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ABSTRACT

IMPROVING EXPERIMENTAL DESIGN AND STATISTICAL INFERENCE FOR

TRANSCRIPTION PROFILING EXPERIMENTS.

By

Juan Pedro Steibel

Functional genomic studies resort to transcriptional profiling experiments in order

to gain insights into the function of genes and their patterns of expression and regulation.

The most commonly used techniques for gene expression studies in animal science are

two-color microarrays and quantitative reverse transcription polymerase chain reaction

(qRT-PCR). The overall objective of this dissertation was to increase the efficiency and

statistical power of these studies by further optimizing experimental designs and

statistical analysis methodology for microarray and validation (qRT-PCR) studies.

The first study addressed the comparison of alternative reference designs,

including a potentially more efficient variant called the blocked reference design (BRD).

The relative efficiency of the various designs was shown to depend on the number of

treatments and the relative magnitude of biological and residual variability. All designs

were deemed practically equally efficient when the magnitude of the biological variances

is negligible relative to the residual variance; however, with a large number of treatment

comparisons and a larger biological to residual variance ratio, the BRD can be 1.5 to 2

times more efficient than more traditional alternatives.

The second study compared models based on using either log-intensities or log-

ratios as the response variables in linear model analyses, demonstrating their inferential

equivalences and differences. The results indicated that the main difference between the

two models primarily depended on the ability of the corresponding design to recover



inter-slide information using a log-intensity model compared to log-ratio model. The

amount of this recovery also depended on the relative amount of variability between

slide, biological and residual variances.

The third study presented a novel method for the analysis of relative

quantification RT—PCR data. Using linear mixed models, we accounted for hierarchical

replication due to more than one gene assayed in each sample and multiple repeated

measures in each sample-gene combination. Extensive simulations showed that the

proposed model controlled the Type I error rate at the nominal level and yielded better

power than traditional analysis methods.

The last chapter focused on jointly optimizing microarray and qRT-PCR

validation experiments in order to maximize sensitivity while controlling the false

discovery rate (FDR) within a two-stage testing framework. This optimization was based

on partitioning a set of biological samples into two groups to be separately utilized for the

microarray and validation steps. The results indicated that most of the samples (typically

more than 60%) should be assigned to the microarray experiment. Even though the

original optimization assumed independent genes, known variances, and uniform effect

sizes, we showed that the results are valid for moderate departures from those

assumptions. The problem of designing an adequate validation experiment, conditional

on an existing microarray experiment was also studied. We found that if independent

samples are used for the validation, a limited sample size and a liberal significance level

(>015) could be used to properly control FDR after the second stage test.
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INTRODUCTION

Transcriptional profiling is a key aspect of functional genomics as it can provide

invaluable insights into the function of genes by elucidating their pattern of expression or

regulation. Drawing meaningful inferences from these studies given resource and funding

constraints depends on optimizing the experimental designs and statistical analysis

models and methods according to restrictions imposed by the currently available

technologies. The most commonly used techniques for gene expression studies are

microarrays and quantitative reverse transcription polymerase chain reaction (qRT-PCR).

A two-color microarray, such as a cDNA or long-oligonucleotide microarray, can

measure the relative expression of thousands of genes simultaneously between a pair of

samples. This expression profiling technology seems particularly useful for individuals

studying a wide range of less well represented organisms in their research programs and

thus has become the platforms of choice for high throughput expression profiling in

livestock functional genomics. Some of the challenges using these two color arrays

pertain to experimental design (sample size and optimal sample allocation for a given

experimental setup) and statistical analyses.

In general, the statistical issues of a microarray experiment include the following

items (Allison et a1., 2006): experimental design, preprocessing, inference and validation.

Many statisticians have recently played a key role in the development of experimental

designs and statistical methods for microarray experiments. For example, mixed models

that account for multiple sources of variation in a statistical analysis have greatly

improved the inferential power of two color microarrays (Cui and Churchill, 2003).



However, in some areas, statistical developments are still sorely lacking. For example,

there has been no extensive work on acceptable statistical practice for qRT-PCR

validation of microarray results, even though such validation is encouraged or even

required by many journals.

Now qRT-PCR is a gene expression profiling technique that is usually assumed to

be more accurate and precise than microarrays (largely due to increased dynamic range)

and is commonly used as a validation tool as aforementioned. The characteristics of qRT-

PCR assays make them more suited to simultaneously test a lower number of genes from

a larger set of samples, and consequently are more limited as a high throughput screening

tool compared to microarrays. Nevertheless, as with microarrays, qRT-PCR data

presents interesting challenges for inferring upon differential gene expression, including

aspects of choosing appropriate experimental designs and declaring statistical

significance on differential expression, particularly when this methodology is used for

validation of microarray results.

1. Experimental design and analysis of two-color microarray experiments.

For two-color or (two-channel) microarrays, the experimental design

characterizes how particular samples are paired within each slide and the total number of

biological replicates used in the experiment. A two-color microarray experiment actually

includes two blocking factors. One factor is the array (or slide) that can accommodate

two samples (i.e. one per channel) whereas the other factor is the dye labeling that

typically involves assignment of one of two states or colors to each sample within an

array. Given the restriction of allowing a comparison of only two treatments within

 



slides for a two channel array, a number of incomplete block (e.g. loop) designs have

been proposed when several treatments are of interest (Dobbin and Simon, 2002; Kerr

and Churchill, 2001).

Despite it not being the most efficient design (Dobbin and Simon, 2002; Kerr and

Churchill, 2001; Tempelman, 2005), the reference design is still pervasively used for two

color microarray studies. In a common reference design, aliquots from a uniform single

reference sample are always hybridized with a different sample from each experimental

group on each array. There are several possible deviations on this design, e.g. biological

vs. technical replicates from the experimental groups and the labeling of reference with

one or both dyes across arrays. Now whereas a common reference design consistently

uses a single sample as a reference, a classical reference design uses different biological

replicates from the reference group across all arrays (Tempelman, 2005). While the

reference is not of interest per se, the efficiency might be improved by using the reference

as one of the treatments of interest in some settings. Under those circumstances with the

correct sample allocation to arrays, the reference design has the potential to be a very

powerful and flexible experimental layout. Several authors have compared reference

designs to other alternatives (Dobbin and Simon, 2002; Kerr, 2003a; Kerr and Churchill,

2001; Tempelman, 2005; Yang and Speed, 2002) in two color systems. However,

competing deviations on reference designs have not been considered exhaustively.

Furthermore (Kerr and Churchill, 2001; Yang and Speed, 2002), researchers often do not

make the distinction between different levels of variability that arise in these designs.

Appropriately accounting for such hierarchical replication in two color microarray

experiments has been shown to be crucial to obtain appropriate inferences (Rosa et al.,



2005).

There are several experimental situations that can benefit from the improvement

of reference designs. One such situation is a screening experiment whereby several

treatments are compared to a control upon which significantly expressed genes are

selected for further study. Likewise, if the number of treatments or classes to be

compared is not known a priori, the reference design is extendible provided there is a

sufficiently large source of reference sample to be repeatedly drawn from for future

hybridizations with new experimental samples.

Typically, fluorescence intensity data (e.g. Cy3 and Cy5) from reference designs

is further reduced to a ratio of these two values for each spot on an array before

subsequent statistical analysis. The common reference design lends itself, in particular,

to the quotient of fluorescence intensities between the “unknown” sample and the

reference sample. In general, these ratios are subsequently logarithmically transformed

to facilitate data normalization and distributional normality assumptions as required for

parametric statistical methods; furthermore, ratios are easily compared across arrays.

Analyses based on log-ratios are simpler for designs with one level of replication (such as

a common reference design); however, log-ratio models are not easy to generalize to

more complex experimental designs with hierarchical or technical levels of replication.

Furthermore, even for a reference design, the use of ratios may lead to the loss of

statistical information, and this should be investigated further.

Linear fixed and mixed effect models based on the analysis of log intensities have

recently gained popularity (Kerr et al., 2000; Rosa et al., 2005; Smyth, 2004; Wolfinger

et al., 2001). These models offer a flexible way to account for multiple sources of

 



variation that arise from hierarchically replicated microarray experiments. Log-ratio and

log-intensity linear models have been compared only for simple experimental designs

(Kerr, 2003b). Moreover, there is very limited research on how to implement linear

mixed models for log-ratio data in order to account for multiple layers of replication

(Smyth et al., 2005).

Given the wider availability of statistical analysis software for microarray

experiments that usually accommodate only one or the other of the two different

expression measures (log—ratios or log-intensities), a better understanding of the

circumstances under which the two models will yield the same results and the limitations

of each analysis would provide invaluable insights into the interpretations and

comparison of results from independent investigations. Also, a better understanding of

the extent of the loss of information incurred when resorting to a simpler analysis strategy

would be important when evaluating the ramifications of such a strategy in a particular

experiment. A general computational framework to assess these issues would contribute

to a better understanding of the similarity and differences of alternative analysis

strategies.

2. Analysis of relative quantification of RT-PCR data.

The primary response variable for gene expression from qRT-PCR consists of the

fractional cycle number (CT) at which threshold intensity is reached and is directly

proportional to the negative logarithm of the mRNA concentration. The corresponding

constant of proportionality may be estimated from a standard curve thereby providing

absolute quantification of the mRNA present in a sample. For most comparative



transcriptional profiling experiments, however, the relative level between samples rather

than actual abundance is sufficiently informative for comparing several treatments.

Relative quantification aims at comparing relative levels of target mRNA across

samples by standardizing the total RNA quantity to an internal control gene assumed to

be constant in its expression across different experimental conditions (Pfaffl, 2001). The

most common summary statistic for this type of quantification is the AACT method

(Livak and Schrnittgen, 2001). This measure is easily computed for simple experimental

designs where several groups are compared to a single control group. A series of ad-hoc

parametric or non-parametric approaches (Pfaffl et al., 2002) are used to obtain p-values

and standard errors associated with the treatment comparisons of interest using the AACT

measure. Nonetheless, more general statistical models have not been specified to analyze

this measure in more efficient and elaborate designs.

In more complex experimental designs, such as those that commonly appear in

animal functional genomics, hypotheses that are more complex than all pairwise

comparisons are likely to be of interest. For example, two-factor interaction hypotheses,

time trend contrasts and hypotheses related to the significance of variance components

are increasingly common. However, there has been limited formal development of

statistical models and methods adopted for these questions using relative quantification of

RT-PCR data. (Fu et al., 2006)

Linear mixed models offer a promising approach to the statistical analysis of

qRT-PCR data as they have had with microarray data. Even though linear models have

been used for qRT-PCR data in the past, these uses have generally been restricted to

control gene selection (Szabo et al., 2004) or they do not consider multiple random



sources of variability (Cook et al., 2004). A general formulation of a linear mixed model

for relative quantification of RT-PCR data will provide a flexible and powerful analysis

methodology to accommodate arbitrarily complex designs and allow researchers to draw

accurate inferences from hierarchically replicated experiments.

3. Design of screening and validation experiments.

A general consensus has been established on the necessity to independently

validate results from microarray experiments (Allison et al., 2006) although recently the

utility of such validation has been questioned (Rockett, 2003; Rockett and Hellmann,

2004). Most genornicists will attempt to validate results from a microarray assay using

qRT-PCR, inmunohistochemistry or protein analysis techniques. Such validation is

typically conducted for only a small fraction of the genes declared to be differentially

expressed by a microarray experiment. The most common practice consists of selecting a

few genes for qRT-PCR using mRNA from the same samples included in the microarray

experiment. This practice of using the same samples again has been criticized because it

provides only “technical validation” and does not preclude the possibility that a few

unusual samples might have been selected by chance for the study (Allison et al., 2006),

thereby biasing statistical tests for both microarrays and qRT-PCR in the same direction.

Even though a better recommendation would to use different samples for validation by

qRT-PCR that are completely independent from the samples used in the microarray

experiment, there are yet no clear guidelines on how to assess appropriate sample size

calculations and multiple testing considerations for a second stage validation.

Multiple testing considerations for controlling false positive rates are generally



ignored in qRT-PCR validation experiments because of the limited number of tests (i.e.

selected genes) considered in the validation step. However, qRT-PCR is being

increasingly automated such that there is now more research where several dozen genes

are assayed simultaneously with these techniques (Perreard et al., 2006; Szabo et al.,

2004). With many simultaneous multiple tests, improper attention to experiment wise

error rates could yield an unacceptably large number of false positive results even in the

validation stage. For example, the conventional comparison wise Type I error rates that

were eventually realized to be too liberal for gene-specific tests in large microarray

experiments might likewise not be suitable for a validation experiment. For a validation

experiment using qRT-PCR, controlling the false discovery rate may be more useful to

control for the rate of false positives without unduly sacrificing sensitivity as has been

demonstrated for microarray experiments (Verhoeven et al., 2005). In other words, the

decision rules for validating genes as being differentially expressed using qRT-PCR need

to be more carefully studied. There is also a need to evaluate experimental designs for

validation experiments and to provide a framework for helping to guide researchers

design initial screening (microarray) and subsequent validation (qRT-PCR) experiments.

4. General hypothesis

The efficiency and power of comparative transcriptional profiling can be

increased by further optimizing experimental designs and statistical analysis models and

methods for microarray and validation (qRT-PCR) studies.

5. Specific Aims



This dissertation intended to propose more efficient experimental designs and

statistical analysis models and methods for expression profiling experiments. In

particular, linear fixed and mixed effects models are developed for the analysis of both

microarray and qRT-PCR data, and attention is particularly directed to the modeling of

multiple levels of variation.

The questions that will be addressed are of interest to experimental genomicists,

and the proposed developments will be potentially useful not only to researchers working

in functional genomics research with animals, but also with other model organisms. More

efficient designs for the microarray experiments coupled with more powerful second-

stage designs and analysis for the validation experiments will facilitate greater sensitivity

and specificity for discovering genes that are differentially expressed between treatments

of interest.

The overall aim of this dissertation was to investigate optimization possibilities

for the design and statistical analysis of expression profiling experiments, including the

two stage process of screening and further validating differentially expressed genes using

linear model methods.

The specific objectives were:

1) To compare alternative reference designs for statistical efficiency of two color

microarray experiments considering multiples sources of variation.

2) To investigate the ramifications of log-ratio versus log-intensity modeling in two

color microarrays using linear mixed effects models

3) To develop linear mixed models for the analysis of relative quantification of RT-



PCR data.

4) To propose a general framework for determining the false discovery rate and

sensitivity of gene expression studies when jointly designing microarray

screening experiments linked to subsequent and selective qRT-PCR validation.
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Experiments*

Juan P. Steibel and Guilherme J. M. Rosa

Abstract

We compare four variants of the reference design for microarray experiments in terms of

their relative efficiency. A common reference sample across arrays is the most extensively used

variation in practice, but independent samples from a reference group have also been considered

in previous works. The relative efficiency of these designs depends of the number of treatments

and the ratio between biological and technical variances. Here, we propose another alternative of

reference structure, denoted by blocked reference design (BRD), in which each set (replication) of

the treated samples is co-hybridized to an independent experimental unit of the control (reference)

group. We provide efficiency curves for each pair of designs under different scenarios of variance

ratio and number of treatments groups. The results show that the BRD is more efficient and less

expensive than the traditional reference designs. Among the situations where the BRD is likely to

be preferable we list time course experiments with a baseline and drug experiments with a placebo

group.

KEYWORDS: Microarrays, Experimental design, Reference design, Relative efficiency

‘This project was supported in part by National Research Initiative Grant no. 2004-35604-14580

from the USDA Cooperative State Research, Education, and Extension Service.

13



Steibel and Rosa: Reference Designs for Microarray Experiments

1 INTRODUCTION

The reference design is one of the simplest and most commonly used designs in

microarray experiments (Churchill, 2002). Despite being generally less powerful

than other alternatives such as the loop design (Dobbin and Simon, 2002; Kerr,

2003a; Kerr and Churchill, 2001; Yang and Speed, 2002), the reference design

presents some advantages (Dobbin and Simon, 2002), as it simplifies the

statistical analysis and facilitates the comparison of results from different

experiments within a meta-analysis context.

The reference design consists of the hybridization of each test sample with a

common type of sample (Kim et al., 2002). In the statistical literature on design of

microarray experiments, however, the term “reference design” is used for two

different experimental layouts. Kerr and Churchill (2001) and Glonek and

Solomon (2004) implicitly use a “replicated reference”, where the reference

sample includes replication at the same level as the treatment samples. Hereinafter

we refer to this design as “classical reference design” (ClRD). Conversely,

Dobbin and Simon (2002) consider a common reference sample (“common

reference design”, CRD), which refers to a single (biological) sample that is co-

hybridized to each of the test samples. Both variants of reference design are used

in practice but the CRD seems to be preferred (Alizadeh et al., 2000; Lin et al.,

2002; Papp et al., 2003; Perou et al., 2000).

In general, in the CRD and ClRD the reference group is not of interest per-se.

Nevertheless, the reference group can be represented by one of the treatments of

interest, such as the initial time in a time course experiment (Yang and Speed,

2002) or a wild type strain (Wolfinger et al., 2001). To differentiate this design

from the ClRD described above, which also presents biological replication for the

reference group, we will denote it by replicated reference design (RRD). The aim

of this paper is two fold: first to compare these alternative designs from both

statistical and technical points of view, and second to propose a new variant of the

reference design, which is shown to present higher power and lower cost than the

traditional alternatives.

The paper is structured as follows: in Section 2, the CRD, ClRD and RRD are

compared to each other in terms of total amount of resources required and their

average variance of contrasts. In Section 3, a new reference design alternative is

proposed and compared to the traditional reference designs (CRD, ClRD and

RRD). In Section 4, the results are discussed and general recommendations on the

use of each design are provided.

Produced by The Berkeley Electronic Press, 2006
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2 THE TRADITIONAL REFERENCE DESIGNS

2.1 GENERAL LAYOUTS

Schematic representations of CRD, ClRD and RRD experiments are provided in

Figure 1 (Panels a, b and c, respectively). The experiments involve three

treatments (A, B and C) and 12 arrays; the indexes represent biological replication

within each treatment group. The CRD uses a single reference sample (denoted by

R) without biological replication on it, which is co-hybridized with each of the

four biological replications of each treatment group. Conversely, the ClRD uses

an independent reference sample in each array. The RRD, on the other hand,

considers one of the treatments as a reference (the group A in Figure 1c), from

which a different biological replication is hybridized in each of the 12 arrays. In

this case, group A has then 12 biological replications whereas the remaining

treatment groups have six replications each. In the CRD and ClRD, any gene

specific dye bias can be confounded with the reference sample effect, as it will

cancel-out in the indirect comparisons, therefore the dye swap approach is not

mandatory. The RRD however, should include both labeling directions so dye and

treatment effects can be disentangled.

a) A1 A2 A3 A, B, B, B3 13, c1 c2 c, c,

litttttttit
RRRRRRRRRRRR

0)

g r t ‘t r
8 R9 R10 R11 R12

c) 31 132 B3 3,, 35 36 c1 c2 c, c, as c,

t t t t t I t I t I

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Figure 1: Alternative reference designs with three treatments (A, B and C) and 12

arrays: a) Common reference design (CRD) with four replicates (subindexes);

reference sample (R) is the same in all arrays; b) Classical reference design

(ClRD) with four replicates (subindexes) in 12 arrays; reference sample (R) is

replicated; and c) Replicated reference design (RRD), in which six replications of

treatments B and C are hybridized together with independent replicates of a

control treatment (A).

http://www.bepress.com/sagmb/vol4/iss l /art36
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2.2 REQUIRED RESOURCES: ARRAYS AND mRNA SAMPLES

In terms of resources needed for running a specific experiment, we can compare

the three designs by fixing either the total number of arrays or the number of

replications in each treatment group. Specifically, consider a CRD or ClRD with

K treatments and r biological replicates per treatment, such that r = C(K-I), where

c is an arbitrary integer value considered here to constrain the design space to

balanced cases only. In this case, n = rK arrays are necessary for running the

experiment. On the other hand, it is seen that a RRD can accommodate r’ = cK =

r+r/(K-I) biological samples with the same number of arrays (Table 1; compare

also Figures 1a and 1b). Likewise, fixing the number of non-reference samples,

only n: r(K—I) arrays will be needed in a RRD as compared to rK arrays in the

CRD or ClRD.

Table 1. Number of biological replicates in non-control treatments (r), for a given

number of arrays (n) and treatments (K), for each alternative reference design.

 

 

 

 

 

 

Design

K n CRD ClRD RRD

6 3 3 6

2 10 5 5 10

20 10 10 20

3 12 4 4 6

24 8 8 12

4 12 3 3 4

24 6 6 8

6 30 5 5
 

2.3 LINEAR MODELS AND CONTRAST VARIANCE

The analysis of log-ratio of Cy3 to Cy5 intensities is considered here through the

following general gene-specific linear model:

rg=Xflg+831 I1 I

where r,g is a vector of log ratios (log Cy3 — log Cy5) for gene g in each array,

after suitable data normalization (Lonnstedt and Speed, 2002). Here we assume a

single spot per gene on each array, but in the case of multiple spots, the elements

of rg may represent the average (or median) normalized log-ratio from all the

Produced by The Berkeley Electronic Press. 2006
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spots corresponding to gene g in each array. In addition, X is an incidence matrix

(see example and details in the Appendix); and fig is a vector of linear

coefficients, taken to be flg=[tg-m Tm-R)]T or flg=[a {(2.1) thIT for the

CRD (or ClRD) and RRD, respectively, where rfi_j)=,u,--/tj represents the contrast

between treatments i and j (i,j: l,2,...,K and R), and dis a dye bias term. The

elements of the vector 88 are assumed independently normally distributed with

variances 0'52 for the CRD, and as? for ClRD and RRD cases. Assuming that the

variance components on the log intensity scale are of (biological variance) and

of (residual variance), it is seen that 0'52 = 0;,2 +20;2 and 022 = 20;,2 +20}

(please refer to Appendix for details).

While the CRD and the ClRD have only indirect comparisons between

treatment groups, the RD comprises K-I direct and (K-1)(K-2)/2 indirect

comparisons. As each kind of contrast has a different variance, we compare the

designs using the A-optimality criterion discussed in Kerr and Churchill (2001).

According to this criterion, the average variance of all contrasts is computed

considering all the comparisons equally relevant. If this is not the case, the use of

A-optimality criterion may not be appropriate for comparing experimental designs

(Yang and Speed, 2003). The variances of each kind of contrast (direct and

indirect), as well as the overall average variances are presented in Table 2.

Table 2. Total number and specific variances of direct and indirect contrasts

between treatments groups, and overall average variance of contrasts for

replicated (RRD), classical (ClRD) and common (CRD) reference designs.

 

 

 

 

 

 

   

RRD ClRD CRD

Number of Direct

____________Compansons(K_l)00
2 2

Var[direct comparison] M - -

r

Number of Indirect (K - 2)(K -1) K(K-1) K(K ”1)

............Compansonszzz
2 2 2 2 2 2

Var[indirect comparison] w m 2(00 +20.)

r r r

_ 2 2 2 2 2 2

Overall Average Variance (K 1)4(0',, +09) 4(0“ +0? ) 2(00 +20!)

Kr r r
 

The efficiency of the RRD relative to the CRD may be computed using the

following expression:

httpzl/www.bepress.com/sagmb/voI4/iSS l/art36
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_ Var(CRD) [2]

RRD:CRD Var(RRD) ’

where l7ar(-) is the overall average variance of the contrasts in each design.

Similar equations can be used to compare any pair of designs.

For the designs presented so far, the relative efficiency is a function Of the

number of treatments (K) and (or) the biological-to-technical variance ratio

(0': / of ) , as discussed by Dobbin and Simon (2002). Figures 2a and 2b present

the relative efficiency as a function of the variance ratio for a given number of

biological replicates (r) or number of arrays (n), respectively. The comparison for

fixed number of arrays is restricted to cases in which r=c(K-1), as discussed

before.

  

 

 

 

V.__

>.

O

50!- z

a" a
— 0

3°. E
LLv— LU

w a
I.“

a I:

'3‘ E
U] m

0:0.o-

       I l l T I

—4 —2 0 2 4 —4 -2 O 2 4

log-2 variance ratio (biological :technical) log-2 variance ratio (biological :technical)

Figure 2. Relative efficiency of the replicated reference design (RRD) as

compared to the common reference design (CRD), considering: a) the same

number of replicates (r), and b) the same number of arrays (n). X-axis is the log2

of the variance ratio; curves correspond to different numbers of treatments (K).

The relative efficiency of the CRD as compared to the ClRD is a function

of the variance ratio only (Figure 3a), and the relative efficiency of the RD to

the ClRD depends only on the number of treatments. Similar results for the

relative comparison between CRD and ClRD were discussed by Tempelman

(2005).
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Figure 3. Efficiency of the: a) common reference design (CRD), and the b)

replicated reference design (RRD), relative to the classical reference design

(ClRD). 0: fixed number of biological replicates, I: fixed number of arrays.

3 AN IMPROVED REFERENCE DESIGN

3.1 LAYOUT

An alternative layout for the reference design structures discussed so far is

represented in Figure 4, which will be denoted hereinafter by “blocked reference

design” (BRD). In this case, a reference treatment is used similarly to the RD

but with a set of r biological samples hybridized with every treatment. Here we

deliberately consider a single dye labeling for each subject in the reference group

(treatment A) but with a dye balanced across subjects within each treatment. Note

that for K=2, the BRD is the same as the RRD, which in turn are balanced

complete block designs.

Bifl 13E c2 Biro, if, 13Y f5 isles

A1 A2 A3 A4 A5 A6

Figure 4. Blocked reference design (BRD) with 3 treatments (A, B and C) and 6

replicates (subindexes) in 12 arrays. Each test sample is hybridized together with

a replicate from the control treatment (A); the same set Of replicates of the control

group is used with the other treatments.

httpzllwww.bepress.com/sagmb/vol4/iss l/art36
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3.2 REQUIRED RESOURCES

Technically, all choices of reference designs (CRD, ClRD, RRD and BRD) can be

compared in terms of the number of replications or arrays required, as well as the

sample quantity (mRNA quantity) necessary for a given number of biological

replication (Table 3).

Table 3. Resources required in each of the four variants of reference design for

comparing K treatments, with r biological replicates for the non-control groups. q:

necessary aliquot of mRNA for each hybridization.

 

CRD ClRD RRD BRD
 

Number of non-ref. samples r r r r

Number of arrays rK rK r(K-1) r(K-I)

Number of ref. samples I rK r(K-1) r

mRNA quantity of non—ref. q q q q

mRNA quantity Of ref. qu q q (K—I)q

 

3.3 STATISTICAL EFFICIENCY

Model [1] with correlated residuals (see details in the Appendix) can be used for

the statistical analysis of the BRD. In this case, the residuals from log-ratios taken

with respect to the same reference sample will have the following covariance

structure:
I- '1

03 03' 0.3

0'2 0'2 02_ a 8 can a

[(K—Iqu—I) — : z o. : 9 [3]

2 2 2

—aa a“ .O. as-  

where 0'52 = 2 02,2+2 0;} . The variance of an indirect contrast will be 2(o;,2+20;2)/r,

whereas the variance of a direct comparison will be 2(0;,2+o;2)/r. The BRD has

the same number of direct and indirect comparisons, as well as the same variance

for the direct contrasts, as compared to the RRD. The variance of the indirect

contrasts, however, is equal to the variance in a CRD. Consequently, fixing the

number of biological replicates (of the non reference samples) in a specific

experiment, the variance of any contrast under BRD will be equal to or smaller

Produced by The Berkeley Electronic Press. 2006
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than the variance under either of the other designs. The average variance of

contrasts in a BRD is:

Var(BRD) =3[a§ +%(K—1)of], [4]

r

and the efficiency of this design is the highest under any variance ratio scenario

(Figures 5a and 5b). In addition, as the BRD uses fewer biological replicates of

the reference sample than the RRD and fewer arrays than the CRD, its cost will be

always the smallest among the three variants.

 

 

  
        

‘9 _ Q ..

5 5 b) '5?”
Z “a

z
I

H '- E (D

0 2 v: ‘
II ”I t

b T m
LIJ

g 53 g. If —

a: '- t: N. __

o, c:
‘— I I I I I '— F I I I I

—4 —2 0 2 4 —4 —2 O 2 4

log-2 variance ratio (biological :technical) I09--2 variance ratio (biological :technical)

Figure 5 . Relative efficiency of the blocked reference design (BRD) compared to:

a) the replicated reference design (RRD), and to b) the common reference design

(CRD). A fixed number of replicates (r) is considered. X-axis is the log2 of the

variance ratio. Each curve corresponds to a different number of treatments (K).

Similarly to the RRD, the BRD does not spend half of the hybridizations

with a group that is not of direct interest. This allows incorporating more

replicates in a BRD as compared to the CRD, for a given number of arrays.

Consequently, the advantage in relative efficiency of the BRD as compared to the

CRD is even larger than what is shown in Figure 5b, for a fixed number of

replicates (r). Relatively to the RRD, the efficiency curves presented in Figure 5a

for the BRD are the same if the comparisons are made at fixed number of

replicates or fixed number of arrays.

http://www.bepress.com/sagmb/vol4/issl/art36
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4 RESULTS AND DISCUSSION

4.1 BIOLOGICAL AND TECHNICAL REPLICATION

This paper compares four variants of the reference design for microarray

experiments, considering both the technical and the biological variability. We also

distinguish between designs where the reference is not of interest per se (CRD

and ClRD) and designs where the reference is one of the groups under

comparison (RD and BRD).

Some of these designs have been compared in previous works. Yang and

Speed (2002) described the RRD, in which one treatment is used as the reference,

and compared it to a CRD for time-course experiments. The authors, however, did

not discuss the issue of biological and technical replication. Even though the error

variance in their work is always directly comparable to of. discussed here for the

RRD, the error variance for their CRD is not so unless we assume zero biological

variance in both designs. In a later paper, Yang and Speed (2003) incorporated the

effect of different levels of replications in design comparisons, but the relative

efficiency of the RRD to the CRD was not reassessed by them. Tempelman

(2005) compared the CRD and ClRD in terms of statistical power and efficiency,

at different levels of technical and biological variability. Our paper is more

general than the previous ones, as it compares additional reference designs and

makes also a clear distinction between biological and technical variability in the

analyses.

The methodological approach of this paper consists of analyzing the log-ratio

of Cy3 and Cy5 using a linear model parameterized in terms of the variances of

log intensities. Such model is equivalent to the intensity model (Kerr, 2003b) if

arrays are considered as fixed effects. Our procedure may also be considered a

variant of the one presented by Yang and Speed (2003), where the variance and

covariances for the log-ratios are expressed in terms of the variance components

of the intensity model. This parameterization allows a general and straightforward

comparison of the variants of reference design for different biological-to-technical

variance ratios and number of treatments.

4.2 RELATIVE EFFICIENCY OF TRADITIONAL REFERENCE DESIGNS

Figure 3 shows that the ClRD is the least efficient of the designs. It will be

equivalent to the CRD only in the hypothetical situation Of null biological

variance. Likewise, the ClRD is also less efficient than the RRD, and will tend to

be as efficient as the RRD only if the number of treatments is very large.

Consequently, from a statistical standpoint, it makes little sense to use the

classical reference design. Similarly to the ClRD, the RRD also uses a replicated

Produced by The Berkeley Electronic Press, 2006
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reference, but such a reference is one of the treatments of interest. This strategy

increases its overall efficiency and allows for an increase of sample size (more

replicates for a fixed number of arrays).

Figure 2 shows the tendency of the RRD to be more efficient than the CRD

for lower variance ratios (smaller biological variance relative to technical

variance) and smaller number of treatments. With four treatments, if the number

of non-control replicates is held fixed (Figure 2a), the relative efficiency tends to

an asymptotic value (for 052:0) of 1.33, which equals to the value (2.00/1.50)

reported in Table 2 of Yang and Speed (2002). Here, we also performed the

comparisons by holding fixed the number of arrays (Figure 2b). For instance, with

three treatments, the RRD always outperforms the CRD, while 032< 0.2

guarantees relative efficiency above one for up to six treatments.

4.3 AN ALTERNATIVE REFERENCE DESIGN

In this paper, we propose a new variant of the reference design (denoted here as

BRD) and compare it to the traditional reference designs commonly used in the

literature. We show that the BRD is more efficient and less expensive than the

other three variants of reference design, for experiments involving three or more

treatment groups. As shown in Figures 4 and 5, the average variance of the

contrasts for the BRD is always the lowest among the four alternatives. For lower

biological variances, the differences in efficiency between the BRD and RRD

vanish, whereas at higher biological variance the BRD and the CRD tend to be

equivalent. Consequently, for any microarray experiment the BRD may have

similar efficiency to the RRD for some genes and to the CRD for others, but on

average the BRD will always outperform both designs. As compared to the ClRD,

the BRD will always be more efficient, as the ClRD is outperformed by the CRD

and the RRD as well.

4.4 TECHNICAL AND LOGISTIC ISSUES

As far as cost is concerned, at a fixed number of biological replicates, the BRD

uses fewer arrays as compared to the CRD or ClRD and fewer biological

replicates for the control treatment than the RRD. Consequently, the BRD is

always the least expensive among the three alternatives.

In spite of the reference design being less efficient than other designs under

certain circumstances (Bueno Filho et al., 2005; Dobbin and Simon, 2002; Kerr, -

2003a; Kerr and Churchill, 2001; Yang and Speed, 2002), it is still advocated by

some authors, especially in the applied genomic science. For example, the CRD is

suggested by some authors to be the most convenient design for sample clustering

applications (Dobbin and Simon, 2002) or genetical genomics studies (Jansen and

http://www.bepress.com/sagmb/vol4/iss1/art36
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Nap, 2001), where the aim of the research is to extract the individual variation in

the expression profile. In addition, even if the aim of the experiment is to compare

average profiles of gene expression among populations, the reference design may

be preferable in some cases. For example, if the comparison of each treatment to a

control group is more important than the other contrasts, the reference design can

be as good as any other design (Glonek and Solomon, 2004). This situation may

occur in preliminary or screening experiments including a large number of

treatments that are compared to a reference group (e.g. several drugs against a

placebo group or a time course experiment with a baseline). If the comparisons of

treatments against a control group are the most relevant, the RRD and BRD are

the only experimental designs that guarantee direct comparisons for those

contrasts and consequently should be the most efficient designs. Additionally, the

BRD will be more efficient than the RRD for the rest of the comparisons (among

no control treatments).

With more than three treatments, the BRD will be more efficient than the

balanced incomplete block design for a fixed number of biological replicates,

under almost any variance ratio scenario (refer to formulas in Supplementary

Material of Dobbin and Simon, 2002). Fixing the number of arrays, the direct

comparisons under the RRD and BRD cases will have the same variance as in the

balanced incomplete block design. The balanced incomplete block design,

however, will still show some significant advantages over the reference designs

because it provides the same variance for every contrast, while the BRD will have

smaller variance for the comparisons against the control and larger variances for

the contrasts among non-control treatments.

Lastly, another situation where the reference design may be preferred over

other alternatives is when the number of groups or classes is uncertain at the

beginning of the experiment, for example within a class discovery context

(Dobbin and Simon, 2002). In these cases, the balanced incomplete block design

is not indicated, as one needs to anticipate the number of groups (as well as each

experimental unit membership) to be able to distribute them accordingly across

the slides. Under these circumstances, the CRD is the most indicated design,

especially if large quantities of reference samples are available.

The literature also shows a different aspect of the comparison of the reference

design to other designs based on direct comparisons (Belbin et al., 2004; Konig et

al., 2004). These authors compare the reliability of an indirect measurement of

fold change (through a reference) to a direct measurement. Using a CRD, both

works reached the same conclusion: the direct and indirect measures of log-ratio

or fold change tend to agree if some kind of filtering criteria is applied to the data.

This is expected because keeping only the most reliable spots from each array will

diminish the overall technical variability and increase the reliability of indirect

measurements. The results from Belbin et a1. (2004) and Konig et a1. (2004),
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however, should be interpreted with some care as they included only limited

technical replication, and no biological replication.

From a practical point of view, the researcher should examine not only the

statistical power and the cost of the arrays and experimental units when designing

a microarray experiment. Sample quantity and availability are also important

issues. The CRD requires a large quantity of mRNA from a single sample

(reference). The RRD, on the other hand, requires limited mRNA quantity from a

large number of biological samples, which may be unfeasible when working with

expensive or limited experimental units. Lastly, the BRD is an intermediate

alternative in this aspect as it requires the same number of experimental units for

all treatments (including the reference group), but the reference requires (K-I)

times more mRNA than the non-control groups. This last point may be prohibitive

when working with limited mRNA quantity and a large number of treatments (e.g.

experiments involving tissue samples from small animals or embryos).

Another issue to consider is the suitability of the control treatment as a

reference. In general, a treatment with a large number of non-expressed genes will

not be a good reference group. In these cases, a pool from several individuals, or a

synthetic reference sample should be used in a CRD layout. This issue is out of

the scope of this paper and the reader should refer to the existing literature

(Gorreta et al., 2004; Kim, et al., 2002; Sterrenburg et al., 2002) for further

discussion on this matter.

4.5 CONCLUDING REMARKS

In summary, this paper proposes an alternative design for microarray experiments

(denoted as BRD), which exploits the flexibility of the reference design, but

minimizes the loss of efficiency of its indirect comparisons. Specifically, the use

of one of the treatments as the reference saves arrays and provides a subset of

direct comparisons, while the proper allocation of samples across arrays may

yield lower variance than a RRD for the indirect contrasts. The BRD presents

both of these advantages with a minimal increase in the required sample quantity

(as discussed above) for the reference treatment. Among the situations where the

BRD is likely to be implemented we list time course experiments (time zero as a

control, for example) and experiments including competing drugs and a placebo

group.
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APPENDIX

Consider the following gene-specific model:

rt : Yilkl ’11::sz ,

where r,- is the normalized log—ratio relative to the i’h array, Yak, is the log-intensity

corresponding to the Cy3-labeled 1“ sample from treatment k and Yak-1 is the log-

intensity of the Cy5-labeled l'h sample from treatment k’. Assume also that (Rosa

et al., 2005):

Yijkl zfl'I'Ar "I'D; +Tk +31“) +eijkl ’

where ,u is the general mean, A), D} and Tk are array, dye and treatment effect

terms (considered as fixed effects here), respectively; But) is a subject-specific

effect, i. i.d N(O, of) ; and 60'“ is a residual term, i. i.d N(0, 0'3 ) . In general, a

model on the log-ratio scale will be derived from the formula above as follows:

"I = Yilkl _Yi2k‘l

=lu+Ai +DI +Tk +Bl(k) +311“ _(fl+Ai +D2 +Tk' +3106) +613“)

= (01 ‘02) +(Tk _Tk')+(Bl(k) ‘Bum +eilkl Tent-'1)

= a+ 21H.) +e,,

where a=Dl-D2 is the difference between Cy3 and Cy5 labeling effects,

al.,“: Tk-Tk» is the contrast between treatments k and k’, and

8,-=B,(k, - Bl(k’) + euk, — em.) is a residual term containing both biological and

technical components.
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1. Model for CRD and ClRD (refer to Figure la; array 1 is the left—most array):

      

"r,“ "1 0 01 "sf

r2 1 0 0 £2

r3 1 0 0 £3

r4 1 0 0 3,

r5 0 1 0 — £5

Tut-R)
r6 0 1 0 £6

= Tris-R) '1-

r7 0 1 0 £7

TIC-R)
r8 0 1 0 - 88

r9 0 O 1 £9

rlo 0 0 1 £10

rH 0 0 1 E“

_r12_ _0 0 1- 1812‘

Here Tk’ is R (the reference), which is always labeled with Cy5.

Consequently the dye effect (intercept) can not be included in the model, but the

effects of interest (1) can still be estimated.

The variance of each error term a is given by:

a) CRD:

Var(£,.) = V0r(Bi(k) '— Bl(k') "I” eilkl _ei2k'l)

= 20,2 +03,

and the covariance between any pair of elements is null, Cov(&, av)=0, so the

(co)variance matrix relative to the residual vector 8 can be expressed as

Var(£) = [(12) (0: + 203). Note that Var(B,(,,.)) = 0 as there is no biological

replication in the reference sample.

b) ClRD:

Var(€,-) = Var(B,(k, ’ 8100+ eilkl _ ei2k'l)

= 20,2 + 20:.

http://www.bepress.com/sagmb/vol4/iss 1/art36
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Likewise, the covariance between any pair of elements is null, Cor/(8,, aw)=0. The

(co)variance matrix relative to the residual vector scan be expressed as

Var(€) = 1“,,(203 + 203).

2. Model for RRD (refer to Figure 1b; array 1 is the left-most array):

— — run- _ p -

      

r1 1 -l 0 8l

r2 1 - 1 0 £2

r3 1 —1 0 £3

r4 1 1 0 8,,

r5 1 1 0 - a 85

r 1 1 0 8
6 = 128—A) + 6

r7 1 0 —l 87

TIC—A)
r8 1 0 —1 ~ 88

r9 1 0 —1 £9

rIO 1 0 l 8,0

rH 1 O l 8”

_r12 _ _1 O 1 _ _£12 _

As in this case the control treatment A (T1,) is labeled with both Cy3 and Cy5, the

dye effect (dye bias) can be modeled by including an intercept into the model. In a

RRD, as the reference treatment is also replicated (at the biological level), the

variance Of each residual term is given by:

Var(€,.) =Var(B,m — Bl(k') +eilkl ‘81:“)

=ud+fit

which are independent to each other, so the residual (co)variance matrix can be

expressed as Var(£) = I(12,2(0: +03). Notice that this matrix is equal to that of

the ClRD.
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3. Model for BRD (refer to Figure 4; array 1 is the left-most array):

      

P rl - '1 —1 0 I F 8, -

r2 1 0 -l .62

r3 1 —l 0 £3

r4 1 0 —1 8,,

r5 1 —l 0 - a 85

r 1 0 --1 86

r: = 1 1. 0 7‘3"" + a,

r, 1 0 1 L7“) 5,

r9 1 1 0 89

r10 1 0 l 8,0

r11 1 1 0 8”

_rl2 _ _l 0 1 _ _€,2 _

Similarly to the RRD, an intercept is included into the model to estimate (and to

account for) the dye effect. Here also the residual variances are given by

Var(£,-) = Var(B,(k) "' Bum + eilkl _et2k'l)

= 2(0,2 +05).

The residuals, however, are not independent. The (co)variances are given by:

C0v<£r ’81") = C0V(Bl(k) —Bl(k') +eilkl “em”! 9310") — Bl(k'") +8i'lk"! Tern-"7)

= C0v(—B,(k.) ,—B,(k..) ),

which can be expressed as:

2 .

0' l B ,. =B
C0v(—B](k')9—B[(k'")) : a f l(k) . “A I .

0 otherwrse

The residual (co)variance matrix is then written as

a

02 2(03 + 03)
a

2 2 + 2 0.2

Var(g):](6)®[ (0.. 0'.) J

where O is the Kronecker product operator.
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CHAPTER TWO

COMPARISON OF LOG-INTENSITY AND LOG-RATIO LINEAR MODELS

FOR TWO COLOR MICROARRAYS.

ABSTRACT: In this paper, we compare log-ratio and log-intensity models for two-color

microarray experiments with technical and biological replication. A linear transformation

of the log-intensity model is used to derive the equivalent log-ratio model for a variety of

designs. We demonstrate that some designs, such as a dye swap or connected loop

designs, require the specification Of random sample pair effects in the ratio. For a split

plot design where arrays are experimental units, log-ratios are not convenient as this

makes some effects unestimable in the model. Furthermore, analyses using log-intensity

values generally allow for more efficient recovery of inter-slide information in design

involving more than two treatments as we determine for different scenarios.
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Introduction.

Differentially labeled fluorescence intensities are used to compare two samples

for mRNA abundance of a particular transcript for any one spot on a long oligonucleotide

or cDNA microarray. Statistical analyses of such two color microarray experiments have

often been based on using logarithms of ratios (log-ratios) of these spot-specific

fluorescence intensities as the response variables (Yang and Speed, 2003) although

models based on the use of logarithm of the corresponding intensities (log-intensities) for

each dye have also been used (Kerr et al., 2000; Wolfinger et al., 2001). Logarithms,

typically to base 2, are often used to transform microarray fluorescence intensities and

their corresponding ratios in the anticipation that the resulting data will facilitate analysis

by parametric statistical methods that depend upon normality assumptions. Current

statistical models for the analysis for log-intensities typically include fixed and random

effects (i.e. mixed models) to account for different levels of replication (Rosa et al.,

2005), whereas fixed effects linear models are more commonly used for log ratios

(Smyth, 2004). Multilevel models have been proposed to analyze log-ratios although the

most commonly used implementation requires a common intra class correlation

assumption across transcripts (Smyth et al., 2005). Other generalized least squares (GLS)

or mixed model analyses have been used tocompare experimental designs using log-

ratios measures of expression (Steibel and Rosa, 2005). The literature on the comparison

of log-ratio versus log intensity models has focused its attention on those models that are

readily specified for either response variable (Kerr, 2003b), but not in more complex

designs that demand modeling different hierarchical levels of replication.
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Modeling log-intensities allows specifying the array effect as random such that

for some incomplete block designs, it is possible to recover inter array information

(Graybill and Deal, 1959). On the other hand, an analysis based on ratios is strictly an

intra array analysis such that there is a potential loss of information.

In this paper we demonstrate how to derive a linear model for log-ratios starting

with linear mixed model specifications for log-intensities. We further compare log—ratio

and log-intensity based models for several experimental designs. In the first section,

general methodology for deriving the log-ratio model starting from a log-intensity model

is presented. In the second section we apply the method to several designs and show in

which cases and under which circumstances the results will be equivalent. In the last

section we elaborate on the possibility of recovering inter-array information using a log-

intensity model as opposed to a log-ratio model.

Linearly transforming a log intensity model to a log ratio model.

For any two color microarray design, a linear (mixed) model can be developed to

analyze the log-intensity values (Wolfinger et al., 2001). These designs usually include

fixed effects like the two dyes, treatments and other covariates as well as random effects

such as arrays and other terms to account for different levels of replication. A log-ratio

statistical model could be derived from a log-intensities model by simply applying a

linear transformation. After applying this transformation, the original intercept and the

array effects vanish. The new intercept for the log-ratios model is simply the dye effect

(Vinciotti et al., 2005) whereas the treatment effect is parameterized in terms of a set of
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treatment contrasts (Smyth, 2004). Furthermore, the variance components in the new log-

ratios model will be a linear combination of the variance components in the log-intensity

scale. As a result, random effects often still persist in the statistical model for log-ratio

data in some designs such that they should be included. We further illustrate this

property for some designs in the next section.

Ratio models for specific designs

Consider the common reference design based on, for example, it biological

replicates per treatment for each of t treatments. The design then requires a total of nt

arrays and 2m intensity measurements, including nt measurements on the commonly

labeled reference sample, if each gene is spotted only once on each array and there is no

technical replication (i.e. no multiple measures per biological replicate within

treatments). Let’s suppose that the 2m x 1 vector of log-intensities y is sorted by

treatment and by array, as in the order provided from left to right in Figure 2.1, such that

the first dye labeled sample is specified before the second dye labeled sample within each

array. A suitable mixed effects model for the log intensity model could then be written as

follows:

-11_ -bl,l -

y 1'2 611 bl,2

y=1mp+XD[ l]+XT E +ZA E +ZB i +e [1]

72

7t ant bt,n

le _bR,1_    
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1 0

Here, XD=(1,,,®12) and XB=[1,,®I,®|:O] | ln®[1]:| define the design

matrices for the fixed effects of dye and treatment respectively. Similarly,

I 0

] I 1", 653': :H define the design matrices for the

0 1

ZA :(Int @12) and ZB =[Int ®[

random effects. Note that 1,, denotes an unitary row vector of dimension n whereas I,

denotes the identity matrix of order t. Also 69 denotes the Kronecker or direct product

(Searle, 1982) whereas we use the notation I to denote the horizontal concatenation of two

matrices. Hence it denotes the overall mean, 71 and 72 denote the fixed effects of the two

dyes, T1,... TR denote the treatment effects, a1, a2, ...., an, denote the random effects of

arrays m = l,2,...,nt, respectively, whereas ka denotes the random effect of the lth

biological replicate within the kth treatment, noting that there is only one common

replicate in the reference group having effect bRJ. Finally, e denotes the vector of

residuals which are presumed to be distributed as N(0,12,,,03 ); similarly,

2 2
am ~ NIID(0,0a) vm and 12,“, ~ NIID(0,0b) Vk,l.

Suppose that the vector of log-intensities y is sorted by array and dye (e.g. Cy3

and Cy5) within array such that the vector of log ratios, r, can be determined as r = Ly,

for L=Im ®[1 —l]. Then, as expected, the dimension nt x l of r is half that of y.

Premultiplying also the right side of Equation [1] by L, we derive the following

equilavent log-ratio model for r:
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1'1 ‘TR

Tz—TR

r=1m(t’I-72)+(1n®1:) - +3 [2]

  -7: ”TR _

2 2 _ 2 2 . 2 . . . . .

where 3 ~ N 0,1",05 for 0'5 — 0b... +20}: wrth 0b... denotrng the brologrcal variatron

for the difference between the treated and common reference biological replicates.

Either of the two model specifications ([1] or [2]) will produce identical results

using conventional ordinary least squares (OLS) estimation as appropriate when all

effects are assumed to be fixed as they are in equation [1] if we momentarily assumed

array effects to be fixed. However, assuming random array effects in equation [1] would

potentially allow for the recovery of inter-block information (Kerr, 2003a) if data is

missing.

Now consider a dye swap balanced block (t=2) design (Dobbin and Simon, 2002;

Kerr, 2003a) with n biological replicates without technical replication such that it also

defines the number of arrays as in Figure 2.2. Again, ordering the vector of log intensities

y by array and then by dye within array we have the following intensity model:

“I

_ 7’1 71 ~
y—lznfl'I'XD +XT +ZA I +8,

72 72

am

'1 01

0 1

where XD:(ln®12)’XT=1n ® ,and ZA:(In®12)'

/2 0 1

_1 0‘  
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Invoking the same distributional specifications on the random and residual effects

and developments analogous to those used in progressing from Equation [1] to [2] for the

common reference design, a fixed effect linear effects model may be specified for the

log-ratios in this balanced block design using r = Ly such that:

r :1n(71 —72)+[1% (’9[_11D(1'1-72)+8 [3]

Here 8 ~ N(0,Io'2€) which can be shown to be expressed as a function of the residual and

biological random effects of the log intensity model since 03 = 2057‘ + 20‘;2 .

Let’s now consider the balanced block design with n biological replicates per each

of the two treatments but such that now a dye swap is conducted on the same two

biological replicates hybridized twice (m=2) against each other. Then the total number of

arrays is nm. Figure 2.3 illustrates the case for m = 2. The intensity model is specified as

    

follows:

’71- ~bI,I-

y 72 a] b2,l

y=14na+XD[7]]+XT 1 +ZA +ZB E +e,

2

7r am bl,n

-TR- __b2,n_

'1 0l ’1 0‘

. O 1 0 1

Wlth XD:(12n®12)9 XT=1n® O 1 ;ZA:(12n®12) and ZB:In® 0 1 .

_l 0_ -1 0_  
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Invoking again our transformation r = Ly and the same distributional assumptions

on the random and residual effects as before, it becomes obvious that we need to specify

the random effects of biological pair replicates in the log-ratios model for this design:

a:

r = 1m, (71 — y2)+[l,, ®[_11D(rl—rz)+(ln ®I-11II bI +3. [4]

b
it

Here b; = ’91,! —b2,, are the random biological pairing effects or the differences in

the random biological replicate effects from the two treatments (1 and 2) paired against

each other on the same array. Therefore, the distribution of these random effects as a

function of the biological replicate variance component 01‘} on the log intensity scale is

b; ~ NIID(0,20g )‘V’l ; similarly, it could be readily shown 8 ~ N(0, 2Inm0e2) where 03

is the residual variance on the log intensity scale.

Note that the log-intensity model [3] and log—ratio model [4] will yield identical

results if a mixed model analysis that properly specifies the random effects is used in

both cases. However, only one random effects factor with half as many biological effects

(bf, b;,,...,b;) needs to be specified in the log-ratios model [4]. If a mixed model

software is not available (e.g. using OLS thereby ignoring bf, b;,,...,b; ), one might

treat these biological pair effects as fixed and then compute a contrast based on those

effects:

1 bl

r=12,,(7]—72)+(In®|:_1]] +£ [5]

b"

40



. A .t 1 ~ .
Then, the treatment difference would be estimated by 71—72 =—Zbk. This

n
k

contrast gives an unbiased estimate of the treatment difference, however, it will not lead

to the correct inference (i.e. standard errors and P-values) because this contrast along

with [5] ignores biological variability.

Using model [5], the OLS statistic used to test the treatment effect contrast would

fail to partition biological from technical variability. This is, under the null hypothesis

H0 271—72 2 0, the F-statistic from model [4] is not distributed following a central F-

distribution (as expected) if there is biological variability for gene expression. Conversely

because of the simpler experimental design, model [3] will provide an F statistic that will

indeed test for treatment effect, even in the presence of non-null 0,3. In this design,

treating the array as fixed or random has no effect because each array represents a

complete block.

A connected loop design is an incomplete block design that can be shown to be

particularly effective for comparing t > 2 treatments in a two color microarray system

(Tempelman, 2005). Figure 2.4 illustrates Such a design for t = 3. The corresponding log

intensity model for t = 3 as described in Rosa et a1. (2005) is presented below:
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31,11

_1.'1- b2,l

72 01 b3,1

y—16np+XD|:;/l]+XT +ZA +ZB +e,

2

7t a3n bl,n

_TR_ b2,n

_b3.n_

where,

“I 0 0‘ '1 0 0“

0 1 0 0 l 0

0 1 0 0 1 O

X=1®I,X=l® ,Z=I®1andZ=I® .
D(3n 2) T n 001 A(3n 2) B n 001

0 0 l 0 O 1

_1 0 0_ __1 o 0_    
This model could also be transformed to a log-ratio model using the same linear

transformation (i.e. r = Ly) described previously. Equation [6] represents the

corresponding log-ratio model for the t=3 as from Figure 2.4.

I I711 [6]
71—73 .,

l“=13n(?’1—7’2)+Xt +21: 1 +8
72-73

b3,n

1 —l 1 —1 0

where X,=1,,® 0 l and lb: In® 0 ["69 1 ["69 —1 are known

—1 0 —l O 1

design matrices. Again, the distribution of random effects may be parameterized in terms
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of the log-intensity model variance components ka ~ NIID(0,0§) and

8 ~ N11D(0,2082).

Unlike that of any of the other previously discussed designs, the assumption on

the specification of the array effects as fixed or random in the log-intensity model is

important in the connected loop design. Specifying array effects as fixed leads to the log-

ratio model specified in [6] above. The residual variance estimated with model [4] will be

twice the residual variance of the intensity model, while the biological variance estimates

will be identical to that from the log-intensity model. However, if array effects are

assumed to be random in the log-intensity model, there will be recovery of inter-array

information and the estimates of the treatment difference (and their standard errors) will

be different between the two models.

There are some microarray designs where there is no equivalent model between

the log-intensity and log-ratio scales, where array effects are treated as fixed or random.

This is true for the split plot design, as illustrated in Figure 2.5, where there are at least

two different treatment factors, say S and T. Consider the simplest case where each

factor has two levels. For the subplot factor, for example T, comparisons are made

between two different levels or treatments, T1 and T2 for biological replicates within

each array, analogous to that considered for the balanced block design in Figure 2.2.

Levels of the wholeplot factor S are further superimposed on this design such that s

arrays are assigned to SI and s arrays to 52. In other words, arrays serves as the

experimental units for factor S whereas biological replicates serve as the experimental
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units for T. Suppose that the data vector y is sorted by the two levels of S, by array and

then by dye. Then the linear mixed model for the log—intensity model is presented below.

— -

  

  

l O

y=1 2+0 er)’l +(r<>91)“1+1e°1 ”1+
40 23 2 9,2 2 2s a2 5 O 1 72

K ‘1 O-\-a'l'11_ all

0 I “1'12 .,

I 691 C9 + I (91 : +e,

612,

K _I O_)_at'22_ s    

where (x1 and a2 denote the fixed effects of the main plot factor, 1:1 and 1:2 denote the

fixed effect of the sub plot factor, and at” ...0t122 denote the fixed effect of the

interaction between factors, a“ ~ NIID(0,03) and e ~ N (0,1062). Given that array

serves as the experimental unit for S, array effects must be treated as random. By pre-

multiplying the incidence matrices of this model by L, the columns corresponding to the

main plot factor vanish. In other words, the following log-ratio model cannot test for

main plot factor effects.

1 1 at —02'

l‘ = 1236+{ra ®[_1D(q —t2)+[12 e313 ®[_1D[m;: _m‘2:]+e, [7]

where 8 ~ NIID(0,203).
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For the other fixed effects of interest (the sub-plot factor, interaction and simple

effects of subplot factor within main plot factor), the tests based on the log-ratio model

and log intensity model will be equivalent.

Recovery of inter-array information.

The analysis of log-ratios is equivalent to performing an intra-array analysis; in

other words, there is no other choice than to treat array effects as fixed when analyzing

log-ratios. On the other hand, one may treat array effects as fixed (intra-array analysis) or

random (combined inter-intra-array analysis) for the analysis of log intensity data. In this

section we describe a method for estimating the amount of recovery of inter-array

information using a mixed model analysis on log-intensities (i.e. treating arrays as

random).

Consider, for example, the reference design of Figure 2.1 using Equation [1] as

the analysis model. Assuming array effects to be fixed would be equivalent to analyzing

the difference (log-ratio) between the two treatments at each spot. The (intra-array)

estimate of the treatment effect is:

A 1 1 ' _

71—72=;Z(Yill’yi‘RI)—;Z(yi"2l"J’i'R1) [8]

i i '

Equation [8] shows that the intra-array estimate of the treatment difference is

actually equivalent to a log-ratio analysis. Specifically, instead of analyzing the

(k)
intensities we take the log ratio for each array: ri = yik, — YiRl and then we fit equation
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[2]. Conversely, if the array effects are considered random, two estimates of a treatment

difference are available:

A] 1, 1

a) Inter-array estrmate: 71 — 1'2 - zZI yi '21 + Vi ' R1 )
i I

20m + YiRl)

i
n

 

. 2 1 1

b) Intra-al‘ray esumatei 71—72( )=;Z(Yill_YiRl)_;Z(yi‘21_Yi'Rl)

i "1

Note that in these expressions, the choice of treatments (k=1, 2 in this example) will

determine the set of arrays (i or i’) used in the computation of contrasts. Also, note that

the subindex l for subject is entirely determined by the array subindex i. As before, there

is only one subject (R1) for the reference.

A single, minimum variance estimate can be Obtained for the treatment difference

with:

   

(0'3 i(71 “72)(1)+(0e2 +203 )(71 '72 )(2) [91

r—r’l‘:
1 2 2 2

20e+0a

 

A mixed model (equation [1] with random array) may be used to obtain the

combined intra-inter array estimate of the treatment difference in equation [9]. Kerr

(Kerr, 2003a; 2003b) present expressions to compute the variance of a treatment contrast

in this design assuming either fixed or random array effects. Specifying arrays as random

facilitates a more efficient estimation of the treatment difference. For more complex

designs, the analytical derivation of the contrast variance under a mixed model may be

unwieldy, although a numerical approach is possible using linear mixed model software
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(Rosa et al., 2005; Tempelman, 2005). This procedure has been used to compute the

relative efficiency of two designs, but can also be applied to compute the relative

efficiency of two models to estimate the treatment difference.

Assume an arbitrary linear mixed model (in the log-intensity scale):

y = XII + Zu + a ,

where y is a vector containing the elements ygijlk, fl is a vector of fixed effects (e.g. dye

and treatment effects), 11 is a vector Of random effects (e.g. array and biological replicate),

a is a vector of residuals, and X and Z are design-specific incidence matrices. For n and e

l:l~w~llillii Jill

where G is a diagonal variance-covariance matrix for the random effects with elements

we assume:

02:2 and 07,2 and R=loez, so y~N(X|3,V), with V=ZGZ’+R. In this context, the

comparison. of experimental designs may be performed in terms of their relative

efficiency to estimate a treatment difference. Given two alternative designs, A and B,

their relative efficiency may be expressed as:

A

_ Var(z'1 — 2'2 )3
 

REAzB [10]

 

Var(t'1 "' 1'2 )A

If RE)”; is > 1 implies that design A is more efficient than design B to estimate

the treatment difference. The variances under each design may be estimated analytically

(Kerr, 2003a) or numerically (Stroup, 2002) depending on the particular designs and
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models under consideration. In general, given design A with fixed and random effects

incidence matrices X4 and ZA, respectively, and a contrast vector K’, such that, for

example, K13: 1'1 — 72 specifies the estimated treatment difference, then

Var(71 42),, = K' [X',,(ZAGZ'A + R)‘1x,,]_ K.

To estimate the increase in efficiency due to recovery of inter-array information, the

equation [8] is used replacing Var(z'1 —t'2)A with the variance of the estimated treatment

difference from the fixed array effects model and Var(t”'2 —i'l)3 with the contrast

variance derived from the mixed model as follows:

Var(’t'1—z'2)3 = K. [X'B(ZBGZ'B +R)_1XB]_ K .

For example, given a common reference design, the relative efficiency of the

mixed model to the fixed array effects model is illustrated in Figure 2.6. The maximum

increase in efficiency occurs when the biological and array variance are small compared

to the residual variances. For any variance ratio close to 1, we expect a moderate increase

in efficiency on the order of 20% to 30% whereas for biological or array variances more

than four times the residual variance, the gain in efficiency will be negligible.

Analytical calculations are not possible in the connected loop design comparison

such that we use a numerical approach to estimate the contrast variances (Table 2.2). The

mixed model procedure (PROC MIXED) of SAS was used to compute the contrast

variances for both models conditional on the variance components ratios 03 303 and
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0g :03. For this design, the maximum value for the relative efficiency is 1.33 and

occurs when both biological and array variance components are zero. If the magnitude of

the residual variance is on the same order of magnitude of the other variance components

(variances ratios equal to one), the recovery of inter block information will be less that a

5% increase in efficiency.

Discussion

Linear mixed models are commonly used for the analysis of two color microarray

data. Software packages are either oriented towards the analysis of log-intensities or log-

ratios. Previous studies have compared log-ratio and log-intensity models for designs

with only one level of replication (Kerr, 2003a, b; Vinciotti et al., 2005). We have

extended these comparisons to experiments with technical and biological replication. An

appropriate log-ratio model can be derived from a linear transformation of the log-

intensity model specifying various levels of technical and biological replication. By pre-

multiplying the model components by a contrast matrix, we have shown that for some

designs (connected loop, dye swap) there is an equivalent linear model in the log-ratio

scale.

For the balanced block design, the two approaches are always equivalent. In

particular, a balanced block design without technical replication can be analyzed in either

of the two scales using fixed effects models with identical results. If technical replication

is present, the random effects of the sample (in the log-intensity model) or sample pair (in
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the log-ratio model) should also be included. Moreover, treating the biological replicates

as fixed effects does not produce the correct tests as we have shown in Table 2.1.

If more than two treatments are included in the design (for example the loop or

reference designs), the derived log-ratio model will be equivalent to the log-intensity

model based on fixed array effects. However, we have also demonstrated that the analysis

of log-ratios is sometimes not useful as it is not possible to estimate certain effects (for

example in a split-plot design). This situation can be considered an extreme case of

information loss in the intra-array analysis.

Analyzing log-ratios rather than log-intensities may involve a loss of information,

particularly if array effects are properly treated as random in the latter. The mixed model

with random array effects will tend to be more efficient than the fixed array effects model

for log-intensities (equivalent to the log-ratio model) as we have illustrated in a common

reference design and in a connected loop design. In those cases, the amount of recovery

of inter array information is a function of the variance ratios. Large residual variance

relative to both array and biological variances will lead to the maximum information

recovery using mixed model analyses in the common reference design. Simmilarly, for

the connected loop design, if either the array or biological variances are small compared

to the residual variance, the recovery of inter-array information will be maximized using

the mixed model analysis.

It is commonly perceived that two color microarrays yield a measure of relative

expression and consequently the ratios are to be preferred over absolute intensities.

However as true this argument is, it does not invalidate the use of log-intensity models,
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provided that array effects are specified. Moreover, for a simple design (dye swap design

without technical replication), the log-ratio and log-intensity models are completely

equivalent. This is analogous to the comparison of a paired t—test and ANOVA for a

randomized complete block design with two treatments. The paired t-statistic is the

square root of the F test from the ANOVA and both will yield identical P-values.

Another point to consider is the effect of normalization on the model comparison.

In this paper we assumed data to be properly normalized as well as log-transformed. In

general, the normalization is done in the log-ratio scale using intra-array LOESS (Yang et

al., 2002) from which normalized log intensities are derived. Consequently there is no

difference induced by the normalization procedure applied before fitting either log-

intensity or log-ratio models. Other methods of normalization, for example quantile

normalization, may apply differently to ratios or intensities and that could be an

additional source of differences.

To conclude, we have shown that in complex designs a log-ratio model could be

derived from a linear transformation of the corresponding log-intensity model. However,

the log-intensity models are, in general, easier to elicit, more flexible, and eventually

more efficient than log-ratio models. Analyses of log-ratios, however, may still be useful

for simple designs, especially for slightly improving computational tractability, if there is

no expected recovery of inter-array information from analyzing log-intensity data.
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Table 2.1. Expected mean squares of relevant terms in models [4] and [5]. In both cases,

the model [4] is assumed to be the data generation model. 03 Is the residual variance in

the log-intensity scale, 03, is the individual variance in the log-intensity scale.

 

Model [4] Model [5]

 

EMS(Trt) 03 + 20b2 + Q(Trt) 203 + 4013 + QITrt)

 

 

EMS B 2 2 -
( ) 0e +20b

EMS(error) 0.2 20.2

8 e
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Table 2.2. Relative efficiency of intra-inter-slide (random array) analysis compare to the

intra-slide (fixed array) analysis in the loop design (Figure 2.4). 03 Is the residual

variance in the log-intensity scale, 0% is the individual variance in the log-intensity

 

 

 

scale.

A: p=0123 =0?

031 =03 0 1A1 1A2 1 2 4 a...

0 1.33 1.22 1.17 1.11 1.07 1.04 1.00

a 1.22 1.15 1.12 1.08 1.05 1.03 1.00

1/2 1.17 1.12 1.09 1.06 1.04 1.02 1.00

1 1.11 1.08 1.06 1.04 1.03 1.01 1.00

2 1.07 1.05 1.04 1.03 1.02 1.01 1.00

4 1.04 1.03 1.02 1.01 1.01 1.01 1.00

area 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 2.1. Common reference design. Bk] is the lth biological replicate within the k

group.

1h

i.

I)

R,
i.

b 1 b

I



1,3 b1,n[91,1 I71,2 b

1 it
[91,] [71,2 b I71m

Figure 2.2. Complete block design with dye swap . Bk] is the lth biological replicate

within the kth group.
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I72,1 b2,2 [92,3 [92,4 I72,n

Figure 2.3. Dye swap design with technical replication. B,-j is the jth biological replicate

. . .th

wrthrn thet group.
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2,1 3.1 172,2 3,2 52,” 3,n

Figure 2.4. Connected loop design. Bk] is the lth biological replicate within the kt‘h group
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1,1,2 b1,2,2 I,a,2 b2,1,2 b2,2,2

Figure 2.5. Split-plot design. Bkls is the lth biological replicate within the kth group of

. . th . . . .

factor T recervrng the 3 level of factor S. The same experrmental unrt (By) 18 assrgned to

two levels of the factor S (subplot factor) in the same array. Independent experimental

units are used for the two levels of the factor T (whole plot factor).
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Figure 2.6. Relative contrast variance under different assumptions for the array effect in
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reference desrgns. 0 B Is the brologrcal varrance, 0 A IS the array varrance and 0 a Is the

residual variance.
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CHAPTER THREE

LINEAR MIXED MODELS FOR THE ANALYSIS OF RELATIVE

QUANTIFICATION OF RT-PCR DATA

ABSTRACT: Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is

currently viewed as the most precise technique to quantify levels of messenger RNA.

Relative quantification compares the expression of a target gene under two or more

experimental conditions normalized to the measured expression of a control gene. The

statistical methods and software currently available for the analysis of relative

quantification of RT-PCR data lack the flexibility and statistical properties to produce

valid inferences in a wide range of experimental situations. In this paper we present a

novel method for the analysis of relative quantification of RT-PCR data, which consists

of the analysis of cycle threshold values (CT) for a target and a control gene using a

general linear mixed model. Our method allows testing of a broader class of hypotheses

than traditional analyses such as the comparative CT. For all possible pairwise

comparisons, the estimated fold change was the same using either linear mixed models or

a comparative CT method, but a simulation study indicated that the linear mixed model

approach is more powerful. In summary, the method presented in this paper is more

accurate, powerful and flexible than the traditional analysis methods for analysis of RT-

PCR data. This new method will be especially useful for studies involving more than two

treatments and multiple experimental factors.
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1. Background

Reverse transcription (RT), followed by quantitative polymerase chain reaction (qPCR),

is currently viewed as the most accurate, sensitive, and specific technique to quantify

levels of messenger RNA (Bustin, 2000). At present, there are several instrumentations

and chemistries available for implementation of this technique, all of which rely on the

same fundamental principle (Bustin, 2000). This principle consists of the specific

amplification of cDNA from a target transcript in several cycles of PCR coupled with

measurement of a fluorescence intensity assumed to be directly proportional to the

amount of product in each cycle (Giulietti et al., 2001). This methodology has been

extensively validated, and its accuracy and specificity have been proven for the different

chemistries available (Winer et al., 1999).

The quantitative output of the RT-PCR consists of an amplification curve, which

is composed of a set of cycle numbers and associated fluorescence intensities that are

ulteriorly summarized in a single value called cycles to threshold (CT). The CT is a

unitless value defined as the fractional cycle number at which the sample fluorescence

signal passes a fixed threshold above the baseline. Because the threshold is arbitrarily set

within the exponential amplification phase, the CT is inversely proportional to the log of

the initial transcript copy number (or log-transcript concentration) of the assayed sample.

The constant of proportionality of the CT to the log-concentration is the amplification

efficiency (E).

Absolute and relative quantification strategies can be applied to measure mRNA

abundance using qRT-PCR (Giulietti et al., 2001; Johnson et al., 2000). Absolute
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quantification allows a direct comparison of expression between different treatments, but

it is more costly than relative quantification. This is specially the case when several genes

are profiled in one experiment, requiring the fit of a standard curve for each target gene.

On the other hand, relative quantification is more practical to be implemented on a large

scale but its statistical analysis remains a challenge.

Relative quantification compares the expression of a target gene under various

conditions (treatments) normalized to the measured expression of an internal control

(Pfaffl, 2001) (assumed to be constantly expressed across samples). In general, the

numerous mathematical expressions available for this calculation (Gentle et al., 2001; Liu

and Saint, 2002; Livak and Schmittgen, 2001; Marino et al., 2003; Muller et al., 2002;

Ramakers et al., 2003; Swillens et al., 2004; Tichopad et al., 2004; Tichopad et al., 2003;

Tichopad et al., 2002) may be summarized by equation (1) (Pfaffl, 2001):

ACT t t) (”12 -trt1) (l)

(ETarget ) ( arge
 

FC . = ,

011 ro

where, FCml m2 is the relative expression (fold-change) of the target gene in a sample

from treatment 1 compared to a sample from treatment 2, ETarget and Ecomml are the

amplification efficiencies of the target and the control genes, respectively, and

ACT(rarger)(m2 —trt1) is the CT of the treatment 2 minus the CT of the treatment 1. If

both amplification efficiencies take the maximum possible value (E=2), expression ( 1)

becomes the familiar Z'AACI expression (Livak and Schmittgen, 2001.). Moreover, almost

any other mathematical expression or method available in the literature to calculate the

fold change is a variant of the expression (1). The differences among the variants of
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equation (1) refer mainly to the estimation of the efficiency either from a relative

standard curve (Johnson et al., 2000; Pfaffl, 2001) or from the individual amplification

curves (Gentle etal., 2001; Swillens etal., 2004).

The methods based on expression (1) are mathematical equations devised to

calculate the fold change between two samples. These equations, however, lack the

statistical formalism needed to draw valid inferences, especially when multiple biological

replicates from each experimental group are assayed (Gentle et al., 2001; Marino et al.,

2003; Pfaffl et al., 2002). Moreover, many ad-hoc approaches associated with formulas

similar to (1) have been used with the Objective of generating a set of “companion” p-

values or standard errors (Livak and Schmittgen, 2001; Muller et al., 2002). However,

few of them are valid in the presence of both biological and technical replication.

Currently, the REST® software (Pfaffl et al., 2002) is one of the few programs that

implements a valid statistical analysis to test hypotheses and estimate the fold changes

using expression (1).

However, such software is limited to the simplest case of an experimental design

because it can analyze only pair-wise comparisons among groups under a completely

randomized design. A linear mixed model (Cook et al., 2004) was recently proposed for

the implementation of the so-called analytical method (Marino et al., 2003). Such a

model is potentially more flexible than the existing alternatives, but it makes the strong

assumption that there is a common random effect for the control and test genes in each

biological replicate. Consequently, there is a necessity for a formal statistical method for

the analysis of the relative quantification of RT-PCR data that allows the accommodation
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of more complex experimental designs (such as blocking factors) and the testing of

general hypotheses (including interactions, pairwise and group contrasts).

The objective of this paper is to present a novel, flexible method for the analysis

of relative quantification of RT-PCR data using linear mixed models. A variety of

approaches are used to validate the proposed methodology, to compare it with existing

methods, and to illustrate its flexibility. First, our model is compared to other alternatives

using a real dataset; second, a model-free simulation based on that dataset is used for

comparative validation of the methodology; third, several datasets are analyzed and

different linear models are compared; and lastly, the results from comparative CT and

linear models are compared in those datasets.

2 Results

2.1 Motivating example

Quantitative RT-PCR was used to study the expression of the gene diazeparn binding

inhibitor (DBI) in the brain of piglets subject to weaning and social isolation (Poletto et

al., 2006). The experimental layout followed a completely randomized block design (n=3

litters) and the treatments consisted of a 2 x 2 factorial combination of weaning (early

weaned or non-weaned) and social isolation (isolated or control).

Preliminary assays indicated that Sus scrofa l8S ribosomal RNA (188) was

suitable for use as an endogenous control gene. The estimated amplification efficiency of

primers of the two genes (18S and DBI) was close to two (Table 3.1 Supplementary

material). All reactions were performed in triplicates but some observations were

excluded from the analysis because of evidence of non-specific amplifications (as



revealed by dissociation curve analyses) (Giglio et al., 2003). Model (2) was used for the

analysis Of the expression of DB1 normalized to the expression of 185:

* 2

Ygijkr :TGgi Tlgj +B k +Dijk +egijkr’ ( )
gij

h

where ygijkr is the CT obtained from the thermocycler software for the gt gene from the

1h . 1h . . .th . . .th

r well, correspondrng to the k anrmal In the j litter subjected to the 1 treatment,

*

TG ig is the mean of treatment i in the expression of gene g (18S and DBI), lg,- ~N(0,

012g) is a gene-specific random effect of the jth litter, Bgijk ~N(0,0§g ) is a gene-specific

random effect of the kth piglet in the jth litter, Dijk ~N(0, 012)) is a random sample specific

effect (common to both genes) and e ~N(0,03) is a residual term. The sample
gijkr

Specific effect, Djk , captures differences among samples that are common to both genes,

particularly those that affect total mRNA concentration, such as differential extraction or

amplification efficiencies among samples. The treatments consisted of the combination of

two factors, and the sub-index i=1, 2, 3, 4 corresponds to: early weaning + control

(EWC), early weaning + isolation (EWI), non-weaning + control (NWC) and non-

weaning + isolation (NWI), respectively.

Model (2) was fit to the data using the SAS mixed procedure (Littell, 1996) and a

residual analysis was performed to check the parametric assumptions of the model. Tests

of differential expression among groups were performed for the interaction of weaning by

isolation and for pair-wise treatment differences (simple effects). Point and interval

estimates of the fold changes were approximated from the linear contrasts (in the log
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. . -AACT

scale) by back transformation. The fold changes were also estimated With the 2

method (Livak and Schmittgen, 2001) (ACT) using the two procedures presented in the

original work (Poletto et al., 2006). In the first variant (ACTHI) , equation (1) (assuming

E=2) was applied to each pair of littermates and the resulting pair-wise fold change was

then averaged. In the second variant (ACT12l), equation (1) was applied on the averaged

pair-wise CT difference among littermates. A paired t-test was used to assess the

significance of the fold change calculated with ACT[2]; no statistical tests were

performed on the fold change obtained with ACT[1 I because of insufficient replications to

implement the suggested non-parametric test (Ben Ahmed et al., 2004; Kishimoto et al.,

2004; Martell et al., 1999; Pellagatti et al., 2003; Rhoden et al., 2004).

Finally, model (3) was also used to analyze the data:

* 3

Ygijkr : TGgi + lj + Dijk + egijkr ' ( )

Model (3) is a simplified version of model (2) without the random sample and

litter effects, and is equivalent to a previously published model for analysis of

amplification curve data (Cook et al., 2004).

2.2 Testing and estimating differential expression

There was no evidence of interaction effect between isolation and weaning on the

expression of DB1 (P=0.829), but there was a significant three-fold decrease in the DBI

expression due to isolation (P=0.003). The traditional analysis method (ACT[2]) does not
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allow testing of this interaction, but it may be still used to estimate the fold change of

pair-wise comparisons (Fig. 3.1).

The estimates of fold change were similar using Model (2), (3) and ACT/2], but

the estimates were slightly larger (in absolute terms) using ACT/1] (Fig. 3.1). For

instance, in the NWI-NWC comparison, the fold change from Models (2), (3) and ACTB1

was 0.35 (i.e., suppression of 2.9 fold) while ACT/1] yielded an estimate of 0.40 (i.e.,

suppression of 2.5 fold).

The confidence intervals for the fold changes based on ACT/2] were wider than

those based on Models (2) and (3), and the general conclusions were not equivalent. For

example, Models (2) and (3) indicated a significant decrease in the expression of DBI in

response to social isolation in both early-weaned and non-weaned animals (P=0.013 and

P=0.019 respectively from model (2) ), While ACTIZ] only detected EWI - EWC as

significant (P=0.03). At a significance level of Ot=5%, Model (2) and Model (3) yielded

the same conclusions, but the confidence intervals were narrower for Model (3). Then,

depending on the significance level adopted, the conclusions might differ.

2.3 Validation through simulation

A simulation experiment was used to validate and compare alternative analysis methods.

A fair simulation study in this case precluded the use of any of the analysis models as the

data generation process. Alternatively, we permuted the real data to generate a population

of 1000 datasets with known fold changes, while keeping the original data structure,
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distribution and variability. The simulated datasets were analyzed using four methods:

Model (2), ACT[]], ACTIZ] and Model (3).

Table 3.1 summarizes the point estimates of the fold change obtained for each

contrast using the four analysis methods. Model (2), Model (3) and ACTIZ1' yielded

unbiased estimates of the fold change and the three methods had roughly the same mean

square error. On the other hand, ACT]1] produced biased estimates and also showed a

larger mean square error. The increase in the mean square error for the ACTH] based

estimates was due to both their bias and their larger variance. Moreover, the bias was

always upwards and, consequently, the over expression was exaggerated and the down

regulation was understated. For example, the expected fold change in the contrast EWI-

EWC was 2.0 but the average estimate from ACT11 I was 2.2. Conversely, for the contrast

EWC-NWC the true fold change was 0.707, but ACT/1] produced an average fold change

estimate of 0.805.

Confidence intervals (95%) for the fold changes were computed using Model (2),

Model (3) and ACTH, (Table 3.2). The narrowest confidence intervals corresponded to

Model (3), followed by Model (2) and ACT121' Nevertheless, a further analysis of the real

coverage of these “nominal” 95% confidence intervals (values within parenthesis in

Table 3.2) revealed that Model (3) yielded intervals with significantly less coverage than

the other two methods. The real coverage of confidence intervals obtained from Model

(3) was well below the nominal 95% confidence level. Confidence intervals calculated

from Model (2) exhibited the closest coverage to the nominal level. The coverage
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obtained from ACTIZ] derived confidence intervals was also close to 95%, but the width

of the confidence intervals were sensibly larger.

Model (2) and Model (3) allowed testing general linear hypotheses related to the

interaction and the main effects (including pair-wise comparisons of treatments).

Conversely, ACT/2I only allowed single effect contrasts between pairs of treatments

(Table 3.3).

Under the null hypothesis (contrast NW1 - NWC in Table 3.3), Model (2) and

ACT[2] yielded a type I error rate very close to the nominal 5% test value, and the

discrepancies observed in Table 4.4 for the ACTH] method were within the expected

simulation error (based on extensive simulations not shown in this paper). The realized

type I error rate of tests from Model (3) was clearly above the nominal error level (0.07

for 0t=0.01 and 0.18 for 01:0.05). The histograms of the p-values (Figure 3.2) show in

more detail the anomalous distribution of the p-values from model (3). The expected

distribution of p-values for a series of independent tests under null hypothesis is uniform

over the interval [0,1]. While the p-values from Model (2) and ACT[2] exhibited the

typical (uniform) distribution expected under the null hypothesis, the inverted-J shape in

Panel (a) of Figure 3.2 reveals an excess of smaller p-values.

Under the alternative hypothesis (Table 3.3, all comparisons except NW1 - NWC),

Model (3) showed the highest probability of declaring significant a fold change larger

than 1, but part of this apparent power comes from an inflated type I error rate as shown
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before. Model (1) was more powerful than ACTH] and, in absolute terms, the increase in

power was more evident for larger fold changes.

2.4 Model checking and result comparison in experimental datasets.

Although Model (2) is suitable only for the analysis of the described dataset, an

equivalent model can be elicited for any specific data structure or design layout. The

main components of Model (2) are the random sample effects and the random interaction

between sample and gene factors. Moreover, gene specific variances are assumed for the

sample-gene interaction. The measurement error term (residual effects) is assumed

homoskedastic with respect to genes.

To test the adequacy of these assumptions in a broader set of experimental data

(Abruzzo et al., 2005; Coussens et al., 2003; Coussens et al., 2004; Peirson et al., 2003;

Poletto et al., 2006; Szabo et al., 2004), six different datasets where analyzed. Details of

the datasets are presented in Table 4.4. The datasets included one to 63 test genes and

four to 80 biological samples. All datasets but one included technical replicates (assay

replicates). Twelve alternative models were compared using the Akaike information

criteria and the Bayesian information criteria (Schwarz, 1978). The models represented

the combinations of different assumptions: sample specific random effect (included or

not), sample-gene random interaction (homoskedastic, heteroskedastic, or not included in

the model), and residual variance (homogeneous or heterogeneous across genes).

The effects included in the best-fit model for each dataset are shown in the

Supplementary Material. A random sample effect was present in all models. Similarly,

the gene by sample interaction with heterogeneous variances among genes was selected

for almost all the datasets. The only exception was the MRD (Peirson et al., 2003) dataset
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where the model with homogeneous variances was preferred. A possible explanation for

this is that the dataset included only two genes (control and test) that may have not shown

significant heterogeneity of variances to select the alternative model, while the inclusion

of more test genes increases the chances of having differential variances of gene

expression. Gene specific residual variances were also generally favored by the model

selection criteria. In the TLD (Abruzzo et al., 2005) dataset, heterogeneous residual

variances could not be fit due to convergence problems. In the SHK (Szabo et al., 2004)

dataset, the residual term included both the residual and the sample-gene interaction

effects of the other models because the dataset lacks technical replicates. Consequently,

the model with heterogeneous residuals indicates the presence of a gene by sample

interaction with heterogeneous variances, heterogeneity of variance in the measurement

errors, or both. In the remaining datasets, the heterogeneity of residual variances was

caused by different (gene specific) precisions for the measurement of gene expression.

Disentangling the sources of such heterogeneity is beyond the scope of this paper, but we

anticipate that differential amplification efficiencies may be one of such causes.

Except for a few subtle differences among the models selected for each dataset,

the general model including sample and gene-sample random effects was always

preferred. The inclusion of heterogeneous residual variances had only a marginal effect

on the tests for differential expression (results not shown). In contrast, omitting the

sample-gene effect from the models increased the type I error rates over the nominal

value (as shown in the previous sections).
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2.5 Comparison of results with Z'AACT methods

The datasets were used to compare the estimation of ratios of expression between groups

using the linear mixed model and the Z-MCT methodology (ACT). For each comparison

of interest (Supp. Material), the point estimates and 95% confidence intervals of the log-

ratio of gene expression were obtained using the linear mixed model and the ACT.

Figure 3.3a presents the point estimates. As Shown, there was an almost perfect

agreement between the two model specifications. This result can actually be generalized

for other gene expression datasets so that the linear mixed model and the ACT

methodology are expected to produce very similar point estimates of fold changes.

Figure 3.3b presents the results for the width of the confidence intervals. In

general, there are more points above the indifference line than below it. This implies that

the confidence intervals for log-ratios obtained using the linear mixed model tended to be

shorter than those obtained with the ACT method. Nevertheless, there were differences

among datasets. In general, the datasets involving only two groups (MRD (Peirson et al.,

2003) and SHK (Szabo et al., 2004)) showed very similar length of confidence intervals

for the two methods. In contrast, datasets involving multiple groups tended to show

markedly shorter confidence intervals with the linear mixed models. An exception was

the SPL (Coussens et al., 2003) dataset, for which the width of the confidence intervals

did not show a clear pattern between the linear model and the ACT for the various

contrasts (treatment pairs), possibly due to an apparent heterogeneity of variances among

groups.
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3. Discussion

In this paper we presented a novel method for the analysis of relative quantification of

RT-PCR data. Our approach consists of the analysis of (raw or efficiency corrected) CT

values for a target and a control gene using a general linear mixed model. Currently, the

use of qRT-PCR is pervasive in functional genomics studies and the complexity of

experimental designs or sampling schemes have increased considerably (Hamalainen et

al., 2001; Martinez et al., 2004; Recinos et al., 2004). However, the statistical and

mathematical approaches available for the analysis of such data lack the flexibility and

statistical properties necessary to produce useful and valid inferences in complex

experimental layouts. Conversely, our method is flexible and allows the incorporation of

an arbitrarily complex experimental protocol in both the treatment structure (factorial,

time courses, etc.) and the sampling scheme (blocks, split-plots, etc.). Furthermore, the

linear mixed model allows testing any general linear hypothesis; for instance, in the first

real data example presented in this paper, we could test the hypothesis of interaction

between social isolation and early weaning in the expression of DBI in the brain of the

piglets. In contrast, the traditional analysis method (2-AACT) could not test the same

hypothesis and its application was restricted to pair-wise comparisons of treatments. With

other datasets, we could test for linear and quadratic trends in time course experiments

and for interactions and main effects in a 2x3 split-plot design (results of these contrasts

not shown).

For pair contrasts, our method (Model (2) ), Model (3) and ACTIZ] produced

srmrlar estimates of the fold change, but another Implementation of the 2 method
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(ACTHI) produced slightly different estimates. The ACTH] implementation of the 2

1S frequently used In practrce, and Its Significance rs usually assessed wrth non

parametric tests (Ben Ahmed et al., 2004; Kishimoto et al., 2004; Martell et al., 1999;

Pellagatti et al., 2003; Rhoden et al., 2004). Such a procedure could not be applied in this

case because of limited sample size. For hypothesis testing and interval estimation the

methods yielded divergent results: Model (3) showed the highest significance (lower p-

values and narrower confidence intervals) and ACT12] showed the least significant

results; Model (2) produced intermediate results.

These differences are consequence of the assumptions behind each procedure.

Particularly, our model assumes a Gaussian distribution of the log expression. It also

assumes heterogeneous variances in the expression of the target gene and the control

gene, and the presence of sample-specific effects related to the measurement protocol. A

priori, all these assumptions are plausible. The assumption of normally distributed log-

expression levels has been extensively used (Andersen et al., 2004; Brunner et al., 2004;

Szabo et al., 2004). Also, the heteroskedastic models for the analysis of several candidate

control genes presented better fit than homoskedastic alternatives (Szabo et al., 2004).

The aforementioned assumptions were reasonable in this experiment; however,

we also conducted a simulation study to evaluate the performance of our model. We

avoided the use of a parametric model for the simulation by creating a population of

datasets using resampling methods. In other words, neither the original distribution of the

CT values nor the relative technical and biological variabilities were altered. From this

simulation, Model (2) emerged as the best model for the analysis showing a correct type I
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error rate and confidence intervals coverage. Contrarily, Model (3) overstated the

significance of the comparisons and the coverage of the confidence intervals. While these

results are specific for these data, we think that the inclusion of a gene—sample specific

effect separated from a sample specific effect (as in Model 2) is more plausible than

solely inclusion of a sample effect common to both genes (as it is implicit in Model 3).

Comparing the simulation results from Model (2) and ACTIZ1’ it is evident that

the simultaneous analysis of all groups (Model (2) ) provides more power than the

independent pairwise comparisons (ACT[2])- This is not surprising because a pair

contrast within Model (2) had 6 degrees of freedom while the paired t-test associated with

ACT/2] had only 2 degrees of freedom. Moreover, the advantage of the mixed model

methodology over the ACT/2I would be larger if more treatments were included. For

instance, in a completely randomized design with 10 treatments or groups and 3

biological replicates in each, any t-test between a pair of treatments will have 4 degrees

of freedom, while an ANOVA based F-test will have 20 degrees of freedom. On the other

hand, if a certain experiment is restricted to two treatments or groups, both methods will

yield identical results.

We validated these conclusions by analyzing a set of experimental data that

included different numbers of genes and biological replications. The assumptions

regarding random effects were confirmed by model selection in every dataset.

Additionally, we found heterogeneous residual variances in most of the datasets. Using

the same datasets, the increased overall power of the linear mixed model analysis over

the comparative CT for large numbers of groups was illustrated using the width of the
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log-ratio confidence interval. In general, comparisons from experiments involving more

groups tended to show significantly shorter confidence intervals using the linear mixed

model, while comparisons from experiments with two groups yielded equivalent

confidence intervals with any methodology.

4. Conclusions

In summary, we have shown the importance of proper modeling of qRT-PCR data

for correctly controling the type I error, and we have provided a general method for the

analysis. The most important feature of our modeling approach is the use of (raw or

efficiency corrected) CT data as response variables to conduct a joint analysis of target

and control gene expression, modeling simultaneously the biological and technical

variation. Furthermore, Model (2) is a single alternative implementation of the linear

mixed model approach (the most appropriate for our real data example), but it was easily

expanded to fit data from other designs. Finally, our method is more accurate, powerful

and flexible than any existing analysis method and it is especially useful in studies

involving more than two treatments or time points and multiple experimental factors.

5. Methods

5.1 Materials and RT-PCR reactions

Sample collection, mRNA extraction, cDNA synthesis and PCR protocols are described

in detail in the Supplementary Material.
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5.2 Model derivation

We assume that the expression Zgijk (copy number or concentration of mRNA) of gene g

in sample k of litter (block) j and experimental group i can be described by:

log(zg,-jk)=TGg,-+lgI-+B (4)
gijk ’

. . . . h .

where TG,g IS the mean expressron of gene g In the It treatment, lg,- IS the random effect

of litter on each gene [lgl-~N(0, 012g )] and Bgijk is the gene and sample specific effect

[38,-], ~N(0, 0,2,8 )1.

If mRNA is isolated, cDNA is synthesized and qRT-PCR is conducted in several

independent wells for each sample in the presence of primers for each of the genes, the

generated data may be analyzed with the following model:

ygijkr : TGgi + lg] + Bgijk + Dijk + egijkr 1 (5)

where ygl-J-k, is a measured expression level in the log scale (for example: CT), Dij- is a

sample specific effect introduced by the experimental protocol and 8 is a well-
gijkr

specific measurement error.

In Model (5), Di!- represents a measurement artifact that is sample specific, and it

is assumed to be Dijk ~ N(d,- , 0,73) . This implies that the experimental protocol affects the

measurement on the sample for all assayed genes in the same way, but it may generate a

treatment bias (di). These assumptions (apart from the specific Gaussian distribution) are
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standard in relative quantification analyses. Moreover, the existence of the DU- effects is

supposedly the reason to include a control gene in such assays.

If we assume that the TGgi = p + Tgt and that 1'8,- = 0 for the control gene, and we

i.i.d

fit Model (5) assuming Dl-j ~ N(0, 022)) (i.e. Model(2) ), the following values for the

:1:

TG gi effects are expected:

TG; = a + 1'8,- + di, for g = target (6)

T0; = ,u + ‘11 , for g = control

5.3 Hypothesis testing and estimation

Suppose that the interest is to estimate the fold change between EWI (i=2) and EWC

(i=1) for the target gene (g=2) normalized to the control gene (g=1). This is equivalent to

estimate the log-difference (or log of the fold change) using:

d' — To” —TG"‘ — TG’“ —TG* (7)if(EW1-EWC)-( 22 21) ( 12 11)-

It is clear that if (6) holds (i.e. there is no differential expression of the control

gene), the expectation of (7) is:

E[dif(EWI—EWC)] = TG22 +612 ‘T021 “(11 —(d2 “‘11) = T022 “T021, (8)

which is the quantity of interest. Furthermore, point estimates, hypothesis tests and

confidence intervals of (7) are readily available, and the fold-change estimates may be

approximated by transforming point and confidence interval limits to the correct scale.

For example, if the data z are CT values, the fold change estimation formulae would be:

-di1ft EWI—EWC (9)

FC(EWl—EWC) =2 ( )-
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5.4 Data and response variable

The response variable for Model (5) may be any measure proportional to the log-mRNA

concentration in the samples. In our particular example, the amplification efficiency was

close to the optimal value (E=2), and consequently the CT values constituted a suitable

response. The Supplementary Material includes a detailed explanation of an alternative

response variable when the amplification efficiency is smaller than two.

5.5 Programs for analysis

The models implemented in this paper can be readily fit using mixed model software.

Particularly, a SAS code is available in the Supplementary Material.

5.6 Simulation study

From the expression data (raw CT) from the target (DB1) and the control (185) genes, we

computed the arithmetic mean of each treatment (averaging out all the available

biological and technical replicates), subtracted the corresponding average treatment value

from each individual observation and added the general mean. The result of this

procedure is a dataset that keeps the original variability among litters and among

technical replicates, but it has a common mean for all treatments. Subsequently, the data

were reshuffled to create 1000 datasets. Within each litter, the treatment memberships

were permutated among the four treatments, but the technical replicates were kept

together. Then, the observations corresponding to EWC animals were increased by the

value 0.5 and the observations corresponding to EWI animals were decreased by the

value 0.5. Consequently, the resulting population of trials had roughly the same

biological and technical variability of the original data, but known fold change for each

treatment pair (second column in Table 3.1).
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The analysis of this population of datasets provided a set of 1000 p-values for

each of the hypotheses tested. The type one error rate (or) was estimated by the rate of

rejections (for certain nominal 01) in the comparison EWC-NWC. Conversely, power was

estimated counting the number of rejections in any non-null hypothesis. The coverage of

the confidence intervals was estimated from the proportion of intervals that contained the

true fold change value.

5.7 Model selection

A detailed model description used for each dataset of Table 3.4 for model

selection and results comparison is presented in the Supplementary Material.
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Contrast E(FC)a FC[21” FC[ACTIf chcn[‘1 Ire/31"
 

EWI - EWC

EWI - NWI

EWC - NW

NWI - NWC

2.000

1.414

0.707

1.000  

2.059 (0.3922)

1.442 (0.1588)

0.744 (0.0470)

1.054 (0.0925) 

2.220 (0.4958)

1.558 (0.2004)

0.805 (0.0618)

1.140 (1.3200) 

2.059 (0.3959)

1.443 (01602)

0.744 (0.0474)

1.054 (0.0937) 

2.054 (0.3720)

1.440 (0.1503)

0.742 (0.0443)

1.051 (0.0875)
 

Table 3.1 Properties of the point estimates of the fold change. aexpected (true) value of

the fold change for each comparison. The other columns present the mean estimates with

their mean squared errors (in parenthesis) from 1000 simulations. bModel (2); CACTU];

d ACT[2]; and eModel (3).
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Contrast CIl2I“ CIIACTI lb (311316

EWI - EWC 3.03 (93.7 %) 6.03 (91.0 %) 1.63 (79.8 %)

EWI - NWI 2.12 (95.4 %) 4.34 (94.1 %) 1.14 (84.2 %)

EWC — NWC 1.09 (94.7 %) 2.24 (93.0 %) 0.58 (81.4 %)

NWI - NWC 1.55 (94.7 %) 3.22 (92.9 %) 0.83 (82.0 %)

 

   
 

Table 3.2. Properties of the interval estimates of the fold change. Each column presents

the mean width of the 95% confidence interval for the fold change with the actual

coverage of the interval in parenthesis. Desirable properties are coverage close to 95%

and small interval width. aModel (2); bACTp} and cModel (3).
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or: 1% or: 5%

Contrast b c a b c

19121a PIACDI P131 P121 P14c_721 P131

EWI - EWC 0.157 0.058 0.700 0.439 0.257 0.872

EWI - NWI 0.030 0.026 0.246 0.131 0.098 0.415

EWC - NWC 0.031 0.026 0.276 0.152 0.104 0.429

NWI - NWC 0.010 0.029 0.072 0.053 0.071 0.180

wean. x isol. 0.075 - 0.416 0.249 - 0.584       
Table 3.3. Properties of the hypothesis tests. p: proportion of rejected tests from the 1000

simulated datasets in each contrast at two significance levels (a). The NWI-NWC

contrast corresponded to the null hypothesis (no differential expression) and the expected

value is p= a For contrasts different from NWI-NWC, a larger value of p implies more

power. The subindex indicates the analysis method. aModel (2); bACTp} and cModel (3).
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Number Biological Assay

Dataset name Experimental Design

of genes samples replicates

 

Split plot design. Main plot

SPLIT (Coussens et

2 factor: disease status. Subplot 12 2

al., 2003)

factor: infection

Longitudinal time course

TC (Coussens et al.,

5 experiment. Timepoints: 0, 2, Four 2

2004)

4, 8, 16 hours after infection.

2 x 2 Factorial in a randomized

PFC (Poletto et al.,

5 complete block design. 12 3

2006)

Factors: weaning; isolation

MRD (Peirson et Completely randomized design

2 Eight 3

al., 2003) with two groups.

TLD (Abruzzo et Completely randomized design

64 Nine. 4

al., 2005) with two groups.

SHK (Szabo et al., Completely randomized design

6 80 1

2004) with one group.

 

Table 3.4. Experimental data for model checking and result comparison. The letters in

parenthesis are the abbreviations used in the text to refer to each dataset.
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Comparison

Figure 3.1. Fold change estimates. The log2 fold changes for four pairs of contrasts

(abscissa) are presented. Fold change scale is included on the right axis. Segments

indicate the 95% confidence interval. Comparisons whose confidence interval include the

value 0 (1 in fold change scale) are not significant at a=5%. A confidence interval or

significant level for ACT[ 1 I could not be calculated.
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Figure 3.2.Histograms of p-values under null hypothesis. Under null hypothesis, the p-

values are expected to follow a uniform distribution over the [0, 1] interval. The

departure from that distribution in model (3) indicates an excess of false positives (higher

frequencies for smaller p-values).
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Figure 3.3. Result comparison between ACT (vertical axis) and linear mixed model

(horizontal axis). (a) log fold changes. (b) length of the confidence interval for log fold

changes. The 1:1 line is represented by dots. Comparisons in each dataset are indicated

by symbols. I: TLD, O: SPLIT, A: TC, 0: MRD and O: PFC.
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CHAPTER FOUR

DESIGN AND ANALYSIS OF TWO-STAGE EXPERIMENTS FOR

TRANSCRIPTIONAL PROFILING

1. Introduction

Gene expression microarrays are powerful tools for screening the transcription

profile for thousands of genes simultaneously on any particular sample. Despite the

continuous sensitivity and increased dynamic range of microarrays, this technology is

Still regarded as lacking some precision. This limitation has prompted genomics

researchers to validate their microarray results using an independent technique, typically

quantitative reverse transcription polymerase chain reaction (qRT-PCR), although some

authors have expressed skepticism about the necessity of doing so (Rockett, 2003;

Rockett and Hellmann, 2004). At any rate, in some scientific journals, such validation is

mandatory, for example in Circulation Research and in Arthritis and Rheumatism

(Rockett, 2003).

Allison et a1. (2006) has recently posed the important question of what is

validation and how should it be performed. We assume that the ultimate objective of

gene expression technologies is to efficiently search for genes that are differentially

expressed (DE) between two or more conditions. Generally, the expression of a set of

genes that were declared DE by a rrricroarray experiment is further screened using qRT-

PCR. If a gene is also concluded to be DE using qRT-PCR, presumably in the same

direction as the microarray results, then that gene is believed to be validated. In other

words, the testing procedure is two stages; the screening or pilot phase is performed using
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microarray technology followed by a confirmatory or validation phase using qRT-PCR

for only those gene-specific null hypotheses rejected in the first stage.

Two-stage tests and designs have previously been proposed for association studies

(Lin, 2006; Satagopan and Elston, 2003; Satagopan et al., 2004). Those procedures

control the family wise error rate (FWER) and have potentially lower power when a large

number of tests are considered. More recently, two-stage designs controlling false

discovery rates (FDR) have also been proposed for association studies (Zehetmayer et al.,

2005). Miller (2001) described a very simple procedure to control the FWER in the

second stage for gene expression studies.

In practice, a researcher may be interested in assessing the number of samples

necessary to obtain certain power with a given FDR. This problem has been addressed for

single stage experiments based on microarrays (Jung, 2005). Conversely, the power and

experimental design of the confirmation phase in a two-stage test have not been

addressed in the literature. In this paper, we propose methods for helping design two-

stage experiments and provide guidelines for conducting the two-stage tests. We work

under two possible design scenarios. In the first case, the total number of samples

available is fixed and the main objective is to allocate samples to either the first stage (i.e.

microarray) or the second stage (qRT-PCR). In the second case, the necessary number of

samples to attain a given power for the second stage is determined conditional on a

previous microarray experiment. We also investigate the ramifications of using

independent samples as opposed to the same samples in both stages.

The structure of the paper is constructed as follows: In Section 2, we formulate

the problem and elicit the theory for FDR control and power calculation in a two-stage
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experiment involving multiple tests. Section 3 is divided into three parts. First, we assess

the effects of the proportion of genes that are non-DE and the proportion of genes chosen

to be validated in the second stage on overall sensitivity and FDR in the joint design of a

screening and validation experiment. Second, we study these same effects for the design

of a validation experiment upon completion of a microarray experiment. Finally we

estimate effect sizes and correlation between expression measures on the same gene in an

experimental dataset and demonstrate how to empirically infer upon sensitivity and FDR.

2. Methods

2.1 Type I error rate in a two-stage single test.

Consider an expression profiling experiment comparing just two experimental

groups or treatments. Let Xuj (Xi2j), with j=1...n in both treatments, denote the measured

expression level of a gene i in subject j within Group 1 (2).

. . . . 2
We momentarily assume a known wrthIn-group varIance 0'1 to be common to the

two treatments and (log) expression levels to be normally distributed. Specifying

di=E(X,-1j)-E(X,-2j) as the true mean difference, the classical z-test statistic has

distribution:

(1)

"(1) “(1) N(0’l)!d' =0

(1)2X11 “X12 ’
Zl ~ .

1) n1 (I)
Girl) 3 N(0}( End, >0

"1
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Here, the superscript index (1) indicates data generated under Stage 1 (microarray) such

(1)

that 0}“) =—%)- defines the effect size for Stage 1. Similarly, superscript index (2)

0'1

pertains to data derived from Stage 2 (qRT-PCR).

The joint distribution of the first stage and second stage test statistics is specified

_ -*

as bivariate normal with correlatron p :

(‘50) "1‘ I

25” ~N " l; [I 11*]

(2) ’ '
z- 2 In1 511) _2_

\- 2- 1

Now if independent samples are used for the first and second stage testing, then p*=0;

    

4’

however, if the same samples are used in both stages, we would expect p >0 to be a

monotonic function of the correlation in gene expression measurements between the two

techniques.

In general, the overall Type I error rate or for any particular gene over the two-

stage test can be readily determined as

a: J‘l—(I)[ZC2—-p§l ¢(Zl)d21, I1]

201 \Vl-P*2

where ch = (b-1011) and Z02 = (1)—1(02) are the critical values for declaring a gene to

be DE at the first and second stage tests respectively, based on stage-specific Type I error

rates 011 and 012, respectively. Under a true alternative hypothesis, the power (l-fl) of the

two-stage test is:
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I 1
_ ,2) 2.2. =1: _ .1) fl

- [.1 1:01. 4‘ m]
1—13: jl—cp 2 ¢(z1)dzl.

ch \/I—P*

\ }
  

We momentarily assume that different samples are used for each stage. Note that under

these circumstances, 0.: 01102 and (I-fl)= (1-,6(1))(1-,B(2)).

2.2 FDR and sensitivity in two-stage tests.

Table 4.1 delineates all possible combinations of outcomes of the true state of

nature with conclusions drawn from statistical analysis using a two-stage gene expression

profiling experiment. The first stage (i.e. microarray) is conducted using the same 11]

experimental units per group from each treatment for all m = m0 + m1 hypotheses or

genes, m0 of which are non DE and the remaining 111] are then DE. Hence a proportion

71'0=mO/(m1+m0) of the m gene specific hypotheses is truly null (non-DE). The first stage

(1)
rejection set involves the R hypotheses declared significant by a statistical test on the

first stage experiment; these genes are subsequently tested in a second stage (i.e. qRT-

PCR) using a set of n2 samples per group being independent from the first 111 samples. In

other words, a total of n = 11] + n2 biological replicates per treatment are used in the two

( )
stage study. Among these R 1 genes, there are Rm null hypotheses rejected again in the

second stage thereby creating a list of putatively validated DE genes. The remainder of
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)
the second stage tests (A(2 hypotheses or genes) are then generally concluded to be non-

DE. Now the correctly accepted hypotheses (true negatives) across the two stages sum to

A6” + (2) whereas the number of incorrectly accepted hypotheses (false negatives) sum

1 2 . . .

to A; )+ ( ); again, here the superscripts characterize the testing stage. Similarly, the

number of correctly rejected second stage (true positives) tests is RI‘Z’ whereas the

number of incorrectly rejected second stage hypotheses (false positives) is Rs”. Among

(1)
the R samples tested in the second stage, R0(1)=A0(2)+R0(2) determines the number of

(2 )
true negatives whereas R1(1)=A1 )+R1(2 is the number of rejected hypotheses. Hence,

the first stage false discovery rate (FDRm) is defined by the proportion R0(l)/ RU).

Among the various definitions of power for multiple tests, the sensitivity is probably the

most meaningful in microarray experiments (Pawitan et al., 2005). Table 4.2 illustrates

that applying a second stage test will generally decrease the FDR and the sensitivity.

Nevertheless, the allocation of the n samples to first stage (n1) and second stage (n2)

should be optimized in order to attain the maximum sensitivity on identifying DE genes

across the two stages.

To control the FDR and maximize the sensitivity we assume independence of the test

statistics and define the following two stage expressions:

 

 

mam = ”0“ 2 . and 131
trod + (l — 7:0)Sensitivity( )

Z (l—flj) [4]

Sensitivity(2) = 16m] ,

ml

93

 



From [4], the sensitivity is the average power of the single (non-null) tests and

represents the proportion of DE genes that we expect to detect with the two-stage

experiment. A two stage design for expression profiling should only have a sensitivity

advantage over the single stage design (i.e., using only microarrays) if the effect size of

the second stage tends to be larger that the effect size of the first stage for any particular

gene. Moreover, for a given sample partition (11 1mg) between the first and second stages,

the maximum sensitivity of the two stage design will always correspond to the largest

. 0(1) 0(1) . .

possrble . However, the largest value of 18 generally constrained by the

maximum number of first stage rejections (declared DE genes) that can be further

validated in the second stage because of budget limits. For example, if there are 4000

hypotheses tested with a microarray experiment and at most 40 of those could be

validated using high throughput qRT-PCR, then the value of am should be determined

such that

R0) 2 (1‘4”) [5]

_=7:Oa(l) 4.0-710) 1'6"“ $0.01.
112 m]

 

The second stage Type I error rate, 0(2), for statistical significance should be

chosen such that the FDR in Equation [2] is controlled at a desired level. Finally, for a

given total sample size n, the optimization should be done over the alternative sample

partitions (n1mg).

3. Results

3.1 Sample size and sample allocation.

3.1.1 Known variance and constant eflect sizes across independent genes.
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The question of how many samples are needed to simultaneously control the FDR

and attain a certain level of specificity with single-stage microarray experiments has been

addressed previously (Jung, 2005). Here we optimize the design of a two-stage

experiment by applying such a method to estimate the number of samples per group in a

single stage experiment. Subsequently, we maximize equation [4] with respect to the

sample partrtrons and a! ) subject to restrrctrons 1n FDR and proportion of genes selected

in equations (Recinos et a1.) and [5].

In summary, the two-stage design procedure proceeds as follows:

1) Specify the input parameters

a)fimaximum FDR level

b) m= total number of hypotheses

c) s= minimum target sensitivity

(1) R(1)/m= maximum proportion of hypotheses declared DE in the first

stage to be validated in the second stage

6) m: proportion of hypotheses that are null

0 (5w: First stage effect Sizes

g) 6‘12): Second stage effect sizes

2) Obtain overall sample size, n, for a single stage design, based on 1a) through g)

3) Apply the optimization over all possible partitions of n in n, and n2.

Let’s consider a couple of cases:

Case 1. f=0.05, m=4000, 7m=0.99, s=0.6, @1121. Using equation (8) in (lung, 2005)

(1)
along with n=28. $221.4, R /m= 0.01 (i.e., maximum of 40 genes to be validated), the

optimal sample allocation is n1=21 replicates per treatment in the first stage and n2=7

replicates per treatment in the second stage. With these design parameters, the sensitivity
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of the two-stage design and the single stage design are both very close to 0.6. Hence,

there would be little advantage in using a two-step design in this situation.

(1)
Case 2. If twice as many hypotheses were to be validated as in Case 1, i.e., R /m= 0.02

with all other input parameters being identical, the optimal sample allocation would then

be: n1=18 samples for the first stage and n2=10 samples for the second stage.

Furthermore, the sensitivity for the two-stage design would be 0.7 thereby substantially

exceeding the sensitivity of 0.63 for the single stage design.

Using the same procedure, the optimal sample allocation and resulting sensitivity

(
for a two-stage experiment for different proportions of genes to be validated (i.e. R 1)/m )

in the second stage are presented in Figure 4.1. In general, most of the samples are

allocated to the first stage (Figure 4.1a), but this allocation changes with the proportion of

declared DE first stage hypotheses to be validated and the effect size ratio (0‘”:0‘U). As

more declared DE hypotheses are allowed to be retested in the second stage, less samples

are proportionately assigned to the first stage. That is, if only a limited number of

hypotheses are retested in the second stage, the first stage needs to be as sensitive as

possible in order to carry over as many of the truly DE genes in the second stage. With

respect to the consequence of the effect size ratios, the minimum proportion of samples

allocated to the first step occurred at 0(2):0u)=1.4 regardless of the values for the

proportion of genes to be carried over from the first stage. From Figure 4.1b, it is further

evident that the proportion of all genes to be canied over the second stage should be at
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least equal to the proportion of genes that are DB in order to have greater sensitivity with

the use of a two-stage design. For example, if 40 out of 4000 hypotheses are true

positives (717: 0.01) and we choose to validate only 20, the sensitivity could never

exceed 0.5.

3.1.2 Varying efi‘ect sizes

In the previous section, a constant effect size was assumed for each gene within

both stages; however, we know that this assumption is generally not valid for gene

expression studies. Subsequently, we studied three different distributions for effect sizes

as illustrated in Figure 4.2: a) constant, b) symmetric and c) asymmetric decreasing.

Figures 4.3 and 4.4 display the optimal sample allocation and sensitivity

determinations based on two different across-gene means for effect size in the first stage

E(d§l))=0.4 and E(d§1))=1.0 for each of the three distribution types. In general, a

constant effect size for the first stage always had greater sensitivity (Figures 4.3 and 4.4

b). However, the sample allocation strategy changes only marginally between the three

distribution types, especially when there is a large number of samples (Figure 4.4 a).

With a larger effect size and hence smaller number of replicates to attain the desired

power, the proportion allocated to the first stage appeared to be more sensitive to the

distribution of the first stage effect size, but this was only attributable to the reallocation

of one or two samples per treatment.

We already demonstrated that different fixed ratios of the second stage to first

stage effect sizes across all genes influenced optimal sample size allocations between the

two stages (Figures 4.1, 4.3 and 4.4). We also decided to investigate variability in these
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ratios based on similar distribution specifications as considered for first stage effect size

(Figure 4.5)

It should be noted, however, that these ratios had no impact on the optimal sample

size allocation and overall power as indicated in Figure 4.6.

3.1.3 Unknown variances.

Thus far, we have assumed a known variance in all of these tests (i.e. z-tests), but

the procedure can be extended to a t—test for the more typical cases where variances are

not known and must be inferred from the data. Figure 4.7 shows the optimal sample size

allocation and sensitivity for various effect size ratios and proportion of genes to be

validated when the variance is assumed unknown. We adjusted the overall 11 to maintain

the same target minimum sensitivity level in the single stage case. For example, for

(I 1) =1, for the t-test we have n=30 while for the z-test we needed n=28 for the same

effect size using a z-test. In general, the sample size allocation is very similar to that

obtained in the known variance case, but a slightly smaller proportion is assigned to the

first stage.

3.1.4 Implementing two stage tests.

In order to determine the optimal sample allocation between the two stages, the

optimization procedure used in the previous sections also yielded the optimal significance

level cutoffs in both stages; i.e. 0(1) and 0(2). Zehetmayer et al. (Zehetmayer et al., 2005)

proposed to use a1I) calculated from equation [5] assuming a priori values for effect sizes

and 71'0 and then set armsuch that the desired FDR is attained. Such a strategy could
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certainly be used in our work with the additional restriction that the proportion of

hypotheses selected from the first stage is not larger than a specified limit. Alternatively,

a fixed proportion could be selected in the first stage and 012) then set to control the FDR.

Furthermore, the estimation of the FDR in the first and second stages requires the

specification of no, the proportion of all hypotheses that are truly null. At present, there

are several methods to estimate no, including the procedure proposed by Storey (2002)

that we subsequently use. The estimation of no is more critical in the second stage where

only a limited number of hypotheses are tested. In such situation, the FDR from the Stage

1 is an estimate of the no in the validation set.

In this section we use a simulation study to assess the properties of both testing

procedures based on an optimal design calculated in the previous section. For all cases,

variances were assumed to be unknown such that inferences are based on t-tests. We use

. I . 2 .

four procedures to deterrnrne a! ) and (II ) In order to control FDR:

. I 2 . . .

l) Estrmates of a( ) and aI ) from the optrmrzatron procedure.

. 0(1) . . . . .
2) Estrmates of from the optrrruzatron but restrrcted to a maxrmum number of

. . 2 . . . .
rejectrons and 01 )set to control FDR. Furthermore, no 18 estrmated from the valrdatron

experiment.

3) Similar to 2) but no is estimated from the FDR of the first stage.

4) Fixed proportion of hypotheses selected in the first stage with second stage

similar to 3).

99



The design was optimized for the following input parameter values: 710:0.99,

(1) (1)
#005, 0} =1, n=30, R /m=0.0.I. The optimization resulted. in 23 samples for the first

stage and 7 samples in the second stage. The true FDR and sensitivity of the two-stage

test are presented in panels a) and b), respectively, of Figure 4.8.

All testing methods provided good control of the FDR and similar sensitivity. The

first two procedures, however, are not expected to perform well (control FDR and give

maximum sensitivity) if the actual parameters are different from the values assumed in

the optimization because they do not account for uncertainty in the values of effect sizes

and 74).

3.1.5 Correlated genes.

The optimization has been performed assuming that the expression of the genes is

not correlated; i.e. expression of each gene is independent from each other. Therefore,

we used simulation to further investigate the sensitivity obtained with the selected design

when the statistical tests are correlated between genes. We specified a block-diagonal

compound symmetry correlation structure between all genes based on individual blocks

of either size 10 or 40 genes and within-block correlation coefficients of either 0.4 or

0.75. Figure 4.9 shows the sensitivity and FDR of the two-stage procedure for these

specifications.
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It can be noted from Figure 4.9 that, on average, the FDR is controlled at the

nominal level and the target sensitivity is obtained, but the variance of FDR and

sensitivity increases with the correlation.

A set of simulation studies was run over alternative partitions of n12n2 to evaluate

the sample optimal allocation under correlated tests (Figure 4.10). For a moderate

correlation structure (block size=10, p=0.4), the optimal partition coincided with that

obtained in the optimization assuming independent tests. However, for a more extreme

correlation (block size=40, p=0.4)), the optimal sample partition was slightly different,

assigning one more replication to the first stage. In practice these differences may not be

relevant and the actual gain in sensitivity might be minimal for low to moderate 11].

Even for highly correlated gene expression, the optimal sample partition (n1=26,

n2=4) is very close to the sample partition assuming uncorrelated tests (n1=23, n2=7).

Moreover, any of these sample partitions yielded practically the same sensitivity, i.e.,

very close to the target value of 0.6.

3.2 Design of a validation experiment.

3.2.1 Sample size calculation ofan independent validation experiment.

We previously considered the joint design of a screening and validation

experiment. A simpler case may be the optimization of a validation experiment upon

completion of an observed screening experiment. Several authors have addressed the

issue of sample size calculation in microarray experiments (Hu et al., 2005; Jung, 2005).
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Jung (2005) has proposed a simple algorithm for sample size calculation to attain a target

FDR and sensitivity that could be easily applied to the design of validation experiments.

Given a list of putatively differentially expressed genes from the microarray, the

associated FDR is an estimate of the proportion of null hypotheses in the set. Moreover,

from the microarray data, an estimate of the effect sizes for each gene could be obtained.

With these elements and given a target FDR and sensitivity for the validation experiment,

the required sample size can be readily computed.

Case 3:

A microarray experiment yielded a list of 25 genes declared DE, with an overall FDR of

0.20. The average effect size was 6:10. The target sensitivity of the validation

experiment was 0.9 and the FDR was specified to be either 0.01 or 0.05. Following Jung

(2005), the required sample size is n2=10 or n2=20 to control FDR at levels of 0.05 or

0.01, respectively. Moreover, to attain such FDR levels, we expect that the cutoffs for

declaring statistical significance for the validation experiment to be a2: 0.0364

(FDR=0.01) or a2=0.19 (FDR=0.05).

These values in Case 3 are calculated based on the assumption that the samples

used in the validation experiment are independent from those used in the microarray

experiment. Also, note that if the traditional comparison wise level of significance cutoffs

09:00] or 02:0.05 are used (for fixed sample size), the sensitivity is actually expected

to be smaller than the intended value.
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Figure 4.11 presents the sample size (n2) per treatment needed to validate an

experiment with 25 genes declared to be DE at different levels of FDR and average

different effect sizes. Here it; is small compared to the number of replicates (n1)

necessary for a microarray experiment, particularly for small FDR values. As expected,

the number of samples increases if the FDR from the microarray increases or if the

average effect size decreases.

3.2.2 Non-independent sample sets in screening and validation experiments.

Thus far we have assumed that different samples are used in the validation. But

due to resource constraints, the same samples are often reused for the qRT-PCR

validation experiment. Such validation might more properly be called technical

validation. If the same samples are used, the two test statistics (based on the microarray

and qRT-PCR data) on each gene are not independent and this should be accounted for

when determining a“) and 0(2).

The correlation among the tests (p*) will depend on the correlation p among

repeated measures (i.e., correlation of the microarray and qRT-PCR expression measures

on the same sample) and the number of samples in common in the two experiments (no);

that is, it can be readily shown that p* = p-‘l-EQ. Consequently, if the same biological

n

samples are used for both tests, the correlation of the tests is the repeated measure

correlation.
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In the presence of correlated tests, the actual type I error rate of the two-step test,

needs to be calculated with equation [1]. Alternatively, given a nominal type I error level

of the first step (01) and a target overall 01, 0(2) for the validation step can be obtained by

solving equation [1] for log. The power of this test can subsequently be obtained from

equation [2].

Case 4.

For a certain gene, the correlation p among repeated measurements with

microarray and qRT-PCR is 0.66. If am =0.05 and the overall type I error rate required

. 0(2)

13 04:0.0025, the second Stage p-value cutoff should be 0.0037898. On the other

hand, if p =0.56, then d2) should be equal to 0.0051.

Figure 4.12 illustrates the power of a single test for n1=n2=25 and 0‘1)=0.6 in the

first stage for three different scenarios of correlation between measures of the same gene

with different technologies (p =0, p =0.56, and p =0.66).

For a large relative effect size in the second stage, the power of the test is almost

identical regardless of the degree of correlation in the two measures. But for moderate

effect size ratios, there is a clear advantage in using independent samples for both stages.

The FDR of the two stage tests also depends on the correlation between sequential

. . . . * I

test statlstlcs. In the prevrous case, If we assume for example p =0.66, 6( )=0.6 and

0(2)=0.72, using the same value for all) as for correlated tests compared to independent
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tests, the FDR sensibly increases (Table 4.3). The value for 01(2) can also be adjusted in

correlated tests to attain an overall comparison wise error rate equivalent to the

independent test. In that case the FDR is only slightly larger than the FDR for

' . . . 2
independent tests, but the power is reduced from 0.57 to 0.42. Finally, adjustlng aI ) to

obtain the same FDR as the uncorrelated test, yields a further reduction in power in the

correlated tests, to a value I-fl=0.37.

3.3 Estimated effect sizes and correlation for microarray and qRT-PCR assays.

Throughout this paper, it is assumed that effect sizes from different technologies

are known. For illustration purposes, effect sizes in the range of 0.4 to 1.5 are commonly

used in the literature, but in practice, a pilot dataset might be used to estimate these

parameters for a similar future experiment. In this section, we estimated effect sizes using

an experimental dataset available from the pubic domain (Perreard et al., 2006). The

original dataset consisted of 123 samples of which 94 non-metastasised tumor samples

were included in the study where the absolute expression level of 53 genes was measured

using a qRT-PCR assay. Expression levels of the corresponding genes in the same

samples were retrieved from a more comprehensive microarray study (GSE2607 at

http://www.ncbi.nlm.nih.gov/geo/) The sample was divided into two groups according to

estrogen receptor status (positive, n=49 and negative, n=45). The expression values were

normalized relative to the arithmetic mean of three housekeeping genes (MRPL19,

PSMC4, and PUMl). A summary of the distribution of the effect sizes for both

technologies is presented in Figure 4.13.
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The overall effect size ratio was slightly larger than 1.0 for the expression

measured by qRT-PCR with respect to microarrays. In fact, for some cases, this ratio was

as high as 1.5 whereas for some genes the effect size estimated from microarrays was

somewhat larger than the estimated effect size for qRT-PCR. The average effect size

from both technologies was just below 1.0, indicating a moderately large effect size as

compared to other reports from gene expression studies (Pawitan et al., 2005). This result

is not surprising considering that the genes were selected based on previous knowledge of

their functional classification.

The effect sizes are a function of the experimental designs and different

experimental layouts will produce different effect size estimates because of differences in

efficiencies. In order to generalize these results to other designs, we need to specify the

relative efficiency of the two designs (Timm, 2004). For example, suppose that design A

has an effect size ESA=1.0 and that design is 1.1 times more efficient than design A, the

expected effect size of design B is ESB=1.0><1.1.

A bivariate linear model was used to estimate the residual correlation between the

two technologies for each gene. The median correlation coefficient was 0.66 and the

central 50% of the estimated values was between 0.56 and 0.79 (Figure 4.14). This high

level of correlation is on the order of the values used in the preceding section on

correlated tests.

Generalizing the estimate of the correlation to other experimental layouts is not as

straightforward as it was for effect size estimates as the task requires dissecting the

technical and biological sources of variation associated with each gene expression assay

platform.
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4 Discussion

In this study, we proposed the use of two-stage tests for expression profiling

experiments to couple results from microarrays and qRT-PCR assays. The proposal

consists of using the microarray experiment as a screening step, selecting a reduced

number of genes that are subsequently assayed using qRT-PCR. Two stage designs can

be planned a priori by splitting a sample set for usage within the two stages and defining

the number of hypothesis to carry from the first to the second stage. Previous studies

controlled the experiment wise type I error rate (Satagopan et al., 2004; Satagopan et al.,

2002), but more recently, the control of FDR in two stage experiments has been

considered for association studies (Zehetmayer et al., 2005). Recently, the use of

sensitivity has been proposed as a measure of power in multiple tests (Pawitan et al.,

2005).

Our results showed that the sensitivity of a two stage experiment at a fixed FDR

will depend on the sample size, the value and distribution of effect sizes in the first and

second stage, and the proportion of genes selected in the first stage for subsequent testing

in the second stage. For attaining a larger sensitivity in a two stage test compared to a

single stage test, the proportion of genes selected should be equal or larger than the

expected proportion of differentially expressed genes and the effect sizes of the second

stage should be larger than the effect sizes in the first stage. We focused most of our

calculations in the particular case where the proportion of selected genes is equal to the

expected proportion of true alternative hypotheses. Pawitan et al. (2005) showed that in

this circumstance, for a 710:0.99, the FDR is expected to be very high, usually larger than

0.2. In our case, however, this is not completely detrimental since the second step is
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designed to eliminate the false positives and lower the overall FDR to an acceptable

level. Conversely, selecting a small proportion of genes in the first stage for further

second stage validation will impose a constraint in the maximum sensitivity that can be

attained.

Our results indicate that in general, more samples should be assigned to the first

stage than to the second stage to maximize sensitivity. That is, generally 60 to 80 % of

all biological samples should be utilized for the microarray experiment. Lower numbers

of first stage replicates would be recommended for situations where a large proportion of

genes is selected for further validation and the relative effect size for the second stage is

around 1.4 times larger than the effect size in the first stage. We also showed that the

relative sample allocation is similar for different combinations of total numbers of

samples available, for different effect sizes, and for different distributions of the effect

sizes. The magnitude and distribution of the effect sizes however, do affect the overall

sensitivity and minimum sample size necessary to attain a certain target FDR and

sensitivity which is in accordance with results from single stage experimental designs

(Jung, 2005).

In certain studies, including a large number of arrays may be cost prohibitive. If

less arrays than the optimal number are used, the sensitivity of the experiment will be

reduced. A way to mitigate this is to use a more liberal p-value cutoff and include more

genes in the validation study (simultaneously increasing sample size), but such strategy

will also increase the overall cost of the experiment. Reducing sample size in the first

stage while keeping a stringent significance criteria can not be compensated by increasing

sample size in the second stage because the overall power of each test is (for independent
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tests) the product of the first stage and second stage power. Moreover, in the optimized

designs the power of the validation step is already close to one for all genes.

The overall sample allocation between the two stages is similar assuming known

or unknown variances, but the total sample size is increased if there is uncertainty about

the variance, especially if large effect Sizes are expected. Under these circumstances,

reduced sample sizes will lead to different total sample size if a t-test (unknown

variances) is assumed instead of a z-test (known variances). Similar to the case of single

stage experiments (Jung, 2005), the differences are minimal for effect sizes of the order

of 1.0 or smaller.

We also compared different alternatives to implement the two-stage test. Our

results suggest that an effective strategy is to select a fixed proportion of genes in the first

stage and then estimate the p-value cutoff for statistical significance in the second stage

to control the FDR at a desired level. In that case, the FDR of the selected genes from the

first stage is a suitable estimate of the proportion of null hypotheses selected from the

first stage. Interestingly, the p-value cutoffs for the second stage are much higher than the

traditional 0.05 and 0.01 values commonly employed in validation experiments. The

reason for this is that the proportion of null hypotheses in the validation set is usually

small, i.e. lower than 0.5.

In the second section of this study, we addressed the issue of designing a

validation experiment conditional on an existing microarray study and the use of the

same samples in the validation experiment (i.e. technical validation). Design optimization

of a validation experiment has not been considered before. Yet we have shown that if a

sufficiently large list of genes is being validated, the general principles of design of
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microarray experiments when controlling FDR (Jung, 2005) could be applied. Moreover,

in that case, the microarray experiment can be used as a pilot study from which the

proportion of differentially expressed genes in the validation set and effect sizes could be

estimated. In general, if the FDR of the microarray experiment is small and the effect size

is large, few additional samples and a liberal p-value cutoff for statistical significance

would be sufficient for the second stage validation experiment.

Reusing the same samples in the validation experiment is called technical

validation. This practice, though not recommended, is common (Allison et al., 2006).

One reason for this protocol is the fact that some transcriptional profiling experiments are

conducted using samples stored in the past from previous experiments and re-conducting

the validation experiment with new samples might not be feasible. We have shown that

given a false rejection (false positive) in the first stage, the chances of repeating this same

decision error in the second stage would be higher when using the same samples. In order

to control the overall type I error rate in these cases, the p-value cutoff for declaring

statistical significance in the second stage would need to be reduced. Reducing this

cutoff, however, will produce a less powerful test. In order to calculate these cutoffs, the

correlation between the tests, which in turn is a function of the correlation between

sequential measures in the same sample, needs to be determined.

Lastly, we used a publicly available dataset to estimate effect sizes and

correlation of microarray and qRT-PCR based expression measures. We found that for

this particular dataset, the effect size of the selected genes (declared as differentially

expressed) was of the order of 1.0. The average ratio of effect size from qRT-PCR to

microarray was close to 1.6 but showed a large variability with some genes having ratios
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as low as 0.6 and more than half of the genes have ratios larger than 1.0. Also the

repeated measures correlation was very high, with an average value of 0.64 and a more

than half of the genes showing a correlation larger than 0.7. These results are specific to

this particular experiment, but are within the range of parameters considered in our study.
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TABLE 4.1 Outcomes of m=m0+m1 two-stage tests. A represents accepted hypotheses,

R represents rejected hypotheses, the sub index 0 indicates true null hypotheses and 1

indicates true alternative hypotheses. The super index indicates the stage of the test.

 

 

 

 

Conclusionsfromfirst stage test

TRUE STAT A“) R”)

0F Conclusionsfrom 2nd stage test

NATURE Al?) R0) Total

['10 A0“) A012) R012) m0

H] A1”) 141(2) R10) m1
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TABLE 4.2 Error measures in two stage tests based on the quantities presented in Table

 

 

 

 

4.1.

Error Expression

measure First Stage Two-Stage

A1”) + R1”) R1”)

Sensitivity m1 m1

(2) (2) (2)

A0 + R0

(2) (2) (2) (2) (2) (2)

FDR A0 +R0 +"‘1 +R1 R0 +Rl
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Table 4.3. Sensitivity and FDR for two stage tests based on correlated test statistics.

”0:099, 511:0.6, 6121:1172, n1=n2=25

 

 

p Nominal 012 or Sensitivity FDR

0.00 0.05 0.0025 0.57 0.31

0.66 0.05 0.0179 0.64 0.73

0.66 0.0038 0.0025 0.42 0.38

0.66 0.0022 0.0016 0.53 0.31
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putatively differentially expressed at different levels of FDR , target sensitivity = 0.9,

FDR after validation = 0.05.
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GENERAL DISCUSSION

Transcription profiling is essential for eludicating gene function and regulation. In

particular, microarrays and qRT-PCR are the most commonly used platforms to measure

levels of mRNA of target genes. Since the first emergence of microarrays as the high

throughput technique of choice for transcription profiling, there has been a consensus that

sound experimental designs, appropriate statistical models and methods with validation

are crucial to the experimental process (Allison et al., 2006). In this dissertation, I

addressed some particular aspects of experimental design, statistical modeling and

validation of transcription profiling studies.

1. Objectives revisited and their impact in animal functional genomics.

1) To compare alternative reference designs for statistical efficiency of two color

microarray experiments considering multiples sources of variation.

Two color microarrays (i.e. cDNA and oligonucleotide microarrays) are platforms

of choice for transcription profiling in animal functional genomics studies. The reference

design is one of the most popular designs despite not necessarily being the most

statistically efficient. The term reference design is generally used for any different

experimental layout where a common reference is hybridized with a different test sample

in every array. Reference designs have been previously compared to other designs

(Dobbin and Simon, 2002; Kerr, 2003a; Kerr and Churchill, 2001b; Tempelman, 2005;
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Yang and Speed, 2002), but an exhaustive comparison among all variants of the reference

design has not yet been performed. In Chapter 1, the comparison among designs was

made in terms of relative efficiency for the same amount of resources. In contrast to

some previous work (Kerr and Churchill, 2001a; Yang and Speed, 2002), we make a

clear distinction between technical and biological variability. Additionally, we introduced

a new variant of the reference design, that we called Blocked Reference Design (BRD).

The BRD had the highest efficiency compared to any of the traditional design

alternatives. The BRD is potentially very useful in studies where comparisons with a

control group is of interest, yet comparisons between non-control groups are also

important. The BRD is as efficient as the replicated reference design for direct

comparisons whereas it is as efficient as the common reference design for indirect

comparisons (between non-control groups). One criticism made of the common reference

design is that each hybridization involves a sample that is of no intrinsic interest to the

researcher. This is not the case with the BRD where half of the hybridizations are also

used for the control group. Depending on the number of groups, the BDR may be more

efficient for some comparisons than other designs such as the loop design. For the

comparisons of these designs, we used a model based upon log-ratios of expression as

response variables; nevertheless, we took special care to consider all sources of variation

to account for hierarchical replication that is present in the BRD.

2) To investigate the ramifications of log-ratio versus log-intensity modeling in two

color microarrays using linear mixed effects models
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Chapter 2 compared two broad classes of statistical models used for the analysis

of microarray data. Kerr (2003b) compared log-intensity and log-ratio models for some

simple experimental designs, and we extended their work to more general cases based on

using a linear transformation that connect the two models. The focus of our study was in

modeling hierarchical sources of variation and the potential loss of information incurred

when using log-ratios rather than log-intensities as response variables. For this purpose

we used mixed model methods that had already been presented in the context of

microarray experiments (Rosa et al., 2005; Wolfinger et al., 2001).

We showed that the analysis of intensities, specifying the array as a random

effect, lead to the recovery of inter-block information. In our first chapter, we used a log-

ratio model to compare reference designs ignoring the inter-block information.

Accounting for such information, however, is more important when comparing reference

designs to direct comparison designs where there is no recovery of inter slide information

as shown by Kerr (2003a; 2003b). We showed that the recovery of inter-slide

information is very important in some other designs such as the split plot design. For that

design, the analysis of log-ratios, or the use of a log-intensity model with fixed array

effects, leads to the loss of all information for inferring upon the sub-plot factor.

Moreover, even if the recovery of interslide information is rather minor as in some cases,

we showed that it is often essential to properly account for hierarchical replication that

occasionally occurs with two color microarray designs. Formulating the correct model on

the log-ratio scale is not always a trivial task; nevertheless, such a model can always be
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derived from a log-intensity model by applying a linear transformation. Another

important point that was further evident from Chapter 2 is that treating experimental units

as fixed effects generally does not lead to proper inferences even though point estimates

and treatment differences are the same as those from a log-intensity model. These results

are relevant to the applied genomicists, particularly those using statistical analysis

software based on log-ratio models, such as LIMMA (Smyth, 2004; Smyth et al., 2005).

3) To develop linear mixed models for the analysis of relative quantification RT-

PCR data.

The qRT-PCR technology is currently the method of choice when validating

findings from microarray studies. In contrast to microarray data, the development of

statistical methodology for the statistical analysis of qRT-PCR data has been overlooked

until recently (Yuan et al., 2006). Most of the currently available statistical methods in

this area are more useful for simple experimental situations where the main goal consists

of pairwise comparisons of experimental groups. Recently, some linear models have been

proposed for the analysis of qRT-PCR data (Cook et al., 2004; Fu et al., 2006; Szabo et

al., 2004; Yuan et al., 2006). In Chapter 3 we proposed a linear model for the joint

analysis of test and control genes that allows one to accommodate an arbitrarily complex

design and to test general linear hypotheses in qRT-PCR experiments. In comparison

with some of the previous work, we again make a clear distinction between technical and

biological replicates. For example, the work by Yuan et. a1 (2006) or Szabo et. a1 (2004)
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considered only one level of replication. Fu et al. (2006) addressed the issue of technical

and biological replicates using a generalized estimation equation model, but they

simplified the model by taking the difference of CT between control and test genes in

each technical replicate. Our experience is that this strategy cannot be used in most

experimental designs because technical replicates of control and test genes generally

cannot be matched. We used a motivating example from an animal genomics study

(Poletto et al., 2006a) to demonstrate the implementation of the model and resorted to

simulation to evaluate properties of the statistical procedure and estimates derived from

it. Finally we applied the analysis model to several datasets (Coussens et al., 2003;

Coussens et al., 2004; Szabo et al., 2004) to illustrate its flexibility. Our model is more

powerful than the AACT method (Livak and Schmittgen, 2001) and provides a better

control of the Type I error rate than a previously published method (Cook et al., 2004).

Using simulation, we demonstrated the importance of including random effects of

biological replication within gene in order to correctly draw inferences in the presence of

technical replications. The linear mixed model presented in Chapter 3 is not only more

powerful than classical analysis methods, but is also more flexible as it allows testing for

general linear hypothesis such as interactions and linear trends.

4) To propose a general framework for determining the false discovery rate and

sensitivity of gene expression studies when jointly designing microarray

screening experiments linked to subsequent and selective qRT-PCR validation.
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Optimizing design of validation experiments has not been considered previously

in the statistical genomics literature. In Chapter 4, we addressed the issue of sample size

calculation and allocation in validation experiments using a two-stage testing approach.

Sample size calculations for two stage tests have been developed for association studies

(Satagopan et al., 2004; Satagopan et al., 2002; Zehetmayer et al., 2005) but not for

transcription profiling experiments. We considered various measures of power and error

control concentrating on those cases where several genes are validated in an attempt to

discover most differentially expressed genes within an experiment. We demonstrated that

more samples are generally needed in the screening stage to ensure high sensitivity for

adequate error control as necessary for microarray experiments. Conversely, we showed

that a more liberal level of statistical significance could be used in the second stage

thereby requiring fewer samples in order to attain a high sensitivity. This result per se is

very important because it defies a currently more common practice; i.e. a limited sample

size is often used for the microarray study whereas more samples are used in the qRT-

PCR stage. Moreover, the traditional levels of significance, 0.05 and 0.01, are typically

used in the second stage when a higher cutoff might yield an adequate control of the false

discovery rate. A similar finding was reported by Zehetmayer et a1. (2005) in two stage

designs for association studies. However, we have to acknowledge that the

implementation of these guidelines, however, will imply an increase in the cost of the

experiments if a high sensitivity is desired. Finally, Chapter 4 addressed the power and

false discovery rate of a technical validation study using the same samples in both stages.

Even though technical validation has been recognized as having questionable merit
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(Allison et al., 2006), it is still used extensively in functional genomics. Our results

suggest that if the same samples are used for the validation, the levels of significance

should be adjusted downwards accordingly to appropriately control the false discovery

rate. Moreover, we provide expressions to numerically calculate these levels based on the

first stage significance level and the correlation among measures on gene expression

between the two technologies. Accounting for such corrections would help mitigate the

problem of double false positives due to correlation among tests.

2. Future research directions

A natural extension of the linear mixed models used in Chapter 2 would be to

consider borrowing information across genes. Shrinkage estimators for intensity based

mixed models were presented by Cui et al. (2005) while shrinking for log-ratio models

was published by Smyth (2004; 2005) but based on the use of fixed effect models or a

very restricted class of mixed effects models. The concepts presented by Cui et al. (2005)

however, could be readily extended to a mixed model for log-ratios.

The mixed model for qRT-PCR studies assumed a simple correlation structure

among genes, as derived from the sampling scheme, but assuming no co-regulation or

biological correlation between mRNA level of genes. This assumption, though

implausible, is very common in microarrays and qRT-PCR studies; nevertheless, a

multivariate model could be used for qRT-PCR if a few genes are assayed for a large

number of samples perhaps by generalizing, for example, the model used by Poletto et al

(2006b) to incorporate technical replication. It is expected that a multivariate linear
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model will use information across genes and could yield important information about the

correlation in the expression of co-regulated genes.

Finally, given the very simple experimental setup used in Chapter 4, the sample

size allocation and rejection rules should be considered to be preliminary results as

applied to potentially more efficient incomplete block designs. In those cases,

optimization of two stage tests could be studied using mixed models for qRT-PCR as

presented in Chapter 3 for more complex designs. Such an extension, however, is limited

by the lack of knowledge regarding the correlation between the two techniques, although

this correlation could be estimated using bivariate linear models. Publicly available

datasets may provide some information about the relative effect sizes of the two

technologies and to some extent of the technical correlation, but at some point, future

experiments might be required to fully understand the co-variation for gene expression

between microarrays and qRT-PCR technologies.
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APPENDIX ONE
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SUPPLEMENTARY MATERIAL TO CHAPTER 3

The data used in the first sections of this paper are part of a study that involved the

analysis of expression of several genes in the brain of piglets subjected to weaning and

isolation stress. The complete presentation of those results is the motivation of an

independent publication(Poletto et al., 2006) and a detailed description can be found in

that paper. In this section we give more details of the statistical analysis, including

variable definition, data structure and program code.

Quantitative Real-Time RT-PCR. Q-RT—PCR was performed as described

previously(Gibson et al., 1996; Heid et al., 1996). Briefly, a total of 2 pg of total RNA

from each sample was reverse transcribed using oligo (dT)13 and SuperScript II Rnase H-

reverse transcriptase (Invitrogen Life Technologies Corp., Carlsbad, CA). Reverse

transcribed cDNA was quantified using ND-IOOO spectrophotometer (NanoDrop

Technologies Inc., Rockland, DE). A total of 30 ng of cDNA was employed in each real—

time reaction. Forward and reverse primer sequences were designed with Primer Express

2.0 Software (Applied Biosystems, Foster City, CA) and synthesized by Quiagen. The

oligonucleotide sequences of the primers are summarized in Table 1. To confirm that

primer-dimer products were not influencing final Ct values, control reactions without

template but with each set of primers were performed, with the anticipated result that no

product was amplified. Q-RT-PCR was performed and analyzed on an ABI Prism 7000

Sequence Detection System (Applied Biosystems). Sus scrofa 188 ribosomal RNA was

selected as the control gene to be used for normalization purposes based on preliminary

test reactions, as expression of this proposed control gene expression did not change
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relative to treatments. All reactions were performed using template from individual

animals in triplicate. Relative quantification methods were determined based on the

primer amplification efficiency tests(Livak and Schmittgen, 2001).

Table 1. Primer sequences and efficiencies.

 

 

 

aGene Sequence E

1 BS Forward 5'-GGCTCATTAAATCAGTTATGGTTCCT—3' 1 .99

Reverse 5'-AGCTCTAGAATTACCACAGTTATCCAAG-S'

DBI Forward 5'-GGAAGTTAAGAACCTTAAGACCAAACC-S' 1 .96

Reverse 5'-TCGCTTGTTTGTAGTGGCTGTAG-3’

2

aamplification efficiency obtained from a relative standard curve (R >O.99). The two values are

close enough to the ideal efficiency (E=2) such that the raw CT is a valid proxy for the log-

concentration of mRNA.  
Response variable for linear model analysis if E¢2. In the presence of estimates of the

amplification efficiency (E < 2.0) and CT value from each amplification curve, the

response variable for the analysis will be:

—CT "k (1)

ygijkr = “82(Egijkr g1] r )’

where the efficiency values may be estimated from the amplification curve (i.e analytical

method(Marino et al., 2003)) or from a relative standard curve included in the assay

p1ate(Pfaffl, 2001). If a relative standard curve quantification is selected, the ABI 7000

sequence detection system produces a “quantity” value in the output. Such a value is

directly proportional to the efficiency corrected CT in (1), and the user only has to

transform the value by taking logarithm. The back-transformation equivalent to equation

(9) of the Methods section will be:

difi‘ EWI—EWC (2)

FC(EWl—EWC) = 2 ( '-
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SAS code and data. The SAS program used to fit the linear mixed mode] and obtain the

log-fold change estimates is presented in Figure 1.

Figure 1. SAS Code for implementation of mixed model analysis with model (2).

 

proc mixed data=ratio;

class gene trt sample litter;

model ct=geneltrt /outp=resi;

random sample;

random litter litter*trt/group=gene;

estimate

estimate

'interaction'

'main effect:

estimate 'ewc-nwc' gene*trt -1 0 1 O 1 0 -1 O/cl,

estimate 'ewi-nwi' gene*trt 0 -1 O l O l O -1/cl,

estimate 'ewi—ewc' gene*trt 1 -l O 0 -l 1 O O/cl,

estimate 'nwi—nwc' gene*trt O 0 1 -1 O O -l l/cl,

gene*trt -1 1 1 —1 1 —1 —1 1;

ew-nw' gene*trt —.5 —.5 .5 .5

estimate 'main effect: i—c' gene*trt .5 -.5 .5 —.5

run; 
.5

-.5

.5 -.5 -.5/Cl ;

.5 -.5 .5/Cl;

  
The estimate commands provide hypothesis tests, point and interval estimates of

the log-fold change.

The input data was prepared from the relative quantification output of the ABI

7000 Sequence detection system. Treatment and litter memberships were added a

posteriori. Table 2 presents the complete dataset.
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Table 2 | Datafile used by the SAS program to fit the mixed model.

 
 

well Sample gene 51 IRI litter we" Sample gene 51 1R1 litter

A4 Fc1 188 17.02 nwc D4 Fc1 DBI 23.33 nwc

84 Fc1 188 16.46 nwc E4 Fc1 DBI 23.43 nwc

C4 Fc1 1 88 18 nwc F4 Fc1 DBI 23.3 nwc

A11 Fc11 188 18.18 nwi D11 F011 DBI 25.31 nwi

811 F011 188 18.06 nwi E11 Fc11 DBI 25.5 nwi

C11 F011 188 17.64 nwi F11 F011 D81 25.56 nwi

A6 F012 188 16.07 ewi DG F012 DBI 23.86 ewi

86 F012 188 16.12 ewi E6 F012 DBI 23.75 ewi

06 F012 188 16.13 ewi F6 F012 DBI 24.14 ewi

A10 F015 188 16.23 ewi D10 F015 DBI 23.85 ewi

810 Fc15 188 16.35 ewi E10 Fc15 DBI 23.9 ewi

C10 Fc15 188 16.56 ewi F10 F015 DBI 23.83 ewi

87 F016 188 19.45 nwi D7 F016 DBI 27.19 nwi

C7 F016 188 19.11 nwi E7 F016 DBI 28.84 nwi

85 F017 188 16.64 ewc F7 F016 DBI 28 nwi

CS F017 188 16.52 ewc 05 F017 DBI 23.08 ewc

A9 Fc18 188 17.04 ewc E5 F017 DBI 23.16 ewc

89 F018 188 16.83 ewc DQ F018 DBI 22.31 ewc

09 F018 188 16.58 ewc E9 F018 DBI 22.78 ewc

A12 Fc19 188 17.47 nwc F9 F018 DBI 23.18 ewc

812 F019 188 17.33 nwc D12 F019 DBI 23.93 nwc

C12 Fc19 188 17.53 nwc E12 F019 DBI 23.78 nwc

A1 F03 188 18.26 ewc F12 F019 DBI 24.35 nwc

81 F03 188 18.06 ewc D1 F03 DBI 24.83 ewc

C1 F03 188 18.42 ewc E1 F03 DBI 24.71 ewc

A2 F04 188 15.8 ewi F1 F03 DBI 24.76 ewc

82 F04 1 88 1 5.79 ewi D2 Fc4 DBI 24.57 ewi

C2 F04 1 88 1 5.92 ewi E2 Fc4 DBI 24.7 ewi

A3 F06 188 1 5.1 7 nwi DB F06 DBI 24.15 nwi

83 F06 188 1 5.34 nwi E3 F06 DBI 24.22 nwi

03 F06 1 88 1 5.35 nwi F3 F06 DBI 24.22 nwi

A8 F09 188 16.19 nwc DB F09 DBI 23.77 nwc

88 F09 1 88 1 6.1 2 nwc F8 F09 DBI 24.01 nwc

C8 F09 1 88 1 5.96 nwc

N
M
Q
Q
Q
Q
Q
Q
Q
Q
Q
-
‘
A
d
-
‘
A
A
N
N
N
N
-
e
—
l
-
‘
N
N
N
A
-
‘
A
O
D
O
O
O
O

N
N
O
D
O
D
O
O
C
D
C
D
O
O
C
D
O
D
-
F
-
t
A
A
A
-
F
N
N
N
N
N
—
t
-
t
-
‘
N
N
N
-
e
4
4
0
0
0
3
0
)

N

The dataset is presented in two sets of columns, one for the control gene and

one for the target gene, but it was input into 8A8 as a single dataset with six

columns.
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Model comparison. Models used in the datasets listed in Table 4 of the paper.

1. Paratuberculosis infection dataset, Full model:

ygijk, = GSIgl-j + B(S),-k + BI(S),-jk + GB(S)g,-k + GBI(S)g,-jk + egg-kl,

Where: Ygijkl is the CT observed in the [”1 well corresponding to the gm gene in the kth

sample with status 1' and treatment j. G: Gene, B: Biological sample, S: Status, 1:

treatment. GSIg,-j is the mean expression for gene g in the Status level i and treatment

~ 2 2 2

 
GB](S ) gijk ~ N(0, 0:818 ), egg-kl ~ N(O,0'ezg ). Reduced models were generated by

omitting random effects or assuming homogeneous variances.

2. Paratuberculosis time course, Full model:

ygikl = GTgi + Bk '1' BTik '70ng '1" GBTgik + 68,-“

. . lth . th . rh

Where: Ygilsi IS the CT observed In the well correspondrng to the g gene In the k

sample at time i. G: Gene, B: Biological sample, T: Time. GTgi is the mean expression

. . . 2 2
f h , B ~ , , . ~ 9 3 ~ 9 9
or gene g Int e timer k N(0 0'8) 3le N(0 O'BT) Gng N(0 0:38 )

GBTgik ~ N(0,0: ), e8,“ ~ N(O, a; ) . Reduced models were generated by omitting

Big

random effects or assuming homogeneous variances.
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3. Stress induced differential expression in piglets. Full model:

See model (5) in Material and methods of the paper.

4. rd/rd mice and Taqman low desity array. Full model:

ygikl = GTgi '1' B(T)ik 'I' GB(T)gik '1" egikl

. . lth . th . th

Where: ngkl IS the CT observed In the well correspondrng to the g gene In the k

sample from group i. G: Gene, GT8,- is the mean expression for gene g in the group i. B:

Biological sample, T: group (rd or wild type in rd/rd dataset and mutated or non-mutated

in taqman low density array dataset). B(T)ik ~ N(0, 0'12” ) , GB(T)g,-k ~ N(0, 0:81 ).

8

egikl ~ N(O, 03g ) . Reduced models were generated by omitting random effects or

assuming homogeneous variances.

5. Single tissue housekeeping comparison:

ygk = Gg +Bk +€gk

Where: ngI is the CT observed in the well corresponding to the gm gene in the kth

sample. G: Gene, B: Biological sample. Bk ~ N(0, 0': ) , egk ~ N(0, 0'3 ). Reduced

8

models were generated by omitting the random effect or assuming homogeneous error

variance.
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Table 3. Effects included in the best-fit models.

 

Random effects
 

Dataset Fixed effectsa

 

b . d

Sample Sample-genec Resrdual

* * '

SPLIT gene Status yes Yes. Gene specrfic Gene specific variance
Infection varrance

TC Gene*Time yes Yes. Gene specrfic ‘ Gene specific variance
varrance

* . * .

PFC Gene Weaning yes Yes. Gene specrfic Gene specific variance

Isolatron variance

MRD Gene*strain yes No/Yese Gene specific variance

TLD Gene*mutation yes Yes. Gene specrfic Homogeneous

variance varrance

SHK Gene yes Gene Specific variance

 

aspecification for fixed effects. brandom sample effect included (yes) or not (no).

Crandom sample by gene interaction included (yes/no) and variance of the effect

(Homogeneous or Gene specific). dSpecification of the residual variance (Homogeneous

or Gene specific). ethe model without sample-gene random effect and the model with a

sample-gene interaction (with homogeneous variances) yielded the same values for both

selection criteria.
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Table 4. Contrasts of interest.

 

 

 

 

 

 

Dataset Comparisons with ACT and LMMa Comparisons 31m LMM

Description Number only

SPLIT Simple effect of Infection 3 Interaction infection by

Simple effect of status status

TC Every time versus baseline 4 Linear and quadratic

trend

PFC Simple effect of weaning 2 Interaction weaning by

Simple effect of isolation 2 1801311011

Mrd Wild type versus mutant 1 -

TLD Mutated versus unmutated 1 -

 

aContrasts that can be obtained with both methodologies. bComparison with LMM:

contrasts that are calculated with the linear model only.
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