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ABSTRACT

ACTIVITY-AWARE MODELING AND DESIGN OPTIMIZATION OF

ON-CHIP SIGNAL INTERCONNECTS

By

Krishnan Sundaresan

On—chip global signal bus energy dissipation, thermal reliability, and latency are

all dependent upon transmitted word values. Real—world microprocessor workloads

cause bus traffic that exhibit significant spatial, temporal, and value locality. How-

e‘ver, existing signal interconnect modeling and optimization schemes are oblivious

of the correlated nature of such traffic and were developed with random or worse-

case (highly-changing) traffic conditions in mind, which limits their effectiveness. To

address this, we present activity—aware methods to model and optimize bus energy

dissipation, thermal reliability, and latency.

In the area of modeling, we present an activity-aware bus energy and thermal

model that permits monitoring of energy dissipation and temperature, both spatially

(horizontally across wires and longitudinally along individual wires) and temporally,

during microarchitectural simulation of real programs. We find that final tempera-

tures of wires in global signal buses carrying data (instruction) in the processor core

increase by as much as 37 (58) degrees Celsius during a simulation run of only a billion

instructions in 130-nm (45—nm) fabrication technology. We also find that highly—active

wires in these buses attain absolute temperatures of up to 104 (123.7) degrees in 130—

nm (45—nm) processors that are higher than the 100 degrees temperature typically

assumed during interconnect design. In addition, wire temperature gradients across

the sending and receiving ends, with magnitudes between 16-25 degrees, were also



detected. These conditions were found to degrade processor performance by at least

4% (11.92%) in 130-nm (45—nm) processors.

In bus design, we present a traffic-profile—guided approach to optimize bus en-

ergy subject to designer-specified thermal constraints and to reduce worst-case bus

crosstalk and latency conditions. Our methodology performs these by evaluating

several options for signaling individual bit values and all possible ways of mapping

bits to bus lines (bit ordering), and then choosing, based on traffic value character-

istics, an optimal encoding scheme (the combination of bit signaling and ordering)

statically at design time to support in hardware. Our energy—optimal static encoding

techniques provide bus energy reductions of 30.2% (52.1%) for processor core data (in-

struction) buses, respectively, compared to existing more-complex dynamic encoding

schemes that yield only 4.19% (5.32%) reductions for the same buses. Our static

encoding technique with thermal constraints added during optimization reduces peak

wire temperatures by up to 12.26 (12.96) degrees for data (instruction) buses, while

still providing significant energy savings. Finally, we also present a static encoding

technique that reduces worst-case bus crosstalk conditions by at least 29.35% and

a variable—cycle bus architecture that takes advantage of this reduced crosstalk to

improve bus performance by 17.42%.

Our work represents a significant advancement over existing approaches

that are activity-oblivious and/or consider worst-case traffic conditions. The

microarchitecture-level activity-driven spatiotemporal bus energy and thermal model

we present is the first of its kind. Our static value—aware bit reordering and sig-

naling techniques are also highly-novel solutions that work remarkably well in real

applications.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

High—speed systems and circuits are increasingly facing the limitations posed by

shrinking physical dimensions of transistors and their interconnections [8]. As cir-

cuits become denser, smaller transistors naturally speed up. But interconnects, in

general, do the reverse and introduce delays that reduce or even cancel the speed

gains due to smaller transistors. The problems due to interconnects are exacerbated

by the fact that parasitic resistance, inductance, and capacitance (RLC) effects in—

crease as wires scale to smaller dimensions, which in turn aggravates delay, power

consumption, and cause signal integrity/reliability problems. Thus, on—chip intercon—

nect design has been recognized as one of the most important challenge to address in

nanometer-scale integrated circuits [9,10].

1.1 Interconnect Scaling Trends: Delay, Power,

Temperature, and Reliability

According to the data available from the international technology roadmap for semi-

conductors (ITRS) documents, the intrinsic gate delay has improved ten times, from

10 ps to 1 ps in the 20 years between 1980 and 2000. However, in the same period

of time, the interconnect delay in a 1 mm line degraded 100 times, from 1 ps to

100 ps [1]. This growing disparity between gate and interconnect delays is also high-

lighted in Figure 1.1 for current and future technologies [3]. The figure shows that

while local interconnect delays scale with gate delays, global interconnect delays do



not. Such trends have forced costly performance compron'iises, like the allocation of

two out of twenty pipeline stages for communication in the Pentium—4 microproces—

 

 

 

 

sor [11].
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Figure 1.1. Gate and interconnect delay scaling for current and future nanometer-

scale technologies. Local interconnects scale with gate delay whereas global intercon-

nect delays do not [3].

Interconnects are also responsible for about 50% of the power dissipation, as shown

by results from studies on a 130 nm Intel microprocessor [4]. Figure 1.2 shows the

distribution of power dissipation by the type of the net/wire. As can be seen, global

signal lines account for 34% of the total interconnect power dissipated and hence 21%

of the total dynamic (switching-related) power dissipation at 130 nm.

Due to increased Joule heating in the global wires, their temperatures are also in-

creasing alarmingly. The spatial temperature distributions along the vertical direction
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Figure 1.2. Interconnect power dissipation due to global and local wires. Global lines

are responsible for 21% of total dynamic power dissipation at 130 nm [4].

from the Silicon (Si) substrate obtained using finite element models and simulations

are shown in Figure 1.3 [5]. This analysis assumed that all wires in the interconnect

stack carried currents with maximum rated current density for that technology which

represents an extreme worst case. Nevertheless, the results show how temperatures

will be distributed across interconnect layers. It can be observed that as technology

scales down, the temperature gradient between the top metal lines and the substrate

becomes larger. Global metal lines were found to be the hottest in all technologies

using this worst—case analysis, with temperatures reaching as much as 209°C in 45 nm

technology [5]. For the 35 nm node, the temperature gradient is smaller than that

for the 50 nm node due to the larger fraction of metalization (Cu) layers compared

to inter-layer dielectric (ILD) layers, an artifact of the ITRS scaling scenario that

was used for this analysis. It should be noted that the total height of the (Cu+ILD)



layers decreases as scaling continues, due to the smaller vertical dimensions of wires

and insulators despite increase in number of metal layers. It can also be observed

that the maximum chip temperature occurs for the long global wires, which are most

prone to electromigration failures and also give rise to highest RC delays. This has

important implications for both reliability and performance.
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Figure 1.3. Projected wire temperature rise in multi—layer interconnects for various

technologies under worst-case conditions. Global metal lines will be the hottest, with

temperatures expected to reach as much as 209°C in 45 nm technology [5]

1.2 Material, Process, and Architectural Ad-

vances

Many methods, such as utilizing Cu and low-k insulators [12—14], short-wire architec—

tures [15,16], on-chip networks [17], optical interconnects [18], and three—dimensional

interconnect structures [19,20] have been suggested to help alleviate the impact of

interconnect scaling on current and future nanometer—scale fabrication. The pros and



cons of these techniques are discussed next.

Material and process enhancements: Copper interconnects in high speed

microprocessors were introduced by IBM in its 400 MHz PowerPC750 processor. Al-

though the resistivity of Copper is 40% less than that of Aluminum, the percentage

of performance improvement from using the former is limited to about 15% [14].

The thickness and resistivity of the Tantalum (Ta) liner, used in the dual-damascene

process for Copper electrodeposition, also limit the performance advantage of Copper

interconnects. Low-k dielectrics also help improve chip performance. For example,

the performance of a metal wire improves 25% for 0.25 pm technology using a k=2.5

dielectric material compared to conventional silicon dioxide, which has k=3.9. How-

ever, the use of Copper metal and low-k dielectrics are known to aggravate thermal

issues in interconnects and cause reliability problems, during both fabrication and

chip lifetime [21].

Novel architectures: Short-wire architectures such as systolic arrays can be em-

ployed to overcome some of the problems imposed by long global interconnects [16].

Although these architectures are not applicable to all microprocessors, they can be

useful in specific applications, such as pattern recognition, multiprocessor systems,

and arithmetic computation. Orr-chip networks can be used instead of global inter-

connects to reduce the global interconnect congestion [22]. Since most of the global

wires are not utilized in every clock cycle, it is more efficient to send packets over

a global network rather than signals in global wires. However, this requires a com-

pletely new architecture, tools, and design methodology different from conventional

microprocessors.



Optical interconnections and 3D integration: It has been shown that the

optical interconnections have higher bandwidth and consume lesser power for long-

distance communication compared to electrical interconnections [23]. However, be—

cause of incompatibility with standard CMOS technology, optical interconnects have

not been widely deployed in current microprocessors. The primary application has

been restricted to clock distribution networks in some designs [24]. Three-dimensional

interconnection schemes are also expected to significantly reduce global wiring require-

ments and have a significant impact on reducing interconnect delay and power [25].

However, vertical pitch limitations resulting from alignment tolerances in the bond-

ing of wafers [26] and heat removal capacity limitations [27] are some of the problems

limiting the use of three-dimensional architectures.

1.3 Impact of Interconnects on Architecture and

VLSI

Interconnect-related problems have affected chip design to such an extent that product

roadmaps of almost all chip design companies have been drastically re—drawn as it

is becoming evident that high-speed processors—with clock frequencies exceeding

10 GHz—are no longer economically viable, due to restrictions imposed by power,

temperature, and reliability [28-30]. The impact of interconnect scaling and power

and performance issues affects the very first architectural design decisions of today’s

processors [31,32].



1.3. 1 Wire Delay

Processor clock speeds have increased continuously, due to faster transistors and also

due to deeper pipelines. However, since global wire delays—for example, delay of

register bypass wires—scale much slower than transistor delays, deeper superscalar

pipelines have experienced increased latencies and a significant degradation in in-

struction throughput. Several studies have pointed out rising wire delays dictate that

deeper pipelines will not perform better than shallower ones in future technologies

and also conclude that superscalars do not have sufficient parallelism to tolerate the

relative rise in wire delays [33,34]. Hence the industry trend toward multi-core and

multithreaded architectures [35].
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Figure 1.4. Pipeline stages and loops in a typical out—of—order processor. More fre-

quently used loops like fetch, LSQ, and bypass are affected strongly by wire delay.

We briefly examine next why wire delay trends affect architectural decisions. An

out-of-order superscalar pipeline is composed of two in-order half-pipelines, called

the front-end and back—end, connected by the issue queue. Figure 1.4 shows this

configuration and the various loops in the pipeline [35]. Wire delay affects many of



these loops significantly as discussed next. The fetch loop is due to the fact that

the current program counter (PC) is used to predict the next PC. The delay of

this loop includes the instruction bus and cache delays. The rename loop is due to

the dependence between a previous instruction assigning a rename tag and a later

instruction reading the tag and the issue loop is due to the dependence between the

producer and wakeup of a consumer instruction. The rename and issue loop delays

are sensitive to the delay on the tag lines. The load misspeculation loop is due to

use of speculation and the need for load-miss replay. The load/store queue (LSQ)

loop is due the dependence between a previous store and a later load to the same

address and includes the load/store bus and data cache delays. The various bypass

loops—EX/EX, EX-MEM, and Writeback-EX—are all affected by the wire delays on

the ALU result bus. Also, the more frequently a loop is used, the higher its impact on

performance. The fetch, rename, issue, and bypass loops are all fairly frequent and

hence have the highest impact. The load misspeculation and branch misprediction

loops that are used only upon load misses and branch mispredictions, respectively,

are relatively less frequent and have lesser impact.

1.3.2 Power and Temperature

Power has become a first-class constraint in the design of nanometer-scale ICs. Fig-

ure 1.5 shows the trend observed in the power dissipation of Intel microprocessors [6].

In 2001, it was predicted that with the scaling rates at that time, the power density in

microprocessors will reach that of the Sun by 2015, following an almost exponential

trend [6]. Since then various steps have been taken to reduce power dissipation in logic

and memories with techniques at various levels of abstraction. These have resulted



in reducing the trend to a linear one, as shown by the dotted line in Figure 1.5.
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Figure 1.5. Power dissipation in Intel processors showing an exponential trend [6].

Since 2001, low-power and power management techniques that have been used widely

in microprocessors and have helped slow down the trend somewhat.

Among the three different sub—systems of a high-performance processor—

computation, storage, and communication—the communication or interconnect sub-

system, which carries address, instruction, data, and control signals, is still respon-

sible for a bulk of the on—chip power dissipation as discussed earlier, in part due

to interconnect scaling trends. With increasing interconnect power dissipation, wire

temperatures rise as a result of the Joule effect, wire resistance increases due to

temperature-dependent resistivity forcing performance to degrade further, and wire

reliability decreases sharply due to electromigration-induced breakage. Even with the

advent of multi-core processors, clock frequencies and datapath widths have continued

to increase and hence, all of the above effects are bound to worsen further. Hence,



interconnect power dissipation and temperature remains one of the primary issues

facing microarchitects and VLSI designers.

Popular low-power and power-management techniques like fine-grained clock gat-

ing and power gating can also significantly affect on—chip temperature profiles by

creating localized hot spots and/or temperature gradients on the chip. These gradi-

ents cause delay variabilities, setup and hold time violations and, in the worst case,

failure of interconnects that are routed across regions with varying temperatures. De-

signing for these issues is almost impossible because accurate techniques to estimate

temperature gradients in interconnects are currently unavailable. Thus, study of the

thermal impact of architectural techniques is also becoming important.

1.3.3 Computer-Aided Design Tool Requirements

In conventional ASIC design, signal and power integrity were checked in later stages

of the design cycle and the design was modified if these checks were found to be unsat-

isfactory. However, with explosion in the number of transistors and highly-complex

designs in nanometer-scale technologies, iterating between upstream (architecture or

high-level) design changes and layout to achieve design closure has becoming increas—

ingly futile, leading to longer time-to-market schedules and higher design costs [9].

The design-productivity gap, exemplified by the lack of proper CAD tools to identify

and correct issues at an early stage, exacerbates this problem. While the push to-

ward ever-higher performance still drives the semiconductor industry, there is growing

awareness now that winning designs need to balance multiple objectives: high per-

formance, low power, low cost, robustness (noise immunity), and reliability. As such,

it is becoming imperative to: (1) model interconnect—related effects accurately and
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efficiently for different system architectures (superscalar, multi-core, and network-on-

chip) and fabrication technologies (130 nm, 90 nm, etc.) and (2) design the intercon-

nect system, at an early stage, to alleviate or mitigate these effects without incurring

unsustainable performance, energy, and/or area/cost overheads.

1.4 Drawbacks in Existing Techniques

Next, we discuss some drawbacks of existing models and design techniques for signal

interconnects. First, almost all existing work addressing signal interconnect analy-

sis, design, and optimization is not activity-aware, i.e., such interconnect models and

design techniques are not developed with an accurate knowledge of the characteris-

tics of data that is transmitted on these interconnects. An average wire switching

factor—such as 0.15 suggested in [36]——is used to estimate energy dissipation, wire

temperature, delay impact, and/or reliability impact [37,38]. As such, these average

estimates lead to over-design because switching activity in interconnects is actually

information and time dependent. It depends on the type of information (address, in-

struction, data, or control) being transmitted because the information type influences

switching activity factors; for example, the activity factor is expected to be higher for

data and instruction streams since they are more random in nature than addresses.

It varies with time too because, during execution of most typical programs, there

are substantial periods when a bus may remain idle; for example, when there are no

level-one (L1) cache misses, the bus connecting to level-two (L2) cache will remain

idle. These idle cycles help bring down wire temperatures and hence, may reduce

wire delay and electromigration impact. Hence, to facilitate interconnect design that
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can be tuned to the requirements of different architectures, activity-aware modeling

and design optimization techniques are necessary.

Second, as mentioned earlier, increasing the number of iterations between high-

level design and physical layout to achieve design closure, has become exorbitantly

costly, time—consuming, and impractical in nanometer designs. Hence, growing em-

phasis is being placed on making accurate early-stage design decisions obtained using

microarchitecture-Ievel simulations on benchmark programs. Interconnect models

that have been built into existing execution-driven simulators lack the detail needed

to accurately estimate the impact of interconnect power dissipation, temperature,

and related effects, since many not consider the influence of wire coupling and ther-

mal heat dissipation paths. For example, the amount of energy dissipated due to the

parasitic coupling capacitance between wires is much greater than energy dissipated

due to the area capacitance. Similarly, thermal coupling or heat transfer through the

inter-metal dielectric occurs between adjacent wires, affecting temperatures in both

wires.

1.5 The Need for Activity-Aware Design

Existing techniques that target bus energy and crosstalk reductions, perform well

only when patterns that are transmitted on the bus are randomly distributed in

time. However, this is rarely the case in actual microprocessor buses. Information

transmitted on these buses show high degrees of correlation across programs as well

as across sections of the same program, due to the presence of temporal, spatial, and

value localities. Temporal locality describes the likelihood that a recently-referenced
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item will be referenced again seen, while spatial locality describes the likelihood

that a close neighbor of a recently—referenced item will be referenced soon. Value

locality refers to the likelihood of a previously-seen value recurring repeatedly in the

information stream.

Address, instruction, and data streams in microprocessor buses exhibit substantial

amounts of temporal and spatial locality due to the reasons discussed next. Instruc-

tion addresses issued by the processor to the L1 cache are typically sequential, except

when branches or jumps occur and even then the target addresses are not typically

very far away from the last address. This is the reason why many instruction sets use

PC-relative addressing with shorter-than—full—word-size offsets for branch and jump

instructions. Data addresses issued by the processor are also exhibit these localities

primarily because of scanning of data arrays in loops that are placed in contiguous

memory locations.

The dynamic instruction stream executed by a processor corresponds to instruc—

tion addresses issued by fetch unit, and hence instructions exhibit the same temporal

and spatial locality as instruction addresses. Also, not all instructions, instruction

sequences, opcodes, register operands, and immediate constants are present equally

frequently in the dynamic instruction mix, leading to more predictability in the in-

struction stream. The reasons for the presence of such redundancies are that all pro-

grams share certain basic characteristics: procedures and procedure calls, branches

every few instructions—~typically every six instructions [39], and loops and if—then-else

clauses that lead to repetitive instruction sequences.

Data buses in the processor, such as load/store and ALU result buses, also exhibit

temporal and spatial locality, although to a lesser extent than addresses and instruc-

13



tion buses. There is an additional element of redundancy present in the magnitude

of values communicated by these buses and stored in registers, data caches, and/or

CAM structures in the processor core. This redundancy is due to the fact that for

any given type of data—character, integer, floating-point, etc—not all values are

equally likely. For instance, many programs do not tend to use the entire range of

integer values possible, but rather the values used tend to be concentrated around

certain values, especially, zero. For such small magnitude two’s complement numbers,

most high order bits of the data bus are likely to be either all zero (positive) or all

one (negative) due to sign extension. The concept of value locality also adds to the

redundancies present in data buses. For example, the number of times each static

load (or store) instruction retrieves a value from (or writes to) memory that matches

a previously seen value, is quite high. Studies have shown that this value is around

50% for most superscalar processors running standard benchmark applications [40].

The presence of temporal, spatial, and value localities in information streams

opens opportunities for activity-aware design of high-performance buses, i.e., design

that is tailored to the unique characteristics of different types of data that are trans-

mitted on these buses, as well as to the typical applications that are executed on

the processor. Such design can be achieved with the following steps: (1) profile the

information transmitted on target buses using cycle-accurate microarchitecture-level

simulators for a representative workload, (2) identify opportunities by correlating,

for example, the number of self and coupling transitions with objective function (bus

energy, temperature, crosstalk, etc.), (3) and design techniques that minimize the

value of the objective function. Although, the technique is designed using a rep-

resentative workload, it is likely to work well for any real application in the same
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domain due to the similarities in program characteristics. In fact, computer architec-

ture continue to use similar methodologies to design efficient branch, load-value, and

other prediction-based techniques to improve instruction—level parallelism in modern

superscalar processors.

1.6 Our Contributions

As presented earlier, accurate modeling and cost-effective design of global signal inter-

connects is a critical issue in current and future nanometer-scale design. Since inter-

connect performance (wire delay) and energy dissipation depend closely on switching

characteristics of the data stream, activity-aware modeling and design approaches

are important. Furthermore, the introduction of Cu and low-k dielectrics exacerbate

problems such as wire self-heating which need to be modeled, along with the impact

of temperature on wire delay variability. Finally, newer design techniques are needed

to deal with rising interconnect power dissipation and temperature since existing

techniques are not effective in most real architectures, workloads, and applications.

The objective of this research is to provide a methodology to model and design

signal interconnects in nanometer-scale ICs and address power, temperature, and per-

formance concerns during early-stage design. To accomplish this goal, four research

tasks were identified and novel contributions are made in each.

1.6.1 Activity-Aware Design Methodology

Our research is perhaps the first attempt that proposes and examines activity-aware

design techniques for global signal buses. Existing techniques rely on worst-case



estimates to design high-performance buses, resulting in overly-pessimistic energy,

temperature, and clock cycle time estimates. Due to lack of accurate models suitable

for early stage design exploration, interconnect design is done late in the design cy-

cle, offering very limited opportunities to optimize the architecture for performance,

power, and cost. In contrast, the methodology we propose examines typical applica-

tions, collects statistics for different types of data, and optimizes the design of target

buses, all using early stage simulation. Thus interconnect design can be completed

early in the design cycle and it can be used as a parameter in design space exploration.

1.6.2 Accurate Energy, Temperature, and Delay Modeling

We introduce accurate modeling techniques to help estimate the impact of activity-

dependent interconnect energy dissipation, wire temperature rise due to Joule heating

and delay variation due to temperature, using a microarchitecture-level simulator. In

addition to self capacitance, our model incorporates the effects of capacitive cou-

pling between adjacent as well as non-adjacent pairs of wires and repeater insertion

on switching energy, the effect of lateral heat transfer between adjacent wires to esti-

mate wire temperatures, and also estimates wire temperature gradients and its impact

on wire delay, all of which were not available in earlier models. We estimate from

simulations using our model for 130 nm technology node that, during the time in-

terval taken to commit one billion instructions in the pipeline, high performance bus

wire temperatures rise by 10-37°C for various SPEC CPU2000 benchmarks. This is

solely due to Joule heat dissipated due to wire switching activities. In a future 45 nm

technology node, wire temperature rise for the same set of benchmarks and simula-

tion sample was found to be between 20-58°C. We observed that instruction and data
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bus wires attained absolute temperature in the range 80.3—104°C and 97.6—123.7°C, in

130 nm and 45 nm processors, respectively, during the course of our simulation, show-

ing that signal lines attain significant temperatures too. Significant wire temperature

gradients of magnitude between 16—25°C were found to be most common between

the sending and receiving ends of the wires during the course of simulation. Notable

correlation was found to exist between energy dissipation behavior and wire temper-

ature rise in buses across time; short, intermittent cycles of high energy-dissipating

switching activity trigger steep changes in temperature.

We also developed models that track the impact of changing wire temperature on

timing/delay violations occurring in global signal buses during microarchitecture-level

exploration. Results show that for a 130 nm processor with no power and thermal

management the temperature-induced clock cycle time violations in an ALU result

bus—which is on the critical path—is 2.27 per hundred bus references, averaged over

ten programs in the SPEC CPU2000 workload. It increases to an average of 6.20

per hundred bus references for the same processor at the 45 nm technology node.

Our analysis also shows that conventional techniques like bus encoding that seek to

reduce energy dissipation and potentially wire temperatures have limited impact on

alleviating temperature-induced delay violations.

1.6.3 Profile-Guided Optimization Techniques

Efforts to reduce bus energy dissipation, particularly in long global signal buses,

are becoming increasingly important in nanometer-scale technologies as intercon-

nects continue to aggravate performance, power, and cost. While dynamic encoding

schemes have been proposed to reduce bus switching energy, they do not work well for
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correlated traffic such as those found in typical workloads like SPEC CPU2000 bench—

marks. Hence, we develop static bus encoding techniques and present a methodology

to design such schemes in an optimal manner. Being completely static, such schemes

can be designed during early stage microarchitectural exploration and incur mini-

mal run-time hardware area/cost, power, and latency compared to dynamic encoding

logic. We use a microarchitecture-level simulator, profile representative samples of

SPEC CPU2000 benchmarks to collect data, and use integer linear programming

to design our encoding scheme. Results show that, for the SPEC CPU2000 work-

load, i.e., workstation/PC class processors, total bus energy dissipation reduced by

as much as 22.79%/40.77% for data/instruction buses when our best static encoding

scheme was applied. In contrast, existing dynamic bus encoding techniques yield only

4.19%/5.32% reductions for the same type of bus traffic.

1.6.4 Novel Thermal Optimization Methodology

Apart from bus energy, rising wire temperatures are also becoming an important

issue to address in high performance buses since they affect wire delay and reliabil-

ity. We propose a first-of—its—kind methodology to design temperature-aware encoding

schemes by trading off some of the energy gains we obtain with static encoding tech-

niques to achieve wire temperature reduction. In this methodology we add tempera-

ture constraints during energy optimization, and our ILP produces a static encoding

scheme that reduces maximum/hottest wire temperatures by up to 15.23 K/ 16.17 K

for data/instruction buses while still producing significant total bus energy reductions.
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1.6.5 Performance-Oriented Adaptive Bus Design

The rate at which signals can be transmitted in a high—speed processor bus is decided

based on the worst-case crosstalk pattern. This pessimistic estimation gives rise to

significant performance penalties since the worst case never occurs or occurs with

very low frequency in actual applications. Hence, we propose an adaptive bus design,

called variable cycle bus (VCB) architecture, that examines incoming data patterns

and transmits them using variable number of clock cycles, improving bus performance

significantly. To maximize effectiveness of our adaptive bus architecture, we propose a

profile—guided optimization approach—like the one described earlier in Section 1.6.3—

to reorder and signal bits to minimize bus crosstalk. Results on SPEC CPU 2000

benchmarks, in a general-purpose optimization scenario, show a 29.35% reduction in

1+4r cycles, a 20.29% reduction in 1+3r cycles, and a bus performance improvement

of 17.42% for a VCB with static reordering and signaling technique targeting bus

crosstalk minimization.

1.7 Dissertation Outline

This remainder of this dissertation is organized as follows. Next, Chapter 2 presents

a background on interconnect analysis and optimization for delay and power and pro-

vides a general overview of our experimental methodology and simulation infrastruc-

ture. Following that, in Chapter 3 we present the model for estimating activity-driven

energy and temperature in processor buses and study the energy and temperature

characteristics of data and instruction buses. Then, in Chapter 4, we present the

model for estimating data and temperature-dependent delay variability and exam-
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ine the impact of delay variability on the performance of a processor in current and

future fabrication technologies. Next in Chapter 5, we discuss novel interconnect

optimization techniques to reduce processor bus energy and temperatures. Then, we

discuss delay optimization techniques in Chapter 6. Finally, we conclude and present

directions for future work in Chapter 7.
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CHAPTER 2

PRELIMINARIES

Integrated circuits (ICs) consist of two basic components: transistors and their inter-

connections. As more and more devices are integrated on a single die, wires or inter-

connections gain importance and play an important role in determining the speed,

area, reliability, and yield of VLSI circuits [41]. In this chapter, we provide a brief

introduction to some terminology used in the context of interconnect design and dis-

cuss interconnect analysis and optimization methods. We also discuss the role of

architecture-level simulators in interconnect analysis and design. Finally, we outline

the general experimental methodology followed in our experiments.

2.1 Interconnect Analysis Methods

Interconnect analysis as it applied to power and timing seeks to answer three ques-

tions: (1) what is the effective loading due to the interconnect? — this is necessary for

driver/repeater sizing to minimize delay and to estimate power dissipation, (2) what

is delay and slew at the receivers? and (3) what is the effect of switching of this and

other neighboring nets on power dissipation and propagation delay? This analysis can

be performed with dynamic circuit simulation, in which specific stimuli are applied

to the circuits and interconnect in question. Unfortunately, this technique cannot be

practically applied to the millions of transistors on a digital integrated circuit. Hence

interconnect analysis is performed using simpler models. Interconnects in a VLSI

21



chip can be grouped into three categories, based on their length, as discussed next.

2.1.1 Global, Semiglobal, and Local Wires

Since it is not possible to connect millions of transistors on the die using only one level

of interconnect, multi-layer interconnect structures are commonly used. The metal

layers closest to the Silicon (Si) substrate are called local interconnects/wires. The

next few layers are called semiglobal or intermediate interconnects, and the top layers

are called global interconnects. The wires in the global layers are wider and thicker

and this yields shorter propagation (or RC) delays since wire resistance and hence

delay is inversely proportional to the area of cross section. Consequently, these layers

are used to route high performance buses in the core of the microprocessor. Wider

and thicker wires at higher layers are also used to provide low-resistance power/clock

distribution lines to different regions of the chip. Layer assignment, i.e., the decision

to route a wire/net in the local, semiglobal, or global layer, is performed based on

stochastic wire length estimates [42]. In our research, we are interested in power,

temperature, performance, and reliability optimization of longer wires, i.e., semiglobal

and global wires that are used to route high performance buses. These interconnects

are analyzed using the models discussed next.

2.1.2 Interconnect Models: RC and RLC

Interconnects, in general, have three important electric characteristics: resistance (R),

capacitance (C), and inductance (L). All three depends on the interconnect geometry

and its position relative to the other surrounding structures. These parasitics affect

circuit performance; capacitance adds load to driving gates, resistance, inductance,
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and capacitance all add signal delay, and inductive and capacitive coupling between

interconnects add signal noise.

The circuit parasitics of a wire are distributed along its length and are not lumped

into a single position. As long as the resistive component of the wire is small, and

the switching frequencies are in the low to medium range, it is meaningful to consider

only the capacitance component of the wire, and to lump the distributed capacitance

as a single capacitor. This is the simple capacitive model and is not very accurate.

On-chip metal interconnects of over a few millimeters in length have a significant

resistance. The n—model lumps the total wire resistance of each wire segment into a

single resistor R and represents the total capacitance as two capacitances of £2:— each.

This model, called the lumped-RC model is, however, pessimistic and inaccurate for

long interconnects, which are more adequately represented by a distributed-RC model.

In practice, this model is represented as a n-ladder network. Similar to resistance and

capacitance of interconnect, the inductance is also distributed over the wire. Thus, a

distributed RLC model of interconnects, also known as the transmission line model,

is the most accurate approximation of the actual behavior of interconnects.

2.1.3 Effect of Inductance on Global Signal Lines

In spite of shrinking dimensions and increasing clock frequencies in nanometer-scale

technologies, it has been shown that inductance can be safely ignored for global signal

lines that are longer than 10 mm [2,43]. This is due to various factors discussed next.

First, it has been shown that, for long global signal lines, the signal response to a step

input is over—damped when the line is modeled using the complex distributed RLC

model. This response can be approximated using a distributed—RC model, without
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significant error [43]. Second, inductance is not a significant problem in minimum-

width global lines as much as it is in clock and power/ground lines that are several

times minimum width. It has been estimated that inductance becomes an issue in a

global line only if its width is at least eight times the minimum width [2]. Third, in

high-performance buses that we consider in this research, designers ensure that induc-

tive effects are minimized by ensuring that current return paths for worst-case input

patterns are kept within limits. This is normally achieved by placing power/ground

planes above and/or below the layer in which the high-performance bus is routed

and also by routing shield wires in the same layer as the bus [44]. Finally, in the

recent times, architectural trends have shifted toward improving power/performance

(or Watt/MIPS) efficiency by using shorter pipelines and multi-core architectures,

compared to just improving performance by increasing clock speed. Thus, in cur—

rent and future generation microprocessors, clock frequencies are not expected to

increase exponentially as predicted until a few years ago. This trend also contributes

to keeping inductive effects in check for global lines.

Due to the reasons outlined above, we do not consider inductive effects in our

work. Using an RC—model, interconnect energy can be estimated as discussed next.

2. 1.4 Energy Estimation

Self transitions are defined as transitions on the self or area capacitance which is

the parasitic capacitance between a bus line and the ground/VDD plane. Coupling

transitions are defined as transitions that occur on the coupling capacitance which

is the parasitic capacitance between two wires on the same plane. Figure 2.1 shows

self and coupling capacitances for a 5-bit bus. Note that there can be two types
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of coupling capacitances for a wire of length luiire: adjacent coupling capacitance

Ccl = lwire x CZ" i :I: 1 and non—adjacent coupling capacitance Cm; = [wire x c,”- :I: x,

where :1: Z 2. The adjacent coupling capacitance is the most dominant. Hence it

is most often considered in energy and delay estimation and other (non-adjacent)

capacitances are ignored.

Self transitions in a wire are of two types: charge (0 —> 1) and discharge (1 —->

0), and coupling transitions in a pair adjacent wires are of three types: coupling

charge transitions (00 —> 01,1 00 —+ 10, 10 —> 11, and 01 ——+ 11), coupling discharge

transitions (01 —> 00, 10 —> 00, 11 —> 10, and 11 —> 01), and toggle transitions (01 —+

10 and 10 ——> 01). Note that if the total number of self and coupling (charge, discharge,

and toggle) transitions is reduced, bus energy dissipation will reduce significantly.

The energy consumption and energy dissipation of a bus in a given time interval

t are given by:

Ec0ns,aug = [N8 ' Cu) + Ccl ' (NC + 2 ' Ntll ' VDD2 ' fell: ‘ 75, (2-1)

N N

Ediss,a-vg = [N3 ' Cw + CCI ' (32 + —2_d + Nt)] - VDD2 - fClk - t, (2.2)

where Cw = Cline + Crep 2 [wire X Cline + crap is the self capacitance of the

wire including the contribution of repeaters, N5 is the total number of self-charge

transitions recorded on the bus in time interval t, NC, Nd7 and ,Nt are the number

of coupling-charge, coupling-discharge, and coupling-toggle transitions, respectively,

recorded in the same interval. Thus, only charging transitions that require current

flow from the power supply to charge the parasitic capacitances are used to determine

energy consumption, whereas current flow from the power supply (during charging)

 

1For two lines i and 3', this notation represents the transition: VimVan —» Vimejfm.



and current flow into the ground (during discharging) of the parasitic capacitances

account for energy dissipation. Energy consumption and dissipation are equal on the

average, though their instantaneous values may be different.

2.1.5 Delay and Performance

When designing circuits it is necessary to ensure that a signal is fully transmitted

across a wire in a given time. This time should be at least the propagation delay

of the wire which depends on wire and driver sizes and also on the interaction with

neighboring wires, which is referred to as inter-wire crosstalk. Due to crosstalk, the

propagation delay tp of a wire (called the victim), which is a function of transitions

in its neighboring wires 1»: — 1 and k + 1, can be expressed as follows, including the

effect of load (receiver) capacitance [45]:

where Rw and RD are the wire and driver resistances, respectively, CT is the input

(gate) capacitance of the receiver, go is the delay correction factor due to inter—wire

coupling between wires separated by the minimum spacing and is a function of the

capacitance ratio r = gfiul' The wire resistance Ru, is estimated using the resistivity

at a design temperature of 100°C. The various crosstalk conditions occurring when

the victim wire k experiences a rising (0 —> 1) transition (denoted as T) are listed in

Table 2.1. A corresponding table of delay factors can be constructed for a victim wire

experiencing a falling (1 —> 0) transition (I).

In the worst case—toggle or oppositely switching transitions on both sides of the
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Crosstalk mode k — 1, k, k + 1 Delay factor (g0)

mode-0 T, T, T 1+07'

mode-1 T, T, - 1+1T

mode-2 T, T, I 1+2?“

mode-2 -, T, - 1+27‘

mode-3 —, T, i 1+3r

mode-4 I, T, i 1+4r    
 

Table 2.1. Bus crosstalk conditions and models for a rising transition in the middle

(victim) wire.

victim—the delay is:

twc = 0.69(RD + Rm) -C,~ + (1+ 4r) . Cw - (0.381310 + 0.69RD). (2.4)

It is clear that width of the clock pulse to the circuit should be more than two to

ensure that the signal propagates completely to the destination, i.e., thus_clk 2 twc-

To ensure that this does not impact performance, repeaters/buffers are used to divide

long wires into several sections and hence reduce propagation delay. Assuming that

the size of each repeater is h times the size of a minimum-sized inverter (which is

technology—dependent) and k is the number of repeaters needed to achieve optimum

delay on the interconnect, these can be calculated using:

 

 

h = M and (2.5)

CO ‘ Rint

0.4(R- - C- )
k = int int 2.

\/ 0.7(00 - R0) ’ ( 6)

where Cint = Cline + 4 - Ci),- :l:1 is the total per-unit length capacitance of a

wire leading to the worst-case delay impact, C0 are R0 are the capacitance and

resistance of a minimum sized inverter, and Rint = Tline is the per-unit length wire

resistance [46] .
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2.2 Interconnect Optimization Techniques

Several techniques have been proposed to ensure that interconnect power and perfor—

mance are not affected due to technology scaling. We discuss these next.

2.2.1 Data Encoding

In general, system-level encoding techniques fall under three categories, based on

whether they use redundancy in space (extra number of bus lines), time (extra number

of cycles) and voltage (number of distinct voltage levels) [47]. In particular, use of

time redundancy has been demonstrated to be as effective as the space redundancy

for decreasing the average switching activity and issues due to extra cycle overheads

have been addressed by using compression [48—50]. Different modes of signaling—level

and transition signaling—can also be used to reduce bus switching activity.

The bus-invert (BI) code is a low-power encoding scheme designed to limit the

average power of the bus [51]. It performs well when patterns to be transmitted

are randomly distributed in time and no information about pattern correlation is

available. Therefore, this method is most appropriate for encoding the information

on data buses. A redundant control line INV is needed to signal to the receiving

end of the bus the encoding mode in the current cycle. The encoding depends on

the Hamming distance (i.e., the number of bit differences) between the value of the

encoded bus lines at time t —- 1 (also counting the redundant line at time t — 1)

and the corresponding value at time t. The Hamming distance is compared to %,

where n is the bus width (assuming it is even without loss of generality). If the

Hamming distance between two successive patterns is larger than %, the current
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value is transmitted with inverted polarity and the control line is asserted; otherwise,

the current value is transmitted as is, and the INV line is de—asserted.

If the words transmitted on the bus are independent and uniformly distributed, the

average number of transitions per clock cycle is lowered by less than 25% of the original

value, due to the binomial distribution of the distance between consecutive patterns

[52]. Major drawbacks of the BI technique are related to the required redundant bus

line and the overheads due to the logic to implement the encoder to decide whether the

Hamming distance exceeds 3. The encoding latency, in particular, is quite significant

as discussed next.

In BI, encoding consists of three sequential steps. First, the Hamming distance is

computed. To do this, the current n-bit pattern and the previous n—bit pattern that

was transmitted on the bus in the previous cycle are bitwise XOR-ed and the number

of “1”s in the result is counted. This step requires a constant time operation for

bitwise XOR and 0(n) to 0(log2 n) time for counting, depending upon the counter

structure used. In the second step, the Hamming distance is compared with g to check

which is greater; this can be completed in O(n) to 0(10g2 n) time, again depending

on the hardware structure used. Finally, the current pattern is inverted or sent as-is

and this takes constant time. Thus, BI encoding takes at least 0(log2 n) time.

More recently, odd/even bus invert (OEBI) [53] and coupling-driven bus invert

(CBI) [54] encoding schemes, designed to reduce transitions on the coupling capaci—

tance between adjacent bus lines, were proposed. In OEBI, even and odd bit positions

can be encoded (with bus inversion) independently and two invert lines are used to in-

dicate one of four modes of transmission: OO—none of the bits are inverted, 01—only the

even-numbered bits are inverted, 10—only odd—numbered bits are inverted, and 11—all
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bits are inverted. This is based on the observation that by inverting only the odd or

even bits, a coupling toggle transition can be reduced to a coupling charge/discharge

transition [53]. The scheme assigns weights of 1 and 4 to coupling charge/discharge

and toggle transitions, respectively, to estimate coupling energy dissipation. Based

on the current and previous input patterns, the total coupling energy dissipation for

each of the four modes is estimated. Then the mode that will result in the least

coupling energy dissipation is chosen and data is transmitted on the bus in that form.

In a similar manner, the CBI encoding technique examines pairs of adjacent bits in

the same position for the current and previous input patterns and estimates coupling

activity. The differences here are: (1) only one invert line is used to indicate whether

the transmitted data is in inverted or non-inverted form; and (2) it uses weights of

1 and 2 for coupling charge/discharge and toggle transitions, respectively. Note that

neither OEBI nor CBI considers self transitions to decide the inversion mode while

BI considers only self transitions.

Bus encoding is also often used to reduce crosstalk. Crosstalk-aware encoding

schemes can be one of two types: those that have memory or those that are memo-

ryless. If an encoding scheme has memory then each codeword is dependent on the

word that came before it. Thus, each codeword has its own codebook of valid words

that can come after it. On the other hand, if an encoding is memoryless then any

codeword can follow any other codeword. The minimum number of wires needed to

encode 32 bits with memory is 40 and without memory is 46 [55]. Thus the extra

wiring overhead for an encoding scheme with memory is 25% and 44% for optimal

encoding without memory.
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2.2.2 Wire Spacing and Shielding

Inserting VDD/GND wires known as shields is a popular method to avoid crosstalk in

high-performance buses. Signal isolation due to the presence of shields prevents both

noise and increase in delay due to coupled lines switching. A dense fabric interconnect

architecture with shield lines inserted after every signal wire was proposed in [56].

Shield insertion also reduces inductive effects because it creates a shorter return path

to ground for the current flowing through signal wires. However, inserting shield

wires between every pair of signal wires results in large area/costs, increases wire

congestion and may end up requiring more metal layers leading to higher production

costs. Alternatively, wires can be simply spaced apart to produce a similar solution.

Though spacing does not eliminate coupling noise, it reduces the value of the coupling

capacitance—since capacitance is inversely proportional to the spacing——and at the

same time reduces power dissipation since the total capacitance load of the line also

decreases. In many cases, this is a significant gain compared to shielding which

eliminates the noise at the cost of extra power dissipation [57].

2.3 Architecture-Level Simulators and Early-

Stage Design

At the very early stages of design definition, microarchitects start with analytical

cycles-per-instruction (CPI) performance models that lead to trace or execution-

driven, cycle-by-cycle simulators. Full or sampled benchmark traces are processed

through such simulators, driven by a microarchitecture parameter file. The goal of

this design space exploration phase is to optimize the choice of microarchitectural
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parameters for CPI performance under design constraints known at that stage. The

performance model is typically written in a standard systems programming language

such as C or C++ and is designed to project execution times (in cycles) for input

application traces; it typically does not model the actual execution of the instruc-

tions, but only the execution timing. More recently, power dissipation models that

are based on counting the number of transitions occurring in microarchitecture blocks

have also been added to these simulators.

Several architecture—level simulators have been developed and used in the acad—

emia and industry: Wattch [58], SimplePower [59], TEh12P2EST [60], WArPE [61],

Sim-Panalyzer [62], IBM Turandot/PowerTimer [31], AccuPower [63], and HotSpot

[64]. Interconnect/bus models used in these simulators suffer from many drawbacks.

First, none of the existing simulators have models for estimating inter-wire coupling

activity dependent power consumption and delay. For example, the SimplePower tool,

which models only memory system buses (between different levels of caches and/or

main memory), uses an interconnect model that considers only the self-capacitance of

bus lines calculated based on an empirical formula [65]. The Wattch simulator which

models only the result bus in the microarchitecture also does not take into account

inter-wire coupling activities when estimating power dissipation. Thermal models for

buses are not available in most current simulators. The HotSpot tool addresses this

need to some extent, but it contains a temperature model for the interconnect sys-

tem as a whole rather than for each bus and hence cannot track activity-dependent

temperature changes in key processor buses [66]. Temperature gradients and delay

variations cannot be estimated using this tool.
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2.4 Our Experimental Methodology

2.4.1 Interconnect Geometry and Technology Data

For all the interconnects considered in this work, we assumed that it was routed in the

top—most layer metal. A representation of wires in this layer is shown in Figure 2.1.

if???
Figure 2.1. Layout of wires routed in the top-most layer metal. Self and coupling

capacitances are shown. The bottom plate represents the VDD/GND plane.

  

 

 

 

 

Values for wire geometry (wire width, spacing, etc.) and technology and equiv-

alent circuit parameters, like capacitance and resistance of a global line for various

nanometer—scale technologies were obtained from the ITRS document and are listed in

Table 2.2. Note that wire spacing is assumed to be equal to wire width per ITRS [1].

In this work, we use 130 nm and 45 nm as the representative technologies for a cur-

rent generation and a future-generation microprocessor and compared our results for

these designs.

In current generation microprocessors, a global signal bus is typically a few mil—

limeters long; we consider a bus of length 6 mm using the numbers reported in [44]
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Figure 2.2. Wire segment of length lopt between two repeaters.

for a Pentium-4 microprocessor. Using this length (lwirelv we estimate the number

of repeaters (k) that need to be inserted to enable non—inverting transmission using

Equation 2.6, and then we find the inter—repeater segment length lopt : 6—X—%0——§.

In the remainder of this work, all experiments and analysis focus on a single wire

segment of length lopta driven by a sending end repeater of size h and connected to

a receiving end repeater of the same size, as shown in Fig 2.2. In addition to its self

capacitance, this wire segment has a capacitance, due to its sending and receiving

end repeaters, that can be calculated as: Crep = h x CO, where CO is the sum of the

input and output capacitances of a minimum sized inverter.

2.4.2 Parasitic Capacitance Extraction

The ITRS roadmap provides values only for self and adjacent—wire coupling capac-

itance for current and future technology nodes. Hence, to estimate the coupling
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Technology node

Parameter 130 nm 90 nm 65 nm 45 nm

Number of metal layers 8 9 10 10

Wire width, to,- (nm) 335 230 145 103

Wire thickness, t2- (nm) 670 482 319 236

Relative permittivity of dielectric, er 3.3 2.8 2.5 2.1

Thermal conductivity of dielectric, 0.6 0.19 0.12 0.07

kild (W/mK)

Clock frequency, fclk (GHz) 1.68 3.99 6.73 11.51

Supply voltage, VDD (V) 1.1 1.0 0.7 0.6

Maximum current density in a wire, 0.96 1.5 2.1 2.7

jmax (MA/cm?)

Height of inter-layer dielectric, tild (nm) 724 498 329 243

Resistance of minimum size inverter, 6.23 9.04 9.6 13.2

30 (k9)

Capacitance of minimum size inverter, 4.65 3.14 2.25 1.5

Co (fF)

Self capacitance of wire, Cline (pF/m) 44.06 32.77 25.07 19.05

Adjacent coupling capacitance, 91.72 76.84 68.42 58.12

02,241 (PF/mm)

Non-adjacent coupling capacitance, 6.49 4.65 3.56 2.76

ci,i :t 2 (pF/mm)

Non-adjacent coupling capacitance, 2.53 1.76 1.29 0.98

ct,- :I: 3 (pF/mm)

Resistance of wire, Tline (kQ/m) 98.02 198.45 475.62 905.05

Optimal repeater size, h 74.95 70.25 51.77 49.45

Optimal # of repeaters for non-inverting 6 8 12 16

bus, k

Coupling ratio including effect of re- 2.065 2.329 2.716 3.039

peaters, r     
 

 
Table 2.2. Technology, wire geometry, and equivalent circuit parameters for topmost

layer interconnect. Values in top eight rows are from the international technology

roadmap for semiconductors (ITRS) document [1]. Values listed in the next three

rows are from Mui et a1. [2]. The values for the self and coupling capacitances were

extracted using the FastCap tool and the value for r,- was calculated using the formula

Ti = pCu/(wi - ti), where pCu = 2.2 X 10—8O-m. Values of h and k were found using

+ ’1 X Co).expressions given in Section 2.1.5 and r = Ci),- :I: 1/(Cline
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capacitances between all pairs of wires (adjacent as well as non-adjacent wire pairs),

we employed the publicly available three-dimensional capacitance extraction program

called FastCap [7]. Using the wire geometry parameters from ITRS (see Table 2.2

for values) to model a coplanar global bus layout, similar to the one shown in Fig—

ure 2.1, we extracted values of self and all coupling capacitances for the middle wire

of a 32-bit bus. Figure 2.3 shows the percentage distribution of these capacitances for

various technologies. From the figure, we observe that, for current 130 nm and 90 nm

technologies, non-adjacent coupling capacitances are somewhat non—negligible (they

contribute 210%), while even in a future 45 nm node, non-adjacent capacitances ac—

count for about 8% of the total capacitance. Our energy model which is described in

a later chapter considers the effect of two non-adjacent coupling capacitances, Cc2

and 003, for better accuracy.

2.4.3 Simulation Infrastructure and Verification of its Cor-

rectness

Computer simulators have been used for a long time to study both hardware and

software behavior. They allow the collection of information and statistics during the

execution of programs. Various types of information, such as memory profiles, in-

struction profiles, and timing statistics, can be gathered from these simulators. For

this research, we use the sim-outorder out-of—order processor simulator from the

SimpleScalar microarchitecture tool set, which is very widely used in academia [67].

Many microarchitectural simulators used in the industry also closely resemble and/or

are derived from SimpleScalar or its derivatives [31, 58-64]. We added several en—

hancements to the sim-outorder simulator to facilitate our analysis and optimization
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Scaling of Self and Coupling Capacitances
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Figure 2.3. Distribution of self and coupling capacitance values for the middle wire

of a 32-bit bus extracted using the FastCap tool [7]. and = self capacitance of the

wire; Cc1 2 coupling capacitance between the wire and its adjacent neighbor; Cc2 =

coupling capacitance between the wire and a non—adjacent wire with 1 wire between

them; Cc3 = coupling capacitance between the wire and a non-adjacent wire with 2

wires between them; Cc_rest = sum of coupling capacitances between the wire and

other wires with 3 or more wires between them. For current and near—future ITRS

technology nodes (up to 45 nm), non—adjacent coupling capacitances are somewhat

non-negligible—they contribute approximately 840%.

efforts. These are described next.

Support for analyzing bus data: We added support for tracing and analyz-

ing the data transmitted on high performance processor core buses. The original

sim-outorder contains only a functional model of a superscalar processor and does

not have the ability to track the data that is transmitted between the microarchi—

tectural blocks in the pipeline. We modified the simulator to track and analyze, on

a cycle—accurate basis, the data transmitted on load/store address, load/store data,
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instruction, and result buses in the processor core.

Wire energy, temperature, and delay models: We also added our wire

energy, temperature, and delay models to the simulator. While energy dissipation

and delay of our target buses—including the temperature impact on delay—can be

estimated on a per-cycle basis, temperature estimates can be obtained at a coarser

granularity, i.e., after every 100K cycles or so. This is because temperature is a slow—

changing effect that does not warrant per-cycle estimation. More details on how we

determine the granularity of temperature simulation depending on the fabrication

technology used are discussed later in Section 3.5.3.

Integration with other thermal analysis tools: Recently, a tool called

HotSpot [64], also based on SimpleScalar, was developed to estimate substrate (ac-

tive layer) temperatures using the Wattch model for energy estimation [58]. Even

though the on-chip interconnect system is a major contributor to the power bud—

get, it was not modeled accurately in HotSpot. we have integrated our models with

HotSpot, thus creating a microarchitecture-level simulation tool for full-chip energy

and thermal analysis.

As a result of our enhancements to the simulator, the running time is somewhat

longer. The original sim-outorder without enhancements executes ~200K instruc-

tions per second [67] whereas our modified simulator executes ~110K instructions

per second while running detailed energy and temperature simulations at the granu-

larities described earlier in this subsection. To reduce simulation time for analyzing

a large number of programs on our simulator, we used a shared Linux cluster for our

experiments [68].

We verified the correctness of our modified simulator with regard to four aspects,
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as discussed next.

Functional correctness: All the changes we made to the simulator add to

its instrumentation capabilities and do not change it functionally, with regard to

the microarchitectural model it seeks to implement. We verified this in two ways,

as discussed next. First, we executed and compared the outputs for a suite of six

microbenchmarks, supplied along with the SimpleScalar toolset, using the original

(unmodified) simulator and our modified version. As expected, the program out-

puts from both versions matched exactly. Second, we compared several performance

metrics recorded by the simulator—number of instructions executed, L1/L2 cache

misses, branch misprediction rate, etc—and found that these matched in the original

simulator and our modified version, for the six microbenchmarks we tested. These

tests show that the functional correctness of our modified simulator has not changed _

compared to the original one.

Instrumentation correctness: The original sim-outorder simulator contains a

detailed—enough microarchitectural model that enabled us to gather data transmitted

on our target buses, in each cycle. Thus, instruction addresses and instructions were

gathered from the program counter and the fetch stage of the simulator, respectively,

data addresses by computing the target address for load/store instructions, load/store

data by monitoring L1 cache reads/writes, and ALU result bus data by monitoring

the outputs of the functional units in the execute stage. As such, the instrumentation

capabilities we added to the simulator are correct by design.

Model correctness: We tested if the models we constructed represent actual

energy/thermal behavior of buses consistent with previously-known data and/or es-

timates. For our energy model, discussed later in Section 3.3, results were compared

39



with circuit simulation of a distributed-RC wire using the Cadence Spectre simula-

tor. Our model yielded energy results that were only about 4.53% different compared

to those from Spectre, faster and with much less complexity. Our thermal model,

discussed in Section 3.4, is based on the well-known analogy between electrical and

thermal quantities that has been used widely in earlier work to model chip ther-

mal structures [66, 69—71] and verified using finite element modeling (FEM) simula-

tions [72, 73]. The average and maximum temperatures obtained using our model,

while running SPEC CPU 2000 benchmarks on the simulator, were consistent with

previously published data in [66], although our model estimated bus energies more

accurately considering actual bus traffic values, interconnect temperatures at a finer

granularity, and tracked spatiotemporal variation of temperature, all of which were

absent in earlier models. The worst—case temperatures that global signal lines may po-

tentially attain, assuming they carry currents at maximum density all the time, were

estimated using FEM—based techniques in [72,73]. Signal lines, which are the focus

of our work, do not carry currents at maximum density all the time and hence their

temperatures are likely to be somewhat less than estimates obtained using worst—case

FEM analysis. We verified that results using our model were consistently lower than

worst-case estimates and remained so for the different technology nodes we tested:

130 nm, 90 nm, and 45 nm.

Implementation correctness: We also tested that modifications were imple-

mented correctly in the simulator and that desired outputs were obtained. For all

the six microbenchmarks, we collected tracedumps of various buses using our sim-

ulator and verified manually that the data in the tracedump matched the expected

value for that type of data. For example, each entry in the instruction address trace-
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dump should match the program counter value which is in a known range of memory

addresses and each entry in the instruction tracedump should correspond to known

instructions in the processor’s instruction set architecture. We found these to be true

in all the tracedumps we tested. We also prepared several small synthetic traces of

data streams and verified that results obtained from hand calculations matched those

using equations from our energy model implemented in the simulator.

2.4.4 Target Systems and Benchmarks

The SimpleScalar platform can simulate various RISC microarchitectures. For our

work, we use the Alpha 21264 microarchitecture representing general-purpose super-

scalar processors. The Alpha 21264 architecture is modeled as a 4-issue, superscalar

processor with out-of—order execution and with 32-bit address, 64—bit data, and 128-

bit (fetch width=4) instruction bus between the processor and L1 cache [74]. Other

details of the microarchitecture and memory system for our target system is presented

in Table 2.3.

For evaluation on the Alpha target system, we use the SPEC CPU2000 benchmark

suite which consists of 26 programs drawn from real user CPU-intensive applications

[75]. The little—endian SPEC benchmark executables we used were downloaded from

the SimpleScalar Website [76]. These programs were compiled for the Alpha 21264

instruction set using a Compaq Alpha compiler with SPEC peak settings and included

all linked libraries. We ran our experiments using the ref input set from the SPEC

CPU2000 suite.

Since the time taken to simulate an entire SPEC CPU2000 benchmark is very

long—typically several days on a cycle-accurate simulator—we used the 100 million
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Processor Core
 

 
 

 

Clock rate 1.68 GHz (130 nm), 11.51 GHz (45 nm) [1]

Fetch/Issue width 4 each

LSQ 8 entries

Memory System

PHLI bus Non-pipelined; 64-bit data and 128-bit instruction

L1 D-cache Virtually-indexed physically-tagged (VIPT), 64KB, 2-

way set associative, 64B block size, LRU policy, 3 cycle

hit latency, write—through cache.

L1 I-cache Virtually—indexed virtually-tagged (VIVT), 64KB, 2-way

set associative, 64B block size, LRU policy, 1 cycle hit

latency

L1 MAF 8 entries

L1HL2 bus Non-pipelined; 128-bit data/instruction lines and 38-bit

address lines (21 bits for block index and 17 bits for tag)

L2 cache Physically-indexed physically-tagged (PIPT), 2MB,

direct-mapped, 64B block size, LRU policy, 12 CPU cy-

cles hit latency, write-back policy, operating at 2x CPU

clock cycle

L2HM bus Non-pipelined; 64-bit data/instruction lines and 38-bit

address lines   
 

 

Table 2.3. Configuration of our target system and benchmarks. This processor-

memory system configuration is based on the Alpha 21264 processor.

single simulation points recommended by the SimPoint toolset to collect results only

a representative slice of the program [77,78]. Although the accuracy of representative

samples from SimPoint has not been explicitly validated using energy/temperature

metrics, its use in design/evaluation of microarchitecture-level energy reduction tech-

niques is widespread in literature. Several works that use phase classification tech-

niques like SimPoint for microprocessor energy evaluation have been surveyed in [79].
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CHAPTER 3

ACTIVITY-DRIVEN ENERGY AND

TEMPERATURE MODEL

Accurate early stage modeling techniques for signal interconnect energy dissipation

and temperature are becoming necesary for current designs. This chapter describes a

detailed energy model and a first-of-its-kind thermal model for interconnects [80,81].

3. 1 Introduction

As fabrication technologies scale down, interconnects are becoming the dominant

factor in determining performance, power, cost, and reliability characteristics of a

system. Interconnect scaling impacts performance because wire delay has continued

to increase relative to that of logic. In recent years, power density in microprocessors

has doubled every three years, primarily because feature sizes and clock frequencies

have scaled faster than operating voltages [82]; this rate is expected to increase further

in future technology generations [64]. The on—chip interconnect system is already the

most important contributor to dynamic power; in current microprocessors (130 nm

technology), interconnects are reported to contribute about 51% of the total on-chip

dynamic power dissipation and global signal lines—address, instruction, data, and

control buses routed in the top-most layer metal—about 21% [4]. As technology scales

down, dynamic power dissipation will still remain important even as leakage power

increases. It has been estimated that even in the 45 nm technology node, dynamic
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power will contribute to about 46% of the total power dissipation [2]. Supply voltage

scaling and smaller sizes will reduce dynamic power dissipation due to logic in future

technologies at a faster rate than in interconnects and hence, interconnect dissipation

will contribute a larger share to total dynamic power. Rising interconnect power

dissipation will lead to localized Joule heating and temperature rise in wire metal

that can affect wire delay due to temperature-dependence of resistivity and/or cause

wire breakage due to thermal stresses and electromigration.

As power densities continue to increase, thermal effects in wires are becoming

important due to the reasons outlined next. Signal transmission over a line/wire i is

associated with current flow, which results in 12R power dissipation, where I is the

magnitude of current and R is the resistance of the wire. This dynamic switching

power depends on: (1) the self capacitance (capacitance between the line to ground)

of the wire Cline, (2) the coupling capacitance CZ" j between line i and any other line

j, (3) the self and coupling activity factors (which in turn depend on self transitions

on line i and coupling transitions between line i and any other line j, respectively),

(4) the supply voltage, and (5) the bus clock frequency. Advances in technology have

resulted in ever-higher values of Eel—:Lré due to higher wire aspect ratios and smaller

inter-wire spacings; among all Ci, j’ the adjacent coupling capacitance (Ci,i j: 1) dom-

inates the other (non-adjacent) coupling capacitances. With newer technologies, bus

clock frequency has also continued to increase. The supply voltage is scaling down

but at a rate not enough to offset the rate of increase in the other two. Thus, the

net effect is that the 12R power is continuing to increase as technology scales down,

and consequently local heating in wires is becoming a concern. Further, since global

signal wires are separated by multiple layers of low-K dielectrics from the substrate
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that is connected to the heat sink, and since these dielectrics have poor thermal

conductivities, heat cannot be removed from the wire efficiently. Energy dissipation

and/or thermal effects in global signal lines are further aggravated due to the follow-

ing reasons: (1) increasing use of repeaters in long signal lines to reduce delay leads

to higher energy dissipation [46]; (2) a steady increase in the number of metal layers,

particularly the number of global metal layers, also increases overall energy dissipa-

tion; and (3) long via separations in upper metal layers contribute to higher average

wire temperatures—vias are normally better thermal conductors than surrounding

low-K dielectrics [83].

By virtue of their carrying smaller currents than power supply lines, energy dis-

sipation and thermal characteristics of signal (both clock and data) lines have not

been the subject of serious study. But this will need to change as clock frequencies

increase with technology scaling. Higher frequency also means that the large fluc-

tuating line currents drawn by the bus driving circuitry can influence resistive and

inductive voltage drop in power supply lines, since long global signal lines present

a high load capacitance. In this work, we develop a model for activity-dependent

bus line energy dissipation and temperature rise, and apply it to different types of

microprocessor core buses. While we do not study clock lines in this work, our model

can be easily applied to thermal analysis of clock networks and estimate temperature

impact on signal delay, skew, and reliability.

The dynamic power dissipated in a bus wire, which ultimately determines its

temperature as discussed earlier, is both time and information dependent. It depends

on the type of information (address, instruction, data, or control) being carried by

the bus because the information type influences the self and coupling activity factors;
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for example, the number of coupling transitions are expected to be higher for data

streams that are more random in nature than for others. The type of information

also directly influences the temperature characteristics of the wire because of the

presence of unequal numbers of idle cycles between successive transfers; address and

instruction buses typically carry new information every cycle as opposed to data

buses where more idle cycles are likely to be present between data accesses. These

idle cycles, during which no power is dissipated in the bus lines (assuming they

hold the last value that was transmitted), present opportunities for cooling. Hence,

interconnect thermal models that estimate temperature and reliability based on the

assumption that all bus lines carry the maximum RMS current density (worst-case

scenario) [83,84], and models that use switching activity factors to estimate average

self-heating power and determine temperature rise [66], may result in inaccuracies.

This may, in turn, lead to incorrect interconnect lifetime prediction, since dynamic

heating and cooling effects are not taken into account. Also, designers will be forced

to allow higher-than-required safety margins and, as a result, the system will incur

higher packaging costs. Hence, energy dissipation and thermal effects in buses are

best studied using microarchitectural simulators and real workloads; in this work, we

present models to facilitate this.

Detailed thermal models and workload-based studies for estimating temperature

distributions in substrate [64] and interconnects are essential for facilitating early-

stage design of future high-performance processors. For such designs, a pessimistic

temperature assumption will lead to costly and perhaps unrealistic guard bands and

high cooling system costs. On the other hand, an optimistic assumption will lead to

underestimation of the chip power and leakage, and may lead to shorter lifetime and

46



lesser reliability. Higher wire temperatures can have a dramatic impact on perfor-

mance since temperature directly affects wire delay. Typically, the Elmore delay of

an on-chip wire increases approximately 5% for every 20°C rise in temperature [37].

In addition to its absolute temperature, wire delay also depends on the temperature

gradient between the sending and receiving ends. The growing popularity of chip

multiprocessing (CMP) and simultaneous multi-threading (SMT) will increase bus

switching activities, since, potentially, uncorrelated data from different streams are

transferred on the same bus, resulting in higher per-wire energy dissipation and tem-

peratures. Thus, realistic temperature models and early-stage estimates are essential

for meeting design goals and avoiding temperature-induced problems in silicon.

The organization of the rest of this chapter is as follows. Section 3.2 briefly

reviews related work. Next, in Section 3.3 and 3.4, we present our energy dissipation

and thermal models for global signal lines. Following that, in Section 3.5, we discuss

our simulation environment and methodology. Then, in Section 3.6, we present results

from simulations by applying our models in an execution-driven simulator. Finally,

we summarize in Section 3.7.

3.2 Related Work and Our Contributions

Some methods for architecture-level interconnect power analysis have been proposed

[59,85]. Earlier modeling methods estimated bus energies based on self transitions

only [59], whereas recent models also consider adjacent inter-wire capacitances for

energy calculations [85]. Thermal effects in interconnects and their implications for

performance, current density, and reliability have been studied in [21,37]. Recently,
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interconnect thermal models have been proposed in [66,83]. But these models either

perform a worst-case analysis using maximum current metrics suitable only for power

supply lines [83] or consider average switching activities [66]. Such approaches are not

suitable for analyzing signal lines since: (1) signal lines carry much less current than

power supply lines, and (2) their energy dissipation and thermal characteristics are

tied to actual traffic patterns (with intermittent idling) carried on the bus. A large

body of work exists on low-power bus encoding, many of which also use bus energy

models similar to ones described in [59] or [85]. Some of the older bus encoding

schemes have been surveyed in [86]. Newer schemes include odd/even bus-invert [53],

coupling-driven bus-invert [54], transition pattern coding [87], and leakage-aware bus

encoding [88]. The contributions of this work are outlined next.

First, we present an accurate model to estimate bus line energy dissipation that

can be used in a trace-driven setup or in an execution-driven simulator. Existing bus

energy models, like the one proposed in [85], only estimate energy dissipation consid-

ering the bus as a whole, not in each line, whereas our model is capable of estimating

energy dissipated in each bus line. Also, these models do not account for the non-

uniform dissipation of energy across the wire length, which we do in our model. As

we shall see later, these factors are necessary to model dynamic temperature effects

in buses, both temporally and spatially, across wires. Our bus model is also more

accurate because it considers the effect of capacitive coupling between adjacent and

non-adjacent wire pairs on switching energy in addition to energy dissipated in the

self capacitance. Our work is the first to show that switching transitions in parasitic

capacitances between non-adjacent wire pairs account for a significant (7—8%) portion

of the total energy dissipation and hence this contribution should not be neglected
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in bus energy models. Further, we model the effect of repeaters, which increase the

self capacitance and hence self energy dissipation. This is so because the output ca-

pacitance of a repeater adds to the self capacitance of the line segment that it drives,

and the input gate capacitance of a repeater adds to that of its input line.

Second, using our bus line energy dissipation model, we study the effectiveness of

some existing low-power bus encoding techniques when used for data and instruction

bus encoding. To our knowledge, no previous work has studied these bus encoding

techniques using realistic traffic from SPEC CPU2000 benchmark programs; most of

them have used random traffic patterns that do not behave like real-world instruction

and data streams. In this context too, we use realistic technology parameters from

the ITRS roadmap for current and future nanometer technology nodes.

Finally, we present a thermal model and a methodology to estimate the tempera-

tures of individual wires of a global signal bus during dynamic simulation. Our model

incorporates the effect of inter-layer heat transfer (heat conduction from the substrate

and lower metal layers through the inter-layer dielectric) and intra—layer heat transfer

between adjacent bus lines through the inter-metal dielectric. It can also estimate the

temperature gradient between the sending and receiving ends of the bus and hence,

it can be used to estimate any dynamic delay variations due to Joule heating. Our

model can also be used to estimate the effect of varying substrate temperatures on

wire self heating, although in this work, we assume a constant substrate temperature

for simplicity. Specific results we obtained are listed next.

0 We estimate from simulations using our model for 130 nm technology node

that, during the time interval taken to commit one billion instructions in the

pipeline, high performance bus wire temperatures rise by 10-37°C for various
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SPEC CPU2000 benchmarks. This is solely due to Joule heat dissipated due to

wire switching activities.

In future 45 nm technology node, wire temperature rise for the same set of

benchmarks and simulation sample was found to be between 20-58°C.

We observed that instruction and data bus wires attained absolute temperature

in the range 80.3-104°C and 97.6—123.7°C, in 130 nm and 45 nm processors,

respectively, during the course of our simulation, showing that signal lines attain

significant temperatures too.

Significant wire temperature gradients of magnitude between 16-25°C were

found to be most common between the sending and receiving ends of the wires

during the course of simulation.

Some significant correlation was found to exist between energy dissipation be-

havior and wire temperature rise in buses across time; short, intermittent cycles

of high energy-dissipating switching activity trigger step changes in tempera-

ture.

3.3 Bus Line Energy Dissipation Model

In this section, we develop our bus line energy dissipation model that calculates energy

dissipated as a result of a switching (both self and coupling) transition. This energy

model is then used to determine change in wire temperature that occurs due to the

combined effect of self-heating in the wire and heat conduction into the surrounding

medium. Values for wire geometry (wire width, spacing, etc.) and technology and
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equivalent circuit parameters, like capacitance and resistance of a global line, that we

used for various nanometer-scale technologies were listed in Table 2.2.

As described earlier, the energy drawn from the supply rails by the driving gates

of a bus line is dissipated as 12R losses in the bus line. This results in temperature

rise in wires due to the self-heating effect. Existing bus energy models, like that

in [85], only provide expressions for total energy dissipated in the bus. From the

thermal design point of view, the energy dissipated in each bus line is important

since it helps determine the temperature rise in each individual wire separately. This

can be estimated using our model described below. First, we describe how the energy

dissipated due to line self capacitance can be found; the procedure to estimate the

contribution of repeaters to this self energy is also explained. Next, we explain how

energy dissipated due to inter-wire coupling capacitances, including adjacent coupling

and non-adjacent coupling capacitances, can be estimated.

3.3.1 Energy Dissipated due to Line Self Capacitance

Define Vz = szin — Vim, i.e., the difference between the final and initial voltages

on line i. Note that Vzm and V7;fin can take either one of two values: 0 or VDD'

Thus, V, = VDD implies that the self capacitance of line i charges due to a rising

transition (0 ——> 1), whereas V,- = ‘VDD means that it discharges due to a falling

transition (1 —> 0). For each transition, energy that is dissipated in wire i due to

charging or discharging of the self capacitance of the wire can be calculated as: E; =

0.5 x (Cline + Crep) - V22, where Cline is the self capacitance of the wire and Crep is

the total capacitance of repeaters on the line. The energy E; is called self energy since

it involves only the self or line capacitance (including the contribution of repeaters).
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Values for Cline are obtained by multiplying the per-unit length capacitances given

in Table 2.2 with wire length and values for Crep are computed using Equation 2.6.

3.3.2 Energy Dissipated due to Inter-Wire Capacitance

The second component of energy dissipation is coupling energy, which is influenced by

the charging, discharging, or toggling of the coupling capacitance Ci, j between two

lines i and j. A coupling charge transition occurs between the two lines when V2 2: 0

or V]- = 0, and V2 +Vj = VDDi 00 —> 01,00 ——+ 10,10 —> 11, and 01 —> 11 are the

possible cases. A coupling discharge transition occurs when VZ = 0 or V]- : 0, and

V,- + V]- = ’VDD; 01 —> 00, 10 —+ 00, 11 —+ 10, or 11 ——> 01 are the possible cases. A

coupling toggle transition occurs when Viv Vj aé 0 and V2 = —V i.e., when 01 ——> 10j,

or 10 ——> 01 transition occurs. In all three cases, the coupling energy dissipated in line

i due to CiJ is obtained as: E-C -= 0.5 x c- Vi2 — Vi ' lefl # j- Values 0f ci,i 21:12, ] Zaj (

are given in Table 2.2. It can be seen that the toggle case dissipates an equal amount

of energy (EiC,j = E; i = 2 x Ci, j . VDDQ) in both coupled lines, but the charge and

discharge transitions result in coupling energy dissipation equal to 0.5 X Ci, j - VDD2

in the line that charges/discharges.

Thus, the total energy dissipated in a segment of the wire between two repeaters

of bus line i is the sum of the self energy and coupling energies and is given by the

following equation.

E, = Ef+ Z Efj (3.1)

viii?“
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Figure 3.1. Distributed-RC model of the wire segment divided into n subsegments.

3.3.3 Distributed-RC Line Energy Model

This energy is dissipated non-uniformly across the length of the segment, as we show

next. Consider the schematic of the segment of a distributed RC-wire shown in

Figure 3.1. For this segment of length loptv the total wire electrical resistance Rw

and the parasitic capacitance Cw which includes the self and coupling capacitance,

can be divided equally across n subsegments. Thus, each subsegment has a resistance

0
£71,“ and capacitance 7]”. The driving repeater is represented by its resistance Rd.

At the end of the wire is the receiving repeater, contributing a gate capacitance Cr

to the load. Let the energy dissipated in the kth subsegment of wire i be represented

by Ei, k' Consider the 4-stage RC network corresponding to shown in Figure 3.1; this

represents a distributed RC line. For a unit input signal u(t), the s—domain voltages
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at the four nodes will be:

1 1 1 12 )

711(3) = Vppfs— —m0+mls+m23 +---

u2(s) = VDD(s_1—m8+m%s+mgsZ+-~)

”03(8) = VDD(s—1—m3(’)+m‘°is+m%s2+-~)

”04(5) : VDD(3_1—m40+m‘is+m:}232+...),

where m6, mi, 77122, etc. represent the first, second moment and so on. The

corresponding currents through the capacitors are icl(s) = Y1(s) . 211(5), i62(s) =

Y2(s) ~u2(s), ic3(s) ——— Y3(s) 413(5), and ic4(s) = Y4(s) - u4(s), where I’Z-(s) = 30,- is

the admittance of each subsegment [89]. This gives:

icl(s) = sC1(s_1—m(1)+m[s+m%s2+~-)VDD

i02(s) = 802(8”1 — mg + mgs + m332 + - . . )VDD

ic3(s) = sC3(s_1— mg + mffs + m382 + - - - )VDD

ic4(s) = sC4(s—1 — mg + mills + 771352 + - . - )VDD.

From the circuit, it is clear that 11 =1c1+ic2+ic3+ic4v 12 = ic2+ic3+ic4r I3 =

ic3 + 2'64, and I4 2 2°04. In general, we can write the following equation for current

through a resistor i after discarding higher order moments:

_ . . j 2 . j1,-(3) _vDD Z c, 1—3 2 CJm0+s Z CJm, , (3.2)

j E Di j E Di j E Di

where the set D,- represents all the downstream nodes of node i, V]- is the voltage

at the j-th node, and Cj = Cw/n is the capacitance of j—th subsegment. The down-

stream capacitance of node i which is the sum of the capacitance of subsegments i
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through n can be evaluated as:

Cj (n — i). (3.3)

j E D,-

We can express the power series in Equation 3.2 in transfer function form with

poles (pip pa) and zeros (31], 2%). However, it has been shown in [90] that for intercon-

nect lines, the transfer function using two—pole analysis has a special form in which

the numerator polynomial is a constant as shown in the following equation.

1

HA8) (1+ blls + (2232 ) (3'4)

 

Expanding this transfer function about 5 = 0, we have HZ-(s) = 1 — his + ((bzl)2 —

bg)s2 [89]. Comparing with Equation 3.2, we get:

=20t-m—wC—g“ 2:ED, (36>
JEDi jEDi

since the Elmore delay tjED of the line until the j-th subsegment is given by the

first moment m6 [90]. Thus we have:
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= Vppln ) °,12,( 1’1 —e ’02), (3.7)

where .C_1[-] is the inverse Laplace transform operator. In Equation 3.6, we have

used the transfer function of the form:

P211922

71]}??? + (2021 + 1022M + 82
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By equating Hz-(s) and Gi(s), we obtain 1271 = W. Now the amount of Joule

Pipz

heat dissipated in the i-th subsegment can be estimated as:

13. z: jfw([1N)]2 ‘Ru’dt
Z

(n _ Z)ZC?UVDDI:wX P1192
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Substituting for b; from Equation 3.5, and rearranging, we get:
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We observe that the first term in Equation 3.8, i.e., 0.5 x QTJLQVIQ)D corresponds to

the Joule heat dissipated in a subsegment assuming that energy is dissipated uniformly

across the wire length. The second term can be regarded as a correction factor

indicating that the energy dissipation is non-uniform across the length, i.e., higher

energy is dissipated at the subsegments near the sending then than those near the

receiving end. This is because for increasing i (0 S i S n — 1), the numerator reduces

and the denominator increases in value and hence the correction factor reduces overall.

We validated our model by comparing with energy distribution obtained using the

Cadence Spectre simulator for different number of subsegments (n = 10, 50, and 100).

The normalized energy dissipated in each wire subsegment for the n = 10 case, ob-

tained using our model and Cadence Spectre simulations with 130 nm ITRS para-

meters, is shown in Table. 3.1. The average error of our model is 4.53% and the

maximum error is 7.75% compared to Spectre results. Note that this difference arises
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because the derivation of Equation 3.8 ignored higher-order moments of the node

voltages. For n = 50, and 100 subsegments too, we found that energy values from

our model are very close to those from Spectre; the average errors in these cases were

3.94% and 3.51% respectively. As a trade—off between model complexity, in terms of

its simulation time and its accuracy, we use n = 10.

 
 

 

 

   

Sub— Normalized energy %Error

segment # Equation 3.8 Spectre

0 0.132565 0.123033 7.75

1 0.125624 0.117550 6.87

2 0.118420 0.112207 5.34

3 0.112894 0.107001 5.50

4 0.106988 0.101931 4.96

5 0.101150 0.096996 4.28

6 0.095827 0.092194 3.94

7 0.089974 0.087525 2.79

8 0.084548 0.082986 1.88

9 0.080009 0.078578 1.82

Average 4.53    
 

Table 3.1. Comparison of normalized energy dissipated in wire subsegments

obtained using our model and Cadence Spectre simulations for 10 subsegments.

3.4 Thermal Model

In this section, we present our thermal model. This enhanced model can also estimate

the distribution of wire temperatures across the length of the wire segment, compared

to our earlier model [81]. Next, we briefly introduce chip thermal structures and

discuss the heat transfer mechanism in modern chip packages.



3.4.1 Chip Thermal Structures and Heat Transfer

Figure 3.2 shows the cross sectional view of various layers in a chip package that

influence the way heat is transferred away from the active areas. The figure shows a

C4/CBGA (flip-chip) package with an attached heat sink and no forced air cooling.

For this type of packaging and cooling system, it has been found that there are two

heat transfer paths: a primary path that conducts away heat generated at the active

layer (substrate) through the heat spreader, attach material, and the heat sink, and a

secondary path that transfers heat from the substrate through the dielectric layers——

heat flows from the bottommost to the topmost interconnect layer—and finally flows

through C4 bumps, ceramic substrate, CBGA joints, and the printed circuit board

to the ambient air [66]. As mentioned earlier, models for estimating substrate tem-

peratures are available in tools like HotSpot [64,66] but detailed activity-dependent

models for estimating global signal wire temperatures are not. Next, we present

the model that will help estimate spatially-distributed wire temperatures in a wire

segment.

Heat sink

l [M] Ilfl fl fl -PTSecondary

Thermal paste —-¥7‘“ ‘ ' ” ,, * HT path

Heat spreader —~> :— Si substrate

C4 Pads . ‘ Metal layers

Primary

HT path

 

   
 

 

 

 

  

 

 

 

 

Figure 3.2. Figure shows the view of different thermal structures of a C4/CBGA chip

and the primary and secondary heat transfer paths.
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3.4.2 Detailed Thermal Model

In the thermal model presented next, we consider any subsegment k as a point source

of Joule heat, called a thermal node. Using the well-known analogy between thermal

and electrical quantities, we can consider that, the temperature difference between

two nodes, corresponds to a voltage difference and the heat transfer rate to current.

The ability of the wire segment to hold heat is modeled by its thermal capacitance and

the ability of the surrounding dielectric to conduct heat away from the wire segment

is modeled as the thermal resistance. These thermal circuit parameters are brought

together to form a therrnal-RC network, shown in Figure 3.3(a) for a 5-wire bus,

across the same subsegment k in all wires.

By equating the rate of heat flowing into a node in the thermal equivalent circuit to

the rate of heat flowing out (analogous to Kirchoff’s current law in electrical circuits),

we obtain the following.

For the two edge wires:

Wu: (flak—90) (6i,k—9ii1,kl
 

 

P- -+Pf,=C« . +————+ (3.9)

2’ k 2’ A 2’ k dt Ri, k Rinter

and for the middle wires:

619'}: (git—90) (26ik_6i—1k—9i+1kl
13. +13! =C- .L+_’__+ "' ’ ' ’ ,(3.10)

2’ k 2’ k 2’ k dt Rik Rinter

where P,- k is the instantaneous power dissipated in the kth subsegment of the

-th
2 wire, Pi, k is the equivalent power due to the effect of switching activity in lower

metal layers and the substrate, and 60 is the ambient temperature (45 °C or 318.15 K)

inside the computer box. Note that these equations do not include heat that may

potentially flow through the vias. The reason for neglecting the via effect is given
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Figure 3.3. Thermal model. (a) Complete equivalent thermal-RC network for a 5—wire

I __ I _ _ I _ _ _ _ _ _
bus. P1,IC_P2,k_'H_ 5,k’R1,k—R2,I€_"'_R5,I€’Cl,k_C2,k_"'_

C5, k1 and P1, k, P2, k7 . . . , P51 k are bus-activity dependent in the model shown. (b)

Geometry for calculating equivalent thermal resistances for a wire based on previous

work of Chiang et al. The lightly shaded regions and arrows represent heat flow

Layer at ambient temperature

(a)

 

 

Layer at ambient temperature

(b)

between the conductors or between layers (from a hotter to a cooler one).
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in Section 3.4.2. The instantaneous or cycle-by-cycle power P1,)». can be obtained

by dividing the energy Ei, k obtained using Equation 3.8 by the clock cycle time.

However, in our microarchitectural simulations, we record the energy Ei, k for a finite

interval and then divide it by the duration of the time interval to obtain the power

dissipated. This time duration is set as explained later in Section 3.5.3.

In the above equations, Ci, k, the thermal capacitance of the wire segment, is given

by: Ci, k = C3 - (t,- -w,-), where C, is the specific heat per unit volume of the wire metal,

and 211,- and ti are wire dimensions as shown in Figure 3.3(b) and with values given in

Table 2.2. 76,-, k is the thermal resistance of the wire segment along the heat transfer

path as shown in Figure 3.3(b) and it can be calculated from the following expression

using wire geometry and thermal conductivity kild of the inter-layer dielectric (ILD)

as described in [83]:

all: + 82'

w, ) t'ild — 0.582:

2 ' kild kildfwz' + 82').

ln(

 

Rt, I6 = Rspr + RTBCI ‘2 (3.11)

The above expression is the sum of two terms: the first is the spreading resis-

tance Rspr due to the spreading of heat from the face of the wire exposed to a

cooler layer (away from the substrate) in a trapezoidal manner, and the second is the

thermal resistance Rrect due to rectangular heat flow as depicted in Figure 3.3(b).

Equations 3.9 and 3.10 can be solved to determine the wire temperature 6i k'

Heat transfer from lower layers through the dielectric

Next we consider the temperature rise in global signal lines due to heat transfer

from underlying layers. This is needed because, in current C4/CBGA packages, a

secondary heat transfer path exists from the substrate through the interconnect layers.

61



Thus, some heat flows from the substrate through the metal layers—bottommost to

the topmost interconnect—and finally flows through C4 bumps, ceramic substrate,

CBGA joints, and the printed circuit board to the ambient air [66]. The temperature

increase due to this effect to each global wire can be estimated using the following

closed-form expression [83]:

M — NZ 2"“ [NZ—fr >2 - H (312)
_ ,_1kud,iS—_—a_tt -=,Jma$ p303“ '

where N is the number of layers of metal and pj is the resistivity of the metal line

(Copper). The values for tild, i’ kild, i’ sit and ti» corresponding to different layers

of metal, were obtained from the ITRS roadmap.

Note that Equation 3.12 neglects the thermal capacitance of wire segments in

the lower layers. This because wires at lower layers are usually thinner and shorter

(smaller to and t) and also have smaller lengths. Thus, Rinter’ which depends on t-l,

and Cth’ which depends on u! - t - l, both have negligible values, and the dominant Rth

terms are only considered in this equation. The above equation also assumes that all

wiring tracks underneath the global bus are populated with power supply wires that

carry current at their maximum density Omar)-

The net effect of the secondary heat transfer path (from the substrate and lower

metal layers) is depicted as the constant current source Pi], k in the network shown in

Figure 3.3(a). Note that the Pi, ks are all equal since spatial variation in substrate

temperature across the width of the bus is neglected. This is valid, because in almost

all cases, the area footprint of the buses we study is well within the dimensions of the

underlying circuit block for which we know the substrate temperature.
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Heat transfer from lower layers through vias

Joule heat generated in the lower metal layers can flow to the global metal layer

through the ILD (as described in the previous subsubsection) and also, in parallel,

through the vias. However, heat transfer through vias occurs only within the range

of the thermal characteristic length LH of the wire [37,83]:

 

t'°t' .k

LH= 2 “d m (3.13)
t- ’

k.,-ld(1+ 0.885%)

 

where km = 401VV/mK is the thermal conductivity of Copper metal. If a wire is

longer than LH, the via heat transfer is negligible. Using parameters in Table 2.2,

LH was found to be 10.56 pm for 130 nm and 10.33 pm for 45 nm, which are much

smaller compared to our inter-repeater segment length lopt- Hence, the heat transfer

through vias will always be negligible in the global buses we consider.

Lateral thermal coupling between wires

The lateral heat transfer between adjacent wires can be a significant amount due to the

large exposed sidewall area in high aspect-ratio global lines and due to the difference

in activity rates of the neighboring lines (which creates a temperature difference and

hence lateral heat flow). It has been shown using FEM simulations that thermal

coupling is a significant phenomenon in global lines, particularly when high activity

wires are placed next to low activity ones [73]. In our model, this effect is captured

with a lateral inter-wire thermal resistance whose value depends on wire geometry

parameters, as shown in Figure 3.3(a), and the inter-metal dielectric (IMD) thermal

 

conductivity, kimd’ and is given by the expression:

8 .

Rinter = lopt X l‘- t. (3.14)

‘27an “l
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Previous work on interconnect thermal modelng did not consider the effect of

inter-wire heat transfer [66]; our model incorporates this for better accuracy. For

simplicity, we assume that the ILD and IMD are the same material. Hence kimd =

kild°

Thus, the temperature 92-, k of the k-th subsegment of wire i is affected by the rate

of heat Pi, k generated in it as a result of activity-dependent current flow, the thermal

capacitance Ci of the wire metal, thermal resistances of surrounding inter-layer and

intra-layer dielectric 72,: and Rinteri respectively, and the temperature 6’,- :I: 1, k of

the k-th subsegments of its adjacent wires, all of which are considered in our model.

A distribution of wire temperatures across the wire length can be obtained by solving

Eqs. 3.9 and 3.10 for a number of subsegments k = 0,1, . . . ,n. The temperature

gradient A6,; or difference between the sending and receiving end temperatures can

be estimated using: A0,- = 62-, 0 — 6,; n, where n is the number of subsegments.

3.4.3 Steady-State Thermal Model

The detailed thermal model discussed above is used to track activity-dependent tem-

perature variations in bus wires across time. However, due to its complexity, it

is somewhat difficult to use in the temperature optimization methodologies that we

propose later in our research. Hence we develop an approximate version of this model,

known as the steady-state thermal model. This model is also used to estimate the

initial temperatures for the bus wires before starting detailed thermal simulations.

The steady—state model for three wires is discussed next. Consider three consecu-

tive wires 101,10], and wk on a bus. When there is no bit reordering, data bits biv bj,

and bk are carried on these lines. Let the corresponding power dissipation on these
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wires be Pi, P1, and PM, respectively. We assume a steady state temperature model

for thermal analysis of this wire set. In this model, the final temperature Tfin of a

structure with initial temperature Tim is: Tfin = Tim + P x Rt, where P is the

power dissipated by the structure and Rt is its thermal resistance. Thermal resis-

tances of global signal wires can be estimated based on their geometry using equations

given in [66,81] and wire power dissipation can be obtained using a microarchitecture—

level simulator. For three adjoining wires, the steady state thermal equivalent circuit

is shown in Figure 3.4.

. R.
(I) inter (j) inter (k)

th Rth Rth

 

l

Ta: Ambient temperature

Figure 3.4. Steady state thermal equivalent circuit for three wires. Heat transfer

between wires is modeled by Rinter and heat loss to surroundings by Rth' P,- repre-

sents power dissipated in each wire due to switching activity and it can found using

a microarchitecture-level simulator.

Using Kirchoff’s law on the three nodes, we get the following equations:

+ r

z Rth Rinter

 

 

P. : Tj —Ta _ Ti—Tj _ Tk—Tj’

J Rth Rinter Rinter

P _ Tk - Ta Tk ‘ Tj

k — T+Tr"
th inter

In these equations, Rth is the inter-layer thermal resistance, Rinter the intra—layer
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thermal resistance, and Ta is the ambient temperature, assumed to be 45°C inside

the computer box. Solving this set of simultaneous equations using Mathematica, the

expression for the temperature of the middle wire is found to be:

  

T]: = (Pi+Pk)'a+Pj ' (0+,B)+Ta, (3.15)

R2 R-
th Rth inter

where a = and 6 = . (3.16)

3Rth + Rinter 3Rth 'I' Rinter

Thus, we find that the temperature rise (ATj = Tj — Ta) in the middle wire is

proportional to a weighted sum of the power dissipated in itself and in its neighboring

wires.

3.5 Simulation Environment and Methodology

We used the Alpha 21264 platform for this work. Details of the simulation infrastruc-

ture for this platform were described earlier in Chapter 2.4.4.

3.5.1 Benchmarks and Sample Sizes

Previous work on temperature-aware microarchitecture design has characterized

benchmarks, mostly in the SPECint suite, as hot, medium, or cold benchmarks based

on the percentage number of cycles that they are in violation of a 818°C thresh-

old [64]. From the benchmarks used in that work, we chose three benchmarks that

were reported to result in extreme thermal stress (gcc, crafty, and vortex), and two

from the medium (gzip and mesa) thermal stress group. We randomly chose seven

benchmarks, that have not been characterized previously, to complete the 12 bench-

marks in our set. Thus, our workload represent a mix of benchmarks that have been

shown to result in severe to moderate thermal violations (those listed above) and
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those which operate well below the threshold of 818°C. Hence, with this workload,

we can also analyze the extent to which high silicon die temperatures and thermal

stress, which [64] studied, correlate with global interconnect temperatures.

We collected energy and temperature results for a simulation sample of one billion

committed instructions after a fast-forward phase of five billion instructions that skips

over the program startup phase. We did not use techniques like SimPoint [77] to

choose representative samples because our thermal simulations needed a single, large

sampling window covering possibly, multiple phases of benchmark execution, and

to capture the effects of idling of processor units and buses that provide dynamic

opportunities for wire temperatures to cool down.

3.5.2 Thermal Warmup and Initial Temperatures

As reported in earlier work, it is computationally impractical to simulate long enough

for the heat sink temperature to reach steady state, since its thermal RC time con-

stant is significantly larger than that of any on—chip structure [64,91]. Hence, we

followed the methodology suggested in [64] to obtain accurate results from our ther-

mal simulations. First, we used the Wattch power/performance simulator to obtain

average power consumption values for various on-chip structures [58]. Then, we fed

these values to the HotSpot tool to obtain the steady state heat sink temperature,

and used this value to initialize the heat sink when running our simulations. Also, to

avoid “cold start” effects during the initial period of our wire temperature simulation,

we ran all simulations using our wire model twice. In the first pass, we obtained an

approximate steady state temperature value for each wire by estimating the power

dissipated in each wire for one billion cycles using the model discussed in Section 3.4.3.
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We initialized the temperature of each wire of our target bus using its steady state

temperature (Equation 3.15) and performed the temperature simulation as described

in the next subsection. Note that, using this approach, the initial temperatures of

the bus wires will not be the necessarily equal since it will depend on the distribution

of energy across the wires.

3.5.3 Granularity of Thermal Simulation

After the fast-forward phase which skips through the unrepresentative initial section

of the benchmark program, wire temperatures were set to the steady state temper-

atures estimated as described in the previous subsection. Then, for the next one

billion instructions—our simulation window—we recorded energy and temperature

results every 100K cycles. For thermal simulations, the energy dissipated per wire

was divided by the time taken for each window (fclk x105), and a fourth—order Runge—

Kutta (RK4) method was used to solve the differential equations for the thermal-RC

network (Eqs. 3.9 and 3.10) to obtain the individual wire temperatures at the end

of the interval. The RK4 simulation loop, which was implemented using the method

described in [92], iterates for a number of times which depends on the interval size

(100K cycles) and the thermal RC time constant of the wire. This ensures that each

RK4 simulation advances the solution by a small enough time interval dt that is

substantially less than the thermal RC time constant. In this way, each step of the

temperature simulation will yield sufficiently accurate temperature estimates without

the rigor of cycle-by-cycle simulation which will require huge computation time and

memory resources.

Using experimentation, we found that setting the value of dt to three (130 nm)
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and two (45 nm) gave the best tradeoff between simulation time and the nature of

temperature characteristics we obtained. For example, with the clock frequency in

the 130 nm process (1.68 GHz), time taken by the processor to execute 100K cycles is

t = 59.52 us and the thermal RC time constant of the wire, calculated using
window

wire geometry parameters in Table 2.2, is tRC = 3.6171 us. For these values, the

t .

RK4 Simulation should iterate dt X 4445mm 2 3 x 35%15721’ a: 50 times to ensure the

RC '

best granularity of temperature simulation.

3.6 Experiments and Results

In this section, we present results from simulations using our bus-line energy dissipa-

tion and thermal models and discuss their implications.

3.6.1 Energy Dissipation in Processor Buses

In this subsection we show that, in addition to adjacent wire coupling capacitances,

energy dissipated in switching transitions between non-adjacent wires also affects bus

energy dissipation significantly for current and future technologies. It is a well-known

fact that, in global signal lines, the wire-aspect ratio—the ratio of wire thickness to

wire width—is increasing faster than wire—spacing ratio, the ratio of inter-wire spacing

to inter-layer spacing. This causes the sidewall (inter-wire) coupling capacitance to

dominate the area capacitance. In sub—100 nanometer bus lines, the reduced inter-

wire distance further causes increased fringing effects with adjacent as well as non-

adjacent neighbors of a wire. With capacitance values we extracted using FastCap

 
for the 130 nm technology node values are given in Table 2.2—and using our model
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from Section 3.3 to estimate the coupling energy dissipation in each line, we found

that the energy dissipation is underestimated by up to 7.8% in data buses and 7.6%

in instruction buses, when non—adjacent coupling capacitances are neglected, for data

bus traffic in the nine benchmarks we analyzed. Results for this experiment are shown

in Figures 3.5 and 3.6. Also, we found that, although the non-adjacent coupling

capacitance values are decreasing with technology scaling, this energy estimation

error remains more or less constant in future technologies. Thus, we conclude that

accurate bus energy dissipation models must consider the influence of non-adjacent

coupling capacitances also. Previous work did not consider the effect of non-adjacent

coupling capacitances and its influence on energy; ours is the first to do so.

Non-adjacent coupling capacitances are especially important to consider when

evaluating the benefits of microarchitectural techniques for low-power buses. In cur—

rent literature, only schemes that aim to reduce energy dissipation due self and ad-

jacent inter-wire coupling transitions exist. Such schemes can potentially increase

the relative contribution of energy dissipated in transitions involving non-adjacent

coupling capacitances.

Effectiveness of Low-Power Bus Encoding Schemes

We evaluated the effectiveness of some popular bus encoding schemes like bus-invert

(BI) [51], odd/even bus-invert (OEBI) [53], and coupling—driven bus-invert (CBI) [54]

on wide data and instruction buses. To our knowledge, this is the first study to re-

port energy dissipation results for microprocessor buses using SPEC benchmarks that

represent real-world programs; most previous studies, including the ones cited above,

reported energies for random traffic patterns. Additionally, we also implemented a
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Energy Dissipated in Data Bus
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Figure 3.5. Total energy dissipated in a 64-bit data bus for various benchmarks. ‘Ccl

only’ represents the existing energy models which consider only self and adjacent

coupling capacitances. ‘Cc1+Cc2-l-Cc3’ represents our model that considers self ca-

pacitances, adjacent coupling capacitances (Ccl), and two non-adjacent capacitances

(Cc2 and Cc3) on each side. The % energy mismatch shown by the line is plotted

with respect to the right-hand side Y-axis.

variant of the BI scheme called segmented bus invert where the bus is divided into

four groups and BI encoding is applied to each group separately. This arrangement

requires four extra invert lines that are placed in the four higher order bit positions. In

our experiments, BI was implemented with the one invert line at the MSB position—

we found this to result in less energy dissipation compared to the case when the invert

line is at the LS8 position—and CBI was implemented with the invert line in the LSB

position as mentioned in [54]. OEBI was implemented with two invert lines (LSB as

the odd-invert line and MSB as the even-invert line) as described in [53].

The total bus energy dissipated for unencoded and encoded data is shown in
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Energy Dissipated in Instruction Bus
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Figure 3.6. Total energy dissipated in a 128-bit instruction bus for various bench—

marks. The % energy mismatch shown by the line is plotted with respect to the

right-hand side Y-axis.

Figure 3.7. The energy values reported in this plot have been averaged across the

nine benchmarks with each benchmark being simulated for 500 million committed

instructions. Ffom the results shown for existing bus models (Ccl only), we find

that all four encoding schemes reduce self energy, with segmented BI being the best.

Coupling charge/discharge energy dissipation increases marginally, with BI and CBI

encoding but reduce somewhat when OEBI encoding is used. Here too, segmented BI

shows the best reductions. The amount of energy dissipated due to toggle transitions

decreases when any of the four encoding schemes are used, with segmented BI again

giving the best results followed by OEBI, BI, and CBI in that order. A significant

observation from these results is that existing coupling—aware encoding schemes (like
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Energy Estimated with Different Models
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Figure 3.7. Total energy dissipated in a 64-bit data bus with various encoding

schemes. ‘Self’ denotes self energy, ‘C/D’ denotes the coupling charge/discharge

energy and ‘Toggle’ denotes the coupling toggle energy dissipation. ‘Ccl only’ refers

to existing energy models that consider self and adjacent coupling capacitance only

and ‘Cc1+Cc2+Cc3’ refers to our energy model that considers self, adjacent coupling,

and two non-adjacent coupling capacitances.

CBI and OEBI) have limited impact for wide data buses. Furthermore, we observed

that the average number of bit transitions between consecutive cycles was very low

(much less than half the bus width) for the SPEC benchmarks we analyzed. This is

most likely the result of the higher order 32 bits of data not being utilized. Hence the

number of inversions was small, even for CBI and OEBI, and hence most of the time,

data was being transmitted in original (unencoded) form. Segmented BI performed

the best in these situations because, as the effective bus width for each segment was

smaller, the number of cycles during which data-inversions took place was greater.

Thus, overall, while segmented BI encoding resulted in lowest energy dissipation,
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OEBI and BI were almost Similar in impact, while CBI was significantly worse. Note

that none of the coupling-aware schemes we examined yielded improvements on the

order of what had been reported earlier—36% for OEBI and 30% for CBI with respect

to unencoded random data—for these schemes [53, 54].

When our energy model (considering Ccl, C02, and Cc3) was used, all coupling

(charge, discharge, and toggle) energies increased and the trend in charge/discharge

energies remained unaffected. For toggle energies, however, we observed that OEBI

performed significantly worse than others. This is clearly the effect of toggles on

coupling capacitances between non-adjacent wire pairs. The net effect of this is that,

with our new bus energy model, OEBI and CBI both perform significantly worse

than BI and segmented BI. Based on our results, we can conclude that bus-inversion

based encoding schemes do not work well for wide buses and for realistic data streams

(from SPEC benchmark programs) where the number of bits that transition between

consecutive cycles is low.

Impact on Wire Temperature Distribution

The influence of energy dissipation due to non-adjacent coupling capacitances on

wire temperature can be illustrated with a simple example of a 5-wire bus like the

one shown in Figure 2.3. Consider transitions on the five bus lines, from the most

significant bit (MSB) line to the least significant bit (LSB) line as follows: THTT.

The notation T indicates that, in the current cycle, the line charges to VDD from

its previous ground state and 1 indicates that the line discharges in the current cycle

from VDD held in the previous cycle. This set of transitions represents the relative

thermal worst-case since most of the energy dissipation is concentrated in the center
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line. Numbering the bus lines from 0 (MSB) to 4 (LSB) and noting that all inter—wire

transitions, if any, are toggles, the coupling energy dissipated in each line estimated

using our energy model, described earlier in Section 3.3, can be written as follows:

c_ 2 _ 2

c _ 2 _ 2

E5 = (CO, 2 + 01,2 + c2, 3 + c2, 4>V12)D = 2(Cc1+ Cc2)V12)D

c _ 2 _ 2

1352614ng = CCQ-VgD

where CZ" j represents the coupling capacitance between wire 2' and j. Note that

the self energy dissipated in all five wires is the same (%(Cw +Crep)V12)D) and hence

its contributes equally to temperature rise in all five wires. The energy dissipated

in the middle wire E5 is the highest even if Cc2 is neglected and hence, this wire

is likely to have the maximum temperature. Furthermore, if non-adjacent coupling

capacitances are non-negligible, the middle wire dissipates much higher energy and

its temperature is likely to be even higher.

3.6.2 Correlation between Energy and Temperature

In this subsection, we examine the correlation between energy and temperature char-

acteristics obtained using our model. We report and analyze time-varying energy

and temperature profiles for only one benchmark—gee, for a simulation interval of 10

billion cycles in the 130 nm technology node. We found that other benchmarks ex-

hibited similar behavior; hence these are not reported. The energy and temperature

profiles are shown in Figure 3.8. In this figure, energy and temperature, plotted on
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the y-axes, have been averaged across the number of bus lines. The temperature plot

clearly shows that the average wire temperature continues to rise with time although

the rate of change is not linear; the trend line shown on the plot is only a very coarse

approximation. But, the results are significant because they show that the average

wire temperature increases by about 10 degrees over six seconds of execution of a

typical program like gcc on a 130 nm microprocessor. We also observe that short,

intermittent cycles of high switching activity can trigger changes in temperature, ev-

idenced by the regions marked 1 and 2 on the plot. Also, we notice that such bursts

of energy dissipation—likely caused by increased bus utilization—cause the temper-

ature rise to ‘linger’ for a short period of time as shown by the step-like changes at

the beginning of regions 1 and 2.

3.6.3 Final and Peak Wire Temperatures

In this subsection, we present results obtained from simulations using our thermal

model. During our simulations, we recorded type types of temperature information:

(1) the temperature change in each wire between the start and end of simulation,

(2) the highest temperature reached by each wire during the simulation, and (3) the

temperature gradient of each wire between its sending and receiving ends. These

results are presented next.

We observed that wire temperatures increased significantly over the time interval

of simulation for most wires. Figures 3.9 through 3.11 show the wire temperature

rise that we recorded for three integer and three floating—point programs respectively,

each for one billion committed instructions of execution for all bits of the 64-bit data

bus. The corresponding results for the 128—bit instruction bus are in Figures 3.11
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Figure 3.8. This plot shows average energy dissipation and wire temperature of the

bus for a simulation interval of 10 billion cycles. The continuing temperature rise can

be clearly observed.

through 3.14. We show detailed results for only these six benchmarks since they

exhibit interesting behavior. The highest temperature rise recorded for any wire

during our simulation, for the 12 benchmarks we analyzed is given in Table 3.2. We

show results for both 130 nm and 45 nm technologies in the figures and in the table.

The time taken to commit a billion instructions in the pipeline which is typically

on the order of a few seconds is much longer than the thermal RC time constant

of the Wire, which is only a few microseconds. Thus our simulation interval is large
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enough to allow temperatures to settle to their characteristic values. Furthermore, we

initialized wire and heat sink temperatures to their steady state values as described

earlier in Section 3.5.2, to prevent cold-start effects.

From the knowledge of characteristics of instruction and data traffic, all lines

in an instruction bus, which is 128 bits wide (fetch—width: 4 instructions), can be

considered equally active, while in a load/store data bus, which is 64 bits wide, the

lower order 32-bits are expected to be most active due to data value locality. The

results shown in Figures 3.9—3. 14 reflect these observations to some extent. For integer

data, we observe that the hottest wires are the ones that carry lower-order bits. One

notable exception is gzip in which all wires Show significant temperature rise across

the simulation. This is expected because, when executing gzip, the data bus will

carry primarily 8—bit characters packed in the 64-bit bus. Another observation is

that, for mcf , the middle wire is the hottest at the end of the simulation interval. For

floating-point benchmarks, temperature rise is somewhat evenly distributed across

the 64 bits because the higher-order wires, which carry the exponent bits, are also

quite active. Also, lucas shows higher temperatures in some lower order bits. Finally,

we notice that the highly active wires are likely to end up at higher temperatures

when executing integer workloads as against floating-point workloads.

During the course of simulation, we observed that wire temperatures rose and fell

as bus activity, the number of transitions, and the energy dissipation varied. A three-

dimensional plot showing the variation across time and across the lower-order 32 bits

of the data bus, plotted for three billion cycles of execution of the gcc benchmark

is shown in Figure 3.15. This plot shows that there are intervals during which wire

temperatures rise to higher values due to a sudden rise in energy dissipation and then
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Figure 3.9. Plots show the wire temperature rise recorded for benchmarks gcc and

gzip for the data bus in 130 nm and 45 nm technology nodes over a simulation interval

of one billion committed instructions for each benchmark.
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Figure 3.10. Plots show the wire temperature rise recorded for benchmarks mcf and

Iucas for the data bus in 130 nm and 45 nm technology nodes over a simulation

interval of one billion committed instructions for each benchmark.
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Figure 3.11. Plots Show the wire temperature rise recorded for benchmarks ammp

and applu for the data bus in 130 nm and 45 nm technology nodes over a simulation

interval of one billion committed instructions for each benchmark.
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Figure 3.12. Plots show the wire temperature rise recorded for integer benchmarks

gcc and gzip for the instruction bus in 130 nm and 45 nm technology nodes over a

simulation interval of one billion committed instructions for each benchmark.
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Figure 3.13. Plots show the wire temperature rise recorded for integer benchmarks

mcf and lucas for the instruction bus in 130 nm and 45 nm technology nodes over a

simulation interval of one billion committed instructions for each benchmark.
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Figure 3.14. Plots show the wire temperature rise recorded for integer benchmarks

ammp and applu for the instruction bus in 130 nm and 45 nm technology nodes over

a simulation interval of one billion committed instructions for each benchmark.
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settle at lower values. Such intervals neither occur synchronously across wires nor are

uniformly distributed among them.

Wire Temperatues in the Lower-Order 32-bits of Data Bus for GCC
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Figure 3.15. A three—dimensional plot showing spatial and temporal variations in

wire temperature for the lower-order 32 bits of the load/store data bus for the gcc

benchmark.

Table 3.2 lists the absolute maximum temperatures attained by any wire during

the course of simulation. As can be seen, we found that wire temperatures may reach

up to 104°C for data bus wires and 896°C for the instruction bus in the 130 nm

technology node. For the 45 nm node, data bus wire temperature was found to go

as high as 128.7°C and instruction bus wire temperature as high as 104.9°C. Note

that these values are higher than 100° which is the maximum temperature assumed

during interconnect design. We also observed that maximum temperature trends for
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data buses are very similar to those observed earlier for temperature rise. That is, the

largest temperature change over the simulation interval occurs for bus wires whose

transient temperature also touches maximum value, showing that different data bus

wires experience varying amount of thermal stress depending on their location. For

instruction buses, the maximum temperatures observed across bus wires were more or

less similar. Hence, all instruction bus wires experience more or less similar amounts

of transient thermal stress during the simulation interval.

3.6.4 Wire Temperature Gradients

Next, in Figures 3.16(a) and (b), we show the frequency distribution of the wire tem-

perature gradients that we recorded during our simulations, for 130 nm and 45 nm

load/store data bus wires. These plots Show that, on the average across the bench-

marks we analyzed, the temperature gradient in this bus can be expected to be

between 6—15°C for 130 nm technology. For 45 nm technology temperature gradients

between 16—34°C were most commonly observed for the same set of benchmarks and

simulation sample. During our simulations, the maximum temperature gradient ob-

served was 31°C for 130 nm and 42°C for 45 nm simulations. These wire temperature

gradients are the result of two factors: (1) the non-uniform dissipation of Joule heat

along the wire length which is modeled using Equation 3.8, and (2) due to the dif—

ference in temperature of the underlying substrate blocks which was obtained using

HotSpot and applied during our thermal simulation. Temperature gradients across

the length of the wire also affect delay. It has been reported that for a 1 mm long

wire with the driver in the hot region and receivers in a cooler region, a temperature

difference of 10°C results in a 5 ps (z 8%) additional delay at the receiver [93].
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Distribution of Maximum Wire Temperature Gradients

in 130 nm Wires
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Figure 3.16. Frequency distribution of maximum wire temperature gradients for

130 nm and 45 nm processor wires.
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3.7 Summary

In this chapter, we presented a unified nanometer-scale bus energy dissipation and

thermal model that can help designers monitor energy dissipation and temperature

change in individual wires during trace— or execution—driven simulation. In addition

to self capacitance, our model incorporates the effects of adjacent and non-adjacent

capacitive coupling on bus energy dissipation, the effect of repeater insertion, the

effect of lateral heat transfer between adjacent wires, and the effect of inter-layer

heat transfer. Unlike existing models which provide estimates for total bus energy, our

model can estimate energy dissipated in each bus line; this feature helps to estimate

wire temperatures also. Using this integrated model in a first-of-its—kind study, we

studied energy and thermal characteristics of instruction and data buses using an

execution-driven simulation of a billion or more instructions of nine SPEC CPU2000

benchmarks. We found that existing bus energy models provide estimates that are

about 7-8% less accurate compared to our energy model. This is because they do

not account for the effects of coupling between non-adjacent wire pairs of a bus. Our

model, which incorporates these effects, is the first of its kind to do so. Our results also

show that, in wide instruction and data buses used in modern processors executing

SPEC CPU2000 workloads, existing bus encoding schemes Show no significant energy

benefit due to the nature of data traffic. When non-adjacent coupling effects between

wire pairs are considered, energy dissipation savings reduce considerably. Based on

simulations using our thermal model, we found that average wire temperatures in data

and instruction buses may rise 10—37 °C during a simulation run of only a billion cycles

in a 130 nm spuerscalar processor executing SPEC CPU 2000 benchmark programs.
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This temperature rise is primarily due to heat generation as a result of currents flowing

in the wire during bit switching. Changes in substrate temperature may cause other

effects in the temperature profile which we did not explore in this work.

In a future 45 nm technology node, wire temperature rise for the same set of bench-

marks and simulation sample was found to be between 20-58°C. We observed that

instruction and data bus wires attained absolute temperature in the range 80.3-104°C

and 97.6—123.7°C, in 130 nm and 45 nm processors, respectively, during the course

of our simulation, showing that signal lines attain significant temperatures too. Sig-

nificant wire temperature gradients of magnitude between 16—25°C were found to be

most common between the sending and receiving ends of the wires during the course

of simulation. Notable correlation was found to exist between energy dissipation be-

havior and wire temperature rise in buses across time; short, intermittent cycles of

high energy-dissipating switching activity trigger step changes in temperature.

The impact of these results, especially, the highly fluctuating—both in time and

space—energy and temperature profiles of instruction and data buses that we ob-

served, is the following. Since the energy dissipation of the wire roughly represents

the square of the time-varying current, fluctuations in the energy mean that a highly

varying load is being placed on the power supply network by the driving circuits

through which the currents flowing in the wires are drawn. This varying load can

cause inductive voltage drops or Lfillt noise. This motivates the need to smoothen

temporal variations in energy dissipation of wires with appropriate techniques. Also,

the substantial disparity in wire temperatures across the bus motivates schemes that,

based on information from interconnect thermal sensors, can migrate bus transmis-

sions dynamically to cooler wires.
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CHAPTER 4

DATA- AND

TEMPERATURE-DEPENDENT DELAY

VARIABILITY MODEL

4. 1 Introduction

Rising wire temperatures are becoming an important issue in high-performance bus

design, especially in current and future nanometer technology nodes, as the previ-

ous chapter showed. Higher temperatures adversely impact wire delays—due to the

temperature dependence of metal resistivity—causing timing violations when the end-

to—end propagation delay exceeds the designed value. The factors that influence the

dynamic propagation delay of a signal transmitted on the wire can be classified into

two types, intrinsic factors that are related to the switching activity of the wire and/or

its neighbors and extrinsic factors like process and voltage variations. As shown in

the earlier chapters, the temperature distribution along the wire is a function of the

switching activity in the wire and hence it is also an intrinsic factor.

In the context of global interconnect lines, temperature variations occur due to

two reasons that are both important to study. First, energy is dissipated in a non-

uniform manner across the length of the wire. In Chapter 3.4, we showed that the

temperature at the sending end of a wire will be higher than that of the receiving

end of the wire. In this chapter, we develop a model to estimate the impact of this

temperature gradient on the propagation delay of the signal. Substrate temperature
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gradients, when present, will exacerbate thermal gradient-dependent delay. Second,

temperature variations are also non-uniform across time since the characteristics of

programs dictate the amount of switching activity in signal wires and consequently,

the energy dissipated in them and their temperature. When switching activities rise,

it also causes the wire temperature gradient to increase.

Due to lack of detailed models, existing early—stage design exploration methods

lump the effects of process, voltage, and temperature (PVT) variations. This results in

overly pessimistic and/or incorrect delay estimates. Even in later stages of the design

process, a constant temperature value across the chip is assumed to analyze of the elec-

trical characteristics of devices and interconnects. In reality, given that on—chip power

dissipation in devices as well as interconnect is workload-dependent, the temperature

distribution within the chip is far from uniform, and thus the constant-temperature

assumption will result in a design which will result in problems during validation

and necessitate costly re-spins. Using detailed temperature models developed previ-

ously, this chapter examines the impact of data— and temperature-dependent delay

variations for various on—chip high performance processor buses.

The organization of the rest of the chapter is as follows. In Section 4.2, we discuss

related work. Following that, in Section 4.3, we describe our models. Then, we

present results and discuss them in Section 4.4. Finally, we summarize in Section 4.5.

4.2 Related Work and Our Contributions

This section reviews related work. The impact of increasing interconnect tempera-

tures has been well studied in [21, 38, 69]. However, they do not use real data from
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benchmark programs and hence their estimates are somewhat pessimistic. Also, these

models are not amenable to use in microarchitecture—level exploration tools. Recent

interest in temperature- and reliability-aware microarchitectures has led to the devel-

opment of tools [64,66,94] and techniques [58,71] for processor thermal and reliability

management. However, these tools do not address an important temperature-related

reliability issue in on-chip interconnects: transient faults or timing violations due to

temperature-dependent resistivity changes. In contrast to these, we seek to develop

activity-dependent models that estimate the distribution of Joule heat across the

length of a wire, the wire temperature gradient across it, and finally, the actual delay

due to crosstalk and temperature-induced resistivity changes. Using these models, we

analyze the number of delay violations occurring for different benchmark programs

from the SPEC CPU2000 suite in 130 nm and 45 nm processor designs.

In current design methodologies, temperature—related wire reliability problems are

identified late in the design cycle and hence their rectification involves substantial cost

and effort. But this overhead can be avoided by properly accounting for temperature-

related effects in early stage design. To our knowledge, no early stage microarchitec-

ture exploration tool currently offers the capability of estimating temperature-induced

timing violations in high-performance buses; our work is likely the first of its kind to

develop such a model. Our model can also be used in temperature-aware delay and

skew analysis in clock trees, although we do not examine this aspect in this paper.

Specific contributions and key results from this paper are outlined next.

0 Using a cycle-accurate microarchitectural simulator, we show that timing vio—

lations due to temperature gradients are somewhat likely in 130 nm designs—

average of 2.27 per hundred bus references for an ALU result bus across ten
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SPEC CPU2K programs—and increases in the future 45 nm technology node

to 6.20 per hundred for the same processor design.

0 We found that, by an optimistic analysis, the performance impact of overcoming

temperature induced timing violations by re-transmitting data will be about 4%

in a superscalar design at 130 nm and 11.92% at 45 nm.

e We also found that conventional techniques like bus encoding that seek to re-

duce energy dissipation and potentially wire temperatures have limited impact

on alleviating temperature-induced timing violations. Reducing the bus clock

frequency yielded a better impact, reducing average error rate to 1.07 in the

130 nm processor compared to encoding which reduced it to only 1.93 per hun-

dred references.

4.3 Temperature Dependent Delay Variability

Model

In this section, we present analytical models for estimating the spatial distribution

of Joule heat, temperature, and temperature-dependent delay in RC interconnects.

Versions of the well-known energy model for a lumped-RC wire, discussed in Chap-

ter 2.1.2, has been traditionally used in interconnect analysis to estimate energy

dissipated due to self and coupling transitions. But this model assumes that Joule

heat is dissipated uniformly across the length of a wire and hence leads to conserva-

tive temperature estimate for the wire. Furthermore, it does not capture the spatial

distribution of Joule heat, without which the impact of temperature on delay cannot

be estimated accurately. In Chapter 3.3.3, we derived a new expression for energy
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distributed along the length of a wire and validated it using circuit simulation. We

also constructed a thermal model and found wire temperature gradients using this

model. The effect of this temperature gradient on wire delay is found as discussed

next.

4.3.1 Wire Delay Considering Temperature Impact

The propagation delay of a lumped-RC wire considering only data dependent crosstalk

was presented in Chapter 2.1.5. For a distributed RC line partitioned into n subseg—

ments each of length l, the Elmore delay D of a signal passing through the line is the

following:

L L L

D 2 Rd ' (Cr +/0 c0(:r)d:1:) +/0 r0(:c) - (A 60(T)dT + Cr)d:r, (4.1)

where c0(;z:) and r0(a:) are the per-unit length wire capacitance and resistance,

respectively, Rd is the driver resistance, and CT is the receiver capacitance. Since

the resistance of a wire segment changes with temperature, we can write: r0(:z:) =

p0(1+fl-T(:1:)), where T(:z:) represents the temperature profile along the length of the

wire, p0 is the unit length resistance at a reference temperature (273 K), and B is the

temperature co—efficient of resistance for Copper (6 2 396—3 per°C). Substituting in

Equation 4.1, we get:

L L

D 2 D0 + (COL + C7~)pOfi/O T(:r)a’.:r — copOfi/O :rT(:z:)d.r, (4.2)

L2

where D0 = Rd(Cr + 00L) + (60p0—2- + pOLC'r), (4.3)

Do is the Elmore delay corresponding to a unit length resistance at reference

temperature. In Equation 4.3, fOL T(:r)d:r represents the area under the temperature
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curve, denoted as A in a plot of temperature vs. wire-length. Let T(:z:) be a straight

line with T(:r = 0) 2 TA and T(:1: = L) 2 TB, TA 2 T3. The area under T(:2:)

gives the value of A. Now the x-coordinate of the centroid of this region is given by

130 = % fOL 33T(:c)d:c [95]. Thus fOL :rT(:r)d:r = arc x A. Note that both 230 and A can

be found easily using geometry, if T(:13) is assumed linear.

Thus, by estimating TA = (92-, 0 and TB = 6i, n using the model in Chapter 3.4,

and the area under the temperature curve for any given sampling window, we can

estimate the actual delay which includes the effect of temperature—dependent resis—

tance. Using this, we can determine if a timing violation has occurred as described

next.

4.3.2 Wire Delay Variability Considering Crosstalk and

Temperature

During early stage design exploration, the designer’s aim is to ensure that the mi-

croarchitecture meets all its performance expectations at the target clock frequency.

The target frequency itself is decided based on knowledge of typical operating con-

ditions that determine parameters like temperature, etc., and knowledge of process

variations that are used to account for deviations from expected values. Based on

estimates available from prior work, we assume that the delay can increase by up to

20% due to back end of line (BEOL) process variations and an additional 10% due

to voltage drOp and temperature variability [96,97]. Thus, we assume a guard band

of 30% for the delay of a global wire due to PVT. Hence tbus_clk = 1.3 X D.

We described earlier in Chapter 2.1.5 the procedure to estimate the worst-case

data dependent delay (Equation 2.4) and estimate the safe clock frequency at which
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the bus can be operated. From that discussion, we note that not all bus references will

trigger the worst case for delay in a bus line, resulting in varying amounts of delay slack

across lines and also across time. As such, the actual delay for a line estimated using

Equation 4.3 depends on the Wire temperature gradient and the nature of its crosstalk

with its neighboring wires. If the neighbors both switch oppositely with respect to

the line, the delay will be twc and, if the temperature gradient is sufficiently high,

the actual delay may exceed tbus_clk' This is a timing violation. Note that, when

this occurs, the temperature impact on delay overwhelms the 30% guard band that

we have allocated to account for worst case PVT variations.

Given the current and previous data to be transmitted on the bus, we do the

following to determine if a temperature-induced timing violation has occurred for

the bus as a whole, in our cycle-accurate simulator. First, for each wire in the bus

that changed state from the previous cycle, we compute the delay slack by examining

coupling transitions with respect to its neighbors and determining its nominal delay

tp, [9' Then, depending on the Joule heat dissipated and the thermal gradient across

its length, we determine its actual delay using Equation 4.3. Finally, we consider a

temperature-induced timing violation to have occurred for the bus as a whole if the

actual delay in any of the lines, exceeded tbusmlk‘ We report the number of such

violations per hundred bus references in our results.

4.4 Results and Discussion

We study the delay variability of the 64—bit result bus that runs over the integer and

floating-point execution units of the processor. This bus was chosen since it is highly
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capacitive and dissipates a substantial amount of energy in the processor core [45,58].

Also, it is routed over the execution unit consisting of ALUs and register files that

are highly active; hence, the substrate temperature under the result bus will also be

significantly higher than in other units. The result bus is also on the critical path

and will be impacted most by any temperature-dependent timing violations, which

may require retransmission of the data to maintain correct program execution.

4.4.1 Maximum Wire Temperatures and Gradients

The maximum wire temperatures that we recorded during the simulation of the result

bus is shown in Table 4.1 for 130 nm and 45 nm technology nodes. It can be seen

that the wire temperature can be as high as 103°C in a 130 nm processor and about

117°C in a 45 nm processor. Note that the design temperature for global wires was

assumed to be 100°C but significantly higher temperatures were observed during our

simulation. As mentioned earlier, higher wire temperatures increase wire delays by

about 5% for every 20°C rise in temperature [38].

Next, in Figure 4.1, we show the distribution of the maximum wire temperature

gradient that we determined using our model in Chapter 3.4. This plot shows that,

on the average, the maximum temperature gradient in a wire can be expected to be

between 16 and 24 degrees. These temperature gradients across the length of the

wire also affect delay. It has been reported that for a 1 mm long wire with the driver

in the hot region and receivers in a cooler region, a temperature difference of 10°C

results in a 5 ps (z 8%) additional delay at the receiver [93].

Having shown that significant wire temperatures and gradients occur when ex-

ecuting the benchmark programs in our workload, we examine next whether these
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Distribution of Maximum Wire Temperature Gradient

in 130 nm Result Bus Wires
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Figure 4.1. Distribution of maximum wire temperature gradients in result bus wires

for the 130 nm processor.

result in timing violations in the ALU result bus.

4.4.2 Frequency of Timing Violations

Figures 4.2 and 4.3 show the temperature-induced delay violations per hundred bus

references for a 130 nm and a 45 nm processor, respectively, in the ALU result bus

using our temperature-dependent delay model when running different benchmarks.

The base case—processor operating at nominal clock frequency, 1.68 GHz for 130 nm

and 11.51 GHz for 45 nm—is represented by the data series labeled “@ Nominal

Fqu.” in the two plots. For this case, we observe that the average error rate across

our benchmark set was 2.27 per hundred bus references for the 130 nm design. For the

same processor in 45 nm technology node, the error rate increased to 6.2 per hundred
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references on the average. Some benchmarks like gcc , gzip, bzip2, and art show

higher than average error rates due to the fact that they had higher values of wire

temperatures and/or gradients than other benchmarks as observed by results shown

in the previous subsection. It should be noted that the timing violation error rates

reported here represent temperature—induced violations only; other factors like process

variations and voltage drops are not included, as mentioned earlier in Section 4.3.2.

In fact, our results show that, in many cases, the extra temperature induced delay

can easily overwhelm voltage drop and process variation safety margins allocated by

a designer.

6 7 Temperature Induced Delay Violations in a 130 nm Wires
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Figure 4.2. The number of temperature-induced violations per hundred bus references

occurring across ten benchmark programs in a 130 nm processor.

Most superscalar processor designs adopt such overly conservative methods to
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Temperature-Induced Delay Violations in 45 nm Wires
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Figure 4.3. The number of temperature-induced violations per hundred bus references

occurring across ten benchmark programs in a 45 nm processor.

work around dynamic delay variability-related problems—like using an extra pipeline

stage is allocated to account for wire propagation delays [44]. Temperature-

distribution aware delay models, such as the one we have developed, can help ex-

plore the extent of the timing violation problem during early stage design. Using this

knowledge, a designer can implement schemes that address delay variability issues

and avoid over—design. For example, results presented in the next subsection show

that, by increasing the overall bus clock cycle time by only 10%, the error rates can

be halved for a 130 nm design.

As mentioned earlier in Section 4.3.2, not all bus references—even those incur-

ring worst case delays due to peak crosstalk—are likely to trigger timing violations.

Cycles in which peak crosstalk conditions occur in a wire, coupled with high Joule
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heat dissipation and large temperature gradients, have high probability of causing

a violation. Violations can occur during non—peak crosstalk conditions too, if wire

temperature and/or gradients are large enough. The following results attempt to

characterize how temperature-induced delay variations are distributed across various

crosstalk conditions.

Distribution of Crosstalk Conditions in ALU Result Bus

]i_1;4r delay lif3r delay El1+§r delayilj i +17ridelaTy ;1+Qrd¢°3lay;

100°/o 7»
i i 7* -1

90% -

80% ‘

70%

60%

50% -

40% -

30% -

20% ~

10% -

0%

     

l

F
r
e
q
u
e
n
c
y
o
f
O
c
c
u
r
r
e
n
c
e

l 
gcc gzip bzip2 crafty eon twolf art mesa mgrid swim Avg.

Figure 4.4. This plot shows the frequency of occurrence of five different crosstalk

conditions on the bus. See Section 4.3.2 and Table 2.1 for an explanation of these

crosstalk conditions. The crosstalk condition determines the actual propagation delay

without considering thermal effects.

Figure 4.4 shows the frequency with which different crosstalk conditions occur on

the ALU result bus for the programs we analyzed. This is at nominal temperature.

It can be seen that the peak crosstalk condition labeled “1+4r delay” occurs only

about 10% of the time on average across the benchmark set. The dominant condition

is “1+2r delay” which occurs about 40% of the time. Next, in Figure 4.5, we show
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the distribution of temperature-induced delay violations across the different crosstalk

conditions. As the figure shows, crosstalk conditions “1+r delay” and “1+0r delay”

contribute a very low percentage (<1%) to number of total delay violations. Other

cases have more significant contributions, suggesting that eliminating or reducing

these crosstalk conditions can potentially reduce delay variabilities.

Percentage of Temperature-Induced Delay Violations Caused

Under Various Crosstalk Conditions for 130 nm
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Figure 4.5. Figure shows the percentage of temperature—induced delay violations that

correspond to a given crosstalk condition.

From the above discussion, it can be argued that the impact of temperature-

dependent delay can be reduced by reducing energy dissipation and hence tempera-

ture. We examined two methods of reducing power: (1) a static design-time technique

that uses a lower bus clock frequency and (2) a dynamic low power bus encoding

scheme called odd/even bus—invert (OEBI) that reduces toggle transitions [53]. The

former is represented by the data series labeled “@ 0.9xNominal Freq.” and the
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latter by “@ Nominal Heq. with OEBI” in Figures 4.2 and 4.3. We observe that

slowing the bus down reduces delay violation rates better than applying the encoding

scheme. This is because reducing the bus clock frequency results in two outcomes

both of which contribute to reducing wire temperature: (1) it slows down the proces-

sor resulting in a lower number of bus references per unit time and (2) it increases the

clock cycle time over which bus switching energy is dissipated. This combined effect

reduces wire power dissipation and hence lowers wire temperatures. In contrast, the

encoding scheme only reduces the total amount of bus switching energy dissipated

in a cycle and does not affect the cycle time. Hence its impact on wire temperature

is lesser. Although, the OEBI encoding scheme is designed to reduce the number of

toggle transitions in wires, it has the side-effect of increasing the number of coupling

charge/discharge transitions. Thus, in the context of crosstalk, an OEBI-encoded

stream will have more number of “1+2r delay” cases. We have observed earlier that

somewhat significant temperature-induced violations are possible for this case and

this may have contributed additionally to the ineffectiveness of OEBI in reducing

error rates. we also observe that frequency reduction is less effective at 45 nm node

than at 130 nm node.

4.4.3 Performance Impact

Delay violations, if unchecked, will the impact performance of the processor, requiring

an extra cycle to retransmit the data on the result bus. Also, dependent instructions

may need to wait longer for dependencies to be resolved and this may cause pipeline

stalls. Table. 4.2 shows the instructions-per-cycle (IPC) degradation observed across

our benchmark set; the average performance degradation was 4.08%. Note that this is
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an optimistic estimate since we have assumed that the re-transmission is not affected

by delay violations, which is strictly valid only if the bus has cooled down compared

to its state during the previous transmission. Our focus, in this work, is not to im-

plement a dynamic scheme that inserts appropriate number of wait cycles to cool the

bus after a delay violation is detected. However, such a scheme will only cause the

data re-transmission to wait longer than what we have assumed here. Hence, our IPC

estimates are lower-bound values. In reality, since the operating clock frequency at

45 nm is much higher than at 130 nm, the performance impact will be much higher

at the smaller technology node. Our simulations with 45 nm technology parame-

ters found that the average performance degradation across the ten benchmarks was

11.92% (Table 4.2).

4.5 Summary

This chapter presented models for estimating the Joule heat and wire temperature

across the length of a global wire, and to determine its temperature-dependent delay

impact. We showed that temperature gradients exist between the sending and re-

ceiving ends of a wire and this may lead to dynamic delay variations that can exceed

design margins. We used our models to explore the extent of temperature-induced

delay violations that may occur in the ALU result bus of a processor in the 130 nm

and 45 nm technology nodes using real data from ten SPEC CPU2000 programs.

Microarchitectural simulation results show that delay violations due to tempera-

ture gradients are somewhat likely in 130 nm designs—average of 2.27 per hundred

bus references for the ALU result bus. In the future 45 mn technology node, the
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error rate was found to increase to 6.20 per hundred for the same processor design.

Commercial 130 nm processor adopt techniques like an extra pipeline stage to com-

bat the influence of dynamic delay variations in wires. However, this leads to over

design. Temperature-aware delay models like the one we have developed can be used

to explore the design space efficiently and avoid over design. We also found that, by

an optimistic analysis, the performance impact of overcoming temperature induced

delay violations by re—transmitting data will be about 4.1% in a superscalar design at

130 nm and about 11.9% at 45 nm technology node. We also found that conventional

techniques like bus encoding that seek to reduce energy dissipation and potentially

wire temperatures have limited impact on alleviating temperature-induced delay vi-

olations. Reducing the bus clock frequency had a better impact, reducing average

error rate to 1.07 per hundred references, compared to encoding which reduced error

rates to only 1.93 per hundred references.
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CHAPTER 5

ACTIVITY-AWARE ENERGY AND

TEMPERATURE OPTIMIZATION

With increasing energy dissipation and wire temperature in processor bus wires and

the inability of existing low-power encoding schemes to address these problems ad-

equately, novel approaches need to be examined. This chapter examines a family

of such energy-efficient techniques that rely on data statistics and a first-of—its—kind

optimization methodology to reduce bus wire temperatures [98].

5.1 Introduction

On—chip wires are a major impediment to realizing the performance gains that mo-

tivate CMOS technology scaling in integrated circuits. At smaller technology nodes,

transistors become faster and somewhat energy-efficient but wires become slower

because smaller cross-sectional area increases their resistance. To counter this,

wire are scaled less-aggressively than transistors. However, this scenario leads to

taller and thinner wires that exacerbates parasitic effects like inter-wire coupling

capacitance, thus leading to relatively more energy dissipation when wire switch-

ing charges/discharges these capacitances. Global signal-carrying wires/lines already

contribute a major portion to total chip power dissipation—about 34% in an Intel

130 nm microprocessor [4]. As a result, rising wire temperatures are becoming an im-

portant issue in high-performance processor design, especially in current and future
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nanometer technology nodes since higher temperatures can impact wire delays and

electromigration reliability [21, 66, 99].

Wires—like those that constitute address, instruction, data, and ALU result

buses—routed in global metal layers are much more susceptible to higher temper-

atures due to the following reasons: (1) with higher clock frequencies, the amount

of energy dissipated in the wire as Joule heat increases compared to the energy dis-

sipated in the repeaters [100], (2) they are furthest away from the substrate which

is attached to the heat sink and they are surrounded by low-K dielectrics that have

poor thermal conductivity, resulting in inefficient heat removal, and (3) their rela-

tively large geometries result in higher thermal capacitance, i.e., the ability to retain

heat. Rising wire temperatures increase wire delays by about 5% for every 20°C rise

in temperature [38]. Wire temperature gradients across the length of the wire also

affect delay. It has been reported that for a 1 mm long wire with the driver in a hot

region and receivers in a cooler region, a temperature difference of 10°C results in a

5 ps (z 8%) additional delay at the receiver [93].

5.1.1 Need for Energy and Temperature Aware Bus Design

Real workloads cause bus traffic (in instruction, data, address buses) that exhibit sub-

stantial spatial and temporal locality and value redundancy. Switching activities are

therefore not random. Further, there is a high degree of correlation between switching

(self and coupling) activities of traffic in different execution regions of the same bench-

mark and across different benchmarks. These characteristics can be exploited using

value-aware design of encoding schemes. Previous techniques are typically (inversion-

based) dynamic encoding schemes which support a set of encoding modes, one of
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which is dynamically chosen at run-time in a given cycle in an attempt to reduce

bus energy. These suffer from several drawbacks. First, encoding modes supported

are those that are effective only for random or worse-case (highly-changing) traffic,

which is not the case in realistic workloads. Such value obliviousness limits their

effectiveness. We present results showing average energy reductions for dynamic en-

coding schemes to be only 4.19% (5.32%) at best for data (instruction) traffic across

SPEC CPU2000 benchmarks. Second, being dynamic, there is a latency overhead in

encoding and decoding and extra area for hardware and control lines. Also, as several

earlier works have demonstrated, the efficacy of inversion-based encoders falls rapidly

as bus width increases [101,102] and bus partitioning schemes have been proposed to

address this issue [103]. However, with partitioned buses, the number of extra lines

required for control signals increases and this restricts its attractiveness.

Third, previous schemes attempt to reduce either self or coupling energy, not

total bus dynamic energy. Hence their effectiveness will change as the ratio of self to

coupling energy changes with technology scaling. Finally, energy and temperature-

aware design of high-performance buses are only loosely related. Reducing energy

(switching activity) through encoding reduces only the average temperature of a wire

(tang) since it is dependent on total energy dissipated over time which reduces due to

encoding. However, existing encoding techniques do not explicitly reduce maximum

temperature of wires (imam) since these depend not only on the amount of energy

dissipated in the wire itself but also in its neighbors. For example, a low-activity wire

(victim) with highly-active neighbors (aggressors) leads to rise in the temperature

of the victim wire due to thermal coupling [73]. The effects of thermal coupling can

exacerbate electromigration and other related reliability problems in high performance

111



bus wires. Further, due to data locality, a few bus lines are highly—active most of the

time and this makes them more susceptible to temperature—induced failures. Such

problems can be remedied by combining encoding that reduces tavg with static bit

reordering or permutation that seeks to reduce tmagj by minimizing thermal coupling.

5.1.2 Key Contributions and Results

We evaluate several possible ways of signaling a bit value at design time, and then

choose, based on traffic value characteristics, exactly one signaling mode for each bit

statically to support in hardware to minimize total bus dynamic energy. We also

consider all possible ways of mapping bits to bus lines (bit ordering or permutation),

and then choose, again depending upon traffic value characteristics, exactly one bit

ordering statically at design time to support in hardware to minimize total bus dy-

namic energy. The combination of a particular way of signaling different bits and

ordering them on the bus constitutes a static encoding scheme. We present an inte-

ger linear program (ILP) methodology that evaluates q possible bit signaling modes

and all possible bit orderings for an n-bit bus (i.e., it evaluates a total solution space

of q” x n! encoding modes) based on traffic value characteristics and then chooses an

optimal encoding mode that minimizes total bus (self + coupling) dynamic energy.

This selection is done at design time using data from microarchitectural simulations

and the ILP problems are solved optimally in a matter of minutes. Since only one

encoding mode is statically supported in hardware, encoding/decoding (latency, area,

and energy) overhead is virtually non-existent and there are no control lines needed.

Since there is substantial correlation between switching characteristics across

benchmarks, our static encoding scheme optimized for one set of training bench-
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marks works very well for a different set of test benchmarks—we refer to this as

general-purpose optimization; in this case, we obtain 20.04% (38.78%) average to-

tal bus energy reductions with our best scheme for data (instruction) buses. With

increasing degrees of customization (suitable for particular application domains or

embedded systems), effectiveness improves: we obtain average bus energy reductions

of 22.79% (40.77%) for workload—specific and 30.2% (52.1%) for program—specific opti—

mization scenarios for data (instruction) buses. These average percentage bus energy

reductions for our static encoding schemes are 5 to 10 times better compared to

existing, more complex dynamic encoding schemes.

We present a new way of bit signaling based on Markov models. Markov models

have been used in a variety of situations (e.g., branch prediction, instruction com-

pression, etc.), but never in the context of bus encoding or low—power bus design.

We show that lowering bus energy (e.g., even significantly, as with our static

encoding schemes), does not necessarily lower peak wire temperatures (the highest

temperature attained by a bus wire during program run)—in fact, it often may in-

crease it slightly. To address this, we present a novel method of efficiently explor-

ing the peak-wire—temperature and total-bus-dynamic-energy trade-off space using a

steady-state wire temperature model. Based on this, we present a new method of

introducing thermal constraints into our energy optimization methodology that al-

lows a designer to trade-off peak wire temperature with total bus dynamic energy

as desired. For this thermally-constrained, energy-optimal static encoding scheme,

we then perform simulations using a detailed per-wire bus thermal model to deter—

mine the actual reductions in peak temperature, which we find to be significant.

For example, by sacrificing approximately 50% of the energy savings provided by
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the thermally-unconstrained, energy-optimal version of our scheme, we obtain up to

12.26°C (12.96°C) and on the average 803°C (924°C) peak wire temperature reduc-

tions for data (instruction) buses, while at the same time providing significant average

energy savings: 14.24% (16.17%) for data (instruction) buses (still much better than

previous work). No previous work has attempted thermally—constrained energy opti-

mization of buses. A recently proposed spreading encoding technique, which targets

only peak wire temperature reduction and does not perform any energy optimization,

has a number of drawbacks: latency, hardware, and energy overhead of a cross-bar

switch network, use of a counter, and we also find that, for the same benchmarks, it

does not provide as much temperature reduction.

Finally, if needed, appropriate dynamic bus encoding schemes and the spreading

technique for temperature reduction can be applied after our static encoding schemes

to further Optimize bus energy and temperature. Therefore, in this sense, our work

is orthogonal to, although much more effective than these previous works.

The organization of the rest of this chapter is as follows. In Section 5.2, we discuss

related work. Next, in Section 5.3, we discuss our methodology. Following that, in

Section 5.4, we present our techniques. Then, we present results in Section 5.5.

Finally, we summarize in Section 5.6.

5.2 Related Work

Prior work on low-power bus design can be classified into three categories: (1) memory

bus encoding schemes that reduce only self transitions, many of which are surveyed

in [86], (2) on-chip bus encoding schemes that target both self and inter-wire coupling
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energy reduction [53,54,104], and (3) wire permutation techniques like those proposed

in [105—109] that seek to minimize coupling energy. Memory bus and on-chip bus

encoding schemes are dynamic in nature and wire permutation techniques are static.

Our proposed optimization approach differs from prior related work discussed

above in many ways. First, wire permutation schemes discussed in [105—107] opti-

mize only inter-wire coupling energy, whereas our scheme combines the benefits of

signaling that reduces self transitions, with permutation that seeks to minimize cou-

pling energy. In contrast to the optimization technique suggested in [108], our work

considers a wider array of signaling schemes and solves the combined signaling and

permutation problem optimally, while they use a greedy algorithm. This contributes

to better results using our optimization technique. Compared to the address bus or-

dering scheme proposed in [109] which can be applied to 8—bit buses only, our scheme

can be applied to any bus regardless of bus width or transmitted data. Furthermore,

their optimization uses simulated annealing technique, whereas we solve the problem

optimally using integer linear programming, for much larger bus sizes and with com-

parable time complexity. Our optimal static encoding scheme also results in much

better energy reductions compared to well—known dynamic low-power bus encoding

schemes.

Most importantly, our technique incorporates a thermal optimization method-

ology for buses which has not been addressed by any previous work. Rising wire

temperatures are becoming an important issue in high-performance processor de—

sign, especially in current and future nanometer technology nodes [21,66]. To ana—

lyze temperature-related issues, microarchitecture-level thermal models like HotSpot

[64,66] have been proposed to estimate substrate (active-layer) temperatures. Inter-
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connect thermal models have also been proposed recently [71]. It has been shown that,

in global layer interconnects, activity-dependent Joule heat dissipation in the metal

leads to thermal coupling between adjacent wires causing maximum wire temperature

to shoot up beyond safe design limits [73].

A recent work proposed a methodology called thermal spreading encoding to re-

duce wire temperatures [110]. In that work, data is bit-shifted periodically before

being transmitted on the bus, in an attempt to equalize wire temperatures across the

bus by averaging out the Joule heat dissipated across all lines. This technique does

not reduce energy dissipation since the coupling energies dissipated in the bus lines

remain more or less the same after each shift. Furthermore, it does not alleviate the

problem of temperature rise due to thermal coupling between wires. In contrast, our

work addresses both these issues through the use of bit re—ordering instead of circu-

lar shifting. Spreading encoding, as discussed in [110], is a dynamic technique and

uses a n x n—crossbar for an n—bit bus and control logic (counters, etc.) to generate

periodic shift signals. Our technique is completely static, incurs negligible overhead,

and achieves much better temperature reductions.

5.3 Methodology

We used the SimpleScalar/Alpha microarchitecture-level simulator to design and eval-

uate our techniques [67]. The Alpha 21264 architecture modeled by this simulator

uses a 64—bit (load/store) data bus between the processor and L1 data cache and a

128—bit instruction bus (fetch width 2 4) between the processor and L1 instruction

cache. Since we have assumed our processor implementation technology to be 130 nm,
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the clock rate was taken to be 1.68 GHz. We used little-endian Alpha executables

of all 26 benchmarks from the SPEC CPU2000 suite with the ref input set and ran

our simulations on a shared Linux cluster. We selected the SPEC suite as our target

workload since pre—compiled little-endian executables for our target platform (Alpha

21264) were readily available for this suite from the SimpleScalar Website [76]. How-

ever, our optimization methodology is equally applicable to other application and

benchmark suites.

We divided the 26 SPEC benchmarks into a training and test set with 13 pro-

grams in each set chosen arbitrarily. The training set comprised of gzip, vpr(route),

gcc, crafty, gap, vortex, wupwise, mgrid, mesa, art, facerec, lucas, and simtrack, and

the test set had mcf, parser, eon, perlbmk, bzip2, twolf, swim, applu, galgel, equake,

ammp, fma3d, and apsi. For these benchmarks, we used the 100 million single simu-

lation point (SimPoint) sample to collect data for our analysis [77, 78].

5.3. 1 Target Scenarios

The three scenarios that we consider are, in the order of increasing degrees of cus-

tomization, general-purpose, workload-specific, and program-specific. We consider

these scenarios to show that our value-aware optimization techniques work well across

all scenarios. Specific details of the analysis, design, and test steps for these scenarios

are shown in Table 5.1 and are elaborated next.

Analysis Step — Data Collection and Aggregation

We consider several possible ways of signaling a bit value, with exactly one signal-

ing mode for each bit chosen statically at design time depending on traffic value
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Target Scenarios
 

 

  

 

Step General-Purpose ] Workload-Specific Program—Specific

Analysis Collect energy/cost matrices from Collect energy/cost

SimPoint samples of the 13 training set matrices from Sim-

programs and aggregate them. Point samples of

each program indi-

vidually.

Design Obtain the static encoding scheme using the CPLEX ILP

optimizer.

Test Apply the static Apply the static Apply the static en-

encoding scheme on encoding scheme on coding scheme on the

SimPoint samples a sample of 100M same SimPoint sam-

of the 13 test set committed instruc- ple used in the analy-

programs tions that does not sis step.

overlap with the

SimPoint sample for

the 13 training set

programs.      
 

Table 5.1. Optimization scenarios considered in this work.

characteristics to minimize total bus dynamic energy. We also consider all pos-

sible ways of mapping bits to bus lines (bit ordering or permutation) and then

choose exactly one bit ordering statically at design time, again depending on traf-

fic value characteristics. Hence, in the analysis step, we collect energy informa-

tion for all possible bit signalings and reordering for all pairs of wires; these are

represented in the form of energy cost matrices whose elements are represented as

el’m[i][j], {1, m} E {0, . . . ,q — 1}, {i,j} E {0, . . . ,n.}, where q is the number of sig—

naling mode choices that we consider. These signaling modes are discussed in detail

in the next section.

Each element el,m[i][j] is obtained by adding two components, both of which

are collected using the bus line energy dissipation model [81] in the cycle-accurate
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simulator for our target buses: the coupling energy Cl, m[i][j] dissipated when bits i

and j, signaled using modes 1 and m, respectively, are placed next to each other on

the bus, with j being the right-adjacent neighbor of i, and the one-half the self energy

31, m[i] and 31, m[j] of the bits, when they are signaled using the signaling modes l

and m, respectively.

When individual energy/cost matrices need to be aggregated across benchmarks

(B0, B1, . . . , Bl3), as required in the general-purpose and workload—specific optimiza-

tion scenarios—See Table 5.1—we add the corresponding elements of the matrices

across all benchmarks:

1,771,] _ ’l,m J I’m J I’m’Ja a]: a - .

Design Step — Integer Linear Programming

We use ILOG CPLEX 9.0, a commercial mathematical programming optimizer, to

solve the ILP problems [111]. CPLEX provides a C++ interface and a callable library

that facilitates reading of input files (containing our energy/cost matrices), examining

candidate solutions, and re-solving the problem after adding appropriate constraints.

To improve solution times, we also added a greedy approach to find subtours at each

node and included elimination constraints for such subtours in our ILP.

Test Step — Getting Results

After the static encoding techniques are designed, results are collected for the bench-

marks/samples mentioned in Table 5.1, depending on scenario being considered. The

effectiveness of our optimization methodology depends on the degree of similarity be-

tween the training and test benchmarks/samples. To probe the extent of similarity,
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we calculated the values of correlation coefficient rggy, with :1: representing the test

set energy matrix linearized into a vector and y representing the training set energy

matrix also linearized into a vector, using MATLAB for various signaling schemes

listed in Section 5.4.1. These are shown in Table 5.2. The correlation of two variables

reflects the linear dependence between them, i.e., it provides an estimate of how well

the value of one variable can be predicted from the value of the other. If rggy is closer

to unity then they are strongly correlated, which we find is the case with our training

and test set coupling energy values, for both general-purpose and workload-specific

optimization scenarios.

 

 

rxy for Signaling Mode
 

Optimization Type org 1nv trs 1tr m

General-purpose 0.9602 0.9602 0.9609 0.9609 0.9451

Workload-specific 0.9644 0.9644 0.9687 0.9687 0.9610

 

       
 

 

Table 5.2. Correlation coefficients rxy between test and training set data for various

signaling schemes discussed in Section 5.4.1. Since Try values are close to 1, our

training and test sets are well correlated.

5.3.2 Bus Layout and Wire Geometry

We assume a standard model of a bus consisting of a sequence of n + 2 par-

allel, minimum-width, minimum, spaced, identically-dimensioned, co—planar wires

(Wn + 1,147”, . . . ,fV1,lV0) from left to right where W1, W2, . . . , Wn are signal lines

and W0 and Wn + 1 are power/ground lines that act as shields. The bus is assumed

to use static logical therefore, it retains a previously-transmitted value until a dif-

ferent one is transmitted. We assume the bus length to be 6-mm, routed in the

topmost metal layer, and buffered by identical repeaters spaced equally apart in a
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microprocessor fabricated in the 130 nm technology node. This global interconnect

length is typical in many modern microprocessor floor plans [112]. Uniform repeater

insertion methodology was used in this bus to ensure that the propagation delay

did not exceed one clock cycle [46]. Several earlier works have also used this repeater

model to evaluate buses. Wire geometry parameters were obtained from ITRS [1] and

we used FastCap, a three-dimensional capacitance extraction program, to estimate

parasitic wire capacitances of each wire [7].

5.4 Static Techniques for Bus Energy and Tem-

perature Optimization

In this section, we present three optimization techniques for designing static encoding

schemes for on—chip signal buses and minimizing energy dissipation and wire temper-

ature based on their value characteristics.

5.4.1 Choice of Signaling Modes

We use five candidate signaling modes in our optimization technique, one of which

is selected for each bit: original (org), inverted (inv), transition—signaling (trs),

inverted transition signaling (itr), and Markov model signaling (mm). In inv, the

data on the bit line is always transmitted in inverted form, in trs, the XOR of

the previous and current original value of the bit is transmitted, and in itr the

XNOR of the previous and current original value of the bit is transmitted. We chose

candidate signaling modes based on three characteristics: (1) potential to reduce self

switching energy, (2) potential to reduce coupling energy with neighboring bits, and

(3) potential to reduce the temporal distribution of energy-causing transitions. We
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evaluate our candidate schemes according to these characteristics next.

Inverted signaling

Our optimization uses static inverted signaling (inv) as a candidate mode, i.e., the

ILP is used to decide if data on a bit line is to be sent in inverted form always,

depending on the value characteristics that we obtain for that bit from our training

set. For any bit, this mode will be chosen if the amount of self and inter-wire coupling

activities it causes with its neighboring wires is less than that for the original mode of

transmission. Signaling a bit line with inv does not reduce the self switching activity

and alters the temporal distribution of energy—dissipating transitions only slightly,

but it can potentially reduce the coupling transitions in a significant manner. For

example, a two-bit stream can be made completely toggle—free by inverting one of the

bits and keeping the other in original mode; a significant amount of energy can be

reduced since toggles dissipate most energy compared to charge/discharge and self

transitions.

Transition signaling

This signaling mode (trs) and its dual (itr) affect all three characteristics listed

earlier. For bit-streams that are highly-changing, this mode can reduce self switching

activity significantly and also reduce coupling transitions with a neighboring org-

or inv-signaled line since every toggle transition is converted to a lower-energy-

dissipating charge/discharge transition. It also reduces the temporal distribution

of energy-dissipating transitions by converting a highly-changing pattern into a run

of ones/zeros.
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Markov model signaling

In this candidate signaling technique, we use a small amount of hardware at the

sending and receiving ends for only the bits that are selected to be signaled using

this scheme. To our knowledge, this work is perhaps the first to use Markov model

signaling (mm) to reduce bus energy dissipation in a value-aware framework. For bits

chosen to be signaled using m, we maintain a history of k previous bits from the

original data stream that was to be transmitted. These k-bits define the current state

of the Markov model and it is maintained at both sending and receiving ends. At both

ends, the encoding/decoding logic uses this current state to predict the next bit to be

sent on the bus. At the sending end, if this prediction matches the actual bit value

to be sent, the bus line is held at its current value. Else, we signal a transition on the

bus line which indicates a mis-prediction to the receiver. The receiver can retrieve

the actual data by sampling the state of the bus lines (transition or no-transition)

at the end of the clock cycle since it also has information on the current state of

each bus line. The key to an efficient implementation of this signaling scheme is

the design of the encoding logic. We analyze SimPoint samples of our 13 training

benchmarks to build a prediction table. A portion of the 4-bit/16—state prediction

table—for bus lines 0 to 7 of the data bus—is shown in Figure 5.1(a). This can

be translated into hardware using standard logic synthesis tools. As an example, we

show in Figure 5.1(b), the logic circuits required for implementing the prediction table

for bits 0 through 7, obtained by logic minimization using the Espresso tool [113].

These circuits have at most two levels of logic and hence the hardware overheads they

impose will be negligible.

We tested Markov model based prediction schemes of varying depth, from 1-bit
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Figure 5.1. Markov model-based signaling technique. (a) A 4-bit prediction table for

the Markov model for bits 0—7 of the data bus obtained by analyzing training set

benchmarks. Depending on which bits are selected for Markov model signaling, the

corresponding row of the table can be translated to hardware using logic minimization

tools. (b) Examples of sending end hardware that would be required for 2 bits (0 and

7) assuming these are chosen to be signaled using the m scheme. As can be seen, the

logic overhead required for m signaling is very minimal.
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(2 states) to 10—bit (1024 states), for their prediction accuracy. As expected, the

prediction accuracy improved as the depth of the model increased. However, we found

that beyond a depth of 4 (2) for data (instruction) buses, the rate of improvement in

prediction accuracy dropped significantly. Hence, we chose the 4-bit Markov model

for the data bus and the 2-bit Markov model for the instruction bus.

Henceforth, in this paper, we shall denote the candidate signaling schemes using

subscript numbers 0 through 4 instead of org, inv, trs, itr, and mm, respectively.

Let q represent the number of candidate signaling schemes; q = 5 in this work.

Our ILP formulations use energy/cost matrices or vectors whose individual elements

we represent as el,m[i][j], {l,m} E {0,...,4}, {i,j} E {0,...,n}. For example,

e0, 1[i][j] represents the energy dissipated between bits i and j when they are placed

next to each other on the bus and wire i is signaled using the org scheme and wire

j using the inv scheme. Since there are five signaling schemes, we have a total of

25 energy/cost matrices collected for the training set benchmarks and/or simulation

sample, depending on the scenario that we consider.

Note that all energy/cost matrices are (n + 1) x (n + 1)-matrices because we

consider the two shield wires as one node, called it a dummy node. The solution to

our ILPs—MEBO and SBOS—are obtained as Hamiltonian cycles and we use the

location of the dummy node to break the cycle into a linear bit order. However, the

dummy node is not used in the ILP formulation for MES. The ILP formulations using

these notations are discussed next.
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5.4.2 Minimum Energy Signaling (MES)

In minimum energy signaling (MES) optimization, we seek to find a static signaling

scheme for each bit line of the bus, from among the five possible schemes discussed in

Section 5.4.1, with the goal of minimizing total self and coupling energy dissipated.

In the ILP formulation, for each adjacent bit pair (i,i + 1), we associate 25 binary

variables yl’ m[i], {1, m} E {0, . . . ,q — 1} representing all combinations of signaling

two bits using five schemes. Thus, the binary variable 310, 0[i] = 1 if both the i-th and

(i + 1)-th bits are to be signaled using the original mode (i.e., the bits are transmitted

as in the original traffic). Else, 310, ()[i] = 0. The formulation of MES in terms of the

y variables is given next:

n q—lq—l

Minimize Z Z Z (61,mlil-yz,m[il)

i=0 l=0m=0

subject to:

yrmlil 6 {0,1}.V {km} s {0,...,q —1}.v2' (5.2)

q—1q—1

Z Z yl,mlil=1,v2', (5.3)

l=0m=0

q—1 q—l

Z yrmlil = Z ym,1['i+1],v m,Vz' (5.4)

Constraint 5.2 ensures that the variables take only binary values, Constraint 5.3

ensures that there is only one unique signaling scheme associated with each wire pair,

and Constraint 5.4 ensure that the signaling schemes chosen for adjacent wire pairs

are consistent. Solving this ILP yields an optimal (minimum energy) signaling scheme

for the bus.
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5.4.3 Minimum Energy Bit Ordering (MEBO)

In contrast to MES, the next technique, minimum energy bit ordering (MEBO), seeks

to minimize inter-wire coupling energy by reordering the bits. Thus, in MEBO, all bits

are signaled using the original mode. It is formulated as an instance of the traveling

salesman problem (TSP), which is one of the most widely studied combinatorial

optimization problems. Simply stated, in the TSP, a salesman needs to visit n cities,

visiting each exactly once, and return to the starting city with the minimum total trip

cost. In graph theory terminology MEBO is expressed as follows: consider a complete

digraph G = (V, A), where V = {1, . . ., n + 1} is the vertex set that represents the

n + 1 bits including the dummy node, A = {(i, j) : i, j E V} is the are set, and

e0, 0[i][j] is the energy/cost associated with are (i, j ), i.e., the total energy dissipated

if bit j is placed as the right—adjacent neighbor of bit i on the bus, e0, 0[i][i] = 00, \7’ i.

Note that we use only 60’ 0[i][j] in MEBO since all bits are signaled using the original

mode only. The problem is to find a minimum energy cycle that includes every node

in the graph exactly once, i.e., to find the minimum weight Hamiltonian cycle in G.

The MEBO formulation has one binary variable associated with each arc of G

that is represented by :r[i][j]. In the solution, a:[i][j] = 1 if bits i and j are to be

placed next to each other on the bus, with bit j as the right—adjacent neighbor or i

and it is = 0 if i and j are not to be placed next to each other. The ILP formulation
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in terms of the variables x[i][j] is given next:

Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

l\/Iinimize Z 80, ()[i] [J] ' $l7l lJl

\7’(i,j) e A

subject to:

Ivl'illil E {0,1},V 231' E V, (5-5)

2: a:[i][j]=1,ViE v and 2 my] = 1,v j e v, (5.6)

V j e V v 2' e V

Solve ILP to get the solution.

Check if the solution has subtours. If none, go to Step 6.

Else, let there be t subtours:

S = {30(n0)»51(n1), - - - 73t('nt)},

where Sk(nk) means that subtour SI; has length nk.

Add subtour elimination constraint:

Zap-1y]: (m) are in Sk(nk)) < WV 5. (5.7)

Go to Step 2.

The desired solution (Hamiltonian cycle) has been obtained. Stop.

In the procedure descibed above, Constraint 5.5 ensures that the variables take

only binary values. Constraint 5.6 ensures that the in- and out-degrees of every vertex

are one, i.e., every bit occurs exactly once in the ordering. Eliminating all possible

subtours in the beginning will increase the number of constraints substantially and

may lead to a huge time overhead when solving the problem. Hence, we adopt an

iterative approach to solve the problem in shorter time. First, we solve the problem

with constraints eliminating all possible subtours of two nodes only. Then, we search

the solution for the presence of subtours, and if any are found, we add constraints to
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eliminate those subtours, and then re-solve. We found that almost all problems con-

verge to a feasible solution (i.e., a Hamiltonian cycle) within a few hundred iterations

using this iterative method and in a matter of minutes (see Table 5.3).

5.4.4 Simultaneous Bit Ordering and Signaling (SBOS)

In simultaneous bit ordering and signaling (SBOS), we seek to combine the MES and

MEBO and optimizations described above. Thus, for each bit, the best signaling

scheme—one of the five schemes listed in Section 5.4.2—and the appropriate position

of the bits on the bus lines is to be determined simultaneously. Note that combining

MES and MEBO does not mean that the energy reductions with SBOS (the combined

technique) will be exactly equal to the sum of savings obtained separately with MES

and MEBO. In fact, the motivation for combining these problems is to enable the

optimizer to select the optimal solution from a richer set of possibilities. Thus, we can

view the problem as similar to MEBO but consisting of n+1 supernodes corresponding

to the n bits of the bus and the dummy wire. A supernode contains five nodes, each

representing a signaling scheme choice for a bit. By adding constraints that ensure

that only one of these nodes is selected for each supernode and that the incoming and

outgoing nodes for each supernode are the same, the ILP for SBOS is formulated as
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described next:

q—1q—1

Minimize Z Z Z (€1,m['il'$l,mlilljl)

V(i,j)€A l=0m=0

subject to :

wrmlilljl e {0.11.11 {tr} e v, (5.8)

2 Z Z $I,mlil[jl =LVieV, (5.9)

VjEV l=0m=0

q—1q—1

Z Z Z Il,mlkllil =1.Vz’€V, (5.10)

VkEV l=0mq=0

q—1—1

goa mIz'IIII: :2) mm iljllkl Vizm 6 Wm (5.11)

=0

Constraint 5. 8 ensures that all :13] m[i]][]s take only binary values. Constraints 5. 9

and 5.10 ensure that there is exactly one outgoing and one incoming node selected,

respectively, for each of the n + 1 supernodes. Constraint 5.11 ensures that the

optimal tour enters and exits through the same node in a supernode (i.e., the signaling

schemes chosen for adjacent pairs of bits in the final ordering are consistent). Costs

e), m[i] [i], V i E V are set to 00 (a very large integer value). Finally, in SBOS too,

constraints for eliminating all subtours with two nodes are added initially, and the

problem is iteratively solved as described earlier in Section 5.4.3 until a Hamiltonian

cycle that visits all supernodes exactly once is found.

5.4.5 Thermal Optimization Methodology

As described earlier, two adjacent high-activity wires are likely to cause a hot—spot

on the bus due to intra—layer heat transfer or thermal coupling between the wires.

The peak temperature on the bus occurs at such hot-spots. In the energy optimal
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bit orderings obtained using MEBO or SBOS, a special class of constraints called

thermal constraints can be added to prevent high-activity wires from being placed

next to each other. Similarly, in MES signaling schemes can be chosen to prevent hot-

spots in a cluster of wires by adding such constraints. It is to be noted that although

adding thermal constraints may decrease the energy saving potential of the energy-

optimal bit ordering to some extent, it provides a designer the flexibility to effect a

trade—off between optimizing energy and reducing peak wire temperatures. We use

the steady state model, described earlier in Section 3.4.3 to determine, approximately,

the thermal impact of various orderings and prune thermally-inefficient orderings by

adding these constraints. We do this since it is virtually impossible to perform detailed

thermal simulations using the model and methodology described in Section 3.4.2,

for every candidate solution that we encounter during MEBO/SBOS optimization,

and then select the thermally-superior solution. Using the steady state model, the

procedure to effect a trade-off between energy and temperature reductions is discussed

next.

Steps for thermal optimization

The switching activities of buses vary widely across bits due to the characteristics of

data carried on them and hence, the solution space of energy-efficient bit orderings—

that are found using MEBO and SBOS—also contains bit orderings in which the wire

temperatures are reduced. The steps listed next enable us to find these thermally-

superior orderings without affecting the energy optimality by much. Note that all

temperature estimates used in the steps listed below are from the steady-state model.

1. Find the energy dissipated Eorig and peak wire temperature Tp f
eak — orig O
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the unmodified bus.

2. Find energy-optimal bit ordering and/or signaling without any temperature

constraints using MEBO/SBOS. Let the total energy dissipated in the bus with

this (energy—optimal) ordering/signaling be Eopt and the ordering/signaling

be represented by 30. Let Tp t represent the peak wire temperature
eak—op

corresponding to the permutation 8 obtained using the steady state model.

3. Next, we target to reduce the peak wire temperature by a fixed fraction (say 77)

from its original value in a step-by-step manner. Our target peak wire temper-

ature in the pth step is T, = (1 —p - 77) - T where p = 1,2, .., etc..
peak — opt)

To find a permutation that achieves this peak temperature, we eliminate arcs

to/from bit pairs (i, k) for any wire j that has T(j) Z (1 — p - n) 'Tpeak _ opt“

Such a constraint will take the following form in the ILP:

Ililljl + xljllkl S 1 and xlill'il + 5r[klIJ'l S 1,

Vi3T(j)Z(I—p-n)°Tpeak — opt (5'12)

Adding this set of constraints and solving the ILP, we obtain a wire permutation

Bp that has peak temperature of Tp S (1 — 77) x Tp Note that since
eak — opt'

Tp is estimated using the steady state model after obtaining the wire permutation,

it can be less than the target temperature. Further, the energy dissipated by this

permuted bus Ep will be somewhat worse than Eopt The iterative process of adding

the thermal constraints and re-solving continues until one of two conditions occur:

(1) the ILP becomes infeasible to solve, or the energy of the bit—ordering/permutation

Ep becomes worse than that of the original bus (Ep > Eorigl° Figure 5.2 shows a
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sample temperature vs. energy trade-off curve that will be obtained by following

the steps listed above. The curve shows points (T1, E1), (T2, E2), ..., (7110,1310),

corresponding to target temperatures 0.95 x Tpeak _ opt, 0.90 x Tpeak _ opt, ...,

0.50 X Tpeak _ Opt.

A
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Figure 5.2. Sample peak wire temperature versus bus energy trade-off curve. The

thermal optimization steps can be used to obtain curves similar to the one shown

here.

The thermal constraint presented in Eq. 5.12 allows only one arc—among

$[z] [J], :r[J][k], :r[J][i], and :c[l:][J]—to be present in the solution if the presence of both

bits i and k as neighbors causes the temperature in hit J to equal or increase be-

yond the target temperature. In the CPLEX ILP optimizer, the inclusion of thermal

constraints using the methodology outlined above can be fully automated. In our

experiments, we used 77 = 0.05 and succeeded in reducing peak wire temperatures

significantly across several benchmarks as shown by results in Section 5.5.5. Further-
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more, the extra time taken for temperature optimization did not increase the overall

solution time significantly compared to energy—only optimization. The running times

are compared later in Section 5.5.

5.4.6 Routing Overheads

In this subsection, we analyze the overheads for the wire ordering network required

to implement MEBO and SBOS. We draw from previous work on efficient techniques

for solving the crossing distribution problem [114—116] and use these principles to

estimate the area/cost of any ordering network.

Consider two rows, called lower and upper rows (see Figure 5.3(a)), of points called

terminals and a collection of two-terminal nets N = {N1,N2, . . . ,Nn} with each

net Nk connecting the terminal numbered k on the lower row to the corresponding

numbered terminal on the upper row. The terminals in the lower row are numbered

in—order as 1,2, . . . ,n from left to right. The left-to—right ordering on the upper

row defines the final re—ordered bus. Let this new ordering be represented by II =

(r1,7r2, . . . ,rn),1 S k S n. For example, for the figure shown, r1 = 5, r2 =

5, . . . ,7r8 = 7.

DEFINITION: Two nets N,- and Nj are defined as crossing ifi > J and II(i) < II(J)

or vice versa. Else, they are non-crossing.

DEFINITION: A matching diagram is a straight line drawing of the nets for a given

permutation II as shown in Figure 5.3(b) and the straight line representing a net Ni

is called a chord. The intersection of two chords Ni and Nj defines a crossing point

Cij- There are ten crossing points shown in Figure 5.3(b).

The notion of inversions can be used to calculate the minimal total number of
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Upper row

5 3 6 1 4 8 2 7

 

 

Channel

height

Channel width
A

V 

 
 

1 2 3 4 5 6 7 8

Lower row

  
 

 

 

 

  
 

(b)

H Metal-1 H Metal-2 I Via

5 3 6 1 4 8 2

O
:

 
Figure 5.3. Routing strategy and overheads for re-ordering. (a) Definition of the

routing channel. (b) Matching diagram showing ten crossing points. (c) Two-layer

routing strategy using eight horizontal tracks and ten vias.
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crossing points g for any given II in the upper row [116]. An inversion is any pair

(Wiflij) such that i < J and 7Tz‘ > rrj [117]. Accordingly, 5 = 10 can be calculated

for the example. The total number of crossing points 5 determines the area/cost

overhead of the sorting network in two ways. Intuitively, the number of horizontal

wiring tracks in the channel will not exceed E, since each crossing point can be taken

care of by assigning it a separate track and by using a two—layer wiring strategy. Also,

the total number of vias required will not exceed 2g, in the worst case. However, in

practice, the number of horizontal track and vias required will be less than E and 26,

respectively. Figure 5.3(c) shows that the routing for this example can be achieved

using two metal layers, eight horizontal tracks, and ten vias. Hence the number of

crossing points g which is the number of inversions of the MEBO/SBOS order that

we obtain can be used as a metric to select the re-ordering solution with the best

energy-cost tradeoff.

5.5 Results and Discussion

In this section, we present results for energy and wire temperature reductions obtained

using our optimal static encoding schemes. In all results, percentage energy reductions

are reported with respect to the energy dissipated in an umnodified bus. Table 5.3

lists the running times and number of iterations for problems of different sizes that

we solved using CPLEX on a SunFire-880 server with two 750—MHz UltraSparc-III

CPUs and 8 GB of RAM. The running times for MES optimization were negligible

compared to those of MEBO and SBOS and hence they are not shown. As can be

seen, these problems can be solved to optimality in a reasonable amount of time.
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5.5.1 Energy Dissipation in Processor Buses

We profiled 100M SimPoint samples of all benchmarks in the SPEC CPU2000 suite

and recorded their self and coupling activity characteristics. The results of our analy-

sis are ahown in Figures 5.5.1 and 5.5.1. For the data bus, we observed that the

transition density per bit did not exceed 0.45 for any benchmark. As expected, the

higher order bits (32—63) for the data bus exhibited significantly lower switching ac-

tivities in integer programs compared to floating-point programs, due to small values

being predominant in integer traffic. For instruction buses, switching activities were

spread more or less equally in the higher and lower order portions and, here too, it did

not exceed 0.5 for any benchmark, with the exception of vpr which caused transition

densities in the range 0.5—0.8 in a few bit lines.

Next, we present results showing the ratio of self, coupling charge/discharge, and

coupling toggle energy dissipated for four kinds of buses: data and instruction ad-

dress, data, and instruction. To our knowledge, no previous work has profiled such

an extensive set of benchmarks and reported their energy dissipation behavior. Such

results help designers quantify the important contributors to bus energy dissipation,

like self, charge/discharge, or toggle transitions, and explore appropriate static, dy-

namic, or hybrid encoding techniques to reduce energy dissipation. Figures 5.6-5.9

show the fraction of energy dissipated in self, charge/discharge, and toggle transitions

for various benchmarks from the SPEC CPU2000 suites on the Alpha 21264 target

systems.

As can be seen, coupling (charge/discharge+toggle) energy forms a substantial

portion of the total bus energy dissipation: it contributed 70—75% in the processor

buses we analyzed. Among coupling transitions, charge/discharge transitions domi-
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nate. Energy dissipated in toggle transitions are responsible for only less than 20%

of total energy; in data buses, they are responsible for only 10% or less. We ob—

served no significant difference between integer programs, shown in the first 14 bars

in Figure 5.6—Figure 5.9, and floating-point programs in the SPEC workload.

Next, we present results for energy reductions obtained with our static encoding

schemes.

5.5.2 Energy Reduction for General-Purpose Design

For the general-purpose design scenario, our static bus encoding schemes were de-

signed using data collected from SimPoint samples for the training benchmarks and

then evaluated on test benchmarks. Results are shown in Figures 5.10 and 5.11. They

show that the average bus energy reductions obtained are as follows. MES: 7.81%

and 10.96%, MEBO: 11.91% and 19.85%, and SBOS: 20.04% and 38.78% for data

and instruction buses, respectively. On the average, we find that optimizations on

the instruction bus yield better results than on the data bus. We also observe that

SBOS is easily the best scheme for both data and instruction buses.

5.5.3 Energy Reduction for Workload-Specific Design

To evaluate the effectiveness of our techniques in the workload-specific design sce-

nario, statistics collected for SimPoint samples from 13 training set benchmarks were

aggregated and used to obtain the optimal static encoding schemes. The scheme was

then tested on non-overlapping samples from the same set of benchmarks. This non-

overlapping sample was arbitrarily selected as a block of 100M committed instructions

after the first 10 billion instructions of program execution. From the results shown
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Figure 5.10. Energy dissipation results for general-purpose design for the 64—bit data

bus. Statistics collected on 13 training set benchmarks were used to obtain the

optimal static encoding schemes. These were tested on 13 other (test set) benchmarks.

Average energy reductions are MES: 7.81%, MEBO: 11.91%, and SBOS: 20.04%.

in Figures 5.12 and 5.13, we observe that the average energy reduction across the

benchmarks for the three schemes are as follows. MES: 9.73% and 10.43% for in-

struction bus; MEBO: 15.97% and 21.25% for instruction buses; and SBOS: 22.79%

and 40.77% for data and instruction instruction buses, respectively. Our results in-

dicate that workload-specific energy optimizations on the instruction bus are likely

to yield better results than on the data bus. Among the three different schemes we

proposed, SBOS gives the best results. This is expected because it combines the

benefits of signaling as well as bit ordering. Table. 5.4 shows the actual bit ordering

and signaling for the data bus that was obtained using the training set. The cor-

responding table for the instruction bus is not shown due to space constraints. For
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Figure 5.11. Energy dissipation results for general—purpose design for the instruc-

tion bus. Average energy reductions are MES: 10.96%, MEBO: 19.85%, and SBOS:

38.78%.

both data and instruction buses all five signaling schemes were chosen. In particular,

the original mode of signaling was retained for 36 (38) lines, inversion was chosen for

12 (45) lines, and Markov model signaling for 11 (40) lines in the data (instruction)

bus. Relatively, transition and inverted transition signaling were chosen for a fewer

number of wires, a total of 5 (5) nodes in data (instruction) bus.

5.5.4 Energy Reduction for Program-Specific Design

In program—specific design, coupling energy/cost matrices collected for the SimPoint

samples of each benchmark are used to design a signaling/encoding scheme and tested

on the same benchmark and sample. This is expected to yield best results as the

static encoding schemes are specific to that sample and benchmark. Results for
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Figure 5.12. Energy dissipation results for workload—specific design of the 64—bit data

bus. Statistics collected for SimPoint samples from 13 training set benchmarks were

aggregated and used to obtain the optimal static encoding schemes. These were then

tested on a non-overlapping sample from the same set of benchmarks. The average

energy reductions are MES: 9.73%, MEBO: 15.97%, and SBOS: 22.79%.

26 benchmarks are shown in Figures 5.14 and 5.15 for data and instruction buses,

respectively. For custom optimization of the data bus, energy reductions in the range

of 50-60% can be obtained for some benchmarks like art, bzip2, and fma3d with SBOS.

In comparison, dynamic bus encoding schemes BI and OEBI provide only up to about

10% energy reduction for a few of the benchmarks, for data and instruction buses. For

a majority of the programs, reductions with BI and OEBI are less than 5% for data

as well as instruction buses. The average energy reductions were B1: 4.19%, OEBI:

1.58%, for the data bus and BI: 2.63%, OEBI: 5.32%, for the instruction bus. For

the data bus, where self switching activities are dominant, OEBI results in an energy

increase for some benchmarks since many higher order lines remain inactive. This is
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Figure 5.13. Energy dissipation results for workload-specific design for the 128-bit

instruction bus. The average energy reductions are MES: 10.43%, MEBO: 21.25%,

and SBOS: 40.77%.

because it does not take into account both self and coupling activities when deciding

on the inversion mode. As a result, self switching activities increase significantly

in the encoded data stream since the mode chosen to reduce coupling energy does

not necessarily reduce total (self + coupling) energy. The switching activity in the

instruction stream is coupling dominant. Hence OEBI performs better on this type

of data. However, the energy reductions are only marginally better compared to

BI. Our static encoding schemes, which optimize for both self and coupling energy

by considering signaling and reordering, show much better energy reductions than

previous dynamic encoding scheme for all benchmarks. The average energy reductions

are: data bus, MES: 19.7% and 21.7%, MEBO: 23.25% and 32.1%, and SBOS: 30.2%

and 52.1% for data and instruction buses, respectively.
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5.5.5 Wire Temperature Reduction

Our work is the first of its kind to design static encoding schemes that seek to reduce

peak wire temperatures in addition to reducing bus energy. The thermal optimiza-

tion methodology was explained earlier in Section 5.4.5 and thermal models used to

estimate activity-dependent wire temperatures in Sections 3.4.2 and 3.4.3. Table 5.5

shows the reductions in peak temperature that we obtained for different benchmarks

with and without the thermal optimization methodology. In this table, we Show

the peak wire temperature observed for the unoptimized (original) bus and the wire

temperatures after SBOS with thermal constraints was applied. We show results for

temperature-optimized SBOS only since best results were obtained using this tech-

nique; temperature reductions for MEBO were consistently lower. This is expected

because the SBOS optimization technique has a larger solution space from which it

can choose the best solution.

Horn Table 5.5, we note that applying SBOS without thermal constraints, which

reduces energy of the bus by 20% or more for data buses (Figure 5.13), does not always

reduce the peak wire temperature observed in the simulation window. In fact, it is

seen that, for the data bus, the average peak temperature, across the ten benchmarks

studied, actually rises slightly above that of the original bus by 035°C and it falls

only slightly for the instruction bus by 049°C, which is not a lot considering the

significant energy reductions we obtained for these buses. This can be attributed to

the fact that the energy optimization does not explicitly consider thermal coupling

when deciding on the bit ordering and signaling. However, by adding explicit thermal

constraints using the methodology in Section 5.4.5, temperature of the hottest wire

can be reduced. Recall that our thermal optimization methodology trades off some
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Trade-Off Curve for ammp
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Figure 5.16. Energy vs. temperature trade-off curves. Plots show the energy vs.

temperature tradeoff curves obtained for the data bus for amp and crafty. The

permutation selected for each benchmark was the one that resulted in bus energy

E

reduction closest to 0.5(1 -- Fit) compared to the original bus.
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Trade-Off Curve for eon
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Figure 5.17. Energy vs. temperature trade-off curves. Plots Show the energy vs.

temperature tradeoff curves obtained for the data bus for eon and gcc.
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Trade-Off Curve for gzip
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Figure 5.18. Energy vs. temperature trade-off curves. Plots show the energy vs.

temperature tradeoff curves obtained for the data bus for gzip and lucas.
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TradeOfl Curve for mesa
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Figure 5.19. Energy vs. temperature trade-off curves. Plots show the energy vs.

temperature tradeoff curves obtained for the data bus for mesa and mgrid.
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Trade-011 Curve for swim
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Figure 5.20. Energy vs. temperature trade-off curves. Plots show the energy vs.

temperature tradeoff curves obtained for the data bus for swim and twolf.



of the energy savings for more thermally-efficient orderings at each step. The steady-

state temperature vs. energy tradeoff curves for nine benchmark programs are shown

in Figures 5.16—5.20. For each point shown in these graphs, thermal constraints were

added and the ILPs were re-solved to get a new wire ordering and permutation.

As can be seen, in all the cases the ILP infeasibility occurred before the energy of

the reordered bus approached E and hence, the optimization terminated. Using
orig

these curves, we selected the wire permutation—marked by the arrow in the plots—

. . E t . .
that resulted in bus energy reduction closest to 0.5(1 — E—QL), smce thls represents

orig

the midway point for trading off temperature with energy savings. The peak wire

temperature obtained for this selected thermally-efficient permutation is shown in the

third row of Table 5.5. Note that the temperatures reported in this row are derived

from detailed thermal simulations using the model in Section 3.4 and the not the

steady state model.

Temperature reductions we obtained with temperature-optimized SBOS range

from 3.55 to 12.26 degrees for the data bus and from 5.69 to 12.96 degrees for the

instruction bus, while still resulting in total energy reductions of 6.59 to 15.23%

and 11.67 to 16.17% for data and instruction buses, respectively. Compared to the

dynamic spreading encoding technique proposed in [110], our temperature-optimized

SBOS provides much better temperature reductions. We compare results for three

benchmarks that are common in their work and ours. The temperature reductions

they report for the instruction bus are, gzip: 6.5 K, mesa: 6.25 K, and ammp: 4.75 K.

Our results shown in Table 5.5 are much better, gzip: 15.89 K, mesa: 11.67 K, and

ammp: 12.29 K, for these benchmarks. Note that our techniques are static and incur

negligible overhead compared to the overheads for the crossbar switch and control
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logic used in the spreading encoding technique.

5.6 Summary

In this chapter, we presented a value aware optimization methodology to design static

encoding schemes to reduce energy dissipation and temperature of global signal buses.

Our methodology examines two aspects: (1) several possible ways of signaling a bit

value, with exactly one signaling mode for each bit chosen, and (2) all possible ways of

mapping bits to bus lines (bit ordering or permutation) and then chooses exactly one

bit ordering, both statically at design time depending upon traffic value characteristics

to minimize total bus dynamic energy. We present an integer linear program (ILP)

methodology that evaluates several possible bit signaling modes and all possible bit

orderings for an n-bit bus based on traffic value characteristics and then chooses an op-

timal encoding mode that minimizes total bus (self + coupling) dynamic energy. We

use the SimpleScalar/Alpha simulator, profile SimPoint samples of SPEC CPU 2000

benchmarks to collect data, and use the CPLEX ILP optimizer design our encoding

scheme. Results for three degrees of customization show increasingly better results

for average bus energy reduction: general-purpose optimization: 20.04% (38.78%),

workload—specific optimization: 22.79% (40.77%), and program-specific optimization

30.2% (52.1%), for 64—bit data (128-bit instruction) buses, respectively. In contrast,

existing dynamic bus encoding techniques yield only 4.19% (5.32%) reductions at best

for data (instruction) buses for the same set of programs.

We show that lowering bus energy—even significantly, as with our static encod-

ing schemes—does not necessarily lower peak wire temperatures. To address this, we
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present a novel method of efficiently exploring the peak/hottest wire temperature and

total bus dynamic energy trade—off space using a steady-state wire temperature model.

Based on this, we present a new method of introducing thermal constraints into our

energy optimization methodology that allows a designer to trade-off peak wire tem-

perature with total bus dynamic energy as desired. For this thermally-constrained,

energy-optimal encoding scheme, we then perform simulations using a detailed per—

wire bus thermal model to determine the actual reductions in peak temperature, which

we find to be significant—up to 12.26°C (12.96°C) for data (instruction) buses—while

at the same time providing significant average energy savings: 14.24% (16.17%) for

data (instruction) buses that are still much better than previous work.
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CHAPTER 6

ACTIVITY-AWARE PERFORMANCE

OPTIMIZATION

The data—dependent nature of inter-wire crosstalk necessitates bus cycle time to be

designed for the worst-case. This pessimistic approach incurs significant performance

penalty since the worst case arises least frequently in actual applications. In this

chapter, we examine an activity-aware technique that substantially reduces the fre-

quency of worst case crosstalk and improve the bus performance by using a variable

cycle bus architecture.

6. 1 Introduction

Inter-wire capacitive crosstalk is the primary factor that affects the propagation delay

of interconnects. In high-performance processor buses, crosstalk on a victim wire

depends on the nature of transitions on its two adjacent wires, known as aggressors.

Designers estimate the worst case crosstalk condition for a wire and set the bus clock

cycle time greater than this value, ensuring that the signal transmission occurs in the

correct manner. However, this is a pessimistic approach since worst case crosstalk

conditions do not occur across all wires very frequently.

An introduction to interconnect analysis and the impact of crosstalk on bus design

was presented earlier in Section 2.1.5. Table 2.1 listed five different crosstalk condi-

tions based on transitions in the victim and aggressor wires: 1 + 0r (mode-0), 1 + 1r
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(mode-1), 1 + 21° (mode-2), 1 + 3r (mode-3), and 1 + 4r (mode-4), where the cou-

pling ratio r is the ratio of the adjacent coupling capacitance and the line capacitance

including the contribution of repeaters. The coupling ratio is greater than unity for

nanometer-scale technologies as can be seen from Table 2.2.

We address two aspects of the bus crosstalk problem to improve overall perfor-

mance of global processor bus in the presence of crosstalk. First, we reduce the

frequency of various crosstalk conditions by using a profile-guided wire reordering

and signaling approach. Second, we propose a bus clocking approach that eliminates

the need to use a pessimistic cycle time. Instead, our approach dynamically controls

the number of cycles required for transmission of the data depending on its crosstalk

mode. By doing so, we can use the average or most frequent crosstalk pattern to

design the cycle time of the bus.

This chapter is organized as follows. Next, Section 6.2 briefly reviews related

work. Then, we present our techniques in Section 6.3. Following that, in Section 6.4

we present results. Finally, we summarize in Section 6.5.

6.2 Related Work

Many crosstalk reduction techniques have been proposed in literature. These are re-

viewed briefiy next. Several techniques such as dense wire fabrics [56] and net order-

ing and shield insertion techniques [118,119] have been proposed to reduce crosstalk

noise in signal interconnects. The effectiveness of shieldng and spacing techniques

have also been explored [57]. Many coding techniques to reduce crosstalk have also

been proposed, all of which rely on using a significant number of extra wires to elimi-
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nate worst case crosstalk conditions: crosstalk protection code (CPC) [55], transition

pattern code (TPC) [120], crosstalk avoidance code (CAC) [121], and the codes pro-

posed in [122]. A technique that uses variable cycle transmission to improve the bus

performance has also been suggested but it does not address crosstalk reduction [123].

6.3 Techniques for Performance Optimization

In this section, we describe techniques to optimize bus performance by reducing

crosstalk and using a non-pessimistic approach to bus clocking.

6.3.1 Variable Cycle Bus (VCB) Design

We propose an adaptive bus architecture called a variable cycle bus (VCB) that

uses a faster bus clock and dynamically controls the number of cycles required for

transmission based on the estimated delay of the data pattern to be transmitted.

This removes the need to design the bus clock cycle in a pessimistic manner based

on the worst-case crosstalk pattern. The VCB works as follows. The data to be

transmitted in the current cycle is compared to the data that was transmitted in the

previous cycle and the crosstalk group that it belongs to is determined. There are

two groups: a Group—I data word is one that has at the most one mode-2, mode-1,

or mode-0 crosstalk pattern and none higher and a Group-II data word is one that

has at least one mode-3 or mode—4 pattern. The crosstalk group is determined using

the crosstalk analyzer (CA) circuit described next. In the VCB, we transmit Group-I

data in one clock cycle and Group-II data using two clock cycles. A DAT/LREADY

line indicates to the receiver when to latch the current value being transmitted on the
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bus. The DATAJZEADY control line is completely shielded, i.e., it is routed with

VDD/GND lines on each side so that is completely unaffected by crosstalk.

 

 

 

    
 

Inputs: U W 50 S1 52 Output: f

0 0 1 1 l 1

— - 1 1 0 1

- - 0 1 1 1

(a)

 
(b)

Figure 6.1. Three-bit crosstalk analyzer truth table and circuit. (a) Truth table show-

ing only the ON-set. “-—” indicates a don’t care input. (b) Logic circuit implementing

the truth table.

Our crosstalk analyzer (CA) circuit identifies the crosstalk mode for each trans-

mission in an efficient manner. It compares the current information, three bits at a

time, with corresponding bits in the pattern transmitted in the previous clock cycle

and determines if the current pattern falls under one of two crosstalk groups. The

way to determine the crosstalk group for a three-bit case is shown next. Consider

two three—bit vectors, Xt — 1 2 (X6_ 1, X] _ 1, X§_ 1) representing the data

transmitted in the previous cycle and Xt 2 (X6, Xt, X5) representing data to be

transmitted in the current cycle. At the first level of the CA circuit, the following
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logic outputs are evaluated in parallel:

SO = X6_1€BX6, (6.1)

S, = X[_1€BX], (62)

52 = xg-lsxg, (63)

U = Xé—l-Xi—1+X]_1-X§’1, and (6.4)

W = X5.X§+X{-X§. (6.5)

Using these signals, the truth table and a gate-level representation of the three-bit

CA circuit can be constructed as shown in Figure 6.1. The truth table in Figure 6.1(a)

shows only the ON—set of the Boolean function, i.e., the inputs for which the output

evaluates to logic “1”. The corresponding two-level realization of this table is obtained

using Espresso [113]:

f = 30.3—1.SQ+30.51._S_2+U-W-SO-SQ, (6.5)

= So-(SIEBSQ+I7-W-SQ). (6.7)

The CA circuit outputs a logic “1” if the three bits it examined result a Group-

II pattern and logic “0” if not. Thus, for an n-bit bus there are n — 2 three-bit CA

circuts working in parallel to determine the crosstalk group. At the second level, these

n — 2 outputs can be combined using the wired-OR logic style in which outputs from

the three-bit CA circuits are simply connected together, as shown in Figure 6.2(a).

Thus, the final wired-OR output is high if the output of at least one of the three-

bit CA circuits is high. The wired-OR connection is used to simplify the hardware

required at the sending end. The signal DATA_READY obtained from the bus

crosstalk analyzer synchronizes the sender and receiver. W'hen F = 0, the data can
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be transmitted in one cycle and hence DATA_READY is taken high. Else, the data

is transmitted in two cycles and, in this case, DAT/LREADY is kept low for the

first cycle and taken high in the second. The receiver uses a clock signal gated by

DAT/LREADY and this ensures that the data is latched and read correctly.
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Figure 6.2. Variable cycle bus. (a) Complete bus crosstalk analyzer for an n-bit bus.

(b) Sender and receiver logic for VCB.

6.3.2 Minimum Crosstalk Bit Ordering (MCBO)

Our basic technique for profile-guided optimization was discussed earlier in Sec-

tion 5.4. It may be noted that the objective function that we minimized earlier

was the total energy of the bus. In the current problem, we minimize the combined

probability of occurrence of the worst-case crosstalk condition for the bus as a whole.

Let \I'2r1 ‘Illrv and \IIOT be three n X n bit-pair crosstalk probability matrices which

record the probability of occurrence of the three crosstalk conditions possible for the

bit pair (i,j),\7’(i,j) E {0,n — 1},i 74 j: mode-2, mode-1, and mode-0. Note that

\1127. + ‘Plr + ‘1’0r = .1”, where Jn is the n x n unity matrix, since all the probabilities
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sum up to unity. These matrices are collected by aggregating data obtained by ana-

lyzing information patterns transmitted on the target bus when running the training

set benchmarks, similar to the procedure outlined in Section 5.3.1.

For three neighboring wires i, j, and k the worst case (1 +4r or mode-4) crosstalk

on the victim wire j occurs when both bit-pairs (i, j) and (j, k) have a mode—2

crosstalk pattern. Similarly, the next worst case (1 + 3r or mode—3) crosstalk oc-

curs when one bit pair has a mode-2 and the other has a mode-1 pattern. Both of

these situations necessitate transmission in two cycles with our VCB. Let event “A”

represent the occurrence of mode-1 or mode-2 pattern in the first bit-pair (i, j) and

event “B” the occurrence of mode-2 or mode-1 pattern in the second bit-pair (j, k),

i.e., P(A) = 1 —¢07.[i][j] and P(B) = l—wOT[j][k]. Note that we use lower-case sym-

bols (1b) to represent individual elements of the crosstalk matrix ‘11. Since events A

and B are mutually exclusive, we have P(A or B) = P(A) + P(B). We are interested

in obtaining P(A or B) since this represents the probability of a mode-3 or a mode-4

crosstalk on the bus. Thus, we have: P(A or B) = (1 — ¢0T[i][j]) + (1 — 11107.[j][k]).

Following the example above, we combine the bit-pair crosstalk matrices 9127.,

W17" and \IIOT" to get one matrix ‘1! = Jn — \IIOT. As noted earlier, our VCB design

transmits mode-4 and mode-3 patterns in two clock cycles and mode-2, mode-1, and

mode-0 patterns in one clock cycle. Hence, we seek to minimize the total probability

of occurrence of mode-4 and mode-3 patterns across all bit—pairs through wire re—

ordering and signaling using integer linear programming. Thus the objective function

is the sum of all these probabilities since the events are mutually exclusive and the

occurrence of a mode-4 or mode—3 event in any one bit-pair means that the transmis-

sion takes two cycles instead of one. The simple wire reordering formulation, called
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minimum crosstalk bit ordering (MCBO) using this objective function is discussed

next.

As before, the MCBO problem is formulated as an ILP by considering binary

variables :1:[i] [7] associated with each bit pair (i, 3'). In the solution, :r[i][j] = 1 if bits

2' and j are to be placed next to each other on the bus and :1:[i[j] = 0, otherwise.

Let V = {1, . . . ,n} be the vertex set that represents the bits, A = {(i,j) : i,j E V}

represent the set of possible triplets of bits, and \Il[i][j] is the bit-pair crosstalk matrix.

The ILP formulation in terms of the variables :r[i][j] and the iterative procedure used

to solve the ILP is given next:

Step 1 :

Step 2 :

Step 3 :

Step 4 :

Step 5 :

Step 6 :

Minimize Z illl’il [J] ‘ 5’3 [z] [j]

\7’(i,j) e A

subject to:

:c[z'][j] e {0,1},V i,j e V, (6.8)

E :r[i][j]=1,Vi€Vand Z a:[i][j]=1,Vj€V,

Vj e V V 2' e V

Solve ILP to get the solution.

Check if the solution has subtours. If none, go to Step 6.

Else, let there be t subtours:

s =1801720115151).....St<n1>},

where Sk(nkl means that subtour Sk has length nk'

Add subtour elimination constraint:

Zap-1U]; (1,3) are in 8,01,,» < nk,V s. (6.10)

Go to Step 2.

The desired solution (Hamiltonian cycle) has been obtained. Stop.

In the above procedure, Constraint 6.8 ensures that the variables take only binary

values and Constraint 6.9 ensures that the in- and out-degrees of every vertex are

one, i.e., every bit occurs exactly once in the ordering. As explained in Section 5.4.3,

we add subtour eliminations iteratively and solve the ILP efficiently with the CPLEX
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optimizer tool.

6.3.3 MCBO with Signaling (MCBOS)

In MCBO with signaling (MCBOS), the best signaling scheme—one of the five

schemes listed in Section 5.4.1—and the appropriate position of the bits on the bus

lines is determined simultaneously. As in the case of energy optimization, the motiva-

tion for using signaling is to enable the optimizer to select the optimal solution from

a richer set of possibilities. Thus, we can view the problem as similar to MCBO but

consisting of n supernodes corresponding to the 71. bits of the bus. Each supernode

contains five nodes, each representing a signaling scheme choice for a bit. By adding

constraints that ensure that only one of these nodes is selected for each supernode

and that the incoming and outgoing nodes for each supernode are the same, the ILP

for MCBOS is formulated as given next:

q—lq—l

NIlnIIIIIZG Z qZ Z(V[ mill xl "Lill’lijl)

V(i,J')EA l=0m=-0

subject to :

rl,m[i][j] E {0,1},V {i,j} E V, (6.11)

q—lq—l

Z Z Z ‘Tl,miiiljl =11V2'6V, (6.12)

VjEV l=0m=0

q—lq—l

Z a: Z rimlkllil =11Vz'ev, (6.13)

kaV l=0m= 0

q—l

(1:1 rl m[i =2: rm [[j] [117,] V{i,J, k,..}€V\7’m (6.14)

l=0 l=0

Constraint 6.11 of SBOS ensures that all variables .rl m [1] [J], (l, m) E {0, . . . ,q —

1}, each of which represents a choice of signaling schemes for a pair of bits, take
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only binary values. Constraints 6.12 and 5.10 ensure that there is only one outgoing

and one incoming node, respectively, for each of the n supernodes. Constraints 6.14

ensures that the optimal tour enters and exits through the same node in a supernode

(i.e., the signaling schemes chosen for adjacent pairs of bits in the final ordering are

consistent). Crosstalk probabilities \I’l, m[i][i], V i E V are set to 00 (a very large inte-

ger value). Finally, constraints for eliminating all subtours with two nodes are added

initially, and the problem is iteratively solved as described earlier in Section 5.4.3

until a Hamiltonian cycle that visits all supernodes exactly once is found.

6.4 Results and Discussion

We study the effect of MCBO and MCBOS on the 64-bit ALU result bus of our

superscalar processor architecture. As explained earlier in Section 5.5, the result bus

is on the critical path and is sensitive to delay variations due to crosstalk. Also, the

performance of the processor can be improved if faster transmissions are enabled on

this bus. We present two results for this bus next: crosstalk reduction using MCBO

and MCBOS and performance improvement when VCB is used with MCBO and

MCBOS.

6.4.1 Peak Crosstalk Reduction

In workload-specific design, statistics collected for SimPoint samples from 13 train-

ing set benchmarks were aggregated and used to obtain the optimal static encoding

schemes. The scheme was then tested on non-overlapping samples from the same

set of benchmarks. The non-overlapping sample was selected as explained in Sec-
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tion 5.3.1. As explained earlier, our crosstalk optimization techniques MCBO and

MCBOS seek to reduce the number of cycles that carry mode-4 and mode-3 pat-

terns. From the results shown in Figures 6.3(a) and (b), we observe that both MCBO

and MCBOS reduce mode-4 and mode-3 patterns significantly. The average reduc-

tions in number of 1+4r delay cycles were MCBO: 24.89% and MCBOS: 30.61% and

the average reductions in number of 1+3r cycles were MCBO: 19.21% and MCBOS:

23.42%.

For the general-purpose design scenario, our static schemes were designed using

data collected from SimPoint samples for the training benchmarks and then evaluated

on test benchmarks. Results are shown in Figures 6.4(a) and (b), for reductions

in the number of mode-4 and mode-3 cycles, respectively. We observe that the

average reductions in number of 1+4r delay cycles were MCBO: 21.22% and MCBOS:

29.35% and the average reductions in number of 1+3r cycles were MCBO: 16.77%

and MCBOS: 20.29%.

(6.4.2 Performance Improvement with VCB

The reduction in the number of cycles required to transmit the information with our

techniques applied is shown in Figure 6.5(a) and (b). On the average, MCBOS which

is our best technique reduces the number of cycles by 17.68% for workload-specific

optimization and by 18.30% for general purpose optimization while MCBO reduces

the number of cycles by 13.89% and 14.44% for workload-specific and general-purpose

optimizations, respectively.
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Figure 6.3. Crosstalk reduction results for workload-specific design of the 64-bit ALU

result bus. (8) Average reductions in number of 1+4r delay cycles. For MCBO:

24.89% and MCBOS: 30.61%. (b) Average reductions in number of 1+3r cycles. For

MCBO: 19.21% and MCBOS: 23.42%.
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Figure 6.4. Crosstalk reduction results for general purpose design of the 64—bit ALU

result bus. (a) Average reductions in number of 1+4r delay cycles. For MCBO:

21.22% and MCBOS: 29.35%. (b) Average reductions in number of 1+3r cycles. For

MCBO: 16.77% and MCBOS: 20.29%.
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Workload—Specific Design: Performance Improvement with VCB
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Figure 6.5. Reduction in the number of cycles taken to transmit the information with

MCBO and MCBOS applied to the result bus. (3.) Workload-specific optimization.

(b) General-purpose optimization.
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6.5 Summary

This chapter presented a performance—oriented adaptive bus design technique that

helps reduce the frequency of crosstalk conditions and adopts an adaptive approach

to improve bus performance. We presented a variable cycle bus (VCB) architecture

and a crosstalk analyzer circuit that can transmit the data using either one or two

clock cycles depending on the type of crosstalk pattern. Consequently, the bus clock

cycle time no longer needs to be greater than the worst-case (1+4r) crosstalk pattern

but it can be designed using the average case or the most frequent (1+2r) crosstalk

pattern. We also presented a profile-guided optimization that reduced the frequency

of occurrence of 1+4r and 1+3r crosstalk patterns and thus helped improve the per-

formance of the VCB bus significantly. Results on SPEC CPU 2000 benchmarks, in

a general-purpose optimization scenario, show a 29.35% reduction in 1+4r cycles, a

20.29% reduction in 1+3r cycles, and a bus performance improvement of 17.42% for

a static reordering and signaling technique targeting bus crosstalk minimization.
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CHAPTER 7

CONCLUSION

In this dissertation, we presented our research on activity-aware modeling and design

optimization for on—chip interconnects in current and future nanometer-scale tech-

nologies. We addressed three important issues in high-performance bus design for

nanometer-scale microprocessors: accurate energy and thermal modeling, energy op-

timization techniques, and crosstalk reduction. Key contributions and results from

our research are summarized next

7.1 Contributions and Key Results

In Chapter 3, we presented a unified nanometer-scale bus energy dissipation and

thermal model that can help designers monitor energy dissipation and temperature

change in individual wires during trace— or execution—driven simulation. In addition

to self capacitance, our model incorporates the effects of capacitive coupling between

adjacent as well as non-adjacent pairs of wires and repeater insertion on switching

energy, the effect of lateral heat transfer between adjacent wires to estimate wire

temperatures, and also estimates wire temperature gradients and its impact on wire

delay, all of which were not available in earlier models.

Using this model, we studied energy and thermal characteristics of instruction

and data buses using an execution-driven simulation of a billion or more instructions

of nine SPEC CPU2000 benchmarks. We found that existing bus energy models
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provide estimates that are about 7-8% less accurate compared to our energy model.

This is because they do not account for the effects of coupling between non-adjacent

wire pairs of a bus. Our model, which incorporates these effects, is the first of its

kind to do so. Our results also showed that, in wide instruction and data buses used

in modern processors executing SPEC CPU2000 workloads, existing bus encoding

schemes Show no significant energy benefit due to the nature of data traffic. When

non-adjacent coupling effects between wire pairs are considered, energy dissipation

savings reduce considerably. Based on simulations using our thermal model, we found

that average wire temperatures in data and instruction buses may rise 10-37 °C during

a simulation run of only a billion cycles for a 130 nm superscalar processor running

SPEC benchmarks. This temperature rise is primarily due to heat generation as a

result of currents flowing in the wire during bit switching.

In a future 45 nm technology node, wire temperature rise for the same set of bench-

marks and simulation sample was found to be between 20—58°C. We observed that

instruction and data bus wires attained absolute temperature in the range 80.3—104°C

and 97.6—123.7°C, in 130 nm and 45 nm processors, respectively, during the course

of our simulation, showing that signal lines attain significant temperatures too. Sig-

nificant wire temperature gradients of magnitude between 16—25°C were found to be

most common between the sending and receiving ends of the wires during the course

of simulation. Notable correlation was found to exist between energy dissipation be-

havior and wire temperature rise in buses across time; short, intermittent cycles of

high energy-dissipating switching activity trigger step changes in temperature.

In Chapter 4, we developed models that track the impact of changing wire

temperature on timing/delay violations occurring in global signal buses during
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microarchitecture-level exploration. Results show that for a 130 nm processor with

no power and thermal management the temperature—induced clock cycle time vio—

lations in an ALU result bus—which is on the critical path—was 2.27 per hundred

bus references, averaged over ten programs in the SPEC CPU2000 workload. It in-

creased to an average of 6.20 per hundred bus references for the same processor at the

45 nm technology node. We found that wire delay variability led to degradation in

overall performance by about 4.1% in 130 nm processors and about 11.9% in 45 nm

processors. Our analysis also showed that conventional techniques like bus encoding

that seek to reduce energy dissipation and potentially wire temperatures have limited

impact on alleviating temperature-induced delay violations.

In Chapter 5, we formulated an optimization methodology to design en-

ergy and temperature optimized static bus encoding schemes through early stage

microarchitecture-level exploration, exploiting value characteristics of a target work-

load. Binary integer linear programs (ILPs) were formulated and solved optimally

to determine the signaling, bit ordering, or a combination of both that minimizes

bus energy dissipation. For the SPEC CPU2K workload, our static bit ordering and

signaling (SBOS) technique reduced total bus energy dissipation by 22.79%/40.77%

for data/instruction buses in an application-specific scenario, where the technique

was designed individually using statistics collected for each benchmark and tested

on the same benchmark. In a much more general scenario, where the scheme was

designed using statistics collected from 13 out of 26 benchmarks and tested on the

remaining 13, the corresponding reductions were 20.04%/38.78%. These reductions

are significantly higher compared to those obtained from dynamic encoding schemes

for the same benchmarks. We also proposed a first-of-its-kind methodology to de-
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sign temperature-aware encoding schemes by trading off some of the energy gains

we obtain with static encoding techniques to achieve wire temperature reduction. In

this methodology we add temperature constraints during energy optimization, and

our ILP produces a static encoding scheme that reduces maximum/hottest wire tem-

peratures by up to 15.23 K/16.17 K for data/instruction buses while still producing

significant total bus energy reductions.

Finally, in Chapter 6, we examined techniques to reduce bus crosstalk and improve

overall bus performance. We presented a variable cycle bus (VCB) architecture and

a crosstalk analyzer circuit that can transmit the data using either one or two clock

cycles depending on the type of crosstalk pattern. Consequently, the bus clock cycle

time no longer needs to be greater than the worst—case crosstalk pattern but it can be

designed using the average case or the most frequent crosstalk pattern which results

in roughly doubling the bus clock frequency. We also presented a profile-guided

optimization that reduced the frequency of occurrence of worst-case crosstalk patterns

and thus helped improve the performance of the VCB bus significantly. Results on

SPEC CPU 2000 benchmarks show at least 29.35% reduction in number of worst case

crosstalk cycles and a bus performance improvement of 17.42% for a VCB with static

reordering and signaling technique targeting bus crosstalk minimization.

Our work represents a significant advancement over existing approaches

that are activity-oblivious and/or consider worst-case traffic conditions. The

microarchitecture—level activity-driven spatiotemporal bus energy and thermal model

we present is the first of its kind. Our static value-aware bit reordering and sig-

naling techniques are also highly-novel solutions that work remarkably well in real

applications.
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7.2 Directions for Future Research

Some potential research directions for the future are outlined next.

0 A methodology to dynamically select between different static wire orderings and

signaling strategies for energy and/or thermal optimization can be investigated.

In such a scheme, a controller will select a particular strategy based on input

or hints from the compiler through data stored in the program’s executable.

o The wire ordering and signaling strategies can be used to create configurable

interconnect intellectual property (IIP) blocks similar to configurable IP blocks

available today for logic circuits. Such an IIP block will contain routing speci-

fication for all on—chip high-performance signals between logic blocks, suitably

optimized for power, temperature, crosstalk, or a combination of the tree, auto—

matically synthesized by a CAD tool by analyzing the user-supplied workload.

o The thermal model can be enhanced to investigate thermal issues in clock trees

and a temperature-aware clock—tree synthesis approach can be developed. The

thermal model can also be used as a starting point for analyzing issues related

to three-dimensional interconnects. In such systems, the presence of multiple

vertically connected interconnect stacks emphasizes the need to investigate ther-

mal issues, since heat dissipation paths from interconnect layers may be several

times longer than conventional designs.
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