TECHNOLOGYASISSTEDSMARTSOLAR-SYSTEM(TASS)ByAhmadFudyAlforidiATHESISSubmittedtoMichiganStateUniversityinpartialentoftherequirementsforthedegreeofElectricalEngineering-MasterofScience2016ABSTRACTTECHNOLOGYASISSTEDSMARTSOLAR-SYSTEM(TASS)ByAhmadFudyAlforidiThisthesisfocusesonthedesign,fabricationsandtestingofaTechnologyAssistedSmartSolar-System(TASS)thatusesasolarpanelbothasanenergysourceandasensorfortracking.Amicrocontroller,interfacedtoaminisolar-cellarray,wasusedtocontrolandtestthesystemsytotrackthelightsourceemploying(a)amotorizedsolarpaneland(b)aroboticplatform.TheTASSpackagingandprintedcircuitboardsweredesignedandfabricatedusing3-Dinkjetprinting.Aroof-topTASSwasbuilttodemonstrateanin-expensiveapplication.TheTASSdevelopedinthisworkisalsoapplicabletoalight-trackingwerpotforasmarthome.Thisthesisisdedicatedtomygreatparents,brothersandsisters.iiiACKNOWLEDGMENTSIwouldliketoexpressmysincereappreciationtomyadvisor,Prof.DeanAslam,forhiscontinuoussupport,help,patienceandencouragementthroughoutmymasterstudy.HiswasalwaysopenwheneverIranintoatroublespotorhadaquestionaboutmyresearchorwriting.Thisthesiswouldnothavebeenpossiblewithouthisguidance.IwouldliketothankDr.JianRenandDr.WenLifromtheDepartmentofElectricalandComputerEngineeringforservingonmythesiscommittee.Iamdeeplygratefultothemfortheirmotivationandinsightfulcomments.IwouldalsoliketothankMohammedAlforidi,whoasabrother,wasalwayssupportingmetoovercomelife'sobstacles.Lastbutnotleast,Iamdeeplygratefultomyparents,brothers,sistersandfriendsfortheirtremendoussupportandencouragement.ivTABLEOFCONTENTSLISTOFTABLES....................................viLISTOFFIGURES...................................viiChapter1INTRODUCTION...........................1Chapter2LITERATUREREVIEW.......................4Chapter3SolarTrackingSystem.........................83.1SolarTrackingPanel...............................83.1.1TrackingwithLDRSensors.......................83.1.2TrackingwithSolarCellsUsedasSensors...............113.1.3CalibrationMethod............................133.1.4ComparisonbetweenLDRandSolarCellSensors............163.2SolarTrackingRoboticPlatform.........................183.2.1Micro-controllerbasedsolartrackingrobot...............183.2.2SolarTrackingRobot(STR)withoutusingArduinoboard......19Chapter43DInkjetPrintedTASSPackaging.................224.1TASSPackaging..................................224.1.13DPrintedSolarTrackingPanel....................224.1.23Dprintedsolartrackingroboticplatform...............224.2TASSApplications................................244.2.1RooftopSolarTrackingPanel......................244.2.2Flowerbasesolartrackingrobotforsmarthome............26Chapter5CONCLUSIONSANDFUTUREWORK.............295.1Conclusions....................................295.2FutureWork....................................29BIBLIOGRAPHY....................................31vLISTOFTABLESTable3.1:Operationconditionofthesteppermotor:where0=dark(orlesslight)and1=light(orhighlight)....................10Table3.2:Experimentresultsofsolarcellsoutputwithtlightintensity.14Table3.3:Experimentresultsofsolarcellsoutputwithtlightintensityaftercalibration..............................16Table3.4:ComparisonbetweenLDRandSolarCell................17Table3.5:TestResultswithtangles....................18Table4.1:Comparisonbetweenandmovablemini-solarpanelwithinthreepositionsoflightsource.........................26viLISTOFFIGURESFigure1.1:BlockdiagramsummarizesTASSproject................2Figure2.1:SolartrackingusingSMA........................4Figure2.2:Fivesensorspointedintdirections...............6Figure3.1:Processofsolartrackingsystem.....................9Figure3.2:BloackDiagramofaTASSapplication.................10Figure3.3:ChartofsolartrackingpanelresultsinJune,2013...........11Figure3.4:FirstmoduleofasingleaxissolartrackingsystemthatwasbuiltusingLEGOparts............................11Figure3.5:Conceptdiagramofdualaxissolartrackingsystemwithsolarcellsensors...................................12Figure3.6:Separatevoltagemeasurementforsolarcells..............13Figure3.7:CircuitSchematicofadualaxissolartrackingsystem.........14Figure3.8:Flowchartofthedualaxissolartrackingsystemusingsolarcellsensors.15Figure3.9:Chartshowscellvoltageasafunctionoflightintensity........16Figure3.10:Thesolarcelllevelsaftertwo-pointcalibration.............17Figure3.11:ExperimentsetuptomeasuresensitivitylevelbetweenLDRandsolarcell.....................................18Figure3.12:LDRsandsolarcellsoutputvoltageasaresultoftanglesoflightincidents...............................19Figure3.13:CircuitschematicofthesolartrackingpanelandroboticplatformusingLDRs................................20Figure3.14:SchematicofaSTRwithoutusingArduinoboard...........21Figure3.15:STRwithoutusingArduinoboard...................21viiFigure4.1:Packagingdesignofthesolartrackingpanelsystem..........23Figure4.2:Printedpackagingsolartrackingpanelsystem.............23Figure4.3:3D-printeddesignofthesystem....................25Figure4.4:Arrangementofrooftopsuntracker...................26Figure4.5:Prototypeexperimentofrooftopsolartrackingsystem........27Figure4.6:TASSwerpotforasmarthome....................28Figure5.1:MEMSActuatedSolarArray(MASA).................30viiiChapter1INTRODUCTIONTheriseintheusageofnon-renewableenergyresourcesandfossilfuelshasledtheworldtoastagewheremanygovernmentshavestartedtodevelopstrategiesandpoliciesthathelpinreducingglobalwarmingandCO2sideAsanexample,eachcountryintheEuropeanUnionhasassumedagoaltocompleteby2020[1],inwhichtheyachieveacertainpercentageoftheuseofrenewableenergy.Fossilfuelscausecontaminationoftheenvironmentduetothechemicalreactioninvolvedintheirprocessing.Consequently,renewableenergybecameahugeresearchtopicrecentlybecauseitcansigntlyreducethecostandproduceapermanentenergysourcewithoutpoisoningtheenvironment.Thesuncanbeconsideredthemostimportantsourceofrenewableenergythatisavailabletouseeverywhere.Astheearthrevolvesaroundthesun,thesolarincidenceinonepointatacertaintimeofthedaywillnotbethesameandthereisaneedtoknowwherethehighestenergyvectorispointingatacertaintime.TheTechnologyAssistedSmartSolar-System(TASS)research,bdirectlyfromthelatestdevelopmentsinMicroandNanotechnologies,canhelpintegrateemergingtechnol-ogycomponentsintoaMicrosystemusefulformanyapplications.AparticularlyinterestingaspectofaninexpensiveTASSistheintegrationofcontrolcircuits,wirelessinterfaces,mi-crosystemscomponents(sensorsandactuators),softwareandpowersourcesintoasinglemassproducibleunitusing3Dinkjetprintingandmicrofabrication.ExamplesofTASSapplicationsareenergyscavenging/harvesting,solartrackingsystems,nightlightsystems,1mind-controlledrobotsandmicrodronesforsurveillanceandharshweathermonitoring,andoptoelectronicsystems[2].Themajorgoalsofthisresearcharerevealedinageneralconceptdiagramoftechnologyassistedsmartsolar-systems(TASS)asshowninFigure1.1.Itconsistsofasolartrackingpanelmountedonasolartrackingroboticplatform.TheDesignofmechanicalstructuresandthesystempackagingareimplementedusinga3-Dinkjetprinter.TASSdesignwithtwotrackingcapabilitieswassuccessfullytested.Fortracking,elightdependentresistors(LDR)wereutilized,threeofthemusedforcontrollingthesolarpanelorientation,andtheremainingtwousedfortherobot.Figure1.1:BlockdiagramsummarizesTASSproject.Theuniqueaspectsofthisthesiscanbesummarizedasfollows:a)theuseoftrackingatthesolarpanelandroboticplatformlevels,(b)a3DinkjetprintedcircuitboardandTASSpackagingand(c)asolartrackingwerpotforasmarthomeandd)theuseofsolarcellsassensorsinreplacementofLDRs,andinvestigatingthebetweentheminterms2ofaccuracy.Thestructureofthethesiswillbeasfollows;Chapter2,presentsaliteraturereviewthatshowsthemaincontributionintheliteratureabouttopicsrelatedtotheTASSprojectsuchassolartrackingsystems.Chapter3,introducesthesolartrackingatthepanelandroboticplatformlevels,startingwithsolartrackingusingLDRandsolarcellsensors,andgoingthroughacomparisonbetweenthemtoshowwhichsensorwouldbemorereliableinthesystem.Thentheresultsfromthesolartrackingroboticplatformwillbeanalyzed.Chapter4,willshowdetailsofthe3DprintedpackagingalongwithsomeTASSapplications.Chapter5willincludetheconclusionandthefutureworkofTASS.3Chapter2LITERATUREREVIEWRecently,extensiveresearchhasfocusedonsolartrackingsystemsandrelatedwork[3{31].Singleaxissolartrackingusingshapememoryalloy(SMA)actuatorwasimplementedasshowninFigure2.1[3].Atlowtemperature,theSMAcaneasilybedeformedandthengoesbacktoitsoriginalshapewhenthetemperatureincreases.AlenshadbeenusedtofocusthesolarirradiancetooneofthetwoSMAactuators.Thereferredsolartrackingwasdesignedtohavethesamelifetimeassolararrays.Othersolartrackingusingshapememoryalloycanbefoundin[4,5].Figure2.1:SolartrackingusingSMA.Adesignoftwoaxessolartrackingusingmicro-opticsolarconcentratorispresentedin[6]whichissuitableforsomeapplications.In[7],adualaxessolartrackingwasimplemented4usingKeplersequations.Thesystemwasdesignedtomovethepanelright-leftandup-downtoproperlytrackthelightintensitybasedontheprogrammablelogiccontroller.Theexperimenthadaresultofanincreaseintheoverallof17%-20%forsunnydaysand8%-11%oncloudydayscomparedtothearrangedmodule.Discussionaboutthecontrolofsolartrackingsystemsforsolarthermalpowergenerationindustryispresentedin[8].Thegoalwastoexplainageneticbasedalgorithmtoimprovethecontrolappliedtoheliostatsinsolarthermalplants.Therearetwobasismethodsforcontrollingthemovementofthepanels,thetheoreticalsun-movementdependant,wheretherotationofthepaneldependsontheKeplersequations,andthesunlight-measurementdependant,wheretheclosedloopcircuitusessunlightsensorstoprovidefeedbacktoamicrocontrollerandthisonecontrolstherotationofthepanel.Themethodlackstheprecisionandself-controlbecausethemovementised,whichmeansthatthesystemisrelyingonequationsthatmaynottakeintoaccounttheweatherconditions,i.e.iftherearecloudsoritisrainingandthesecondonerequiresalotofinitialcostssinceseveralphotodiodesorsensorsaretobeinstalledineachpaneltomakeitlight-dependable.Solartrackingwasdesignedusinganarrangementofonepanel,twoaxesofmovementandephotodiodestotrackthemovementofthesunandmakethesystemmoret[9].Theaxesofmovementarenorth-southandeast-west.Theactuatorsareonelinearactuatorandoneconventionalmotor.TheexperimentusesetsensorspointingintdirectionsasshowninFigure2.2.Thepurposeoftheplacementofthefourexternalsensorsistomonitorthesunlightfromthosedirections,andtheoneinthemiddleisresponsibleforfacingthepanelinthedirectionofthesun.Theelectroniccomponentsusedinthispaperarealsoabasistostudyinordertoun-5Figure2.2:Fivesensorspointedintdirections.derstandthebasicrequirements.Forexample,theauthorsusedAtmega32microcontrollertocontrolallcomponents,havingthevaluesforthe5tvoltages,theyarecomparedwiththedatabaseofanglesthatarestoredinthemicrocontroller.Theactuatorsturnononlyiftheelevationangleismorethan15degreeoriftheazimuthangleismorethan7.81degreeandtheyareactivateduntilthepanelfaceitselfperpendiculartothesun.In[10],theworkshowsatheoretical-empiricalapproachtothetrackingissuesinceitusesthesolar-movementequationstodriveasolarpanelwiththehelpofaSiemensLOGO!ProgrammableLogicController(PLC).Theprojectwasaboutdesigning,buildingandeval-uatingthesystemanditsperformanceusingtwoaxes,oneforverticaldailytrackingandhorizontalseasonaltracking,whilecomparingthetrackingoptiontotheone.Theprojecttiatesitselffromtherestbythefactthatitdoesnotusesunlightsensorstoaddprecisiontothetrackingtask,itreliedentirelyonthetheoreticalequations.In[11{13],lightdependentresistors(LDR)wereutilizedassensorstoreadthevoltagechangesaccordingtotheamountofsunlight.Designandconstructionofasystemforsuntrackingwasimplementedtomeasurethedirectbeamsolarirradiancebyapyrheliometer[17],inwhichfour-quadrantphotodetectorswereusedtosensethepositionofthesunand6acomputerprogramcalculatedthepositionofthesunwhenitcouldnotbedetectedbysensors.ACommercialwebcamwasusedasasensorelementtoprovideahigh-precisionsolartrackingsystem[18].ThewebcamwasconnectedtoapersonalcomputerandMATLABwasusedtoimplementasimpleimageprocessingalgorithmfortheincomingframes.In[19],neuralnetworkswereappliedinatrackingsystemforsolarconcentratorstoreducetrackingerrors.Atwo-axessuntrackingsystemwasusedtoinvestigateitsonthethermalperformanceofcompoundparabolicconcentrators[20].Thissystemwasequippedwithtwophototransistorsanditwasdesignedtofollowsunlighteverythreetofourminutesinthehorizontalaxisandeveryfourtoeminutesintheverticalaxis.AsunTrackingsystemdesignedtoimprovetheofphoto-voltaicpanelsusingaprogrammablelogiccontrollerwasalsoreported[21].Itwasprovedthatthesolartrackingsystemincreasesthepoweroutputofthesolarpanelby20%incomparisonwithamodule.Theapplicationsofsolartrackingsystemcanvarydependingontheuser'sneeds.Forexample,inautomatedsystemsthetrackingdevicewouldbetlyimportantwhengeneratingtheelectricityneeded.Takingtherecentuseofthesolarimpulseairplaneandplacingatrackerinitwouldprovideextracapacityforitsoperation[32].Also,chargingbatteriesinmobilerobotssuchaslawnmowerswouldtakelesstimebyactivatingitstrackingfunction.Moreover,theuseofsolartrackingsystemcarcanbeinsmarthousesandmobileself-poweredrobotsandmicro-drones.7Chapter3SolarTrackingSystemThischapterpresentsonepartofaTASSproject,whichisasolartrackingsystematthepanelandsystemlevel.Firstly,thesolartrackingpanelwillbeintroducedinwhichtwoapproacheshavebeenutilizedtoachievethatpurpose,a)solartrackingwithLightDependentResistors(LDR)usedassensorsandb)solartrackingwithsolarpanelsusedassensors.Thenthesensitivitylevelofthesesensorswillbeinvestigated.Finally,solartrackingroboticplatformwith5LDRsensorswillbedescribed.Figure3.1showsthenormalprocessofasolartrackingsystem.3.1SolarTrackingPanel3.1.1TrackingwithLDRSensorsMaximizinglightintensityofthesolartrackingpanelisaccomplishedbyaligningthesolarpaneltowardsunradiation.Photoresistorswereutilizedtodetectthesunpositionandmovementstatus.AsillustratedinFigure3.4,thebaseholderofthesolarcellisattachedtoarod,whichisplacedon(5V)steppermotorsshaft.ThreeLDRswereplacedontheleft(L),middle(M)andright(R)sideofthesolarpanelwithabout45-degreeangletomeasurethelightintensitybyreadingtheirsignalthatchangesbasedontheamountoflightintensity.Thisinformationisfedtothemicrocontrollerthatthenmakesthedecisionin8Figure3.1:Processofsolartrackingsystem.whichdirectionthesteppermotorshouldrotate.ThemiddlesensoristheOFFsensor,i.e.,whenitreceivesmaximumsunlight,themotorwillshutdown.Theleftsensorisinstalledontheeastsideofthepanelandthethirdsensorisinstalledinthewestsideofthepanel.ThemovementofthesunwillcauseashadowonthemiddlesensoraswellasononeofthesideLDRswhichturnsonthemotor.Themotorwillmovetowardthehighestlightintensitythatsmeasuredbetweentheleftandrightsensors.Motorrotationstaysonuntilthemiddlesensorreceivesmaximumlightintensityorallsensorsreceivelowlightintensity(nighttime).TheoperationconditionsareillustratedinTable3.1.ThemicrocontrollerusedinthissystemisATmega328,whichisusedintheArduinoboard.AscanbeseeninFigure3.2,thereadingofLDR1,2and3aresenttothemicro-controllertocontrolthemovementofthesteppermotor.9Figure3.2:BloackDiagramofaTASSapplication.Table3.1:Operationconditionofthesteppermotor:where0=dark(orlesslight)and1=light(orhighlight).L-LDRM-LDRR-LDRStepperMotor'sAction000DoNothing001ClockwiseRotation010DoNothing100CounterClockwiseRotationTheprocessofthesolartrackingsystemcanbedescribedasfollows:WhentheleftandrightLDRsreceivenolight,themotordoesnothing.Themotormovescounter-clockwisewhentheleftLDRreceivesahigheramountoflightthanthemiddleandrightLDRs.IftherightLDRreceivesthehighestlightintensity,thenthemotormovesinaclockwisedirection.Themotorstopswhenthesunlightstrikesperpendiculartothesolarcell,inwhichcasethemiddleLDRreceivesthehighestlightintensity.10TheexperimentwasconductedduringapartiallycloudydayinwhichthectsofthepresenceofcloudstotheoutputofthesolarpanelcanbeseenclearlyinFigure3.3.Figure3.3:ChartofsolartrackingpanelresultsinJune,2013.Figure3.4:FirstmoduleofasingleaxissolartrackingsystemthatwasbuiltusingLEGOparts.3.1.2TrackingwithSolarCellsUsedasSensorsIntheprevioussubsection,photo-resistorswereutilizedtoreadthevoltagevariationthatiscausedbythechangeofthesunlightintensity.Acombinationofmini-solarcellsisused11toreplacetheLDRsroleassunlightdetector.Themainprincipleofthistechniqueisthatthemovementofthesunsdirectionshashighetothesolarcell,whichgivesareasonableamountofvariationofoutputvoltageandthatallowsreadingthesunsposition.Figure3.5showsadiagramexplainingtheproposedsystem.Thefour-quadrantmini-solarcellshavebeentestedtotheoutputvoltageunderhighspectrumlightsourcethatmimicsthesunspectrum.Figure3.7showsthecircuitschematicoftheimplementedexperiment.Itcontainsfourminisolarcellswith3Vand70mAeach.ASchottkydiodewasusedduetoitsverylowforward-voltagedropandveryfastswitchingspeed.Itpreventsdischargingbatteryvoltageatnighttime.Inaddition,wecaneasilymeasuretheoutputvoltageofthesolarcellsseparatelywhentheyareconnectedinparallel,seeFigure3.6.Moreover,boostconverterwith0.52dutycycleisusedtoget5Voutof2.4Vfromtherechargeablebattery.Inordertohavedualaxistrackingwithprecisemovementtowardthehighestlightintensities,twosteppermotorsareusedintheverticalandhorizontalaxisascanbeseeninFigure3.5.Figure3.5:Conceptdiagramofdualaxissolartrackingsystemwithsolarcellsensors.12Thevoltageebetweensolarcellsplaysamajorroleindecidingthepositionofsunlight.Asthesunmoves,thereadingofsolarcellschangesandtherotationofthemotorsalsochangesaccordingly.WhenthesolarcellsN1andN3receivehigherorlesssunlightthanN2andN4,thenthehorizontalmotorturnsonandrotatesclockwiseorcounterclockwise,respectively.TheverticalmotorwillbeturnedonwhenthesolarcellsN1andN2receiveshigherorlesssunlightthanthesolarcellsN3andN4.AwchartofthesystemisshowninFigure3.8.Figure3.6:Separatevoltagemeasurementforsolarcells.3.1.3CalibrationMethod.Fromtheexperimentthathasbeendonetothesensitivityofthesolarcell,thevariationbetweeneachsolarcellisverylowcomparedtothetamountoflightintensityfallsontheirsurfaces.Also,Itisusefultohavearangeofminimumandmaximumlightintensitythatisavailableinthetestarea.Forthisreason,acalibrationmethodisused13Figure3.7:CircuitSchematicofadualaxissolartrackingsystem.Table3.2:Experimentresultsofsolarcellsoutputwithtlightintensity.Lightintensity,Lux(x10)CellN1voltage,VCellN2voltage,VCellN3voltage,VCellN4voltage,V1112.482.682.712.731452.592.762.802.792082.732.852.882.872922.822.952.982.944002.963.063.073.086923.103.183.183.179013.203.213.203.28tobeabletoreadthesmallamountofchangesinlightintensity.Table3.2showstheresultsofthetest.AscanbeseeninFigure3.9,thechangeofvoltagebetweensolarcellsdoesnotexceed0.7Vwithhighchangesinlightintensity.ThecalibratedtableandchartareshowninTable3.3andFigure3.10,respectively.14Figure3.8:Flowchartofthedualaxissolartrackingsystemusingsolarcellsensors.15Figure3.9:Chartshowscellvoltageasafunctionoflightintensity.Table3.3:Experimentresultsofsolarcellsoutputwithtlightintensityaftercali-bration.Lightintensity,Lux(x10)CellN1%CellN2%CellN3%CellN4%2800.000.000.000.0030915.2815.0918.3710.9135034.7232.0834.6925.4542347.2250.9455.1038.1850366.6771.7073.4763.6460586.1194.3496.3380.00901100.00100.00100.00100.003.1.4ComparisonbetweenLDRandSolarCellSensors.Lightdependentresistor(LDR)isavariableresistorthatchangesbasedontheamountoflight.TheLDRresistancedecreaseswithincreasingincidentlightintensity.Itismadeofasemiconductormaterial.Table3.4showsabriefsummarybetweenLDRandsolarcell.Theybothhaveactivitywithlightexposure,buttheyaredesignedandusedfortpurposes.LDRsandmini-solarcellswerebothsuccessfullyusedassensorsinthesolartrackingsystem.However,theirsensitivityneededtobeexploredinordertomakeafullaccuratecomparisonbetweenthem.Although,theuseofthesolarcellsensorhastheadvantageof16Figure3.10:Thesolarcelllevelsaftertwo-pointcalibration.Table3.4:ComparisonbetweenLDRandSolarCell.LDRSolarCellCategorySensorPowersourceSubstanceHighdarkresistancePV-JunctionActivityinexposinglightChangeitsresistancefromseveralmegatofewhundredohmsProduceelectricpowerSensitivitytolightVerysensitivelowsensitivereducingthenumberofcomponentsofthesystembyusingitasapowersupplyaswellassensors,theLDRwasfoundtobemoresensitivetothelightvariation.Inthetest,ahighspectrumlightsourcethatmimicssunlightirradiancewasused.Figure3.11showsadiagramoftheexperimentalongwiththecircuitschematic.Figure3.12showsclearlythatthebetweenLDR1and2ishigherascomparedtosolarcells1and2.Theangleofincidentsgoesfromzeroto180degreetomimicthemovementofthesunfromeasttowest,seeTable3.5.ThesolarcellsoutputisalmostidenticalandthatmakesitlesssensitivetolightvariationthanLDRs.However,thisvariationcouldtheprecisionreadingthatfedtothemicrocontroller,anisolationframesaroundthesolarcellsensorwouldmakeit17Table3.5:TestResultswithtangles.Angle,DegreeLightIntensity,Lux(x10)LDR1,VLDR2,VSC1,VSC2,V0300.7230.7280.860.899451402.231.9011.3481.348902052.582.2481.4761.51351302.2531.9251.2411.295180402.0131.6420.8550.801workbetterasitwasimplementedinthetestofthedualaxissolartrackingusingsolarcellssensors.Solarcellscanbeusedasapowersupplyaswellassensorsforsunlighttracking.Figure3.11:ExperimentsetuptomeasuresensitivitylevelbetweenLDRandsolarcell.3.2SolarTrackingRoboticPlatform3.2.1Micro-controllerbasedsolartrackingrobotTheideaoftheSolarTrackingRobotic-Platform(STR)istomakesolartrackingsystemmobileandportable.ThishasatremendousadvantagetoenhancetheoftheSTRinsomeapplicationsthatwillbediscussedinthisthesis.TheSTRsystemconsistsof18Figure3.12:LDRsandsolarcellsoutputvoltageasaresultoftanglesoflightincidents.twoLDR's(4&5inFigure3.2),twoDCmotors,andoneswivelcaster.Figure3.13showsthecombinedcircuitschematicofthesolartrackingpanelandthesolartrackingroboticplatformusingLDRs.ThesteppermotorusedforthesingleaxistrackingiscontrolledbyLDR1,2and3.TwoDCmotorswereusedtomovethewholesolarpanelandLDR4and5wereusedtodirectthepaneltowardhigherlightintensity.AscanbeseenintheATMEGA328microcontrollerwasusedinthissystem.3.2.2SolarTrackingRobot(STR)withoutusingArduinoboardTheattemptinbuildingasolartrackingrobotwasimplementedwithoutusinganArduinoboardormorespamicro-controller.Theexperimentwassuccessfullytested,buttheuseofamicro-controllerwasstillneededtoimplementsomeintelligentdecisionsinthesystem.ThecircuitschematicthatwasbuiltisshowninFigure3.14.TheworkingprincipleofthiscircuitisthatasbothLDRsreceiveslight,motorswillnotreceiveenoughpowertorotate.TheMOSFETworkshereasaswitchtoturnthemotoronandbasedonthelightintensityontheLDR.Whenthereisnolight,themotorwillturnontolookforanareawithmorelightintensity.Anultrasonicsensorisneededtoavoid19Figure3.13:CircuitschematicofthesolartrackingpanelandroboticplatformusingLDRs.collision.Theexperimentwastestedtodrivetherobotusingalightfromonepositiontoanother.ThisrobotcanbeusedasatoyforchildreninwhichatransmitterandreceivercanbeaddedtothecircuittoallowLEDs,positionedinfrontoftheLDR,toturnonandusingaremotecontrol.20Figure3.14:SchematicofaSTRwithoutusingArduinoboard.Figure3.15:STRwithoutusingArduinoboard.21Chapter43DInkjetPrintedTASSPackaging4.1TASSPackaging4.1.13DPrintedSolarTrackingPanelA3DInkjetprinterwasusedtoprinttheTASSsystempackaging.AllpartsweredesignedusingSolidWorkssoftwarebasedonthesystemrequirements.ThecomponentsofthesolartrackingpanelweredesignedandbuiltasshowninFigure4.1.Themechanicalstructurewaspreciselydesignedtothecomponentsthatwereusedinthesystem.Thedesignedstandpillarthatholdthesolarcellcantoanytypeofmotors.Theonlypartthatneedstobechangedisthesmallnutthatgoesonthebottomsideofthepillar.Itwasspeciallydesignedtothesteppermotorsshaftusedinthesystem.LDRssensorswereplacedaroundthemini-solarpanelwithatiltedsurfacestructuretodetectthedirectionofthehighestlightintensity.4.1.23DprintedsolartrackingroboticplatformThesolartrackingroboticplatformwasalsodesignedandprintedusing3Dprinter.Figure4.3showstheplatewherethesolarcellisattached,arodthatholdsthesolarcellplateattachedtothemotorsshaft,twoopenholdersforLDR4and5,asolarcarbasewhereallelectronicspartsareplaced,andaswivelcasterthatallowedthecartomoveinmultiple22Figure4.1:Packagingdesignofthesolartrackingpanelsystem.Figure4.2:Printedpackagingsolartrackingpanelsystem.23directions.TheDCmotorsareattachedtothecarstailandtheywillberotatingbasedontheLDRsoutput.ThesolarcellpanelisequippedwithLDR1,2and3tocontrolitsdirectioninthesamewayasintheprevioussection.Thisdesigncanbedisassembledandusedintapplications.4.2TASSApplications4.2.1RooftopSolarTrackingPanelMostofthesolarpanelsthatcanbeseeninsomebuildingsareplacedinapositiononthetopofthebuildingsreducingtheduringthemorningortheafternoonbecauseofthemovementofthesun.Thismeansthatasinglesolarpanelplacedwiththisarrangementmayharnessmostoftheenergyduringthemorningsandbealmostuselessintheafternoons.Thereisanotheroptionwhichtakesthisintoaccount,putsolarpanelsonbothsides,whichincreasestheinitialcostsoftheprojectandthefuturemaintenancecostwhiletryingtojointhetwosourcesofenergyandplacingthemintoonedevice.Inthisthesis,asinglesolarpanel,thatisabletochangeitspositionbasedontheamountofenergyavailabletobeharnessed,isusedasseeninthearrangementdescribedinFigure4.4.Anexperimenthasbeensetuptocalculatethevariationoftheandpoweroutputoftherooftoptracker.ItiscomposedofthreeLDRs,onesteppermotor,onemini-solarcellandsomeLEGOpartstobuildthestructure.Inaddition,highlightintensitysourceisusedtomimicthesunlight.Theexperimentwasconductedinadarkroomwherenootherlightsourcesexisted.Theoutputpowerofthesolarpanelwascalculatedinthreetangels(45,90and135degree)betweentheorandthelightsource.Thesolarpanelwassuccessfullyfollowingthelightsource.Table4.1showstheoutputparametersof24Figure4.3:3D-printeddesignofthesystem25Figure4.4:Arrangementofrooftopsuntracker.Table4.1:Comparisonbetweenandmovablemini-solarpanelwithinthreepositionsoflightsource.ParameterSolarTrackingPanelTwoFixedSolarPanelsPosition1Position2Position3Position1Position2Position3Voltage(v)1.8901.7051.8402.3702.2301.970Current(mA)0.890.860.700.6000.100.410Power(mW)1.6821.4661.2801.4220.2230.80Avg.Power1.478mW0.815mWoneminisolarpaneltrackinglightandtwminisolarpanel.Fromtheresultsshowninthetable,thesolartrackingpanelonrooftopismoretthanthesolarpanelintermsofpowerandcost.Averagepowerpercentageofthesolartrackingpaneltothetwopanelsis64%.Onemini-solarpanelwasusedinthetrackingsystemwhereastwosolarpanelswereusedintheoneinbothsidesoftherooftop.ThewholedesignoftheexperimentisshowninFigure4.5.4.2.2FlowerbasesolartrackingrobotforsmarthomeTheTASSshowninFigure4.3wasalsousedtobuildandtestaproofofconceptforapossiblesmarthomeapplication.AwerpotwasmountedontherearsideoftheTASS26Figure4.5:Prototypeexperimentofrooftopsolartrackingsystem.systemasshowninFigure4.6.Althoughitshowshowthissystemfollowedthelightcomingfromawindowinthekitchenarea,itwastestedintareasofacontemporaryhomeinAnnArborarea.Theuseofultrasonicsensorstoavoidobjectsinthetestedareaswouldenhancethefunctioningworkinthistypeofprojects.27Figure4.6:TASSwerpotforasmarthome.28Chapter5CONCLUSIONSANDFUTUREWORK5.1ConclusionsThefollowinguniquefeaturesofthethesisresearchweredemonstrated;a)theTASSconcepthasbeendevelopedtoenhancetheoutputenergyofasolarsystem,b)theuseofthesolartrackingsystematthepanelandroboticplatformlevelshasbeendemonstrated,c)twotypesofsensors,LDRandPVsensors,wereusedtoachievethegoalsofthesolartrackingsystems,d)comparisonbetweenthetwosensorswasinvestigated,e)3DinkjetprintedcircuitboardsandTASSpackagingweredeveloped,andf)tapplicationsofTASSwereimplementedanddiscussed.5.2FutureWorkTASSprojecthasalotofapplicationsinmanyareassuchasenergyscavenging/harvesting,nightlightsystems,mind-controlledrobotsandmicrodronesforsurveillanceandharshweathermonitoring,andoptoelectronicsystems.Futureapplicationsareexpectedin,1)smartstreetlights,roadsandhomeslighting,2)roboticandsystemsequippedwithsolarsourcetrackingtechnologiesand3)29systemsequippedwithmulti-materialsolarcellsusingMEMSactuators.Buildingsolartrackingcellswitheachsolarpanelcouldhelpreducetheconsumedenergyinthetrackingprocess.SeeFigure5.1.Figure5.1:MEMSActuatedSolarArray(MASA).30BIBLIOGRAPHY31BIBLIOGRAPHY[1]theAuthorityoftheHouseofLords,\Theeconomicsofrenewableenergy,"vol.I,2008.[2]D.M.Aslam.(2013,Jun.)Thetechnologyassistedsmartsolar-system.[Online].Available:http://www.egr.msu.edu/aslam/[3]V.Poulek,\Testingthenewsolartrackerwithshapememoryalloyactors,"inPhoto-voltaicEnergyConversion,1994.,ConferenceRecordoftheTwentyFourth.IEEEPho-tovoltaicSpecialistsConference-1994,1994IEEEFirstWorldConferenceon,vol.1,Dec1994,pp.1131{1133vol.1.[4]S.Degeratu,L.Alboteanu,S.Rizescu,D.Coman,N.Bizdoaca,andC.Caramida,\Activesolarpaneltrackingsystemactuatedbyshapememoryalloysprings,"inAppliedandTheoreticalElectricity(ICATE),2014InternationalConferenceon,Oct2014,pp.1{5.[5]N.J.Ganesh,S.Maniprakash,L.Chandrasekaran,S.Srinivasan,andA.Srinivasa,\Designanddevelopmentofasuntrackingmechanismusingthedirectsmaactuation,"JournalofMechanicalDesign,vol.133,no.7,p.075001,2011.[6]J.M.Hallas,K.A.Baker,J.H.Karp,E.J.Tremblay,andJ.E.Ford,\Two-axissolartrackingaccomplishedthroughsmalllateraltranslations,"Appliedoptics,vol.51,no.25,pp.6117{6124,2012.[7]T.-S.Zhan,W.-M.Lin,M.-H.Tsai,andG.-S.Wang,\Designandimplementationofthedual-axissolartrackingsystem,"inComputerSoftwareandApplicationsConference(COMPSAC),2013IEEE37thAnnual,July2013,pp.276{277.[8]Y.Gan,\Researchonsolartrackingcompositecontrol,"in201410thFrance-Japan/8thEurope-AsiaCongressonMecatronics(MECHATRONICS2014-Tokyo),November2014,pp.389{393.[9]M.Haryanti,A.Halim,andA.Yusuf,\Developmentoftwoaxissolartrackingus-ingvephotodiodes,"inElectricalPower,Electronics,Communications,ControlsandInformaticsSeminar(EECCIS),2014,Aug2014,pp.40{44.32[10]O.T.Mahmood,\Programmablelogiccontrollerbaseddesignandimplementationofmultipleaxessolartrackingsystem,"inElectrical,Communication,Computer,Power,andControlEngineering(ICECCPCE),2013InternationalConferenceon,Dec2013,pp.101{106.[11]M.I.Hossain,S.A.Khan,andM.\Powermaximizationofaphotovoltaicsystemusingautomaticsolarpaneltrackingalongwithboostconverterandchargecontroller,"inElectricalComputerEngineering(ICECE),20127thInternationalCon-ferenceon,Dec2012,pp.900{903.[12]okpekiU.Kandotuagoma.S.O,\Designandconstructionofabidirectionalsolartrack-ingsystem."inInternationalJournalOfEngineeringAndScience,Feb2013.[13]M.T.A.Khan,S.M.S.Tanzil,R.Rahman,andS.M.S.Alam,\Designandconstruc-tionofanautomaticsolartrackingsystem,"inElectricalandComputerEngineering(ICECE),2010InternationalConferenceon,Dec2010,pp.326{329.[14]S.Malge,K.Bhole,andR.Narkhede,\Designingofdual-axissolartrackingsystemwithremotemonitoring,"inIndustrialInstrumentationandControl(ICIC),2015In-ternationalConferenceon,May2015,pp.1524{1527.[15]S.A.Kalogirou,\Designandconstructionofaone-axissun-trackingsystem,"SolarEnergy,vol.57,no.6,pp.465{469,1996.[Online].Available:http://www.sciencedirect.com/science/article/pii/S0038092X96001351[16]J.M.Jani,M.Leary,A.Subic,andM.A.Gibson,\Areviewofshapememoryalloyresearch,applicationsandopportunities,"Mate-rials&Design,vol.56,pp.1078{1113,2014.[Online].Available:http://www.sciencedirect.com/science/article/pii/S0261306913011345[17]P.Roth,A.Georgiev,andH.Boudinov,\Designandconstructionofasystemforsun-tracking,"RenewableEnergy,vol.29,no.3,pp.393{402,2004.[Online].Available:http://www.sciencedirect.com/science/article/pii/S0960148103001964[18]M.M.ArturoandG.P.Alejandro,\High-precisionsolartrackingsystem,"inProceed-ingsoftheWorldCongressonEngineering,vol.2,2010.[19]K.Brown,D.G;Stone,\Highaccuracy/lowcosttrackingsystemsforsolarconcentratorsusinganeuralnetwork,"inProceedingsofthe28thIntersocietyEnergyConversionEngineeringConference,1993.33[20]A.-J.N.KhalifaandS.S.Al-Mutawalli,oftwo-axissuntrackingontheperformanceofcompoundparabolicconcentrators,"EnergyConversionandManagement,vol.39,no.10,pp.1073{1079,1998.[Online].Available:http://www.sciencedirect.com/science/article/pii/S0196890497100206[21]A.Al-Mohamad,improvementsofphoto-voltaicpanelsusingasun-trackingsystem,"AppliedEnergy,vol.79,no.3,pp.345{354,2004.[Online].Available:http://EconPapers.repec.org/RePEc:eee:appene:v:79:y:2004:i:3:p:345-354[22]G.MwithigaandS.N.Kigo,\Performanceofasolardryerwithlimitedsuntrackingcapability,"JournalofFoodEngineering,vol.74,pp.247{252,2005.[23]S.ArmstrongandW.G.Hurley,\Investigatingtheenessofmaximumpowerpointtrackingforasolarsystem,"inPowerElectronicsSpecialistsConference,2005.PESC'05.IEEE36th,June2005,pp.204{209.[24]A.Yazidi,F.Betin,G.Notton,andG.A.Capolino,\Lowcosttwo-axissolartrackerwithhighprecisionpositioning,"inEnvironmentIdentitiesandMediterraneanArea,2006.ISEIMA'06.FirstinternationalSymposiumon,July2006,pp.211{216.[25]M.A.J.Paul,\Designandperformanceanalysisofautomatedtwoaxissolartrack-ingsystemforsteamgeneration,"inEnergyTechnologiesforSustainability(ICEETS),2013InternationalConferenceon,April2013,pp.432{437.[26]J.C.Schaefer,\Reviewofphotovoltaicpowerplantperformanceandeconomics,"IEEETransactionsonEnergyConversion,vol.5,no.2,pp.232{238,Jun1990.[27]J.Arai,K.Iba,T.Funabashi,Y.Nakanishi,K.Koyanagi,andR.Yokoyama,\Powerelectronicsanditsapplicationstorenewableenergyinjapan,"IEEECircuitsandSys-temsMagazine,vol.8,no.3,pp.52{66,Third2008.[28]B.KoyuncuandK.Balasubramanian,\Amicroprocessorcontrolledautomaticsuntracker,"IEEETransactionsonConsumerElectronics,vol.37,no.4,pp.913{917,Nov1991.[29]J.Roy,D.Pal,S.K.Sanyal,U.C.Sarkar,andR.Nandi,\Designofamicroprocessorbasedradartrackingsystemusingsteppermotor,"inACE'90.Proceedingsof[XVIAnnualConventionandExhibitionoftheIEEEInIndia],1990,pp.250{253.[30]H.A.Sohag,M.Hasan,M.Khatun,andM.Ahmad,\Anaccurateandtsolartrackingsystemusingimageprocessingandldrsensor,"inElectricalInformationand34CommunicationTechnology(EICT),20152ndInternationalConferenceon,Dec2015,pp.522{527.[31]X.Xu,Q.Liu,andY.Zuo,\Astudyonall-weatherauto-trackingcontrolstrategyofsolarconcentratingphotovoltaicpowergenerationsystem,"inIntelligentSystems(GCIS),2010SecondWRIGlobalCongresson,vol.2,Dec2010,pp.375{378.[32](2015)Solarimpulse.[Online].Available:www.solarimpulse.com35