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ABSTRACT

Planning and Control of Mobile Surveillance Networks

By

Amit Goradia

Pervasive surveillance implies the continuous tracking of multiple targets as they

move about the monitored region so that they do not leave the field‘of view of the

sensors observing them and maintain discernable resolution for feature identification.

The tasks to be performed by a surveillance system are expressed as the follow-

ing requirements:(1) Automatically track the identified targets over the region being

monitored; (2) Coordinate tasking of multiple sensors to maintain target visibility

and execute other requested tasks;(3) Provide concise feedback and video data of a

tracked target to multiple operators. Due to the inherent complexity of large net—

worked systems and the diversity of the sensors used, a major challenge for such large

scale networked systems is to design an efficient modeling and analysis tool and devise

stable control algorithms for accomplishing the surveillance task.

The ability to track multiple targets simultaneously using sensors with motion

capability is an important aspect of surveillance systems. Current feature-point-

based visual surveillance and tracking techniques generally employed do not provide

an adequate framework to express the surveilla; z-c task of tracking multiple targets

simultaneously using a single sensor. This rlisscrtation presents the method of Haus-

dorff tracking, which can express the surveillance task succinctly and track multiple

targets simultaneously using a single sensor. Hausdorff tracking can readily express

the surveillance tasks of maintaining the visibility and adequate resolution of a target

as the minimization of an error (shape function) and accomplish the tracking task

using feedback directly from the acquired image. Mutational equations are used to

represent the motion of the target sets with respect to the motion of the camera.
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Using the mutational dynamics model, a feedback map to control the sensor motion

module for accomplishing the surveillance task can be developed. Further, in order

to take advantage of the redundancy in the motion control, an optimal Hausdorff

tracking framework is presented.

Despite the limited sensing capability and range of the individual sensors, a surveil-

lance network can track targets over a large region by transferring the target-tracking

task from one group of sensors to another based on the motion of the target. Muta-

tional analysis and shape-based control fail to capture the discrete switching nature

of the surveillance task of tracking the target using multiple switched sensors. This

dissertation presents a mutational hybrid automata (MHA) model for such perva-

sive surveillance networks that retains the advantages of using mutational equations

for modeling the active surveillance task while also being able to model the discrete

switching between various sensors. Analysis of example pervasive surveillance scenar-

ios modeled using the MHA model and experimental results that verify the proposed

approach are presented.

The active sensors needed to track the target keep changing due to target motion.

Hence the concise video feedback provided to the operator to assist decision-making

needs to be switched to the sensors currently involved in the tracking task. A task-

based metric representing the number of cameras required to track a moving target

over a monitored region is presented. This metric (in conjunction with other metrics)

can be used to optimally place cameras in a monitored environment. An optimized

camera selection algorithm for selecting the minimum number of cameras to track a

moving target over a large area is also presented. A surveillance test—bed has been

designed based on these requirements and the algorithms and subsystems described

have been implemented on it. Results of the experimental implementation validate

the proposed approaches.
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Chapter 1

Introduction

1 . 1 Background

A sensor network is a collection of individual nodes with each node having sensing,

communication, computation and motion capabilities. Distributed wireless sensor

networks have recently emerged as an important research area. Sensor networks

consist of a variety of different types of sensors in distributed areas. Technological

advances in wireless networking and distributed robotics have been leading to in-

creasing research on distributed sensing applications using wireless sensor networks.

Infrastructure-less surveillance and monitoring are important. applications of such

rapidly deployable sensor networks.

Networked surveillance systems provide an extended perception and distributed

reasoning capability in monitored environments through the use of multiple networked

sensors. Various types of sensors with varying sensing modalities such as cameras,

infrared detector arrays, laser rangefinders, omnidirectional acoustic sensors etc., can

be instantly deployed in hostile environments, inaccessible terrain and disaster relief

operations to obtain vital reconnaissance information about the area being surveyed.

Locomotion and active sensing on individual nodes can greatly increase the range

and sensing capability of the network. Such instantly deployable, wireless, mobile,
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Figure 1.1: Pervasive Surveillance Scenario

distributed sensor networks networks find myriad civilian and military applications,

such as battle field surveillance, environment monitoring, scene reconstruction, mo-

tion detection and tracking, remote sensing and global awareness.

There is a growing interest in surveillance applications due to the growing avail-

ability of sensors and processors at a reasonable cost. There is also a growing need

from the public for improved safety and security in large urban environments and

improved usage of resources of public infrastructure. This, in conjunction with the

increasing maturity of algorithms and techniques, is making possible the application

of this technology in various application sectors such as security, transportation, and

the automotive industry. In particular, the problem of remote surveillance of unat—

tended environments has received growing attention in recent years, especially in the

context of:

0 Safety in transport applications [1], [2], such as monitoring of railway stations





[4], [5], underground stations [3,4], airports [5, 6] and airplane routes [7—9],

motorways [10], [11], urban and city roads [12,13], maritime environments [14,

15];

0 Safety or quality control in industrial applications, such as monitoring of nuclear

plants [16] or industrial processing cycles [1,2];

0 Improved security for people’s lives, such as monitoring of indoor or outdoor

environments like banks [29], supermarkets [3], car parking areas, waiting rooms

[17], buildings [18,19], etc., remote monitoring of the status of a patient [20], re—

mote surveillance of human activity [21,22]; d) military applications for surveil-

lance of strategic infrastructure [23,24], enemy movements in the battlefield

[25,26] and air surveillance [27,28].

Surveillance networks are composed of numerous independent nodes which can

be controlled individually. Hence they have high fault tolerance to node failure.

However, this redundancy and fault tolerance comes at a price. One needs to design

cooperation and coordination schemes in order for the individual nodes to perform

tasks together. Phrther, these cooperation and coordination mechanisms should not

consume too much power and other resources, as they would render the advantages

due to redundancy useless.

Pervasive surveillance can be defined as the active monitoring of recognized tar-

gets as they move through a large monitored area using a network of sensors. An

important characteristic of pervasive surveillance systems is their capability to track

a target over a large area using multiple sensors. Figure 1.1 depicts a scenario for

conducting reconnaissance on a city square. Each individual sensor can view only

a part of the monitored area, but collectively the network can monitor the entire

region. There are a number of reasons that optimal coverage may not be available for

all regions of a large area being monitored, such as: a lack of prior knowledge of the
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environment, a paucity of locations for placement of sensors in the environment, or

a shortage of sensors to be deployed. Motion capability of the sensors and the use of

active sensing can greatly enhance the coverage quality of the network. For example,

monitoring of areas with sparse or no coverage or acquiring higher resolution coverage

of the targets can be accomplished by changing the active field of view of the fixed

sensors or deploying mobile sensors. Further, the area monitored using a limited

number of sensors can be increased by using active (mobile) sensors such as UAV’s,

robot-mounted cameras or cameras mounted on pan-tilt heads etc. The mobility of

these sensors can be leveraged to increase the area monitored by each sensor, which

in turn increases the total area monitored. However, the mobility combined with

the scalability requirements renders modeling and analysis of pervasive surveillance

systems using active sensors a challenging task and brings to light many research

issues.

Compared with traditional surveillance networks, an IP-network-based surveil-

lance system is easy to deploy, maintain, and expand. The ubiquitous nature of IP

networks will dramatically reduce the cost to set up a traditionally expensive surveil—

lance network. We envision that the possible usage of surveillance networks could

span the venues of industry, military and daily lives.

The surveillance network must provide, to the human operator, a timely and con-

cise view of the relevant activities within the environment being monitored. Providing

multiple video feedback streams often causes loss of attention span of the operator

and makes it hard to keep track of the various activities over the various cameras.

Therefore only video streams from relevant sensors should be presented to the oper-

ator on a per activity basis. This involves automatically switching the active video

stream presented to the operator.
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1.2 Challenges and Problems in Surveillance Networks

The tasks to be performed by a surveillance system can be expressed as the following

requirements:

1. Deploy the sensors in order to monitor the region under surveillance;

2. Identify multiple moving targets based on predefined models;

3. Automatically track the identified targets over the region being monitored;

4. Coordinate tasking of multiple sensors to maintain target visibility and execute

other requested tasks;

5. Provide concise feedback and video data of a tracked target to multiple opera-

tors.

The sensors should be deployed in the monitored region in order to maximize

the likelihood of identifying and tracking the targets. In adversarial scenarios, care

should be taken in order to conceal the location of the sensors in order to ensure their

safety and the integrity of the task. A major challenge in the deployment phase is

sensor placement in order to maximize the covered area while also ensuring continuous

tracking of a target when it traverses the coverage regions of multiple sensors.

An important aspect of sensor deployment is calibration. Calibration of the sen-

sors enables multiple sensors to coordinate with each other and share information

amongst themselves. This cooperation amongst sensors leads to better sensing and is

in general a desirable property. Calibration of the sensors can be viewed in many do-

mains (feature spaces). The most literal one is calibrating the location of the deployed

sensors with respect to each other and a global frame. Other types of calibration can

involve calibrating the color spaces of various cameras, which will facilitate the sharing

of target models amongst the sensors.
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In order to perform automated surveillance there are two major subtasks: target

detection and target tracking. A target perception and video understanding module

is responsible for detecting and classifying the various targets in the active field of

view (FCV) of the sensor and performing temporal consolidation of the detected

targets over multiple frames of detection. Moving target detection and classification

is known to be a difficult research problem and has been the focus of many recent

research efforts [29]. The next challenge would be to classify and associate the various

detected image blobs to discernable targets and maintain their temporal tracks in

order to pervasively track them. Once the targets have been identified, the challenge

is to recognize the relationships of the target to the environment and other targets in

order to attribute aims and motives to the tracked targets.

The target tracking problem involves continuously keeping the target in view of

at least one sensor. When the target is escaping the viewing area of the current

tracking sensor, the current sensor needs to be moved (relocated) or the tracking task

must be transferred to another sensor which can currently view the target. Modeling

and design of such cooperative tracking using multiple sensors is a challenge. Active

agents further make the modeling and design of such pervasive surveillance systems

very difficult. A modeling and design framework for coordinating and controlling the

motion of the active cameras to pervasively track targets is necessary.

The various methods through which the the human operator communicates with

the surveillance network form an integral part of the usability, usefulness and efficacy

of the surveillance network. These methods include passing commands and queries

to the network indicating the intention of the surveillance task and receiving realtime

feedback and results of the queries in progress and alarms for violations of various

predefined conditions.

Video feedback is provided to the operator in order to apprise the operator of

the various tracking and monitoring tasks being currently executed by the sensors.
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However, due to the large number of sensors involved, the operator can be easily

overwhelmed by the amount of video information. Hence, only relevant video feeds

should be provided to the operator and, based on the task, the video feed should

be switched from sensor to sensor. There are various choices for the switched video

feedback implementation and they have their advantages and disadvantages based on

the scenario they are being applied to. A performance evaluation metric is needed for

evaluating the efficacy of a particular scheme when being applied to certain scenarios.

Direct human intervention and control of the various cameras can be used for

the logging and tracking of targets which are not predetermined and programmed

into the network. Hence the human operator needs to move the active cameras

and receive real-time video feedback to manually track targets. However for such

surveillance systems, direct manual tele—control of the active active camera over the

delayed IP network suffers from stability and synchronization problems due to the

random, unbounded and asymmetric communication time delay in the network [30,

31]. This can result in reduced performance and even loss of tracking.

1.3 Literature Review

Networked surveillance systems have received much attention from the research com-

munity due to their many pervasive applications [32], [33]. Previous work from liter-

ature is reviewed here.

Deployment and Calibration: Based on their mobility and rapid-deployment

capability, the operation of MSN’s can be divided into two separate phases, namely

deployment and surveillance. Infrastructure-less rapid deployment is an important

characteristic of mobile surveillance networks and many research efforts have been

dedicated to optimally deploy sensor nodes for increasing their total sensing area

[34—36]. A global kinematic representation of a network of connected sensors ’R, =
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{R1,R2, ...,Rn} using only localization information between one-hop neighbors is

suggested in [34]. This relationship between the various nodes is key to sharing

meaningful information between them.

Target Identification and Video Understanding: Beyond the initial deploy-

ment phase, in the surveillance phase there are two major subtasks: target detection

and target tracking. Figure 5.8 depicts the general architecture of a sensor node.

The target perception module is responsible for detecting and classifying the various

targets in the active field of view (FOV) of the sensor and performing temporal con-

solidation of the detected targets over multiple frames of detection. Moving target

detection and classification is known to be a difficult research problem [29]. Many

approaches such as active background subtraction [37] [38] and temporal differentia-

tion have been suggested for detecting and classifying various types of moving targets

ranging from single humans and human groups to vehicles and wildlife [39] [38]. The

next problem would be to classify and associate the various detected image blobs to

discernable targets and maintain their temporal tracks in order to pervasively track

them. Various approaches such as extended Kalman filtering, pheromone routing

and Bayesian belief nets have been suggested for maintaining the track of the various

targets [40].

Target Tracking with Active Camera: A general surveillance task involves

keeping moving targets in the active sensing region of the sensors with a certain pre-

specified resolution. Research approaches to this problem found in recent literature

[39] [37], generally use visual servo control [41] or gaze control [42], which mainly

involve feature-point-based tracking and fail to describe the basic task of maintaining

the target in the sensor’s active field of view with certain resolution, effectively and

succinctly. These approaches result in excessive camera motion that may result in

blurring and other undesired effects, which in turn have detrimental effects on the
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surveillance task. Further, using these approaches it is not possible to describe a

multiple target tracking task with randomly moving targets using a single sensor.

Sensor Cooperation and Coordination: Multiple groups of nodes are sequen-

tially involved in order to pervasively track the target as it traverses through the

monitored area which is much larger than the range of an individual sensor. Hence

there needs to be a handoff mechanism which essentially “switches” the tracking task

from one group of sensors to another based on the movement of the target. Tracking

itself can be described as a switching phenomenon since the act of tracking a target

in a given monitoring area which is greater than the viewing area of any given sensor

requires there to be some form of hand-off, or switch, between a number of sensors.

In order to assure that the target visibility will be maintained even when it goes out

of the capable field of view of one sensor, the system must switch the tracking task

to another sensor that has to “pick up” the target before it leaves the field of view of

the original sensor. This discrete switching phenomenon along with the continuous

operation of the individual nodes can be modeled as a hybrid system consisting of

both continuous and discrete transitions.

Hybrid automata models for describing switching systems have been the focus

of many recent research efforts [43], [44]. They can effectively capture the discrete

switching nature of the surveillance task. However, their continuous part is modeled

in a point-based framework using differential equations. This model fails to effectively

model the continuous operation of the individual nodes in the surveillance task and

suffers from the drawbacks mentioned previously.

Network topology The efficient and timely exchange of information between the

individual sensing nodes is imperative for cooperation and coordination of multi-

ple nodes in order to perform pervasive target tracking. Ad-hoc, multi-hop mecha-

nisms are best suited for such mobile infrastructure-less wireless networked systems.
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Networking and routing mechanisms for distributed wireless sensor networks have

attracted a lot of attention in recent literature [45] [46] [47]. These approaches gener-

ally assume scalar (low volume) data transfer between the individuals nodes and the

sink node (which is just a consumer of the information.) However, surveillance tasks

require fast and timely transfer of vector (large volume) data, e.g. video data, to the

sink and also within the nodes themselves. This scenario may create an unbalanced

networking load on the nodes along the optimal relay path, which can be detrimental

to the longevity of the network.

Operator Interface Design: Video feedback is an essential component of the

surveillance system. A single human operator cannot effectively monitor a large area

by looking at dozens of monitors showing raw video output. That amount of sensory

over-load virtually guarantees that information will be ignored and requires a pro-

hibitive amount of transmission bandwidth. In [39] an approach is presented which

provides an interactive, graphical user interface (GUI) showing a synthetic View of

the environment, upon which the system displays dynamic agents representing peo-

ple and vehicles. This approach has the benefit that visualization of scene events

is no longer tied to the original resolution and viewpoint of a single video sensor

and the operator can therefore infer proper spatial relationships between multiple ob-

jects and scene features. Another program called the the Modular Semi-Automated

Forces (ModSAF) program provides a 2-D graphical interface similar to the VSAM

GUI [48], with the ability to insert computer-generated human and vehicle avatars

that provide simulated opponents for training [49]. The ModStealth program gener-

ates an immersive, realistic 3-D visualization of texture—mapped scene geometry and

computer-generated avatars [50].

Although automatic image analysis and video understanding tools [39] can be

used to facilitate identification of targets and activation of alarms or logs for certain

10
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surveillance tasks, the operator needs the video feedback to make decisions about the

tracking task which may not have been pre—programmed or to independently task the

network based on the current feedback received from the sensors. The video feedback

provided to the operator can be transmitted over either analog or digital channels [51].

The use of analog modulating and transmission techniques for surveillance applica-

tions has been reported in [52]. Receiving digital video feedback over an IP-based

network from the networked camera sensors has also received much attention with the

development of the various video compression and communication protocols [53—57].

Since multiple cameras are deployed to track the identified targets, multiple, con-

current feedback video streams maybe required for monitoring the target. These

sensors initiating these streams will be changing from time to time as the target

moves out of range of the current sensors tracking it. However, providing multiple

unnecessary (unrelated to the task) video feedback streams often causes loss of at-

tention span of the operator and makes it hard to keep track of the various activities

over the cameras. Hence only video streams from relevant sensors should be presented

to the Operator on a per activity basis. This is done through automatic or manual

switching of the camera streams that are presented to the operator.

Literature Review Summary: From the above review on recent literature on

mobile surveillance networks, the focus of the major works reviewed revolves around

target identification and video understanding. However, most of the approaches cited

in literature lack a generalized framework for modeling the surveillance task of main-

taining visibility of multiple targets with adequate resolution. These approaches tend

to use visual servoing which involves only feature point based target tracking and

cannot adequately describe multi—target tracking using a single camera sensor. Multi

target tracking is addressed in a very ad-hoc fashion in literature using methods such

as sensor slaving and gaze control. A generalized modeling and analysis framework

for pervasive target tracking using multiple distributed sensors is not available in

11
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current literature. Although switched surveillance implementations using multiple

distributed sensors have received much attention in recent literature, a comparative

analysis of video feedback schemes for various visual surveillance scenarios has not

been reported. Further, optimized sensor deployment based on minimizing the num-

ber of sensor switches in order to pervasively track a target using multiple sensors

over a large area has not been explored. This dissertation tries to address these issues

and develop a formal modeling, analysis and design framework for mobile surveillance

applications.

1.4 Objectives of this Research

The main objective of this research is to implement a pervasive surveillance network

using active camera sensors connected to each other using an IP-based network. The

sensors have motion capability and are required to continuously maintain visibility

of the identified targets in the surveillance region. The objectives of this research

effort are to provide a modeling and design framework for such pervasive surveillance

scenarios.

This dissertation proposes a mutational-analysis—based topological framework for

modeling and design of mobile surveillance networks which find applications in myriad

infrastructure-less, rapidly deployable pervasive multi-target surveillance and moni-

toring scenarios. Using the concept of mutations of domains and shape analysis,

the conditions for accomplishing various surveillance tasks such as continuous target

tracking while maintaining appropriate image resolution can be derived. The design

of a surveillance task using image-based Hausdorff tracking, used when the target

is in the active field of view of the sensor is presented. The method of cooperative

Hausdorff tracking, used to track targets which are outside the active field of view of

the sensor using the observations from other sensors, is presented.

For pervasive surveillance scenario which requires a hand-off or switching mecha-

l2



nisrn between a number of sensors, this dissertation proposes the Mutational Hybrid

Automata (MHA) model, that combines the discrete switching structure of hybrid au-

tomata with the domain-based evolution of mutational systems in order to overcome

their individual limitations. It further presents example surveillance tasks modeled

using the proposed MHA model and provides an analysis and proof of stability of the

example systems.

A switched video feedback system is an important component of the pervasive

surveillance network. This dissertation compares different design alternatives for the

implementation of the switched video feedback system, such as MJPEG [57] H.261 [53]

and H.263 [54] transported over RTP transport protocol [56]. Their performance

under certain scenarios/tasks are measured and the advantages and disadvantages

of different alternatives are analyzed. Various performance metrics are proposed to

compare the suitability of these schemes based on a given scenario/task. Further an

optimal sensor selection algorithm for selecting minimum number of sensors to track

a moving target is presented.

1.5 Major Contributions of this Dissertation

The major contributions of this dissertation can be classified into various categories.

This section provides a brief statement about the major contributions of this disser-

tation.

Theoretical Contribution

o A new domain based modeling framework called Hausdorff tracking for tracking

multiple targets using continuous camera motion is developed.

0 A mutational hybrid automata model is developed for modeling multi-sensor

pervasive target tracking tasks. Using this model, autonomous as well as con-

trolled sensor switching scenarios can be modeled.

13



0 Stability analysis of the proposed Hausdorff tracking scheme using the shape

Lyapunov theorem has been presented.

0 Target tracking stability of the pervasive surveillance task modeled using the

mutational hybrid automata models is analyzed for example systems using a

two-step procedure.

Technological Contributions

0 A switched video feedback system that enables streaming of relevant video

streams to a human operator for multiple clients has been implemented us-

ing a H.264 video encoding scheme. The operator clients developed allow the

automated monitoring as well as active control of the networked sensors.

0 A task/scenario based performance metric is proposed to analyze the suitability

of application of a particular video transport scheme for that task. Various

schemes such as MJPEG, H.261, H.263 and H.264 are compared for different

scenarios using the proposed metric.

Design Contributions

0 An optimality framework for exploiting the redundancy in task accomplishment

using Hausdorff tracking is developed. Physical programming has been used to

provide a physical meaning to the combinations of the various cost functions.

a The video switching algorithm is modeled as a discrete-time finite-state dynamic

system and an assessment metric is proposed to analyze the locations and con-

figurations of the cameras for switched video feedback in order to minimize the

number of switches while maximizing the resolution sustained by the tracked

target at the tracking camera.

14
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Contributions for Experimental Work

0 A visual surveillance test-bed has been implemented for testing and validating

the efficacy of the various approaches proposed.

0 A mobile robot and articulated robot arm have been integrated as a part of

the motion platform for the visual sensors. These can be used in the future for

further extension and experiments of this research.

1.6 Organization of this Dissertation

The scope of this dissertation is to investigate a novel modeling and design framework

for mobile surveillance networks. The work is divided into three parts - namely mod-

eling, analysis and design. First, in Chapter 2, we present the necessary background

on the mathematical tools which will be required to develop and analyze the formal

modeling and design framework proposed.

In Chapter 3, the new modeling framework using mutational equations for motion

of a single sensor is presented. Using this mutational equation model, a shape-based

Hausdorff tracking control scheme to track multiple targets with viewing constraints

is developed. Chapter 3 further presents the Mutational Hybrid Automata model

developed for modeling multi-sensor cooperative target tracking scenarios.

Chapter 4 presents the shape Lyapunov theorem for analyzing the stability (in the

sense of Lyapunov) of the Hausdorff tracking method proposed. It further presents

examples of multi camera surveillance systems modeled using the mutational hybrid

automata model. A procedure for analyzing the stability of the example multi-sensor

cooperative tracking systems modeled using the mutational hybrid automata model

is also presented.

Chapter 5 presents the work done toward design of the switched video surveil-

lance system. It presents a brief review on grouping architectures and presents a

15



sensor allocation algorithm which can be used to allocate sensors to targets. A design

framework for optimal tracking of multiple targets by exploiting the redundancy of

task accomplishment is presented. Further algorithms for sensor placement in or-

der to minimize sensor switching while tracking moving targets and algorithms for

optimized target tracking using switched sensors are also presented.

Experimental validations of the proposed algorithms are presented in Chapter 6.

The experimental results for Hausdorff tracking, multi-sensor cooperation using the

mutational hybrid automata model and multi—sensor target allocation are presented.

Further results of optimal Hausdorff tracking and multi-target tracking experiments

are also presented. Chapter 6 also provides a performance analysis of the various

video transmission schemes and proposes a task- and scenario— based metric for eval-

uating the various video compression and transmission schemes for switched video

surveillance tasks. Further, simulation results for optimized target tracking using

switched sensors is also presented.

Conclusions and future directions are presented in Chapter 7.

16
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Chapter 2

Mathematical Background

This chapter presents the mathematical preliminaries that will be used in the rest of

the dissertation. A definition of a dynamic systems is presented. Then mutational

equations, which are used to represent domain based dynamic systems are introduced.

Further hybrid dynamic systems are introduced and the Mutational Hybrid Automata

model is presented. Shape analysis and shape functions are introduced to provide

various measures on sets (shapes).

2.1 Introduction

Let X be a collection of variables; then X denotes the valuations of these variables

and a: will be used to refer to both the variable and its valuation (the reference should

be clear from the context). 2X denotes the power space of X i.e., the family of all

subsets of X and [C(X) denotes the space of all nonempty compact subsets of a given

closed set W C R". We will use M to denote a general metric space and X will be

used to denote a finite-dimensional vector space.

A controlled dynamical system is a system 2 = [X , F,U , qt] where,

o X is an arbitrary topological space called the state space of E;
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o I‘ is the time set, which is a transition semigroup with identity;

0 L1 is a nonempty set called the control—value space of E;and

o The map d) : X x I‘ x U H X is a continuous function satisfying the identity

and semigroup properties [58].

The dynamical system can also be denoted by the system 2 = [X , F,L(, f] where

the transition function f is the generator of the extended transition function ¢ [58].

A discrete-time dynamic system is a dynamic system 2 for which I‘ = Z where,

Z is the set of integers. The discrete-time dynamic system, 2 is finite dimensional

if both X and L! are finite dimensional and the dimension of the system 2 is the

dimension of X. A system 2 is complete if every input is admissible for every state.

A hybrid dynamic system is an indexed collection of dynamic systems with some

map defined for jumping among them. Various models for hybrid systems have been

proposed in the literature [43] [44]. Generally, these approaches assume that the

continuous dynamics part of the hybrid systems are defined by the solutions of differ-

ential equations (51': = f (:I:(t))) where :r:(t) E X C R" and the function f : X H IR" is

called a vector field on IR". The resulting dynamical system is given by ¢(:ro, t) = 23(t)

where :r:(t) is a solution of the differential equation starting at 3:0 at t = 0.

For the case of the pervasive surveillance problem, the variables to be tracked

are not elements of a vector space but geometrical domains themselves which are

elements of the space [C(W) of all non-empty compact subsets of a given closed set

W C R" with distance d. Hence we need to enhance the hybrid systems model(s) to

include the cases where the continuous state is not an element of a vector space but

a geometric domain K E [C(W) In this case we describe the continuous dynamical

system as the solution of a mutational equation K 3 <p(K(t)) [59] which is defined

as a tube. Using this formalism we propose a Mutational Hybrid Automata (MHA)

model which can adequately describe a pervasive surveillance scenario.

18
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We also define the projection of a point a: which is an element of a vector space

V on a set A whose elements are also the elements of the vector space V as:

Definition 2.1.1 (Projection of a point :r: on a set A: HA(:2:)) The projection HA(:r)

of a point r on set A is defined as the set of points in A having the distance dA(:r)

from point :1: and is written as:

HAUL") = {2 E Alllz — Ill = dA($)} (2-1)

where, dA(:c) is the distance of set A from point :1: defined as:

61.40:) = inf llx — till (22)
yEA

Extending this concept further, we now define the projection of a set A on set B

Definition 2.1.2 {Projection of a set B on a set A: HA(B)) The proyection HA(B)

of a set B on set A is defined as the union of the projections of all the points in B

on the set A as:

HA(B) = U Mar) (2.3)

3368

where, PiA(.r) is the projection of a point :1: on a set A which is the set of all the

points in A having the distance of dA(:r) from point :13.

2.2 Mutational Equations

This section provides a basic introduction to shape analysis using mutational equa-

tions [60] and relevant concepts useful for developing the theoretical foundation for

Hausdorff tracking. The sensor coverage area and the target are readily represented
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as sets (domains) in E C R". In order to study the motion of these domains we need

to define a differential calculus on the space of all compact, non-empty subsets [C(E)

of the closed set E. The mathematical framework of mutational analysis allows us to

extend the concept of differential equations to the metric space [C(E).

For defining mutational equations, we supply the space [C(R”) with a distance

d, for example the Hausdorff distance between domains K1,K2 E R" defined by

due, K2) = supqemn IldK1(q) - dawn. where. em) = 1:12.6an — pll represents

the distance between the point q and domain X.

2.2.1 Evolution of a Tube

Tubes are domains evolving with time and can be defined as a map K() : R+ i—r

[C(E). The deformation (motion) of the coverage and the target sets can be repre-

sented using tubes:

R+ i—-> [C(E)

K(): (2.4)

ti-—> K(t).

The evolution of a tube can be described using the notion of a time derivative of the

tube as the perturbation of a set. Associate with any Lipschitz map (,0 : E i—-> E, a

map called the transition 19¢(h, q) :2 q(h), which denotes the value at time h of the

solution of the differential equation:

(1 = 99((1)

(1(0) = <10-

20



Extend this concept of a transition to the space [C(E) by introducing the reachable

set from set K at time h of (,9 as

19,901.10 == {199201. qo)}qoeK (2-6)

The curve h +——> 19¢(h, K) plays the role of the half lines h i—> :1: + lit) for defining

differential quotients in vector spaces. Using the concept of the reachable set the

time derivative of a tube can be defined as a mutation:

Definition 2.2.1 (Mutation) Let E C R" and cp : E i—r E be a Lipschitz map

{9.0 E Lip(E,lR”)). Iffort E R+, the tube K : R+ H [C(E) satisfies:

d(1((t+ h). 199001. K0»)
1' = 2.’13ng h 0. ( 7)
 

then, go is a mutation of K at time t and is denoted as:

K 3 «p (2.8)

It should be noted that cp is not a unique representation of the mutational equation,

which justifies the use of the notation (3) [60].

Consider a function (,0 : R x [C (E) i—> Lip(E, IR") as a map associating a Lipschitz

map (,0 to a pair (t, K). Using this map, we can define the mutation of tube K(t) as:

K(t) a cp(t,K(t)), VtZO (2.9)

2.2.2 Controlled Mutational Equations

A controlled mutational equation can be written as:

K(t) a e(t,K(t),u(t)), VtZO (2.10)
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u(t) e U. (2.11)

where, (0 : R+ x [C(E) x U H Lip(E, IR") is a continuous map associating a Lipschitz

map with (t, K, u) and u(t) E U is the control input.

A feedback law can be defined as a map Ll : [C(E) H U associating a control u

with a domain K(t) as:

u(t) = U(K(t)) (2.12)

Using a controlled mutational equation, we can model the motion of the target and

coverage sets due to the motion input u to the camera/robot.

2.3 Hybrid Dynamic Systems

Hybrid systems generally refer to dynamical systems which consist of a mixture of

discrete and continuous components. Such systems describe the time evolution of

systems with both continuous and discrete parts. Hybrid dynamical systems consid-

ered in the literature generally have continuous dynamics modeled using differential

equations which depend on some discrete phenomena like switching and jumping in

the continuous and discrete state of the system respectively. These hybrid phenomena

can be modeled using hybrid automata proposed by Lygeros and Sastry [44] [61]. A

hybrid automaton describes the interaction and time evolution of both the discrete

and continuous parts of a hybrid dynamical system. The hybrid automata frame-

work models the continuous part of a hybrid dynamical system as using differential

equations. Edge maps and reset maps are used to capture the discrete nature of the

system while guard conditions and domains are used to describe the interaction of

the discrete and continuous components.
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A hybrid automaton (HA) is a collection

H = (Q, X, s, Init, D, E, G, R] (2.13)

with the constituent parts as follows.

Q is the set of index states or discrete states.

X is the set of continuous variables.

2 = {2,1}qu is a collection of controlled dynamical systems, where each Eq =

[Xq, Fq, fq,uq] is a controlled dynamical system. Xq are the valuations of the

continuous state variables Xq, fq are the continuous dynamics and Hg is the set

of continuous controls.

Init C Q X X is a set of initial states.

D : Q H 2X is a domain. Each discrete state has a domain of possible con-

tinuous states associated with it. The domain is the set of valuations of the

continuous states where the particular associated discrete state is valid.

E C Q x Q is a set of possible edge transitions between the discrete states.

G : E H 2X is a guard condition. Each edge in E is mapped to a manifold in

X which triggers a mode switch when the continuous state hits this manifold.

R : E x X H 2X is a reset map which causes the continuous state to be reset

due to the mode switch in the discrete state.

The state of the above hybrid dynamical system can be denoted as S = UqEQXq x

Q. The above model can be used to model the discrete phenomena mentioned earlier.

For more details about this model refer to [44].
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2.4 Mutational Hybrid Dynamic Systems

Mutational equations can be incorporated into the definition of general dynamical sys-

tems as they satisfy the various nontrivialitry, semigroup and identity properties [58].

Using the concept of transitions of domains introduced earlier and mutational equa-

tions, we can write a general dynamic system as:

E =[IC(W),I‘,2999] or (2.14)

s = [K(W), r, ,0) (2.15)

where i9.p is the transition function and (,0 is the generator of that transition function.

Using the above definition of a dynamic system, we can now define a Mutational

Hybrid Automaton (MHA) as:

Hm = [Q, M,E,Init,D, E,G, R] (2.16)

with the constituent parts as follows.

0 Q is the set of index states or discrete states.

0 M is a collection of the continuous variables K,- 6 IC(W)

E = {2%}qu is a collection of controlled dynamic systems, where each Eq 2

[K(W)q, I‘q, (,0q,qu] is a controlled dynamic system. [C(W)q are the continuous

state spaces, (0., can be construed as the continuous dynamics and Hg is the set

of continuous controls.

Init E M x Q is a set of initial states.

D : Q H 2M is a domain which associates a domain of operation with every

qEQ.
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o E C_: Q x Q is a set of edges along which discrete transition takes place.

0 G : E H 2M is a collection of guard conditions which enable discrete transitions.

0 R : E x M H 2'M is a reset map which resets the continuous state when a

discrete transition is enabled.

Thus, S = quQM x {q} is the hybrid state space of Hm.

A MHA can be pictured as an automaton as in Figure 4.2. There, each node is a

constituent dynamical system with the index state as the name of the node.

This definition is a fairly broad and powerful modeling framework which subsumes

continuous differential equations, mutational equations, discrete time difference equa-

tions, finite automata as well as switched controlled systems and non-smooth differ-

ential/mutational equations. A more intuitive explanation of the various components

will be provided via an example application to pervasive surveillance networks in the

following section.

2.5 Shape Analysis

Shape analysis deals with problems where the variables are not vectors of parameters

or functions, but the shapes of geometric domains or sets K contained in a subset

E C R”. The measure of deformation of a set K can be expressed using shape

functions as: J : [C(E) H IR. The directional derivative of the shape function rep-

resents the change in the shape function J(K) due to the deformation of the shape K.

2.5.] Shape Functions

Shape functions are set-defined maps defined from K(E) H IR and provide a “mea-

sure” of the deformation of K E [C(E). For example we can use a shape function
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to check the distance of the set K to another set K, or whether the reference set

K is contained within the current set K. Shape acceptability and optimality can be

studied using shape functions J as optimization cost functions as is shown in [62].

Various shape functions can be readily developed which can adequately describe the

surveillance task of set coverage or a measure of the size of a set, etc.

2.5.2 Directional Derivative 0f Shape Functions

The directional derivative of the shape function [62] represents the change in the

shape function J(K) due to the deformation of the shape K. It can be construed

as the analog of the directional derivative in vector spaces and provides us with a

measure of the change in the task criterion due to motion of the coverage or target

set.

Consider a function J : H H R where H is a real Hilbert space such as R". The

Gateaux (directional) derivative of J at the point q in the direction of v is defined as:

J(q+tv)—J(Q)
 

 

 

D ' . = l' 2.1J((1)0) gr), t ( 7)

This can also be looked at in a different way. Suppose q(t) is defined as:

40) = 11. (1(0) = q (2-18)

This means that ifj(t) = J(q(t)) then,

dj(t) _ -. _ . J((me - J(CI(0))

dt " J(t) — ill—13(1) t (2'19)

= lint) “‘1 + “’2 — “(1) = DJ(q)(v) (2.20)

Thus, the Gateaux (directional) derivative involves the point q and the direction v at

t=0.
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Extending this same concept when q is not an element of a Hilbert space, but a

shape (domain) K and v is replaced by (0, which is the direction of mutation of the

tube K. Thus the Eulerian semi—derivative (Gateaux directional derivative) is defined

as:

MM z 1.... J(v.(t.1<))— J(K)
2.21

t—>0 t ( )

 

where, 1999(t, K) is the t reachable tube of K under the mutation (,0.

From [60] and [63], the directional derivative of the shape function having the

form of

J: [K new. (222)

can be written as:

J°(K)(<p) = / div(f<q><p(q>) dq (2.23)
K

2.6 Chapter Summary

This chapter presents a discussion on various dynamic systems and introduces mu-

tational equations as a tool to model the dynamics of shapes. It also presented the

hybrid automata model used to model a combination of discrete and continuous dy-

namic systems. Hybrid automata models use differential equations to model the con-

tinuous system dynamics. This chapter further extends the hybrid automata model to

use mutational equations to model the continuous dynamics. The Mutational Hybrid

Automata (MHA) model proposed allows us to model large scale networked pervasive

surveillance systems. This chapter also introduces shape analysis used to measure the

acceptability of shapes using shape functions.
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Chapter 3

Modeling Mobile Surveillance

Networks

This chapter presents the modeling of a tracking task using a multiple camera surveil-

lance network. which is a mutational analysis based technique christened “Hausdorff

tracking” (in honor of the German mathematician Felix Hausdorff who made sig-

nificant contributions to set theory, descriptive set theory, measure theory, function

theory, and functional analysis), is introduced in order to track multiple targets si-

multaneously using a single camera sensor. Further the Mutational Hybrid Automata

(MHA) model is introduced for tracking a target as it moves across the viewing region

of multiple cameras.

3.1 Introduction - Example Surveillance Scenario

In a multiple camera surveillance scenario with active (moving) cameras, the target,

which moves in a continuous fashion, can be tracked using either continuous motion

of a camera sensor or by discontinuous jumps of the “current” tracking sensor from

one camera to the next or a combination of continuous motion and a discontinuous

jump. Consider the example surveillance scenario form Figure 3.1(a) which depicts
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(a) Three—Camera Pervasive Surveillance Scenario

Figure 3.1: 3 Camera Pervasive Surveillance Scenario

the image planes of three camera sensors and a couple targets.

The targets can be tracked using the continuous motion of Camera 1 as is shown

in Figure 3.2(a). We see that Camera 1 is moved in a continuous fashion to ensure

that the targets are within the active field of view of the sensor. In Figure 3.2(b),

the tracking task is transferred to Camera 2 which can already view the targets in

its active field of view. Finally, as shown in Figure 3.2(c), the tracking task can

be transferred to camera 3 which will first need to acquire the targets by executing

continuous motion and then a discrete switch will be executed to transfer the tracking

task to camera 3.

This chapter first presents the modeling of continuous motion of the camera sen-

sor and target (continuous dynamics) using mutational equations. These dynamics
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(a) Coverage Using Continuous Motion

 

(b) Coverage Using Only Discrete Motion

 
(c) Coverage Using Hybrid Motion

Figure 3.2: Modeling Pervasive Surveillance Networks
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models can be used for developing a servo mechanism to control the continuous cam-

era motion. The continuous input to the camera for motion can be controlled using

an error feedback from either the image space analysis or the world space analysis.

Image space analysis implies that the error feedback for moving the camera is derived

from analysis of the target location in the image plane of the camera, while world

space analysis implies that the error input for moving the camera is derived from the

world space coordinates of the target (acquired from other sensors that can observe

the target) and the current world space location of the camera coverage set. Hence,

we develop models for image space servoing and world space servoing separately.

The mutational equation model for the target motion in the image space is derived

using the perspective projection model and the image jacobian [64]. The motion of

the camera coverage set in the world space model is derived separately for 2-D and

3—D scenarios. In the 2-D scenario, the camera coverage set is taken to be a pie cut

out from a circle, while in the 3—D scenario, the camera coverage is modeled as a

3-D pie (cone bounded by a sphere) cut out from a sphere. The motion of these

coverage sets due to the motion of the camera is modeled as a controlled mutational

equation. Rirther, we relax the implicit assumption of holonomic motion constraints

and extend the continuous motion modeling using mutational equations for a sensor

with non-holonomic constraints.

The Hausdorff tracking method for image space and world space models is intro-

duced. This method uses shape functions to derive feedback errors which are used to

control the motion input to the camera. Image space Hausdorff tracking and coop-

erative Hausdorff trackng are presented as two examples of the Hausdorff tracking

method in the image space coordinates and world space coordinates, respectively.

This chapter also introduces the Mutational Hybrid Automata (MHA) model for

modeling the hybrid camera motion scenario shown in Figure 3.2(c). Using mutational

equations, the mutational hybrid automata model can describe the continuous motion
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of the cameras and target and the discrete switching behaviors when a target leaves

or enters the field of view of a camera.

Using Hausdorff tracking method developed in this section, there are numerous

choices of the input applied to the camera which can accomplish the task. This

is because the robot system has a certain amount of redundancy built in for the

surveillance task. An example of this redundancy in task execution can be evinced

by noting that in order to bring a target, which is currently located at one of the sides

of the camera FOV, into the cameras FOV, the camera can execute an angular motion

by panning or a lateral motion by moving behind. Both these motions individually

or a combination of them can be used to accomplish the surveillance task. Hence we

need to select an appropriate input to the camera for task accomplishment.

We can select various other tasks that the camera can perform in order to utilize

the redundancy offered by the camera motion. For example the energy consumed

due to the motion of the sensor should also be minimized while maintaining a safe

distance from sensed obstacles (in the case of sensors mounted on mobile robots).

These combined tasks can be expressed as a multi-objective optimization problem

which tries to minimize the resolution inadequacies and energy consumption subject

to the constraint of maintaining the visibility of the target.

Various other tasks can also be considered for the multi-objective optimization

problem and the complete problem can be represented as an optimal control frame—

work for Hausdorff tracking. Once the task criteria are expressed in a multi-objective

constrained optimization framework, various methods such weighted sum method

,physical programming, non-linear programming, search space methods, etc. can be

used to find the solution to the Optimization problem.
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3.2 Controlled Mutational Equation Model for Camera Sen-

sor and Target

A controlled mutational equation can be written as:

K(t) a (,0(t,K(t),u(t)), age (3.1)

u(t) E U, (3-2)

where, (p : R+ x [C(E) x U H Lip(E, R") is a continuous map associating a Lipschitz

map with (t, K, u) and u(t) E U is the control input.

Using a controlled mutational equation, we can model the motion of the target

and coverage sets due to the motion input u to the camera/robot.

3.2.1 Perspective Projection Model

The deformation of the target set w.r.t. the motion of the camera can be represented

using a mutational equation. The mutational equation can be derived using the optic

flow modeling as shown in [41]. Let u be a velocity screw which represents the velocity

input to the camera and let q be a vector of image space feature parameters. The

image jacobian Jv is a linear transformation that relates the camera velocity screw u

to the tangent space q of the image space feature parameter vector q as:

q = Jv(c)u (3.3)

where, c represents the camera pose such that c = u.

Assuming that the projective geometry of the camera is modeled by the per-

spective projection model, a point P = [:r,y, z]T, whose coordinates are expressed
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with respect to the camera coordinate frame, will project onto the image plane with

coordinates q = [gag qy]T as:

(3.4)

where A is the focal length of the camera lens [41]. Using the perspective projection

model of the camera, the velocity of a point in the image frame with respective to the

motion of the camera frame [41] can be expressed. This is called the image jacobian

by [41] and is expressed as:

= «pc(q) = Bc(Q) , = Bc(q)uc (3-5)

—-:— o a —e A—xe q... s

0 —% 2} 1:33 _-_€1.rq _q$ {q

)T are the image space coordinates of the point P whose taskWhere. q = ((122.93;

Space coordinates are (23,31, z)T. A is the focal length of the lens being used and

u = [11:2, vy, vz, (.013, wy, wZ]T is the velocity screw of the camera motion and A is

the rate of change of the focal length.

The mutational equation of the target set can now be written as:

(i: wlq) = 99cm) + 92107)

A

K 3 (0(K) (3.6)

3.2.2 World Space Model

We can derive the mutational equation for the sensor coverage set and target set

in the world space. Here we consider two cases for a 2-D model and 3-D model
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separately and present the mutational model for the 2-D and 3-D cases based on the

dimensionality and geometry.

2 Dimensional World Space Model

Consider a point q E R2 defined as:

qr, _ :r + r cos(p) (3 7)

qz 2 -l- rsin(p)

where [r, z, 0]T are the coordinates of the robot and r, p are the polar coordinates of

point q with respect to the robot coordinates. Using equation 4.15, the coverage set

for the focusing constraint can be written as:

K : {q l T E (Dmina Dmax)ap E (01min: amaw» (3'8)

where Dmm, Dmax are the minimum and maximum focus distances and amin: amax

are the minimum and maximum angles of the view lines as shown in Figure 3.5. The

motion of each point in the coverage set can be written as:

q;- 1 0 —r sin(p)

2 ’11.

4,. 0 1 r cos(p)

i=Mm=Bu we

where u = [13, 2,9]T is the velocity input to the camera. Using equation 4.17, the

mutational equations for the motion of the coverage set can be derived.
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3 Dimensional World Space Model

The coverage set can be specified as the set of points which satisfies the viewing

constraints of the sensor and can be defined as the active FOV of the camera after

incorporating the depth of field constraints such as the maximum and minimum focus

distances. Consider a point q E R3 in the sensor coordinate frame defined as:

    

' (1x - ’ rcos(0) sin((b) ‘

qy = rcos(q‘9) (3.10)

qz rsin(6) sin(c§) 4

where (r, 6, (b) are the polar coordinates of the point q in the sensor frame. Using the

above equation, the coverage set can be defined as :

K = {q I 7' E (DminiDmar)»9 E (aminaamarla

d9 E (remap, (3111271)} (3:11)

where, (DmimDmax) represent the depth of field and (am-mam”), (fimabflmm)

are the view] angles for the sensor. The global coordinates of the target set K can

be transformed to the local sensor coordinates using the localization information

available.

The mutational equation for the motion of the coverage set can be written as:

    

qg; F cos(6)cos(q§) —sin(9)sin(gb) T

4y = 7‘ 811105) 0 u

_ (iz . [ sin(9)COS(¢) c08(9) $1105) -

(i = <.0(<1)=Bu (3-12)

where u = [wig wy]T is the velocity input to the camera. The objective is to cover the
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set of targets K with the coverage set K such that K C K.

3.3 Incorporating Non-holonomic Sensor Constraints

In section 3.2 and 3.2.2 the mutational model relating the motion of the sensor u

to the motion of the target and coverage sets was introduced. However, the implicit

assumption made was that the individual components of the vector u are independent

of each other i.e., the system has a holonomic structure. Consider the example of a

car moving in a horizontal plane. Select the reference point to be the midpoint of

the two rear wheels and the reference direction to be the main axis of the car moving

forward. This car’s configuration can be defined as a vector (state) (:r,y, 6) E R3.

However, these parameters and their derivatives are related by the following relation:

—:i: sin6 + ycos6 (3.13)

where it and y are the derivatives of a: and y respectively. At any configuration

(2:, y, 6) along a trajectory parameterized by time, the triplet (5i), , y, 6) is the velocity

of the robot (car). The set of all vectors (2:, , y 6) passing through the point (x, y, 6) is

a vector space. If the robot was not constrained by the constraint in equation (3.13),

this vector space would be the tangent space of the configuration space at (:r,y, 6)

and would have a dimension 3. However, due to the kinematic constraint in equation

(3.13), the velocity vectors only span a subspace of the tangent space of dimension

2. This is called a nonholonomic constraint and the system dynamics of the car are

said to be nonholonomic.

Various sensor motion platforms have a nonholonomic structure with examples like

a car which can be steered left and right only when the car has a velocity component

in the forward direction. Hence it is required to model such nonholonomic platforms
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for an accurate description of system dynamics. Another example of a nonholonomic

platform would be a sensor mounted on a unicycle-type robotic motion module with

a differential drive, which has been quite popular recently since they require only two

motors for forward motion and steering.

Further, due to the large amount of energy consumed by the motion module,

multiple sensors with varying sensing modalities may be mounted on a single motion

module. An example is the mobile manipulator depicted in Figure 6.3, which has a

PTZ camera mounted on the mobile base and a bullet camera mounted on the robot

arm.

This section presents an example of a unicycle-type robot with nonholomic motion

constraints which can be modeled as:

a': = v cos 6,-

3) = 1) sin 6,-

6 = (.0 (3.14)

where, v and w are the linear and angular velocity control inputs of the robot. The

relationship between u and uh = (v, w)T can be written as:

cos6 0

v

u = Bhuh = sing O (3.15)

w

0 1  

Thus, the controlled mutational equation for camera coverage model in equation 3.6

can be written as:

WI) = 3(a)u = B((DBhuh = Bow. (3-16)
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3.4 Hausdorff Tracking

The task of a surveillance camera is to continuously keep a moving target or multiple

moving targets in its active field of view. The surveillance task of maintaining multi-

ple targets in the active field of view (FOV) of the sensor with an adequate resolution

can be readily expressed in a set-based framework where the variables taken into con-

sideration are not vectors of parameters but shapes (domains) themselves. However,

due to lack of vectorial structure on the space, classical differential calculus cannot be

used to describe the evolution of such domains. However, mutational equations [60]

can be used to describe the dynamics (change in shape) of the sensor FOV and target

domains and further be used to calculate feedback mechanisms to accomplish the

surveillance task.

The surveillance task can be expressed, using shape functions [62], as the min—

imization of a Hausdorff distance-based metric or the size of the target, etc. The

shape function essentially represents the error between the desired and actual shapes

and reducing it to zero will accomplish the task. This section presents the method of

Hausdorff tracking using mutational equations for performing the surveillance task.

Shape or a geometric domain can be defined as the set K E [C(E), EC IR" where

[C(E) represents the space of all nonempty, compact subsets of E. The target and the

camera coverage can be readily expressed as shapes. Mutational equations can then

be used to express the change (deformation) in the coverage and target sets based

on the motion of the sensor. Shape analysis [62] can be used to address problems

involving geometric domains or shapes. Shape functions, which are set-defined maps

from J(K) : [C(E) H IR, can be used to provide a ”measure” of acceptability and

optimality of the shape K. For example we can use a shape function to see if a

reference set K is contained within a current set K. In order to accomplish the task

defined using shape functions, we need to derive a feedback map LI : [C(E) H U,

where u = U(K(t)) is the input to the sensor, which will reduce the shape function
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to zero. The convergence of the shape function can be analyzed using the shape

Lyapunov theorem [65]. The convergence to zero of the task function would imply

task accomplishment.

The task requirements for Hausdorff tracking can be expressed as a positive semi-

definite shape function which provides a measure of acceptability of a particular shape

(set). For the example shown in Figure 3.2(a), the measure of acceptability of the

target image (sets) is whether they are within a certain region of the image space and

the measure can be expressed as a shape function J(K) 6 73+. The task of Hausdorff

tracking can be defined as finding an input in order to move the camera in order to

reduce the shape function to zero. Hence we need to express the evolution (change)

in the shape of the target w.r.t. the movement of the camera. This is accomplished

using mutational equations, which are the analog of differential equations for shape

spaces. Using the mutational equation, we should be able to calculate the directional

derivative of the shape function w.r.t. the motion of the camera, and using an inverse

dynamics procedure, calculate a motion input to the camera in order to reduce the

shape function (error) to zero.

For the example in Figure 3.1(a), the task requirements for Hausdorff tracking

can be mathematically] expressed using a positive definite shape function J(K) =

fl? (13((p) dp where K is the coverage set for the camera and dK(p) = inquK ”g — pl],

is the point to set distance from point p to set K. Note that the shape function

is zero only when set K is completely covered by set K, otherwise it is a non-zero

positive value. Initially in Figure 3.1(a) the target set K is not covered by the camera

coverage set K and hence the shape function J(K > 0. The Hausdorff tracking task

is to reduce the shape function to zero by moving the camera as shown in Figure

3.2(a) i.e., minimize the shape function.
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3.4.1 Image-Based Hausdorfi Tracking

When the target is located in the active FOV of the sensor, the method of image-

based Hausdorff tracking can be used to accomplish the surveillance task. The target

is detected using image processing algorithms and represented as a collection of pixels

(blob) on the image plane. The sensor coverage set is represented as a rectangle cen-

tered at the image center and one of the tasks is to maintain the target blob within

the sensor coverage set. Surveillance tasks such as set coverage and maintaining ap—

propriate image resolution can be readily expressed in a setbased mutational analysis

framework using a shape function as the minimization of a Hausdorff distance-based

metric or the size of the target, etc. The task can be accomplished by reducing the

shape function to zero. The task of visual servoing can also be expressed in a set-

based framework [66]. The shape function essentially represents the error between

the desired and actual shapes.

Target and Coverage Sets for Image-Based Hausdorff Tracking

Figure 3.3 depicts the coverage and target sets. The coverage set K is the set of points

on the image plane (X, Y), within which we require the targets to be maintained.

Generally it is taken as a rectangle centered in the image plane. The target K is

defined as the union of the individual image plane blobs (sets of pixels) formed by

the multiple (n) targets as: K = U121 Ki.

Shape Functions for Image-Based Hausdorff Tracking

The surveillance task of maintaining visibility of the target(s) with a certain resolution

can be represented using a shape function as:
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Figure 3.3: Target and coverage set for image-based Hausdorff tracking.

J(K) = JFovu‘o + Jame?) + amuse?) (3.17)

JFOVUAQ = I}? did?) dq

JAm,,,(f{) = max(ff( dq — AREA_MIN, 0)

JAMAR) = min(AREA-MAX — In dq, 0)

where q is a point on the image set K and AREA_MAX and AREA_MIN denote

the maximum and minimum admissible areas of the target set K for maintaining

adequate resolution.

Note that the shape function J(K) is zero only when set K is completely covered

by set K and when the area of set K is within the limits (AREA-MIN, AREA_MAX)

Otherwise it is a non-zero positive value.
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Shape Directional Derivative for Image-Based Hausdorff Tracking

In order to derive the feedback u to the camera, we need to find the shape directional

derivative J(K)((p) of J(K) in the direction of the mutation (0(K) using the shape

function and the mutational equation. Assuming a relatively flat object, i.e., the z

coordinate of all the points on the target are approximately the same, we can derive

an expression for J(K)((,0) by substituting equations 6.1 and 3.6 into 2.23 as:

face) = [K waive) +f<q>diw<q> dq (3.18)

where, f(q) can be construed as the aggregated integrand from equation 6.1. For

the shape function of the type

J(K) = [K d§{(q) dq (3.19)

Substituting Equations (3.19) and (3.6) into Equation (3.21) we get

f(mev‘cu» = Lee—Menage

+ di<q>div(B(q>u)) dq

= [f((aq—ern-Be)

+d§~((q)divB(q)) dq - u (3.20)

The above equation can be written as:

June) = 2 [K (16311}; 0.1“" -p>..o(p>> dp+ 2 [K divee» dp (321)

Here it must be noted that for the existence of the shape directional derivative,

the integrand or E C1(IR”,IR). JFOV in Equation (6.1) is continuous. However, the
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elements JAmin and JAmax in Equation (6.1) do not satisfy this criteria. Hence we

modify the shape function in order to satisfy the continuity criteria using smooth

approximations of the min and max functions as:

 

“d —Amm2 62 “d ”Amm(MK 10 > + +0., 12 ) (3.22)
 

JAmin :

 

 

JAmaa: : _ (3:23)

2

V (Amar - IR dp)2 "l' 52 “ (Amos: _ fK dp)

2

where, e is a very small positive number. This approximation physically manifests

as adding a very small area (of size 6) to the target set size and hence this approx-

imation will hardly affect the validity of the shape function to represent the task of

maintaining adequate resolution.

Feedback Map u for Image-Based Hausdorff Tracking

The problem now is to find a feedback map uc such that the shape function J is

reduced to zero. Equation 3.21 can be approximated as:

. - 1 .

J(K)((0) S Z—tCi(K)U1 + CI'2lKl‘U2 +' C3(K)’uc (3-24)

where,uc = [u?u§]T, u1 = [vx,vy,vz,A]T and u2 = [w$,wy,wz]T. zt is an esti-

mated minimum bound on the target 2 position. The relation 2t > 2 will guarantee

the inequality in 3.24.

The matrices C1(K), 02(K) and C3(K) can be defined as:

c.(K)=2/ inf B.(q>T(q—p>dp, (3.25)
KqGHKIP)
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02(K)=2/ inf B2(q)T(q—p)dp. (3.26)
KqEHK(P)

03(K) = 2 [K B(q)dp. (3.27)

where, the matrix B(q) is defined as: B(q) = [31 (q),B2(q)] and its elements are

defined as:

I "A 0 9x

Bi(q) = 2— (3.28)

t 0 —A qy

QIQ (A2+02) x
"TL q

B2(q) = EH2 y 9X (3.29)

will“ if“ —q. 91“

After combining the relevant terms from equation 3.24, it can now be rewritten

A

J(K)(<P) < C(K)uc (3-30)

A controller can now be proposed based on equation 3.30 using the notion of a

generalized pseudoinverse of a matrix. The pseudoinverse C# (K) of the matrix C(K)

must satisfy:

uc = aC#(K)J(K) (3.31)

where a is a gain value. It should be noted that the estimate zt of the target

distance only affects the gain of the control and not its validity. Further it is important

to note that the gain distribution between the various redundant control channels

depends on the selection of the null space vector when calculating the generalized
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Figure 3.4: Block diagram for image-based Hausdorff tracking.

pseudoinverse C#(K) of matrix C(K)

Figure 3.4 depicts the block diagram representation of the Hausdorff tracking

controller. Once the targets to be tracked are identified by the target perception

module, the Hausdorff tracking method can be used to track the multiple identified

targets simultaneously irrespective of the relative motion of the targets with respect

to each other.

3.4.2 Cooperative Hausdorfir Tracking

Cooperative Hausdorff tracking is used when a sensor node cannot sense the target

in its current configuration and needs to move in order to bring the target into its

active sensing region. The individual sensor nodes maintain information regarding

the observations of their neighboring nodes and broadcast (within their locality) their

own observations. Based on the combined observations, each node develops a list of

targets being actively tracked and the status of its peer nodes. Once the target is

detected in the active FOV, the sensor switches to image-based Hausdorff tracking to

perform the surveillance task.

For establishing cooperation of multiple sensors, which may not be able to observe

the same object simultaneously, there is a need transform the image blobs and mea-
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surements into a common coordinate system referenced by all the sensors and task

the sensors according to the movement of the targets expressed in the common frame

of reference. Further, this common representation will be helpful in combining the

object detection hypothesis from multiple camera sensors for sensor fusion. It can also

be used for designing efficient routing mechanisms and algorithms for communication.

Target and Coverage Sets for Cooperative Hausdorff Tracking

The coverage set can be construed as the set of points that satisfy the viewing con-

straints of the camera. It can be defined as the active field of view of the camera

after incorporating the depth of field constraints such as the maximum and minimum

focus distances. Section 3.2 .2 provides the coverage set model for the 2D and 3D cases

considered and Figures 3.5 and 3.6 depict the 2D and 3D coverage sets, respectively.

For the world space model, the target is a set of points in 2D or 3D based on the

scenario. For ease of representation, the target set is represented as a bounding box

of the target. This simplification tends to simplify the structures and computation.

required for tracking the target. Also, it should be noted that if the bounding box of

the target is covered, the target is also covered.

Shape Function for Cooperative Hausdorff Tracking

The objective is to cover the set of targets K with the coverage set K such that

K C K. This condition can be written using a shape function as:

J(K) = [K die) dp (3.32)

Note that when the target set is completely covered by the camera coverage set,

the value of the shape function is zero. Otherwise the shape function takes a positive

non-zero value. Hence the coverage task can be attained by reducing the value of the
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Figure 3.6: Target and coverage set for 3D cooperative Hausdorff tracking.
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shape function in equation (3.32) to zero.

Shape Directional Derivative for COOperative Hausdorff Tfacking

Using the equation 3.21, the directional derivative of J(K) represented by J(K)((,0)

can be written as:

June) = 2 [K which" — 10). were (3.33)

The above equation can be rewritten as:

. — in T — U I -J(K)(<.2)—2</Rqenli(p)3(q) (q p)dp. ) (3 34)

where u is the input to the camera and B(q) is defined in equation 4.17.

Feedback Map 21 for Cooperative Hausdorff Tracking

In order to find a u, let us denote:

C(K) = - inf B(q>T(q — pup. (3.35)
K (Enid?)

Let C(K)# be the pseudo inverse of C(K)

A choice of u can be taken as:

1 #
u = —§aC(K) J(K), (3.36)

where a is the gain of the control. The gain distribution of the task among the various

control channels of u is controlled by assigning the null space vector of the matrix

C(K).
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3.5 Mutational Hybrid Automata Model for Pervasive Surveil-

lance Networks

Consider a network of N cameras which comprise the pervasive surveillance system.

With each camera camn we associate a coverage set Kn E [C(Wn) which signifies the

region camn can view actively and Wn represents the total capable FOV of camn. A

target to be tracked is represented by a target set K C [C(W), W = UneN Wn. An

example of the graphical MHA model for two cameras tracking a target is shown in

Figure 4.2

Groups of cameras are sequentially involved in tracking a target as it traverses

the monitored region. Within each group, the behavior of each camera is governed

by target visibility from a particular camera. This combination of continuous track-

ing and switching behavior can be modeled using the Mutational Hybrid Automata

(MHA) model presented in section 2.4. This section discusses the various parts of the

MHA model for the pervasive surveillance network HpSN and further elaborates on

the design of stable controllers for a pervasive surveillance system modeled using the

MHA model.

3.5.1 Mutational Hybrid Automata Model

It is relatively straight forward to write the MHA model for a pervasive surveillance

system as:

HPSN = (Q,M,Z,Init,D,E,G,R) (3.37)

where Q represents the discrete variables, M represents the continuous variables,

2 = {2.1}qu is a collection of the continuous mutational dynamics, Init C_: Q x M is
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the set of initial values of the variables in Q and M. D is a domain which associates

a domain of operation of the continuous states for every discrete state q E Q, E is

an edge set along which discrete transition takes place, G is a set of guard conditions

which enable the discrete transitions and R is a reset map which resets the continuous

states when a discrete transition is enabled.

Discrete Variables

In the above multi-camera surveillance scenario the target can be tracked by a single

camera or a group of cameras at any given time. Fhrther, if the target is in the FOV

of a particular camera, it can visually track the target, i.e., perform image-based

tracking, while if the target is not visible, the camera can cooperatively track the

target based on the location of another camera which can view the target. Hence

one discrete (binary) variable bn is associated with each camera to indicate whether

the target is visible to that camera, such that bn = 1 if target is visible in camn and

bn = 0 otherwise. Another discrete variable on indicates whether a camera (camn)

is involved in the particular tracking scenario. Thus the discrete variables collection

can be defined as: Q = {{bn, CR}nENi }.

Edge Set

The edge set E defines which particular transitions are possible. Here we describe

general rules to develop E. A handoff between cameras can be initiated when the

target is visible to both cameras. An example edge set for a two—camera scenario is

developed in section 4.3.
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Domains

The domains of operation Dq for each mode can be developed based on location of the

target set K, which will decide which cameras are capable of viewing the target, and

based on the continuity of the target motion, will decide which cameras can acquire

the target as it moves through the monitored region W.

Continuous Variables

The collection of continuous variables AI consists of the individual camera coverage

sets Kn and the target set K; i.e., M = {{KnlneNa K}. Let K E M represent an

element of the valuations of M.

Assumption: We can safely make the assumption that the target set K is convex.

This assumption does not have significant effect on the model as all non-convex targets

can be modeled as their convex cover. This assumption will be invoked to aid the

proof of stability later in this section. We further make the assumption that the

coverage sets Kn are also convex. This assumption can be substantiated by the fact

that the active fields of view of most cameras are convex.

Continuous Dynamics

The continuous dynamics represent the change (deformation) of the sets in M which

can be modeled using mutational equations as: Kn 3 (pn(Kn, un) where an E U is

the control input to cam”. Based on the mode of operation of camn, the controller

model can be changed, giving rise to different continuous dynamics for each camera

in different modes of operation q. The motion of the target can also be represented as

a mutational equation as: K 3 (0t(K) which can be estimated from the observations

of the target.
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Guard Condition

A guard condition or switching condition G associated with each edge e E E is

designed based on the location of the target set. Various events can be recognized

and processed by the multiple camera surveillance network such as the visibility of a

target in a particular target or the global location of the target or camera coverage

set reaching some predefined value.

For example, when the target moves into the visible region of camn then the bn

associated with it changes, which effects the transition along an edge e to a mode

where bn = 1.

Further, based on the current location of the target (sensed and communicated

from other cameras), the variable an associated with camera camn will change in

order to involve the camera in the tracking task.

Reset Map

Since we are dealing with continuous positions of the targets and camera coverage

sets, there are no jumps affected in the continuous variables. Hence the reset map R

can be defined as R : {(p, q), K} I-—> K, K E M. However, in case of multiple groups

of cameras being involved in the surveillance scenario, the coverage sets, which are

defined as the union of the individual coverage sets, will jump from one group to

another based on the change in the discrete variable c. For example, when switching

the camera group from state q to p, the reset map is given as: R(p,q,K,;) t—> Kj

where Ki = UlEpKlv Kj = UlEqu-

Init Set

The target can be recognized only if it is in the view of at least one camera. Hence

the set of initial conditions is restricted to the set of discrete modes Init : {q, M :
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Anern = 1} where bn is the target visibility condition for camn.

3.5.2 Controller Design for Individual Cameras

Events can be recognized by the controller which can be used to generate the control

inputs provided to the various cameras and trigger mode switches. Such events include

the recognition of the target by a particular camera and the location of the coverage

set of camn hitting certain boundaries within its domain of operation Wn. Also,

within each mode q we are provided with the number of cameras actively involved in

the surveillance c and the cameras which can view the target on.

Camera Active, Target Visible(cn = 1, on = 1)

When the target is visible in the image plane of camn (bn = 1), the method of image—

based Hausdorff tracking [67] can be used to track the target. In this controller, the

control input to the controller is derived based on the shape function z'Jn(i"Kn,i" R) :

K(Wn) x [C(W) I—> R+ where the superscript in represents the projection of a set on

the image plane z'Wn of camn. The control input an can be calculated as is detailed

in [68].

Camera Active, Target Not Visible (on = 1, bn = 0)

When the target is not visible to camn but is visible to camm (bm = 1), we can use

the method of cooperative Hausdorff tracking proposed in [67]. If the target K ¢ Wn

then camn should track the projection HWn(K) of the target on the domain W”.

This strategy will ensure that as soon as the target moves into the region Wn it will

be encompassed in the visible region of camn.

However, in a real tracking scenario the projection flu/”(1%) may not be easily

available. But taking into account the fact that bm = 1, which implies that R C Km,
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we can deduce that HWn(K) C IIWn(Km). Thus, tracking HWn (Km) will also

ensure tracking the set IIWnUf) (proof of this proposition not presented due to space

limitations but it can be done in a very straightforward manner).

We can derive a control input an using cooperative Hausdorff tracking technique in

order to track the set HWn (Km) by minimizing the shape function CJn(Kn, HWn (Km)) :

[C(Wn) x [C(Wn) +——+ R+.

Camera Inactive(c.,, = 0)

When the distance of the target set to the coverage set of camn is large i.e., the target

is vary far away from camn, the variable on is set to zero and camn enters into inactive

mode. This mode prevents all the cameras from continuously servoing based on small

motions of a target which is rather far away and is used to conserve energy of the

camera. In this mode, the input to the camera, camn is set to 0 and the camera does

not move. The target dynamics are still represented using the mutational equation

of the target set.

3.6 Chapter Summary

In this chapter, we have introduced the use of controlled mutational equations to

model the motion of the sensor coverage and target sets. Using the mutational equa-

tion model, we have introduced the method of Hausdorff tracking which can be used

to control the motion of the sensors (cameras) to maintain target visibility for moving

targets. Specific examples of the Hausdorff tracking in image space and world space

have also been presented.

Cooperation among various sensors is an important characteristic for pervasive

surveillance. We have introduced the mutational hybrid automata (MHA) model for

modeling motion of multiple sensors tracking a target. The implementation of this
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model for a pervasive surveillance scenario can be done in a distributed fashion as the

various events occurring, such as target visibility, etc., can be detected and processed

in a distributed fashion.
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Chapter 4

Analysis of Surveillance Networks

This chapter presents the stability analysis of the proposed model and controllers.

The shape Lyapunov theorem is presented in section 4.1, and can be used to analyze

the asymptotic behavior of tubes. The stability analysis of the proposed Hausdorff

tracking method using the shape Lyapunov theorem is presented next, followed by

the analysis of an example two-camera system modeled using the mutational hybrid

automata model proposed earlier.

4.1 Lyapunov Theorem for Shape Space

The asymptotic behavior of the measure J(K(t)) of the deformation of the set K can

be studied using the shape Lyapunov theorem. The deformation is described as the

reachable tube K(t) and is the solution to the mutational equation in equation 3.1.

We usually look for assumptions that guarantee the convergence to O of J(K(t))

Definition 4.1.1 (Shape Lyapunov Function) Consider a subset E of R” and a

mutational map (,0 defined on the set E as shown in section 1, a shape functional

J : [C(E) I——> R+ and a continuous map f : R I——> IR. The functional J is a f-Lyapunov
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function for the mutational map (,9 if, for any K E Dom(J) we have,

deixngwmwnga Jm3=wm) (4D

where, w() is a solution of w’ = —f(w).

When the solution w(-) converges to 0 as t —+ 00, the shape Lyapunov functional

J(1990(t, K)) also converges to 0.

Using shape derivatives, the above definition of Lyapunov functions can be stated

as the shape Lyapunov theorem.

Theorem 4.1.1 Consider a subset E of IR" and a mutational map 99 defined on the

set E as shown in section 1, a shape functional J : K(E) I—> IR+ and a continuous

map f : IR t—v R. Let the Eulerian semi-derivative of J in the direction go exist and be

defined as J(K)(<p). The functional J is an f-Lyapunov function for (,0 if and only

if, for any K E Dom(J), we have

Jump) + mm) g 0. (4.2)

Proof. (from [65])Assume that for any positive t, we have J(19¢(t, K)) g w(t).

Using J(K(0)) = w(O), we can write

%uwyiK»—AK»< mnrwmm> “w

H
-
I
H

Using the definition of directional shape derivative this yields,

Mono) s w'(0> (4.4)

Then, observing that w’ (0) = —f(w(0)) = —f(J(K)) we can conclude the result.
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Conversely, denote y(t) = J(1999(t, K)) We can now write

mo~wn=u/:EflWicK>

By the hypothesis, we obtain

t

yw—mms—Afuwns 0%)

Now, we can write

yf1(t) S —f(y(t)) (47)

Now consider a solution w(-) of the differential equation

u305) = -f(w(t)), w(0) = J(K) (4-8)

Using the Gronwall Lemma, for any positive t, we obtain

y(t) = J(19920, K)) S 10(0) (4.9)

This proves the theorem. [:1

Using the shape Lyapunov theorem we can derive assumptions on the input u, to

move the camera/robot, in order to accomplish the surveillance task.
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4.2 Stability Analysis of Hausdorff Tracking

In this section we analyze the stability of the Hausdorff tracking method using the

shape Lyapunov theorem discussed in the previous section.

Stability in the sense of Lyapunov for the proposed Hausdorff tracking method

would imply the asymptotic convergence to zero of the shape function J(K) This

asymptotic convergence to zero of J(K) will imply that the task criterion for the

system is accomplished.

For both the image-based and cooperative Hausdorff tracking methods proposed,

the shape directional derivative has been reduced to the following form:

J°(K)(so) < C(K) - u (4.10)

We can now propose the following theorem for stability of the Hausdorff tracking

method.

Theorem 4.2.1 For a automated tracking system modeled using the mutational equa-

tion K 3 w(K) where K is the target set and w(q) = B(q)u with the plant input

vector u. The shape (error) function is defined as J(K) with the shape directional

derivative in the direction of the mutation (J(K)(go) ) defined by equation 4.10. The

system is stable, i.e., the shape function asymptotically converges to zero for the input

u = —aC#(K)J(K), a > 0.

Proof. In order to prove the stability of this system, we have to show that it

satisfies the shape Lyapunov theorem from section 4.1. That would imply that the

shape function J(K) asymptotically converges to zero. The shape Lyapunov theorem

can be written as:

J°(K)(<p) + aJ(K) g 0 (4.11)
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Substituting the values of J(K)(cp) into the above equation we get

C(K) - u + aJ(K) g 0.. (4.12)

Substituting for u we get

—aC(K) - o#(K) . J(K) + (mm) s 0 (4.13)

aJ(K) g aJ(K) (4.14)

which concludes the proof. C]

4.3 Analysis of Example Surveillance System using Muta-

tional Hybrid Automata Model

This section presents the stability analysis for a two~camera example system modeled

using the mutational hybrid automata (MHA) model. The mutational hybrid model

for a two-camera example system along with the various constituent parts is presented,

followed by a stability analysis of the example system.

The two-camera model presented is extended by providing an inactive state for

each camera. This implies that the cameras need not be tracking the target contin-

uously and can shut down (go into an inactive state) or be assigned to other tasks

when a particular target is not close by. Owing to this fact, the proposed model will

be more energy efficient.
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Figure 4.1: Example pervasive surveillance scenario with 2 cameras

4.3.1 Two-Camera Example for Pervasive Surveillance with Contin-

uous Servoing Cameras

Consider the example as shown in Figure 4.1, which has two cameras with intersecting

domains. With each camera we can associate a coverage set that represents the

current FOV of the camera as represented in section 3.2. The total capable FOV of

the camera carnn can be represented as a closed set Wn. The closed set W can be

modeled as the union of the total capable FOV of the two cameras (W = W1 U W2).

The target (modeled as a domain in W, If E [C(W)) can move around in the set W

with bounded velocity and acceleration. The problem is to find a hybrid controller

(continuous control as well as switching conditions) which can pervasively track (cover

using the active FOV) the target as it moves about randomly (maybe adversarially)

in the domain W.

Consider the MHA model for the pervasive surveillance network given in equation
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3.37. The constituent parts of the model can now be defined with respect to the

two-camera pervasive surveillance system in consideration.

Hybrid State Space (Q and M)

The set of discrete states is modeled as Q 2 {b1, b2, 0} = {q} with its set of valuations

Q = {(0,0,2),(0,1,2),(1,0,2),(1,1,2)} = {q0,q1,q2,q3}. In this example we will

assume that c = 2 which implies that both the cameras are involved in the tracking

task. This assumption will be relaxed later on in the discussion. Each mode q E H,

uses a different controller for the two cameras hence effecting distinct dynamics in

them.

The continuous states for all modes are modeled as the target set R and the

current coverage sets K1 and K2 of cameras caml and camg, respectively. The

coverage sets for the cameras can be defined as the sets of points which satisfy the

viewing constraints of the camera including field of view and depth of field constraints

such as the maximum and minimum focus distances. Consider a point q 6 R3 in the

coordinate frame 0n of camn defined as:

    

r ' P 1

kl- 'r cos(6) sin(¢)

kg = r cos(¢) (4-15)

kg 1" sin(6) sin((,b)

where (r, 6, ab) are the polar coordinates of the point k in the camera frame On. Using

the above equation, the coverage set can be defined as :

Kn = {k l T E (Dminvaax)a6 E (aminaamar)v

Cb E (fimaxa #3771270} (4'16)

where, (Dmin, Dmam) represent the depth of field and (0mm, am”), (fimax, fimm) are
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the view angles for the sensor. The collection of continuous variables can be written as

.M = {1%, K1, K2} with the set of valuations of AI defined as M = [C(W') X K(Wl) x

K(Wzl
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Assumption: We can safely make that assumption that the target set R is convex.

This assumption does not have significant effect on the model as all non-convex targets

can be modeled as their convex cover. This assumption will be invoked to aid the

proof of stability later in this section.

Domain (D) and Init Set (Init)

The domain B(q) associated with every discrete mode q can be modeled as the union

of the capable FOV Wn of the cameras involved in that particular mode such that

the coverage sets of the individual cameras lie in their respective capable FOV’s

(Kn C W”). We can further restrict the definition of the domain by using the

condition that the target is a subset of the union of the capable FOV’s of the cameras

which can see the target (Ii C Une.7\7,bn=1l”l”n)v For this example the domains for

each mode can be defined as:

B(QO) = {K C Ml(Kn C Wrnlne{1,2}}

D(q1) = {K e M|(Kn c Wn)n€{1,2} /\ R c W2}

D(Q2) = {K C Ml(Kn C Wnlne{1,2} A K C W1}

13(43) {K C Ml(Kn C W7l)n€{l,2} A K C Une{1,2}Wn}

In order to track a target, it must be recognized by a camera for which it must be

in the active FOV of a camera. The above condition dictates that the discrete state q

must satisfy Vnern = 1. If this condition is satisfied, then the target is visible in at

least one camera. Hence we can define the Init set as Init = {q, KIq E {q1, q2, Q3}}
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Edge Set (E) and Reset Map (R)

The possible discrete transitions denoted by the edge set E are:

E = { (<11, <10), (ql, q3)(q2, qO)(q2, (13), (<13, ql), ((13, <12), (cm. (10)}

Note that under the assumptions of no occlusions in the camera views, continuity of

target motion, finite size of the target set and non-empty overlap area between the

two cameras, the transitions (q1,q2) and (q2, q1) do not occur. Phrther once the target

is lost from both the active fields of View, the target is considered lost and cannot

be recovered again, which implies that go is an invariant mode and does not let any

trajectories escape. Hence in our model we do not take into account the transitions

(q0,q1), (q0,q2), (qO,Q3). However, in a real surveillance scenario, strategies based

on searching for the target around its last known location can be developed and

implemented in order to escape the failure state qo.

The reset relation does not bring about any jumps in the continuous states. Hence

R(-,-,K)=K

Continuous Dynamics: Mutational Equations (2)

The target motion is modeled as a mutation K 3 w(li') which is unknown but can

be predicted as a piecewise linear trajectory using the image sequences of the target

(the derivation of which is out of the scope of this paper). The 3D model for motion

of the coverage sets K1 and K2 can be derived using the procedure outlined in section

3.2. Mutational equations are used to model the motion of the sets Kn.

Using equation 4.15, the mutational equation for the motion of the coverage set

67



Kn can be written as:

k = Mk) = B u... v k e Kn (4.17)

where an 2 [w$,wy]T is the velocity input to camn. The above equation can be

succinctly written as:

K13 991(K1,U1), K2 3 902(K2,U2)

where ul and W are the inputs to the cameras caml and 031112, respectively, and are

specified by a feedback map Ll : [C(Wn) H U. The feedback maps (control inputs) u,-

are selected based on the mode of operation of the network (q).

Target Visible(bn = 1) If the target is visible to camn i.e., bn = 1, the control

input an is calculated directly from the sensed image using image-based Hausdorff

tracking proposed in [67]. The shape function (error) can be calculated as:

i _ 2

J", — [Kdenov dp (4.18)

where inK and ink are the projections of the coverage set of camn and the target

on the image plane iWn of camn.

Target Not Visible (bn = 0) When the target is not visible to camn we use the

method of cooperative Hausdorff tracking [67] to track a projection of the target

HWnIi' on the domain Wn, which is the capable field of view of camn. It should be

noted that Wn is assumed to be convex.

However, the exact 3D location of the target set if is not known during the

surveillance scenario. Here we point out that the target is visible to camm, i.e., bm =

1. Hence, using proposition 1, we can say that tracking the projection HWn(Km) of
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the coverage set Km on the capable field of view Wn of camn will suffice for tracking

the projection of the target set HWn(K), since K C Km. Now we can derive the

shape function (error) an which will be used as an error input to the controller for

camn for deriving the control input an. The shape function can be written as:

CJ = (12.. , d 4.19
Tl ,/I:[‘an(Km) ("LIX”)(p) p ( )

Continuous Control an Given the shape functions (errors) for the various cameras

in different modes and the mutation equations for the coverage sets, the control input

an can be calculated using the directional derivative of the shape function J(K) in

the direction of the mutation 90K denoted as J(K) The shape Lyapunov theorem

can now be used to study the asymptotic behavior of the measure J(K) of the set K

and further derive assumptions on the input un which guarantee the convergence of

J(K) to zero.

Hence by selecting a control input an which ensures that J(K) g ——aJ we can

prove that the continuous dynamics of each mode {q1, q2, q3} are exponentially stable.

The detailed procedure is derived in [67].

Guard Conditions: Switching Control (G)

The guard condition can be construed as the switching conditions for the hybrid

controller. These conditions have a profound impact on the stability of the system

and should be carefully chosen. For our example system, transitions are enabled

based on the recognition of certain events such as the recognition of the target by

camn in its field of view (bn = 1). Assuming no occlusions and deterministic target

recognition, the change in bn can be equated to the target coming into or falling out

of view of the coverage set Kn i.e, bn = 1 4:) K C Kn and bn = 0 4:) K gZ Kn.

Assuming that parts of the target can be recognized when they come into view of the
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camera, we can write the switching conditions as:

G(ql,qs) = {KEMtKflKlaéQl}

G(qz,qs) = {KeszrnKHea}

C(quol = {KEM2KDK1=0AKHK2=0}

001240)={K6M:f(nK1=Q)/\RHK2:0}

C(qaqo) = {KeMzanlztARnK2=a}

C(q3,q1) = {K€M:f{nK1=(Z)}

G(q3, q2) = {K e M : fr 0 K2 = a} (4.20)

A hysteresis is inherently associated with the above switching conditions which will

prevent infinite switching in a finite time period (Zeno execution).

4.3.2 Stability of the Two-C’amera Example System

The question that arises at this point is “How can we ensure that the tracked target

does not leave the active FCV of at least one sensor at any time and the network

behaves in a desired manner?” This corresponds to the systems and control theoretic

notion of “stability” - i.e., we need to guarantee that the hybrid flows within the

network do occur as designed, states converge, the system does not “blow up”, etc.

We propose a two—step process for the stability analysis of the pervasive surveil-

lance scenario in section 6.7.3 modeled using the MHA model. First we require that

each permissible mode of the model be internally stable. Internal stability implies

that the continuous flow within a particular mode of the hybrid system converges and

the hybrid state (Q, M) remains bounded away from the forbidden regions while the

system operates in any particular mode.

The next step will be to Show that the goal set of the mutational hybrid system
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will be invariant. Hence any trajectory that reaches in the goal set of the mutational

hybrid system will always remain in the goal set. Now if we restrict the Init set to

the goal set, the system trajectory will never leave the goal set and hence the system

will be stable.

The goal set will be comprised of the various stable models of the MHA model. In

order to prove the invariance of the goal set, we would be required to prove that every

hybrid trajectory which exits a particular mode in the goal set, will only traverse to

another mode in the goal set with the continuous variables initialized to permissible

states in the new mode.

This procedure will ensure that the trajectory will never leave the goal set. If the

goal set is taken as the set of modes for which the target is visible to at least one

sensor, we can prove the pervasive tracking of the target.

Internal Stability for the Two-Camera Example System

Given an equilibrium point for each mode of operation of the MHA, we can now

define the notation of internal stability [69] for each operational mode of the MHA.

Internal stability implies that

Definition 4.3.1 (Internally stability): A mode q of a mutational hybrid automaton

is said to be internally stable if the local deliberative logic and hybrid control primitives

have been designed such that:

a continuous evolution within each mode is stable in the sense of Lyapunov relative

to an equilibrium point defined for that mode.

0 the mechanism of mode transition is such that there is some dwell time in the

mode q, switched to (i.e., infinite switching does not occur)

We can now put forward the following lemma for the stability in the sense of

Lyapunov for the operating modes {q1, (12, q3} of the system.
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Lemma 4.3.1 Consider the continuous closed loop dynamics of the example two-

camera system in the operating modes {q1, q2, q3} and the guard conditions 4.20. The

operating modes {q1, q2,q3} are internally stable.

Proof. For each state in {q1, q2, q3} we can define a candidate Lyapunov function V,-

as:

q1 : V1 26 J1 +2112

92 : V2 =i J1 +6 J2

q3 : V3 =i J1+iJ2

where, 2J", 2 0 and an 2 0 are defined as in equation 4.18 and 4.19 respectively.

Hence V,- {i = 1,2,3} are candidate Lyapunov functions, since V,- _>_ 0, Vi = 0 implies

that the target is covered. Based on the procedure for calculating the motion input

an to the cameras outlined in 4.3.1, we can show that z'Jn and an exponentially tend

to zero, which implies that V,- also exponentially tends to zero. Hence we can say

that the continuous evolution in the modes {q1, q2, q3} converges exponentially to the

equilibrium state.

We further note that the switching conditions G defined in equation 4.20 have a

certain hysteresis associated with them due to the finite size of the non-empty target

set R and the non-empty overlap region W1 (1 W2. Hence we can prove that Zeno

executions are prevented, which completes the proof. [:1

Hybrid System Stability for the Two-Camera Example System without

Controlled Switches

Based on Definition 4.3.1 of internal stability and lemma 4.3.1, it can be deduced

that each state (except qO) is internally stable. We can now define stability for the

pervasive surveillance scenario as:
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Definition 4.3.2 {Stability of a pervasive surveillance system) A pervasive surveil-

lance system is said to have the stability property if a target set (R) will be continu-

ously covered in the monitored region if it enters the coverage set (Ki) of one of the

sensors comprising the network.

Now, if we can prove that the set of modes {q1, q2, q3} is invariant, then any hybrid

execution (r, q, K) starting in these modes will always remain in these exponentially

stable modes, which implies that the target will be pervasively tracked. Based on

these conditions we can put forward the following theorem for stability of a pervasive

surveillance network.

Theorem 4.3.1 Consider the graphical MHA model of a pervasive surveillance sys-

tem in Figure 4.2. The set of operating modes {q1, (12, q3} is an invariant set.

Proof. Consider a hybrid trajectory 5H = (T,q, K) of the system with its initial

conditions within the set {q,KIq E {q1,q2,q3}}. The modes {q1,q2,q3} are expo-

nentially stable, which implies that the energy of the system in that mode can be

reduced to a very small value in any finite amount of time t. For mode ql this implies

that when the target R C K2 hits the boundary of the domain W1, its projection

flu/10?) C HW1(K2) is already covered by K1 as IIW1(K2) C K1. When K is inside

the boundary of W2, IIW2 (R) Q R C K1. Hence the target is within the coverage

region of K1 and will be recognized by K1 which will generate the event to set bl = 1,

which in turn will switch the mode to q3 (assuming W1 0 W2 75 0). Thus as soon as

the target moves out of W2 and into W1 it will be covered by K1. A similar argument

can be presented for the mode qg and the target hitting the boundary of W2.

Now in mode q3, the target is located in the intersection of the domains W1 and

W2 (fr c W1 n W2) and is being covered by both K1 and K2 such that fr c K1 and

If C K2 due to the exponential stability of mode q3. Now the target can only move

into the regions W1 \ (W1 (1 W2) or W2 \ (Wl 0 W2) and in both regions either K1 or
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K2 can cover the target, respectively. This implies that the system can switch modes

to q1 or q2, both of which possess the exponential stability (in the sense of Lyapunov)

property.

We have shown that all trajectories originating in ql and q2 can switch only to

state q3 and all trajectories originating in q3 can switch only to either q1 or q2. This

implies that the set of modes {q1, q2, q3} is invariant, which proves the theorem. El

Based on the above theorem, and the fact that all the modes in the invariant set

{q1, q2, q3} are exponentially stable (in the sense of Lyapunov), we can conclude that

the hybrid system is stable i.e., the target set is continuously covered once it enters

the invariant set.

4.3.3 Two-Camera Example for Pervasive Surveillance with Controlled

Switches

For the two-camera pervasive surveillance example considered in the previous section

4.3, the discrete variables were comprised of Q = (b1, b2, c) = {q} where b,- is a binary

value which denotes whether the target is visible to sensor Cam,- and c is a discrete

variable which indicates which cameras are involved in the tracking scenario.

This representation of the discrete state c is not very intuitive. Hence for a truly

distributed implementation, we propose to modify the discrete variable c and separate

it into its constituent parts. Each camera will be associated with its own 0,- which

will assist in a distributed implementation.

For the example system presented earlier, only the modes in which the discrete

variable c was set to 2 were considered. This implies that for all possible locations of

the target all the cameras will be servoing the target. This scenario will be wasteful

for energy consumption and does not take into account the fact that the sensors need

not track the target if it is relatively far away from the sensor’s domain.

Since the cameras need not be tracking the target continuously and can shut down

74



when the target is not close by, the MHA model with controlled switching will be

more energy efficient. Figure 4.3 shows the MHA model of the two camera system

with controlled a controlled switch which is used render a camera into an inactive

state.
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Discrete State Space (Q)

The discrete states are modeled as Q = {q, b1,c2,b2} = {q} where bn denotes the

visibility of the target from camera camn and an denotes if camn is active or inactive

for that state.

Domain (D) and Init Set (Init)

For the MHA model depicted in Figure 4.3 the domains of operation of the various

modes are modified as:

B((IO) = {K C MKKn C Wnlne{1,2}}

D(q1) = {K 6 MIX c W2 AdW1(f() < 6}

0(92) = {K E Ml}? C Un€{l,2}Wn}

D(q3) = {K e MIR c w1 /\ dW2(f() < a}

D(q4) = {K e ler c W1 /\ dW1(f{) > 5}

0(05) = {K E MIR C WiAdW2(f{) > 5}

where, 6 is a positive scalar distance whose value is selected by the system designer

based on the controller design and stability requirements of the model.

The Init set can be defined as Init = {q,Kl Vi=1toN b,- = 1}}. This implies

that the Init set encompasses all the states where the target is visible to at least one

camera.
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Edge Set (E)

The possible discrete transitions denoted by the edge set E are:

E = {(q1, (10), (ql, q2)(q2, q0)(<12, r13). ((12, <11), ((13, (12), ((13, (10).

((14, (10), ((15, (10), ((14, (11), (C11, (14), ((15, (13), ((13, (15)} (4-21)

Continuous Dynamics: lV’Iutational Equations (2)

The continuous dynamics in states q1, q2 and q3 are the same as in the previous

example presented in section 6.7.3. However for the sates q; and q5, the continuous

dynamics are modified such that the camera that can View the target will perform

image based Hausdorff tracking while the other camera will have zero input. Hence

there will be a third case such that on = 0.

Camera Inactive, (on = 0) When the camera is inactive, the input the the system

is set to zero i.e., un = 0.

Guard Conditions: Switching Control (C)

The various events recognized by the distributed sensors are:

0 Target visible to camera camn

0 Location of coverage set of all neighboring cameras.

Using the location of the neighboring cameras, the current camera can estimate the

approximate location of the target as shown in 4.3.1. The guard conditions for the
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various transitions can be written as:

A

“(11.92) = {KCM3KCl/Vll

C(qsml = {KEMIKCW2}

C(q1,q0) = {KEMzR'nKlztlAKnK2=0}

C(q3,q0) = {KEMrIi’flKlzzleKflKg-zlb}

C(q2,q0) = {KEMzKflKlzleKflngfl}

C(q4,q0) = {KEMzR’flKlrfiAKflnglb}

C(q5,q0) = {Kelei’nlemARanzw}

C(qwn) = {KEMIK0K1=0}

C(q2,q3) = {KEMin'flKg-tlll}

G(Q3.<15) = {K E M I dW2(Kll > 5+ 6}

C(q5,q3) = {K e M : dWZ(K1) 4.) a}

001144) = {K E M I dW1(K2) '> ‘5 +6}

G(CI4:(11) = {K C M3d111/1(K2)> (5}

where, 6 > 0 is an arbitrarily small positive integer. A hysteresis is inherently as—

sociated with the switching conditions for every mode which will prevent infinite

switching in a finite time period (zeno execution).

4.3.4 Stability Analysis of the Two Camera Example with Controlled

Switches

We can apply a two step procedure similar to the one presented in 4.3.2 in order to

analyze the stability of the mutational hybrid automata model presented in Figure

4.3. First we prove that each mode in the set q = {q1, q2, q3, q4, q5} is internally stable
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as defined in Definition 4.3.1. Next we show that the goal set of the mutational hybrid

system is invariant which would imply that a trajectory which reaches the goal set

will remain in the goal set. Fhrther, by restricting the Init set to the goal set, we can

show that all trajectories of the mutational hybrid system initialized in the Init set

will remain in the goal set hence completing the proof.

Internal Stability

Lemma 4.3.2 Consider the continuous closed loop dynamics of the example two-

camera system represented in Figure 4.3 in the operating modes {q1,q2,q3,q4,q5}

and the guard conditions 4.22. The operating modes {q1, q2, q3,q4,q5} are internally

stable.

Proof. For each state in {q1, (12, q3, q4, q5} we can define a candidate Lyapunov func-

tion V,- as:

CI1=V1 = CJi+iJ2

(121V2 = z"71+CJ2

Q3IV3 = z'J1+z'Jz

(14IV4 = z'J2

<15=V5 = iJl

where, iJn 2 0 and 6.11; 2 0 are defined as in equation 4.18 and 4.19 respectively.

Hence V,- {i = 1,2,3,4,5} are candidate Lyapunov functions, since V,- _>_ O, V,- = 0

implies that the target is covered. Based on the procedure for calculating the motion

input an to the cameras outlined in 4.3.1, we can show that z'Jn and an exponentially

tend to zero, which implies that V,- also exponentially tends to zero. Hence we can say

that the continuous evolution in the modes {q1, (12, q3, q4, q5} converges exponentially

to the equilibrium state.
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We further note that the switching conditions C defined in equation 4.22 have a

certain hysteresis associated with them due to the finite size of the non-empty target

set R and the non-empty overlap region W1 0 W2. We can also assume that the size

of the camera coverage set for any camera is larger than the size of the target which

implies that that dW1 (K2) g dW1(K) when the target set is covered by the coverage

set K2 of camera cam2. We can write a similar condition for the target being covered

by camera 1.Hence we can prove that Zeno executions are prevented, which completes

the proof. Cl

Hybrid System Stability

In order to prove that the target will always be visible to at least one camera at all

times, i.e., stability of the hybrid system, we need to prove that the set of modes

q = {q1,q2, q3, q4,q5} is invariant. This will imply that once the target enters this

set of invariant modes, i.e., the target is visible to at least one camera, the hybrid

trajectory will never leave the invariant set.

Theorem 4.3.2 Consider the graphical MHA model of a pervasive surveillance sys-

tem in Figure 4.3. The set of operating modes {q1, q2, q3, q4, q5} is an invariant set.

Proof. Consider a hybrid trajectory 5H = (r, q, K) of the system with its initial

conditions within the set {q, Klq E {q1,q2, (13,Q4, q5}}. The modes {q1, q2,q3,q4,q5}

are exponentially stable, which implies that the energy of the system in that mode

can be reduced to a very small value in any finite amount of time t.

In the mode q4, If C K2. Further as the target moves closer to the domain W1,

dW1(K2) —> 6 and as soon as the dW1(K2) < 6, there is a mode switch to mode q1.

For mode ql this implies that when the target Ii’ C K2 hits the boundary of

the domain W1, its projection HW1(R) C HW1(K2) is already covered by K1 as

HW1(K2) C K1. When R is inside the boundary of W2, HW2(F{) g Ff C K1. Hence
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the target is within the coverage region of K1 and will be recognized by K1 which will

generate the event to set bl = 1, which in turn will switch the mode to q2 (assuming

W1 0 W2 # 0). Thus as soon as the target moves out of W2 and into W1 it will be

covered by K1.

Now within the mode ql, consider the target moving away from the domain W1.

This will imply that the distance dW1(F() is increasing which would in turn imply

that dWl (K2) is increasing. When dW1(K2) > 6 + e, the system switches to mode q4.

At the instant when there is a mode switch from mode q4 to q1, dW1(f{) > 6.

Assuming that the maximum velocity of the target centroid is vmax it will take the

target t1 = 6/vmam time to reach the boundary of domain W1. From the continuous

dynamics system, the error CJ2 can be reduced to zero in a finite amount of time

t2 S 5a where a is the gain of the Hausdorff tracking control input. Now, if t2 < t1

i.e., 6 > 5avmax, we can show that the Lyapunov function V1 in mode ql will be

reduced to zero before the target set intersects with the boundary of domain W1.

Hence we have shown that for all mode switches out of mode q1, the Lyapunov

function of q1 is reduced to zero.

A similar argument can be presented for the mode q3 and the target hitting the

boundary of W2 or moving away from the domain W2 such that dW2(K1) > 5 + 6.

Now in mode q2, the target is located in the intersection of the domains W1 and

W2 (K C W1 (1 W2) and is being covered by both K1 and K2 such that K C K1 and

If C K2 due to the exponential stability of mode q2. Now the target can only move

into the regions W1 \ (W1 (1 W2) or W2 \ (W1 0 W2) and in both regions either K1 or

K2 can cover the target, respectively. This implies that the system can switch modes

to q1 or q3, both of which possess the exponential stability (in the sense of Lyapunov)

property.

We have shown that all trajectories originating in q1(q3) can switch only to state

q2(q2) or q4(q5), all trajectories orignating in state q4(q5) can switch only to state
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q1(q3) and all trajectories originating in q2 can switch only to either q1 or q3. This

implies that the set of modes {q1, q2, q3, q4, q5} is invariant, which proves the theorem.

E]

4.4 Chapter Summary

This chapter presents the analysis of the Hausdorff tracking method and the muta-

tional hybrid automata model presented in Chapter 3. The Lyapunov theorem for

shape spaces is presented and it is used to prove the stability (in the sense of Lya—

punov) for the Hausdorff tracking method presented. The stability analysis of an

example two-camera pervasive surveillance system is also presented.
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Chapter 5

Design of Surveillance Networks

Collaboration among multiple sensors can generally lead to better sensing perfor-

mance and higher fault tolerance to individual node failure. Calibration of the sen-

sors aids collaboration by establishing a common frame of reference for the various

sensors. Calibration needs to be handled at many levels including location calibration

of the sensors, color map calibration, calibration of the target recognition modules

etc.

Coordinating the tracking of multiple targets using multiple sensors can be ad-

dressed in two ways:

1. Use a central monitoring station to integrate the track information from each

node [39].

2. Allow sensor nodes to operate autonomously and exchange track information

with one another in a geographical vicinity and provide a handover mechanism

when the target transitions from one sensor field of view to another [37].

The first approach simplifies track management and communications but is not

scalable to large networks due to the limited communication and processing capability

of the central monitoring station. Also, the system is not fault tolerant to the failure

of the central monitoring station. The second approach is highly scalable and fault
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tolerant to the failure of nodes, but involves significant communication overhead for

target track management and disambiguation.

5.1 Wide Area Camera Calibration

Calibration of the sensors in a wide area environment is a difficult task without

physical access to the environment that the sensors are placed in. Normal techniques

of system calibration such as using precise planar grids [70] are not possible in a

previously unknown and inaccessible environment. Only the intrinsic properties of

the sensors can be calculated and accounted for prior to deployment. Therefore, a

robust calibration method that allows for a wide dispersion of sensors to be calibrated

must be used.

5.1.1 Unitless Calibration

An unsynchronized network of cameras can be calibrated by trackng an identifiable

point in motion. This provides a unitless orientation of all sensors that have sensed the

point. The sensor network must meet the requirement of viewing area overlap for each

camera with at least one other camera. Also, all sensors must be interconnected via

overlapping viewing areas of intermediary sensors. Without this interconnectedness

the network would be segmented into groups that could not be related spatially. This

method is ideal for our proposed environment for the following reasons: 1) with a

drop-in-place environment there is no assurance that sufficient identifiable markers

will be available for automatic calibration of the type proposed by [71] [72] 2.) A

Kalman filtering technique can be used to reduce the error between pairs of sensors

and the propagation of error across the network 3.) The world coordinate system can

be defined with respect to any camera in the network including the mobile sensors.
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Initial Calibration

It is desirable to have taken the intrinsic characteristics of the cameras into account

prior to deployment to reduce the number of actions necessary to calibrate the system.

These intrinsic properties are represented in matrix form as

an 0 v.0

A: 0 av '00 (5.1)

.OOIl  

and includes the focal length (au, av), image center (uo, v0), and skewness (c) of the

image [73]. Focal length is the distance from the lens to the projection plane. The

image center is the center of the projected image on the projection plane. This allows

a more accurate pose to be generated. Finally, the skewness is the ratio of the pixel

width to pixel height and is used for correction of a flawed lens or to normalize wide

view images. We will assume that these characteristics are already well known for

each sensor in the network.

The extrinsic parameters of the cameras can be found using a point-in-motion

scheme. By identifying a detectable point in motion it is necessary, for every pair of

cameras viewing the point, to calculate both the cameras’ transformation matrices. A

camera’s transformation matrix is composed of the rotation matrix and the translation

vector for the camera with respect to another. This matrix is represented as:

T=[R t] (5.2)

The intrinsic and extrinsic matrices are then combined to provide a complete descrip-

tion of the mapping of a point in 2D image coordinates to 3D coordinates in the world
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One method of wide area calibration of extrinsic parameters is a point in motion

calibration technique. This method, proposed by [74], allows for a single identifiable

point to be passed throughout the observable environment. When all sensors have

detected the point while another sensor has the point in view simultaneously, a rough

estimate of the unitless calibration can be generated. This method is better suited

for wide area calibration because of the relatively large distances between sensors. In

order for a calibration object to be used to generate accurate results, resolution is very

important. The most accurate calibration takes place with the object filling most of

the screen. For a good calibration to be performed with a calibration object in a wide

area, it would need to be quite large to ensure the pose was properly modeled. This is

one of the strengths of the point-in-motion technique. The points can be distributed

throughout the volume of the coverage set, creating a virtual calibration object.

The scalar A is called the depth and accounts for perspective effects [75] and can

have any value. This ambiguity is a result of the loss of the z coordinate in relation

between the object in space and the object on the image plane. For any point (ui,v,-)

in the image plane i, a matrix T,- exists that satisfies

  

F .

.. ., (I:

“i

y

/\2 U2 = ATi (5 4)

Z

1

- - 1  

where A,- is the depth at that point i.
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The collected data is then processed assuming that times are synchronous for

each pair of positions and recorded for the sensors. Processing includes generating an

initial rough extrinsic calibration. Since no actual synchronization is used to gather

data, there will be time domain discrepancies in every pair of 2D points used to

find location and pose. This error in the developing map is reduced later using an

extended Kalman filter [76].

5.1.2 Method for Assigning Units

In order to find the scale factor associated with the calibration matrix it is necessary to

make some accurate real world measurements. With a drop-in-place system a number

of methods can be used to find the scalar A associated with the calibration matrices.

In our proposed environment there can be no assurance that a known dimension will

be found or that an object with a known dimension can be placed.

We have implemented a pre—calibrated dual head camera rig. This rig can be

used to accurately assign units to the unitless calibration data that has already been

generated. An accurate calibration such as that proposed by Zhang [72] will have

been performed and the unit’s characteristics will be considered well known so that

minimal error is introduced into the scaling of the sensor map. All sensors in the

network of calibrated pairs that now have a shared normalized transformation can

have units assigned with only a single shared marker with one other sensor by the

pre-calibrated dual sensor rig.

5.2 Grouping Architectures

One important issue we need to address for the surveillance network is group forma-

tion and management. There is extensive previous research done to address forming

and managing ad hoc network groups based on the proximity of the sensor nodes. In
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most surveillance tasks, spatial proximity of sensor nodes is a vital characteristic of

sensor networks. In order to take advantage of the proximity of the nodes to save

energy or enable efficient sensing information processing, sensors are often organized

into local collaborative groups.

The group management approaches differ from each other depending on how the

target object is identified and the parameters are detected. In the work of Chen

et a1. [77], the target is detected based on the acoustic signal strength and a group

management algorithm is proposed based on the Voronoi diagram. Liu et a1. [78],

proposed a distributed group management framework for target localization appli-

cations. In their framework, each node runs a likelihood ratio test (LRT) once the

target is detected. Later the group formation and leader election process is initialized

based on the result of LRT. In RoamHBA (Roaming Hub Based Architecture, [79]), a

subnetwork is established among the sensor nodes that are observing the same target.

Communication within this subnet is done through a multicast tree, called a roaming

hub. The subnetwork is updated by adding or deleting nodes at the edge.

For the visual surveillance network, we propose to use the RoamHBA(Roaming

Hub Based Architecture, [79]), based group management approach. One group will

be set up for all the nodes in a particular locality. In most cases, it is necessary for

the tracking group to elect a leader to coordinate the tracking and surveillance task.

Previous research work addressed the leader election problem in a wireless sensor

network

The dynamically elected leader is responsible for coordinating the tracking tasks of

each node in the group. Periodically the group leader runs the coverage optimization

algorithm. A timer is set up to invoke the process of coverage optimization. The

value of the time is determined based on the capabilities of the sensor node and the

characteristics of the targets being tracked. For example, if the targets move very fast,

the timer should have a very short timeout, and at the same time, the requirement
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for the capabilities of the sensor nodes are increased. The result of the optimization

algorithm, that is, the (multiple) target assignments, should be transmitted to the

member nodes using the networking transport services provided by the sensor nodes.

The actual transport services being used can vary based on the network infrastructure

on which the sensor network is built up.

It is reasonable to assume that the sensor nodes are equipped with geographical-

location-aware devices. Extensive research has been done about forwarding packets

in a wireless network based on the geographical location of the nodes. Different

from traditional wireless routing protocols, in location-based routing each node only

needs to know its own position and the position of its one-hop neighbors. This

makes location-based routing perform well in a dynamic environment such as a mobile

surveillance network. More details about location-based routing can be found in [80].

If the sensor nodes are geographically distributed and connected to the Internet,

common multicast protocols can be used for the group leader to disseminate the cov-

erage information to the group members. The group management can be done using

protocols like Internet Group Management Protocol (IGMP) and multicast routing

protocols can be used to set up the routes. In more common cases, where the sensor

nodes are connected using wireless networking technologies such as IEEE 802.11 series

technologies, group management techniques presented at the beginning of the section

can be used. The dissemination of the control information for sensor tasking can

be done using the multicasting or broadcasting techniques in wireless networks. For

access-point-based wireless networks, multicast among the group can be done with

the aid of the access points. For wireless ad hoc networks, much research has been

done to solve the multicasting problem. In the most straightforward case, a broadcast

simulated multicast, which involves the nodes boradcasting within their locality, can

serve the goal of a surveillance network.
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5.3 Sensor Allocation for Multi-Sensor Cooperation

For successful completion of the surveillance task, it is important to allocate the

sensors to the targets that are actively being tracked. Generally, each target should

be tracked by the sensor that can view it at an optimal resolution for best visibility of

that target. However, when the system is heavily loaded, that is, the target density

in a particular region with a limited number of sensors is high, one sensor might

need to track multiple targets. Even when the system is underloaded, multiple target

tracking by individual sensors is highly desirable as viewpoint redundancy will lead

to better estimates of the target coordinates and also present the viewer a clearer

view of all the targets that are being tracked. In this section we propose a heuristic

method to determine an optimal sensor allocation strategy.

At each system interval, the leader node computes a cost and visibility weight

for the targets being tracked. Assume m sensors with cameras were setup in the

system and there are n targets that need to be covered. One camera can cover from

O to up to n targets, so for each camera, the number of possible coverage sets is

2220(2) = 2'". In order to determine the optimal coverage set for each camera, we

set up a weight matrix W for the coverage Options. An element of the matrix W is

defined as (i E [1,m] and k 6 [0,2" — 1]):

C(L(k))

wik: Z Vi,L(lc)'(Rs,i,L(k)'wv+P3'wP) (5-5)

3:1

The following parameters are explained as follows:

0 L(k) is the kth combination of the set [1, n].

o ViJJUC) is a binary value (either 0 or 1) that indicates the ability for the sensor

node to cover all the targets in the set L(k).

o Rs,i‘,L(k) is the resolution of target 3 viewed by sensor node i when all the targets
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in the set L(k) are covered by sensor node i. The resolution is calculated as

follows:

CC

RS,’l,L(k) = /\—3- (5-6)
zs,i

where x, is the width of the target 3 and 23,,- is the distance between target 3

and sensor node i. A E (Am-n, Am”) is the zoom factor (focal length) of the

camera of sensor node i.

a P5 is the preassigned priority of target 3 in the tracking system.

a my and wp are adjustable parameters to reflect the importance of resolution and

priority in the coverage weight.

For each row of the matrix, a larger value will indicate a more desirable target

assignment. However, it is required that all targets should be covered by the sensor

nodes. Thus, an optimal solution of the problem can be defined as {(y,Ly)|y E

[1,n] and Ly is a combination of the set [1,n]} which satisfies that 23:1 Ly is the

largest among all the possible coverage set for each camera.

By brute force the complexity of the algorithm is 0(2m"). When n and m are

large, heuristic algorithms are needed to find the optimal assignment. In reality,

many heuristic approaches can be taken into account when solving the problem. For

example, we can prove that under normal target density, the coverage matrix will be

a sparse matrix, where most of the elements are zero. Eirther, in most cases, we do

not need to find the optimal solution. Finding a sub-optimal solution would reduce

the complexity of the algorithm dramatically. For example, after setting a threshold

of the acceptable weight, we can take the first solution encountered as long as all the

targets are covered.
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5.4 Optimal Hausdorff Tracking

Given the task specified by equation 3.31, notice that C(K, K) is not a square matrix,

which indicates that the system is redundant. Further the condition from Equation

(3.30) indicates that there are numerous choices of the input u which satisfy the

stability requirements of the Hausdorff tracking system. This implies that the system

has infinite solutions for a choice of input u which will accomplish the task. Therefore

the designer can choose an algorithm in order to achieve an optimal solution for this

system. An appropriate choice for u will minimize the resolution inadequacies and

energy consumed.

A review on recent literature shows that a commonly used approach for the optimal

redundancy resolution relies on the use of generalized or pseudoinverse transformation

to degenerate the system, while optimizing the given task criterion constructed from

multiple objective functions using a weighted sum method [81], [82].

Optimality can be quantified by defining supplementary task functions which the

system needs to accomplish. These functions are called objective functions which

need to be minimized in order to achieve an optimal solution. The optimization

problem can be expressed as:

Find the target and coverage sets (K and K respectively) and input u which

satisfy:

T

min: D(K,f(,u)= D1(K,K,u) DN(K,K,u)
K,K,u

JOCK): :d2 (p)dp
Subject to: fK K (5.7)

J°(K,K)(<p1,c,92) = C(K, K)u g —aJ(K, K)

where, Di(K,K,u), i = 1 to N are the N objective functions, D(K,K,u) 6 RN

is a vector of these objective functions.
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For the case of visual surveillance, the choice of objective functions can include

(but is not restricted to):

1. Energy consumed, which can be represented by ||u|]2.

2. Resolution constraints, which can be represented as Area_min g If? dp S

Area_max.

Various methods such as weighted sum approach and physical programming can

be used to solve the above optimization problem. It is proposed to use physical

programming for solving the constrained multi-objective optimization problem. The

significant advantage of the physical programming approach is it capability of placing

the design into a more flexible and natural framework.

5.4.1 Framework for Optimal Hausdorfi Tracking Design

Surveillance systems for target tracking are designed to perform tracking tasks with

different requirements under varying environmental conditions. Task requirements

vary even during the progress of a single task. The task criterion will vary for different

kinds of task requirements. Furthermore, a dynamically varying environment implies

the task criterion should be generated on-line. Thus, the new challenge for optimal

task distribution for the target tracking task is dynamic modification of the task

criterion based on task requirements. A new dynamic multi-objective optimal task

distribution algorithm for a target tracking system employing Hausdorff tracking

method proposed in [67] is developed. The algorithm’s architecture is shown in Figure

5.1.

The dynamic optimal task distribution algorithm consists of three modules: task

analyzer, optimization scheduling, and optimal solution calculation. The task ana-

lyzer takes current condition of motion module, target state and working environment

as inputs, analyzes requirements of the current task, and generates a collection of pa-
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Figure 5.1: The architecture of the optimal task distribution scheme.

rameters called as Task Indices (TI) to represent task requirements. The task analyzer

passes the task requirement information, TI, to the optimization scheduling module.

Based on T1, the optimization scheduling module builds the task criterion function

for the optimal task distribution. The optimal solution calculation algorithm then

finds an optimal solution for the criterion.

The optimal task distribution system may be located anywhere on the network

and can also be incorporated as a separate subsystem in one of the sensors. The

current environment conditions and state of the target and various sensors are input

to the optimizer over the network. The optimizer calculates the optimal solution as

a task distribution amongst the various sensors and robots involved in the tracking

task. This task distribution is represented as a vector of additional inputs to the

various sensors and is communicated to the sensors over the network.
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It should be noted that in the presence of random network delay, which will affect

the timely communication of the task distribution vector, the various sensor nodes

can still perform the tracking task assigned to them, albeit in a less optimized fashion.

This is because the optimizer only assigns an optimal task distribution to the various

sensors and not the complete tracking task.

The various parts of the optimal task distribution module are described in the

following sections.

Task Analyzer

Different kinds of tasks have various requirements which depend on many factors

such as the nature of the task, the targets being tracked, the location and state of the

various sensors involved in the tracking task, the obstacles in the working environment

etc.. A complex task may have varying requirements even during execution of the

task. The task analyzer takes as input the various stated of the task including the

location and states of the various sensors, targets and obstacles and provides a task

index vector as an out which represents the requirements of the task in a concise

form.

Task Indicators

For optimal performance, the task criterion function should be dynamically modified

according to time-varying task requirements. An on—line task analyzer is proposed

to analyze task requirements. Using the information from the sensors and the work-

ing environment as inputs, a collection of task indicators is generated online, which

represent the actual conditions of the tracking task being performed. Using a fuzzy

inference scheme, the task analyzer maps the task conditions represented by task

indicators u, into TI, which represents task requirements. The task indicator vector

96



u 6 RM (set of all task indicators) is defined as:

u={u1,u2,~-,uMquiEU, i=1:M}T. (5.8)

where, M is the number of task indicators.

Task Indices The Task Indices (T1) vector is used to mathematically describe

the task requirements. These indices are generated by a fuzzy mapping which takes

the task indicators as input variables. Figure 5.2 shows the structure of the Task

Analyzer. Various task requirements have their own physical and functional meanings
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Figure 5.2: The structure of the task analyzer module.

according to which they can be categorized into classes. For example, various classes,

such as maintaining the manipulability of the motion module, singularity avoidance,

conserving energy, maintaining adequate target resolution, etc., can be used.

For each class of task requirement, we generate one Task Index. For all task
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requirements, a vector of Task Indices is generated:

Index = {Index1,1ndex2,---,IndexK}T,

Al

, ai,j9i,j(”j) (5.9)

Indexi = f,-(u)=‘7:1
 

.M

Z “232'
3:1

where Indexi is the indicator analyzer for the ith requirement class. am- is the relative

weight of task indicator uj in the task requirement class i, 9231' is the mapping function

of the task indicator uj for the task requirement class i. Equation (5.9) maps the task

indicator value into the extent of task requirement. The relative weights are assigned

based on the physical meaning and importance of a particular task indicator within

a particular task requirement class.

Optimization Scheduling

The TI vector, generated in the task analyzer module, is the input to the optimiza-

tion scheduling module. This module generates the task criterion based on task

requirements represented in the TI using physical programming. The structure of

the optimization scheduling module is shown in Figure 5.3. Taking vector Index as

the input, a task criterion function is generated. This module consists of two parts:

physical programming and PP (Physical Programming) analyzer.

Physical programming, which is a multi-objective optimization approach, maps

the collection of objective functions into a utility function. Since the task requirements

vary according to transformation of tasks and environment conditions, the mapping

model for physical programming should change with the task requirements. Therefore,

the PP analyzer is built to analyze the physical programming mapping model based
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Figure 5.3: The structure of the optimization scheduling module.

on the TI. A confidence vector 3 6 RN,

E:{C17623”' iCNlT (510)

is generated to represent the degree of the system designer’s satisfaction about the

physical programming mapping model according to the current task’s conditions.

Finally, physical programming mapping is modified based on 3.

Physical Programming Optimal task distribution for Hausdorff tracking using

multiple robots is a multi-objective optimization problem for optimizing a vector of

objective functions, D, in equation (5.7). Usually, the system designer maps the

collection of multiple objective functions C,- into a utility function Z G R, which we

call the task criterion, using a mapping P : RN ——> R as:
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D,- is the objective function for the ith task requirement. The optimal solution is

achieved by choosing the system variables [u, p] which calculates the optimal value

for the criterion Z, where u is the input velocity of the various axes and p is the state

of the sensors and targets.

Weighted Sum Method The weighted sum method is the most popular mapping

method for multi-objective optimization problems. In this method, the task criterion

is formulated as a weighted sum of the objective functions, where the system designer

assigns a relative importance (weight) to each objective function. However, the task

criterion obtained by this method lacks physical meaning. Misinterpretation of the

theoretical and practical meaning of the weights can make the final solution unsatis-

factory. Although there are many methods for choosing weights, a priori selection of

weights does not necessarily guarantee the acceptability of the solution [81]. Further-

more, it is impossible to obtain a solution on the non-convex regions of the Pareto

frontier [83].

Thus, physical programming [84], is used to generate the task criterion. Using

this method, the system designers only need to specify a preference structure for

each objective instead of assigning a weight which may be meaningless. This usually

has more physical meaning and can better guarantee a satisfactory solution. Using

physical programming, the system design can be put into a more flexible and natural

framework. Another advantage of physical programming is that it can obtain the

solutions in the non-convex regions of the Pareto frontier [83].

Preferences Mapping Using the physical programming approach, objective func-

tions are mapped into a preference space. The preference is a parameter which rep-

resents the extent of the designer’s satisfaction. The task criterion is set up as the

aggregation of the preferences of all the objective functions. Thus, instead of being

physically meaningless, the criterion becomes a satisfaction factor of the solution.
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The designer’s expression of the preferences with respect to each objective function

can be categorized into four different classes: smaller-is—better (1S), larger-is-better

(2S), value—is-better (BS), range-is-better (48) as in Figure 5.4. According to Messac’s

research [85], the mapping is depicted as Figure 5.4. In this Figure, u,- is the value of

the ith objective function, P7; is preference, a real positive scalar, of the ith objective

function. Each objective belongs to one of these classes. [83—85] provide a more deeper

analysis of physical programming.

According to the degree of the desirability, the objective function values are cat-

egorized into several regions as seen in Figure 54. Taking the case of Class 1S as

example, the preference ranges are:

Ideal range (#2 S U21)

Desirable range (v11 S m S 1’2'2

Tolerable range (”012 S i S 7123

Undesirable range (

Highly Undesirable range (viz, _<_

Unacceptable range (”Dis S i)

The parameters, ”2’1 to vi5, are physically meaningful constants which express the

designer’s preference associated with the ith objective. For physical programming,

higher the desirability of the objective, the lower the value of preference. Therefore,

physical programming problems are always of the minimization type.

The class functions for preference mapping should have several important prop-

erties such as nonnegativity, continuity and convexity. Further, the preference value

P at range intersections (e.g., Tolerable-Undesirable) is the same for all class types

and objectives.
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Figure 5.4: Class functions for physical programming.
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Physical Programming Formulation Based on the preference mapping of the ob-

jectives, physical programming problems can be stated as:

A!

IninZ = Z P,- (gi(x))

x i=1

subject to:

9100 S 015 (for class 1S)

9i(X) _>_ 1115 (for class 2S) (5.12)

v,5L g g,(x) g ”0,512 (for class 3S and 48)

where x is the system variables, M is the number of the objective functions, gi(x) is

the ith objective function, P,- is the preference class function of 9,.

Physical Programming Analyzer (PP Analyzer) The preference structure

(say, class type and v1 to v5) for each objective function must be specified to set

up the global criterion function. However, due to changing task requirements, the

initially specified preferences for the objectives may not represent the objective’s de-

sirability accurately at later time instants. Therefore, physical programming should

be modified according to the task requirements.

A PP analyzer module is built to handle this problem. The PP analyzer takes

the Task Dexterity Indices as inputs, and generates a vector E = [$1, - -- ,EM]T to

represent the degree of designers’ confidence about the preference structure specified

for the objective function. It passes this confidence vector to the physical program-

ming module. The latter module will modify its result according to the confidence

parameters. The analyzer is formulated as:

E,- = (ai + k,- x index,) i = 1, - -- ,llf (5.13)

103



where a,- is a constant which represents the system designer’s confidence about the

original preference mapping function, ki is a constant. The criterion generated by

physical programming will be modified as:

M

Z = Ze- >< 1).-(alto) (5.14)

i=1

Equations (5.13) and (5.14) show that when index,- increases, the preference value
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Figure 5.5: Modification of the preference mapping by confidence factor.

of the ith objective function will increase. Thus, when the task has high preference

on the requirement class i, the objective function D,- should have a higher preference

for further minimization. Thus, the task requirement condition governs the path of

optimization.

From another viewpoint, multiplying a factor with the preference mapping func-

tion can be treated as modifying the structure of the mapping. Taking the class 1S as

an example (from Figure 5.5), if the preference value at the range intersection (say 202

Desirable-Tolerable) is kept unchanged, the desirability ranges of the objective func-

tion change with the task index (confidence factor). In this Figure, index’ > index
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will induce v2' < v2 which makes the Tolerant range closer to the ideal range.

Therefore, combining equations (5.7), (5.12), and (5.13), and replacing g,- by Di,

and x by u, p, the optimal Hausdorff tracking problem is formulated as:

M

2511112 = 2 £1 X Pi (DAMN) (5-15)
'1’ i=1

subject to

—aJ 2 Cu

D- u, S v- for class 18i( P) 15 ( l (5.16)

D,(u, p) Z v25 (for class 28)

v,-5L S D,(u,p) _<_ ’UibR (for class 3S and 48)

where, a is a positive definite gain and J is the vector of shape functions described

for a specific task. The system constraint equation -on = Cu is derived from the

Hausdorff tracking task controller derived in [67,68].

Optimal Solution Calculation

The next step is to find the optimal solution for the optimization problem specified by

equations (5.15) and (5.16. In this formulation the system constraint -aJ = Cu takes

the form of the linear equation. Therefore, we can use the generalized elimination

method [86] to eliminate the system dependent variables: suppose that there exist

matrices Anxm and an (n_m) such that [A B] is non-singular. Usually, for the single

target Hausdorff tracking task, n = 6 and m = 1. If matrices A and B satisfy the

following equations:

CA=I

CB=0,

(5.17)
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the system solution is formulated as:

u S —aAJ + B6 (5.18)

where, 6 denotes the Null space of the matrix C.

The reduced optimization problem is shown as:

M

minZ = Z 5,- X P,- (Dz-(u,p)) (5.19)

5 i=1

subject to

D,-(u,p) _<_ v5 (for class 1S)

Di(u,p) Z v15 (for class 28) (5'20)

v,5L S Di(u,p) S v,-5R (for class 33 and 48)

where, u g —aAJ + Be

(5.21)

p = 13 + u/f

p is the initial value of the system variables p, f is the control frequency, 6 is and

arbitrary vector and A and B are as defined in Equation (5.17). Using an online

pattern search algorithm [82], the system can easily obtain the optimal solution.

5.5 Switched Video Feedback

Video feedback is an essential component of the surveillance system. The task of cap-

turing, transmitting and displaying the live video stream from the various sensors to

the requesting clients is handled by the video subsystem. Since multiple cameras are

deployed to track the identified targets, multiple, concurrent feedback video streams

may be required for monitoring the target. These sensors initiating these streams

will be changing from time to time as the target moves out of range of the current

sensors tracking it. However, providing multiple unnecessary (unrelated to the task)
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Figure 5.6: Switched video architecture implementation

video feedback streams often causes loss of attention span of the operator and makes

it hard to keep track of the various activities over the cameras. Hence only video

streams from relevant sensors should be presented to the operator on a per-activity

basis. This is done through automatic or manual switching of the camera streams

that are presented to the operator.

The system is designed to support video feedback to multiple clients over an IP

network. The video service is designed to support various types of live video stream

feedback from the sensors to the individual clients such as MJPEG and H.263. Various

resolutions such as CIF, QCIF and 4CIF are supported for the live video streams.

A switched video client and server architecture have been implemented as shown

in Figure 5.6.
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The various properties and tenets of the design of the switched video feedback

system are

0 The client should be able to switch the video stream between multiple servers

in order to track a target as it ’handed-off’ between multiple servers.

0 The client should also afford the viewing of video streams from multiple servers

simultaneously in order to display multiple tracked targets or multiple views of

the same target.

0 The client should receive selected video feedback based on the commanded task

which will not tend to overwhelm the operator. This selection of the feedback

streams should be done automatically.

In order to transmit real—time video over a. network, it is necessary to convert the

output of the encoder into a packet sequence - i.e., packetize it. Traditional TCP and

UDP services are not sufficient for real-time applications, and applications-oriented

protocols such as the Real~time T1 :ii’is‘porl. Protocol RTP provide an alternate solution

for managing the essential tradeolls for quality and bandwidth. RTP provides end-

to-end delivery services such as payload type identification, sequence numbering and

time stamping.

The proposed architecture has been implemented on a PC running Linux OS.

The Qt toolkit [87], which is a complete C++ application development framework,

including a class library and tools for cross-platform development, has been used to

develop the client and application. A Windows-only client has also been implemented

using Microsoft Visual Studio 2005. The current implementation of the user interface

is shown in Figure 5.7.

We have implemented the MJPEG, H.261, H.263 and H.264(hardware based)

video compression schemes which are packetized using RTP/UDP transport protocol
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Figure 5.7: H.624 Based Switched Video Streaming Client.
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for transferring the surveillance video to the client. Characteristics and implemen-

tation details of the video subsystems implemented are summarized in the following

discussion.

5. 5.] Characteristics and Implementation Details for MJPEG

MJPEG stands for Motion-JPEG and is a technique which simply performs a JPEG

compression on each video frame before transmission. Unlike MPEG and H.263

codecs, MJPEG does not support temporal compression but only supports spatial

compression.

The main advantages to using this approach is that JPEG compression can be im-

plemented relatively easily in hardware and it supports a wide variety of resolutions.

This implies that a wide variety of hardware can be supported in case of a network

with heterogenous video capture hardware. Further, it uses no inter-frame compres-

sion which results in low latency in the video transmission system. However, the

major disadvantage for using MJPEG technology is its inefficient use of bandwidth.

Due to the lack of inter-frame (temporal) compression, MJPEG streams require a high

bandwidth of the order of 2 Mbits/s for a 30 fps NTSC resolution stream. Though

at lower frame rates and lower resolutions MJPEG can be used effectively, its use

cannot be justified in low bandwidth applications such as wireless sensor networks.

5.5.2 Characteristics and Implementation Details for H.261

H.261 is a video coding standard published by the International Telecommunications

Union (ITU) [53]. It supports CIF (352x288 pixels) and QCIF (176x144 pixels)

resolutions. It supports both temporal and spatial compression for reducing the size

of the encoded image. The coding algorithm is a hybrid of inter-picture prediction,

transform coding, and motion compensation. The data rate of the coding algorithm

was designed to be able to be set to between 40 Kbits/s and 2 Mbits/s. The com-
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pressed video stream is structured into a hierarchial bitstream consisting of four parts,

namely: (1) Blocks which correspond to 8 x 8 pixels; (2) Macro blocks which corre-

spond to 16 x 16 pixels of luminance and two 8 x 8 pixel chrominance components;

(3) Group of blocks (GOB) which corresponds to 1 / 12 of CIF picture or 1/3 QCIF

picture; (4) Picture layer which corresponds to one video frame.

The H.261 standard actually only specifies how to decode the video stream. En-

coder designs are constrained only such that their output can be properly decoded by

any decoder meeting the standard spec [53]. In our implementation, based on the Vic

software, the H.261 bitstream is encoded such that macro blocks that have changed

significantly from the previous frame are updated in the current frame. Also, each

macro block is updated at least once every 32 picture frames using a block aging

process.

5. 5.3 Characteristics and Implementation Details for H. 263

H.263 is video coding standard by ITU [54]. It was designed for data rates as low

as 20 Kbits/s and is based on the ITU H.261 standard. It supports 5 resolutions

(CIF, QCIF, sub-QCIF, 4CIF and 16CIF, where CIF is standard 352x288 pixels

resolution). Like H.261, it uses both temporal and spatial compression and also

provides for advanced coding options (not included in H.261) such as unrestricted

motion vectors, advanced prediction and arithmetic coding (instead of variable length

coding) for improvement of video quality at the expense of video codec complexity.

It allows for fixed bit rate coding for transmission over a low bandwidth network as ‘

well as variable bit rate coding for preserving a constant image quality and frame rate

for storage and transmission over high bandwidth networks.

Each picture frame can be coded as either an ‘I’(intra), ‘P’(predictive), ‘B’(bidirectional)

or ‘PB’ frame. ‘1’ frames are intra—coded reference frames which contain all the infor-

mation needed to initialize the decoder and display the image. ‘P’ and ‘PB’ frames
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are inter-coded frames which require information from other frames at the decoder in

order to decode them. In our implementation for the H.263 codec, which is based on

the Vic software, a completely intra—coded ‘1’ frame is transmitted every 10 seconds.

5.5.4 Characteristics of H.264 / MPEG4-Part10

A recent development for video coding is H.264/MPEG-4 Part 10 [55], also named Ad-

vanced Video Coding (AVC), which is jointly developed by ITU and ISO. H.264/MPEG-

4 supports video compression (coding) for realtime video delivery over low bandwidth

networks. In contrast to the frame based coding in MJPEG, H.261 and H.263+

schemes, the coding in MPEG4 streams is object based where each scene is composed

of objects, which are coded separately. This object based coding structure can be

effectively used for video surveillance systems [88]. However, current software im-

plementations of the coding scheme have been tested to have best-case capture and

compression latency of the order of 500ms - ls which precludes their use in a realtime

video scenario.

We have integrated a commercially available hardware based H.264—baseline and

H.264-enhanced encoder in our switched surveillance implementation which supports

a frame resolution of up to 1080x768 pixels2 at a frame rateof up to 30 Frames/sec.

The hardware encoder supports constant bit rate encoding as well as variable bit rate

encoding. For a frame rate of 30 fps and an image resolution of 800x600 pixels2

with variable bit rate encoding and a tracking scenario involving camera motion, the

baseline encoder has a bit rate of approximate 500 Kbps. The interface developed is

shown in Figure 5.7.
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5.6 Sensor Node Architecture

Figure 5.8 depicts the general architecture of a sensor node. The individual sensor

nodes maintain information regarding the observations of their neighboring nodes

and broadcast (within their locality) their own observations. Based on the combined

observations, each node develops a list of targets being actively tracked and the status

of its peer nodes and stores this information in the targets table and the sensor nodes

table, respectively. In the targets table, the native as well as observed characteristics

of the target objects, observed by the respective sensors, are stored. The targets table

also stores information indicating the node that sensed these characteristics. Nodes

also store peer information, such as location, active FOV and total capable FOV of

the peer.

When the target to be tracked is outside the active FOV of the sensor (but in

the capable FOV), the node can still ensure that the target is acquired in the active

FOV using target location information available from other sensors in the targets

table. This paper proposes the method of cooperative Hausdorff tracking for deriving

assumptions on the input u to the robot/camera to bring the target into the active

FOV of the sensor. Using the cooperative Hausdorff tracking method the target can be

brought into the active FOV of the sensor, and assuming that the visual characteristics
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of the target can be recognized, the sensor will switch over to image-based Hausdorff

tracking to maintain the target in the active FOV.

The sensed video information is broadcast to the requesting clients using the video

subsystem, which consists of a video server that compresses and transmits the cap-

tured video using either MJPEG or H.263 bit stream mounted over the RPT/UDP/IP

transport protocol.

5.7 Modeling Switched Video Feedback as a Dynamic Sys-

tem

The configuration of the cameras C can be defined as the collection of all the param-

eters of the cameras involved. That is:

C={Cl,C2,...,CN] (5.22)

where, C,- 6 RP is a vector containing all the intrinsic and extrinsic parameters of the

camera. The words “layout” and “placement” will also be alternatively used with

camera configuration but they will reflect the internal parameters of the camera, too.

Consider a monitored region as a domain E C R" under surveillance. A finite

number (N) of cameras is distributed in this region and involved in the surveillance

task of maintaining visibility of a target as it moves within the monitored region.

The monitored region E can be discretized on a finite-dimensional grid 9 = {WW} 6

R”,i=1,..,g} which consists of a finite number, 9, of vertices Vi. Note that grid 9’

can be generated from the domain E using various approximate cell decomposition

methods where the cells have a pre—defined shape and size in order to achieve a certain

resolution.

Consider any continuous-time target trajectory in two dimensions kc(r) : PC +—->

R2. For every 7' 6 Fc, kc(r) provides as an output the location of the target. This
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continuous time trajectory can be approximated as a discrete-time finite-dimensional

map on a grid as

k(t) : r i—i ug (5.23)

where, F = Z and Mg represents the finite-dimensional space of the locations of the

vertices V,- of the grid 9.

The dynamic sensor switching problem can be modeled as a discrete—time, finite-

dimensional dynamic system. The state space of this system is the finite set of camera

states defined as: Q = {q,-lg,- = (i,C,-),i E (1, ...,N),C,- E C} where N is the total

number of cameras and C is space of configurations of all cameras.

Using the above definitions we can now describe the model of a dynamic sensor

switched system as a finite-dimensional discrete-time dynamic system V:

v = [Q’F1u7¢]

(b:QXFXUgXU1l—>Q (5.24)

where U := Hg x U1. Here, u 6 U1 is the vector of control inputs while k(t) 6 Mg, t E

F, the sequence of grid locations in 9 that the target visits, are the reference inputs

to the system. The reference inputs evolve according to a predefined function of time

t and depend only on the target motion, which may not be known a priori. The

control inputs are used to control the trajectory of the system to ensure the target is

covered and can also be used for optimization of the various metrics being used.

The system V may not be complete, as all the transitions between various cameras

may not be enabled at all times, based on the visibility constraints of the various states

for the target locations provided.
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5. 7.1 Examples of Video Feedback Algorithms - Best Resolution

Consider a set of N cameras Q = {(i, C;)|i = 1, ..., N C,- E C}. The sensor selection

strategy is dependent on the resolution sustained by the target at each of the cameras

and the one with the best resolution will be selected to provide feedback to the human

operator.

This sensor selection strategy takes into account only the best resolution sustained

at all the cameras, which implies that the control input u is based solely on the camera

configurations {C2} and the target locations k(t). The strategy does not depend on

the current camera tracking the target - i.e., sensor switching costs are not taken into

account.

In order to implement this strategy in the dynamic systems model, we define a

function RN33 : Hg x I‘ i—> U1 which maps the locations of the target at various

time instances to the space of the control input variables u based on the resolution

sustained by the target at each camera. Notice that R is not a function of the current

state of the dynamic system - i.e., the current camera. This implies that the system

does not have memory.

The above algorithm can be implemented as follows. Let qbest represent the cam-

era that has the least distance to the target; i.e., under the assumption of homogenous

camera sensors, (lbest can view the target with the best resolution. For a given target

location k(t) and time t, Qbest can be written as:

We) = 4.1 2,311,131,, 418mb), k(t)). visible(q(t), k(t)) == (525)

Using the definition of qbest the next sensor to switch to i.e., q(t+1) can be written

85: (10 + 1) = Qbest(k(t+1))°
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5. 7.2 Example Video Feedback Algorithm - Persistent Camera

In the best—resolution—based video feedback algorithm, the current camera tracking

the target was not taken into account in the input to the dynamic system. Switching

cameras in a surveillance network can lead to the disorientation of the human operator

and is also generally associated with a switching time delay. Hence we should minimize

the number of switches.

In order to implement this strategy, define a function Rper : Q x Hg x F H U1

which maps the current tracking camera and the locations of the target at various

time instances to the space of the control input variables u. This implies that the

state of the system, q(t), is used along with the resolution in order calculate the

control input to the dynamic system.

The above algorithm can be implemented using the definition of qbest from the

previous section. The sensor selected at the next time step q(t+1) can be written as:

q(t + 1) =

min(dist(Cbest(t + 1), k(t + 1) + e, dist(q(t), k(t + 1))),

if visible(q(t), k(t + 1)) = 1

Qbest(t + 1)

if visible(q(t), k(t + 1)) = 0

(5.26)

5. 7.3 Assessment Metric for Video Switching Based on Camera Loca-

tions

In sections 5.5 and 5.5, a switched video feedback system for realtime video feedback

to the human operator to assist in the monitoring and decision making task has been

described. However, the constant switching of the video stream can be quite disruptive

for human cognizance of the remote environment and adversely affect decision making.

Hence the system should try to reduce the number of video feed switches required for
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the same tracking task.

The video feedback switch is based on the capability of the tracking cameras to

visually resolve the target and discern its features - i.e., the resolution of the target

sustained by the cameras. This switching is directly influenced by the locations of the

cameras in the scene. In the case of manually deployed camera configurations, the

system designer must take into consideration the adverse effects of video switching and

must decide the camera locations in order to minimize the switches while continuously

tracking the target. In this section we propose a metric as a performance measure of

the video feedback switching algorithm, based on the configuration of the cameras.

The switching metric M 6 72+ maps the configuration space of the video algo-

rithm [89] (which includes the previous feedback camera) and a scalar potential field

over the configuration space of the video algorithm to a positive scalar. Given the

configuration of the cameras C, the video algorithm can be thought of as a map—

ping from the combined space of current feedback camera and target location to the

feedback camera space. The scalar potential w(p) E R+,p E E provides a relative

importance to the current target location and can be chosen to bias the importance

of the target locations.

M = [F was) up) df (5.27)

where, f E F C Q x E and p E E. VV 6 [0,1] is the spatial derivative of the

output of the video feedback algorithm and represents at which points in the video

feedback configuration space F the output of the video feedback algorithm changes.

It is akin to edge segmentation in image processing [90]. Integration of these points

over the configuration space represents the number of switching surfaces present in

the complete space E. A lower number of switching surfaces will imply that the
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feedback camera location does not switch a lot with the free motion of the target.

The term cp(p) is just a scalar potential which reflects the importance of the particular

point p E E and can be used to bias the surveillance space E.

The switching metric M in conjunction with other metrics such as target reso-

lution at various locations in E can be computed for a large number of randomly

generated configurations and a sub-optimal solution can be derived for the placement

of the cameras. Owing to the large configuration space of the deployment algorithm,

various evolutionary computation and optimization schemes can be utilized in order

to minimize the total placement metric.

5.8 Optimization for Target Tracking using Switched Sensors

Given the scenario having a large number of static cameras distributed in an envi-

ronment with significant overlap of their viewing regions, the problem is to identify

the minimum number of cameras required to track a given target trajectory.

We propose to use dynamic programming as an optimal control strategy in order

to minimize the total number of cameras required to view the target with adequate

resolution.

5. 8.1 Optimal Control and Dynamic Programming

Consider a finite dimensional discrete-time dynamic system V and function b : X x

F x U l—+ R+ that takes on non-negative real values. We can now define a trajectory

cost function as:

T—l

B(T,o,x,w) = Z b(i,€(i),w(i)) (5.28)

i=0

where, to is a sequence of inputs and g = cp(x,w) is a sequence of states of the

dynamical system given the initial state x and a sequence of inputs w. The trajectory
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cost functions is read as “the cost of the trajectory produced by the control sequence

w E Lila”) if we start at state x.”

An optimization problem can be stated as: Given a discrete-time finite dimen-

sional dynamic system V, a trajectory cost function [3 and a pair of times a < r,

and an initial state x(a) find a control sequence to admissible for state 17(0) which

minimizes B.

More generalized problems can be introduced which require the total cost to be a

function of the final state or by adding constraints to the final state, etc.

In order to find a control input sequence to that minimizes the trajectory cost

function 8, we could list all possible control input sequences to = ug,u0+1, ...uT which

are elements of L! and compute the complete cost of all the trajectories generated by

all to E Illa”). This could indeed entail a prohibitively large computation cost.

Alternately, we could use the dynamic programming method and inductively con-

struct the Bellman function V and the optimal control input law K, backwards in

time i.e, from 7' towards a as:

V : [0,7] X X H R... (5.29)

K : [0,7') x X H U (5.30)

The Bellman function V(s, x) should satisfy for any 3 E [0, r], and each x E X,

V(s,.x) 2 main B(r,o,x,w) (5.31)

and the optimal control input satisfies the condition

60 + 1) = ¢(€(j)ijiK(j,€(j)))i j = 3,3 + 1, MT

{(3) = x (5.32)
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for each s E [0, r) and each x E X.

The computation effort required to solve this problem will be significantly lower

than tabulating all the control input sequences. However storage requirements for

this procedure will be significantly large.

5. 8.2 Dynamic Programming Algorithm Implementation

In order to minimize the switching cost and maintain adequate resolution of the target,

we construct a graph based on the camera location and the visibility of the targets to

the cameras, given the predicted motion of the target, Figure 5.9. The procedure for

constructing the graph is shown in Algorithm 1. After the graph is constructed, we

use the dynamic programming method, a modified version of the Dijkstra algorithm,

to find the optimal switching strategy (Algorithm 2). In the graph generating stage,

we enumerate all the cameras that can see the current grid point with an acceptable

resolution. The resolution metric is marked over each camera as a weight on the

vertex. However, in order to run the dynamic programming method, it is desirable

to have all the weights only on the edges. Thus each camera is represented by two

vertices in the graph, with an edge connecting them that has a weight equaling to

the resolution metric. We also enumerate all the cameras that can see the grid points

specified by the prediction vector. Between two prediction grid points we connect

the cameras based on their switching metric. If the two cameras are the same, the

switching metric is set to 0, otherwise a non-zero switching metric is set on the edge.

In Figure 5.9, all non-zero metrics are set to 1 for the sake of simplicity.

5.9 Chapter Summary

This chapter presents the design of the various components of a surveillance network.

For exploiting the redundancy in motion along the various axes of the sensor, an

121



f." ' "\ //’”\ ""\\ /“

{ C 1 Resolution , I i \i O l/ C ‘i, Resolution J C'\)

‘1 Metric . / ‘ ’ Metric ’ ‘ I

\\ 1/ \\..._// \x.._fu’/ \\~_l—/

1

/’""“ ’7 ’ ' , ”‘\ ”C

r" \ Resolution , / ’\ Resolution _, / ’\

1 CZ l Metric k CZ / ” C2 Metric Cl C2 l
\\\_’_,’ .\\__// 1 \\_/ \ku/z

r,""\ . /-\\ , ... . ‘ /"' ,/‘\.

(I C \ . Resolution a / C, . _ . / C\ . Reso|ution .. “f C,

k k ) Metric K k k k / Metric \ k
’\._-/ -,_,. ‘\.__/ v/

Figure 5.9: Generating Graph for the Camera Switching Strategy

 

Algorithm 1 [C, W] = Grathen(pv)

1: for all cam in CameraSet do

2 if pv(l) is visible by cam then

3: Add two nodes representing cam to G

4

5

 

Connect the two nodes with the resolution metric of cam in W

end if

6: end for

i Pprev = Pu“)

8: Delete pv(1) from pv

9: for all p in pv do

10: for all cam in CameraSet do

\
1

11: if p is visible by cam then

12: Add two nodes representing cam to C

13: Connect the two nodes with the resolution metric of cam

14: Connecting the nodes generated by p and ppm” and set the switching cost

to W if they are for different cameras.

15: end if

16: end for

17: end for
 

optimization framework is prOposed. This framework allows the accomplishment of

various other tasks under the constraints of the main tracking task, such as energy

conservation and better sensor location for sensing.

The characteristics and implementation details of the various choices for video

feedback are discussed and finally the design of a sensor node is presented. The

architecture of the sensor node consists of a camera, a target perception module, a

motion control module, a video feedback module and a communications module.
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Algorithm 2 p = Dijkstra(G, W, s, t)
 

1: for all 22 in V(G) do

2: d(v) <— +oo {Initialize the distance vector}

3: p(v) <— undefined {Initialize the previous node vector}

4: end for

5: d(s) <— 0 {The source has 0 distance to itself}

6: C (— 0 {Initialize the checked node set}

7: Q <— V(G) {Copy the vertex set into a working set}

8: while Q 51$ 0 do

9: u +— Extracth'n(Q) {Extract the vertex with minimum value in d}

10: C ‘— C U {u}

11: if u = t then

12: return

13: end if

14: for all edge (11,12) do

15: if d(u) + W(u,v) < d(v) then

16: d(v) 4— d(u) + W(u, v)

17: p(v) <— u

18: end if

19: end for

20: end while

21: if it e C then

n p90

23: end if
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Chapter 6

Experimental Implementation and

Testing

Figure 6.1 shows the general architecture of the surveillance system implemented over

an IP network. This chapter presents a discussion of the implementation issues such

as switched video feedback to the human operator/client and a performance analysis

of the experimental results of the proposed algorithms.

6.1 Experimental Test-bed Setup

A visual surveillance test-bed comprising of seven video cameras has been set up at

the Robotics and Automation Laboratory at Michigan State University. The test-bed

is used to demonstrate the integration of multiple active sensors with active target

tracking algorithms to perform a coherent pervasive surveillance task of tracking

multiple targets as they move across the monitored landscape. The cameras are

attached to processing and communication computers and some are mounted on pan-

tilt drives or robots for moving the cameras. The surveillance test-bed developed

has the functionality of an end-to—end, multi-camera monitoring system that allows a

single or multiple human Operator(s) to monitor activities in the region of surveillance.
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Figure 6.2: Surveillance test-bed designed along with the cameras and the motion

modules for camera motion.
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Figure 6.3: Sony EVI—D30 mounted on Robot Nomad XR—4000

Figure 6.2 shows the test—bed setup. This section describes the hardware and

software architecture of the individual sensors used.

6.1.1 Hardware Setup

The sensor node setup consists of three Sony EVI—D30 active PTZ (pan-tilt—zoom)

cameras, one dual head stereo vision camera consisting of two Hitachi KPI-D50 cam-

eras mounted on a Digital Perception DP-250 pan-tilt drive and one fixed view KPI

D-50 camera. One of the Sony EVI—D30 cameras was mounted on a Nomad XR 4000

mobile robot for extended mobility and sensing range. Figures 6.3 and 6.4 show the

sensor and motion hardware for the implemented system.

The cameras were connected to Pentium 4 2.4 GHz computers which had PCI-

based video capture hardware cards attached to them. The camera capture cards are
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Figure 6.4: Active Cameras: Sony EVI-D30 and dual head Hitachi KP-D50

capable of transcoding, in real time, the input from the cameras to an H.264 stream

(on a separate software interface) and transmiting that stream over the Internet to

clients that request the video stream. The PTZ modules for the various cameras

were controlled through serial port communications. The various computers were

connected to each other using wired ethernet and wireless 802.11g connections over

an IP network. The individual sensor nodes were provided with publicly addressable

IP addresses and hence could be accessed from the Internet. The human interface

clients were comprised of Pentium 4 laptop computers which could be connected to

the surveillance network through a direct wired or wireless connection or through the

Internet.

6.2 Software Setup

The sensor outputs are processed on the local computer for target detection and

identification. The local computers used for sensing and processing are running a

Linux Operating system. The targets to be tracked using the automated tracking
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system were multiple humans moving around in the monitored region. For ease

of target detection and identification, the human targets were wearing solid color

clothing and CMVision was used for color analysis and blob detection and merging

[91]. The acquired 640x480-pixe1 images were quantized on a 128x96 grid for reduced

computation load. The identified targets were represented using their bounding boxes

which were quantized on the 128x96 grid. The coverage set is also quantized on the

grid and the distances of the grid points to the target set are pre—computed and stored.

The tracking task is carried out at 25 fps - i.e., a new velocity input is computed for

the motion module inputs at the rate of 25 Hz.

At the same time, the raw camera feed is input to the H.264 transcoder card,

which is provided as a separate software device (/dev/dsp0) on the computer. There

are various implemented on Linux and Windows operating systems for receiving video

stream and other pertinent information from the camera servers.

6.3 Experimental Results for Wide Area Camera Calibration

The individual camera sensors involved in the setup of the camera system need to

be calibrated for their location and pose information in order to share information

amongst each other. A wide area calibration procedure described in Section 5.1 has

been used to calibrate the configuration of the cameras.

BlueCCal, developed for use at Czech Technical University by Tomas Svoboda [92],

is an attempt at calibrating many cameras without the necessity of a large calibration

object, or the necessary handwork of more classical methods. The system does,

however, have necessary conditions for the calibration to yield sufficiently accurate

results, which, among others, is a minimum of three cameras for the setup.

The only action required as a reference for calibration is the mapping of l-point

objects that is easily detectable in the images captured. For our setup, this involved
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capturing images in a dark setting with a plastic-capped laser pointer to act as the

1-point reference in all images. Therefore, the only necessary work was moving the

laser pointer around within our viewable domain, and capturing images during the

course of this motion. These images would later be used in the calibration software,

to locate the relevant points necessary for calibration.

The software itself can be broken down into a number of simple steps: find all

points in the images for each sensor, discard all mis-detected points by pair-wise

RANSAC analysis, estimate projective depths, fill missing points to make the scaled

measurement matrix complete, perform the rank 4 factorization to get projective

shape and motion, and estimate parameters of non—linear distortion.

Results of the calibration aren’t only just the necessary conversion matrices be-

tween each of the sensors, but also the distortion models of the system, the location

of all captured points in each of the sensors, and a scaled model of the location of

each of the sensors. This information proves vital in the immediate testing of the

results of the calibration; i.e., if the scaled model displays some erratic location of a

given sensor, it is likely the calibration is off w.r.t. that sensor. One can then look at

the location of the points in that sensor and notice if that sensor got the necessary

coverage of its viewing area to accurately calibrate w.r.t. the rest of the system. This

allows for a more intuitive check of the accuracy of a given calibration.

An advantage of this calibration tool, besides those stated above, is that the system

is an adaptive calibration, and among the images captured, the one-point object, -

i.e. the laser pointer - does not have to be in all of the images for each sensor. The

adaptive style of this network means that the more cameras involved, the better the

calibration results. So this proves beneficial for heavily overlapped multiple sensor

networks. The only necessary condition w.r.t. the number of sensors that can view

a given point is that the resultant calibration requires a minimum number of points

that can be viewed by at least three cameras at a time; this proves incredibly helpful
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Figure 6.5: Camera Setup: Location and pointing direction of the camera setup.

when working with a disjoint network, where there exists no point that all of the

cameras can see. By only requiring three cameras to see it, as long as the majority

of the monitored region is covered by at least 3 cameras, then the system is able to

calibrate with reasonable efficiency.

Figure 6.5 shows the results of the calibration carried out on 5 cameras. The

cameras were located at different heights and were pointing to the center of the

room.

The results of this experiment demonstrate the calibration of the surveillance test-

bed setup for conducting the remaining experiments outlined. From Figure 6.5 we

can see that the camera setup was calibrated with an adequate degree of accuracy.
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6.4 Experimental Implementation for Image-Based Hausdorff

Tracking

The automated tracking task was defined as maintaining the visibility of multiple

moving targets in a region with adequate resolution. The shape function used to

track the targets is:

Mo = 2?; Jpovu‘e-i + Jamar.) + ammo (6.1)

«fret/(Ki) = IR, dim?) dq

JAmin(Kz) = max(fKz dq — AREAJl/IINi, O)

JAma$(f(,-) = min(AREA_MAX,- — fK dq, 0)
2

where, N is the number of targets, q is a point on the target set R and AREA-MAXi

and AREA_MIN,- denote the maximum and minimum admissible areas of the target

set R,- for maintaining adequate resolution. Note that the shape function J(K)

is zero only when the set of targets U2N=1 K,- is completely covered by the sen-

sor coverage set K and when the area of each target set R is within the limits

(AREA-MIN, AREA-MAX) specified for that target. Otherwise J(R) is a non-

zero positive value.

Based on the value of the shape function J(K), the velocity input vector u to the

camera motion units (PTZ drives or robot) is calculated and applied at the rate of

image acquisition - i.e., 25 frames per second (fps).

6.4.1 Tracking a Single Target

The surveillance task is to maintain the target in the active FOV while maintaining

a discernable resolution of the target on the image plane. The task is described
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Figure 6.6: Image-based Hausdorff tracking using active camera

mathematically using equation 6.1. The target was a ball that was manually moved

around in 3D space during the duration of the experiment. The image was taken as a

regular grid of 128x96 pixels evenly spread over the 640x480 original image in order

to reduce the computation load. The target set K was approximated as occupying a

certain number of pixels on this grid. Assumptions on the input u = [3%, 2, W13, wy, MT

to the robot and camera system were derived using equation 3.31. The target was

initially placed where the task critera were not satisfied and then the target moved

around manually, which generated a disturbance input to the system and the system

immediately tried to reduce the value of the shape function to zero.

Figures 6.6 and 6.7 depict the results of the image space Hausdorff tracking task

using an active camera. The shape functions JFOV(K), JAreaMina?) and JAreaMax

and inputs u = [inf/MAT are plotted in 6.6 (a) and (b), respectively. The figure
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Figure 6.7: Image-based Hausdorff tracking using active camera: Maintaining ade-

quate target resolution

shows that the system is stable and that the target is maintained in the camera field

of view with a desired resolution despite the seemingly random motion of the target.

These experiments demonstrate Hausdorff tracking using multiple shape functions.

We see that the shape functions are are non-zero when the target moves but they

are quickly reduced to zero by the motion of the camera. The motion of the target

is taken as a disturbance input for the tracking control system shown in Figure 3.4

and it can be seen that the Hausdorff tracking controller can reject disturbance input

from motion of the target.

6.4.2 Tracking Multiple Targets Simultaneously

The surveillance task is to maintain the multiple targets in the active FOV of the

sensor. The targets were two humans moving around and interacting with each other.
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Figure 6.8: Tracking multiple targets using Image—based Hausdorff tracking

The target set K was approximated as occupying a certain number of pixels (in

multiple disjoint locations) on this grid. Assumptions on the input u = [wx,wy]T to

the camera system were derived using equation 3.31. The targets were initially located

such that they were out of the field of view of camera. The targets were detected by

the monitor and the sensor was tasked to cover the two targets simultaneously. At,

t = 0, the targets are just in the active FOV of the sensor and the task criterion is

not satisfied. The camera then moves to reduce the shape function J to zero so the

targets are now covered. The targets then randomly move around the room and the

camera tries to maintain both targets continuously in the active FOV.

Figure 6.8 depicts the J and the input velocities (u = [wx wy]T) applied to the

camera. Notice the initial large value of the shape function J, which is quickly reduced

to zero. Figure 6.9 depicts the position X, Z estimated of the two targets. We see
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Figure 6.9: Image-based Hausdorff tracking for multiple targets: Estimated position

of targets

that despite the seemingly random motion of the two targets, the camera always tries

to keep both of them in the active FOV. Further, the energy efficiency of the proposed

method is demonstrated by the relatively infrequent input applied to the camera only

when one of the objects escapes the active FOV. Figure 6.10 shows the images taken

from the camera at various times during the tracking experiment shown in Figure

6.8.

This experiment shows multiple target tracking with a single camera sensor using

the Hausdorff tracking method. Tracking multiple targets using a single sensor is

advantageous for overloaded networks where the number of targets outnumber the

number of cameras available for tracking. The image sequence in Figure 6.10 shows

that the targets are moving about randomly and still being maintained in the field

of view of the camera sensor at all times, which demonstrates the advantages of
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time = Ssec time = 13sec time = 208cc

  

   
time = 425cc time = 465cc

Figure 6.10: Image sequence for tracking multiple targets using Image-based Haus-

dorff tracking.

Hausdorff tracking over vector space servoing.

6.5 Experimental Implementation for Cooperative Hausdorff

Tracking

The cooperation between nodes to continuously track a target by directly tasking

various sensors can be done using cooperative Hausdorff tracking as explained in

section 3.4.2.

In this experiment, a mobile robot is deployed in order to track a target that cannot

be covered by a fixed sensor with adequate resolution. The robot uses the position

information received from other sensors in the network to compute a trajectory that

will bring the target set within its coverage set.

Figure 6.12 shows the x-z plot, which is the plane of the floor, of the data for

both the target centroid and the robot tracking it. The robot’s path shows the initial

cooperative tracking taking place. As the robot moved its view cone toward the
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Figure 6.11: Position of robot and target set on x and y axes.

target, the target also began moving. Re-projection of the target onto the view cone

caused a slight change in velocity in the robot that can be seen. Once the target set

enters the set space of the mobile robot’s view cone, image-based Hausdorff tracking

begins. Now the robot reacts to changes in the target to maintain optimal resolution.

This continues for the remainder of the experiment, as can be seen in the plot.

In Figure 6.11 we can see the data from the individual axes. The robot is quite

successful in maintaining the target set within its coverage set, as can be seen by the

correlation of the plots of each of the axes.

Finally, in Figure 6.13 we see the plot of the J value for both image—based and
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Plot of cooperative and image-based Hausdorff tracking on the x-z plane
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Figure 6.12: Motion of target set and robot on x—z plane. The view cone of the robot

is shown at a particular instance in time with the position of the target centroid

shown as well.
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Figure 6.13: Shape functions for cooperative and image-based Hausdorff tracking
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Figure 6.14: Robots View of target at several points in time to show several conditions

that the tracking system responds to.

cooperative Hausdorff tracking. A demarcation line has been included to clearly mark

the switch from cooperative to image-based tracking. This occurs at approximately

seven seconds. This agrees with the data from Figure 6.12 since this is the point

in time that the values of the axes begin to synchronize. Figure 6.5 shows several

images gathered during the experiment. The first image in the series shows a profile

of the mobile robot and the target tracked. The remaining images were gathered from

the robot’s onboard camera. The second image shows the target at the determined

optimal distance. This determination is based on the set space of the target instead of

simple-distance as is the case with point-based tracking. The third and fourth images

show cases where the target is moving toward, and away, from the robot, which then

causes the robot to retreat from, and pursue, the target respectively. The final image

in the series shows the target strafing left, to which the robot responds by moving to

re—center the target set.
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Figure 6.15: Target tracking using a Sony EVI—D30 camera mounted on Robot Nomad

XR-4000 mobile robot

This experiment shows that the Hausdorff tracking control can be used adequately

for task space servoing, as well. Given the task space location of a target set (possibly

multiple disjoint targets) and a model of the coverage set of a camera, the target

can be brought into view using cooperative Hausdorff tracking. This experiment also

demonstrates the stable switching (due to in-built hysteresis in the switching criteria)

from cooperative Hausdorff tracking mode to image-based Hausdorff tracking mode.

6.6 Experimental Implementation for Redundancy Resolu—

tion using Optimal Hausdorff Tracking

Based on the discussions in the preceding sections, we can now formulate the task

distribution problem for Hausdorff tracking using redundant motion stages. The

problem we are considering is the optimal task distribution for a pan-tilt camera

mounted on a mobile robot tracking a single target. The experimental setup for the

tracking task is depicted in Figure 6.15.

For the experimental implementation, we will consider the redundancy in the

robot and camera motion along the X traverse direction. When the target moves
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along the X direction, either the robot can traverse linearly or the camera can pan.

Hence there is a redundancy in the task execution. The model for the Hausdorff

tracking task using the camera and the robot combination can be written as:

"U2:

[01C2] = —aJ (6.2)

my

where u = [um wy]T is the velocity input vector to the robot and camera combination,

a is a positive task level scalar gain and J is the shape function which indicates the

error in accomplishing the task. The vector C = [C1 C2] describes the distribution of

the task error between the two redundant axes. Equation (6.2) can be derived using

the formula provided in [67].

The task indicators used are the energy consumed by the system and the cur-

rent pan angle of the camera. The current pan angle of the camera affects how

the translation in X by the mobile robot affects the task accomplishment. Hence,

the objective functions considered for the multi-objective optimization schemes also

included energy minimization and pan angle minimization and were represented as:

01 = q8 = (0 - 00)2 (63)

D2 = “Ur” + Ilwyll (6-4)

where, 0 is the current pan angle value, 00 is the desired pan angle value considered as

zero pan, Hug,- I] and Hwy I] are the horizontal X velocity and the angular Y velocity (pan

velocity), respectively. Note that confidence parameters are built into the objective

functions. For example, when the pan angle is close to zero, we would like to reduce

the weight for the objective function D1, which is exactly what happens.

Various optimization schemes were set up, including one with no optimization

involving just a random selection of the null space vector 6. The optimization schemes
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Figure 6.16: Results of the tracking task with optimal task distribution using physical

programming.

selected for the experiment included single objective optimization where either the

energy minimization or zero pan angle objectives were considered individually. For

the multi-objective schemes, both weighted sum and physical programming methods

were tested. The results of these tests are tabulated in the following sections. Figure

6.16 shows the results of the experiments carried out using physical programming

optimization described above. The figure shows the plots of the shape function, the

velocities in the X and pan directions and the objective function values for energy

conservation and pan angle zeroing.

Notice that the values of all the objective functions are always maintained at

least in the tolerable range by sacrificing the performance of the other cost functions

currently under consideration.

The same task was also carried out using a Ito-optimization scheme with a fixed
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Figure 6.17: The energy consumption for no optimization, and weighted sum.

task distribution between the two redundant axes and also using a weighted sum

scheme. As mentioned in section 5.4.], a weighted sum method with fixed weights

without apparent meaning is used in order to combine the various cost criteria. The

cost criterion used is:

+ llwzll)

The two cost functions - i.e., energy and pan—angle maintenance for the no-

optimization method and the weighted sum method, are shown in Figures 6.17 and

6.17, respectively.

For the no—optimization case, it can be seen that in the absence of any optimiza-

tion, the linear velocity transferred to the robot is very small and most of the velocity
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Figure 6.18: The pan angle for no optimization, and weighted sum.

for task execution is allocated to the camera pan.

Using the weighted sum method, the various components comprising the task

criterion lack physical meaning. Based on this observation we notice that even when

the multi-objective optimization is enabled, the pan angle remains very close to the

desired value while the energy conservation objective attains unacceptable values.

It should be noted that various tolerance ranges, which are used for the physical

programming approach, are not used in the weighted sum approach. Hence, despite

the optimization being enabled on the various objectives, the values of the objective

functions can attain unacceptable values.

The above results show that the physical programming method provided better

results in terms of Optimizing multiple objectives while simultaneously accomplish-

ing the task. This is because with the weighted sum method, due to the loss of

physical meaning of the weights, dynamic weighting may provide an unacceptable
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solution. However, for physical programming, since the cost criteria are combined

using weights which are attributed a physical meaning, physical programming can

calculate solutions on the pareto—optimal frontier.

This experiment further goes to show that the redundancy in the input expressed

in Equation (3.30) can be successfully exploited in order to optimize various cost func-

tions associated with the task. Hence, some criteria, such as resolution maintenance

of multiple targets. can indeed be removed from the set of constraints and used in

the optimization criteria and can provide more flexibility for task specification.

6.7 Experimental Results for Multisensor Cooperation

This section illustrates the experimental implementation and results for the two tech-

niques:

1. Sensor allocation algorithm and

2. Mutational hybrid automata modeling techniques proposed earlier.

6. 7.1 Experimental Evaluation for the Sensor Allocation Algorithm

Pervasive surveillance using the proposed multi-sensor coordination mechanism was

rigorously tested. The task of tracking a target over multiple sensor coverage regions

was carried out. The target moved a large distance, spanning the capable viewing

regions of multiple sensors. Figure 6.19 depicts the results of the tracking scenario.

Initially, sensor 2 can see the complete target but the target is out of the active FOV

of sensor 1, which is depicted by the target visible flag. Based on the solution of the

optimization, sensor 1 is tasked to track the object. It uses cooperative Hausdorff

surveillance to cover the target. The global coordinates of the target for cooperative

Hausdorff tracking are provided by sensor 2. Once it acquires the target, it switches to

image-based Hausdorff tracking to ensure target coverage. The target then randomly
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Figure 6.19: Estimated position of targets for multisensor cooperation using sensor

allocation algorithm
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moves around in the active FOV of both the sensors, which keep continuously tracking

it. Notice the robust tracking performance of the image-based tracking scenario

despite the minor differences in the estimation of the object location. The target

then starts to move out of the tracking range of sensor 2, which again triggers the

optimization planning problem, which assigns sensor 1 to keep continuously tracking

the target.

This experiment demonstrates the cooperation between multiple sensors for track-

ing a target. It shows that information from another sensor can be used in order to

cooperatively acquire a target by a camera and that the location of the targets can

be used to optimally assign the tracking task to the various sensors based on their

availability, target priority and the locations of the sensors and targets.

6. 7.2 Erperimental Evaluation of Multiple Target Tracking using Mul-

tiple Formation- Constrained Sensors

Motion is an energy intensive resource for a sensor node and should be minimized.

Multiple sensors (maybe with varying sensing modalities) can be mounted on a single

motion drive to reduce the energy consumption. Further, the various sensors can be

tasked to track different targets simultaneously. Hence the motion of the sensor node

should be optimized in order to achieve the various tasks simultaneously. The optimal

Hausdorff tracking framework proposed in section 5.4.1 can be used to calculate the

optimal sensor input u.

Consider a scenario where two targets are being tracked by two separate formation-

constrained sensors as shown in Figure 6.20. The task is to maintain the visibility of

targets K1 and K2 using the sensors caml and cam2 respectively. The two sensors

are mounted on a single motion platform, although sensor caml can be moved inde-

pendently of sensor camg by using the motion of joint qO of the PUMA robot arm.
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The shape functions for this task can be expressed as:

J1: [Kl dK1(P) dp (6.6)

J2=/1.{2dK2(p)dp (6.7)

The motion inputs to the complete robot system are linear motion along the X

axis (um) and angular motion about the Z axis of the robot base (LUZ). Angular

motion of the robot will not affect the coverage task assigned to sensor camg while

linear motion along the X axis will affect the task assigned to both the sensors. Using

Equation (3.31), the model for Hausdorff tracking for the two—camera system can be

written as:

C C u a 0 JCu : 11 12 a: < _ 1 1 (6.8)

/

Figure 6.21 depicts the target tracks of the two targets in the world coordinate

frame. The two targets move independently of each other and can cross each other

as is shown in Figure 6.24.

Figure 6.22 depicts the shape functions .11 and J2 for two cameras caml and camg,

respectively, and the velocity profiles of the two inputs v3,- and wz to the mobile base

and robot arm are shown in Figure 6.23. The inputs to the two motion axes (linear

velocity um and angular velocity wz) are calculated using 6.8.

The results of this experiment Show that we can use formation-constrained sensors

in order to accomplish multiple tracking tasks simultaneously using multiple sensors.

This implies that the optimal Hausdorff tracking framework can be leveraged in order

to solve multiple target tracking problems.
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Figure 6.20: Experiment setup for multi-target tracking using multiple cameras.
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Figure 6.21: Target tracks for multi-target tracking using multiple cameras.
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Figure 6.22: Experiment setup for multi-target tracking using multiple cameras.

152



10o-............. ...............I .................. : ............ ..: ...............

....... Base velocity: v)( i __E

 

 

  
——Arm angular velocity: cox

 

  

   
Figure 6.23: Experiment setup for multi—target tracking using multiple cameras.
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Figure 6.24: Image Sequences taken while tracking the two targets with two

formation-constrained cameras
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Figure 6.25: X—Y Plot for target motion

6. 7.3 Experimental Evaluation for Multi-Sensor Cooperation using Mu-

tational Hybrid Automata Model

For the experiment, the location of the target (human) moving about was captured

using a stereo vision system. Note that the location of the target was not used in the

feedback control scheme designed, but was used merely to show the random motion

of the target and coordinate it with the various mode changes in the MHA model.

Figure 6.25 represents the position, in x-y coordinates, of the centroid of the target,

located using the stereo camera. The locations of the cameras caml and camz are

superimposed on this figure.
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Pervasive Target Tracking Using Two Cameras with Continuous Cam-

era Servoing

In this experiment, the MHA model presented in section is implemented.

Figures 6.27 and 6.26 show the results of the experiments conducted using this

model. Figure 6.27 represents the data calculated by caml and Figure 6.26 represents

the data calculated by camg. Figures 6.27 and 6.26 show the value of the shape

function J, the pan velocity input to the camera, and the mode q E {q1,q2,q3}

(defined in 4.2) that the system is in; and subfigure b depicts the current pan position

of the camera and the visibility flag of the target for that camera. The visibility flag

indicates whether the target is within the FOV of the camera and is set when the

target is recognized by the target detection subsystem.

Figure 6.28 depicts an image sequence captured by the two cameras, with subfig-

ures a, b and c representing the three modes q1, q3 and q2 respectively. Within each

Figure 6.28(a), 6.28(b) and 6.28(c), the left and right images correspond to caml and

camg, respectively. We notice that the target is in the field of view of at least one

camera at any time during the course of the entire experiment.

The results of this experiment Show that the mutational hybrid automata frame—

work can be used to systematically design a pervasive surveillance network which can

be used to track a target as it moves across a wide region covered in parts by individ-

ual cameras. It shows that despite the random motions of the target, the surveillance

network can, in fact, perform stable tracking without having to estimate the exact

location of the target.

Pervasive Target Tracking Using Two Cameras with Controlled Switch

This section presents the results of the experimental implementation of the mutational

hybrid automata model with controlled switch shown in Figure 4.3.
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Figure 6.26: Current MHA mode, shape function, velocity, pan angle and target

visibility for Caml
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Figure 6.27: Current MHA mode, shape function, velocity, pan angle and target

visibility for Camg
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Figure 6.28: Image Sequences taken while tracking the target over different modes
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Figure 6.29: Current MHA mode, shape function, velocity, pan angle and target

visibility for Caml

Figures 6.29 and 6.30 show the results of the experiments conducted. Figure

6.29 represents the data calculated by caml and Figure 6.30 represents the data

calculated by camg. Figures 6.29 and 6.30 show the value of the shape function J,

the pan velocity input to the camera, and the mode q E {q1, q2, q3,q4,q5} (defined

in 4.3) that the system is in; and subfigure b depicts the current pan position of

the camera and the visibility flag of the target for that camera. The visibility flag

indicates whether the target is within the FOV of the camera and is set when the

target is recognized by the target detection subsystem.

These experiments show that irrespective of the target’s current location in the

monitored region, visibility of the target is maintained by at least one camera. This
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Figure 6.30: Current MHA mode, shape function, velocity, pan angle and target

visibility for Camg
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experiment further demonstrates the controlled switch scenario, where, the cameras

can be actively turned off, can be used to perform pervasive tracking.

6.8 Performance Analysis of the Video Subsystem

The real-time-performance video subsystem implemented was measured and analyzed

for use in the surveillance network scenario. The parameters which affect the perfor-

mance of a video transport scheme in the context of a switched surveillance scenario

are time taken to deliver the video stream to the operator, size and quality of the

image, the rate of video frame update (framerate) and the initialization time for the

client to receive one complete image frame from the server. We compared the perfor-

mance of using H.261, H.263 and MJPEG as the encoding/decoding scheme for the

visual surveillance tasks. The various choices for the video subsystem implementa-

tion have their advantages and disadvantages based on the scenario they are being

applied to. We propose a scenario/task based metric which can be used to evaluate

the suitability of the various schemes based on their characteristics. The parameters

for evaluation include:

1. Codec complexity

2. Bitrate of generated video stream

3. Switched video initialization time

Codec complexity can be represented by the amount of time taken for the capture and

compression of an individual image and may be an important factor for implemen-

tation on computationally constrained systems such as embedded processors. The

bitrate of the generated video stream represents the bandwidth consumed for trans-

porting the video stream to the operator and can be a limiting factor for wireless

or power constrained sensor nodes. Switched video initialization time represents the
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amount of time taken to display the relevant objects (targets or environment) after

a video stream switch has occurred. The proposed metric involving these parameters

is:

M=— — — 6.9
TLE+B+TC ( l

where, KLE, KB, KC are gain coefficients chosen on a per-scenario/task basis based

on a fuzzy rule. TLE and To represent the switched video initialization time and

capture and compress time, respectively, and B represents the bitrate of the generated

stream.

The surveillance tasks can be divided into two categories - namely, monitoring and

tracking tasks. In the monitoring task, the operator must evaluate the actions of the

target, which may require the knowledge of the environment w.r.t the target, while

the tracking task requires to only keep the target in view. Hence, for the tracking

task, in order to calculate the real switching time for the video system, we need to

account only for the display of a moving target, while for the monitoring task, we need

to evaluate the switching time for the moving target as well as the static environment.

Based on the characteristics of the task/scenario being evaluated, the values of the

gain coefficients are chosen based on a fuzzy rule. For example, if the sensor nodes are

not constrained by the processing requirements or power consumption (implemented

on regular PC’s), the codec complexity will not have much effect on the system

performance, so we assign a very low value to the gain coefficient Kc- Similarly, if

the nodes are networked using a wired LAN (100Mbps ethernet) infrastructure having

large enough bandwidth, then we assign a low value to the gain coefficient KB- In

contrast, if the nodes are sharing a low-bandwidth wireless channel, KB should be

assigned a higher value which signifies the importance of the bandwidth-consumed

parameter.

The various task/scenario combinations and their respective gain values we have

compared for the video system evaluation are tabulated in Table 6.1. In the scenarios

163



Table 6.1: Scenarios and gain values

 

 

 

 

 

# Scenario KLE KB KC

1 Wired network, monitoring task 1 0 0

2 Wired network, tracking task 1 0 0

3 Wireless network, monitoring task 1 1000 0

4 Wireless network, tracking task 1 1000 0       

implemented, the sensor nodes are implemented on general purpose PC’s running

Linux and hence the capture and compress time is not very crucial to the performance

comparison of the various schemes. The software implementation of the codecs for the

tests was a modified version of the Vic software. The video streams were packetized

using the RTP transport protocol.

6.8.1 Performance Analysis for Capture and Processing Time

The capture time and compression time for one image frame for H.263 and MJPEG

is shown in Table 6.2. The frame rate is set to 25 fps, the bit rate is set to be 1.5 M

and the image size is set to CIF resolution (352x288) for the experiments.

Table 6.2: Capture and Compression Time of the Two Schemes

 

Scheme MJPEG H.261 H.263

Capture 85 Compression 12.65ms 30.09ms 32.58ms

 

      

We noticed that for H.261 and H.263, when the scene has dramatic changes, the

compression time tends to increase, and in the case of MJPEG the compression time

is quite constant. Since both MJPEG and H.263 are symmetric coding/decoding

schemes, the decompression time should be equivalent to the compression time.
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6. 8.2 Comparison for Video Size and Image Quality

The H.263 standard is very limited in its capability for selection of the frame size,

which is limited to 5 standard resolutions, namely, CIF, QCIF, SIF, 4CIF and 16CIF.

This may be a limitation when integrating multiple types of camera sensors. On

the other hand MJPEG allows for almost all resolutions (limited to multiples of 8,

of course) and can be used to transmit very high definition images when required.

The viewing quality of the transmitted images can be largely regarded as the same

because both schemes use DCT (discrete cosine transform) and quantization for the

compression. However, it should be noted that using MJPEG, the complete image

is updated at once, while for H.263, the image is updated in parts and may cause a

visual degradation of the perceived image quality.

6.8.3 Performance Analysis for Video Bitrate and Frame Rate

Due to the inter-frame (temporal) compression implementation, the video bitrate

generated per frame for the H.261/H.263 schemes is lower compared to MJPEG. This

makes H.261/H.263 schemes more suitable for video communications over a restricted

bandwidth network. The frame rates and bitrates for the two schemes generated for

fixed and panning cameras are tabulated in Table 6.3. The quantization ‘Q’ values [57]

used are based on a visual notion of picture clarity and are noted in the table.

 

 

 

 

Table 6.3: Ffame Rate and Bitrate for MJPEG, H.261 and H.263

Frame MJPEG: Q=30 H.261: Q=10 H.263: Q=10

Rate Bitrate(KBPS) Bitrate(KBPS) Bitrate(KBPS)

(fps) panning static panning static panning static

10 668 668 550 25 700 20

20 1300 1300 1000 45 1000 38

25 1700 1700 1500 60 1300 48        
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6. 8.4 Performance Analysis for Server Switching and Camera Hand-

017

The initialization time of H.261, H.263 and MJPEG are also measured. The initial-

ization time is defined as the time from when the server starts broadcasting to when

the client receives the first image frame. In all three cases, the initialization time is

around 10ms.

For H.261 and H.263 schemes, since inter-frame coding is used, there will be long

delay when a client joins a session where a server is already broadcasting to other

clients. The effect is termed “late entry” and is caused due to the use of inter-frame

encoding, where each frame is not independent of the others but must be decoded

using some information from other frames. The stream switching delay due to late

entry can be large when using these encoding schemes, especially when the scene is

relatively static. The late entry problem does not exist for the MJPEG coding scheme

because all the frames transmitted are intra—coded and do not rely on information in

the previous or subsequent frames.

For the H.261 scheme implementation the server is only required to transmit those

master blocks that have changed through consecutive frames. Thus the client has to

wait until all the master blocks are transmitted once to be able to see the whole

scene. Based on our implementation methodology for the H.261 scheme, a moving

target will be displayed almost immediately while the static environment will take

a longer time to display after the switch, which implies that the switching time will

be low for a tracking task and relatively high for a monitoring task where the static

environment needs to be taken into account.

The H.263 standard allows the transmission of a completely intra—coded frame,

called the ‘1’ frame, to be transmitted periodically in order to negate the effects of

accumulated errors. In our experiments for the H.263 coded stream carried out at

various frame rate settings, the client has to wait for approximately 5—10 seconds to
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decode and display the first image frame because it can start to decode a stream

only after it has received the first ‘I’ frame. Table 6.4 tabulates the maximum time

taken by the client to display all the relevant macro blocks for the first time when the

client joins the broadcast session late for both the tracking and monitoring tasks. The

maximum switching time due to late entry problem is compared for various frame

rates of the video streams with a very large bandwidth.

Table 6.4: Server Switching Time for Monitoring and Tracking Tasks

 

 

 

 

 

Frame rate Monitoring task Tracking task

(fps) MJPEG H.261 H.263 MJPEG H.261 H.263

1 13 323 9.33 13 ls 9.53

10 0.13 3.23 9.83 0.13 0.123 9.73

25 0.063 1.33 9.23 0.063 0.053 9.43         

Note that the times given in Table 6.4 are the measured values for the display to

update. We notice that the switching time for the H.261 scheme is significantly lower

for the tracking task than for the monitoring task because the macro blocks comprising

the moving target will be updated and transmitted almost instantly; however, the

static environment blocks will not be updated until they age and expire at the end

of their 32-frame update cycle.

It should be noted that for the H.263 coding scheme, all the information needed to

initialize the decoder is stored in an intra coded ‘1’ reference frame, which is transmit-

ted periodically. One method to combat this late entry problem would be to transmit

an ‘I’ frame every time a new client joins the session, and can be implemented using

the RTCP (control commands) part of the RTP protocol. This may lead to higher

bandwidth consumption, but may be acceptable in wired surveillance applications.
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6.8.5 Performance Metric Evaluation for Various Surveillance Net-

work Tasks

Based on the experimental results reported above, the metric It! evaluated for the

various scenarios and the codec schemes is tabulated in Table 6.5. The video frame

rate was held constant at 25 fps with the image quality (Q) being held at 30 for

MJPEG and 10 for H.261/H.263. The cameras are assumed to be stationary.

Table 6.5: Metric for Comparison of Various Schemes

 

 

 

Scenario # MJPEG H.261 H.263

1: Wired, monitoring 16.67 0.769 0.109

2: Wired, tracking 16.67 20 0.109
 

3: Wireless, monitoring 17.26 17.43 20.94

4: Wireless, tracking 17.26 36.67 20.94

 

      

We notice that the H.261 implementation has best performance for the wired and

wireless tracking scenarios, whereas for the wired monitoring scenario, MJPEG has

the best performance and the H.263 implementation manages better performance for

the wireless monitoring scenario. It must be kept in mind that the performance eval-

uation for the various schemes are qualified by their implementation methodologies

outlined in section 5.5. A brief discussion regarding the advantages and disadvantages

of using the various video subsystems is presented here.

The MJPEG system can transmit video frames of various sizes and hence has the

advantage of being able to handle heterogenous hardware for video capture. Further

it has a low coding and initialization latency and allows for a direct hardware im-

plementation, which is advantageous for using lower processing power on the sensor

node. It does not suffer from the late entry problem during switching. However, it

requires a consistently high bandwidth, which may limit its application on wireless

or low bandwidth communication channels.

H.261 and H.263 encoding schemes consume less bandwidth, allowing for higher
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frame rates, which is an important characteristic for continuous and responsive real-

time monitoring. The drawbacks of these schemes are that they can handle video

frames of certain specified sizes only and that both initialization time and switching

time are higher than in MJPEG. They also suffer from the late entry problem, which

can be detrimental for systems involving video stream switching and nodes linked over

unreliable channels. However, the late entry problem can be solved at the expense

of transmitting the complete intra—frame—encoded image when requested using the

RTCP protocol.

6.9 Chapter Summary

This chapter presents the experimental implementation details of the various algo-

rithms proposed earlier. The image-based Hausdorff tracking method has been im—

plemented for tracking a single and multiple targets simultaneously. This tracking of

multiple disjoint targets moving independently is a major advantage of the proposed

method, as the current existing image—based tracking techniques, such as visual ser-

voing and gaze control, cannot achieve this. Results for the cooperative Hausdorff

tracking are also presented. The two multi-sensor cooperation methods proposed are

also validated experimentally. A task-based metric is also proposed for evaluating the

suitability of the various video feedback schemes.
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Chapter 7

Conclusions

This dissertation has presented an in-depth examination of the various aspects of

planning and control of mobile surveillance networks, concentrating particularly in

the broad areas of modeling, analysis and design of mobile surveillance networks. This

chapter discusses the conclusions and gives a view towards future areas of research.

7.1 Conclusions

The non-intrusive nature of cameras makes them an attractive choice for sensors for

various surveillance applications. In recent times, with the decrease in the cost of cam-

era sensors accompanied with increasing processing power and availability of wireless

networking capabilities in sensors of exceedingly smaller size, large-scale target track-

ing systems utilizing a large number of cameras are being increasingly deployed for

myriad surveillance and tracking tasks. Sensor mobility accompanied with large scale

wireless networking can overcome the limitations due to range, direction and occlu-

sion of visual sensing. However, a large number of sensors with motion capabilities

tends to increase the modeling and analysis complexity of such systems.

For successful completion of the surveillance task, it is important to allocate the

sensors to the targets that are actively being tracked. Generally, each target should
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be tracked by the sensor that can view it at an optimal resolution for best visibility of

that target. However, when the system is heavily loaded, that is, the target density

in a particular region with a limited number of sensors is high, one sensor might need

to track multiple targets. Even when the system is under-loaded, multiple target

tracking by individual sensors is highly desirable, as viewpoint redundancy will lead

to better estimates of the target coordinates and also present the viewer a clearer

View of all the targets that are being tracked.

In order to track a target over a wide area with a distributed surveillance network,

the tracking sensors need to be successively switched and the tracking task needs to

be handed over from one sensor to the next. This switching, while increasing the

modeling and analysis complexity, also introduces the design problem of optimally

locating the sensors (i.e., configuring the sensors) in order to maximize the tracking

performance. Switching the tracking task from one sensor to another tends to be quite

disorienting for a human operator and hence needs to be minimized while tracking a

target over a large region, while also maintaining adequate resolution of the target to

allow discerning various target features for classification and identification of targets.

This dissertation presents various novel approaches to solve the aforementioned

problems associated with mobile surveillance networks. The original contributions of

this dissertation can be broadly classified into modeling, analysis and design contri-

butions, which are individually addressed below.

Modeling Contributions Using the concepts of continuous and discrete motion

of cameras, a generalized modeling framework for conducting pervasive surveillance

has been developed. First, we have developed a novel domain-based modeling ap-

proach, christened “Hausdorff tracking”, for visually tracking multiple targets with

a single sensor while simultaneously accomplishing various other sub-tasks such as

maintaining adequate resolution of the tracked targets. Hausdorff tracking uses a
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mutational-analysis-based approach to express the motion of the target and sensor

coverage sets with respect to the camera motion input. The various task requirements

can be specified using shape functions which can be construed as analogs of vector

errors in a vector—based control system.

Using the concept of mutations of domains and shape analysis, the dynamics

(change in shape) of the sensor field of view (FOV) and target domains are described

and further feedback control mechanisms have been derived to complete the specified

task. The assumptions on the control inputs to the camera for stability of the control

system can be calculated using the shape Lyapunov theorem. Hausdorff tracking

provides a significant advantage over classical vector space servoing as it can express

the multiple target tracking succinctly and perform the tracking task in an energy-

efficient manner. The methods of image-based Hausdorff tracking and cooperative

Hausdorff tracking are introduced to perform target tracking using target information

either directly sensed from the camera image plane or acquired from other sensors

using the communication module, respectively.

In order to pervasively track a target over a large area covered by multiple sensors,

the mutational hybrid automata (MHA) model is proposed. The MHA model is

capable of capturing the inherent hybrid (discrete switching with continuous motion)

nature of the pervasive surveillance task - i.e., it accounts for both continuous camera

motion and discrete jumps in the location of the tracking camera, which indicates

a switch of the tracking camera from one sensor to another. The MHA model for

pervasive surveillance can be used to model “hand-off” scenarios as the targets move

across the coverage regions of multiple networked sensors. It allows modeling of both

autonomous and controlled switches, which provides for a rich framework for hybrid

control of the various tracking cameras based on the location of the target and other

environment inputs.
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Analysis Stability properties of the Hausdorff tracking controllers are proved using

the shape Lyapunov theorem. Using the shape Lyapunov theorem, it is shown that

the shape function (error) converges to zero at least as fast as a stable first-order

linear system. Stability for a pervasive tracking scenario implies that when a target

is detected by a camera in the network, its visibility will always be ensured while

it moves around in the monitored system. Using examples of pervasive surveillance

scenarios, a two-step procedure is proposed to show the stability properties of the

MHA model for modeling pervasive surveillance tasks. The first step shows that all

the modes of the MHA model are internally stable - i.e., continuous evolution within

each mode is stable in the sense of Lyapunov and there are no Zeno executions. The

next step is to show that a particular set of stable modes in the MHA model forms an

invariant set - i.e., if the hybrid execution enters this invariant set, it will remain in

this set for all time. Now if we limit the Init set of the MHA model to the invariant

set, the execution will never leave that set. This implies that if we can prove that the

invariant set is the set of all modes where at least one camera can view the target, then

if the target enters the field of view of any one camera, it will be tracked continuously

as long as it remains in the monitored region. This procedure is developed for both

models with and without controlled switches.

Design A wide area multi-camera location and pose calibration scheme is presented

that can calibrate the many heterogenous cameras with respect to a global coordinate

system in a short time by simply waving a bright light source in the region observed

by the cameras. This method can be used even when all cameras do not have an

overlapping field of view. The problem of optimally placing a number of cameras in

a given region to facilitate a surveillance task is presented. Metrics for evaluating

the performance of the tracking task based on the target resolution and number of

switches to pervasively track the target are presented. Another problem we presented
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is related to camera switching strategy given a full or part of a trajectory path of a

moving target. A dynamic-programming—based approach to generate the switching

strategy and optimize both the switching and resolution metrics is presented.

The Hausdorff tracking problem is extended to incorporate an optimal control

framework for executing multiple subtasks along with the target visibility task for a

surveillance network. This optimization framework allows the surveillance task de-

signer to consider various sub-tasks in the planning phase. Various sub—tasks can

include minimizing the energy consumed by the network, which will enhance the

longevity of the deployed network sensors. Physical programming is used for find-

ing a solution to the optimization problem in order to lend a tangible and physical

interpretation to the subtasks being considered.

The design of a switched video feedback system and a sensor node architecture

are also presented. The various alternatives for the switched video feedback namely

MJPEG, H.261, H.263 and H.264 are evaluated and a task- and scenario-based metric

is proposed to analyze their performance. The MJPEG scheme does not suffer from

the late entry problem, but the bandwidth requirement is constantly high. H.261 and

H.263 schemes consume low bandwidth for relatively static scenes but suffer from

the late entry problem when video switching is required. A switched video feedback

system using a multiple-client, multiple-server architecture using the H.264 video

encoding scheme is implemented.

Implementation and testing A surveillance test-bed consisting of seven heteroge-

nous cameras with motion capabilities for validation and testing of the proposed

schemes and algorithms is implemented. The sensors are calibrated using the wide

area calibration scheme proposed and various target tracking scenarios are imple-

mented and tested. Experimental results validating the proposed theoretical ap-

proaches are presented.
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The various theoretical approaches and tools presented in this dissertation will

enable the design, analysis and implementation of real-time mobile surveillance sys-

tems.

Overall Impacts All together this dissertation presents a collection of modeling

analysis and design tools for mobile surveillance networks. The impacts of this dis-

sertation to various fields are summarized below.

Impact on the field of surveillance and sensor networks: This dissertation presents

significant advances for modeling analysis and design for the field of surveillance and

sensor networks. Modeling multiple target tracking using the Hausdorff tracking

method provides a significant advantage for distributed sensor systems as it can sig-

nificantly improve sensing accuracy due to multiple detections of the same target with

different sensors. The novel stability analysis approach presented for guaranteing tar-

get coverage using distributed sensors is a significant step forward from the current

approaches of probabilistic modeling.

Impact on the field of robotics and control: This dissertation presents a major

contribution to the field of robotics and control. Vision based robot control has

suffered from the problem of task specificity i.e., the tracking task is generally over

specified and also lacked a generalized modeling structure for modeling multi target

visibility problems. The method of Hausdorff tracking proposed in this dissertation

represents a generalized set based modeling structure for modeling traditional vi-

sion based servoing. It can in fact be viewed as the super set of visual servoing as

traditional visual servoing tasks can also be readily expressed in this framework.

The use of mutational equations and shape analysis for representing shape based

control is a significant step towards extending the rich tool-set of control literature to

domain based control. Generalizing a vector based model to a domain based model
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opens up a lot of avenues for creative design of control algorithms. Many real-world

tasks which needed to be parameterized in order to be expressed in a controls theoretic

framework can be directly solved using this domain based approach.

Impact on general science and engineering: This dissertation presents various

results on suitability of various video streaming approaches for surveillance appli-

cations. It provides a method to measure the acceptability of various streaming

solutions which will have a significant impact on the implementation of networking

and IP-based video transmission.

Impact on society in general: There are many issues up for debate on privacy

and intrusion of it thereof. However, these concerns should not preclude the pervasive

monitoring and surveillance of critical infrastructure. In this current world scenario,

exhibiting a little precaution with regards to safety is, in my opinion, not a bad

idea. This dissertation provides tools for conducting pervasive surveillance which will

have many potential uses with regards to monitoring critical infrastructure such as

airports power plants etc and also many applications in our fuller understanding of the

world around us i.e., in environmental monitoring for understanding and preserving

natural habitats. However there are also many possible uses for this technology such

as continuous tracking of people with express intent of invasion of their privacy. But

all technology like a double edged sword has it’s advantages and disadvantages. It

is behooved on the people who use technology to be fair, just and moral in the

application of technology.

7.2 Future Research Directions

Large-scale surveillance systems have only recently been commercialized, and the

architecture and capabilities of these systems are still an active research area as many
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problems still remain to be solved. This dissertation has addressed several issues in

modeling, analysis and design of mobile surveillance systems. Certainly more can be

done to elaborate on the work presented in this dissertation and even more can be

done to address various other issues in mobile surveillance which have not been the

topic of this dissertation.

Shape functions for performing visibility- and resolution-based tasks have been

developed in this dissertation. However, more general classes of admissible shape

functions should be developed in order to provide a rich set of tools to design surveil-

lance tasks.

The mutational hybrid automata model presented uses an edge set in order to

describe the discrete switching dynamics of the pervasive target tracking model. It

should be noted that the number of edges and modes required to model the perva-

sive surveillance task increases exponentially as the number of cameras involved in

the surveillance task grows. This somewhat limits the applicability of the proposed

approach of using edge sets for modeling discrete dynamics. In order to alleviate this

problem, a language-based automata model can be used with an alphabet capable of

modeling very large-scale camera systems.

The proposed MHA model can be used for ensuring the visibility of a single

target moving in a region. The possibility of combining multiple such single-target

MHA models in order to track multiple targets simultaneously using the same network

should be investigated. Optimal control for the proposed mutational hybrid automata

model is still an open problem.

The switched video feedback system is implemented using a baseline encoder. A

high profile encoder with object-level support to code the various objects separately

would certainly enhance the video feedback system by reducing the bandwidth re-

quirement for the surveillance system. The support of user-defined queries and tasks

will certainly enhance the usability of the surveillance system, making it more flexible
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and adaptable for a real-world surveillance scenario.

There has been relatively little research done on camera deployment and place-

ment issues for tracking applications. The switching-based metric presented in this

dissertation serves as a first step towards the final goal of optimal camera placement.

A number of avenues can be pursued to carry this work further. A user-friendly

camera placement planning system that utilizes the switching metric amongst others

would provide a very useful tool for optimal camera placement.
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