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ABSTRACT

THE NEW GOODNESS—OF-FIT INDEX FOR THE MULTIDIMENSIONAL

ITEM RESPONSE MODEL

By

Shu-chuan Kao

The current research is concerned with the goodness-of-fit of the multidimensional

item response theory (MIRT) model to binary test data. Based on the R2 analog

proposed by Estrella (1998) for the dichotomous dependent variable model, the new

goodness-of-fit index, the RLR index (Ratio of Log Residuals), was proposed to reflect

the ratio of error reduction when adding dimensions to the MIRT model.

The RLR index demonstrated nice statistical properties in term of the results from

two simulation studies. Compared to the G2 test and G2 difference test from

TESTFACT, the RLR index could identify true dimensionality with Type I error rates less

than .05 and demonstrate high statistical power to reject wrong models for most cases.

The findings also indicated that the RLR index was sensitive to different levels of item

discrimination, the variation of item difficulties, inter-factor correlation, and item-factor

structure. It was also found that a large sample size and a long test could generate more

accurate dimensionality decisions. Regarding the analysis of real data, one statistical

dimension was suggested to describe the Grade 4 Mathematics Test of the Michigan

Educational Assessment Progress (MEAP) testing program. The unidimensional finding

was supplemented with the discussions in term of the test item content, the

representativeness of the content-related dimensions, the definition of dimensionality,

and the assumptions of the compensatory MIRT model.
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CHAPTER I

INTRODUCTION

Dimensionality plays an important role in test score interpretation and the validity of

inferences made from tests. and is one of the critical issues in educational measurement.

For many testing practitioners, it seems unreasonable to use the common data analysis

procedures assuming that the data are unidimensional while the assessment tools,

especially achievement tests, are designed to measure multiple content knowledge and

skills. When tests are planned to measure different cognitive abilities or content

knowledge, and examinees are required to demonstrate more than one ability to answer

items correctly, the properties of the resulting test response data are difficult to describe.

For instance, a mathematics test may contain “story-type” questions. From the

psychological point of view, examinees will have to use mathematical skills and reading

abilities to correctly answer such questions. From the statistical point of view,

psychometricians may need more than one statistical variable to represent each person in

order to sufficiently model the interaction between test items and examinees.

Describing the statistical characteristics of potentially multidimensional data by the

traditional procedures assuming unidimensionality may not only cause measurement

problems but also lead to inaccurate score interpretation.

1.l Different Perspectives to Investigate Data Dimensionality

With the intention to investigate the likely multidimensional nature embedded in the

item response data, psychometricians have developed different perspectives to interpret



dimensionality. Based on Embretson’s (I985) definition, dimensionality indicates the

number of hypothesized psychological constructs required for successful performance on

a test. This definition of dimensionality can be referred to as “psychological

dimensionality." In psychological measurement, the number of dimensions in the model

is often based on cognitive theories and each dimension represents a specific latent trait

being modeled. In educational testing, the psychological constructs are often attributed

to content domains of interest, reflecting the purpose of the test. However, in the real

testing situation, the sources of multidimensionality are still unclear. Besides the

desired psychological traits or content knowledge, other undesirable factors that may be

the cause of multidimensionality include: different item format (Tate, 2002); test

speededness (Bock, Gibbons, & Muraki, 1988; Douglas, Kim, Habing, & Gao, 1998);

item dependency from testlet items (Ferrara, Huynh, & Michaels, 1999; Thissen,

Steinberg, & Mooney. 1989); and inappropriate design of test administration conditions

(Tate, 2002). Determining the number of psychological dimensions to model test data,

or deciding how well the model fits data, requires validity studies to supplement the

statistical index. This implies that even if the test is known for requiring examinees to

demonstrate two different cognitive abilities to answer the items correctly, validation

studies are needed to verify that the two psychological dimensions in the model match the

hypothesized constructs.

Another definition of dimensionality is based on the statistical properties of the test.

data. According Lord and Novick’s (I968) definition, dimensionality is the total

number of abilities required to satisfy the assumption of local independence. This

assumption indicates that an examinee’s responses to the items in a test are statistically

I
Q

 



independent iftheir ability level is taken into account. The probability of any particular

item response pattern for an examinee is the product of individual item probabilities.

When the assumption of local independence is satisfied, the complete latent space is

defined and, at the same time, the number of dimensions needed to summarize the data is

specified. In terms of these explanations, this kind of definition of dimensionality can

be referred to as “statistical dimensionality.”

Unlike the psychological dimension, determination of the number of statistical

dimensions depends on the mathematical properties in the data under the assumption of

local independence and monotonicity'. Harrison (1986) and Tate (2002) concluded that

every set of test responses is multidimensional to some degree. To decide the data

dimensionality, many researchers (Berger & Knol, I990; Junker & Stout, 1994)

suggested that the latent traits that underlie test data can be classified as major (i.e.,

dominant) and minor factors. Humphreys (1985) argued that the construction of tests

that are valid for intended purposes requires tests that are sensitive to differences on a

dominant trait and numerous minor factors. In order to measure the dominant factor of

interest (e.g., computation ability), the inclusion of numerous minor factors is inevitable.

Wainer and Thissen (1996) suggested that item responses will always reflect either

random or fixed multidimensionality. The random multidimensionality is caused by the

presence of minor dimensions or nuisance dimensions other than those planned to

determine the responses. The fixed multidimensionality corresponds to the number of

dimensions the test is designed to measure. Concerning the unidimensionality

assumption of IRT, Ackerman (1994) pointed out that the unidimensionality should never

 

l Suppes and Zanotti (l981) proved that all the data can be modeled unidimensionally when the restriction

of monotonicity is relaxed. In this case, the dimensionality is no longer an issue in data modeling.

However, the explanation of the relationship between ability and item response will be obscure.



be assumed but should be verified. It would be considered problematic to analyze

multidimensional data with the statistical procedures assuming that the data are

unidimensional.

To clarify the connections and distinctions between psychological and statistical

dimensions, researchers (Reckase, 1990; Reckase, Ackerman, & Carlson, 1988) defined

dimensionality as the minimum number of mathematical variables needed to summarize a

matrix of item response data. In other words, to fully describe all the differences related

to the test for the examinees in the population, the minimum number of statistical abilities

required in the model would be considered as test dimensionality. Reckase (1990)

indicated that for a test to be modeled unidimensionally, tests do not have to measure

narrowly defined, pure psychological traits for statistical procedures that assume

unidimensionality. Test items that measure the same combination of traits will likely

generate unidimensional data when examinees interact with them. Therefore, it is

possible to have statistically unidimensional item response data even though the

psychological dimensions needed to correctly answer the questions are greater than one.

1.2 Dimensionality and Multidimensional Item Response Theory

Determining the number ofdimensions needed to explain the item response data is

often of substantive or methodological interest not only for educational measurement, but

also for psychological studies. Speannan (1904) first argued that the performance on

sets of tests could be explained by individuals” levels on general and specific traits.

Since then, determining the number of dimensions needed to summarize a set of data has

been an important research question. The study of test dimensionality is the essential



issue for the investigation of test construction, test validity, reliability, fairness, and the

interpretation and use of test scores (Choi, I997; Tate, 2002). For the past decades, a

number of studies have been conducted to explain test data relaxing the restriction of

unidimensionality assumption, and the methodology ofthe Multidimensional Item

Response Theory (MIRT) has been more widely accepted. MIRT offers a new

methodology to analyze test data in such an elaborate way that item characteristics are

independent of the sample, and the examinees’ ability estimates are not test-dependent.

However, the appropriate use of any MIRT model depends upon the good fit between

model and data. All the MIRT-related testing techniques, such as multidimensional

parallelism, multidimensional equating, multidimensional-based computerized adaptive

testing, can be performed only when the data dimensionality is specified. Thus, it can

be concluded that the applicability of MIRT rests on the availability of an appropriate

model-data-fit index.

Beyond generating different mathematical MlRT models, researchers also proposed

various model-data-fit indices to help determining the appropriate number of dimensions

used in the MIRT models. However, no procedure for MIRT model selection has been

universally accepted so far. Even though the MIRT calibration computer programs,

such as TESFACT (Wilson, Wood, Gibbons, Schilling, Muraki, & Bock, 2003) and

NOHARM (Fraser, 1988), are available, the problem of deciding the number of

dimensions needed to model the data is still very much a topic of investigation. The

current goodness-of—fit indices (e.g., the G 2 test provided by TESTFACT and the

indices based on residual analysis) do not demonstrate good statistical properties in

dimensionality detection (Berger & Knol. I990; De Champlain & Gessaroli, 199 l;



Hambleton & Rovinelli, 1986; Mislevy, 1986). In order to correctly analyze test data

with MIRT, the development of a valid model-data-fit statistic is not only desirable, but

necessary.

1.3 Purpose of the Study

The main purpose of this study is to propose and assess the use of the new

goodness-of—fit index for MIRT model selection. Specifically, the degree to which the

minor factors should be considered significant was evaluated in terms of the proposed

index. Based on the results of simulation studies, the research demonstrated the

accuracy and stability of the proposed goodness-of—fit index in detecting true

dimensionality of test data under various testing conditions. The statistical

characteristics of the proposed index were compared with those ofthe traditional )8 tests.

Besides demonstrating the statistical properties for the simulated data, real test data were

used to show the applicability of the proposed index in a real testing situation.

The significance of the study is to offer a more reliable and testable goodness-of—fit

index with which to determine the number of dimensions for the MIRT model to properly

calibrate test data. The procedure proposed in this study offers the theoretical base and

empirical evidence to decide the goodness-of—fit for MIRT models. The results of this

work have potential use for both theoretical researchers and those who work in applied

measurement. With this information, MIRT users would have better reference to decide

the minimum number of dimensions needed to model test data and make more valid use

of test theories.



CHAPTER 2

LITERATURE REVIEW

To begin this chapter, the MIRT model used in this study is elucidated in detail.

The chapter then provides a review of model-fit studies concerning MIRT. Next, a new

goodness-of-fit index is proposed along with the theoretical background. Finally,

evidence is presented to demonstrate the feasibility of applying the index to describe the

model-data-fit for MIRT model.

2.! Multidimensional Item Response Theory

Psychometricians have developed a number of MIRT models (see Reckase &

McKinley, 1982; van der Linden & Hambleton, I997) assuming a specific form of the

item-examinee interaction on the basis of more than one ability dimension and attempt to

decide the number of dimensions and which item measure which dimensions.

Classified by their mathematical forms, these models can be distinguished as

compensatory or partially compensatory, that is, whether or not high ability on one trait

can compensate for low abilities on other traits. For the compensatory models (e.g.,

McDonald, I967; Reckase, I985; Reckase & McKinley, 199]), the performance on the

item is determined by a linear combination of the multiple abilities so that high ability on

one dimension can compensate for low abilities on other dimensions. By having high

abilities on some dimensions, a probability of I for correct response can be obtained even

with very low abilities on other dimensions (Reckase. l997b). Concerning the partially



compensatory models (Sympson, 1978; Whitely, l980)2, the probability of correct

response decreases with an increase in the number of dimensions (Reckase, 1997b).

The multiplicative nature of the model allows an examinee to partially compensate for

low abilities on one dimension by being high on other dimensions. Because most of the

research on dimensionality has been done using compensatory models and the calibration

computer programs are currently available only for that model, the logistic

multidimensional compensatory two-parameter IRT model (Reckase, 1985; Reckase &

McKinley, 1991) was employed in this study.

In this model, the probability of a correct response to item 1' can be expressed as

—. '—.

exp(a,' 67 + (1'))
 

(1)])(lli/:I|ZIi,di.éj)-: _.,_.. 9

‘ l+exp(a,'6j+d,-)

where P(u,-j : 1151,4351) is the probability of a correct response of personj on item i

in the k-dimensional ability space,

ug- represents the item response for personj on item 1',

-.

ai is a vector of parameters representing the discriminating power of item 1',

d1 is a parameter related to the difficulty of item i,

B]- is the vector of abilities for examineej. and,

e is the mathematical constant 2.7183.

Under this framework, each examinee is represented as a data point in this

k-dimensional latent space. This equation defines a surface indicating that the

 

2 For example, Sympson‘s (1987) model can be expressed as

n

P(X—l|é-Ei-l;-)-n[1+ex [(1-(6- —b- )1‘
" 1* 111— 'prk 7k ~rk ~

k=1

where k indicates the dimension; ark and by, are the discrimination and difficulty parameters, respectively.

The root of the second derivative ofthis equation does not define a difficulty function but gives a single

value for each dimension. That is, there is b parameter for each dimension.



probability of a correct response for a test item is a function of an examinee‘s location in

the ability space specified by the H-vector. The elements of the 6-vector are statistical

constructs that may or may not correspond to any particular psychological traits or

educational achievement domains (Reckase, l997a). Besides, there is nothing in the

model that requires the fl-coordinates to be uncorrelated. The H-coordinates are for

orthogonal axes, but the coordinates may be correlated. If the correlations among the

H-coordinates are constrained to be 0.0, then the observed correlations among the item

scores will be solely accounted for by the discrimination parameters (Reckase, l997a).

The interpretations of the model parameters are somewhat different from those in

the UIRT model. The item discrimination parameter for the MIRT model, assuming

orthogonal axes. is represented by Reckase and McKinley (1991) as the length of the

discrimination vector. The length, MDISC,-, as shown in equation (2), indicates the

maximum overall item discrimination ofthe item 1' for the best combination ofabilities.

The computation of MDISC; can be expressed as

(2)

 

where k is the number of dimensions in the 1‘) space, and (1,1. are elements in the vector a,-

given in equation (I). The discrimination ofan item is a function ofthe slope at the

steepest point and is best in a particular direction in the multidimensional space. The

direction ofthe greatest discrimination in the multidimensional space is

(1,1. - . 3

MDISC, ( )
COSO'ik :

where am is the angle from the k-th dimension.



The item difficulty parameter, MDIFF,-, is defined as

MDIFF,= — d"_— . 4
MDISC, ( )

This value indicates the distance from the point of best discrimination to the origin.

MDIFF,- can be interpreted much like the b-parameter in UIRT. A negative MDIFF,-

value suggests an easier item, whereas a positive value indicates one more difficult.

Graphically, test items can be summarized by a vector plot so that the geometrical

characteristics ofMDISC and MDIFF can be clearly represented. A two-dimensional

example, as shown in Figure 2.1.1, shows that the distance from the vector’s base to the

origin is MDIFF, and the length of the vector is MDISC. The extension of the vector

goes through the origin, and the base of the vector is located on the line where examinees

have a .50 probability to answer the item correctly. The vector plot allows plotting more

than one item on one graph. Item vectors pointing in the same direction measure the

same combination of 61 and 62. By examining the directions of the item vectors, the

similarities among items and the dimensional structure can be identified.
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Figure 2.1.1. Item vector plot (a1: 1, a2: 0.6, d= - 0.5)



2.2 Review of Goodness-of—F it Indices for Multidimensional Item Response Models

The dimensionality of test data is difficult to assess and is often based on personal

judgment. Several studies (Berger & Knol, 1990; De Ayala & Hertzog, 1991; De

Champlain & Gessaroli, 1996; Douglas, Kim, Roussos, Stout, & Zhang, 1995;

Hambleton & Rovinelli, I986; Hattie, I984, I985; Nandakumar, I994; Roznowski,

Tucker, & Humphreys, 1991; Stone & Yeh, 2006; Tate, 2003) were conducted to compare

the relative effectiveness of the statistical procedures for detecting dimensionality of test

data. These methods, available for assessing dimensionality, can be divided into two

types: parametric and nonparametric procedures. The parametric procedure includes

methods based on the mathematical equivalence between factor analysis models and the

MIRT models (Knol & Berger, 1991; McDonald, 1967, 1985, 1989a). These studies

suggested that the problem of assessing dimensionality in MIRT models for dichotomous

data can be approached from a factor analytical point of view. An interpretation of

multidimensional data structure is derived from the estimated factor loadings of the

model. Conversely, the nonparametric procedure involves a collection of methods that

avoid the problem of fitting an assumed parametric model3. The item covariance-based

methods only assume that the item response function is monotonic and assessing

dimensionality involves evaluating the conditional item associations. However, to

perform goodness-of-fit studies, McDonald and Mok (I995) emphasized that the latent

 

3 The item covariance-based methods include: Stout’s essential unidimensionality procedure (Nandakumar

& Stout, 1993; W. F. Stout, 1987) implemented in DIMTEST (W. Stout, Habing, Kim. Roussos, & Zhang,

1993); assessing multidimensional approximate simple structure DETECT (Kim, 1994; Zhang & Stout,

1995, I996); hierarchical cluster analysis HCA/CCPROX (Roussos, 1992, 1993; Roussos, Stout, & Marden,

1998) based on proximity measure; Holland-Rosenbaum’s test of unidimensionality, conditional

independence, and monotonicity (Holland & Rosenbaum, 1986; Rosenbaum, I984); Bejar’s dimensionality

assessment procedure (Bejar, 1980, 1988); and Tucker and Humphrey’s methods on the principle of local

independence and second factor loadings (Roznowski et al., 1991).



trait dimensionality should be assessed on the basis of the misfit ofa latent trait model,

not by indices that are not based on the model to be fit. Since this study only focuses on

the compensatory logistic MIRT model, only the fit indices based on the parametric

procedures, which can be classified into four types, will be included in the following

sections. Even though different methods were proposed in the past, the focus of the

problem was the same: to decide whether the minor factors are large enough to represent

significant dimensions, or whether they are merely nuisance in the data.

2.2.1 Exploratory Linear Factor Analysis

Principal Component Analysis (PCA) and common Linear Factor Analysis (LFA)

have been popular methods for exploring the dimensionality of dichotomous test data.

In the studies of PCA or LFA, determining the number of components is often based on

the amount of explained variance from phi or tetrachoric correlation matrices. Among

the procedures are the well-known eigenvalue greater than 1.0 rule (Kaiser, 1960) and the

scree plot test (Cattell, I966).

The phi correlation coefficients generally produce a positive definite correlation

matrix and tend to avoid the problem of Heywood cases (Berger & Knol, 1990).

However, the LFA of phi correlation matrix was found to overestimate the number of

underlying dimensions in any data (Hambleton & Rovinelli, I986). The identification

of spurious difficulty factors is related to the characteristics of the items rather than to

true underlying relationships (Guilford, 1941). That is, the choice of cut points affects

the values of the expected phi correlation coefficients. Factor analysis of phi correlation

matrix of binary variables produced by the same underlying correlation structure but

dichotomized at different cut points can conform to factor models with different structure



and different numbers of factors (Mislevy, I986).

LFA of tetrachoric correlation matrix theoretically can avoid the problem of

“difficulty” factors for dichotomous free-response items. Tetrachoric correlation

coefficients can produce better estimates of the correlation than phi correlation

coefficients, but the assumptions, such as the distribution of the latent variables being

bivariate normal, and the latent variables being measured at the interval level should be

obtained (De Ayala & Hertzog, 1991). However, when ability distributions are not

normal and the item response function is not normal ogive, the use of tetrachoric

correlations is inappropriate (Lord, 1980). Furthermore, tetrachoric correlation

coefficients will become unstable when extreme values are reached. Tetrachoric

correlation matrix will often not be positive definite and is more likely to produce

Heywood cases (Berger & Knol, 1990).

Although the criticism of the use of tetrachoric correlation in LFA was clear, some

researchers still found it useful when used appropriately. Knol and Berger (1991)

considered various common factor analysis methods and concluded that, for large-scale

applications, an unweighted common factor analysis of tetrachoric correlations performed

as well as other techniques (e.g., full-information factor analysis). Drasgow and Lissak

(1983) suggested that interpretation of data dimensionality could be enhanced by

comparing the scree plot created from real data to that created from a factor analysis of

randomly generated test data containing the same number of items. Ackerman (1994)

concluded that these methods may sometimes be inconclusive and lead to spurious

counting of dimensions, but the size of the eigenvalues in conjunction with a substantive

review of the items can lead to the conclude of how many essential traits are being



measured.

2.2.2 Confirmatory Linear Factor Analysis

McDonald (1981) suggested that the factor analytic models of item response data

can be tested with CFA, a technique often considered to be a special case of Structural

Equation Modeling (SEM). McDonald and Mok (1995) asserted that the indices

developed for SEM under the assumption of continuous variables could be applied to the

assessment of dimensionality for tests with dichotomous items.

Akaike 19 Information Criterion (AIC)

To determine data dimensionality, it would be convenient to formulate a criterion to

compare the likelihood of a k-factor model against that of the saturated model (Berger &

Knol, 1990). Given Bock and Aitkin’s (1981) ogive model, the probability ofa correct

response for ability vector (71- and item 1' is

_. m

P(X,-j 2116]): <1) (3,- — ZAMQMW, , (5)

1:21

where y, is a threshold value for item 1', 6,1 is the ability of personj on ability

dimensional k, 21,-], is the loading ofitem i for dimension k. Akaike (1974) developed an

information theoretic criterion for identifying the optimal and parsimonious models in

data analysis. Akaike‘s information criterion is defined as:

A1C(m) = -2 ln[1.m(é_,-. 1,. a,, 3?,- )j+ 2K,,,, (6)

where anléj, 27,0}, 71) is the maximized likelihood and K," is the number of



independent parameters in the model. The term 2Km is the penalty term which corrects

for over-fitting due to increasing bias in the first term when the number of parameters in

the model increases.

The term A1C(m) is a measure of badness-of-fit, and the minimum value of the

AIC(m) indicates the true” dimensionality (Berger & Knol, I990). The critical value

of the AIC statistic is embodied in the penalty for over-fitting, and the Type I error rate

decreases exponentially with increased sample size (McKinley, I989). The AIC index

has been recommended as a criterion for model selection, because when computed for a

series of models of increasing dimensionality, it attains an optimum value for a model of

intermediate dimensionality, thus allowing objective model selection (Berger & Knol,

1990; McDonald & Mok, I995).

The practical performance ofAIC in test data was not conclusive. Berger and Knol

(1990) found that the AIC seemed to somewhat outperform the asymptotic )6 statistic, but

these results were based on a small number of computer runs with sample sizes of 250

and 500. McKinley (1989) applied the AIC to artificial data fitting a confirmatory

multidimensional item response model with the sample size of 1000, and found that AIC

outperformed the likelihood ratio )8 test. McDonald (l989b) pointed out, however, that

in applications, for a sufficiently small sample size, the optimum value must be attained

by the unidimensional model, and for a sufficiently large sample size, it must be obtained

by the saturated model. He concluded that AIC behavesjust like the )8 significance test

itself and cannot possibly be recommended for the use with real data.



Muthen .‘s' Robust Weighted Least Squares (Mplus)

Muthen proposed a probit function and a robust Weighted Least Squares (WLS)

estimation procedure to assess dimensionality. This method was implemented in the

computer program LISCOMP (B. Muthen, 1987) but later replaced by Mplus (L. K.

Muthen & Muthen, 1998). According to Muthen (1978), the parameters of the factor

analytic model for dichotomous variables can be estimated by minimizing the weighted

least-square fit function

F=%(.s—0')'W_l(s—0'), (7)

where 0 contains the population threshold and tetrachoric correlation values; 5 includes

the sample estimates of the threshold and the sample tetrachoric correlation values; and

W is a consistent estimator of the asymptotic covariance matrix of s, multiplied by the

total sample size. The F function minimized in the WLS solution asymptotically

follows a )8 distribution with df=k(k-1)/2-t, where k is the number of items and t is the

number of parameters estimated in the model. If the null hypothesis in not true, the

discrepancy function is distributed asymptotically as non-central chi-square. With WLS

method, determining dimensionality is based on the fail-to-reject hypothesized model.

That is, the hypothesis testing starts with the unidimensional model, and stopped when

the hypothesized dimensionality is not rejected. In application, Stone and Yeh (2006)

found that Mplus worked as well as NOHARM and TESTFACT when guessing was not

modeled in the data. Tate (2003) also found that WLS procedure worked excellent for

data with no guessing using an admittedly crude fit index equal to the ratio of x2 to

degrees of freedom (112/d1). However, for data generated with guessing, this procedure

generated distortions in the recovery of the true structure (Stone & Yeh. 2006).



2.2.3 Bivariate-lnformation Nonlinear Factor Analysis (NOHARM)

Starting from Spearman’s common factor model, McDonald (1982) showed that IRT

models are a special case of Nonlinear Factor Analysis (NLFA). He provided a general

framework with a variety of models including unidimensional/multidimensional,

linear/nonlinear, and dichotomous/polytomous models. The NOHARM program (Fraser,

1988) employs McDonald’s (McDonald, 1981, I982, I985) NLFA, which uses a

reparameterization of latent trait theory and “ nonlinear harmonic” approximations to the

normal ogive error distribution (Fraser & McDonald, 1988). In this process, the model

is fit by unweighted least square which minimizes the squared difference between the

observed frequencies of correctly answering item 1' and j, and the predicted frequencies of

the joint occurrence ofthe pair of correct responses. Using McDonald’s NLFA,

researchers have developed various goodness-of-fit indices to decide the dimensionality

of test data.

Approximate X: Yes! ofa Fitted NOHARM Model

Gessaroli and De Champlain (1996) proposed an approximate 712 test to assess

dimensionality based on the estimation from NLFA. This approximate )8 statistic,

originally proposed by Bartlett (1950) and outlined in Steiger (1980a; 198%), tests

whether all of the off-diagonal elements of the residual correlation matrix are equal to

zero after fitting a k-factor NLFA model. The approximate )8 statistic is defined as

i lk :

') .

2’ =<N—3)XZ:,;"’. (8)

i=1j=l



,2”)

where 2,, is the square of Fisher’s Z transformation corresponding to the residual

correlation between item i and j, and N is the number of examinees in the sample. This

statistic is distributed asymptotically as a x2 distribution with the degrees of freedom of

.5(m)x (m - I) —t , where m equals the number of items and t is the total number of

independent parameters estimated in the NLFA model.

In an exploratory analysis based on adding successive factors to an initial

unidimensional model, the search for an appropriate solution stops once the significance

test indicates a good fit. Results from various simulation studies showed that this

approximate )6” statistic is quite accurate in determining the number of factors underlying

simulated item responses with small sample sizes (500 and 1000)(Gessaroli & De

Champlain, 1996). However, Gessaroli and De Champlain (1996) also emphasized that

this approximate 712 statistic has the same limitation as other )6 statistics: it tends to

falsely reject the correct k-factor model with large sample sizes and fails to reject

inaccurate models with small samples.

Residual Covariance Analyses afier a Model Has Been Fitted to the Data

Based on the mathematical equivalence of the common IRT models and NLFA

models, researchers (Choi, I997; Hattie, 1984; McDonald, 1981, 1989a) suggested that a

useful way to assess dimensionality is to analyze the residual covariance matrix obtained

after fitting a model to an response matrix.

One of the model-data-fit indices reported in the NOHARM output, developed by

Tanaka (1993), can be used with McDonald's NLFA model. This fit index is computed

using y : 1 — Tr(R2)/Tr(S2 ) , where R is the item residual covariance matrix, and S is



the matrix containing the raw product-moment of item pairs (Tanaka, 1993). A small

value of 7/ implies that the residual covariances are close to the observed covariances,

indicating a bad fit of the model. For practical application, Tanaka (I993)

recommended that the value of y should be greater than .95 for a model to be

considered as good fit to the data. With this rule of thumb, McDonald & Mok (1995)

used this index to assess the dimensionality of Law School Admission Test (LSAT) data

and found that this index under-identified the second common factor.

Other residual covariance-based indices can be found in Berger and Knol (1990).

Let A1, be the n><k estimated matrix of factor loadings from a solution with 11 items and

k estimated common factors, and R be the tetrachoric correlation matrix. The

off-diagonal elements ofthe residual matrix R. , where R‘ = R -— AkA'A, , are the residuals r” .

Then, the equation of the mean squared residuals can be formulated as

f. =2intn—Iir'ZZmJ-‘i’. (9)

i<j

The mean absolute residuals is

f2 =21ntn—Iii“ZZanl. (10)

i<j

As the formulas show, f2 is less sensitive to outliers than f1 because it uses the

absolute value instead of the square in the equation, and thus is more often employed in

previous studies. Hattie (1984; 1985) showed that f2 can effectively discriminate

between unidimensional and higher dimensional item response models after fitting the

model by McDonald’s NLFA. However, Hambleton and Rovinelli (1986) found that the

residual analyses method provided disappointing results. The problem ofapplying this



criterion is its ambiguity of when the criterion is small enough to decide a good fit

between the model and the data. In order to make a accurate decision based on f2, a

possible solution is to compare the criterion after the fit ofa k-dimensional model with

that from random data (Berger & Knol, 1990).

Another fit index using residuals after fitting the NLFA model is the Incremental Fit

Index (IFI) proposed by De Champlain & Gessaroli (199 l ). The equation can be

expressed as

SS“,g (k — factor) — SSreg ((k + l) — fizetor)

SS“,g (k - factor) '

 1H,: (11)

IFI calculates the proportion of the sum of squares of the residual covariances from the

k-factor solution to that of the (k+ l)-factor model. If the (k+ I )-th factor is important in

explaining the structure of the items, then the IF I should be quite large.

The theoretical advantage of these indices is that the assessment of dimensionality is

made by an IRT-based model. The measure of model fit is directly related to the

function minimized in the estimation procedure. However, there is an inherent

weakness in this technique: there is no statistical significance test to decide the misfit of

the model (De Champlain & Gessaroli, 1991).

2.2.4 Full-Information Item Factor Analysis (TESTFACT)

The computer program TESTFACT (Wilson et al., 2003) allows the practitioner to

estimate the parameters and to fit various Full-Information Factor Analytic (FIFA)

models. This estimation method uses the marginal maximum likelihood procedure

outlined by Bock and Atkin (1981) via the expectation-maximization algorithm

 

 



(Dempster, Laird, & Rubin, 1977).

The FIFA uses information contained in the joint frequencies ofthe 2" contingency

tables of response counts on an n-item test. The probability of a correct response to an

item is a function of an examinee‘s ability with respect to one or more latent factors and

the location of the threshold parameters along the continuous variables. The thresholds

and factor loadings are estimated so as to maximize the multidimensional probability

function

L,” = P(X) = —'—'fi.’1 P."- ...P. 'S (12)
I

r] lrzl...r5!

, where r, is the frequency of response pattern s; and R is the marginal probability of

the response pattern based on the item parameter estimates.

The user can assess the fit ofa given FIFA model using a likelihood-ratio )6 statistic

provided by TESTFACT. The FIFA yields a discrepancy function based on the ratio of

the likelihood under the fitted model to the likelihood based on a saturated model, which

fits the multidimensional distribution to the empirical frequencies. The likelihood-ratio

)8 statistic can be defined as

,n

,2 h r,

(I :2 rln—~— , (I3)21:] (NI?)

where r, is the frequency of response vector 1 , and I”, is the probability of response

vector l. The degrees of freedom are 2"-n(k+l)+k(k-1)/2 ,where n is the number of

items and k is the number of factors. The null hypothesis ofthis significance test is H0:

(1: k. The decision about dimensionality is based on the point where the improvement

. . . . 7.7 . . .

of fit due to adding the net factor 13 not Significant. lfthe (1“ 15 not Significant, the

 



k-dimensional can be considered having good fit to the data. In this case, any additional

factors could be attributed to sampling variation and therefore should not be interpreted.

However, Mislevy (1986) found that this G 2 statistic often poorly approximates the )6

distribution given the large number of empty cells typically encountered with actual data

sets. Moreover, Berger & Knol (1990) found that this ()2 test procedure erroneously

favor the alternative hypothesis for almost all conditions.

Based on the work of Haberman (I977), equation (13) can be transformed to the

likelihood-ratio G 2 difference test to assess the fit ofa model. The statistic can be

computed using the following expression

2 2 7

Gditi‘ = GIT“ — G27. (14)

where G5,, is the value ofthe likelihood ratio G2 statistic obtained after fitting a

. . . . W’7 . . ‘

one-factor model, and GE ,. IS the likelihood ratio (1‘ statistic from a two-factor model.
..I

The degrees of freedom are the difference between the a)fof one- and two-factor models.

Again, the decision about dimensionality is made when the improvement of fit due to

adding the proceeding factor is not significant. However, studies (Berger & Knol, 1990;

De Champlain & Gessaroli, 1996) indicated that this likelihood-ratio G2 difference test

performs poorly for deciding the dimensionality of an item response matrix.

Overall, the goodness-of-fit indices proposed for the MIRT models in the literature

can be summarized into two categories. The indices in the first category may tell the

increase of fit or decrease of misfit when adding dimensions to the estimation model, but
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where 0,3,, is the value ofthe likelihood ratio (1’2 statistic obtained after fitting a

‘ ,7 . . . . 7 . .
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Overall, the goodness-of—fit indices proposed for the MIRT models in the literature

can be summarized into two categories. The indices in the first category may tell the

increase of fit or decrease of misfit when adding dimensions to the estimation model. but



there is no significance test orjustifiable criteria for deciding a good fit. The other

category contains various )8 statistics. Even though a significance test is available for )6

statistics, the problem of deciding the data dimensionality is not yet solved. Kendall

(1977) pointed out that Pearson’s x2 and the likelihood ratio statistics are often regarded

as equivalent because of their asymptotic properties. In practice, however, the large

sample properties of )8 statistics are often unacceptable although the maximum likelihood

estimators maintain standard large sample properties (Berger & Knol, 1990). What is

more, the common problem for the 712 test for the fit of a model is its sensitivity to sample

size. As McDonald (1989a) and Berger & Knol (1990) indicated, for large samples this

procedure almost always rejects the null hypothesis and leads to wrong conclusions.

Therefore, in order to investigate the model identification problem, the ideal

goodness-of-fit index should be able to reflect the degree of fit of the model to the data,

and also not be overly sensitive to sample size. Besides this, the index should be

reliable and also easy to interpret. To meet these requirements, a new index is

introduced in the following sections.

2.3 The Development of Goodness-of-Fit Index for the MIRT Model

This research proposes a goodness-of—fit index applying the characteristic of R2 to

the MIRT model. In the first section, the basic relationship between R2 and the

likelihood ratio (LR) test is reviewed. Then, the likelihood-based R2 analog proposed by

Estrella (1998) for the dichotomous dependent variable (DDV) model is introduced.

Lastly, the goodness-of—fit index based on the change of R2 analog is proposed for

describing the fit ofa MIRT model.



2.3.1 The R2 in the Ordinary Least Squares Model

Regression methods are an integral component of any data analysis concerning the

relationship between a response variable and the explanatory variables (Hosmer &

Lemeshow, 2000). The coefficient of determination, R2, is a measure of how well the

statistical model explains the observed data and is invariant to units of measurement. It

describes the percentage of the total variance that can be explained by the regression

model and becomes larger when the model fits the data better. The change ofR2 reflects

the contribution of reducing residuals or improving overall model fit by adding an

explanatory variable to the regression model. When it comes to select predictors for a

multiple regression model, the change of R2 is often used with the partial F test to decide

if the inclusion of a predictor contributes significantly to the overall model fit.

Magee (I990) articulated the monotonic relationships between R2 in the standard

linear model, the Ward (W) statistic, and LR test statistic. On the basis of Magee’s (1990)

work, the inherent statistical characteristics of R2 can be elucidated as follows:

Suppose that a dependent variable y has some functional relationship with the

independent variable X,

y = fl'X + a , (15)

where ,8 is a set ofparameters, and e is the residual which consists of iid normal variates

with a mean of 0. The first element of the [1’ vector is generally considered as the

intercept term, [30. Let )7 denote the sample mean ofy, and ,9 : X(X'X)‘l X'y, where

5» is the predicted value ofy from the Ordinary Least Squares (OLS) model. The total

sum of squares (SST) is = (y — y)'(y — )7). and the residual or error sum of squares (SSE)



is (y — _)7')'(y — )3) . For the model containing only the intercept term [1b, 33 = )7 and thus

SSE is equal to the total variance SST. When an independent variable is added to the

linear regression model, the decrease in SSE is due to the non-zero slope coefficient for

that independent variable. To show the amount of error reduction by the independent

variable, the R2 statistic for the OLS model is defined as

R3=r£§£.

an
“O

The term on the right-hand side indicates the percentage by which error is reduced. To

test the null hypothesis, which means all the k-l non-intercept elements of[I are 0, the F

test can be expressed as

Cur—nu)"

(k — i)
 

 

 

F: 3%” ' (n)
/ (n — k)

And based on equation (16) and (17), it can be concluded that F is a monotonic

increasing function ofR2 in the form of

7

R?

F: 'lkf” . (m)

(I — R-ir’
(n — k)

Besides, ifthe error term in the OLS model is assumed to be normally distributed. F

statistic is related to W statistic in the form of(e.g. Magee. 1990)

n

W=(k—l)x( )XF, (19)

n — k

SST —— SSE

given that W = n x[

SSE

J. Consequently. from equations (18) and (I9), Wcan

be reformulated as
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W=n>< R . (20)

i—R2

In addition, Magee (1990) also showed that LR statistic for the same null hypothesis

 LR: —2|og[ If

L

SSE SST

=—nxl0"—-——=nXIO’——, 21U] °(ssr) ASS/5) ( )

where log LC = constant —g log SST (log-likelihood ofthe fully constrained model)

log LU = constant —3 log SSE (log-likelihood of an unconstrained model)

The model containing predictors is referred to as an unconstrained model because

adding a predictor means relaxing a restriction in the maximization of the log-likelihood.

Nagelkerke (I991) explained that the value of —2 log L(. indicates the “error variation” of

the model with only the intercept term. It is equivalent to the SST in the OLS model.

With regard to the value of -2 log LU , it is similar to the “error variation” for a model

with predictors, analogous to the SSE in the OLS model (Menard, 2000). Under the null

hypothesis that all the slopes in the population are 0, LR test follows a )8 distribution with

k degree of freedom, where k is the number of predictors in the model.

In the standard linear model with normally distributed errors, there is a simple

relationship between R2 and LR statistic because LR is related to W (Vandaele, 1981) such

that

LR = n x log(l + 51:] . (22)

)7

Form equation (20) and (22), the relationship between R2 and LR can be formulated as



R2 = 1 —exp(#). (23)

Just as R2 in OLS model in equation (16) can be interpreted as the proportion of

reduction in the error sum of squares, the likelihood-based R2 in equation (23) can also be

interpreted as the proportion of reduction in the -2|og-likelihood statistic (Menard, 2000).

Moreover, Estrella (1998) demonstrated that the relationship between R2 and LR

statistic can also be expressed in terms ofLR statistic per observation

ALR :fl:__z_l0g{£g_]9 (24)

n I? LU

which takes on values between 0 (misfit) and infinity (perfect fit). Accordingly to

Estrella, equation (23) can be rewritten as

L . 2

R2 =1—(f—i" = i -€XP(-ALR)- (25)
(I,

The R2 in equation (25) may be considered as a nonlinear rescaling ofLR statistic

per observation (Estrella, 1998). The endpoints of the scale are still compatible to a

straightforward way indicating a “misfit” and a “perfect fit”, respectively. Estrella

(1998) also indicated that the difference in the likelihood statistic per observation is

related to the difference in R2 in an intuitive way such that

dR2

l—R

 
= (IA/1R . i (26)

2

The left side ofthis equation can be considered as a marginal R2. This function specifies

that the change ofAM can be represented by the change of R3. The marginal increment

of fit, as shown to be consistent with the formal properties of R2 in OLS, provides

consistently accurate information to indicate goodness-of—fit (Estrella, 1998).

 



2.3.2 The R2 Analog in the Dichotomous Dependent Variable Model

In the OLS model, the common assumption is that the error term of the model, 8,

consists iid variates with a mean of zero and a fixed value of variance. This assumption

is violated when the dependent variable in the regression model is dichotomously scored.

In this case, a different regression model should be used for describing the relationship

between the predictors and the dichotomized dependent variable. A Dichotomous

Dependent Model (DDV) model can be defined in the form of a linear regression

y“ = ,B'x+ g. (27)

where y* is an unobservable variable, ,8 is a vector ofk coefficients (the first term is the

intercept), and x is a vector of the values of k independent variables. In equation (27),

y* is linear in its parameters and may range from -00 to +00, depending on the range ofx.

There is also an observable variable y, which takes only two possible values and is related

to y* in the following way:

y = l ify* > threshold

y = 0, otherwise.

With dichotomous data, the outcome must be bounded between 0 and I. The form of

the estimation equation is P(y = 1 Ix) = F(,B'x), where F is the cumulative distribution

function of e. In practice, F is usually specified as normal or logistic, but any other

continuous distribution function whose first two derivatives exist and are well-behaved

may be used (Estrella, 1998, p. 198). For a DDV model, the model parameters are

estimated by maximum likelihood estimation, which can be defined as
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The likelihood function yields maximum likelihood estimators for the unknown

parameters by maximizing the probability of obtaining the observed data. The resulting

estimators are those that agree most closely with the observed data.

In the OLS model, there is only one reasonable residual variation criterion for the

continuous dependent variable, but there are several possible variation criteria for DDV

models (Efron, 1978). Based on the conceptual and mathematical similarity to the

familiar R2, many RBanalogies have been developed for the use with models having DDV

(see Estrella, I998; Kvalseth, I985; Menard, 2000). In this study, the index proposed by

Estrella (1998) was used to assess model-data-fit for test data because of its nice

statistical properties. Estrella’s measure of model-fit possesses the basic requirement of

R2 and has been used mainly in the areas of economics (Estrella, Rodrigues, & Schich,

2003; Herath & Takeya, 2003; Moneta, 2005; Shin & Moore, 2003; Stratmann, 2002)

and medical research (Zheng & Agresti, 2000). Based on Esterlla’s (1998) assertions,

this goodness-of-fit index has some important statistical properties that other measures

lack.

This measure is constructed by imposing certain restrictions on its relationship with the

underlying likelihood ratio statistics. These restrictions, including one expressed in terms

of marginal increments in fit, are shown to be consistent with the formal properties of R2 in

the linear case and to provide consistently accurate signals as to statistical significance.

This measure may be interpreted intuitively in a similar way to R2 in the linear regression

context, even away from the endpoints of its range values (Estrella. 1998, p. 198).

In the standard linear model with normally distributed errors, the relationship

between R2 and LR is clear. If there are n observations, of which it, indicates the case of
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The likelihood function yields maximum likelihood estimators for the unknown

parameters by maximizing the probability of obtaining the observed data. The resulting

estimators are those that agree most closely with the observed data.

In the OLS model, there is only one reasonable residual variation criterion for the

continuous dependent variable, but there are several possible variation criteria for DDV

models (Efron, 1978). Based on the conceptual and mathematical similarity to the

familiar R2, many Rzanalogies have been developed for the use with models having DDV

(see Estrella, I998; Kvalseth, 1985; Menard, 2000). In this study, the index proposed by

Estrella (1998) was used to assess model-data-fit for test data because of its nice

statistical properties. Estrella’s measure of model-fit possesses the basic requirement of

R2 and has been used mainly in the areas of economics (Estrella, Rodrigues, & Schich,

2003; Herath & Takeya, 2003; Moneta, 2005; Shin & Moore, 2003; Stratmann, 2002)

and medical research (Zheng & Agresti, 2000). Based on Esterlla’s (I998) assertions,

this goodness-of-fit index has some important statistical properties that other measures

lack.

This measure is constructed by imposing certain restrictions on its relationship with the

underlying likelihood ratio statistics. These restrictions, including one expressed in terms

of marginal increments in fit, are shown to be consistent with the formal properties of R3 in

the linear case and to provide consistently accurate signals as to statistical significance.

This measure may be interpreted intuitively in a similar way to R3 in the linear regression

context, even away from the endpoints of its range values (Estrella, 1998, p. 198).

In the standard linear model with normally distributed errors, the relationship

between R2 and LR is clear. Ifthere are n observations, of which m indicates the case of



y = 1. According to Estrella (1998), under the condition that H0 is true (all the k-I

slopes are zero), equation (28) is maximized where F(flo) = y = fl and can be

n

simplified as Lt" = y”) (I —y)"‘"' to represent the likelihood ofthe constrained model.

Furthermore, he pointed out that the function of the log likelihood per observation has a

particularly simple form that depends only on )7

l L.

All?) 5 “fl:— = ,9 ln(y) + (I — y) ln(l —y). (29)

The hypothesis HD may be tested using LR statistic. When H0 is true, the value of LR

statistic is asymptotically distributed as a x2 with the degree of freedom of k-I.

With a dichotomous dependent variable, the approach using equation (25) fails

‘ because the LR statistic per observation is bounded (Estrella, 1998). Let A be the LR

statistic per observation for DDV, then A can be expressed as

A=3IHL£LJIEUH LU —II'IL(“). (30)

n LC )7

When the model fits the data perfectly, the cumulative density function F can be

  

represented as in Figure 2.3.1. In this case, when LU = l, A reaches its upper bound.

4) F(x)

F
l ._ , .—

0

Figure 2.3.1. The cumulative density function F(x)
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Estrella (1998) indicated that the upper bound ofA can be expressed as

B=— 2In L(. = —2A(. (9), where AC is defined in equation (29). Based on this formula,

n

the upper bound B is only a function ofthe log likelihood per observation. When y

approaches either 0 or I, B approaches 0.

The derivation ofthe R2 analog is a differential equation, which bases primarily on

an analog with the relationship between marginal R2 and the Lagrange Multiplier (LM)

statistic in the linear case (Estrella, I998). The marginal R2 in the linear case may be

expressed in terms of the average LM statistic as (Estrella, I998)

dRz _ (IA/“1,

i—R2 l-Aiii

 
(31)

The marginal R2 increases with a rate inversely proportional to the distance between the

current value ofthe statistic and its upper bound. In the DDV case, as Estrella (I998)

explained, a measure based on the statistic A may be constructed using the fact

thatO S A/ B S l . The index can be designed to reflect the marginal increase of fit being

conversely proportional to I-A/B, which is the fraction of the “information content” ofy

that is still unexplained. The goodness-of-fit index,¢ , can be defined by solving the

differential equation (Estrella, I998)

 

i’(4’5 : (IA - (32)

"¢ (l-é)
B

With the initial condition 415(0) = 0. the solution ofequation (32) is

2l l
A B In LL" " "1C

21— l-— =l———’— " . 33¢ ( B) (In LC) ( )
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To demonstrate the derivation of the fit index, the mathematical proof of equations (33) is

shown in Appendix I. When A=B, (150(3) =1, and this solution also satisfies the

condition ¢0(B)=l and¢3(0)=l(Estrella, 1998). Moreover, Estrella(l998) pointed

out that ifB is replaced by "infinity” in the formula (33), then

lim i—(i-—A/B)B =l—exp(—A), (34)

B—nc

which is the exact expression for R2 in the linear case in equation (25).

According to Estrella (1998), the goodness-of—fit index,¢ , contains some desired

features for a measure of model—data-fit. First, the measure takes on values on the unit

interval and has the straightforward interpretation at the endpoints; that is, 0 corresponds

to no fit and 1 corresponds to a perfect fit. The goodness-of—fit index is based on

maximum likelihood method, which is also a common method used to calibrate test data

in the field of educational measurement. This likelihood-based measure can be

transformed into an F statistic as described in equation (18). Moreover, this index can

work well for both the dichotomous and continuous dependent variables.

2.3.3 The RLR in the Multidimensional Item Response Model

Based on the similarity between the logistic regression model (one of the DDV

models) and the logistic MIRT model (Reckase, I985; Reckase & McKinley, 1991), it is

possible to apply Estrella’s R2 analog to the MIRT model to reflect the error reduction by

adding dimensions to the model. Furthermore, in order to reflect the degree of error

reduction, the new index, which is the ratio of SSEs of two successive MIRT models, was

proposed to show the improvement of model-data-fit.

If a DDV model takes the logistic function, it can be expressed as
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l + CXPIBO + 131-V),

 
V

(35)

where Bi) is the intercept parameter and B, indicates the vector of slope parameters. The

observed variable y takes the value of I ify* is greater than a threshold value and takes

the value of 0 otherwise. The total number of model parameters needed to be estimated

is expressed as k+ l , where k is the number of predictors.

As indicated in Chapter 2.1, the logistic MIRT model is

exp(d,- +5157)
 P(UU- = i 15,-,d,.é,-)= , (36)

I+exp(d,- +515!)

where the 21,-. (11, Bj are the same as those defined in Chapter 2.1. Compared to

equation (35), d. in equation (36) can be considered as the intercept parameter and the a;

vector can be viewed as the vector of slope parameters on the 6coordinate axes. The

only difference between the two models is that the 6 vector in equation (36) contains

model parameters instead of predictors. In other words, along with the a and d

parameters, the elements in the 6 vector in the MIRT model also need to be estimated by

the model. The total number of parameters in equation (36) is n+f(n+m), where n is the

number of items,fis the number of factors, and m is the number of examinees.

Employing the likelihood based R2 analog to the MIRT model, the constrained

MIRT model can be simplified as

CXPIdi)
PU--=l d- = .

(U I ') l+exp(d,-)

(37)

This equation indicates that the probability of a correct response on item 1' depends only

on d,. Under this constrained model. a'l is estimated by nl/n, where n, is the number of
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examinees answering the item correctly, and n is the sample size. In this case, d, in

equation (37) can be considered as a nonlinear transformation of the item difficulty, also

known as the p-value. Then, the probability of correctly answering an item only

depends on the item difficulty and has nothing to do with the examinees’ abilities. For

the constrained model, the likelihood function can be expressed as

M n

LC: L(U|d,)- 1‘11‘113”’J(i—P,)'"’f, (38)

j=li=1

where an takes on the value of l or 0, which indicates a correct or incorrect response

respectively. The likelihood function for the unconstrained model (MIRT model) is

M n ..

L, =L(U|a,,d,,e )= an’f'iu- )1"a, (39)

j2 Ii=1

where un- takes on the value of I or 0. The probability in equation (39) takes two

subscripts representing a correct response of personj on item 1'. With Estrella’s R2

analog method, one can use the likelihood of the constrained model (LC) and the

likelihood of the unconstrained MIRT model (Lu) to express the proportion of the total

variance explained by the MIRT model.

The feasibility of applying the R2 analog to the MIRT model was first evaluated by

examining the distribution ofLR statistic. One of the well-known characteristics of the

DDV model is that, when the null hypothesis (all the slopes in the model are 0 in the

population) is true, LR statistic is x2 distributed. With the constrained model in equation

(37), 1000 sets of item response data were generated for 25 items and 2000 examinees,

and then were calibrated by the unidimensional MIRT model. The resulting distribution

ofLR statistic, as shown in Figure 2.3.1, has a mean of38.47 and a variance of 70.605.
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When taking sampling variation into account, this distribution approximates a x2

distribution since 0'2 : 2,11 = 2v , where vare the degrees of freedom. This LR

distribution demonstrates that the MIRT model contains the same characteristic as the

DDV model, and thus can be considered as a special form of a DDV model.
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Figure 2.3.1. The observed distribution of LR statistic from the data generated by the

constrained MIRT model

The R2 analog can be used to represent how well the MIRT model fits the test data,

but the most critical issue is to indicate whether or not the increase of fit by adding one

more dimension to the model is important. In other words, it is useful to have an index

reflecting the marginal effect of the “added” dimension to the overall model fit. Given a

test data set, two successive MIRT models, the k-dimensional model and the

(k+1)-dimensional model, are considered to describe the data. In order to indicate the
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marginal effect ofthe (k+1)-th dimension to the overall model fit, the new index is

defined as follows.

Let In LI be the log-likelihood ofthe k-dimensional MIRT model

In LII,“ be the log-likelihood ofthe (k+ l)-dimensional MIRT model

In LC be the log-likelihood ofthe constrained MIRT model

Then the R2 analog for the two models can be expressed as

 

k 21

2 InL1"’"’~

R;=l—(———(’—) ” ( and

lnL(.

.,

k+l _‘.'

. lnL 1 In!”

RE+I:I_( (V )n (-

lnL(.

Based on the equation (16). the percentage ofthe unexplained variance is

l — R2 2 £12. Taking the logarithm of both sides. the equation becomes

SST

ln(l — R2) : In(%)' Then, the ratio of the log residuals (RLR) is defined as

  

k

SSE, ,n(__|_n__L_t )

| i—R2 mm”) 1 L

7 . -

ln(l — R1211) 1n(§:9§k+l_) ln(_l_n_éiii)

SST 1,, L(.,

This index shows if the percentage of the unexplained variance in the (k+I)-th

dimensional MIRT model is smaller than that in k-th dimensional MIRT model. The

k-th dimension in equation (40) can be considered as the target dimension. The

successive dimension. the (k+I)-th dimension, can be viewed as the reference dimension.

Equation (40) focuses on the relative gain ofoverall model fit in view of comparing the

36



residuals in two models. If the k-dimensional model fits the data well, the reduction in

SSE due to adding the (k+1)-th dimension should be minor. In this case, the value of the

numerator and denominator in equation (40) are close to each other so that the RLR

approaches 1. Since the RLR index always compares the SSEs for two successive

models, for the convenience of discussion only the target dimension will be appended to

the index to show the level of dimensionality. For instance, RLR. stands for the RLR

index comparing the SSE of a one-factor model and that of a two-factor model.

The feasibility of using the R2 analog and the RLR index to determine

dimensionality is demonstrated by showing their empirical distributions in some basic

cases. In all the following examples, 100 sets of item responses were generated for a

25-item test with 2000 examinees. For different situations, different models were used

to generate the desired data.

When the data were generated by the constrained model, which only has the

intercept term, no dimensionality underlies the data. When the data are explained by the

MIRT model, the corresponding model-data-fit was reported in Figure 2.3.2. As Panel

(A) shows, the distribution of R12 has a mean of 0.021 I and a SD equal to 0.0031; the

distribution of R; has a mean of 0.0387 and a SD of 0.0044. The small values of R12

indicate that the unidimensional MIRT model explains little variance in the data. After

. . . '7 . .

adding the second dimenSion to the model, the value of R5 has little increment,

indicating limited increase in explained variance. The resulting distribution of RLR. has

the distribution with the mean of 0.5391 and SD equal to 0.0412.
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Figure 2.3.2. The distributions 0le2 , R22 , and RLR. for the constrained-model data

Another case offered here is the three-dimensional data. Item responses were

generated assuming that three dimensions were independent of each other and all item

discriminations equal to I. As shown in panel (A) in Figure 2.3.3, the mean 0le2 is

0.6972 and the SD is 0.0183; the mean of R22 is 0.9084 and the SD is 0.0183; the mean

of R32 is 0.9687 and the SD is 0.0033; the mean of R512 is 0.97 and the SD is 0.003.

Just like in the OLS model, the R2 analog raises as the number ofdimensions in the

model increases. Regarding the distribution of R37“, when the model fits the data well,

the index approaches 1. Besides, the distributions of RLR3 and RLR.) have substantial

overlapping area, indicating the similarity of the two distributions. Thus, given that the

model already fits the data well, the increase of fit by adding another dimension to the

model is limited. Concerning the improvement of fit as shown in Panel (B); RLR. has a
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mean of 0.4995 and a SD of 0.03 l 5; RLR2 has a mean of 0.6925 and a SD of 0.04 I 0;

RLR3 has of mean .996 of and 3 SD of 0.004. When the model under-fits the data, the

RLR is low and the distribution is located on the left side of the scale. Conversely, the

index shifts to the right end of the scale with little variation when the model captures true

dimensionality. The information from these distributions suggests that the RLR index

offers clear and useful information about dimensionality.
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Figure 2.3.3. The distributions of R2 and RLR for the three-dimensional data

An example of high-dimensional data was also offered to show the statistical

characteristics of the proposed indices in the extreme situation. The item response data

were generated with a 25-dimensional MIRT model assuming that all the dimensions
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were independent of each other. Besides, the item discriminations were all fixed as 1.0.

In this case, one item represented one distinct dimension in the data, and all the 25

dimensions had equal dominance of dimensionality. The results, as shown in Figure

2.3.4, indicated that the mean R12 is 0.0208 and SD is 0.0034; the mean R7? is 0.0374

and SD is 0.0047; RLR, has a distribution with mean 0.5487 and SD of 0.0505. The

distributions ole2 , R22 , and RLR. are similar to those in the constrained model. The

values of R1“ and R22 indicate that the unidimenSional and two-dimenSional models

only explain little variance in the data. These findings suggest that high dimensional

data have similar properties as the constrained-model data. Because of the lack of a

dominant factor, the increment of model-data-fit by adding dimensions to the model is

limited. To explain the data well, complicated high-dimensional models need be

                        

employed.
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Figure 2.3.4. The distributions ofR12, R22 , and RLR] for the 25-dimensional model data
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The last example offered here is to show how the R2 analog and RLR index react to

random data. For the distributions shown in Figure 2.3.5, R12 has a mean of 0.0146

and a SD of 0.0056; 1122 has a mean of 0.0259 and a so of 0.0074; RLR] has the mean

of 0.5762 and a SD of0.2098. Again, the means of R12 and R22 are as small as those

in the constrained model and 25-dimensional model, but the variation is large.

    
        
 

With

random data, RLR; may have any value along the scale.
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Figure 2.3.5. The distributions ofR12 , R22 , and RLR] for the random data

To summarize this chapter, there are several advantages of the RLR index as

compared to other statistics.

(1) The calculation ofRLR is based on maximum likelihood estimation, which is strong

in its theoretical foundation, especially with a large sample size.
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(2) This index has sound mathematical background. The derivation ofthe RLR index is

based on the R2 analog in the DDV model, which is in accordance with the R2 in the

linear regression model.

(3) LR statistics in the MIRT model is x2 distributed, which is consistent with the DDV

model when the null hypothesis (all the slopes are zero) is true.

(4) With the RLR index, the dimensionality is assessed based on the improvement of the

model-data-fit.

(5) The explanation of the RLR index is straightforward. The RLR index is viewed as

the ratio of the log transformation of the unexplained percentage of the variance from

two regression models. As shown in the preliminary simulations, the RLR index has

a lower bound around .50. When the fit is good, the index approaches 1, indicating

that the target dimension should be of use for describing the data.

(6) Furthermore, this statistic has the desirable property of showing the improvement of

fit from adding dimensions to the model. Based on this procedure, researchers have

a rule of thumb to decide when the increase of fit is important.

(7) Unlike the )8 test, the index is sensitive to sample size in a way that large sample size

can increase the accuracy of identifying correct dimensionality. Within the limits of

simulation, the index is not inflated by sample size and demonstrates desired

statistical properties.



CHAPTER 3

METHOD

This chapter describes the research designs for exploring the statistical

characteristics of the RLR index. Many researchers (Davey, Nering, & Thompson, 1997;

Harwell, Stone, Hsu, & Kirisci, I996) recommended the use of simulation studies

because it offers an opportunity to permit theoretical results to be confirmed in practice.

While manipulating all kinds of testing conditions, it is possible to know the statistical

characteristics and the limits of the index of interest. With known dimensionality, two

simulation studies representing some basic testing situations were conducted in order to

explore the statistical properties of the RLR index. Furthermore, based on the

procedures developed in simulation studies, the analysis of real test data is presented to

demonstrate the feasibility of applying the fit index to a real testing situation.

3.1 Simulation Study 1 (Unidimensional Data Sets)

The focus of Study I is to explore the relationship between the RLR index and item

characteristics for different unidimensional data. Correspondingly, the effects of test

length and sample size on the RLR index are explored as well.

3.1.1 Research Design

Four variables were selected in Study I to simulate different testing conditions.

(I) Item discrimination (A)

When the MIRT model in equation (1) reduces to a unidimensional model. the value
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ofthe MDISC is the same as the value of the a-parameter. In this study, the

unidimensional data were generated in the unidimensional Rasch model fashion by

setting all a—parameters equal in one test. The values of the a-parameters were fixed at

four levels (0.2, 0.4, 0.6, and 0.8) with no variation in each data set, respectively. Low

a-parameters imply that test items were poorly designed so that those items could not

well differentiate examinees” abilities. Consequently, the signal in the test data may be

weak and it would be difficult to identify the true dimensionality of the test data. High

a-parameters indicate good items that can well differentiate examinees with different

levels of ability. In this case, it is expected that the goodness-of-fit index can function

well in recovering the true dimensionality.

Originally, the level of 1.0 of the a-parameter was included in the pilot study.

When calibrated by multidimensional models, the simulation data with the a-parameters

equal to 1.0 consistently generated a singular correlation matrix in TESTFACT.

Because the calibrations for multidimensional models never succeeded, the level of 1.0

was excluded from Study 1. This phenomenon implies that it is unlikely to have

multidimensional solutions using full-information factor analysis when the item

discriminations for unidimensional data are high. The procedure itself can detect the

impossibility of getting multidimensional solution when the data are strongly

unidimensional.

(2) Item Difficulty (D)

The variation in the distribution of item difficulty affects the sampling variability of

tetrachoric correlations (Roznowski et al., 1991). When the spread of item difficulties

increases, the tetrachoric correlation matrix tends to be non-Gramian and causes
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computational difficulty in maximum likelihood factor analysis (McDonald, 1985). In

order to explore how the variation of item difficulty affects full-information factor

analysis and the RLR index, the d—parameters were sampled from normal distribution

with a mean of0 and three levels (0. 0.5. and l) of standard deviation.

(3) Test Length (7)

To explore the possible effect of test length on the value of RLR, short test forms

with 25 items and long test forms with 50 items were created. A short test was

generated by selecting 25 a- and d-parameters from the predefined item distributions.

With regard to a 50-item test, it was generated by adding parallel items to the original

25—item test. It is expected that as the number of items increases the data

unidimensionality should be more accurately identified by the RLR index.

(4) Sample size (S)

According to the literature (Ackerman, 1994; R. L. Turner, Miller, Reckase, Davey,

& Ackerman, I996), usually 2000 or more examinees are suggested for MIRT calibration.

In this study, the random samples of 2000 and 6000 examinees were drawn from a

normal distribution with a mean of 0 and a standard deviation of I. It is expected that

the dimensionality index should vary in accuracy as a function of sample size.

3.1.2 Generation of Item Parameters and Response Patterns

Given the design of a-parameters (4), d-parameters (3), and test lengths (2),

twenty-four combinations of simulated tests were generated. Table 3.1.1 tabulates the

label and characteristics of each test. The numbers in the test label represent the levels

of the a-parameters. d—parameters. and test length in order. Test 321. for example.
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represents the test having the third level ofthe a-parameters (0.6). the second level of the

SD ofthe (ii-parameters (0.5), and the first level of test length (25).

Table 3.1.]. Simulation tests for Study 1

 

short st form 10111 rm
a-parameters SD of d-parameters te £465th

 

(25 items) (50 items)

0.2

0 Test 1 I 1 Test 112

0.5 Test 121 Test 122

I Test 131 Test 132

0.4

0 TestZIl Test 212

0.5 Test 221 Test 222

1 Test 231 Test 232

0.6

0 Test 31 1 Test .212

0.5 Test 321 Test 322

1 Test 331 Test 332

0.8

0 Test 41 1 Test 412

0.5 Test 421 Test 422

1 Test 431 Test 432
 

When combining simulated tests (24) and sample sizes (2), forty-eight combinations

of testing conditions were generated. In order to explore the consistency of the results

in this study, replications are needed. For IRT-based studies, at least 25 replications

have been recommended (Harwell et al., 1996). In this study, 100 sets of item response

patterns were produced for each combination. Thus, the overall number of observations

in Study 1 is 4800.

The way to generate dichotomous item response is to implement the known item

parameters and ability parameters in the model in equation (I). Then, the computed

probability is compared to a random number drawn from a uniform distribution ranged

from 0 to 1. If the computed probability is greater than the random number, a response

of l is generated, if not, a response of0 is produced. The data simulation was
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completed by using GENDATS developed by Thompson (Undated). This Fortran-based

computer program uses input of the MIRT item parameters and an inter-factor correlation

matrix, which is used to generate ability vectors based on the standardized normal

distribution. This program can simulate multidimensional test data for up to 60

dimensions and can generate ability vector even for the case when factors are completely

correlated in the correlation matrix.

3.1.3 Analysis Procedures and Computer Programs

The calculation of the RLR index depends upon being able to compute the maximum

likelihood of the constrained model and that of the MIRT model. The likelihood of the

constrained model was computed by the MATLAB program written by the author based

on equation (38), and the likelihood of the MIRT model was calculated by TESTFACT

(Wilson et al., 2003). Then, the values of the likelihood of the constrained model and

the MIRT model were implemented in equation (40) to get the corresponding RLR value.

To decide data dimensionality, MIRT models with different levels of dimensionality

were employed to analyze each data set. The test calibration started from the

unidimensional MIRT model and continued to four-dimensional model. For each level

of dimensionality the value of RLR was computed to reflect the increase of model-data—fit.

After collecting the RLR values for all 4800 observations, the statistical package SPSS

version 12.0 was employed to perform further statistical analyses. A Multidimensional

Analysis of Variance (MANOVA) was conducted to explore the influence of the

manipulated factors on the RLR index at different levels of dimensionality. Furthermore,

the regression model was built to decide if the observed RLR index reflected a good fit
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between the model and data.

3.1.4 Evaluation Criterion

The main purpose of Study 1 is to determine the level of accuracy of the RLR index

in correctly determining unidimensionality. As shown in Figure 2.3.3, the distributions

of the RLR index indicate that the RLR index is low and locates on the left side on the

scale when the model under-fits the data; when the fit is good, the RLR index shifts to the

right side of the scale and approaches 1. The theoretical conditional distribution of

RLR... can be expressed as Figure 4.1.1. When the null hypothesis is true (Ho: d= k), the

distribution ofMR. approaches 1 with small variation. Whenever the model under-fits

the data, the '

Hozd=k

H1Id>k 3

 

__L 1

5% rejection area

Figure 4.1.1 The theoretical distribution ofMR,

In order to decide if a RLR value shows a good fit between the data and model, the

5% rejection criterion was set on the lower tail of the RLR distribution when the model
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captures the true dimensionality. If the observed RLR]. is smaller than the lower bound

of a good fit, the null hypothesis, H0: d= k is true, is rejected. The significance test starts

from testing the unidimensional model. If the observed RLR. index is less than the 5%

lower bound, then the null hypothesis (Ho: d= l) is rejected. Then the next significance

test is to test if the observed RLR2 index shows a good fit. Once a given value RLR is

greater than the lower bound of a good fit, the null hypothesis is not rejected and the

dimensionality can be decided.

To decide the lower bound ofa good fit between the model and data, a regression

analysis was conducted. Given the information of sample size, test length, the estimated

a-parameters, and the estimated d-parameters, the predicted value of the RLR index can

be estimated by the regression model. For each testing condition, the number of

rejections obtained from the RLR index, and those from the G 2 test in equation (13) and

the Giff test in equation (14) were compared. The accuracy of these indices was

deemed acceptable if the number of rejections in 100 replications was less than 5 for the

true model. In Study 1, it is expected that the RLR index should demonstrate lower Type

lerror rate than the G2 test, and the 03,77 test for the unidimensional data.

3.2 Simulation Study II (Multidimensional Data Sets)

The goal of the second simulation is to investigate how the RLR index detects

dimensionality for different kinds of multidimensional test data. In this study, the two-

and three-dimensional test data were generated under different conditions.
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3.2.2 Research Design

The levels of multidimensionality were manipulated using three essential variables

as follows:

(I) Inter-Factor Correlation (C)

In order to simulate examinees‘ multidimensional ability distributions, the

correlation between factors (abilities) needs to be defined. The indices of

dimensionality have long depended on relations among the successive eigenvalues

obtained from factor analysis (see Hutten, 1980; Kaiser, 1970; Lord, 1980; Lumsden,

I957). The assumption of the scree test, for example, is that when the eigenvalues are

displayed in their decreasing order, there will be a clear separation in fraction of total

variance where the unimportant factor has been extracted. With information about the

distribution of eigenvalues, Roznowski et al (1991) proposed the ratio difference index

representing the ratio of the difference between the first two eigenvalues to their

subsequent differences, in order to identify data unidimensionality. In this study, a

different procedure was proposed. Dimensionality was manipulated by sampling

correlation matrices in terms ofthe slope of eigenvalues and the determinant ofthe

correlation matrix.

For a correlation matrix, the slope ofeigenvalues reflects the magnitude and pattern

of the inter-factor correlations. While working with the inter-factor correlations. the

dimensional structure of the latent trait can be manipulated, and the level of

dimensionality can be mapped on an arbitrary scale. An 11 ><n correlation matrix M, for

example. has n eigenvalues, [/1, xi, xi" that take the order/i1 2 22.2 xi". Given

the same number of eigenvalues. when the distribution ofeigenvalues is described by a
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straight line, the slope of the straight line would indicate the relative importance of the

underlying factors. Figure 3.2.1 is the scree plot showing the case of three 3 X3

 

 

   

1 1 1 1 0.8 0.6 1 0 0

correlationmatrices: Ml = 1 1 1 , M, = 0.8 1 0.4 ,and M3 = 0 l 0

l 1 I 0.6 0.4 1 0 0 l

3.5

3 0 —.- M3

‘. ‘ —-~'-+— Mk

2.5 -... Mi

:3 2 221‘s“.

» \..
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Number ofeigenvalues

Figure 3.2.1. The scree plot of matrices M], Mk, and M3

As shown in Figure 3.2.1, when the factors are completely independent of each other,

such as the case of M3, the eigenvalues of M3 form a horizontal line so that the slope of

the line is O. The other extreme case occurred when the factors are completely

dependent as shown in M1. When the eigenvalues are fitted by a straight line, the slope

is -1.5, which is the steepest SIOpe among all possible 3 X3 correlation matrices. It can

be expected that when the inter-factor correlation is any number between 0 and l, the

slope of eigenvalues should fall in the interval between 0 (completely independent) and

-1.5 (completely dependent). The correlation matrix Mk, for example, has the slope of
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-l.02.

Furthermore, the determinant of the correlation matrix, det(M), has a functional

relationship with its eigenvalues [2, 2, 2"], which is det(M) = “/1, . When

:21

factors are completely independent, as is the case for M3. the determinant is I; when

factors are completely dependent, as is the case for M1, than the determinant is 0. When

the inter-factor correlations are not zero. the determinant of the correlation matrix should

fall into the interval between 0 and l. The correlation matrix M1,, for example, has the

determinant as 0.2192.

For the correlation matrices of the same size, it is possible to differentiate different

correlation matrices using the information of the slope of eigenvalues and the determinant

ofthe correlation matrix. Figure 3.2.2 shows 3 X3 correlation matrices with different

levels of concentration of dimensionality represented by the slope of the eigenvalues and

the determinant of the correlation matrix. The matrix M3 has three factors that are

0

completely independent of each other; the matrix. M2 = 0 , represents a case

I

l l

I l

O 0

when two of the three factors in the correlation matrix are completely dependent, but

simultaneously, completely independent to the third factor. Since the rank ofM2 is two,

the data with this correlation pattern can be considered as two-dimensional. Regarding

the matrix MI . since factors are completely correlated with each other, any data with this

correlation pattern can be viewed as unidimensional.

The black dots in Figure 3.2.2 indicate the relationship between the determinant of

the correlation matrix and the slope of eigenvalues when the inter-factor correlation was



l

manipulated by the design matrix , where 0 < a <1 . When a equals 1, the

O
l
—
‘
Q

F
‘
O
O

a

0

design matrix becomes M2; when a is 0, it becomes M3. The trend of the black dots

shows how the slope of eigenvalues and determinant varied when the three-dimensional

data converged to two-dimensional data.
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Determinant

Figure 3.2.2. The relationship between the slope of eigenvalues and the determinant

The grey triangles, A , represent the relationship between determinant and slope of

eigenvalues when the data converges from three dimension to one dimension with the

1

design matrix a , where 0 < a <1 . When a equals 1, the design matrix

a Q
r
-
‘
Q

i
-
‘
Q
Q

becomes M1; when a is 0, it becomes M3. With regard to the grey squares, I, they

represent the case when two dimensions converge into one dimension by the design
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l l a

matrix I l a , where 0 < a < l . When a equals 1, the design matrix becomes Mi;

aal

when a is 0, it becomes Mg. Moreover, it is possible to locate a matrix whose

off-diagonal elements are of any reasonable quantities for a correlation coefficient. The

matrix M1,, for example, is located on Figure 3.2.2 with the star sign.

As shown in Figure 3.2.2, the relationship between the slope of eigenvalues and the

determinant of the correlation matrix offers a way to summarize the concentration of

dimensionality and also allows the comparison between correlation matrices. With this

procedure, not only the degree of departure from unidimensionality but also the

difference among different levels of multidimensionality can be laid out. In order to

select the most representative correlation matrices for Study II, Figure 3.2.3 was created

with grids specifying the space on the plane. As a result. six correlation matrices were

selected:

I l 0.7 l l 0.4 I l 0 I 0.5 0.6

C,: l 1 0.7 , (1‘2: 1 I 0.4 , C3: 1 l O , (7,: 0.5 l 0.4 ,

0.7 0.7 l 0.4 0.4 l 0 0 I 0.6 0.4 l

l 0.5 0.2 l 0 0

CS 2 0.5 l 0.3 ,and C, = 0 I 0 With these correlation matrices. the

0.2 0.3 l 0 0 I

multidimensional abilities in Study 11 were generated from multivariate standard normal

distribution.
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Figure 3.2.3. Selecting correlation matrices in terms of the slope of eigenvalues and the

determinant of the correlation matrix

The simulations in Study 11 would be more complete if the correlation matrix

1

M1: 1

1 g
a
u
d
y
—
n 1

1 were included. However, when including M1 in this study, the large

1

number of unsuccessful TESTFACT runs would generate a great number of missing

observations for the data related to M; and cause problems in further statistical analysis.

Thus, the matrix M1 was not considered in Study 11.

(2) Item-factor structure (1)

The simulation for multidimensional data were based on simple structure, which

means that items have loading on one factor and zero loadings on the remaining factors.

This type of item structure is desirable especially when evaluating scales created to

measure either multiple constructs or components of a single construct (R. C. Turner,
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2000).

Earlier studies (De Ayala & Hertzog, I991; Gessaroli & De Champlain, I996;

Hambleton & Rovinelli, 1986) indicated that the number of items representing one factor

was an important variable in simulating multidimensional test data. The item-factor

structure indicates how well each factor was measured. When more items are sensitive

to one factor, the data would have more information for that factor. Thus, it is

anticipated that those factors can be easily identified by the statistical model. On the

contrary, when a factor has only a few items, that dimension will be poorly measured.

Accordingly, those factors may not be easily identified by the statistical model.

On the basis of the three—dimensional simple structure, the item-factor structure was

manipulated by selecting different number of items to which each dimension related.

The assignment of items to factors was listed in Table 3.2.1. Structure 1 shows the

condition that the first 12 items measured factor I, the second set of 12 items measured

factor 2, and the remaining 24 items measured factor 3; Structure 2 represents the

condition that the first sets of 16 items were indicators of factor 1, the second 16 items

were indicators of factor 2, and the last 16 items were indicators of factor 3; Structure 3

shows the situation when the first 36 items related to factor I. the second set of 6 items

related to factor 2, and the last set of 6 items related to factor 3.

Table 3.2.1. Levels ofthe item-factor structure

 

Number of items

 

 

Label Total

Factor 1 Factor 2 Factor 3

Structure 1 12 I2 24 48

Structure 2 l6 l6 I6 48

Structure 3 36 6 6 48
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(3) Item discrimination (A)

Based on earlier studies on real tests, such as the ACT Mathematics Usage Test

(Ackerman, I994), LSAT (De Champlain & Gessaroli, I996), TOEFL (McKinley & Way,

1992), and a nation—wide Math test for the 10 graders (R. L. Turner et al., 1996), the

mean ofMDISC often ranged from .76 to 1.34 and the SD varied from 0.2 to 0.5. In

order to simulate item responses close to those from real tests, two levels of item

discrimination were used in this study. The moderate level (M) of item discrimination

was generated from N(0.8 , 0.42); the high level (H) of item discrimination was generated

from N(1.2, 0.42).

As shown in Table 3.2.2, the research design in Study [1 generated thirty-six (6 X3 ><2)

combinations. Again, the levels for inter-factor correlation, item-factor structure, and

item discrimination were labeled in order as the numbers in the form name. Form 321,

for example, represents the test having the third level of the inter-factor correlation (C3 ),

the second level of the item-factor structure (16:16: 16). and the first level of item

discrimination (M).

57



Table 3.2.2. Simulated tests for Study 11

 

Inter-factor correlation

Item

discrimination

Item-factor structure

 

 

 

 

 

12:12:24 16:16:16 36:6:6

Two-dimension design

' I l 0-71 M Form 111 Form 121 Form 131

CI = l l 0-7 Form 112 Form 122 Form 132

-0-7 0'7 '~ H (50:50) (67:33) (88:12)

I I l 0-4“ M Form 211 Form 221 Form 231

C: = I ' 0-4 Form 212 Form 222 Form 232

-0-4 0'4 '4 H (50: 50) (67:33) (88:12)

II I 0 M Form 311 Form 321 Form 331

Cs: I l 0 Form 312 Form 322 Form 332

10 0 ' H (50: 50) (67:33) (88: 12)

Three-dimension design

I 0-5 0-6fi M Form 411 Form 421 Form 431

C1 = 0-5 l 0-4 Form 412 Form 422 Form 432

0'6 0'4 '— H (25:25:50) (33:33:33) (76:12:12)

I l 0-5 02‘ M Form 51 1 Form 521 Form 531

Cs 2 0'5 l 0'3 Form 512 Form 522 Form 532

-0-2 0-3 ' - H (25:25: 50) (33:33:33) (76: 12:12)

II 0 0 M Form 611 Form 621 Form 631

C11 = 0 1 0 Form 612 Form 622 Form 632

-0 0 ' H (25:25: 50) (33:33:33) (76: 12:12) 
 

Under each test label, the numbers in the parentheses specified the percentage of

items per dimension in the data. With the correlation matrices, C1, C2, and C3,

two-dimensional data were generated because the first two factors converged into one

factor. Thus, those items originally sensitive to the first and second factors would

converge into a bigger item cluster. With structure I, 50% of the items loaded on the

converged first dimension, and the remaining 50% of items loaded on the other



dimension. With regard to structure 2, 67% ofthe items were grouped as the first

dimension and the rest of the 33% items grouped as the second dimension. With respect

to structure 3, 88% of the items were clustered as one dimension and the remaining 12%

formed a second dimension. Regarding the correlation matrices C4, C5, and C6,

three-dimensional data were generated and the percentage of item per dimension was

consistent with the original item-factor structure.

3.2.2 Generation of Item Response Patterns

The d—parameters were randomly generated from a normal distribution MO, I) for

all 48 test items. The multidimensional ability distributions were generated from the

standardized multidimensional normal distribution with the pre-selected inter-factor

correlation matrices. Again, the sample size used in Study II was 2000. The

procedures for generating item response patterns were the same as those described in

Section 3.1.2. For each cell ofthe thirty-six combinations, 100 replications were

performed, and the total number of 3600 multidimensional data sets was produced.

3.2.3 Procedures and Computer programs

The procedures for computing of the RLR index were the same as those described in

section 3.1.3. In study II, the test calibration started from the unidimensional model and

continued to the 5-dimensional model. For each level ofdimensionality. the RLR index

was computed to show the improvement of model-data-fit.

3.2.4 Evaluation Criterion
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Again, the statistical properties of the RLR index were explored and compared with

those of the G 2 test and the 03,-” test. To test whether the data can be well fit by the

unidimensional model, the unidimensional regression model generated in Study I was

used in conjunction with sample size, test length, and the estimated unidimensional item

parameters. lfthe observed RLR; is smaller than the predicted lower bound, then the

null hypothesis (Ho: d=l) was rejected, indicating a higher-dimensional model is needed.

To test whether or not the null hypothesis (H0: d=2) was true for a given data sets,

the two-dimensional regression model was constructed based on the two-dimensional

data. Again, given that the model captures the true two-dimensional data, the regression

model sets up the 5% rejection area at the lower end of the predicted RLR2 distribution.

If the observed RLR2 value is smaller than the predicted lower bound, the null hypothesis

is rejected and the data should be modeled with higher dimension. Using the same

procedure, the three-dimensional regression model was constructed to test the null

hypothesis (Ho: d=3) based on the three-dimensional model. If the observed RLR3 value

is smaller than the predicted lower bound, then the data should be modeled with higher

dimension. It is expected that, the number of false rejections should be lower than 5

among 100 replications when the regression model captures the true dimensionality.

Conversely, when detecting the wrong models, the RLR index should generate large

number of rejections. indicating high statistical power.

3.3 Real Data Analysis

Along with the simulation studies, the statewide test data ofthe Mathematics Test

from the Michigan Educational Assessment Progress (MEAP) testing program were
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analyzed. Under the No Child Left Behind (NCLB) act of2001, the federal approval

depends on strict alignment of state assessment to state content standards. Michigan’s

Mathematics Test, which developed to match the mathematics content standards, were

developed to measure what Michigan educators believe all students should learn and be

able to achieve in each grade level (Michigan Department of Education, 2004).

In this study, the test data from the Grade 4 Mathematics Test were used. The

Mathematics Test contained 57 items covering content knowledge in data and

probability, geometry, measurement, and numbers and operations. To be more precise,

students were requested to demonstrate their academic proficiency in (I) fluency with

operations and estimations; (2) geometric shape, properties, and mathematical

arguments; (3) meaning, notation, place value, and comparisons; (4) number

relationships and meaning of operations; (5) problem solving involving measurement; (6)

data representation; (7) spatial reasoning and geometric modeling; and (8) units and

systems of measurement (Michigan Department of Education, 2006). Students who

score high on the test have documented substantial achievement in mathematics at the

grade-4 level. In terms of the hierarchical ability structure in the blueprint of the

Mathematics Test, it is suspected that the resulting test data may be explained by a

multidimensional model.

The test data from 10000 examinees were requested from the testing program. The

sample was then divided into five smaller data sets with 2000 examinees by random

selection. The MIRT model parameters for different levels of dimensionality were

estimated using TESTFACT. For each level of dimensionality, the corresponding RLR

index was computed to determine the increment of model-data-fit. To decide the
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dimensionality of MEAP data, the regression models developed from the simulation

studies were used to determine whether the observed RLR index showed a good fit

between the model and data. If the observed RLR index fell in the 5% rejection area of

the lower end, the null hypothesis was rejected, and the higher-dimensional model was

tested in turn. The significance test started from the unidimensional model and

stopped when the null hypothesis was not rejected. Instead of makingjudgments form

a single test, the results from different sample data would give the basis of

cross-validation and offer a more dependable decision.



CHAPTER 4

RESULTS

Based on the research designs described in the previous chapter, the main results of

the three studies are provided along with the initial interpretations.

4.1 Simulation Study 1 (Unidimensional Data Sets)

The focus of Study 1 was to explore the effects of item discrimination (A), item

difficulty (D), sample size (S), and test length (7) on the RLR index. However, when the

unidimensional data were analyzed by multidimensional models, some of the TESTFACT

analyses failed. When Twas short (25 items), all TESTFACT runs were successful

regardless of the levels ofA, D, and S. When T was long (50 items), some tests

generated a singular tetrachoric correlation matrix, causing a serious estimation problem

in full-information factor analysis. Table 4.1 .I shows the number of unsuccessful cases

out of 100 replications for long-test data. Given that T was long, when D was high, the

probability of getting a singular tetrachoric correlation matrix was high, especially for the

case when S was small (2000). For these data sets, the rates of getting a singular

tetrachoric correlation matrix increased with the increment of the number of factors in the

estimation model. The highest rate of getting unsuccessful TESTFACT runs occurred

when the unidimensional data were analyzed by the four-dimensional MIRT model.
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Table 4.1.1 . The number ofunsuccessful TESTFACT runs for long tests in Study I

 

 

 

Sample MIRT Model

. Test

5'26 1 Factor 2 Factor 3 Factor 4 Factor

2000

Test 112 0 O 0 0

Test 122 0 0 0 2

Test 132 0 0 4 15

Test 212 0 0 0 0

Test 222 0 O 0 0

Test 232 0 l 3 35

Test 312 0 0 0 0

Test 322 0 0 0 0

Test 33- 0 0 3 18

Test 412 0 0 0 0

Test 422 0 0 0 0

Test 432 0 0 2 7

6000

Test 112 0 0 0 0

Test l22 0 0 0 0

Test 132 0 0 0 4

Test 212 0 0 0 0

Test 222 0 0 0 0

Test 232 0 0 3 7

Test 312 0 0 0 0

Test 322 0 0 0 0

Test 332 0 0 0 1

Test 412 0 0 0 0

Test 422 0 0 0 0

Test 432 0 0 0 0
 

Note: The results for short tests were not listed because all TESTFACT runs were successful.

4.1.1 Results ofthe Summary Statistics

With regard to those successful TESTFACT runs, no outliers were found in the

preliminary analysis.

RLR values in each condition.

Table 4.1.2 and Table 4. I .3 display the summary statistics ofthe

The changes of RLR values associated with

dimensionality were plotted in Figure 4.1.1 to Figure 4.1.4. The conditional
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distributions ofRLR values were presented in Appendix B as a supplement to the

summary statistics.

By and large, the SD of the RLR values in each condition was small. Given the

same levels ofS and T, the SD ofthe RLR values was small when A was high.

Conditioned on A and D, the SD of the RLR values decreased when T was long or S was

large. For most data sets, the SD of the RLR values for a higher-factor model was

smaller than that for a lower-factor model. The decrease of the variation of the RLR

values was more noticeable when A was low.

The RLR index for the unidimensional model was particularly sensitive to item

parameters. The increase ofA was proportional to RLR), but the increase ofD was

inversely proportional to RLR). The effects ofA and D on RLR) was similar across

different combinations ofS and T.

When the RLR values were plotted against dimensionality, the lines indicated the

change of the RLR values as a result of dimensionality. As shown from Figure 4.1.1 to

Figure 4.1.4, the color of the lines denotes different levels ofA, and the shape of the lines

represents different levels of D. For the tests with A higher than 0.2, the RLR values

were all centered to 1 and formed horizontal lines. The change of the RLR values was

limited when adding more factors to the model. Since the increase of the RLR values

due to adding factors to the model was trivial, this pattern of the RLR values might imply

that the unidimensional model was good enough to explain the test data. Conversely,

for the tests with A equal to 0.2, the RLR values showed noticeable increase associated

with dimensionality, especially when D was large, S was small, and Twas short. This

pattern implied that higher-factor models fit the data better than the unidimensional model.
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Table 4.1.2. Summary statistics of the RLR index for short tests

 

2000 examinees 6000 examinees25-item
 

 

RLR

135‘ Mean SD N SE Mean SD N SE

Test 1 II

RLR] 0.8713 0.0224 100 0.0022 0.9506 0.0085 100 0.0008

RLR2 0.9046 0.0156 100 0.0016 0.9614 0.0059 100 0.0006

RLR3 0.9225 0.0110 100 0.0011 0.9679 0.0042 100 0.0004

Test 121

RLR. 0.8533 0.0254 100 0.0025 0.9429 0.0093 100 0.0009

RLR2 0.8942 0.017] 100 0.0017 0.9542 0.0080 100 0.0008

RLR3 0.9152 0.0143 100 0.0014 0.9639 0.006] 100 0.0006

Test 13]

RLR] 0.8086 0.0356 100 0.0036 0.9245 0.0143 100 0.0014

RLR2 0.8695 0.0231 I00 0.0023 0.9398 0.0115 100 0.001]

RLR3 0.8933 0.0182 100 0.0018 0.9508 0.0099 100 0.0010

Test 21 l

RLR; 0.9809 0.0034 100 0.0003 0.9935 0.0012 100 0.0001

RLR2 0.9843 0.0024 100 0.0002 0.9947 0.0008 100 0.0001

RLR3 0.9862 0.0020 100 0.0002 0.9954 0.0008 100 0.0001

Test 22]

RLRI 0.9783 0.0039 100 0.0004 0.9925 0.0012 100 0.0001

RLR2 0.9823 0.0029 100 0.0003 0.9940 0.0010 100 0.000]

RLR3 0.9844 0.0023 100 0.0002 0.9949 0.0009 100 0.000l

Test 23]

RLR] 0.9717 0.0050 100 0.0005 0.9901 0.0017 100 0.0002

RLR2 0.9771 0.0042 100 0.0004 0.992] 0.0018 100 0.0002

RLR3 0.979] 0.0039 100 0.0004 0.9930 0.0016 100 0.0002

Test 31 l

RLR] 0.9924 0.001 I 100 0.000] 0.9975 0.0005 100 0.0000

RLR2 0.9937 0.0009 100 0.000] 0.9979 0.0003 100 0.0000

RLR3 0.9944 0.0009 100 0.0001 0.9984 0.0003 100 0.0000

Test 321

RLR; 0.9917 0.00 l 2 100 0.000 I 0.9972 0.0005 100 0.0000

RLR2 0.9932 0.0009 100 0.000] 0.9977 0.0003 100 0.0000

RLR3 0.9939 0.00] l 100 0.0001 0.9982 0.0003 100 0.0000

Test 33]

RLR. 0.9898 0.0018 100 0.0002 0.9966 0.0005 l00 0.000 I

RLR2 0.9915 0.0014 100 0.0001 0.9971 0.0006 100 0.0001

RLR3 0.9920 0.0017 100 0.0002 0.9975 0.0006 100 0.0001

Test 4] l

RLR. 0.9955 0.0007 100 0.000] 0.9984 0.0003 100 0.0000

RLR2 0.9963 0.0006 100 0.0001 0.9990 0.0002 100 0.0000

RLR3 0.9969 0.0006 100 0.000 I 0.9994 0.0003 100 0.0000

Test 42]

RLR. 0.9952 0.0008 100 0.000] 0.9984 0.0003 100 0.0000

RLR2 0.9960 0.0006 100 0.000 I 0.9988 0.0002 l00 0.0000

RLR3 0.9967 0.0008 100 0.0001 0.9993 0.0003 100 0.0000

Test 431

RLR] 0.9942 0.0010 100 0.0001 0.9981 0.0003 100 0.0000

RLR2 0.9951 0.0008 100 0.0001 0.9984 0.0003 100 0.0000

RLR3 0.9956 0.0009 100 0.0001 0.9989 0.0003 100 0.0000
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Table 4.1.3. Summary statistics ofthe RLR index for long tests

 

50-item 2000 examinees 6000 examinees
 

 

RLR

test Mean SD N SE Mean SD N SE

Test I I2

RLR. 0.9096 0.0] 17 100 0.0012 0.9673 0.0039 100 0.0004

RLR2 0.9257 0.0087 100 0.0009 0.9718 0.0027 100 0.0003

RLR3 0.9353 0.0063 100 0.0006 0.9750 0.0024 100 0.0002

Test 122

RLR1 0.8982 0.0127 100 0.0013 0.9623 0.0044 100 0.0004

RLR2 0.9177 0.0087 100 0.0009 0.9668 0.0037 100 0.0004

RLR3 0.9270 0.0070 98 0.0007 0.9707 0.0027 100 0.0003

Test 132

RLR. 0.8766 0.0159 100 0.0016 0.9536 0.0051 100 0.0005

RLR2 0.9004 0.0] 14 96 0.0012 0.9595 0.0044 100 0.0004

RLR3 0.9133 0.0097 83 0.00] 1 0.9639 0.0046 96 0.0005

Test 212

RLR 1 0.9844 0.0019 100 0.0002 0.9948 0.0006 100 0.0001

RLR2 0.9867 0.0012 100 0.0001 0.9954 0.0004 100 0.0000

RLR3 0.987] 0.00] l 100 0.000 I 0.9957 0.0004 100 0.0000

Test 222

RLR] 0.9827 0.0020 100 0.0002 0.994] 0.0007 100 0.0001

RLR2 0.9848 0.0017 100 0.0002 0.9948 0.0006 100 0.0001

RLR3 0.9857 0.0015 100 0.000] 0.9952 0.0005 100 0.0001

Test 232

RLR 1 0.9793 0.0025 99 0.0003 0.9929 0.0009 100 0.0001

RLR2 0.9817 0.0019 97 0.0002 0.9939 0.0007 97 0.0001

RLR3 0.9828 0.0029 63 0.0004 0.9942 0.0007 90 0.0001

Test 312

RLR] 0.993] 0.0007 100 0.000] 0.9976 0.0003 100 0.0000

RLR2 0.9942 0.0007 100 0.000] 0.9983 0.0002 100 0.0000

RLR3 0.9943 0.0007 100 0.000] 0.9983 0.0003 100 0.0000

Test 322

RLR. 0.9925 0.0008 100 0.000] 0.9974 0.0003 100 0.0000

RLR2 0.9936 0.0007 100 0.000] 0.9980 0.0003 100 0.0000

RLR3 0.9936 0.0008 100 0.000l 0.9981 0.0004 100 0.0000

Test 332

RLR. 0.9914 0.0010 100 0.000] 0.997] 0.0003 100 0.0000

RLR2 0.9925 0.0008 97 0.000] 0.9976 0.0003 100 0.0000

RLR3 0.9934 0.0008 77 0.000] 0.9978 0.0004 99 0.0000

Test 412

RLR 1 0.9946 0.0006 100 0.000] 0.9973 0.0003 100 0.0000

RLR2 0.9963 0.0005 100 0.0001 0.9987 0.0002 100 0.0000

RLR3 0.9968 0.0006 100 0.000] 0.9994 0.0003 100 0.0000

Test 422

RLR. 0.9945 0.0006 100 0.000] 0.9975 0.0002 100 0.0000

RLR2 0.9959 0.0005 100 0.000] 0.9987 0.0002 100 0.0000

RLR3 0.9965 0.0007 100 0.000] 0.9993 0.0002 100 0.0000

Test 432

RLR] 0.9942 0.0007 100 0.0001 0.9975 0.0003 100 0.0000

RLR2 0.9954 0.0006 98 0.000] 0.9985 0.0002 100 0.0000

RLR3 0.9959 0.0007 92 0.000] 0.999] 0.0003 100 0.0000
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Figure 4.1.1. The change ofRLR with dimensionality for a 25-item test and 2000 examinees
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Figure 4.1.2. The change ofRLR with dimensionality for a 25-item test and 6000 examinees
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4. l .2 Results of Multivariate Analysis of Variance for Study I

To explore the influence of manipulated factors on the RLR index, a Multivariate

Analysis of Variance (MANOVA) was conducted. The dependent variables in the

MANOVA model were the MR indices representing three levels of dimensionality (RLR.,

RLR2, and RLR3), and the independent variables were A, D, S, and T.

To test whether the overall multivariate difference was significant , Pillai's Trace was

employed because it is more robust than other statistics (Wilks' 3., Hotelling's T2, and

Roy's greatest characteristic root) when assumptions are not met (Olson, 1976). As

Table 4.1.4 shows, the main effects ofA, D, S, T, and the interactions were all significant

so the hypothesis that there was no between-group difference was rejected. Several of

these significant factors had substantive effect sizes, such as A (F(9, I3950)= 757.18,p

< .01, if: .328), D (F(6, 9298): 274.68, p< .01, ”2: .151 ), S (F(3, 4648): 6230.6l,p < .01.

1,3: .801 ). T(F(g3, 4648): 580.6].p < .01. ’72: .273). A XD (F(18, 13950): 124.11,): < .0.

if: .138), A xs (F(9. 13950): 61 3.79. p < .01. if: .284), and A x T(F(9, 13950): 284.63, p

< .01, if: .155). They should be considered as having important effects on the RLR

indices. The interactions DXS, D XT, SX T. A XD XS, A XD X T. A XSX T, D XSX T, and

A XD XS X T were significant, but their effect sizes were small. Because the total number

of simulated data sets was 4800. the significance of the interaction terms with small effect

sizes may be due to the large sample size in MANOVA. Even though these interactions

were significant, they might not have important influence on the dependent valuables.
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Table 4.1.4. The multivariate test for Study I

 

 

 

Effect Value F Hypothesis df Error df 712

A .985 757.18* 9 13950 .328

D .301 274.68* 6 9298 .151

S .80] 6230.6]* 3 4648 .80]

T .273 $80.61* 3 4648 .273

AXD .414 124.11* 18 13950 .138

A XS .85] 613.79* 9 13950 .284

A XT .465 284.63* 9 13950 .155

DXS .056 4499* 6 9298 .028

DXT .027 2 I .04* 6 9298 .013

SXT .054 89.03* 3 4648 .054

A XD XS .08] 2 l .40* 18 13950 .027

A XDXT .046 I 1.95* 18 13950 .015

A XSXT .106 5682* 9 13950 .035

DXSXT .004 3.44* 6 9298 .002

A XD XSXT .010 253* l 8 13950 .003

*p< .0]

Given that the overall difference was significant, the univariate tests for each

dependent variable were conducted. First, Levene's test of equality of error variances

were all significant (RLRI: F(47, 475 I )= 128.803, p< .0] ; RLR2: F(47, 4737): 133.710,

p< .0]; RLR3: F(47, 4650): 129.233, p< .01), indicating that the variances in different

design groups were not homogeneous for each separate ANOVA test. However,

Lindman (1974, p. 33) and Box (1954) reported that F statistic is quite robust against the

violation of the homogeneity assumption. Since the assumption of equal variance was

violated at the .01 level, special caution should be taken when interpreting the results of

these separate ANOVA analyses.

Table 4.1.5 summarizes ANOVA tests for RLRI, RLR2. and RLR3. The effect _

sizes ofA, D, S, T, and the interactions were similar for RLR], RLR2, and RLR3. Again,

‘ A, D, S, T, and the interactions A XD, A XS, and A XTcan be considered as having

important effects on RLR]. RLR2, and RLR3. A has the largest effect on all the RLR
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indices. Moreover. D. S, and T had a smaller effect size than its two-way interaction

with A. In RLRI, for example, D (113: .199) < A XD (if: .317): $612: .695) < A xs

(772: .781); T072: .250) < A XT(i]2= .442). These patterns indicated that A was the main

variable influencing the RLR indices. To further explore the nature of the interactions,

the simple effects were shown in Figure 4. l .5 to Figure 4.1.10.

Table 4. l .5. The univariate test for Study 1

 

 
  

 

 

Source a'f RLRl » RLR3 ‘1 RLR3 3

‘ MS F if MS F if AIS F if

A 2.023 27764.26* .947 1.194 3386].] 1* .956 .833 36971.23* .960

D 2 .042 579.] 1* .199 .022 629.5 I * .213 .017 739.77* .24]

S l .773 10610.07* .695 .420 1 1912.50* .719 .313 l3893.09* .749

T l .l 13 1547.67* .250 .036 1019.57* .180 .013 575.13* .110

A xD 6 .026 359.70* .317 .012 339.4] * .305 .008 368.70* .322

A XS 3 .402 5512.18* .78] .193 5464.55* .779 .130 5792.86* .789

A x T 3 .089 1226.21 * .442 .026 739.64* .323 .010 433.68* .219

D XS 2 .008 109.8 I * .045 .002 69.44* .029 .002 81.34* .034

DxT 2 .004 5332* .022 .001 25.14* .01] .00] 3185* .014

Sx T l .019 265.19* .054 .003 90.14* .019 .00] 4342* .009

A xDxS 6 .004 6] .55* .074 .00] 2673* .033 .00] 2788* .035

A XDXT 6 .002 3282* .04] .000 1355* .017 .000 1374* .017

A xSxT 3 .0] 3 l82.l3* .105 .002 5385* .034 .001 2557* .016

D XSX T 2 .00] 7.98* .003 .000 .09 .000 .000 1.35 .00]

A xDxSx T 6 .000 5.00* .006 .000 .05 .000 .000 .26 .000

Error 4652 .000 .000 .000

Total 4699

* p< .0l
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Figure 4.1.5. The interaction ofA, D, and S in RLRi for 25-item test
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Figure 4.1.6. The interaction ofA, D, and S in RLR. for 50-item test
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Figure 4.1.7. The interaction ofA, D, and S in RLR2 for 25-item test
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Figure 4.1.9. The interaction ofA, D, and S in RLR3 for 25-item test
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Conditioned on T, the patterns ofthe interactions ofA, D, and S were similar

across RLRi, RLR2, and RLR3. When the model fit the data, as shown in Figure 4.1.5

and Figure 4.1.6, D had a noticeably negative effect on RLR] when A= 0.2. However,

the effect ofD varied depending on S: when S was 6000, the decrease of RLR. due to the

increase ofD was small; when S was 2000, the descent ofRLR; due to the increase ofD

was great. When A= 0.4. the negative effect ofD was not obvious, especially when S:

6000. When A= 0.6 or 0.8, the effect ofD was minor and thus only the effect ofS could

be identified.

When the model over-fit the data, as shown in Figure 4.1.7 to Figure 4.1.10. it is

clear that D had an effect on RLR2 and RLR3, but the effect varied dependeing on A. As

long as A was greater than 0.2, the effect ofD was minor. Moreover, S still had an effect

on RLR2 and RLR3, but varied depending on the level ofA: the effect of S was great when

A was small. but small when A was great.

4.1.3 Comparisons ofthe Numbers of Rejections

This part of the analysis involved comparing the empirical Type I error rate of the

RLR index with those from the (1‘2 test and the 03,-”: test in different testing

conditions. The theoretical a used for the 62 test and the 05,-” test was .05. The

results in Table 4. l .6 show that the (1‘2 test at all times rejected the true model

regardless ofthe levels ofA. D, S, and T. The results ofthe (7,2)”) test were not

satisfactory either. With a short Tand a small S. the minimum number of rejections was

68 out of 100. Given the same levels ofA, D, and T, a large S didn't help decreasing the
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number of false rejections. When T was long, the minimum number of rejections was

98 out of 100, regardless of S. A large T tended to inflate the number of rejections more

severely than a large S. These results were indicative of a severely inflated Type I error

rate problem of using the G2 test and the G5,.”- test to determine whether or not the

test data were unidimensional.

The number of rejections of the RLR index was computed based on the linear

regression technique. With the information of the estimated a-parameters (EA),

estimated d—parameters (ED), sample size (S), and test length (T), the lower bound of a

good fit for the unidimensional model can be predicted. With the item parameter

estimates obtained in Study I, the unidimensional regression model (adjusted R2 equal

to .709) can be expressed as

RLR1= 0.817509 + 0.000021(S) + 0.00125 1 (T) — 0.020432(ED) + 0.050065(EA) +

0.000023(EA XS) — 0.00 l 083(EA X T) + 0.067449(EA XED) +

0.000000 166(EA XSX 7). (4 I)

If the observed RLR1 was smaller than the lower bound, the null hypothesis H0: d= l was

rejected. As shown in Table 4.1.6, when S= 2000, the numbers of the false rejections

were high for Test 1 I 1, Test 12 I , Test 13 I, and Test 132, indicating that the low level ofA

inflated the Type I error rate. Given that A= 0.2 and S: 2000, the number of false

rejections inflated with the increase of D. When A= 0.2 and S: 6000, all the false

rejections were less than 5 regardless of the levels ofD and T. Conversely, for the cases

when A was equal to or greater than 0.4, the numbers of rejections were low regardless of

the levels of D, S, and T.
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Comparing the numbers of false rejections for the three indices under different

testing conditions. the RLR index outperformed the G2 test and the 03,7; test. A

large sample size and a long test both inflated the Type I error rates for the G2 test and

the 0,2,1” test, but helped reducing the Type I error rates for the RLR index.

Table 4.1.6. The number of rejections in 100 replications for unidimensional data

 

  

 

2000 examinees 6000 examinees

Data sets

7 7 .7 7

RLR G " G,7,-[f RLR (1 " G(7!.[f

25-item test

Test 1 l l 29 100 74 0 100 83

Test 13] 33 100 80 0 100 80

Test I3] 76 100 82 3 100 67

Test2ll 0 100 71 0 100 73

Test 23] 0 l00 72 0 100 80

Test 23] 0 100 75 0 100 74

Test 31 l 0 100 80 0 100 69

Test 32] 0 100 75 0 100 75

Test 33] 0 100 68 0 l00 67

Test 4] l 0 100 79 0 [00 87

Test 42] 0 100 74 0 100 75

Test 431 0 100 75 0 100 68

.50-item test

Test 1 l2 4 100 100 0 100 100

Test 122 2 100 100 0 100 98

Test 132 I8 100 100 0 100 100

Test 212 0 100 100 0 l00 100

Test 222 0 100 98 0 I00 98

Test 232 0 100 100 0 l00 100

Test 312 O 100 100 0 100 100

Test 322 0 100 100 0 100 100

Test 332 0 100 100 0 100 97

Test 412 0 100 100 0 100 100

Test 437— 0 100 100 0 100 100

T651432 0 100 100 0 100 100
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4.2 Simulation Study 1] (Multidimensional Data Sets)

The purpose of Study II was to investigate how well the RLR index determined the

dimensionality for multidimensional data. Again, when the simulated data were

analyzed by different levels of multidimensional MIRT models, some of the TESTFACT

runs failed because the data generated a singular tetrachoric correlation matrix. Table

4.2.] shows the number of unsuccessful runs out of 100 replications for each condition.

The two-dimensional data had higher rates of unsuccessful TESTFACT runs for the

four-dimensional model than for the five-dimensional model, whereas the

three-dimensional data had higher rates of unsuccessful TESTFACT runs for the

five-dimensional model than for the four-dimensional model.

Given the same levels of C and 1, the rate of getting a singular tetrachoric

correlation matrix was high when A was moderate. Conditioned on A and C, the third

level of I (36: 6: 6) generated a singular tetrachoric correlation matrix at lower rates than

the first level (12: 12: 24) and second level (16: I6: l6)of1.
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Table 4.2. l. The number of unsuccessful TESTFACT runs in Study 1]

 

 

 

correlation Form MIRT model

matr1x 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor

Ci

Form 11] 0 0 0 32 4

Form 112 0 0 0 0 2

Form 12] 0 0 0 2] 8

Form 122 0 0 0 l 0

Form 131 0 0 0 3 1

Form 132 0 0 0 0 0

C7

Form 21 l 0 0 0 29

Form 212 0 0 0 0 1

Form 22] 0 0 0 24 12

Form 222 0 0 0 2 0

Form 23] 0 0 0 6 2

Form 232 0 0 0 1 0

C3

Form 3] I 0 0 0 29 9

Form 312 0 0 0 2 4

Form 321 0 0 0 30 16

Form 322 0 0 0 2 1

Form 33] 0 0 0 l I 4

Form 332 0 0 0 2 3

C4

Form 41 I 0 O 0 0 17

Form 412 0 0 0 0 0

Form 42] 0 0 0 0 17

Form 422 0 0 0 0 3

Form 43] 0 0 0 0 3

Form 432 0 0 0 0 0

C5

Form 51 l 0 0 0 0 24

Form 512 0 0 0 0 0

Form 521 0 0 0 0 19

Form 522 0 0 0 0 2

Form 531 0 O 0 0 3

Form 532 0 0 0 0 2

C1,

Form 6] l 0 0 0 0 20

Form 612 0 0 0 0 0

Form 621 0 0 0 0 17

Form 622 0 0 0 0 0

Form 631 0 0 0 0 1

Form 632 0 0 0 0 0
 

4.2.] Results ofthe Summary Statistics

Table 4.2.2 and Table 4.2.3 tabulate the summary statistics ofthe RLR values for
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each combination. In order to show the change ofRLR values associated with

dimensionality, Figure 4.2.1 to Figure 4.2.6 were provided with colors denoting different

levels of I and the line shapes representing different levels ofA. Besides, the

conditional distributions of the RLR values were offered in Appendix C as a supplement

to the summary statistics.

In Table 4.2.2 and Table 4.2.3, some ofthe RLR values slightly exceeded 1 when

the model recovered the true dimensionality or over-fit the data. The unexpected RLR

values showed that the lower-factor model fit the data better than the higher-factor model.

However. for every case when the RLR values exceeded 1, a negative Giff statistic

occurred. A negative value of the GET/f statistic indicated that the discrepancy

between the predicted frequency and the observed frequency for the lower-factor model

is smaller than that of the higher-factor model. The discussion of the occurrence of the

unexpected values for the RLR index and the G3,,” test was provided in Chapter 5.

Again, the SD of the RLR values in each condition was small. Conditioned on A, C,

and I, the SD of the RLR values was great when the model under-fit the data. Given the

same levels ofC and I, RLR, was low when A was high. With the same levels ofC and

A, RLR) was high when the dominant factor was strong. For the data generated with the

correlation matrices C1, C2, and C3, the RLR values approached ] for the two-dimensional

model, and did not obviously increase for the higher-factor models. For the data

generated with the correlation matrices C4. C5, and C6, the RLR values approached l for

the three-dimensional model, and did not increase for the four-dimensional model. In

general. the patterns of the RLR values reflected the simulated dimensionality.
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Table 4.2.2. Summary statistics of the RLR index for two-dimensional data sets

 

Form RLR

Form 1 l l

RLR]

RLR2

RLR3

RLR:

Form 121

RLR.

RLR2

RLR3

RLR4

Form 13]

RLRI

RLR2

RLR3

RLR:

Form 21 l

RLR.

RLR2

RLR3

RLR4

Form 22]

RLR]

RLR2

RLR3

RLR4

Form 231

RLR;

RLR2

RLR3

RLR4

Form 31 l

RLR]

RLR2

RLR3

RLR:

Form 32]

RLR;

RLR2

RLR3

RLR4

Form 331

RLR1

RLR2

RLR3

RLR4

Descriptive statistics
 

Descriptive statistics
 

 

Test

Mean SD N SE Mean SD N SE

Form 112

0.8904 0.0073 100 0.0007 0.8380 0.0079 100 0.0008

0.9951 0.001] 100 0.0001 1.0003 0.0009 100 0.0001

0.9954 0.0015 68 0.0002 0.9990 0.0013 100 0.000]

0.9930 0.0012 66 0.0001 0.9924 0.0012 99 0.0001

Form 122

0.8954 0.0077 100 0.0008 0.8727 0.006] 100 0.0006

0.9940 0.0018 100 0.0002 0.9990 0.0008 100 0.000]

0.9938 0.0019 76 0.0002 0.9984 0.0012 99 0.000]

0.9926 0.0015 74 0.0002 0.9932 0.0012 99 0.0001

Form 132

0.9725 0.0032 100 0.0003 0.9547 0.0027 100 0.0003

0.9933 0.0012 100 0.000] 0.9980 0.0007 100 0.0001

0.9935 0.0013 97 0.0001 0.9990 0.0010 100 0.000]

0.9939 0.0010 96 0.000] 0.9950 0.0010 100 0.0001

Form 212

0.7276 0.0122 100 0.0012 0.6453 0.0119 100 0.0012

0.9959 0.0015 100 0.0001 1.0015 0.0016 100 0.0002

0.9955 0.0018 71 0.0002 0.9993 0.0021 100 0.0002

0.992] 0.0017 67 0.0002 0.9904 0.0013 99 0.0001

Form 222

0.7305 0.0136 100 0.0014 0.7357 0.0092 100 0.0009

0.9944 0.0016 100 0.0002 1.0000 0.0014 100 0.0001

0.9941 0.0018 76 0.0002 0.9989 0.0016 98 0.0002

0.9914 0.0017 69 0.0002 0.9915 0.0013 98 0.0001

Form 232

0.9413 0.0046 100 0.0005 0.9170 0.0039 100 0.0004

0.9930 0.0016 100 0.0002 0.9982 0.0008 l00 0.0001

0.9940 0.0018 94 0.0002 0.9997 0.0010 99 0.0001

0.9931 0.0011 92 0.0001 0.9938 0.0011 99 0.0001

Form 312

0.6049 0.0118 100 0.0012 0.5011 0.013] 100 0.0013

0.9952 0.0013 100 0.0001 l.00|2 0.0012 100 0.0001

0.9963 0.0015 71 0.0002 1.0001 0.0017 98 0.0002

0.9919 0.0016 65 0.0002 0.9893 0.0015 95 0.0002

Form 322

0.6025 0.0121 100 0.0012 0.6586 0.0088 100 0.0009

0.9936 0.0015 100 0.0002 0.9988 0.0012 100 0.0001

0.9952 0.0017 70 0.0002 0.9999 0.0013 98 0.000]

0.9910 0.0017 58 0.0002 0.9905 0.0013 97 0.0001

Form 332

0.9240 0.0055 100 0.0006 0.8988 0.0040 100 0.0004

0.9930 0.0013 100 0.0001 0.9978 0.0013 100 0.0001

0.9943 0.0015 89 0.0002 0.9996 0.0012 98 0.0001

0.9924 0.0012 85 0.000] 0.9932 0.0012 95 0.000]
 



Table 4.2.3. Summary statistics of the RLR index for three-dimensional data sets

 

Form RLR

Form 4] l

RLR1

RLR2

RLR3

RLRa

Form 42]

RLRI

RLR2

RLR3

RLRa

Form 43]

RLR.

RLR2

RLR3

RLR4

Form 5] l

RLR]

RLR2

RLR3

RLRa

Form 521

RLR.

RLR2

RLR3

RLR4

Form 53]

RLR.

RLR2

RLR3

RLR4

Form 61 l

RLR.

RLR2

RLR3

RLR4

Form 62]

RLR.

RLR2

RLR3

RLR4

Form 63 I

RLR]

RLR2

RLR3

RLR4

Descriptive statistics
 

Descriptive statistics
 

 

Fonn

Mean SD N SE Mean SD N SE

Form 412

0.8382 0.0l0l l00 0.00l0 0.8050 0.0094 100 0.0009

0.9574 0.0050 100 0.0005 0.9144 0.0060 100 0.0006

0.9961 0.0016 100 0.0002 0.9990 0.0018 l00 0.0002

0.9904 0.0017 83 0.0002 0.9853 0.0020 100 0.0002

Form 422

0.8177 0.0124 100 0.0012 0.7542 0.0ll6 100 0.0012

0.9092 0.008] 100 0.0008 0.8864 0.0082 100 0.0008

0.9959 0.0025 100 0.0003 0.9994 0.0021 100 0.0002

0.9888 0.0018 83 0.0002 0.9848 0.0021 97 0.0002

Form 432

0.9558 0.0050 100 0.0005 0.9252 0.0045 100 0.0005

0.9676 0.0042 100 0.0004 0.9512 0.0037 100 0.0004

0.9932 0.0015 100 0.0002 0.9987 0.0014 100 0.0001

0.9919 0.00l4 97 0.0001 0.9900 0.0014 l00 0.0001

Form 512

0.7540 0.0124 100 0.0012 0.6690 0.0123 100 0.0012

0.9435 0.0062 l00 0.0006 0.9106 0.0065 100 0.0006

0.9962 0.0022 100 0.0002 0.9978 0.0025 100 0.0002

0.9883 0.0019 76 0.0002 0.9818 0.0019 100 0.0002

Form 522

0.6366 0.0l86 100 0.0019 0.6318 0.0151 100 0.0015

0.8902 0.008] 100 0.0008 0.8456 0.0086 100 0.0009

0.9956 0.0032 l00 0.0003 0.9981 0.0023 100 0.0002

0.9870 0.0022 8] 0.0002 0.9823 0.0019 98 0.0002

Form 532

0.9138 0.0065 100 0.0007 0.8838 0.0058 100 0.0006

0.9698 0.0041 100 0.0004 0.9505 0.0045 l00 0.0005

0.9932 0.0018 100 0.0002 0.9985 0.0023 100 0.0002

0.9913 0.0015 97 0.0002 0.9876 0.0019 98 0.0002

Form612

0.768] 0.0102 100 0.0010 0.7041 0.0098 l00 0.0010

0.8838 0.0077 100 0.0008 0.8144 0.0071 100 0.0007

0.9957 0.0034 100 0.0003 0.9946 0.0043 100 0.0004

0.9847 0.0023 80 0.0003 0.9778 0.00l9 l00 0.0002

Form 622

0.5915 0.0154 100 0.0015 0.4847 0.0218 100 0.0022

0.7398 0.0l20 100 0.0012 0.6688 0.0222 l00 0.0022

0.9934 0.005] 100 0.0005 0.9929 0.0036 100 0.0004

0.9845 0.0025 83 0.0003 0.9783 0.003l 100 0.0003

Form 632

0.9126 0.0088 I00 0.0009 0.8865 0.0065 100 0.0007

0.9450 0.0082 l00 0.0008 0.912] 0.0060 100 0.0006

0.9948 0.0023 99 0.0002 1.0002 0.0025 l00 0.0002

0.9887 0.0023 99 0.0002 0.9838 0.00l8 100 0.0002
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Figure 4.2.1. The change ofRLR with dimensionality for the correlation matrix C1
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Figure 4.2.2. The change ofRLR with dimensionality for the correlation matrix C2
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Figure 4.2.4. The change of RLR with dimensionality for the correlation matrix C4
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Figure 4.2.5. The change ofRLR with dimensionality for the correlation matrix C5

 

 
 

—0—Form6ll

—-'— Form621

"-“ -.__ Forrn63l

' 'I' 'Form612

 - -l- - Form622

0.5 e' ' 'Form632

  0.4 + i

1 2 3 4

 

 Target dimension

Figure 4.2.6. The change ofRLR with dimensionality for the correlation matrix C6
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4.2.2 Results of Multivariate Analysis of Variance for Study 11

Again, a MANOVA analysis was conducted to explore the influence of the

manipulated factors on the RLR index. The dependent variables in the MANOVA model

were the RLR indices representing four levels of dimensionality (RLRI, RLR2, RLR3, and

RLR4), and the independent variables were A, C, and 1. Again, the Pillai’s Trace was

employed to test the overall multivariate dilTerence because of its robustness to the

violation ofthe assumption of homogeneity of variance.

Table 4.2.4. The multivariate test for Study 11

 

 

 

Effect Value F Hypothesis (y Error df 112

A 0.870 5310.849* 4 3182 0.870

C 2.079 689.733* 20 12740 0.520

1 1.799 71 16.803* 8 6366 0.899

A ><C 0.913 188.489* 20 12740 0.228

A X! 0.740 466.939* 8 6366 0.370

C><l 2.021 325.152* 40 12740 0.505

A ><(.'><l 0.989 104.627* 40 12740 0.247

* p< .01

The overall multivariate test shown in Table 4.2.4 was significant, indicating that

there was a significant difference overall for the main effects A. C, I. and the interactions

on the RLR indices representing different levels of dimensionality. Based on the results

of the significance test and effect size. A. C, I and CXI had important effects on the RLR

indices: A (F(4, 3182): 5310.849, p< .0], 112: 0.870), C (F(ZO, 12740): 689.733, p< .0],

’13: 0.520), 1 (F(8, 6366)= 7ll6.803,p<.01. ’72: 0.899), and C><I(F(40, 12740): 325.152,

p< .01, 212: 0.505). The remaining interactions had relatively minor effects on the RLR

indices: A XC (F(20. l2740)= 188.489. p< .0]. 112: 0.228). A xI (F(8. 6366)= 466.939.
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p< 01.113: 0.370). and A xc'x/ (F140, 12740): 104.627, p< .01. 173: 0.247).

Because the overall difference was significant, the effects ofA, C, and I on RLR],

RLR2, RLR3, and RLR; can be explored by separate univariate analysis. First, Levene‘s

test ofequality of error variances were all significant (RLR.: F(35, 3564): 31.923. p< .01;

RLR2: F(35. 3564): 131.726. p< .01 ; RLR3: F(35, 3365)= 12.661. p< .01); 111.11.: F135.

3189)= 8.820, p< .01). Since the assumption of homoscedasticity for the four separate

univariate tests were all violated at the .01 level. attention should be paid when

interpreting the univariate analyses.

Table 4.2.5. The univariate test for Study 11

 

 

 

 

 

 

 

 

RLR] RLR2

Source (17 MS F - ’13 MS F - ’13

A 1 1.405 12904.228* 0.784 0.259 6834.570* 0.657

C 5 3.699 33973.211* 0.979 2.736 72327.056* 0.990

1 2 17.690 162488.505* 0.989 1.210 31981 .079* 0.947

A XC 5 0.031 282.963* 0.284 0.105 2767.152* 0.795

A X] 2 0.211 1941.125* 0.521 0.014 378.345* 0.175

CXI 10 0.970 8913.046* 0.962 0.401 10602.992* 0.967

A XCXI 10 0.081 747.823* 0.677 0.005 140.905* 0.283

Error 3564 0.000 0.000

Total 3600

@ntinuedL

RLR3 RLR4

some df MS F ’ I]: MS F ' if

A I 0.012 2279.148* 0.404 0.005 1755.672* 0.355

C 5 0.000 68.075* 0.092 0.008 2827.289* 0.816

I 2 0.000 33.958* 0.020 0.004 1270.387* 0.443

A XC 5 0.000 51.470* 0.071 0.001 320.215* 0.334

A X1 2 0.001 133.720* 0.074 0.000 150.458* 0.086

C><1 10 0.000 47.435* 0.124 0.000 46.238* 0.127

A XCXI 10 0.000 11.962* 0.034 0.000 2926* 0.009

Error 3564 0.000 0.000

Total 3600

* p< .0]
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Based on the results shown in Table 4.2.5, all the main effects and interactions were

significant, but their effects on RLR., RLR2, RLR3 and RLR4 were different. The effect

size ofA decreased from RLR) to RLR4. However, C and I had large effect sizes for

RLR), RLR2, but a small effect size for RLR4 and the smallest effect size for RLR3.

Concerning the interaction A ><C, it had a large effect size for RLR2 (112: .795), moderate

effect sizes for RLR) (172: .284) and RLR4 (112:— .334), but a small effect size for RLR3

(2,2: .071). The interaction A X] had a moderate effect size for RLR) (172: .521), and

small effect sizes for RLR3 (if: .174), RLR3 (’73: .074), and RLR... (7,2: .086). The

interaction C XI showed a different pattern. The effect sizes were large for RLR)

(”2: .962) and RLR2 (172: .967), but small for RLR3 (if: .124) and RLR4 (172: .127).

These unsystematic changes in the effect sizes for the RLR indices were hard to

explain. In order to clarify the effect of the manipulated factors on dimensionality, the

overall data set was separated into two-dimensional data and three-dimensional data, and

again analyzed by MANOVA, respectively. Table 4.2.6 and Table 4.2.7 display

multivariate test results based on Pillai’s Trace for the two- and three-dimensional data,

respectively. For the two-dimensional data, A was the most important variable and had

an effect size of.94 l. The effect sizes ofC (1)2: .517), I (112: .628) and A X1012: .492)

were moderate, but the effect size ofA ><C (112: .044) was small. With respect to the

three-dimensional data, the effect sizes ofA (712: .922), C (113: .918), I (1]2= .825) were all

large. All the interactions were significant with moderate effect sizes.
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Table 4.2.6. The multivariate test for the two-dimensional data

 

 

 

 

 

 

Effect Value F Hypothesis (7)" Error q’f 112

A 0.941 6141 .303* 4 1529 0.941

C 1.034 409.833* 8 3060 0.517

1 1.255 644.431 * 8 3060 0.628

A XC 0.087 17.432* 8 3060 0.044

A X] 0.984 370.166* 8 3060 0.492

C><I 0.993 126528“ 16 6128 0.248

A ><C><I 0.626 71 .044* 16 6128 0.156

* p< .01

Table 4.2.7. The multivariate test for the three-dimensional data

Effect Value F Hypothesis df Error df 172

A 0.922 4904.996* 4 1650 0.922

C 1.835 4594.182* 8 3302 0.918

I 1.650 1946.650* 8 3302 0.825

A XC 0.535 150.647* 8 3302 0.267

A X] 0.551 157.017* 8 3302 0.276

C><I 1.502 248.356* 16 6612 0.375

A ><C><I 0.676 84.021 * 16 6612 0.169

* p< .01

To further determine the nature of the effect, the univariate tests for the two- and

three-dimensional data were conducted. Levene’s tests of equality of error variances

were all significant at the .01 level (RLR): F(l7, l782)= 28.292, p< .01; RLR2: F(l 7.

1782): 6.326. p< .01 ; RLR3: F(l 7, 1584)= 4.725,1)<.01;R1.R4:F(17, 1535): 4.031.

p< .01). Levene’s tests of equality of error variances for the three-dimensional data

were also significant at the .01 level (RLRI: F(l7, l782)= 29.881, p< .01; RLR2: F(l7,

1782): 71.847.p<.01;RLR3:F(17, l7810)= 8.528, p< .01; RLR4: F(l7, 1654)= 4.1085,

p< .01). Even though F test is robust to the violation ofthe homogeneity assumption.

care should be taken when interpreting the following univariate analyses.
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Table 4.2.8. Univariate test for two-dimensional data

 

 

 

 

 

 

 

 

Source (If RLRl s RLR3 ,

‘ MS F If MS F If

A 1 0.397 5070.723* 0.740 0.012 7412.411* 0.806

C 2 6.411 81942.183* 0.989 0.000 36.976* 0.040

1 2 9.121 116576.748* 0.992 0.001 638.497* 0.417

A ><C 2 0.004 45.573* 0.049 0.000 6489* 0.007

A X] 2 0.326 4163.514* 0.824 0.000 12.876* 0.014

CXI 4 0.929 11875.816* 0.964 0.000 12.609* 0.028

A ><C><l 4 0.055 705.638* 0.613 0.000 1.629 0.004

Error 1782 0.000 0.000

Total 1800

(Continued)

RLR3 RLR4

some df MS F 1,3 MS F ’12

A 1 0.008 3641 .697* 0.697 0.000 13.375* 0.009

C 2 0.000 61 .309* 0.072 0.001 295.010* 0.278

I 2 0.000 57.118* 0.067 0.001 395.795* 0.340

A ><C 2 0.000 0.604 0.001 0.000 23.371 * 0.030

A XI 2 0.000 44.930* 0.054 0.000 114.172* 0.129

C><I 4 0.000 5.280* 0.013 0.000 3.037 0.008

A XCXI 4 0.000 0.173 0.000 0.000 5228* 0.013

Error 1782 0.000 0.000

Total 1800

* p< .01

In Table 4.2.8, A had large effect sizes of for RLR. (1]2= .740), RLR3 (113: .806), RLR3

(I 112: .697), but a small effect size for RLR4 (772= .009). The effect size of C was large

for RLR. (112: .989), but dropped to 0.04 for RLR2 and 0.072 for RLR3, respectively. The

effect size of I was large for RLR) (112: .992), but reduced to 0.417 for RLR2, and then

became the smallest for RLR3 (1,2: .067). With regard to Table 4.2.9, all the effect sizes

for A, C, and I were small for RLR3. but large for RLR), RLRgand RLR4.
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Table 4.2.9. Univariate test for three-dimensional data

 

  

 

 

 

 

 

 

Source df' RLRL a RLR3 w
' MS F If MS F If

A I 1.095 7848.639* 0.815 0.690 9325.502* 0.840

C 2 2.636 18900.019* 0.955 1.921 25962.423* 0.967

I 2 10.294 73795.933* 0.988 2.444 33037.7l7* 0.974

A ><C 2 0.030 215.664* 0.195 0.040 537.825* 0.376

A X] 2 0.047 338.056* 0.275 0.030 406.642* 0.313

CXI 4 0.634 4544.845* 0.911 0.385 5204.494* 0.921

A XCXI 10 0.068 484.121 * 0.521 0.005 73.352* 0.141

Error 1782 0.000 0.000

Total 1800

(Continued)

RLR3 RLR4

Source (If MS F — 112 MS F — I]:

A 1 0.003 463.401 * 0.206 0.010 2418.868* 0.594

C 2 0.001 68.221 * 0.071 0.004 1069.574* 0.564

I 2 0.000 10.756* 0.012 0.004 920.176* 0.527

A ><C 2 0.000 38.279* 0.041 0.000 47.361 * 0.054

A X] 2 0.001 102.143* 0.103 0.000 62.553* 0.070

C X] 4 0.001 75.448* 0.145 0.000 10.951* 0.026

A ><C><l 4 0.000 9.229* 0.020 0.000 2.029 0.005

Error 1782 0.000 0.000

Total 1800

* p<1 .01

The different findings for the two- and three-dimensional data reflected the fact that

all the data were simulated with a three-dimensional correlation matrice and

three-dimensional item parameters.

two-dimensional and three-dimensional models should result in a good fit.

effects of C, I, A ><C. A X], CXI, and A ><I><C were low for RLR2 and RLR3.

Regarding the two-dimensional data, both the

Thus, the

When the

model under-fit the two-dimensional data, A. C, I and the interactions were important

factors to RLR).

the size ofRLRi.

When the model over-fit the data. only C, I. and A X] seemed to affect

For the three-dimensional data. the consistent pattern showed that all the RLR3



values approached 1 when the model fit the data well. Since the model-data-fit was

good, the effects ofA, C, and I on the fit index became minor. Conversely, A, C, 1 and

the interactions were all important when the model under-fit the data. When the model

over-fit the data, only A, C and I influenced the size of RLR4.

In order to present the interactions among A, C, and I, the simple effects were

displayed in Figure 4.2.7 to Figure 4.2.30. When the model under-fit the data, the RLR

value varied depending upon the size of the dominant factor which had the highest

percentage ofitems sensitive to it. In Figure 4.2.7 to Figure 4.2.9, the first level of]

(12: 12:24) generated the lowest RLR) value for the data generated with correlation

matrices C), C2, and C3 because the dominant factor only contained 50% of the items.

Conversely, as shown from Figure 4.2.10 to Figure 4.2.12, the second level of1(16:16:l6)

generated the lowest RLR] value for the data generated with correlation matrices C4, C5,

and C6, because the dominant factor only contained 33% of the items. Given the same

level of C, the distinctions among different levels of I increased when A was high.

However, the influence ofA was not the same for different combinations of C and 1.

Different results about the interactions can be found in Figure 4.2.13 to Figure

4.2.18. For the data generated with correlation matrices C1, C2, and C3, RLR2

approached 1.00 and implied a good fit. Thus for correlation matrices C1, C2, and C3,

the effects ofA and I on RLR2 were minor. With respect to the data generated with

correlation matrices C4. C5, and Co, RLR2 still varied depending on the levels ofA, C and

I. The effects ofA and I on RLR2 were important.
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Figure 4.2.7. The interaction ofA and I in RLR] given correlation matrix C]
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Figure 4.2.12. The interaction ofA and 1 in RLR] given correlation matrix C6



 

 

   

f l

1.00— C fl I

: : — 12:12:24

0.90— I I ----- 16:16:16

i l —36:6:6

0.80— : :

I I

\ 0.70— 1 1

S I 1

o: 0.60— I i

i i

0.50— 1 1

I l

I l

0.40— I I
1 1'

M H

A

Figure 4.2.13. The interaction ofA and I in RLR2 given correlation matrix C.
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Figure 4.2.14. The interaction ofA and I in RLR2 given correlation matrix C2
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Figure 4.2.15. The interaction ofA and I in RLR2 given correlation matrix C3
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Figure 4.2.16. The interaction ofA and I in RLR2 given correlation matrix C4
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Figure 4.2.17. The interaction ofA and I in RLR2 given correlation matrix C5
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Figure 4.2.18. The interaction ofA and I in RLR2 given correlation matrix C6
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Figure 4.2.19. The interaction. ofA and I in RLR3 given correlation matrix C1
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Figure 4.2.20. The interaction ofA and I in RLR3 given correlation matrix C;
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Figure 4.2.21. The interaction ofA and l in RLR3 given correlation matrix C3
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Figure 4.2.22. The interaction ofA and I in RLR3 given correlation matrix C4
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Figure 4.2.23. The interaction ofA and I in RLR3 given correlation matrix C5
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Figure 4.2.24. The interaction ofA and I in RLR3 given correlation matrix C6
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Figure 4.2.25. The interaction ofA and I in RLR4 given correlation matrix C.

 

 

   

1.00— ; I, 1

I I —12:12:24

0.90— I I """ 16:16:16

I I -—-36:6:6

0.80— I I

I I

I

CE 0.70— I 1

| I

g 0.60- I I

I I
0.50— I I

I I

I I

0.40— I I

M H

Figure 4.2.26. The interaction ofA and I in RLR4 given correlation matrix C2
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Figure 4.2.27. The interaction ofA and l in RLR4 given correlation matrix C3
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Figure 4.2.28. The interaction ofA and I in RLR4 given correlation matrix C4
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Figure 4.2.29. The interaction ofA and 1 in RLR4 given correlation matrix C5
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Figure 4.2.30. The interaction ofA and I in RLR4 given correlation matrix C6
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With regard to Figure 4.2. l 9 to Figure 4.2.24, all RLR3 approached l regardless of

the levels ofA, C, and 1. Because all the data sets were generated with a

three-dimensional correlation matrix and three-dimensional item parameters, the model

could fit the data well for any combination ofA, C, and I. Concerning the results in

Figure 4.225 to Figure 4.2.30, even though the RLR4 were close to l, discrepancies were

found among RLR4, especially when A was high. This explained that the effects ofA, C,

and I might still be important when the model over-fit the data.

4.2.3 Comparisons ofthe Numbers of Rejections

This section reports comparisons of the statistical power and the Type I error rate of

the RLR index with those ofthe 0‘2 test and the Giff test. Again, the theoreticala

used for the (12 test and the GEN/f test was .05.

As shown in Table 4.2. IO. given that the data were two-dimensional. the correct

I‘EJCCIIOHS ofa unIdImenSIonaI model were perfect With CI“ test and the G3,” test.

Based on the unidimensional regression model built in Study I, the rejections based on

the RLR index were correct except for Form 13 I. This finding indicated that the RLR

index tended to underestimate the dimensionality for the two-dimensional data when the

inter-factor correlation was as high as 0.7, item discriminations were moderate, and a

weak minor factor sensitive to 6 items existed.

In order to test null hypothesis H0: d= 2. the two-dimensional regression model was

built. Given that Ho: cl: 2 is true, the regression model was identified with the

predictors ofthe estimated a-parameters (EA, and EA;). the slope ofthe eigenvalues from

I06

 



the estimated inter-factor correlation matrix (ES), and the estimated percentage of items

having dominant loadings on the first and second dimension, respectively (P1, and P12).

The overall model was significant with adjusted R2 equal to .819 and can be expressed as

RLR2: 0.974667 + 0.036129(EA .) + 0.00145 1(EA2) — 0.00475 I (ES) + 0.011826(P]I)—

0.027196(EAI><P11) + 0.025021(EA2 xplg) + 0.008707(EA. XES) —

0.006682(EA3 XES) + 0004379091. x55) — 0.004752(EAl ><PII x135) +

O.023656(EA2 ><P12 xES). (42)

If the observed RLR2 fell in the 5% rejection area at the lower end of the

distribution representing a good fit, the null hypothesis was rejected. The numbers of

rejections of the two-dimensional model were also listed in Table 4.2. l 0. The RLR

index generated false rejections less than 5 regardless of the levels ofA. C. and I. On

the contrary, the G2 test and the 037/7- test generated high rejections for all cases.

Thus, for the two-dimensional data, the RLR index outperformed the G 2 test and the

G3,!” test by having low Type I error rates.
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Table 4.2.10. The number of rejections in IOO replications for two-dimensional data

 

 

 

H0: d=l HO: d=2

Data RLR 62 Gig/r RLR G2 03W

Form l I I IOO IOO IOO 0 100 I00

Form ll2 IOO I00 100 l 100 IOO

Form 12] IOO IOO IOO 4 IOO I00

Form l22 IOO I00 IOO O IOO l00

Form I31 0 IOO IOO O IOO IOO

Form I32 IOO IOO IOO 0 IOO IOO

Form 2]] IOO IOO IOO 3 100 IOO

Form 2l2 IOO IOO IOO 5 IOO IOO

Form 22] IOO I00 I00 2 I00 I00

Form 222 I00 IOO IOO 0 100 IOO

Form 23] 97 IOO IOO I IOO IOO

Form 232 IOO IOO IOO 0 I00 IOO

Form 311 IOO I00 IOO 3 IOO IOO

Form 312 IOO IOO IOO 4 IOO IOO

Form 32l IOO IOO IOO 2 IOO I00

Form 322 IOO IOO IOO I IOO IOO

Form 331 IOO IOO IOO 2 IOO IOO

Form 332 IOO IOO IOO 2 IOO IOO
 

For the three-dimensional data. similar procedures were used to decide the number

of correct rejections of unidimensional and two-dimensional models. As Table 4.2.”

shows. with the theoretical 0. equal to .05. the (1‘2 test and the 0‘21,” test perfectly

rejected the wrong unidimensional and two-dimensional models and generated

satisfactory statistical power. With regard to the RLR index, the rejection of a

unidimensional model was based on the unidimensional regression model built in Study 1

and the results were satisfactory. The rejection of a two-dimensional model was based
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on the two-dimensional regression model in equation (42) and the statistical power was

perfect.

The three-dimensional regression model was built given that the null hypothesis H0:

d= 3 is true. With the predictors of the estimated a-parameters (EA 1, EA2 and EA3), the

slope of the eigenvalues from the estimated inter-factor correlation matrix (ES), and the

estimated percentage of items having dominant loadings on the first, second, and the third

dimension, respectively (P1,. P13. and P13), the three-dimensional regression model was

built having adjusted R2 equal to .384.

RLR3: 0.035961 — 0.017669(EA.) + 0.0 I 7799(EA2) + 0.0]7707(EA3) — 0.055493(P1.) —

0.062399(Plg) — 0033739034. XES) — 0.002514IEA2 x133) + 0.0I 3083(EA3 x133) +

0.038326(EAI xP1.) — 0.066626(II:A2 XP12)— 0.06 I 094(EA3 ><PI3) —

0.003045(P1l x139) - O.046|90(P12 XES) + 0.077303(PI3 XES) +

0.05743 I (EA. xPI. XES) — 0.028220(EA3 ><P12 XES) —

0.090448(EA3 ><PI3 x153). (43)

If the observed RLR3 was less than the lower bound of the distribution representing

a good fit, the null hypothesis was rejected. The numbers of rejections of the

three-dimensional model were listed in Table 4.2.1 I. Regardless of the levels ofA. C,

and I, the RLR index generated false rejections less than 5 times. On the contrary. the

G2 test and the G3,” test produced high rejections. For the three-dimensional data,

the RLR index outperformed the (1‘2 test and the 03017 test by having low Type I error

rates.
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Table 4.2.] l . The number of rejections in IOO replications for three-dimensional data

 

 

 

H0: d= l H0: d= 2 H0: d= 3

Data RLR (12 0‘3sz RLR 6‘3 of,” RLR 6‘3 03W

Form 4. I I00 100 100 100 I00 100 0 100 43

Form 412 I00 100 100 I00 100 100 0 100 53

Form 42. 100 I00 I00 I 00 I00 I00 4 100 26

Form 422 100 100 100 100 100 I00 0 100 57

Form 431 100 I00 100 100 100 I00 0 100 74

Form 432 IOO 100 I00 100 I00 100 0 100 46

Form” I00 100 100 100 I00 100 0 100 4l

Form 512 100 100 100 I00 100 100 2 100 66

Form 521 100 100 I00 I 00 100 100 2 100 40

Form 522 100 100 100 100 100 100 0 100 52

Form 531 100 100 100 100 100 100 0 100 75

Form 532 I00 100 100 100 100 100 0 100 48

Form 6” mo I00 100 100 100 100 I 100 45

Form 6.2 100 I00 100 100 I00 100 4 100 92

Form 621 100 I00 100 I 00 100 100 4 I00 67

Form 622 I00 100 100 100 100 100 5 100 93

Form 63] 98 100 100 100 100 100 I 100 45

Form 632 100 I00 98 IOO 100 100 0 100 55
 

4.3 Real Data Analysis

As a real data example, the Grade 4 Mathematics Test data from the MEAP testing

program were employed. Instead of analyzing the whole data set, five independent

random samples of 2000 examinees were randomly selected. For each level of

dimensionality, the RLR index was calculated and listed in Table 4.3. l. The results

indicated that the values ofRLR, were as high as .97 in all five samples. When adding

dimensions to the model, all the RLR values didn’t approach I. This pattern of the RLR

values approximated the results in the unidimensional simulation. With a sample size of
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2000, when the data were truly unidimensional with moderate level of item

discrimination, the RLR index stayed at a fixed level regardless how many dimensions

were added to the model.

Table 4.3.1. The RLR indices for the MEAP Grade 4 Mathematics Test data

 

 

Sample RLR] RLR2 RLR3 RLR4

Sample 1 0.9828 0.9850 0.9827 0.9828

Sample 2 0.9798 0.9825 0.9801 0.9798

Sample 3 0.9748 0.9808 0.9784 0.9748

Sample 4 0.9713 0.9814 0.9791 0.9713

Sample 5 0.9749 0.9796 0.9787 0.9749
 

To decide whether or not the Grade 4 Mathematics Test data were unidimensional,

the mean of the estimated a-parameters, the SD of estimated d-parameters, along with the

sample size and test length were implemented in equation (41) to decide the lower bound

ofa good fit. Table 4.3.2 shows the descriptive statistics of item parameters and the

lower bound of the predicted RLR. value. Because the null hypothesis Ho: d= l was not

rejected, the significance test stopped at the unidimensional model. All the results

indicated that this Mathematics Test data can be well fit by the unidimensional model.

Table 4.3.2. Item parameter estimates and the test of unidimensionality

 

Item parameter
 

 

Sample Lower bound Ho: d= I

Mean (a) SD(a) Mean ((1) SD ((1)

Sample 1 0.6662 0.2357 0.9151 0.6510 0.9561 Not rejected

Sample 2 0.6686 0.2210 0.9201 0.6540 0.9565 Not rejected

Sample 3 0.6481 0.2340 0.8757 0.6498 0.9531 Not rejected

Sample 4 0.6635 0.2274 0.8752 0.6432 0.9557 Not rejected

Sample 5 0.6574 0.2202 0.9042 0.6343 0.9547 Not rejected
 



CHAPTER 5

SUMMARY, DISCUSSION, AND CONCLUSION

In this chapter, the overall results are summarized and the related issues are

discussed. The conclusions are drawn from both the simulation studies and the real data

analysis. Moreover, the limitations of the research and suggestions for future studies are

provided.

5.1 Summary of the Research

The purpose of this research was to propose a new index to evaluate the

model-data-fit for the compensatory logistic MIRT model. Once the number of

dimensions is identified to adequately describe the item response data, the item and

ability parameters can be correctly estimated. Then, the test scores can be correctly

estimated by the MIRT model and the subsequent testing techniques, such as test

equating for multidimensional abilities, can possibly be conducted.

The RLR index proposed in this study is derived from Estralla’s (1998) R2 analog

which is equivalent to the R2 in the OLS model. The RLR index compares the

percentages of the unexplained variance in the k-dimensional MlRT model with that in

the (k+l)-dimensional MIRT model. The value of the RLR index reflects the

improvement of fit obtained by adding one more dimension to the MIRT model. When

the model fits the data, the error reduction due to adding one more dimension to the

model is limited and the RLR index approaches 1.

This research investigated the performance of the RLR index with respect to its
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ability to correctly identify the dimensionality for both unidimensional and

multidimensional data reflecting different levels of item discrimination, item difficulty,

sample size. test length. inter-factor correlation. and item-factor structure. The

statistical characteristics of the RLR index were compared to those of the G 2 test and

the OBI-[f test. The test data from the MEAP Grade 4 Mathematics Test were analyzed

to show how the RLR index decided the dimensionality of real data.

5.2 Discussion

Based on the results in Chapter 4. the major findings are highlighted in the

following sections.

The Rates of Unsuccessful TESTFACT Runs

When unidimensional data were analyzed by MIRT models, some analyses were

unsuccessful. Because the data generated a singular tetrachoric correlation matrix, the

full-information factor analysis procedure stopped. When the tests were short, all the

TESTFACT runs were successful. However, when the tests were long, the tests with

high variation of the d—parameters generated a singular correlation matrix at higher rates

than the tests with low variation of the d—parameters. This was more severe when the

sample size was small. When the test was long, the size of the frequency table for

calculating the pair-wise tetrachoric correlation was large, resulting in some cell

frequencies being too small to give meaningful tetrachoric correlation estimates. For

those invalid item-pairs, TESTFACT automatically used the substitute values of either I

or —I. When the test was long but the sample size was small. the number of invalid
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item-pairs increased and caused more inaccurate tetrachoric correlation estimates. Thus,

with the limited number ofvalid item-pairs. the resulting tetrachoric correlation matrix

tended to be problematic.

Given that the test was long. the rate of getting a singular matrix was greater when

the d—parameters had higher variation. This finding is consistent with Roznowski et al’s

study (1991). The tetrachoric correlation has the special property that when it

approaches either 0 or I. the variation ofthe sampling distribution is large. In this study,

when the test items were extremely easy or difficult, the underlying correlations for these

item-pairs approached 0 or 1. Accordingly, these pair-wise correlations were poorly

estimated and resulted in many arbitrary 0’s and 1's. Again, with a large number of

inaccurate tetrachoric correlation estimates, the tetrachoric correlation matrix would have

a high probability to be singular, causing problems in full-information factor analysis.

For the multidimensional data. given the same combination of inter-factor

correlation and item-factor structure, the data with moderate item discriminations

generated a singular tetrachoric correlation matrix at higher reats than the data with high

item discriminations. When the levels of inter-factor correlation and item

discrimination were held constant, the third level (36: 6: 6) of the item-factor structure

generated a singular correlation matrix at lower rates than the first level (12: 12: 24) and

the second level (l6: l6: 16) of item-factor structure. However, the inconsistent

patterns were found between the two- and three-dimensional data sets. The

two-dimensional data showed higher rates of getting a singular matrix for the

four-dimensional model than for the five-dimensional model. Conversely. the

three-dimensional data demonstrated lower rates of getting a singular matrix for the
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four—dimensional model than the five-dimensional model. In order to explore this

problem, different TESTFACT settings, such as different numbers of quadrature points in

the EM algorithm, different levels of iteration cycles, and different levels of the

convergence criteria were employed, but similar results were obtained. It is unclear

how full-information factor analysis generated the inconsistent results. The

performance of TESTFACT computer program needs further investigation in future

studies.

The Unexpected Values ofthe RLR Index and the Git/f Test

As shown in the summary statistics of Study ll, unexpected RLR values (RLR> l)

were found in the multidimensional simulation. These unexpected values occurred

when the estimation model recovered the true dimensionality or over-fit the data.

Theoretically, the RLR index should not be greater than I because the SSE should not

increase when adding more factors to the model. However, whenever the RLR index

exceeded 1. the corresponding G3,” test generated a negative value. which was not

reasonable for a x2 distribution. The exact cause of these unexpected values was not

clear, but a possible explanation is provided.

The R2 for the OLS model has the property ofnot decreasing when more predictors

are added to the model. However, this is not always the case for the MIRT model where

both the a-parameters and ability parameters need to be estimated simultaneously.

Adding one more factor to the MIRT model increases the degrees of freedom, but

simultaneously requires m + n — 2 (n is the number ofitems, and m is the number of

examinees) more parameters to be estimated. It is possible that. when the model-data-fit
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is already perfect, adding more factors to the MIRT model would increase fit, but

simultaneously would generate larger estimation errors. When the model over-fits the

data, the increase of fit due to adding more factors may not compensate for the increase

of estimation error. According to the definition, the RLR index is the ratio of the log

transformation of the unexplained percentage of the variance from the k-dimensional and

the (k+l)-th dimensional models. When the unexplained percentage of the variance of

the k-dimensional model is smaller than that of the (k+] )-th dimensional model, the value

of the RLR index becomes greater than one.

The same rationale can be applied to explain the negative values of the 05,-” test.

The G2 test in equation (13) is a discrepancy function based on the ratio of the

likelihood under the fitted model to the likelihood ofthe empirical frequencies. The

Giff test, as shown in equation (14), compares the discrepancy of the likelihoods for

the model and the data between a lower-factor model and a successive higher-factor

model The formula explicitly indicates that the discrepancy between the model and the

data for the lower-factor model should always be greater than the discrepancy between

the model and the data for the higher—factor model. In this study, however, the results

showed that the assumption of the formula is not always true. When the model already

fits the data well, over-fitting the data by adding one more factor to the model may

increase the discrepancy between the model and the data and thus generates a negative

value for the Giff statistic. Because both the RLR index and the Giff test compare

the fit of the two successive MIRT models, the over-fitting problem occurs when the

lower-factor model already has a good fit and the higher-factor model has a relatively
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poor fit. Thus. when the over-fitting problem arises, the RLR index may exceed 1, and

at the same time the Giff/i statistic may be negative.

The Patterns ofthe RLR Values and Dimensionality

From the results in unidimensional simulation, RLR, reached .99 when the

a-parameters were higher than 0.2. In such cases, because all RLR, values were close to

the upper bound, adding more dimensions to the model only increased the values of RLR3

and RLR3 at the third decimal place. Conversely, for the tests with the a-parameters

equal to 0.2, adding factors to the model did obviously increase the RLR values.

The simulation of two-dimensional data based on the three-dimensional inter-factor

correlations and the three-dimensional item parameters was successful. The patterns of

the RLR values for the multidimensional data sets, as shown from Figure 4.2.1 to Figure

4.2.6, were as expected. For the two-dimensional data, the values of RLR, were small.

but the values of RLR2 approached I. When adding more factors to the model, both the

values ofRLR3 and RLR4 were still close to 1. For the three-dimensional data, the

values of RLR, were small. When adding a second factor to the model, the values of

RLR2 increased but not to the level of a good fit. For the three-dimensional solution, all

the values of RLR3 approached 1, suggesting a good fit. When the model over-fit the

data, the values ofMR; were still close to l, but sometimes less than the values ofRLR3.

Based on the results of the unidimensional and multidimensional simulation studies,

it was clear that the change of the RLR values with dimensionality reflected the simulated

dimensionality underlying the data. Once the RLR index stops increasing. the minimum

number of statistical dimensions can be specified.
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The Variables Associated with the RLR Index and Dimensionality

The results from the MANOVA analysis in Study I showed that item discrimination,

item difficulty, sample size, and test length collectively had an effect on the RLR index.

Sample size affected the RLR index, but the effect varied depending on the level of item

discrimination. A large sample size helped reducing the sampling variation and offered

better estimates of the model parameters, especially when the item discrimination was

low. With a larger sample size, the RLR index became more stable. That is, when item

discrimination was low, the problem of falsely rejecting the true unidimensionality was

circumvented. The effect of item difficulty also depended on the level of item

discrimination. As long as item discrimination was greater than 0.2, the effect of item

difficulty was minor.

The results based on the MANOVA analysis in Study 11 indicated that inter-factor

correlation, item-factor structure, and item discrimination all together influenced the RLR

index. Because the interactions were significant and some of them had substantive

magnitude of effect sizes, the simple effect instead of the main effect should be discussed.

Given the same level of inter-factor correlation and item-factor structure, high item

discrimination increased the change ofRLR associated with dimensionality when the

model under-fit the data. Thus, thejudgment of the dimensionality based on the RLR

index would be easy when the item discrimination was high. Given the same level of

inter-factor correlation and item discrimination, the change of RLR with dimensionality

was the greatest when items were evenly sensative to factors. In other words, when

there was no clear dominant factor in the data, the change of RLR with dimensionality
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was obvious. On the contrary. when the data had a strong dominant factor and some

weak minor factors that were only sensitive to a small number of items, the change of

RLR with dimensionality became small and thus increased the difficulty of identifying

minor factors. However, when the model fit the data, the effects of item discrimination,

inter-factor correlation. and item-factor structure became minor.

The RLR Index and the Magnitude ofthe Dominant Factor

In terms of the factor analysis technique, the dominant factor will always be

identified first by the factor-analytical model. Then, minor factors will be extracted in

order by their quantities of explained variance. The first extracted factor always

explains the most variance in the data than the subsequent factors. The R2 technique is

primarily designed to represent the percentage of explained variance in the data. In the

MIRT model, RI2 shows the percentage of variance explained by the unidimensional

’7 . . . . .

model, and R5: reflects the percentage of variance explained by the two-dimenSIonal

model. Based on the equivalence between the MIRT model and factor analytic model,

RLR] can be used to show the relative size of the dominant factor in contrast to the

second factor.

Based on the results from the unidimensional simulation, it is clear that the

magnitude ofRLR, was related to the size of item discrimination. RLRI reached .99

when item discrimination was 0.4 or higher. Even though item discrimination was as

low as 0.2 with a short test and a small sample size, the minimum value ofRLR. was .80.

For the unidimensional data with higher item discrimination, the dominant factor

explained more variance in the data and thus could be more easily identified by the
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statistical model.

The determination of the size of the dominant factor is more complex in the

multidimensional data. When inter-factor correlation and item discrimination were held

constant, RLR. increased with the increment of the number of items sensitive to the

dominant factor. The two-dimensional data, the data related to the correlation matrices

CI, C3, and C3, were generated with a three-dimensional inter-factor correlation matrix

and item-factor structure by combining the first two groups of items into a bigger item

cluster. Thus, the first level of the item-factor structure (12:12:24) generated the lowest

dominant factor, which were sensitive to 50% of items in a test. The second level of the

item-factor structure (16:16:16) produced a dominant factor sensitive to 67% of items in

a test. With 88% of items sensitive to one factor, the third level of the item-factor

structure (36:6:6) generated the greatest value of the dominant factor and at the same time

had the greatest value of RLR]. With regard to the three-dimensional data, which were

the data sets related to C4, C5, and C6, the percentage of items related to one factor was

consistent with the level of item-factor structure. For the second level of the item-factor

structure (16:16:16), each of the three dimensions had 33% of items. Without a doubt,

the second level of item-factor structure (16:16:16) generated lower RLRI than the first

level (12:12:24) and the third level (36:6:6) ofitem-factor structure. With 76% of items

related to the main factor, the third level of the item-factor structure had the largest

dominant factor and generated the greatest value of RLR].

Given the same level of item-factor structure and item discrimination, RLR.

increased proportionally to the decrease of the inter-factor correlations. ln factor

analysis, when the factors are completely independent, the dominant factor tends to



explain less variance than the case when the factors are correlated. Thus, it is not

surprising that when the level of item-factor structure and item discrimination were held

constant, C3 generated the lowest value of RLR. in the two-dimensional data and C6

generated the lowest value ofRLR. in the three-dimensional data. In short, RLRI in the

multidimensional data reflected the size of the dominant factor. Low RLRI suggested

that the items were more evenly distributed to factors, and the factors tended to be

independent of each other. Correspondingly, the lower value of RLRI also implied that

the data were less likely to be unidimensional.

The Statistical Characteristics ofthe RLR Index, G2 Test, and 0517/ Test

The results of the G 2 test and 63”] test indicated that these statistics could not

accurately identify dimensionality. Even though these statistics demonstrated high

statistical power in rejecting wrong models, they tended to reject right models with high

Type 1 error rates. These findings are consistent with earlier studies (Berger & Knol,

1990; De Champlain & Gessaroli, I998; DeMars, 2003; McDonald, 1989b) that these

(1‘2 tests should not be used to assess the dimensionality for test data. On the contrary,

the RLR index demonstrated low Type I error rates and high statistical power for most

data sets.

In the unidimensional simulation, the RLR index generated low Type I error rates

except for the extreme cases when item discrimination was 0.2 and sample size was 2000.

When item discrimination is low and sample size is limited, the test data are close to

random data so that the signal in the data is unnoticeable. Accordingly, it is reasonable

 



that the RLR index can not function well for these test data. From the practical

consideration in test development, a test with these items can be considered useless  
because items are not discriminating examinees’ abilities. It can be expected that such

bad tests may not be developed in real testing conditions, so the failure of the RLR index

in detecting the true unidimensionality for these test data will not be an issue. It can be

concluded that the RLR index demonstrated low Type I error rates for common tests.

When the data are close to random, the index tended to falsely reject the true

unidimensional model.

With regard to the multidimensional data, the RLR index performed well in

 

rejecting the wrong unidimensional model except for the two-dimensional data having

two highly correlated factors, a strong dominant factor, and moderate item discrimination.

For this kind of test data, the RLR index cannot detect the weak second factor and tends

to underestimate the data dimensionality. Other than this special case, the RLR index

had high statistical power and low Type 1 error rates. The results of the simulation

studies indicated that the RLR index outperformsthe G2 test and the Giff test in

detecting the true dimensionality.

Real Data Analysis

The RLR indices for the five random samples consistently indicated that the Grade 4

Mathematic Test data from the MEAP testing program can be modeled unidimensionally.

As described earlier, this test was designed to measure different ability domains and skills

in mathematics at the grade-4 level. The results based on the RLR index suggested that

these content domains may be described under the umbrella of a general factor called



“basic mathematics skills." The unidimensional finding is supplemented with the

discussions in term of the test item content, the representativeness of the content-related

dimension, the definition of dimensionality. and the assumption of the compensatory

MIRT model.

The mathematics knowledge taught in grade-4 contains the basic mathematics

concepts and skills. The differences among different content knowledge and skills may

not be as great as expected by the test developers. For example, if students can do

multiplication, they need to have the prerequisite knowledge in addition. When

responding to fraction questions. students have to think about how fractions are related to

a unit whole, compare fractional parts of a whole, and find equivalent fractions to give a

correct response. The processes for answering these mathematics questions are actually

related to counting and addition. As a whole, the test items in the Grade 4 Mathematics

Test may cover several distinct content domains, but these content-related abilities may

be indeed highly correlated to each other. As shown in the second simulation study,

when two of the three factors are highly correlated, the dimensions will converge so that

a two-dimensional model can well explain the truly three—dimensional data. When the

content-related abilities are highly correlated, similar to the multicollinearity problem in

multiple regression, it is difficult to identify the net contribution of the minor factors

when the dominant factor already explains most of the contribution of the minor factors.

Besides, how well the minor factors were measured in the Mathematics Test is

another important issue. The Mathematics Test contained 57 items: 6 items for data and

probability; 6 items for geometry; 18 items for measurement; and 27 items for numbers

and operations. For the 6 items in data and probability. the mean of the item
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discrimination is only 0.5347. With regard to the 6 items in geometry, the mean ofthe

item discrimination is 0.5413. Given that the content-related abilities are highly

correlated, those weak dimensions having only 6 moderate-discriminating items are not

easily identified by a mathematical model.

Another explanation for the findings from the real data analysis goes back to the

definition of dimensionality. There appears to be a common misconception that a set of

items on a test measure a distinct number of dimensions regardless of the characteristics

of the examinees taking the test (R. L. Turner et al., 1996). However, the statistical

dimensionality is a characteristic of the data matrix, not the test or examinee population

(Reckase, 1990). Researchers (Ackerman, 1994; Reckase, l997a; R. L. Turner et al.,

1996) pointed out that dimensionality is a function of both the skills being measured by

the items and the multivariate ability distributions of the examinees. The dimensional

structure of the data from a test could differ for various subgroups of an examinee

population. Ackerman (1994) indicated that if items collectively are capable of

distinguishing between levels of several skills, and examinees differ in their levels of

proficiencies on more than one of these skills, the interaction needs to be described by a

multidimensional model. Based on this rationale, the findings of the Grade 4 MEAP

Mathematics Test data may indicate that these test items indeed covered several distinct

content domains and the items should be described by more than one content-related

ability, but the target examinees, i.e. the grade-4 students in Michigan state, were

heterogeneous with respect to the main content-related ability but homogeneous with

respect to the minor content-related abilities. When the variations of examinees‘

proficiencies on the minor content-related abilities were limited, it is difficult for a
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mathematical model to capture those dimensions.

Another possible explanation can be offered based on the assumption of the

compensatory logistic MIRT model. This MIRT model assumes that abilities can be

linearly combined and compensated. It is possible that the content-related dimensions

for the Mathematics Test data may be multidimensional, but the items were sensitive to

the same combination of the content-related dimensions. Consequently, the statistical

dimension needed for the model to describe the item-person interaction was one. Given

the unclear nature ofthe ability structure in the mathematics test data, it is uncertain

whether or not the unidimensional model can still fit the data well if a different model,

such as a partially compensatory model, is used to analyze the same data.

To conclude these possible explanations for the real data analysis, one statistical

dimension was enough to sufficiently explain the MEAP Grade 4 Mathematics Test data

when the compensatory logistic MIRT model was used.

5.3 Conclusion

Based on the findings in the simulation studies and the real data analysis, the RLR

index is a promising goodness-of-fit index for the MIRT model. The dimensionality

index varied in accuracy as a function of sample size and could more accurately identify

unidimensionality as the number of items increased. The RLR index demonstrated low

Type I error rates except for the tests composed of poor items having item discrimination

values of 0.2 with a short test and a small sample size. The RLR index also revealed

high statistical power in rejecting wrong models except for the two-dimensional data with

highly correlated factors, moderate item discrimination. and one weak minor factor.
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The change of the RLR index with dimensionality implied the decrease of error in the

data when adding factors to the model. Moreover, the RLR index for the initial

unidimensional model reflected the size of the dominant factor. When the RLR index

for the initial unidimensional model was low, it implied that the data had a weak

dominant factor and were less likely to be unidimensional. Based on the RLR index, the

Grade 4 Mathematics Test data from the MEAP testing program can be well explained by

the unidimensional model. Even though the test was developed by selecting items

representing different knowledge domain and skills, one statistical dimension would be

enough to explain the interaction between items and examinees.

5.4 Limitations, Implications, and Suggestions for Future Research

The purpose of this study is to offer an index which can be used as a rule of thumb

in selecting the most appropriate dimensionality for the MIRT model to explain test data.

Instead of relying on subjectivejudgments, the proposed index provides objective and

useful information to decide dimensionality based on the compensatory logistic MIRT

model. Once the dimensionality is identified, the dimensional structure can further be

explored to identify the relationships between dimensions. Validity studies (to identify

what domains or dimensions are measured) can proceed to provide evidence supporting

hypothesized multidimensionality and to identify construct-irrelevant variance.

It is important to emphasize that these findings were just preliminary and caution

should be taken when interpreting and generalizing the results to other conditions. It is

therefore important to highlight the limitations associated with this investigation and to

offer suggestions for future research with reference to assessing MIRT goodness-of-fit.
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First, as introduced in Chapter 2, the parametric MIRT models provide full

dimensionality estimation specifying the number of dimensions and which item measures

which dimension, but these benefits all rest on their specific assumptions of the item

responses. Tate (2002) pointed out that any mathematical model with limited numbers

of parameters provided a relatively efficient summary of data, but it also brought in the

strong assumption that the phenomenon of interest could be accurately explained by the

assumed model. Based on the rationale, data dimensionality can be determined by the

model-data-fit procedure only when the proposed model is appropriate. Since the RLR

index was derived from the logistic compensatory MIRT model (Reckase, 1985; Reckase

& McKinley, ‘l 991), this index can work well only when the logistic compensatory MIRT

model is the appropriate model to explain the data.

The logistic compensatory MIRT model used in this study is only one of the MIRT

models proposed in the literature. This model explicitly assumes that abilities can be

linearly combined so that the high level of one ability can compensate for the low level of

a second ability. However, for real test data it is unclear if abilities can be linearly

combined or compensated. Sympson’s model, for example, assumes that the ability

structure underlying the test data is partially compensatory (cited from Reckase &

McKinley, 1982). A correct item response requires examinees to demonstrate high

abilities on all dimensions. 1f the underlying dimensional structure in the data is

different from the model assumption, using the model to explain the data may not

generate a good fit unless the extremely high-dimensional model is used. As explained

by Tate (2002), the attempt to fit the partially compensatory function with a

compensatory model is similar to the unwise attempt to use an additive regression model



to represent an interactive relationship. However, so far the robustness of the

compensatory MIRT models to the violation of the assumption of ability compensation is

still unclear. It would be worth noting that the MIRT model used in this study is only

one option to describe test data. If the inherent ability dimensions in the data cannot

match the model assumption, using the compensatory MIRT model to describe the data

may result in essential misfit. and consequently the statistical power of the RLR index

would be limited.

Second, since the RLR index compares the ratio of the residuals ofthe two

successive MIRT models, the degrees of freedom for the RLR index need further

investigation. In the OLS model, R2 is not an unbiased estimate of the corresponding

parameter in the population, and the degree of bias depends on the relative size of the

number of observations (N) and the number of parameters (P)(Howell, 2001, p. 546). In

the OLS regression model, the number of parameters is usually independent of the

number of observations. The R2 tends to be perfect (R2: 1) when N= P + l regardless of

the true relationship between the dependent variable and the predictors in the population.

For the MIRT models, however, the total number of parameters needed to be estimated is

always large. As the number of examinees increases in the MIRT model, the number of

parameters increases proportionally. For example, in a unidimensional MIRT model. if

2000 examinees take a test that has 40 items, the total number of parameters to be

estimated is 2078 (2000 + 2 x40 — 2). While adding the second dimension to the MIRT

model, there are 2038 (2000 + 40 — 2) more parameters to be estimated for the same data

set. It is uncertain how the R2 analog ofthe MIRT model reacts to the huge number of

the degrees of freedom. It is also unclear how the RLR index reflects the potential



inflation problem for the R2 analogs for two successive models. Even though the

current findings are positive, the succeeding research should focus on the degrees of

freedom of the RLR index to examine the possible inflation problem.

Third, simulation studies offer a means to verify the theoretical statistical properties

in practice, but the simulation scenarios always have less than real complexity. It is

critical to point out that all the simulated data sets in this research were based on the

simple structure and they only represented the simplest cases. Future studies should

also employ mixed structure to explore the statistical characteristics of the RLR index in

correctly identifying the true dimensionality. Furthermore, the two simulation studies

employed the important variables related to dimensionality. Some other potential

variables, such as the effect of the guessing parameter on model-data-fit and the

interaction between item-factor structure and item discrimination (the item discrimination

are different for each factor) may be appealing topics for future research. Besides, the

comparisons between the RLR index and the non-parametric indices on detecting

dimensionality would be worth investigation. To detect the limitation of the RLR index,

it would also be of interest to decide the minimum number of items and the minimum

level of item discrimination representing one identifiable dimension.

Last, it is not surprising that the choice of the appropriate dimensionality assessing

method is constrained by the limitations of estimation theory and the computer program

(Tate, 2002). When using full-information factor analysis (TESTFACT), the number of

factors should not exceed five in order to ensure the accuracy of the results (Bock et al.,

1988). In order to demonstrate how the RLR index functions for under-fit, good fit, and

over-fit, the maximum number ofdata dimensionality simulated in this research is three.
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It is expected that the investigation of higher-dimensional data may be possible when a

more powerful mathematical algorithm or a computer program is developed. Hopefully,

the results presented in this research will offer useful information to practitioners

interested in using the MIRT model. It is hoped that these findings will promote future

research in this area and lead to helpful guidelines with respect to the assessment ofthe

data dimensionality.
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APPENDIX A

Mathematical Derivation of Esrella’s (1998) R2 Analog
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APPENDIX B

The Conditional Distributions of the RLR Values in Simulation Study I

  
0.80 0.85 0.90 0.95

RLR

Figure B. I. The conditional distributions of the RLR values for Test lllwith 2000 examinees
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Figure B2. The conditional distributions of the RLR values for Test lllwith 6000 examinees

132

 



  
0.75 0.80 0.85 0.90 0.95 1.00

RLR

Figure B3. The conditional distributions of the RLR values for Test 121with 2000 examinees
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Figure B4. The conditional distributions of the RLR values for Test 121with 6000 examinees
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Figure B5. The conditional distributions of the RLR values for Test 131with 2000 examinees
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Figure B6. The conditional distributions of the RLR values for Test 131with 6000 examinees
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Figure B8. The conditional distributions of the RLR values for Test 211with 6000 examinees
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Figure B9. The conditional distributions of the RLR values for Test 221with 2000 examinees
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Figure B. 10. The conditional distributions of the RLR values for Test 22 1 with 6000 examinees
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Figure B.11. The conditional distributions ofthe RLR values for Test 231with 2000 examinees
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Figure B. 12. The conditional distributions of the RLR values for Test 231with 6000 examinees
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Figure B. 13. The conditional distributions ofthe RLR values for Test 33 lwith 2000 examinees
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Figure B. l 4. The conditional distributions of the RLR values for Test 331with 6000 examinees
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Figure B. 15. The conditional distributions of the RLR values for Test 321with 2000 examinees
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Figure B. 16. The conditional distributions of the RLR values for Test 321with 6000 examinees
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Figure B. 17. The conditional distributions of the RLR values for Test 331with 2000 examinees
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Figure B. 18. The conditional distributions ofthe RLR values for Test 331with 6000 examinees
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Figure B. 19. The conditional distributions of the RLR values for Test 411with 2000 examinees
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Figure 8.20. The conditional distributions of the RLR values for Test 411with 6000 examinees
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Figure B.21. The conditional distributions of the RLR values for Test 421with 2000 examinees
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Figure B.22. The conditional distributions of the RLR values for Test 421with 6000 examinees
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Figure B.23. The conditional distributions of the RLR values for Test 43 lwith 2000 examinees
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Figure 8.24. The conditional distributions of the RLR values for Test 431with 6000 examinees
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Figure B.25. The conditional distributions of the RLR values for Test 112 with 2000 examinees

  
Figure B.26. The conditional distributions of the RLR values for Test 112 with 6000 examinees
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Figure B.27. The conditional distributions of the RLR values for Test 122 with 2000 examinees
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Figure 8.28. The conditional distributions of the RLR values for Test 122 with 6000 examinees
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Figure B.30. The conditional distributions of the RLR values for Test 132 with 6000 examinees
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Figure 3.31. The conditional distributions of the RLR values for Test 212 with 2000 examinees

RLR.

RLR2

RLR3

I I I‘ I I I

0.990 0.993 0.994 0.996 0.998 1.000

RLR

Figure 8.32. The conditional distributions of the RLR values for Test 212 with 6000 examinees
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Figure B.33. The conditional distributions of the RLR values for Test 222 with 2000 examinees
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Figure B.34. The conditional distributions of the RLR values for Test 222 with 6000 examinees
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Figure B.35. The conditional distributions of the RLR values for Test 232 with 2000 examinees
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Figure B.36. The conditional distributions of the RLR values for Test 232 with 6000 examinees
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Figure 8.37: The conditional distributions ofthe RLR values for Test 312 with 2000 examinees
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Figure B.38: The conditional distributions ofthe RLR values for Test 312 with 6000 examinees
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Figure 8.39. The conditional distributions ofthe RLR values for Test 322 with 2000 examinees
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Figure B.40. The conditional distributions of the RLR values for Test 322 with 6000 examinees
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Figure B4]. The conditional distributions of the RLR values for Test 332 with 2000 examinees
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Figure B.42. The conditional distributions of the RLR values for Test 332 with 6000 examinees
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Figure B.43. The conditional distributions ofthe RLR values for Test 412 with 2000 examinees
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Figure B.44. The conditional distributions of the RLR values for Test 412 with 6000 examinees
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Figure B.45. The conditional distributions of the RLR values for Test 422 with 2000 examinees
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Figure 8.46. The conditional distributions of the RLR values for Test 422 with 6000 examinees
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Figure B.47. The conditional distributions of the RLR values for Test 432 with 2000 examinees
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Figure B.48. The conditional distributions of the RLR values for Test 432 with 6000 examinees
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APPENDIX C

The Conditional Distributions of the RLR Values in Simulation Study 11
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Figure C. 1. The conditional distributions of the RLR values for Form 111
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Figure C2. The conditional distributions of the RLR values for Form 112
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Figure C3. The conditional distributions of the RLR values for Form 121
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Figure C4. The conditional distributions of the RLR values for Form 122
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Figure C6. The conditional distributions of the RLR values for Form 132
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Figure C7. The conditional distributions of the RLR values for Form 211
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Figure C9. The conditional distributions of the RLR values for Form 221
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Figure C.15. The conditional distributions of the RLR values for Form 321
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Figure C20. The conditional distributions of the RLR values for Form 412
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Figure C22. The conditional distributions of the RLR values for Form 422
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Figure C23. The conditional distributions of the RLR values for Form 431
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Figure C.24. The conditional distributions of the RLR values for Form 432
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Figure C25. The conditional distributions of the RLR values for Form 511

 

 

 

    
 

RLR;

” RLR2

I .EULIQ3 ------

I

: ICLJQ4 ______

i

I

I II

I II

I II

I II

II I'

IIII

IIII

III'

III'

IIII

III'

III'

IIII

IIIl

J k J k Itl'

l l I l I

06 0.7 08 0.9 1.0

RLR

Figure C26. The conditional distributions of the RLR values for Form 512
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Figure C27. The conditional distributions of the RLR values for Form 521
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Figure C28. The conditional distributions of the RLR values for Form 522
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Figure C29. The conditional distributions of the RLR values for Form 531
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Figure C32. The conditional distributions of the RLR values for Form 612
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Figure C33. The conditional distributions of the RLR values for Form 621
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Figure C34. The conditional distributions of the RLR values for Form 622
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