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ABSTRACT

NETWORKED ASSEMBLY OF NONLINEAR PHYSICAL

SYSTEM MODELS

By

Elliot Motato

Global engineering design requires efficient model integration. This process is char-

acterized by the capability of performing an automatic and recursive model assembly.

Model integration is a complicated issue when complex assemblies are involved. Model

reuse is the key for handling assembly complexity. The ability to reuse and exchange

models relies on a standard format [1]. This condition is fundamental to avoid model

reformulation.

The Modular Modeling Method (MMM) [2] is a recursive model integration al-

gorithm designed to achieve automatic integration of linear models. MMM linear

standard models are dynamic matrices with a unique input-output variable represen—

tation. MMM characteristics facilitates the networked integration of large complex

linear models.

The objective of this work is to extend the model assembly properties of MMM to

assemble nonlinear physical models. This work can divided in two parts. In the first

part, the problem of assembling multi-port nonlinear physical models that perform

at a constant operating point is solved. In the second part, the problem of assem-

bly nonlinear physical models that perform at a region of operation is solved. Once

achieved, the MMM nonlinear methodology will contribute to enable cooperative

global engineering design, by facilitating the automatic integration and the simula-

tions of nonlinear physical engineered artifacts which are designed and provided from

different and possibly geographical distant locations.
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CHAPTER 1

Introduction

1.1 Global Engineering Design

Engineering analysts are in the process of creating a global engineering strategy that

is able to integrate product design, product development, marketing analysis, and

manufacturing process [3]. Today’s engineers can communicate with of suppliers

through supply chain management systems over the Internet [4]. The trend is to use

the Internet as the media to achieve this global engineering design strategy.

Product design in the context of a global engineering strategy demands the assem-

bly of dynamic system models from component models retrieved over the Internet.

This process requires four important characteristics: 1. Multi-energy domain compo-

nent models must have a unique standard format, 2. The exchange of model informa-

tion must be executed in a single-query transmission, 3. The models must describe

only external behavior, and 4. The assembly process must be recursive. These four

characteristics make global engineering design practical.

A unique, standard model format is the key to handling model exchange through

model reuse [4]. A modeling methodology using a unique model representation facil-

itates model query standardization. A unique model format query prevents model

reformulation and decreases model exchange time computation. The Finite Element

Method (FEM) [5], is a modeling methodology that uses a unique model format. FEM



uses the same format to represent both elements and the system assembled from those

elements. A modeling method that uses a unique standard format is called modular.

Single—query exchange of model information reduces network traffic during the

assembly of dynamic models through the Internet. A single-query exchange retrieves

the full component model using a single request and answer on the Internet. Repeated

queries increase network traffic dramatically. The Differential Algebraic Equation

(DAE) approach [6] is an example of a. model format, which can be exchanged in a

single—query network transmission as a set of ordinary differential equations (ODEs)

and algebraic constraints. Global engineering strategy demands assembly processes

that reduce network load through exchange of model information with a single-query.

A model assembly method that has this characteristic is called single-query.

An input-output model predicts external behavior using only input and output

variables to protect internal proprietary design details. Because design is a dominant

cost of new product development, internal product design details must be protected

from competitors. These design details might include, the components used in the

assembly, the order of connection of those components, the physical parameters of l

the components and the performance of each component. Protection of pr0prietary

information is critical to the commercial acceptance of any model exchange system.

Gu and Asada in [4] have used input and output variables to allow the co—simulation

of a collection of dynamic sub-simulators without disclosing proprietary information.

A model assembly method that uses models that predict external behavior using

external input and output variables is called esrtemal.

A recursive model assembly process uses standard format component models to

produce an assembly model in the same format. Once model assembly recursion

is established at a single level, the model assembly method is easily extended to

higher-level, more complex system models. DAB [6] is an example of an assembly

methodology that recursively obtains DAE system models from either DAE elements



or DAE subsystems. A model assembly process that uses standard format component

models to produce an assembly model in the same format is called recursive.

All four characteristics are simultaneously required for a successful global engineer-

ing model assembly method. Co—simulation, [4], is external but is not single-query

because network iteration is required to run dynamic sub-simulators. The DAE ap-

proach in [6], is recursive and single-query but is not external because DAE models

provide internal information about the assembly components, component connectiv-

ity and internal parameters. Bond graphs [7] are modular and recursive but not

external because they provide information about assembly components, component

connectivity and internal parameters. FEM [5] is modular and single-query but not

recursive. Assembly of FEM models generally requires global reformulation to guar-

antee geometric nodal compatibility. A multi-energy domain, modular, single-query,

external and recursive, model assembly methodology is needed.

MMM [8]-[9] is modeling strategy that satisfies global engineering design require-

ments. MMM uses two standard model formats. Dynamic matrices are used in the

networked distribution and assembly of linear models. Transfer function matrices are

used in model simulation. MMM is characterized by the advantages that result from

using these two model representations. This work is an extension of the MMM for

assembly of nonlinear physical models represented through Volterra models. Using

this extension, nonlinear dynamic models of assemblies can be built and distributed

while hiding the topology and characteristics of their structural subassemblies.

This work is divided in four parts. In the first part, the linear MMM procedure,

the standard linear model formats and the physical constraints to assemble physi-

cal models are reviewed. In the second part, the problem of assembling nonlinear

physical models that operate at a constant point is solved. In the third part, a pro-

cedure to obtain Volterra models from port based nonlinear differential equation is

explained. Finally in the fourth part, the MMM procedure for assembling Volterra



models performing at a region of operation is derived.

1.2 Contributions of This Work

This work makes six (6) significant, original contributions to mechanical engineering.

These contributions are:

1. An extension of the Modular Modeling Methodology (MMM) to nonlinear systems.

2. The recognition that two model formats are necessary for physical system model

assembly and simulation.

3. A method to assemble physical port-based affine ODEs around an equilibrium

operating point.

4. A method to obtain subsystems operating points from the system assembly oper-

ating point outputs.

5. A method to obtain frequency domain Volterra system models from MIMO port-

based ODEs.

6. A method to assemble physical MIMO port—based Volterra system models.

Each of these contributions is individually important to the development of a Global

Engineering Design (GED) strategy.

The extension of the MMM to nonlinear systems is important. This extension

allows the application of the MMM to assemble, distribute and simulate system mod-

els for a large class of nonlinear physical systems. This class is consists of nonlinear

physical systems that are analytic or that have fading memory. Before this extension

was developed, the application of the MMM was limited to the assembly, distribu-

tion and simulation of linear physical system models. The extension of the MMM to

nonlinear systems is discussed throughout the thesis. Model distribution is discussed

in the Chapter Two. Nonlinear subsystem models assembly is discussed in Chapters

Three, Four and Five. Finally, nonlinear assembled system simulation is discussed at



the end of the Chapter Five.

The recognition that two model formats are necessary for physical system model

assembly and simulation is important. As discussed below, the use of two model

formats decreases the computational time required to assemble and simulate physical

system models. These two model formats are the linear/nonlinear transfer function

representation and the linear/nonlinear dynamic representation. The transfer func—

tion representation is the traditional format for simulation. This thesis shows for the

first time, that in a constraint-based model assembly, the Transfer Function represen-

tation is not appropriate for MMM assembly because a matrix inversion is required.

Matrix inversion demands substantial computational time, a clear disadvantage in a

global distributed environment. Additionally, for this inverse to exist, system models

are limited to have independent inputs and independent outputs. This is a big limi-

tation on allowable models that excludes many dynamic system models. In contrast,

if the format used for assembly is the dynamic representation, no matrix inversion is

required and system models with dependent inputs and dependent outputs can also

be assembled. The recognition that the two model formats are necessary for efficient

physical system model assembly and simulation is discussed in the Chapter 2.

A method to assemble physical port-based affine ODEs around an equilibrium op-

erating point is important. Affine systems often result of local linearization about an

operating point. In this case, the local system model is linear in deviation variables

and non-linear in physical variables. Because assembly constraints are always given

in terms of physical variables, an explicit method to apply physical assembly con-

straints for affine physical models was first developed in this work. This new method

addresses one of the most common nonlinear systems in mechanical engineering. Us-

ing this method many practical physical nonlinear system models can be obtained

by assembling the affine approximations of their subsystems models. In addition,

this method is computationally efficient because it is recursive and does not require



matrix inversions. These characteristics make this affine assembly procedure original

and ideal for being used in the MMM. A method to assemble physical port-based

affine ODEs around an equilibrium operating point is discussed in the Chapter 3.

The explicit method to obtain subsystems operating points from the system assem-

bly operating point outputs is important. This method for the first time provides an

explicit, closed form solution to the general operating point problem. In a recursive,

closed, form, the method specifies information required to roll-down an operating

point specification through every subsystem to all the lowest level components of a

system. For each lowest level component, the method provides the exact port output

values where the operating point representation of the nonlinear component model

should be developed. The method then provides an explicit method for computing

operating point inputs of the component level and use these inputs to compute the

operating point inputs of the assembled system model. This method is demonstrated

through Affine approximations, one of the standard formats used in the MMM nonlin-

ear extensions to nonlinear system models. Determining the operating point inputs

and outputs of nonlinear subsystems in a system assembly is a classical problem [4].

This method provides an explicit solution to this problem for an important class of

mechanical engineering system models: port-based physical system assemblies. The

method to obtain subsystems Operating points from the operating outputs of an as-

sembly is discussed in Chapter 3.

The method developed here to generate frequency domain Volterra system models

from MIMO external port-based ODEs is important. Even though a similar procedure

for the SISO case is available in the literature [10], a method for MIMO port-based,

external nonlinear systems has not been published. The MIMO procedure requires

a nonlinear vector operator to obtain the frequency domain kernels. This nonlinear

operator is not required in the SISO case. An advantage of using this MIMO method

is that the two standard MMM nonlinear formats can be easily obtained. The first



format is the Volterra transfer function representation. This format is traditionally

used in model analysis and simulation. The second format is the Volterra dynamic

representation. This format is used in the assembly of nonlinear system models. The

Volterra dynamic representation was recognized and defined for first time in this work.

The Volterra dynamic representation is important in the MMM because this external

port based model format protects internal design details. This procedure generates

the Volterra dynamic port-based system models in an explicit form for the first time.

The method to obtain frequency domain port-based Volterra system models from

MIMO port-based ODEs is discussed in Chapter 4.

The method to assemble physical MIMO external port—based Volterra system

models is an original contribution to mechanical engineering because it is a direct

procedure to assemble nonlinear, port-based, Volterra system models using port-

based physical constraints. Volterra representations are appropriate to the MMM

approach to distributed model assembly because they protect internal design details.

This method extends the MMM approach to nonlinear port—based models through a

method that is computationally efficient because it is recursive and does not require

matrix inverses. These properties make this Volterra-based assembly procedure ideal

for distribution and assembly of nonlinear physical engineering system models. The

method to assemble physical MIMO port-based Volterra representations is described

in the chapter 5.

1.3 Limitations of the Nonlinear MMM Extension

The nonlinear Modular Model distribution and assembly methodology has two (2)

limitations. These limitations are:

1. The nonlinear subsystems must be modeled using port-based Volterra representa-

tions.



2. The assembled system model is valid if the subsystem models used in the assembly

are valid.

The nonlinear subsystems must be modeled using port—based Volterra representa-

tions because the formats used in the nonlinear MMM extension developed here are

port-based Volterra models. Not all nonlinearities can be represented using Volterra

models. A non-linearity can be represented using a Volterra model if it is analytic

or if it has a fading memory. The analytic requirement for Volterra models was first

recognized by Brilliant [11] and later by Sandberg [12]. Because many common non-

linear systems are modeled with non-analytic non-linearities, Boyd [13] reduced this

limitation by showing that for non—analytic nonlinear operators with fading memory,

a Volterra representation can be obtained for a useful set of bounded input signals.

Although port-based Volterra models are not possible for all nonlinear systems, SISO

Volterra models are common in engineering literature and have been used for a variety

of engineering applications [14],[15] and [16].

The assembled system model is valid if the subsystem models used in the assembly

are valid. In the MMM process it is assumed that each provided Volterra subsystem

model is valid at a specific input-output operating condition. When these subsystem

models are assembled using the MMM procedure, the input-output operating condi-

tions for each subsystem in the assembly do not change, then the resultant assembled

model is valid. Component operating conditions do not change because the MMM

method provides an explicit method for computing the operating point inputs of the

assembly required to Operate the components at the desired input-output conditions.

This explicit method is explained in the Chapter 3 of this thesis. It is important

to clarify that the validity of the Volterra subsystem models is not address in this

work. This work only deal with the problem of assembly and distribution of nonlinear

models.



CHAPTER 2

Background

2.1 Internet Distribution of Models

The Internet has enabled a global engineering design strategy where collaborative de-

sign teams perform irrespective of physical distance. Models of components provided

from different sources must be distributed and assembled to generate system models.

This section will discuss the functionality of the networked software agents required

to implement the model information flow.

The performance of a networked model distribution system (Figure 2.1) relies on

the operation of autonomous and flexible computational systems called Agents [17].

Four agent classes are used: Component agents, Assembly agents, the Agent Reg-

istry and the Query Ontology. Initially an User connected to the Internet, consults

to an Agent Registry for the locations of Assembly and Component Agents on the net-

work. The User uses standardized queries whose format is obtained from the Query

Ontology which publishes an organized list of these queries. An assembly agent assem-

bles models by using queries to lower level components. Assembly and Component

agents, respond to queries with models in the standard model format specified by the

Ontology.

The networked distribution of models is hierarchical. This characteristic is the

result of the agent’s capabilities to perform either as a client, as a server or both.
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The User can perform only as a client, requesting model information from lower-level

agents. Assembly agents can perform either as clients requesting model informa-

tion from lower-level agents or as servers providing model information to higher-level

agents. Finally, component agents can perform only as servers, providing model in-

formation to higher-level agents.

In a three level network example (Figure 2.2), the User requests model informa-

tion from the server in the tier 1 assembly agent. The tier 1 client requests model

information from servers in tier 2 agents. The tier 2 client requests models from tier 3

component agent servers. Starting at the lower tier in the system, model information

is provided by servers to higher-level assembly agents that assemble them into yet

higher-level assembly models. These assembled models are then provided to agent

servers that respond to queries from above.

2.2 The Standard Linear Physical Model Formats

A physical system is an entity separated from the environment that interchanges

energy through a boundary [7]. Physical systems are composed of interacting compo-

nents that perform in a synchronized way to generate an energy flow. This energy

flow is transferred through physical connections consisting of input-output pairs called

ports [18]. The product between the input and the output variables of a port defines

the energy flow through the port. Positive energy flow through a port is defined as

the work done on the system. The total energy flow in a physical system is the sum

of all the energy flows through each of its ports.

Physical systems can be modeled using a port-based approach. Port-based models

always have an equal number of inputs and outputs because an input-output pair

defines each port [7]. Port-based models are considered external models if they are

given as functions of external port variables. A valid external port-based model has

independent external work ports. This characteristic requires the number of model

11



equations to be equal to the number of system ports outputs. An external, time-

invariant, port-based dynamic linear physical system model having r external ports

has r equations in the form

N0y(t) +---+N,- ((11:29)) +---] — [M0y(t) +---+M,- (£1330) +--] (2.1)  

where, N,- V( 0 S 2' S n) is a (r x r) matrix of constants, Mj V( 0 S j S m) is a (r x r)

matrix of constants, y(t) is the (r x 1) system output vector and u(t) is the (r x 1)

system input vector. Causal physical system models require m _<_ n [19]. Applying

the Laplace Transform to the linear ODE (2.1) and factoring common terms,

[N050 + - - - + ann] Y(s) = [M030 + - - - + Mmsm] U(s) (2.2)

where Y(s) and U(s) are respectively the Laplace transform of the physical system

output y(t) and input u(t) . Defining the two polynomial matrices

N(s) —_— [N030 + le + - - - + ann]

(2.3)

M(s) = [M030 + M15 + - - - + Mmsm]

and substituting them into (2.2), yields

N(8)Y(S) = M(8)U(8) (24)

where N(s) and M(s) are (r x r) matrices of polynomials. Two model representations

can be derived from (2.4). These are the dynamic model representation [20] and the

transfer function model representation [21].

The dynamic model representation

P(s)Y(s) = U(s) (2.5)

uses the (r x r) matrix

P(s) = [M(s)]‘1N<s) (2.6)

This first model representation is a dynamic extension of the traditional format used

in dynamic structural analysis [5]. The dynamic matrix P(s) exists only if M(s) is

12



nonsingular. When M(s) is nonsingular, the effects of the port inputs in the equations

are independent. Model representation (2.5) exists even if the matrix N(s) is singular,

allowing models where the effects of their outputs in the equations are dependent.

The transfer function model representation

Y(s) = G(s)U(s) (2.7)

uses the (r x r) matrix

G(8) = [N(5)l—1 M(S) (2-8)

This second representation is the traditional format used in system dynamic analysis

[22]. The transfer function matrix G(s) exists only if N(s) is nonsingular. When N(s)

is nonsingular, the effects of the outputs in the equations are independent. Model

representation (2.7) exists even if the matrix M(s) is singular, allowing models where

the effects of their inputs in the equations are dependent.

The linear state space model representation [22],

x=Ax+Bu

y = Cx + Du (29)

is another commonly form used to obtain the external model representation (2.4). A

state space model representing a physical system with r ports and p internal states

uses a (r x 1) output vector y(t), a (r x 1) input vector u(t) and a (p x 1) state vector

x(t). Space state models are internal representations because they are functions of

internal state variables. The internal state variables can be removed to obtain an

external representation in the form (2.4). The transfer function model representation

can be derived from (2.9) by using the well-known equation

Y(s) = [c [51 — A]“1 B + D] U(s) (2.10)

The equivalent model format (2.4), using equation (2.10) is

I|[sI —— A]| = [C adj(sI —- A) B + [[31 — A]|D] U(s) (2.11)

13



where adj is the matrix adjoint operator. Comparing (2.4) and (2.11),

N(s) = [[31 — A“ (2.12)

M(s) = [Cadj [sI — A] B + ”81 — A]|D] (2.13)

In general, external model representations derived from (2.1) can describe systems

with outputs that produce dependent effects on the port equations (the matrix N(s)

can be singular). In contrast, the external model representations derived from the

state space representation (2.9) do not allow this characteristic because the resultant

matrix N(s) is always nonsingular since N(s) = [51 — AI 75 0 .

Port-based physical systems can be modeled by the dynamic model representation

(2.5) or by the transfer function model representation (2.7) If the matrices M(s) and

N(s) are nonsingular, both model representations can be obtained either by using

the external model (2.4) or by using the state space model (2.9). These two model

representations are the standard formats used by the linear MMM for distribution

and assembly of models.

In the next section, the two properties that characterized the assembly of physical

systems are introduced. These properties are represented mathematically by two

constraints equations. These equations are used in the linear and nonlinear MMM

assembly method.

2.3 Physical Assembly Constraints

Physical model assembly is characterized by two conditions. The first condition is

associated with the word assembly. The assembly of two or more system models means

their response or outputs variables are equal at the geometric location of the physical

assembly. This condition will define the relationship between port output variables.

The second condition is associated with the word ”physical”. All physical system

connections must satisfy conservation of energy. The assembly of physical systems

14



requires both conditions at physical connections: equal system output response and

energy conservation.

The connection of physical subsystem models is executed by joining port variables

that exchange energy. The output and input pair of each port is determined using the

two concepts characterizing the assembly of physical systems. The output variable is

selected as the variable physically constrained to be equal to other output variables

when ports are connected. The input variable is selected, as the port variable required

to compute units of energy when it is multiplied by that port’s output. Energy

conservation requires all connected ports to be in the same energy domain.
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Table 2.1. Input-Output MMM Causality for Different Energy Domains

Input and output port variable pairs for different energy domains are shown in

Table 2.1. Connected port outputs measured with respect to the assembly’s system

reference are equal. Ports assembled in the electric energy domain require equal

potentials. Ports assembled in the mechanical energy domain require either equal

angular or linear displacement. Ports assembled in the hydraulic or acoustic energy

domain require equal pressure. Ports assembled in the heat transfer energy domain

require equal temperatures. All these required conditions describe physical assembly

in their respective energy domain. The associated port inputs in each energy domain

permit the computation of energy. This standard facilitates a the model assembly

process. The naturally constrained port variables allow the use of standard physical

assembly constraints to assemble models.

Joins are used to enforce these assembly constraints. A join is not a model of
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a physical connection subsystem and does not store nor dissipate energy. Joins are

mathematical mechanisms that provide the proper physical connection constraints

for connecting the ports of physical components within a single energy domain [8]. A

join is graphically represented as a circle enclosing the letter J for Join (Figure 2.3).

The lines represent ports with the direction of positive energy flow indicated by the

arrowheads.

Two kinds of control volumes are defined in any assembly. The component control

volume (c) interchanges energy with the assembly control volume (a) through the

component output yc(t) and input uc(t) port variables. The assembly control volume

interchanges energy with the environment thorough the assembly output ya(t) and

input ua (t) port variables.
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Figure 2.3. Unconstrained and Assembly Control Volumes

A simple relationship determines the number of assembly variables. If a set of

components with r port variables uses f connections to connect p component ports,

the assembled system has l = r+ f —p pairs of port variables. In a practical assembly

f _<_ p and l S r . The dimension of the component and assembly port variable

vectors are respectively (r x 1) and (l x 1).

The two conditions that characterize a physical systems assembly can be repre-
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sented using two equations. The first equation constrains connected outputs to be

equal. For a join connecting d outputs,

3110‘) = --- = u(t) = -°-= yd(t) = ya(t) (2-14)

where yz-(t) is the ith connected component output at the join and ya(t) is the output

assembly variable at the join. For both joins in (Figure 2.3), d = 2. For a set of l

joins generating l assembly output variables from r component ports, the relationship

(2.14) between the r component outputs and the l assembly outputs is,

yc(t) = Sya(t) (2-15)

where S is a (r x l) matrix of constants called the constraint matrix. The second

equation, constrains the energy stored at all the connections to be zero when the

work done internally on the component ports equals the external work done on the

assembly,

ufit>yc<t> = uiitiyam (2.16)

This equation states that the total energy supplied to the component port equals

the total energy supplied to the assembly port. The equation (2.16) includes input

and output variables and is difficult to use. An equation easier to use relates only

component and assembly inputs and can be derived substituting (2.15) into (2.16),

uZit>Sya<n = uZ<t>ya<t> (2.17)

From equation (2.17) it follows that,

STuc(t) -.-. ua(t) (2.18)

Applying the Laplace Transform to (2.15) and (2.18),

Yc(s) = SYa(s) (2.19a)

STUC(s) = Ua(s) (2.1%)
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Equations (2.19a) and (2.1%) are the two constraints used to assemble physical mod-

els. This two constraints are satisfied by any assembly, independently if the compo-

nents are linear or nonlinear.

The assembly of three components is shown (Figure 2.4). These three components

have a total of eight (r = 8) ports. Component 1 has three ports: 1,2 and 3. Com-

ponent 2 has 1 port: 4. Component 3 has four ports: 5,6,7 and 8. Five additional

ports (a, b, c, d and e) are defined for each of the five (f = 5) joins of the assembly

(J1, J2, J3, J4, and J5). These joins are used to connect eight (1) = 8) component

ports. The total number of ports for the assembled system is five: (I = r + f —p = 5).

They are the ports a, b, c, d and e.

e

Y2=ye‘ ys=ye

yfi yc

. 8 1‘ 5 ’

- .4>»5:“ ' . y7=yd

‘ y4= yb

Y3 =yb ys =yb

b
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Figure 2.4. Assembly of Three Components Through Five Connections

A constraint is defined for each of the eight connected component port outputs.

At the join (J1), the output of component port 1 is constrained to be equal to the

output of assembly port a. At the join (J2), the outputs of component ports 3, 4

and 5 are constrained to be equal to the output of assembly port b. At the join (J3),



the output of component port 6 is constrained to be equal to the output of assembly

port c. At the join (J4), the output of component port 7 is constrained to be equal

to the output of assembly port (I. At the join (J5), the outputs of component ports

8 and 2 are constrained to be equal to the output of assembly port e. The matrix

form of the equations that relate component outputs and assembly outputs is,

  
    

’y11 '10000'

y2 00001~-

3,3 01000 3;:

:: =31333 ,
ya 00100[yd

3,7 00010 ye,

[3,8, M10001-

This equation is an example of (2.15) that defines the constraints between component

and assembly outputs through the constraint matrix S. A constraint equation is

defined for each of the five joins used. At every join the sum of the component port

inputs must equal the input of the respective assembly port. For joins (J1), (J2) and

(J3) the result is trivial because only a single component port is joined. At the join

(J2) the sum of the inputs of component ports 3,4 and 5 must equal the input of the

assembly port b. At the join (J5) the sum of the inputs of component ports 2 and

8 must equal the input of the assembly port e. The equation that relates component

port inputs and assembly port inputs is,

    

.1“.

'10000000'“2 'ua‘

00111000 ”3 ub

0 0 0 0 010 0 “4 = uc (2.20b)

00000010 “5 ud

00000001 “6 u...- -W _-

-118.  
The matrix above equals the transpose of the constraint matrix S in (2.20a). The next

section shows how the two physical dynamic constraints equations (2.19a) and (2.19b)
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are used to assemble external physical system models. Additionally, it is shown that

two different model representations, one model representation used for distribution

and assembly and the other model representation used for simulation and analysis

are required to effectively implement the MMM process.

2.4 The Modular Modeling Assembly Procedure

The Modular Modeling Method (MMM) uses a systematic process to assemble dy-

namic matrix models (2.5). These standard format models have port pairs standard-

ized through the two concepts that generate constraints (2.19a) and (2.19b). It is

shown in this section that the dynamic matrix representation is a convenient form

for assembling physical system models from component models. The MMM assembly

includes four steps. These steps are: 1) Generation of the unconstrained component

model, 2) Generation of the constraint equations, 3) Generation of the assembled

model and 4) Generation of the condensed model.

The generation of the unconstrained component model is the first step. This

process formulates a matrix of component dynamic models (2.5) in diagonal form.

An assembly of k component models with a total number of r ports yields,

P1(S) 0 0

Pc(s) = 0 P209) 0 (2.21)

_ 0 0 O Pk(s) .  

where Pi(s), (1 S 2' _<_ k) is the (r,- x Ti) dynamic matrix of the ith component and

Pc(s) is the (r x r) unconstrained matrix constituted by the dynamic matrices of all

the assembly’s components. The number of ports in an assembly of k components is,

k

r = Zri (2.22)

i=1

The unconstrained component model relates the (r x 1) component output vector YC
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to the (r x 1) component input vector UC through the equation,

Pc(s)YC(s) = Uc(s) (2.23)

The generation of dynamic constraint equations in format (2.19a) and (2.19b)

is the second step. This process builds the constraint matrix S that relates uncon-

strained component variables to constrained assembly variables. The matrix S is

dependent on the connection topology between components. This matrix equates

each component output in Y0 to an assembly output in Ya based on the constraints

associated with the assembly. An example is shown in the next section.

The generation of the assembled model is the third step. This process is executed

by applying output (2.19a) and input (2.19b) constraint equations to (2.23). Initially,

(2.19a) is substituted into (2.23) to yield,

Pc(S)SYa(8) = Uc(8) (224)

Multiplying both sides of (2.24) by ST and using (2.19b) yields the assembled model,

meme) = Ua(8) (2.25)

where

Pan) = STPC(s)S

is the (l x l) assembly dynamic matrix and Ua(s) and Ya(s) are the (l x 1) assembly

input and output vectors.

The dynamic model representation (2.5) is particularly effective as the standard

assembly MMM format because constraints (2.19a) and (2.19b) can be easily applied.

Additionally, the overall process is recursive since the assembled model (2.25) is again

in the standard format (2.5). In contrast, the transfer function model (2.7) cannot be

used as the assembly MMM format because (2.19a) and (2.19b) cannot be substituted

directly. This process requires the (r X I) left inverse of the matrix S. This matrix
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does not exists because in the matrix S the number of rows is greater than the number

of columns. Even though standard format (2.5) is effective for the model assembly

process, it is not appropriate for simulations because is not possible to use it to solve

directly for the outputs given the inputs. A different model format is required for

simulation.

The transfer function model representation (2.7) is chosen as the MMM simulation

format because it can directly be used to solve for the outputs given the inputs. This

format is obtained by inverting (2.25) to yield,

Ya(8) = Ga(5)Ua(8) (2-26)

where

Gas) = [Pani—1

is the transfer function matrix. Model (2.26) is the traditional model format used in

the analysis and simulation of dynamic systems [22].

The two different MMM system representations (2.25) and (2.26) are important.

The analysis above demonstrates that the MMM modeling format (2.25) is partic-

ularly well suited to recursive assembly of models using output constraints but not

appropriate for perform model simulation. The analysis above also reveals that the

model format (2.26) is particularly well suited for simulation but not appropriate to

perform recursive system model assembly. If only one format is used, the advantages

of both model representations are not obtained. MMM used the model representation

(2.25) for distribution and assembly and the model representation (2.26) for analysis

and simulation. This is a clear difference with the traditional methods that use the

transfer function model format (2.26) as the unique model representation.

The assembly model (2.25) is formulated in terms of assembly port variables con—

sisting of both internal and external assembly ports. Internal ports are those ports

whose inputs are zero during normal use of the model. These zero input ports can
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be removed from the model. Additionally, these ports might be removed to protect

the proprietary response of the internal model ports. Conversely, external ports must

be accessible to the users and should remain in the model. A process to eliminate

the internal ports is required. This process is called condensation and the resultant

model is only a function of external port variables.

Model condensation is the fourth and final step. This process uses a symmetric

transformation matrix T to reorganize assembly variables into internal and external

varaible vectors in the form,

Ye(s) __

T ] “(8) ] _ Ya(s) (2.27a)

Ue(8) _ T 5

[ UM ] _r Ua( ) (2.27b)

where the port input Ue(s) and output Ye(s) are external and the port input U,(s)

and output Y,(s) are internal. To remove internal port variables substitute (2.27a)

into (2.27b),

 

Ye(s) _

Pa(s)T Yi(s) ] — Ua(s) (2.28)

Multiplying both sides of (2.28) by TT and substituting (2.27b),

T Ye(5) __ Ue(5)

T P“(S)TlY.-<s> l ‘ l Ui(5)l (2'29)

Defining the matrix,

T _ Pee(8) Pei(3)

T Pa(S)T _ i Pie(3) Pii(8) i (230)

yields the form,

1368(5) Pei(3) ] [Ye(3) ] = [ [16(3) ]

lPieis) lat-(s) Y.(s> U.<s) (2'31)

where Pee (s), P6,;(s) , P,e(s) and Piz-(s) are dynamic matrices. Because internal

assembly inputs will not be accessible in the condensed model, these inputs are set to

zero (Ui(s) = 0) to solve for the external inputs as a function of the external outputs

in the form,

Pe(s)Ye(s) = Ue(s) (2.32)
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where,

Pe(5) = Pee(3) _ Pei(3)Pii(5)P;.-31(3) (2-33)

is the condensed dynamic matrix. The condensation process is recursive because the

condensed model is again in the standard format (2.5). Internal dynamics matrix

inverse P31 is always computable (See Appendix A).

2.5 Example of a Linear MMM Assembly

The assembly of a mechanic transmission linear model and an electric generator linear

model is developed in this section. The first component is an electric generator with

two ports (Figure 2.5). The generator’s first port variables are the input electrical

charge (11,1 (t) and the output voltage potential e1,1 (t) . The generator’s second port

variables are the input rotational torque r1,2 (t) and the output angular displacement

612 (t). The second component (Figure 2.5) is a mechanical transmission with two me-

chanical ports. The transmission’s first port variables are the input rotational torque

r2,1(t) and the output angular displacement 62,1(t) while the transmission’s second

port variables are input rotational torque 72,2 (t) and the output angular displacement

622 (t) In total, the two components have r = 4 ports.

The assembly is executed thorough three (f = 3) joins that connect three (l = 3)

assembly ports to the four (r = 4) component ports. The left joint connects the ex-

ternal electric charge-output potential port pair (ea,1(t), qa’1(t)) to the internal port

pair (e1,1(t), q1,1(t)) . The right joint connects the external torque-angular displace-

ment port pair (60,3(t), ra,3(t)) to the internal port pair (62,2(t), r2,2(t)) . Finally the

middle joint connects the internal port pairs (61,2(t),7'1,2(t)) and (62,1(t), 72,1(t)) to

the external torque—angular displacement port pair (0a,2(t), Ta,2(t)).

The dynamic model representation for the generator is

P1,11(8) P1,12(8) E1,1(s) _ Q1,1(8)

P1,21(5) P1,22(8) l [ 91,2(3) ] _ [ 112(3) ] (2-34)
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q, (t)_+ 11 mo;— 72,10, 922i),

72,2(1)  
 

Figure 2.5. Assembly of a Transmission and an Electric Generator

where E1,1(s), 6214(3), 913(3) and T1,2(s) are respectively the Laplace trans-

form of the time variables e1,1(t), q1,1(t), 013(3) and 71,2(t), the complex variable

functions P1711(s), P1,12(s), P1,21(s) and P1,22(s) are ratio of polynomials respec-

tively representing the relations between the input-output pairs (Q1,1(s),E1,1(s)),

(712(3),E1,1(S)),(Q1,1(S),912(3)) and (T1,2(8),91,2(3))-

The transmission dynamic model representation for the is

P2,11(3) P2,12(8) ] [ e2,1(8) ] = [ T2,1(3) ] (235)

P2,21(8) P2,22(5) 92,2(8) 722(5)

where 82,1(5), T2,1(s), 82,2(3) and T2303) are respectively the Laplace trans-

form of the time variables 92,105), 7271(t), 02,2(3) and T226), the complex

variable functions P2’11(s), P2,12(s), P2121(s) and P2,22(s) are ratio of poly—

nomials respectively representing the relations between the input-output pairs

(721(8),92,1(8)),(T2,2(S),92,1(8)):(T2,1(8),922(5)) and (722(3): 922(3))-

The construction of the unconstrained component model is the first step. The

unconstrained matrix is built by inserting in the main diagonal of a square matrix,

the dynamic matrices of component models (2.34) and (2.35). The other elements of
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the unconstrained matrix are set to zero.

136(8)

"P1,11(8) P1,12(8)

P1,21(8) P1,22(8)

0 0

0 0 _

0

0

P2,11(8) P2,12(8)

P2,21(S) P2,22(5).

0

0

The unconstrained component model Pc(s)Yc(s) = Uc(s) is,

FP1,11(8) P1,12(8)

P1,21(8) P1,22(5)

0 0

0 0 

0 0

0 0

P2,11(8) P2,12(8)

P2,21(3) P2,22(S)_ 

' E1,1(8) I

91,2(8)

92,1(8)

. 92,2(8) .  

 

P Q1,1(8) '

T1,2(3)

T2,1(3)

  t T2,2(3) 1

(2.36)

(2.37)

The generation of the constraint equations is the second step. Initially the time

variable equations that relate component output to assembly outputs are written.

 

 

 

P (31,1(t)1 I.1 O 0 1

(91,2(15) _ 0 1 0 30,18)

92,1(t) — 0 1 0 gait

_92,2(t), _0 0 1_ “’30

1 0 0‘T q 10) 'q1,1(t)‘
0 I 0 Ta,2(t) : T1303)

0 1 0 T“, (t) mu)

-0 0 ll 0’3 .7220).

Applying the Laplace Transform to (2.38a) and (2.38a),

E1,1(S) 1 0 0

912(5) 0 1 0 gal]:

92,1(3) 0 1 0 9“,?

923(3) 0 0 1 03(3)

'1 o 0"" Q 1(3) "one
0 1 0 Ta,2(8) : 712(3)

0 I 0 Ta, (8) 7121(8)

_0 0 1_ “’3 run)

The constraint matrix is _ q

1 0 0

0 1 0

S— 0 1 0

_ 0 0 1_

  

 

 

 

 

 

 

 

 

 

(2.38a)

(2.38b)

(2.39a)

(2.3%)

(2.40)



The assembly model generation is the third step. Using (2.39a) and (2.39b) to gener-

ate the assembly’s dynamic matrix Pa(s) = STPCS,

P1,11(8) P1,12(8) 0 Ea,1(8) Qa,1

P1,21(8) P1,22(8)+P2,11(8) P2,12(3) e(1,2(8) = Ta,2 (2-41)

0 P2,21(3) P2,22(8) 9a,3(3) Ta,3

Equation (2.41) is the dynamic model of the generator-transmission assembly.

This model in the standard format (2.5). At this point, any port of (2.41) can be

selected as internal or external. Internal ports make internal variables unavailable to

the user. Because internal ports are not accessible, internal inputs are set to zero.

The condensed model is determined assuming that the internal variables are 90,2(3)

and Ta,2(s) and the external variables are Ea,1(s), Qa,1(s), 603(3) and Ta,3(s).

The condensed model generation is the fourth step and uses the matrix,

100

T=001 (2.42)

010

to reorganize the assembly variables into external and internal vector variables,

Ea,1(5) Ea,1

T ea,3(8) = 902 (2.433.)

e(1,2(3) ea,3

Q1,1(S) Q1,1

Ta,3(s) = TT Tag (2.43b)

Ta,2(5) Ta,3

Using the definition in (2.30), (2.31), (2.32) and (2.33) yields the condensed model,

Pee(3)Pei(3) ] [in(1 ,1(5) ] : [Q1,1(3) ] 2 4

l as) Pas) 3e) age) ( ' 4)

where

P1.12(S)P1,21(8)

Pee(3) = P1,11(5) ’ P1,22(3)+P2,11(3l

_ P1,12(8)P2,12(8)

Pei“) _ _P1,(22(§l,+P211(8)

 

 

 

. (8———) P2,21(3)P1,2I(3)

“3 P1,22(8)+P2, 11(3)

P2,21(3)P2,12(8)

1011(5) 2 P2722“) — P1,22(S)+P2,11(8)
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The condensed model is also in the standard format (2.5) and can be assembled to

other standard models using the same algorithm. The condensation process is again

recursive.

The analysis and simulation of the generator-transmission system assembly, re-

quires the simulation format (2.26). This model is obtained by inverting the con-

densed model (2.44) to yield,

[ Ea,1(5) ] _ ] Gee(8) Gei(s) ] [ Q1,1(8) ]

903(5) — Gte(3) (321(3) Ta,3(s) (2'45)

Where,

0.212(8) = [P2,22(S)P1,22(3) + P2,22(3)P2,11(8) — P2,21(8)P2,12(8)] /17(8)

Gei(3) = [P1,12(8)P2,12(S)l /17(3)

0212(8) = [P2,21(8)P1,21(3)l /13(3)

021(8) = [(P1,22(8) + 1321103)) P1,11(S) — P1,12(8)P1,21(8)l /17(8)

0(8) = Gee(8)P1,11 - P1,12P1,21P2,22

2.6 Summary

In this chapter, the recognition that two model formats are necessary for physical

system model assembly and simulation is addressed for the first time. The use of two

model formats decreases the computational time required to assemble and to simulate

physical system models. These two model formats are the transfer function represen-

tation and the dynamic representation. The transfer function representation is the

traditional format used for simulation. This thesis shows, that in a constraint-based

model assembly, the Transfer Function representation is not appropriate for MMM

assembly because a matrix inversion is required. Matrix inversion demands substan—

tial computational time, a clear disadvantage in a global distributed environment.

Additionally, for this inverse to exist, system models are limited to have independent

inputs and independent outputs. This is a big limitation on allowable models that
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excludes many dynamic system models. In contrast, if the format used for assembly is

the dynamic representation, no matrix inversion is required and system models with

dependent inputs and dependent outputs can also be assembled.

This chapter also introduces the process of model condensation. Model condensa-

tion is the removal of ports that are considered interior to the model. Removing those

degrees of freedom reduces the overall size of the model, and additionally, protects the

proprietary information of the model. Condensation of models significantly increases

the difficulty associated with reverse engineering a model. Invariably the number of

internal model parameters exceeds the number of inputs/output pairs making reverse

engineering difficult. In the next chapters the MMM process for assembly physical

nonlinear models is presented.
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CHAPTER 3

Assembly of Affine Physical System

Models

3.1 Affine Physical System Models

Affine systems are important in the MMM procedure because the assembly of general

differentiable nonlinear physical models performing at a constant operating point can

be executed as the assembly of its affine approximations. In an affine system the

inputs and outputs exhibit a proportional relationship, but the model outputs are

nonzero at zero input. Affine systems are nonlinear because they do not obey the

two linear system properties: superposition and homogeneity [23]. Affine systems

can be static or dynamic. A static affine system is characterized by an input-output

relationship that is independent of the system’s input and output time derivatives.

Static affine systems are discussed first, then, dynamic affine systems are presented.

A static affine system having p outputs and q inputs is,

y = Ku + c (3.1)

where y is a (p x 1) vector that represents the system’s outputs, u is a (q x 1) vector

that represents the system’s inputs, K is a (p x q) matrix of constants and c is a

(p x 1) vector of constants called‘the bias vector. The static affine model (3.1) is

non-linear because it does not obey superposition and homogeneity. Superposition is
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not satisfied by (3.1) because given two arbitrary inputs 111 and Hz the relation:

Y(u1 + 112) = Y(u1) + Y(u2) (3-2)

does not hold. Homogeneity is not satisfied by (3.1) because given an arbitrary

constant A and any input 11, the relation

y(Au) = M(U) (33)

does not hold.

Two examples of physical affine systems are an electrical battery model with non—

zero open circuit potential (Figure 3.1) and a mechanical system with fixed load

(Figure 3.2). Both systems have input-output models with non-zero output at zero

input. The static afiine electric battery model (Figure 3.1)

e = —Ri + V (3.4)

has output potential e, input load current i and battery internal resistance R. Here

the bias constant V, is the battery potential at zero current.

 

 

 
 

 
 A   

~
Current

Figure 3.1. Electric Battery

The dynamic affine pulley-load assembly model (Figure 3.2) is described by the

nonlinear ordinary differential equation

167+ k6 = 7' + WR (3.5)
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with output angular displacement 0, input torque 7, spring parameter k , mass mo-

ment of inertia J, and bias constant WR. The bias constant depends on both the

pulley radius R and the load W. At static equilibrium model (3.5) becomes,

where, Oeq is the angular displacement at equilibrium for a given constant torque r.

The static model (3.6) does not include the point (06g, r) = (0,0) . Like the previous

example, the static (3.6) and the dynamic (3.5) models are nonlinear because they

do not obey superposition and homogeneity.
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I

I

I
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y
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I_   
Figure 3.2. Pulley-Load Assembly

An affine system is an intermediate result of any linearization process. A lineariza-

tion (Figure. 3.3), usually generates a linear model with respect to the operational

variables but an affine model with respect to the real physical variables. Physical

variables are most appropriate for use in a model’s assembly process because when

models are connected to form a system model, their behaviors are constrained [6] and

these constraints are in function of physical variables.

An affine approximation of the external nonlinear model,

f(y1Yiyiu°iu7fiifii"°):0
(3.7)
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Figure 3.3. Linearization Yielding and Affine System

where f(o) is a (r x 1) vector of functions, y(t) is the (p x 1) system physical output

vector and u(t) is the (q x 1) system physical input vector, can be obtained through

a Taylor expansion in five steps.

In the first step, all the input and output derivatives of (3.7) are set to zero,

f"'(y,u)=f(y,0,---,u,0,-~)=0 (3.8)

where for any y on the map, at least one u exists.

In the second step a point (y, u) on the map (3.8) is selected. Traditionally, a

desired value of the output y 2 yo is defined first to determine one input 11 = uO

that satisfies,

f*(y0, u0) = 0 (3.9)

In the third step, the equilibrium point

"zuo’f°:f’0=m=0 (3.10)
y=y0, y0=y0=---=0

is selected as the system’s operating point (op). Applying Taylor series expansion to

equation (3.7) around the operating point (3.10)

f(y, 11. - - -) = f(y0. no, - - -) + Dy(f)l0,,(y - yo) + 211D§(0|0p(y — yo)2
3.11

+ . . . +Du(f)|0,,(u- “0) + %,Dg(t)|op(u_ u0)2 +... = 0 ( )
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where each element of the matrix D§(h(g, g)), - - - )) is the the kth partial derivative

of the vector function h respect the vector g. Since (3.10) is a solution of (3.7) the

first right side term of (3.11) is,

f(y0,u0,0,---) :0 (3.12)

In the fourth step, equation (3.10) and (3.12) are substituted into (3.11) and

retaining only the 1“ partial derivative terms,

f(y, u, . .-) a“ Dy(f)|0p(y - yo) + D5,(f)|0py+ Dymlopf' + . ..

+Du(0lop(u — “0) + Dfi(f)|opn + Dfimlopa + . ..

Equation (3.13) can be reorganized in the form

f(y,u, . .. ,y, u) 9.: Dy(t)|opy + Dy(t)|0py + D5,(f)]opy+ . ..

+Du(0i.,u + Du(fl|0,,fi + Dfimlopu + - ~ (3.14)

-Dy(0lopy0 - Duffllopuo

All the partial derivatives evaluated at the operating point (op) in (3.14), yield con-

(3.13)

stants matrices. The fifth and final step is to define:

1. n (r x p) matrices of constants (132's n) Ni: [Bf/6(diy/dti)]|0p

2. m (r x q) matrices of constants (132's m) M,- = [3f/8(diu/dti)]|0p

where n and m are respectively the highest derivative of the output and the input of

equation (3.7).

3. A (r x 1) vector of bias constants c=- [Bf/8y] [opy0 — [Bf/au] Iopu0

to write (3.14) in the form,

f(y,u,--- ,y,u)a’N0y+
N,y+N2y+...+

. .. (3.15)
M0u+M,U+M,U+---+c

Equation (3.15) evaluated in its physical variables is affine if the vector c does not

vanish. The vector c will vanish if,

[Bf/0y] [01,,y0 + [Bf/Bu] lopuO = O (3.16)

Operating points that satisfy condition (3.16) can be approximated in its physical

coordinates by a linear model and are a special case. This fact would imply either
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that the operating point Of the assembly is the origin (yo, no) = (O, 0), what in most

cases is not practical, or that even though the Operating point is not the origin, the

linearized system intersects the origin. Any differentiable nonlinear system that does

not satisfy condition (3.16) can be locally approximated in its physical variables by

an affine model (3.15).

An affine model describing a physical system with r external ports, requires r

equations in the form,

N0y+N1y+N2y+---+M0u+Mlu+M2ii+---+c=0 (3.17)

where respectively V(0 S t S n) and V(0 g j S m), N, and Mj are (r x r) matrices

Of constants and y(t), u(t) and c are (r X 1) vectors. Physical systems are causal

requiring [19]. The bias vector,

c = —N0yO — MOuO (3.18)

substituted into (3.17) yields,

N0y+N1y+N2$r+m+M0u+M1u+M2ii+---—N0y0 —M0u0 = 0 (3.19)

A procedure to assemble affine physical models in their physical variables is proposed

in this chapter. The procedure satisfies the four characteristics required by a global

engineering strategy and applies to any differentiable nonlinear physical model. The

chapter is organized as follows: Affine systems were defined in the first section. The

networked distribution process for affine models is explained in the second section.

The standard model format is described in the third section. The constraints required

to assemble affine physical models are defined in the fourth section. The MMM

algorithm to assemble affine physical models is shown in the fifth section. An example

is shown in the sixth section. Finally conclusions are provided.
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3.2 Internet Distribution of Affine Models

The networked distribution of affine models requires a two-part query—response format.

In the first part, agent clients request from lower—level server agents, models of systems

valid around specific output operating conditions. In the second part, server agents

provide the models and the input operating conditions required to operate the system

at the desired outputs.

 

Client

Query of a system System model and

model valid around required input

5’0 ii
0

  
 

 

 

    

Tier 1

Query of

Query 0f model 2

model 1 valid around

valid around

Model of Yo,2 Model

y0,1 component 1, Component 2,

and required and required

in ut u ' ut u
‘ 7 p 0,1 ‘ ' mp 0,2

 

 

  
Figure 3.4. Query—Response Model Distribution Format
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In a two—level network example (Figure 3.4), the User client makes a request to

the Tier 1’s server agent for a model of a system valid around the desired output

Operating conditions 370. The assembly agent determines that two model components,

the first Operating around the output y0,1 and the second Operating around 3102,

are required. The Tier 1’s client requests a model to each Of the two component

agents. Two responses are generated. In the first, the server 1 returns the model

component 1 and the required input “0,1 to Operate the first component around 90,1-

In the second, server 2 returns the model component 2 and the required input "0,2

to operate this second component around 310,2 The assembly agent uses component

model information to execute the assembly. The assembly agent also returns to the

user client, the system model and the required {'10 inputs to operate the system around

the desired outputs yo.

3.3 The Standard Model Formats

This section defines the standard dynamic model formats used in the MMM process

and the standard equations used to transform deviation variables into physical vari-

ables. In the proposed networked environment, component models are distributed as

linear models defined in deviation variables but assembled as affine models defined in

physical variables. Initially the linear format is presented, then the required variable

transform equations are defined.

The standard MMM model format can be Obtained by substituting the change Of

variables

‘ — Qi— — Jdi V < '<y—y(t) —y0, , —— ,, (1 _ z _ n) (3.20)
dt dt

_ djfi dju -
u=ut—u, —=—,V1§ 5m() 0 dt, dt ( J ) (3.21)

mm the affine model (3.19). This process yields a linear differential equation in the



deviation variables y(t) and u(t),

Nay + - - - + N, (dny/dt") + Mon + - - - + Mm (ci’nn/dtm) = 0 (3.22)

Applying the Laplace Transform to (3.22) yields,

[ O n — O m _

Nos +---+an ]Y(s)+[MOs +~~+Mns ]U(s)=0 (3.23)

where Y(s) and 0(3) are the Laplace transform of the deviation variables y(t) and

u(t). Defining the two polynomial matrices,

0 n

N(s) = [N03 + . - - + an ] (3.24a)

0 m

M(s) = — [Mos + - - - + Mns ] (3.24b)

and substituting them into (3.23), yields the general form

N(s)Y(s) = M(s)U(s) (3.25)

where N(s) and M(s) are (r x r) matrices.

Two external model representations are derived from (3.25). These are the dy-

namic stiffness [20] and the Transfer Function representation [21]. The Dynamic

representation

P(s)Y(s) = 0(3) (3.26)

uses the (r x r) matrix

we -—— [M(s)]‘1N(s) (3.27)

The Dynamic representation

Y(s) = G(s)U(s) (3.28)

uses the (r x r) matrix

C(s) = [New1 M(s) (3.29)
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Affine model representations (3.26) and (3.28) are respectively analogous to linear

model representations (2.5) and (2.7). As it was shown in the last chapter for the linear

assembly process, model representation (3.26) is a convenient format for assembly

affine physical system models but it is not apprOpriate for simulation since is not

possible to solve directly for the outputs. Model representation (3.28) is used for

simulations of affine models because it can be used to compute the output given the

inputs.

The required change Of variables is obtained by defining the unit step u(t) and

substituting the equivalent time functions y; = you(t) and u; = u0u(t) into (3.20)

and (3.21),

W) = y(t) - 3'30) (330a)

u(t) = u(t) — u3(t) (3.30b)

The Laplace Transform Of (3.30a) and (3.30b) is,

Y(s) = Y(s) — y0(1/s) (3.31a)

U(s) = U(s) — 110(1/3) (3.31b)

where y0 and u0 are respectively the output and input operating vectors of the com-

ponent, Y(s) and U(s) are the Laplace transform of the output and input deviation

variables, and Y(s) and U(s) are the Laplace transform of the output and input phys-

ical variables. Equations (3.31a) and (3.31b) are the component standard equations

used to change deviation variables into physical variables.

3.4 Physical Assembly Constraints

Affine component models are specified with respect to the output and the input

component operating points y0 and uo. The resultant assembled affine model is

specified with respect tO the output and the input assembly operating point vectors
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yo and {'10. Since component Operating point vectors y0 and uO are a subset Of the

component variables yc and uc and the assembly Operating point vectors yo and fro

equations (2.15) and (2.18) areare a subset of the assembly variables ya and ua ,

also satisfied by the component and assembly Operating points

y0 = syo (3.32a)

T

S u0 = 110 (3.32b)

where y0 and u0 are (r x 1) and yo and {'10 are (l x 1). Equations (3.32a) and (3.32b)

provide a method Of computing the output operating points of the components from

the output Operating points Of the assembly.

The process of determining system’s Operating point (yo, 1'10) follows a standard

network procedure (Figure 3.4). The client specifies the Operating point output yo

in a request to the assembly agent for a model. The assembly agent knows the

assembly constraints S and uses (3.32a) to compute the operating point outputs yo

for all the assembly’s components. These component outputs are sent to component

agents as part Of a request to each component for a model. At every level, each

component responds to a model request with that component’s linearized model and

that component’s Operating point inputs uO. The assembly agent determines the

assembly’s Operating points inputs {'10 using the connection constraint S and (3.32b).

3.5 Assembly Of Affine Physical Models

The MMM uses a systematic process to assemble dynamic matrix-based models.

These models have port pairs standardized through the two concepts that charac-

terized physical systems. The assembly process for affine models includes three steps.

These steps are: 1) Generation of the unconstrained component model, 2) Generation

of constraint equations, and 3) Generation of the assembly model.
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The unconstrained component model is the first step. This process formulates

a diagonal matrix of component dynamic matrices. An assembly of A: component

models with a total number of r ports yields,

P1(s) O 0

Pc(s) = O '-. O (3.33)

0 Pk (s)

where P,(s) is the (r,- x ri) dynamic matrix Of the 2th component and Pc(s) is the (r x r)

unconstrained dynamic matrix of components. The unconstrained component model

relates the component deviation output vector Yc(s) to the deviation component

input vector [70(3) in the form,

Pc(s)Yc(s) = [70(3) (3.34)

The required equations to transform deviation variables into physical variables are

also available.

Yc(8) = Yc(8) - y0(1/8) (335a)

06(3) = Uc(s) — u0(1/s) (3.35b)

The formulation Of the dynamic constraint equations (2.19a) and (2.19b) is the sec-

ond step. The objective is to generate the constrain matrix S that relates component

output variables and assembly output variables. This relation is established by con-

sidering that output variables are constrained to be equal to other outputs variables

when ports are connected. The process is illustrated in the next section.

The generation Of the assembled model is the third step. Initially the equation

(3.35a) and (3.35b) are substituted into (3.34)

Pc(s) [Yc(3) — you/a] = Uc(s) -— u0(1/8) (3-36)

Multiplying both sides of (3.36) by ST yields,

sTPce) [Yc(s) — y,(me] = STUse) — sTuOU/s) (3.37)

41



Substituting (2.19a),(2.19b), (3.32a) and (3.32b) into (3.37) yields,

sTPC<s> isms — 8900/0] = use) — tron/s) (3.38)

Factoring matrix S in the right side and rewriting (3.38)

Pats) me) -— you/3)] = 11.45) — 1100/5) (3.39)

where the assembly dynamic stiffness matrix is

Pa(s) = STPc(s)S (3.40)

Defining a new set Of (l X 1) deviation variable vectors,

ms) = Y.(s> — you/s) (3.41a)

Ua(s) = Uc(s) — fi0(1/s) (3.41b)

and finally, substituting (3.41a) and (3.41b) into (3.39) yields the assembly model in

deviation assembly variables,

Pa(s)Ya(s) = Ua(s) (3.42)

The assembled model (3.42) is in the MMM assembly standard format (3.26). The

process is recursive. Model (3.42) can be assembled to other standard higher order

models using the same algorithm. As in the linear case, model (3.42) must be inverted

tO Obtain the transfer function model in deviation variables. The transfer function

model is used in the simulation procedure

3.6 Example

The assembly of a mechanic transmission model and an electric generator model

is developed in this section (Figure 3.5). The electric generator has two ports. The

generator first port variables are the input electrical charge q(t) and the output voltage
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potential e(t). The generator second port variables are the input rotational torque

71 (t) and the output angular displacement 61(t). The mechanical transmission has

two ports. The transmission first port variables are the input rotational torque 72 (t)

and the output angular displacement 02 (t) The transmission second port variawa

are the rotational torque r3(t) and the output angular displacement 03(t).

The assembly uses seven ports and three joins. Three of these seven ports are

assembly ports. The other four are component ports. The left joint connects the

charge—potential assembly port (q* (t), 6* (t)) to the component port pair (q(t), e(t)) .

The right joint connects the torque—angular displacement assembly port (r; (t), 193 (t))

to the component port (r3(t),63(t)) . The middle joint connects the component

ports (r1 (t), 01(t)) and (72(t), 02(0) to the torque-angular displacement assembly port

(ra(t),9a(t))- .

 

    

4‘0) I A err) 1.0). r 9.0) mo | 4 arm

.20 652 ‘12.")

L;----- (— -')

9

M 7.0) 120) 30L»

  13(1)
 

Figure 3.5. Tfansmission—Electric Generator Assembly

The external nonlinear models for the generator and the transmission have respec—

tively the general form,

f9 =(e,61,é,01,... i41,71,413+1,---) = 0 (3.4321)

fr = (92,93,92937'“ ,T2iTsiT'2iT'3w“) = 0 (3.43b)

where fg(t) and f7(t) are vectors of functions. The user requests a model of the

assembly by defining its output operating points. These are the operating voltage

63, and the operating angular displacements 03‘“, and 9"; 3. Using this information,
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the assembly agent computes the generator output Operating points e0 = e3 and

00’, = 60,0, and the transmission output Operating points 602 = 60,0 and 60,3 2 93,3.

Component agents have at this point all the information to provide the component

models and the physical variable transformation equations. For the generator,

  

1311(8) P12(3) _ é1(5) _ T103) 3

i 1D13(8) 1914(5) l _ i 3(5) l _ i Q(3) l (3.44 )

é1(8) 1 = , 91(3) _ 90,1 ]l

l 1%) i _ E(s) l l e. s (3'44”

”13(3)1 2 ' T1(s) _ 70,1]1 c

l 62(8) . _ 62(5) l i 4,, s (3'44)

where (2(3), T1(s), E(s) and 91(3) are respectively the Laplace Transform of the

deviation time variables q(t), r1 (t), e(t) and 61 (t). The complex variables Q(s), T1(s),

E(s) and 61(5) are respectively the Laplace Transform of the physical variables q(t),

71(t), e(t) and 01(t). The complex variable functions 1311(3), 1912(3), P13(s) and

P14(s) are the dynamic elements of the generator and finally the constants r0,1 and

q0 are respectivelly the Operating input torque and the Operating input charge.

The mechanical transmission model is,

 

P210?) 1322(8) : E:92(S) : 7:2(8) a

i 1323(8) 1024(3) l i 63(3) i i T3(5) i (3.45 )

62(3) ‘ __ _ e2(8) _ 90,2 _1_ 5

i é3(8) _ _ . 93(8) l [ 60,3 3 (3.4 b)

T2(8) - _ ' T2(3) __ 70,2 l c

[3(8) . — _T3(8) l i T0,3 i 5 (3.45 )  
where 92(3), 73(3), (93(3) and T3(s) are respectively the Laplace Transform of the

deviation time variables 62(t), r20), 63(t) and f3(s). The complex variables Q(s),

T1(s), E(s) and 01(3) are respectively the Laplace Transform Of the physical variables

q(t), “q(t), e(t) and 91(t). The complex variable functions P21(s), 1922(3), P23(S) and

P24(s) are the dynamic elements of the transmission and finally the constants r0,2

and r0,3 are the Operating torque inputs.
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The first step is to generate the unconstrained component model. Initially the

unconstrained component matrix is generated. This matrix is,

1911(3) 1312(8) 0 0

_ 1013(5) 1314(8) 0 0 .

136(8) _ 0 0 1021(8) 1022(8) (346)

0 0 1323(8) 1324(3)

The unconstrained component model is,

P11(8) 1312(8) 0 0 é_1(3) C13(8)

P13(3) P14(3) 0 0 _E(S) = 9(8) (3 47)

0 0 1321(8) 1322(8) €209) 732(8) '

0 0 1323(8) 1324(3) 93(8) T3(8)

The second step is to generate the constraint assembly equations. Initially the

time dependent equations that relate component output to assembly outputs are

written. These equations are,

6t=() 6%)

91(t)=92(t9)=a(t) (3-48)

93t=() 9305)

Additionally, conservation of energy at each joint requires

q(t)€(t) = (1*(t)€*(t)

Ta(t)9a(t) = T1 (109105) + 720092“) (3-49)

73(t)93(t) = Té‘ (095“)

From (3.48) and (3.49), follows that

(1“) = C1%)

u(t) = 7'1“) + T205) (3-50)

730‘) = 7;? (t)

Applying the Laplace Transform to (3.48) and (3.50) results,

e1(5) E*(8)

E(s) = s 90(5) (3.51a)

92(5) 6*(8)

93(8) 3

T1(5) * 8

ST Q“) 3(3)) (3.51b)

T2(3) Tics)

73(8) 3
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where the constraint matrix S =

and 7*

a:

where qO, Toa 03

 

C
o
t
-
‘
0

C
H
O
P
“

 

T0,2

 

7"0,1

H
O
O
D

 - 70,3 _

. Similarly, for the operating points,

*

7-O,a

T0,3

are the operating inputs of the assembly.

(3.52a)

(3.52b)

In the third step, the assembly model is generated. Substituting (3.44b), (3.44c),

(3.45b) and (3.45c) into (3.47) yields,

  

:{ 91(3) - 00,1 I: 3‘

' E(s) e 1 - '
P 0 — =
ml. 92(3) 00,, 3 l i

I 93(3) 603 _ J I

Multiplying both sides of (3.53) by ST yields,

:{ 91(3) - 60,1 1 I. I 73(5)

' E(s) e I ' ' T Q(3)
STP 0 _ =

Ml. 92(3) 90,, 3 l is T2(3)

l 93(8) _ 90,3 - J. I 73(8)  

T1(5)

Q(S)

T2(S)

T3(5)

 _ 70,3 J

 

70,1

90

T0,2

 

Replacing (3.51a), (3.51b), (3.52a) and (3.52b) into (3.54) yields,

T E*(s) 63 ll .‘ Q*(s)

SPC(3)(s 90(3) -s 60,, ;}=( Ta(3)

l 93(s) 933 J l T518)

Factorlzmg the matrlx S 1n the r1ght Side of (3 53) yields

E*<s> z; 1). .r are

PM) ea<s) o... ;}=( Ta(s)

l 93(8) 033 J l T§(s)

qo

TO,a

*

70,3

T0,1

a
:

|
.
_
.
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(3.53)

(3.54)

(3.55)

(3.56)



where the assembly matrix Pa(3) = STPC(3)S. Defining a new set of variables ,

 

{73*(3) E*(3) - e; 1

9a(3) = 9a(3) — 90,0 ; (3.57a)

93(3) 93(3) . 93,3

62*(8) ms) ' q; ,

_a(3) = Ta(3) — 70,0 ; (3.57b)

T§<s> ms) . 73:3

and replacing them into equation (3.56) yields,

Plus) 1212(5) o E(s) 62*(s)

1913(8) P14(S) + 1721(8) 1022(8) (_9a(8) = 22(8) (3-58)

0 1023(5) 1024(8) 93(8) T; (8)

Equation (3.58) is the the assembly of the generator model and the mechanical trans-

mission model. This resultant model is in the standard format defined in (3.26).

The variable transformation equations (3.57a) and (3.57b) are in the standard format

(3.31a) and (3.31b). The process is recursive and the model (3.58) can be assembled

to other standard higher order models using the same algorithm.

3.7 Summary

In this chapter, two important contributions to mechanical engineering are presented.

The first contribution is a method to assemble physical port-based affine ODES around

an equilibrium operating point. Affine systems often result of local linearization about

an operating point. In this case, the local system model is linear in deviation vari-

ables and non-linear in physical variables. Because assembly constraints are always

given in terms of physical variables, an explicit method to apply physical assembly

constraints for affine physical models was deveIOped. This method addresses one of

the most common nonlinear systems in mechanical engineering. Using this method

many practical physical nonlinear system models can be obtained by assembling the

affine approximations of their subsystems models.
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The second contribution is an explicit method to obtain subsystems operating

points from the system assembly operating point outputs. This method for the first

time provides an explicit, closed form solution to the general operating point problem.

In a recursive closed form, the method specifies information required to roll-down an

operating point specification through every subsystem to all the lowest level compo-

nents of a system. For each lowest level component, the method provides the exact

port output values where the operating point representation of the nonlinear com-

ponent model should be developed. The method then provides an explicit method

for computing operating point inputs of the component level and use these inputs to

compute the operating point inputs of the assembled system model.
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CHAPTER 4

Volterra Model Formats

4. 1 Background

Physical nonlinear dynamic systems have traditionally been modeled using nonlin-

ear ordinary differential equations (ODEs). One solution technique for single-input,

single-output (SISO) nonlinear ODES is obtained through a Volterra transfer func-

tion. Applying this solution technique for multi-input, multi—output (MIMO) non-

linear ODEs is a complicated issue due to the difficulty of analytically determining

MIMO Volterra models.

MIMO Volterra transfer function models are multi input—output representations

used to describe nonlinear behavior. A Volterra model is nonlinear with respect to its

input but linear with respect to its parameters [24]. Volterra models have been used

to obtain solutions for SISO nonlinear systems in areas such as dynamic behavior of

offshore structures [25], power amplifier behavior [14], rheology [15], nonlinear model

reduction [16] and others. Areas such as sub-harmonic nonlinear behavior [26] and

noise characterization [27] use Volterra models for describing the behavior of multi-

input single-output nonlinear dynamic systems.

Although an analytical procedure to obtain Volterra transfer functions for SISO

nonlinear ODEs is available [28], [10], no general analytical procedure to obtain a

MIMO Volterra transfer functions from port—based, external nonlinear ODEs has

49



been published. This is a complicated issue when the number of system’s inputs and

system’s outputs are not equal. The orientation of existing works in MIMO Volterra

models is to experimentally identify the model kernels [29], to approximate weakly

nonlinear MIMO systems [30] and to determine error bounds [31].

In this chapter, a procedure to analytically obtain MIMO Volterra models from

port-based nonlinear ODEs is derived. This procedure provides a solution to this

class of MIMO nonlinear ODEs. First, the standard nonlinear port-based ODEs used

in this procedure are described. Second, the Volterra MIMO models are prasented.

Third, a nonlinear operator required to obtain the MIMO Volterra models is defined.

Fourth, the procedure to obtain MIMO Volterra model expansions from port-based

nonlinear ODEs is presented. Fifth, an example of a two-port nonlinear ODE is shown.

The Volterra model response is compared to the nonlinear ODE model response using

a Simulink simulation.

4.2 Port Based Nonlinear ODE Models

A port—based nonlinear ODE model has equal number of inputs and outputs because

an input—output pair constitutes each port. This section considers nonlinear port-

based models in the form,

. dm - dm

f1(y17y17"'Wail7"'iyrvyra"°—az7%t) =U1

- (4.1)

fr (yty'hm%,---,yr,yr,...‘13-?) = Ur

where the number of ports 1 S i g 7‘; f,(-) is the 72th port’s nonlinear operator; u,

is the ith input and y,- is the ith output of the system. , Many physical models of

nonlinear engineering systems take this form when modeled using the energy-based

Lagrange approach [32].

An example is a two—port system (Figure 4.1) composed of two masses, one nonlin-

ear spring, one linear spring and one linear damper. The mass m1 is connected to a
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fixed point through the nonlinear spring with force fNL = 161(3)1 + yi). The mass m2

is connected to the mass ml with a linear damper having damping coefficient b1 and

a linear spring with constant k2. The first port uses the input-output pair (u1,y1)

where u1 is the input force applied to the mass and y1 is its output displacement. The

second port uses the input-output pair (u2, 312) where 112 is the input force applied to

the mass m2 and y2 is its output displacement.

  
“10) 712(1)

—> —>
k2

Nonlinear _ W m

Spring -'_ 2

b. I_,

MO) 150)

 

         

Figure 4.1. Double-Mass Spring Damper-Nonlinear System

The nonlinear, port—based, ODE model for the system (Figure 5.3) in the required

format (4.1) is

"“1171 + b1(91— 92) + k1y1+ (“11/13 + k2(y1 ‘ yz) = "1
.. . . 4.2

m2y2+b1(y2—yl)+k2(y2—y1)=u2 ( )

4.3 Volterra Models

In this section two nonlinear model formats are presented. The first model format

is the MIMO Volterra transfer function representation. This model representation is

used in the simulation of port based nonlinear dynamic models. The second model

format is the MIMO Volterra dynamic model. This model representation is used in

the nonlinear MMM assembly of port based dynamic physical systems.

A Volterra transfer function model is an extension of the linear convolution integral

approach for time—invariant systems. Any nonlinear time-invariant system can be
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represented as an infinite sum of multidimensional convolution integrals of increasing

order [10]. For a SISO system this is

00

y(t) = 491(Tl)u(t — T1)d7'1+

[0 [092 (71,72)u(t — 7'1)u(t — T2)d7’1d7'2+ (4.3)

000000

f0/0f093(71,Tgr3)u(t—r
l)u(t—72)u(t—T3)d71d72

d73+,,,

where y(t) represents the nonlinear system output, u(t — T1) is the input associated

to the ith dimensional convolution integral, and 9,-(7'1, . . . , Ti) is the ith kernel of the

system. All the higher order kernels can be analytically derived from the first order

linear kernel 91(71) [28]. This kernel is the traditional linear unit impulse response

of the system. The second order kernel, 92(71, 7'2), is a two-dimensional function of

time and is the response of the system to two independent unit impulses applied at

two different points in time. The kernel 92(71, 72) is a function of both time and one

time lag (71 — 72) . The kernel 93(71, 72, T3) is a three-dimensional function of time

and is the response of the system to three independent unit impulses applied at three

different points in time. The kernel 93(71, 72, T3) is a function of both time and the

two time lags (71 — 72) and (T2 - 7'3) [33].

The ith integral in (4.3) is called a ”degree-2' homogeneous system” and its respec-

tive output

0000

312' =// 91(71w” ,Ti)u(t—71l°“u(t-Tild7‘1"'de' (4-4)
00

is called the ”degree-i homogeneous output” (4.4). Notice that if a new input au

where a is a scalar, is applied, the resultant output is g], = any,- [10]. The SISO

response y(t) in (4.4) is then a sum of partial outputs provided by different ”degree-2'

homo eneous s stems” in the form
')

y(t) = y1(t1) + 31201. t2) + 31361, t2, t3) + ' " (4-5)
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where,

00

91 =/0 91(71)U(t—Ti)d71

00 oo

92 *4/0/ 92(71,T2)U(t—T1)u(t-T2)dTldT2

oo oo 03

332/0 /0 [093(T1,T2,T3)u(t—’rl)u(t—’r2)u(t—'r3)d7'1d'r2dr3

and gi('rl, - - - Ti) is the ith' kernel.

The Laplace transform of a multi-time variable system is an extension of the single-

time Laplace transform. Given an ith dimensional function of time 9,-(7'1, - - - Ti) that

is one—sided in each variable (0 S T,- S 00) , its Laplace transform is defined as [10]

00 oo

Gi(sla°” 18i)=/ 0”] 92.017.” ,E)e_slT17'” ie—siflngla°” 1dT1’ (4'6)

0 0

where (1 _<_ k S 2') the set of complex variables 3k = 0k + wkj. Applying the Laplace

transform to each term in (4.5) yields,

Y1(31) = 01(81)U(31)

Y2(31,32) = G2(81, 82)U(81)U(82)

Y3<319 82, 83) = 03(31, 82, S3)U(31)U(32)U(33)
(4.7)

where U(3,) is the Laplace transform of the input u(ti) and Gi(31,- -- ,31.) is the

multi-complex variable Laplace transform of the ith order kernel. The SISO Volterra

transfer function is obtained by summing all the rows in (4.7)

Y(81,82, ' ' ') = 01(81)U(81) + 02(81, 82)U(81)U(52)
(4.8)

+G3(31, 82, S3)U(31)U(32)U(53)
+ . ..

The model representation (4.8) is used to simulate the response of SISO nonlinear

systems [10].
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The MIMO extension of (4.7) for a system with 7" ports is,

Y1(81) = G1 (U(81ll

Y2(81, S2) = G2 (U(31)U(82))
(4.9)

Y3(81, .92, 83) = G3 (U(31lU(82)U(53))

Each element Gi(o) in (4.9) is a functional that operates on a set of (7‘ X 1) input

vectors, yielding V(£ i S 00) the (r x 1) ”degree—2' homogeneous output” vector,

T

Yi(517”' 152) : [K,1(813”' 137:)1'” 1K,r(811'°' 181)] (410)

The Volterra transfer function for a port-based system with 1" ports is an extension

of (4.8) and is obtained by adding all the (2,-(0) functionals in (4.9). The response is

a vector in the form,

Y(81,-°') = G1(U(31))+ G2 (U(81), U(S2)) + G3 (U(sl), U(32), U(33)) + . --

(4.11)

where U(31),U(32), - -- , are (r x 1) input vectors and Y(31,-~) is the resultant

(r x 1) output vector.

The MIMO notation in (4.11) can be simplified if the following input argument

list is defined,

U1 '3 U(Sll

U2 3 {U(51),U(82)}
A (4.12)

U3 : {U(81)1U(52)1U(33)}

Using (4.12) into (4.11) yields,

Y(81,82, - ' °) = G1(U1) + G2(U2) + G3(U3) + ° " (4.13)

In the same form, the output notation is further simplified using

Y(1) 3‘ Y1(31) = G1(U1)

Y(2) é Y2(81, 82) = G2(U2)
A (4.14)

Y(3) = Y3(51, 52, 83) = G3(U3)
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Using (4.14), the MIMO Volterra transfer function model in (4.13) can be written as,

Y(31,--') =Y(1) +Y(2) +Y(3) +°°- (4.15)

This model format is used in the simulation of nonlinear port based physical systems.

A procedure generates each of the Y(i) [34]. Each Y(,-) has an unique standard

format that can be represented in function of the first order linear Operator G1(U1) =

G1,(1)U1. The term G1,“) is the (r x 7‘) transfer function matrix Obtained from the

linearization of the system nonlinear ODE in (4.1) around an equilibrium Operating

point Op. The matrix G1,“) can also be Obtained by inverting the dynamic matrix

mtg—141(4)1<—)11<—>1
where (1 S i, j S 7‘) and each element in the brackets is a (r x r) matrix Of constants.

The sub-index (1) in G1,“) or P1,“) indicates that these matrices are function of

a single complex variable 31 For any sufficiently differentiable ODE, the first three

standard Volterra Operators are [34],

Y(l) = G1,(1)U1 (4.178.)

Y(2) = ‘G1.<2)P2,(2)¢’ (GMDULGMIWI) (41713)

P3,(3)¢(G1,(1)U1’G1,(1)U1’G1,(1)U1)+

P2,(3)¢lG1,(1)Ula G1,(2)P2.(2)'(’(G1.(1>U11G1,(1)U1)l

where GM”) is the result of inverting the dynamic matrix P110), and 13(0) is a non-

(4.17c)

 

Y(B) = 43143)]

linear Operator. Any dynamic matrix Pu,(v), includes 2) complex variables, 31, - - - ,sv

and can be derived from (4.1) using,

I 6‘1- 3.5.. q

: Hallow [(3)1444—
Pu:(’U) : a 4 617, 2 [ a V, 3

1 [(554)].Opsm + _(Wfliopsm + . ..
J .7

(4.18)

 

where 3(1)) = 31 + - - - + 31,.
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The Volterra Dynamic Model is other Volterra format. The Volterra dynamic

model is composed by a set of multi-complex variable dynamic matrices. For the ith

component model that includes q expansion terms, this model has the form,

{Pi,1,(v)v Pi,2,(v)7 ' " ’Pi,q,(v)} ' (4-19)

Model (4.19) is used for the MMM to assemble nonlinear physical models. For any

Pi,u,(v) in (4.19), the index 2', represents the component, the index u represent the

order of the expansion and the index 12 represents the number of complex independent

variables used. Each Pi,u,(v) matrix satisfies,

Pi,u+1,(v) = Dy,y,y,m (Pam) (4.20)

where each element of the (r x 7‘) matrix Dy,y,§n'" (Pi,u,(v)) is the first partial deriva-

tive respect the vectors y, y, y, - - - of its corresponding elements in the (r x r) matrix

Pi,u,(v)' Equation (4.20) is derived from (4.18)by rewritten it in general form V(1 S u).

In example, for the ith component, the dynamic matrices,

Pi,2,(v) = Dyyyr" (Pi,1,(‘0))

P,,3,(,,) = Dy,y,y,... (P,,2,(,,))

Pi,4,(v) = Dy,y,yr" (Pi,3,(v))

The Volterra series is an infinite power series with memory and suffers from the

problem of a limited zone of convergence. For the Volterra representation to prop-

erly describe a subsystem system model, the Volterra series must converge over the

input/output variable range used in the assembled system. This issue is recognized

in multiple works: Frank [39], Brilliant [11], Christensen [40], Boyd [13], Czarniak

[41], Tomilson [43], Chatterjee, [42] and others. The series convergence depends on

system parameters [42], BIBO stability [40], amplitude of the input applied [13], trun—

cation point of the series and other factors. One necessary condition for existence of

the series and its convergence is that the linear term cannot be zero [39]. Boyd [13]
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showed that the radius of convergence of a Volterra series is directly related to the

amplitude of the input applied. This radius of convergence can be presented in the

form |u(t)| < p, where u(t) is the input vector applied to the system and p is the

radius of convergence. Sandberg [12] has also shown that a truncated Volterra series

provides a uniform approximation to the in finite Volterra series on a ball of bounded

inputs for a large class of systems. SISO Volterra series have been recognized as

a useful approach to engineering modeling. This work assumes a useful convergent

Volterra model exist and converges over the domain of model application.

4.4 The Nonlinear Multiplicative Operator

A nonlinear operator 10(0) is used to build the Volterra functionals in (4.13). This

operator uses as argument an arbitrary set of vectors (1* X 1) in the form,

U1 U1 M 21

R: u: ; ,v= 3 w: ; ,---,z= ; (4.21)

ur vr wr Zr

to perform the operation tb(R) that yields the (r x 1) vector

(U1) ' (’01) ' (101) ' ° ° ' (Zi)

r3 = MR) = 2 (4.22)

(Ur) ' (Ur) ' (107‘) ° ’ ' ' (27')

Each element in the vector p is a scalar formed by the product of corresponding

elements of the argument vectors u,v,w, - -- ,z. Restated, the ith element of the

vector 13 results of multiplying the ithelements of the vectors u, v,w, - - - ,z , that is

151 = (1%)“ (vi) -(wz')---(vz')-

The result of operating on a set of (r x 1) degree-i homogeneous output vectors by

the multiplicative operator 10(0) is defined to have the standard notation Y(mbr" ,w).

This process also satisfies (4.22), but the resultant vector notation includes the ad—

ditional sub—index (a, b, - -- ,w). This sub-index is used to identify the number of

argument vectors with equal degree—2' homogeneous outputs. In the notation, a is
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the number of degree—1 homogeneous output argument vectors, b is the number of

degree-2 homogeneous output argument vectors and so on. Finally w is the number

of argument vectors having the maximum homogeneous degree.

Two examples are presented to illustrate the multiplicative Operator ¢(o) notation.

In the first example 2M0) operates on the combination of two (r x 1) degree-1 homoge—

neous output vectors. In the second example z/2(o) operates on the combination of one

(r x 1) degree-1 homogeneous output vector and one (1' x 1) degree-2 homogeneous

output vector. These examples will illustrate the use of the required sub-index when

different combination of degree are present in the Operator’s argument list.

In the first example, the (r x 1) vector

~

Y(2) = ¢(Y(1),Y(1)) = [(3/(1),1) “(Y(1),1),“' a(Y(1),r) '(Y(1),r)lT (4-23)

is the result of operating two degree-1 homogeneous (r x 1) output vectors Y(l) =

[(Y(1),1)’ - - - ,(Y(1),r)]T] (Figure 4.2). Each element of the vector \7 is Obtained by
(2)

performing \7’(1 _<_ 2' S r) the Operation (YUM) - (Y(llfl')‘ The sub-index (2) in ?(2)

indicates that it is the result Of Operating on (2) degree—1 homogeneous output vectors.

Because the indices in parentheses end after the first entry, no higher degree terms

are indicated.

The resultant output Y can be also presented as a function of the external

(2)

input U1. Substituting the first row of equation (4.14) into (4.23) yields,

Ya) = 2» (G1<U1),G1<U1)> (4.24)

Using (4.24), Volterra functionals (4.14) that includes Y(Q), can be written as a

function of the system external inputs.

In the second example, the (r x 1) vector

Y(1,1) = ¢(Y(1),Y(2)) = [(3/(1),1) ' (Y(z),1),- " ,(Y(1),r) ' (Y(z),r)lT (4-25)
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Figure 4.2. Block Diagram Representing the Operator ¢(Y(1),Y(1))

is the result of Operating on a. combination Of one degree-1 homogeneous (r x 1)

output vector, Y0) = [(Y(1),1)’ - - - , (Y(l),,)]T with one degree-2 homogeneous (r x 1)

output vector, Y(Z) = [(1/(2),1),--- ,(I/(Z),,.)]T] (Figure 4.3). Each element of the

vector 170,1) is obtained by performing V(1 S i S r) the Operation (YUM) - (Y(Z),i)-

The sub—index (1,1) in ?(1,1) indicates that it is the result of Operating on one degree-

1 homogeneous vector and one degree—2 homogeneous vector. Because no additional

indices are included beyond the first two, no higher degree arguments are present.

 

 

 
 

 

 

 

 

 

  

Y(l)
é Y(l),1
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#32 Y” I (I‘)")'(Y<2>«)

c: Y(2).r    
    

Figure 4.3. Block Diagram Representing the Operator 111(Y(1),Y(2))

The resultant output Y(1,1) can be also presented as a function of the external
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input U1 and the input set U2 by substituting the first two rows of equation (4.14)

into (4.25) to yield,

Y(1,1) = ll) (G1(U1), G2(U2)) (426)

Using (4.24) and (4.26), Volterra models including Y(lJ) can be written as a function

of the system external inputs. This capability is important because the Volterra

models Obtained from MIMO port-based ODEs will include (4.23), (4.24) and other

similar higher order terms.

4.5 Generating Volterra Models From Port-Based ODEs

The Volterra model of a port-based MIMO nonlinear ODE model in the form (4.1),

is obtained in this section. Assuming that this system is operating around an equilib-

rium point (0p) located at the origin (yo, no) = (0,0) and using the vector notation

a" = [an ,an]T (4.27)

a Taylor series expansion is applied around this equilibrium point V(1 S 2', j S r) and

V(1 S k S m), (m is the maximum time derivative of the outputs) to yield,

i96%)le[(3%)le[(%)Ioplv"+-~>l=u”:1 J J .7

Defining the (r x 1‘) matrix Of constants,

a";

[big] (11),) 2 KW[019)] (4.29)

For an specific k and 77., each constant ()2. j in the matrix, is the nth partial derivative

Of the scalar function fi (y, y, - - ) respect the variable [(1ky;I /dtk] evaluated at (op).

Using a constant a, a new input in the form

fi=au=a[u1(t1),--- ,u,.(t1)]T (4.30)
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is defined. If this new input is applied to (4.28), the resultant output 5: is a MIMO

extention of the SISO form shown in [28],

5’ = aY1(t1) + 023’2(t1,t2) + O3Y3(t1,t2,t3) + ° ' ' (4-31)

Equation (4.31) is a direct result of the ”degree—2' homogeneous system” properties

(4.5) and is extended here to the vector case. Defining y(i) = yi(t1, - -- ,ti), (4.31)

can be written in the form,

5' = ayu) + (12y(2) + a3y(3) + - - - (4.32)

Substituting (4.30) and (4.32) V(1 S z',j S 7‘) into (4.28) yields,

lbiala’oflabllfiazym) + ' ' ) + lbi,jl(1,1)(a5ll) + Q2522) + ' ' l + ° ' ° +

2 2

31! lbi,jl(2,0)(ay(1)—[_a2y(2)+ ' ' l + 211 [bi,jl(2,1) (”If 0252f ' ' l + ' "+

3 . . 3

31—! [bi‘j](3’0)(ay(1) + a2y(2) + - - -) +311 [bivil(3,1)(abl1)+ 03y(2) + - - ) + = an

(433)

Terms multiplied by a particular ap, V(1 S p S 00) in (4.33), are independent from all

others because a is an arbitrary constant. This property is used by Schetzen [28] to

determine all the SISO Volterra transfer functions in (4.8). Extending this procedure

to the MIMO case, all the Volterra operator Gp(o) in (4.11) V(1 S p S 00) can be

derived from the terms that are multiplied by the constant op.

The first term in the expansion (4.11) is the linear Volterra Operator G1(o). This

term is derived from the elements multiplied by 01,

m

' " d y“) _ 4 34

[bi’jlllmbllfi[bidltnbllfi[bi’jl<1,2)’ll)+ "'+lbz',jl(1,m)"&2"r' ‘ ‘1 ( ' l

where m is the maximum output derivative. Define the time dependent 1“ order

vector Operator,

p1(x) = [bi,j](l,0)x +[bi’j](1’1)x + [bi,jl(1,2)i + - - - + lbi,jl(1,m) g3? (4.35)
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where x is an arbitrary (r x 1) vector, to write (4.34) in the form,

P1 (y(1)) = u (4.36)

Applying the Laplace transform to (4.36) with respect to t1 variable yields,

P1,(1)Y(1) 2 U1 (4.37)

where Y“) and U1 are respectively the Laplace transform of y( 1) and u and,

131,0) : lbi,jl(1,m)sin + ' ° ' + lbi,jl(1,2)sf + lbi,jl(1,1)31 + lbi,jl(1,o)

is a (r x 7") dynamic matrix of polynomials in the complex variable 31. The elements

between parenthesis in the sub-index of the matrix P1 (1) indicates that this matrix

is function of one independent complex variable. All the above elements of P1 (1) in

brackets are (r x 7') matrices of constants. Inverting P1 (1) yields,

Y0) = GMDU1 (4.38)

where

—1

2
G = b.. sm+---+ b.. s +b.. 5 +b.. (4.39)

1,0) l 1’]](1,m) 1 l 1’3](1,2) 1 l ”[0,1) 1 l I’J](1,0)

is the transfer function matrix. Equation (4.38) is equivalent to the linearized model

of the nonlinear system (4.28).

The second term in the expansion (4.11) is the nonlinear Operator G2(U2). This

term is found by equating the elements that are multiplied by the coefficient a2 in

both sides Of (4.33),

. dm 2

[biijl(1,0)3l2)+ lbiJlmflm + ' ' ' + lbiJlUm) mm +

m 2 (4.40)

2 1 - 2 1 d y(l) _
217. [bi,jl(2,0)y(1) +21 lbi,jl(2,1)y(1) + ' ' ' +21. lbi,jl(2,m)_217r "

Using the vector notation (4.27) and the operator (4.22), the (7‘ x 1) vector

i = y 2 (4 41)
(2) (1) '
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The definition (4.35) of Operator p1(o) and (4.41) are applied to (4.40) tO yields,

p1 (y(2)) + p2 (3(2)) = 0 (4.42)

where the second order functional

m 2

p2 (x) = 71! [b,,j](2’0) x2 + 21, [(2,.,J.](2,1):'c2 + - - . + 51, [bi’j](2,m) 437%— (4.43)

Applying the Laplace transform to (4.42) with respect to two independent time vari-

ables and using the Theorem 2.3 in Rugh [10] yields,

P1,(2)Y(2) + P2,(2)Y(2) = 0 (444)

where the (r x 7‘) matrices

P142) = [b,,j](1,m) (31+s2)m + - - - + [big] (31+32) + [bi,j](1,0)

(1,1)

P242) : 71! lbml (2,m)(31+52)m + ' ' ' + 2%’ lbm'l (31 + 32l+ 211' [big]
(2,1) (2,0)

The vector {((2) in (4.45) is defined in (4.24). Substituting this result into (4.45)

yields

P1,(2)Y(2) + P2,(2)’l/) (Y(l)’Y(l)) = O (4.45)

Solving for the (r x 1) vector Y(Q) by inverting the matrix P1 (2),

Y(2) -_— —G1,(2)P2,(2)2/2 (Y(l),Y(1)) (4.46)

—1

where G139) = [13142)] . Finally substituting (4.38) into (4.46) yields,

Y(Q) = ’G1,(2)P2,(2)¢(G1,(1)U1’G1,(1)U1) = G2(U2) (4.47)

The output vector Y(z) is obtained (Figure 4.4) by multiplying each Of the two

inputs U1 vectors by the G1 (1) matrices. The two Y(l) resultant outputs, are Oper-

ated on by (0(0) to yield the vector Tm. This vector is then Operated by the matrix

P2’(2). The resultant output is finally Operated by the matrix —G1’(2).
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Figure 4.4. Nonlinear Operator G2 (U2)

The third term in the expansion (4.13) is the nonlinear operator G3(U3). This

term is found by equating the coefficients Of a3 in both sides of (4.33),

m

d

lbi.jl(1,0)3(3)+ ' ' ' + lbw] #‘L(17m) dt

2

1 lyumyem l 1 dm ”when l

+2! lbi,jl(2,0)l : [+' ' ' +7] lbi,J'l(2,m)E"r ' l

way-11(2),, J Wairyeir J

m 3

1 3 1 d y 1 _

3'! [bi.jl(3,o)y(1)+' ' ' + 3‘! lbia‘l(3,m)?’"l_2 _ 0

The vectors

[y(li.ly(2).1l

y(1,l) = | I ?

{y(i),ry(2),rl

~ _ 3

y(3) _ ya)

and the functional (4.35) are substituted into (4.48) and,

p1 (y(3)) + W (90.1)) + p3 (37(3)) = 0

where the functional

7"

p3(X) = 1%! lbi,jl(3,0)x3 + 3%! lbi,jl(3y1) 5‘ + 3%! [big] (37",) d???
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Applying the multivariable Laplace transform to (4.51) with respect three indepen-

dent time variables yields,

P1,(3)Y(3) + P2’(3)Y(1,1) + P3,(3)Y(3) = 0 (4.53)

where the (r x 7‘) matrices,

P1.(3):lbml(i,m)(5<3>)m+ ' ' ' +lbiiil<1,1)(3<3)) + lbiJlup)

P2,(3):717lb133'[(2,m)($(3))m+ ' ' ' +§1llbtj l(2,1)(s(3)) + 2-lbiJl(2,0)

P3,(3)=§1!lbi,jl(3,m)(3(3))er ' ' ' +illbi.jl(3,1)(5(3)) + Elllbmlm)

_
_
]
r
-
I

and 5(3) = 31 + 32 + 53. The nonlinear operator (4.22) is used to evaluate the vector,

Y3 = 14 (G1(U1), G1(U1), G1(U1)) (4-54)

Substituting (4.54) and (4.32) into (4.53) yields,

P Y(3) + P2,(3)¢ (G1(U1), G2(U2)) +
1,(3)

(4.55)

P3,(3)¢ (G1(U1), G1(U1), G1(U1)) = 0

Solving for the vector Y(3) by inverting the matrix Pl (3) yields,

Y(3)=-G1,(3)P3,(3)¢ (G1(U1), G1(U1), G1(U1)) —

(4.56)

G1,(3)P2,(3)¢ (G1(U1), G2(U2))

1

where G P . Finally by substituting (4.47) and (4.38) into (4.56) yields,
1.<3):l 143)]

Y(3)= G3(U3) = “G1,(3)P3,(3)¢ (G1,(1)U1’ G1,(1)U1’ G'1,(1)U1) _

GI.(3)P2.(3)¢(G1,(1)U1vG1,(2)P2,(2)¢(Gi,(1)UvGl,(1)U1)

The addition of two third order components (Figure 4.5) is required to compute the

(4.57)

output vector Y(3)' Using a similar procedure, the 3th Volterra functional Gi(Uz-)

can also be calculated. Any Pu“) matrix of this Volterra Operator can be calculated

using the equation,

PW) = 3,1, [1),Jam.) (my! + . . . + 51, [1),jla 1) (.300) + 51, [1),j] u, (4.58)



 
Figure 4.5. Nonlinear Operator G3 (U3)

where 3(1)) = (.91 + - - - + s").

The Volterra functional in (4.13) requires an infinite number Of expansions. A

realizable Volterra functional uses only a finite number of expansion terms and is

a truncated version of the general Volterra model (4.13). For example, a Volterra

functional truncated at the third expansion is obtained by adding the Volterra models

(4.38), (4.47) and (4.57)

Y1—3 = G1(U1) + G2(U2) + G3(U3) (4-59)

To obtain a truncated time solution of (4.59), the inverse Laplace transform is applied

sequentially with respect to the time variables tl,t2 and then t3. The result is the

multi-time variable truncated solution y1_3(t1, t2,t3). Finally the condition t = t1 =

t2 = t3 is applied to obtain the single variable solution y1_3 (t) [28]-[10].
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4.6 Example

The Volterra transfer function for the nonlinear ODE model of a mass—spring system

(Figure 4.1) is obtained in this section. The two masses m1 and m2 , are given different

values to introduce asymmetry in the responses yl and 312. Because the nonlinear

spring force dominates the linear spring force, ]]k1(y1+yi)ll 2|]k2(y2 - y1)||, the spring

parameters are selected as [C] = 8 and k2 = 4to make the nonlinear spring dominate

the system response. The damping parameter is selected as b1 = 2 to increase energy

dissipation rate and decrease settling time. Substituting these parameters in (4.2)

yields,

2371 + 23), — 292 + 8y1 + 83/13 + 4y1 - 4y2 = “1

Q2 + 292 — 2371+ 4y2 — 4y1= 112

Following the procedure (4.30) through (4.33) yields,

(4.60)

2 o .. 2.. 2 -2 . 2.

[0 1](ay(1)+a’l2)+ )+[—2 2](0‘y(1)+a’l2)+ )+

12 —4 (ay +02y +---) + 8 0 (ay +042y +~--)3 =au

—4 4 (1) (2) 0 0 (1) (2)

(4.61)

The linearized transfer function matrix G1 (1) is found by equating the elements

multiplied by a1 in (4.61),

2 0 .. 2 —2 . 12 -4

[0 1]’ll) + [—2 2 [410+ [—4 4 [y(1)_ “ (4'62)

Defining the operator

2 0 .. 2 —2 . 12 —4

p1(x)—]O 1]x+[_2 2]x+[_4 4]x (4.63)

where (xele), the equation (4.62) can be written as,

P1 (y(1)) = 11 (4.64)
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Applying the Laplace transform with respect to one time independent variable yields

and zero initial conditions yields,

PMUYU) = U1 (4.65)

where Y“) and U0) are the Laplace transform respect tl of the vectors y(1) and u

and the dynamic matrix

2

251 + 251 + 12 —2s, — 4

  

  

P = 2

W) —281 — 4 51 + 251 + 4

Solving for Y“) yields,

Y0) = G1,(1)U1 (4.66)

where

1- 2 -1

G _ 2s:I +6szll+203f+1631 +32 2s?+6s¥+203¥+1631+32

1’0) 2314-4 231-1-231 +12

4 3 2 4 3 2
L 231+631+2031+1631+32 2s1 +681+2081+1631+32 J  

is the linearized matrix transfer function and is equal to the inverse of the linearized

dynamic matrix P1
(1)'

The term G2 (U2), is found by equating the elements multiplied by the coefficient

a2 in (4.61),

2 0 -- 2 —2 . 12 4

lo lly6+l4 Aw]-.. firm—lo (4.6-5

Using the functional (463), equation (4.67) can be written in the form,

P1 (Y(2)) = 0 (4.68)

Taking the laplace transform of (4.68) for zero initial conditions yields,

PIMYQ) = 0 (4.69)
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For nonsingular P1.(2)’ Y(Q) = 0. This TGSUIt, Y(2)

nonlinear system is an odd function. This result shows the second Volterra operator,

2 0, is expected because the

G2(U2) = Y = o (4.70)

The term G3(U3), is found by equating the elements multiplied by the coefficient

a3 in (4.61),

20.. 2—2, 12-4 80 3

[0 1])I3) + [—2 2 [3(3)+ [_4 4 :[323)+ ]: O 0 ] DIM—O (4.71)

Using the functional (4.63) and substituting (4.50) into (4.71) yields,

8 0 -

p1 (323)) = - [ 0 0 ] y(3) (4'72)

Applying the Laplace transform to (4.72) with respect to three time independent

variable yields,

P Y

8 0 ~

1,(3) (3) = - [ ] Y (4-73)
0 0 (3)

Substituting the multiplicative operator (4.54) into (4.73),

Pl’(3)Y(3) = —P3¢ (C(1)(U1)1 G1(U1)1G1(U1)) (474)

8 0

h P:were3 [00 ] and

2

P = ] 23(3) + 25(3) + 12 —23(3) — 4

11(3)
2

—-2s(3) —4 5(3) +2s(3)

and substituting (4.66) in (4.74) yields,

+4

 

Solving for Y by inverting P1
(3) (3)

Y = —G1,(3)P3¢ (G1,(1)U,,G(3) U1, G1,1U1) (4.75)
11(1)

where G143) = [P1,(3)]—1

The Volterra model truncated at the third expansion includes equations (4.66) and

. Equation (4.75) is the third term in the Volterra model.

(4.75) (Figure 4.6),

Y1—3 = G1(U1) + G3(U3) (4-75)
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Figure 4.6. Simulink Diagram for the Volterra Model Including the First and the Third

Expansions

The term G4(U4), is found by equating the elements multiplied by a4 in (4.61),

20..+2—2,+

0144) —223l4>

[12 —4]y +]8 0]] 3(y(1),1):y(2)11 [=0
_4 4 (4) 0 0 13(yuml y(m J

Using the Operator (4.64), equation (4.77) can be written in the form,

.. (.5418 a);H)
0 0 (3(3’012) y(2).2 1

Using (4.70)

11
(2)71 _

Y(2) [ y ] — 0

(2).?

P1 (Y(4)) = 0 => G4(U4) = 0

into (4.78),

Result (4.80) is expected because the nonlinearity is an odd function.

(4.77)

(4.78)

(4.79)

(4.80)

The term G5 (U5), is found by equating the elements multiplied by the coefficient
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a5 in (4.61),

2 0 2 2 12 4 '(3 (y ):y l

[0 1] 3;(5)+[—2 2] y(5)+[4 4](5) +3] 0:]l (1)] (mlzo (4'81)

l3,2(9(1)2) y(3).21

Defining the vector,

2

r l 1
~ = y(l),ly(1),1y(3).1 ‘ = (yum) 9(3),1 482

y(21011) [y y y ] l 2 l (’ )
(1)2 (1)2 (3)2 ( (yaw) 47(3),, ,

Substituting (4.82) into (4.81) and using the operator in (4.63) yields,

24 0 ..

p1 (y(5)) = — [ 0 0 ] 3(2,0,1) (4'83)

Applying the Laplace Transform to (4.83) respect five independent time variables

yields,

P1,(5)Y(5) = _3P3Y(2,011) (4'84)

where 2

P _ 25(5) + 23(5) + 12 —2s(5) — 4 (4 85)

11(5)_ —23 —4 52 +23 +4 '
(5) (5) (5)

Substituting the vector

  

.. Y Y YY z ( ) (1..) ( .) -111 ,1 ,1. , 1....
(20.1) (Y ) (y ) (Y ) (1) (1) (3 )

(1).2 (1),2 (3)12

and inverting the matrix P1 (5) into (4.84) yields,

Y(s) =)P(151/J(Y),(Y(1),Y3)) (4.87)

—1

where G1,“) = [P1,(5)] and P5 = 3P3 and previous results (4.66), and (4.75) yield,

Y(I): G1.1(1)U

Y(3) = ‘G11(3)P3¢ (G1(1)U1 G11(11)U G11(11)U )
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all terms of the fifth order expansion can now be computed from the linearized transfer

function G110!)

The Volterra model truncated at the fifth expansion, includes equations (4.67),

(4.77) and (4.87) (Figure 4.7)

 

 

 
 

  

Y1-5 = G1(U1) + G3(U3) + G15(U5) (4.88)

u Volterra Model ’ y

1 > Including 1't and 3"1| > . 1 >

5 Expansions
‘%

u2 (Figure 4.6)

   
   
 

   

 

    

 

[050)    
Figure 4.7. Simulink Diagram for the Volterra Model Including the First, the Third and

the Fifth Expansions

The time responses of the truncated Volterra models in (4.66), (4.75) and (4.87)

are compared to the response of the nonlinear ODE model (4.60). The two inputs

used to excite the system are sine waves with amplitudes -0.3 and -0.15 at frequencies

of 2.27 rad/sec and 1.5 rad/sec respectively. These frequencies are the two natural

frequencies of the linearized system and are determined by calculating the roots Of the

characteristic equation of G in (4.66). The linearized model exhibits the greatest
11(1)

error between all the three responses. The error shown by the truncated Volterra
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model that includes the linearized and the third expansion terms is substantially

smaller than the error exhibit by the linearized system (Figures 4.8 and 4.9). The

error exhibit by the truncated Volterra model that includes the linearized, the third

and the fifth order expansion term is the smallest of all the three responses. For

a specific bound at the input, the more expansion the Volterra model includes, the

smaller is its error. Theoretically, if the Volterra series is convergent, the error between

the Volterra model and the nonlinear ODE will tend to zero when an infinite number

of expansions is used .

4.7 Summary

In this chapter a method to generate frequency domain Volterra system models from

MIMO external port-based ODEs is presented. Even though a similar procedure

for the SISO case is available in the literature [10], a method for MIMO port-based

external, nonlinear systems has not been published. The MIMO procedure requires

a nonlinear vector operator to Obtain the frequency domain kernels. This nonlinear

operator is not required in the SISO case. An advantage of using this MIMO method

is that the two standard MMM nonlinear formats can be easily obtained. The first

format is the Volterra transfer function representation. This format is traditionally

used in model analysis and simulation. The second format is the Volterra dynamic

representation. This format is used in the assembly Of nonlinear system models. The

Volterra dynamic representation was recognized and defined for first time in this work.

The Volterra dynamic representation is important in the MMM because this external

port-based model format protects internal design details. This procedure generates

the Volterra dynamic port—based system models in an explicit form.
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1(1)+y@)+y(5). ODE

WHO)

 
Figure 4.8. Nonlinear ODE response y, (t) compared with different truncated Volterra

transfer function responses. y(l) is the linearized response, y(3) is the third expansion and

y(5) is the fifth expansion.

74

Q



 
Figure 4.9. Nonlinear ODE response y2 (t) compared with difl'erent truncated Volterra

transfer fimction responses. y(l) is the linearized response, y(3) is the third expansion and

y(5) is the fifth expansion.
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CHAPTER 5

Assembly of Nonlinear Physical Systems

5.1 The MMM Algorithm to Assemble Nonlinear Physical

Models

The algorithm for assembling nonlinear dynamic models through a networked envi-

ronment (Figure 2.1), is explained in this section. Two types of information and a

procedure are required to assemble nonlinear physical models. The first type of infor-

mation is the component connectivity structure of the assembly. The second type of

information is the Volterra dynamic model for each of the components that constitute

the assembly. Once these two sets of information are available at the assembly agent,

the standard procedure to assemble the component models is initiated.

The component connectivity structure of an assembly is enclosed in its constraint

matrix S. The matrix S is dependent on the order of connection between components.

This matrix equates each component output in the unconstrained output vector Yc

to an assembly output in the assembly vector Ya based on the physical constrained

associated with the assembly. Matrix S should be available in the assembly agent

before the assemble procedure is initiated .

If the 3th component model includes q expansion terms, the component Volterra

dynamic model has the form,

{Pi,1,(v)1Pi,2,(v)1' " 1Pi,q,(v)} (5-1)
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For any dynamic matrix Pi,3300’ the index 2', j and 1) respectively indicates the compo—

nent number, the expansion term and the number Of independent complex variables

The standard procedure to assembly Volterra dynamic models include 2 steps. In

the first step, the Assembly Agent uses all the Volterra dynamic component dynamic

models to build the unconstrained Volterra dynamic model. This model has the form,

{Pc,1,(v)1 Pc,2,('v)1 ° ' ' 1 Pc,q,(v)} (52)

where (v) is the number of independent complex variables. In an assembly constituted

by k components with a total of r ports, \7’(1 S i S q), each (7‘ x r) unconstrained

component matrix in (5.3) has the form,

F P111102) 0 O 0 q

0 P212302) 0 0

0 0 '°. 0

1. O 0 0 Pk,’i,(’U) .1

Pc,z',(v) =
(.33)

  

In the second step, the assembly agent generates the Assembly Volterra Dynamic

model. This model is,

{Pa,1,(v)1Pa,2,(v)1' ' ° 1 Pa,q,(v)} (5'4)

Each assembly Volterra Dynamic Matrix in (5.4) is determined using the transforma—

tion,

Pa,z’,(v) = STPc,i,(v)S (5-5)

The reason of using (5.5) to determine the Assembly model is explained in detail at

the Appendix B.

The assembly model (5.4) is in the same format than the component model (5.1)

and can be recursively used as a component model to built higher order physical

assembly models. The Volterra dynamic model representation is particularly effective

as the standard assembly nonlinear MMM format because constraints (2.19a) and

(2.19b) can be easily applied [38]. In contrast, the Volterra transfer function model
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(4.15) cannot be used as the assembly nonlinear MMM format because (2.19a) and

(2.19b) cannot be substituted directly [38]. Even though the Volterra dynamic model

format is effective for the nonlinear model assembly process, it is not appropriate for

simulations because is not possible to use it to solve directly for the outputs given

the inputs. A different model format is required for simulation.

5.2 Simulation of the Assembled Nonlinear Physical Model

The Volterra transfer function model representation (4.15) is chosen as the nonlinear

MMM simulation format because it can be directly used to solve for the outputs given

the inputs. The simulation of the assembled nonlinear physical model is done in two

steps:

In the first step, the Dynamic Assembly Matrix P011411) is inverted to generate

the Volterra 'Ifansfer Function Matrix of the assembly GOA“).

In the second step, the assembly Volterra Transfer Function Matrix Ga,1,(v) and

each of the Volterra Dynamic Assembly Matrices P03“), - - - ,Pa,q,(v) are substituted

with the appropriate index (1)) into the standard Volterra Transfer Function formats

(4.17a), (4.17b), (4.17c),- - - ). For the first three standard formats,

Ya,(1) = Ga,1,(1)U1 (5-63)

Y1.,(2) = ‘Ga,1,(2)Pa,2,(2)¢ (Ya,(1)1Ya,(1)) (5-6b)

Yc143) = 4341(3) l Paw’3,(3)¢(Ya1(1)1Ya1(1)1Ya.(1))+ Pa,2,(3)ll’(Ya,(1)1Ya.(2)) l

(5.6c)

The Volterra transfer function of the assembly is,

Ya = Ya,(1) + Ya,(2) + Ya,(3) + ' ' ' (5.7)

A simulation of a Volterra model truncated up to the second expansion [10] uses

recursively equations (5.6a ) and (5.6b). Initially the matrix Ga,1,(1) is multiplied by
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the input vector U(sl). The resultant output is the vector Ya,(1) in function of the

complex variable 31. The inverse Laplace transform respect 31 is applied to Ya,(l)

what yields the the degree-1 time homogeneous output ya,1(t1). The time variable

t1 is redefined as t = t1 what finally yields the degree-1 time homogeneous output

ya,1(t)-

Equation (5.6b) Operates the previously calculated vector Ya“) into

¢(Ya’(1),Ya,(1)). The resultant vector output of this Operation is multiplied by the

matrix P0342), and then by the matrix —Ga,1,(2) what yields the vector Ya,(2) which

is a function Of the complex variables 31 and 32. The inverse Laplace transform is

applied sequentially to Ya,(2) two times, first respect 31 and then respect tO 32 what

yields the the degree-2 time homogeneous output ya,1(t1,t2). The time variable t1

and t2 are redefined as t = t1 = t2 what finally yields the degree—2 time homogeneous

output ya,2(t).

The time response of the Volterra model truncated up tO the second expansion

ya,1-2(t) is Obtained by adding the degree-1 time homogeneous output to the the

degree-2 time homogeneous output what yields,

Ya1_2 (t) : Ya,1(t) + Ya,2 (t) (58)

Simulation Of higher order terms are obtain following a similar procedure.

5.3 Example

The assembly of two component models using the nonlinear MMM algorithm is de-

scribed in this section. The first component is a linear model with one external port.

This port is the input-output pair (113,3;3). The second component is a nonlinear

model with two external ports. These ports are the input-output pairs (111,371) and

(112,312). Two joins are used in the assembly. The first joint connectes the port (113, 373)

Of the linear component and the port (112,112) of the nonlinear component to an as-
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sembly port (112,372). The second join connects the component port (111,311) to the

assembly port (211,311). The assembly model has two ports, these are the input-output

Pairs (1111171) and (172,172) (Figure 5-1)-

J71 I l71 5"2 luz

‘ “1 Nonlinear “2 ‘ “3 Linear

y Component y2 y3 Component
1

 
  

      
   

Figure 5.1. Port Connection Diagram of the Assembly

The linear model describes a one-port linear mass—spring system (Figure 5.2), with

mass m3 and spring constant 1173. The port uses the input—output pair (113,313) where

113 is the input force applied to the mass m3 and 313 is its output displacement. The

ordinary differential equation that represents this linear mass-spring—system is,

m3g'j3 + k3y3 = 213 (5.9)

  

Y3“)

Figure 5.2. Linear Mass-Spring System

The nonlinear model describes a two-port mass—spring-damper system (Figure

5.3) composed Of two masses, one nonlinear spring, one linear spring and one linear

damper. The mass m1 is connected to a fixed point through the nonlinear spring with

force fNL = k1(y1 + yi). The mass m2 is connected to the mass ml with a linear

damper having damping coefficient ()1 and a linear spring with constant 162. The first

port uses the input-output pair (111,311) where 111 is the input force applied to the
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mass m1 and y1 is its output displacement. The second port uses the input-output

pair (112, y2) where 112 is the input force applied to the mass m2 and y2 is its output

displacement.

1110) “20)

-—'> k —>

2

Ngglrlfilegar _ WWO)— m2

b1 L.>

y1(t) y2(t)

  

 

       
  

Figure 5.3. Double-Mass Spring Damper—Nonlinear System

The ODE that represents this nonlinear mass-spring-damper system is,

mlyl + (71(171- 392) + klyl +(“13/13 + k2(yl _ 112) = "1

"12172 + b1(3lz " 91) + k2(y2 ‘ 311) = “2

(5.10)

The assembly is performed by attaching the mass m3 of the linear system to the

mass m2 of the nonlinear system (Figure 5.4). The resultant assembled system has two

ports. The first port uses the input—output pair (171, m) = (ul, yl). The second port

uses the pair (1'12, 172) where 112 is the input force applied to the mass m0 = mg + m3

and 372 is its output displacement. Traditionally and ad-hoc procedure is used to

obtained the ordinary differential equation Of the assembly. This procedure is difficult

to automatize because it usually requires a new reformulation using physical laws or

energy methods. The new ODE for the assembled system is,

m1371 + b1(?21—§2)+ (“1171+ (“11713 + k2(371“ 92) = {‘1 (511)

(m2 + m3)g2 + (31(372 _ .771) + k2<172 _ 171) + 193.772 = {‘2

The nonlinear MMM algorithm requires the Volterra dynamic model of each as—

sembly component. A standard procedure is used to derive the corresponding Volterra

dynamic models of the linear and nonlinear ODEs in (5.9) and (5.10). Each Volterra

dynamic model provided has a finite number of expansion terms.
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u] -4. 1102 = 112 + U3

     

Figure 5.4. Assembly of a Linear and a Nonlinear Mass Spring System

The third order truncated Volterra dynamic model for the nonlinear ODE in (5.10)

has the form,

{P1,1,(U)’P1,2,(‘U)’P1,3,(‘U)} (5-12)

where

2

1 1( ) = [ "mm + blsm + k1 + k2 21,18”) _ k2 ] (513a), , ’U

_bls(v) — k2 mzsw) + 018(1)) + kg

0 0

P112,(v) = [ 0 0 ] (5.13b)

161 0
P134”) = [ 0 0 :] (5.13C)

The third order truncated Volterra dynamic model for the linear ODE in (5.10)

has the form

2

P211412) = m3s(v) + k3
(5.14a)

P2,2.(u) = P2,3,(v) = O (5.14b)

The matrix S is generated by relating the component and assembly variables. The

component variables are y1(t), y2(t), y3(t), u1(t), u2(t) and 113(t). The assembly vari-

ables are 391 (t), 37204), {q(t) and 112(t). The two constraint equations for this example

are:

3; (t) 1 0 -

11:0) = 0 1 [151(1)] (5.15.1)
.7130) 0 1 11205)



1 O {u(t) U10)
0 1 [ ]: U2“) (5.15b)

0 1 “2m 1130*)

where,

1 0 13(5) U1(s) ~ “

S: 0 1 ,Yc(s)= Y2<8> 11%“): U2“) ’Y“(S)=l;1l:)l’ua(s) =lgll3l
0 1 Y3(8) U3(3) 2 2

In the first step the Assembly agent generate the unconstrained Volterra dynamic

model. This model have five matrices which are,

I l

i , [ P1,2,(v) 0 ] , [ P1,3,(v) 0 ]] (5.16)

0 0 0 0

In the second step, the Assembly Agent determines the five dynamic assembly

P1,1.(v) 0

0 132.1(1))

  

matrices. These are:

   

P O
_ T 1,1,(v)

Pa’1’(v) _S 0 132.1 (v) S
2 ’ (5.17a)

P _ m18(v) + 018(1)) + (61+ 162 —b18(v) — k2

a,11(v) —b18(v) — k2 (m2 + m3)s%v) + 018(1)) + k2 + [63

P 0 0 0
Pa,2,(v) = ST |: 131(1)) 0 ] = [ 0 O :l (517b)

P 0 k 0
T 1,3, _ 1

Pa,3a(v) = S l: 0 (U) 0 J S _ [ O 0 :] (517C)

Finally the Volterra dynamic model is,

{P6,1,(v)1Pa,2,(6)»1363(6)} (5-18)

The simulation is done in two parts

1. The dynamic matrix Pa,1.(v) is inverted to generate the assembly transfer function

  

matrix,

(7712+m3)3%v)+b1S(r=)+k2+k3 b1 5(1’)+k2

G _ [P ]—1 _ as4+bs3+032+ds+e 334+bs3+csz+ds+e

“114”) _ “114”) _ b k m 52 +b s H: +k
18(1))+ 2 101 1(1)) 1 2

a34+bs3+csg+ds+e 334+bs3+c32+ds+e

  

(5.19)
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where

a = m1(m2 + 7713)

b = b1(m1 + mg + m3)

C = (k2 + k3)m1 + (k1 + k2)m2 + (131 -l- k2)m3

d = b1(k1 + (£3)

6 = klkz + klkg + k2k3

2. The assembly transfer function matrix (30,130,) and the four dynamic assembly ma-

trices Pug”), - -- 1Pa,5,(v) are substituted into the standard Volterra transfer func-

tion formats. The first five Volterra formats for this system are,

Y(l) = G6,1,(1)U1 (5.20a)

O 0

Y(2) = [ O 0 ] (5.20b)

0 0

Y(4) =[ 0 0 ] (5.20d)

Y(5) = 3G0111(5)Pa,3(55)w(Y(1)1Y(1)1Y(3))
(5.20e)

The truncated Volterra model up to the fifth expansion is,

Y1—5 = Y(1) + Y(3) + Y(5) (5.21)

One way to simulate the Volterra transfer function model is using a Simulink dia-

gram. The Simulink diagram for the truncated model in (5.21) is shown in Figure 5.5.

The time responses of the linear, third and fifth truncated Volterra models are

compared to the nonlinear ODE of the assembly in (5.11) using the system parameters,

m1 = 2, m2 = 1, m3 = 1, bl = 2, k1 = 8, k2 = 4 and k3 =1. The two inputs used

to excite the system are sine waves with amplitudes -0.3 and -0.15 at frequencies

Of 2.36 rad/sec and 1.31 rad/sec respectively. These frequencies are the two natural

frequencies of the linearized system of the assembly and are determined by calculating
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Figure 5.5. Simulink Program Used to Simulate the Volterra Model

 
 

 
 

  
 

  
 

 

     
 

 
 

 



the roots of the characteristic equation of G1,(1) in (5.19). The linearized model

exhibits the greatest error between all the three responses. The error shown by the

truncated Volterra model that includes the linearized and the third expansion terms is

substantially smaller than the error exhibit by the linearized system (Figures 5.6 and

5.7). The error exhibit by the truncated Volterra model that includes the linearized,

the third and the fifth order expansion term is the smallest of all the three responses.

For a specific bound at the input, the more expansion the Volterra model includes,

the smaller is its error. Theoretically the error between the Volterra model and the

nonlinear ODE will tend to zero when an infinite number of expansions is used.
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y(1)+y@)

\

 
Figure 5.6. Nonlinear ODE assembled response y, (t) compared with different tnmcated

Volterra transfer function responses. y(l) is the linearized response, y(3) is the third ex-

pansion and y(5) is the fifth expansion.
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Figure 5.7. Nonlinear ODE assembled response y,(t) compared with different truncated

Volterra transfer fimction responses. y(l) is the linearized response, y(3) is the third ex-

pansion and y(5) is the fifth expansion.
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5.4 Summary

In this section an original method to assemble physical MIMO physical external port-

based Volterra system models is presented for first time. Volterra representations are

appropriate to the MMM approach to distributed model assembly because they pro-

tect internal design details. This method extends the MMM approach to nonlinear

port-based models through a method that is computationally efficient because it is

recursive and does not require matrix inverses. These properties make this Volterra-

based assembly procedure ideal for distribution and assembly of nonlinear physical

engineering system models. This method does not present a new modeling methodol—

ogy but rather a new strategy to distribute and assemble existent nonlinear models.

The main purpose of this nonlinear model assembly methodology is to enhance

Global Engineering Design by providing a procedure that satisfies the four require-

ments of a Global design environment. These four requirements are: standardize

model components, single query exchange of model information, external input-output

model formats and a recursive assembly.

An example Of an assembly Of one, nonlinear 2-port mass-spring—damper system

and one, linear 1-port mass-spring system was presented. The resultant Volterra

model of the assembly includes the first five expansions. Different truncated MIMO

Volterra models for the assembly where also simulated using Simulink, and their

responses were compared with the nonlinear ODE of the assembled system. The

response results show increasing simulation accuracy as the number of expansions

included in the Volterra model is increased. Experience with these simulations models

shows convergence a requires bound on input amplitudes. Convergence radii are

available for SISO Volterra models [13]. Future work will be needed to find these

limits for the MIMO models derived from the MMM assembly methodologr.
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CHAPTER 6

Conclusions

The nonlinear Modular Model distribution and assembly methodology presented in

this work, provides six (6) significant, original contributions to mechanical engineer-

ing. These contributions are:

1. An extension of the Modular Modeling Methodology (MMM) tO nonlinear systems.

2. The recognition that two model formats are necessary for physical system model

assembly and simulation.

3. A method to assemble physical port-based affine ODEs around an equilibrium

operating point.

4. A method to Obtain subsystems operating points from the system assembly Oper-

ating point outputs.

5. A method to obtain frequency domain Volterra system models from MIMO port-

based ODEs.

6. A method to assemble physical MIMO port-based Volterra system models. Each

of these contributions is individually important to the development of a Global Engi-

neering Design (GED) strategy.

This methodology has two (2) limitations. These limitations are:

1. The nonlinear subsystems must be modeled using port-based Volterra representa-

tions.

2. The assembled system model is valid if its subsystem models are valid. These
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limitation still allows the model assembly of a high variety of nonlinear port-based

physical system models.

The nonlinear model distribution and assembly methodology developed in this

work enhances Global Engineering Design by providing a procedure that satisfies the

four requirements Of a Global design environment: a standard model format, single

query exchange of model information, external input-output models and a recursive

assembly method.
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APPENDIX A

Singular Internal Stiffness Matrix

A singular internal dynamic matrix Piz-(s) occurs when the assembled system includes

internal disconnected subsystems or non-observable modes. When Pii(s) is singular,

a modification of the approach taken in (2.44) it is required. The Objective is to

remove the internal singular degrees of freedom associated with the disconnected

subsystems. The internal singular degrees of freedom are removed using a null-space

transformation. Once these degrees of freedom are removed, the modified internal

dynamic matrix PMS) is non-singular and the condensation continues.

Initially the rank p orthonormal null space T(s) (v x p) matrix Of Pz-i(s) is deter-

mined. The columns of this matrix are the p eigenvectors of Piz-(s) whose eigenvalues

are zero. The null space T(s) defines the (v x v) transformation matrix

e(s) = [ (1, [1(5)] (A1)

constructed with the (1) X v) null space T(s) and an arbitrary set Of independent

vectors. The independent set vectors constructed here are an (0 — p) x (v — p)

identity matrix filled below with a (p x p) zero matrix.

The above null space transformation is used to define a new set of internal output

variables

Y5(8) = Q(8)Y(S) (A?)

where the new internal output variables Y(s) = [ T713) Y0(s) [T are the (v— p) non-
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singular output T45) combined with the p singular outputs Y0(s). Work must be

conserved under this coordinate transformation. Defining the transformed generalized

input U(s) and applying a work analysis parallel to (2.16) above,

Y.(s)TU.-(s) = Y(s)TU(s) (11.3)

Substituting (A.2) into (A3) yields

Q<s>TU.-(s) = 11(3) (A4)

Applying this transformation symmetrically to (2-5-11) yields

Pee(3) Pei(8)Q(S) ] —%:%* =[ Ue(5) ] (A.5)

T8 '8 T8 "3 8 T8 '3Q <)P..() Q ()P..( )Q() Y0“) Q ()U.()

Transformation Q(s) contains the null space transformation with Pii(s)T(s) so that

(A.3) becomes

366(3) 1:361 (5) 0 Y6“) [36(3)

Pze(8) P54(5) 0 Yi(5) = U4(8) (A-G)

0 0 Y0(8) U0(8)

None of the system equations involve Y0(s) and this vector can be removed from

the system of equations. The last p rows and columns of the transformed system are

now removed and the analysis continued with LIZ-(s) = 0 applied on the transformed

matrices to find

P.(5)Y.(s) = U.(.) (A.7)

where
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APPENDIX B

The Assembly Operator

The reason Of using (5.5) to Obtain all the assembly Volterra dynamic matrices is

explained here. Since the matrix Ga,1,(v) is the linearized transfer function of the

assembly, its inverse, Pa,“.0), is the linearized dynamic matrix Of the assembly. It

was shown previously that Pa,1,(,,) can be obtained using,

T

PG,1,(U) = S Pc,1,(v)S
(B.1)

The dynamic matrix Pa,1,(v) satisfies (4.20). Applying the operator Dy,y,yr" (e) to

both sides of (B1) yields,

Pan) = Dymv'" (P114410) = Dywa'" (STPc11.(v)S) (B2)

The matrix of constants S can be taken out of the operator to yield,

Pam”) = STDyW,.. (Pc,1,(v)) 8 (BB)

Using (4.20) in the left side Of (B3) yields

Pa,2,(v) = STPc,2,(v)S (13-4)

Applying again the Operator D .. (e) to both sides of (B4) yields
yen?"

__ _ T

P(1,3,(0) — Dy,y,yr" (Pa,2,(v)) — Dy,y,y,"° (S Pc,2,(v)S) (B5)

The matrix of constants S, can be again taken out of the derivative operator to yield,

_ T
13mm _ 3 BMW... (ch’m) s (8.6)
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Using again (4.20) in the left side of (A6) yields

T

P4302) = S P431103 (13-7)

Applying sequentially a similar procedure for any i = 3, 4, 5, - - - yields the assembly

operator (5.5) ,

95



BIBLIOGRAPHY

[1] Elmqvist, H., 1999, ”Modelica: A language for Physical System Modeling, Visu-

alization and Interaction”, CACSD’99 IEEE Symposium on Computer Control

System Design, Hawaii, August 22-27.

[2] Reichenbach, D., Radcliffe, C., and Sticklen, J., 2004, ”Modular Distributed

Models of Structural Dynamics”, Automated Modeling 2004 ASME IMECE,

Anaheim, CA., November 13-19.

[3] Tian, G., Yin, G., and Taylor, D., 2002, ”Internet-Based Manufacturing: A re-

view and a new Infrastructure for distributed Intelligent Manufacturing”, Journal

Of Intelligent Manufacturing, Vol. 13, pp. 323-333.

[4] Cu, B., and Asada, H., 2004, ”CO-Simulation of Algebraic Coupled Dynamic Sys-

tems Without Disclosure of Proprietary Subsystem Models”, Journal of Dynamic

Systems Measurement and Control, Vol. 126, pp.1-13.

[5] Zienkiewicz, O., 1989, The Finite Element Method, McGraw-Hill, London.

[6] Mattsson, E., 1993, ”Index Reduction in Differential Algebraic Equations Using

Dummy Derivatives”, SIAM Journal on Scientific Computing, Vol. 14(3), pp.

677—692.

[7] Karnopp, Dean C., Margolis, D., and Rosenberg, R., 2000, System Dynamics:

Modeling and Simulation of Mechatronic Systems, John Wiley Sons, Inc., New

York.

[8] Byam, B., 1999, Modular Modeling of Engineering Systems Using Fixed I-O

Structure , PhD. Dissertation, Michigan State University, East Lansing, MI.

[9] Byam, B., and Radcliffe, C., 2000, ”Direct-Insertion Realization Of Linear Modu-

lar Models of Engineering Systems Using Fixed Input-Output Structure”, ASME,

Proceedings of DET2000: 26th Design Automation Conference, Baltimore, MD,

September 10—13.

[10] Rugh, W., 1981, Nonlinear System Theory, The Johns Hopkins University Press.

96



[11] Brilliant M, March 1958, ”Theory of the Analysis of Nonlinear Systems”, Tech-

nical report 345, Massachussetts Institute of Technology, Research Laboratory

of Electronics.

[12] Sandberg W. I, June 1983, ”Series Expansions for Nonlinear Systems” Circuits,

Systems, and Signal Processing, vol. 2, no. 1, pp. 77-87.

[13] Boyd, S. and Chua L, November 1985, ”Fading Memory and The problem of

Approximating Nonlinear Operators with Volterra Series”, IEEE Transactions

on Circutis and Systems, Vol cas-32, NO 11.

[14] Wang, T., and Brazil, Thomas, 2000, ”The Estimation of Volterra Transfer

Functions With Applications to RF Power Amplifier Behavior Evaluation for

CDMA Digital Communication, IEEE Microwave Symposium Digest, Vol. 1,

June 2000 11-16, pp 425 - 428.

[15] Draganescu, E., and Ercuta A., 2003, ”Identification of Nonlinearities in Anae-

lastic Polycrystalline Material Using Volterra-Fourier Transform”, Journal Of Op-

toelectronics and Advanced Materials, Vol. 5(1), pp. 301-304.“

[16] Li R, and Pileggi T. L., 2003, ”NORM: Compact Model Order Reduction of

Weakly Nonlinear Systems”, DAC 2003, Anaheim, California, June2-6.

[17] Giret, A., and Botti, V., 2004, ”Holons and Agents”, Journal of Intelligent Man-

ufacturing, Vol. 15, pp. 645-659.

[18] Takahashi Y., Rabins, M., and Auslander D., 1970, Control and Dynamic Sys-

tems, Addison-Wesley Publishing Company.

[19] Morari, M., and Zafiriou, E., 1989, Robust Process Control, Prentice Hall, En-

glewood Cliffs, New Jersey

[20] Genta, G., 1999, Vibration of Structures and Machines, Springer-Verlag, New

York.

[21] Skogestad, S., and Postlethwaite, I., 2000, Multivariable Feedback Control, John

Wiley and Sons, England.

[22] D’Souza, A., 1988, Design of Control Systems, Prentice-Hall, New Jersey.

[23] Buck, R., Willcox, A. 1971, ”Calculus of Several Variables”, Houghton Miffiin

Company, Boston

[24] Favier, G., Kibangou, A., and Y., Khouaja, 2004, ”Nonlinear System Modelling

by Means of Volterra Models. Aproaches for Parametric Complexity Reduction”,

Simposium Techniques Avancees et Strategies Innovantes en Modelisation et

Commandes Robustes des Processus Industriels, Martigues, September 21-22.

97

 



[25] Bikerlund, Y., and Hanssen, A., 2003, ”On the Estimation of Nonlinear Volterra

Models in Offshore Engineering”, International Journal Of Offshore and Polar

Engineering, Vol. 13(1).

[26] Boaghe, O., and Billings 8., 2003, ”Sub-harmonic Oscillation Modeling and

MISO Volterra Series”, IEEE Transactions on Circuits and Systems, Vol. 50(7),

pp 877-884.

[27] Storrs, Samuel M., 1999, ”Noise Chacterization of devices for Optical Comput-

ing”, Ph.D. thesis, Texast Techn. University.

[28] Schetzen, M., 1980, The Volterra and Wiener Theories of Nonlinear Systems,

John Wiley

[29] Yangwang F ., and Jiao, L, 2001, ”MIMO Volterra Filter Equalization Using

Pth-Order Inverse Approach” Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing, Vol. 1, pp 177-180.

[30] Dobrowiecki, T., P., and Schoukens, J ., 2004, ”Linear Approximation of Weakly

Nonlinear MIMO Systems”, Proc. IMTC 2004, Como, Italy, May 18-20.

[31] Yangwang F., and Jiao, L, Ruixuan, W., Pan. J. 2000, ”Identification of MIMO

Nonlinear Systems Based on Volterra Kernel Matrices” Proceedings. Of the 3rd

World Congress on Intelligent Control and Automation, June 28-July 2, Hefei,

PR. China.

[32] Greenwood, D, 2003, Advanced Dynamics, Cambridge University Press.

[33] Nam,C., 2006, Aeroelastic Analysis Using Matlab, at

http://ctaapoly.asu.edu/chnam/ASE Book/

[34] Motato, E., Radcliffe, C. and Reichenbach, D., 2006, ”A Procedure for Obtaining

Multi Input Multi Output Volterra Models From Port-Based Nonlinear Differen-

tial Equations”. Submitted to the 2007 American Control Conference, New York,

NY.

[35] Chua, L., and Lin, Pen-Min , 1975, Computer-Aided Analysis of Electronic Cir-

cuits, Prentice-Hal, Inc., Engewood Cliffs, New Jersey

[36] Iserman, R., 1992, Adaptive Control Systems, Prentice Hall.

[37] Kerr, Brad., 2000, ”Redesigning work Processes and Computing Environments”,

Automotive Engineering International, Vol. 108(7), pp 147-149.

98

 



[38] Motato, E., Radcliffe, C. and Reichenbach, D., 2006, ”Networked Assembly of

Linear Physical Models”. Submitted to the ASME Journal of Dynamic Systems,

Measurement , and Control.

[39] Frank P, and McFEE, June 1963, ”Determining Input-Output Relationship of

Nonlinear Systems by Inversions” IEEE Transactions on Circuit Theory, pp 169—

180.

[40] Christensen G, December 1969, ”On the convergence of Volterra Series” IEEE

transactions on Automatic Control, 13, 736-737.

[41] Czarniak A and Kudrewicz, August 1984, ”The Convergence of Nonlinear Series

for Nonlinear Networks” IEEE transactions on Circuit and Systems, 31, 751-752.

[42] Chatterjee A., and Vyas N., February 2000, ”Convergence analysis of Volterra

Series Response of Nonlinear Systems Subjected to Harmonic Exitation”, Journal

of Sound and Vibrations. 236(2), pp 339—358

[43] Tomilson G. R. and Manson G., February 1996, ”A simple Criterion for Establish-

ing an Upper Limit to the Harmonic Excitation Level Of the Duffing Oscillator

Using the Volterra Series”, Journal of Sound and Vibrations. 190(2), pp 751-762

99

 



  (I"lllLlllllllllll'I


