations       

   4 years of math, 3 years of science 0.408 0.437 0.436 -0.028 -0.015 -0.015 

   (4M3S) (0.434) (0.358) (0.418) (0.026) (0.024) (0.026) 

   4 years of math and science (4M4S) 0.191 0.449 0.154 -0.071 ** -0.069 * -0.069 * 

 (0.448) (0.420) (0.460) (0.027) (0.027) (0.028) 

   % of poverty students -1.930 *   -0.038   

 (0.850)   (0.059)   

   % of poverty students x 4M3S 0.812   0.053   

 (0.990)   (0.056)   

   % of poverty students x 4M4S 0.357   0.049   

 (0.869)   (0.056)   

   % of minority students  -1.281 *   -0.012  

  (0.636)   (0.057)  

   % of minority students x 4M3S  1.082   0.027  

  (0.894)   (0.055)  

   % of minority students x 4M4S  -0.632   0.035  

  (0.804)   (0.054)  

   % of AP students   -1.283   -0.162 

   (1.456)   (0.109) 

   % of AP students x 4M3S   2.327   0.099 

   (2.019)   (0.123) 

   % of AP students x 4M4S   1.087   0.043 

   (1.951)   (0.121) 

   Number of students 12,202 9,715 11,716 7,495 12,239 9,735 

Panel B: School Academic Organizations      

   4 years of math, 3 years of science 0.608 -0.625 -0.226 -0.008 0.011 0.098 

   (4M3S) (0.444) (0.584) (1.167) (0.027) (0.038) (0.068) 

   4 years of math and science (4M4S) 0.114 -0.719 -1.447 -0.034 -0.063 -0.022 

 (0.545) (0.674) (1.102) (0.032) (0.039) (0.066) 

   Requiring a math test 0.181   -0.000   

 (0.343)   (0.022)   

   Requiring a math test x 4M3S 0.050   -0.003   

 (0.474)   (0.029)   

   Requiring a math test x 4M4S 0.011   -0.021   

 (0.492)   (0.031)   

   Offering AP courses  -0.009   0.033  

  (0.383)   (0.026)  

   Offering AP courses x 4M3S  1.441 **   -0.024  

  (0.554)   (0.037)  

   Offering AP courses x 4M4S  1.037   0.007  

  (0.654)   (0.037)  

   Math/science teacher ratio   0.046   0.038 * 

   (0.302)   (0.019) 

   Math/science teacher ratio x 4M3S   0.415   -0.038 

   (0.450)   (0.026) 

   Math/science teacher ratio x 4M4S   0.699 †   -0.010 

   (0.417)   (0.026) 

   Number of students 12,154 11,571 11,617 9,640 9,187 9,227 

Note. All models estimated with state fixed effects. Models include student and school covariates presented in Table 1.C1. 

Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 1.B4 (cont’d) 

 11th Grade Math Test Score Attending a Four-Year College 

Panel C: School Social Organizations      

   4 years of math, 3 years of science 0.788 ** 0.596 † 0.625 * -0.005 -0.019 -0.025 

   (4M3S) (0.282) (0.318) (0.308) (0.019) (0.020) (0.019) 

   4 years of math and science (4M4S) 0.217 0.265 0.220 -0.032 -0.071 ** -0.057 * 

    (0.376) (0.382) (0.371) (0.025) (0.025) (0.024) 

   Academic press 0.232   0.018 †   

 (0.149)   (0.010)   

   Academic press x 4M3S 0.035   0.000   

 (0.203)   (0.013)   

   Academic press x 4M4S 0.066   -0.022   

 (0.225)   (0.016)   

   School climate  -0.161   0.001  

  (0.176)   (0.011)  

   School climate x 4M3S  0.061   -0.003  

  (0.202)   (0.012)  

   School climate x 4M4S  0.270   0.007  

  (0.218)   (0.014)  

   Student engagement   -0.326 †   0.012 

   (0.188)   (0.012) 

   Student engagement x 4M3S   0.250   -0.013 

   (0.229)   (0.014) 

   Student engagement x 4M4S   0.460 *   -0.002 

   (0.206)   (0.015) 

   Number of students 11,771 10,734 11,055 9,332 8,532 8,788 

Note. All models estimated with state fixed effects. Models include student and school covariates presented in Table 1.C1. 

Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 1.C1 Descriptive Statistics of Covariates  

Variables Mean 
Standard 

Deviation 
Range 

Student characteristics    

   Female .507 .500 0-1 

   White .598 .490 0-1 

   Black .129 .335 0-1 

   Hispanic .164 .370 0-1 

   Asian .026 .158 0-1 

   Multirace .074 .261 0-1 

   Other race .010 .099 0-1 

   Socioeconomic status (composite) .020 .750 -1.82-2.88 

   Family structure    

      Intact family .582 .493 0-1 

      Two parents/guardians .178 .383 0-1 

      Single parent .222 .415 0-1 

      Other family structure .018 .131 0-1 

   Had a parent worked in STEM fields .226 .418 0-1 

   Career aspiration in STEM fields .336 .472 0-1 

   Education aspiration    

      High school or less .119 .324 0-1 

      Associate’s degree .068 .252 0-1 

      Bachelor’s degree .174 .379 0-1 

      Advanced degree .434 .496 0-1 

      Don’t know .205 .403 0-1 

   9th grade math test score 51.101 9.659 24.10-82.19 

   Highest math course taken in 8th grade    

      Math 8 .264 .441 0-1 

      Pre-algebra .339 .474 0-1 

      Algebra I .300 .458 0-1 

      Algebra II .055 .229 0-1 

      Other math .041 .199 0-1 

   Number of years of math courses expected to take in HS    

      1 or 2 years .085 .279 0-1 

      3 years .245 .430 0-1 

      4 years .669 .470 0-1 

   Knowing the importance of math for applying college .553 .497 0-1 

   Knowing the importance of math in college education .513 .500 0-1 

   Math identity (composite) .057 1.002 -1.73-1.76 

   Math utility (composite) .003 .996 -3.51-1.31 

   Math self-efficacy (composite) .049 .980 -2.92-1.62 

   Interest in math course (composite) .054 .996 -2.46-2.08 

   Science identity (composite) .043 1.000 -1.57-2.15 

   Science utility (composite) .007 .996 -3.10-1.69 

   Science self-efficacy (composite) .027 .989 -2.91-1.83 

   Interest in science course (composite) .030 .990 -2.59-2.03 

   Academic commitment (composite) .014 .988 -4.50-1.60 

   Sense of school belonging .071 .975 -4.35-1.59 

   School engagement (composite) .078 .958 -3.38-1.39 

   Hours/week spent on studying/homework 3.158 2.158 .5-16.5 
Source. High School Longitudinal Study of 2009 (HSLS:09) 

Note. STEM = Science, technology, engineering, and mathematics; HS = high school. Sample is restricted to first-time ninth 

graders in fall 2009, whose schools has valid information on math and science course graduation requirements. Sample size is 

13,240. Estimates are weighted using base-year student analytic weight (W1STUDENT).  
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Table 1.C1 (cont’d) 

Variables Mean 
Standard 

Deviation 
Range 

School structural organizations    

   % of poverty students .367 .243 0-1 

   % of minority students .332 .290 0-1 

   % of AP students .152 .126 0-1 

School academic organizations    

   Requiring a math competency test .695 .460 0-1 

   Offering AP courses .899 .301 0-1 

   Math/science teacher ratio .244 .051 0-.45 

School social organizations    

   Academic press -.037 1.040 -6.02-1.43 

   School climate -.432 .971 -4.22-1.97 

   Student engagement -.051 .958 -2.92-1.81 

Other school covariates     

   School sector    

      Public .911 .284 0-1 

      Catholic .052 .221 0-1 

      Other private .037 .190 0-1 

   Geographic region    

      Northeast .188 .391 0-1 

      Midwest .241 .428 0-1 

      South .096 .295 0-1 

      West .475 .499 0-1 

   Urbanicity    

      City .244 .430 0-1 

      Suburb .344 .475 0-1 

      Town .134 .341 0-1 

      Rural .277 .447 0-1 

   Grade span    

      PK-12 .054 .225 0-1 

      6-12 .055 .227 0-1 

      9-12 .892 .311 0-1 

   Single-sex school .023 .151 0-1 

   Magnet school .001 .034 0-1 

   Charter school .030 .170 0-1 

   Participated in school choice program .285 .451 0-1 

   Average instruction hours per day 6.127 .601 3.8-8 

   Adequate Yearly Progress (AYP) status    

      Met AYP .695 .460 0-1 

      Year 1 school improvement .101 .301 0-1 

      Year 2 school improvement .110 .313 0-1 

      Year 3-5 school improvement .094 .291 0-1 

   % of English language learner students .044 .079 0-.70 

   % of special education students .126 .069 0-.45 

   % of students enrolled in an alternative program .024 .033 0-.30 

   % of students enrolled in a dropout prevention program .016 .035 0-.40 

   Average daily attendance percentage for HS students .939 .027 .80-.99 
Source. High School Longitudinal Study of 2009 (HSLS:09) 

Note. STEM = Science, technology, engineering, and mathematics; HS = high school. Sample is restricted to first-time ninth 

graders in fall 2009, whose schools has valid information on math and science course graduation requirements. Sample size is 

13,240. Estimates are weighted using base-year student analytic weight (W1STUDENT).  
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Table 1.C1 (cont’d) 

Variables Mean 
Standard 

Deviation 
Range 

   % of 9th graders enrolled in prior year returned .916 .141 0-1 

   % of 9th graders who are repeating 9th grade .049 .068 0-.72 

   % of graduates attending 2-year colleges .265 .152 0-1 

   % of graduates attending 4-year colleges .499 .238 0-1 

   Total number of teachers 86.78 49.32 4-260 

   % of full time teachers .953 .067 .47-1 

   % of HS teachers absent on an average day .034 .025 0-.22 

   Offering advanced math courses .942 .234 0-1 

   Offering alternative programs .331 .471 0-1 

   Offering dropout prevention programs .342 .474 0-1 

   Having formal GED test preparation program .149 .356 0-1 

   Organizing math/science extracurricular programs (composite) .108 .948 -2.02-2.14 

   Program encouraging underrepresented students in STEM .293 .455 0-1 

   Program informing parents about STEM higher ed/careers .412 .492 0-1 

   School counseling program's most emphasized goal   0-1 

      Help students prepare for postsecondary schooling .503 .500 0-1 

      Help students improve achievement in HS .324 .468 0-1 

      Other goal (e.g., preparing for work, personal growth) .174 .379 0-1 

   Having counselor designated for college-going .617 .486 0-1 

   Average caseload for school's counselors 359.515 125.903 4-950 

   Students are required to have an education plan .810 .392 0-1 

   Program to encourage student not considering college to do so .764 .424 0-1 

   Consulting with college officers about qualifications .961 .194 0-1 

   Organizing student visits to colleges .702 .457 0-1 

   Offering Upward Bound/GEAR UP/AVID/MESA .481 .500 0-1 

   Holding info session on college transitions for 

students/parents 

.950 .219 0-1 

   Assisting students with finding financial aid for college .960 .196 0-1 

   Providing opportunities for dual/concurrent enrollment .916 .278 0-1 

   Taking other steps to assist with HS to college transition .367 .482 0-1 
Source. High School Longitudinal Study of 2009 (HSLS:09) 

Note. STEM = Science, technology, engineering, and mathematics; HS = high school. Sample is restricted to first-time ninth 

graders in fall 2009, whose schools has valid information on math and science course graduation requirements. Sample size is 

13,240. Estimates are weighted using base-year student analytic weight (W1STUDENT).  
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Table 1.C2 Distribution of High School Math and Science Course Graduation Requirements By States 
 

All 
3 Years of Math  

and Science 

4 Years of Math and  

3 Years of Science 

4 Years of Math  

and Science 

Alabama 14 1 0 13 

Alaska 1 0 0 1 

Arizona 15 1 13 1 

Arkansas 5 0 4 1 

California 8 7 0 1 

Colorado 8 4 3 1 

Connecticut 2 1 1 0 

Delaware 4 1 3 0 

Florida 43 4 31 8 

Georgia 46 2 2 42 

Idaho 2 2 0 0 

Illinois 19 18 0 1 

Indiana 19 13 5 1 

Iowa 4 4 0 0 

Kansas 7 5 2 0 

Kentucky 11 3 8 0 

Louisiana 16 1 2 13 

Maine 2 1 1 0 

Maryland 11 4 7 0 

Massachusetts 11 7 3 1 

Michigan 42 3 37 2 

Minnesota 13 12 1 0 

Mississippi 6 1 2 3 

Missouri 15 11 2 2 

Montana 1 1 0 0 

Nebraska 5 5 0 0 

Nevada 3 2 0 1 

New Hampshire 3 2 1 0 

New Jersey 21 16 3 2 

New Mexico 4 1 3 0 

New York 32 26 2 4 

North Carolina 40 3 30 7 

North Dakota 2 2 0 0 

Ohio 51 23 24 4 

Oklahoma 5 4 1 0 

Oregon 2 2 0 0 

Pennsylvania 49 25 9 15 

Rhode Island 2 0 1 1 

South Carolina 15 1 12 2 

South Dakota 2 2 0 0 

Tennessee 44 1 36 7 

Texas 48 2 0 46 

Utah 1 1 0 0 

Vermont 3 3 0 0 

Virginia 17 12 1 4 

Washington 7 7 0 0 

West Virginia 4 0 2 2 

Wisconsin 7 7 0 0 

Wyoming 2 2 0 0 

Total 695 257 252 186 

Source. High School Longitudinal Study of 2009 (HSLS:09) 
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Table 1.C3 Sensitivity Analysis: Effects of High School Math and Science Course Graduation 

Requirements Using Alternative Specification 

Course graduation requirements 

   (ref: 3 years of math and science) 

     11th grade math test score     Attending a 4-year college 

Weighted Unweighted Weighted Unweighted 

Panel A: All Schools (n=695) 
    

   4 years of math, 3 years of science (4M3S)  0.601 * 0.521 * -0.006 0.007 

       (0.280) (0.222) (0.018) (0.014) 

   4 years of math and science (4M4S) 0.017 -0.071 -0.054 * -0.021 

 (0.347) (0.274) (0.021) (0.017) 

   Number of students 13,240 10,509 

Panel B: Only Public Schools (n=558)     

   4 years of math, 3 years of science (4M3S) 0.609 † 0.465 † -0.009 0.010 

       (0.319) (0.264) (0.020) (0.017) 

   4 years of math and science (4M4S) 0.141 0.139 -0.065 ** -0.030 

 (0.386) (0.328) (0.025) (0.021) 

   Number of students 10,530 8,210 

Note. n = number of schools. All models estimated with state fixed effects. Models also include student and school covariates 

presented in Table 1.C1. Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10.     
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Table 1.C4 Sensitivity Analysis: Effects of High School Course Graduation Requirements for Student 

Subgroups Using Alternative Cutoffs 

 Socioeconomic Subgroups 

 Lowest Low-Middle Middle 
High-

Middle 
Highest 

Panel A1: 11th Grade Math Test Score    
 

   4 years of math, 3 years of science  0.345 1.654 ** -0.172 0.366 0.868 † 

      (4M3S) (0.581) (0.551) (0.540) (0.523) (0.480) 

   4 years of math and science  -0.038 2.729 *** -1.061 † -1.036 † 0.307 

      (4M4S) (0.794) (0.741) (0.643) (0.608) (0.625) 

   Number of students 2,648 2,666 2,630 2,650 2,646 

Panel A2: Attending a Four-Year College 
 

   4 years of math, 3 years of science  0.012 -0.026 0.057 -0.059 0.040 

      (4M3S) (0.029) (0.033) (0.042) (0.043) (0.037) 

   4 years of math and science  0.019 -0.076 † -0.005 -0.213 *** 0.009 

      (4M4S) (0.041) (0.046) (0.052) (0.049) (0.045) 

   Number of students 1,950 1,992 2,002 2,182 2,383 

 Math Ability Subgroups 

 Lowest Low-Middle Middle 
High-

Middle 
Highest 

Panel B1: 11th Grade Math Test Score    
 

   4 years of math, 3 years of science  1.376 ** 0.387 0.062 0.224 1.082 * 

      (4M3S) (0.501) (0.619) (0.546) (0.533) (0.459) 

   4 years of math and science  1.180 † -0.704 0.052 -0.372 -0.810 

      (4M4S) (0.685) (0.723) (0.665) (0.567) (0.594) 

   Number of students 2,648 2,648 2,648 2,648 2,648 

Panel B2: Attending a Four-Year College 
 

   4 years of math, 3 years of science  -0.005 0.024 -0.058 0.004 0.023 

      (4M3S) (0.027) (0.032) (0.043) (0.040) (0.037) 

   4 years of math and science  -0.003 -0.066 -0.069 -0.120 * -0.027 

      (4M4S) (0.034) (0.042) (0.046) (0.051) (0.044) 

   Number of students 1,927 2,008 2,071 2,169 2,334 

Note. Each cell in the table shows the estimate on the effect of high school course graduation requirement in math or science 

(comparison group: 3 years of math and science). All models estimated with state fixed effects. Models include student and 

school covariates presented in Table 1.C1. Standard errors clustered by school are reported in parentheses.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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CHAPTER 2 
 

REDUCING OR REINFORCING INEQUALITY? EVALUATING THE IMPACT OF 

POSTSECONDARY REMEDIATION ON COLLEGE OUTCOMES3 

 

 

2.1  Introduction 

  Each year, many students enter postsecondary institutions academically underprepared 

with respect to their numeracy and literacy skills (Parsad, Lewis, & Greene, 2003; Sparks & 

Malkus, 2013). Recent national statistics indicate that nearly half of undergraduates while 

enrolled in a two- or four-year college will take at least one remedial course in mathematics or 

English (Radford & Horn, 2012). Remedial education in college is now a growing concern 

among educators and policymakers as it costs an estimated $5.6-$7.0 billion a year nationwide 

(Alliance for Excellent Education, 2011; Scott-Clayton, Crosta, & Belfield, 2014). With so many 

students and enormous resources involved, the question is whether postsecondary remediation 

increases the likelihood that students will persist and graduate.  

Remediation was initially established to increase college access and success for those 

academically ill-prepared students who otherwise would have stopped out after high school (Day 

& McCabe, 1997; Roueche & Roueche, 1999). Statistics consistently show that students who are 

low-income, black, and Hispanic are disproportionately enrolled in remediation programs across 

higher education institutions (Adelman, 2004; Radford & Horn, 2012; Sparks & Malkus, 2013). 

While the benefits of remediation remain unclear, some scholars have argued that such practices, 

                                                           
3 This research was supported by the NLSY 1997 Postsecondary Research Network funded by the Eunice Kennedy 

Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award 

number 5R01HD061551-02 and by the Population Research Center at the University of Texas at Austin, which 

receives core support from the National Institute of Child Health and Human Development under the award number 

5 R24 HD042849. The content is solely the responsibility of the authors and does not necessarily represent the 

official views of the National Institutes of Health. 
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instead of mitigating differences in college preparation, act as an institutional mechanism for 

resorting and “cooling out” low-performing disadvantaged students (Bettinger & Long, 2004; 

Deil-Amen & Rosenbaum, 2002). The next question, then, is whether remediation reduces or 

reinforces the educational inequality between socially and economically advantaged and 

disadvantaged student groups?  

A large body of empirical research has examined the remediation effects on a variety of 

college outcomes (e.g., grade, credits earned, persistence, and degree completion) using student 

samples from two-year and/or four-year institutions. Two reviews of the remediation literature 

found that earlier studies with observational data were severely flawed methodologically 

(O’Hear & MacDonald, 1995; Boylan & Saxon, 1999), in particular failing to account for 

confounding effects arising from non-random remediation participation of students (Bettinger, 

Boatman, & Long, 2013). Several researchers recently attempted to address the issue of selection 

bias by employing experimental and quasi-experimental designs. These research efforts 

produced results that were mixed at best. While some studies found that remediation has a 

positive but modest impact for two-year college students (Moss & Yeaton, 2013; Moss, Yeaton, 

& Lloyd, 2014), the others reported an effect that is neutral or negative (Clotfelter, Ladd, 

Muschkin, & Vigdor, 2015; Martorell & McFarlin, 2011). Similarly, inconsistent estimates are 

observed for remediation among four-year college students (Attewell, Lavin, Domina, & Levey, 

2006; Bettinger & Long, 2009; Martorell & McFarlin, 2011).  

 In addition to conflicting findings, these previous studies were subject to several 

important limitations. Most researchers focused only on estimating the independent effect of 

remediation for different remedial subjects (e.g., math, reading, or writing) separately. These 

subject-focused studies fail to recognize the fact that a sizeable number of undergraduates are 
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exposed to multiple subjects at the same time (Bahr, 2007, 2010; Parsad et al., 2003). Most 

empirical analyses also heavily relied on student data from a single institution or state, which has 

limited generalizability to other settings and student populations. Moreover, current research has 

little to provide on the heterogeneous effects of remediation for various socio-demographic 

groups, especially with nationally representative samples.    

 This study contributes to this literature by offering new longitudinal empirical evidence 

on the remediation effect and its association with educational inequality. Unlike prior studies that 

are overwhelmingly subject-focused, in this analysis students are categorized into different 

“remedial treatment groups” which consider both the subject areas and the number of enrolled 

remedial courses. Effects of single remediation (i.e., math or English) and dual remediation (i.e., 

both math and English) are tested with a nationally generalizable sample of a recent cohort of 

college students from two- and four-year institutions. A propensity score-based technique with 

stratification and inverse probability weighting is used to estimate the remediation effects while 

controlling for potential selection bias. Findings suggest that postsecondary remediation has 

differential effects for two- and four-year college students and it plays a critical role in the social 

stratification process in higher education system.         

2.2  Background 

2.2.1  How Might Postsecondary Remediation Help or Hinder Student Success?  

Remediation is perhaps the most common, large-scale intervention that postsecondary 

institutions use to address academic deficiencies among college students with poor preparation, 

many of whom are racial and ethnic minorities and from low-income families. Remedial 

education consists of courses and other learning programs aimed at improving students’ 

academic abilities and preparing them to take college-level coursework. Assignment to a 
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remedial course typically occurs when undergraduates first arrive on campus. However, it is not 

uncommon to find students enrolling in remedial classes after their first semester or year in 

college (Adelman, 1999; Bahr, 2013; Bailey, Jeong, & Cho, 2010; Parsad et al., 2003). 

Nationally, larger percentages of students attending two-year colleges reported enrollment in 

remedial coursework than did those attending four-year colleges (among 2003-04 first-time 

postsecondary students: 68.2% vs. 39.4%; Radford & Horn, 2012).  

In recent literature, there are three major arguments as to how postsecondary remediation 

can influence student college pathways and outcomes in different ways. The first, and a positive 

view of remediation, is that postsecondary remedial education, often called “developmental 

education,” should help students to foster or strengthen their skills in certain academic areas (e.g., 

math, reading, and writing) that are critical for success in college (Bettinger et al., 2013). The 

benefits of remediation, therefore, should include an increased probability of college persistence 

and completion. This positive developmental effect, however, may be weaker for those students 

who enrolled in but did not complete a remedial course as they would only receive partial 

treatment thus limited benefits of remediation (Bettinger & Long, 2004).  

 The second perspective argues that remediation could negatively affect students in 

unintended ways. Failing a placement test upon entering college and being assigned to a 

remedial course can send a signal to the students that they are not “college material” (Clotfelter 

et al., 2015; Deil-Amen & Rosenbaum, 2002; Scott-Clayton & Rodriguez, 2015). Such a stigma 

may discourage students from continuing their postsecondary studies as they might feel that they 

are not succeeding, not up to the task, and subsequently they may not do well in college. This 

stigma is likely to be more pronounced for remedial students attending a selective college where 

a larger proportion of their peers are not involved in any remedial programs (Bettinger & Long, 



52 
 
 

2004; Deil-Amen & Rosenbaum, 2002). If it happens early in a postsecondary career then the 

students may view themselves as inadequate and not try in other courses—which may explain 

why many studies show low college persistence and graduation rates for those who take 

remediation early in college (Adelman, 2004; Bahr, 2013; Radford & Horn, 2012).  

 The third view of remediation suggests that enrolling in remedial classes may have a 

disrupting effect on schooling progression, regardless of its impact on student learning or 

performance. For the vast majority of higher education institutions, it is a common practice that 

academically underprepared students are required to take and pass noncredit remedial courses 

prior to taking college-level coursework (Parsad et al., 2003). Students with greater academic 

deficiencies would even take more than one or two semesters to meet the prerequisite 

requirements (Bahr, 2013; Bailey et al., 2010; Parsad et al., 2003). This particular enrollment 

restriction is likely to disrupt coursetaking patterns and impose extra financial burdens on 

remedial students in college, especially those students who need to take multiple remedial 

subjects. If the disruption effect is large, the remediated students are expected to take more 

semesters or years to graduate or to be less likely to obtain a degree as compared with their non-

remediated peers (Scott-Clayton & Rodriguez, 2015).  

2.2.2  How Might Postsecondary Remediation Affect Students Differently?  

One consistent finding in educational statistics is that low-socioeconomic and minority 

students account for a larger share of enrollment in postsecondary remediation (Adelman, 2004; 

Radford & Horn, 2012; Sparks & Malkus, 2013). Part of the reason is that polices such as the 

open admissions of community colleges have increased the college participation rates among 

socially and economically disadvantaged groups of students who typically have poorer pre-

college academic preparation (Lavin, Alba, & Silberstein, 1981; Lavin & Hyllegard, 1996). If 
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remediation has a strong positive developmental effect, it should generally help increase the 

proportion of low-income and minority students who persist in college and eventually obtain a 

degree. However, if the negative effects of remediation outweigh its positive functions, it will 

widen the gaps in college persistence and completion between advantaged and disadvantaged 

groups.   

The interpretation of the role of remediation in educational inequality could be 

misleading if it is only derived from results from estimating the main effects of remediation. It is 

important to recognize that heterogeneity among remedial students based on racial and 

socioeconomic status may interact with remediation to produce differential effects on college 

outcomes. A growing body of sociological literature has shown that racial and ethnic minorities 

in postsecondary institutions could suffer from stereotype threat, a situation in which negative-

ability stereotypes increase their cognitive psychological load and reduce their academic effort 

(Massey & Fischer, 2005; Owens & Lynch, 2012; Steele, 1995). Participating in a remedial class, 

therefore, is likely to trigger the stereotype threat effect among minority students as they are 

exposed to the signal of being a member of low-achieving groups in colleges. According to 

stereotype threat perspective, we would expect to find that remediation affects black and 

Hispanic students more negatively. The negative effect of stereotype threat could be stronger in 

selective or four-year colleges that enrolled predominantly white students while it might not be 

the case in less selective or two-year colleges. 

Similar to racial minority groups, low-socioeconomic students tend to be low-achieving 

and underrepresented in higher education campuses. Yet, they are overrepresented in remedial 

classes. It is likely that students whose parents had no college education may experience negative 

effects from enrolling in remediation to a greater extent than do their counterparts whose parents 
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had some college education. Prior research has documented that first-generation college students 

(those who are the first in their families to attend a postsecondary institution) struggle to adjust to 

new cultures or learning styles in the college environment, which are more closely aligned with 

the cultural capital and academic experience possessed by non-first-generation students (e.g., 

Amstrong & Hamilton, 2013; London, 1989; Pascarella, Pierson, Wolniak, & Terenzini, 2004). 

Lacking a sense of “fitting in” or social belonging, as has been shown, can undermine not only 

subjective well-being but also intellectual performance in college (Walton & Cohen, 2007, 2011). 

Remedial students with first-generation status thus are likely to be at a higher risk of dropping 

out of college as being placed in a remedial class may evoke and exaggerate the feeling of 

uncertainty about their belonging in postsecondary institutions.  

2.3  Prior Evidence on Postsecondary Remediation 

Several empirical studies have sought to isolate the causal impact of postsecondary 

remediation by employing experimental and quasi-experimental designs. The only three random 

assignment studies that sampled students from a single or multiple institutions (mostly two-year 

colleges) generally found positive or neutral effects of remediation (Barnett et al., 2012; Moss et 

al., 2014; Visher, Weiss, Weissman, Rudd, & Wathington, 2012). Moss et al. (2014) reported 

that remediation generated small positive effects on grades in college-level math courses. Barnett 

et al. (2012) also documented that remediation has a positive effect on completion of college-

level courses in math but no impact in reading, whereas Visher et al. (2012) found modest 

positive effects of remediation on course credits in subjects other than math. Although the 

experimental studies provide credible causal estimates, their findings are not generalizable across 

various demographic and geographical backgrounds. Moreover, none of these randomized 
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controlled trials provide evidence on longer-term college outcomes such as institutional transfer 

or degree attainment.  

A number of researchers have used statewide administrative data with quasi-experimental 

longitudinal designs to test the remediation effects. The empirical results for two-year college 

student samples from different states are mostly mixed and far from conclusive. For instance, 

Bettinger and Long (2005) and Calcagno and Long (2008) documented that enrollment in a 

remedial math course at two-year colleges in Ohio and Florida increased the number of earned 

credits and the probability of persistence and transferring up to a four-year college although the 

positive effect is not found for English remediation or when examining long-term attainment 

outcomes such as degree completion. In contrast, Clotfelter et al. (2015) found that in North 

Carolina remediation enrollment in either math or English in two-year colleges significantly 

decreased the likelihood of passing a college-level math or English course and the likelihood of 

college success in terms of obtaining a degree or diploma.  

 The available, but limited, findings on remediation effects for four-year college students 

from different states are also inconsistent. Drawing on statewide four-year college data from 

Ohio, Bettinger and Long (2009) found that remediation enrollment significantly increased the 

probability of persistence, not transferring down to a two-year college, and degree receipt.  

However, Boatman and Long (2010) analyzed two- and four-year college student data from 

Tennessee and reported that remediation in math, reading, or writing generally has a negative 

effect on total credits completed, persistence, and graduation. In another study using statewide 

data from Texas, which includes both two- and four-year student samples, Martorell and 

McFarlin (2011) showed that assignment to a math or English remedial class had no impact on 

earned credits, transfer behavior, and degree completion.  
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The variation in findings for remediation effects may be well explained from research 

design and methodological perspectives. First, previous quasi-experimental studies tended to 

analyze student data from a single state. Although the results are informative in evaluating 

specific remediation programs or policies at the state level, they may not be generalizable to 

other parts of the country. Second, a crucial limitation of these studies is that researchers heavily 

relied on analytic strategies such as regression discontinuity (RD) designs and instrumental 

variables (IV). While the uses of RD and IV techniques can provide strong internal validity in 

non-experimental settings, they only yield local average treatment effect (LATE) estimates, 

which have limited external validity. Studies employing RD and IV approaches essentially focus 

only on “marginal” students (e.g., by comparing students just above and just below cutoffs of 

remedial placement tests), which means they produce estimates only for a subgroup, not for the 

whole sample population.    

There is a scarcity of research on postsecondary remediation effects based on a nationally 

representative sample. The only available study was conducted by Attewell et al. (2006), which 

used data from the National Education Longitudinal Study of 1988 (NELS:88) and employed 

propensity score matching methods. The analysis reported mixed results of remediation effects in 

math and English for both two- and four-year college students. Despite informative findings, 

their study is limited in several respects. First, the generalizability of their results is difficult to 

gauge as the final matched samples across different models range from about 53% to as low as 

8% of the original defined study population (12 out of 20 models used less than one-third of the 

student sample). Second, remediation variables in NELS are created based on participants’ 

transcripts throughout their entire postsecondary careers, thus making it impossible to determine 

the timing of remediation enrollment. As a result, Attewell et al. (2006) focused only on 
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exploring how remediation predicts degree completion while producing no evidence on other 

important college outcomes such as persistence and upward/downward transfer. Finally, Attewell 

et al. (2006) did not examine the heterogeneous effects for student subgroups that bear directly 

on the question concerning the role of remediation in educational stratification process in higher 

education. 

2.4  The Study 

This study builds on previous work to investigate whether and the extent to which 

postsecondary remediation participation affects student persistence, transfer, and graduation, and 

how the effects vary by socio-demographic subgroups. Prior studies have primarily focused on 

estimating the effects of enrollment in a specific remedial subject (e.g., math, reading, and 

writing). Subject-focused analysis works best for evaluating subject-specific domain outcomes 

such as cognitive improvement or passing a college-level course in a given subject area. 

However, when considering attainment outcomes such as college persistence and completion, 

subject-focused estimates provide limited insight as many students would take multiple remedial 

subjects and the joint effect of multi-subject remediation is likely not simply the sum of the 

estimates on each remedial subject. The present study takes a person-focused approach to 

understand how remediation influence students’ college attainments by examining the outcomes 

of students in different “remedial treatment groups” which are characterized based on individuals’ 

coursetaking patterns in remediation.  

2.4.1  Data and Sample 

A systematic examination of remediation effects requires detailed information on 

students’ coursetaking, background, and college experiences. The National Longitudinal Survey 

of Youth of 1997 (NLSY97) and its postsecondary transcript (PSTRAN) data are used in this 
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analysis. The NLSY97 is a U.S. nationally representative sample of 8,984 individuals (including 

6,748 respondents in the cross-sectional sample and 2,236 respondents in the minority 

supplemental sample), who were 12-16 years old as of December 31, 1996 and then aged 27-31 

in 2011. The NLSY97 survey conducted annually since 1997 and the most recent released data 

serve the purposes of the present study well because it contains postsecondary transcript data 

with term-by-term and course-by-course records in regard to college enrollment, coursetaking, 

and completion for respondents who reported attendance in a postsecondary degree program 

during any of the annual interviews from 1997 to 2011 (rounds 1 through 15).   

This study focuses on estimating the effects of remediation enrollment in the first term of 

students’ college careers as it is the period in which most academically underprepared students 

would be required or choose to take remedial courses. To construct an analysis sample for this 

study, a number of restrictions are imposed on the data. First, this analysis focuses only on the 

individuals whose postsecondary transcript data are available, who account for 3,818 of the 

original sample in the NLSY97. Second, the analytic sample is limited to those NLSY97 

participants who started their postsecondary schooling career in either a two-year or four-year 

college and had valid information on their postsecondary enrollment status and coursework 

(deleting 6.7% of students from the baseline transcript data). 

Third, the analytic sample excludes students who (a) enrolled in only one course (further 

deleting 14.0% of students) and (b) enrolled in more than two remedial courses (further deleting 

5.4% of students), during their first term in college. In doing so, those students who were taking 

only one college course but likely not enrolling in any degree program and who were freshmen 

with the greatest academic deficiencies are dropped from this analysis. Including these two 

groups of students in the analysis will create difficulty in achieving balanced comparison groups 
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as they possess very different characteristics in terms of postsecondary attendance and academic 

background. Fourth, a small proportion of students whose number of courses enrolled during 

first term of college is more than seven are excluded from the analysis as these observations are 

likely to be data errors (further deleting 4.3% of students). The remaining sample includes 2,773 

students. Among them, 1,191 individuals were first-time college students in a two-year college 

whereas 1,582 individuals were students in a four-year college.  

Distinguishing between two- and four-year college students is an important procedure in 

investigating postsecondary remediation effects on college outcomes. Students beginning their 

postsecondary career in a two-year college are likely to possess certain characteristics that are 

systematically different from their four-year college peers. As shown in prior empirical studies, 

remediation effects may vary by college selectivity (e.g., Attewell et al., 2006; Bettinger & Long, 

2007; Boatman & Long, 2010). Conceptually, the student demographic composition and the 

share of remedial students in two- and four-year institutions can be substantially different, which 

means that the potential stigma effects of remediation could be functioning at different 

magnitudes. Furthermore, when evaluating the impact of remediation, there are separate outcome 

measures that can be used for two-year (e.g., transferring up to a four-year college, earning an 

associate’s degree [AA]) and four-year college students (e.g., transferring down to a two-year 

college, earning a bachelor’s degree [BA]).       

2.4.2  Measures 

Prior studies have suggested that postsecondary remediation could affect student 

outcomes differently, depending on the subject area (Attewell et al., 2006; Bettinger & Long, 

2005) and the number of remedial courses taken (Attewell et al., 2006). In this study, students 

are grouped into distinct remediation categories, taking into account both the subject type and the 



60 
 
 

number of remedial courses enrolled during their first term of college. By using individuals’ 

course-level information recorded in the transcript data, remedial courses were identified using 

the 2010 College Course Map (CCM), which provides a taxonomy system for classifying 

postsecondary classes.4 All students in the sample are further classified into four “remedial 

treatment groups”: (a) only-math remediation, (b) only-English remediation, (c) both-subject 

remediation (who were simultaneously enrolled in a math and an English remedial course), and 

(d) no remediation (as comparison group). Such grouping covers 97.5% of total students in the 

sample. The remaining 2.5% of students are those who enrolled in two math or two English 

remedial courses (14 and 55 students respectively). The number of these students is too small to 

form a new treatment group that has sufficient statistical power to detect meaningful differences 

in remediation effects. Therefore, they are excluded from this analysis. The final sample includes 

2,704 students (1,144 students in two-year colleges and 1,560 students in four-year colleges). 

 The dependent variables for this study are student outcomes as measured by college 

persistence, transferring between two- and four-year institutions, and postsecondary attainment. 

As shown in previous studies (e.g., Attewell et al., 2006; Martorell & McFarlin, 2011), not only 

is the type of educational outcome important in understanding the impact of postsecondary 

remediation, equally important is the timing of attaining these outcomes (e.g., on-time or delayed 

graduation), especially for identifying the potential disruption effect of remediation. In this 

analysis, detailed chronological, term-level information about students’ enrollment across 

postsecondary institutions and degree completion reported in the transcript data is used to create 

a series of time-relevant college outcomes. The first set of outcomes on college persistence 

includes (a) persisted into the 2nd year, and (b) persisted into the 3rd year. The second set of 

outcomes focuses on institutional transfer between two- and four-year colleges. For two-year 

                                                           
4 The CCM code for remedial math is “32.0104” and for remedial English “32.0108.” 
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college students, the positive transfer outcomes include (a) transferred upward in 2nd year, and (b) 

transferred upward in 3rd year; for four-year college students, reverse transfer is regarded as a 

negative transfer outcome, including (a) transferred downward in 2nd year, and (b) transferred 

downward in 3rd year. The third set of outcomes on degree completion includes: for two-year 

college students, (a) earned an AA within 3 years, (b) earned an AA within 4 years, (c) earned a 

BA within 6 years, and (d) earned a BA within 8 years; and for four-year college students, (a) 

earned a BA within 4 years, (b) earned a BA within 6 years, and (c) earned a BA within 8 years.5    

 As suggested in the literature, postsecondary remediation effects can largely be explained 

by student backgrounds, academic preparation, and institutional characteristics (Bettinger et al., 

2013). To effectively capture the selection process into postsecondary remediation in math and 

English, this study uses a collection of individual and contextual covariates (Appendix Table 

2.B1 presents the descriptive statistics of covariates). Several important individual and 

demographic characteristics are: gender, race/ethnicity, cognitive score, parent’s highest 

education, poverty level, intact family status, mother’s age at first birth, census region of 

residence when at age 16, and age when starting college. This analysis also draws on an 

extensive set of pre-college and college measures with respect to high school academic 

preparation (including school sector, academic program, gifted education, math pipeline, science 

pipeline, total earned academic credits, overall grade point average [GPA], math GPA, and 

English GPA), pre-college schooling experience (including late for school, absent from school, 

retention, percent of peers who cut classes or school, and percent of peers who plan to go to 

                                                           
5 The outcome measure of earning a BA degree within four years is not used as a dependent variable for two-year 

college students because it is very infrequent in the data (see Table 2.A1). Similarly, the outcome measures of 

obtaining an AA degree within three and four years are not used as dependent variables for four-year college 

students.   
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college), and postsecondary attendance (including on-time college enrollment, college sector, 

college major, number of courses taken in first term).  

 Table 2.A1 presents descriptive statistics of key variables by remediation status during 

students’ first term in a postsecondary degree program for two- and four-year college students 

separately. The NLSY97 data provide updated and new national estimates on postsecondary 

remediation patterns. First, consistent with other national statistics (e.g., Radford & Horn, 2012; 

Sparks & Malkus, 2013), remediation rates among NLSY97 respondents were higher for two-

year college students than for their four-year college peers (64.9% vs. 53.3%). Among remedial 

students in two-year colleges, remediation enrollment in both subjects was more common 

(46.1%) than it was in only English (29.3%) or only math (24.6%), whereas in four-year colleges, 

remediation enrollment in the single subject of English was the majority (46.7%), followed by 

enrollment in both subjects (28.8%) and in math only (24.5%).  

 Across baseline characteristics, there are clear similarities and differences by remediation 

status for two- and four-year college students.6 Compared with their nonremediated peers, 

remedial students tend to be younger when first enrolling, on-time college entrants, and taking 

more courses during their first term across both types of postsecondary institutions. Black 

students enrolled in any remediation at a higher rate in four-year colleges but not in two-year 

colleges. Individuals who have lower ability, poorer academic preparation, and were from lower 

socio-economic families were more likely to be enrolled in remedial courses at four-year 

universities but were less likely to take remedial courses at two-year institutions. Some of these 

descriptive statistics on the academic and family background of remedial students in two-year 

colleges are counterintuitive. Common sense would suggest that remedial students tend to be 

                                                           
6 Only differences between “any remediation” and “no remediation” groups that are statistically significant in t-test 

are discussed in text. 
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those who are academically and socioeconomically disadvantaged. Additional analyses 

comparing samples of two-year college students in NLSY97 and in the Education Longitudinal 

Study of 2002 (ELS:2002; the most recent national high school longitudinal study of a cohort of 

U.S. students whose postsecondary transcript data are available) suggest that students with 

higher ability and higher socio-economic status are overrepresented in the remedial groups in 

NLSY97 (details are available upon request). Therefore, the use of two-year college student 

sample from NLSY97 may be a limitation of this study in terms of the generalizability of 

findings. The issues of external and internal validity of analyzing the two-year college student 

sample from NLSY97 are further discussed in the limitations section.  

2.4.3  Analytic Strategy 

Estimating the impact of postsecondary remediation with non-experimental data such as 

NLSY97 is challenging since students who participate in remediation tend to be systematically 

different from their non-remedial peers. Two important selection mechanisms are likely to affect 

remediation enrollment. Students who have weaker academic skills tend to be placed in a 

remedial class upon entering college. It also could be that students who aspire to succeed in 

college enroll in these remedial courses and work and try harder than students who do not take 

these courses. Simply comparing the outcomes of remediated students to their non-remediated 

counterparts will yield estimates of remediation effects that are biased downward in the first 

instance and biased upward in the second instance. To minimize the potential selection bias 

when estimating the postsecondary remediation effects with the observational data from 

NLSY97, this study employs the marginal means weighting through stratification (MMW-S) 

method, which can effectively remove selection bias associated with observed pretreatment 

covariates, under the strong ignorability assumption that the treatment assignment was 
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independent of the unobserved characteristics given the measured covariates (Rosenbaum & 

Rubin, 1983, 1984; Rubin, 2005).  

The MMW-S was recently developed for evaluating the effects of multivalued and 

multiple concurrent treatments with non-experimental data (Hong, 2010, 2012). It is particularly 

useful for this analysis because the remediation treatment is defined by a categorical variable 

with four groups: “only-math remediation,” “only-English remediation,” “both-subject 

remediation,” and “no remediation (as reference group).” The MMW-S combines the principle of 

inverse probability of treatment weights (IPTW; Robins, 1999; Rosenbaum, 1987) with 

stratification on the propensity score (Rosenbaum & Rubin, 1984). It functions in the spirit of 

approximating a randomized controlled experiment by facilitating direct comparisons between 

individuals in a “treatment group” and those in a “control group,” both of whom have very 

similar chances of being assigned to the treatment.  

To implement the MMW-S method for estimating the postsecondary remediation effects, 

this study follows the procedures laid out by Hong (2010, 2012). First, there are a number of 

observed pretreatment covariates that are identified as being correlated with remediation 

treatment status (for two-year college analysis: 31 covariates; for four-year college analysis: 37 

covariates).7 For covariates with missing values, indicators of missing data are created to account 

for different missing patterns. Then, a multinomial logistic regression model at the individual 

level is estimated for obtaining three propensity scores per individual for three of the four 

remediation treatment statuses. Those individuals who have a nonzero probability of being 

assigned in each of the four remediation treatment statuses are included in the analytic sample 

                                                           
7 All covariates listed in Appendix Table 2.B1 are used to predict remedial treatment status in a series of bivariate 

multinomial logistics regression models. For two-year college students, 31 covariates are significantly correlated 

with remedial treatment conditions (at the critical level of 10%), except race/ethnicity, late for school, absent from 

school, percent of peers who cut classes, high school sector, and high school science pipeline; for four-year college 

analysis, 37 covariates, except gender and high school program. 
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for causal inference, which consists of 1,091 students for two-year college analysis (after 

dropping 4.6% of students) and 1,451 students for four-year analysis (after dropping 7.0% of 

students). In comparison with the students included in the analytic sample, those excluded from 

the analytic sample tend to be individuals who are less likely to share similar characteristics with 

their peers across treatment conditions. For example, the “no remediation” students excluded 

from the four-year college sample on average have cognitive scores that are about one-half 

standard deviation above the mean. They are likely to be high-ability students for whom it is 

difficult to find “matched” cases in any remediation treatment groups.   

With the estimated propensity scores, the analytic sample is stratified into either five or 

six strata for each of the four remediation treatment conditions. According to Cochran (1968), 

dividing a sample into five strata typically removes at least 90% of the bias associated with a 

pretreatment covariate, reducing the potential selection bias to a great extent. The next step was 

to compute a marginal mean weight for each individual in each treated group. After repeating the 

same procedure for all four treatment groups, the weighted sample, in theory, approximated a 

randomized experiment within each stratum of students under the assumption of no unmeasured 

confounders. The covariate balance between the treated students and untreated students in the 

distribution of all pretreatment covariates is further empirically examined. None of the 39 

pretreatment covariates used in this study shows significant differences across the weighted 

remediation treatment groups, suggesting that the four weighted treatment groups became 

comparable.    

Finally, to estimate the postsecondary remediation effects on college attainments, a 

weighted regression model is specified:  

              𝑌𝑖 =  𝛽0 + 𝛽1𝑀𝑎𝑡ℎ𝑖 + 𝛽2𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑖 + 𝛽3𝐵𝑜𝑡ℎ_𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑖 + 𝜀                                               (1) 
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where 𝑌𝑖  denotes the attainment outcomes (i.e., college persistence, transfer, and completion) for 

student i. 𝑀𝑎𝑡ℎ𝑖, 𝐸𝑛𝑔𝑙𝑖𝑠ℎ𝑖 , and 𝐵𝑜𝑡ℎ_𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑖  are dummy variables for whether student i enrolled 

in (a) only-math remediation, (b) only-English remediation, and (c) both-subject remediation (the 

omitted group is “no remediation”) respectively. 𝜀 represents an error term. Since the dependent 

variables are dichotomous, Equation (1) is estimated with a linear probability model (LPM).8 

When examining the heterogeneous effects of postsecondary remediation by student subgroups, 

the above MMW-S procedures are replicated using subsamples restricted to a given racial or 

social subgroup (i.e., minority students in two-year institutions, low-socioeconomic students in 

four-year institutions).9 

2.5  Results 

2.5.1  The Impact of Postsecondary Remediation on Attainment Outcomes  

The empirical findings in this study indicate that postsecondary remediation has 

differential effects on two- and four-year college students and the impacts vary across 

remediation enrollment patterns. Table 2.A2 displays results from linear probability models 

estimating the remediation effects on attainment outcomes, including college persistence, 

transfer, and completion that are measured at various time points. The left panel of Table 2.A2 

presents the impact estimates of three remedial treatment groups (i.e., only-math, only-English, 

and both-subject remediation) for two-year college students, whereas the right panel of Table 

2.A2 presents estimates for four-year college students.   

                                                           
8 Additional analyses showed that the average marginal effects computed from logistics regression models are 

essentially very similar to those estimates from linear probability models. 
9 Across the eight subgroup analyses, the proportion of covariates remaining significantly different among the 

remediation treatment groups ranges from 0% to approximately 5%, after the steps of propensity score stratification 

and weighting. In theory, 5% of the covariates could show statistical imbalance among the treatment groups at the 

significant level of .05, even in a properly implemented experimental study.   
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For two-year college students, enrolling in any remediation generally has no impact on a 

variety of student outcomes as measured by college persistence, transfer, and degree receipt. The 

estimates are either essentially zero or smaller than their standard errors, with few notable 

exceptions. One is that participating in only-math remediation increased the probability of 

persisting into the second and third year of college by 12.2 and 12.9 percentage points 

respectively. The other is that when comparing differences in college completion between 

students who simultaneously enrolled in a math and an English remedial course and their non-

remediated counterparts, the probability for both-subject remediation students to transfer upward 

to a four-year college in their third year increased by 5.7 percentage points and to obtain a 

bachelor degree within six years increased by 6.6 percentage points and by 6.8 percentage points 

within eight years.   

Similar to the two-year college results, when comparing four-year college students who 

took any remediation with their non-remediated peers, there are no significant differences in the 

majority of college outcomes, specifically short-term outcomes including college persistence and 

transfer in second and third year of college. However, there is a clear pattern that remediation in 

math or in both subjects hinders students from attaining a bachelor degree. Enrolling in only-

math remediation and both-subject decreased the likelihood for an undergraduate to graduate on 

time (within four years) by 9.6 and 14.9 percentage points respectively. When considering longer 

duration before graduation, the estimated probabilities of earning a four-year college degree 

within six and eight years for only-math remedial students are much smaller and not significant 

anymore, whereas for both-subject remedial students are about the same (a decrease by 14.1 and 

14.4 percentage points respectively).          
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2.5.2  Sensitivity Analyses 

2.5.2.1   Sensitivity to Sample Selection 

  To evaluate the robustness of the primary results, remediation impacts are re-estimated 

using several alternative samples. The main analytic sample in this study is restricted to students 

who enrolled in at least two courses but not more than seven courses during their first term of 

college. The sample involves both traditional and non-traditional college students, and 

oversampled minority students in NLSY97. To assess the sensitivity of the estimates to the 

sample selection, a series of models are estimated using subsamples that are (a) limited to 

students who were enrolled in at least three courses but not exceeding six courses in their first 

term of college, (b) traditional students who were aged 18-20, first-time, on-time (enrolled within 

a year from high school graduation), full-time college students, and (c) restricted to NLSY97 

cross-sectional participants, excluding the oversampled minorities.  

Appendix Table 2.B2 and 2.B3 show estimates from sensitivity tests for two- and four-

year college analyses respectively. The results do not qualitatively alter the main conclusions. 

Two particular findings deserve mention. The estimated effects of only-math remediation on 

persistence for two-year college students (positive effects) and on on-time graduation for four-

year college students (negative effects) are quite sensitive to choice of sample. The effects 

disappear in models using subsamples restricted to only traditional college students and they are 

occasionally not significant in the other two subsamples. Another observation is that the 

estimated effects of both-subject remediation on college completion, which for two-year college 

students are positive whereas for four-year college students are negative, are quite robust to a 

variety of sensitivity tests using different subsamples.   
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2.5.2.2   Quantifying the Robustness of MMW-S Inferences  

A propensity score-based analysis such as MMW-S employed in this study can produce 

unbiased estimates of treatment effects, under the assumption of strongly ignorable treatment 

assignment, which requires all relevant covariates to have been measured (Rosenbaum & Rubin, 

1983, 1984; Rubin, 2005). Although this analysis includes a rich set of individual and contextual 

measures that are correlated with remediation treatment conditions, there may be important 

unobserved confounding factors. To address this potential confounding issue, this study follows 

the sensitivity analysis procedures suggested by Frank, Maroulis, Duong, and Kelcey (2013) to 

quantify how much bias there must be in the estimates to invalidate my inferences, focusing only 

on the key findings—the estimated effects of both-subject remediation on college transfer (for 

two-year college students) and completion (for both two- and four-year college students). As 

defined by Frank et al. (2013), the calculation of proportion of bias to make an inference invalid 

is the following: 

       % bias necessary to invalidate an inference = 1 – threshold for inference/estimated effect, 

where the threshold for inference = s.e. × 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑑𝑓. Applied to the estimates of this study, to 

invalidate the inference of the effect of both-subject remediation on transferring upward to a 

four-year college in third year for two-year college students, bias must have accounted for (1 – 

1.96 ×.024/.057 = .174) about 17% of the estimated effect. Similar calculations suggest that 

about 22-26% bias must be present to invalidate the inference of the estimated effect of both-

subject remediation on obtaining a bachelor degree within six or eight years for two-year college 

students. Further, for the analysis of four-year college students, the bias necessary to invalidate 

the inferences of the estimated effect of both-subject remediation on obtaining a bachelor degree 

within four, six, or eight years is about 22-34%. According to Frank et al. (2013), the median 
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level of robustness is about 30% for observational studies in education. Thus, in this analysis the 

estimated impacts of both-subject remediation on college degree attainment for the four-year 

college students are quite robust while they are less so for the two-year college students.   

2.5.3  Heterogeneous Effects of Remediation across Student Subgroups 

 Having used the full sample to identify whether and to what extent an association among 

various remediation conditions and college attainments exists, the second part of this analysis 

focuses on exploring the heterogeneous effects of postsecondary remediation across social 

subgroups. For racial subgroup analysis, white and nonwhite students are the two contrasting 

groups within two- and four-year colleges respectively. For socioeconomic subgroup analysis, 

this study divides students based on their parental education differently by college types. For 

two-year colleges, the comparison groups are students whose parent had no college education (or 

first generation college students) versus students whose parent had at least some college 

education (or non-first generation college students), whereas for four-year colleges, students 

whose parent had some college education or below versus students whose parent had a bachelor 

degree or above. In doing so, the socioeconomic subgroup comparison is between students who 

are pursuing more education than their parents, who likely lack the necessary college knowledge 

and experience, and their counterparts whose parents had at least the same level of higher 

education.  

The subgroup analyses offer empirical evidence suggesting that postsecondary 

remediation has differential effects on white and nonwhite students, and on low-socioeconomic 

and high-socioeconomic students. The heterogeneous effects of postsecondary remediation also 

vary across two- and four-year institutions. The left and middle panel of Table 2.A3 and 2.A4 

displays the estimated coefficients of heterogeneous impacts of remediation for two- and four-
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year college students, respectively. Robust standard errors for each coefficient are reported in 

each corresponding cell in Appendix Table 2.B4 and 2.B5. Following Cohen (1983), Z tests of 

the differences between coefficients are conducted. The computed differences in remediation 

effects between subgroups are reported in the right panel of Table 2.A3 and 2.A4. Corresponding 

Z-scores are displayed in the right panel of Table 2.B4 and 2.B5 in Appendix.10 

 In two-year colleges, postsecondary remediation appears to help minority students in 

terms of short-term outcomes, specifically college persistence. The estimated positive effects of 

only-math remediation on persisting into the second or third year of college are largely 

concentrated among nonwhite students, while the effects were generally negligible for white 

students (the differences are 17.2 to 19.2 percentage points respectively and they are statistically 

significant at the critical level of 10%). On the other hand, when examining long-term attainment 

outcomes, there are no significant differences between white and nonwhite students; however, 

high-socioeconomic students benefited from remediation more than their low-socioeconomic 

counterparts. In particular, only-English and both-subject remediation significantly boosted the 

probability of obtaining a bachelor degree within six or eight years for non-first generation 

college students, but not for those first generation college students (the differences range from 

10.5 to 14.8 percentage points and they are statistically significant at the critical level of 1%).   

 Not only in two-year colleges but also in four-year colleges does remediation affect 

students differently based on racial and socioeconomic status. In four-year colleges, taking only 

a remedial course in English significantly improved the likelihood of persisting into the third 

year of college for white students, while it had a negative marginal impact on nonwhite students 

(the difference is 17.4 percentage points). The racial difference in the effect of only-English 

                                                           
10 In additional analyses, this study also tests if the remediation effects vary by racial and socioeconomic subgroups 

by adding interaction terms into the full estimation model. The results (not reported here) indicate that there are 

significant interaction effects between remediation and racial/socioeconomic groups.   
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remediation carried over into the longer term student outcomes measured by college completion 

within six and eight years (the differences are 24.7 and 22.8 percentage points respectively). In 

addition, the estimated negative impact of only-math remediation on on-time graduation is 

largely concentrated among undergraduates whose parental education level was less than a 

bachelor degree, whereas the effect is basically null for students whose parent had a bachelor 

degree or above (the difference is 17.3 percentage points). Taken together, the subgroup analyses 

provide evidence that remediation has differential effects for socially and economically 

advantaged and disadvantaged student groups.  

2.6  Discussion 

The goal of this study was to investigate whether and for whom postsecondary 

remediation has an impact on college outcomes. The analysis of the NLSY97 data arrives at 

conclusions that both validate and extend previous work on postsecondary remediation. As with 

most prior studies, this study finds insignificant effects of remediation on a series of short-term 

student outcomes, particularly college persistence and transfer. However, when examining long-

run college attainment, two clear findings emerged. This study identifies particularly strong 

negative effects of postsecondary remediation on graduation for four-year college students who 

enrolled in both math and English remedial courses during their first term of college. On the 

other hand, both-subject remediation has a positive but modest impact on transferring up to a 

four-year college and eventually earning a bachelor degree for two-year college students 

although the estimated effects are less robust to potential omitted variable bias.  

Why does enrolling in both math and English remedial course during first term of college 

positively affect two-year college students on college transfer and completion, but negatively 

affect graduation rates for four-year college students? One possible explanation is that the 
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negative function of dual remediation triggered by stigma might outweigh its positive 

developmental function in four-year colleges but not in two-year colleges. In four-year colleges, 

those students who simultaneously took a math and an English remedial course may feel more of 

a stigma as they are an outnumbered group. The NLSY97 data reveal that in four-year colleges 

both-subject remediation students account for only about 15.4% of the total student population 

whereas the number is almost doubled in two-year colleges (29.9%; see Table 2.A1).     

One key difference between the findings of this analysis and those from prior subject-

focused studies is that NLSY97 data indicate that remediation in a single subject, either in math 

or English, generally has no effect on a variety of college outcomes in terms of persistence, 

transfer, and completion measured at multiple points in time. Instead, enrolling in both math and 

English remedial course has a negative effect on degree receipt for four-year college students but 

a positive effect for two-year college students. Furthermore, the results of this study demonstrate 

that the effect of dual-subject remediation, which is a common remedial scenario among college 

freshmen, is not simply the sum of effects of individual remedial subjects. Thus, the person-

focused approach employed in this study, which characterizes the remediation treatment groups 

based on both the subject areas and the number of remedial courses taken, yields empirical 

evidence that can better explain the remediation effects, especially when examining attainment 

outcomes of students. Such person-focused estimates are also more informative for designing 

student-centered educational programs for increasing college persistence and completion rates, 

specifically early interventions targeted at those four-year college entrants who take both math 

and English remedial courses during their first semester in college.           

In terms of subgroup analysis, the findings on the heterogeneous effects of remediation in 

this study contribute to the understanding of the role of postsecondary remediation in educational 
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inequality. One major finding is that in two-year colleges only-math remediation could help 

minority students in continuing their postsecondary schooling careers in the short term. However, 

the positive effect of remediation on college persistence for minority students did not translate 

into reducing the racial gap in degree attainment in the long run. The NLSY97 data further 

uncover that two-year college students from socioeconomically privileged groups benefited the 

most from taking remedial courses. Enrolling in only-English or in both-subject remediation 

appear to increase likelihood of obtaining a bachelor degree for students whose parent had at 

least some college education, but not for their first-generation college peers.  

In four-year colleges, while there is not a consistent pattern demonstrating that 

remediation benefits white or high-socioeconomic students, it appears to hinder nonwhite and 

low-socioeconomic students from completing college. Such negative effects of remediation on 

disadvantaged students, however, are not observed in two-year colleges. It might be the case that 

the relative rarity of remediation in four-year colleges, along with the over-representation of 

racial minority and low-income students in the remedial courses, increases the risk of stigma that 

elicits stereotype threat and belonging uncertainty for these underprivileged students placed in 

remediation.   

Racial and socioeconomic gaps in college persistence and graduation have been a 

disturbing feature of the higher education system in the United States for decades. Policymakers 

and researchers have long been interested in identifying the sources of the differences in college 

persistence and completion between socially and economically advantaged and disadvantaged 

groups. This national study offers some suggestive evidence to explain part of the racial and 

socioeconomic gaps in college attainment, demonstrating that postsecondary remediation as an 
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institutional mechanism plays a significant role in reinforcing educational inequality and in 

perpetuating the social stratification in higher education.  

The findings presented in this study have important substantive and methodological 

implications for research on postsecondary remediation, yet they must be interpreted with several 

limitations in mind. First, this study does not directly test the hypotheses concerning the 

remediation functions including cognitive development or stigma effect. Similar to most 

previous studies, the estimated effects of remediation in this study could be interpreted as joint 

effects of all possible combinations of remediation functions. Another limitation is that although 

the novel person-focused approach points to the importance of characterizing remediation 

patterns based on the subject areas and the number of remedial courses taken during the first 

term in college, the four remedial treatment groups in this study (i.e., only-math, only-English, 

both-subject, and no remediation) may not represent all possible remediation scenarios in higher 

education. Many students, especially those who are disadvantaged students attending a 

community college would need to take more than one semester to complete the sequence of 

required remedial courses (Attewell et al., 2006; Bailey et al., 2010; Parsad et al., 2003). Future 

research should extend the person-focused approach to examine the outcomes of students who 

enrolled in remediation in more than one semester. 

An additional limitation is that with the observational data from NLSY97, this present 

research had to make the assumption of strongly ignorable treatment assignment. This analysis 

might not include all relevant pretreatment covariates to hold the assumption. There could be 

some confounding variables that potentially bias the findings. Nonetheless, by quantifying 

possible bias to invalidate an inference in this study, it is reasonable to conclude that the impact 

estimates of remediation on four-year college students are quite robust while they are less so on 
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two-year college students. A further limitation is that the two-year student sample in NLSY97 

may be problematic in terms of representativeness as it appears that academically and 

socioeconomically advantaged students are overrepresented in the remedial groups. The ability 

to generalize from this two-year college student sample may be somewhat limited, however, the 

analytic strategy employed in this study, which can effectively mitigate selection bias by 

controlling for students’ academic and family background, should yield estimates with strong 

internal validity that can be informative for theoretical and policy debates. To improve the 

external validity of remediation effects for two-year college students, future research efforts 

should replicate the current study using other nationally representative samples of two-year 

college students.   

Despite these limitations, this analysis draws attention to the general and differential 

effects of postsecondary remediation on college attainment across college types and student 

subgroups. The present study broadens the operationalized definition of postsecondary 

remediation to include both the subject areas and the number of remedial courses enrolled. 

Drawing on recent data from NLSY97, this article provides updated national estimates on 

postsecondary remediation patterns, reporting that a considerable number of remedial students in 

both two- and four-year colleges enrolled in single as well as multiple remedial subjects during 

their first term in college. This study is also the first large-scale national analysis to offer impact 

estimates of single- and dual-subject remediation on postsecondary outcomes as measured by 

persistence, transfer, and completion at multiple time points. Finally, by presenting the 

heterogeneous effects of remediation for social subgroups, this analysis highlights that 

postsecondary remediation plays a critical role in reinforcing racial and social inequality in 

college attainment.         
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Table 2.A1 Sample Means for Key Analysis Variables by Postsecondary Remediation Status 
 Two-Year College Four-Year College 

 
All 

Any 

Remediation 

No 

Remediation 
All 

Any 

Remediation 

No 

Remediation 

Remediation      

   Any remediation .649 1.000 .000 .533 1.000 .000 

   Only math  .160 .246 .000 .131 .245 .000 

   Only English  .190 .293 .000 .249 .467 .000 

   Both math & English  .299 .461 .000 .154 .288 .000 

College outcomes       

   Persisted into the 2nd year .614 .647 .555 .851 .851 .852 

   Persisted into the 3rd year .413 .447 .351 .754 .761 .747 

   Transferred up in 2nd year .064 .074 .046 -- -- -- 

   Transferred up in 3rd year .104 .130 .055 -- -- -- 

   Transferred down in 2nd year -- -- -- .084 .094 .073 

   Transferred down in 3rd year -- -- -- .080 .098 .058 

   Earned AA within 3 years .087 .092 .076 .038 .045 .030 

   Earned AA within 4 years .123 .130 .110 .053 .065 .040 

   Earned BA within 4 years .014 .012 .017 .331 .263 .408 

   Earned BA within 6 years .081 .101 .045 .571 .532 .616 

   Earned BA within 8 years .119 .144 .072 .619 .581 .663 

Demographics       

   Female .498 .520 .456 .539 .538 .541 

   White .650 .653 .646 .755 .708 .809 

   Black .145 .149 .138 .113 .156 .063 

   Hispanic .144 .134 .164 .082 .089 .074 

   Other race .060 .064 .052 .051 .047 .054 

   Parent’s highest education  13.41 13.63 13.00 14.81 14.48 15.19 

 (3.44) (3.32) (3.62) (3.41) (3.45) (3.33) 

   Cognitive score (ASVAB) 42.59 43.99 40.01 60.87 55.79 66.66 

  (29.89) (29.51) (30.46) (31.46) (31.10) (30.87) 

   High school math - High  .200 .222 .160 .522 .481 .569 

   Age when starting college 20.11 19.92 20.46 19.09 18.92 19.28 

 (2.88) (2.76) (3.07) (1.92) (1.58) (2.23) 

   On-time college attendance .494 .561 .371 .802 .862 .733 

   Number of courses (1st-term) 3.74 3.92 3.42 4.77 4.97 4.54 

 (1.33) (1.28) (1.37) (1.33) (1.24) (1.40) 

Number of students    1,144   732 412   1,560   862 698 

Source. National Longitudinal Survey of Youth 1997 (NLSY97) 

Note. AA = associate’s degree; BA = bachelor’s degree; AVSAB = Armed Services Vocational Aptitude Battery. Sample is 

restricted to first-time college students who had valid information on their college’s institutional level. Sample size is 2,704. Data 

are weighted to be generalizable to the population of youth aged 12-16 in 1996 in the United States. Standard deviations appear 

in the parentheses below means of continuous variables. 
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Table 2.A2 Effects of Postsecondary Remediation for Two- and Four-year College Students  
 Remediation Enrollment 

 Two-Year College Four-Year College 

 

Dependent Variable 
Only 

Math 

Only 

English 

Both 

Subjects 

Only 

Math 

Only 

English 

Both 

Subjects 

Persistence       

   Persisted into the 2nd year 0.122 * -0.057 0.022 -0.008 0.006 -0.026 

 (0.049) (0.050) (0.042) (0.035) (0.026) (0.041) 

   Persisted into the 3rd year 0.129 * -0.013 0.079 † 0.036 0.043 -0.019 

 (0.053) (0.046) (0.041) (0.040) (0.032) (0.051) 

Transferring       

   Transferred up in 2nd year -0.013 0.011 0.023 -- -- -- 

 (0.020) (0.021) (0.023)    

   Transferred up in 3rd year 0.033 0.038 † 0.057 * -- -- -- 

 (0.025) (0.023) (0.024)    

   Transferred down in 2nd year -- -- -- 0.002 -0.001 0.003 

    (0.021) (0.019) (0.036) 

   Transferred down in 3rd year -- -- -- 0.039 0.007 0.043 

    (0.024) (0.018) (0.037) 

College Attainment       

   Earned AA within 3 years -0.022 -0.001 -0.037 -- -- -- 

 (0.032) (0.028) (0.023)    

   Earned AA within 4 years -0.022 -0.030 -0.032 -- -- -- 

 (0.038) (0.030) (0.029)    

   Earned BA within 4 years -- -- -- -0.096 * -0.034 -0.149 ** 

    (0.043) (0.033) (0.050) 

   Earned BA within 6 years 0.005 0.015 0.066 ** -0.031 -0.010 -0.141 * 

 (0.026) (0.021) (0.025) (0.047) (0.037) (0.056) 

   Earned BA within 8 years 0.015 0.018 0.068 * -0.049 -0.010 -0.144 ** 

 (0.030) (0.025) (0.027) (0.047) (0.036) (0.056) 

Number of observations 1,091 1,451 

Note. AA = associate’s degree; BA = bachelor’s degree. Each cell in the table shows the estimate on a dummy variable indicating 

the effect of a specific type of remediation enrollment by subject, using “no remediation” as the reference group. Robust standard 

errors are reported in parentheses.  

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 2.A3 Heterogeneous Effects of Postsecondary Remediation for Two-Year College Students 

 (1) (2) (3) (4) (5) (6) (1) - (4) (2) - (5) (3) - (6) 

 Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

 Nonwhite White Difference between subgroups 

   Persisted into the 2nd year 0.217 ** -0.003 0.028 0.045 0.021 0.048 0.172 † -0.024 -0.020 

   Persisted into the 3rd year 0.217 ** 0.047 0.075 0.025 -0.028 0.122 † 0.192 † 0.075 -0.047 

   Transferred up in 2nd year 0.024 0.011 0.014 -0.027 0.006 0.037 0.051 0.005 -0.023 

   Transferred up in 3rd year 0.047 0.024 0.024 0.081 0.056 0.091 † -0.034 -0.032 -0.067 

   Earned AA within 3 years 0.039 0.041 0.025 -0.045 -0.053 -0.086* 0.084 0.094 0.111 * 

   Earned AA within 4 years 0.046 0.011 -0.008 -0.046 -0.063 -0.026 0.092 0.074 0.018 

   Earned BA within 6 years 0.018 0.023 0.085* 0.023 0.026 0.076 † -0.005 -0.003 0.009 

   Earned BA within 8 years 0.024 0.004 0.073 0.027 0.049 0.091* -0.003 -0.045 -0.018 

Number of observations 525 457    

 Parents’ highest education: HS or below Parents’ highest education: Above HS Difference between subgroups 

   Persisted into the 2nd year 0.073 -0.105 0.010 0.028 0.037 0.060 0.045 -0.142 -0.050 

   Persisted into the 3rd year 0.097 0.017 0.074 0.045 -0.056 0.042 0.052 0.073 0.032 

   Transferred up in 2nd year -0.014 0.020 -0.000 -0.058 * 0.001 0.001 0.044 0.019 -0.001 

   Transferred up in 3rd year 0.010 -0.024 -0.020 -0.015 0.037 0.073 † 0.025 -0.061 -0.093 † 

   Earned AA within 3 years -0.036 -0.041 -0.070 * -0.039 0.019 -0.044 0.003 -0.060 -0.026 

   Earned AA within 4 years -0.059 -0.063 -0.008 -0.014 -0.004 -0.048 -0.045 -0.059 0.040 

   Earned BA within 6 years -0.015 -0.043 -0.016 0.036 0.062 * 0.114 *** -0.051 -0.105 ** -0.130 ** 

   Earned BA within 8 years -0.011 -0.060 * -0.026 0.048 0.080 * 0.122 *** -0.059 -0.140 ** -0.148 ** 

Number of observations 449 533    

Note. AA = associate’s degree; BA = bachelor’s degree; HS = high school. “No remediation” is the reference group. Robust standard errors for each coefficient (in column [1] to 

[4]) and z-scores for each test of significant difference (in column [5] and [6]) are reported in Appendix Table 2.B4.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).   
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Table 2.A4 Heterogeneous Effects of Postsecondary Remediation for Four-Year College Students 

 (1) (2) (3) (4) (5) (6) (1) - (4) (2) - (5) (3) - (6) 

 Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

 Nonwhite White Difference between subgroups 

   Persisted into the 2nd year -0.066 -0.087 -0.025 -0.005 0.030 -0.080 -0.061 -0.117 † 0.055 

   Persisted into the 3rd year -0.009 -0.085 -0.067 0.023 0.089 * -0.015 -0.032 -0.174 * -0.052 

   Transferred down in 2nd year 0.008 0.013 -0.027 -0.002 0.004 -0.030 0.010 0.009 0.003 

   Transferred down in 3rd year -0.005 0.021 -0.017 0.059 † 0.012 0.039 -0.064 0.009 -0.056 

   Earned BA within 4 years -0.091 -0.064 -0.089 -0.030 -0.009 -0.193 ** -0.061 -0.055 0.104 

   Earned BA within 6 years -0.008 -0.160 * -0.201 ** -0.020 0.087 * -0.138 † 0.012 -0.247 ** -0.063 

   Earned BA within 8 years 0.006 -0.158 * -0.189 * -0.059 0.070 † -0.141 † 0.065 -0.228 ** -0.048 

Number of observations 469 824    

 Parents’ highest education: Below BA Parents’ highest education: BA or above Difference between subgroups 

   Persisted into the 2nd year -0.017 0.019 -0.069 0.015 -0.030 0.025 -0.032 0.049 -0.094 

   Persisted into the 3rd year -0.018 0.027 -0.075 0.071 0.034 0.024 -0.089 -0.007 -0.099 

   Transferred down in 2nd year 0.034 0.036 -0.001 -0.009 -0.042 -0.038 0.043 0.078 † 0.037 

   Transferred down in 3rd year 0.062 0.039 0.015 0.100 -0.028 0.041 -0.038 0.067 † -0.026 

   Earned BA within 4 years -0.163 *** -0.023 -0.131 * 0.010 -0.041 -0.213 ** -0.173 † 0.018 0.082 

   Earned BA within 6 years -0.063 -0.057 -0.193 ** 0.046 0.041 -0.213 * -0.109 -0.098 0.020 

   Earned BA within 8 years -0.075 -0.049 -0.175 ** 0.042 0.001 -0.228 * -0.117 -0.050 0.053 

Number of observations 661 533    

Note. BA = bachelor’s degree; HS = high school. “No remediation” is the reference group. Robust standard errors for each coefficient (in column [1] to [4]) and z-scores for each 

test of significant difference (in column [5] and [6]) are reported in Appendix Table 2.B5.   

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).   
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Table 2.B1 Descriptive Statistics of Covariates 

Variables Mean 
Standard 

Deviation 
Range 

Demographics    

   Female .523 .500 0-1 

   White (base group) .712 .453 0-1 

   Black .126 .332 0-1 

   Hispanic .107 .309 0-1 

   Other race .054 .226 0-1 

   Age when starting college 19.501 2.410 16.000-31.333 

   Cognitive score (ASVAB) 62.121 25.712 .118-100 

   Parent’s highest education (years) 14.554 2.823 1-20 

   Ratio of household income to poverty level 391.713 356.076 0-3227 

   Mother’s age at 1st birth 24.149 4.646 11-44 

   Intact family (at age 17; dummy) .588 .492 0-1 

   Census region of residence (at age 17)    

      Northeastern (base group) .171 .376 0-1 

      North Central .283 .451 0-1 

      South .334 .472 0-1 

      West .212 .409 0-1 

Pre-college schooling experience    

   Ever repeated a grade (dummy) .086 .281 0-1 

   Never late for school (in 1996; dummy) .657 .475 0-1 

   Never absent from school (in fall 1996; dummy) .212 .408 0-1 

   25% or less peers who cut classes or school (in 1997; dummy) .639 .480 0-1 

   75% or more peers who plan to go to college (in 1997; dummy) .627 .484 0-1 

High school academic preparation    

   School sector    

      Public (base group) .921 .270 0-1 

      Catholic  .047 .212 0-1 

      Other private .032 .176 0-1 

   Participated in gifted course program  .262 .440 0-1 

   Academic program    

      College preparatory  .452 .498 0-1 

      General education (base group) .320 .467 0-1 

      Vocational education  .227 .419 0-1 

   Math pipeline – high level (dummy) .492 .500 0-1 

   Science pipeline – high level (dummy) .373 .484 0-1 

   Total academic credits 18.153 5.318 0-32 

   Overall grade point average (GPA) 3.019 .644 0-4.08 

   English GPA 2.885 .828 0-4.19 

   Math GPA 2.727 .808 0.4.08 

College Attendance    

   On-time college-going (dummy) .728 .445 0-1 

   College sector    

      Public (base group) .770 .421 0-1 

      Private non-profit .172 .377 0-1 

      Private for-profit .056 .230 0-1 
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Table 2.B1 (Cont’d) 

Variables Mean 
Standard 

Deviation 
Range 

   College major   0-1 

      Science, technology, engineering, and mathematics (STEM) .184 .388  

      Social/Behavioral sciences .139 .346 0-1 

      Art and humanities .075 .263 0-1 

      Law and business .137 .344 0-1 

      Education .059 .236 0-1 

      Health sciences .090 .286 0-1 

      Other vocational (e.g., mechanic, transportation, etc.) .004 .063 0-1 

      Not declared yet (base group) .312 .463 0-1 

   Number of courses taken in first term 4.355 1.425 2-7 
Source. National Longitudinal Survey of Youth 1997 (NLSY97) 

Note. n = sample size; AVSAB = Armed Services Vocational Aptitude Battery. Sample is restricted to first-time college students 

who had valid information on their college’s institutional level. Data are weighted to be generalizable to the population of youth 

aged 12-16 in 1996 in the United States. 
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Table 2.B2 Sensitivity Tests of Estimated Effects of Postsecondary Remediation for Two-Year College Students 

 
Excluding students taking  

<2 or >6 courses in 1st-term 
Traditional students only 

Excluding oversampled minority 

students 

Dependent Variable Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

Persistence          

   Persisted into the 2nd year 0.123 † 0.045 0.067 0.007 -0.145 -0.045 0.079 -0.070 0.024 

 (0.064) (0.070) (0.052) (0.095) (0.097) (0.080) (0.064) (0.058) (0.049) 

   Persisted into the 3rd year 0.064 -0.020 0.062 -0.009 -0.058 0.029 0.151 * -0.022 0.082 † 

 (0.065) (0.066) (0.052) (0.115) (0.100) (0.087) (0.067) (0.053) (0.048) 

Transferring          

   Transferred up in 2nd year -0.009 0.013 0.005 -0.033 0.007 0.011 -0.021 0.018 0.017 

 (0.021) (0.027) (0.022) (0.037) (0.044) (0.042) (0.027) (0.028) (0.028) 

   Transferred up in 3rd year 0.050 0.022 0.056 * 0.104 0.061 0.042 0.060 0.050 † 0.076 * 

 (0.036) (0.026) (0.027) (0.071) (0.053) (0.045) (0.038) (0.029) (0.030) 

College Attainment          

   Earned AA within 3 years -0.037 -0.012 -0.023 -0.015 0.024 -0.035 -0.011 -0.018 -0.050 † 

 (0.036) (0.037) (0.033) (0.059) (0.057) (0.042) (0.041) (0.033) (0.030) 

   Earned AA within 4 years -0.048 -0.047 -0.027 -0.049 -0.031 -0.097 0.019 -0.028 -0.027 

 (0.043) (0.042) (0.040) (0.083) (0.074) (0.062) (0.052) (0.035) (0.034) 

   Earned BA within 6 years -0.001 0.006 0.074 * 0.019 0.072 0.090 * 0.020 0.015 0.066 * 

 (0.027) (0.026) (0.030) (0.036) (0.047) (0.039) (0.035) (0.026) (0.030) 

   Earned BA within 8 years 0.027 0.014 0.076 *  0.059 0.062 0.112 * 0.029 0.036 0.068 * 

 (0.035) (0.031) (0.032) (0.057) (0.049) (0.044) (0.040) (0.033) (0.033) 

Number of observations 715 338 811 

Note. AA = associate’s degree; BA = bachelor’s degree. Each cell in the table shows the estimate on a dummy variable indicating the effect of a specific type of remediation 

enrollment by subject, using “no remediation” as the reference group. Robust standard errors are reported in parentheses. 

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 2.B3 Sensitivity Tests of Estimated Effects of Postsecondary Remediation for Four-Year College Students 

 
Excluding students taking  

<2 or >6 courses in 1st-term 
Traditional students only 

Excluding oversampled minority 

students 

Dependent Variable Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

Persistence          

   Persisted into the 2nd year 0.006 0.016 -0.022 0.010 0.002 -0.009 -0.026 0.006 -0.072 

 (0.037) (0.030) (0.040) (0.032) (0.029) (0.033) (0.037) (0.026) (0.057) 

   Persisted into the 3rd year 0.008 0.024 0.012 0.039 0.043 -0.023 0.003 0.061 † -0.063 

 (0.046) (0.037) (0.046) (0.043) (0.037) (0.048) (0.044) (0.033) (0.069) 

Transferring          

   Transferred down in 2nd year 0.028 0.004 0.001 -0.011 -0.028 -0.030 -0.014 -0.006 -0.029 

 (0.031) (0.023) (0.033) (0.032) (0.028) (0.035) (0.026) (0.023) (0.026) 

   Transferred down in 3rd year 0.059 † 0.008 0.052 0.049 0.005 0.025 0.033 0.001 0.020 

 (0.031) (0.021) (0.034) (0.032) (0.025) (0.034) (0.029) (0.021) (0.029) 

College Attainment          

   Earned BA within 4 years -0.055 -0.026 -0.157 *** -0.032 0.017 -0.124 * -0.087 † -0.031 -0.223 *** 

 (0.049) (0.037) (0.044) (0.057) (0.043) (0.053) (0.047) (0.037) (0.039) 

   Earned BA within 6 years -0.039 -0.021 -0.170 ** -0.008 0.034 -0.142 * -0.063 0.017 -0.219 *** 

 (0.051) (0.042) (0.054) (0.055) (0.045) (0.059) (0.051) (0.040) (0.059) 

   Earned BA within 8 years -0.050 -0.026 -0.155 ** -0.017 0.014 -0.122 * -0.086 †  0.012 -0.223 *** 

 (0.051) (0.041) (0.055) (0.054) (0.044) (0.058) (0.051) (0.039) (0.062) 

Number of observations 1,102 906 1,187 

Note. BA = bachelor’s degree. Each cell in the table shows the estimate on a dummy variable indicating the effect of a specific type of remediation enrollment by subject, using 

“no remediation” as the reference group. Robust standard errors are reported in parentheses. 

*** p<.001; ** p<.01; * p<.05; †p < .10 (two-tailed test).     
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Table 2.B4 Robust Standard Errors for Heterogeneous Effects of Postsecondary Remediation and Z-Scores for Tests of Significant Difference: 

Two-Year College Students 

 Robust Standard Errors  Z-Scores 

 (1) (2) (3) (4) (5) (6) (1) - (4) (2) - (5) (3) - (6) 

 Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

 Nonwhite White Difference between subgroups 

   Persisted into the 2nd year 0.067 0.071 0.065 0.079 0.085 0.069 1.660 -0.217 -0.211 

   Persisted into the 3rd year 0.074 0.068 0.063 0.079 0.084 0.070 1.774 0.694 -0.499 

   Transferred up in 2nd year 0.036 0.032 0.032 0.030 0.033 0.047 1.088 0.109 -0.405 

   Transferred up in 3rd year 0.040 0.033 0.033 0.053 0.038 0.047 -0.512 -0.636 -1.167 

   Earned AA within 3 years 0.040 0.039 0.026 0.050 0.045 0.041 1.312 1.579 2.286 

   Earned AA within 4 years 0.050 0.044 0.032 0.053 0.047 0.053 1.263 1.149 0.291 

   Earned BA within 6 years 0.031 0.031 0.042 0.039 0.034 0.042 -0.100 -0.065 0.152 

   Earned BA within 8 years 0.038 0.035 0.046 0.043 0.042 0.046 -0.052 -0.823 -0.277 

 Parents’ highest education: HS or below Parents’ highest education: Above HS Difference between subgroups 

   Persisted into the 2nd year 0.082 0.080 0.074 0.082 0.074 0.061 0.388 -1.303 -0.521 

   Persisted into the 3rd year 0.080 0.072 0.075 0.082 0.073 0.063 0.454 0.712 0.327 

   Transferred up in 2nd year 0.027 0.051 0.026 0.029 0.035 0.038 1.110 0.307 -0.022 

   Transferred up in 3rd year 0.037 0.030 0.029 0.033 0.037 0.040 0.504 -1.281 -1.882 

   Earned AA within 3 years 0.047 0.039 0.032 0.045 0.050 0.039 0.046 -0.946 -0.515 

   Earned AA within 4 years 0.050 0.042 0.069 0.057 0.052 0.043 -0.593 -0.883 0.492 

   Earned BA within 6 years 0.042 0.027 0.031 0.029 0.028 0.034 -0.999 -2.699 -2.825 

   Earned BA within 8 years 0.046 0.029 0.034 0.035 0.035 0.037 -1.021 -3.080 -2.945 
Note. AA = associate’s degree; BA = bachelor’s degree; HS = high school. “No remediation” is the reference group.  
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Table 2.B5 Robust Standard Errors for Heterogeneous Effects of Postsecondary Remediation and Z-Scores for Tests of Significant Difference: 

Four-Year College Students 

 Robust Standard Errors  Z-Scores 

 (1) (2) (3) (4) (5) (6) (1) - (4) (2) - (5) (3) - (6) 

 Only Math 
Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 
Only Math 

Only 

English 

Both 

Subjects 

 Nonwhite White Difference between subgroups 

   Persisted into the 2nd year 0.063 0.059 0.060 0.043 0.030 0.067 -0.800 -1.768 0.612 

   Persisted into the 3rd year 0.073 0.069 0.078 0.055 0.037 0.070 -0.350 -2.222 -0.496 

   Transferred down in 2nd year 0.038 0.036 0.027 0.030 0.027 0.027 0.207 0.200 0.079 

   Transferred down in 3rd year 0.044 0.046 0.040 0.033 0.022 0.031 -1.164 0.177 -1.107 

   Earned BA within 4 years 0.068 0.060 0.059 0.062 0.045 0.071 -0.663 -0.733 1.127 

   Earned BA within 6 years 0.081 0.071 0.072 0.062 0.044 0.077 0.118 -2.957 -0.598 

   Earned BA within 8 years 0.081 0.073 0.075 0.062 0.042 0.078 0.637 -2.707 -0.444 

 Parents’ highest education: Below BA Parents’ highest education: BA or above Difference between subgroups 

   Persisted into the 2nd year 0.056 0.044 0.063 0.031 0.035 0.026 -0.500 0.872 -1.379 

   Persisted into the 3rd year 0.064 0.051 0.068 0.046 0.044 0.070 -1.129 -0.104 -1.014 

   Transferred down in 2nd year 0.029 0.027 0.023 0.051 0.032 0.039 0.733 1.863 0.817 

   Transferred down in 3rd year 0.040 0.028 0.026 0.063 0.027 0.044 -0.509 1.722 -0.509 

   Earned BA within 4 years 0.046 0.048 0.055 0.077 0.059 0.079 -1.929 0.237 0.852 

   Earned BA within 6 years 0.065 0.055 0.062 0.065 0.056 0.102 -1.186 -1.249 0.168 

   Earned BA within 8 years 0.065 0.056 0.064 0.060 0.054 0.105 -1.323 -0.643 0.431 
Note. AA = associate’s degree; BA = bachelor’s degree; HS = high school. “No remediation” is the reference group.  
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CHAPTER 3 
 

THE IMPACT OF BEING LABELED AS A PERSISTENTLY LOWEST ACHIEVING SCHOOL: 

REGRESSION DISCONTINUITY EVIDENCE ON SCHOOL LABELING11 

 

 

3.1  Introduction 

  Since the implementation of the No Child Left Behind Act of 2001 (NCLB) both federal and state 

governments have employed various sanctions for schools that fail to meet academic standards. By 2012, 

thirty-two states had imposed specific sanctioning policies on low-performing schools regardless of their 

Title 1 status (National Center for Education Statistics [NCES] 2016a). One common practice among 

these sanctioning policies is identifying and labeling low-performing schools within the state. But not all 

low-performing school labels are equal. Some are merely cautionary labels such as being placed on a 

watch list. Others involve potential resource-based sanctions, such as withholding funds, assigning 

vouchers to students to exercise choice, or school closure (NCES 2016b). In this study we will estimate 

the differential effects of “non-consequential labeling” versus “consequential labeling” that has more 

immediate accountability pressures involving supervision, requirements, and possible reallocation of 

resources. Our goal is to identify those labeling practices (with or without implied consequences) that 

motivate schools to change, and in what areas.   

 Grading and labeling schools has been increasingly used as a means to hold schools accountable 

for student achievement. One underlying assumption of labeling and publicizing low-achieving schools is 

                                                           
11 This research was is supported by the Hannah Chair Partnership (HCP), Michigan State University (MSU), 

Michigan Department of Education (MDE), and the Institute of Education Sciences (IES), U.S. Department of 

Education, through Grant No. #R305E100008, Principal Investigators listed in alphabetical order Susan Dynarski, 

Kenneth Frank, Tom Howell, Brian A. Jacob, Venessa Kessler, Joseph Martineau, and Barbara Schneider. Any 

opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do 

not necessarily reflect the views of the organizations. Results, information and opinions solely represent the 

analysis, information and opinions of the author(s) and are not endorsed by, or reflect the views or positions of 

MSU, MDE, and IES or any employee thereof. 
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that schools would respond to the external pressures of accountability that stem from an undesirable label 

or stigma. It could also be that low-performing school labels may raise attention and community pressure 

that can be effective in creating organizational change within the schools and can lead to improvements in 

school performance. A small empirical literature has found the positive impact of school labeling on 

student academic achievement (e.g., Chakrabarti 2013a; Figlio and Rouse 2006; Winters and Cowen 

2012). Yet, the question remains as to how schools would respond to low-performing labels that attract 

public attention and have immediate accountability requirements compared to those that are relatively 

minor such as being put on a watch list with little attention and no direct punitive consequences.  

In this study, we use state-wide data from Michigan at the school-level to analyze the effects of 

being identified as a persistently lowest achieving (PLA) school or on a cautionary watch list for PLA in 

2010. The PLA list is a consequential school label accompanied by accountability requirements and 

public attention, whereas the watch list is a non-consequential school label with no sanction threats or 

even media coverage. To test the effects of being on a PLA or watch list, we employ a sharp regression 

discontinuity (RD) design which allows us to explore the discontinuity around the threshold of being 

placed on one of the lists (e.g., being on the PLA list because of scoring in the bottom 5 percent of 

schools). Thus, by using statewide achievement-based school percentile rankings, we leverage the RD 

design to obtain unbiased and precise measures of the treatments (being placed on a list).  

With the introduction of the federal School Improvement Grant (SIG) program in 2009, all 50 

states and the District of Columbia started to identify and publicize the lowest achieving 5 percent schools 

annually (Hurlburt et al. 2011; U.S. Department of Education 2015).12 Hence, our empirical findings on 

the PLA list in Michigan suggest broad and timely applications for other school labeling or sanction 

systems. Our RD analyses indicate that the bottom 5 percent of schools on the PLA list increased their 

student achievement scores in writing, with marginal evidence in mathematics and social studies, and no 

                                                           
12 The US Department of Education requires states to use three common criteria to determine the persistently lowest-

performing schools: (a) a school’s overall academic achievement level, (b) whether there is a “lack of progress” in 

the school, and (3) for high schools, whether the school has a graduation rate below 60 percent (U.S. Department of 

Education, 2009). Within each of these criteria, however, there is variation across states (Hurlburt et al. 2011). 
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evidence of increases in reading and science in year one, compared with those schools which were just 

above the cutoff for being on the list. The positive effect for writing is robust with respect to alternative 

specification and potential bias in estimation. We find no impact on student achievement across academic 

subjects for those bottom 6 to 20 percent schools labeled as a watch list school receiving no actual 

sanctions (compared to the bottom 21 to 35 percent of schools). Our findings suggest that schools are 

likely to respond differently to varying forms of low-performing labeling, depending on the accountability 

pressure and social stigmatization process. 

3.2  Background 

 Labeling has been used for about twenty years to motivate low-performing schools to make 

substantive academic improvements. For example, in Texas schools were categorized as either 

“exemplary,” “recognized,” “acceptable” or “low-performing,” while Florida uses an “A” through “F” 

grading scheme (Florida Department of Education 2015; Texas Education Agency 2015). These rating 

categories carried no immediate punitive actions as they were simply cautionary labels. However, the 

NCLB Act in 2002 took a dramatically different path with respect to sanctions by penalizing those 

schools labeled as failing (NCLB 2002). Beginning with NCLB, all states were required to conduct 

annual assessments and turn the results of these assessments into a label of “made AYP” or “did not make 

AYP.” Schools failing to make AYP for multiple years were subject to a set of penalties, such as offering 

students the choice to leave their school and free transportation to another public school. In the past few 

years, the NCLB criteria have blended with states’ identification of schools as in the lowest 5 percent. For 

example, states seeking waivers from certain federal sanctions were required to identify the lowest 5 

percent of schools (labeled Priority Schools) in their state (U.S. Department of Education 2012). 

  The motivation for identifying and publicizing low-performing schools is based in part on the 

notion that schools may respond to the accountability pressures or stigma of being publicly labeled as 

low-performing (Chakrabarti 2013a; Chiang 2009; Figlio and Rouse 2006; Mintrop 2004). Through 

accountability requirements, supervision, and monitoring, consequential labeling could force low-

achieving schools to reallocate their organizational and instructional resources to improve in order to 
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avoid further more severe sanctions. Labeling could also press schools to make changes by publicly 

releasing results and using transparency to elicit both social stigma and community pressures. Individuals 

(e.g., educators, parents) attached to schools being identified as low-performing might be very 

embarrassed by the labels and will therefore attempt to improve. It is also often assumed that parents and 

teachers in schools identified as low-performing or failing organization would be more likely to transfer, 

especially if they did not have a reasonable voice in making improvements (Hirschman 1970). Therefore, 

the threats of accountability sanctions and community pressures, either hypothetical or actualized, should 

motivate schools to improve achievement to reach a certain level of performance.  

Correspondingly, some researchers have found positive effects for school labels on the 

improvement of students’ achievement after schools were graded as failing. For example, in Florida, 

Figlio and Rouse (2006) and Rouse, Hannaway, Goldhaber, and Figlio (2013) found that elementary 

schools receiving a grade of “F” improved their student performance immediately in the following year, 

on math and reading tests. They argue that schools actually changed in part to the increasing stigma of 

having received a failing grade. Other studies analyzing either school or student level data in Florida have 

also documented similar positive effects on student achievement in high and low stakes subjects including 

reading, mathematics, writing, and science for “F-rated” elementary schools (see Chakrabarti 2013a; 

Chiang 2009; Winters, Trivitt, and Greene 2010). Using elementary and middle school student data from 

New York City, which also adopted school letter grading, Winters and Cowen (2012) find that schools 

that received “F” labels showed positive achievement improvement in reading and math, especially for 

those students in the bottom quartile. 

 While many studies suggest that school labeling policy led to increased academic achievement 

for students across varied subjects, a growing body of evidence reveals that some of this positive effect 

may be spurious. One reason is that schools can boost test scores by deliberately and systematically 

manipulating the population of students taking high-stake tests (Chakrabarti 2013b; Cullen and Reback 

2006; Figlio and Getzer 2006; Haney 2000; Heilig and Darling-Hammond 2008). Heilig and Darling-

Hammond (2008), for instance, find that Texas schools strategically increased grade retention rates in the 
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9th grade and/or excluded more low-achieving students from taking the high-stakes state assessment in 

10th grade. Figlio and Getzer (2006) also provide some evidence from Florida showing that schools 

tended to reclassify low-income and low-performing students as disabled or reassign them to special 

education categories that were exempt from the accountability system at the time.13  

In summary, despite a series of studies that have detected some positive relationship between 

school labeling policies and student performance, there are several limitations with these prior empirical 

studies which can be addressed by studying the persistently lowest achieving (PLA) designation in 

Michigan. First, in the above studies, researchers could not determine whether understand whether it is 

stigma or threat of sanction behind the school labeling process that serves as a major driving force to 

make school change. In this study, we are able to compare the effects of two types of school labels (e.g., 

PLA and watch list) and determine the extent to which schools respond to different forms of labeling (i.e., 

consequential labeling vs. non-consequential labeling) with varying levels of accountability pressure and 

social stigmatization process. Second, while a majority of previous studies focus on elementary and 

middle schools, this analysis is targeted at a statewide sample of traditional high schools, which are 

generally considered to face more challenges in terms of turning around or restructuring (Louis et al. 

2010). Third, prior studies tend to examine school labels created by state governments or local school 

districts. This study is one of the first to offer evidence assessing assignment to a PLA list based on the 

criteria suggested by the U.S. Department of Education through the SIG program in 2009 (U.S. 

Department of Education 2009).  

3.3  Persistently Lowest Achieving Schools in Michigan 

 Starting in 2010 the Michigan Department of Education (MDE), like many other states, annually 

published a Top-to-Bottom (TTB) school ranking list. The state-wide TTB ranking is calculated by 

incorporating average achievement levels and improvement rates both in mathematics and reading over 

the past four years (from 2005-2006 to 2008-2009) for both elementary and secondary schools. Schools 

                                                           
13 Similar trends of increasing in the incidence of grade retention and reclassification of students as disabled were 

also documented in New York City (Allington and McGill-Franzen 1992) and Chicago (Jacob 2005) when a high-

stakes testing accountability system was mandated.  
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that fall in the bottom 5 percent are classified as Persistently Lowest-Achieving (PLA) schools.14 The 

PLA policy was adopted by the state of Michigan in December 2009 to identify schools eligible for the 

federal incentive grant program School Improvement Grants (SIG) and therefore had to follow specific 

ranking criteria for the grants developed by the U.S. Department of Education (Hurlburt et al. 2011; The 

Revised School Code Act 2009).15  

There are two major criteria for a school to receive a PLA designation, including: (1) having at 

least 30 students (enrolled over the entire academic year) with math and reading scores for two prior years, 

and (2) eligibility to receive Title I aid. Schools eligible for PLA status consisted mainly of schools 

receiving Title I funding and in the state of “in improvement, corrective action, or restructuring” under 

NCLB (i.e., “Tier 1” schools), and middle/high schools eligible for but not receiving Title I funding (i.e., 

“Tier 2” schools). In August 2010, 92 elementary, middle, and high schools were notified that they were 

placed on the 2010 PLA list in Michigan, of which we will focus on the high school sample (n=56), 

where comparable student test scores are available in the following year.16   

Once placed on the PLA list, schools immediately started to face a series of accountability and 

community pressures. The names of the PLA schools were publicly disclosed by local media. All PLA 

schools were required to issue a notification letter to parents of students, explaining their PLA status. 

They were placed under the supervision of the State School Reform/Redesign Office (SRO) at MDE and 

were required to develop and implement a three-year reform plan that aimed to rapidly increase student 

achievement. To monitor the progress of the PLA schools, the SRO developed a school performance 

matrix which includes improvements in all five academic subjects (i.e., reading, writing, mathematics, 

                                                           
14 The PLA schools are now termed as Priority Schools under the Elementary and Secondary Education Act (ESEA) 

Flexibility (U.S. Department of Education 2012). 
15 Michigan's Adequate Yearly Progress (AYP) report cards, which were required under NCLB, were continued in 

force during the first few years of the implementation of the PLA policy until being replaced by the Michigan 

School Accountability Scorecards, beginning in 2013.  
16 We chose not to include elementary and middle school sample in this study for several reasons. The first is that 

student achievement at different school levels (i.e., elementary, middle, and high schools) is measured by different 

assessment systems. Thus those test scores are not comparable across school levels. The second is that in total only 

29 elementary and middle schools have outcome measures in the following year. The sample size is too small for a 

separate supplementary analysis.  
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science, and social studies) tested in annual statewide assessments.17 Those schools not making 

satisfactory progress over the course of the period from 2012 to 2014 were potentially subject to be taken 

over by the SRO, meaning that the local community would lose governance of the community school 

identified as PLA (The Revised School Code Act 2009). 

Along with the PLA list, the Michigan Department of Education also created a state watch list of 

schools in the bottom 6 to 20 percent, which were identified as being in danger of becoming PLA schools 

in the future.18 In total, there were 60 high schools placed on the watch list in 2010. The watch list does 

not affect the PLA ranking; however, it provided an alert to the schools of their potential to fall into the 

PLA category. There were no sanctions imposed on these watch list schools (the MDE has since stopped 

releasing new watch lists). Without a real threat of sanctions, watch list schools may not be as responsive 

as those schools designated as being on the consequential PLA list. Nonetheless, those schools being 

identified as watch list schools still received a low-performing label. Studying solely the consequential 

school labeling, as in most prior studies, cannot separate out the effect of labeling and the effect of 

sanction threats. In this study, we can simultaneously analyze and compare the PLA and watch list in 

Michigan and make a theoretical contribution to school labeling literature by shedding some light on 

which mechanism, specifically stigma or sanction threats, is responsible for motivating low-performing 

schools to react.        

3.4  Methodological Approach 

3.4.1  Sharp Regression Discontinuity Design 

To identify the causal impact of being on the PLA or watch list in Michigan we use regression 

discontinuity design, a commonly used quasi-experimental approach in prior studies on school labeling 

(e.g., Chakrabarti 2013; Chiang 2009; Winters and Cowen 2012). We estimate effects of being on a low-

                                                           
17 The performance matrix also involves instructional time, teacher performance level, student attendance, discipline 

incidents, course completion, dropout rate, graduation rate, and other school indicators that account for variability in 

each PLA school’s individual plan.  
18 To the best of our knowledge, not many states created a watch list of schools in the bottom 6 to 20 percent, in 

addition to the PLA list of the bottom 5 percent schools. One exception is the state of Washington which initiated a 

program called “Struggling School Innovation Cluster” to supporting schools in the bottom 6 to10 percent in 2010. 

(https://www2.ed.gov/programs/racetothetop/phase2-applications/washington.pdf).    
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performing list by examining the difference in student achievement at the school level between schools 

just below and above a fixed threshold, (the fifth percentile for the PLA list, and the 20th percentile for 

the watch list). The assignment to either list is determined by the value of the percentile ranking on either 

side of a single cutoff point of perfect treatment compliance (the probability of being placed on a list 

jumps from 0 to 1 at the cut score). Separate regressions are estimated for the two treatments using sharp 

RD designs (Hahn, Todd, and van der Klaauw 2001; Trochim 1984) and following the procedures laid 

out by Imbens and Lemiuex (2008). 

The model specification for estimating the effects of PLA treatment is:  

                 𝑌𝑖
2011 =  𝛽0 + 𝛽1𝐿𝑖𝑠𝑡𝑖

2010 + 𝑓(𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010) + 𝛽2𝑌𝑖

2009 + 𝛤′𝑿𝑖
2010 +  𝜀𝑖           (1) 

where 𝑌𝑖
2011 is the school level student achievement in a given subject for school i in year 2011, 𝐿𝑖𝑠𝑡𝑖

2010 

is a dummy variable for whether school i was placed on the PLA or watch list in year 2010 (with 𝛽1 the 

effect of being on the list), 𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010 is the Top-to-Bottom percentile rankings rated for school i in 

year 2010 (which serves as the forcing variable in the RD designs), 𝑌𝑖
2009 is the average test score for 

each corresponding dependent variable in 2009 (the latest school performance measures used for the 2010 

percentile ranking calculation), and 𝑿𝑖
2010 is a vector of selected school characteristics obtained in year 

2010. 

One of the most critical aspects of the RD modeling is the functional form specification of the 

relationship between the forcing variable (i.e., 𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010), and outcome variable (Schochet et al. 

2010). Using an incorrect functional form in RD designs typically biases the estimate of the treatment 

effect. Following the strategy of selecting the most appropriate function form(s) suggested by Lee and 

Lemieux (2010), we test a variety of functional forms by including quadratic and cubic terms for 

𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010 as well as interaction terms between 𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖

2010 and treatment assignment into equation 

(1) to determine which best fits the data. These alternative specifications do not lead to improvements in 

goodness of model fit based on the results of F-statistics = 
(𝑅𝑢

2−𝑅𝑟
2)/𝐾

(1−𝑅𝑢
2)/(𝑛−𝐾−1)

, where 𝑅𝑢
2 and 𝑅𝑟

2 are R-

squared values from the unrestricted and restricted regression, n is the total number of observations, and K 
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is the number of new added indicators, including interaction and polynomial terms. Therefore, we only 

present estimation results from the more parsimonious linear specification (i.e., equation [1]). 

Consistent with the RD designs, only school samples within a specific bandwidth of the treatment 

cutoff are included in the estimation. When using an RD estimator (in our case, 𝛽1), researchers can 

compare observations that are extremely close to the cutoff, thereby approximating experimental 

conditions. However, without a large sample around the cutoff, the RD estimators will be imprecise. On 

the other hand, including samples that are far away from the cutoff may produce biased or inconsistent 

RD estimators if the functional forms modeling the relationship between forcing variable and outcomes 

are not correctly specified. In this study, based on our analysis of statistical power (see Appendix C) and 

functional form specifications, we find that including schools within 10 percentile points of the threshold 

(36 PLA schools and 32 comparison schools) optimizes the bias-precision trade-off. In particular, our 

sample yields sufficient statistical power (80 percent power for two-sided tests at the 0.05 significance 

level, as recommended by Schochet [2009] and Bloom [2012]) to detect the effects of PLA list while 

producing consistent RD estimators and constraining the sample to be close enough to the cutoff to 

establish comparability between the schools above and below the cutoff. In this paper, we report the 

results from estimating RD models that include school samples within 9, 10, or 11 percentile ranks of the 

cut score.  

 In sharp RD designs, inferring a causal impact on an outcome relies on several fundamental 

assumptions including: (1) the jump at the cut score is truly discontinuous; (2) the forcing variable is 

observed with random measurement error; (3) the dependent measure, in this case the achievement score, 

is a continuous function of the forcing variable (percentile ranking) at the cutoff in the absence of 

treatment, and (4) the treatment units are sorted unconditionally by assignment. We conduct a series of 

tests regarding violations of the above assumptions, recommended by Imbens and Lemieux (2008), 

including unconfoundedness, no-manipulation, and no jumps at non-discontinuity points. Results from 

testing these identification assumptions are presented in Appendix A and generally support the use of the 

sharp regression discontinuity design with our data and specification described in equation (1).  
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To assess the robustness of our primary RD estimation results, we employ several sensitivity 

analyses. First, we test the sensitivity of our results to bandwidth choices, the width of the “window” of 

cases used for defining comparable treatment and control units, as recommended by Imbens and Lemiuex 

(2008). Second, following Frank, Maroulis, Duong and Kelcey (2013), we quantify the bias necessary to 

invalidate our RD inferences in terms of sample replacement. Given the targeted population in this study, 

we address concerns about the generality of estimated RD effects by calculating the proportion of the 

schools in our sample that would need to be replaced to invalidate our inferences. 

Third, we compare the 2010 PLA list effects to estimated results of a pseudo 2009 PLA list which 

is constructed by using data from the school years prior to the state mandated assignment for low-

performing schools to a PLA list. Similar falsification tests or placebo tests are often used in policy 

analysis, especially when evaluating intervention programs which reward or penalize schools based on 

students’ average performance (e.g., Chiang 2009). By applying the same estimation models to a 

historical counterfactual school sample before the PLA list was implemented, we expected to verify that 

there would be no effect of “the list” on achievement outcomes, since none of the schools in this pseudo 

treatment group (bottom 5 percent in 2009) would have experienced labeling and threat of sanctions from 

being on a “persistently lowest achieving” school list. 

3.4.2  Data and Measures 

We use school-level data provided by the Michigan Department of Education to examine the 

effect of the 2010 PLA list on school outcomes measured in 2011.19 The school data contain all criteria 

used for determining the 2010 PLA and watch lists, including information on percent proficient in 

mathematics and reading in statewide high school examinations (Michigan Merit Examination, MME) for 

the past four years (from 2006 to 2009), number of students tested in math and reading for the past four 

                                                           
19 Prior empirical studies evaluating the effect of school labeling on student achievement have used both school-

level (e.g., Chakrabarti 2013; Figlio and Rouse 2006) and student-level data (Chiang 2009; Rouse et al. 2013; 

Winters and Cowen 2012; Winters et al. 2010). Although there has been a continuing debate about the adequacies of 

school-level data (as opposed to individual-level data) for assessing school effects (Henig 2008), school-level data 

have been empirically proven to be adequate for evaluating the impact of school-based interventions (e.g., Jacob, 

Goddard, and Kim 2014; Stuart 2007).  
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years, calculated four-year improvement slopes in math and reading, graduation rates for the most recent 

three years, Tier 1 and Tier 2 status, TTB (Top-to-Bottom) percentile rank, Tier 1 and Tier 2 percentile 

rank, and whether the school was placed on the PLA or watch list in 2010.  

The 2010 TTB (Top-to-Bottom) percentile ranking, which is used for determining PLA and 

watch lists, serves as the forcing variable in our RD estimation models. While all schools were ranked on 

the TTB list, schools in the Tier 1 and Tier 2 pool received an additional within-pool percentile ranking. 

The within-pool rankings were created to ensure that those schools in the bottom 5 percent on both 

within-pool rankings were placed on the PLA list. The bottom 5 percent cutoffs on the Tier 1 and Tier 2 

ranking correspond to the percentile rank of 0.5 and 11.4 respectively on the TTB list. As the threshold of 

11.4 on the TTB percentile ranking is higher than that of 0.5, thus it is used as the PLA cutoff. All PLA 

eligible schools both from the Tier 1 and Tier 2 pools that ranked equal or lower than 11.4 percentile on 

the TTB list (PLA cutoff) were identified as PLA schools, as shown in column (a) in Table 3.B1. 

A similar rescaling was computed to identify the watch list. The bottom 20 percent cutoff on the 

Tier 2 ranking has a corresponding percentile rank of 28.1 on the TTB list. Therefore, PLA eligible 

schools that have a TTB rank equal or lower than 28.1 percentile (watch list cutoff) were identified as 

watch list schools. It is important to note that the percentile rank of 11.4 and 28.1 on the 2010 TTB 

ranking (forcing variable) respectively serve as the “bottom 5 percent” and “bottom 20 percent” cutoff for 

determining PLA and watch list schools in Michigan in 2010. The total number of high schools placed on 

the PLA (n=56) and watch list (n=60) in 2010, and of the final analytic sample used in this study are 

respectively reported in column (b) and (d) in Table 3.B1. The relationship between the TTB ranking 

(forcing variable) and school outcomes is assumed to be linear and smooth, hence any discontinuity of the 

conditional distribution of the school outcomes as a function of the percentile ranking at the cut score is 

considered evidence of a causal effect of being on the PLA or watch list. 

The major goal of this study is to examine the differential effects of consequential labeling (i.e., 

PLA list) versus non-consequential labeling (i.e., watch list), not the impact of school reform/redesign 

plans in PLA schools. Therefore, we use the outcome variables that are drawn from student achievement 
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on the Michigan Merit Examination (MME) assessed at the end of the 2010-2011 school year, prior to the 

implementation of PLA school reform/redesign plans. Based on Michigan high school curriculum 

standards, the MME is administered annually in the spring to high school juniors. Five subjects are tested, 

including reading, writing, mathematics, science, and social studies. Student performance falls into one of 

four categories: advanced, proficient, partially proficient, and not proficient. Students who score either 

“proficient” or “advanced” are considered as having met the proficiency level in a specific subject. The 

school level percent of students who met the proficiency level in reading and mathematics are the two 

critical components used in computing state-wide school percentile rankings in 2010. However, starting 

in 2011, the average of students’ scale scores in all five subjects was used to calculate the new state-level 

percentile rankings in the coming years. Therefore, to carefully examine the impact of the PLA and watch 

list on student outcomes, we use students’ scale scores in the five tested academic subjects in 2011 as the 

primary dependent variables. Furthermore, recognizing uncertainty about the equating across years, we 

present both percent of students who exceeded proficiency levels and average of the test scores in each 

subject. 

To address the limitation of the small sample size in our study, we include several school 

covariates in our RD models to mitigate the small sample size biases (Imbens and Lemieux 2008) and to 

improve the precision of our estimation of the effects of being on the PLA and watch lists (Schochet 2009; 

Wing and Cook 2013). The school level measures include percentage of free/reduced lunch students, 

percent of minority students, school size, and pupil-teacher ratio. These school variables are obtained 

from the Common Core Data (CCD) provided by the U.S. Department of Education's National Center for 

Education Statistics (NCES). They are collected in the 2009-2010 academic year. Additionally, we 

include 2009 measures for each school outcome, which are the latest school performance used in the 

calculation of the 2010 TTB percentile ranking, as pretreatment covariates in our models. Together with 

the percentile ranking as the forcing variable, these covariates are assumed and also have been empirically 

tested not to be influenced by the treatment (see the results of the unconfoundedness assumption testing in 

Appendix A). By adding these school covariates, the R-squared values of our RD models for each 
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outcome are relatively high, ranging from 0.70 to 0.88, which yield sufficient statistical power (80 percent 

power for two-sided tests at the 0.05 significance level) for detecting treatment effects in school-based 

RD designs, as recommended by Schochet (2009). We report results of statistical power analysis for this 

study in Appendix C.   

Table 3.B2 reports descriptive statistics of the school outcome variables and other covariates for 

the PLA list, watch list, and no designation school samples. Of the five subjects, over the years and across 

school categories (i.e., PLA, watch, and no designation), reading has the highest percentage of students 

who were at least proficient, writing the second highest, followed by social studies, mathematics, and 

science. On average, schools across the three categories have little difference in student population and 

pupil teacher ratio. Lower ranked schools, however, have a higher percentage of students who are 

minorities and from low-income families. 

3.5  Results 

3.5.1  Effects of Being on the 2010 PLA List  

 Before estimating our RD models, we present graphical evidence on the relationship between the 

forcing variable of percentile ranking and school-level performance for all five subjects in 2011 (i.e., 

reading, writing, mathematics, science, and social studies) for both (1) the percent of students who met 

proficiency level (see Figure 3.A1), and (2) the average of students’ scale scores (see Figure 3.A2). The 

regression line on the left of the cutoff in each figure represents PLA schools that fall below the threshold 

of 11.4 percentile rank whereas the regression line on the right of the cutoff in each figure represents 

watch list schools that fall above the threshold. As shown in Figures 3.A1 and 3.A2, for example, there is 

a jump at the cutoff in writing, implying that schools placed on the 2010 PLA list increased their student 

performance in writing in 2011.  

To quantify the magnitude and significance of the discontinuities in school outcomes due to being 

on either list, we estimate parametric RD models specified in equation (1) for subject-specific outcomes. 
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The estimated PLA list effects are reported in Table 3.B3.20 Panel A in Table 3.B3 displays the estimated 

PLA effects on the percent of students who met proficiency at the school level in the five subjects (within 

9, 10, or 11 percentile rankings on either side of the PLA cutoff) whereas the lower panel presents the 

effects on the average of students’ scale scores. The positive effect of the 2010 PLA list on writing is 

notably strong, about 7.9 to 9.4 points (corresponding to 0.53-0.63 standard deviations), for the 2011 

school outcome as measured by the average of students’ scale scores (statistically significant at the 

critical level of 1 percent regardless of selection of bandwidth). The estimated effects are weaker for the 

percent of students who met proficiency level for writing. 

Additionally, our RD estimation results indicate that the PLA list has some marginal positive 

effects on school performance in mathematics and social studies. As reported in Panel A in Table 3.B3, 

being on the 2010 PLA list increases the percent of students who met proficiency level in social studies 

by about 5.8 to 6.2 percentage points (statistically significant at the critical level of 5 percent for the 

bandwidth of 9 and 10 percentile rankings). Furthermore, as shown in Panel B in Table 3.B3, schools on 

the 2010 PLA list raise the average of students’ scale scores in social studies in 2011 by about 4.3 points 

(corresponding to 0.39 standard deviations; statistically significant at the critical level of 5 percent for the 

bandwidth of 9 percentile ranking). We also observe that the PLA list has some marginal positive effects 

on the average of students’ scale scores in mathematics. However, the magnitudes are small and they are 

only statistically significant at the critical level of 10 percent for the bandwidth of 9 and 10 percentile 

rankings.21 The effects on mathematics and social studies are weak and we are careful not to over-

interpret these results as they are generally sensitive to the specifications based on different choices of 

bandwidth (checks for robustness described in the next section). 

 

 

                                                           
20 Estimates on the forcing variable and other covariates are not shown in the table. They are all in the expected 

directions (coefficients available upon request). 
21 Given the schools were drawn from two separated tiers, we examine whether the PLA list effects in writing,  

mathematics, and social studies varied by tier by adding interaction terms between Tier 2 status and PLA status. 

The results show that there is no systematic pattern relating tier status to the PLA effects. 
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3.5.2  Effects of Being on the 2010 Watch List 

 The above RD results using first-year outcomes of student achievement suggest that schools 

placed on the PLA list improve student performance on writing scale scores even before a formal 

implementation of a reform plan took place. However, the precise interpretation of the findings proves 

challenging as we cannot distinguish whether the positive effects are due to the practice of stigmatized 

labeling, threat of sanctions, or both, faced by these schools. Nonetheless, taking advantage of the unique 

context in Michigan in which two forms of low-performing school lists were announced at the same time, 

we are able to examine the differential effects of labeling with varying amounts of accountability 

pressures and social stigma. Specifically, we estimate and compare the causal impact of the non-

consequential watch list, which did not carry any sanctions and had less media attention, to that of the 

consequential PLA list.  

Table 3.B4 presents the results from estimating equation (1) using the school samples around the 

2010 watch list cutoff. We find no evidence of an effect of being placed on a watch list versus school 

neither on the watch or PLA list (within the specified bandwidths). Magnitudes of all estimates are 

modest (or much smaller than those PLA list estimates in Table 3.B4) and none of them reach the level of 

statistical significance.22  

To determine whether the positive PLA list effects are significantly larger than watch list effects, 

we perform a series of Wald tests. In particular, we test the hypothesis that the two coefficients for a 

particular outcome, reported in Tables 3.B3 and 3.B4 respectively, are equal. We focus only on those 

significant RD impact estimates of the PLA list (within bandwidth of 10), specifically on the writing and 

social studies. For average of students’ scale score in writing (PLA effect=8.706; watch list effect=-0.305), 

the results yield a chi-square value (χ2) of 6.42 (degree of freedom=1) and a p-value of 0.0113. Hence, we 

                                                           
22 As shown in Appendix E Table 3.E1, additional analyses using student-level data show similar findings of PLA 

and watch list effects. We chose to report school-level results for two major reasons. The first is that the PLA policy 

is designed to evaluate and monitor school-level student performance from year to year. Thus, school-level estimates 

have direct policy implications. The second is that student-level data with larger sample sizes tend to produce 

deflated standard errors for statistical significance tests, whereas school-level analysis yield a set of more 

conservative impact estimates.   
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can reject the null hypothesis at the 5 percent significance level, suggesting that the positive PLA list 

effect on writing is stronger than the watch list effect. The results for the percent of students who met 

proficiency level in social studies (χ2=2.82, p=0.0929) show that we can only reject the null hypothesis at 

the 10 percent significance level.23         

3.5.3  Interpreting the Robustness of RD Inferences 

3.5.3.1   Sensitivity to Bandwidth Choice 

The following analyses focus only on testing the robustness of our primary results for the 2010 

PLA list effects. As a first set of robustness tests, we conduct our RD models using various bandwidths. 

Figure 3.A3 displays the RD causal impact estimates, along with 95 percent confidence intervals (CI), of 

the 2010 PLA list on the five subjects for both the percent of students who met proficiency level and 

average of students’ scale scores in 2011 for different bandwidths around the cutoff. The range of 

bandwidth is from the percentile rank of 8 (n=49) to the maximum limit 11.4 (n=84), with increments of 

0.2. 24 In every panel, the solid line represents the PLA causal estimate whereas the upper and lower 

dashed line represent the upper and lower limit of 95 percent CI respectively.  

Figure 3.A3 shows that the positive PLA list effect on the average of students’ scale scores in 

writing is especially robust to variation in bandwidths, where the values of zero fall below the lower limit 

of 95 percent CI. The positive PLA list impact is modestly robust for the percent of students who met 

proficiency level in social studies. For other schools’ outcome measures, it appears that the positive PLA 

list effect is critically dependent on a particular bandwidth choice.  

                                                           
23 We also perform a set of Wald tests to test the joint significance of the impact estimates across all five subjects for 

both PLA and watch list with different bandwidths. As reported in Appendix E Table 3.E2, the results suggest that 

we can reject the null hypothesis at the 5 percent significance level for the PLA list effects on the average of 

students’ scale score for the bandwidth of 9 and 10 percentile ranking and on the percent of students who met 

proficiency level for the bandwidth of 9 percentile ranking. However, when testing the joint significance without 

writing scores, none of the Wald tests is statistically significant, suggesting that the significance of joint test is 

largely driven by the effect in writing. In addition, none of the joint significance tests for watch list is statistically 

significant. 
24 Ideally, we might use a wide range of observations on either side of a boundary to explore the sensitivity of the 

results to bandwidth choices. For our study sample, however, in the absence of large amounts of data, restricting 

analyses to bandwidth very close to the threshold results in imprecise estimates. Specifically, if we use any 

bandwidth smaller than 8, our analysis sample size reduces to fewer than 50 cases which will lead to a great 

reduction in precision and generally at the cost of statistical power. On the other hand, the maximum bandwidth that 

we can use on one side is limited to 11.4 as the cutoff for PLA list is the bottom 11.4 percentile on the TTB ranking. 
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3.5.3.2   Quantifying the Robustness of RD Inferences 

To inform policy debates and theoretical interpretations of the causal effects of the PLA list, it is 

useful to quantify the discourse about the robustness of the inferences in this study. We quantify how 

much bias there must be in our RD estimates to invalidate inferences in terms of replacement data,25 

focusing only on the positive PLA list effects on the average of students’ scale scores in writing and the 

percent of students who met proficiency level in social studies. As shown in Table 3.B5, to invalidate our 

causal inference of the PLA list effects on the average of students’ scale scores in writing, we would need 

to replace about 25 to 32 percent of our PLA schools with school samples for which there is zero effect of 

being on the list. These 17 to 22 replacement schools could represent populations not directly in our 

sample, such as schools from outside of the selected bandwidth. Additionally, to invalidate the inference 

of an effect of assignment to the PLA list on social studies achievement we would have to replace 6 to 8.6 

percent of schools with schools in which there was no effect of being on the PLA list.  

This analysis helps us quantify the robustness of the inference with respect to internal validity by 

considering the replacement schools to come from different bandwidths.  The same analysis can apply to 

external validity by considering the replacement schools to come from a different state or time. Thus the 

analysis tells us how much we would have to change our sample to change our inference. In summary, 

based on this quantification of possible bias to invalidate an inference, we find that our RD estimates of 

the PLA list on the average of students’ scale scores in writing are particularly robust while they are less 

so for the percent of students who met proficiency level in social studies.                 

3.5.3.3   Falsification Test 

Our primary results show that being on the 2010 PLA list increases student achievement in 

writing, has marginal positive effects on mathematics and social studies, and no evidence of effects on 

reading and science scores. These findings raise the question of whether the estimated positive effects are 

due to a placebo effect in which the lowest-performing schools in a specific year revert back to normal 

                                                           
25 As defined by Frank et al. (2013):  

   The proportion of bias to make inference invalid = 100% × (estimate – (s.e. × 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑑𝑓)) /estimate 
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performance levels in student achievement the following year. As a robustness test, Table 3.B6 presents 

the results from estimating the effects of being placed on a pseudo-2009 PLA list which is created using 

data prior to 2010 and similar criteria used for 2010 PLA designation. The only even marginal effect is 

for math as measured as the percent of students who met proficiency level (only statistically significant at 

the critical level of 10 percent). Overall, we find no significant effect of the pseudo-2009 PLA list on a 

majority of school outcome measures, suggesting that the bottom 5 percent schools in 2009, which would 

have been on a PLA list if the policy was being enforced one year earlier, did not substantially improve 

student performance in the following year. Taking together all three set of sensitivity analyses above, we 

find no reasons to doubt the robustness of our primary findings regarding the positive causal effects of 

being placed on the 2010 PLA list in Michigan. 

3.5.4  Statistical Power 

When evaluating the quality of RD analysis, it is important to examine the precision of its 

estimates in terms of statistical power. The precision of RD impact estimates can be quantified based on 

the calculation of minimum detectable effect, which is the smallest treatment effect that a RD design has 

an acceptable chance of detecting. Following Bloom (2012) and Schochet (2009), we define an minimum 

detectable effect as the smallest true treatment effect that has an 80 percent chance (or 80 percent power) 

of providing a treatment impact estimate that is statistically significant at the critical level of 5 percent 

based on a two-tailed test.26  

                                                           

26 Minimum Detectable Effect = 2.8 × √
(𝜎̂𝑌|𝑇

2 )(1−𝑅𝑌.𝑹.𝑿|𝑇
2 )

𝑁𝜋(1−𝜋)(1−𝑅𝑇.𝑹.𝑿
2 )

  

N = sample size used in the estimation  

π  = proportion of this sample assigned to the treatment 

              𝜎̂𝑌|𝑇
2  = within-group sample variance in the outcome variable  

              𝑅𝑇.𝑹,𝑿
2  = proportion of variance in treatment status explained by the forcing variable and other covariates 

              (1 − 𝑅𝑌.𝑹,𝑿|𝑇
2 ) = proportion of error variance left unexplained by the forcing variable and other covariates 
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We calculated the minimum detectable effects for the estimated causal effects of the 2010 PLA 

and watch list. The minimum detectable effect sizes for our PLA and watch list analysis range from 0.25 

to 0.45, which are common for school-based RD designs that are likely to have relatively large effects 

(about a minimum detectable effect of 0.33 standard deviations or more; Schochet 2009).27 The results 

show that our RD impact estimates of the PLA list on the average of students’ scale scores in writing and 

mathematics exceed its minimum detectable effect, indicating we have the capacity to detect a positive 

treatment effect for the PLA list (see Table 3.E3). A similar conclusion can be drawn when we 

recomputed the minimum detectable effects with a more stringent standard of 90 percent power for two-

tailed tests at 5 percent significance level (see Table 3.E4). Additionally, we find that none of the RD 

impact estimates of the watch list for any outcome exceed its minimum detectable effect (results not 

reported here).  

3.5.5  Concerns about the Test-Taking Eligibility of Student Sample  

One crucial concern about studying effects of school sanctions is that schools might strategically 

manipulate the population of test-takers, particularly: (1) disproportionately retaining low-achieving 

students in a low-stakes grade (in our case, 10th grade); (2) reassigning low-performance students into a 

special education category; or (3) excluding low-scoring students in a high-stakes grade from taking the 

test (Figlio and Getzer 2006; Heilig and Darling-Hammond 2008). We address these issues below.  

On the surface, our student level data (see Appendix E Table 3.E5) show that compared with 

watch list schools, PLA schools tend to have relatively lower 10th grade promotion rates (75.1 percent vs. 

55.0 percent), higher retention rates (4.3 percent vs. 7.6 percent), and higher transfer rates (20.4 percent 

vs. 37.2 percent). But, the differences are quite similar to the two prior years (see 2nd and 3rd panel in 

Appendix E Table 3.E5) and are not statistically significant when we examine it in the same RD 

framework used for testing the discontinuity of baseline covariates (see Appendix E Table 3.E6). More 

                                                           
27 As our study is a school-level analysis, the MDEs are calculated at the school level. Typically, the variance in 

achievement scores at the school level is only 10 to 15 percent of the variance in student level measures. Thus we 

can rescale the school level MDEs into student-level by dividing the MDEs by 3.2 as recommended by Dee (2012). 

The calculated student level MDEs are ranging from 0.07 to 0.14. 
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importantly, we find that the differences in prior academic achievement (8th grade test scores in reading, 

writing, mathematics, and science) between regular promoted students and those who retained/transferred 

out are considerably smaller in PLA schools than those in non-PLA schools (see Appendix E Table 3.E7), 

suggesting that watch list schools lost relatively more lower-scoring students than PLA schools did. In 

this sense, our primary findings of positive PLA list effects are likely to be underestimated. 

Second, in both PLA and watch list schools, the incidence of 11th grade students being 

reassigned into a special education category is very low (less than 0.4 percent) and negligible (see the last 

column in Appendix E Table 3.E5). Third, although PLA schools are more likely to have a higher 

percentage of 11th grade students not taking the MME test in 2011 (26.7 percent), as compared with 

watch list schools (10.1 percent), it is not an unusual rate when comparing with the two prior years (see 

Appendix E Table 3.E8). The difference is also not statistically significant when examining in RD models 

with school covariates (see Appendix Table 3.E6). Critically, the achievement gaps (prior performance in 

reading, writing, mathematics, and social studies) between those test takers and non-test takers in PLA 

versus comparable non-PLA schools did not create a positive bias in favor of a PLA effect (see Appendix 

E Table 3.E9). For example, on average, non-test takers in PLA schools scored 8.1 points lower than test 

takers did in prior writing test whereas in non-PLA schools the difference is 9.2 points. Overall, it appears 

that the estimated positive PLA list effects are not due to the manipulation of test-taking population.   

3.6  Discussion 

 This study contributes to the relatively limited research on school labeling by presenting new 

evidence on the effects of consequential and non-consequential labeling among traditional high schools in 

Michigan. To summarize, our RD estimations suggest that being on the 2010 PLA list has a positive 

effect on student performance in writing, a marginal effect in mathematics and social studies, and no 

effect in reading and science. The positive effects in writing are quite robust but the effects on 

mathematics and social studies are less so. For writing, PLA schools gained on average about 0.53-0.63 
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standard deviations at the school level on statewide achievement test.28 At the bottom end of the 

distribution of school performance in writing, such magnitude of achievement gain would improve the 

ranking of PLA schools on writing scale per se (not Top-to-Bottom percentile ranking) by about 4 to 5 

percentile upward.      

 We find no evidence that the positive PLA effects are produced by the manipulation of student 

population. However, as shown in prior studies, when facing increased accountability pressure, schools 

may strategically reallocate instructional resources and teachers’ time on subjects which are easier to 

improve in the short term (Smith, Roderick, and Degener 2005). Goldhaber and Hannaway (2004), and 

Chakrabarti (2013a), for example, find that students in failing schools are more likely to have the biggest 

score gain in writing, which is considered one of the subjects on which students can improve quickly. We 

recognize that the observed immediate strong positive effects in writing in our study may be a result of 

test preparation coaching at the early stage of sanction (Darling-Hammond & Wise, 1985). 

While we find significant positive effects demonstrated by the PLA list schools, our analyses 

show that there is no remarkable difference between the 2010 watch list schools and comparable schools 

in student performance in 2011. This finding provides empirical evidence on how low-performing schools 

respond to different forms of labeling in terms of accountability pressures and social stigmatization 

processes. Analyzing the unique context in Michigan in which there are two types of low-performing 

school lists, our results suggest that schools act differently in response to labeling intensities. On one hand, 

the consequential PLA label, which is publicly known and accompanied by accountability requirements 

and potential resource based sanctions, appears to be a strong triggering factor for failing schools to 

                                                           
28 To rescale school-level effects sizes into student-level ones, Lipsey et al (2012) recommend to divide the effect 

sizes by 2 or a larger number. In a similar analysis studying school turnarounds, Dee (2012) uses denominators 

ranging from 2.6 to 3.2. Using 3.2 as denominator (which should yield lower bound estimates of student level 

effects sizes), the corresponding student-level effect sizes range from 0.17 to 0.20 standard deviations. The effect 

size represents a significant improvement in writing score when comparing to the national benchmarks of annual 

achievement gain for 11th graders, ranging from 0.14 to 0.19 standard deviations for academic standardized tests, as 

computed by Lipsey et al. (2012). It is important to note that the benchmarks provided by Lipsey et al. (2012) are 

derived from national norming studies, whereas our study sample is only from a single state (i.e., Michigan), which 

tends to produce larger effect sizes even when the actual intervention effects are identical as the variance in 

achievement measures for narrower populations is likely smaller than broader samples.   
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improve. On the other hand, schools may not actively respond to the non-consequential labeling that is 

relatively low-intensity in the stigmatization process and without immediate threat of sanctions.  

 The overall findings of our study are notable for the various reasons discussed above, yet we 

recognize that there are several limitations of this study both in terms of analytical approach as well as 

data set. First, the small sample size precludes us from estimating the effects of PLA/watch list in RD 

designs by selecting a group of school samples that are very close to the cutoff while having enough 

statistical power. This small sample size issue is not uncommon in the RD literature evaluating the impact 

of low-performing school labels, in which only a limited number of schools would have been labeled as 

low-performing or “F”-rated in a given district or state each year (e.g., Rouse et al. 2013; Winters and 

Cowen 2012). Nevertheless, in this study, we are able to optimize the bias-precision trade-off by choosing 

a bandwidth that allows us to detect a positive effect of PLA list with an acceptable level of statistical 

power (80 percent power for two-sided tests at the 0.05 significance level, see Appendix E Tables 3.E1 

and 3.E2).  

 Furthermore, in our RD designs, the control group is selected from the cluster of schools that 

ranked above the cutoff and the treatment schools ranked below the cutoff, the assumption here was that 

the two populations are similar and comparable at a certain degree. However, this assumption could be 

violated considering the difficulty of improving school performances consistently at the bottom. 

Particularly, when the bottom schools are characterized as enrolling consistently disadvantaged students 

in terms of educational resources, it might be difficult to find differences between the treatment and 

control schools as they both serve similar populations with similar resources. To make the two 

populations comparable, we needed to narrow the window which might cause attenuated regression 

coefficients due to the limited range of variance. Therefore, a causal inference from the regression 

discontinuity design inevitably relies on the assumption that we made a comparable control group using 

the range of a narrow window, and this assumption may be questionable. Fundamentally, this study 

cannot be fully free from the limitation of a regression discontinuity design. By quantifying concerns 

about this assumption, we show that at least 25 percent of the estimated PLA list effect on writing would 
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have to be due to uncontrolled bias to invalidate our inference. This level of robustness is about at the 

median for educational evaluation studies with observational data (Frank et al. 2013). 

The limited variables in the data set also leave the following concerns. First, we lack implementation 

information. We do not have the proper information to investigate what actual changes are being 

implemented in the schools in the first and second year after the PLA list announcement. Second, the 

school-level variables are quite limited in content and there may be other factors such as change in school 

leadership or intensive professional development that could be affecting the performance in the schools. 

To achieve a more definitive conclusion, such variables should be considered.  

Nonetheless, even with these few variables and a short-time comparison of a narrow band of 

similar schools, PLA label appears to have some positive effects. It seems prudent to investigate these 

types of labels as a part of the school sanctioning process as they are commonly applied and relatively 

cost efficient. Moreover, understanding how schools respond to specific rules of accountability is crucial 

for designing effective school reform programs. To date, all 50 states have started to identify and publish 

a lowest performing 5 percent school list annually, based on PLA criteria similar to those used in 

Michigan. Thus, our findings from studying the PLA and watch list in Michigan may have broader 

applications to the similar systems or school labeling policies that are becoming prevalent across the 

nation. Although the labeling practice varies to some extent from state to state, our study highlights that 

low-performing schools are likely to respond differently to varying forms of labeling, particularly with or 

without implied consequences.   
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                                       Reading                                                                                   Writing                                                                    

         
 
 
                                    Mathematics                                                                               Science    

                                                                                           
 

 

Social studies 

 
 
Figure 3.A1 The Relationship between Percentile Rank in 2010 and Percent of Students Met Proficiency 

Level in Five MME Subjects in 2011. 
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                                      Reading                                                                                     Writing                                                               

        
 
 
                                    Mathematics                                                                              Science    

       
 

 

Social studies 

 
 
Figure 3.A2 The Relationship between Percentile Rank in 2010 and Average of Students’ Scale Score in 

Five MME Subjects in 2011. 
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              Panel A: Percent of student who met proficiency level 

 
              Panel B: Average of student’s scale scores 

 
 
Note. The upper and lower dashed lines represent the upper and lower limit of 95% CI respectively. The greater 

fluctuations on the left sides for the smaller bandwidths are due to the smaller samples in these bandwidths which 

create more sampling variability.  

 

Figure 3.A3 RD Impact Estimates of the 2010 PLA List (and 95% CI) by Selection of Bandwidth. 
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TABLES FOR CHAPTER 3 
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Table 3.B1 Low-performing School Labels by State-Wide Ranking in 2010 
 (a) (b) (c) (d) 

 

 

Label 

TTB percentile 

rank 

(range) 

PLA 

eligibility 

school 

Excluded cases Final 

school 

sample 
School 

closed 

SIG 

school 

No designation  28.1 – 100 265 1 2 262 

Watch list 11.4 – 28.1 60 0 4 56 

Persistently Lowest Achieving (PLA)  0 – 11.4 56 4 9 43 

Total  381 5 15 361 
Note. TTB = Top-to-Bottom. Our final analysis sample excluded those schools which have been closed in the 2010-2011 school 

year and schools that received School Improvement Grant (SIG) funding in 2010. 
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Table 3.B2 Descriptive Statistics 

Variable 

PLA list 

(n=43) 

Watch list 

(n=56) 

No designation 

(n=262) 

TTB ≤ 11.4 11.4 < TTB ≤ 28.1 TTB > 28.1 

Mean SD Mean SD Mean SD 

Dependent variables       

% of students who met proficiency level (2011)      

   Reading 19.51 12.13 44.41 10.79 56.69 10.39 

   Writing 15.06 12.27 35.61 10.43 50.20 12.06 

   Mathematics 3.83 4.76 15.42 7.21 28.92 11.99 

   Science 3.72 4.83 13.44 5.60 23.31 9.09 

   Social studies 10.03 10.65 31.43 9.96 45.14 11.15 

Average of students’ scale scores (2011)       

   Reading 1083.91 10.30 1102.25 7.38 1110.50 6.90 

   Writing 1067.17 15.41 1087.56 8.41 1097.81 8.66 

   Mathematics 1059.92 16.67 1086.43 8.71 1098.80 8.13 

   Science 1072.91 13.91 1097.80 9.49 1107.95 7.82 

   Social studies 1101.04 8.64 1117.45 6.52 1125.48 6.78 

Covariates       

% of students who met proficiency level (2009)      

   Reading 19.83 10.81 40.62 8.05 52.99 10.27 

   Writing 14.80 10.37 33.05 8.21 46.72 11.93 

   Mathematics 4.08 5.02 14.72 6.11 27.83 11.47 

   Science 3.72 4.83 13.44 5.60 23.31 9.09 

   Social Studies 11.59 10.00 32.54 8.71 45.33 11.96 

Average of students’ scale scores (2009)       

   Reading 1083.42 8.94 1098.45 11.63 1108.68 6.92 

   Writing 1067.57 10.89 1083.43 7.24 1093.70 9.97 

   Mathematics 1067.32 11.36 1087.15 6.63 1098.69 7.78 

   Science 1070.12 12.81 1092.79 8.07 1103.55 9.70 

   Social studies 1103.42 8.28 1118.38 15.26 1129.12 8.01 

% of free/reduced lunch students (2010) 70.59 12.89 50.14 13.98 34.58 14.98 

% of minority students (2010) 80.66 29.43 27.02 27.29 10.54 12.00 

School size (2010) 852.23 504.62 752.29 487.02 794.53 549.31 

Pupil teacher ratio (2010) 19.27 3.74 19.17 2.96) 19.26 2.73 
Source. Michigan Merit Examination (MME), Michigan Department of Education (MDE); Common Core Data (CCD), National 

Center for Education Statistics, U.S. Department of Education.   

Note. n = sample size; TTB = Top-to-Bottom percentile ranking. 
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Table 3.B3 RD Impact Estimates of the 2010 PLA List across Three Bandwidths 
 Reading Writing Mathematics Science Social studies 

Panel A: % of students who met proficiency level (2011) 

   Bandwidth = 9 (n=57) 4.596 (3.135) 5.060 (3.047) 0.463 (2.615) -2.332 (2.481) 6.233* (2.833) 

   Bandwidth = 10 (n=68) 3.215 (2.878) 6.335* (2.884) -0.202 (2.404) -2.590 (2.380) 5.846* (2.752) 

   Bandwidth = 11 (n=79) 2.203 (2.718) 4.311 (2.970) -0.410 (2.260) -2.253 (2.207) 4.775† (2.680) 

Panel B: Average of students’ scale score (2011) 

   Bandwidth = 9 (n=57) 3.837 (2.938) 9.409** (3.334) 7.507† (4.280) 1.509 (2.708) 4.298* (2.135) 

   Bandwidth = 10 (n=68) 2.338 (2.825) 8.706** (2.950) 6.355† (3.644) 2.611 (2.637) 3.602† (2.119) 

   Bandwidth = 11 (n=79) 1.380 (2.583) 7.915** (2.982) 5.024 (3.463) 2.399 (2.318) 2.935 (1.970) 
Note. n = sample size. Taken from a separate regression model on schools, each cell in the table shows the estimated coefficient on a dummy variable indicating the effect of being 

on the 2010 PLA list. All estimation models include the 2010 percentile ranking (as forcing variable), Tier 2 pool status, and 2009 pretest measure for a given subject, as well as 

other school characteristic covariates, including percent of free/reduced lunch students, percent of minority students, school size, and pupil teacher ratio, which are collected in the 

2009-2010 academic year. Robust standard errors reported in parentheses. Statistical significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   

 

 

 

 

Table 3.B4 RD Impact Estimates of the 2010 Watch List across Three Bandwidths 
 Reading Writing Mathematics Science Social studies 

Panel A: % of students who met proficiency level (2011) 

   Bandwidth = 9 (n=64) 1.510 (3.327) -1.415 (4.227) 0.511 (2.710) 1.721 (2.863) -0.320 (3.378) 

   Bandwidth = 10 (n=73) 2.844 (2.938) -1.731 (3.711) -0.662 (2.642) 0.014 (2.745) -0.968 (3.313) 

   Bandwidth = 11 (n=83) 3.789 (3.000) -0.367 (3.479) 0.914 (2.569) 0.854 (2.553) -0.063 (3.046) 

Panel B: Average of students’ scale score (2011) 

   Bandwidth = 9 (n=64) -0.639 (2.038) -0.606 (2.516) -1.377 (2.452) 0.937 (2.530) 0.825 (2.128) 

   Bandwidth = 10 (n=73) 0.052 (1.853) -0.305 (2.387) -1.396 (2.254) 0.832 (2.614) 1.139 (2.004) 

   Bandwidth = 11 (n=83) 1.048 (1.962) -0.091 (2.256) -1.085 (2.285) 1.622 (2.561) 1.675 (2.101) 
Note. n = sample size. Taken from a separate regression model on schools, each cell in the table shows the estimated coefficient on a dummy variable indicating the effect of being 

on the 2010 Watch list. All estimation models include the 2010 percentile ranking (as forcing variable), Tier 2 pool status, and 2009 pretest measure for a given subject, as well as 

other school characteristic covariates, including percent of free/reduced lunch students, percent of minority students, school size, and pupil teacher ratio, which are collected in the 

2009-2010 academic year. Robust standard errors reported in parentheses. Statistical significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   
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Table 3.B5 Quantifying the Robustness of Inferences from RD Impact Estimates of the 2010 PLA List 

 n df 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

Average of students’ scale scores 

in writing 

Percent of students who met 

proficiency level in Social Studies 

β s.e. % of bias β s.e. % of bias 

Bandwidth = 9 57 50 2.008 9.409** (3.334) 28.9 6.233* (2.833) 8.6 

Bandwidth = 10 68 61 1.999 8.706** (2.950) 32.3 5.846* (2.752) 5.9 

Bandwidth = 11 79 72 1.993 7.915** (2.982) 24.9 4.775† (2.680) - 
Note. n = sample size; df = degree of freedom; 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  = critical value of the t distribution  

(two-tailed test); β = RD estimate; s.e. = standard errors.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   

 

 

 

 

Table 3.B6 RD Impact Estimates of the 2009 Pseudo-PLA List across Three Bandwidths 
 Reading Writing Mathematics Science Social studies 

Panel A: % of students who met proficiency level (2010) 

   Bandwidth = 8 (n=77) -1.246 (2.818) -2.307 (1.994) 2.130† (1.232) 0.054 (1.249) -2.558 (2.723) 

   Bandwidth = 9 (n=85) -1.906 (2.746) -2.630 (1.906) 2.179† (1.128) 0.567 (1.217) -2.136 (2.562) 

   Bandwidth = 10 (n=95) -2.410 (2.560) -2.270 (1.778) 2.229† (1.122) 0.893 (1.107) -1.300 (2.394) 

Panel B: Average of students’ scale score (2010) 

   Bandwidth = 8 (n=77) -1.951 (1.998) -2.392 (2.874) 1.913 (3.044) -1.355 (3.103) -0.242 (1.690) 

   Bandwidth = 9 (n=85) -1.586 (1.953) -1.568 (2.998) 2.693 (2.979) -0.940 (2.984) 0.109 (1.616) 

   Bandwidth = 10 (n=95) -1.519 (1.864) -1.727 (2.794) 1.233 (2.956) -1.597 (2.793) 0.307 (1.500) 
Note. n = sample size. Taken from a separate regression model on schools, each cell in the table shows the estimated coefficient on a dummy variable indicating the effect of being 

on the 2009 pseudo-PLA list. All estimation models include the 2009 percentile ranking (as forcing variable), Tier 2 pool status, and 2008 pretest measure for a given subject, as 

well as other school characteristic covariates, including percent of free/reduced lunch students, percent of minority students, school size, and pupil teacher ratio, which are 

collected in the 2008-2009 academic year. Robust standard errors reported in parentheses. Statistical significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   
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ADDITIONS FOR CHAPTER 3 
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C. RD Validity Tests 

 

1. Testing of Sharp RD Assumptions 

(a) No-manipulation assumption. We assess the no-manipulation assumption which suggests that no 

individual school managed to manipulate the value of the assignment variable in order to be on one side 

of the threshold rather than the other. If this happens, one might expect to observe a discontinuity in the 

density of the forcing variable at the cut score. Typically, researchers will test the null hypothesis of the 

continuity of the density of the running variable which determines the treatment assignment at the cut 

score, against the alternative hypothesis of a discontinuity in the density function at that cutoff point 

(McCrary, 2008). In our case, all ranked schools (including elementary, middle, and high schools) are 

evenly distributed on a 100-percentile scale. By design, there is no discontinuity in the density of the 

percentile ranking at any cut scores, as represented by the gray bars in Figure 3.D1. Although the density 

of high schools at different levels of the rating score is varied (as represented by solid line bars in Figure 

3.D1), there is no systematic pattern showing that the differences in the density of the forcing variable for 

the high schools appear only around the cutoffs of PLA (11.4%) and Watch list (28.1%). Nonetheless, one 

might question that some schools acted strategically in an effort to manipulate their rank. We cannot test 

this directly but a test of unconfoundedness assumption (presented in the following section), which 

examines whether the school covariates are continuous around the cutoffs, can provide useful evidence 

for detecting such possible manipulation. In addition, we believe that it is unlikely for any schools to 

manipulate their ranking as the PLA policy was announced in December 2009 and their student test 

scores from 2006 to 2009 (prior to the PLA announcement) were used for the calculation of 2010 

percentile ranking. 

 (b) Unconfoundedness assumption. We evaluate the unconfoundedness assumptions by testing the null 

hypothesis of a zero average effect on other school characteristics as pseudo outcomes known not to be 

impacted by the treatment (Imbens & Lemieux, 2008). We estimate regressions taking the form which is 
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similar to the RD basic specification in equation (1) but with a different school covariate serving as the 

outcome:  

             𝑌𝑖
2009 =  𝛽0 + 𝛽1𝐿𝑖𝑠𝑡𝑖

2010 + 𝛽2𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010 + 𝜇𝑖               (2) 

             𝑋𝑖
2010 =  𝛽0 + 𝛽1𝐿𝑖𝑠𝑡𝑖

2010 + 𝛽2𝑃𝑐𝑡𝑅𝑎𝑛𝑘𝑖
2010 +  𝜇𝑖               (3) 

where 𝑌𝑖
2009 is the pretest scores for each school outcome in 2009, 𝑋𝑖

2010 is some pretreatment covariate 

measured in 2010, and the other variables are as previously defined. The results are presented in Table 

3.E10. We find no significant jumps in the value of school measures at both the cutoff points of PLA and 

Watch list, which may invalidate the regression discontinuity design.  

As suggested by Lee and Lemieux (2010), it is useful to perform a seemingly unrelated regression 

(SUR) analysis if there are multiple covariates available. Our SUR model consists of the specification in 

equation (2) and (3). Then, we perform a chi-square test for testing the hypothesis that all discontinuity 

terms across the 14 covariates are jointly equal to zero. For PLA list, results yield a chi-square value of 

9.96, with 14 degrees of freedom, and a p-value of 0.7655; for Watch list, results yield a chi-square value 

of 10.01, with 14 degrees of freedom, and a p-value of 0.7612. Therefore we cannot reject the null 

hypothesis of no discontinuities of covariates around the fixed thresholds.  

(c) No jumps at non-discontinuity points assumption. A third set of specification tests for a zero effect in 

settings where it is expected that there would be no effect (Imbens & Lemiuex, 2008). If there is an 

extraneous discontinuity in the dependent variable away from the fixed threshold, the assumption of 

smoothness in the absence of treatment will be called into question. In practice, we test if the average 

outcome is discontinuous at other values of the percentile ranking, particularly at the median of the 

subsamples on either side of the threshold, as suggested by Imbens & Lemieux (2008). We choose bottom 

5.7% (median of PLA list) and 19.7% (median of watch list) as two placebo cutoff points and test the 

continuity of school outcomes at each using the specification in equation (1). The results are reported in 

Table 3.E11. Overall, we find no evidence to reject the null hypothesis of a zero jump at various values of 

percentile ranking away from the cutoffs.  
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SUPPLEMENTAL FIGURE FOR CHAPTER 3 
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Figure 3.D1 Density of Forcing Variable (Percentile Rank in 2010). 
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Table 3.E1 RD Impact Estimates of the 2010 PLA and Watch List across Three Bandwidths, Student Level 

Student scale score in MME (2011) Reading Writing Mathematics Science Social studies 

Panel A: PLA list effect 

   Bandwidth = 9 (n1=57; n2=6,237) 3.137† (1.589) 8.498*** (2.351) 7.188* (2.782) 4.196* (1.739) 2.839† (1.642) 

   Bandwidth = 10 (n1=68; n2=7,113) 2.655 (1.624) 7.909*** (2.283) 6.145* (3.070) 3.689* (1.740) 2.531 (1.568) 

   Bandwidth = 11 (n1=79; n2=8,174) 2.425 (1.518) 6.493** (2.414) 5.242† (3.012) 3.875* (1.818) 1.919 (1.539) 

Panel B: Watch list effect 

   Bandwidth = 9 (n1=57; n2=6,897) -0.335 (1.960) 1.785 (2.579) 0.878 (1.744) -0.626 (1.709) -0.689 (1.604) 

   Bandwidth = 10 (n1=68; n2=8,057) 0.264 (1.923) 1.753 (2.373) 0.045 (1.785) -0.836 (1.847) 0.069 (1.703) 

   Bandwidth = 11 (n1=79; n2=9,280) 1.751 (1.739) 1.558 (2.246) 0.224 (1.717) 0.653 (1.815) -0.325 (1.665) 
Note. n1 = number of schools; ; n2 = number of students. Taken from a separate regression model on students, each cell in the table shows the estimated coefficient on a dummy 

variable indicating the effect of being on the 2010 PLA list. All estimation models include the 2010 percentile ranking (as forcing variable), Tier 2 pool status, and other student 

characteristics (i.e., gender, race/ethnicity, age, free/reduced lunch status, English learner status, migrant status, and test scores in 8th grade reading, writing, math, science, and 9th 

grade social studies) as well as school covariates (i.e., percent of free/reduced lunch students, percent of minority students, school size, and pupil teacher ratio), which are collected 

in the 2009-2010 academic year. Robust standard errors are clustered by schools and reported in parentheses. Statistical significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   

 

 

 

 

Table 3.E2 Joint Hypotheses Tests for Impact Estimates of the 2010 PLA and Watch List across All Subjects 
 PLA list Watch list 

 
All five subjects 

Four Subjects   

 Without Writing 
All five subjects 

    χ2 p-value χ2 p-value χ2 p-value 

% of students who met proficiency level (2011)       

   Bandwidth = 9  9.60 0.0874 7.74 0.1016 2.28 0.8096 

   Bandwidth = 10  11.42 0.0437 8.22 0.0837 4.47 0.4835 

   Bandwidth = 11  7.38 0.1937 6.39 0.1718 4.22 0.5177 

Average of students’ scale score (2011)       

   Bandwidth = 9 11.84 0.0368 6.47 0.1666 3.44 0.6323 

   Bandwidth = 10 14.18 0.0145 6.30 0.1778 2.28 0.8096 

   Bandwidth = 11  11.03 0.0507 5.35 0.2534 1.87 0.8674 
Note. χ2 = chi-square.   
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Table 3.E3 Minimum Detectable Effects (MDE) for the Estimated Causal Effects of the 2010 PLA List, for Two-Tailed Tests at 80% Power and A 

5% Significance Level 
 Reading Writing Mathematics Science Social studies 

 β MDE diff. β MDE diff. β MDE diff. β MDE diff. β MDE diff. 

 (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) 

% of students who met proficiency level (2011)            

h = +/-9 (n=57) 4.596 5.721 -1.125 5.060 8.512 -3.452 0.463 8.718 -8.255 -2.332 5.456 -7.788 6.233 7.049 -0.816 

h = +/-10 (n=68) 3.215 4.912 -1.697 6.335 7.019 -0.684 -0.202 7.755 -7.957 -2.590 5.254 -7.844 5.846 5.908 -0.062 

h = +/-11 (n=79) 2.203 4.445 -2.242 4.311 6.509 -2.198 -0.410 6.991 -7.401 -2.253 4.816 -7.069 4.775 5.369 -0.594 

Average of students’ scale score (2011)             

h = +/-9 (n=57) 3.837 5.036 -1.199 9.409 7.216 2.193 7.507 6.381 1.126 1.509 4.562 -3.053 4.298 4.424 -0.126 

h = +/-10 (n=68) 2.338 4.444 -2.106 8.706 5.918 2.788 6.355 5.373 0.982 2.611 4.049 -1.438 3.602 3.827 -0.225 

h = +/-11 (n=79) 1.380 3.992 -2.612 7.915 5.501 2.414 5.024 4.805 0.219 2.399 3.587 -1.188 2.935 3.531 -0.596 
Note. h = bandwidth; n = sample size; β = estimated PLA effects; MDE = minimum detectable effect; diff. = difference between β and MDE.  

 

 

 

 

Table 3.E4 Minimum Detectable Effects (MDE) for the Estimated Causal Effects of the 2010 PLA List, for Two-Tailed Tests at 90% Power and A 

5% Significance Level 
 Reading Writing Mathematics Science Social studies 

 β MDE diff. β MDE diff. β MDE diff. β MDE diff. β MDE diff. 

 (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) (1) (2) (1)-(2) 

% of students who met proficiency level (2011)            

h = +/-9 (n=57) 4.596 6.620 -2.023 5.060 9.849 -4.789 0.463 9.998 -9.625 -2.332 6.313 -8.645 6.233 8.156 -1.924 

h = +/-10 (n=68) 3.215 5.684 -2.469 6.335 8.122 -1.788 -0.202 8.973 -9.175 -2.590 6.080 -8.669 5.846 6.836 -0.991 

h = +/-11 (n=79) 2.203 5.143 -2.940 4.311 7.532 -3.221 -0.410 8.090 -8.500 -2.253 5.573 -7.826 4.775 6.212 -1.437 

Average of students’ scale score (2011)             

h = +/-9 (n=57) 3.837 5.827 -1.991 9.409 8.350 1.059 7.507 7.383 0.124 1.509 5.278 -3.770 4.298 5.119 -0.820 

h = +/-10 (n=68) 2.338 5.142 -2.804 8.706 6.848 1.859 6.355 6.218 0.138 2.611 4.686 -2.074 3.602 4.429 -0.826 

h = +/-11 (n=79) 1.380 4.619 -3.240 7.915 6.366 1.550 5.024 5.560 -0.536 2.399 4.151 -1.752 2.935 4.087 -1.152 
Note. h = bandwidth; n = sample size; β = estimated PLA effects; MDE = minimum detectable effect; diff. = difference between β and MDE.  
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Table 3.E5 The Whereabouts of Regular 10th Graders by School PLA Status, 2008-2009 to 2010-2011 

Cohort 2010 

10th 

graders in 

2010 

Promoted as 

regular 11th 

graders in 2011 

Retained as 10th 

graders in 2011 

Transferred out 

after 2010 

Reassigned as 

special ed. 11th 

graders in 2011 

N N % N % N % N % 

PLA 8,046 4,422 55.0 610 7.6 2,989 37.2 25 0.3 

Non-PLA 8,936 6,714 75.1 383 4.3 1,824 20.4 15 0.2 

Cohort 2009 

10th 

graders in 

2009 

Promoted as 

regular 11th 

graders in 2010 

Retained as 10th 

graders in 2010 

Transferred out 

after 2009 

Reassigned as 

special ed. 11th 

graders in 2010 

N N % N % N % N % 

PLA 8,739 4,610 52.8 937 10.7 3,177 36.4 15 0.2 

Non-PLA 9,484 7,095 74.8 440 4.6 1,922 20.3 27 0.3 

Cohort 2008 

10th 

graders in 

2008 

Promoted as 

regular 11th 

graders in 2009 

Retained as 10th 

graders in 2009 

Transferred out 

after 2008 

Reassigned as 

special ed. 11th 

graders in 2009 

N N % N % N % N % 

PLA 9,785 5,220 53.4 1,005 10.3 3,528 36.1 32 0.2 

Non-PLA 9,527 7,263 76.2 309 3.2 1,934 20.3 21 0.2 
Note. PLA = persistently lowest-achieving schools; N = number of students.  

 

 

 

 

Table 3.E6 RD Impact Estimates of the PLA list on Changes in Student Populations   

Dependent variable  

PLA list effect 

(n=68) 

10th grade promotion rate (2011) -0.029 (0.053) 

10th grade retention rate (2010 to 2011) 0.044 (0.038) 

Transfer rate (after 2010) -0.017 (0.031) 

% of 11th graders not taking MME (2011) 0.017 (0.053) 
Note. n = sample size; MME = Michigan Merit Examination. Taken from a separate regression model on schools, each cell in the 

table shows the estimated coefficient on a dummy variable indicating the effect of being on the 2010 PLA list. All estimation 

models include the 2010 percentile ranking (as forcing variable), Tier 2 pool status, and 2009 pretest measure for a given subject, 

as well as other school characteristic covariates, including percent of free/reduced lunch students, percent of minority students, 

school size, and pupil teacher ratio, which are collected in the 2009-2010 academic year. Robust standard errors clustered by 

schools and reported in parentheses. Statistical significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   
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Table 3.E7 The Differences in Prior Achievement Scores by Student Status for the 10th Graders of 

Cohort 2010  

 

Promoted as regular 11th 

graders in 2011 

Retained as 10th graders in 

2011 

Transferred out after 2010 

Mean 

(1) 

 Mean 

(2) 

(2)-(1) Mean 

(3) 

(3)-(1) 

Panel A: Reading      

   PLA schools 808.7  796.6 -12.1 802.8 -5.9 

   Non-PLA schools 818.5  805.7 -12.8 809.3 -9.2 

Panel A: Writing      

   PLA schools 804.7  795.4 -9.3 799.6 -5.1 

   Non-PLA schools 810.9  802.2 -8.7 803.8 -7.1 

Panel A: Mathematics      

   PLA schools 803.6  794.5 -9.1 797.6 -6.0 

   Non-PLA schools 814.8  801.6 -13.2 804.5 -10.3 

Panel A: Science      

   PLA schools 809.9  797.8 -12.1 802.5 -7.4 

   Non-PLA schools 822.6  807.4 -15.2 811.0 -11.6 
Note. PLA = persistently lowest-achieving. The prior achievement scores are based on the statewide Michigan Educational 

Assessment Program (MEAP) test when the students were in 8th grade. 

 

 

 

 

Table 3.E8 The Distribution of MME Test-Takers and Non-Test Takers in 11th Grade, 2008-2009 to 

2010-2011 

 

11th graders MME test takers Non-test takers 

N N % N % 

Panel A: Year 2011      

   PLA schools 6,653 4,877 73.3 1,776 26.7 

   Non-PLA schools 7,833 7,043 89.9 790 10.1 

Panel B: Year 2010      

   PLA schools 6,942 4,736 68.2 2,206 31.8 

   Non-PLA schools 8,289 7,459 90.0 830 10.0 

Panel C: Year 2009      

   PLA schools 7,227 5,181 71.83 2,036 28.2 

   Non-PLA schools 8,552 7,595 88.8 957 11.2 
Note. PLA = persistently lowest-achieving; N = number of students.  
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Table 3.E9 The Differences in Prior Achievement Scores between MME Test-Takers and Non-Test 

Takers in 2011 

 
Test-takers Non-test takers Difference 

 

Mean 

(1) 

Mean 

(2) 

(2)-(1) 

Panel A: Reading    

   PLA schools 808.5 797.3 -11.2 

   Non-PLA schools 818.1 807.5 -10.6 

Panel A: Writing    

   PLA schools 804.4 796.3 -8.1 

   Non-PLA schools 810.8 801.6 -9.2 

Panel A: Mathematics    

   PLA schools 803.2 793.2 -10.0 

   Non-PLA schools 814.4 800.9 -13.5 

Panel A: Science    

   PLA schools 809.3 797.6 -11.7 

   Non-PLA schools 822.2 807.5 -14.7 
Note. PLA = persistently lowest-achieving. The prior achievement scores are based on the statewide Michigan Educational 

Assessment Program (MEAP) test when the students were in 8th grade. 

 

 

 

 

Table 3.E10 Testing the Unconfoundedness Assumption 

Dependent variable (School covariate) 

PLA list Watch list 

(c=11.4%, n=68) (c=28.1%, n=73) 

Percent of students met proficiency level (2009)     

   Reading 3.839 (4.023) -3.067 (3.775) 

   Writing 5.403 (3.012) -3.285 (4.211) 

   Mathematics 0.445 (2.296) -5.502 (3.678) 

   Science 0.027 (2.304) -4.251 (3.536) 

   Social studies 0.562 (3.662) -3.437 (4.932) 

Average of students’ scale score (2009)     

   Reading 3.173 (3.405) -1.412 (2.658) 

   Writing 4.586 (2.808) -1.044 (4.348) 

   Mathematics 1.591 (3.482) -3.108 (3.170) 

   Science 2.773 (4.315) -8.338 (5.337) 

   Social studies 3.510 (3.863) -3.354 (3.385) 

% of free/reduced lunch students (2010) -0.024 (0.061) 0.108 (0.059) 

% of minority students (2010) -0.029 (0.146) 0.069 (0.078) 

School size (2010) -0.307 (0.277) 0.019 (0.326) 

Pupil teacher ratio (2010) 0.989 (1.317) 0.368 (1.317) 
Note. c = cutoff; n = sample size. Taken from a separate regression model on schools, each cell in the table shows the estimated 

coefficient on a dummy variable indicating the effect of being on the 2010 PLA list. All estimation models include the 2010 

percentile ranking (as forcing variable) and Tier 2 pool status. Robust standard errors reported in parentheses. Statistical 

significance is determined using two-tailed tests.  

*** p<.001; ** p<.01; * p<.05; †p < .10.   
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Table 3.E11 Estimated Effects at the Median of the Two Subsamples on Either Side of the Cutoff 
 PLA list subsamples Watch list subsamples 

 (c=5.7%, n=43) (c=19.7%, n=56) 

Percent of students met proficiency level in 2011  

   Reading -4.925 (5.552) -3.967 (3.179) 

   Writing 3.119 (6.611) -1.894 (4.054) 

   Mathematics -1.190 (2.509) -1.023 (3.299) 

   Science 0.047 (1.687) -0.465 (2.627) 

   Social studies 0.883 (5.978) -1.662 (3.333) 

Average of students’ scale score in 2011  

   Reading -3.739 (4.245) -1.125 (2.430) 

   Writing -3.207 (8.360) 0.892 (3.107) 

   Mathematics -8.142 (7.605) 1.102 (3.122) 

   Science -5.921 (5.981) 1.084 (2.669) 

   Social studies 0.003 (3.984) -0.456 (2.375) 
Note. c = cutoff; n = sample size. Taken from a separate regression model on schools, each cell in the table shows the estimated 

coefficient on a dummy variable indicating the effect of being on the 2010 PLA list. All estimation models include the 2010 

percentile ranking (as forcing variable), Tier 2 pool status, and 2009 pretest measure for a given subject, as well as other school 

characteristic covariates, including percent of free/reduced lunch students, percent of minority students, school size, and pupil 

teacher ratio, which are collected in the 2009-2010 academic year. Robust standard errors reported in parentheses. Statistical 

significance is determined using two-tailed tests.   

*** p<.001; ** p<.01; * p<.05; †p < .10.   
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