

233

This is to certify that the
dissertation entitled

A FORMAL APPROACH TO PROVIDING ASSURANCE TO
DYNAMICALLY ADAPTIVE SOFTWARE

presented by

JI ZHANG

has been accepted towards fulfillment
of the requirements for the

Ph.D. degree in Computer Science and Engineering

St LI Lien,

A4
Maijg¥ Professor's Sigature
5/ [ae07

Date

MSU is an affirmative-action, equal-opportunity employer

LIBRARY
Michigar. State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/07 p:/CIRC/DateDue.indd-p.1

A FORMAL APPROACH TO PROVIDING ASSURANCE
TO DYNAMICALLY ADAPTIVE SOFTWARE

By
Ji Zhang

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
Department of Computer Science

2007

ABSTRACT
A FORMAL APPROACH TO PROVIDING ASSURANCE
TO DYNANMNICALLY ADAPTIVE SOFTWARE
By
Ji Zhang

Increasingly, software must adapt its behavior in response to the changes in its
run-time environment and user requirements in order to upgrade services, to harden
security, or to improve performance. In order for adaptive software to be used in
safety critical and mission critical systems. they must be trusted. Adaptive software
assurance must be addressed at different stages of the software development process,
including the requirements analysis phase, the design phase, and the imiplementation
phase. An adaptation-oriented systematic software developnient process that applies
formal methods throughout the process can be used to provide assurance to adaptive
systems. This dissertation introduces a number of specificatron languages. modei-
ing techniques. and model checking technigues to support a systeinatic approach to
providing assurance to adaptive software from requirements through design and im-
plementation phases. We introduce A-LTL, an adaptation extension to LTL. and
a goal-based requirements analysis technique to formally specify adaptation require-
ments. We develop a model-based design technique to describe the designs that satisfy
the adaptation requirements. Verification techniques are proposed to ensure that the
artifacts produced in later phases conform to artifacts produced in earlier ones. Safe
adaptation protocols and model checking techniques are applied to ensure that these
designs are correctly followed and the requirements are satisfied in the implementa-
tion. We have applied our techniques to a number of case studies involving adaptive

mobile computing applications.

Copyright by
JI ZHANG
2007

To my wife and my parents and sister in China for their support and encouragement.
A R (<]

v

Table of Contents

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1
1.2
1.3

Problem Statement
Summary of Contributions,
Outline of the Thesis

I Requirements Analysis for Adaptive Software

2 A Formal Model For Adaptive Software

2.1
2.2

2.3
24
2.5

Background: Program Kripke Structure
Finite State Model For Adaptive Software
2.2.1 Formal Definition
2.2.2 Compositions of Adaptive Programs
Autonomic Computing System
Related Work
Discussion

3 Temporal Logic for Specifying Adaptive Programs

3.1

3.2

3.4

3.6
3.7

‘Background: Linear Temporal Logic (LTL)
311 Syntax
3.1.2 Semantics
The Adapt-Operator Extended LTL (A-LTL)
3.21 Syntax
3.2.2 Semantics
3.23 Expressiveness oo
Adaptation Semantics
3.3.1 One-Point Adaptation
3.3.2 Guided Adaptation
3.3.3 Overlap Adaptation.
3.3.4 Safety and Liveness Properties
Specification Compositions
3.4.1 Neighborhood Composition
3.4.2 Sequential Composition L.
Case Study: MetaSockets
3.5.1 Specifying Steady-State Programs
3.5.2 Specifying Adaptations o0
3.5.3 Specifying Global Invariants
Related Work
Discussion e

ix

- U

36
36
37
39

4 Goal-Based Requirements Analysis 44

4.1 Background: Goal-Based Models 44
4.2 Specifying Adaptation Requirements 45
4.2.1 Local Properties and Global Invariants 45
4.2.2 Adaptation Variants 46

4.3 Related Work 49
4.4 Discussion 50
II Model Design and Analysis of Adaptive Software 52
5 MASD: Model-Based Adaptive Software Development 53
5.1 Background: Petri Nets 55
5.2 Our Specification Approach oo 57
5.2.1 Illustrative Adaptation Scenarioo 59
5.2.2 Constructing Models for Source and Target 61
5.2.3 Constructing Adaptation Models 66

5.3 Reifyingthe Models.o oo 76
5.3.1 Rapid Prototyping 76
5.3.2 Model-Based Testing 78

5.4 Case Study: Adaptive Java Pipchne Program 80
5.4.1 Specifying Global Invariants 81
5.4.2 Specifying Local Properties 83
5.4.3 Constructing Steady-State Models 84
5.4.4 Constructing Adaptation Models 0oL 86
5.4.5 Reifying the Models 88

55 Related Work 89
5.6 Discussion 91
6 Re-Engineering Software to Enable Adaptation 93
6.1 Background L o 95
6.1.1 Aspect-Oriented Adaptation Enabling Technique 95
6.1.2 MetaModel-Based UML Formalization Technique 97

6.2 Model-Based Re-Engineering 97
6.2.1 Requirements Analysis 98
6.2.2 Design and Analysis o Lo 100
6.2.3 Code Generation 103

6.3 Case Study: Adaptive Java Pipeline Program 109
6.3.1 Requirements Analysis 109
6.3.2 Design and Analysis Lo 113
6.3.3 Code Generation, 119

6.4 Extensions 122
6.4.1 Collaborating Adaptive Components 123
6.4.2 Adapting to Multiple Target Programs 124

6.5 Related Work 124

vi

6.6 Discussion 125

III Implementation of Adaptive Software 128
7 Modular Model Checking for Adaptive Software 129
7.1 Specifying Adaptive Systems 131
7.1.1 Adaptive TCP Routing 131

7.1.2 Verification Challenges, 131

7.2 Preliminary Algorithms and Data Structures 136
7.2.1 Partitioned Normal Form 137

7.2.2 Property Automaton 139

7.2.3 Product Automaion Construction and Markingo 141

7.2.4 Interface Definition 0. 147

7.3 Modular Verification 147
7.3.1 Global Invariant Verification 148

7.3.2 Transitional Properties 152

7.4 Details of Model Checking Algorithms 154
7.4.1 Simple Adaptive Programs 155

7.4.2 N-plex Adaptive Programs 156

7.4.3 Global Invariants 159

744 Claims 160

7.5 Case Study: Adaptive Java Pipeline Program 164
7.6 Optimizations, Scalability. and Limitations 168
7.6.1 Optimizations L 168

7.6.2 Complexities and Scalability 171

7.6.3 Limitations 172

7.7 Related Work 173
7.8 Discussion 176

8 Run-Time Model Checking for Adaptive Software 178
8.1 Run-Time Verification 179
8.1.1 Aspect-Oriented Instrumentation 180

8.1.2 Run-Time Verification 182

8.2 Case Study: Adaptive Java Pipcline Program 183
8.2.1 Adaptation Requirements 186

8.2.2 Instrumentation and Model Checking 189

8.3 Related Work 191
84 Discussion 192

9 Safe Dynamic Adaptation Protocol 195
9.1 Theoretical Foundations for Safe Adaptation 196
9.1.1 Dependency Relationships 193

9.1.2 Critical Communication Segments 200

9.1.3 Enabling Safe Adaptation L. 201

9.2 Safe Adaptation Processo

9.2.1 Analysis Phase 0
9.2.2 Detection and Setup Phase
9.2.3 Realization Phase
9.2.4 Failures During Adaptation Process
9.3 Case Study: Video Streaming
9.3.1 Safe Adaptation Path
9.3.2 Performing Adaptive Actions Safely
9.4 Related Work
9.5 Discussion L

10 Conclusions and Future Investigations
10.1 Contributions
10.2 Future Investigations
10.3 Final Thoughts

A Timed A-LTL
A.1 Background: TPTL, .
A.2 Timed Adapt Operator-Extended LTL
A21 Syntax
A 2.2 Semantics of TA-LTL
A.3 Specifying Adaptation Timing Properties
A.3.1 One-Point Adaptation
A.3.2 Guided Adaptation L
A.3.3 Overlap Adaptation.
A.4 Case Study: Live Audio Streaming Program
A.4.1 Forward Error Correction (FEC) Filters
A.4.2 Specifying QoS Constraint with TA-LTL C
A5 Related Worko
A6 Discussion
A6.1 Expressiveness. o
A.6.2 Decision Procedure and Model Checking
A6.3 Summary

B Supporting Material for MASD
B.1 Rapid Prototyping for Adaptive GSM-Oriented Protocol
B.2 Stub Files for Model-based Testing

C Obtaining Statechart Diagrams from Java Code

LIST OF REFERENCES

Vil

267

274

9.1
9.2

Al
A2

C.1

List of Tables

Safe configurationset L L. 212
Adaptive actions and corresponding cost. L0 212
Loss rate comparison of different FEC codes 245
Delay comparison of different FEC codes 245
Rules for the Metamodel-based Java to UML translation 268

6.10
6.11
6.12

List of Figures
Assurance techniques in three phases00

A simple adaptive program oL
Metamodel for adaptive program
General architecture for autonomic system

Three adaptation semantics

Goal model for adaptive software
Adaptation semantics graph o000 oL

A coloured Petri net example.o
Goal model for adaptive software
GSM-oriented encoding and decoding
Audio streaming system connection L. L.
Sender source net (GSM (1.2)) oL
Receiver source net (GSN (1.2))o
Lossy network net (enviromment model)o
Sender target net (GSM (1.3))
Receiver target net (GSNI(1.3))
Sender adaptation net 0L
Receiver adaptationnet Lo
Sender restricted source neto
Adaptation controller net oL
Overall adaptation with controller net
Code excerpt from the seuder net stub (SenderNet.stub)
Goal model for adaptive Java pipelineo
Synchronized pipelinenet Lo
Asynchronous pipelineneto
Adaptive pipeline adaptationnet L.

Aspect-oriented adaptation enabling o000
Dataflow diagram for the proposed re-engineering approach
Goal model for adaptive software
An example of the simple case of quiescent/entry states
An example of the general case of quiescent/entry states
The cascade adaptation mechanism

Before and after canonical form conversion of
sync.PipedInput.read()
Statechart translation of sync.PipedInput.read()
Adaptation model for the piped input class
The read () method for the adaptive piped input class

6.13 Aspect]J code for adaptation enabling

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4

Al
A2
A3
A4
ASb
A6
A7
A8

C.1
C.2

Case study: adaptive routing protocol
Illustration for Theorem 9
Markings for global invariant me o000
Markings for transitional properties L.
HMlustration for Proof 10
Mustration for Proof 11
Case study: adaptive Java pipeline
Performance comparison between our approach and alternative ap-
proaches L L

The sequence diagram for the adaptive Java pipeline
Instrumentation aspect definition for the main() method
Instrumentation aspect definition for SyncOutput

State diagram of a local process during adaptation.
State diagram of the adaptation manager during adaptation
Configuration of the video streaming application
Safe adaptation graph (SAG)

Three adaptation scenarios O
Real-time constraints for one-point adaptation.
Real-time constraints for guided adaptation.
Real-time constraiuts for overlap adaptation.
Audio streaming system connection L.
Operation of block erasure code.
GSM encoding on a packet stream (d,: data. g,: copy).
Specifying adaptation semantics with TA-LTL

Metamodel for subset of Java legacy programs
Metamodel for subset of UML Statechart diagrams

X1

Chapter 1

Introduction

Increasingly, computer software must adapt to changing conditions in both the
supporting computing and commanication infrastructure, as well as m the surround-
ing physical enviroument [961. To meet the needs of emaging and future adap
tive systems, numerous research efforts in the past several years have addressed
wavs to construct adaptive software. Examples inciude support for adaptability in
megrzunmiilg languages [I 65, 111, hameworks to design context-aware applica-
tions [43. 126]. dynanic architectures for reconfignrable sottware componenis and con-
nectors (2. 92, 98, 105]. adaptive middleware platforms that insulate applications from
external dynamics [15, 69], and adaptable and extensible operating svstems [6. 11, 39)].
However, despite these advances in mechanisms used to builld adaptive software, the
fuil potential of dyunamically adaptive scftware syvstems can be realized only if we
can establish and ensure the cousistency of tne svstem during and after adapta-

tion [150, 152].

1.1 Problem Statement

Assurance is even more important when adaptive software is nsed in safety and

misston critical systems. For safety critical svstems. errors in the software svstems

may have catastrophic consequences. For mission critical systems, the cost to fix an
error in the software after the mission has been launched may be exceedingly high.
Iz order to be used in such safety and mission crivical systems, the adaptive software
must be trusted. Critical properties. such as safety properties, must be ensured in the
software by the software development process.

In order for us to gain confidence in an adaptive system, assurance must be
addressed at different stages of the software development process, including the re-
quirements analysis phase. the design phase, and the implementation phase. During
the requirements analysis plhase. assurance for adaptation can be achieved only if the
software developers fully understand the adaptation requirements for the software,
which requires precise specifications of requirements. In the design phase, the re-
quirements for the adaptive software should be satisfied in the design, and should be
amenable to verification. Also. for maintainsbuity purposes. the design of adaptive
software should separate adaptive Lehavior {rom non-adaptive belavior. I the im-
plementation phase. distributed adaptation aciions should be coordinated to ensure
critical constraints (e.g.. dependency relationships) among compcunents of adaptive

“software systems. Verification techniques may be used to verify the implementations
against the requireinents specifications for adaptive software. The above phases must
be addressed systematically so that conditions expressed in the requiremernts are sat-
isfied in the implementation.

Adaptive software is generally more difficult to specity. verity. and validate due
to its high complexity [144]. Particularlv, when adaprations are multi-threaded, the
program behavior is the result of the collaborative behavior of multiple threads and
software compoanents. Adaptations require the adaptive actions of all the components

and threads to be executed in a coordinated fashion.

Thests statement: An adaptation-oriented software development pro-
cess that systematically applies formal methods throughout the process

can be used to gain assurance for adaptive systems.

As depicted in Figure 1.1, our approach provides assurance to the development
process of adaptive software in the requitements, design. and in;plementation phases.
In the requirements phase. formal specification languages can be used to specily adap-
tation requircments. We developed A-LTL [143. 146]. an adaptation extension to the
Linear Temporal Logic (LTL) [111] to enable the formal specification of the objectives
for the software. We also developed TA-LTL {155] to specify 1eal-time properties of
adaptive systems. We applied the temporal logics to formally specify three frequently
occurring adaptation semantics [143. 146]. The formal temporal logic specifications
enable us to perform numerous autoinated analyses, such as verifying specification
consistency, model checking for sofety properties. «tc. We intioduced a goal-based
requirements analysis technique [1-13] for anzlvzing adaptation requirenmients and con-
structing A-LTL and LTL specifications for adaptation. The formal specifications
produced in this phase will be utilized by the design phase.

We have developed a model based design technique [144] to describe the designs
that satisfy the adaptation requirements and to mitigate the complexity in the de-
sign. The models that satisfy non-adaptive requirements are separated from those
that satisfy adaptive requircments. W capture quiescent states (the states from
which adaptation may safely start) in the design for adaptations in terms of specific
adaptation contexts. including the program behavior, the requirements for the adap-
tation, and the adaptation mechonisin. The design models can be analyzed using
automated tools to determine whether thev satisfy adaptation requirenents. These
models can then be used to generate rapid prototvpes and test cases. We also in-

troduce a technique that uses formal models to provide assurance in re-engineering

Requirements e

Specify properties of adaptive programs

Design
Create design models and model check them \

against adaptation requirements \

Implementation

Develop an adaptive system that ensures
consistency before, during. and after adaptation

Figure 1.1: Assurance techniques in three phases
legacy software for adaptation [118].

In the implementation phase. safe adaptation protocols can be applied to ensure
that adaptation designs will be followed correctly in the implementation. Our safe
adaptation protocol [150. 152] ensures that safe states for an adaptation are reached
before the adaptation occurs, and that the adaptation steps are performed in such a
way that does not violate the dependency relationships among components of adaptive
software. Our approach provides centralized management of adaptations, thereby
enabling optimizations when more than one set of adaptive actions can be used to
satisfy a given adaptation goal.

Critical properties in adaptive software can be verified using formal analvsis tech-
niques. We have developed a modular model checking technique AMOEBA for adap-
tive software [145]. which not only supports the verification of A-LTL. but also signifi-
cantly reduces model checking complexity for adaptive software. We also developed a
run-time model checker. ANIOEBA-RT. for adaptive software [147]. AMOEBA-RT

uses an aspect-oriented technique [132] to insert instrumentation code in adaptive

software to collect run-tinie conditions. These conditions are then sent to a run-time
model checking server. which verifies these conditions at run time against A-LTL/LTL

properties.

1.2 Summary of Contributions

The following is a list of contributions made by the thesis.

Requirements Phase.

e We propose a finite state machine model for adaptive software [144, 145]. This
model enables existing analysis techniques for traditional, non-adaptive software
to be directly applied to adaptive software. Also, it enables us to exploit specific
characteristics of adaptive software in order to optimize their analysis [144]

(Chapter 2).

e We introduce A-LTL, the adapt operator-extended linear temporal logic. We
use A-LTL to formally specify adaptation properties of adaptive software [143,

146} (Chapter 3).

e We generalize three adaptation semantics. namely the one-point adaptation,
the guided adaptation, and the overlap adaptation, and formally specify the

semantics in A-LTL [143, 146] (Chapter 3).

e We introduce a goal-based technigue to systematically analyze the requirements
for adaptive software and to generate formal requirements specifications in A-

LTL (144, 149] (Chapter 4).

e We introduce TA-LTL, a real-time extension to A-LTL for specifving critical
real-time constraints in adaptive software. Three types of critical properties
are identified, namely safeness. liveness, and stability properties [153. 155] (Ap-

pendix A).

(2]

Design Phase.

e We propose a formal design modeling technique for adaptive software. We iden-
tify the key features of adaptive software design (i.e.. quiescent states, adaptive
states, and adaptive transitions) and introduce a state-based modeling approach
(MASD) to capture these features with design models [144]. We also introduce
rapid prototyping and model-based testing to carry these features in the models

to their implementations [144] (Chapter 5).

e We propose a model-based re-engineering technique to enable adaptation in
legacy software with assurance by leveraging the MASD approach [144], the
metamodel-based language translation technique [97]. and the aspect-oriented
adaptation enabling technique [139]. We also introduce the cascade adaptation
mechanism to handle state transformation from a source program to a target

program in an adaptation [149] (Chapter 6).
Implementation Phase.

e We describe AMOEBA, a modular model checker that modularly verifies adap-
tive software against both LTL and A-LTL properties. The proposed technique
reduces the model checking complexity by a factor of n, where n is the numuiber of

steady-state programs encompassed by the adaptive program [145] (Chapter 7).

o We describe a run-time model checker AMOEBA-RT that monitors the run-
time conditions in adaptive software and verities these conditions against LTL

and A-LTL properties (Chapter 8).

e We introduce a safe software adaptation protocol that minimizes the adaptation
cost and ensures consistencies among adaptive components. A retry/roll-back
mechanism is emploved to ensure the consistency of adaptive actions in the

presence of failures [150, 152] (Chapter 9).

1.3 Outline of the Thesis

This thesis is presented in three parts to reflect the research investigations for the
three key phases of software development: requirements, design, and implementation.
Part I, comprising Chapters 1-4, discusses formal techniques for the requirements
analysis phase of adaptive software development. Chapter 2 describes a finite state
model for adaptive software, which serves as the foundation of the thesis. Chap-
ter 3 introduces the A-LTL specification language and three frequently occurring
adaptation semantics in adaptive software. Chapter 4 presents a goal-based require-
ments analysis approach to derive adaptation requirements specifications in A-LTL
and LTL. Part II, comprising Chapters 5-6. introduces assurance techniques for the
design phase of adaptive software development. Chapter 5 describes the niodel-based
design technique for adaptive software. Chapter 6 extends the model-based design
technique to provide assurance in re-engineering legacy software for adaptation. Part
III, comprising Chapters 7-9, introduces assurance mechanisms and analysis tech-
niques for the implementation phase of adaptive software development. Chapter 7
presents the AMOEBA modular model checking technique, and the run-time adap-
tive software verification technique AMOEBA-RT is described in Chapter 8. Chap-
ter 9 describes a safe adaptation protocol for distributed adaptive software systems.
Finally, Chapter 10 presents concluding remarks and outlines potential future inves-
tigations. Several appendices elaborate details of the work. Appendix A describes
TA-LTL, a real-time extension of A-LTL for specifying real-tinie constraints, including
safety, liveness, and stability properties in adaptive software. Appendix B provides
supporting material for Chapter 5. Appendix C provides supporting material for

Chapter 6.

Part 1

Requirements Analysis for

Adaptive Software

Chapter 2

A Formal Model For Adaptive

Software

This chapter describes a finite state formal model for adaptive software. This
model serves as the foundation of onr specification and analvsis techniques through-
out the thesis. This chapter is organized as follows. Section 2.1 gives background
information on a finite state machine model for general software. Section 2.2 describes
the formal finite state model for adaptive software and two composition operations.
Section 2.3 outlines the architecture of autonomic computing system. Related work is
described in Section 2.4. Section 2.5 discuss possible extensions to the formal model

introduced in this chapter.

2.1 Background: Program Kripke Structure

In this section, we introduce a finite state model for general software. A non-
terminating program can be considered an w-automaton [133], ie.. a finite state
automaton that accepts w-words.! A program state can be represented by the truth

value of a set of propositions in the state called atomic propositions, denoted AP.

'An w-word can be considered as a sequence of infinite states.

9

Emerson et al [37] defined a program as a Kripke structure M = (S, P. L). where
e S represents a finite set of program states.

e P : 5§ < § represents nondeterministic program transitions. Relation P is

total, meaning that Vs € S,3s" € S such that (s,s’) € P.

o L: S5 —2% maps cach state to a set of atomic propositions that are true in the

state.

A computation of a program is an infinite sequence of states ¢ = s, s1. ... such that

for each i > 0, (si.841) € P.

2.2 Finite State Model For Adaptive Software

In general, a program exhibits certain behavior and operates in a certain domain,
where a domain is defined to be the input space of the program [10]. A dynamically
adaptive prograrm operates in different domains, changes its behavior at run time in
response to changes of the domains. In this thesis, we take a general view of nrograms,
i.e.. an adaptive program is a program whose state space can be separated into a
number of disjoint regions, each of which exhibits a diffcrent stcady-state behavior (2],
and operates in a different domain. The state space exhibiting cach different kind of
steady-state [2] behavior is a steady-state program, or briefly a program. The states
and transitions connecting one steady-state program to another are adaptation sets.

An adaptive program usually contains multiple steady-state programs and mul-
tiple adaptation sets connecting these programs. We term an adaptive program com-
prising n different steady-state programs an n-pler adaptive program. Initially, we
simplify our discussion by focusing. on the adaptation behavior starting from one
program, undergoing one occurrence of adaptation, and reaching a second program.

Th is type of adaptation behavior is represented by simple adaptive programs. A simple

10

adaptive programn contains a source program (the program from which the adaptation
starts). a target program (the program in which the adaptation ends). and an adap-
tation set connecting the source program to the target program. Figure 2.1 shows a
simple adaptive program where S is the source program. T is the target program,
and M is the adaptation set from § to T. Accordingly. a general n-plex adaptive

program can be considercd as the uniou of one or more simple adaptive programs.

’ i/ ﬁ[\ /}"'__‘\

@ program O adaptation set -— transition

Figure 2.1: A sunple adaptive program

2.2.1 Formal Definition

The Finite State Machine (FSM) model for adaptive software is formally defined
as follows: Given a set of atomic propositions AP, a finite-state machine (FSN) is a

tuple M = (S5.S. T. L). where
e S is a set of states;
o the initial state set Sy € S is a subsct of the states:

e transitions 7 : S x § is a set of state pairs, where (s.t) € T represents that

there is an arc from s (the predecessor) to ¢ (the successor):

e the function L : S — 247 labels each state s with a set of atomic propositious

that are evaluated true in s.

11

We represent the states, the initial states. the transitions, and the labels of a given
program model M with S(M). So(M), T(M). and L(M) respectively. The states
in M that do not have successor states are decadlock states. denoted D(M). We can
eliminate deadlock states in an FSM by introducing a self-loop to each deadlock state.
An FSM is an Erxtended FSM (EFSN) if it does not contain a deadlock state.

We formally model an n-pler adaptive program as an EFSN that contains n
steady-state programs Py, Py.--- | P, each of which is an EFSN. Each steady-state
program represents a different program behavior for a run-time execution domain. We
require that these steadv-state programs be state disjunct, i.c., no two steady-state

arograms may share any state:
=3 R

Pl?éP2:>S(P1)r]S(P-_))=@. (21)

The adaptation from P, (the source program) to P; (the target program) is modeled by
an adaptation set A, ,. An adaptation set contains the intermediate states and tran-
0)
sitions connecting one steady-state program to another, representing a collaborative
o N (=) O
adaptation procedure, such as the insertion and removal of filters {150, 152}

An adaptation set is formally defined as an FSM with the following features:

e All initial states are states in the source program:
So(A, ;) € S(P).
e All deadlock states are states in the target program:
D(A,,) € S(P).
e No transition should return from the adaptation set to the source program:
Vs, t:S(A,,) (s.t)e T(A,;)=>t & S().
® No transition should return from the target program to the adaptation set:
Vs, t:S(A). (s.t)e T(A,,)) = s & S(P).

® There should be no cveles in the adaptation set. This condition ensures the adap-

12

tation integrity constraint [1-11]. i.e.. the adaptation should finally reach a state of
the target program.
e No two adaptation sets may share the same states other than those in the target

and source programs.

Figure 2.2 shows the metamodel for the FSM representation of adaptive pro-
grams. An adaptive program aggregates a set of atomic propositions, a set of steady-
state programs, and a set of adaptation sets. Each steady-state program or adaptation
set aggregates a sct of states and transitions. A state has a state ID, and satisfies a
subset of the atomic propositions in the adaptive program. A trausition is a pair of

incoming and outgoing state IDs.

2.2.2 Compositions of Adaptive Programs

We define the sequential composition of two programs comp(P,. P;) to be a pro-
gram with all the states and transitions in P; and P;. and with initial states coming

from P;:

comp(P;. P;) = (S.S.T.L). where

S = S(P)US(P;). Sy = So(P:).
T = T(P)UT(P) and L= L(P,)UL(P,).

The comp operation can be recursively extended to accept a list of prograis:
. (=)

comp(Py, . Py, -+ . P,) = comp(---comp(P,,, P,).-- . Py,).

13

Adaptive

Program
- share states
Stg?g;:rt: e Adaptation Set
]
State J Transition
1 L1 1 1
’ - D incoming outgoing
. ,¢ satisfies id 1
: 1
——
iy P E——
otom State ID
roposition . e]
. 1

Figure 2.2: Metamodel for adaptive program

Similarly, we define the union of two programs union(P;. P;) to be a program with

all the states, transitions, and initial states from both P; and P

union(P;, P;) = (S.S8. T, L), where
S = S(P)US(P). Sy = So(P,)U Sy(P)).

T = T(P)UT(P). L=L(P)ULD).

14

The wunion operation can be extended to accept a list of programs:

union(P,. P,.---, P,,) = union(- - - union(P,. P,).--- . P,,).

A simple adaptive program SA,; from P; to P; includes the source program P;, the
target program P;, and the adaptation set A, ; that comprises the intermediate states
and transitions connecting P; to P;. Formally. we define the simple adaptive program

from P; to P; as the composition

SA,; = comp(P;. Ay, P)).

An n-pler adaptive program M contains the union of all the states. transitions, and
initials states of n steady-state programs and the corresponding adaptation sets.

Formally:

M = comp(union(Py, -+ Pp). union(Ay 2. Ayz.--- Ay n_1)).

An ezxecution of an n-plex adaptive program M is an infinite state sequence
S0, 81, S2, - -+ such that s, € S(M), (s;.8:41) € T(M), and sy € Sy(M) (for all i > 0).
A non-adaptive execution is an exccution sg. sy, S2,---. such that all its states are
within one program: s, € P, for all s; and some P;. An adaptive crecution is any
execution that is not non-adaptive. An adaptive execution goes through one or more

adaptation sets, and two or more steady-state programs.

2.3 Autonomic Computing System

Kephart et al [66] proposed autonomic computing as an approach to manage
the exploding complexity of computing systems. In an autonomic computing systen,
software interacts with its run-time environment, and adjusts its own behavior in
order to achieve sclf-managing. self-healing. self-optimizing. sclf-protecting, ete [24,
33, 50. 66]. A general autonomic system is depicted in Figure 2.3 where the central
part of the system is an adaptive program interacting with its run-time environment.
The adaptive program includes an adapt-ready program [139]. a number of monitors.
a decision maker, and an adaptation coordinator. An adapt-ready program is a program
whose behavior can be altered at run time to exhibit a number of different steady-
state behaviors in response to adaptation requests. The monitors collect ruun-time
internal data in the adapt-ready program (e.g.. variable values) and external data in the
environment (e.g.. network bandwidth). and evaluate a set of predefined conditions
(e.g., lossrate <. 0.2) upon these data. When a condition is met. the monitors sends
the condition to the decision maker. The decision maker. comprising a set of decision
making rules, which are either predefined or re-loadable at run time. makes adaptation
decisions based on the conditions received from the monitors and sends these adaptation
decisions to the adaptation coordinator. The adaptation coordinator decomposes an
adaptation decision into a sequence of adaptation requests, which are then sent to the
adapt-ready program to alter its behavior. The assurance addressed by this thesis

cross cuts all the components in the adaptive program.

2.4 Related Work

Adaptive software has been studied by rescarchers for more than a decade. Nu-
merous researchers have proposed ways to formally specify dynamically adaptive pro-

graumns [18].

16

Autonomic
System

i B
1 1.
interacts 15! Environment daptive
Program
{
‘1 o1 1." . 1 . o 1
Adapt-Ready monitors - . outputs input of [Decision |outputs NPULO]
Program Monitor ? Maker Coordinator
1 . 1. * v 1 . - 1. *) 1.+ OUtpUtS
Condition Adaptation
/,r Decision
|
Internal External
Data Data 1.

. |
Adaptation
input of 1. Requests l

Figure 2.3: General architecture for autonomic system

Graph-based approaches have been proposed to model the dvnamic architectures
of adaptive programs as graph transformations [57, 99. 128]. In the Hvpergraph
approach [57]. for example. an adaptive program is defined as a hypergraph G =
(N,E,L), where N is a set of nodes representing communication ports. E is a set
of edges representing components, and L is a set of labeling functions for nodes and
edges. A node label includes the name of the port; an edge label includes the name
of the component and its current status. The components can be connected to each
other through ports. A software architecture style is a set of software architectures
with similar structures. described by a hyper-edge context-free grammar. A graph
transformation production rule has the format L — R, where L describes the graph
to be rewritten, and R describes the graph to be generated. They defined three tyvpes

of rules: Construction rules are used to construct the initial structure of the software:

17

dynamic evolution rules are used to transform the software structure dvnamically; and
communication rules describe the communication among components in the software.

Architecture Description Language (ADL)-based approaches are also introduced
to model adaptive software [73, 106. 131]. ADL approaches are similar to the graph-
based approaches in the sense that a software architecture is represented by compo-
nents connected with connectors. The major difference between these two categories is
that in ADL-based approaches, the structural changes are defined as disconnections
and reconnections of the connectors, rather than graph transformation production
rules. For example, Darwin [91, 92] is an ADL used to specify software configu-
rations/reconfigurations. In Darwin, components are represented as boxes. Each
component declares its requirement ports (denoted as empty circles) representing the
services required by the components and provision ports (denoted as full circles) rep-
resenting the services provided by the component. Components are connected with
one another by binding provision ports with requirement ports. Dynamic structure
is achieved by the definitions cf bindings between ports of component “types” rather
than component instances. Thus, the ports of dynamically instantiated components
can be identified and bound to one another. Darwin supports two techniques for
dynamic software bindings: direct dynamic instantiation and lazy instantiation. Di-
rect dynamic instantiation allows port references to be passed as messages among
components. Lazy instantiation allows a component to delay its instantiation until
another component tries to use a service that it provides The formal semantics of
the Darwin architecture is defined in w-calculus.

Both the graph-based approaches and the ADL-based approaches focus on struc-
tural changes of adaptive programs. In contrast, our approach focuses on behavioral

changes of adaptive programs.

18

2.5 Discussion

Our work uses finite state machines to model adaptive software. This strategy en-
ables existing analysis techniques for traditional non-adaptive software to be directly
applied to adaptive software. Also. it enables us to exploit certain characteristics of
adaptive software in order to optimize the analysis for adaptive software.

The finite state machine models for adaptive programs introduced in this chapter
are abstract representations of adaptive software implementations. Existing tools.
including Bandera [28], FLAVERS [26]. Borgor [117]. etc.. process programs in high-
level programming languages. such as Ada, Java, and C++, and generate finite state
models. We envision that these techniques can be leveraged to generate adaptive
program models described in this chapter.

In of'(l('r to specify real-time programs, researchers have also extended the models
with real-time properties [3, 30. 37, 48, 88. 89]. The finite state model for adaptive
program‘;; introduced in this chapter can also be extended with real-time information,
including those introduced in the timed state graph [3). to' represent real-time adaptive

programs.

19

Chapter 3

Temporal Logic for Specifying

Adaptive Programs

This chapter describes the Adapt operator-extended Lincar Temporal Logic (A-
LTL) [143, 146], an extension to LTL [111]. to formally specify adaptation from one
steady-state program to another. We introduce three basic adaptation semantics and
use A-LTL to formally specify these semantics. These basic adaptation seinantics can
be composed to derive more complex adaptation semantics. This chapter is organized
as follows. Section 3.1 gives background information on the Linear Temporal Logic
(LTL). Section 3.2 describes the syntax and the semantics of A-LTL and Section 3.3
introduces three commonly occurring adaptation semantics specified in A-LTL. In
Section 3.4 we introduce two composition techniques to construct complex A-LTL
specifications from simple ones. We demonstrate the A-LTL specification using an
adaptive audio streaming example in Section 3.5. Related work is described in Sec-
tion 3.6. Section 3.7 suminarizes this chapter and discusses possible extensions to

A-LTL.

20

3.1 Background: Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL), first proposed by Pnueli [111]. is an extension
to the propositional logic. It extends propositional logic by introducing four basic
temporal operators: the eristential operator ¢. the global operator O, the until op-
erator U, and the next operator (). An LTL formula is evaluated upon a sequence
of infinite states, where in each state. a propositional sub-formula is either true or
false. Informally, given formulae ¢ and vr, Qo (read as eventually ¢) means that ¢ is
eventually true; O¢ (read as always ¢) means that ¢ is always true; oU ¥ (read as
¢ until ¥") means that ¢ is true until v is true; Q¢ (read as next ¢) means that ¢
is true in the next state. LTL has been adopted by the formal methods community
to express temporal properties of software, including safety properties and liveness
properties [81]. A safety property (usually having the form of “0-¢7") states that
“nothing bad will happen™. A liveness property (usually having the form of “00e™)

states that “something good will eventually happen™.

3.1.1 Syntax

The syntax of LTL is defined as follows:
1. Each atomic proposition is a formula:
2. if ¢ and ¥ are formulae, then —¢, oAV, oU ¢, Qo are formulae.

Other opecrators are introduced as abbreviations of the above operators: Q¢ =
true U ¢ (i.e., “finally ¢” is equivalent to “true until ¢”). and O¢ = ~0-0 (i.e.,

“alwavs ¢” is equivalent to “not finally not ¢7).

21

3.1.2 Semantics

Let AP be an underlyving set of atomic propositions. the semantics of LTL is

defined with respect to a linear Kripke structure M = (S.z. L), where

1. S is a finite set of states;

(Sl

. 7 : N— S is an infinite sequence of states representing an infinite lincar timeline;

3. L:S — 24" is a labeling function of each state representing the atomic propo-

sitions evaluated to be true in the state.

M,z = ¢ indicates that the LTL formula ¢ is true under the given structure M
and timeline z, or briefly 2 | ¢ when M is understood. The symbol z* represents
the ith suffix of z, i.c., if x = 5. 8, 8.+ -+, then 2° = 8,, 5,41, S42, - - -. The semantics

of LTL is defined as follows:
1. z = ¢ if and only if ¢ € L(s). for any atomic proposition ¢:
2. 2 = oAy if and only if 2 |= ¢ aud 2 E
3. z E oU ¢ if and only if 35 such that 27 | 0. VE(0 < k < j, and (2* |= 6);
4. 2 &= Q¢ if and only if 2! = 0.

An LTL formula ¢ is satisfiable, if and only if there exists a Kripke structure
M = (S,z, L), such that M,z = ¢. in which case, we say M defines a model of ¢. An
LTL ¢ is valid, denoted as = ¢, if and only if for all Kripke structures M = (S, z, L).
we have M,z | ¢.

3.2 The Adapt-Operator Extended LTL (A-LTL)

In this section, we introduce the Adapt-operator extended LTL (A-LTL), a tem-

poral logic for the specification of adaptation behavior.

22

3.2.1 Syntax

To specify adaptation behavior. we introduce A-LTL by extending LTL [111]
with the adapt operator (2\) [143. 146]. The A-LTL formula "'c,-")—!—!s ¢ s read as
“o adapts to ¥ with adaptation constraint Q7, where ¢, v. and § are three temn-
poral logic formulae named the source specification, the target specification, and the
adaptation constraint of the fornla, respectively. Informally, a program satisfying
“Oﬂ\d"’ means that the program initially satisfies ¢. In a certain state A, it stops
being constrained by ¢, and in the uext state B, it starts to satisfy ¢, and the two-
state sequence (A, B) satisfies 2. We use (bgg" to specify the adaptation from a
steady-state program that satisfies ¢ to another that satisfies 1». Formally, we define

A-LTL as follows:
e If ¢ is an LTL formula. then ¢ is also an A-LTL formuila:

o . O,
e if 9 and ¥ are both A-LTL formulae, and Q is an LTL formula, then & == ¢—>¢

is an A-LTL formula:

o if ¢ and ¥ are both A-LTL formulae. then —o, oA, ove, Od. Qo, and oU

are all A-LTL formulae.

3.2.2 Semantics

We define A-LTL semantics over both finite state sequences (denoted by “=g,")

and infinite sequences (denoted by “F=,,0". or briefly. [=).

e Operators (=, A, V. O, Q. U. —. etc.) are defined similarly as those in LTL.

e If o is an infinite state sequence and ¢ is an LTL formula. then o satisfies ¢ in
A-LTL, if and only if o satisfics ¢ in LTL. Formally. ¢ |=,,; o0 = ¢ holds in

LTL.

e If o is a finite state sequence and ¢ is an A-LTL formula. then o =4, 00’ iy
¢, where ¢ is the infinite state sequence constructed by repeating the last state

of o.

0. . . .
e 0 =,y 0o—v. if and only if there exist a finite state sequence o' = (so. 81+, Sg)
and an infinite state sequence ¢” = (Spy1. Sk42.--). such that o =o' ~a”,
o' Efn ¢, 0" Emp @ and (sg.Sk41) Fpn 2 where ¢, ¢, and Q are A-LTL for-

mulae, and the —~ is the sequence concatenation operator.

e L . .
Informally, a sequence satisfying ¢—1" can be considered the concatenation of
two subsequences, where the first subsequence satisfies @, the second subse-
quence satisfies ¥, and the two states connecting the two subsequences satisfy

Q.

For convenience. we define empty to be the formula that is true if and only if it is
evaluated upon single state sequences. i.c., deadlock states: empty = —Otrue [17].

Also, we write d—¢ to represent ¢—w when $2 = true.

3.2.3 Expressiveness

We now show that A-LTL and LTL are equivalent in their expressive power.
An w-automaton is a finite state automaton that accepts w-words [133]. Two most
popular forms of w-automata are Bichi automata and Muller automata [133]. It
has been shown that Biichi automata and Muller automata are equivalent [133]. A
counter [137] in an w-automaton A is a sequence of distinct states sq. 81, -+, s, \yith
m > 0 and a finite word 7. such that for all ¢ € [0, m — 1]. there is a path labeled
7 in A from s; to s,,1, and from s, to so. An w-automaton is counter-free if it does
not contain counters [137]. Wilke showed that LTL is equivalent to counter-free w-
automata and introduced an algorithim to convert a counter-free automaton to an LTL

formula [137]. We establish the equivalence between LTL and A-LTL by showing that

24

A-LTL is also equivalent to counter-free automaton. The above statements applics

to both infinite and finite words [137].

Theorem 1: A-LTL is equivalent to counter-free automata.

Proof 1: We need to prove (1) that any A-LTL can be accepted by a counter-free

Biichi automaton and (2) that any counter-free Bichi automaton can be expressed by

an A-LTL formula.

1.

4

We prove by induction on the number of nested adapt “—" operators in an

A-LTL formula.
Initial condition: Any A-LTL formula with O adapt operator is alsc an LTL
formula. which can be accepted by a counter-free w-automaton in w-vord do-

main, end can be accepted by a counter-free FSA in finite word domair.

Assumption: Any A-LTL formula with no more than k nested adapt operators

can be accepted by a counter-free (w) automaion.

For an A-LTL formula with k + 1 nested adapt operators. it can be erpressed
as (;’)2\;"’, where & and ¥ have no more than k nested adapt operators. Based
on the assumption. we can bwild an FSA A for o in finite word domain and
a counter-free w-automata B for v in w-word domain. Then we connect the
accepting states of A to the initial states of B with transitions, and make all
states in A non-accepting to form an w-automaton C. Clearly C accepts the set
of executions that satisfy o™y, By selectively connecting the accepting states
of A and the initial state of B. we can make sure all the state pairs satisfy §2.
The resulting w-automaton accepts eractly the sct of sequences satisfying Py

The same process applies to A-LTL in finite word domain.

Next we show C s also counter-free. Since A and B are counter free, if there

25

s a counter in C. the counter must include states both in A and in B. Since
there is no transition from B to A. such a counter cannot exist. Therefore. C
is counter-free.

Therefore. any A-LTL formula with no more than k + 1 nested adapt operators

can be accepted by a counter-free (w) automaton.

2. Any counter-free automaton can be expressed in LTL. and any LTL formula is
also an A-LTL formula. Thercfore. any counter-free automaton can be expressed

n A-LTL.

A logic L, is more expressive than another logic L,. denoted as Ly > L,. if and
only if for any formula ¢, in L,. there exists a formula ¢, in L; such that ¢, accepts
exactly the same set of models that o, accepts |38]. We say a logic L, is strictly more
expressive than another logic L:. denoted as Ly > L,. if and only if L, > L, but

Ly, # L. Wesay L) and L, are equivalent in expressive power, dencted Ly = Ly, if

and only if Ly > Ly and Ly > L.

Theorem 2: A-LTL s equivalent to LTL in erpressive power: A-LTL = LTL.

Proof 2: We prove that A-LTL s more capressive than LTL and vice versa.

1. A-LTL is more expressive than LTL: A-LTL > LTL.

The proof of this statement is straightforward. Since A-LTL is a super set of
LTL, for any formula ¢ of LTL. there is also a formula ¢ of cxactly the same

form in A-LTL. and ¢' = ¢. Therefore. we have A-LTL > LTL.

2. LTL is more expressive than A-LTL: LTL > A-LTL.

For any formula & in A-LTL, we can build a counter-free automaton that accepts

exactly the sct of words S that satisfy ¢ (Theorem 1). And thus. there exists an

26

LTL formula o' that accepts §. Then we have LTL > A-LTL.

3.3 Adaptation Semantics

In this section, we troduce three adaptation semantics specified in terms of
A-LTL. In an adaptive program. we termn the properties that must be satisfied by
the program in each individual domain as the local properties for the domain. The
properties that must be satisfied by the program throughout its execution. regardless
of the adaptations, are called adaptation global invariants (or global invariants). We
use the term adaptation variants to denote the properties that change during the
prograni’s exccution. i.e., from the local properties of the source program to the
local properties of the target program. This section focuses on specifying adaptation
variants using A-LTL.

Based on results presented in the liveraiure [5. 22, 77) #nd our own experi-
ence [152], we summarize three commonly-used semantics for adaptation We assume
that the local properties of the source program and the target program have both
been specified in LTL. We call these local properties base specifications. We spec-
ify the adaptation from the source program to the target program with A-LTL by
extending the base specifications of the source and the target programs. For some
adaptations, the source/target program behavior may need to be constrained dur-
ing the adaptation. These constraints. termed restriction conditions. arve specified in
LTL.

We assume the adaptive program has moderate computational reflection capa-
bility [90]. i.e., it is aware of its adaptation and the currently running steady-state
program. This capability can be achieved by simply introducing flag propositions in
the program to identity its current steady-state program or adaptation status. We as-

sume that a decision maker (as described in Section 2.3) that translates environment

27

changes into specific adaptation requests is available. Our specification technique
describes the expected program behavior in response to these requests. We use an
atomic proposition Agpg, to represent the receipt of an adaptation request to a target
program from the decision maker.

In the following, we summarize three commonly occurring basic adaptation se-
mantic interpretations from the literature [5, 22. 77, 152] specified in terms of A-LTL.
There are potentially many other adaptation semantics. In all three adaptation se-
mantics, we denote the source and the target program bhase specifications as Sgppc
and Tspec, respectively. If applicable, the restriction condition during adaptation is
Rconp. We assume that the flag propositions to be parts of the specifications. We
use the term fullfiliment states to refer to the states where all the obligations of the

source program are fulfilled, thus making it safe to terminate the source behavior.

3.3.1 One-Point Adaptation

Under one-point adaptation semantics. after receiving an adaptation request
Arro, the program adapts to the target program Tenpe at a certain point during
its execution. The prerequisite for one-point adaptation is that the source program

Sspee should always eventually reach a fullfilment state during its execution.

(SSPEC/\OAHEQ)'S\ T.%'PH(‘- (3])

The formula states that the program initially satisfies S¢pge. After receiving an
adaptation request, Apgq, it waits until the program reaches a fullfilment state. i.e.. all
obligations generated by Sgprc are satisfied. Then the program stops being obligated
to satisfy Sgppe and starts to satisfy Tgppe. This semantics is visually presented
in Figure 3.1(a), where circles represent a sequence of states; solid lines represent

state intervals; the label of each solid line represents the property that is held by the

28

interval; arrows point to the states in which adaptation requests are received. This
semantics is straightforward and is explicitly or implicitly applied by most approaches
(e.g.. [5, 22, 152]) to deal with simple cases that do not require restraining the source

behavior or overlapping the source and the target behavior.

3.3.2 Guided Adaptation

Under guided adaptation semantics (visnally depicted in Figure 3.1(b)), after
receiving an adaptation request. the program first restrains its source program be-
havior by a restriction condition. R oxp. and then adapts to the target program when

R ¢ o o
it reaches a fullfilment state. This semantics is suitabie for adaptations whose source
programs do not guarantee reaching a fullfilment state within a given amount of time.
The restriction coundition should ensure that the source proeram will finally reach a
o v

fullfilment state.

Q N i
(SsrecNOApeg—=Reono)) =T iree- (3.

[N
~—

This formula states that mitially Sgppe 1s satisfled. After an adaptation request.
A i
Agko, is received, the program should satisfy a restriction condition Reoyp (marked
o Q .

with =), When the program reaches a fullfilment state of the source, the program
. . . . Q)

stops being constrained by Sgupc. and starts to satisly Tgpp (inarked with =%). The

hot-swapping technique introduced by Appavoo et «l [5] and the safe adaptation
ppung q A i] I

protocol [152] introduced in Chapter 9 use the guided adaptation semantics.

3.3.3 Overlap Adaptation

Under overlap adaptation semantics (visually depicted in Figure 3.1(c)). the tar-

get program behavior starts before the source program behavior stops. During the

29

overlap of the source and the target behavior. a restriction condition is applied to
safeguard the correct behavior of the program. This adaptation semantics is appro-
priate for the case when continuous service from the adaptive program is required.
The restriction condition should ensure that the source program reaches a fullfilinent

state.
(SSPE(‘/\(OAREQ R(.u\’[v)) true JA (OARHQ (TSPE(‘/\(RCC,\'D“ true))) \3-3)

This formula states that initially Sepee 18 satisfied. After an adaptation request,
Apgq. is received, the program should start to satisfy Tgnpe and also satisfy a re-
striction condition, R.oyp (marked with g—z‘*). ‘When the program reaches a fullfilment
state of the source program. the program stops being obliged by Scpr. and Re.,.p
(marked with 2{) The graceful adaptation protocol introduced by Chen et al [22]
and the distributed reset protocol introduced by Kulkarm et ol {77] use the overlap

adaptation semantics.

3.3.4 Safety and Liveness Properties

Temporal logics are often applied to the specifications of safety and liveness prop-
erties of a program. A safety property asserts something bad never happeuns, while
a liveness property asserts something good will eventually happen [124]. Although
general forms of safety and liveness properties are not preserved by the adaptation
semantics defined above, some common forms of safety and liveness properties are
preserved.

We define a formula € to be a point-safety property if and only if € = O~y (read

as 1 never holds during execution). where 7 is a point formula (i.c.. a propositional

30

S.\I'} ¢ T\'I’k('

()OO%)()OOO.......

AUL . . .
(a) one-point adaptation

R

COND
- —a
- S SPEC —a = TSPH : -
OOO?OOOO.......
ARI.Q
(b) guided adaptation
R(‘th\'l)
- o TVI‘I-(_'____'
- S serc —a
OOO?OOOOO......
Amg

(c) overlap adaptation

(@ state before adaptation @
e state during adaptation
Sy source specification Apro

T, target specification R

state after adaptation

»—-a state interval

adaptation request

restriction condition

Figure 3.1: Three adaptation semantics

formula). We define a formula e to be powmt-livencss property if and only if € =
O(a=03) (read as it is always the case that if & holds at some point P, then ;3 will

eventually hold at a point after P). where both o and 3 are point formulae.

Theorem 3: All three adaptation semantics preserve point-safety properties. That

18, 1f (SspecVTsprc) — O-n. where 1 is a point property. then € — O-wy, where € 15 the

adaptation specification based on any one of the three semantics.

For brevity, we only provide the proof for the one-point adaptation case; other

cases can be proved similarly.

31

Proof 3:

Let the adaptation specification € be as in Formula 3.1. that is

£ = (SSPE(“/\OAREQ)&TSPH('-

For an arbitrary sequence o = €. 30" and 0" such that ' = SsppcAQ Axrg. 0" F= Tepre.
and o0 = o' ~ a". Since (SeprcVTspre) — O-m. we have o' | O-n, and o” | O-y.

Therefore, o | O-).

This theorem implies that if a propositional property (such as a variable is never
greater than a given value) should be held in both the sonrce and the target programs,
then the invariant is also held by a simple adaptive program under all three adaptation

semantics. This conclusion does not apply to general temporal properiies.

Theorem 4: Point-liteness properties are preserved by all three adaptation scmantics.
That is, if (SeprcVTspre) = O(a — 03), then € —» Ol — $.3). where € 1s the adaptation

specification based on any one of the three semantics.

Again, we only provide the proof for the one-point adaptation case; other cases

can be proved similarly.

Proof 4: et the adaptation specification & be as in Formula 3.1, that is

- Q2
£= (SSPE(T/\OAREQ)_\TSPF,C‘-

For an arbitrary sequence s, sy, = &, Ji. such that sy. s1. -+ 3, | SeprcAQAreg and
5141, 8142, -+ = Tepee. Sinee (SspreVTspre) — B(a — 0.3). we have sy, 81, -+ 5, | O —

03), and s,41. 8i42.--- | Ol — 03). For an arbitrary state s, if s, = «. then we

have
o if j < i. then there exists k(j < k < 1) such that s = 3:
e if) > i. then there exists k(j < k) such that sp = 3.

That is. sp. 51, = O(a — 03).

Therefore, we have £ — O{a — 03).

3.4 Specification Compositions

Thus far, we have described how to specify simple adaptive programs. These

specifications can be composed to describe complex adaptation requirements.

3.4.1 Neighborhood Composition

v A (:ompl‘ux adaptive program may adapt to different target programs in respouise
to different adaptation requests. The ncighborhood composition 1s defined to specify
multiple adaptation options from a single program. We define the neighborhood adap-
tive program of a program S to be the union of all the simple adaptive programs that
share the same source program S. An execution starting from S can either adapt
to a target program if a corresponding adaptation request is received, or remain in
S if no adaptation request is received. Assume that the property for the adaptation
from S to the i target program T; is specificd with an A-LTL formula STigpc,
and the property of S is specified with Sg¢pp-. We can construct the specification for
the neighborhood of S by the disjunction of Sepp and STigppe. Let Ngppe be the
neighborhood specification of S, we have

k

Nspee = \/ STirsppeV Sspre- (3.4)

i=1

33

where £ is the number of simple adaptive programs sharing the same source program

S.

3.4.2 Sequential Composition

A complex adaptive program may sequentially perform adaptations more than
once during a single execution. For example. an execution of an adaptive program
may start from a program A, then sequentially perform adaptations from A to B to
obtain program B, and B to C to obtain program (. This execution should sequen-
tially satisfy the local properties of A, B. and C, and should satisty the adaptation
variants from A to B and from B to C during adaptation. We term the properties
that must be satisfied by executions going thirongh multiple steady-state programs
transiticnal propertics. Specifications for transitional properties can be constructed
from adaptation semantics using sequeatial compositions as follows:

Assume that the local properties of 4. B, and C are specified with Asppe,
Boppe. atid Cappe, tespectively. The specification for the adapration from A to B
under a given adaptation semantics is a function of A .. and Bgpet ABgppe =
ADAPT1(Agpsc, Bepee)- The B to C adaptation specification under a given adapta-
tion semantics is a function of Beppe and Cgppe: BCsppee = ADAPT2{ B gy Coprc)-
The specification of A to B to C may be constructed by substituting AB ... for

Bspee in BC gppe-

ABCsppe = ADAPT2(ADAPT L Acppe Baprc). Cspac)- (3.5)

Note that each different adaptation sequence corresponds to a different transitional
property. Since in a general adaptive program. there are infinite numbers of different
possible adaptation sequences, the number of possible transitional properties is also

infinite.

34

Theorem 5: Both point-safcty and point-liveness propertics are preserced by the
adaptation semantics and the two types of compositions (i.c.. the neighborhood and

sequential compositions).

Proof 5: Proof outline:

This theorem can be proved by applying Theorem 3 and Theorem 4.

o For neighborhood compositions. from Theorems 3 and 4. we know that iof all
base specifications imply a point-safcty (liveness) property o. then all the dis-
Juncts imply ¢ as well. Then the disjunction (the ncighborhood composition)

also implies .
e [or sequential composition. we can prove the conclusion indu:-tively.

1. The base case statcs that 0-step sequential composition prescrves point-
safety and peint-liceness propertics. This has been proced by Theo-

rems 2 and 4.

2. We assume that any n-step scquental compesition preserves point safety
and liveness properties.

3. An n+ l-steg sequential composition can be considered as an w-step sequen-
tial composition composed with a base specification. Then we can apply the
assumption to the n-step adaptation composition case and claim that all
n+1-step sequential compositions also preserve point safety and liveness

properties.

3.5 Case Study: MetaSockets

In this section, we use MetaSockets [120] as an illustrative example to demon-
strate our adaptation specification approach. MetaSockets are constructed from the
regular Java Socket and MulticastSocket classes; however. their internal structure and
behavior can be modified at run time in response to external conditions. MetaSocket
behavior can be adapted through the insertion and removal of filters that manipulate
the data strean. For example, filters can perform encryption. deervption. forward
error correction. compiession. and so forth.

We consider a sender’s MetaSocket with three different filters: a data compres-
sion filter (COM). a DES 64-bit encryption filter (DES64). and a DES 128-bit encryp-
tion filter (DES128). The available adaptations are data compression filter insertion
and removal. and DES filter replacement. Note that to enforce security. the DES
filters can ouly be replaced by othier DES filters. but not be removed. These filters
can be combined in four different configurations: DES64, DES128. DES64 with CONM
(DESG4COND), and DES128 with COM (DES128COM). We consider the MetaSocket
under each configuration a steady-state program. The adaptive program is initially

running in the DESG4 configuration.

3.5.1 Specifying Steady-State Programs

The specifications of the programs are described as follows:

e DES6G4 prograny:

DESG4 sppe- = (B DESG4 .,)NO(DESG64Input(xr) — QDESGLQutput(x)).

The DES64Input (resp. DESG4Qutput) are events indicating the input (resp.

36

output) of a packet to (resp. from) the MetaSocket under DES64 configuration.!
The flag proposition DES04,., indicates that the program is running under the
DESG4 configuration. The formula states that under this configuration. for ev-
ery input packet to be encoded by the DESO64 filter. the MetaSocket should
eventually output a DESG4 encoded packet. The following program specifica-

tions can be interpreted in a similar way.

e DESI28 program:

DES128 cppe = (D DES128 o)MNO(DES128Input(x) —» O DES128 Qutput(r))).

e DES64COM program:

DESG4COM ¢y, =

(A DES64COM , iNO DESSACOMInput{x) -— & DES61COMOutput(x))).

e DES128COAM prograni:

DES128COM ¢pge- =

ANO(DES128COMInput(x) — O DES128COMOQutput(x))).

3.5.2 Specifying Adaptations

To determine the semantics of each adaptation. we consider the following three
factors: (1) The MetaSocket component is designed for the transmission of live video

and audio data. Therefore. we should minimize data blocking., (2) We should not

IStrictly speaking, the notation of DES64Iuput(x) is a predicate. However. LTL requires the
underlying logic to be proposirional. Here we implicitly employ the 2-order data abstraction intro-
duced by Dwyer and Pasareanu [36]. which converts predicates to propositions by using constant
values to represent arbitrary values.

37

allow both the source and the target programs to input simultaneously because that
will cause ambiguity in the input. (3) We should not allow the target program to
output data before any output is produced from the source program, otherwise, it
will complicate the logic on the receiver. Based on the above considerations. it is
appropriate to apply the overlap semantics with conditions prohibiting the types of
overlap discussed above.

We use the DES64 to DES128 adaptation as an example to demoustrate the
simple adaptive program specification construction. The restriction condition is that
neither the input nor the output should overlap between the source and the target

programs. Formally in LTL:

Reonn(DES6{-DES128) = O(~DESGInput(z)A~DES128Output(z)). (3.6)

The intuition for this restriction ondition is that the progran: should not accept
any more DES64 inputs and will not produce any DES128 cutputs nntil all DES64
outputs have been produced. Given the source and target program specifications, the
overlap semantics, and the restriction condition, we apply Formula 3.3 to derive the

following specification:

DESG4-DESI28 oy =
((DE564 srpcM(OAnpo(DES123)— R(:nm(DES(M-DESIJ:S))) - tre)
A

(ARHQ(DEsws)—x(DES]Q&WCA(Rmm(DES64-DES128)— truc))). (3.7)

Formula (3.7) states that after the program receives an adaptation request to the

DES128 program (Ap.o(DES128)). it should adapt to the DES12¥ program. Further-

38

more, the behavior of DES64 and DES128 may overlap. and during the overlapping
period, the program should satisfy the restriction condition Reoyp(DES64-DES128).
In this example. the Q notation of the adaptation operators is not used. We simply
assign true to € in the four adapt operator locations. With the same approach, we
specify other simple adaptive programs in the adaptive program. Further more, both
the source and the target specifications are point liveness properties. We can unify

them with the following formula by disregarding the types of inputs and outputs.

O(Input(x) — O Qutput(r)). (3.8)

According to Theorem 4, we can conclude that the adaptation also satisfies the point

liveness property.

3.5.3 Specifying Global Invariants

In addition to the specification for adaptation hehavior, the program should also

satisfy a set of adaptation invariants to maintain its integrity

e Security invariant: At any time during execution, insecure output should not

be produced. i.e., all output packets should be encoded by a DES filter:

INV'1 = O-unsecure Qutput(r).

e QoS invariant: During program execution, the sender MetaSocket should not

cause any loss of packets. i.e., all input packets should be output:

INV2 = O(Input{z) — O Output(r)).

Note, this invariant is already implied by the point liveness preservation prop-
b N R

39

erty of the adaptation semantics (Formula 3.8).

e Precedence invariant: The MetaSocket should not output a packet before

the corresponding input has been received:

INV3 = O(=Output(x)U Input(x)).

3.6 Related Work

We now introduce work related to A-LTL and the adaptation semantics discussed
in this chapter, including work related to the classification of adaptation semantics,
and work related to the specification of critical properties in adaptive software.

Bivani et al |14] classified distributed software adaptation into overlap adap-
tation, where the source and the target programs overlap during adaptation, and
non-overlap adaptation, where the source and the target programs are not present
in the systern simultaneously during adaptation. They further refined the overlap
adaptation into three sub-categories: quiescence adaptation, parallel adaptation, and
mired-mode adaptation. In both quiescence and parallel adaptations, the source and
the target programs are not allowed to communicate with each other. The key differ-
ence is that although quiescence adaptation allows the source and the target programs
to coexist in the system, they are not allowed to coexist in a single process, while
parallel adaptation allows both. In mixed-mode adaptation. the sonrce program is al-
lowed to directly communicate with the target program. Their classification is largely
inspired by ours, where their non-overlap adaptation subsumes both the one-point
adaptation and the guided adaptation semantics as described in this chapter. The
different tyvpes of adaptation they introduced can be specified by our approach. For
example, in the quiescence adaptation, the exclusive relationship between the source

and the target components in each process can bhe specitied by an overlap adaptation

40

semantics with restriction conditions preventing the different versions of the same
functionality from coexisting. The parallel adaptation can be specified similarly with
the restriction conditions relaxed to allow different versions of the same functionality
to coexist. The mixed-mode adaptation can be modeled as a sequential composition
of two one-point adaptations: from Sgppe to M gppe, and from Mgz to Tsppe, where
the intermediate specification M spxc allows the source program to communicate with
the target program. Their focus 1s to study assurance techniques for the mixed-mode
adaptation, rather than to specify adaptation semantics using a temporal logic as in
our approach.

Other temporal logics have also been proposed to specify properties of adaptive
software. Feather et al [41] proposed using a real-time temporal logic, FLEA [31],
to specify consistency constraints in adaptive software. The FLEA specification lan-
guage describes orders and durations of events using five basic temporal operators:
OR, THEN, COUNT, WITHIN, and START. A FLEA compiler automatically
converts a FLEA expression into run-time monitoring code that verifies the confor-
mance between a sequence of events and the FLEA expression. Compared to A-LTL,
FLEA has the capability of expressing quantitative timing constraints, as in cther
real-time temporal logics [3, 48. 107]. However, like LTL, FLEA is not convenient to
specify adaptation requirements since it is not designed specifically for that purpose.
The properties they introduced in their paper were all non-adaptive properties rather
than adaptation properties as described in this chapter.

Other non-temporal logic formal specification languages have also been proposed
to specify properties of adaptive software. Kramer et al [72] described how to use a
process algebraic language, FSP, to specify the critical properties that must be sat-
isfied by the adaptive software described in Darwin. A critical property is specified
as an FSP process, which identifies a set of allowable action sequences. New FSP

processes can bhe composed from existing ones using primitive operators including

41

prefix (“—"), choice (“mid™). and parallel (*]|7). Thev demonstrated using FSP to
specify that a propositional property is satisfied in certain states. Allen et al [2] used
Dynamic Wright to specify the behavior of adaptive software, and used a process
algebraic language, CSP [58]. to describe the critical properties that must be satis-
fied by the software. Since process algebras are generally considered as design-level
languages, the properties that the above two approaches are concerned about are also
design-level properties. In contrast, the A-LTL introduced in this chapter is intended
for expressing requirements-level properties. Furthermore, the properties they spec-
ified are not used to describe how the systemn may change, i.e., adaptation variants.
Instead, they are concerned about global invariants. In contrast, we specify both

global invariants and adaptation variants in adaptive software with A-LTL/LTL.

3.7 Discussion

Adaptation semantics must be precisely specified at the requirements level so that
they can be well understood and correctly implemented in later phases of the software
development process. After an adaptation temporal specification i~ constructed, it can
serve as guidance for the adaptation developers to clarify the intent for the adaptive
program. It also enables us to perform model checking to verify the correctness of the
program model against the temporal logic specifications with both static verification
and run-time model checking.

Our technique can be used to specify adaptation behavior of autonomic
computing systems to achieve self-healing, self-protecting. self-managing. and so
on [24, 33, 50]. Although environment changes such as failures are unexpected, after
the decision maker has translated the changes into adaptation requests. the program
behavior in response to the requests is generally deterministic. Our technique can be

applied to describe the expected program behavior of adaptive programs in response

42

to these adaptation requests.

We chose to use the A-LTL to specify adaptation semantics due to two major
considerations: effectiveness and simplicity. Compared to LTL. A-LTL is more effec-
tive in conveving adaptation obiectives in specifications. Some other logics, including
the choppy logic [119], the propositional interval temporal logic (PITL) [17, 52, 102].
and the interval temporal logic (ITL) [20]. are also sufficient to specify adaptation
behavior. However, thev are generally more complex and verbose. We find A-LTL
to be simple and sufficiently effective to specify adaptation behavior, given that the
logic is specifically designed to support adaptation.

A-LTL specifies only the relative temporal ordering among events and svstem
states that occur during the adaptation process. While this capability is suited to
specifying many tvpes of adaptive behavior. A-LTL is insufficient to specify systems
with real-time requirements, where the absolute timing may play an important role.
To address this shortcoming. we developed TA-LTL. a real-time extension to A-LTL;

the details of the specification language are introduced in Appendix A.
(=] o

43

Chapter 4

Goal-Based Requirements Analysis

In this chapter, we introduce a goal-based approach [32. 84] to construct LTL and
A-LTL requirements specifications for adaptive software. In Chapter 3. we have intro-
duced the temporal logic, A-LTL. to specify adaptation semantics from oue steady-
state behavior to another. In this chapter, we disciss the technique to determine the
different steady-state behaviors the adaptive program should be able to exhibit, and
the adaptations among these behaviors. As a result. we produce adaptation specifica-
tions in A-LTL/LTL for the adaptive program, which can e used in the design phase
for formal analysis. This chapter is organized as follows. Section 4.1 gives background
information on goal-based models. Section 4.2 describes the goal-base reqnirements
specification for adaptive software. Related work is described in Section 1.3, Finally,

Section 4.4 summarizes this chapter.

4.1 Background: Goal-Based Models

In this section, we briefly overview relevant knowledge of the goal-based spec-
ification language [32. 81] used in this chapter. A goal modcl specifies goals that
are stakeholder objectives that the system should achieve. A goal may be refined

into subgoals and/or requirements that elaborate how the goal is achieved. A goal

44

is AND-refined if its subgoals must all be achieved for the goal itself to be achieved.
A goal is OR-refined if any one of its subgoals must be achieved for the goal itself
to be achieved, i.e., OR-refinement describes alternative ways to achieve the goal. A
requirerment is a goal that can be directly operationalized by an implementation. A
condition for a goal is the property that is assumed to be true. Existing goal model
representations include KAOS [13] and Tropos/i* [140], either of which is sufficient

for our specification purpose.

4.2 Specifying Adaptation Requirements

we now describe a goal-based requirements specification technique that con-
structs temporal logic specifications for adaptive software. We first describe the
process to construct global invarviants and local properties in LTL. Then we intro-
duce the use of an adaptation semantics graph to construct adaptation specifications

in A-LTL.

4.2.1 Local Properties and Global Invariants

We use a goal-based approach [82, 134] to analyze global invariante and local
properties in adaptive software [144]. Berry et al [10] have formalized the different
environmental conditions in which the program is required to execute as a set of
execution domains Dy, Dy, --- , Dy. As shewn in Figure 4.1, we create a goal model
for the adaptive software, where the top-level goal is intended to be achieved by the
adaptive software under different run-time environmental conditions. We start by
creating a high-level goal node in a goal model. Then we study the requirements for

the adaptive program and refine the goal model according to the following steps.

1. We use high-level specification languages, e.g.. LTL. to specify the properties

(i.e., global invariants) the adaptive program must satisfy thronghout its execu-

tion in order to achieve the top-level goal. The global invariants usually contain

safety and liveness constraints,

Model refinement: We create a requirement node GI (depicted as a paral-
lelogram) containing the global invariants under the top-level goal in the goal

model.

We determine the set of environmental conditions (dowains) in which the adap-
tive program is required to exccute (e.g., data loss conditions of a communica-
tion channel).

Model refinement: For cach different domain, we create an OR-refined sub-

goal node (e.g., subgoal j) under the top-level goal. Under each subgoal node.

we create a condition node (e.g.. D) to include the conditions for the domain.

. We use high-level specification languages, e.g.. LTL, to specity the local prop-

ertics in each doriain. The Tocal properties must be satisfied by the adaptive
program in order to achieve the top-level goals under the conditious of the

domain.

Model refinement: We create a requircment node RR; containing the local

properties under cach subgoal in the goal model.

4.2.2 Adaptation Variants

Next, we construct A-LTL specifications for adaptation variants. We study how
the execution domains of the program may change at run time. and how the adaptive
program should respond. Consider the case where the program is initially running P
in domain D; (where P; satisfies local property R,). A change of domain from D, to
D; may warrant an adaptation of the program from P; to P; (where P; satisfies R))

depending on the cost to develop such an adaptation and the overhead that may be

46

_ & - 4_ A P G

o
/global invariants Gl/ ébgoal 1/ . /subgoall subgoal; / s+« [subgoal k/
—

—
K —_—
Gomam D} \

ﬁ] ™,
\domaln D;)

local property R; local property Rj

R \._, e
i change change
implement Adaptation variant R,',/ 9
| Pi |
change
| . -
‘ [] goal () condition [implementation |
_ N, |
, !
i |
' D requirement » dynamic change |

B

Figure 4.1: Goal model for adaptive software

incurred during the adaptation. For each adaptation that moves from satistving R,
to satisfying R;, we determine its adaptation semantics based on the characteristics
of the adaptive progiam, e.g.. whether certain functionalities can be temporarily
disabled during adaptation, etc.

After the adaptation semantics of all adaptations are determined, the adaptation
variants of the adaptive program can be visually represented as a graph. where each
different local property is depicted by a vertex and each adaptuation is depicted by
an arc. For example, the adaptation semantics graph for the MetaSockets introduced
in Section 3.5 is visually represented in Figure 4.2. This graph represents that the

program is required to adapt among the different local properties using the overlap
47

— —

adaptation semantics.

DES64 g s overlap @ DES128
~—_ 7

overla
o | = ap S\
IS |\=S = |=
= — [5) —
(3] L > 5]
> > (o] >
© |©o o
o~ ovlyp @

DES64COM overlap DES128COM

Figure 4.2: Adaptation scmantics graph

Formally, we define an adaptation semantics graph to be a tuple

(P. Py. A, WV, INV), where

e d is a set of vertices representing the set of local properties for an adaptive

programi.

o & (Py C) is a set of initial vertices. representing the initial local properties

of the adaptive program.
e A (AC P x P)isa set of arcs representing adaptations.

e U (¥ : A — semantics) is a function that maps an adaptation to the semantics

for the adaptation.
e INV is the set of adaptation invariants.

We represent an adaptation semantics with an A-LTL formula template where
svmbols are placeholders that are replaced with specifications when the semantics is
instantiated for a specific adaptation. For example, the one-point adaptation seman-

tics is represented as

(Ss'm;(ANOA REQ) 2 T sppc-

48

where Sgppc. Apeg. Q. and T gppe are symbols. When this semantics is evaluated upon

the following symbol assignments:

Sspee = DESO4 4150,
Tepre = DESIZ28 sppcs
Apre = REQpEsei-12s,
Q = true.

We derive the DES64 to DES128 one-point adaptation specification by replacing

the symbols in the expression with their corresponding values:

(DES64 4pee NOREQnEss-128) X DES128 s

Adaptation specifications for the adaptive program in A-LTL can be evaluated from

the adaptation semantics graph using the simple symbol substitution described above.

4.3 Related Work

The goal-based approach introduced in this chapter is influenced by many oth-
ers [41, 82, 142] who have applied goal-based models to analyze adaptive software.
Lapouchnian et al [82] introduced the use of goal models as a foundation for adaptive
software development process, and as a possible architecture sketch for autonomic
systems that can be built from these models. They use goal models to explicitly
represent and analyze the space of alternative ways to fulfill a stakeholder goal. They
distinguish two tvpes of goals: Hard goals are functional stakeholder goals that de-
scribe the tasks to be accomplished (e.g.. schedule a meeting); softgoals are qualitative

attributes that describe the quality of the tasks (e.g.. good quality schedule). The

goal models are used to guide the design and implementation of adaptive programs.
Feather et al [41] proposed using a goal-based approach to model and monitor the
run-time behavior of adaptive software. The KAOS goal modeling language they
used has a two-level structure: The outer semantics net layver is the graphic goal
representations used for declaring concepts. their attributes, and various links among
the concepts. An internal formal assertion layer formally defines the concepts using
temporal logics. The critical properties in a goal model are specified using a real-time
temporal logic [70] in the internal formal assertion layer. The temporal logic spec-
ifications are then translated into FLEA [31] specifications. which can be converted
into run-time monitoring code by the FLEA compiler [31] for run-time verification.
The properties they specified were all global invariants. i.e., non-adaptive properties.
Our approach is inspired by the approaches described above. We extended their ap-
proaches with the use of A-LTL for specifving global invariants, local properties, and
adaptation variants properties. We assigned each potential adaptation an adaptation
semantics and proposed the adaptation semantics graph to represent adaptation vari-

ants and automatically generate adaptation specifications for selected adaptations.

4.4 Discussion

In this chapter, we introduced the use of goal-based models and adaptation se-
mantics graphs to analyze and specify the adaptation semantics of adaptive programs
in A-LTL/LTL. These techniques enable adaptation developers to achieve the benefits
of formal specification while using the easier-to-understand graphical notations.

Our goal-based adaptive software requirements analysis approach is inspired by
existing goal-based analysis techniques, including KAOS [41] and Tropos/i* [141].
Our approach extends these techniques by associating the goal-based models with

A-LTL specifications.

The goal-based requirements analysis approach introduced in this chapter serves
as the foundation of later chapters in this thesis. A number of concrete examples of

its applications will be shown in Chapters 5 and 6.

Part 11

Model Design and Analysis of

Adaptive Software

52

Chapter 5

MASD: Model-Based Adaptive

Software Development

In this chapter, we propose a process for designing formal adaptation models for
adaptive software and enstring that these models satisfy the adaptation requirements
constructed using the specification approach introduced in Part T (Chapters 2-4).
We first apply the goal-based technique to specify the adapration requirements for
adaptive software. We then construct formal adaptation models for adaptation, and
verify these models against the above requirements. These formal adaptation models
are used as blueprints for the implementation of adaptive software.

Numerous rescarch efforts have been proposed to formally specify dynamically
adaptive programs in the past several years [18]. Graph-based approaches model
the dynamic architectures of adaptive programs as graph transformations [57, 99,
128]. Architecture Description Language (ADL)-based approaches model adaptive
programs with connection and reconnection of connectors [73, 106, 131]. Generally,
these approaches have focused on the structural changes of adaptive programs. Few
efforts have formally specified the behavioral changes of adaptive programs. A few

exceptions include those that use process algebras to specify the behavior of adaptive

programs [2, 19, 72|. However. they share the following drawbacks: (1) Portions of
the adaptation-specific specifications are entangled with the non-adaptive behavior
specifications: (2) They do not support the specification of state transfer, therefore,
the target behavior after adaptation must alwavs start from the initial state, thus
making adaptations less flexible; (3) These techniques are specific to systems specified
by a special type of formalism (i.e., process algebra), making them potentially difficult
to be extended to systems specified by other tvpes of formalisms.

To address the above drawbacks in existing approaches. we introduce a Model-
based Adaptive Software Development (MASD) approach. Our approach has the
following features that distinguish it from the existing approaches. (1) Our approach
separately models the non-adaptive beliavior and the adaptive behavior, thus making
each of the respective models simple and more amenable to automated analysis and
visual inspection; (2) We use global mvariants to specify properties that should be
satisfied by adaptive programs regardless of adaptations. These properties are en-
sured throughout the program’s execution by model checking; (3) Our specification
approach supports state transfer from the source program (i.e.. the program before
adaptation) to the target program (i.c., the program after adaptation), theteby poten-
tially providing more choices of states in which adaptations may be safely performed:
(4) Our approach is generally applicable to many different state-based modeling lan-
guages. We have successfully applied our approach to several state-based modeling
languages, including process algebras (e.g., Petri nets) and UML state diagrams; (5)
We also introduce a technique that uses the models as the basis for automatically
generating executable prototypes, and ensures the model’s consistency with both the
high-level requirements and the adaptive program implementation.

This chapter focuses on the behavior of adaptive programs. We explicitly iden-
tify and specify the key properties of adaptation behavior that are common to most

adaptive programs, regardless of the application domain, the programming language,

or the adaptation mechanism. We define the quiescent states, (i.e., states in which
adaptations may be safely performed) of an adaptive program in terms of the pro-
gram behavior before, during, and after adaptation. the requirements for the adaptive
program, and the adaptation mechanisin. This kind of definition leads to precise and
flexible adaptation specifications.

We accompany the discussion of our approach with an example of an adaptive
GSM (Global System for Mobile Communications)-oriented audio streaming proto-
col [154].} This protocol had been previously developed without our technique, where
the developers had found the overall program logic to be complex and error-prone.
Our approach significantly reduced the developer’s burden by separating different
concerns and leveraging automated model construction and analysis tools, and thus
decreased the development time and improved software quality.

The remainder of this chapter is organized as follows. Section 5.1 gives back-
ground information on Petri nets. the modeling language used in this chapter. Sec-
tion 5.2 describes our approach for constructing and analyzing models for adaptive
programs. Section 5.3 outlines the generation of adaptive programs based on the mod-
els. Section 5.4 describes an adaptive Java pipeline case study using the proposed
model-based development technique. Related work is introduced in Section 5.5 and

Section 5.6 discusses limitations and possible extensions of the proposed approach.

5.1 Background: Petri Nets

This section briefly overviews Petri nets which we use to model adaptive systems.
Petri nets are a graphical formal modeling language [109. 110], where a Petri net
comprises places, transitions, and arcs. Places may contain zero or more tokens. A

state (i.e., a marking) of a Petri net is given by a function that assigns cach place the

!GSM is a telephone audio compression standard defined by the European Telecommunications
Standards Institute [40].

number of tokens in the place. Places are connected to transitions by input arcs and
output arcs. Input arcs start from places and end at transitions: output arcs start from
transitions and end at places. The places incident on the input (or output) arcs of a
transition are the input places (or cutput places) of the transition. Transitions contain
inscriptions describing the guard conditions and associated actions. A transition is
enabled if the tokens in its input places satisfy the guard condition of the transition.
A transition can be fired if it is enabled. where firing a transition has the following
three effects: (1) consuming the tokens from its input places. (2) performing the
associated actions, and (3) producing new tokens in its output places. An execution
of a Petri net comprises a sequence of transitions. Interactive executions of Petri nets
are called token games.

Since thieir introduction, Petri nets have been extended in many ways. For ex-
ample. the extension used in this chapter. Coloured Petri Nets (CPN) [75] allow the
tokens to be distinguisned by their colers (or types). making them more convenient
to model data in software. The inscriptions on arcs of a coloured Petri net specify
the numbers and types of tokens to be taken from (or put o) the incident input
(or output) places when the transitions are fired.

Numerous tool suites have been developed to support graphical net construction,
simulations, token games, and analyses. Among these tools. MARIA [94] is a coloured
Petri nets analysis tool that supports model checking for LTL properties. Renew [78]
is a coloured Petri nets tool suite that supports graphical net construction. automated
simulation, and token games. Furthermore, Renew supports a synchronous commu-
nication mechanism that enables Petri net models to communicate with each other
and with other Java applications. Fignre 5.1 depicts a coloured Petri net created
with Renew. where circles P1 and P2 represent places, and the box T represents a
transition. P1 and P2 are the input and output places of T, respectively. The in-

scription of P1 (¥[2]") indicates that P1 contains an integer type token with value 2.

The inscriptions of the input and the output arcs for T (“x” and “x+17, respectively)
show the relationship between the input and the output of T. The inscription of T
(“euard z < 37) shows the condition under which the transition is enabled. In this
example, T is enabled, and firing the transition consumes the token in P1 and gen-
erates an integer token in P2 with value 3. In this chapter, coloured Petri nets are

used to specify the design of adaptive systems.

P1 T P2
@——LF+—1—O
guard x<3

Figure 5.1: A coloured Petri net example.

5.2 Our Specification Approach

We propose a general sp('(iﬁ‘mtion process for adaptive syvstems using state-
based modeling languages. We also describe the analvses that may be performed
to ensure the consistency among the models, high-level requirements, and low-level
implementations. We illustrate the process with Petri nets and a working adaptive
communication protocol example. Although we illustrate our approach with Petri
nets, our approach extends to other state-based modeling languages. including UML
Statechart diagrams [149] (Chapter 6).

The approach introduced in this section leverages the artifacts produced in Part
I, where we proposed a goal-based requirements analysis to construct adaptation spec-
ifications in A-LTL/LTL. In this section, we assume that the reqnirements analysis

has generated the following artifacts (shown in Figure 5.2):

e A set of global invariants INV. specified in LTL.

e A set of domains Dy, Dy, ---, D, in which the program is required to execute,

and the local requirements for cach domain Ry, R,.--- , R,. specified in LTL.

e A set of adaptations A;; that the program is required to perform. and the
adaptation variant property for each adaptation R, ;.

f top-level goal /

T S

. (domam D;) / local property RI; see

» change

change

\ erify

Z:M, \.. change) { M,.\

construct

implement

Aeg Vo "*:’.’D

{ ~ Tgoal O condition [_j model

. . dynamic
:7 requirement D implementation > change

Figure 5.2: Goal model for adaptive software

In this chapter, we focus on constructing adaptation design models that satisfy
the above requirements (also shown in Figure 5.2). This is achieved in the following

steps :

Step 1: For each domain D;, construct a state-based model Af,. Verify the model

against the local properties of the domain R, using model checking or simulation.

53

Step 2: For each adaptation A4, ;. construct an adaptation model A, ; for the
adaptation. Verify the adaptation model against global invariants INV and

adaptation variants R, ;.

Step 3: These state-based adaptation models can be further used to generate
rapid prototypes or serve to guide the development of adaptive programs. They

can also be used to generate test cases and verify execution traces.

When errors are found in a given step. developers may be required to return to an
earlier step to correct the errors.

We introduce the general process to model and analyze an adaptive pro-
gram in Petri nets, accompanied by a concrete GSM (Global System for Mobile

Communications)-oriented audio streaming protocol.?

5.2.1 Illustrative Adaptation Scenario

GSM-oriented audio stream encoding and decoding protocol is a signal
processing-based forward error correction protocol [16. 154]. The protocol is used to
lower delay and overhead in audio data transfer through lossy network connections,
especially in a wireless network environment. In this protocol, a lossy, compressed
data segment of packet 7 is pigevbacked onto one or more subsequent packets. so that
even if packet ¢ is lost, the receiver still can play the data of ¢ at a lower quality
as long as one of the subsequent encodings of ¢ is received. This protocol takes two
parameters, ¢ and 8. The parameter ¢ describes the number of consecutive packets
onto which an encoding of each packet is piggybacked. The parameter 6 describes the
offset between the original packet and its first compressed version. Figure 5.3 shows

a GSM-oriented audio streaming protocol example with § = 1. ¢ = 2. In order to

2In this chapter, we only discuss the verification of local properties and global invariants. The
verification of adaptation variant propertics is discussed in Chapter 7.

accommodate packet loss changes in the network connection. we dynamically switch
among components that implement different 8 and ¢ values.

Data Flow

Figure 5.3: GSM-oriented encoding and decoding

The configuration of the syvstem is shown in Figure 5.4. A desktop computer,
running a sender program, records and sends audio streams to hand-held devices (e.g.,
iPAQ). running receiver programs. through a lossy wircless network. We expect the
system to operate in two different domains: the domain with a low loss rate and the
domain with a higher loss rate. The loss rate of the wireless connection changes over
time and the program shouald adapt its behavior accordingly: When the loss rate is
low, the sender/receiver should use a low loss-tolerance aind low bandwidth-consuming
encoder/decoder; and when the loss rate is high. the sender/receiver should use a high
loss-tolerance and consequently high bandwidth-consuming protocol. Specifically, in
this chapter, we describe the simple adaptive program that initially uses GSN(1,2)
encoding/decoding when the loss rate is low (where # = 1. ¢ = 2); when the loss rate
becomes high, it dynamically adapts to using GSM(1.3) encoding/decoding. Note
that this adaptation may appear to be simple parameter changing, where, in fact,
it requires swapping encoders and decoder at run time. Moreover, the states of the
GSM(1,2) encoder/decoder must be correctly preserved and transferred to the states
of the GSM(1.3) encoder/decoder so that the system is always running in a consistent

state.

A A
7
/ P s——

l 7 S
Audio Stream ._f-;% L
i et SO

~

Access ~ —
; ~

Point -

Sender

]

Wireless
Receivers

Figure 5.4: Audio streaming svstem connection

5.2.2 Constructing Models for Source and Target

Assume that we have the local requirements for the source domain {the source
requirements) and for the target domain (the target requirements). We need to build
a model for the source domain (*he source model) and a model for the target domain
(the target model). The source and target models should not include information
about each other. or about the adaptation. The source and target models should be
verified against the local requirements for the source and target domains. respectively.

This step is illustrated by example as follows. Assume we have identified the
source domain S (the domain with low loss rate) and the target domain T (the

domain with high loss rate). The requirements Rg for the source domain are:

e Sender liveness: The sender must read packets nntil the data source is empty
(i.e., the data source is eventually empty), and the sender must always eventu-

ally send a packet if it reads a packet. In terms of LTL, we have the following:

O(dataSource = empty) AO(read(x) — Qsend(.x)).? (5.1)

3Strictly speaking, the notations of read(r) and send(x) are predicates. However. LTL requires
the underlying logic to be propositional. Here we implicitly employ propositionalization [127]. which

61

_ —_

e Receiver liveness: The receiver must always decode data once a new packet

is received. In LTL:

O(receive(x) — Qdecode(x)). (5.2)

e Loss tolerance: The sender/receiver should use a protocol that tolerates 2-

packet loss. In LTL:

(BlossCount <= 2) — (O-lose(r)). (5.3)

The requirements R for the target domain have the same set of properties except

that the loss tolerance constraint is as follows:

e Loss tolerance: The sender/receiver should use a protocol that tolerates 3-

packet loss. In LTL:

(DlossCount <= 3) — O(=lose(z)). (5.4)

To model the program for S, we build a Petri net for the GSM(1,2) encoder
on the sender side and a Petri net for the GSM(1,2) decoder on the receiver side.
Figure 5.5 shows the sender net (elided). The circles represent places and boxes
represent transitions. The white circles represent places that are not part of the
sender model, i.e., shared either by the source and the target sender nets, or by the
sender and the receiver nets, or by both. In the net, the place dataSource contains a
sequence of data tokens. The readData transition removes a token from the dataSource
place, and puts the original data in the inputData place and a GSM compressed data

in the dataX place. The shiftX and shiftY transitions shift the encoded data in a

converts predicates to propositions by using constant values to represent arbitrary values.

62

buffer represented by the places dataX. dataY, and dataZ. The encode transition takes
the current input data and two previously compressed data from the places data¥Y
and dataZ, and outputs a GSM(1.2) data packet in the encodedData place. The send

transition sends the encoded packet to the output socket place.

index

i+1 i

readData inputData

; tas\)@—x-—/'IZl—x—-O— fixy 2 OHixy.2
a Ufg:m(x) /éncode encodedData .. 1

output
dataX shiftX dataY shifty dataZz socket
non-adaptive __g,. arc for non-
L transition adaptive transition O state

adaptive ——p arc for adaptive
= transition transition O shared state

Figure 5.5: Sender source net (GSM (1,2))

Figure 5.6 shows the receiver net (elided). The receive transition receives the
audio packets from the input socket and puts the input packet in the inputData place.
The decodelnput transition takes the input packet from the inputData place, extracts
data from the original data scgment, and puts the data in the bufferedData place.
The decodeBuffer transition extracts the compressed data segments from the input
packet, and updates the data in the bufferedData place. The outputData transition
takes decoded data from the bufferedData, and then outputs the data to the sink.

We build the model for the lossy network separately (shown in Figure 5.7); this
model serves to define the behavior of the environment in which the sender and the
receiver execute. The input socket and output socket places are shared by the sender
and receiver nets, respectively. The lossy network is modeled as a packet queue. Firing
the send transition puts a data packet in the output socket place, thereby enabling

both the enqueue transition and the lose transition. Firing the lose transition discards

63

index guard i >0; seq3

k+1 o

K [0.0] [-1.0]
input decodelnput k] bufferedData
socket [k.s]ik1,s1]

lxy.z] seq /
: guard i>0
{i,x
i,x,y.z] decodeBuffer vard i>=k+2
(0,x0,y0,20] fixy.2] seq ths] >0

receive inputData outputData sink

Figure 5.6: Receiver source net (GSM (1.2))

the packet in the output socket place and increments the value in the loss count place.
Firing the enqueue transition moves a packet from output socket to the network buffer
place. Firing the dequeue transition moves a packet from network buffer to input socket
of the receiver. The packet in input socket can be reccived by the receiver. The value

in the loss count place indicates the number of packets lost during data transmission.

lose loss count

output
socket

input receive
socket

send

enqueue network dequeue
buffer

Figure 5.7: Lossy network net (environment model)

After building the source models, we first play token games with the sender
and receiver models (prior to adaptation) to visually validate the models. If we find
errors with the models, then we revise the models until the models pass the visual
validation. Then we run model checking to verify these models against the high-level

local requirements of the source domain S, including the safety, liveness. and loss-

64

tolerance constraints (Formulae 5.1--5.3). We revise the models until they pass the

model checking analysis.

To model the program for the target domain 7T'. we build separate Petri nets for
a GSM (1.3) encoder on the sender side and a GSM (1.3) decoder on the receiver
side. Figures 5.8 and 5.9 show the sender net and the receiver net, respectively.* The
modeling, validation, and verification process is similar to that used for the source

model.

output
g{ index socket

readData inputData
ixy.zt {Ofixy.z

dataSource encode ncodedData send
GSM(x) y z t
dataX shiftX data¥Y shiftY dataz shiftz dataT

Figure 5.8: Sen‘er target net (GSM (1.3))

guard i >0; seq3

k+1

[0.0]:[-1.0};(-2.0)

decodelnput [k.r bufferedData

guard i>0” [k.ri[k1.r1];[k2.r2]
fks)

_~decodeBuffer ‘
ixy.z4 sea2 guard i>=k+2
fixy.z ks

outputData Sink

Figure 5.9: Receiver target net (GSNI (1,3))

4By comparing the source model to the target model, one can notice that the source model can he
systematically extended to construct target models for GSM-oriented protocol of various parameters.

5.2.3 Constructing Adaptation Models

This section describes Step (2). the process to create a model of the adaptation
behavior from the source domain to the target domain. Recall the three tyvpes of
adaptation semantics introduced in Chapter 3: one-point adaptation, guided adapta-
tion, and overlap adaptation. We introduce the modeling technique for each of these
types of adaptation. For each type of adaptation, we first introduce a general speci-
fication approach for state-based modeling languages, then instantiate the approach
with Petri nets and apply it to the GSM-oriented protocol example.

The term quiescent states is commonly used to refer to those states suitable
for adaptations in the literature [5. 71]. They are usually identified as the “state-
less™ states of a program, e.g., states equivalent to initial states. However, in some
programs, reaching such states may not occur in a reasonably short period of time,
causing the program execution to block. Thus, this tvpe of definition for quiescent
states is not suitable for changes that require prompt adaptation responses, such as
those needed for fault tolerance. error recovery, attack detection, ete. Furthermore,
such a quiescent state definition is not sufficient to ensure the correctness of adapta-
tion in the absence of the requirements to be achieved by the adaptation.

We argue that the quiescent states of an adaptive program must be defined in the
context of the program adaptation behavior before, during, and after adaptation, and
the global invariants that the adaptive program must satisfv. A state of the source
program, s, is a quiescent state, if and only if we can define a state transformation
function, f, such that there exists a state, t. in the target program, t = f(s), and any
execution paths that include the adaptive transition s — ¢ do not violate any global
invariants.

The set of quiescent states is determined by the state transformation from s to ¢
that satisfies the global invariants. Generally speaking. the more quiescent states we

can identify, the more flexible the adaptation is, i.e., the more states from which we

66

may perform adaptation. Potentially, all states of the source model can be quiescent
states, but that would require us to define a complex state transformation function.
Therefore, we should balance the complexity of the transformation function and the
flexibility of the adaptation.

We use Petri nets to illustrate the quiescent state identification. We define an
“adapt” transition to model the set of adaptive transitions. The “adapt™ transition
connects the source net to the target net: All the input places of the transition are
in the source net, and all the output places are in the target net. When the “adapt”
transition is fired, it performs the state transformation by consuming the tokens in
the source model and generating tokens in the target model. The quiescent states of
the Petri net are those markings that enable the “adapt™ transition, which can be
restrained by the guard conditions of the transition. More than one “adapt” transition
can be defined in a similar fashion, each identifying a different set of quiescent states
and defining a different state transformation function upon this set. The source net

3

and the target net, connected by the “adapt™ transition, is the adaptation model.

We use token games and model checking to validate and verify the adaptation model
(e) o .

against the global invariants properties: If violations are found, then we need to revise

the models and/or the properties.

One-point adaptation

As described in Section 3.3, with one-point adaptation, at one state during the
source program’s execution, the source behavior should complete, and the target
behavior should start. The adaptation process completes after a single transition.
The major tasks for one-point adaptation are to identify the states that are suitable
for adaptation and define adaptive transitions from those states.

In the GSM-oriented audio streaming protocol example, the sender or the receiver

adaptation alone can be considered one-point adaptation. The global invariants for

67

the adaptive sender and receiver are specified as follows:

e Sender global invariant: The sender should read packets until the data source
is empty, and the sender should always eventually send a packet if it reads a

packet. In LTL,

O(dataSource = empty) AO(read(z) — Osend(r)). (5.5)

e Receiver global invariant: The recciver should always decode data once a

new packet is received. In LTL,

O(receive(r) — Qdecode(z)). (5.6)

The adaptation model for the sender is shown in Figure 5.10. The enabling
condition of the “adapt™ transition of the sender identifies the guiescent states to
be “after encoding a packet and before sending the packet, and after the data in
the compressed data buffer have been shifted to the next location”. The “adapt”
transition directly moves the tokens from dataY and dataZ to the corresponding places
in the target. The token in dataT in the target model is gencrated from the encoded
packet in encodedData of the source by taking the last piggvbacked data segment z.

Figure 5.11 shows the adaptation model for the receiver. The quiescent states of
the receiver are identified by the adapt transition of the receiver. Upon receiving the
packet, the model adapts to the target receiver net, and the state transformation is
defined by the output places and inscriptions on the arcs.

We ran token games on the sender and receiver adaptation models in order to
ralidate that the models reflect our purpose for the program. Then we used Maria to
model check these models against the global invariants (Formulae 5.5 and 5.6). Once

the models passed our validation and verification analysis. we concluded that these

68

/ Sender Source Model \

__.@__]

e encodedData send
7 .
O D)ty ovou
socket
dataX data2\
_ 21 J

a Sender Target Model

/;,x,y,z,o

dataSource ' ncodedData
/s y1 z
s z1
(}/» . O
k dataX datay dataz dataT)
[non-adaptive __g. arc for non-
- transition adaptive transition O state

y adaptive —p arc for adaptive
transition transition O shared state

Figure 5.10: Sender adaptation net

models had been constructed appropriately.

Guided adaptation

As described in Section 3.3, with guided adaptation, when the source program
receives an adaptation request, it enters a restricted mode, in which some function-
alities of the program are blocked. Entering the restricted mode ensures that the
program will eventually reach a quiescent state. from which a one-point adaptation
takes the program to the target program state space.

To specify a guided adaptation, we should determine the functionalities that

69

~

Receiver Source Model

) [/
[k,s);[k1,s1]
/

A/

TN \ /

inputData

(/»'

Receiver Target Model

~

Q 7
\ e \ |
T \\ ;

» ~—
) _"decodeButfer “‘O.. -

seq2 e Ml
I ___4O

Ccelvo outputData sink
non-adaptive _ 5. arc for non-
L "iransition adaptive transition O state
adaptive p arc for adaptive
transition transition O shared state

Figure 5.11: Receiver adaptation net

should be blocked in the restricted mode, and identify the quiescent states of the
program in the restricted mode. To achieve functionality blocking, transitions are
removed from the source program. Let the source model be Mg, the target model be
My, and the restricted source model be M. Mg must share the same set of states
with Mg, but M¢ has only a subset of the transitions of Ms. Ms and My can be
constructed in the same way as in one-point adaptation. Mg can be constructed by
first copying Ms and then removing transitions or strengthening the firing conditions

of transitions that may otherwise prevent the program from reaching a quiescent

70

state.

We next define the state transformations from states in Afg to states in A and
from quiescent states in Mg to states in Mr. As M{ shares all the states with Afg.
the state transformation from Mg to A is trivially an identity function (a function
that maps an element to itself) on the domain of all the states in Mg. The approach
to define quiescent states of Mg and the state transformation from Af§ to My is the
same as that used for one-point adaptation.

The approach in which A is constructed ensures that any execution path of
Mg is also an allowable execution path of Mg, which implies that as long as A does
not cause deadlock, Mg satisfies all safety and liveness constraints that Mg does.
The propertics we need to verify about A are that it does not reach a deadlock
state before it eventually reaches a quiescent state, and that the adaptation model
constructed by Mg, M. and My should satisty the global invariants.

The guided adaptation can be illustrated with the GSM-oriented adaptive sender
model. Assume the quiescent states of the sender are identified by the adapt transition
in Figure 5.10, which requires the inputData place to be emipty. the encodedData place
to be non-empty. and the encoded data in dataY and dataZ to have already shifted
one location. The semantics of Petri nets determines that the order of firing the send
transition and shifting the data in dataY and dataZ is non-deternmunistic. It might be
the case that the send transition is always fired before shifting the data. rendering
the quiescent states unrcachable. To deal with this problem, we construct a net that
represents a restricted variation of the source net that disables the send transition.
We do this by copying the source net. then removing the send transition from the net.
Figure 5.12 shows the conceptual model for the adaptation from the sender source
net to the sender restricted source net. The restrict transition represents a total
identity function from the source to the restricted source N. The adapt transition

from N to the target net is similar to that in Figure 5.10. Note. the way in which

N is constructed guarantees that all properties verified before are still valid. The
only additional property we need to verify is that N will eventually reach a quiescent

state, which is formally specified as follows:

e Quiescence constraint: After the restrict transition is fired, the restricted

sender must eventually reach a quiescent state. In LTL,

O(restrict = Qquiescent). (5.7)

We model checked the model in Figure 5.12 against Formulae 5.5-5.7, where the

analysis verified that the property holds.

Overlap adaptation

As described in Section 3.3, for overlop adaptation, the source to target adap-
tations are accomplished by a sequence of adaptation transitions that are performed
one after another. The target program starts to execute after the first adaptive tran-
sition, and the source program completes before the last adaptive transition. Overlap
adaptation is particularly useful for multi-threaded programs, where different threads
adapt to the target. Each thread performs a one-point adaptation or guided adapta-
tion at different times, and the combined result yields overlap adaptation.

Overlap adaptation is more complex than one-point adaptation in the sense that
we need to determine not only the state transformation functions of cach one-point
or guided adaptation, but also the coordination among these adaptations. Example
coordination relationships among these adaptations include precedence relationship,
cause-effect relationship, parallel relationship, etc. The key task in modeling overlap
adaptations is to define how these multiple adaptations should coordinate with each
other in order to satisfy global invariants. In addition to satisfyving explicitly specified

global invariants, an adaptive program should also satisfy an adaptation integrity

72

/ Sender Source Model O
index

i\
/A
Voo

readData inputData 4 .'

O T O —L1——0 — -

dataSource

-

G__”...D —— .O —s output

dataX shiftx datay shifty dataz socket

_ J

ﬁ restrict
|

I
Sender Restricted Model (N) Q index

e encode encodedData send\b

\
readData inputData

0B A o

dataSource . S encode\?dedoata O
o e
p .
O 0 —F—0 ot
dataX shiftX dataY shifty dataz socket

\ J

non-adaptive __ g arc for non- i
- transition adaptive transition O state

g adaptive —p arc for adaptive
transition transition O shared state

Figure 5.12: Sender restricted source net

constraint: Once the adaptation starts, it must eventually complete, i.e.,
the adaptation should finally reach a state of the target program. Violations of this
constraint result in an inconsistent state of the program that is not designed for the
target domain, and we have no means to ensure its correctness.

To facilitate understanding, we have described the models for the GSM-oriented
adaptive communication protocol in a modular fashion, where each discussion focuses
on one of the models relevant to achieving adaptation. In fact. the models in Fig-
ures 5.7, 5.10, 5.11, and 5.12 can be connected to form a comprehensive model for the

GS>M-oriented adaptive communication exhibiting overlap adaptation semantics. The

73

sender and the receiver models are connected by the lossy network net (in Figure 5.7).
The adaptation starts when the sender restrict transition is fired (in Figure 5.12), and
ends when the receiver adapt transition is fired (in Figure 5.11). After the sender has
adapted to the target (in Figure 5.10) and before the receiver adapts to the target
(in Figure 5.11). the source and the target overlap, i.e., the sender exhibits the target
sender behavior and the receiver exhibits the source receiver behavior. By consid-
ering the sender and the receiver as an entire program, the adaptive GSM-oriented
adaptive communication protocol is an overlap adaptation. The constraints for the

entire adaptive program are specified as follows:

e GSM example loss-tolerance global invariant: The adaptive program

should tolerate a 2-packet loss throughout its execution. In LTL,

(OlessCount <= 2) — {(O-lose(x))

&
oo
N

We used model checking to verify this property successtully.

¢ GSM example adaptation integrity constraint: If the sender adaptive
transition is fired, then the receivers’ adaptive transition will also eventually be

fired. In LTL,

O(senderAdapted — QreceiverAdapted). (5.9)

We found errors when model checking the adaptation integrity constraint (For-
mula 5.9). By inspecting the counter example, we realized that in a rare case. if all
the packets after the sender’s adaptation are lost, then the receiver will not receive
any packet encoded by the target sender, and thus the receiver will not adapt. We

revised the model by using a reliable communication channel to send the first packet

74

after the sender adapts to the target, so that the receiver will be guaranteed to re-
ceive the packet. Note that it is generally possible to build a reliable communication
channel atop unreliable underlving infrastructure by using acknowledgement-based
protocols [129]. Using it to send audio streams would incur a performance penalty.
However, if we use it to send only critical packets occasionally. then the penalty is neg-
ligible. We repeated the model checking for the revised model against the adaptation
integrity constraint (Formula 5.9), and the result showed that the adaptation indeed

ran to completion with the revised model, indicating that the property is satisfied.

Adaptation controller net

In a complex adaptation scenario, a number of concurrent adaptive components
are involved in a single overlap adaptation process. In order to drive a complex
adaptation process, we use an adaptation controller net to model the sequence of
adaptive transitions in the adaptation. (in essence, the adaptation controller net
serves as a driver for the adaptation process.} Figure 5.13 shows the controller net for
the adaptation of the sender and the receiver. The adaptation includes four phases: in
source, restricted source, sender adapted, and in target, each of which corresponds to a
place in the adaptation controller net. The transitions in the controller net, including
restrict, sender adapt, and receiver adapt, correspond to the adaptive transitions in the

sender and the receiver adaptation nets.

restricted sender sender receiver
adapt

in source restrict source adapt adapted in target

adapt
request

Figure 5.13: Adaptation controller net

As shown in Figure 5.14. we compose the adaptation controller net with the

sender and the receiver adaptation nets to drive their adaptive transitions, thus pro-
viding a global view of the adaptation procedure. In this model. the arc connecting
the in source place of the adaptation controller and the send transition of the sender
source model indicates that the transition is enabled only in the in source phase of
the adaptation. Firing the restrict source transition disables the send transition in
the sender source model and enables the adapt transition in the sender adaptation
model. Firing the sender adapt transition not only transfers the sender state from
the source to the target, but also tramsitions the adaptation phase from restricted
source to sender adapted. thus enabling the receiver adapt transition in the receiver
adaptation model. Finally. firing the receiver adapt transition moves the adaptation

to the in target phase, thus completing the adaptation.

5.3 Reifying the Models

This section introduces the approach to generate executable prototypes and de-
velop code based on the models constructed in the previous section with the assistance

of the Renew tool suite [78].

5.3.1 Rapid Prototyping

Renew [78] supports the specification of implementation-specific (Java) code in
its transition inscriptions. When a traunsition is fired, the code associated with the
transition will be executed. In model-driven approaches. the model drives the se-
quence in which the transitions are fired. By using this mechanism, we can generate
rapid prototypes directly from the adaptive models, whose behavior has been verified.
We map each transition to a Java method call. whose functionality is manually gener-
ated based on the input /output places. guard conditions. and other inscriptions of the

transition. The adapt transition is mapped to an adapt method. which implements

76

adapt
in source request

Receiver Source Model

Source Model
¢}
sen
o & : l:/ restrict
s OD\ X n;t:::::d
O
sender adapt
Sender Target Model O/
sender Receiver Target Model
; / — e .
O—m—@ @ N
i “ receiver adapt)
. / |
@ = |
in target “
®
=0

B3 non-adaplive — arc for non-
transition adaptive transition

() state

adaptive —p arc for adaptive —~
Bl nsion transition () shared state

Figure 5.14: Overall adaptation with controller net

the necessary state transformation.

Following the procedure introduced above, we have built a rapid prototype for
the adaptive sender and adaptive receiver in Java, and executed the application. The
prototype can be included as a module in a Java program to further validate its design.
We have tested its execution results, and the rapid prototype executed as expected,
thus serving to validate the Petri net models. The detailed Java implementation for

rapid prototyping is included in Appendix B.

it

5.3.2 Model-Based Testing

Given the rapid prototvpe generated. the production-level adaptive program can
be designed and implemented. After the program is implemented, we ensure that the
program is implemented properly with a model-based testing technique [112], which

is supported by Renew [79]. We verifv the following two constraints:

1. Each transition in the model must have a corresponding handler method in the
implementation, where a handler method for a transition triggers the transition

when the method is invoked.

2. The sequence in which the handler methods are called must conform to an

allowable transition sequence (i.e.. an execution) of the Petri net models.

For each Petri net model, we manually create a stub file (in a Renew-specific
format), which defines the mapping between handler methods and transitions in the
model. For example, we create a file named “SenderNet.stub” to define the han-
dler methods for the sender adaptation net in Figure 5.10. The code excerpt from
“SenderNet.stub” is shown in Figure 5.15. In the stub, line 2 declares that a Java
class SenderNet is to be created for the sender net. The body of the stub (lines 4-21)
defines the mapping between the methods (i.e., handler methods) of the SenderNet
class and the transitions of the sender net. For example, lines 4-6 define that the
readdata method of the SenderNet class is mapped to the readData transition in the
net. The stubs for other nets are crcated similarlv. The detailed implementation of
other stub files is included in Appendix B.

These stubs are processed by a Renew stub compiler. compilestub, which creates
Java source code for the handler methods. These methods interact with the Petri net

models at run time: Invocations of these handler methods have the following effects.

e If the corresponding transition is enabled at the time a method is invoked. then

the transition will be fired and the method will return immediately.

78

01 package gsm;

02 class SenderNet for net sender
03 {

04 void readdata() {
05 this:readData() ;
06 }

07

08 void S_encode () {
09 this:S_encode() ;
10 }

11

12 ...

13

14 void T_encode () {
15 this:T_encode () ;
16 }

17

18 void adapt() {

19 this:adapt()

20 }

21 ...

22 }

Figure 5.15: Code excerpt from the sender net stub (SenderNet . stub)

e If the corresponding transition is not enabled at the time the method is invoked,

then the method will block until the transition is enabled.

For each transition T in the Petri net models. we first manually identify the code
segment C (usually a method call) in the adaptive Java program that is intended to
implement the transition. We then insert an invocation to the handler method for T
at the entiy point of C, i.e.. at the entrv point of the miethod. During an execution
of the Java program, if the sequence in which these handler methods are invoked is
an allowable sequence of the Petri nets. then the execution will complete successfully,
otherwise, it will deadlock. With this approach, we can evaluate the conformance

between the executions of the Java implementation and that of the Petri net models.

79

5.4 Case Study: Adaptive Java Pipeline Program

In order to validate the model-based adaptive software development process, we
next describe another example application of our approach: specifically. we applied
it to the development of an adaptive Java pipeline program [151]. In some multi-
threaded Java programs, including proxy servers, data are processed and transmitted
from one thread to another in a pipelined fashion. The Java pipeline is implemented
using a piped I/O class. The svnchronization between the input and the output
to the pipeline is implemented using Java synchronized functions. Previously, we
have studied optimization techniques and proposed an asynchronous Java pipeline
design to be run on a multi-processor machine [151]. By eliminating synchronization
overhead. the asvnchronous version immproves performance with a speed up rate of
4.83 over the svuchronized implementation when the CPU workload is low. However,
when the CPU workload is high, the synchronized version performs better. Based
on the above observations. we would like to build an adaptive version of the Java
pipeline where the program can choose to use the optimal implementations at run
time based on the CPU workload. However. the complexity of designing an efficient
and verifiably correct algorithm that switches between synchronization protocols pre-
vented us from implementing the adaptive version of the program using traditional
development techniques. With the approach introduced in this chapter. we are able
to not only build an adaptive program model, but also model check critical properties,
and therefore, gain confidence in the design of the adaptive program.

Applving techniques in Chapter 4. we use a goal model to analvze the adapta-
tion requirements of the adaptive program. As shown in Figure 5.16. the top-level
goal G for the adaptive Java pipeline program is to enable efficient pipelined data
transmission between a writer thread and a reader thread in Java. Next we refine the

goal model.

30

PR
/ G: Achieve efficient
/ inter-thread pipelined
/ data transmission

/
- o 'E«>\
e .
T i OR \\
global /- b oA §
/’ Ach(eve G when / Achieve G when 7
/ CPU is underloaded / CPU is overloaded/
S—

o // : :

(/ low CPU load
\

local property for
low CPU load

implement

verify

N

/&sync pipeline\\
net ‘\

Adaptation
net

/ [
change
construct

/ ///
Async / Sync y
Pipe . I Pipe

Adaptive
change Pipe
T S o U T
[~] goal Q condition [\ model
dynamic
D requirement D implementation > c);wange

'@1 CPU load /

A —

\

U —

Figure 5.16: Goal model for adaptive Java pipeline

5.4.1 Specifying Global Invariants

We first use global invariants to specify the expected behavior of the Java pipeline
program. The set of global invariants serve as a contract between the adaptive pipeline

program and its clients. and therefore. must hold regardless of adaptations. The global

invariants are as follows:

e No deadlock-safety invariant: The program should never deadlock. i.e.. the

pipeline should continue to read from the input data buffer until the input buffer

becomes empty. Or simply stated. the input butfer must finally become empty.

31

In LTL,

Qinput _empty. {(5.10)

e No data loss-liveness invariant: All data input to the pipeline must even-

tually be output from the pipehne. In LTL,

O(mput(r)=Qoutput(r)). (5.11)

e No erroneous output-invariant: The pipeline nmust not output any data

that is not a part of the input data. In LTL.

(—output(x)U mput(r))vO-input(r). (5.12)

e Data ordering-invariant: The order in which data are read from the pipeline

must match the order in which data are written to the pipcline. i.e., no out-of-

order transmission. In LTL,

(minput(2) U input(y))=(—output(z) U output(y)). (513)

As shown in Figure 5.16, we create a requirement node under the top-level goal

to include these global invariants in the goal model.

82

5.4.2 Specifying Local Properties

Next, we specify local properties for the Java pipeline program. The adaptive
pipeline program executes in a high CPU workload domain and a low CPU workload
domain. In the high CPU workload domain, we require the program to operate in
the synchronized mode. which has lower concurrency level, but is less CPU intensive.
The writer and the reader are not allowed to operate simultaneously. In addition to

the global invariants, we have the following local property for this domain:

e Mutual exclusion-local property: The read and the write operations must

not be enabled simultaneously at any time. 1n LTL,

O-(write_enabled A read .enabled). (5.14)

In the low CPU workload domain, we require the program to operate in the
asynchronous mode, which is more CPU intensive, but has higher concurrency. In
this mode, we require maximal concurrency, i.e.. when the buffer is not full (or empty),

the write (or read) operation must be enabled.

e Writer concurrency-local property: The write operation must be enabled

when the buffer is not full. In LTL,

O(—full=write_cnabled).

—~
(@]
[—y
(@1

~

e Reader concurrency-local property: The read operation must be enabled

when the buffer is not empty. In LTL,

83

O(—empty= read _enabled). (5.16)

As shown in Figure 5.16, we create an OR-refined subgoal for each domain in
the goal model. Under cach subgoal, we create a requirement node to include local

properties and a condition node to include domain conditions.

5.4.3 Constructing Steady-State Models

In this step. we counstruct steady-state models in Petri nets and verify these
models against global invariants and local properties. We build Petri net models
for the svnchronized and asynchronous pipeline classes. Figure 5.17 shows the Petri
net model for the synchionized pipeline class with three internal data buffers bufferl,
buffer2, and buffer3, each of which can hold 0 or 1 data token. The three write
transitions model the write operation that puts input data in one of the empty internal
buffers. The three read transitions model the read operation that reads data from one
of the internal buffers. The places free. reading. and writing model the states in which
a read/write lock is free, held by the reader, and held by the writer, respectively. A
lock token must be in the reading (or the writing) place to enable the read (or the
write) transitions. The lock can be transferred among reading. writing. and free by
the firing one of the reader_lock, writer_lock, write, and read transitions. The input
and output places are respectively the data source and the data sink for the model.
In the synchronized pipeline model, the write and read transitions must be explicitly
enabled by writer_lock and reader_lock, and only one of them can be enabled at any
given point in time. We perform model checking to verify that the model satisfies
the mutual exclusion local property (formula (5.14)) and all the global invariants

(formulae (5.10)-(5.13)). The model checking results showed that these properties

84

are in fact satisfied by the model.

writer_lock free reader_lock
% T 14
guard n<3 guard n>0

n

writing

writer buffer

reader buffer

input

Figure 5.17: Svnchronized pipeline net

Next, we buiid the Petri net model for the asynchronous pipeline program (shown
in Figure 5.18). In the asynchronous model, there is no lock controlling the synchro-
nization between the write and the read transitions. Since it allows the writer and
the reader to operate the buffers simultaneously. the model must be carefully de-
signed to avoid potential risk of race conditions. Under no circumstances should the
reader and the writer both operate the same buffer unit at any given point of time.
Model checking has been performed to ensure that the model satisfies the writer and

reader concurrency local properties (formulae (5.15), (5.16)) and the global invariants

(formulae (5.10)-(5.13)).

write buffer1 read

output
C)\ U/ X p
get
buffer2
X X
read
buffer3
x—) X
write read

Figure 5.18: Asynchronous pipeline net

5.4.4 Constructing Adaptation Models

In this step. we construct adaptation models in Petri nets anid verify these models
against global invariants. In Figure 5.19, we show the adaptation controiler net for
the overlap adaptation from the synchronized pipeline to the asynchronous pipeline. -
The adaptation process includes three phases: in source, writer adapted, and in target.
The first adaptive transition. adapt writer, identifies the quiescent states to be “when
the writer is ready to write a data unit to the pipeline”. Firing the transition has the

following effects:

1. Disable the input to the synchronized pipeline and enable the input to the

asynchronous pipeline.

2. Transfer the current input data from the svnchronized pipeline to the asyn-

chronous pipeline.

3. Move the current phase to writer adapted.

86

After the adapt writer transition is fired. the writer will start to write to the asyn-
chronous (target) pipeline, and the reader will still read from the synchronized
(source) pipeline if there is any data remaining in the buffers. The second adaptive
transition is the adapt reader transition. which identifies the quiescent states to be
“when the buffers in the synchronized pipeline are all empty”. Firing this transition
will switch the output from the synchronized pipeline to the asynchronous pipeline,
and move the current pliase to in target. thus completing the adaptation process. For

the adaptation model, we specify the following adaptation integrity constraint:

e Adaptation integrity constraint: If the adapt writer transition is fired, then

eventually the adapt reader transition must also be fired. In LTL,

O(adapt _writer=>Qadapt _reader). (5.17)

We then model check the adaptation model against the global invariants. During
the verification, we found the no deadlock- safety invariant (i.e., Qinput_empty) was
violated by the model. By examining the violation path, we found that when the
synchronized (source) pipeline was in the writing state and when there was input data
available in writer buffer, firing the adapt writer transition moves the input data to the
asynchronous (target) pipeline, leaving the synchronized (source) pipeline locked in
the writing state, thus violating property (5.17). We modified the model by changing
the quiescent states for adapt writer to be “when writer buffer is emptyv”. Model
checking results indicated that the new model satisfied all the global invariants.

The models and the analysis capabilitics enabled us to focus our attention on the
design of the adaptation algorithm in order to maximize the program performance
during adaptation. The design of the models has the following performance advan-

tages. First, it is an overlap adaptation, i.c.. the writer adapts to the target model

87

synchronous pipeline

L3 O £
adapt writer ~ adapt
writer adapted reader

/
] R i

asynchronous pipeline

Figure 5.19: Adaptive pipeline adaptation net

without blocking or flushing the buffers in the pipeline. Second, it minimizes the

overhead of state transfer, i.e., it does not need to copy data from the source model

to the target model.

5.4.5 Reifying the Models

In this section, we demonstrate how the Petri net models created above can

be used in the development of an adaptive program. We followed the Petri net

88

models to build an adaptive program in Java that switches between synchronization
protocols under adaptation requests. We built two Java-pipelined objects that im-
plement the svnchronized and the asvnchronous models, respectively. We created
an adaptation driver object that implements the adaptation controller net which
sets its states based on the current phase in adaptation. We finally created an
adaptive Java-pipelined object that comprises the adaptation driver and the syn-
chronized/asynchronous pipelined objects. The adaptive pipelined object delegates
read/write requests to the appropriate pipelined object based on the state of the

adaptation driver object.

5.5 Related Work

The work presented in this chapter has been significantly influenced by several
related projects on {formally specifying adaptive program behavior with process alge-
braic languages. For example, Krainer and Magee [72] have used Darwin to describe
the architectural view and used FSP (a process algebraic language) to model the
behavioral view of an adaptive program. They used property automata (specified in
FSP) to specify the properties to be held by the adaptive program and used LTSA
to verify these properties. A quiescent state in their approach refers to the state
in which the component to be changed is passive, and all communications with the
component initiated by other components have completed. Their work highlighted
the importance of identifying the states in which adaptation may be correctly per-
forined, and it provided insight into the use of model checking to verify adaptation
correctness. Allen et al [2] integrated the specifications for both the architectural
and the behavioral aspects of dynamically adaptive programs using the Wright ADL.
They used two separate component specifications to describe the behavior of a compo-

nent before and after adaptation and encapsulate the dynamic changes in the “glue”

89

specification of a connector, thereby achieving separation of concerns. Wright specifi-
cations can be converted into a process algebraic language, CSP [58]. which can then
be statically verified. Canal et al [19] used LEDA. an ADL that supports inheritance
and dyvnamic reconfiguration. to specity dvnamic programs. LEDA is based on the
m-calculus [100], a simple and powerful process algebra. The richer, more expressive
nature of the m-calculus enables modelers to express dynamic component connections
more easily when compared to CSP-based approaches [2]. It is also possible to derive
prototypes and interfaces from the specification automatically.

Below are some of the key advantages when comparing our approach to the above
approaches: (1) The above approaches do not take into consideration the impact
of adaptation mechanisms when defining quiescent states, nor do they evaluate the
quiescent states in the context of global. high-level requirements. (2) None of the
above approaches support state transfer, which makes it necessary for the programs
to wait or even be blocked until a quiescent state is reached. (3) The specifications
for adaptive behavior are entangled with the specifications for non-adaptive behavior
in the sense that the quicscent states for adaptations are specified as part of the
source specifications, instead of as part of the adaptation specifications. (1) The
adapﬁve actions discussed by all three approaches are simple actions rather than
the coordination among concurrent adaptive actions. (5) The above techniques are
specific to the type of formalism being used (process algebra), thus making them
potentially difficult to be generalized to other types of formalisms.

Theorem proving has also been used to ensure critical properties in adaptive
software. Kulkarni et al [76] introduced a transitional-invariant lattice technique
that uses theorem proving to show that during and after an adaptation. the adap-
tive system is alwavs in correct states with respect to satistving a set of invariants.
A transitional-invariant lattice is a single-source, single-sink directed acyclic graph

(DAG). where the source node s represents the source program and the sink node

90

t represents the target program. An intermediate node n between s and ¢ repre-
sents an intermediate program obtained from s by performing one or more adaptive
actions. Let p(n) be the program represented by node n. where n can be s, ¢, or
any intermediate node. They associate s and t with the invariants inv(s) for p(s)
and inuv(t) for p(t), respectively. They also associate each intermediate node n with
a transitional-invariant inv(n) for p(n). They prove that, in the lattice, if there is
an edge from node n; to node n;, then p(n,) satisfies inv(n,) implies p(n;) satisfies
inv(n;). Assuch. if the source progiam satisfies its invariants. then they conclude that
the target program also satisfies its invariants. There are two major differences be-
tween our approaches. First. theorem proving is fundamentally different from model
checking in that although it is more powerful in handling certain cases, it requires
extensive human intervention during the process. Second. the properties that they
discuss are restricted to propositional properties. while we handle both propositional

and temporal propertics.

5.6 Discussion

In this chapter, we have proposed a model-driven software development process
for creating state-based models for adaptive software based on high-level require-
ments, as well as verifving and validating the adaptive models. Furthermore, we
described how to use these models to generate executable adaptive programs.

The concept of quicscent states is similar to fulfilliment states introduced in Chap-
ter 3, where a fulfilliment state is defined to be a state in which all the obligations
of the source behavior are fulfilled. and thus making it safe to terminate the source
behavior. The “fulfillinent state” is a concept at the requirements level, while “qui-
escent state” is a concept at the design level. A quiescent state may or may not be a

fulfillment state depending on the effect of the adaptation: If its effect is to terminate

91

the source behavior. such as the adapt transition in Figure 5.10. then it must be a
fulfillment state; otherwise. such as the restrict transition in Figure 5.12, it may not
be a fulfillment state.

Our experience shows that the proposed approach has the potential to improve
both the development tinmie and reliability of the code. The running adaptive au-
dio streaming example had been originally developed by members in our rescarch
lab without the proposed approach. After applying our approach to the example,
the original developers found that our approach significantly improved their under-
standing of the problem. and the new design was clearer than the original one. Qur
approach reduced the developer’s burden by separating different concerns and lever-
aging automated model construction and analysis tools. In the adaptive Java pipeline
example, the proposed approach helped us focus on the design of adaptation algo-
rithms. making it possible for us to build an efficient and verifiably correct adaptive
Java pipeline program. Automated analysis has plaved an essential role by reducing
a significant portion of burden of verifving the correctness of the adaptation.

The discussions in this chapter have focused on the development of new adaptive
software. \We also investigated the application of the model-based technique to en-
abling dynamic adaptation in legacy software with assurance, which will be discussed
in Chapter 6.

In this chapter, we focused our discussion on the verification of global invariants
and local properties specified in LTL. These properties arve supported by existing
tools, such as NIARIA. The veritication of adaptation variant properties specified in

A-LTL will be described in Chapter 7.

92

Chapter 6

Re-Engineering Software to Enable

Adaptation

[n this chapter. we extend the MASD approach introduced in Chapter 5 io

enable dynamic adaptation in legacy non-adaptive software [149]. We focus on the
connection between design models and impiementations of adaptive software.

There is a gap between existing modeling and implementation-based approaches
for adaptation: On the one hand, existing techniques [1. 12, 15, 43, 69, 114, 122,
126] that address adaptation in legacy code heavily rely on developers’ experience
and common sense rather than leveraging rigorous verification techniques, such as
model checking. On the other hand. existing techniques [2. 18. 19. 57, 72, 73, 99,
106, 128, 131} addressing correctness in dyvnamic adaptation using rigorous software
engineering techniques focus on abstract models and do not take the models to their
implementations.

In order to bridge the gap between existing modeling and implementation-based
approaches for adaptation, we introduce a formal technique to ensure that the adap-
tation requirements for the software are satisfied by the adaptive software implemen-

tation. The key insight is that the Unified Model Language (UML) models. with

93

formally defined semantics [97]. can be used as an intermediate representation to
bridge the gap between adaptive software implementations and the formal models
used for adaptive software verification. the design for adaptation can be performed
on the UNL models by creating adaptation UNML models. which can be automatically
translated into formal models using existing tools [97] for formal analysis.

Our approach has three key dimensions: model driven. non-invasive to the legacy
code, and enables formal analysis of the resulting adaptive systems for adherence
to local invariants. and adaptation properties. We leverage and extend several key
enabling techniques that we and others developed previously. First we leverage the
MASK approach in Chapter 5 to gain a model-driver approach Second, we extend
an aspect-oriented adaptation enabling technique [139] to enable non-invasiveness to
the legacy code. Third we leverage and extend a UML formalization framework [97]
to reverse-engineer legacy code to UML models and formalize UML models. The
aspect-oriented adaptation enabling technique allows us to insert adaptation related
code to existing software without directly altering original legacy source code, ie., it
is non-invasive. Non-invasiveness to the source code is important in order to enable
the adaptation code and the legacy code to be maintained separately. The assurance
in this approach is achieved by model checking the design models and support for
systematic translations between the models and their implementations. Furthermore,
our approach allows more flexible adaptation when compared to existing adaptation
enabling techniques [115, 121, 139]. Many adaptation techniques addressing legacy
code [115, 121, 139] require the points for adaptation to be separated from the code
segment changed by the adaptation. As discussed in section 5.2.3, this constraint
may impose unacceptable performance penalties in some adaptation scenarios. Thus.
we introduce a cascade adaptation technique that enables more flexible adaptation,
thus allowing adaptation to start at more points in the program.

We have applied our approach to the adaptive Java pipeline program [151] intro-

94

duced in Chapter 5. We demonstrate our approach by re-engineering a non-adaptive
version of the Java pipeline program to become an adaptive version using our pro-
posed approach. The remainder of this chapter is organized as follows. Section 6.1
overviews earlier work on an aspect-oriented adaptation enabling technique [139] and
a metamodel-based UML formalization technique [97]. In Section 6.2, we describe
a simplified version of our approach to be used in scenarios where there is only one
adaptive component adapting to only one target behavior. A case study is described
in Section 6.3. Section 6.4 describes a number of extensions to the simplified tech-
nique for more gencral adaptation scenarios. Section 6.6 sunumarizes this chapter and

discusses limitations and extensions of our approach.

6.1 Background

In this section, we overview two techniques that are extensively leveraged for
our proposed approach. The aspect-oriented adaptation enabling techuique [132] is
leveraged to enable non-invasive insertion of adaptation code into the legacy software.

The metamodel-based UML formalization technique [97] is used for two purposes:

reverse-engineer legacy software and formalize UNL models.

6.1.1 Aspect-Oriented Adaptation Enabling Technique

Aspect-Oriented Programming (AOP) [67] techniques encapsulate crosscutting
concerns of a program into single entities called aspects. AspectJ [132] is an aspect-
oriented extension to the Java programming langauge. In AspectJ, each crosscutting
concern is defined in an aspect, stored separately in an aspect file with the file name
extension “.aj". An aspect definition comprises pointcuts and advices. A pointeut

defines a set of points (named join points) in a program. such as invocations of a

certain function, access to a certain variable. etc. An adrvice comprises the type of

the advice (before, after, or around). a set of pointcuts, and a code segment. A
before (resp. after) advice causes the Aspect] compiler to insert the code segment
before (resp. after) every join point in the program matched by the pointcuts. An
around advice causes the AspectJ compiler to replace the join points matched by the
pointcuts with the code segment.

Yang et al [139] previously developed a two-phased AOP-based technique to
enable adaptation in legacy software using AspectJ. As shown in Figure 6.1, in the
first phase, occurring at compile time, an aspect fragment, called behavior adaptor,
defines the points in a legacy program at which “hooks™ need to be inserted. An
AOP compiler, such as the Aspect] compiler, weaves the behavior adaptor into the
legacy code to make the legacy code “adapt-ready”, i.e., capable of changing behavior.
During the second phase. occurring at run time. an adaptation kernel, i.e., a loose
federation of concern-specific adaptation managers. checks execution conditions of
the software and perforins appropriate adaptive actions according to a dvnamically
reloadable rule base. By using AOP techniques, their approach fully separates the
application code (non-adaptive) from the dynamic adaptation concerns. We leverage
the aspect-oriented adaptation enabling technique to enable non-invasive insertion of

adaptation code in the legacy software.

Core Program

Adapt Ready
—
. Program Process
Behavior Adaptor Ad::::;f ")
Aspects g i \

L. | Dynamically Adaptive | g

Development Time Compile Time Run Time

Figure 6.1: Aspect-oriented adaptation enabling

96

6.1.2 MetaModel-Based UML Formalization Technique

McUmber and Cheng developed a general framework [23] based on mappings
between metamodels (i.e., class diagrams depicting abstract syntax) for formaliz-
ing a subset of UML diagrams in terms of different formal languages, including
Promela [97]. The formal (target) language chosen should reflect and support the
intended semantics for a given domain (e.g., mobile computing systems). This for-
malization framework cnables the construction of a set of rules for transforming UML
models into specifications in a formal language [23]. The resulting specifications de-
rived from UML diagrams enable either execution through simulation or analysis
through model checking, using existing tools. The mapping process from UML to a
target language has been automated in a tool called Hydra [97]. We use Hydra to
translate the UML diagrams created for adaptation to Promela models to be analyzed

by the Spin model checker [12].

6.2 Model-Based Re-Engineering

We now show how the aspect-oriented adaptation enabling technique [139], the
MASD process, and the metamodel-based formalization technique can be integrated
and leveraged to bridge the gap between adaptation implementations and formal
models for adaptive systems.

Our approach addresses three phases in the development of adaptive software:
the requirements analysis phase, the model design and analysis phase, and the imple-
mentation phase. As shown in Figure 6.2, the overall process includes the following
four steps: Step (1) occurs in the requirements analysis phase. We perform require-
ments analysis to elicit a set of global invariants and local properties. Based on
these properties, we select from a code base a set of non-adaptive legacy programs

Py, Py.-- -, Py, each of which differs from another by one or more segments of code.

97

Step (2) occurs in the model design and analysis phase. The programs are reverse-
engineered into UML Statechart diagrams M. My, - - - | My, named steady-state mod-
els. These models are then translated into formal models and verified against their
local properties using automated tools [97]. Step (3) also occurs in the model design
and analysis phase. After the steady-state models are verified, developers must create
an adaptation model M, ;, also in terms of UML Statechart diagrams, for each adap-
tation from program P; to P;. The adaptation models are then translated to formal
models and verified using formal analysis tools against global invariants. Step (4)
occurs in the implementation phase. After the adaptation models are verified, they
are integrated and translated into adaptive programs. In this step, our approach
addresses the following questions: What mechanisms do we use to make legacy code
adaptive?” Where and what code should be inserted in the legacy code so that the
implementation faithfully reflects the adaptation design?

We next describe each phase in more detail. For discussion purposes, we focus
on the adaptation of one adaptive component from one source behavior to one target
behavior. Collaborative adaptive components with multiple potential target programs

are discussed in Section 6.4.

6.2.1 Requirements Analysis

In order to re-engineer legacy code, we customize and apply the goal-based re-
quircments analysis for adaptive software introduced in Chapter 4. We use Figure 6.3
to guide our discussion. Assume that the adaptive software is required to achieve a
high-level goal G in a set of different domains Dy, D,,--- . Dy. The local propertics
(in LTL) for these domains are Ry, Ry, --- , Ry, respectively. The set of global invari-
ants (in LTL) for the adaptive software is INV. Also assume that we have a legacy
code base comprising a set of non-adaptive legacy programs and the properties asso-

ciated with each program. After the set of requirements are specified. we query the

98

(1) Analyze
requirements

local properties

legacy programs and global invariants

Pij for all i selected legacy

programs
P1, P2, ..., Pk

Formal
analysis tool

(2)

Translate Java

code to UML Statecha
Statechart diagrams formal models
models M1, M2, ... Mg

UML
UML Statechart formalization
diagrams tool

Code base (M;, M) for all i, j

adaptation models
Ajjforall ij

(3)
Design
adaptation
model

adaptation model

Ajjforall i j

adaptive program P
(4)
Translation
UML to Java

Figure 6.2: Dataflow diagram for the proposed re-engineering approach

code base using the local properties and select the set of non-adaptive legacy pro-
grams Py, Py, .-+, Py to be used in the domains Dy, D,, - - - | Dy, respectively. In this
context, we assume that the legacy programs for all the requirements already exist.
Each of these legacy programs will become a steady-state program in the adaptive
program.

Next, we determine how the execution domains of the program may change at
run time, and how the adaptive program should respond. Consider the case where

the program is initially running P; in domain D;. A change of domain from D, to D,

99

f top-level goal ;

implement

D O condition " code base
goal R
D requirement [implementation ! \ model
dynamic
B change

Figure 6.3: Goal model for adaptive software

may warrant an adaptation from P; to P; depending on the cost to develop such an

adaptation and the overhead that may be incurred during the adaptation.

6.2.2 Design and Analysis

After selecting the set of legacy programs and adaptations. we create adaptation
models in UML using the following steps: First. we reverse engineer each legacy
program P; to generate a UML model (Statechart diagram) A,. Second, we verify
the Statechart diagram for each legacy program against its local properties. Third,

for each adaptation from P; to P; identified in the requirements analysis. we design

100

an adaption model A, ; comprising adaptive states and transitions from the source
model M, to the target mode Af;. Finally, we translate the adaptation models into
Promela models to verify global invariants. The above process is very similar to
the NASD process introduced in Section 5.2 except that the models M; are reverse
engineered from existing programs rather than refined from requirements as in forward

engineering.

Generate Statechart diagrams

We use a metamodel-based technique [97] to generate the Statechart model M, for
each legacy program P;. This technique had been previously proposed for formalizing
a subset of UML diagrams in terms of different formal languages, including Promela.
It is also generally applicable to formalizing the transformation of programs from one
language to another. In order to apply this technique. we first define the metamodels
for the legacy code, Java in this case. and for UML diagrams. Then we define the rules
for the translation fromn Java programs to UNML models in terms of the metamodels.
After the rules are defined, the translation from Java programs to UML models can
then be performed mechanically by a developer and can potentially be automated.
We have developed rules for translating the subset of Java that is relevant to our
mobile computing and other applications of studv. The metamodels and rules are
included in Appendix C. Developing the rules for translating the full Java language

is non-trivial; ongoing investigations are underway by other groups [68].

Verify local properties for assurance

We use the Hydra tool suite to transform the UML models AM; to Promela models.
Then we use the Spin model checker [12] to verify the Promela models against the local
properties specified in the requirements analysis. Violations of local properties by the

models may indicate one or more of the following cases: (1) The legacy programs P,

101

were implemented incorrectly, (2) the UML models AM; have not been generated to
actually reflect the legacy programs P;, or (3) the local properties R; are specified
incorrectly. Then we inspect the above artifacts to determine which one is at fault
and the corresponding erroneous artifacts must be revised until the models conform

to the properties.

Design adaptation models

After the UML models are generated, we design an adaptation model M, ; for each
required adaptation. Assume the program is required to adapt from running P; (the
source) to running P; (the target), and the corresponding Statechart diagrams are M;
and M;, respectively. We create an adaptation Statechart model M; ; from M; to M;
by adding adaptive states and transitions to M, and M; such that the global invariants
are preserved before. during, and after adaptation in M, ;. This task is achieved by
applying the MASD process introduced in Chapter 5 to Statechart diagrams in three
steps: (1) Identify the quiescent states in the source model M;; (2) identify the
entry states in the target model M;; (3) determine the state transformation from the
quiescent states to the entry states.

The adaptation model design is considered correct if and only if the model sat-
isfies the global invariants specified in the requirements analysis. Although theoret-
ically, the quiescent states and the entry states can potentially be any states in the
models, certain heuristics can be followed to keep the design clean and simple. First,
since an adaptation can only start from a quiescent state, quiescent states must be on
paths that the program frequently executes;! otherwise, there may be a long delay be-
fore the adaptation may start. Second, the conditions for the quiescent states should
be kept simple. For example the conditions at the entry point of a loop are usually

simpler than the conditions in the body of the loop. Example conditions include loop

I'The frequency may be monitored by instrumentation of the source code.

102

invariants. pre/post conditions. etc. Similarly. conditions for the entry states in the
target program need to be simple as well. However, the entry states are not required
to be on a frequently executed path.

The adaptive states and transitions usually include saving the states of the source
model, transforming states of the source model to states of the target model, and
restoring the states in the target model. The quiescent /entry states information that
needs to be saved/restored are usually the values of those live variables, i.e., those
that have been defined and may be used before they are dead (i.e., not used any
longer) or redefined in the model. A state transformation defines a function from the
set of variables in the quiescent state to the set of variables in the entry states. A
necessary condition for a valid state transformation function is that the output must
satisfv the conditions for the entry states given that the input satisfies the conditions

for the quiescent states.

Verify global invariants for assurance

An adaptation model must be verified against the global invariants. The process
is similar to that used for verifving the local properties. Violations of the global
invariants indicate that the adaptation model or the global invariants are incorrect.
In either case, we must return to previous steps to revise the corresponding artifacts

until the global invariants are satisfied by the model.

6.2.3 Code Generation

After the adaptation model is constructed, we implement it in Java to enable the
legacy code to be adaptive. We assume that each non-adaptive legacy program P,
is initially encapsulated in a Java class. First, we create an adaptive Java class such
that the class implements the adaptive behavior described by the adaptation model.

Second, we replace invocations to the constructors of the non-adaptive classes in the

103

legacy code with those of the adaptive class using an aspect-oriented technique. The
remainder of the legacy program remains unchanged. Next. we describe each step in

further detail.

Construct adaptive classes

We implement adaptive programs by systematically following the adaptation
models. Since the UML models were initially generated from the programs, we assume
the traceability links between the UML models and the original Java programs are
already established in the generation process. Traceability links are the mappings
between states in the UML models and statements in the programs. These links
can be stored in the UML models as annotations recording the line numbers in the
programs. We will introduce a concrete example of traceability links in Section 6.3.
We identify the locations and conditions in the source (resp. target) program that
correspond to the quiescent (resp. entry) states in the adaptation model. At the
locations corresponding to the quiescent state. we insert code to test whether an
adaptation request has been received. If so, then the source program execution will
be suspended and a state object comprising the current state information will be
created. The state object is then transferred to the location in the target program.
During the transfer, the state object is transformed from a state object for the source
program to a state object for the target program. At the location in the target
program, the state of the target program is restored from the state object and the

execution is resumed from the location in the target program.

Next we describe a challenge that arises in the implementation of adaptive tran-

sitions from quiescent states to entry states and introduce a cascade adaptation mech-

anism to address this challenge.

104

The Challenge. A simple case of such kind of transitions is illustrated in Figure 6.4,
where the code segment to be changed is enclosed by the method bar() (lines 1-4),
and the quiescent /entry state for adaptation is “outside” of the method bar () (line
8). A number of techniques have been proposed to address such tyvpes of simple tran-
sitions, including the code hot-swapping mechanism [5]. the strategy design pattern

approach [19]. etc.

source program S target program T
01 bar(){ 01 bar’ () {
02 02
03 //code block 2 03 //code block 2'
04 } 04 }
05 05
06 foo () { 06 foo’ ()
07 while (true) { adapt 07 while (true) ({
08 // quiescent state 98 // entry state
09 bar (); 09 bar’ ();
10 10
11 // code block 1 11 // cdoe block 1
12 } 12)
13) 13 }
14 14 '
15 main() { 15 main «) {
16 foo () 16 foo’ ()
17) 17 }

Figure 6.4: An example of the simple case of quiescent /entry states

However, in a more general case. the code segiments that are to be changed by the
adaptation may be scattered across the source and the target programs. As illustrated
in Figure 6.5, the quiescent /entry states are within the code segment changed by the
adaptation. We believe that, in legacy code. scattering is the norm rather than the
exception, since we have encountered a number of adaptation scenarios of this nature
in our research, including the adaptive Java pipeline [145]. The code hot-swapping
or the strategy pattern approach will not work in the general case since there is no

location in the code where a code hot-swap will have the intended behavior.

105

source program S target program T
01 bar (){ 01 bar’ (){
02 02 while (condition’) {
03 while(condition) { 03 //code block 3'
04 e . 04 ..
05 /code block 3
06 e ada?! 32 //entry srate
07 //quiescent state 07 //code block 4'
08 08 }
09 //code block 4 09 }
10 } 10
11) 11 foo’ () {
12 12 while (true) {
13 foo () | i3 . .
14 while (true) { 14 // code block 1'
15 e e - 15
16 // code block 1 16 bar’ ();:
17 17
18 bar (): 18 e
19 19 // code block 2'
20 // cdoe block 2 20 }
21 } 21 }
22) 22
23 23 main (){
24 main () { 24 foo’ ()
25 foo () 25 })
26 }

Figure 6.5: An example of the general case of quiescent/entry states

The Cascade Adaptation Mechanism. In order to handle the general case, we
propose a cascade adaptation mechanism in which the program control first cascades
outwards (outbound cascade) from the quiescent state in the source program, then
cascades inwards (inbound cascade) to reach the entry state in the target program.
As shown in Figure 6.6, the program control first cascades from the quiescent state
(line 7) of the inner method outwards until it reaches a location (line 24) outside the
code segment to be changed (lines 1-21). After a state transformation from the source
program to the target program. the control cascades inwards until it reaches the entry
state of the target program. We implement the outbound cascade using the exception

handling mechanism in Java. First. we insert code at the location for the quiescent

106

state (line 7) to test for adaptation requests. If an adaptation request has been
received, then the source program creates an exception object SourceState and stores
the local state information of the method bar() in SourceState. Then SourceState is
thrown to the method foo() (line 17). which catches SourceState and incrementally
records its own local state information in the object. Finally, the main() method
catches SourceState (line 24). After transforming SourceState to TargetState, the
program control is transferred to the target program.

In order to implement the inbound cascade in the target program, we transform
the program into a different target program 77 such that its initial state is equivalent
to the entry state of the target program. This is achieved by (1) constructing the
control flow diagram for the target program, (2) designating the entry state the initial
state of the diagram, and (3) regenerating the program from the diagram. When T’
is invoked, the program control will jump to the state equivalent to the entry state
of the target program. The target state object is then passed inwards as a parameter

(line 35 — line 18 — line 3 in Figure 6.6).

Enable adaptation in legacy code

To enable adaptation in legacy programs, we replace calls to the constructors of
the non-adaptive classes with those of the adaptive class. Manually identifving the
construction statements in the legacy code and modifving the code directly is unde-
sirable. First, there may be numerous locations where the objects are constructed,
making the manual approach tedious and error prone. Second, the adaptation con-
cern will be entangled with the legacy code, making future maintenance difficult.
Therefore, we apply the aspect-oriented technique to perform the code replacement.
We define pointcuts to identify the calls to the constructors of the non-adaptive class.
Then we use an around advice to replace them with calls to constructors of the adap-

tive class.

107

source program S transformed target
program T’

01 bar (){ 01 bar’’ (State TargetState){

02 02

03 while(condition) { 03 // entry state -~

04 04 . .

05 /code block 3 . 05 //code block 4°'

06 06

~ 01 //quiescent state ' 97 while (condition’) {

08 08 e

09 //code block 4 ~ 09 //code block 3')

10 } 10 inbound
outbound 11} 11 cascade
cascade 12 - 12 //code block 4'

13 foo «() 13 }

13 while (true) { 14)

14 15

15 // code block 1 16 foo’'’ (State TargetState) {

16 17

17 bar (): 18 bar’’ (TargetState); <

18 19 .. .

19 // cdoe block 2 20 // code block 2'
outbound } 21
cascade ,; , 22

22 23 while (true) {

23 main «) { 2¢ L .

24 foo () - 25 // code block 1'

25) . 26 .

L 27 bar’ (): inbound
28 cascade
SourceState 29 e
30 // code block 2'
, 31 }
state transformation 32)
33
34 main (){
35 foo’’ (TargetState) /
TargetState 36)

Figure 6.6: The cascade adaptation mechanism
For example, we can define a pointcut FOO that identifies the constructor of a
non-adaptive class Foo as follows:
public pointcut FOO(): call (Foo.new(...));

The following around advice definition replaces the constructor of class Foo iden-

tified by FOO with the constructor of an adaptive class Bar:

FOOBAR around() :FOO(O){

return new Bar();

103

The objects of the adaptive class (Bar) then can be used throughout the legacy
program in the same way as for the non-adaptive objects (Foo), except that they
are capable of performing the designed adaptation. By using the aspect-oriented
approach, we do not directly modify the legacy code. thus separating the adaptation

concerns from the non-adaptation concerns.

6.3 Case Study: Adaptive Java Pipeline Program

In this section, we demonstrate the process of re-engineering legacy programs

using the Java pipeline example introduced in Section 5.4.

6.3.1 Requirements Analysis

In Section 5.4, we have introduced the requirements analysis of the Java pipeline
program with the MASD approach. The approach introduced in this chapter differs
from the MASD approach in the way steady-state models and steady-state programs
are obtained. For completeness of the example. we repeat the requirements analysis
step here.

We apply the goal-based requirements analysis to the Java pipeline program.
The program is required to achieve the high-level goal: To enable efficient pipelined
data transmission between a writer thread and a reader thread in Java. We create a

top-level goal G in a goal-model as shown in Figure 6.7.

Specify global invariants. We have discussed the global invariants for the adap-
tive Java pipeline program in Section 5.4. For convenience, we repeat the specifi-

cations here. The set of global invariants serve as a contract between the adaptive

109

r

G: achieve efficient
inter-thread pipelined
data transmission

—~
T —

OR —~_
. [
/achieve G when CPU / achieve G when
invanants L is underioaded ~ / Z CPU is overloaded
—_——— e B A S
///)
— /
— ~
local property for low CPU load mgh cPU '03‘1\ Z Iﬁfalhpcr:%pgrlw ':r /
low CPU load) o L % 9 o8
change
verify

N change . model for

modei for o 9 /ﬁmodel for »/ Syncpipe

async pipe Zadapllve pipe! . Y

—— S ey -
query implement \
/ constiuct)
J 1
— / = e T T T - 1

change . N . .
e ‘| AdaptivePipedinputjava | - . . o] sync.Pipedinput java

[] goal O condition F2=="7 code base
D requirement D implementation I \ model

dynamic
change

>

Figure 6.7: Goal model for adaptive Java pipeline

110

pipeline program and its clients, and therefore. must hold regardless of adaptations.

The global invariants are as follows:

e Safety invariant: no deadlock. Tle program must never deadlock, i.e., the
pipeline should continue to read from the input data buffer until the input buffer
becomes empty. Or simply stated, the input buffer must finally become empty.
In LTL,

Qinput _empty. (6.1)

e Liveness invariant: no data loss. All data input to the pipeline must
eventually be output from the pipeline. In LTL,

O(input(x)=0Qoutput(zr)). (6.2)

e Invariant: no erroneous output. The pipeline must not output any data
that is not a part of the input data. In LTL,

(moutput(z) U input(r))VO-input(x). (6.3)

e Invariant: data ordering. The order in which data are read from the pipeline

must match the order in which data are written to the pipeline, i.e.. no out-of-

order transmission. In LTL,

111

(—input(r)U input(y))=(—output(xz) U output(y)). (6.4)

We create a requircment node under the top-level goal to include these global

invariants in the goal model.

Specify local properties. Again. we repeat the analysis of the local properties of
the adaptive Java pipeline program that we discussed in Section 5.4. The adaptive
pipeline program executes in a high CPU workload domain and a low CPU workload
domain. In the high CPU workload domain. we require the program to operate in the
synchronous mode, which has lower level of concurrency, but is less CPU intensive.
The writer and the reader are not allowed to operate simultaneously. In addition to

the global invariants. we have the following local property for this domain:
O (e} o

e Local property: mutual exclusion. The read and the write operations must

not be enabled simultaneously at any time. In LTL,

O-(write_enabled A read _enabled). (6.5)

In the low CPU workload domain, we require the program to operate in the
asynchronous mode, which is more CPU intensive. but has higher concurrency. In
this mode, we require maximal concurrency, i.e., when the buffer is not full (or empty),

the write (or read) operation must be enabled.

e Local property: writer concurrency. The write operation must be enabled

when the buffer is not full. In LTL,

112

O(—~full=write_enabled). (6.6)

e Local property: reader concurrency. The read operation must be enabled

when the buffer is not empty. In LTL,

O(=empty=read_enabled). (6.7)

As shown in Figure 6.7. we create an OR-refined subgoal for each domain in
the goal model. Under each subgoal, we create a requirement node to include local

properties and a condition node to include domain conditions.

Query the Code Base. In thie existing code base, we have two different im-
plementations for the Java pipeline: a syvnchronized implementation comprising
sync.PipedInput and sync.PipeOutput classes. and an asynchronous implemen-
tation comprising async.PipedInput and async.PipedOutput classes. The descrip-
tions for these two implementations indicate that they are appropriate candidates for

the high CPU load domain and the low CPU load domain, respectively.

6.3.2 Design and Analysis

This section describes the model design and analysis for the adaptive Java

pipeline example.

113

Generate state diagrams

We use the metamodel-based approach to translate the Java classes into State-
chart diagrams. The piped input and output classes in the legacy program basically
implement a read() method for input and a write() method for output. The im-
plementations of these two methods are largely symmetric. For brevity, we use the
read () method in the piped input classes (svnchronized and asynchronous) as an
example to illustrate the procedure The translation includes two substeps: First, we
translate cach Java prograin into an equivalent Java program in a canonical form, then
we apply the metamodel-based model translation technique to translate the canonical
form Java program into a Statechart diagram. The same procedure is applied to the

write() method and all other methods in the Java classes.

Substep 1: Convert Java code into canonical form. We translate a Java
program into an equivalent program in a canonical form in order to simplify the
nunﬂ.)er of different cases we have to handle in the metamodel-based translation.

First, we translate all “while™ loops and “for” loops in the program into
“while(true)” loops and “if” blocks. Figure 6.8 (a) shows the translation of a
while loop. where the loop body is copied from line 2 in the non-canonical form pro-
gram to line 3 in the canonical form program. Figure 6.8 (b) shows the translation
of a for loop. where the loop body is copied from line 2 in the non-canonical form
program to line 4 in the canonical form program.

Second, we perform an inline operation to method invocations in the program to
flatten the syntactic structure of the program. Note that this step currently does not
handle recursions.

Figure 6.9 shows the canonical form conversion of the read() method of the
sync.PipedInput class. The method invocation (line 3) in the non-canonical form is

inlined in the canonical form (lines 4 21 (L1)). The while loop in the non-canonical

114

01 while (condition) { 01 while (true) {

02 [body block] 02 if (condition) {
03} 03 [body block]
04 }else
05 break;
06 }
non-canonical form canonical form

(a) while loop conversion

01 for (x; y; z){ 01 x;
02 [body block] 02 while (true) {
03) 03 if (y){
04 [body block]
05 z;
06 } else
07 break
08 }
non-canonical form canonical form

(b) f--r loop conversion

Figure 6.8: Java code canonical form conversion

form (lines 6 -16) is converted to the while (true) loop in the canonical form (lines 24—

39 (L2)).

Substep 2: Translate Java code into Statechart diagrams. We use the
metamodel-based approach to translate the canonical forin Java programs into State-
chart diagrams. The translation of the read () method of the sync.PipedInput class
is illustrated in Figure 6.10, where Figure 6.10 (a) shows the canonical form Java
program that we constructed in the previous substep, and Figure 6.10 (b) shows
the corresponding Statechart diagram created with IBN Rational XDE [62]. In the
Statechart diagram. each state corresponds to a point in the program, where a point
is defined to be the location between two lines of code. In Figure 6.10 (a) we have
labeled these points with bold comment lines prefixed with “//state:”. The dotted

lines between Figure 6.10 (a) and Figure 6.10 (b) show the traccability links between

115

01 public synchronized int read(byte b[], 01 public synchronized int read(byte b[],

02 int off, int len) 02 int off, int len)
03 c = read(): 03 ...

04 Db[off] = (byte) c; 04 while (in < 0) {

05 int rlen = 1; o5 ...

06 while ((in >= 0) && (--len > 0)) { 06 notifyAll() ;

07 b[off + rlen] = buffer[out++]: 07 try {

08 rlen++; 08 wait (1000) ;

09 if (out >= buffer.length) ({ 09 } catch (...) {

10 out = 0; 10 ...

11 } 11 }

12 if (in == out) { 12 }

13 100PL1{ 13 int ret = buffer[out++] & OXFF;
14 in = -1; 14 if (out >= buffer.length) {

15 } 15 out = 0;

16) 16 }

17 return rlen; 17 if (in == out) {

18 } 18

19 19 in = -1;

20 public synchronized byte read() 20 }

21 while (in < 0) | 21 int ¢ = ret;

22 22 bl[off] = c;

23 notifyAll() . 23 int rlen = 1;

24 try { /24 while (true){

25 wait (1000); 25 len-~;

26 } catech (...) { (26 if ((in >= 0) && (len > 0)) {
27 27 b[off + rlen] = buffer[out++];
28 } \ 28 rlen++;
29)} 29 if (out >= buffer.length) {
30 int ret = buffer[out++] & OxFF; 30 out = 0;

31 if (out >= buffer.length) (31 }

32 out = 0; loopL2 \ 3; if (in == out) {

33} 33

3¢ if (in == out) { 34 in = -1;

35 35 }

36 in = -1; 36 }

37) 37 else

38 return ret; 38 break;

39} 39 }

40 return rlen;
41)
(a) non-canonical form (b) canonical form

Figure 6.9: Before and after canonical form conversion of sync.PipedInput.read()

116

the points in the Java program and the states in the Statechart diagram. We have
included more details of the metamodel-based model translation rules in Appendix C.

We generate a Statechart diagram for each of the Java pipeline classes. Every
model represents a certain kind of behavior. and thus is considered a steady-state

model.

Verify steady-state models

We use the Hydra tool suite to transform the steady-state models to Promela
models. Then we use the Spin model checker [12] to verify the Promela models against
the local properties specified in Section 6.3.1. In this example. we did not find errors

in the models, and therefore. proceed to the next step.

Design adaptation models

Next, we design the Statechart adaptation models. Figure 6.11 shows the adap-
tation model for the read() method of the piped input. where Figure 6.11 (a) and
Figure 6.11 (b) represent the svnchronized and asynchronous steady-state models,
respectively. The bold-lined states and transitions connecting Figure 6.11 (a) and
Figure 6.11 (b) represent adaptive states and transitions. The shaded states in the
steady-state models are the quiescent state and the entry state.

We chose the state finished? in the source model to be the quiescent state because
(1) it is in a loop that is frequently exccuted. and (2) its condition is relatively simple
to specify when compared to other states in the same loop. We chose the state more?
in the target model to be the entry state because its position in the target is similar
to that of the state finished? in the source, thus simplifying the state transformation.

The adaptation procedure includes three transitions: (1) test the adaptation
request and save current state, (2) transform the saved state of the source model to

a state of the target model. and (3) restore the state in the target model.

117

01
02
03
04

06
07
08
09
10
11

13
14
15
16
17
8
19
20
21
22
23
24

-
<

26
27

-
<

29
39
31
32
33
34
35
3¢
37
38
39
10
41
42
43
44
45
46
47
48

50
51
52
53
54
55

public synchronized int read(byte b[],

int off, int len)

//state: read entered

while (in < 0) { A

notifyAll() ;
try {

//state: read entry ..
//state: read _entered --.
} catch (InterruptedException ex) {

}

int ret = buffer[out++] & OxFF;
//state: read first "--..

if (out >= buffer.length)" (-

wait (1000) ;

l

new Pipedinput
Diconnect ()l /output.notify(); ~reader.read_
| connected < done(rlen); lock = 0

» _____ Bread (leng : int)
Doty ()
e read_entry

reader sleeping .. | [lock ==0 | lock == TID}/lock=TIC

|_ read_ert...

out = 0; Tl
} [in < 0)/"output.notify(); lock = 0
//state:circle out -._ (in>=0)/out: = out#1
if (in == out) { N
v
in = -1; Tl R read_first
}
//state:reset_in [out>= buffer _length]/out: =Ol l[M< buffer_length]
int ¢ = ret; _ e
b[off] = c; e N drcle_out
int rlen = 1; i
//state:read rest “‘~~-..~___[‘in==out]/in:=-1l l[mg:o(,q
while (true) { e
len--; el reset_in
//state: finished?--._) .
if ((in >= 0) && (--len > 0)) { /rlen::ll]
b[off + rlen] = buffer[out++]; read_exit
rlen++; read_rest T
//state: read more el . 7
if (out >= buffer.length) (R flen = len1 [(in <0) | (leng <= 0)]
out = 0; e B
!) A
//state: circle out - ..~ finished?
if (in == out) ({ e [(in >= 0) & (leng >
) . 0)}/out: =out+1;rlen: =rlen+1
in = -1; PRI
} T
//state: reset in . .. read _more
;lse - : (o< b‘“e‘f'f'f‘g"‘]l l[out >= buffer_length}/out: =0
//state:read exit .- '
break: - drde_out

}
//state:read _exit
return rlen;

}

(a) Java code

" i e=~ou]j' l[in == ow}in:=-1

u event

— - transition @ state

reset_in
(b) Statechart diagram
. traceability [condition Jaction ~ bolding indicates adaptive
link states and transitions

Figure 6.10: Statechart translation of sync.PipedInput.read()

118

The adaptation model for the write() method of the piped output can be con-

structed similarly.

Verify adaptation models

We use the Hydra tool suite to transform the adaptation models to Promela
models. Then we use the Spin model checker [12] to verify the Promela models
against the global invariants specified in Section 6.3.1. In this example, we did not
find errors in the models, and therefore, successfully completed the model design and

analysis for the adaptive Java pipeline program.

6.3.3 Code Generation

After the adaptation models are created, we generate Java code for the adapta-
tion. Two techniques are used for code generation: cascade adaptation mechanism

and aspect-oriented adaptation enabling.

Cascade adaptation mechanism

We create two adaptive classes AdaptivePipedInput and AdaptivePipedQOutput
for the piped input and output, respectively. Figure 6.12 (a) shows the read()
method for the AdaptivePipedInput class. The class comprises an object of the
sync.PipedInput class (syncInput), and an object of the async.PipedInput class
(asyncInput). The read() method of AdaptivePipedInput invokes the read()
method of one of the objects based on its current state (lines 5 and 15). The invocation
of syncInput.read() (line 8) (the source) is placed in a try block since we use
the exception handling mechanism to implement the cascade adaptation. When an
adaptation occurs during the invocation of the read() method, a state object of the
type SyncInputState will be thrown as an exception (line 8), and caught by the catch

block (lines 10-13), where the state object is stored in the variable outgoingState.

119

(a) Source model for piped input
(synchronized piped input)

(b) Target model for piped input
(asynchronous piped input)

. I
,_.__,l,.,ﬁ - T A']
| new Pipedinput | | e :
D conmect()l /™output.notify(); ~reader.read_ Dl connect ()l
- ch&err% done(rlen); lock = 0 - e
l «—
Bread (leng : int) — .
Drotify () ' read_entry > Bread (leng : int)
p - {"sharednew.setOut{out) .
B arde ot T % entered
reader_sleeping | [lock ==0 | lock == TID}/lock=TIC “aa N, - L
-
| read_ent... [in == out]
[in < 0)/~output.notif(); lock = 0 :
read
i[in):()]/ott:= out+1 NS —
’ : [out<leng]
) 7reai_ lﬁirstg‘ y_(oup:leng]/u.(=0
[out>= buffer_length)/out: =Ol l[ou« buffer_length}] in==out | i>=len)
arde_out) - J;
R - ; | State12 i
[in == out}/in: =-1 [in '=out) read [in'=out 81 <leng)/i: =i+1;0ut: =out+1; o
. resetUn |
/hen:=1 B §
l 7Are§d_exrl (3)
—> readrest | IRestoreState
{(in <0) | (leng <=0)]
flen := len-1
transformed
[(in >=0) & (leng > (1) (2)
0))/out: =out+1;rlen: =rlen+1 [adapting])/SaveState MransformState
| read_more ‘ ¥ event - quiescent/ traceability
[out< buffer ,engh]l l entry state link
- [out >= buffer_length]/out: =0
| crde_ag — transition

fint= w!]l

[in == out}/in:=-1
v

reset_in

bolding indicates adaptive states and transitions

[condition] / action

@ state

Figure 6.11: Adaptation model for the piped input class

120

At lines 20 21, a state object, incomingStat, for the asynclnput is created based on

outgoingState. and at line 22. the incomingStat is passed to the read() method

of asyncInput (the target) as an argument.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

public synchronized int read(byte b[],
int off, int len) {
InputState outgoingState = null;
while (true) {
if ('adapting && in_sync) {

try{
int ret = syncInput.read(b, off, len);
return ret;

}catch (SyncInputState stateObj) {
outgoingState= stateObj;
adapting = true;

}

}else if ('adapting && in_async) {
int ret = asyncInput.read(b,off,len);
return ret;

} else if (adapting) {
AsyncInputState incomingStat=
new AsynclnputState(outgoingState) ;
int ret = asynclnput.read(incomingStat)
return ret;

(a) Java code for
AdaptivePipedlnput.read()

01 if (adapting()) {

02 SyncInputState stateObj
03 = new InputState():
04 stateObj.in = in;

05 stateObj.len = len;

06 stateObj.off = off;

07 stateObj.rlen = rlen;
08 stateObj.b = b;

09 throw stateObj;

10 }

(b) Java code at quiescent state of
sync.PipedInput.read()

01 public int read(

02 AsyncInputState stateObj) {
03 byte b[] = stateObj.b;

04 int len = stateObj.len;

0s int rlen = stateObj.rlen;

06 int off = stateObj.off;

(c) Java code at entry state of
async.PipedInput.read()

Figure 6.12: The read () method for the adaptive piped input class

Since we have chosen the state finished? in the synchronized input model as the

quiescent state, we follow the traceability links in Figure 6.10, and locate the point

corresponding to the quiescent state (line 34 in Figure 6.10 (a)). We insert Java code

in this line to implement the adaptation transitions.

The code inserted is shown in Figure 6.12 (b). If an adaptation request is present

(line 1), then we create a state object stateObj (lines 2, 3) which saves the current

state (lines 4 8). Then stateObj is thrown as an exception (line 9). which will be

caught at line 10 of Figure 6.12 (a).

The entry point in the target is identified similarly. Figure 6.12 (¢) shows the

121

Java code inserted at the entry point of the read() method of async.PipedInput.
It first restores the program state from the input state object. stateObj (lines 3-6),
then continues with other operations in the method thereafter.

We follow the same steps introduced above to generate the code for the

AdaptivePipedOutput class as well.

Enable adaptation in legacy code

In the legacy Java program that uses the Java pipeline. we use an aspect-oriented
approach to replace calls to the constructors of the non-adaptive piped input/output
classes with those of the adaptive piped input/output classes. Figure 6.13 shows
an aspect definition in Aspect]J that enables adaptation in legacy Java programs.
The aspect defines two pointcuts, constructInput (lines 5-7) and constructOutput
(lines 9-11), to identify the invocations to the constructors of the piped input and out-
put classes, respectively. The aspect also defines two advices, PipedInput (lines 13-
15) and PipedOutput (lines 17-19), which respectively, replace the constructors of
the non-adaptive classes with constructors of the adaptive classes. The aspect is then
woven into the legacy program using the AspectJ compiler “ajc” [132].

After the above steps, the legacy Java program using the non-adaptive pipeline
is transformed into a program using the adaptive pipeline, whose behavior has been

verified against the set of requirements elicited in the requirements analysis.

6.4 Extensions

In this section, we discuss a number of extensions to the technique introduced in

Section 6.2 to handle more general adaptation scenarios.

122

01 package Main;

02

03 public aspect Adaptenabling {

04

05 public pointcut constructInput():

06 call(sync.PipedInput.new(..)) ||

07 call (async.PipedInput.new(..));

08

09 public pointcut constructOutput():

10 call (sync.PipedOutput.new(..)) ||

11 call (async.PipedOutput.new(..));

12

13 PipedInput around() :constructInput() ({
14 return new AdaptivePipedInput() ;

15 }

16

17 PipedOutput around () :constructOutput() {
18 return new AdaptivePipedOutput();

19 }

20 }

Figure 6.13: AspectJ code for adaptation enabling

6.4.1 Collaborating Adaptive Components

We apply role-based design [135] to handle collaborations among adaptive com-
ponents during adaptation. In Section 6.2, we restricted our discussion to independent
adaptations of a single thread. In a distributed system, collaborating components in
multiple threads are usually required to adapt in a coordinated fashion. Examples
include the adaptation of an encoder filter and a decoder filter on the sender and
receiver processes, respectively. We create an adaptation collaboration Statechart di-
agram (ACSD) with a number of predefined roles (e.g., encoder, decoder, etc) to
model each such kind of collaboration. Each collaborating adaptive component reg-
isters with the ACSD as a role, and ACSD coordinates the adaptation of different
roles in the collaboration by sending and receiving messages. The states in an ACSD
represent different stages in the collaborative adaptation process: the transitions of
an ACSD represent allowable adaptation sequences of the roles. The transitions are

triggered by the receipt of messages from the roles. After both the adaptation models

123

and the ACSD are designed, the ACSD is verified along with the adaptation models.
The ACSD is then translated into an adaptation collaboration driver class (central-
ized) with three primitive methods: (1) registering a role, (2) getting the current
state of the adaptation. and (3) triggering an adaptive transition to the next state of

the adaptation.

6.4.2 Adapting to Multiple Target Programs

In Section 6.2, we restricted our discussion to adaptations from a source program
to only one target program. Our approach can be extended to support a more general
case where a source program may adapt to different target programs under different
triggering conditions. For each target program, we create a separate adaptation UML
model and verify the models independently. The adaptation to multiple different tar-
get programs may not share the same quiescent states. To support multiple quiescent
states in a source program. we create a different type of state object for each quiescent
state. The corresponding state transformation routine is then determined hased on

the type of the state object and the target program.

6.5 Related Work

The work introduced in this chapter is directly related to two areas of research:
using formal models for analysis and enabling adaptation in legacy code. The former
has already been discussed in Section 5.5. Thus. we focus our discussion on the latter
area.

Numerous techniques have been proposed to enable dynamic adaptation in
legacy, non-adaptive software [47, 121, 139]. Sadjadi et al [121] introduced the trans-
parent shaping (TRAP) technique to generate adaptable programs (i.e., programs

whose behavior can be changed at run time) from existing application. Their ap-

124

proach comprises two steps. In the first step, occurring before run time (i.e., compile
time or load time). they use static weaving techniques to weave hooks into the pro-
gram. These hooks are interceptors inserted in the program that support run-time
insertion and removal of adaptive code. In the second step. occurring at run-time, a
composer manages the insertion and removal of adaptive code in the program using
the hooks embedded in the first step. They have developed a Java implementation
of the TRAP technique, TRAP/J [122], that uses the Aspect] compiler to enable
dynamic adaptation in legacy Java programs. Both our approach and theirs are
rooted from the aspect-oriented adaptation enabling technique introduced by Yang
et al [139]. However. our focus is on assurance, while their focus is on the manage-
ment of adaptation code, i.e., separating adaptation code from non-adaptive code.
Their technique can be leveraged by ours to better manage the source code while

providing assurance to adaptive software.

6.6 Discussion

In this chapter, we introduced an approach to transform non-adaptive legacy
software into adaptive software with assurance. Our approach leverages UML dia-
grams and formal techniques to provide assurance in adaptation. i.e., satisfying local
properties and global invariants. In order to enable assured adaptation, our approach
introduces activities on three types of artifacts: the implementation in Java, the UML
Statechart diagrams, and the formal models in Promela. The design of the adaptive
programs is performed on the UML Statechart diagrams. The analysis for correctness
is performed on the formal models. The final adaptive programs are generated for
the implementation. The transformation of different types of artifacts is accomplished
by using a combination of the metamodel-based techuique, the cascade adaptation

technique, and the aspect-oriented adaptation enabling technicue.

125

We have made a few assumptions about a number of existing techniques that we
leverage. These techniques must be more mature in order for the proposed approach
to be practical in general. (1) Reverse engineering: In our approach, we require the
extraction of a Statechart diagram from the legacy code. The metamodel-based tech-
nique introduced in this chapter handles only a small subset of all possible software.
Reverse engineering for a general system is still an open research topic, including
Bandera [28], which extracts finite-state models from Java source code. (2) Legacy
code base: We require a legacy code base comprising a set of non-adaptive legacy
programs and the properties associated with each program. The code base and the
properties may not be available in some legacy software systems. (3) Model checking
tools: Spin [59] originated in the telecommunications industry [60], but has gained
increasing use in other industrial domains involving distributed systems, such as flight
systems [42], railway systems [25]. and systems that are fault-tolerant [123]. (4) Code
generation tools: We briefly sketched a technique that translates UML adaptation
models into Java code using the cascade adaptation mechanism. However, this tech-
nique does not handle recursions or exception handling. We have devcloped guidelines
for the transformation between different types of artifacts using the metamodel-based
technique. Thus far, the guidelines are intended to be systematically followed by
developers, though they are amenable to automation. The technique is not yet au-
tomated, and therefore, the conformity between the models and the code still largely
relies on the developers. The solutions to the above assumptions are much broader
than the scope of this chapter or dissertation. Nomnetheless. our approach provides a
systematic approach to the development of adaptive software in which existing tools
are applicable. This approach has been applied to a number of adaptive components
for mobile computing applications that we have studied in our research. including
the adaptive Java pipeline program and an adaptive forward error correction-based

wireless communication program [16. 154]. We also hope that this chapter will help

126

motivate more rescarch on realizing the above assumptions.

127

Part 111

Implementation of Adaptive

Software

128

Chapter 7

Modular Model Checking for

Adaptive Software

In this chapter. we introduce a sound approach [145] for modularly verifving
whether an adaptive program satisfies its requirements specified in LTL/A-LTL as a
means to provide assurance to adaptive software in the implementation phase. Com-
pared to existing adaptive program model checking techniques [2. 72]. our appreach
has the following advantages: (1) It reduces the verification cost of adaptive programs
by a factor of n, where n is the number of steady-state programs encompassed by
the adaptive program. (2) Our verification technique can be applied incrementally to
verify an adaptive system. leveraging previously verified results.

In Chapter 5 and Chapter 6. we have proposed using model checking to verify
design models against global invariants and local properties specified in LTL for newly
designed and re-engineered legacy adaptive software, respectively. Critical properties
of an adaptive program need to be verified. including properties local to each steady-
state program (local properties). properties that apply during adaptation from one
steady-state program to another (transitional properties). and invariant properties

that must be held by the adaptive program throughout its execution (global invari-

129

ants). Since the number n of steady-state programs in an n-plex adaptive program
may be large. existing model checking approaclhies may be too expensive (in terms
of time and space complexity) to verify large-scale adaptive programs. In addition,
an adaptive program may be developed in a stepwise fashion as in extreme program-

th steady-state program may be incrementally developed

ming [56], where an (n + 1)
after an n-plex adaptive program has been developed and verified; the model check-
ing approach should veiify the adaptive program incrementally without repeating the
model checking for the entire adaptive program.

This chapter proposes a modular model checking approach to address the above
problems. We avoid directly model checking a large adaptive program by decomposing
the task into smaller verification modules. First, we verify a set of base conditions
(i.e., the properties that can be verified locally in each steady-state program) using
a traditional model checking approach [51. 103, 136, 133]. Second, for each steady-
state program P;, we calculate the guarantees, the necessary conditions for P, to
saitisfy its base conditions. Third, for each steady-state program P, we calculate the
‘assumptions, the sufficient conditions for P; to satisfy transitional properties and, or
global invanants. Then we prove that all the assumptions and guarautees can be
directly or indirectly inferred from the set of base conditions. thus conipleting the
overall verification process.

Compared to existing approaches. our approach reduces the complexity of ver-
ifying an adaptive program by a factor of n, where n is the number of steady-state
programs in the adaptive program. Moreover, when one steady-state program P; is
modified or a new steady-state program P,,, becomes available after the remainder
of the adaptive program has been verified using our approach. the model checking
that needs to be repeated is limited to only P; or P, (and/or related adaptations).
Also, our approach verifies not only LTL properties, but also A-LTL properties. whose

verification, to the best of our knowledge, has not been published elsewhere. In this

130

chapter, we assume that the steady-state programs are given in the form of finite
state machines (FSNs) introduced in Chapter 2.

We have proved the correctness of the proposed approach and implemented the
algorithms in a prototype model checker AMOEBA (Adaptive program MOdular An-
alyzer) in C++. We have successfully applied AMOEBA to verify a number of adap-
tive programs developed for the RAPIDware project [95]. including an adaptive TCP
routing protocol [130] and the adaptive Java pipeline example [151]. The remainder
of this chapter is organized as follows. In Section 7.1, we introduce the verification
problems using an adaptive TCP routing protocol to illustrate the key verification
challenges. Section 7.2 describes a number of basic algorithms and data structures
and their properties that are used in our approach. Section 7.3 uses the TCP routing
example to.outline the basic idea of our approach. Section 7.4 formally describes
the model checking algorithms and proves their sounduess. Section 7.5 describes an
example application of our technique. We discuss optimizations, complexity, and lim-
itations of our approach in Section 7.6, and related work is overviewed in Section 7.7.
Section 7.8 summarizes this chapter and brieflv discusses possible extensions of our

proposed approach.

7.1 Specifying Adaptive Systems

In this section, we introduce a simplified version of an adaptive TCP routing pro-
tocol [130] that provides a concrete demonstration for adaptive program verification

challenges, and it is also used to illustrate our proposed solution.

7.1.1 Adaptive TCP Routing

The adaptive TCP routing protocol is a network protocol involving adaptive

middleware in which a router balances the network traffic by dyvnamically choosing

131

the next hop for delivering packets. We consider two types of next hop nodes: trusted
and untrusted. The protocol works in two different modes: safe and normal. In the
safe mode, only trusted nodes are sclected for packet delivery. and in the normal
mode, both types are used in order to maximize throughput. Any packet must be
encrypted before being transferred to an untrusted node. We consider the program
running in the safe and normal modes to be two steady-state programs Py and P,,
respectively. Figure 7.1 shows the FSN for the adaptive protocol program. For
convenience, we assign a unique state name to each state. The upper rectangle in
Figure 7.1 illustrates P;. Initially, P} is in the readyl state, in which, P; may receive
a packet and move to state receivedl. At this point, P; searches for a trusted next
hop and moves to state routedl. Then P; sends the packet to the next hop and goes
to state sentl, and returns to the readyl state. The lower rectangle in Figure 7.1
illustrates Ps. The ready2. received?, and sent2 states ave similar to those in ;. In
state received2, searching tor the next bop may return a trusted or untrusted node.
and thus P, moves to the safe2 and unsafe2 states. respectively. From state unsafe2,
P5 tests whether the input packet has been encrypted. If so. then P, goes to state
encrypted2, otherwise, it first goes to state unencrypted2 and then encrypts the packet
and goes to the encrypted2 state. Four adaptive transitions are defined between P,
and Py: al, a2, a3, and a4. We annotate (in italics) each state with the conditions
that are true for the state (onlyv the relevant conditions are shown).

Critical properties of the adaptive program are specified as global invariants
LTL [111}. For the adaptive routing protocol. we require the program not to drop
any packet throughout its execution. i.e.. after it receives a packet, it should not

receive the next packet before it sends the current packet. Formally in LTL:

ine = O(reccived = (—ready U sent)). (7.1)

In addition to global invariants. we also specify local properties for each steadv-state
(] . .

132

P1: Safe Mode

testsafety N
trusted sent

i ready‘lHreceivedOW . senti |

ready received

voon N
at a2 a3 a4
' P2: Normal Mode L
! ' : b unencrypted2
ready received testsafety

Vi H
ready2 received2

Vi
unsafe2

encrypted

encrypted2

testsafety
A trusted

D e

state initial state progtam transition adaptive transition

Figure 7.1: Case study: adaptive routing protocol

program. In this example. we require P; to never use an untrusted (unsafe) next hop.

Formally in LTL, we write

LP, = O(-unsafe), (7.2)

where unsafe = testsafety=!trusted. which is true only in state unsafe2. For P,, we
require the system to encrypt a packet before sending the packet if the next hop is

unsafe. Formally in LTL, we write

LP, = O(unsafe = (—sentU encrypted)). (7.3)

For an execution of an adaptive program, if it adapts among the steady-state

133

programs of the adaptive program, then the execution must satisfy the corresponding
local properties of the steady-state programs sequentially in the same order. We dis-
cussed this type of properties (transitional properties) in Section 3.4.2 and proposed
using A-LTL and sequential composition to specify transitional properties. The kind
of transitional properties we discuss in this chapter are restricted to those based
on one-point adaptations semantics (see Section 3.3.1). That is. we verify that in
an adaptive program with n steady-state programs Py, P,.--- | P,, any execution o,
with a sequence of (k — 1) steps of adaptations, starting from P;, going through
P;

L. Py, satisfies

Q,,

LP, 2LP,2LP, --

Q"L-—-l . .
- = LP;, where j; # ji41.

For simplicity, in the examples in this chapter we assume Q = true and write ¢—u,
instead of OE‘C’- However, our approach also applies to cases where €2 can be an
arbitrary LTL formula.

In the adaptive routing protocol. we express the transitional property that must
be satisfied by executions adapting from P, to P, with the A-LTL formula LP;—LP;.
and the transitional property that must be satisfied by executions adapting from P,
to P, and then to P, with the A-LTL formula LP,—LP,—LP,, etc. Note that each
different adaptation sequence corresponds to a different transitional property. Since in
a general adaptive program. there are infinite numbers of different possible adaptation

sequences, the number of possible transitional properties is also infinite.

7.1.2 Verification Challenges

Regarding an adaptive program, we must achieve two verification goals: (1
(=) o O [>]
the e¢lobal invariants hold for the adaptive proeram reeardless of adaptations. and
(o] (a] O
(2) when the program adapts within its steady-state programs. the corresponding

transitional properties are satisfied.

134

Model checking techniques determine whether a program satisfies a given tem-
poral logic formula by exploring the state space of the program. Numerous model
checking techniques have been proposed to verify various properties of different types
of programs. However, to the best of our knowledge, none of the existing verification
approaches can be applied to verify adaptive programs efficiently (in terms of time

and space complexity), which is discussed next.

Global invariants. Allen ¢t al [2] used model checking to verify that an adaptive
program adapting between two steady-state programs satisfies certain global proper-
ties. While they do not explicitly address adaptations of n-plex adaptive programs
(for n > 2), a straightforward extension could be to apply pairwise model checking
between each pair of steady-state programs, separately. The first drawback of the
pairwise extension is that it requires n? iterations of model checking for a program
with n steady-state programs. More importantly, this extension is theoretically un-
sound since it verifies executions with only one adaptation step, and thus it does not
guarantee the correctness of executions with more than one adaptation step.

A sound solution proposed by Magee [93], called the monolithic approach [27],
treats an adaptive prograin as a general program and directly verifies the adaptive
program against its global invariants. The monolithic approach suffers from the state
explosion problem: It is well known that the major limiting factor in model checking is
the large amount of memory required by the computation [29]. However, most known
efficient model checking algorithms have space complexity O(nlogn) [29], where n is
the size (i.e., the number of states and transitions) of the program under verification.
Although the example adaptive routing protocol has only two steady-state programs,
the number of steady-state programs in an adaptive program can easily become very
large in practice, and so can the required memory by the model checking computation.

Furthermore, the monolithic approach is not suited for incremental adaptive software

development. For example. after the adaptive routing protocol with two steady-state
programs is verified. if a third steady-state program for a different condition becomes
available by incremental development, then the monolithic approach cannot leverage
the existing verification results. Instead, the entire verification must be repeated for

the adaptive program with three steady-state programs.

Transitional Properties. The transitional property verification is even more chal-
lenging. Since executions of an adaptive program may adapt within its set of steady-
state programs in an infinite number of different sequences, the number of different
transitional properties is also infinite. Therefore, it is impossible to verify cach tran-
sitional property separately. To the best of our knowledge, no existing approaches

address the transitional property verification problem defined in this chapter.

In order to address the above problemns, we propose a sound modular model check-
ing approach for adaptive programs against their global invariants and transitional
properties that not only reduces verification complexity by a factor of n, where n is
the number of steady-state programs, but also reduces verification cost by supporting

verification of incrementally developed adaptive software.

7.2 Preliminary Algorithms and Data Structures

This section introduces preliminary notations, algorithms, and basic data struc-
tures that are required by our model checking algorithm. We define an obligation of
a state s of a program P to be a necessary condition that the state must satisfy in
order for the program to satisfy a given temporal logic formula p. We describe the
Partitioned Normal Form (PNF) that is used to propagate the obligations for anal-
ysis. Then we overview the property automaton needed to support the processing of

the obligations. Next, we introduce an algorithm that marks each state of a program

136

with a set of obligations. Intuitively. the algorithm first marks the initial states of P
with obligation p, then the obligations of each state are propagated to its successor
state(s) in a way that preserves the necessary conditions along the propagation paths.
If a state is reachable from the initial states from multiple paths, then the obligations
of the state is the conjunction of the necessary conditions propagated to the state

along all these paths.

7.2.1 Partitioned Normal Form

The logic closest to A-LTL is the ITL studied by Bowman and Thompson [17].
They have introduced using the Partitioned Normal Form (PNF) [17] to support
model checking ITL properties. In our work, we also use PNF to handle obligation

propagation. We rewrite each A-LTL/LTL formula into its PNF as follows:

(peNempty) Vv \/(p,/\Oql). (7.4)

1
The expression, (peAempty). depicts the condition when a sequence is empty,
i.e., the last state of the sequence. where pe is a proposition that must be satisfied by
the last state. The expression, V,(p;AQq,), depicts the condition when the sequence
is not the last state. The propositions p; partition true, and ¢, is the corresponding
condition that must hold when p; holds in the current state. Formally, pe, p;, and ¢,

satisfv the following constraints:
e pe and p; are all propositional formulae.
e p; partitions true, i.e., \/, p, = true and p,Ap; = false for all 1 # j.

All A-LTL/LTL formulae can be rewritten in PNF by applving PNF-preserving
rewrite-rules [17]. For any A-LTL formulae o. v, and . the rewrite-rules are defined

as follows.

137

The negation rule:

-0 = (ﬂpg/\mnpfy)v\/(pi’/\Q—q?).

The conjunction rule:

ONY = ((Jmpt(z//\(pc"/\p;'))vVV(pf’/\pj?’)/\O(qf’/\qj"").
tJ

The disjunction rule:

ovi = (emptyn(p2ve)V (07 Ap)NO(al v))).
T

The next rule:

Qo = (emptyAfalse)V(trueAQo).

The global rule:

0o = (emptyApe)V V(p,/\O(qz/\D(j))),

The eventuality rule:

06 = (emptyAp.)V \/ (p.AO(0:V00)).

138

(7.6)

(7.9)

(7.10)

The until rule:

oUv = (emptyApt)V \/ \/(pf’/\pj’/\@(qf”qu’/\q‘)L{ y)). (7.11)

]

The adapt rule:

ody = (emptyAfalse)V
\ V(2 AP AP AR ADIV (gP—§))V
tog

\ (9 A=pe? NO(g7—1)). (7.12)

1

We use superscripts on p,, ¢;. and pe to represent the formula from which they are
constructed. Since pe and p; are all propositions, their truth values can be directly
evaluated over the label of each single state. Therefore, the obligations of a given
state can be expressed solely by a next state formula, which will be the ¢; part of a

disjunct if the state has successor states, or empty if the state is a deadlock state.

7.2.2 Property Automaton

Bowman and Thompson's [17] tableau construction algorithm first creates a prop-
erty automaton based on an initial formula ¢, and then constructs the product au-
tomaton of the property automaton and the program. Their approach is suited for
verifying that all initial states satisfy the same initial formula.

However, our model checking algorithm requires us to mark program states with
necessary /sufficient conditions for different initial states to satisfy different initial
formulae in the assumption computation step. We could create a different property

automaton for each formula, but it would have duplicate states. Instead, we extend

139

their property automaton construction algorithm to support multiple initial formulae
for our purpose as follows.

A property automaton is a tuple (S, Sy. T, P, N), where

S is a set of states.

So is a set of initial states where Sy C S.

T : § — § maps each state to a set of next states.

P : 5 — proposition represent the propositional condition that must be satisfied

by each state.

N : § — formula represents the condition that must be satisfied by all the next

states of a given state.

Property automaton construction algorithm: Given a set of A-LTL/LTL for-

mulae ®, we generate a property automaton PROP(®) with the following features:

e For each member ¢ € ®, create an initial state s € Sy such that P(s) = true,
N(s) = ¢.
e For each state s € S, let the PNF of N(s) be
(penempty)V \/,(p:AQO¢:), then
— if the state s; = (p;. ¢,) does not exist in S, create s; and add s; to S,
— make s/ a successor state of s.
A path of a property automaton is an infinite sequence of states sg. $;,--- such

that sy € S, s, € S, and (s;,841) € T, for all i (0 < i < n). We say a path of a

property automaton o, sy, - -, simulates an execution path of a program sj, s}, - - -,

140

if P(s;) agrees with s, for all 7 (i > 0).! We say a property automaton accepts an
execution path fromn an initial state s € Sy, if there is a path in the property au-
tomaton starting from s that simulates the execution path. The property automaton
constructed above, from initial state s € Sy. accepts exactly the set of executions that

satisfy N(s).2

7.2.3 Product Automaton Construction and Marking

Our algorithm handles the case when each initial state of a program P is required
to satisfy a different A-LTL/LTL formula. Given a program P = (SP, S, TP, L)
and a formula mapping function ¥ : S — A-LTL/LTL, we use the following algorithm
to mark the states of P with sufficient /necessary conditions in order for P to satisfy
¥. We can prove that the algorithim works for calculating both assumptions and
guarantecs.

A product automaton Q is defined to be a tuple (S9, 52, T9), where

e S@is aset of states with two fields: (pstate, nextform). The pstate field repre-
sents a state of program P. The nextform field contains an A-LTL/LTL formula

declaring what should be true in the next state.
° SOQ is a set of initial states, where SO(‘) C S
e T9 is a set of transitions, where T : S@ x S@.

Product automaton construction algorithm: Given a program automaton P,
and a mapping function ¥ from its initial states to a set of A-LTL/LTL formulae, we

generate a product automaton PROD(P, V) as follows:

1. Calculate the relational image ® of the initial states of P under the mapping

function V.

'p agrees with g, if and only if pAq # false .
2We ignore the eventuality constraint [103] (a.k.a. self-fulfillment [88]) at this point. However,
later steps will ensure eventuality to hold in our approach.

141

b={o|Ise Sy ¢=V(s)}.
2. Construct a property automaton PROP(®) with the set of initial formulae & us-
ing the property automaton construction algorithm introduced in Section 7.2.2.

3. For each initial state of the program s; € §f, add a pscudo program state ps;
a program state that was not originally in the state space ST) and a transiti
a program state that was not originally in the state space and a transition

(psi. s,) to P, and label ps, with L (ps;) = true.

4. For each pseudo program state ps;. create an initial product state s(? , Where

s(? € SUQ and S(? = (P'Ql. ())

Create the cross product of PP and PROP(®) from the above initial states [17,

(Sa]

103).

State marking algorithm: Given a program P and an initial formula mapping
function ¥, we first construct the product automaton PROD(P, ¥), then we construct
the marking of cach program state MARK (s) to be the set of nextform fields of states
in PROD(P, V) that correspond to s. Our marking algorithm generates the function
MARK over selected states. We also apply optimizations to the algorithm so that we

do not need to store the entire product automaton.

Theorem 6: The marking alyorithm will terminate.

Proof 6: The sct of markings of cach state is a subsct of the formulae in the property
automaton. t.e., the number of formulae in each marking is finite. Also the number
of states in the property automaton is finite. We repeatedly check all nodes to see
whether there will be update to the node. For each iteration. we have two possible

outcomes:
1. If no change is made to the markings. then the process terminates.

142

2. If at least one formula is added to the marking of a state. then we will repeat

the process.

Since the number of nodes and the number of markings in each node are both
finite, and the total number of formulae in all the state markings strictly increases by
at least 1 in each update, the process has only a finite number of iterations before it

eventually terminates.

The markings generated by the marking algorithm contribute to the assumptions
and guarantees in our model checking approach. We prove that the marking of a state
contains the necessary conditions that the state must satisfy in order for the program

to satisfy W,

Theorem 7: For a program P with initial states Sy and an initial formula mapping
function V. let MARK be the marking for the states generated using the marking
algorithm above, and let @ be the conjunction of the marking of a state s, t.e., 6 =

N\ MARK (s), then P satisfies ¥ implies that s satisfies 6. That is.

(PE¥) = (s = \ MARK(s)). (7.13)

Lemma 1: A path m© of a property automaton A simulates an execution o, then

o & N(m) if and only if o' | N(m). (Note that @ may or may not be a self-

fulfilling path.®)

This is a direct result of building the property automaton according to the PNF
for a formula. Since 7 simulates o, we establish that 7, agrees with gg. Let N(m)

be (peAempty)V V,(p.AOg;). Without losing generality, we assume P(m,) = p;, and

SA path is self-fulfilling [88], if and only if it reaches accepting states infinitely often.

143

N(m) = q1. We have 0 | N(m) < 0 E Oq. Therefore. ¢ = N(mp) if and only if
ol = N(m).

Lemma 2: A path © of a property automaton A simulates an erecution o, then

o N(my) & o' = N(m,). (7.14)

This is an inductive result of Lemma 1.

Now we prove Theorem 7.

Proof 7:

Prove by contradiction.

Assume that s does not satisfy 0. There must exist a path o from s such that
o £ 0. Since § = N\ MARK (s). there must exist a formula ¢ € MARK (s) such that
ol o ¢ € MARK(s) implies that (s.¢) is reachable by a path 7 in the product
automaton starting from some sy € Sy and V(sy). Let o' be the finite execution
corresponding to w. From Lemma 2, we have 0/ —~ o = V(sg) & 0 = &. Given that

the program satisfies ¥, we have o |= ¢: a contradiction.

In fact, we can also prove that for a state s, if s satisfies all the formulae in the

marking of s, then all paths starting from s, € Sy going through s satisfy W(s;) [145].

Theorem 8: For a program P with initial states Sy and an initial formula mapping
function V., wusing the marking procedure above, for any state s of P, let 6 be the
conjunction of all the marking of s: 6 = \ MARK((s). then s satisfies 0 implies all

paths of P starting from s; € Sy going through s satisfy V(s,).

144

Proof 8:

Prove by contradiction.

Assume s = 6 and there exists a path o of P such that o starts from s; € Sy and
goes through s, and o = ¥ (s,).

Let s be the j™ state in o. and lct © be the path in the product automaton
corresponding to 0. N(m;) must be a conjunct in 0. Therefore, we have s |= N(7;),
and thus o’ |= N(7;).

From Lemma 2. we have o = N(wy) < o = N(7;). Then we have o |= N (7).

which implies o |= V(s;): a contradiction.

Now, we introduce a property of the markings that allows us to compose and
reason about already verified steady-state programs without repeating the verifica-

tion.

Theorem 9: For a program P; with initial states Sy and an initial formula mapping
function ¥, using the marking algorithm above, for any state s of P;, let 6 be the
conjunction of all the markings of s: 0 = \ MARK (s). Let P; be a state machine.
Let P be the state machine including P;. P; and transitions connecting a state s; of
P; with some states in P;. Let P, ; be the state machine constructed from s,. P;, and

the transitions between s, and P;. The following two statements are equivalent:

o All states in P; still satisfy their markings in P.

e s, satisfies all its markings in P, ;.

The theorem is illustrated in Figure 7.2.
Proof 9:

e We prove that if all states in P; still satisfy all their markings in P. then s,

145

Figure 7.2: Illustration for Theorem 9

satisfies its marking in P; ;. Since s, is one of those states, and P, | is a subset

of P. the conclusion 1s a direct result of the condition.

We prove that if s, satisfies all its markings in P, ,, then all states of P; satisfy
thewr markings in P.

Let ¢ be an arbitrary condition in the marking of an arbitrary state sy of P;.

For any self-fulfilling path o starting from si, one of the following must be true:

— The path is not adaptive: Since this path does not include any adaptive

transition from s,. it is also a path of P,. Therefore, o |= ¢ (Theorem 7).

— The path goes through an adaptive transition through s;: Let o, be the last

occurrence of s; in a. The condition ¢ propagated from ¢ in sy to s, along

the path 0,01, -+ ,0, must be in the marking for s; and we have o' |= ¢',

where ot is the t* suffix of 0. Thus, we have o |= c.

Therefore, we have o |= ¢ in either case.

146

7.2.4 Interface Definition

We use an inferface structure to record assumptions and guarantees. An interface

I of a program is a function from a program state to a set of A-LTL/LTL formulae.

I:8(P)— v (7.15)

We can compare two interfaces I; and I, with an = operation, which returns true if
and only if for all states s, the conjunction of the formulae corresponding to s in I

implies the conjunction of the formulae corresponding to s in I,.

11 =]2 =Vs: S(P)]](S) = Iz(?) (716)

We also define a special top interface T, which will serve as the initial value in
the model checking algorithms presented in the next section. We use a simple A-
calculus [8] notation to define functions, where A(z : X).f(x) denotes an anonymous

function that maps each element in domain X to its value f(z).

T =Mz : S(P)).true. (7.17)

The formula states that T is a function that maps all states to true.

7.3 Modular Verification

This section introduces a modular approach to the model checking of adaptive
programs, where the verification result of an adaptive program can be derived from the
model checking results of its individual steady-state programs. Our modular model
checking uses the assume/guarantee reasoning [27. 63, 64, 74, 101], where for a given
program module (i.e., a steady-state program), the assumptions are the conditions of

the running environment of the module that are assumed to be true, and guarantees

147

are the assurances provided by the module under the assumptions.

We first verify a set of base conditions in each steady-state program locally
by using a traditional model checking approach [51. 103. 136. 138]. Second, for
each steady-state program P; we calculate the guarantees, the necessary conditions
for each steady-state program to satisfy its base conditions locally. Third, for each
steady-state program P;, we calculate the assumptions, the sufficient conditions that
each state of P; must satisfy in order for P; to satisfy transitional properties and/or
global invariants. Fourth, we determine whether the guarantees logically imply the
assumptions. If so, we conclude that all the assumptions and guarantees can be
directly or indirectly inferred from the set of base conditions. thus completing the
verification. Otherwise, a counterexample is generated.

Next, we describe several preliminary algorithms and data structures used in
our approach, and then illustrate our proposed approach using the adaptive routing

protocol by verifving its global invariants and then its transitional properties.

7.3.1 Global Invariant Verification

The global invariant verification proceeds as follows:

1. Verify base conditions: Verify each steady-state program against the global
invariants individually.

2. Compute guarantees: Mark each state of the steady-state programs with con-
ditions that are satisfied by those states when there is no adaptation.

3. Compute assumptions: Mark each state of the steadyv-state programs with
conditions that must be satisfied by the state in order for the adaptive program to
satisfy the global invariants.

4. Compare guarantees with assumptions: If the guarantees imply the assump-

tions, then the process returns success. Otherwise. it returns with a counterexam-

148

ple.

Next. we explain in further detail and illustrate each of these steps.

(1) Verify base conditions.

In this step. we verify each steady-state program against the global invariants
individually. Since the global invariants are specified in LTL and we assume each
steady-state program P; to be non-adaptive itself. we use an existing LTL model

checking algorithm provided in Spin [61] to verify the base conditions. By model

checking. we determine that both P, and P; individually satisfv the invariant inv.

(2) Compute guarantees.

Next, we use a marking algorithm introduced in Section 7.2.3 to mark each state
of the stbady—state programs with obligations, i.e., conditions satisfied by the state
when there is no adaptation. The obligations are true in each state if the steady-state
program comprising the state has passed the base condition verification in step (1).

According to the atomic propositions shown m Figure 7.1. since P, satisfies
v, we conclude that state readyl satisfies inv, therefore, we mark readyl with the
obligation nv. Then we propagate this obligation to its successor state receivedl as
follows: First, it satisfies imv. Second, since received is true in the state, it must
also satisfy —readyU sent. Therefore, we mark receivedl with obligations inv and
—ready U sent. Similarly, the markings of states are repeatedly propagated to their
successors. If an obligation is propagated to an already marked state through a
different execution path, and the obligation is not in the existing marking of the
state, then the state marking will be updated with the conjunction of the existing
marking and the new obligation, otherwise the new obligation is ignored. This process
will eventually converge (Theorem 6) and at that point (firpoint). no state markings

will be updated any further. Figure 7.3 shows the result of applying the marking

149

algorithm to P,. where the guarantee markings are prefixed with “g.*”. (The “a.*”
denotes assumptions described in the next step.) Similarly, we apply the marking

algorithm to Py: results are shown in the bottom portion of Figure 7.3.

P1: Safe Mode

g.invA g.invA
(Tready U sent) (Tready U sent) g.inv

routed1 \f—senﬂ i

a.inv A a.inv'

(Tready U sent; (7 relaady U sent) ‘

P2: Normal Mode | | g.inv A }
' ! ! ' (Tready U sent)

g.inv A g.invA

g.inv (Mready U,sent) (Tready U sent)

received2 unsafe2

a. invA
(Tready U sent)

encrypted2

(ready U sent)

g.invA
("ready U sent)

Figure 7.3: Markings for global invariant nv

In our algorithm, the obligations are propagated in such a way that guarantees
each state satisfies all the obligations in its markings when there is no adaptation.
We call these markings guarantee markings. We have proved in Theorem 9 that at
the fixpoint, the markings of a steady-state program P, have the following property,

which is a key insight of this approach:

When a state machine P; is connected to a state s in P; with transi-

150

tions from s to states in P;, all the states of P; still satisfy their guar-
antees in the new program if and only if s still satisfies its guarantee in

the new program.

(3) Compute assumptions.

Starting from the guarautee markings generated in step (2), for each state in
each steady-state program P; (the source) with outgoing adaptive transitions, we
propagate the obligations along the adaptive transitions until reaching states of a
target steady-state program ;. Then we mark the reached states in P; with the
propagated obligations, which we call the asswumption markings (denoted by prefix
“a.*” in Figure 7.3).

In the adaptive routing protocol. we propagate the markings of receivedl
to received2 along the adaptive transition al and mark received2 with inv and
—ready U sent. Our process ensures that the assumption marking includes the exact
set of conditions that received2 must satisfy in order for all executions starting from
readyl, taking adaptive transition al, and taking no further adaptations, to satisfy
the global invariant znv. Similarly, we propagate the marking of routedl to unsafe2,

from received?2 to receivedl, and from unsafe2 to routedl, respectively.

(4) Compare guarantees with assumptions.

Next we compare the guarantees with the assumptions. For cach state, if the
conjunction of its guarantee marking logically implies the conjunction of its assump-
tion marking (checked automatically). then the process returns success, otherwise,
it returns with a counterexample. For example, the guarantee marking for received?2
indeed implies the assumption marking for received2. This result implies that all

executions starting from readyl, taking adaptive transition al, with no adaptation

thereafter, satisfy inv. We perform the comparison on every state of the steady-state
programs with incoming adaptive transitions. Successful comparisons guarantee that
any execution starting from readyl or ready2, undergoing one step of adaptation, satis-
fies inv. If the guarantee of a state does not imply its assumption, then we generate a
counterexample showing the path violating the global invariant. The counterexample

feature is illustrated in the discussion for the transitional properties below.

7.3.2 Transitional Properties

The steps for transitional properties verification are similar to those used for
global invariants. The first two steps are the same as the first two steps used for
global invariant verification except that the LTL formulae that we verify are the local
propertics LP; and LP, instead of inv. The last two steps are described in detail

below.
(1’) Verify base conditions.
This step is the same as step (1) for global invariants except that we model check
the local properties instead.
(2’) Compute guarantees.

This step is the same as step (2) for global invariants except that we compute
guarantees by marking the initial states with local properties. The guarantee mark-

ings after applying steps (1°) and (2°) are shown in Figure 7.4, prefixed with “g.*"

(3’) Compute assumptions.

In this step, we start from the guarantee markings generated in the previous
step. For each state in a steady-state program P; with outgoing adaptive transitions

going towards program P;, we generate an obligation ¢p—LP; from each condition

P1: Safe Mode

g.[] unsafe g.[]unsafe g.[] "unsafe 9.1 "unsafe

/
a(LP2 X LP1)
A (!sent U encrypted \LP1)

g.LP2A 1 sent
. U encrypted

| R s
g.LP2 gLP2 Uencrypted hdide

{ encrypted2 | g.LP2

L glLP2 v '

'
'
'
'
'
1
'
'
'
'
'
'
'
'
'
i
'
)
'
)

Figure 7..1: Markings for transitional properties

¢ in its guarantee marking. where LP; is the local property for P;. Then we prop-
agate the gencrated obligations to the states in P; along the adaptive transitions
to form their assumption markings. For example, the guarantee marking for un-
safe2 is LP, and (—sentU encrypted). From this marking, we generate obligations
LP,— LPy and (—sentU encrypted)—LPy. respectively. These obligations are propa-
gated to the state routedl, then we generate the assumption marking LP,— LP; and
(—sentU encrypted)— LP; for routedl. We repeat this process for all states in Py and
P, with outgoing adaptive transitions. and the resulting assumption markings are

shown in Figure 7.4, prefixed with “a.*”

(4’) Compare guarantees with assumptions.

We compare the assumption markings with the guarantee markings of all states

to sce whether the assumptions are implied by the guarantees. If so, then the model

153

checking returns success, otherwise, it returns with a counterexample. We will prove
in Section 7.4 that if the process returns success, then all adaptive executions with
finite steps of adaptations satisfy their corresponding transitional properties.

In the adaptive routing protocol, we found that the guarantee for state routedl
(LPy) did not imply the condition (—sent U encrypted)— LP; in its assumption. This
assumption condition required the obligation encrypted to be satisfied before the
adaptation. while the guarantee did not ensure this obligation. Therefore, the model
checking for the transitional property failed. As such, we generated a counterexample
showing a path that violated the transitional properties by using a backtracking
method. In this example. we returned the trace (ready?2, received2, unsafe2, routedl).
Clearly, the failure was caused by the adaptive transition a3 (from unsafe2 to routedl).
We removed a3 from the adaptive program and re-performed steps (3’) and (4’). The

algorithm returned success.

7.4 Details of Model Checking Algorithms

In this section, we give the formal details of the model checking algorithms that
we used in Section 7.3. The first algorithm checks whether a simple adaptive prograin
satisfies its transitional property. The second algorithm extends the first algorithm in
order to check the transitional properties of an n-plex adaptive program. The third
algorithm checks the global invariants of an n-plex adaptive program. In all three
algorithms, we use traditional LTL model checking to verify the base conditions.

The basic idea behind all three algorithms is to first calculate the assumptions
and guarantees of each steady-state program using the marking algorithm, and store
them in two interface structures I; and I,. respectively. Then we compare I, and [,

to determine whether the adaptive program satisfies the corresponding requirements.

7.4.1 Simple Adaptive Programs

We first introduce the modular model checking procedure for a simple adaptive
program. Given a source program I’,. a target program P;, an adaptation set A, ;, a
source local property ¢,, a target local property ¢, and an adaptive constraint s
the algorithm determines whether the adaptation from P; to P; through A, ; satisfies

Q, . . . , P ,
¢; —¢,, that is. the program changes from satisfying ¢, to satisfying ¢;.

r

ALGORITHM 1: Transitional properties for simple adaptive programs
input P,, P;: EFSM

input A, ,: FSM

input ¢;,0,.8,;: LTL

output ret: Boolean

local I, 1,: Interface

begin

1. Initialize two interfaces.
L =T
L=T

2. Verify programs P; and P; against properties ¢; and ¢; locally using traditional
LTL model checking methods.

3. Construct marking MARK" by running the marking algorithm on P; with initial
formula o;.

4. Calculate the state intersection tos; of A;; and P;, where tos refers to target of

outgoing adaptation state.

5. Construct interface I, such that the conditions associated with states in tos; are

the same as their markings in MMARK"”, and the conditions associated with states

not in tos; are true:

L := X : State). (if x € tos; then MARK"(x)

else true endif). (7.19)

6. Construct marking MARK by running the marking algorithm on P; with initial

formula ¢;.

=l

. Calculate the state intersection sos, of P, and A, j, where sos refers to source of
outyoing adaptation state.
8. Construct marking AARK’ by running the marking algorithm on A, ; with the

initial formula mapping function ¥ as follows:

2. . . .
e For each s € so0s,. a formula (z—¢,) is a conjunct of ¥(s) if and only if

r € MARK(s)

/

9. Construct interface I such that

I ;= Az : State). (if x € tos; then MARK'(r)

else true endif). (7.20)

10. Compare I, and I; to see if I, implics [;:

ret := I, = 1.

end

7.4.2 N-plex Adaptive Programs

This algorithm extends the algorithm for a simple adaptive program to a general

n-plex adaptive program M. Given a set of steady-state programs P,. a set of adap-

156

tation sets A, ;. a set of local properties ¢,. and a set of adaptive constraints 2, ;. the

algorithm determines:

S, . . Q.
1. Forall 7 # j, whether the adaptation from P, to P, through A, j satisfies &, = ¢;.

;

That is. the program changes from satisfying o, to satisfving ;.

2. Whether any execution from Pj, going through
: . Q. . . C e
P, Py Py (i # 111) satisfies 0, =70, -+ -0, L.e., sequentially satisfying

OJI “ e C)_]L .

This algorithm repeatedly applies Algorithm 1 to each single adaptation from
P, to P,. As some of the marking and comparison operations overlap, the algorithm

is optimized by removing the redundancies.

'ALGORITHM 2: Transitional property for n-plex adaptive programs
input P, (i=1---n): EFSM

input A, (i.j=1---n): FSM

input ¢,.$,; (:,y=1---n): LTL

output ret: Boolean

local I,. I,: Interface

begin

1. Initialize two interfaces.
11 =T
L =T
2. For each program P;
(a) Verify programs P, against properties ¢, locallv with traditional LTL model
checking methods.
(b) Generate markings MARK by running the marking algorithm on P; with

initial formula ¢,.

(¢) Calculate tis,. the target states of all incoming adaptive transitions, for all
J # i el tis, = Uj(_j;éi)(Pi N A;;). where tis refers to target of incoming
adaptation state.

(d) Update interface I, with I such that the conditions associated with states in
tis, are the conjunction of their values in I, and their markings in MARK , and

the conditions associated with states not in tig, are those in Iy:

5= A : State). (if x € tis, then MARK (x) A L(z)

else ,(r) endif). (7.21)

(e) For each j #1
(i) Calculate the state intersection sos, ; of P, and A, ;.
(i1) Construct marking MARK’ by running the marking algorithm on A4, ; with

the initial formula mapping function ¥ as tollows:

o, . C N :
e For each s € s0s,,, a formula (-~ ;) is a conjunct of ¥(s) if and only if

7€ MARK(s).

(iii) Calculate the state intersection tos,, of P, and A, ;.

(iv) Update interface I with I{ such that

I := Xz : State). (if z € tos;; then MARK'(r) A 1,(x)

else [;(z) endif). (7.22)

3. Compare I, and [; to sce if I imnplies [;:

ret .= I, = I;.

end

158

7.4.3 Global Invariants

Given a set of steady-state programs P,. a set of adaptation sets 4, ;. and a global

invariant INV', the global invariant model checking algorithm determines whether all

exccutions of an n-plex adaptive program satisfyv the global invariant INVV.

ALGORITHM 3: Global invariants
input P, (i =1---n): EFS\

input A,; (i.j=1---n): FSM

input /NVV': LTL

output ret: Boolean

local I;. I,: Interface

begin

1. Initialize two interfaces.
=TT
L =T
2. For cach program P,:
(a) Verifv programs P; against global invariants IVV with traditional LTL model -
checking methods.

(b) Construct the program composition

C; = comp(Py union(A, . Aya-+ - L Ain)). (7.23)

(¢) Construct marking MARK by mnning the marking algorithm on C, with
initial formula INV.

(d) Calculate tis;, the union of the target states of all incoming transitions. i.e.,
ti.’ii = U](J#z)(Pi N Aj.i)

(e) Update interface I, with I such that the conditions associated with states in

tis, are the same as the conjunction of their values in I, and their markings in

MARK . and the conditions associated with states not in tis, are the values in

]-)3

I, = Mu : State). (if r € tis; then MARK (z) A L(x)

else I,(r) endif). (7.24)

(f) Calculate tos,, the union of the state interscctions of A, ; and P; for all 7 # 1,

e tos; = Uz (A N P)).

(¢) Update iuterface Iy with [{ such that

I{ = M : State). (if r € tos; then MARK(x) A 1)(r)

else [,(r) endif). (7.

-1
N
(G
~—

3. Cowpare I, and [} to see if I, implies I,

ret 1= [2 => [1.

end

7.4.4 Claims

The following theorems capture the claims that the algorithms introduced in this

section solve the problems they at intended to solve.

Note that the claims in this section apply to the eventuality of A-LTL and LTL

properties as well.

Theorem 10:

For a simple adaptice program from P, to P, if Algorithm 1 returns true. then:

160

o All non-adaptive erecutions within Py (or P;) satisfy the local property ¢, (or

C)J)

. Q.
o All adaptive executions starting from P, and adapting to P; satisfy ¢, —¢;.

Proof 10:
The claim that all non-adaptive executions within Py (or P;) satisfy the local
property o, (or o)) is quarantecd by the traditional LTL model checking methods.
Let o be an adaptive execution from Py to P;. Let s; € S(P,) be the first state in
the adaptation and s; € S(P)) be the last state in the adaptation. Let v, and v be the

obligations for s; and s;. propagated though o in markings M and M’. respectively.

1. o/ E= .
L(s;) = Li(s)) = vy, therefore o) = v,

«Q

2 o'k w56,

)]

TR

There eaists a fintte path @ in the property automaton PROPERTY (¢, =¥ o)
that simulates s, 8,41.--+ .8, and N(7,-1)=,. From Lemma 2. we have

O,
ol =20

I's Sz‘ J
3. 0o, Yo,

. . . - . Q, .
As illustrated in Figure 7.5. since o' = yw,—o;. there exists sg. such
that s, Si41.-++ sk FEpn U0oand Sioq Sk, =6 Then we have

SpeSigle Sk Sk Sk B Uwe From Lemma 2, we h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>