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ABSTRACT

THE NEW GOODNESS-OF-FIT INDEX FOR THE MULTIDIMENSIONAL
ITEM RESPONSE MODEL

By

Shu-chuan Kao

The current research is concerned with the goodness-of-fit of the multidimensional
item response theory (MIRT) model to binary test data. Based on the R? analog
proposed by Estrella (1998) for the dichotomous dependent variable model, the new
goodness-of-fit index, the RLR index (Ratio of Log Residuals), was proposed to reflect
the ratio of error reduction when adding dimensions to the MIRT model.

The RLR index demonstrated nice statistical properties in term of the results from
two simulation studies. Compared to the G* test and G difference test from
TESTFACT, the RLR index could identify true dimensionality with Type I error rates less
than .05 and demonstrate high statistical power to reject wrong models for most cases.
The findings also indicated that the RLR index was sensitive to different levels of item
discrimination, the variation of item difficulties, inter-factor correlation, and item-factor
structure. It was also found that a large sample size and a long test could generate more
accurate dimensionality decisions. Regarding the analysis of real data, one statistical
dimension was suggested to describe the Grade 4 Mathematics Test of the Michigan
Educational Assessment Progress (MEAP) testing program. The unidimensional finding
was supplemented with the discussions in term of the test item content, the
representativeness of the content-related dimensions, the definition of dimensionality,

and the assumptions of the compensatory MIRT model.
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CHAPTER |

INTRODUCTION

Dimensionality plays an important role in test score interpretation and the validity of
inferences made from tests, and is one of the critical issues in educational measurement.
For many testing practitioners, it seems unreasonable to use the common data analysis
procedures assuming that the data are unidimensional while the assessment tools,
especially achievement tests, are designed to measure multiple content knowledge and
skills.  When tests are planned to measure different cognitive abilities or content
knowledge, and examinees are required to demonstrate more than one ability to answer
items correctly, the properties of the resulting test response data are difficult to describe.
For instance, a mathematics test may contain “story-type” questions. From the
psychological point of view, examinees will have to use mathematical skills and reading
abilities to correctly answer such questions. From the statistical point of view,
psychometricians may need more than one statistical variable to represent each person in
order to sufficiently model the interaction between test items and examinees.

Describing the statistical characteristics of potentially multidimensional data by the
traditional procedures assuming unidimensionality may not only cause measurement

problems but also lead to inaccurate score interpretation.

1.1 Different Perspectives to Investigate Data Dimensionality
With the intention to investigate the likely multidimensional nature embedded in the

item response data, psychometricians have developed different perspectives to interpret



dimensionality. Based on Embretson’s (1985) definition, dimensionality indicates the
number of hypothesized psychological constructs required for successful performance on
atest. This definition of dimensionality can be referred to as “psychological
dimensionality.” In psychological measurement, the number of dimensions in the model
is often based on cognitive theories and each dimension represents a specific latent trait
being modeled. In educational testing, the psychological constructs are often attributed
to content domains of interest, reflecting the purpose of the test. However, in the real
testing situation, the sources of multidimensionality are still unclear. Besides the
desired psychological traits or content knowledge, other undesirable factors that may be
the cause of multidimensionality include: different item format (Tate, 2002); test
speededness (Bock, Gibbons, & Muraki, 1988; Douglas, Kim, Habing, & Gao, 1998);
item dependency from testlet items (Ferrara, Huynh, & Michaels, 1999; Thissen,
Steinberg, & Mooney, 1989); and inappropriate design of test administration conditions
(Tate, 2002). Determining the number of psychological dimensions to model test data,
or deciding how well the model fits data, requires validity studies to supplement the
statistical index. This implies that even if the test is known for requiring examinees to
demonstrate two different cognitive abilities to answer the items correctly, validation
studies are needed to verify that the two psychological dimensions in the model match the
hypothesized constructs.

Another definition of dimensionality is based on the statistical properties of the test
data. According Lord and Novick’s (1968) definition, dimensionality is the total
number of abilities required to satisfy the assumption of local independence. This

assumption indicates that an examinee’s responses to the items in a test are statistically
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independent if their ability level is taken into account. The probability of any particular
item response pattern for an examinee is the product of individual item probabilities.
When the assumption of local independence is satisfied, the complete latent space is
defined and, at the same time, the number of dimensions needed to summarize the data is
specified. In terms of these explanations, this kind of definition of dimensionality can
be referred to as “statistical dimensionality.”

Unlike the psychological dimension, determination of the number of statistical
dimensions depends on the mathematical properties in the data under the assumption of
local independence and monotonicity'. Harrison (1986) and Tate (2002) concluded that
every set of test responses is multidimensional to some degree. To decide the data
dimensionality, many researchers (Berger & Knol, 1990; Junker & Stout, 1994)
suggested that the latent traits that underlie test data can be classified as major (i.e.,
dominant) and minor factors. Humphreys (1985) argued that the construction of tests
that are valid for intended purposes requires tests that are sensitive to differences on a
dominant trait and numerous minor factors. In order to measure the dominant factor of
interest (e.g., computation ability), the inclusion of numerous minor factors is inevitable.
Wainer and Thissen (1996) suggested that item responses will always reflect either
random or fixed multidimensionality. The random multidimensionality is caused by the
presence of minor dimensions or nuisance dimensions other than those planned to
determine the responses. The fixed multidimensionality corresponds to the number of
dimensions the test is designed to measure. Concerning the unidimensionality

assumption of IRT, Ackerman (1994) pointed out that the unidimensionality should never

1 Suppes and Zanotti (1981) proved that all the data can be modeled unidimensionally when the restriction
of monotonicity is relaxed. In this case, the dimensionality is no longer an issue in data modeling.
However, the explanation of the relationship between ability and item response will be obscure.



be assumed but should be verified. It would be considered problematic to analyze
multidimensional data with the statistical procedures assuming that the data are
unidimensional.

To clarify the connections and distinctions between psychological and statistical
dimensions, researchers (Reckase, 1990; Reckase, Ackerman, & Carlson, 1988) defined
dimensionality as the minimum number of mathematical variables needed to summarize a
matrix of item response data. In other words, to fully describe all the differences related
to the test for the examinees in the population, the minimum number of statistical abilities
required in the model would be considered as test dimensionality. Reckase (1990)
indicated that for a test to be modeled unidimensionally, tests do not have to measure
narrowly defined, pure psychological traits for statistical procedures that assume
unidimensionality. Test items that measure the same combination of traits will likely
generate unidimensional data when examinees interact with them. Therefore, it is
possible to have statistically unidimensional item response data even though the

psychological dimensions needed to correctly answer the questions are greater than one.

1.2 Dimensionality and Multidimensional Item Response Theory

Determining the number of dimensions needed to explain the item response data is
often of substantive or methodological interest not only for educational measurement, but
also for psychological studies. Spearman (1904) first argued that the performance on
sets of tests could be explained by individuals’ levels on general and specific traits.
Since then, determining the number of dimensions needed to summarize a set of data has

been an important research question. The study of test dimensionality is the essential



issue for the investigation of test construction, test validity, reliability, fairness, and the
interpretation and use of test scores (Choi, 1997; Tate, 2002). For the past decades. a
number of studies have been conducted to explain test data relaxing the restriction of
unidimensionality assumption, and the methodology of the Multidimensional Item
Response Theory (MIRT) has been more widely accepted. MIRT offers a new
methodology to analyze test data in such an elaborate way that item characteristics are
independent of the sample, and the examinees’ ability estimates are not test-dependent.
However, the appropriate use of any MIRT model depends upon the good fit between
model and data. All the MIRT-related testing techniques, such as multidimensional
parallelism, multidimensional equating, multidimensional-based computerized adaptive
testing, can be performed only when the data dimensionality is specified. Thus, it can
be concluded that the applicability of MIRT rests on the availability of an appropriate
model-data-fit index.

Beyond generating different mathematical MIRT models, researchers also proposed
various model-data-fit indices to help determining the appropriate number of dimensions
used in the MIRT models. However, no procedure for MIRT model selection has been
universally accepted so far. Even though the MIRT calibration computer programs,
such as TESFACT (Wilson, Wood, Gibbons, Schilling, Muraki, & Bock, 2003) and
NOHARM (Fraser, 1988), are available, the problem of deciding the number of

dimensions needed to model the data is still very much a topic of investigation. The

current goodness-of-fit indices (e.g., the G? test provided by TESTFACT and the

indices based on residual analysis) do not demonstrate good statistical properties in

dimensionality detection (Berger & Knol. 1990; De Champlain & Gessaroli, 1991;



Hambleton & Rovinelli, 1986; Mislevy, 1986). In order to correctly analyze test data
with MIRT, the development of a valid model-data-fit statistic is not only desirable, but

necessary.

1.3 Purpose of the Study

The main purpose of this study is to propose and assess the use of the new
goodness-of-fit index for MIRT model selection. Specifically, the degree to which the
minor factors should be considered significant was evaluated in terms of the proposed
index. Based on the results of simulation studies, the research demonstrated the
accuracy and stability of the proposed goodness-of-fit index in detecting true
dimensionality of test data under various testing conditions. The statistical
characteristics of the proposed index were compared with those of the traditional y° tests.
Besides demonstrating the statistical properties for the simulated data, real test data were
used to show the applicability of the proposed index in a real testing situation.

The significance of the study is to offer a more reliable and testable goodness-of-fit
index with which to determine the number of dimensions for the MIRT model to properly
calibrate test data. The procedure proposed in this study offers the theoretical base and
empirical evidence to decide the goodness-of-fit for MIRT models. The results of this
work have potential use for both theoretical researchers and those who work in applied
measurement. With this information, MIRT users would have better reference to decide
the minimum number of dimensions needed to model test data and make more valid use

of test theories.



CHAPTER 2

LITERATURE REVIEW

To begin this chapter, the MIRT model used in this study is elucidated in detail.
The chapter then provides a review of model-fit studies concerning MIRT. Next, a new
goodness-of-fit index is proposed along with the theoretical background. Finally,
evidence is presented to demonstrate the feasibility of applying the index to describe the

model-data-fit for MIRT model.

2.1 Multidimensional Item Response Theory

Psychometricians have developed a number of MIRT models (see Reckase &
McKinley, 1982; van der Linden & Hambleton, 1997) assuming a specific form of the
item-examinee interaction on the basis of more than one ability dimension and attempt to
decide the number of dimensions and which item measure which dimensions.
Classified by their mathematical forms, these models can be distinguished as
compensatory or partially compensatory, that is, whether or not high ability on one trait
can compensate for low abilities on other traits. For the compensatory models (e.g.,
McDonald, 1967; Reckase, 1985; Reckase & McKinley, 1991), the performance on the
item is determined by a linear combination of the multiple abilities so that high ability on
one dimension can compensate for low abilities on other dimensions. By having high
abilities on some dimensions, a probability of 1 for correct response can be obtained even

with very low abilities on other dimensions (Reckase, 1997b). Concerning the partially



compensatory models (Sympson, 1978; Whitely, 1980)°, the probability of correct
response decreases with an increase in the number of dimensions (Reckase, 1997b).

The multiplicative nature of the model allows an examinee to partially compensate for
low abilities on one dimension by being high on other dimensions. Because most of the
research on dimensionality has been done using compensatory models and the calibration
computer programs are currently available only for that model, the logistic
multidimensional compensatory two-parameter IRT model (Reckase, 1985; Reckase &
McKinley, 1991) was employed in this study.

In this model, the probability of a correct response to item i can be expressed as

— =

exp(a; 0 +d;)

P(uy =1|ai.d;.0})= (N

I+exp(ai ) +d;)
where P(u; =1| ai,d,-.é j) s the probability of a correct response of person j on item i
in the k-dimensional ability space,

u;; represents the item response for person j on item J,

a; isa vector of parameters representing the discriminating power of item i,

d; is a parameter related to the difficulty of item i,

6 ;j is the vector of abilities for examinee . and,

e is the mathematical constant 2.7183.
Under this framework, each examinee is represented as a data point in this

k-dimensional latent space. This equation defines a surface indicating that the

2 For example, Sympson'’s (1987) model can be expressed as

n
5o F 1
P(X =1 ] ¢9j.a,-.b,~) = l_[[] +exp[a,~k (ij _bi/\' )]> .
k=1
where  indicates the dimension; a;; and bj; are the discrimination and difficulty parameters, respectively.

The root of the second derivative of this equation does not define a difficulty function but gives a single
value for each dimension. That is, there is b parameter for each dimension.



probability of a correct response for a test item is a function of an examinee's location in
the ability space specified by the f-vector. The elements of the 6-vector are statistical
constructs that may or may not correspond to any particular psychological traits or
educational achievement domains (Reckase, 1997a). Besides, there is nothing in the
model that requires the #-coordinates to be uncorrelated. The 6-coordinates are for
orthogonal axes, but the coordinates may be correlated. If the correlations among the
6-coordinates are constrained to be 0.0, then the observed correlations among the item
scores will be solely accounted for by the discrimination parameters (Reckase, 1997a).
The interpretations of the model paramcters are somewhat different from those in
the UIRT model. The item discrimination parameter for the MIRT model, assuming

orthogonal axes, is represented by Reckase and McKinley (1991) as the length of the
discrimination vector. The length, MDISC';, as shown in equation (2), indicates the
maximum overall item discrimination of the item / for the best combination of abilities.

The computation of MDISC; can be expressed as

(2)

where k is the number of dimensions in the  space, and a;; are elements in the vector a;
given in equation (1). The discrimination of an item is a function of the slope at the
steepest point and is best in a particular direction in the multidimensional space. The

direction of the greatest discrimination in the multidimensional space is

a;L
cosaty = e 3
A}

where a;; is the angle from the k-th dimension.



The item difficulty parameter, MDIFF;, is defined as

~d,

MDIFF=—"1
MDISC;

4)
This value indicates the distance from the point of best discrimination to the origin.
MDIFF; can be interpreted much like the b-parameter in UIRT. A negative MDIFF;

value suggests an easier item, whereas a positive value indicates one more difficult.
Graphically, test items can be summarized by a vector plot so that the geometrical
characteristics of MDISC and MDIFF can be clearly represented. A two-dimensional
example, as shown in Figure 2.1.1, shows that the distance from the vector’s base to the
origin is MDIFF, and the length of the vector is MDISC. The extension of the vector
goes through the origin, and the base of the vector is located on the line where examinees
have a .50 probability to answer the item correctly. The vector plot allows plotting more
than one item on one graph. Item vectors pointing in the same direction measure the
same combination of 8; and 6,. By examining the directions of the item vectors, the

similarities among items and the dimensional structure can be identified.
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Figure 2.1.1. Item vector plot (a,= 1, a>= 0.6, d= - 0.5)



2.2 Review of Goodness-of-Fit Indices for Multidimensional Item Response Models

The dimensionality of test data is difficult to assess and is often based on personal
judgment. Several studies (Berger & Knol, 1990; De Ayala & Hertzog, 1991; De
Champlain & Gessaroli, 1996; Douglas, Kim, Roussos, Stout, & Zhang, 1995;
Hambleton & Rovinelli, 1986; Hattie, 1984, 1985; Nandakumar, 1994; Roznowski,
Tucker, & Humphreys, 1991; Stone & Yeh, 2006; Tate, 2003) were conducted to compare
the relative effectiveness of the statistical procedures for detecting dimensionality of test
data. These methods, available for assessing dimensionality, can be divided into two
types: parametric and nonparametric procedures. The parametric procedure includes
methods based on the mathematical equivalence between factor analysis models and the
MIRT models (Knol & Berger, 1991; McDonald, 1967, 1985, 1989a). These studies
suggested that the problem of assessing dimensionality in MIRT models for dichotomous
data can be approached from a factor analytical point of view. An interpretation of
multidimensional data structure is derived from the estimated factor loadings of the
model. Conversely, the nonparametric procedure involves a collection of methods that
avoid the problem of fitting an assumed parametric model®>. The item covariance-based
methods only assume that the item response function is monotonic and assessing
dimensionality involves evaluating the conditional item associations. However, to

perform goodness-of-fit studies, McDonald and Mok (1995) emphasized that the latent

3 The item covariance-based methods include: Stout's essential unidimensionality procedure (Nandakumar
& Stout, 1993; W. F. Stout, 1987) implemented in DIMTEST (W. Stout, Habing. Kim, Roussos, & Zhang,
1993); assessing multidimensional approximate simple structure DETECT (Kim, 1994; Zhang & Stout,
1995, 1996); hierarchical cluster analysis HCA/CCPROX (Roussos, 1992, 1993; Roussos, Stout, & Marden,
1998) based on proximity measure; Holland-Rosenbaum’s test of unidimensionality, conditional
independence, and monotonicity (Holland & Rosenbaum, 1986; Rosenbaum, 1984); Bejar’s dimensionality
assessment procedure (Bejar, 1980, 1988); and Tucker and Humphreys methods on the principle of local
independence and second factor loadings (Roznowski et al., 1991).



trait dimensionality should be assessed on the basis of the misfit of a latent trait model,
not by indices that are not based on the model to be fit. Since this study only focuses on
the compensatory logistic MIRT model, only the fit indices based on the parametric
procedures, which can be classified into four types, will be included in the following
sections. Even though different methods were proposed in the past, the focus of the
problem was the same: to decide whether the minor factors are large enough to represent

significant dimensions, or whether they are merely nuisance in the data.

2.2.1 Exploratory Linear Factor Analysis

Principal Component Analysis (PCA) and common Linear Factor Analysis (LFA)
have been popular methods for exploring the dimensionality of dichotomous test data.

In the studies of PCA or LFA, determining the number of components is often based on
the amount of explained variance from phi or tetrachoric correlation matrices. Among
the procedures are the well-known eigenvalue greater than 1.0 rule (Kaiser, 1960) and the
scree plot test (Cattell, 1966).

The phi correlation coefficients generally produce a positive definite correlation
matrix and tend to avoid the problem of Heywood cases (Berger & Knol, 1990).
However, the LFA of phi correlation matrix was found to overestimate the number of
underlying dimensions in any data (Hambleton & Rovinelli, 1986). The identification
of spurious difficulty factors is related to the characteristics of the items rather than to
true underlying relationships (Guilford, 1941). That is, the choice of cut points affects
the values of the expected phi correlation coefficients. Factor analysis of phi correlation
matrix of binary variables produced by the same underlying correlation structure but

dichotomized at different cut points can conform to factor models with different structure



and different numbers of factors (Mislevy, 1986).

LFA of tetrachoric correlation matrix theoretically can avoid the problem of
“difficulty” factors for dichotomous free-response items. Tetrachoric correlation
coefficients can produce better estimates of the correlation than phi correlation
coefficients, but the assumptions, such as the distribution of the latent variables being
bivariate normal, and the latent variables being measured at the interval level should be
obtained (De Ayala & Hertzog, 1991). However, when ability distributions are not
normal and the item response function is not normal ogive, the use of tetrachoric
correlations is inappropriate (Lord, 1980). Furthermore, tetrachoric correlation
coefficients will become unstable when extreme values are reached. Tetrachoric
correlation matrix will often not be positive definite and is more likely to produce
Heywood cases (Berger & Knol, 1990).

Although the criticism of the use of tetrachoric correlation in LFA was clear, some
researchers still found it useful when used appropriately. Knol and Berger (1991)
considered various common factor analysis methods and concluded that, for large-scale
applications, an unweighted common factor analysis of tetrachoric correlations performed
as well as other techniques (e.g., full-information factor analysis). Drasgow and Lissak
(1983) suggested that interpretation of data dimensionality could be enhanced by
comparing the scree plot created from real data to that created from a factor analysis of
randomly generated test data containing the same number of items. Ackerman (1994)
concluded that these methods may sometimes be inconclusive and lead to spurious
counting of dimensions, but the size of the eigenvalues in conjunction with a substantive

review of the items can lead to the conclude of how many essential traits are being



measured.

2.2.2 Confirmatory Linear Factor Analysis

McDonald (1981) suggested that the factor analytic models of item response data
can be tested with CFA, a technique often considered to be a special case of Structural
Equation Modeling (SEM). McDonald and Mok (1995) asserted that the indices
developed for SEM under the assumption of continuous variables could be applied to the

assessment of dimensionality for tests with dichotomous items.

Akaike s Information Criterion (AIC)
To determine data dimensionality, it would be convenient to formulate a criterion to
compare the likelihood of a k-factor model against that of the saturated model (Berger &

Knol, 1990). Given Bock and Aitkin’s (1981) ogive model, the probability of a correct

response for ability vector éj and item / is

P(X; =116)) =<b{(,v,- - /L-M,,ﬂ/o,}, (5)

T Ms

where y, is a threshold value for item i, 6y is the ability of person j on ability

dimensional &, 4, is the loading of item / for dimension k.  Akaike (1974) developed an
information theoretic criterion for identifying the optimal and parsimonious models in

data analysis. Akaike’s information criterion is defined as:

AIC(m) = -2In|Lml@ ;. J;.61.7: )|+ 2K, (6)

where Lm(éj. i,-,&,-, ;/,) is the maximized likelihood and K, is the number of



independent parameters in the model. The term 2K, is the penalty term which corrects
for over-fitting due to increasing bias in the first term when the number of parameters in
the model increases.

The term A/C(m) is a measure of badness-of-fit, and the minimum value of the

AIC(m) indicates the * true” dimensionality (Berger & Knol, 1990). The critical value
of the AIC statistic is embodied in the penalty for over-fitting, and the Type I error rate
decreases exponentially with increased sample size (McKinley, 1989). The AIC index
has been recommended as a criterion for model selection, because when computed for a
series of models of increasing dimensionality, it attains an optimum value for a model of
intermediate dimensionality, thus allowing objective model selection (Berger & Knol,
1990; McDonald & Mok, 1995).

The practical performance of AIC in test data was not conclusive. Berger and Knol
(1990) found that the A/C seemed to somewhat outperform the asymptotic ¥* statistic, but
these results were based on a small number of computer runs with sample sizes of 250
and 500. McKinley (1989) applied the AIC to artificial data fitting a confirmatory
multidimensional item response model with the sample size of 1000, and found that 4IC
outperformed the likelihood ratio xz test. McDonald (1989b) pointed out, however, that
in applications, for a sufficiently small sample size, the optimum value must be attained
by the unidimensional model, and for a sufficiently large sample size, it must be obtained
by the saturated model. He concluded that A/C behaves just like the ¥* significance test

itself and cannot possibly be recommended for the use with real data.



Muthen's Robust Weighted Least Squares (Mplus)

Muthen proposed a probit function and a robust Weighted Least Squares (WLS)
estimation procedure to assess dimensionality. This method was implemented in the
computer program LISCOMP (B. Muthen, 1987) but later replaced by Mplus (L. K.
Muthen & Muthen, 1998). According to Muthen (1978), the parameters of the factor
analytic model for dichotomous variables can be estimated by minimizing the weighted

least-square fit function
F:%(S—O')'W“(s—a), (7)

where ¢ contains the population threshold and tetrachoric correlation values; s includes
the sample estimates of the threshold and the sample tetrachoric correlation values; and
W is a consistent estimator of the asymptotic covariance matrix of s, multiplied by the
total sample size. The F function minimized in the WLS solution asymptotically
follows a % distribution with df=k(k-1)/2-t, where k is the number of items and ¢ is the
number of parameters estimated in the model. If the null hypothesis in not true, the
discrepancy function is distributed asymptotically as non-central chi-square. With WLS
method, determining dimensionality is based on the fail-to-reject hypothesized model.
That is, the hypothesis testing starts with the unidimensional model, and stopped when
the hypothesized dimensionality is not rejected. In application, Stone and Yeh (2006)
found that Mplus worked as well as NOHARM and TESTFACT when guessing was not
modeled in the data. Tate (2003) also found that WLS procedure worked excellent for
data with no guessing using an admittedly crude fit index equal to the ratio of x2 to
degrees of freedom (y*/df). However, for data generated with guessing, this procedure

generated distortions in the recovery of the true structure (Stone & Yeh. 2006).



2.2.3 Bivariate-Information Nonlinear Factor Analysis (NOHARM)

Starting from Spearman’s common factor model, McDonald (1982) showed that IRT
models are a special case of Nonlinear Factor Analysis (NLFA). He provided a general
framework with a variety of models including unidimensional/multidimensional,
linear/nonlinear, and dichotomous/polytomous models. The NOHARM program (Fraser,
1988) employs McDonald's (McDonald, 1981, 1982, 1985) NLFA, which uses a
reparameterization of latent trait theory and ** nonlinear harmonic™ approximations to the
normal ogive error distribution (Fraser & McDonald, 1988). In this process, the model
is fit by unweighted least square which minimizes the squared difference between the
observed frequencies of correctly answering item 7 and j, and the predicted frequencies of
the joint occurrence of the pair of correct responses.  Using McDonald’s NLFA,
researchers have developed various goodness-of-fit indices to decide the dimensionality

of test data.

Approximate y° Test of a Fitted NOHARM Model

Gessaroli and De Champlain (1996) proposed an approximate y” test to assess
dimensionality based on the estimation from NLFA. This approximate y” statistic,
originally proposcd by Bartlett (1950) and outlined in Steiger (1980a; 1980b), tests
whether all of the off-diagonal elements of the residual correlation matrix are equal to

zero after fitting a k-factor NLFA model. The approximate + statistic is defined as

l\)
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where z'" is the square of Fisher's Z transformation corresponding to the residual

correlation between item i and j, and N is the number of examinees in the sample. This
statistic is distributed asymptotically as a x* distribution with the degrees of freedom of
S(m)x(m—1)—1t, where m equals the number of items and ¢ is the total number of
independent parameters estimated in the NLFA model.

In an exploratory analysis based on adding successive factors to an initial
unidimensional model, the search for an appropriate solution stops once the significance
test indicates a good fit. Results from various simulation studies showed that this
approximate y* statistic is quite accurate in determining the number of factors underlying
simulated item responses with small sample sizes (500 and 1000)(Gessaroli & De
Champlain, 1996). However, Gessaroli and De Champlain (1996) also emphasized that
this approximate xz statistic has the same limitation as other x2 statistics: it tends to
falsely reject the correct k-factor model with large sample sizes and fails to reject

inaccurate models with small samples.

Residual Covariance Analyses afier a Model Has Been Fitted to the Data

Based on the mathematical equivalence of the common IRT models and NLFA
models, researchers (Choi, 1997; Hattie, 1984; McDonald, 1981, 1989a) suggested that a
useful way to assess dimensionality is to analyze the residual covariance matrix obtained
after fitting a model to an response matrix.

One of the model-data-fit indices reported in the NOHARM output, developed by

Tanaka (1993), can be used with McDonald’s NLFA model. This fit index is computed

using y =1-Tr(R*)/Tr(S*), where R is the item residual covariance matrix, and S is



the matrix containing the raw product-moment of item pairs (Tanaka, 1993). A small

value of y implies that the residual covariances are close to the observed covariances,

indicating a bad fit of the model. For practical application, Tanaka (1993)

recommended that the value of y should be greater than .95 for a model to be
considered as good fit to the data. ~ With this rule of thumb, McDonald & Mok (1995)
used this index to assess the dimensionality of Law School Admission Test (LSAT) data
and found that this index under-identified the second common factor.

Other residual covariance-based indices can be found in Berger and Knol (1990).
Let A, be the nxk estimated matrix of factor loadings from a solution with n items and

k estimated common factors, and R be the tetrachoric correlation matrix. The

off-diagonal elements of the residual matrix R*, where R" = R— A, A, , are the residualsr, .

Then, the equation of the mean squared residuals can be formulated as

fi=2nn-01"' Y Y ()2 ©)

i<j

The mean absolute residuals is

fo=2Ann =D Y Y hn | (10)
i<j
As the formulas show, f> is less sensitive to outliers than f; because it uses the
absolute value instead of the square in the equation, and thus is more often employed in
previous studies. Hattie (1984; 1985) showed that f, can effectively discriminate
between unidimensional and higher dimensional item response models after fitting the
model by McDonald’s NLFA. However, Hambleton and Rovinelli (1986) found that the

residual analyses method provided disappointing results. The problem of applying this



criterion is its ambiguity of when the criterion is small enough to decide a good fit
between the model and the data.  In order to make a accurate decision based on f5, a
possible solution is to compare the criterion after the fit of a k-dimensional model with
that from random data (Berger & Knol, 1990).

Another fit index using residuals after fitting the NLFA model is the Incremental Fit
Index (IF1) proposed by De Champlain & Gessaroli (1991). The equation can be
expressed as

SS,.cg (k — factor) - SS reg ((k +1)— factor)
SSreg (k — factor) .

IFI, = (1)

IFI calculates the proportion of the sum of squares of the residual covariances from the
k-factor solution to that of the (k+1)-factor model. If the (k+1)-th factor is important in
explaining the structure of the items, then the IFI should be quite large.

The theoretical advantage of these indices is that the asscssment of dimensionality is
made by an IRT-based model. The measure of model fit is directly related to the
function minimized in the estimation procedure. However, there is an inherent
weakness in this technique: there is no statistical significance test to decide the misfit of

the model (De Champlain & Gessaroli, 1991).

2.2.4 Full-Information Item Factor Analysis (TESTFACT)

The computer program TESTFACT (Wilson et al., 2003) allows the practitioner to
estimate the parameters and to fit various Full-Information Factor Analytic (FIFA)
models. This estimation method uses the marginal maximum likelihood procedure

outlined by Bock and Atkin (1981) via the expectation-maximization algorithm



(Dempster, Laird, & Rubin, 1977).

The FIFA uses information contained in the joint frequencies of the 2" contingency
tables of response counts on an n-item test. The probability of a correct response to an
item is a function of an examinee’s ability with respect to one or more latent factors and
the location of the threshold parameters along the continuous variables. The thresholds
and factor loadings are estimated so as to maximize the multidimensional probability
function

! ~py o~ ~)
Ly =P(X)=—' _pnpr prs (12)

Il
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. where r, is the frequency of response pattern s;and P is the marginal probability of

the response pattern based on the item parameter estimates.

The user can assess the fit of a given FIFA model using a likelihood-ratio x2 statistic
provided by TESTFACT. The FIFA yields a discrepancy function based on the ratio of
the likelihood under the fitted model to the likelihood based on a saturated model, which
fits the multidimensional distribution to the empirical frequencies. The likelihood-ratio
¥’ statistic can be defined as

o1

) X n
G =2 nin(—), 13
‘;/ (NP,) (13)

where r, is the frequency of response vector /, and 1~’, is the probability of response

vector . The degrees of freedom are 2"-n(k+1)+k(k-1)/2 ,where n is the number of
items and & is the number of factors. The null hypothesis of this significance test is Hy:

d= k. The decision about dimensionality is based on the point where the improvement

of fit due to adding the net factor is not significant. If the G2 s not significant, the




k-dimensional can be considered having good fit to the data. In this case, any additional

factors could be attributed to sampling variation and therefore should not be interpreted.

However, Mislevy (1986) found that this G? statistic often poorly approximates the x*

distribution given the large number of empty cells typically encountered with actual data
sets. Moreover, Berger & Knol (1990) found that this G? test procedure erroneously
favor the alternative hypothesis for almost all conditions.

Based on the work of Haberman (1977), equation (13) can be transformed to the

likelihood-ratio G2 difference test to assess the fit of a model. The statistic can be

computed using the following expression

.2
G

2 2
daiy = Oir —Gars (14)

where G} is the value of the likelihood ratio G? statistic obtained after fitting a

one-factor model, and G, is the likelihood ratio G2 statistic from a two-factor model.
2/

The degrees of freedom are the difference between the df of one- and two-factor models.
Again, the decision about dimensionality is made when the improvement of fit due to

adding the proceeding factor is not significant. However, studies (Berger & Knol, 1990;

De Champlain & Gessaroli, 1996) indicated that this likelihood-ratio G? difference test

performs poorly for deciding the dimensionality of an item response matrix.
Overall, the goodness-of-fit indices proposed for the MIRT models in the literature
can be summarized into two categories. The indices in the first category may tell the

increase of fit or decrease of misfit when adding dimensions to the estimation model, but
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The degrees of freedom are the difterence between the df of one- and two-factor models.
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adding the proceeding factor is not significant. However, studies (Berger & Knol, 1990;

De Champlain & Gessaroli, 1996) indicated that this likelihood-ratio G? difference test

performs poorly for deciding the dimensionality of an item response matrix.
Overall, the goodness-of-fit indices proposed for the MIRT models in the literature
can be summarized into two categories. The indices in the first category may tell the

increase of fit or decrease of misfit when adding dimensions to the estimation model, but



there is no significance test or justifiable criteria for deciding a good fit. The other
category contains various x” statistics. Even though a significance test is available for y°
statistics, the problem of deciding the data dimensionality is not yet solved. Kendall
(1977) pointed out that Pearson’s Xz and the likelihood ratio statistics are often regarded
as equivalent because of their asymptotic properties. In practice, however, the large
sample properties of ¥ statistics are often unacceptable although the maximum likelihood
estimators maintain standard large sample properties (Berger & Knol, 1990). What is
more, the common problem for the xz test for the fit of @ model is its sensitivity to sample
size. As McDonald (1989a) and Berger & Knol (1990) indicated, for large samples this
procedure almost always rejects the null hypothesis and leads to wrong conclusions.

Therefore, in order to investigate the model identification problem, the ideal
goodness-of-fit index should be able to reflect the degree of fit of the model to the data,
and also not be overly sensitive to sample size. Besides this, the index should be
reliable and also easy to interpret. To meet these requirements, a new index is

introduced in the following sections.

2.3 The Development of Goodness-of-Fit Index for the MIRT Model

This research proposes a goodness-of-fit index applying the characteristic of R*to
the MIRT model. In the first section, the basic relationship between R? and the
likelihood ratio (LR) test is reviewed. Then, the likelihood-based g analog proposed by
Estrella (1998) for the dichotomous dependent variable (DDV) model is introduced.
Lastly, the goodness-of-fit index based on the change of R analog is proposed for

describing the fit of a MIRT model.



2.3.1 The R in the Ordinary Least Squares Model

Regression methods are an integral component of any data analysis concerning the
relationship between a response variable and the explanatory variables (Hosmer &
Lemeshow, 2000). The coefficient of determination, R, is a measure of how well the
statistical model explains the observed data and is invariant to units of measurement. It
describes the percentage of the total variance that can be explained by the regression
model and becomes larger when the model fits the data better. The change of R’ reflects
the contribution of reducing residuals or improving overall model fit by adding an
explanatory variable to the regression model. When it comes to select predictors for a
multiple regression model, the change of R’ is often used with the partial F test to decide
if the inclusion of a predictor contributes significantly to the overall model fit.

Magee (1990) articulated the monotonic relationships between R’ in the standard
linear model, the Ward (W) statistic, and LR test statistic. On the basis of Magee’s (1990)
work, the inherent statistical characteristics of R can be elucidated as follows:

Suppose that a dependent variable y has some functional relationship with the
independent variable X,

y=p0'X+¢, (15)
where f is a set of parameters, and ¢ is the residual which consists of /id normal variates

with a mean of 0. The first element of the f# vector is generally considered as the
intercept term, . Let 3 denote the sample mean of y, and p = X (X'X)™' X'y, where
y is the predicted value of y from the Ordinary Least Squares (OLS) model. The total

sum of squares (SST) is =(y —»)'(¥ - »). and the residual or error sum of squares (SSE)



is(y-5)'(y—»). Forthe model containing only the intercept term o, ¥ = y and thus
SSE is equal to the total variance SST. When an independent variable is added to the
linear regression model, the decrease in SSE is due to the non-zero slope coefficient for
that independent variable. To show the amount of error reduction by the independent
variable, the R’ statistic for the OLS model is defined as

R2=1-E
SST

(16)
The term on the right-hand side indicates the percentage by which error is reduced. To
test the null hypothesis, which means all the &-1 non-intercept elements of 8 are 0, the F

test can be cxpressed as

(SST - SS[?)(k ) |

F= SE (17)
, (n-k)
And based on equation (16) and (17), it can be concluded that F is a monotonic
increasing function of R’ in the form of
R
F = __._Sf___])_ ) (18)
S(n—-k)
Besides, if the error term in the OLS model is assumed to be normally distributed,
statistic is related to W statistic in the form of (e.g. Magee, 1990)
W:(k—l)x( " ij. (19)
n-k

SST - SSE

given that W =nx(
SSE

]. Consequently, from equations (18) and (19), W can

be reformulated as



W:nx[l’:z]. (20)

In addition, Magee (1990) also showed that LR statistic for the same null hypothesis

SSE SST
=-nxlog =nxlog(—)., 21
] nxlogeer) =nxlog(er) 0

LR= —2I0g[ Le
L

where log L= constant —glog SST (log-likelihood of the fully constrained model)

log L;; = constant —g log SSE (log-likelihood of an unconstrained model)

The model containing predictors is referred to as an unconstrained model because
adding a predictor means relaxing a restriction in the maximization of the log-likelihood.

Nagelkerke (1991) explained that the value of -2log L,. indicates the “error variation” of

the model with only the intercept term. It is equivalent to the SST in the OLS model.

With regard to the value of -2log L, , it is similar to the “error variation™ for a model

with predictors, analogous to the SSE in the OLS model (Menard, 2000). Under the null
hypothesis that all the slopes in the population are 0, LR test follows a y* distribution with
k degree of freedom, where & is the number of predictors in the model.

In the standard linear model with normally distributed errors, there is a simple
relationship between R’ and LR statistic because LR is related to W (Vandaele, 1981) such

that

LR=anog(l+KJ. (22)
n

Form equation (20) and (22), the relationship between R’ and LR can be formulated as



2:I—exp(

IR, (23)
n

Just as R*in OLS model in equation (16) can be interpreted as the proportion of

reduction in the error sum of squares, the likelihood-based R” in equation (23) can also be

interpreted as the proportion of reduction in the -2log-likelihood statistic (Menard, 2000).
Moreover, Estrella (1998) demonstrated that the relationship between R’and LR

statistic can also be expressed in terms of LR statistic per observation

ALR :éﬁz—zlog[—L(—'], (24)
n n L(/'
which takes on values between 0 (misfit) and infinity (perfect fit). Accordingly to

Estrella, equation (23) can be rewritten as

L, 27
R*=1 _(Z(_), n=1-exp(-4.g). (25)
9y

The R’ in equation (25) may be considered as a nonlinear rescaling of LR statistic
per observation (Estrella, 1998). The endpoints of the scale are still compatible to a
straightforward way indicating a “misfit™ and a “perfect fit”, respectively. Estrella
(1998) also indicated that the difference in the likelihood statistic per observation is

related to the difference in R’ in an intuitive way such that

dR*?
1-R

= dA[‘R . (26)

2

The left side of this equation can be considered as a marginal R’.  This function specifies
that the change of A, can be represented by the change of R”.  The marginal increment
of fit, as shown to be consistent with the formal properties of R” in OLS, provides

consistently accurate information to indicate goodness-of-fit (Estrella, 1998).



2.32 The R’ Analog in the Dichotomous Dependent Variable Model
In the OLS model, the common assumption is that the error term of the model, ¢,
consists iid variates with a mean of zero and a fixed value of variance. This assumption
is violated when the dependent variable in the regression model is dichotomously scored.
In this case, a different regression model should be used for describing the relationship
between the predictors and the dichotomized dependent variable. A Dichotomous
Dependent Model (DDV) model can be defined in the form of a linear regression
y =Bx+e, 27)
where y* is an unobservable variable, £ is a vector of k coefticients (the first term is the
intercept), and x is a vector of the values of k independent variables. In equation (27),
y* is linear in its parameters and may range from -oo to +w, depending on the range of x.
There is also an observable variable y, which takes only two possible values and is related
to y* in the following way:
y=1if y* > threshold
y =0, otherwise.
With dichotomous data, the outcome must be bounded between 0 and 1. The form of
the estimation equation is P(y =1]|x) = F(['x), where F is the cumulative distribution
function of ¢. In practice, F is usually specified as normal or logistic, but any other
continuous distribution function whose first two derivatives exist and are well-behaved
may be used (Estrella, 1998, p. 198). For a DDV model, the model parameters are

estimated by maximum likelihood estimation, which can be defined as



L=TTFBx) TT0-FBx)l. (28)

yi=l yi=0
The likelihood function yields maximum likelihood estimators for the unknown
parameters by maximizing the probability of obtaining the observed data. The resulting
estimators are those that agree most closely with the observed data.

In the OLS model, there is only one reasonable residual variation criterion for the
continuous dependent variable, but there are several possible variation criteria for DDV
models (Efron, 1978). Based on the conceptual and mathematical similarity to the
familiar B>, many R"analogies have been developed for the use with models having DDV
(see Estrella, 1998; Kvalseth, 1985; Menard, 2000). In this study, the index proposed by
Estrella (1998) was used to assess model-data-fit for test data because of its nice
statistical properties.  Estrella’s measure of model-fit possesses the basic requirement of
R’ and has been used mainly in the areas of economics (Estrella, Rodrigues, & Schich,
2003; Herath & Takeya, 2003; Moneta, 2005; Shin & Moore, 2003; Stratmann, 2002)
and medical research (Zheng & Agresti, 2000). Based on Esterlla’s (1998) assertions,
this goodness-of-fit index has some important statistical properties that other measures
lack.

This measure is constructed by imposing certain restrictions on its relationship with the
underlying likelihood ratio statistics. These restrictions, including one expressed in terms
of marginal increments in fit, are shown to be consistent with the formal properties of R’ in
the linear case and to provide consistently accurate signals as to statistical significance.
This measure may be interpreted intuitively in a similar way to R’ in the linear regression

context, even away from the endpoints of its range values (Estrella, 1998, p. 198).

In the standard linear model with normally distributed errors, the relationship

between R’ and LR is clear. If there are n observations, of which n indicates the case of



L=TTFBxp) [T~ FBx)). (28)

yi=l yi=0
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In the OLS model, there is only one reasonable residual variation criterion for the
continuous dependent variable, but there are several possible variation criteria for DDV
models (Efron, 1978). Based on the conceptual and mathematical similarity to the
familiar R”, many R’analogies have been developed for the use with models having DDV
(see Estrella, 1998; Kvalseth, 1985; Menard, 2000). In this study, the index proposed by
Estrella (1998) was used to assess model-data-fit for test data because of its nice
statistical properties. Estrella’s measure of model-fit possesses the basic requirement of
R’ and has been used mainly in the areas of economics (Estrella, Rodrigues, & Schich,
2003; Herath & Takeya, 2003; Moneta, 2005; Shin & Moore, 2003; Stratmann, 2002)
and medical research (Zheng & Agresti, 2000). Based on Esterlla’s (1998) assertions,
this goodness-of-fit index has some important statistical properties that other measures
lack.

This measure is constructed by imposing certain restrictions on its relationship with the
underlying likelihood ratio statistics. ~These restrictions, including one expressed in terms
of marginal increments in fit, are shown to be consistent with the formal properties of R’ in
the linear case and to provide consistently accurate signals as to statistical significance.
This measure may be interpreted intuitively in a similar way to R’ in the linear regression

context, even away from the endpoints of its range values (Estrella, 1998, p. 198).

In the standard linear model with normally distributed errors, the relationship

between R’ and LR is clear. [f there are n observations, of which m indicates the case of



y=1. According to Estrella (1998), under the condition that H, is true (all the k-1

slopes are zero), equation (28) is maximized where F(f8,)=y = ™ and can be
n

simplified as Ly =y (1- )" "

to represent the likelihood of the constrained model.
Furthermore, he pointed out that the function of the log likelihood per observation has a

particularly simple form that depends only on y
. InL. _ _ _ _
A.(y)= - =yIn(y)+(1-y)In(1-y). (29)

The hypothesis H, may be tested using LR statistic. When H, is true, the value of LR
statistic is asymptotically distributed as a 3> with the degree of freedom of -1.
With a dichotomous dependent variable, the approach using equation (25) fails
“because the LR statistic per observation is bounded (Estrella, 1998). Let 4 be the LR

statistic per observation for DDV, then 4 can be expressed as

A:zln(ijzz(ln L —InLy). (30)
n LC n

When the model fits the data perfectly, the cumulative density function F can be

represented as in Figure 2.3.1. In this case, when L, = 1, A reaches its upper bound.
4 F(x)
] = .—F
0

Figure 2.3.1. The cumulative density function F(x)
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Estrella (1998) indicated that the upper bound of 4 can be expressed as

B=—2In L. =-2A4,.(y), where A is defined in equation (29). Based on this formula,
n

the upper bound B is only a function of the log likelihood per observation. When ¥

approaches either 0 or 1, B approaches 0.

The derivation of the R’ analog is a differential equation, which bases primarily on
an analog with the relationship between marginal R and the Lagrange Multiplier (LM)
statistic in the linear case (Estrella, 1998). The marginal R’ in the linear case may be

expressed in terms of the average LM statistic as (Estrella, 1998)

dRZ _ (I’A/"”
1-R> 1-4Apy

(€1))

The marginal R’ increases with a rate inversely proportional to the distance between the
current value of the statistic and its upper bound. In the DDV case, as Estrella (1998)
explained, a measure based on the statistic A may be constructed using the fact

that0 < A/B<1. The index can be designed to reflect the marginal increase of fit being
conversely proportional to /-4/B, which is the fraction of the “information content” of y

that is still unexplained. The goodness-of-fit index, @, can be defined by solving the

differential equation (Estrella, 1998)

{

de _ dA . (32)

= 09

B

With the initial condition ¢(0) = 0. the solution of equation (32) is
2I )
A B In L(" - InLc

=l-(1-=2)" =l-(——) " . 33
4=1-0-2° =1-G0) (33)
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To demonstrate the derivation of the fit index, the mathematical proof of equations (33) is

shown in Appendix 1. When A=B, ¢,(B) =1, and this solution also satisfies the

condition ¢,(B)=1 andg,(0)=1(Estrella, 1998). Moreover, Estrella (1998) pointed

out that if B is replaced by “infinity™ in the formula (33), then

lim 1=(1- 4/ B)% =1-exp(-4). (34)

B—ox
which is the exact expression for R’ in the linear case in equation (25).

According to Estrella (1998), the goodness-of-fit index, ¢, contains some desired

features for a measure of model-data-fit.  First, the measure takes on values on the unit
interval and has the straightforward interpretation at the endpoints; that is, 0 corresponds
to no fit and 1 corresponds to a perfect fit. The goodness-of-fit index is based on
maximum likelihood method, which is also a common method used to calibrate test data
in the field of educational measurement. This likelihood-based measure can be
transformed into an F statistic as described in equation (18). Moreover, this index can

work well for both the dichotomous and continuous dependent variables.

2.3.3 The RLR in the Multidimensional Item Response Model

Based on the similarity between the logistic regression model (one of the DDV
models) and the logistic MIRT model (Reckase, 1985; Reckase & McKinley, 1991), it is
possible to apply Estrella’s R’ analog to the MIRT model to reflect the error reduction by
adding dimensions to the model.  Furthermore, in order to reflect the degree of error
reduction, the new index, which is the ratio of SSEs of two successive MIRT models, was
proposed to show the improvement of model-data-fit.

If a DDV model takes the logistic function, it can be expressed as
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. exp(fy + i)
1 +exp(fy + [)x) )

v

(35

where f, is the intercept parameter and £, indicates the vector of slope parameters. The
observed variable y takes the value of 1 if y* is greater than a threshold value and takes
the value of 0 otherwise. The total number of model parameters needed to be estimated
is expressed as k+1, where & is the number of predictors.

As indicated in Chapter 2.1, the logistic MIRT model is

- - d: "é
P, =1 id;. 8 ) = =i+ 9i0))

LR (36)
1+exp(d; +aib )

where the a;. d, (;j are the same as those defined in Chapter 2.1. Compared to

equation (35), d, in equation (36) can be considered as the intercept parameter and the ¢;
vector can be viewed as the vector of slope parameters on the 6 coordinate axes. The
only difference between the two models is that the § vector in equation (36) contains
model parameters instead of predictors. In other words, along with the a and d
parameters, the elements in the 8 vector in the MIRT model also need to be estimated by
the model. The total number of parameters in equation (36) is n+ffn+m), where n is the
number of items, fis the number of factors, and m is the number of examinees.

Employing the likelihood based R’ analog to the MIRT model, the constrained
MIRT model can be simplified as

exp(d;)

1+exp(d;) ' (37)

PWU; =11d;)=

This equation indicates that the probability of a correct response on item i depends only

ond,. Under this constrained model, d, is estimated by »n,/n, where n, is the number of
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examinees answering the item correctly, and » is the sample size. In this case, d, in
equation (37) can be considered as a nonlinear transformation of the item difficulty, also
known as the p-value. Then, the probability of correctly answering an item only
depends on the item difficulty and has nothing to do with the examinees’ abilities. For
the constrained model, the likelihood function can be expressed as
M n
Le = LU dp =TI[TEY a-p)™", (38)

j=li=l

where w;, takes on the value of | or 0, which indicates a correct or incorrect response
respectively. The likelihood function for the unconstrained model (MIRT model) is

= L(U|a;,d;,6,) = ]’]]’]P”’f =Py (39)
Jj=li=l

where u;; takes on the value of I or 0. The probability in equation (39) takes two
subscripts representing a correct response of person j on item i.  With Estrella’s R®
analog method, one can use the likelihood of the constrained model (L) and the
likelihood of the unconstrained MIRT model (L) to express the proportion of the total
variance explained by the MIRT model.

The feasibility of applying the R’ analog to the MIRT model was first evaluated by
examining the distribution of LR statistic. One of the well-known characteristics of the
DDV model is that, when the null hypothesis (all the slopes in the model are 0 in the
population) is true, LR statistic is y distributed. ~With the constrained model in equation
(37), 1000 sets of item response data were generated for 25 items and 2000 examinees,
and then were calibrated by the unidimensional MIRT model.  The resulting distribution

of LR statistic, as shown in Figure 2.3.1, has a mean of 38.47 and a variance of 70.605.
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When taking sampling variation into account, this distribution approximates a y°

distribution since > = 2 = 2v, where vare the degrees of freedom. This LR

distribution demonstrates that the MIRT model contains the same characteristic as the

DDV mbdel, and thus can be considered as a special form of a DDV model.
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Figure 2.3.1. The observed distribution of LR statistic from the data generated by the

constrained MIRT model

The R* analog can be used to represent how well the MIRT model fits the test data,
but the most critical issue is to indicate whether or not the increase of fit by adding one
more dimension to the model is important. In other words, it is useful to have an index
reflecting the marginal effect of the “added” dimension to the overall model fit. Givena
test data set, two successive MIRT models, the k-dimensional model and the

(k+1)-dimensional model, are considered to describe the data. In order to indicate the
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marginal eftect of the (k+/)-th dimension to the overall model fit, the new index is

defined as follows.

Let In L{‘ be the log-likelihood of the k-dimensional MIRT model

In Lfy“ be the log-likelihood of the (k+/)-dimensional MIRT model
In L~ be the log-likelihood of the constrained MIRT model

Then the R* analog for the two models can be expressed as

2

Ak —“InL,.
REZI—(M) n ¢ and
InL(.
ol
k+1 _“ng,.
RE, =1 - (MEC )T
lnL(‘

Based on the equation (16). the percentage of the unexplained variance is

1-R? = SSE . Taking the logarithm of both sides, the equation becomes

SST

In(l - Rz) = In(%) . Then, the ratio of the log residuals (RLR) is defined as

k
SSE; InL;:
mi-gyy o) G )
RIR=-A=Ri) " sst” __ Inlc
& :
In(l - R41) 1n(,‘s.‘55k +1) ln(_l_n_d‘,-*l)
SST In L

This index shows if the percentage of the unexplained variance in the (k+1)-th

(40)

dimensional MIRT model is smaller than that in k-th dimensional MIRT model. The

k-th dimension in equation (40) can be considered as the target dimension. The

successive dimension, the (k+1)-th dimension, can be viewed as the reference dimension.

Equation (40) focuses on the relative gain of overall model fit in view of comparing the
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residuals in two models. If the k-dimensional model fits the data well, the reduction in
SSE due to adding the (k+1)-th dimension should be minor. In this case, the value of the
numerator and denominator in equation (40) are close to each other so that the RLR
approaches 1. Since the RLR index always compares the SSEs for two successive
models, for the convenience of discussion only the target dimension will be appended to
the index to show the level of dimensionality. For instance, RLR, stands for the RLR
index comparing the SSE of a one-factor model and that of a two-factor model.

The feasibility of using the R? analog and the RLR index to determine
dimensionality is demonstrated by showing their empirical distributions in some basic
cases. In all the following examples, 100 sets of item responses were generated for a
25-item test with 2000 examinees. For different situations, different models were used
to generate the desired data.

When the data were generated by the constrained model, which only has the
intercept term, no dimensionality underlies the data. When the data are explained by the

MIRT model, the corresponding model-data-fit was reported in Figure 2.3.2.  As Panel
(A) shows, the distribution of Rlz has a mean of 0.0211 and a SD equal to 0.0031; the

distribution of R22 has a mean of 0.0387 and a SD of 0.0044.  The small values of R,z
indicate that the unidimensional MIRT model explains little variance in the data. After

. . . 2 . .
adding the second dimension to the model, the value of R3 has little increment,

indicating limited increase in explained variance. The resulting distribution of RLR, has

the distribution with the mean of 0.5391 and SD equal to 0.0412.
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Figure 2.3.2. The distributions ofR,2 , R% , and RLR, for the constrained-model data

Another case offered here is the three-dimensional data. Item responses were

generated assuming that three dimensions were independent of each other and all item
discriminations equal to I.  As shown in panel (A) in Figure 2.3.3, the mean ole2 is
0.6972 and the SD is 0.0183; the mean of R% is 0.9084 and the SD is 0.0183; the mean

of R} is0.9687 and the SD is 0.0033; the mean of R} is 0.97 and the SD is 0.003.

Just like in the OLS model, the R? analog raises as the number of dimensions in the

model increases. Regarding the distribution of R32. when the model fits the data well,

the index approaches 1. Besides, the distributions of RLR; and RLR, have substantial
overlapping area, indicating the similarity of the two distributions. Thus, given that the
model already fits the data well, the increase of fit by adding another dimension to the

model is limited. Concerning the improvement of fit as shown in Panel (B); RLR, has a
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mean of 0.4995 and a SD of 0.0315; RLR; has a mean of 0.6925 and a SD of 0.0410;
RLR; has of mean .996 of and a SD 0of 0.004. When the model under-fits the data, the
RLR is low and the distribution is located on the left side of the scale. Conversely, the
index shifts to the right end of the scale with little variation when the model captures true
dimensionality. The information from these distributions suggests that the RLR index

offers clear and useful information about dimensionality.

25 | 25 -]
RLR,
2
R3
20 RZ RZ |R? RLR RLR
=Y 1 2 4 20 1 3
15 15
>
o
3
o
S 10 - 10
(69
5 A 5
O T 0 I 1
0.6 07 08 0.9 1.0 00 02 04 06 08 10

(A) The distributions of R ,RZ, Rf,andRj  (B) The distributions of RLR, ,RLR,,
and RLR,

Figure 2.3.3. The distributions of R* and RLR for the three-dimensional data

An example of high-dimensional data was also offered to show the statistical
characteristics of the proposed indices in the extreme situation. The item response data

were generated with a 25-dimensional MIRT model assuming that all the dimensions
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were independent of each other.  Besides, the item discriminations were all fixed as 1.0.
In this case, one item represented one distinct dimension in the data, and all the 25
dimensions had equal dominance of dimensionality. The results, as shown in Figure
2.3.4, indicated that the mean sz is 0.0208 and SD is 0.0034; the mean Rzz is 0.0374

and SD is 0.0047; RLR, has a distribution with mean 0.5487 and SD of 0.0505. The

distributions ofR]2 . RZZ . and RLR, are similar to those in the constrained model. The

values of R|2 and Rzz indicate that the unidimensional and two-dimensional models
only explain little variance in the data. These findings suggest that high dimensional
data have similar properties as the constrained-model data. Because of the lack of a
dominant factor, the increment of model-data-fit by adding dimensions to the model is
limited. To explain the data well, complicated high-dimensional models need be

employed.

15—

20—

20— RZ

v
|
b
|

Frequency
Frequency

16— 10—

)}

| 1
0.00 0.01 0.02 0.03 0.04

(A) The distributions of R|2 and R22 (B) The distribution of RLR,

Figure 2.3.4. The distributions of RZ, R2, and RLR, for the 25-dimensional model data
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The last example offered here is to show how the R* analog and RLR index react to

random data. For the distributions shown in Figure 2.3.5, R|2 has a mean of 0.0146
and a SD of 0.0056; Rzz has a mean of 0.0259 and a SD of 0.0074; RLR, has the mean

of 0.5762 and a SD of 0.2098. Again, the means of Rlz and R22 are as small as those

in the constrained model and 25-dimensional model, but the variation is large. With

random data, RLR, may have any value along the scale.

R? -

20 [ ] R2 20 /"—
P ) \
915 815
g 8 /
= =
: g
& 10 10—

A

AT =

0.00 0.01 0.02 0.03 0.04 0.0¢ 0.0

02 04 06 08 10 12 14

(A) The distributions of R?> and R3 (B) The distribution of RLR,

Figure 2.3.5. The distributions ofR,z, Rg'. and RLR, for the random data

To summarize this chapter, there are several advantages of the RLR index as

compared to other statistics.

(1) The calculation of RLR is based on maximum likelihood estimation, which is strong

in its theoretical foundation, especially with a large sample size.
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(2) This index has sound mathematical background. The derivation of the RLR index is
based on the R? analog in the DDV model, which is in accordance with the R in the
linear regression model.

(3) LR statistics in the MIRT model is x: distributed, which is consistent with the DDV

model when the null hypothesis (all the slopes are zero) is true.

(4) With the RLR index, the dimensionality is assessed based on the improvement of the
model-data-fit.

(5) The explanation of the RLR index is straightforward. The RLR index is viewed as
the ratio of the log transformation of the unexplained percentage of the variance from
two regression models. As shown in the preliminary simulations, the RLR index has
a lower bound around .50. When the fit is good, the index approaches 1, indicating

that the target dimension should be of use for describing the data.

(6) Furthermore, this statistic has the desirable property of showing the improvement of
fit from adding dimensions to the model. Based on this procedure, researchers have
arule of thumb to decide when the increase of fit is important.

(7) Unlike the ¥ test, the index is sensitive to sample size in a way that large sample size
can increase the accuracy of identifying correct dimensionality. Within the limits of
simulation, the index is not inflated by sample size and demonstrates desired

statistical propertics.



CHAPTER 3

METHOD

This chapter describes the research designs for exploring the statistical
characteristics of the RLR index. Many researchers (Davey, Nering, & Thompson, 1997,
Harwell, Stone, Hsu, & Kirisci, 1996) recommended the use of simulation studies
because it offers an opportunity to permit theoretical results to be confirmed in practice.
While manipulating all kinds of testing conditions, it is possible to know the statistical
characteristics and the limits of the index of interest. ~ With known dimensionality, two
simulation studies representing some basic testing situations were conducted in order to
explore the statistical properties of the RLR index. Furthermore, based on the
procedures developed in simulation studies, the analysis of real test data is presented to

demonstrate the feasibility of applying the fit index to a real testing situation.

3.1 Simulation Study I (Unidimensional Data Sets)
The focus of Study I is to explore the relationship between the RLR index and item
characteristics for different unidimensional data. Correspondingly, the effects of test

length and sample size on the RLR index are explored as well.

3.1.1 Research Design
Four variables were selected in Study 1 to simulate different testing conditions.
(1) Item discrimination (4)

When the MIRT model in equation (1) reduces to a unidimensional model, the value
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of the MDISC is the same as the value of the a-parameter. In this study, the
unidimensional data were generated in the unidimensional Rasch model fashion by
setting all a-parameters equal in one test. The values of the a-parameters were fixed at
four levels (0.2, 0.4, 0.6, and 0.8) with no variation in each data set, respectively. Low
a-parameters imply that test items were poorly designed so that those items could not
well differentiate examinees’ abilitics. Consequently, the signal in the test data may be
weak and it would be difficult to identify the true dimensionality of the test data. High
a-parameters indicate good items that can well differentiate examinees with different
levels of ability. In this case, it is expected that the goodness-of-fit index can function
well in recovering the true dimensionality.

Originally, the level of 1.0 of the a-parameter was included in the pilot study.
When calibrated by multidimensional models, the simulation data with the a-parameters
equal to 1.0 consistently generated a singular correlation matrix in TESTFACT.
Because the calibrations for multidimensional models never succeeded, the level of 1.0
was excluded from Study I.  This phenomenon implies that it is unlikely to have
multidimensional solutions using full-information factor analysis when the item
discriminations for unidimensional data are high. The procedure itself can detect the
impossibility of getting multidimensional solution when the data are strongly
unidimensional.

(2) Item Difficulty (D)

The variation in the distribution of item difficulty affects the sampling variability of
tetrachoric correlations (Roznowski et al., 1991). When the spread of item difficulties

increases, the tetrachoric correlation matrix tends to be non-Gramian and causes

44



computational difficulty in maximum likelihood factor analysis (McDonald, 1985). In
order to explore how the variation of item difficulty affects full-information factor
analysis and the RLR index, the d-parameters were sampled from normal distribution
with a mean of 0 and three levels (0. 0.5, and 1) of standard deviation.

(3) Test Length (7)

To explore the possible effect of test length on the value of RLR, short test forms
with 25 items and long test forms with 50 items were created. A short test was
generated by selecting 25 a- and d-parameters from the predefined item distributions.
With regard to a 50-item test, it was generated by adding parallel items to the original
25-item test. It is expected that as the number of items increases the data
unidimensionality should be more accurately identified by the RLR index.

(4) Sample size (S)

According to the literature (Ackerman, 1994; R. L. Turner, Miller, Reckase, Davey,
& Ackerman, 1996), usually 2000 or more examinees are suggested for MIRT calibration.
In this study, the random samples of 2000 and 6000 examinees were drawn from a
normal distribution with a mean of 0 and a standard deviation of 1. It is expected that

the dimensionality index should vary in accuracy as a function of sample size.

3.1.2 Generation of Item Parameters and Response Patterns

Given the design of a-parameters (4), d-parameters (3), and test lengths (2),
twenty-four combinations of simulated tests were generated. Table 3.1.1 tabulates the
label and characteristics of each test. The numbers in the test label represent the levels

of the a-parameters, d-parameters. and test length in order. Test 321. for example,
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represents the test having the third level of the a-parameters (0.6). the second level of the

SD of the d-parameters (0.5), and the first level of test length (25).

Table 3.1.1. Simulation tests for Study I

a-parameters  SD of d-parameters

short test form

long test form

(25 items) (50 items)
0.2
0 Test 111 Test 112
0.5 Test 121 Test 122
1 Test 131 Test 132
0.4
0 Test 211 Test 212
0.5 Test 221 Test 222
1 Test 231 Test 232
0.6
0 Test 311 Test 312
0.5 Test 321 Test 322
| Test 331 Test 332
0.8
0 Test 411 Test 412
0.5 Test 421 Test 422
1 Test 431 Test 432

When combining simulated tests (24) and sample sizes (2), forty-eight combinations
of testing conditions were generated. In order to explore the consistency of the results
in this study, replications are needed. For IRT-based studies, at least 25 replications
have been recommended (Harwell et al., 1996). In this study, 100 sets of item response
patterns were produced for each combination. Thus, the overall number of observations
in Study I is 4800.

The way to generate dichotomous item response is to implement the known item
parameters and ability parameters in the model in equation (1). Then, the computed
probability is compared to a random number drawn from a uniform distribution ranged
fromO0to 1. Ifthe computed probability is greater than the random number, a response

of 1 is generated, if not. a response of 0 is produced. The data simulation was
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completed by using GENDATS developed by Thompson (Undated). This Fortran-based
computer program uses input of the MIRT item parameters and an inter-factor correlation
matrix, which is used to generate ability vectors based on the standardized normal
distribution.  This program can simulate multidimensional test data for up to 60
dimensions and can generate ability vector even for the case when factors are completely

correlated in the correlation matrix.

3.1.3 Analysis Procedures and Computer Programs

The calculation of the RLR index depends upon being able to compute the maximum
likelihood of the constrained model and that of the MIRT model. The likelihood of the
constrained model was computed by the MATLAB program written by the author based
on equation (38), and the likelihood of the MIRT model was calculated by TESTFACT
(Wilson et al., 2003). Then, the values of the likelihood of the constrained model and
the MIRT model were implemented in equation (40) to get the corresponding RLR value.

To decide data dimensionality, MIRT models with different levels of dimensionality
were employed to analyze each data set. The test calibration started from the
unidimensional MIRT model and continued to four-dimensional model. For each level
of dimensionality the value of RLR was computed to reflect the increase of model-data-fit.
After collecting the RLR values for all 4800 observations, the statistical package SPSS
version 12.0 was employed to perform further statistical analyses. A Multidimensional
Analysis of Variance (MANOVA) was conducted to explore the influence of the
manipulated factors on the RLR index at different levels of dimensionality. Furthermore,

the regression model was built to decide if the observed RLR index reflected a good fit
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between the model and data.

3.1.4 Evaluation Criterion

The main purpose of Study I is to determine the level of accuracy of the RLR index
in correctly determining unidimensionality. As shown in Figure 2.3.3, the distributions
of the RLR index indicate that the RLR index is low and locates on the left side on the
scale when the model under-fits the data; when the fit is good, the RLR index shifts to the
right side of the scale and approaches 1. The theoretical conditional distribution of
RLRy can be expressed as Figure 4.1.1.  When the null hypothesis is true (H,: d= k), the
distribution of RLR approaches | with small variation. Whenever the model under-fits

the data, the "

H,:d=k
Hi:d>k

5% rejection area

Figure 4.1.1 The theoretical distribution of RLRx

In order to decide if a RLR value shows a good fit between the data and model, the

5% rejection criterion was set on the lower tail of the RLR distribution when the model
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captures the true dimensionality. If the observed RLRy is smaller than the lower bound
of a good fit, the null hypothesis, H,: d= k is true, is rejected. The significance test starts
from testing the unidimensional model. [f the observed RLR, index is less than the 5%
lower bound, then the null hypothesis (H,: d= 1) is rejected. Then the next significance
test is to test if the observed RLR; index shows a good fit. Once a given value RLR is
greater than the lower bound of a good fit, the null hypothesis is not rejected and the
dimensionality can be decided.

To decide the lower bound of a good fit between the model and data, a regression
analysis was conducted. Given the information of sample size, test length, the estimated
a-parameters, and the estimated d-parameters, the predicted value of the RLR index can

be estimated by the regression model. For each testing condition, the number of

rejections obtained from the RLR index, and those from the G? testin equation (13) and

the Gjl-ff test in equation (14) were compared. The accuracy of these indices was

deemed acceptable if the number of rejections in 100 replications was less than 5 for the

true model. In Study I, it is expected that the RLR index should demonstrate lower Type

.2 .- .
I error rate than the G2 test, and the Gy test for the unidimensional data.

3.2 Simulation Study 1l (Multidimensional Data Sets)
The goal of the second simulation is to investigate how the RLR index detects
dimensionality for different kinds of multidimensional test data. In this study, the two-

and three-dimensional test data were generated under different conditions.

49



3.2.2 Research Design

The levels of multidimensionality were manipulated using three essential variables
as follows:

(1) Inter-Factor Correlation (O)

In order to simulate examinees’ multidimensional ability distributions, the
correlation between factors (abilities) needs to be defined. The indices of
dimensionality have long depended on relations among the successive eigenvalues
obtained from factor analysis (see Hutten, 1980; Kaiser, 1970; Lord, 1980; Lumsden,
1957).  The assumption of the scree test, for example, is that when the eigenvalues are
displayed in their decreasing order, there will be a clear separation in fraction of total
variance where the unimportant factor has been extracted. With information about the
distribution of eigenvalues, Roznowski et al (1991) proposed the ratio difference index
representing the ratio of the difference between the first two eigenvalues to their
subsequent differences, in order to identify data unidimensionality. In this study, a
different procedure was proposed. Dimensionality was manipulated by sampling
correlation matrices in terms of the slope of eigenvalues and the determinant of the
correlation matrix.

For a correlation matrix, the slope of eigenvalues reflects the magnitude and pattern
of the inter-factor correlations. While working with the inter-factor correlations, the
dimensional structure of the latent trait can be manipulated, and the level of
dimensionality can be mapped on an arbitrary scale. An nxn correlation matrix M, for

example, has n eigenvalues, [/1, A, ... A,| thattake the order4, > 4,..2 4,. Given

the same number of eigenvalues, when the distribution of eigenvalues is described by a
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straight line, the slope of the straight line would indicate the relative importance of the

underlying factors. Figure 3.2.1 is the scree plot showing the case of three 3 X3

1 11 1 08 06 1 00
correlation matrices: M, =|1 1 1{, M, ={08 1 04|,and M;={0 1 0
1 11 06 04 1 0 01
3.5
3 ¢ — M
" - M
2.5 --- M
g 250 .
4 RN ! 1
vNL0.62
0.5 T o
0 "o -+
1 2 3
Number of eigenvalucs

Figure 3.2.1. The scree plot of matrices M;, My, and M;

As shown in Figure 3.2.1, when the factors are completely independent of each other,
such as the case of M;, the eigenvalues of M; form a horizontal line so that the slope of
the line is 0. The other extreme case occurred when the factors are completely
dependent as shown in M;. When the eigenvalues are fitted by a straight line, the slope
is -1.5, which is the steepest slope among all possible 3 x3 correlation matrices. It can
be expected that when the inter-factor correlation is any number between 0 and 1, the
slope of eigenvalues should fall in the interval between 0 (completely independent) and

-1.5 (completely dependent). The correlation matrix M, for example, has the slope of
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-1.02.

Furthermore, the determinant of the correlation matrix, det(M), has a functional

relationship with its eigenvalues [A‘ Ay e /1,,], which is det(M) = n&, . When

=1
factors are completely independent, as is the case for M;, the determinant is 1; when
factors are completely dependent, as is the case for M, than the determinant is 0. When
the inter-factor correlations are not zero, the determinant of the correlation matrix should
fall into the interval between 0 and 1. The correlation matrix M, for example, has the
determinant as 0.2192.

For the correlation matrices of the same size, it is possible to differentiate different
correlation matrices using the information of the slope of eigenvalues and the determinant
of the correlation matrix. Figure 3.2.2 shows 3 x3 correlation matrices with different
levels of concentration of dimensionality represented by the slope of the eigenvalues and

the determinant of the correlation matrix. The matrix M; has three factors that are

0
completely independent of each other; the matrix. M, = 0 |, represents a case
1

11
11
0 0
when two of the three factors in the correlation matrix are completely dependent, but
simultaneously, completely independent to the third factor. Since the rank of M- is two,
the data with this correlation pattern can be considered as two-dimensional. Regarding
the matrix M. since factors are completely correlated with each other, any data with this
correlation pattern can be viewed as unidimensional.
The black dots in Figure 3.2.2 indicate the relationship between the determinant of

the correlation matrix and the slope of eigenvalues when the inter-factor correlation was



1

manipulated by the design matrix ,where 0<a<l. Whenaequals 1, the

(=
-0 O

a
0
design matrix becomes M>; when a is 0, it becomes M;.  The trend of the black dots

shows how the slope of eigenvalues and determinant varied when the three-dimensional

data converged to two-dimensional data.

Slope

.15
o Mi 0.25 0.5 0.75 1

Determinant

Figure 3.2.2. The relationship between the slope of eigenvalues and the determinant

The grey triangles, A, represent the relationship between determinant and slope of

eigenvalues when the data converges from three dimension to one dimension with the

1l a a
designmatrix {a 1 a|,where 0<a<l. When aequals 1, the design matrix

a a 1

becomes M;; when a is 0, it becomes M;.  With regard to the grey squares, m, they

represent the case when two dimensions converge into one dimension by the design

53



a
matrix || 1 a|,where 0<a<l. Whenaequals I, the design matrix becomes M,;
1

when a is 0, it becomes M>.  Moreover, it is possible to locate a matrix whose
off-diagonal elements are of any reasonablc quantities for a correlation coefficient. The
matrix My, for example, is located on Figure 3.2.2 with the star sign.

As shown in Figure 3.2.2, the relationship between the slope of eigenvalues and the
determinant of the correlation matrix offers a way to summarize the concentration of
dimensionality and also allows the comparison between correlation matrices. With this
procedure, not only the degree of departure from unidimensionality but also the
difference among different levels of multidimensionality can be laid out. In order to
select the most representative correlation matrices for Study 11, Figure 3.2.3 was created

with grids specifying the space on the plane. As a result, six correlation matrices were

selected:
1 1 0.7 11 04 I 10 1 05 06

Co= 1 1 07].C=|1 1 04].C=[1 1 0}, C,=l05 1 04
07 07 1 04 04 1 0 0 1 06 04 1
1 05 02 1 00

C,=105 1 03f.and C,={0 1 0 With these correlation matrices, the
02 03 1 0 0 1

multidimensional abilities in Study Il were generated from multivariate standard normal

distribution.
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Figure 3.2.3. Selecting correlation matrices in terms of the slope of eigenvalues and the

determinant of the correlation matrix

The simulations in Study II would be more complete if the correlation matrix

1 11
M=|1 1 1| wereincluded. However, when including M, in this study, the large
1 11

number of unsuccessful TESTFACT runs would generate a great number of missing
observations for the data related to A, and cause problems in further statistical analysis.
Thus, the matrix M; was not considered in Study II.

(2) Item-factor structure (/)

The simulation for multidimensional data were based on simple structure, which
means that items have loading on one factor and zero loadings on the remaining factors.
This type of item structure is desirable especially when evaluating scales created to

measure either multiple constructs or components of a single construct (R. C. Tumner,
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2000).

Earlier studies (De Ayala & Hertzog, 1991; Gessaroli & De Champlain, 1996;
Hambleton & Rovinelli, 1986) indicated that the number of items representing one factor
was an important variable in simulating multidimensional test data. The item-factor
structure indicates how well each factor was measured. When more items are sensitive
to one factor, the data would have more information for that factor. Thus, it is
anticipated that those factors can be easily identified by the statistical model. On the
contrary, when a factor has only a few items, that dimension will be poorly measured.
Accordingly, those factors may not be easily identified by the statistical model.

On the basis of the three-dimensional simple structure, the item-factor structure was
manipulated by selecting different number of items to which each dimension related.
The assignment of items to factors was listed in Table 3.2.1. Structure 1 shows the
condition that the first 12 items measured factor 1, the second set of 12 items measured
factor 2, and the remaining 24 items measured factor 3; Structure 2 represents the
condition that the first sets of 16 items were indicators of factor 1, the second 16 items
were indicators of factor 2, and the last 16 items were indicators of factor 3; Structure 3
shows the situation when the first 36 items related to factor 1, the second set of 6 items

related to factor 2, and the last set of 6 items related to factor 3.

Table 3.2.1. Levels of the item-factor structure

Number of items

Label Total
Factor |  Factor 2  Factor 3
Structure 1 12 12 24 48
Structure 2 16 16 16 48
Structure 3 36 6 6 48
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(3) Item discrimination (A4)

Based on earlier studies on real tests, such as the ACT Mathematics Usage Test
(Ackerman, 1994), LSAT (De Champlain & Gessaroli, 1996), TOEFL (McKinley & Way,
1992), and a nation-wide Math test for the 10 graders (R. L. Turner et al., 1996), the
mean of MDISC often ranged from .76 to 1.34 and the SD varied from 0.2t0 0.5. In
order to simulate item responses close to those from real tests, two levels of item
discrimination were used in this study. The moderate level (M) of item discrimination
was generated from N(0.8 , 0.4%); the high level (H) of item discrimination was generated
from N(1.2, 0.4%).

As shown in Table 3.2.2, the research design in Study Il generated thirty-six (6 x3 x2)
combinations. Again, the levels for inter-factor correlation, item-factor structure, and
item discrimination were labeled in order as the numbers in the form name. Form 321,

for example, represents the test having the third level of the inter-factor correlation (C,),

the second level of the item-factor structure (16:16:16), and the first level of item

discrimination (M).
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Table 3.2.2. Simulated tests for Study 11

Inter-factor correlation

Item
discrimination

Item-factor structure

12:12:24 16:16:16 36:6:6
Two-dimension design
(11 07] M Form 111 Form 121  Form 131
G= 1 1 07 Form 112 Form 122 Form 132
0.7 0.7 1] H (50:50)  (67:33)  (88:12)
11 04] M Form211 ~ Form221  Form 231
G=(1 1 04 Form212  Form222  Form 232
04 04 1] H (50:50)  (67:33)  (88:12)
110 M Form3l11  Form321  Form 33l
G 10 Form 312 Form 322 Form 332
0 01 H (50: 50) (67:33)  (88:12)
Three-dimension design
(105 06] M Form41l  Form42l  Form 431
C,=05 1 04 Form412  Form422  Form 432
06 04 1 H (25:25:50)  (33:33:33)  (76: 12: 12)
(105 0.2] M Form 511 Form 521 Form 531
C;=|05 1 03 Form512  Form522  Form 532
02 03 1] H (25:25:50) (33:33:33)  (76:12: 12)
100 M Form6l1  Form621  Form 631
Ce=10 1.0 Form612  Form622  Form 632
001 H (25:25:50) (33:33:33)  (76:12: 12)

Under each test label, the numbers in the parentheses specified the percentage of

items per dimension in the data.

With the correlation matrices, C;, C,, and Cs,

two-dimensional data were generated because the first two factors converged into one

factor.

converge into a bigger item cluster.

Thus, those items originally sensitive to the first and second factors would

With structure 1, 50% of the items loaded on the

converged first dimension, and the remaining 50% of items loaded on the other



dimension. With regard to structure 2, 67% of the items were grouped as the first
dimension and the rest of the 33% items grouped as the second dimension.  With respect
to structure 3, 88% of the items were clustered as one dimension and the remaining 12%
formed a second dimension. Regarding the correlation matrices Cy, Cs, and Ce,
three-dimensional data were generated and the percentage of item per dimension was

consistent with the original item-factor structure.

3.2.2 Generation of Item Response Patterns

The d-parameters were randomly generated from a normal distribution N(0, 1) for
all 48 test items. The multidimensional ability distributions were generated from the
standardized multidimensional normal distribution with the pre-selected inter-factor
correlation matrices. Again, the sample size used in Study Il was 2000. The
procedures for generating item response patterns were the same as those described in
Section 3.1.2.  For each cell of the thirty-six combinations, 100 replications were

performed, and the total number of 3600 multidimensional data sets was produced.

3.2.3 Procedures and Computer programs

The procedures for computing of the RLR index were the same as those described in
section 3.1.3. In study Il, the test calibration started from the unidimensional model and
continued to the S-dimensional model. For cach level of dimensionality, the RLR index

was computed to show the improvement of model-data-fit.

3.2.4 Evaluation Criterion
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Again, the statistical properties of the RLR index were explored and compared with

those of the G2 test and the G(zli[f test. To test whether the data can be well fit by the

unidimensional model, the unidimensional regression model generated in Study I was
used in conjunction with sample size, test length, and the estimated unidimensional item
parameters. If the observed RLR, is smaller than the predicted lower bound, then the
null hypothesis (H,: d=1) was rejected, indicating a higher-dimensional model is needed.
To test whether or not the null hypothesis (H,: d=2) was true for a given data sets,
the two-dimensional regression model was constructed based on the two-dimensional
data. Again, given that the model captures the true two-dimensional data, the regression
model sets up the 5% rejection area at the lower end of the predicted RLR; distribution.
If the observed RLR; value is smaller than the predicted lower bound, the null hypothesis
is rejected and the data should be modeled with higher dimension. Using the same
procedure, the three-dimensional regression model was constructed to test the null
hypothesis (H,: d=3) based on the three-dimensional model. If the observed RLR; value
is smaller than the predicted lower bound, then the data should be modeled with higher
dimension. It is expected that, the number of false rejections should be lower than 5
among 100 replications when the regression model captures the true dimensionality.
Conversely, when detecting the wrong models, the RLR index should generate large

number of rejections, indicating high statistical power.

3.3 Real Data Analysis
Along with the simulation studies, the statewide test data of the Mathematics Test

from the Michigan Educational Assessment Progress (MEAP) testing program were
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analyzed. Under the No Child Left Behind (NCLB) act of 2001, the federal approval
depends on strict alignment of state assessment to state content standards. Michigan’s
Mathematics Test, which developed to match the mathematics content standards, were
developed to measure what Michigan educators believe all students should learn and be
able to achieve in each grade level (Michigan Department of Education, 2004).

In this study, the test data from the Grade 4 Mathematics Test were used. The
Mathematics Test contained 57 items covering content knowledge in data and
probability, geometry, measurement, and numbers and operations. To be more precise,
students were requested to demonstrate their academic proficiency in (1) fluency with
operations and estimations; (2) geometric shape, properties, and mathematical
arguments; (3) meaning, notation, place value, and comparisons; (4) number
relationships and meaning of operations; (5) problem solving involving measurement; (6)
data representation; (7) spatial reasoning and geometric modeling; and (8) units and
systems of measurement (Michigan Department of Education, 2006). Students who
score high on the test have documented substantial achievement in mathematics at the
grade-4 level. In terms of the hierarchical ability structure in the blueprint of the
Mathematics Test, it is suspected that the resulting test data may be explained by a
multidimensional model.

The test data from 10000 examinees were requested from the testing program. The
sample was then divided into five smaller data sets with 2000 examinees by random
sclection. The MIRT model parameters for different levels of dimensionality were
estimated using TESTFACT. For each level of dimensionality, the corresponding RLR

index was computed to determine the increment of model-data-fit. To decide the
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dimensionality of MEAP data, the regression models developed from the simulation
studies were used to determine whether the observed RLR index showed a good fit
between the model and data. If the observed RLR index fell in the 5% rejection area of
the lower end, the null hypothesis was rejected, and the higher-dimensional model was
tested in turn.  The significance test started from the unidimensional model and
stopped when the null hypothesis was not rejected. Instead of making judgments form
a single test, the results from different sample data would give the basis of

cross-validation and offer a more dependable decision.



CHAPTER 4

RESULTS

Based on the research designs described in the previous chapter, the main results of

the three studies are provided along with the initial interpretations.

4.1 Simulation Study I (Unidimensional Data Sets)

The focus of Study I was to explore the effects of item discrimination (A4), item
difficulty (D), sample size (.5), and test length (7) on the RLR index. However, when the
unidimensional data were analyzed by multidimensional models, some of the TESTFACT
analyses failed. When T was short (25 items), all TESTFACT runs were successful
regardless of the levels of 4, D, and S. When T was long (50 items), some tests
generated a singular tetrachoric correlation matrix, causing a serious estimation problem
in full-information factor analysis. Table 4.1.1 shows the number of unsuccessful cases
out of 100 replications for long-test data. Given that T was long, when D was high, the
probability of getting a singular tetrachoric correlation matrix was high, especially for the
case when S was small (2000). For these data sets, the rates of getting a singular
tetrachoric correlation matrix increased with the increment of the number of factors in the
estimation model. The highest rate of getting unsuccessful TESTFACT runs occurred

when the unidimensional data were analyzed by the four-dimensional MIRT model.
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Table 4.1.1. The number of unsuccessful TESTFACT runs for long tests in Study |

Sample MIRT Model
. Test

S1Z¢ 1 Factor 2 Factor 3 Factor 4 Factor

2000
Test 112 0 0 0 0
Test 122 0 0 0 2
Test 132 0 0 4 15
Test 212 0 0 0 0
Test 222 0 0 0 0
Test 232 0 | 3 35
Test 312 0 0 0 0
Test 322 0 0 0 0
Test 332 0 0 3 18
Test 412 0 0 0 0
Test 422 0 0 0 0
Test 432 0 0 2 7

6000
Test 112 0 0 0 0
Test 122 0 0 0 0
Test 132 0 0 0 4
Test 212 0 0 0 0
Test 222 0 0 0 0
Test 232 0 0 3 7
Test 312 0 0 0 0
Test 322 0 0 0 0
Test 332 0 0 0 ]
Test 412 0 0 0 0
Test 422 0 0 0 0
Test 432 0 0 0 0

Note: The results for short tests were not listed because all TESTFACT runs were successful.

4.1.1 Results of the Summary Statistics

With regard to those successful TESTFACT runs, no outliers were found in the
preliminary analysis. Table 4.1.2 and Table 4.1.3 display the summary statistics of the
RLR values in each condition. The changes of RLR values associated with

dimensionality were plotted in Figure 4.1.1 to Figure 4.1.4. The conditional
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distributions of RLR values were presented in Appendix B as a supplement to the
summary statistics.

By and large, the SD of the RLR values in each condition was small. Given the
same levels of S and T, the SD of the RLR values was small when 4 was high.
Conditioned on 4 and D, the SD of the RLR values decreased when T was long or S was
large. For most data sets, the SD of the RLR values for a higher-factor model was
smaller than that for a lower-factor model. The decrease of the variation of the RLR
values was more noticeable when 4 was low.

The RLR index for the unidimensional model was particularly sensitive to item
parameters. The increase of 4 was proportional to RLR;, but the increase of D was
inversely proportional to RLR;. The effects of 4 and D on RLR, was similar across
different combinations of S and 7.

When the RLR values were plotted against dimensionality, the lines indicated the
change of the RLR values as a result of dimensionality. As shown from Figure 4.1.1 to
Figure 4.1.4, the color of the lines denotes different levels of 4, and the shape of the lines
represents different levels of D.  For the tests with 4 higher than 0.2, the RLR values
were all centered to 1 and formed horizontal lines. The change of the RLR values was
limited when adding more factors to the model. ~Since the increase of the RLR values
due to adding factors to the model was trivial, this pattern of the RLR values might imply
that the unidimensional model was good enough to explain the test data. Conversely,
for the tests with 4 equal to 0.2, the RLR values showed noticeable increase associated
with dimensionality, especially when D was large, S was small, and T was short.  This

pattern implied that higher-factor models fit the data better than the unidimensional model.
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Table 4.1.2. Summary statistics of the RLR index for short tests

25-item 2000 examinees 6000 examinees

RLR
test Mean SD N SE Mean SD N SE

Test 111
RLR, 0.8713 0.0224 100 0.0022 0.9506 0.0085 100 0.0008
RLR, 0.9046 0.0156 100 0.0016 0.9614 0.0059 100 0.0006
RLR; 0.9225 0.0110 100 0.0011 0.9679 0.0042 100 0.0004

Test 121

RLR, 0.8533 0.0254 100 0.0025 0.9429 0.0093 100 0.0009

RLR, 0.8942 0.0171 100 0.0017 0.9542 0.0080 100 0.0008

RLRy 09152 0.0143 100 0.0014 0.9639 0.0061 100 0.0006
Test 131

RLR, 0.8086 0.0356 100 0.0036 0.9245 0.0143 100 0.0014

RLR, 0.8695 0.0231 100 0.0023 0.9398 0.0115 100 0.0011

RLR; 0.8933 0.0182 100 0.0018 0.9508 0.0099 100 0.0010
Test 211

RLR, 0.9809 0.0034 100 0.0003 0.9935 0.0012 100 0.0001

RLR, 0.9843 0.0024 100 0.0002 0.9947 0.0008 100 0.0001

RLR; 0.9862 0.0020 100 0.0002 0.9954 0.0008 100 0.0001
Test 221

RLR, 0.9783 0.0039 100 0.0004 0.9925 0.0012 100 0.0001

RLR, 0.9823 0.0029 100 0.0003 0.9940 0.0010 100 0.0001

RLR: 0.9844 0.0023 100 0.0002 0.9949 0.0009 100 0.0001
Test 231

RLR, 0.9717 0.0050 100 0.0005 0.9901 0.0017 100 0.0002

RLR, 0.9771 0.0042 100 0.0004 0.9921 0.0018 100 0.0002

RLR; 0.9791 0.0039 100 0.0004 0.9930 0.0016 100 0.0002
Test 311

RLR, 0.9924 0.0011 100 0.0001 0.9975 0.0005 100 0.0000

RLR, 0.9937 0.0009 100 0.0001 0.9979 0.0003 100 0.0000

RLR; 0.9944 0.0009 100 0.0001 0.9984 0.0003 100 0.0000
Test 321

RLR, 09917 0.0012 100 0.0001 0.9972 0.0005 100 0.0000

RLR; 0.9932 0.0009 100 0.0001 0.9977 0.0003 100 0.0000

RLR; 0.9939 0.0011 100 0.0001 0.9982 0.0003 100 0.0000
Test 331

RLR, 0.9898 0.0018 100 0.0002 0.9966 0.0005 100 0.0001

RLR; 0.9915 0.0014 100 0.0001 0.9971 0.0006 100 0.0001

RLR; 0.9920 0.0017 100 0.0002 0.9975 0.0006 100 0.0001
Test411

RLR, 0.9955 0.0007 100 0.0001 0.9984 0.0003 100 0.0000

RLR, 0.9963 0.0006 100 0.0001 0.9990 0.0002 100 0.0000

RLRs; 0.9969 0.0006 100 0.0001 0.9994 0.0003 100 0.0000
Test 421

RLR, 0.9952 0.0008 100 0.0001 0.9984 0.0003 100 0.0000

RLR, 0.9960 0.0006 100 0.0001 0.9988 0.0002 100 0.0000

RLR; 0.9967 0.0008 100 0.0001 0.9993 0.0003 100 0.0000
Test 431

RLR, 0.9942 0.0010 100 0.0001 0.9981 0.0003 100 0.0000
RLR, 0.9951 0.0008 100 0.0001 0.9984 0.0003 100 0.0000
RLR; 0.9956 0.0009 100 0.0001 0.9989 0.0003 100 0.0000
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Table 4.1.3. Summary statistics of the RLR index for long tests

50-item RLR 2000 examinees 6000 examinees
test Mean SD N SE Mean SD N SE
Test 112

RLR, 09096 0.0117 100 0.0012 0.9673 0.0039 100 0.0004
RLR, 09257 0.0087 100 0.0009 0.9718 0.0027 100 0.0003
RLR; 09353 0.0063 100 0.0006 0.9750 0.0024 100 0.0002

Test 122

RLR, 0.8982 0.0127 100 0.0013 0.9623 0.0044 100 0.0004

RLR, 09177 0.0087 100 0.0009 0.9668 0.0037 100 0.0004

RLR; 09270 0.0070 98 0.0007 0.9707 0.0027 100 0.0003
Test 132

RLR, 08766 0.0159 100 0.0016 09536 0.0051 100 0.0005

RLR> 09004 0.0114 96 0.0012 0.9595 0.0044 100 0.0004

RLR; 09133 0.0097 83 0.0011 09639 0.0046 96 0.0005
Test 212

RLR, 009844 0.0019 100 0.0002 0.9948 0.0006 100 0.0001

RLR, 09867 0.0012 100 0.0001 0.9954 0.0004 100 0.0000

RLR; 09871 0.0011 100 0.0001 0.9957 0.0004 100 0.0000
Test 222

RLR, 0.9827 0.0020 100 0.0002 0.9941 0.0007 100 0.0001

RLR; 09848 0.0017 100 0.0002 0.9948 0.0006 100 0.0001

RLR; 09857 0.0015 100 0.0001 0.9952 0.0005 100 0.0001
Test 232

RLR, 09793 0.0025 99 0.0003 0.9929 0.0009 100 0.0001

RLR, 009817 0.0019 97 0.0002 0.9939 0.0007 97 0.0001

RLRy 09828 0.0029 63 0.0004 0.9942 0.0007 90 0.0001
Test 312

RLR, 09931 0.0007 100 0.0001 0.9976 0.0003 100 0.0000

RLR, 09942 0.0007 100 0.0001 0.9983 0.0002 100 0.0000

RLR; 09943 0.0007 100 0.0001 0.9983 0.0003 100 0.0000
Test 322

RLR, 09925 0.0008 100 0.0001 0.9974 0.0003 100 0.0000

RLR> 09936 0.0007 100 0.0001 0.9980 0.0003 100 0.0000

RLR; 09936 0.0008 100 0.0001 0.9981 0.0004 100 0.0000
Test 332

RLR, 09914 0.0010 100 0.0001 0.9971 0.0003 100 0.0000

RLR; 09925 0.0008 97 0.0001 09976 0.0003 100 0.0000

RLR; 09934 0.0008 77 0.0001 0.9978 0.0004 99  0.0000
Test 412

RLR, 09946 0.0006 100 0.0001 0.9973 0.0003 100 0.0000

RLR, 09963 0.0005 100 0.0001 0.9987 0.0002 100 0.0000

RLR; 09968 0.0006 100 0.0001 0.9994 0.0003 100 0.0000
Test 422

RLR, 09945 0.0006 100 0.0001 0.9975 0.0002 100 0.0000

RLR, 09959 0.0005 100 0.0001 0.9987 0.0002 100 0.0000

RLR; 09965 0.0007 100 0.0001 0.9993 0.0002 100 0.0000
Test 432

RLR, 09942 0.0007 100 0.0001 0.9975 0.0003 100 0.0000

RLR>, 09954 0.0006 98 0.0001 0.9985 0.0002 100 0.0000

RLR; 09959 0.0007 92 0.0001 0.9991 0.0003 100 0.0000
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Figure 4.1.1. The change of RLR with dimensionality for a 25-item test and 2000 examinees
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Figure 4.1.2. The change of RLR with dimensionality for a 25-item test and 6000 examinees
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Figure 4.1.4. The change of RLR with dimensionality for a 50-item test and 6000 examinees
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4.1.2 Results of Multivariate Analysis of Variance for Study 1

To explore the influence of manipulated factors on the RLR index, a Multivariate
Analysis of Variance (MANOVA) was conducted. The dependent variables in the
MANOVA model were the RLR indices representing three levels of dimensionality (RLR,,
RLR>. and RLR;), and the independent variables were 4, D, S, and T.

To test whether the overall multivariate difference was significant , Pillai's Trace was
employed because it is more robust than other statistics (Wilks' A, Hotelling's T2, and
Roy's greatest characteristic root) when assumptions are not met (Olson, 1976). As
Table 4.1.4 shows, the main effects of 4, D, S, T, and the interactions were all significant
so the hypothesis that there was no between-group difference was rejected. Several of
these significant factors had substantive effect sizes, such as 4 (F(9, 13950)= 757.18, p
< 01, °=.328), D (F(6, 9298)= 274.68, p< .01, 5= .151), S (F(3, 4648)= 6230.61, p < .01,
n°=801), T (F(3, 4648)= 580.61. p < .01, 5= 273), AxD (F(18, 13950)= 124.11, p < .0,
n*=.138), AxS (F(9. 13950)= 613.79, p < .01, "= .284), and A xT (F(9, 13950)= 284.63, p
<.01, y”=.155). They should be considered as having important effects on the RLR
indices. The interactions DxS, DxT, SxT, AxDxS, AxDxT, AxSxT, DxSxT, and

AxDxSxT were significant, but their effect sizes were small. Because the total number

of simulated data sets was 4800, the significance of the interaction terms with small effect

sizes may be due to the large sample size in MANOVA. Even though these interactions

were significant, they might not have important influence on the dependent valuables.
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Table 4.1.4. The multivariate test for Study I

Effect Value F Hypothesis df  Error df n
A .985 757.18* 9 13950 328
D 301 274.68* 6 9298 51
S .801 6230.61* 3 4648 .801
T 273 580.61* 3 4648 273
AxD 414 124.11* 18 13950 138
AxS 851 613.79* 9 13950 284
AXT 465 284.63* 9 13950 155
Dx§ .056 44.99* 6 9298 .028
DT .027 21.04* 6 9298 013
SxT 054 89.03* 3 4648 .054
AXDxS 081 21.40* 18 13950 027
AXDXT .046 11.95*% 18 13950 015
AXSXT .106 56.82* 9 13950 .035
DxSXT .004 3.44* 6 9298 .002
AXDXSxT .010 2.53* 18 13950 .003

* p<.01

Given that the overall difference was significant, the univariate tests for each
dependent variable were conducted. First, Levene's test of equality of error variances
were all significant (RLR,: F(47,4751)=128.803, p< .01; RLR>: F(47, 4737)= 133.710,

p<.01; RLR;: F(47,4650)= 129.233, p< .01), indicating that the variances in different
design groups were not homogeneous for each separate ANOVA test. However,
Lindman (1974, p. 33) and Box (1954) reported that F statistic is quite robust against the
violation of the homogeneity assumption. Since the assumption of equal variance was
violated at the .01 level, special caution should be taken when interpreting the results of
these separate ANOVA analyses.
Table 4.1.5 summarizes ANOVA tests for RLR|, RLR,. and RLR;. The effect
sizes of A, D, S, T, and the interactions were similar for RLR;, RLR,, and RLR;. Again,
" A, D, S, T, and the interactions 4 xD, AxS, and A xT can be considered as having

important effects on RLR|. RLR>, and RLR;. A has the largest effect on all the RLR
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indices. Moreover. D. S, and T had a smaller effect size than its two-way interaction
with 4. InRLR,, for example, D (5°=.199) < AxD (5°= 317); S ("= .695) < AxS
(r]2= .781); T()/2= 250) < Ax T(r/2= .442). These patterns indicated that 4 was the main
variable influencing the RLR indices. To further explore the nature of the interactions,

the simple effects were shown in Figure 4.1.5 to Figure 4.1.10.

Table 4.1.5. The univariate test for Study |

RLR, RLR: RLR;
Source I s F P MS F i MS FF
A 2.023 27764.26* 947 1.194 33861.11* 956 833 36971.23* .960
D 2042 579.01* .199 022 629.51* 213 017  739.77* 241
S I .773 10610.07* 695  .420 11912.50* .719 313 13893.09* .749
T I 113 1547.67* 250  .036 1019.57* .180 013  575.13* .110
AXD 6 026 359.70* 317 012  339.41* 305 .008  368.70* .322
AxS 3402 SS12.18* 781  .193 5464.55* 779 .130  5792.86* .789
AXT 3 089 1226.21* 442 026  739.64* 323 010  433.68* 219
DxS 2 008 109.81* 045 002  69.44* 029 .002  81.34* 034
DXT 2 .004  53.32% 022 001  25.14* 011 .00l 31.85* 014
ST I 019 265.19* 054 003  90.14* 019 .001 43.42% 009
AXDXS 6  .004  61.55* 074 .00l  26.73* .033 .00l 27.88* 035
AXDXT 6 .002  32.82* 041  .000  13.55%* 017 .000 13.74* 017
AXSXT 3013 182.13* 105 002  53.85% .034 .00l 25.57¢ 016
DxSXT 2 .00 7.98* 003  .000 09 000 .000 135 .00l
AXDXSXT 6 .000 5.00* 006  .000 05 .000 .000 26 .000
Error 4652 .000 000 000
Total 4699

* p< .01
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Conditioned on T, the patterns of the interactions of 4, D, and S were similar
across RLR|, RLR,, and RLR;. When the model fit the data, as shown in Figure 4.1.5
and Figure 4.1.6, D had a noticeably negative effect on RLR; when A=0.2. However,
the effect of D varied depending on S: when S was 6000, the decrease of RLR, due to the
increase of D was small; when S was 2000, the descent of RLR; due to the increase of D
was great. When 4= 0.4, the negative effect of D was not obvious, especially when S=
6000. When 4= 0.6 or 0.8, the effect of D was minor and thus only the effect of S could
be identified.

When the model over-fit the data, as shown in Figure 4.1.7 to Figure 4.1.10, it is
clear that D had an effect on RLR; and RLR;, but the effect varied dependeing on 4. As
long as A was greater than 0.2, the effect of D was minor. Moreover, S still had an effect
on RLR> and RLR;, but varied depending on the level of A4: the effect of S was great when

A was small, but small when 4 was great.

4.1.3 Comparisons of the Numbers of Rejections

This part of the analysis involved comparing the empirical Type I error rate of the

RLR index with those from the G? test and the (1'3,/-/ test in different testing
conditions. The theoretical a used for the G2 test and the (;3,.,, test was .05. The
results in Table 4.1.6 show that the G test at all times rejected the true model

regardless of the levels of 4, D, S, and T.  The results of the G(Z/W test were not

satisfactory either.  With a short 7 and a small S, the minimum number of rejections was

68 out of 100.  Given the same levels of A4, D, and 7, a large S didn’t help decreasing the
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number of false rejections. When T was long, the minimum number of rejections was
98 out of 100, regardless of S. A large T tended to inflate the number of rejections more

severely than a large S. These results were indicative of a severely inflated Type I error

rate problem of using the G 2 test and the Gji// test to determine whether or not the

test data were unidimensional.

The number of rejections of the RLR index was computed based on the linear
regression technique.  With the information of the estimated a-parameters (£4),
estimated d-parameters (ED), sample size (S), and test length (7), the lower bound of a

good fit for the unidimensional model can be predicted. With the item parameter
estimates obtained in Study I, the unidimensional regression model (adjusted R equal

to .709) can be expressed as

RLR,=0.817509 + 0.000021(S) + 0.001251(7) — 0.020432(ED) + 0.050065(£A4) +
0.000023(EA xS) — 0.001083(EA xT) + 0.067449(EAXED) +

0.000000166(EA xSxT). (41)

If the observed RLR, was smaller than the lower bound, the null hypothesis Hy: d= 1 was
rejected. As shown in Table 4.1.6, when S= 2000, the numbers of the false rejections
were high for Test 111, Test 121, Test 131, and Test 132, indicating that the low level of 4
inflated the Type I error rate.  Given that 4= 0.2 and S= 2000, the number of false
rejections inflated with the increase of D. When A= 0.2 and S= 6000, all the false
rejections were less than 5 regardless of the levels of D and 7. Conversely, for the cases
when 4 was equal to or greater than 0.4, the numbers of rejections were low regardless of

the levelsof D, S, and T.

77



Comparing the numbers of false rejections for the three indices under different

testing conditions, the RLR index outperformed the G? testand the (13{[/ test. A
large sample size and a long test both inflated the Type I error rates for the G2 testand

the G(Z,i[f test, but helped reducing the Type I error rates for the RLR index.

Table 4.1.6. The number of rejections in 100 replications for unidimensional data

2000 examinees 6000 examinees
Data sets
2 2 +2 2
25-item test
Test 111 29 100 74 0 100 83
Test 121 33 100 80 0 100 80
Test 131 76 100 82 3 100 67
Test 211 0 100 71 0 100 73
Test 221 0 100 72 0 100 80
Test 231 0 100 75 0 100 74
Test 311 0 100 80 0 100 69
Test 321 0 100 75 0 100 75
Test 331 0 100 68 0 100 67
Test 411 0 100 79 0 100 87
Test 421 0 100 74 0 100 75
Test431 0 100 75 0 100 68
50-item test
Test 112 4 100 100 0 100 100
Test 122 2 100 100 0 100 98
Test 132 18 100 100 0 100 100
Test 212 0 100 100 0 100 100
Test 222 0 100 98 0 100 98
Test 232 0 100 100 0 100 100
Test 312 0 100 100 0 100 100
Test 322 0 100 100 0 100 100
Test 332 0 100 100 0 100 97
Test 412 0 100 100 0 100 100
Test 422 0 100 100 0 100 100
Test 432 0 100 100 0 100 100
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4.2 Simulation Study Il (Multidimensional Data Sets)

The purpose of Study Il was to investigate how well the RLR index determined the
dimensionality for multidimensional data. ~Again, when the simulated data were
analyzed by different levels of multidimensional MIRT models, some of the TESTFACT
runs failed because the data generated a singular tetrachoric correlation matrix. Table
4.2.1 shows the number of unsuccessful runs out of 100 replications for each condition.
The two-dimensional data had higher rates of unsuccessful TESTFACT runs for the
four-dimensional model than for the five-dimensional model, whereas the
three-dimensional data had higher rates of unsuccessful TESTFACT runs for the
five-dimensional model than for the four-dimensional model.

Given the same levels of C and /, the rate of getting a singular tetrachoric
correlation matrix was high when 4 was moderate. Conditioned on 4 and C, the third
level of I (36: 6: 6) generated a singular tetrachoric correlation matrix at lower rates than

the first level (12: 12: 24) and second level (16: 16: 16) of I.
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Table 4.2.1. The number of unsuccessful TESTFACT runs in Study Il

correlation MIRT model
. Form
matrix | Factor 2 Factor 3 Factor 4 Factor 5 Factor

C
Form 111 0 0 0 32 4
Form 112 0 0 0 0 2
Form 121 0 0 0 21 8
Form 122 0 0 0 | 0
Form 131 0 0 0 3 1
Form 132 0 0 0 0 0

Cs
Form 211 0 0 0 29
Form 212 0 0 0 0 1
Form 221 0 0 0 24 12
Form 222 0 0 0 2 0
Form 231 0 0 0 6 2
Form 232 0 0 0 l 0

C;
Form 311 0 0 0 29 9
Form 312 0 0 0 2 4
Form 321 0 0 0 30 16
Form 322 0 0 0 2 1
Form 331 0 0 0 11 4
Form 332 0 0 0 2 3

C,
Form 411 0 0 0 0 17
Form 412 0 0 0 0 0
Form 421 0 0 0 0 17
Form 422 0 0 0 0 3
Form 431 0 0 0 0 3
Form 432 0 0 0 0 0

Cs
Form 511 0 0 0 0 24
Form 512 0 0 0 0 0
Form 521 0 0 0 0 19
Form 522 0 0 0 0 2
Form 531 0 0 0 0 3
Form 532 0 0 0 0 2

(“()
Form 611 0 0 0 0 20
Form 612 0 0 0 0 0
Form 621 0 0 0 0 17
Form 622 0 0 0 0 0
Form 631 0 0 0 0 |
Form 632 0 0 0 0 0

4.2.1 Results of the Summary Statistics

Table 4.2.2 and Table 4.2.3 tabulate the summary statistics of the RLR values for
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each combination. In order to show the change of RLR values associated with
dimensionality, Figure 4.2.1 to Figure 4.2.6 were provided with colors denoting different
levels of I and the line shapes representing different levels of 4. Besides, the
conditional distributions of the RLR values were offered in Appendix C as a supplement
to the summary statistics.

In Table 4.2.2 and Table 4.2.3, some of the RLR values slightly exceeded 1 when
the model recovered the true dimensionality or over-fit the data. The unexpected RLR

values showed that the lower-factor model fit the data better than the higher-factor model.

However, for every case when the RLR values exceeded 1, a negative G},,-,, statistic

occurred. A negative value of the G,Z,,ff statistic indicated that the discrepancy

between the predicted frequency and the observed frequency for the lower-factor model

is smaller than that of the higher-factor model. The discussion of the occurrence of the
unexpected values for the RLR index and the Gt.zl,-[f test was provided in Chapter 5.

Again, the SD of the RLR values in each condition was small. Conditioned on 4, C,
and /, the SD of the RLR values was great when the model under-fit the data. Given the
same levels of C and I, RLR, was low when 4 was high. With the same levels of C and
A, RLR, was high when the dominant factor was strong. For the data generated with the
correlation matrices Cy, Cz, and C3, the RLR values approached | for the two-dimensional
model, and did not obviously increase for the higher-factor models. For the data
generated with the correlation matrices Cy, Cs, and Ce, the RLR values approached 1 for
the three-dimensional model, and did not increase for the four-dimensional model. In

general, the patterns of the RLR values reflected the simulated dimensionality.
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Table 4.2.2. Summary statistics of the RLR index for two-dimensional data sets

Form RLR

Form 111
RLR,
RLR,
RLRs
RLR,
Form 121
RLR,
RLR,
RLR;
RLR,
Form 131
RLR,
RLR,
RLRs
RLR,
Form 211
RLR,
RLR,
RLR;
RLR4
Form 221
RLR,
RLR,
RLR;
RLR;
Form 231
RLR,
RLR,
RLR3
RLR4
Form 311
RLR,
RLR>
RLR3
RLR4
Form 321
RLR,
RLR;
RLR;
RLR,
Form 331
RLR,
RLR;
RLR;
RLR4

Descriptive statistics

Descriptive statistics

Test
Mean SD N SE Mean SD N SE
Form 112
0.8904 0.0073 100 0.0007 0.8380 0.0079 100 0.0008
0.9951 0.0011 100 0.0001 1.0003 0.0009 100 0.0001
0.9954 0.0015 68 0.0002 0.9990 0.0013 100 0.0001
0.9930 0.0012 66 0.0001 0.9924 0.0012 99 0.0001
Form 122
0.8954 0.0077 100 0.0008 0.8727 0.0061 100 0.0006
0.9940 0.0018 100 0.0002 0.9990 0.0008 100 0.0001
0.9938 0.0019 76 0.0002 0.9984 0.0012 99 0.0001
0.9926 0.0015 74 0.0002 0.9932 0.0012 99 0.0001
Form 132
0.9725 0.0032 100 0.0003 0.9547 0.0027 100 0.0003
0.9933 0.0012 100 0.0001 0.9980 0.0007 100 0.0001
0.9935 0.0013 97 0.0001 0.9990 0.0010 100 0.0001
0.9939 0.0010 96 0.0001 0.9950 0.0010 100 0.0001
Form 212
0.7276 0.0122 100 0.0012 0.6453 0.0119 100 0.0012
0.9959 0.0015 100 0.0001 1.0015 0.0016 100 0.0002
0.9955 0.0018 71 0.0002 0.9993 0.0021 100 0.0002
0.9921 0.0017 67 0.0002 0.9904 0.0013 99 0.0001
Form 222
0.7305 0.0136 100 0.0014 0.7357 0.0092 100 0.0009
0.9944 0.0016 100 0.0002 1.0000 0.0014 100 0.0001
0.9941 0.0018 76 0.0002 0.9989 0.0016 98 0.0002
09914 0.0017 69 0.0002 0.9915 0.0013 98 0.0001
Form 232
09413 0.0046 100 0.0005 09170 0.0039 100 0.0004
0.9930 0.0016 100 0.0002 0.9982 0.0008 100 0.0001
0.9940 0.0018 94 0.0002 0.9997 0.0010 99 0.0001
0.9931 0.0011 92 0.0001 0.9938 0.0011 99 0.0001
Form 312
0.6049 0.0118 100 0.0012 0.5011 0.0131 100 0.0013
0.9952 0.0013 100 0.0001 1.0012 0.0012 100 0.0001
0.9963 0.0015 71 0.0002 1.0001 0.0017 98 0.0002
0.9919 0.0016 65 0.0002 0.9893 0.0015 95 0.0002
Form 322
0.6025 0.0121 100 0.0012 0.6586 0.0088 100 0.0009
0.9936 0.0015 100 0.0002 0.9988 0.0012 100 0.0001
0.9952 0.0017 70 0.0002 0.9999 0.0013 98 0.0001
0.9910 0.0017 58 0.0002 0.9905 0.0013 97 0.0001
Form 332
0.9240 0.0055 100 0.0006 0.8988 0.0040 100 0.0004
0.9930 0.0013 100 0.0001 0.9978 0.0013 100 0.0001
0.9943 0.0015 89 0.0002 0.9996 0.0012 98 0.0001
0.9924 0.0012 85 0.0001 0.9932 0.0012 95 0.0001




Table 4.2.3. Summary statistics of the RLR index for three-dimensional data sets

Form RLR

Form 411
RLR,
RLR,
RLR;
RLR,
Form 421
RLR,
RLR,
RLR;
RLR,
Form 431
RLR,
RLR,
RLR;
RLR,
Form 511
RLR,
RLR,
RLR;
RLR,
Form 521
RLR,
RLR-
RLR;
RLR,
Form 531
RLR,
RLR,
RLR;
RLR,
Form 611
RLR,
RLR>
RLR;
RLR,
Form 621
RLR,
RLR,
RLR;
RLR,
Form 631
RLR,
RLR-
RLR;
RLR,

Descriptive statistics

Descriptive statistics

Form
Mean SD N SE Mean SD N SE
Form 412
0.8382 0.0101 100 0.0010 0.8050 0.0094 100 0.0009
0.9574 0.0050 100 0.0005 09144 0.0060 100 0.0006
0.9961 0.0016 100 0.0002 0.9990 0.0018 100 0.0002
0.9904 0.0017 83 0.0002 0.9853 0.0020 100 0.0002
Form 422
0.8177 0.0124 100 0.0012 0.7542 0.0116 100 0.0012
0.9092 0.0081 100 0.0008 0.8864 0.0082 100 0.0008
0.9959 0.0025 100 0.0003 0.9994 0.0021 100 0.0002
0.9888 0.0018 83 0.0002 0.9848 0.0021 97 0.0002
Form 432
0.9558 0.0050 100 0.0005 0.9252 0.0045 100 0.0005
0.9676 0.0042 100 0.0004 0.9512 0.0037 100 0.0004
0.9932 0.0015 100 0.0002 0.9987 0.0014 100 0.0001
0.9919 0.0014 97 0.0001 0.9900 0.0014 100 0.0001
Form 512
0.7540 0.0124 100 0.0012 0.6690 0.0123 100 0.0012
0.9435 0.0062 100 0.0006 09106 0.0065 100 0.0006
0.9962 0.0022 100 0.0002 0.9978 0.0025 100 0.0002
0.9883 0.0019 76 0.0002 0.9818 0.0019 100 0.0002
Form 522
0.6366 0.0186 100 0.0019 0.6318 0.0151 100 0.0015
0.8902 0.0081 100 0.0008 0.8456 0.0086 100 0.0009
0.9956 0.0032 100 0.0003 0.9981 0.0023 100 0.0002
0.9870 0.0022 81 0.0002 0.9823 0.0019 98 0.0002
Form 532
09138 0.0065 100 0.0007 0.8838 0.0058 100 0.0006
0.9698 0.0041 100 0.0004 0.9505 0.0045 100 0.0005
0.9932 0.0018 100 0.0002 0.9985 0.0023 100 0.0002
0.9913 0.0015 97 0.0002 0.9876 0.0019 98 0.0002
Form 612
0.7681 0.0102 100 0.0010 0.7041 0.0098 100 0.0010
0.8838 0.0077 100 0.0008 0.8144 0.0071 100 0.0007
0.9957 0.0034 100 0.0003 0.9946 0.0043 100 0.0004
0.9847 0.0023 80 0.0003 0.9778 0.0019 100 0.0002
Form 622
0.5915 0.0154 100 0.0015 0.4847 0.0218 100 0.0022
0.7398 0.0120 100 0.0012 0.6688 0.0222 100 0.0022
0.9934 0.0051 100 0.0005 0.9929 0.0036 100 0.0004
0.9845 0.0025 83 0.0003 0.9783 0.0031 100 0.0003
Form 632
09126 0.0088 100 0.0009 0.8865 0.0065 100 0.0007
0.9450 0.0082 100 0.0008 0.9121 0.0060 100 0.0006
0.9948 0.0023 99 0.0002 1.0002 0.0025 100 0.0002
0.9887 0.0023 99 0.0002 0.9838 0.0018 100 0.0002
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4.2.2 Results of Multivariate Analysis of Variance for Study Il

Again, a MANOVA analysis was conducted to explore the influence of the
manipulated factors on the RLR index. The dependent variables in the MANOVA model
were the RLR indices representing four levels of dimensionality (RLR;, RLR,, RLR3, and
RLRy), and the independent variables were 4, C, and I.  Again, the Pillai’s Trace was
employed to test the overall multivariate difference because of its robustness to the

violation of the assumption of homogeneity of variance.

Table 4.2.4. The multivariate test for Study 11

Effect Value F Hypothesis df  Error df 7
A 0.870 5310.849* 4 3182 0.870
C 2.079 689.733* 20 12740 0.520
/ 1.799 7116.803* 8 6366 0.899
AxC 0.913 188.489* 20 12740 0.228
Ax] 0.740 466.939* 8 6366 0.370
Cxl 2.021 325.152* 40 12740 0.505
AxCx] 0.989 104.627* 40 12740 0.247
* p< .0l

The overall multivariate test shown in Table 4.2.4 was significant, indicating that
there was a significant difference overall for the main effects 4, C, 7, and the interactions
on the RLR indices representing different levels of dimensionality. Based on the results
of the significance test and effect size, 4. C, I and C </ had important effects on the RLR
indices: 4 (F(4, 3182)= 5310.849, p< .01, °= 0.870), C (F(20, 12740)= 689.733, p< .01,
n*=0.520), I (F(8, 6366)= 7116.803, p< .01, "= 0.899), and C xI (F(40, 12740)= 325.152,
p< .01, #°=0.505). The remaining interactions had relatively minor effects on the RLR

indices: A xC (F(20. 12740)= 188.489. p< .01, y°= 0.228). A x] (F(8. 6366)= 466.939,
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p<.01.y°=0.370), and A xC x[ (F(40, 12740)= 104.627, p< .01, 5°= 0.247).

Because the overall difference was significant, the effects of 4, C, and / on RLR,,
RLR;, RLRs, and RLR, can be explored by separate univariate analysis. First, Levene's
test of equality of error variances were all significant (RLR,: F(35, 3564)= 31.923, p< .01;
RLR>: F(35,3564)= 131.726. p< .01; RLR3: F(35, 3365)= 12.661, p< .01); RLRs: F(35,
3189)=8.820, p<.01). Since the assumption of homoscedasticity for the four separate
univariate tests were all violated at the .01 level, attention should be paid when

interpreting the univariate analyses.

Table 4.2.5. The univariate test for Study 11

RLR, RLR>
Source 4 s F T MS F i
A 1 1.405 12904.228* 0.784 0.259 6834.570* 0.657
C 5 3.699 33973.211* 0.979 2.736  72327.056* 0.990
1 2 17.690 162488.505* 0.989 1.210  31981.079* 0.947
AxC 5 0.031 282.963* 0.284 0.105 2767.152* 0.795
AxI 2 0.211 1941.125* 0.521 0.014 378.345* 0.175
Cx/ 10 0.970 8913.046* 0.962 0.401 10602.992* 0.967
AxCx[ 10 0.081 747.823* 0.677 0.005 140.905* 0.283
Error 3564 0.000 0.000
Total 3600
(Continued)
RLR; RLR,
Source 4f MS F i MS F i
A | 0.012 2279.148* 0.404  0.005 1755.672* 0.355
C 5 0.000 68.075* 0.092 0.008 2827.289* 0.816
1 2 0.000 33.958* 0.020 0.004 1270.387* 0.443
AxC 5 0.000 51.470* 0.071 0.001 320.215* 0.334
AxI 2 0.001 133.720* 0.074  0.000 150.458* 0.086
Cxl 10 0.000 47.435* 0.124  0.000 46.238* 0.127
AxCx] 10 0.000 11.962* 0.034 0.000 2.926* 0.009
Error 3564 0.000 0.000
Total 3600
* p<.0l
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Based on the results shown in Table 4.2.5, all the main effects and interactions were
significant, but their effects on RLR,, RLR;, RLR; and RLR4 were different. The effect
size of A decreased from RLR, to RLR;. However, C and I had large effect sizes for
RLR,, RLR,, but a small effect size for RLR; and the smallest effect size for RLR5.
Concerning the interaction A xC, it had a large effect size for RLR; (5*= .795), moderate
effect sizes for RLR, (172= .284) and RLR;, (r/2= .334), but a small effect size for RLR;
(n°=.071). The interaction A x/ had a moderate effect size for RLR, (5°=.521), and
small effect sizes for RLR; (7°= .174), RLR; (5°= .074), and RLR; (5°= .086). The
interaction C </ showed a different pattern. The effect sizes were large for RLR,

(n°= .962) and RLR: (7°= .967), but small for RLR; (7= .124) and RLRs (7= .127).

These unsystematic changes in the effect sizes for the RLR indices were hard to
explain. In order to clarify the effect of the manipulated factors on dimensionality, the
overall data set was separated into two-dimensional data and three-dimensional data, and
again analyzed by MANOVA, respectively. Table 4.2.6 and Table 4.2.7 display
multivariate test results based on Pillai’s Trace for the two- and three-dimensional data,
respectively.  For the two-dimensional data, 4 was the most impo}'tant variable and had
an effect size of .941. The effect sizes of C (5°=.517). I (5*= .628) and A <] (55°= .492)
were moderate, but the effect size of 4 xC (5= .044) was small. With respect to the
three-dimensional data, the effect sizes of 4 (5= .922), C (5°= 918), I (*= .825) were all

large. All the interactions were significant with moderate effect sizes.
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Table 4.2.6. The multivariate test for the two-dimensional data

Effect Value F Hypothesis df  Error df n”
A 0.941 6141.303* 4 1529 0.941
C 1.034 409.833* 8 3060 0517
1 1.255 644.431* 8 3060 0.628
AxC 0.087 17.432* 8 3060 0.044
AxI 0.984 370.166* 8 3060 0.492
Cx/ 0.993 126.528* 16 6128 0.248
AxCx] 0.626 71.044* 16 6128 0.156
* p< .01
Table 4.2.7. The multivariate test for the three-dimensional data
Effect Value F Hypothesis df  Error df 7
A 0.922 4904.996* 4 1650 0.922
C 1.835 4594.182* 8 3302 0918
1 1.650 1946.650* 8 3302 0.825
AxC 0.535 150.647* 8 3302 0.267
Ax] 0.551 157.017* 8 3302 0.276
Cxl 1.502 248.356* 16 6612 0.375
AxCx] 0.676 84.021* 16 6612 0.169
* p< .0l

To further determine the nature of the effect, the univariate tests for the two- and
three-dimensional data were conducted. Levene’s tests of equality of error variances
were all significant at the .01 level (RLR,: F(17, 1782)=28.292, p< .01; RLR,: F(17,
1782)=6.326, p< .01; RLR3: F(17, 1584)=4.725, p< .01; RLRs: F(17, 1535)=4.031,
p<.01). Levene’s tests of equality of error variances for the three-dimensional data
were also significant at the .01 level (RLR,: F(17, 1782)=29.881, p<.01; RLRy: F(17,
1782)=71.847, p<.01; RLR5: F(17, 17810)= 8.528, p<.01; RLRs: F(17, 1654)= 4.1085,
p<.01).

Even though F test is robust to the violation of the homogeneity assumption,

care should be taken when interpreting the following univariate analyses.
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Table 4.2.8. Univariate test for two-dimensional data

Source df RLR, 3 RLR, 3

i MS F 0 MS F n
A 1 0.397 5070.723* 0.740  0.012 7412.411* 0.806
C 2 6.411 81942.183* 0.989  0.000 36.976* 0.040
1 2 9.121 116576.748* 0.992  0.001 638.497* 0.417
AxC 2 0.004 45.573* 0.049  0.000 6.489* 0.007
AxI 2 0.326 4163.514* 0.824  0.000 12.876* 0.014
Cx/ 4 0.929 11875.816* 0.964  0.000 12.609* 0.028
AxCx] 4 0.055 705.638* 0.613  0.000 1.629  0.004
Error 1782 0.000 0.000
Total 1800

(Continued)
RLR; RLR,
Source df MS F i MS F T
A 1 0.008 3641.697* 0.697  0.000 13.375*  0.009
C 2 0.000 61.309* 0.072  0.001 295.010* 0.278
I 2 0.000 57.118* 0.067 0.001 395.795* 0.340
AxC 2 0.000 0.604 0.001  0.000 23.371*  0.030
AxI 2 0.000 44.930* 0.054 0.000 114.172*  0.129
Cx/ 4 0.000 5.280* 0.013  0.000 3.037 0.008
AxCx] 4 0.000 0.173  0.000 0.000 5.228* 0.013
Error 1782 0.000 0.000
Total 1800
* p<.01

In Table 4.2.8, 4 had large cffect sizes of for RLR, (r;3= .740), RLR; (t;2= .806), RLR;
(1 7= .697), but a small effect size for RLR, (7= .009). The effect size of C was large
for RLR, (/"= .989), but dropped to 0.04 for RLR; and 0.072 for RLRs, respectively. The
effect size of / was large for RLR, (r;2= .992), but reduced to 0.417 for RLR>, and then
became the smallest for RLR; (;]2= .067). With regard to Table 4.2.9, all the effect sizes

for A, C, and / were small for RLRs, but large for RLR,, RLR; and RLR;.
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Table 4.2.9. Univariate test for three-dimensional data

Source df RLR, 3 RLR, 3

i MS F n MS F N
A | 1.095  7848.639* 0.815  0.690 9325.502*  0.840
C 2 2.636 18900.019* 0.955 1.921  25962.423*  0.967
I 2 10.294  73795.933* 0.988 2444  33037.717* 0.974
AxC 2 0.030 215.664* 0.195  0.040 537.825*  0.376
AxI 2 0.047 338.056* 0.275  0.030 406.642*  0.313
Cxl 4 0.634  4544.845* 0911 0.385 5204.494*  0.921
AxCx] 10 0.068 484.121* 0.521 0.005 73.352*  0.141
Error 1782 0.000 0.000
Total 1800

(Continued)
RLR; RLR,
Source af MS F T MS F =
A | 0.003 463.401* 0.206 0.010 2418.868* 0.594
C 2 0.001 68.221* 0.071  0.004 1069.574*  0.564
1 2 0.000 10.756* 0.012  0.004 920.176*  0.527
AxC 2 0.000 38.279* 0.041  0.000 47.361* 0.054
AxI 2 0.001 102.143* 0.103  0.000 62.553* 0.070
Cxl 4 0.001 75.448* 0.145  0.000 10.951* 0.026
AxCx[ 4 0.000 9.229* 0.020 0.000 2.029 0.005
Error 1782 0.000 0.000
Total 1800
* p<.01

The different findings for the two- and three-dimensional data reflected the fact that
all the data were simulated with a three-dimensional correlation matrice and
three-dimensional item parameters. Regarding the two-dimensional data, both the
two-dimensional and three-dimensional models should result in a good fit. Thus, the
effects of C, I, AxC, AxI, CxI, and A xIxC were low for RLR; and RLR;. When the
model under-fit the two-dimensional data, 4, C, I and the interactions were important
factors to RLR,. When the model over-fit the data. only C, I, and 4 xI seemed to affect
the size of RLR;.

For the three-dimensional data, the consistent pattern showed that all the RLR;



values approached 1 when the model fit the data well.  Since the model-data-fit was
good, the effects of 4, C, and 7 on the fit index became minor. Conversely, 4, C, I and
the interactions were all important when the model under-fit the data. When the model
over-fit the data, only 4, C and 7 influenced the size of RLR.

In order to present the interactions among A4, C, and /, the simple effects were
displayed in Figure 4.2.7 to Figure 4.2.30. When the model under-fit the data, the RLR
value varied depending upon the size of the dominant factor which had the highest
percentage of items sensitive to it. In Figure 4.2.7 to Figure 4.2.9, the first level of /
(12:12:24) generated the lowest RLR, value for the data generated with correlation
matrices C, C2, and Cs3 because the dominant factor only contained 50% of the items.
Conversely, as shown from Figure 4.2.10 to Figure 4.2.12, the second level of 7 (16:16:16)
generated the lowest RLR, value for the data generated with correlation matrices Cy, Cs,
and Cs, because the dominant factor only contained 33% of the items. Given the same
level of C, the distinctions among different levels of I increased when A was high.
However, the influence of 4 was not the same for different combinations of C and /.

Different results about the interactions can be found in Figure 4.2.13 to Figure
4.2.18. For the data generated with correlation matrices Cy, C>, and Cs, RLR;
approached 1.00 and implied a good fit. Thus for correlation matrices C;, 2, and C3,
the effects of 4 and 7 on RLR; were minor.  With respect to the data generated with
correlation matrices Cy, Cs, and Ce, RLR; still varied depending on the levels of 4, C and

I. The effects of 4 and / on RLR> were important.



1.00 (‘}_\i I

—_— 12:12224
090 = @eszseecmmec.. 1| =mee- 16:16:16
— 36:6:6

0.80—

0.70—

RLR,

0.60—

0.50—

0.40—

:.L.___-_-__....___.__.

Figure 4.2.7. The interaction of 4 and 7 in RLR, given correlation matrix C,

| ]
1.0 | | [
—_—12:12:24
0904 v T | e=e==- 16:16:16
— 36:6:6
0.80—
- 0.70
(<%
é 0.60—
0.50—
0.40—

Figure 4.2.8. The interaction of 4 and / in RLR, given correlation matrix C;

94



1.00 l | I
' : —_12:12:24
0.90— o | e 16:16:16
: : — 36:6:6
0.80— | !
| ]
[} ]
0.70— : \
o L et Q
& 060 =T :
1 [}
| ]
0.50— |
I 1
1 1
0.40— : :
T T
M H
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Figure 4.2.12. The interaction of 4 and / in RLR, given correlation matrix Cs
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Figure 4.2.13. The interaction of 4 and / in RLR, given correlation matrix C,
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Figure 4.2.14. The interaction of 4 and / in RLR; given correlation matrix C;
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Figure 4.2.15. The interaction of 4 and / in RLR, given correlation matrix Cs
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Figure 4.2.16. The interaction of 4 and / in RLR; given correlation matrix Cy4
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Figure 4.2.17. The interaction of 4 and / in RLR, given correlation matrix Cs
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Figure 4.2.18. The interaction of 4 and / in RLR; given correlation matrix Ce
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Figure 4.2.19. The interaction of 4 and / in RLR; given correlation matrix C;
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Figure 4.2.20. The interaction of 4 and / in RLR; given correlation matrix C;
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Figure 4.2.21. The interaction of 4 and / in RLR; given correlation matrix C;
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Figure 4.2.22. The interaction of 4 and / in RLR3 given correlation matrix Cy
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Figure 4.2.23. The interaction of 4 and / in RLR; given correlation matrix Cs
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Figure 4.2.24. The interaction of 4 and / in RLR; given correlation matrix Cs
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Figure 4.2.25. The interaction of 4 and / in RLR, given correlation matrix C,
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Figure 4.2.26. The interaction of 4 and / in RLR4 given correlation matrix C;
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Figure 4.2.27. The interaction of 4 and / in RLR4 given correlation matrix C;
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Figure 4.2.28. The interaction of 4 and / in RLR; given correlation matrix Cj,
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Figure 4.2.29. The interaction of 4 and / in RLR;4 given correlation matrix Cs
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Figure 4.2.30. The interaction of 4 and I in RLR; given correlation matrix Cg
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With regard to Figure 4.2.19 to Figure 4.2.24, all RLR; approached 1 regardless of
the levels of 4, C, and I. Because all the data sets were generated with a
three-dimensional correlation matrix and three-dimensional item parameters, the model
could fit the data well for any combination of 4, C, and I. Concerning the results in
Figure 4.2.25 to Figure 4.2.30, even though the RLR, were close to 1, discrepancies were
found among RLR;,, especially when 4 was high. This explained that the effects of 4, C,

and / might still be important when the model over-fit the data.

4.2.3 Comparisons of the Numbers of Rejections

This section reports comparisons of the statistical power and the Type I error rate of

the RLR index with those of the G> test and the G;‘;{»[/ test. Again, the theoretical a

used for the G2 test and the Gzzljgf test was .05.

As shown in Table 4.2.10. given that the data were two-dimensional, the correct

rejections of a unidimensional model were perfect with G test and the G&,/f test.

Based on the unidimensional regression model built in Study I, the rejections based on
the RLR index were correct except for Form 131.  This finding indicated that the RLR
index tended to underestimate the dimensionality for the two-dimensional data when the
inter-factor correlation was as high as 0.7, item discriminations were moderate, and a
weak minor factor sensitive to 6 items existed.

In order to test null hypothesis H,: d= 2, the two-dimensional regression model was
built. Given that H,: d= 2 is true, the regression model was identified with the

predictors of the estimated a-parameters (EA; and EA»). the slope of the eigenvalues from
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the estimated inter-factor correlation matrix (£S), and the estimated percentage of items
having dominant loadings on the first and second dimension, respectively (P, and PI,).

The overall model was significant with adjusted R equal to .819 and can be expressed as

RLR>=0.974667 + 0.036129(EA;) + 0.001451(EA2) — 0.004751(ES) + 0.011826(P1;) -
0.027196(EA, xP1,) + 0.025021(EA>x Pl>) + 0.008707(EA, xES) —
0.006682(EA> < ES) + 0.004379(PI, xES) — 0.004752(EA, xPI, xES) +

0.023656(EA>x Pl <ES). (42)

If the observed RLR; fell in the 5% rejection area at the lower end of the
distribution representing a good fit, the null hypothesis was rejected. The numbers of
rejections of the two-dimensional model were also listed in Table 4.2.10. The RLR

index generated false rejections less than 5 regardless of the levels of 4, C,and I.  On

the contrary, the G? test and the sz,n,-f/ test generated high rejections for all cases.
Thus, for the two-dimensional data, the RLR index outperformed the G? testand the

G(zﬁlf test by having low Type I error rates.
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Table 4.2.10. The number of rejections in 100 replications for two-dimensional data

H,: d=1 H,: d=2
Data - pir G? G2 RLR G G2

diff diff
Form 111 100 100 100 0 100 100
Form 112 100 100 100 l 100 100
Form 121 100 100 100 4 100 100
Form 122 100 100 100 0 100 100
Form 131 0 100 100 0 100 100
Form 132 100 100 100 0 100 100
Form 211 100 100 100 3 100 100
Form 212 100 100 100 5 100 100
Form 221 100 100 100 2 100 100
Form 222 100 100 100 0 100 100
Form 231 97 100 100 | 100 100
Form 232 100 100 100 0 100 100
Form 311 100 100 100 3 100 100
Form 312 100 100 100 4 100 100
Form 321 100 100 100 2 100 100
Form 322 100 100 100 1 100 100
Form 331 100 100 100 2 100 100
Form 332 100 100 100 2 100 100

For the three-dimensional data, similar procedures were used to decide the number

of correct rejections of unidimensional and two-dimensional models. As Table 4.2.11

shows. with the theoretical a equal to .05, the G test and the Glzﬁff test perfectly
rejected the wrong unidimensional and two-dimensional models and generated
satisfactory statistical power. With regard to the RLR index, the rejection of a

unidimensional model was based on the unidimensional regression model built in Study 1

and the results were satisfactory. The rejection of a two-dimensional model was based
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on the two-dimensional regression model in equation (42) and the statistical power was
perfect.

The three-dimensional regression model was built given that the null hypothesis H,:
d=3istrue. With the predictors of the estimated a-parameters (EA4,, EA; and EA;), the
slope of the eigenvalues from the estimated inter-factor correlation matrix (ES), and the
estimated percentage of items having dominant loadings on the first, second, and the third
dimension, respectively (P/;, PI>, and PI;), the three-dimensional regression model was

built having adjusted R’ equal to .384.

RLRy=0.035961 — 0.017669(EA;) + 0.017799(EA-) + 0.017707(EA;) — 0.055493(P1;) —
0.062399(P1) — 0.033739(EA, xES) — 0.002514(EA; < ES) + 0.013083(EA; xES) +
0.038326(EA, xPI,) - 0.066626(EA2xPly) — 0.061094(EA; < PI3) —
0.003045(P1, XES) — 0.046190(PL, XES) + 0.077303(PI3 XES) +
0.057431(EA, x P, xES) — 0.028220(EA2 x P, <ES) —

0.090448(EA3 x P13 < ES). (43)

If the observed RLR; was less than the lower bound of the distribution representing
a good fit, the null hypothesis was rejected. The numbers of rejections of the
three-dimensional model were listed in Table 4.2.11. Regardless of the levels of 4, C,

and /, the RLR index generated false rejections less than S times.  On the contrary, the
G? testand the G(Z,W test produced high rejections.  For the three-dimensional data,

2

the RLR index outperformed the G° test and the Gf!-[/ test by having low Type | error

rates.
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Table 4.2.11. The number of rejections in 100 replications for three-dimensional data

H,: d=1 Hy,:d=2 Hy,:d=3

Daa piR G* G}y RR OGP Gy  RIR OGP Gy
Forma1l 100100 100 100 100 100 0 100 43
Formalz 100 100 100 100 100 100 0 100 53
Form421 100 100 100 100 100 100 4 100 26
Form42> 100 100 100 100 100 100 0 100 57
Form431 100 100 100 100 100 100 0 100 74
Form432 100 100 100 100 100 100 0 100 46
FormS11 100 100 100 100 100 100 0 100 4l
Formsi2 100 100 100 100 100 100 2100 66
Forms21 100 100 100 100 100 100 2 100 40
Forms22 100 100 100 100 100 100 0 100 52
Forms3] 100 100 100 100 100 100 0 100 75
Forms32 100 100 100 100 100 100 0 100 48
Forméll 100 100 100 100 100 100 | 100 45
Form6l2 100 100 100 100 100 100 4 100 92
Forme2] 100 100 100 100 100 100 4 100 67
Form622 100 100 100 100 100 100 5100 93
Form63] 98 100 100 100 100 100 | 100 45
Form632 100 100 98 100 100 100 0 100 55

4.3 Real Data Analysis

As a real data example, the Grade 4 Mathematics Test data from the MEAP testing
program were employed. Instead of analyzing the whole data set, five independent
random samples of 2000 examinees were randomly selected. For each level of
dimensionality, the RLR index was calculated and listed in Table 4.3.1. The results
indicated that the values of RLR; were as high as .97 in all five samples. When adding
dimensions to the model, all the RLR values didn’t approach 1.  This pattern of the RLR

values approximated the results in the unidimensional simulation. With a sample size of
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2000, when the data were truly unidimensional with moderate level of item
discrimination, the RLR index stayed at a fixed level regardless how many dimensions

were added to the model.

Table 4.3.1. The RLR indices for the MEAP Grade 4 Mathematics Test data

Sample RLR, RLR, RLR; RLR,
Sample 1 0.9828 0.9850 0.9827 0.9828
Sample 2 0.9798 0.9825 0.9801 0.9798
Sample 3 0.9748 0.9808 0.9784 0.9748
Sample 4 0.9713 0.9814 0.9791 0.9713
Sample 5 0.9749 0.9796 0.9787 0.9749

To decide whether or not the Grade 4 Mathematics Test data were unidimensional,
the mean of the estimated a-parameters, the SD of estimated d-parameters, along with the
sample size and test length were implemented in equation (41) to decide the lower bound
of a good fit. Table 4.3.2 shows the descriptive statistics of item parameters and the
lower bound of the predicted RLR, value. Because the null hypothesis H,: d= 1 was not
rejected, the significance test stopped at the unidimensional model.  All the results

indicated that this Mathematics Test data can be well fit by the unidimensional model.

Table 4.3.2. Item parameter estimates and the test of unidimensionality

Item parameter

Sample Lower bound Hy: d=1
Mean(a) SD@) Mean(d) SD()
Sample I 0.6662  0.2357 09151 0.6510 0.9561 Not rejected
Sample2 0.6686  0.2210  0.9201 0.6540 0.9565 Not rejected
Sample 3 0.6481 0.2340  0.8757  0.6498 0.9531 Not rejected
Sample 4 0.6635  0.2274  0.8752  0.6432 0.9557 Not rejected

Sample 5 0.6574 02202 0.9042  0.6343 0.9547 Not rejected
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CHAPTER 5

SUMMARY, DISCUSSION, AND CONCLUSION

In this chapter, the overall results are summarized and the related issues are
discussed. The conclusions are drawn from both the simulation studies and the real data
analysis. Moreover, the limitations of the research and suggestions for future studies are

provided.

5.1 Summary of the Research

The purpose of this research was to propose a new index to evaluate the
model-data-fit for the compensatory logistic MIRT model. Once the number of
dimensions is identified to adequately describe the item response data, the item and
ability parameters can be correctly estimated. Then, the test scores can be correctly
estimated by the MIRT model and the subsequent testing techniques, such as test
equating for multidimensional abilities, can possibly be conducted.

The RLR index proposed in this study is derived from Estralla’s (1998) R® analog
which is equivalent to the R in the OLS model. The RLR index compares the
percentages of the unexplained variance in the k-dimensional MIRT model with that in
the (k+1)-dimensional MIRT model. The value of the RLR index reflects the
improvement of fit obtained by adding one more dimension to the MIRT model. When
the model fits the data, the error reduction due to adding one more dimension to the
model is limited and the RLR index approaches 1.

This research investigated the performance of the RLR index with respect to its
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ability to correctly identify the dimensionality for both unidimensional and
multidimensional data reflecting different levels of item discrimination, item difficulty,

sample size. test length, inter-factor correlation, and item-factor structure. The

statistical characteristics of the RLR index were compared to those of the G? testand

the G¢211[f test. The test data from the MEAP Grade 4 Mathematics Test were analyzed

to show how the RLR index decided the dimensionality of real data.

5.2 Discussion
Based on the results in Chapter 4, the major findings are highlighted in the

following sections.

The Rates of Unsuccessful TESTFACT Runs

When unidimensional data were analyzed by MIRT models, some analyses were
unsuccessful. Because the data generated a singular tetrachoric correlation matrix, the
full-information factor analysis procedure stopped. When the tests were short, all the
TESTFACT runs were successful. However, when the tests were long, the tests with
high variation of the d-parameters generated a singular correlation matrix at higher rates
than the tests with low variation of the d-parameters. This was more severe when the
sample size was small. When the test was long, the size of the frequency table for
calculating the pair-wise tetrachoric correlation was large, resulting in some cell
frequencies being too small to give meaningful tetrachoric correlation estimates.  For
those invalid item-pairs, TESTFACT automatically used the substitute values of either 1

or -1.  When the test was long but the sample size was small. the number of invalid
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item-pairs increased and caused more inaccurate tetrachoric correlation estimates. Thus,
with the limited number of valid item-pairs. the resulting tetrachoric correlation matrix
tended to be problematic.

Given that the test was long, the rate of getting a singular matrix was greater when
the d-parameters had higher variation. This finding is consistent with Roznowski et al’s
study (1991). The tetrachoric correlation has the special property that when it
approaches either 0 or 1, the variation of the sampling distribution is large. In this study,
when the test items were extremely easy or difficult, the underlying correlations for these
item-pairs approached 0 or I.  Accordingly, these pair-wise correlations were poorly
estimated and resulted in many arbitrary 0’s and 1's.  Again, with a large number of
inaccurate tetrachoric correlation estimates, the tetrachoric correlation matrix would have
a high probability to be singular, causing problems in full-information factor analysis.

For the multidimensional data, given the same combination of inter-factor
correlation and item-factor structure, the data with moderate item discriminations
generated a singular tetrachoric correlation matrix at higher reats than the data with high
item discriminations. When the levels of inter-factor correlation and item
discrimination were held constant, the third level (36: 6: 6) of the item-factor structure
generated a singular correlation matrix at lower rates than the first level (12: 12: 24) and
the second level (16: 16: 16) of item-factor structure. However, the inconsistent
patterns were found between the two- and three-dimensional data sets. The
two-dimensional data showed higher rates of getting a singular matrix for the
four-dimensional model than for the five-dimensional model. Conversely, the

three-dimensional data demonstrated lower rates of getting a singular matrix for the
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four-dimensional model than the five-dimensional model. In order to explore this
problem, different TESTFACT settings, such as different numbers of quadrature points in
the EM algorithm, different levels of iteration cycles, and different levels of the
convergence criteria were employed, but similar results were obtained. It is unclear
how full-information factor analysis generated the inconsistent results. The
performance of TESTFACT computer program needs further investigation in future

studies.

The Unexpected Values of the RLR Index and the G}ﬁ[/‘ Test

As shown in the summary statistics of Study II, unexpected RLR values (RLR>1)
were found in the multidimensional simulation. These unexpected values occurred
when the estimation model recovered the true dimensionality or over-fit the data.
Theoretically, the RLR index should not be greater than 1 because the SSE should not

increase when adding more factors to the model. However, whenever the RLR index
exceeded 1, the corresponding G‘Z,,,r test generated a negative value, which was not

reasonable for a x” distribution. The exact cause of these unexpected values was not
clear, but a possible explanation is provided.

The R? for the OLS model has the property of not decreasing when more predictors
are added to the model. However, this is not always the case for the MIRT model where
both the a-parameters and ability parameters need to be estimated simultancously.
Adding one more factor to the MIRT model increases the degrees of freedom, but
simultaneously requires m + n— 2 (n is the number of items, and m is the number of

examinees) more parameters to be estimated. It is possible that, when the model-data-fit
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is already perfect, adding more factors to the MIRT model would increase fit, but
simultaneously would generate larger estimation errors. When the model over-fits the
data, the increase of fit due to adding more factors may not compensate for the increase
of estimation error. According to the definition, the RLR index is the ratio of the log
transformation of the unexplained percentage of the variance from the k-dimensional and
the (k+1)-th dimensional models. When the unexplained percentage of the variance of
the k-dimensional model is smaller than that of the (k+1)-th dimensional model, the value

of the RLR index becomes greater than one.

The same rationale can be applied to explain the negative values of the G(?},'f/‘ test.

The G2 testin equation (13) is a discrepancy function based on the ratio of the

likelihood under the fitted model to the likelihood of the empirical frequencies. The
va[[/ test, as shown in equation (14), compares the discrepancy of the likelihoods for

the model and the data between a lower-factor model and a successive higher-factor
model. The formula explicitly indicates that the discrepancy between the model and the
data for the lower-factor model should always be greater than the discrepancy between
the model and the data for the higher-factor model. In this study, however, the results
showed that the assumption of the formula is not always true. When the model already
fits the data well, over-fitting the data by adding one more factor to the model may

increase the discrepancy between the model and the data and thus generates a negative
value for the G(?;,-ff statistic. Because both the RLR index and the G?,,-ff test compare

the fit of the two successive MIRT models, the over-fitting problem occurs when the

lower-factor model already has a good fit and the higher-factor model has a relatively
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poor fit. Thus, when the over-fitting problem arises, the RLR index may exceed 1, and

at the same time the 63,-[,‘ statistic may be negative.

The Patterns of the RLR Values and Dimensionality

From the results in unidimensional simulation, RLR; reached .99 when the
a-parameters were higher than 0.2.  In such cases, because all RLR; values were close to
the upper bound, adding more dimensions to the model only increased the values of RLR;
and RLR; at the third decimal place. Conversely, for the tests with the a-parameters
equal to 0.2, adding factors to the model did obviously increase the RLR values.

The simulation of two-dimensional data based on the three-dimensional inter-factor
correlations and the three-dimensional item parameters was successful. The patterns of
the RLR values for the multidimensional data sets, as shown from Figure 4.2.1 to Figure
4.2.6, were as expected.  For the two-dimensional data, the values of RLR; were small,
but the values of RLR; approached 1. When adding more factors to the model, both the
values of RLR; and RLR, were still close to 1. For the three-dimensional data, the
values of RLR; were small. When adding a second factor to the model, the values of
RLR; increased but not to the level of a good fit. For the three-dimensional solution, all
the values of RLR; approached 1, suggesting a good fit. When the model over-fit the
data, the values of RLR, were still close to 1, but sometimes less than the values of RLR;.

Based on the results of the unidimensional and multidimensional simulation studies,
it was clear that the change of the RLR values with dimensionality reflected the simulated
dimensionality underlying the data. Once the RLR index stops increasing. the minimum

number of statistical dimensions can be specified.
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The Variables Associated with the RLR Index and Dimensionality

The results from the MANOVA analysis in Study I showed that item discrimination,
item difficulty, sample size, and test length collectively had an effect on the RLR index.
Sample size affected the RLR index, but the effect varied depending on the level of item
discrimination. A large sample size helped reducing the sampling variation and offered
better estimates of the model parameters, especially when the item discrimination was
low. With a larger sample size, the RLR index became more stable. That is, when item
discrimination was low, the problem of falsely rejecting the true unidimensionality was
circumvented. The effect of item difficulty also depended on the level of item
discrimination. As long as item discrimination was greater than 0.2, the effect of item
difficulty was minor.

The results based on the MANOVA analysis in Study Il indicated that inter-factor
correlation, item-factor structure, and item discrimination all together influenced the RLR
index. Because the interactions were significant and some of them had substantive
magnitude of effect sizes, the simple effect instead of the main effect should be discussed.
Given the same level of inter-factor correlation and item-factor structure, high item
discrimination increased the change of RLR associated with dimensionality when the
model under-fit the data. Thus, the judgment of the dimensionality based on the RLR
index would be easy when the item discrimination was high. Given the same level of
inter-factor correlation and item discrimination, the change of RLR with dimensionality
was the greatest when items were evenly sensative to factors. In other words, when

there was no clear dominant factor in the data, the change of RLR with dimensionality
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was obvious. On the contrary, when the data had a strong dominant factor and some
weak minor factors that were only sensitive to a small number of items, the change of
RLR with dimensionality became small and thus increased the difficulty of identifying
minor factors. However, when the model fit the data, the effects of item discrimination,

inter-factor correlation, and item-factor structure became minor.

The RLR Index and the Magnitude of the Dominant Factor

In terms of the factor analysis technique, the dominant factor will always be
identified first by the factor-analytical model. Then, minor factors will be extracted in
order by their quantities of explained variance. The first extracted factor always
explains the most variance in the data than the subsequent factors. The R’ technique is

primarily designed to represent the percentage of explained variance in the data. In the

MIRT model, Rlz shows the percentage of variance explained by the unidimensional

model, and R_a_z reflects the percentage of variance explained by the two-dimensional

model. Based on the equivalence between the MIRT model and factor analytic model,
RLR, can be used to show the relative size of the dominant factor in contrast to the
second factor.

Based on the results from the unidimensional simulation, it is clear that the
magnitude of RLR, was related to the size of item discrimination. RLR, reached .99
when item discrimination was 0.4 or higher. Even though item discrimination was as
low as 0.2 with a short test and a small sample size, the minimum value of RLR, was .80.
For the unidimensional data with higher item discrimination, the dominant factor

explained more variance in the data and thus could be more easily identified by the
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statistical model.

The determination of the size of the dominant factor is more complex in the
multidimensional data. When inter-factor correlation and item discrimination were held
constant, RLR, increased with the increment of the number of items sensitive to the
dominant factor. The two-dimensional data, the data related to the correlation matrices
C\, C2, and (3, were generated with a three-dimensional inter-factor correlation matrix
and item-factor structure by combining the first two groups of items into a bigger item
cluster. Thus, the first level of the item-factor structure (12:12:24) generated the lowest
dominant factor, which were sensitive to 50% of items in a test. The second level of the
item-factor structure (16:16:16) produced a dominant factor sensitive to 67% of items in
atest. With 88% of items sensitive to one factor, the third level of the item-factor
structure (36:6:6) generated the greatest value of the dominant factor and at the same time
had the greatest value of RLR,. With regard to the three-dimensional data, which were
the data sets related to Cs, Cs, and Ce, the percentage of items related to one factor was
consistent with the level of item-factor structure. For the second level of the item-factor
structure (16:16:16), each of the three dimensions had 33% of items. Without a doubt,
the second level of item-factor structure (16:16:16) generated lower RLR, than the first
level (12:12:24) and the third level (36:6:6) of item-factor structure. With 76% of items
related to the main factor, the third level of the item-factor structure had the largest
dominant factor and generated the greatest value of RLR;.

Given the same level of item-factor structure and item discrimination, RLR,
increased proportionally to the decrease of the inter-factor correlations. In factor

analysis, when the factors are completely independent, the dominant factor tends to
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explain less variance than the case when the factors are correlated. Thus, it is not
surprising that when the level of item-factor structure and item discrimination were held
constant, ('3 generated the lowest value of RLR) in the two-dimensional data and Cs
generated the lowest value of RLR) in the three-dimensional data. In short, RLR, in the
multidimensional data reflected the size of the dominant factor. Low RLR, suggested
that the items were more evenly distributed to factors, and the factors tended to be
independent of each other. Correspondingly, the lower value of RLR, also implied that

the data were less likely to be unidimensional.

The Statistical Characteristics of the RLR Index, G* Test, and 63!'/7 Test

The results of the G2 test and 0‘3,-,]-, test indicated that these statistics could not

accurately identify dimensionality. Even though these statistics demonstrated high
statistical power in rejecting wrong models, they tended to reject right models with high
Type I error rates. These findings are consistent with earlier studies (Berger & Knol,

1990; De Champlain & Gessaroli, 1998; DeMars, 2003; McDonald, 1989b) that these

G* tests should not be used to assess the dimensionality for test data. On the contrary,

the RLR index demonstrated low Type I error rates and high statistical power for most
data sets.

In the unidimensional simulation, the RLR index generated low Type | error rates
except for the extreme cases when item discrimination was 0.2 and sample size was 2000.
When item discrimination is low and sample size is limited, the test data are close to

random data so that the signal in the data is unnoticeable. Accordingly, it is reasonable




that the RLR index can not function well for these test data. From the practical
consideration in test development, a test with these items can be considered useless
because items are not discriminating examinees’ abilities. It can be expected that such
bad tests may not be developed in real testing conditions, so the failure of the RLR index
in detecting the true unidimensionality for these test data will not be an issue. It can be
concluded that the RLR index demonstrated low Type I error rates for common tests.
When the data are close to random, the index tended to falsely reject the true
unidimensional model.

With regard to the multidimensional data, the RLR index performed well in
rejecting the wrong unidimensional model except for the two-dimensional data having
two highly correlated factors, a strong dominant factor, and moderate item discrimination.
For this kind of test data, the RLR index cannot detect the weak second factor and tends
to underestimate the data dimensionality. Other than this special case, the RLR index

had high statistical power and low Type I error rates.  The results of the simulation

studies indicated that the RLR index outperforms the G2 test and the G¢2/[[f test in

detecting the true dimensionality.

Real Data Analysis

The RLR indices for the five random samples consistently indicated that the Grade 4
Mathematic Test data from the MEAP testing program can be modeled unidimensionally.
As described earlier, this test was designed to measure different ability domains and skills
in mathematics at the grade-4 level. The results based on the RLR index suggested that

these content domains may be described under the umbrella of a general factor called




“basic mathematics skills.” The unidimensional finding is supplemented with the
discussions in term of the test item content, the representativeness of the content-related
dimension, the definition of dimensionality, and the assumption of the compensatory
MIRT model.

The mathematics knowledge taught in grade-4 contains the basic mathematics
concepts and skills.  The differences among different content knowledge and skills may
not be as great as expected by the test developers. For example, if students can do
multiplication, they need to have the prerequisite knowledge in addition. When
responding to fraction questions, students have to think about how fractions are related to
a unit whole, compare fractional parts of a whole, and find equivalent fractions to give a
correct response.  The processes for answering these mathematics questions are actually
related to counting and addition. As a whole, the test items in the Grade 4 Mathematics
Test may cover several distinct content domains, but these content-related abilities may
be indeed highly correlated to each other. As shown in the second simulation study,
when two of the three factors are highly correlated, the dimensions will converge so that
a two-dimensional model can well explain the truly three-dimensional data. When the
content-related abilities are highly correlated, similar to the multicollinearity problem in
multiple regression, it is difficult to identify the net contribution of the minor factors
when the dominant factor already explains most of the contribution of the minor factors.

Besides, how well the minor factors were measured in the Mathematics Test is
another important issue. The Mathematics Test contained 57 items: 6 items for data and
probability; 6 items for geometry; 18 items for measurement; and 27 items for numbers

and operations. For the 6 items in data and probability. the mean of the item
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discrimination is only 0.5347. With regard to the 6 items in geometry, the mean of the
item discrimination is 0.5413. Given that the content-related abilities are highly
correlated, those weak dimensions having only 6 moderate-discriminating items are not
easily identified by a mathematical model.

Another explanation for the findings from the real data analysis goes back to the
definition of dimensionality. There appears to be a common misconception that a set of
items on a test measure a distinct number of dimensions regardless of the characteristics
of the examinees taking the test (R. L. Turner et al., 1996). However, the statistical
dimensionality is a characteristic of the data matrix, not the test or examinee population
(Reckase, 1990). Researchers (Ackerman, 1994; Reckase, 1997a; R. L. Turner et al.,
1996) pointed out that dimensionality is a function of both the skills being measured by
the items and the multivariate ability distributions of the examinees. The dimensional
structure of the data from a test could differ for various subgroups of an examinee
population. Ackerman (1994) indicated that if items collectively are capable of
distinguishing between levels of several skills, and examinees differ in their levels of
proficiencies on more than one of these skills, the interaction needs to be described by a
multidimensional model. Based on this rationale, the findings of the Grade 4 MEAP
Mathematics Test data may indicate that these test items indeed covered several distinct
content domains and the items should be described by more than one content-related
ability, but the target examinees, i.e. the grade-4 students in Michigan state, were
heterogeneous with respect to the main content-related ability but homogeneous with
respect to the minor content-related abilities. When the variations of examinees’

proficiencies on the minor content-related abilities were limited, it is difficult for a
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mathematical model to capture those dimensions.

Another possible explanation can be offered based on the assumption of the
compensatory logistic MIRT model. This MIRT model assumes that abilities can be
linearly combined and compensated. It is possible that the content-related dimensions
for the Mathematics Test data may be multidimensional, but the items were sensitive to
the same combination of the content-related dimensions. Consequently, the statistical
dimension needed for the model to describe the item-person interaction was one. Given
the unclear nature of the ability structure in the mathematics test data, it is uncertain
whether or not the unidimensional model can still fit the data well if a different model,
such as a partially compensatory model, is used to analyze the same data.

To conclude these possible explanations for the real data analysis, one statistical
dimension was enough to sufficiently explain the MEAP Grade 4 Mathematics Test data

when the compensatory logistic MIRT model was used.

5.3 Conclusion

Based on the findings in the simulation studies and the real data analysis, the RLR
index is a promising goodness-of-fit index for the MIRT model. The dimensionality
index varied in accuracy as a function of sample size and could more accurately identify
unidimensionality as the number of items increased. The RLR index demonstrated low
Type | error rates except for the tests composed of poor items having item discrimination
values of 0.2 with a short test and a small sample size. The RLR index also revealed
high statistical power in rejecting wrong models except for the two-dimensional data with

highly correlated factors, moderate item discrimination, and one weak minor factor.
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The change of the RLR index with dimensionality implied the decrease of error in the
data when adding factors to the model. Moreover, the RLR index for the initial
unidimensional model reflected the size of the dominant factor. When the RLR index
for the initial unidimensional model was low, it implied that the data had a weak
dominant factor and were less likely to be unidimensional. Based on the RLR index, the
Grade 4 Mathematics Test data from the MEAP testing program can be well explained by
the unidimensional model. Even though the test was developed by selecting items
representing different knowledge domain and skills, one statistical dimension would be

enough to explain the interaction between items and examinees.

5.4 Limitations, Implications, and Suggestions for Future Research
The purpose of this study is to offer an index which can be used as a rule of thumb
in selecting the most appropriate dimensionality for the MIRT model to explain test data.
Instead of relying on subjective judgments, the proposed index provides objective and
useful information to decide dimensionality based on the compensatory logistic MIRT
model. Once the dimensionality is identified, the dimensional structure can further be
explored to identify the relationships between dimensions.  Validity studies (to identify
what domains or dimensions are measured) can proceed to provide evidence supporting
hypothesized multidimensionality and to identify construct-irrelevant variance.
It is important to emphasize that these findings were just preliminary and caution
should be taken when interpreting and generalizing the results to other conditions. It is
therefore important to highlight the limitations associated with this investigation and to

offer suggestions for future research with reference to assessing MIRT goodness-of-fit.
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First, as introduced in Chapter 2, the parametric MIRT models provide full
dimensionality estimation specifying the number of dimensions and which item measures
which dimension, but these benefits all rest on their specific assumptions of the item
responses. Tate (2002) pointed out that any mathematical model with limited numbers
of parameters provided a relatively efficient summary of data, but it also brought in the
strong assumption that the phenomenon of interest could be accurately explained by the
assumed model. Based on the rationale, data dimensionality can be determined by the
model-data-fit procedure only when the proposed model is appropriate. ~Since the RLR
index was derived from the logistic compensatory MIRT model (Reckase, 1985; Reckase
& McKinley, 1991), this index can work well only when the logistic compensatory MIRT
model is the appropriate model to explain the data.

The logistic compensatory MIRT model used in this study is only one of the MIRT
models proposed in the literature. This model explicitly assumes that abilities can be
linearly combined so that the high level of one ability can compensate for the low level of
a second ability. However, for real test data it is unclear if abilities can be linearly
combined or compensated. Sympson’s model, for example, assumes that the ability
structure underlying the test data is partially compensatory (cited from Reckase &
McKinley, 1982). A correct item response requires examinees to demonstrate high
abilities on all dimensions. If the underlying dimensional structure in the data is
different from the model assumption, using the model to explain the data may not
generate a good fit unless the extremely high-dimensional model is used. As explained
by Tate (2002), the attempt to fit the partially compensatory function with a

compensatory model is similar to the unwise attempt to use an additive regression model



to represent an interactive relationship. However, so far the robustness of the
compensatory MIRT models to the violation of the assumption of ability compensation is
still unclear. It would be worth noting that the MIRT model used in this study is only
one option to describe test data.  If the inherent ability dimensions in the data cannot
match the model assumption, using the compensatory MIRT model to describe the data
may result in essential misfit. and consequently the statistical power of the RLR index
would be limited.

Second, since the RLR index compares the ratio of the residuals of the two
successive MIRT models, the degrees of freedom for the RLR index need further
investigation. In the OLS model, R is not an unbiased estimate of the corresponding
parameter in the population, and the degree of bias depends on the relative size of the
number of observations (V) and the number of parameters (P)(Howell, 2001, p. 546). In
the OLS regression model, the number of parameters is usually independent of the
number of observations. The R® tends to be perfect (R*= 1) when N= P + | regardless of
the true relationship between the dependent variable and the predictors in the population.
For the MIRT models, however, the total number of parameters needed to be estimated is
always large. As the number of examinees increases in the MIRT model, the number of
parameters increases proportionally. For example, in a unidimensional MIRT model. if
2000 examinees take a test that has 40 items, the total number of parameters to be
estimated is 2078 (2000 + 2x40 — 2). While adding the second dimension to the MIRT
model, there are 2038 (2000 + 40 — 2) more parameters to be estimated for the same data
set. It is uncertain how the R* analog of the MIRT model reacts to the huge number of

the degrees of freedom. It is also unclear how the RLR index reflects the potential
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inflation problem for the R* analogs for two successive models. Even though the
current findings are positive, the succeeding research should focus on the degrees of
freedom of the RLR index to examine the possible inflation problem.

Third, simulation studies offer a means to verify the theoretical statistical properties
in practice, but the simulation scenarios always have less than real complexity. Itis
critical to point out that all the simulated data sets in this research were based on the
simple structure and they only represented the simplest cases. Future studies should
also employ mixed structure to explore the statistical characteristics of the RLR index in
correctly identifying the true dimensionality. Furthermore, the two simulation studies
employed the important variables related to dimensionality. Some other potential
variables, such as the effect of the guessing parameter on model-data-fit and the
interaction between item-factor structure and item discrimination (the item discrimination
are different for each factor) may be appealing topics for future research. Besides, the
comparisons between the RLR index and the non-parametric indices on detecting
dimensionality would be worth investigation. To detect the limitation of the RLR index,
it would also be of interest to decide the minimum number of items and the minimum
level of item discrimination representing one identifiable dimension.

Last, it is not surprising that the choice of the appropriate dimensionality assessing
method is constrained by the limitations of estimation theory and the computer program
(Tate, 2002). When using full-information factor analysis (TESTFACT), the number of
factors should not exceed five in order to ensure the accuracy of the results (Bock et al.,
1988). In order to demonstrate how the RLR index functions for under-fit, good fit, and

over-fit, the maximum number of data dimensionality simulated in this research is three.
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It is expected that the investigation of higher-dimensional data may be possible when a
more powerful mathematical algorithm or a computer program is developed. Hopefully,
the results presented in this research will offer useful information to practitioners
interested in using the MIRT model. It is hoped that these findings will promote future
research in this area and lead to helpful guidelines with respect to the assessment of the

data dimensionality.
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APPENDIX A

Mathematical Derivation of Esrella’s (1998) R Analog

solve d¢ =—d'i
-4 _A4
B
Solution:
d¢  dA
l-¢ _4
B

1 !
= jmdqﬁ: 4

a-7)

= -In(l1-¢)=-BIn(l - —g) + (', where C is a constant
= In(l—¢):ln(l——g)B -C

A .
= (1-9)=(1-)" xexp(-0)
Given that¢,(0) = 0, which means when 4=0, ¢=0

=1-0=(1-0)8 exp(-C)
= exp(-C) =1
=C=0

A
Thus 1-¢=(1->)"
us 1-¢=01-2)

o AB
—=g=1-(l B)
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APPENDIX B
The Conditional Distributions of the RLR Values in Simulation Study [
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Figure B.1. The conditional distributions of the RLR values for Test 111with 2000 examinees
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Figure B.2. The conditional distributions of the RLR values for Test 111with 6000 examinees
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Figure B.3. The conditional distributions of the RLR values for Test 121with 2000 examinees
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Figure B.4. The conditional distributions of the RLR values for Test 121with 6000 examinees
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Figure B.5. The conditional distributions of the RLR values for Test 131with 2000 examinees
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Figure B.6. The conditional distributions of the RLR values for Test 13 1with 6000 examinees
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Figure B.7. The conditional distributions of the RLR values for Test 211with 2000 examinees
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Figure B.8. The conditional distributions of the RLR values for Test 211with 6000 examinees
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Figure B.9. The conditional distributions of the RLR values for Test 221with 2000 examinees
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Figure B.10. The conditional distributions of the RLR values for Test 221with 6000 examinees
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Figure B.11. The conditional distributions of the RLR values for Test 231with 2000 examinees
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Figure B.12. The conditional distributions of the RLR values for Test 23 1with 6000 examinees
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Figure B.13. The conditional distributions of the RLR values for Test 33 1 with 2000 examinees
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Figure B.14. The conditional distributions of the RLR values for Test 331with 6000 examinees
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Figure B.15. The conditional distributions of the RLR values for Test 321with 2000 examinees
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Figure B.16. The conditional distributions of the RLR values for Test 321with 6000 examinees
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Figure B.17. The conditional distributions of the RLR values for Test 331with 2000 examinees
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Figure B.18. The conditional distributions of the RLR values for Test 331with 6000 examinees
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Figure B.19. The conditional distributions of the RLR values for Test 411with 2000 examinees
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Figure B.20. The conditional distributions of the RLR values for Test 411with 6000 examinees
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Figure B.21. The conditional distributions of the RLR values for Test 421with 2000 examinees
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Figure B.22. The conditional distributions of the RLR values for Test 421with 6000 examinees
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Figure B.23. The conditional distributions of the RLR values for Test 431with 2000 examinees
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Figure B.24. The conditional distributions of the RLR values for Test 43 1with 6000 examinees
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Figure B.25. The conditional distributions of the RLR values for Test 112 with 2000 examinees

Figure B.26. The conditional distributions of the RLR values for Test 112 with 6000 examinees
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Figure B.27. The conditional distributions of the RLR values for Test 122 with 2000 examinees
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Figure B.28. The conditional distributions of the RLR values for Test 122 with 6000 examinees
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Figure B.29. The conditional distributions of the RLR values for Test 132 with 2000 examinees
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Figure B.30. The conditional distributions of the RLR values for Test 132 with 6000 examinees
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Figure B.32. The conditional distributions of the RLR values for Test 212 with 6000 examinees
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Figure B.33. The conditional distributions of the RLR values for Test 222 with 2000 examinees
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Figure B.34. The conditional distributions of the RLR values for Test 222 with 6000 examinees
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Figure B.35. The conditional distributions of the RLR values for Test 232 with 2000 examinees
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Figure B.36. The conditional distributions of the RLR values for Test 232 with 6000 examinees
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Figure B.37: The conditional distributions of the RLR values for Test 312 with 2000 examinees
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Figure B.38: The conditional distributions of the RLR values for Test 312 with 6000 examinees
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Figure B.39. The conditional distributions of the RLR values for Test 322 with 2000 examinees
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Figure B.40. The conditional distributions of the RLR values for Test 322 with 6000 examinees
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Figure B.41. The conditional distributions of the RLR values for Test 332 with 2000 examinees
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Figure B.42. The conditional distributions of the RLR values for Test 332 with 6000 examinees
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Figure B.43. The conditional distributions of the RLR values for Test 412 with 2000 examinees
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Figure B.44. The conditional distributions of the RLR values for Test 412 with 6000 examinees
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Figure B.45. The conditional distributions of the RLR values for Test 422 with 2000 examinees

J

0.998 1.000

§
:: RLR,
! RLR;

RLR3

J | | !
0.990 0.992 0.994 0.996

RLR

Figure B.46. The conditional distributions of the RLR values for Test 422 with 6000 examinees
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Figure B.47. The conditional distributions of the RLR values for Test 432 with 2000 examinees
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Figure B.48. The conditional distributions of the RLR values for Test 432 with 6000 examinees
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APPENDIX C
The Conditional Distributions of the RLR Values in Simulation Study II
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Figure C.1. The conditional distributions of the RLR values for Form 111
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Figure C.2. The conditional distributions of the RLR values for Form 112

156




Y Y rewweewe NS

1" ) | i 1
0.85 050 0.95 1.00 1.05
RLR

Figure C.3. The conditional distributions of the RLR values for Form 121
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Figure C.4. The conditional distributions of the RLR values for Form 122
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Figure C.6. The conditional distributions of the RLR values for Form 132
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Figure C.8. The conditional distributions of the RLR values for Form 212
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Figure C.9. The conditional distributions of the RLR values for Form 221
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Figure C.10. The conditional distributions of the RLR values for Form 222
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Figure C.11. The conditional distributions of the RLR values for Form 231
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Figure C.12. The conditional distributions of the RLR values for Form 232
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Figure C.13. The conditional distributions of the RLR values for Form 311
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Figure C.14. The conditional distributions of the RLR values for Form 312
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Figure C.15. The conditional distributions of the RLR values for Form 321
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Figure C.16. The conditional distributions of the RLR values for Form 322
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Figure C.17. The conditional distributions of the RLR values for Form 331
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Figure C.18. The conditional distributions of the RLR values for Form 332
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Figure C.19. The conditional distributions of the RLR values for Form 411
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Figure C.20. The conditional distributions of the RLR values for Form 412
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Figure C.21. The conditional distributions of the RLR values for Form 421

RLR,
RLR,

JA S

| | ! {
0.7 08 09 10

RLR
Figure C.22. The conditional distributions of the RLR values for Form 422
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Figure C.23. The conditional distributions of the RLR values for Form 431
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Figure C.24. The conditional distributions of the RLR values for Form 432
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Figure C.25. The conditional distributions of the RLR values for Form 511
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Figure C.26. The conditional distributions of the RLR values for Form 512
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Figure C.27. The conditional distributions of the RLR values for Form 521
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Figure C.28. The conditional distributions of the RLR values for Form 522
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Figure C.30. The conditional distributions of the RLR values for Form 532
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Figure C.32. The conditional distributions of the RLR values for Form 612
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Figure C.33. The conditional distributions of the RLR values for Form 621
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Figure C.34. The conditional distributions of the RLR values for Form 622
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