

l

‘

”
A
.

.
.
.
.
.

Q
‘
Q
m

N

This is to certify that the

dissertation entitled

An Integrated Approach to Autonomous Computation in Data

Streaming Applications

presented by

Eric P. Kasten

has been accepted towards fulfillment

of the requirements for the

Ph.D. degree in Computer Science

@Mg
MajoP‘Professor’3 Signature

fizz/fl

Date

MSU is an affirmative-action, equal-opportunity employer

I

l
l

l

LIBRARY

Michigan State

University

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

6/07 p:/ClRC/DateDue.indd-p.1

ABSTRACT

AN INTEGRATED APPROACH TO AUTONOMOUS COMPUTATION IN

DATA STREAMING APPLICATIONS

By

Eric P. Kasten

Increasingly, software needs to adapt to its environment. This need is driven in

part by the emergence of pervasive computing (software that interacts with the phys-

ical world) and autonomic computing (software required to manage itself). We say

that an application is adaptable if it can alter its behavior during execution. Imple-

mentation of an adaptable application integrates three elements. First, an adaptable

application must implement mechanisms that enable the dynamic modification of

parameters and/or program structure. For instance, an adaptable data streaming

application may load and insert new transcoding or error correction components to

address a drop in available bandwidth or increased packet loss. Second, when com-

ponents are exchanged during an adaptation, the state of the application must be

maintained. For instance, data must not be lost when exchanging error correction

components or redeploying a processing element to a different host. Finally, adap—

tive, autonomic and dynamic data driven systems often must be able to detect and

respond to errant behavior or changing conditions with little or no human interven-

tion. Clearly, decision making is a critical issue in such systems, which must learn

how and when to invoke corrective actions based on past experience and analysis of

sensor data.

Our research investigates adaptation and decision making to support autonomous

data-streaming applications. Data-streaming applications comprise an important

class of software that includes communications, command—and-control, and environ-

mental monitoring, among others. In these applications, adaptation may require

making decisions that consider sensed environmental conditions, data stream type or

data stream content. In this dissertation, we first study adaptive mechanisms, state

maintenance, and decision making separately; then we integrate these elements to im-

plement an application that can adapt to changing network conditions autonomously.

Finally, we propose a technique for automated extraction and analysis of meaningful

sequences, called ensembles, from sensor data streams. Ensemble extraction enables

a decision maker to respond autonomously to sensed events when they recur. We in-

vestigate the utility of ensembles when applied to ecosystem monitoring and analysis

of wireless computer network traces.

© Copyright by

ERIC P. KASTEN

2007

Alas, then I knew that to end

was but to begin anew.

To Jeannette, for all She did not

do. Whose memory serves as a

candle to focus my thoughts.

To Trofast, friend and family.

Here when my journey began

but not at its end.

Assez de raison d’étre

ACKNOWLEDGMENTS

This work was supported in part by the US. Department of the Navy, Office of

Naval Research under Grant No. N00014—01-1-0744, National Science Foundation

grants BIA-0130724, ITR—O313142, and CCF 0523449, and a Quality Fund Concept

grant from Michigan State University.

vi

PREFACE

Within these pages you will find my report of a journey that, like many, began

with only a fleeting thought and ends with the completion of this dissertation. I

consider this journey to have begun the moment when Dr. Gongzhu Hu, my then

undergraduate professor, mentioned that I should, at least, complete a masters degree.

This seemingly harmless assertion, sowed a seed that would eventually grow to mark

T

the beginning of this journey. For that, I thank “Doc,’ as I had come to call him,

for always pushing me a bit farther than I was sure I wanted to go. However, seeds

do not grow unless the soil in which they are planted is fertile. There are those that

corrupted my otherwise harmless and mundane youth by fueling my curiosity and love

for learning and discovery. I will not try to mention them all here; some might even

be horrified that I might attribute to them some of the blame for the blown Circuit

breakers, minor floods and other assorted unnatural disasters that complicated my

early days. They have little to fear, however, everyone knew I was most central in

such plots. A few, that were particularly influential, I will mention. Thank you

Brian Locey for turning me on to the joy of writing. Thank you Gary and Barbara

Beardsley for wanting to call me “Doctor.”

When I was young I explored the cedar swamps and forests that bordered the

Tobacco River. These early excursions most certainly were the first signs of my

interest in research. To me, one particular adventure characterizes the essence of

vii

research. I was about ten, and out fishing, when I discovered a school Of tadpoles in a

murky pool out Of reach of the stronger flow of the Tobacco. Of course, I had to take

them home to watch them grow into adult frogs. As the days passed, I continued

to fish and waited for when the tadpoles would begin to grow legs. Alas, they never

did. It turned out that they weren’t tadpoles at all, but instead were bullhead fry.

Bullheads are a type of catfish that have long whiskers called barbels that can cause

painful puncture wounds. When I was fishing, I hated catching bullheads; taking

them off the hook was often painful without pliers and gloves. My “research” into

tabpole development had somehow left me as “mother” to ten or twenty bullheads.

It seemed a bit barbaric to just dump them on the ground, so I returned them to the

river. Thus, I learned one of my first lessons about doing research: you do not always

know how an experiment is going to end and the results can be surprising. I thank

my mother and father for encouraging my early research and tolerating the results,

particularly those that had to be thrown back.

My Sister once noted that our parent’s children shared a trait that others can find

a touch frustrating. Namely, that we never appeared to know what we wanted to be

when we grew up. Fortunately, I ran into a special someone who gave me an extra

push to pursue my masters degree. I thank my wife Barbara Morse Kasten for that

push and for continuing to join me on the journeys of a man searching for what he

wants to be. I also thank my brittanys Edie and Nokomis for keeping me company as

I wrote this dissertation, even though I suspect Nokomis may have just been waiting

for a chance to chew on it.

When working on my masters, I would take a course on computer networking, then

viii

called CPS422. The semester project was to implement a program for streaming audio

data over a computer network. My implementation would earn me an invitation to my

professor’s office. Apparently, he thought I showed sufficient promise to take me on as

an advisee (sometimes called an experiment), but I still suspect he was simply looking

for someone to install Mosaic on his workstation. As I finish this Ph.D. dissertation,

Dr. Philip K. McKinley is both my advisor and guidance committee chairperson.

His job cannot have been easy; once, when he asked me why I wanted a Ph.D., I

responded, “So I can call you Phil!” I express great gratitude for his invaluable advice

and patience during the completion of both my masters and doctoral degrees. I’d also

like to thank the other members of my guidance committee for their contributions to

this work and for their helpful comments, advise and teasng over the years. Thank

you Dr. Betty H.C. Cheng, Dr. Sandeep S. Kulkarni and Dr. Brian T. Pentland.

I had the pleasure of meeting Dr. Stuart H. Gage during an on-campus pre-

sentation where he described his recent work collecting acoustic data for ecosystem

monitoring. Again, I was reminded of my adventures on the shores of the Tobacco

river. I remembered avoiding marshland and other untraversable terrain by recog-

nizing the vocalizations of the creatures that lived there. Thus began my research

on automated processing of sensor data streams for species detection. I am grateful

to Dr. Gage for providing the opportunity to pursue this topic and for his advice,

constant encouragement and discussion about this and other subjects. I also thank

Wooyeong Joo for his constant enthusiasm and support.

Finally, I would like to thank Ron Fox, my colleague in the National Supercon-

ducting Cyclotron Laboratory, for enduring my pursuit of this Ph.D. And last but not

ix

least, I would like to thank my colleagues in the Software Engineering and Network

Systems Laboratory and in the Department of Computer Science and Engineering

at Michigan State University for their insightful suggestions and discussions regard-

ing my research. An incomplete list of those that deserve a thank you includes: Dr.

Juyang Weng, Dr. S. Masoud Sadjadi, Heather Goldsby, Dave Knoester, Farshad

Samimi, Jesse Sowell and Zhinan Zhou. There are those that I have likely forgotten

to thank. I ask your forgiveness for this omission; your support was most appreciated.

TABLE OF CONTENTS

LIST OF TABLES xvi

LIST OF FIGURES xviii

1 Introduction 1

2 Background and Related Work 10

2.1 Historical Perspective 11

2.2 How Adaptation Occurs: A Taxonomy 14

2.2.1 Parameter adaptation 14

2.2.2 Compositional adaptation 15

2.3 Classification by Composition Time 17

2.3.1 Load-time composition 19

2.3.2 Runtime composition 21

2.4 State Maintenance 21

2.4.1 Reference update 22

2.4.2 Migrating state 22

2.4.3 Synchronizing intercession 23

2.5 Example Systems 24

2.5.1 Examples of component-based runtime adaptation 25

2.5.2 Examples of fragment-based runtime adaptation 25

2.5.3 Examples of operator-based runtime adaptation 26

2.6 Decision Making in Autonomic Systems 28

2.7 Towards an Integrated Design Of Autonomous Software 31

3 Mechanisms to Support Autonomic Software 33

3.1 A Closer Look at Reflection 35

3.2 Building Adaptive Software 39

3.2.1 Model of Adaptive Components 42

3.2.2 The Role of Encapsulation 44

3.2.3 Absorption 45

3.2.4 Metafication 46

3.3 A Prototype Language: Adaptive Java 47

3.3.1 Basic Component Structure 47

3.3.2 Absorbing Existing Classes 49

3.3.3 Reifying a Meta-level 50

3.4 Case Study: MetaSockets 51

3.4.1 Block-Erasure Codes 52

xi

3.4.2 MetaSocket Design and Operation. 53

3.5 Mechanisms Enabling Operator Adaptation 54

3.5.1 Dynamic River Operators and Segments 56

3.5.2 Dynamic River Records 58

3.6 Related Work 61

3.7 Discussion 66

4 State Maintenance for Autonomic Software 68

4.1 Key Concepts and Issues 69

4.1.1 Nontransient state 70

4.1.2 Component equivalence 71

4.1.3 Collateral change 72

4.2 State Transformation 73

4.3 Perimorph Design and Implementation 75

4.3.1 Component construction 76

4.3.2 References and invocations 78

4.3.3 Recomposition 79

4.3.4 Activation and deactivation 80

4.4 Example: Adaptive Queue 81

4.5 Case Study: Mapping Application 83

4.6 State Maintenance in Dynamic River 88

4.6.1 Graceful Shutdown 89

4.6.2 Fault resiliency 90

4.7 Related Work 93

4.8 Discussion 95

5 Perceptual Memory 97

5.1 Background 99

5.2 MESO Design and Operation 101

5.2.1 Sensitivity Spheres 102

5.2.2 MESO Tree Structure 103

5.2.3 Sensitivity Sphere Size 106

5.2.4 Compression 112

5.2.5 Complexity 115

5.3 MESO Assessment 116

5.3.1 Data Sets and Experimental Method 117

5.3.2 Baseline Experiments 119

5.3.3 Comparison with Other Classifiers 123

5.4 Related Work 127

5.5 Discussion 130

6 Case Study: Adaptive Error Control 131

6.1 Background and Related Work 132

6.2 Experimental Scenario and Method 133

6.2.1 Pattern Features 134

xii

6.2.2 Imitative Learning 135

6.3 State Maintenance 137

6.4 Results 138

6.5 Feature Analysis 143

6.6 Discussion 144

7 Automated Ensemble Extraction and Analysis of Acoustic Data

Streams 147

7.1 Background 151

7.1.1 Visualizing Acoustic Events 151

7.1.2 Piecewise Aggregate Approximation 153

7.1.3 Symbolic aggregate approximation 155

7.2 Ensemble Extraction and Processing 157

7.3 Assessment 163

7.3.1 Data Sets and Methodology 163

7.3.2 Classification Results 165

7.3.3 Species Detection 168

7.4 Related Work 175

7.5 Discussion 181

8 Forecasting Network Packet Loss 183

8.1 TIace Collection and Characterization 184

8.1.1 Trace Scoring and Sampling 185

8.1.2 Trace Characterization 187

8.2 Packet Loss Models 192»

8.3 Ensemble Extraction and Processing 195

8.4 Data Sets and Methodology 198

8.4.1 Evaluation Metrics 202

8.5 Assessment 204

8.6 Related Work 212

8.7 Discussion 215

9 Conclusions and Future Work 216

9. 1 Contributions 216

9.2 Future Work 221

APPENDICES 224

A Perimorph Data Dictionary of Major Components 225

A.1 BaseComponentDefinition 225

A2 BaseFactor 226

A3 BaseFactorContext 227

A.4 BaseFactorset 227

A5 Baselnterface 229

A6 ComponentFactorStore 232

xiii

A.7 ComponentManager 235

A8 ComponentStore 239

A9 DynamicLoadManager 240

A.10 FactorManager 240

All FactorStore 245

A.12 FactorsetVars 246

A.13 ObjectReference 252

A.14 Parameters 253

A.15 ReturnCode 261

A.16 Scope 261

AU ScopeManager 262

A.18 ScopeStore 262

B Dynamic River Operators and Support Programs 264

B] Basic Pipeline Operators 264

B.1.1 Asciionramp 264

B.1.2 Binary2record 266

B.1.3 Binaryonramp 267

B.1.4 Cabsf 268

B.1.5 Cutout 269

B.1.6 Cutter 270

B.1.7 Daqcat 271

3.1.8 Daqtail 271

B.1.9 Daqtee 272

B.1.10 th 273

B.1.11 Feed 274

B.1.12 Float2cplx 274

B.1.13 Paa 275

B.1.14 Ratemeter 276

B.1.15 Raw2record 276

B.1.16 Readout 277

8.1.17 Record 278

B.1.18 Record2binary 278

B.1.19 Record2raw 279

B.1.20 Record2vect 279

B.1.21 Recorddump 280

B.1.22 Reslice 280

B.1.23 Sample 281

B.1.24 Saxanomaly 282

B.1.25 Saxbitmap 283

B.1.26 Segmenter 284

8.127 Sieve 285

B.1.28 Stepcutter 286

B.1.29 Steptrigger 287

8130 Trigger 288

xiv

B. 1.31 Wav2rec 289

B.1.32 Welchwindow 289

B2 Network Pipeline Operators 290

B.2.1 Streamin 290

B.2.2 Streamout 292

BB Support Programs‘ 293

3.3.1 Ctrlcmd 293

B.3.2 Dynriverd 294

C Tabular Data Used for Forecasting Packet Loss 295

BIBLIOGRAPHY 302

xv

1.1

3.1

3.2

5.1

5.2

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.3

7.1

7.2

7.3

7.4

LIST OF TABLES

Dissertation organization and contributions. 8

Description of a subset of Dynamic River operators and support programs. 59

Description of record header fields. 62

Comparison of 6 different activation functions using c = 0.6 for the letter

data set (see Section 5.3.1). 111

Space and time complexities for MESO and several other clustering algo-

rithms [1]. 115

Data set characteristics. 117

MESO baseline results comparing a sequential search to MESO tree search.121

MESO baseline results comparing different compression methods. 122

Accuracy, training and test times of IND and HDR (compare with Table 5.4). 126

Features used for training and testing the Xnaut. 134

Xnaut results with and without compression................. 143

Feature contribution to MESO accuracy. 145

(cont’d) 146

Bird species codes, common names and the number of patterns and en-

sembles used in the experiments discussed in Section 7.3........ 163

MESO classification and timing results.................... 166

Confusion matrix for classification using individual PAA patterns..... 167

Confusion matrix for classification using ensembles comprising PAA pat-

terns..................................... 167

xvi

8.1

8.2

8.3

8.3

8.4

8.5

C]

C.1

C2

C2

C3

C4

C5

C6

Total training and testing ensemble counts. 199

Training and testing data set characterization................ 200

Training and testing data set characterization labeled with FEC codes. . 201

(cont’d) 202

MESO forecasting coverage and precision. 210

MESO forecasting coverage and precision when trained on generated data. 211

MESO forecasting accuracy with loss rate margin. Plotted in Figure 8.9. 296

(cont’d)..................................... 297

MESO forecasting accuracy when trained using generated data. Plotted

in Figure 8.10................................ 298

(cont’d)..................................... 299

MESO forecasting accuracy with FEC code labels. Plotted in Figure 8.11(a).300

MESO accuracy when trained using generated data with FEC code labels.

Plotted in Figure 8.11(b) 300

MESO forecasting accuracy with Xnaut FEC code labels. Plotted in Fig—

ure 8.12(a) 301

MESO accuracy when trained using generated data with Xnaut FEC code

labels. Plotted in Figure 8.12(b) 301

xvii

1.1

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

LIST OF FIGURES

Conceptual view of a distributed stream processing environment.

Metalevel understanding collected into metaobject protocols (MOPS). . .

Taxonomy for computational adaptation...................

Taxonomy for software composition using the time of composition or re-

composition as a classification metric. Dynamism increases from left to

right. Runtime methods allow immediate or near immediate response

to environmental change..........................

Object reference update problem. Left, component replacement executed

using a particular reference. Right, desired result of a component re-

placement..................................

An intuitive schema of message filtering (adapted from [2]). In this dia-

gram, (A), (B) and (C) are three filters, while m(), n(), O() and p()

are messages Following message m(), filter (A) rejects m(), passing

it to filter (B). Filter (B) matches m() and modifies m(). Filter (C)

matches the modified message m() and dispatches it to a target object.

Relationship between MOPS and primitive operations.

Dimensions of component behavior......................

Basic Metamodel

Component absorption and metafication

Adaptive Java component structure.

Absorbing a class into a Component

Metafying a component

Physical experimental configuration.

Operation of FEC based on block erasure codes...............

3.10 Structure of a MetaSocket...........................

xviii

14

14

19

23

27

41

41

43

46

48

49

50

51

52

54

3.11 Sample results of dynamically changing MetaSocket configuration.

3.12 Basic internal structure of basic stream operators and the streamin and

streamout network Operators.......................

3.13 An elided sequence diagram depicting the normal operation of the

streamout and streamin pipeline operators...............

3.14 C/C++ Definition of the Dynamic River record header...........

3.15 Depiction of a record stream with data scoping. Numbers indicate the

scope nesting depth indicated by the record header scope field.....

3.16 The construction and alteration of a component-graph [3]. Solid nodes are

active, while dashed nodes are inactive slots for storing components.

The inactive slots on the left are filled on the right. Messages are

redirected through the newly activated nodes.

4.1 Relationship of factors, factor sets and a component definition.......

4.2 Executing a component operation.

4.3 Recomposition of a component where a factor is replaced by a new one

from a different factor set. Nontransient state is assigned to the re-

placement factor set from the old.....................

4.4 Composition of the adaptive queue showing several factor sets.......

4.5 Code segment used to recompose the adaptive queue into a vector based

queue. Note the invoke calls for pausing and resuming queue access,

the assignment of factor sets and the replacement of factors.

4.6 Adaptive queue example application. The left pane is the producer, the

right the consumer and the center represents status information. Note

the Pause and Resume messages where the array-based queue is ex-

changed with a vector-based queue by the control thread........

4.7 2D map prior to recomposition.

4.8 Recomposition of the DEM mapping application. Recomposition of both

the map plotter and map window components is required. Operations

on these components are called by the map control which does not

require any change.............................

4.9 3D map following recomposition.

4.10 A sequence diagram depicting the graceful termination of streamin in

response to a stop command.

xix

55

57

58

60

61

77

79

80

82

84

85

86

87

88

90

4.11 A sequence diagram depicting the unexpected termination of streamout.

4.12 A sequence diagram depicting streamin reconnecting to streamout.

4.13 Data scope synchronization algorithm.

5.1 High level view of MESO.

5.2 Leader—follower algorithm (adapted from Duda and Hart [4])

5.3 Sensitivity Spheres for three 2D—Gaussian clusters. Circles represent the

boundaries of the spheres as determined by the current 6. Each sphere

contains one or more training patterns, and each training pattern is

91

92

92

100

102

labeled as belonging to one of three categories (circle, square, or triangle). 103

5.4 MESO tree organization. The rectangles are partitions and the shaded

spheres are partition pivots. Partitions are split successively until a

leaf is formed where a partition contains only one Sphere........

5.5 Building a MESO tree from sensitivity spheres.

5.6 'IYaining and testing time for the letter data set (see Section 5.3.1). . . .

5.7 Sensitivity sphere creation algorithm.....................

5.8 Sensitivity sphere growth function denominator for 6 = 1,10,100,1,000

and 10,000.

5.9 The Gaussian 3D example dataset.

5.10 Snapshot frames Showing MESO sensitivity Spheres and mean sphere dis-

tances as the spheres are built for the Gaussian 3D example dataset.

Top, sphere 6’s. Bottom, mean Sphere distances.............

5.11 Effect of means compression on training and testing times for the letter

data set, using fixed and variable 6....................

5.12 Scalability with respect to training set size. For all data sets, typical stan-

dard deviations are less than 10% with respect to the corresponding

mean accuracies and training times....................

6.1 Physical network configuration used in the Xnaut case study........

6.2 High-level diagram of the primary decision making components.

6.3 A sequence diagram depicting sender/receiver interaction when changing

FEC codes.

6.4 Xnaut results for artificially generated packet losses.............

104

108

109

110

112

114

124

133

137

141

6.5

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Xnaut results for real packet losses on a wireless network.......... 142

Acoustic sensor station and closeup Of a Stargate sensor. 149

Top, an oscillogram (normalized) of an acoustic signal. Bottom, a spec-

trogram of the same acoustic signal.................... 152

A block diagram depicting the operators required to produce a spectrogram. 152

Example signal and results of Z-normalization and subsequent PAA pro-

cessing.................................... 154

Spectrogram of the acoustic signal (see Figure 7.2) after conversion to

PAA representation (stretched vertically for clarity)........... 155

Conversion of the example PAA processed Signal converted to SAX

(adapted from [5]). 156

Using SAX bitmaps to compute an anomaly score for a signal (see [6] for

more information). Number of subsequence occurrences shown over

frequency. 157

Block diagram of pipeline operators for converting acoustic clips into en-

sembles for detection of bird species. 159

Anomaly score generated for the acoustic signal shown in Figure 7.2. . . 160

7.10 Trigger Signal and ensembles extracted from the acoustic signal shown in

Figure 7.2.................................. 161

7.11 ROC curves for detection of the black capped Chickadee (BCCH) and white

breasted nuthatch (WBNU)........................ 171

7.12 Semi-log scale ROC curves and precision for detection of the black capped

Chickadee (BCCH) and white breasted nuthatch (WBNU). 172

7.13 Power spectral density (PSD) histograms for the black capped Chickadee

(BCCH) and the white breasted nuthatch (WBNU)........... 174

7.14 ROC curves for detection of the black capped Chickadee (BCCH) and

the white breasted nuthatch (WBNU) using only the frequency range

z[1.2kHz,6.0kHz] and z[1.2kHz,4.8kHz] respectively 175

7.15 Semi-log scale ROC curves and precision for detection of the black capped

Chickadee (BCCH) and the white breasted nuthatch (WBNU) using

only the frequency range z[1.2kHz,6.0kHz] and z[1.2kHz,4.8kHz] re-

spectively 176

xxi

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Top, a scatter plot of the trace scores for a 30 minute roaming trace.

Bottom, a spectrogram of the same roaming trace............

Burst and gap delay histograms and normal-probability plots for a roam-

ing receiver. Normal-probability plots represent the delay range [3ms-

50ms] scaled by subtracting 3ms and dividing by 50ms.

Burst and gap run-length histograms for a roaming receiver. Geometric-

probability plots are scaled by dividing by the longest run-length.

1-second and 5-second Loss rate histograms and exponential probabil-

ity plots. Exponential probability plots are scaled by dividing by the

largest loss rate...............................

Simplified Gilbert-Eliot Model (adapted from [7])..............

Block diagram of pipeline operators for converting network traces into

ensembles for forecasting packet loss.

Anomaly score generated for the Signal shown in Figure 8.1.

Step trigger signal and 5 second loss rates for the trace score shown in

Figure 8.1..................................

MESO forecasting accuracy with loss rate margin. Experiments conducted

using the method described in Section 8.4................

8.10 MESO forecasting accuracy when trained using generated data. Experi-

ments conducted using the method described in Section 8.4.

8.11 MESO forecasting accuracy with FEC code labels. Left, results are pro—

duced by training and testing using patterns from the same data set.

Right, results are produced by training on generated data and testing

on data from the roam data set. Note, when using the same data set

for training and testing, training and testing data does not overlap.

Experiments conducted using the method described in Section 8.4. . .

8.12 MESO forecasting accuracy with Xnaut FEC code labels. Left, results

9.1

are produced by training and testing using patterns from the same

data set. Right, results are produced by training on generated data

and testing on data from the roam data set. Note, when using the

same data set for training and testing, training and testing data does

not overlap. Experiments conducted using the method described in

Section 8.4.

Achievements presented in this dissertation viewed as a whole.......

188

190

191

192

193

196

196

197

206

207

208

220

Ch;

lllll

' ry

“l--

‘-

e

.
P
.

a

Chapter 1

Introduction

Increasingly, software needs to adapt to dynamic external conditions involving hard-

ware components, network connections, and changes in the surrounding physical en-

vironment [8—12]. For example, to meet the needs of mobile users, software integrated

into hand-held, portable and wearable computing devices must balance several con-

flicting concerns, including quality-Of-service, security, energy consumption, and user

preferences. Moreover, the promise of autonomic computing systems [13], that enable

software to dynamically self-heal and self-manage, appeals to system’s administrators

and users alike.

Advances in technology have enabled new approaches for sensing the environment

and collecting data about the world around us; an important application domain

is ecosystem monitoring [14—22]. Small, powerful sensors can collect data and ex-

tend our perception beyond that afforded by our natural biological senses. Moreover,

wireless networks enable data to be acquired simultaneously from multiple geograph-

ically remote and diverse locations. Once collected, sensor readings can be assembled

into data streams and transmitted over computer networks to observatories [23,24],

which provide computing resources for the storage, analysis and dissemination of en-

vironmental and ecological data. Such information is important to improving our

understanding of environmental and ecological processes. For instance, early detec-

tion and tracking of invasive species may enable the establishment of policies for their

control [25—27].

Autonomic software systems require the integration Of adaptive mechanisms, state

maintenance and the ability to make autonomous decisions. That is, in addition to

providing facilities that enable software tO be dynamically tuned, reconfigured or

recomposed, autonomous data-streaming systems must avoid loss or corruption of

nontransient operator, system or data-stream state while autonomously invoking de-

cisions that improve performance and address context-specific concerns with only

high-level guidance from systems administrators and users. As such, autonomic sys—

tems can simplify the task of managing complex or context sensitive software systems.

Autonomous response to changing conditions may elicit modification of either pro-

gram parameters (parameter adaptation) or program structure (compositional adap-

tation). In data-streaming environments, data processing can be distributed across

multiple hosts connected by a computer network. Data-stream processing requires

transfer of data between operators that execute a specific function on the data-stream.

For instance, operators can transcode or filter a data stream to address the limited

memory or processor capacity of a mobile device. A pipeline computation comprises

one or more operators that may be deployed across multiple hosts. Pipeline adaptation

can occur by changing operator parameters, exchanging an operator with another,

2

),..r

'
2
7

.. ...-

.I -

. -A.

u.

1
!

.

\-
|

.
v 5.

.

‘-

A.

N.

a

.

adding or deleting an Operator, or redeploying an operator to a different host.

As Shown in Figure 1.1, for a distributed data streaming environment, autonomic

responses might address a degradation or failure in a computer network, by rede-

ploying operators, and rerouting affected network traffic, or by triggering operator

exchange to instantiate specialized processing in response to the detection of a par-

ticular species or environmental condition. Moreover, when data is continuously col-

lected, automated and adaptive processing facilitates the organization and searching

Of the resulting data repositories. Without timely processing, the sheer volume of the

data might preclude the extraction of information of interest. Addressing these prob-

lems will likely become increasingly important in the future as technology improves

and more sensor platforms and sensor networks are deployed [18,28].

Observation and modification of program behavior can be formalized using com-

putational reflection [29, 30]. Maes [30] describes computational, or behavioral, re-

flection as the activity of a computational system when doing computation about (and

by that possibly aflecting) its own computation. Computational reflection comprises

the separate acts of introspecting and interceding on program (or pipeline) behavior,

enabling implementation details and program state to be observed and program be-

havior modified. In addition, dynamic compositional adaptation occurs at runtime

and often requires the implementation of techniques that address state maintenance.

State maintenance for autonomic systems needs to address both the exchange of in-

dividual components or operators and the effect of recomposition on the system as

a whole. The runtime exchange of a single algorithmic or structural component re-

quires either (Or both) the transfer of nontransient state between an old component

3

Autonomic Response

to Dynamic Conditions

Observatory @ Sorvloo Host

Figure 1.1: Conceptual view of a distributed stream processing environment.

and its replacement or a protocol for removing the old component from use while

introducing the new component. For instance, the replacement of a pipeline error

correction operator must not cause the loss of inflight data. While the state capture

problem has been addressed in other contexts, such as checkpointing [31,32], process

or thread migration [32—34] and mobile agents [35,36], the methods employed there

generally are not directly applicable because they either incur too much overhead

or do not support state transfer between different implementations of a component.

Moreover, recomposition in adaptive software involves state transfer as it relates to

collateral change, which we define as the set of recompositions and parameter changes

that must be applied to an application atomically, or in an orchestrated fashion, for

continued correct execution.

Finally, a system cannot be autonomous without an autonomous decision maker

to consider system and user requirements and intercede to meet these needs. The

system must be able to learn from past experience and apply this knowledge to future

situations. This dissertation proposes that the integration of adaptive mechanisms,

state maintenance and autonomous decision making enables a software system to

adapt to the uncertainty found in many dynamic computing environments.

Thesis Statement. Integration of adaptive mechanisms, state maintenance and

autonomous decision making enables implementation of autonomous, adaptive data-

streaming computing applications.

Table 1.1 depicts the basic organization of this dissertation with respect to its

major contributions. This table categorizes the work presented in this dissertation

according to whether a study addresses adaptive mechanisms, state maintenance or

decision making and by application level (either program or pipeline). The major

contributions of this dissertation are summarized as follows.

1. We investigate adaptive mechanisms that enable observation and runtime recom-

position of software. We propose and evaluate a programming model that sepa-

rates intercession and introspection. We have developed Adaptive Java [37, 38],

an extension to Java that incorporates programming language constructs to sup-

port instrumentation and dynamic recomposition. Our group has used Adaptive

Java to design and evaluate the MetaSocket [39—43] component, whose behavior

can be adapted in response tO changing network conditions by enabling struc-

5

tural reconfiguration. In addition, we developed Dynamic River, a distributed,

data-stream pipeline platform that enables dynamic recomposition Of pipeline

Operators across multiple hosts. Our studies show that introspection and inter-

cession are useful abstractions for designing adaptive and autonomic software

both for component-based programs and distributed pipeline processing.

2. We investigate the issue of state maintenance in adaptive software. We have

designed and implemented Perimorphl [44], an API that enables the capture

and migration of state between components during recomposition. We Show

that enabling the externalization and management of component state facili-

tates application recomposition in the face of component exchange. Moreover,

we introduce the concept of collateral change and enable the declaration of sets

of program modifications that must happen atomically when an application

is adapted. In a case study, we demonstrate that externalizing state enables

application handoff between different devices in a mobile computing environ-

ment while enabling recomposition to meet the resource capabilities of different

devices. In addition, we consider state maintenance for distributed pipeline pro-

cessing. We developed Dynamic River, a distributed stream processing engine

(SPE), and introduce the concept of data stream scope to enable recomposi-

tion of data stream operators and graceful recovery in the face of software, host

or network failure. These studies demonstrate that state maintenance is a key

1The term perimorph is borrowed from geology. A perimorph is a crystal that

contains another crystal of a different type. We use it here as an allusion where

crystal facets are considered to be components or factors of compositional structure.

concern when designing and implementing adaptive and autonomic software.

3. We investigate the effect of perceptual memory, a type of long-term memory for

remembering external stimulus patterns [45, 46], on the autonomous decision

making process. Storing and retrieving external stimuli and associated meta in-

formation in dynamic environments is typically incremental, data intensive and

time sensitive. Moreover, storage and recall must be efficient and avoid affecting

the function of the application being adapted while enabling the decision maker

to make correct and timely decisions. We have designed and implemented the

perceptual memory system, MES02 [47,48], to address these requirements. We

Show that MESO accurately retrieves prior experience and can be used to help

an autonomous decision maker adapt and optimize an underlying adaptable

application.

4. In a case study, we investigate and evaluate the integration and application of

adaptive mechanisms, state maintenance and decision making to adaptive soft-

ware and data streaming. We demonstrate that integration Of these technologies

enables implementation of an autonomous, adaptive application that can bal-

ance packet loss with bandwidth consumption as a user roams about a wireless

cell. Moreover, we evaluate the ability Of a decision maker to learn through in—

teraction with a user or Operate completely autonomously while attempting to

adapt and optimize the underlying mobile computing application.

2The term MESO refers to the tree algorithm used by the system (Multi—Element

Self-Organizing tree).

5. We introduce a technique for automated extraction and analysis of ensembles

from sensor data streams. We investigate the utility of using ensembles for

classification and detection of bird species using acoustic data streams and for

forecasting near term packet-loss when streaming data to a mobile receiver. Our

investigations show that ensembles enable classification, detection and forecast-

ing of time-series events that can be used by autonomic decision makers when

adapting an application.

Table 1.1: Dissertation organization and contributions.

Adaptive State Decision

Mechanisms Maintenance Making

ProgramIevel Adaptive Java Perimorph MESO

Chapter 3 Chapter 4 Chapters 5 and 6

Case study

Chapter 6 ' A

Pipeline revel Dynamic River Stream Scope MESO

Chapter 3 Chapter 4 Chapters 5, 7 and 8

Ensembles

Chapters 7 and 8

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on computational adaptation and autonomous software decision making

and motivates the need for our research. Chapter 2 also introduces a taxonomy of

computational adaptation and classifies some representative research projects. Chap—

ter 3 describes the mechanisms required to support computation adaptation and our

experience using Adaptive Java to construct adaptable components. Chapter 3 also

introduces the Dynamic River and discusses the mechanisms needed for dynamic re-

composition of a distributed pipeline. Chapter 4 discusses state maintenance and

our experience using Perimorph for designing and implementing state-aware software

that considers adaptive composition and collateral change. In addition, Chapter 4 in-

troduces the concept of data stream scope and its implementation in Dynamic River.

Chapter 5 describes the design, implementation and assessment of our perceptual

memory system, MESO, to address our decision-making objectives. Chapter 6 de—

scribes the integrated design, evaluation and analysis of the case study on adaptive

error control. Chapter 7 describes our technique for automated ensemble extraction

and analysis of sensor data streams for classification and detection of bird species us-

ing ensembles. Chapter 8 extends our use of ensembles for forecasting network packet

loss. Finally, in Chapter 9, we conclude this dissertation and briefly overview future

investigations.

Chapter 2

Background and Related Work

In this chapter, we review recent work in dynamic compositional adaptation and au-

tonomous software with an eye towards data streaming applications. We consider data

streaming applications to be an important class of autonomous software with applica-

tions to network traffic management, habitat monitoring, military logistics, immersive

environments, and data acquisition and analysis. Moreover, adapting data stream fil-

ters, or Operators, is nontrivial. For instance, it has been shown that computing an

Optimal ordering for pipeline filters for data selection is NP-hard when each filter is

not independent from the processing of filters preceding it in the pipeline [49]. First,

we Provide a brief history of compositional adaptation and highlight how changes

in technology have helped ignite recent interest in autonomous software. Second,

We introduce taxonomies on how and when adaptation occurs and discuss the mech-

anisms that enable dynamic composition. Third, we discuss background on state

maintenance and describe and compare example works. Fourth, we consider recent

developments in software-based decision-making. Finally, we discuss Open areas in

10

autonomous system research and motivate the need for the studies described herein.

2.1 Historical Perspective

The history of compositional adaptation dates back to the inception of the von Neu-

mann architecture [50] in the 1940’s. This computer design, where both program

instructions and data are stored in mutable memory, enabled instructions to act on

both data and other instructions. Such “self-modifying code” has been used for dy-

namic optimization. For instance, calculation of an often used branch condition can

be completed once, and all dependent branch instructions are modified such that re-

calculation of the conditional can be avoided. Another example is the execution of a

program that is too large for available memory. Such a program can rewrite or load

the next segment and adjust the program counter as necessary. However, virus and

worm implementations have also used self-modifying code to avoid detection or en-

able infection of other machines. Conversely, countermeasures for security sensitive

software have used self-modifying code to avoid infection or manipulation by attack-

ers [51]. Self-modifying code can also cause problems with compiler and processor

Caching, where cached instructions are executed in favor of newly rewritten code.

Malicious uses of compositional adaptation, coupled with the difficulty of under-

standing and ensuring the correctness [52,53] of self-modifying programs, has yielded

the commonly held belief that such implementations should be avoided. However,

Continued research in this area has been motivated by the promise that adaptive soft-

Ware Could enable better management of complex systems and automate response to

11

My.

changing conditions or user requirements. These features are especially important as

computing systems interact increasingly with the physical world. Three enabling tech-

nologies are recognized as key to designing and implementing adaptive software [9]:

separation of concerns, component-based design and computational reflection. These

technologies enable a principled (as opposed to ad hoc) approach to designing and

implementing adaptive software.

Separation of concerns [54] enables the separate development of an application’s

functional behavior, or business logic, and the code that implements crosscutting [55]

nonfunctional behavior, such as quality of service (QOS), fault tolerance and secu-

rity. Separation of concerns is important to compositional adaption because it helps

the developer to identify, design and implement separate nonfunctional subsystems

that are often targets for adaptation. For instance, aspect-oriented programming

(AOP) [55—59], introduced in the 1990’s, is one of the most widely used approaches

to codifying difl'erent software concerns. In AOP, units of composition are code frag-

ments, called aspects, that are inserted, or woven, into application components during

execution.

Component-based design [60] is similar to object-oriented programming (OOP) in

that both objects and components embody specific programmatic behavior. However,

COmponents extend OOP by enabling software units, developed by third parties, to

be deployed and composed to produce different implementations of a program. Use

Of Components supports both static and dynamic composition Of software. In static

composition [61—64], components are assembled at compile or load time to produce

an application. In dynamic composition [34,65—75], a composer can reconfigure an

12

application at runtime. A composer may be either a user or a software decision

maker imbued with the ability to autonomously recompose the application to address

changing user requirements and the uncertainty found in dynamic environments.

Computational reflection [30,76] allows a program to observe and possibly modify

its own behavior. As such, reflection comprises two activities: introspection and in-

tercession. Introspection, or enabling an application to observe its own behavior, can

be used to facilitate environmental awareness and the adaptive process [68,75,77]. On

the other hand, intercession enables a system or application to modify its own behav-

ior. Where introspection allows software to consider how best to adjust its behavior in

response to changing conditions, intercession enables an application to act on these ob—

servations. Reflection was introduced into languages such as 3—LISP [76], 3-KRS [30]

and Smalltalk [78], in the 1980’s. Language-based implementations demonstrated the

feasibility of using reflection to enable software to observe and potentially alter its

own structure. In the 1990’s and early 2000’s, systems such as MetaXa [79] or Com-

position Filters [2,80] used behavioral reflection [79] to effect runtime modification of

base-level program control flow.

As depicted in Figure 2.1, views encompassing environmental concerns and ap—

plication understanding can be collected and categorized as metadata. Metadata

presents a view of program context that is considered important to the adaptive pro-

cess. For instance, program structure or platform and device awareness might be

provided as metadata to the application. Metaobject Protocols (MOPS) have been

used by several researchers [74, 75, 81—83] to provide a principled way to introduce

reflection into adaptive systems.

13

/q\/

19
Base-Level \ Application

Base Level Components

Figure 2.1: Metalevel understanding collected into metaobject protocols (MOPS).

2.2 HOW Adaptation Occurs: A Taxonomy

As shown in Figure 2.2, we view research on compositional adaptation as having

proceeded along two basic branches defined by how intercession affects application

behavior. A more detailed survey of many of the research works introduced below

and how they fit into our taxonomy can be found in [84].

Computational

Adaptation

Parameter Compositional

/l\
Component Fragment Operator

Based Based Based

Figure 2.2: Taxonomy for computational adaptation.

2.2.1 Parameter adaptation

Parameter adaptationl [77,85,86], influences an application or system by modifying

variables that define how a program behaves. As noted by Hiltunen and Schlicht-

\

lParameter adaptation is sometimes referred to as transformational adaptation.

14

ing [53], an early example of parameter adaptation is the way that the TCP protocol

adjusts its behavior by changing values that affect the algorithms controlling window

management and retransmission timeout in response to apparent network conges-

tion [87, 88]. Parameter adaptation can be implemented in middleware or by using

toolkits, frameworks or specialized languages. For instance, Puppeteer [89] is mid-

dleware that executes adaptive parameter modification on behalf of an application,

for example, transcoding multimedia data for display on a mobile device. The appli-

cation may have little knowledge of the changes made by the middleware. Language

support, such as that provided by the Program Control Language (PCL) [90], is

a flexible method for supporting adaptation. However, using Specialized languages

also places a significant burden on designers and programmers to understand how to

best codify an adaptive system. A weakness of parameter adaptation is that it can-

not adopt algorithms or components left unimplemented during the original design

and construction of an application. That is, parameters can be tuned or an applica-

tion can be directed to use a different existing strategy, but strategies implemented

following the construction of the application cannot be adOpted.

2.2.2 Compositional adaptation

COmpositional adaptation [85] results in the exchange of algorithmic or structural

parts of the system with those that improve a program’s fit to its current environ-

ment [52,53,80,91-—93]. In comparison to parameter adaptation, compositional adap—

tation enables an application to adopt new algorithms and strategies for addressing

15

concerns unforeseen during original design and construction. The flexibility of compo-

sitional adaptation enables more than simple tuning of program variables or strategy

selection. Instead, for example, new error correction or encryption algorithms can

be dynamically added to existing network protocols, helping improve reliability and

security.

Compositional adaptation can be further classified as either component—based,

fragment-based or operator-based. The term component commonly refers to a re-

placeable class or object that can be reused in the construction of different software

systems [55]. As such, components are often plug-compatible within a certain domain,

enabling one component to replace another without modifying other parts of the soft-

ware. As a simple example, let us consider two components having the same interface

and implementing a queue data structure, one implementation using a fixed-size ar-

ray and the other a dynamically-sized vector. These two components are considered

compatible in that one component might be replaced with the other. Component-

based adaptation replaces entire components, possibly during program compilation,

at load-time or during execution.

Alternatively, fragment-based composition refers to the process of constructing

components out of smaller building blocks. As an example, a queue object might be

assembled out of three separate algorithmic blocks and one structural block. Blocks

implementing put(), get() and peekO methods plus a structural block for the

underlying data structure are assembled into a queue component. Fragment-based

approaches to adaptation replace individual blocks without changing others. Contin-

uing our earlier example, a queue’s put () method block might be upgraded, to correct

16

or improve on the existing implementation, without changing the get() or peek()

blocks. However, in this approach, care must be taken that replacement blocks are

compatible with those left unchanged.

Operator-based composition is similar to component-based composition in that

program construction uses replaceable, plug-compatible units. However, programs are

constructed using operators that comprise and execution element, such as a thread

or operating system process, and perform a specific function. Operator-based com-

position is commonly found in distributed and data-streaming environments where

operator migration between hosts enables adaptation to address quality of service or

fault tolerance. For instance, migrating operators among hosts can be used to achieve

distributed load balancing. Moreover, dynamic insertion and removal of operators en-

ables customization of data stream processing in response to changing environmental

conditions. For example, detection of a specific bird species by a sensor platform,

using acoustics, may elicit the insertion of data-stream operators that route the vo—

calizations of this species for further analysis. Examples of component [3,65,66,68,94],

fragment-based [70, 72—74] and operator-based [34,67,93,95-97] systems will be dis-

cussed further in Section 2.5 and in Chapters 3 and 4.

2.3 Classification by Composition Time

In this section, we present a second taxonomy, categorizing compositional adaptation

according to when adaptation occurs. When composition and recomposition takes

place at compile or load time, dynamism is limited, simplifying or eliminating many

17

concerns that are critical for correct runtime recomposition. When software undergoes

structural change during execution, however, it often exhibits complex and changing

interactions that can be difficult to coordinate.

Figure 2.3 shows a taxonomy for adaptive composition where composition time

is the classification metric. As labeled on the right, static composition includes de-

velopment time and compile/link time methods. A program composed at compile

or link time demonstrates little ability to adaptively recompose itself in response to

environmental concerns. However, a limited form of adaptation can be implemented

by changing how an application is composed during recompilation or relinking. Link-

time methods make use of previously compiled components, usually classes or objects,

as the units of composition. Typically, components belonging to the same domain

share the same interface and similar function. For example, two components that

both implement a queue, one with an array and another with a vector, might be

exchanged at link time.

Despite demonstrating little dynamism, compile/link—time methods can be used

to customize a program to address the requirements of a different environment, such

as a new computing platform or network type. For example, aspect—oriented pro-

gramming languages, such as AspectJ [58], can assemble objects and classes out of

algorithmic and structural blocks called aspects. As such, different aspects can be wo-

ven together, during compilation, to form a version of a program designed to better

fit the environment where it will be used.

The static assembly of different versions of an application can be realized using

generative methods [55,98,99], whereby an application is described using a special-

18

\
a
s
\
\
\
h
~
\
h
~
h
v
\
l
t
a
n
h
‘
l
‘
l
L
C
A
N
!

’\

«Y_

Application Type

Mutable

Dynamic

Composition

Tunable

s

S
u“: Continuum — \

E
3 Customizable m Static

2 Composition

0

5

WMm /
I I I L

Development lCompile/Link I Load Time I Run Time I

Time Time

Increasing Dynamism —>—

Figure 2.3: Taxonomy for software composition using the time of composition or

recomposition as a classification metric. Dynamism increases from left to right. Run-

time methods allow immediate or near immediate response to environmental change.

ized programming or high-level declarative language. A compiler or generator then

assembles the customized programs. Programs built in this way often form fami-

lies [100], the members Of which exhibit a large number of similar characteristics, but

differ in ways critical to their use in different Situations or environments.

2.3.1 Load-time composition

Load-time composition allows the final decision on what algorithmic units to use in

the current environment to be delayed until the component or fragment is loaded by

a running application. Load-time composition is similar to static composition, but

the increased dynamism also provides this method with some similarities to dynamic

composition. Load-time composition requires that classes or objects be dynamically

loaded and configured after execution has begun. For instance, the Java Virtual

19

Machine (JVM) loads classes when they are first used by a Java application. When

the application requests the loading of a new component, adaptive decisions may

select between different components with different capabilities or implementations

based on quality of service, synchronization, security or other requirements, choosing

the one that most closely matches current needs. Other load—time methods may

dynamically rewrite binary code [62,63] or modify object interfaces [64] when a class

is loaded.

One example Of load-time composition is Binary Component Adaptation

(BCA) [62]. BCA allows existing Java class files to be modified as they are loaded by

the JVM. An adaptation is codified in a file that specifies the addition of interfaces,

methods or other modifications to a particular class that is compiled into a delta file.

Using delta files and byte code splicing, BCA can add functionality when a class is

loaded. For example, a mobile communication application may require enhanced se-

curity tO prevent eavesdropping. When the classes for sending and receiving messages

are loaded into the JVM, new code for encrypting and decrypting messages is spliced

into existing methods.

For adaptation in data-streaming environments, InfOpipes [101—103] uses Smart

Proxies [96] to enable compile- or load-time adaptation to address quality-of-service

requirements in multimedia data flows. Smart proxies enable transparent support for

customized data stream processing and communication between a client and server.

For instance, data can be compressed or encrypted by a smart proxy in a fashion

transparent to the implementation of a client. Smart proxies can be either statically

linked to a client or dynamically shipped to the client at load time.

20

2.3.2 Runtime composition

Runtime composition provides the greatest flexibility. Recomposing an application at

runtime allows adaptation without restarting a program and without lengthy inter-

ruption of service [34,53,65,67,68]. As such, assaults on the security of an application

or a drop in quality of service can be observed and can elicit responses while the ap-

plication continues to function. Algorithmic and structural units can be replaced

or even extended in response to problems or user requirements without halting and

restarting the program [67, 68, 96]. For instance, wireless networks may exhibit dra-

matic changes in network error levels during the lifetime of an audio connection. The

addition of algorithmic components that enhance error correction can help maintain

the quality of service desired by the user [53,93,96,97]. Let us next examine runtime

composition, the primary focus of this dissertation, in more detail by discussing two

major elements required by such systems: state maintenance and decision making.

2.4 State Maintenance

Runtime composition can be used to construct programs that better fit the envi-

ronment in which they must operate. However, runtime approaches focus on the

replacement and exchange of algorithmic and structural units while an application

executes. This increased flexibility gives rise to problems not found in static or load-

time composition. Examples include reference update, state migration [53,68,91] and

synchronization [53, 91, 92].

21

2.4. 1 Reference update

As shown in Figure 2.4, when one component is exchanged for another it is necessary

to update the references pointing to the old component such that they refer to the

new one. This action is necessary to ensure that proper program execution contin-

ues. For instance, if a producer and consumer thread communicate through a Shared

array-based queue, replacement with a vector-based queue would sever communica-

tion unless both the producer and consumer adopt the new queue as their communi-

cation path. A common characteristic of many recomposable systems [34,67,68,96,97]

is the decoupling of an application through indirection. This allows an application

access to an object in a consistent way, independent of the object’s implementation.

As such, the implementation of an object can be modified without changing how it is

used by the application. A dynamically recomposable system must allow for decou-

pling an application such that components can be exchanged. Moreover, decoupling

can eliminate the need to update references to shared objects in the face of component

exchange.

2.4.2 Migrating state

Two components can be considered plug-compatible if they have identical interfaces

and similar function. However, even if two components are plug—compatible, they

may have implementations that differ algorithmically or structurally. Continuing our

earlier example, a queue can be implemented using an array of limited length or a

vector that can increase its size dynamically, but an array cannot simply be copied

22

Figure 2.4: Object reference update problem. Left, component replacement executed

using a particular reference. Right, desired result of a component replacement.

onto a vector byte—by-byte. Nor can a put() operation designed for an array be used

to prepend something onto a vector. If two components are to be interchanged at

runtime, it may be necessary to extract the state from one component, transform it

into a new but equivalent form, and then inject it into its replacement.

2.4.3 Synchronizing intercession

When one component is replaced by another, the process must be synchronized such

that one component can be unplugged and the other transparently plugged into the

application. For instance, during the process of transferring state or when neither

component is fully inserted, an application must avoid using either the old or the

new component. As an example, a multithreaded application, where two threads

both use a shared queue, should disallow either thread from modifying the contents

of the queue during replacement of the queue component. If the threads were al-

23

lowed to continue to execute queue Operations during the exchange, one thread could

execute a get() on the new queue while the other thread put()s data on the old

queue. Moreover, transferring the state from one queue implementation to the other

without synchronization could yield ambiguous results, possibly resulting in loss of

data or other undesirable and incorrect behavior. In a data-streaming environment,

application adaptation may require the implementation Of protocols to ensure syn-

chronization of the data flow to prevent data loss during operator exchange. For

instance, an application that streams data to a mobile device may choose to encrypt

the data when operating atop an insecure network. However, both the sender and

receiver must use the same type of encryption or the receiver will not be able to de—

cipher the data stream. Thus, the sender and receiver must coordinate the insertion

of encryption and decryption Operators to maintain meaningful data transfer.

2.5 Example Systems

A subset of the reference update, state capture and synchronization problems are

addressed in each of the projects introduced below. A more detailed discussion of

most of the following works can be found in [84]. Most projects have some ability

to update references and synchronize change with application processing. However,

only a few, such as dynamicTAO [68] and DACIA [67], address a limited form of state

capture and maintenance.

24

2.5.1 Examples Of component-based runtime adaptation

Although reusability and dynamism can be considered as orthogonal to one another,

dynamic recomposition shares many characteristics with reusable software. Reusable

components Often present well-known interfaces and functions such that they can

be exchanged with others that have a Similar interface and function. Both reuse

and recomposition require replacement of one component with one that is better

fit for the current environment and context. Research on component-based adap—

tation is diverse. Network, switch—level reprogramming, like that used in Switch-

Ware [65,104] and Cactus [53,66,91,105], allows customization of network functions

to better suit the requirements of different network applications. Other projects,

such as DAS/LEAD++ [3] and GILGUL [94], provide program languages for build-

ing applications and systems that support component—based adaptation. All of these

projects aim to enhance flexibility, mobility and fault tolerance in changing environ-

ments through the exchange of components.

2.5.2 Examples of fragment-based runtime adaptation

Reference update, the migration and maintenance of state, and synchronization is-

sues also affect fragment-based composition. Fragment-based approaches can target

functional or nonfunctional composition. Many fragment-based, runtime approaches

can be likened to dynamic weaving techniques [57, 70, 73, 74, 106], found in aspect-

oriented programming, that enable an application to be rewoven during execution.

Fragment-based approaches adapt an application by replacing or augmenting the code

25

fragments that compose a crosscutting concern. These code fragments are viewed as

being woven into the application structure, attaching to classes and Objects at speci-

fied locations. Composition Filters [2, 72,80] differs by using containers or wrappers

to implement indirection and decoupling, enabling reweaving of an application at run—

time. Preprocessing of source code produces objects wrapped with a special interface.

Depicted in Figure 2.5, filters can be applied to these interfaces, filtering incoming

and outgoing messages. In this manner, filters are used as functional units similar

to aspects enabling fragment-based composition. Notably, this work has some simi-

larity to data stream processing where the program flow is treated as a stream and

behavior can be adapted through the insertion and removal of filters.

2.5.3 Examples of Operator-based runtime adaptation

Runtime adaptation in distributed environments may migrate, exchange, insert or

delete operators to distribute load, provide fault tolerance, or modify data stream

processing to respond to sensed changes in the environment. Local or remote net-

work socket connections, coupled with protocols for disconnecting and connecting

operators, is one common mechanism for enabling recomposition. In such systems, a

composer orchestrates an adaptation across multiple hosts to reconfigure processing

to meet current needs. State maintenance may require the migration of nontransient

operator state or ensure that data is not lost during operator migration. The Com-

puting Communities project [95] enables device awareness and virtualization [34], de-

coupling devices, such as monitors and keyboards, from the processes that use them.

26

. , ’ iiiter pattern

,’ rejected messages

(message does not match)

(message continues to next tilterj

(message matches)

e Is modified

continues to next filter)

(message matches)

(message is dispatched)
Figure 2.5: An intuitive schema of message filtering (adapted from [2]). In this dia-

gram, (A), (B) and (C) are three filters, while m(), n(), O() and p() are messages. Fol-

lowing message m(), filter (A) rejects m(), passing it to filter (B). Filter (B) matches

m() and modifies m(). Filter (C) matches the modified message m() and dispatches

it to a target object.

This decoupling allows a distributed computing cluster to adapt to changes in proces-

sor load and application requirements through process migration. M-Ware [97,107]

uses the ECho [108] publish-subscribe system to adapt a distributed data stream.

Resubscription to services on different hosts enables runtime adaptation to maxi-

mize the business value, expressed using utility functions, Of data stream processing.

However, state maintenance is not addressed and data can be lost during recom—

position. Composable, Adaptive Network Services Infrastructure (CANS) [109,110]

27

is an application—level infrastructure supporting distributed data-stream processing.

Data-stream applications are composed using operators, called drivers, that contain

only soft state that does not need to be retained. CANS supports data path re-

configuration involving insertion and deletion of drivers while avoiding data loss by

retransmitting data segments that were not received by down-stream drivers.

2.6 Decision Making in Autonomic Systems

In addition to advances in adaptive mechanisms and state maintenance, new ap-

proaches that enable software to make decisions in real time are needed. While

confronting a dynamic physical world, such decision making systems must act au-

tonomously, modifying software composition to better fit the current environment

while preventing damage or loss of service. Decision makers must monitor both their

physical and virtual environments using software and hardware sensors. These sen-

sors can provide information on current quality of service, such as network packet loss

or available battery power. Moreover, pervasive computing environments may require

that software learn about user behavior, enabling an application to make decisions

based on a user’s preferences and needs.

A number of different approaches have been used for implementing decision mak-

ers. Some projects have used rule-based methods, where adaptive behavior is guided

by selecting a response from a set of previously specified condition-action pairs [111].

Other approaches are supported by theoretical models, including those based on con-

trol theory [105,112] and those inspired by biological processes, such as the human

28

nervous system [113] and emergent behavior in species that form colonies [114].

Planning [115,116] strives to automatically compute system configurations to address

current conditions. While these methods have been effective in certain domains, en-

vironmental dynamics and software complexity have defied their general application.

Moreover, the interaction between different components, fragments and services may

conflict, prohibiting the deployment of many configurations. Such feature interaction

problems [117,118,118] have a combinatorial complexity and can be difficult to char-

acterize, particularly when the number of possible compositions is large. Nonviable

compositions need to be recognized prior to their use to ensure that the adaptation

recommended by a decision maker preserves the correctness and safety properties

required of the original system.

Another problem is that most of the above approaches are not designed to ac-

commodate high-dimensional sensory data.2 Decision makers may have access to

hundreds or thousands of sensor readings. One example is a computer vision appli-

cation [119], where a Single camera (sensor) image can easily have more than 10,000

pixel values each of which can be treated as a single sensor reading. Moreover, the

wide variety of environmental data that can be captured for making a decision needs

to be distilled or filtered such that only information pertinent to a particular decision

need be considered. Otherwise, extraneous readings can occlude a decision maker’s

interpretation of current conditions and cause selection of incorrect or counter produc—

tive adaptive actions. Some decision makers may learn from past experience and user

2High dimension means many sensors and/or each sensor has many scalar measures

at each time instant.

29

interaction, enabling them to adapt an application’s function over time [120,121].

Such incremental learners must continue to learn from new experience and accom-

modate new adaptations as they become available. The amount of data processed

during a system’s lifetime may be very large, requiring that some behaviors be “for-

gotten” to limit both memory consumption and processing requirements. Moreover,

these decision makers may need to tolerate the removal or addition of sensors grace-

fully, continuing to guide application recomposition in the face of new or incomplete

information.

We will argue in Chapter 5 that perceptual memory, a type of long-term memory

for remembering external stimulus patterns [45], may offer a useful model for an

important component of decision making in context-aware, adaptive software. The

ability to remember complex, high-dimensional patterns that occur as a product

of interaction between application users and the environment, and to quickly recall

associated actions, enables timely, autonomous system response. Moreover, systems

that can learn how to interact with complex pervasive computing and ubiquitous [122,

123] environments while accounting for user preferences are becoming increasingly

important.

30

2.7 Towards an Integrated Design Of Autonomous

Software

The integration of adaptive mechanisms, state maintenance and autonomous decision

making is necessary for enabling software to respond to the uncertainty found in

dynamic environments. In this dissertation, we investigate the integration Of these

elements in the design and implementation of data streaming applications. As a class

of software found in many important arenas, such as environment monitoring and

data communication networks, data streaming applications and systems have been

studied extensively. However, the principled integration of adaptive mechanisms,

state maintenance and autonomous decision making to autonomously address user

desires and environmental uncertainty has received substantially less attention.

Our integrated approach requires a solid understanding of each element, and re-

quires careful consideration and design to help ensure correct software execution while

addressing the needs of different users and the changing environment. Our research is

mainly focused on investigating each element and exploring how it can be effectively

integrated to provide autonomous software response in dynamic environments. We

recognize that many other application classes may benefit from our integrated ap-

proach, but prefer to limit our scope and extend what we learn in the data streaming

environment at a later time.

In Chapter 3, we describe the design and implementation of Adaptive Java, an

extension to the Java programming language that enables the implementation of

dynamically recomposable components. Using Adaptive Java we explore the effec-

31

tiveness and expressiveness of language support in representing adaptive mechanisms,

clarifying our understanding on how behavioral reflection enables dynamic software

recomposition. Chapter 3 also introduces Dynamic River and investigates the mech-

anisms needed for dynamic recomposition of distributed pipeline Operators. In Chap—

ter 4, we investigate state maintenance issues using a programmer’s API that we

developed to enable capture Of component state and address collateral change dur-

ing dynamic recomposition. In addition, Chapter 4 also introduces the concept of

data stream scope and its implementation in Dynamic River to maintain data-stream

state during runtime recomposition. Next, in Chapter 5, we describe our design of a

perceptual memory system that can be used to capture and organize data acquired

through environmental sensors and user interaction. Perceptual memory enables de-

cision making in dynamic environments by providing access to past sensor experience

and user interaction. Chapter 6 describes the integrated design, evaluation and analy-

sis of our Xnaut case study, where an application “learns” to balance error correction

and bandwidth consumption through interaction with a user. Chapter 7 describes

our proposed methods for automated ensemble extraction and analysis of sensor data

streams for classification and detection of bird species in natural environments. En-

semble extraction addresses the need for techniques that enable timely distillation of

information from raw sensor data that can be used for making adaptive decisions.

Chapter 8 extends the use of ensembles to forecasting network packet loss. Finally,

in Chapter 9, we summarize our work, discuss future directions and conclude.

32

Chapter 3

Mechanisms tO Support

Autonomic Software

Understanding the mechanisms that enable dynamic software reconfiguration is es-

sential to the design and implementation of autonomous software. As described in

Chapter 2, approaches to compositional adaptation Often involve reflection [29, 30].

In this chapter, we explore two approaches for implementing mechanisms that sup-

port runtime recomposition. First, we study the idea of using language constructs

to separate the two major aspects of reflection. Our approach differs from other

approaches that adopt an interpretation of reflection in which the processes of ob-

serving behavior (introspection) and changing behavior (intercession) are intermin-

gled. Specifically, we develop constructs for defining metamodels in terms of two

types of primitive operations: refractions, which provide a (limited) view of the un-

derlying base-level component, and transmutations, which modify the functionality

of the base-level component. In this manner, the proposed techniques are intended

33

to complement existing approaches to adaptive software design by facilitating the

development of higher-level adaptive services such as MOPS.

Second, we describe the design of Dynamic River, a system we developed to in-

vestigate the mechanisms and state maintenance required for dynamic recomposition

of pipeline Operators. Dynamic River operators can transform, filter or perform other

processing on a data stream. Specifically, we study mechanisms that enable operators

to be dynamically reconfigured and migrated among hosts. Runtime reconfiguration

and migration can address quality of service and fault tolerance. For instance, by

redeploying Operators to hosts with more resources or by enabling customization of

data stream processing. Dynamic River complements other projects that support

distributed stream processing by directly considering state maintenance for operator-

based runtime adaptation, discussed further in Chapter 4.

The remainder of this chapter is organized as follows. Section 3.1 introduces the

properties of computation reflection as they apply to behavioral reflection. Section 3.2

discusses our basic approach to building adaptive components. Section 3.3 presents

the design and implementation of Adaptive Java. A case study, implemented by our

research group, is presented in Section 3.4, demonstrating the utility of our approach.

In Section 3.5, we describe the mechanisms used by Dynamic River to enable dy-

namic reconfiguration and redeployment of operators. Related work is presented in

Section 3.6. Finally, Section 3.7 concludes this chapter.

34

3.1 A Closer Look at Reflection

In this section, we discuss how the concepts provided by computational reflection

can be used to realize a principled approach to runtime reconfiguration; we also

describe the theoretical limitations of reflection. We begin by discussing the five

properties, defined by Maes [30], that are considered important in the design and

implementation of an object—oriented reflective architecture. These properties, listed

below, were defined with respect to an object oriented language (OOL) designed to

support structural reflection. However, these properties can be recast to address

the design of a system that supports behavioral reflection by considering them with

respect to enabling dynamic reconfiguration.

Disciplined separation between the object-level and the meta-level.

Uniform self-representation.

Complete self-representation.

Consistent self-representation.

Modifications to the meta-level result in changes to the runtime

computation.

9
‘
9
9
”
}
?
?
?

The first property indicates that the meta-level and base-level are cleanly sep-

arated. That is, design and implementation of base-level function should not be

entangled with the design and implementation of the meta-level. This separation

promotes a clean design while enabling base and meta—level design and implementa-

tion to be considered separately. From the perspective of enabling runtime behavioral

reflection, we would like to defer codifying methods for computing QOS or invoking

a reconfiguration until such time that they are needed. Moreover, depending on the

context in which the system is deployed, different QOS metrics or reconfigurations

may be required.

35

Deferring meta-level codification requires mechanisms that enable the addition or

exchange of base and meta-level constructs at runtime. These mechanisms can take

the form of language constructs, such as encapsulation, or software “hooks” that can

be used to introduce new components to the running system. Moreover, as implied

by the second property, these mechanisms should be uniform, such that the system

can be observed and reconfigured in a consistent fashion. With respect to structural

reflection, this means that object fields and methods are also modeled as objects and

that they also have a reflective interface. Thus, a property of both structural and

behavioral reflection is the presentation of a uniform interface.

The third property, from the point of view of the design of a reflective object-

oriented language, implies each Object in the system has a meta-representation. It

is impossible, in a practical sense, to create all possible meta-representations of all

objects in the system, since each meta object used to compose the meta-level is it-

self an object and recursively has a meta-object. This results in an infinite sequence

of meta Objects. A common method for handling this “problem of infinite towers of

reflection” is to delay construction of meta—level objects until they are needed. Reify-

ing, or making an abstract object into one that is concrete, constructs meta-objects

only when the program needs them. In a system supporting runtime reconfiguration,

reification of meta-level constructs is also deferred until they are required.

Another way to state properties 4 and 5 is that a system is causally connected.

Property 4 essentially indicates that any modification to the base-level is reflected in

the meta-level. Conversely, Property 5 ensures that any modification made to the

meta-level is carried back to the base-level. These properties are necessary for both

36

structural and behavioral reflection to provide a useful interface for observing and

modifying a system. If the meta and base-levels were not causally connected, the

meta-level would be no more than a snapshot representation of the base-level at the

time the meta-level was instantiated. After instantiation, the meta—level would exist

independently. All observations and changes made to the meta-object would have no

significance with regard tO the base-level.

Now, let us consider the limitations of reflection. With respect to reflective soft-

ware, introspection refers to the act of computing some truth about itself. Moreover,

like all computational systems, reflective software is an instance of an axiomatic, sym-

bolic system. A symbolic system is one composed of symbols representing objects,

such as numbers, operations or schemas. In a computer, symbols are instructions and

axioms are the rules that govern their execution. An axiomatic system, when prop-

erly defined, is consistent. Specifically, no two syntactically correct propositions in

the system can be derived such that the two propositions are contradictory. That

is, given a proposition P, P and not P cannot be true in a consistent system. An

inconsistent system enables both P and not P to be provably true assertions. Since

an introspective computational system is self-referencing, symbolic and axiomatic,

limitations on what can be computed (or decided) are addressed directly by Gddel’s

Theorem on Undecidability [124,125] (sometimes called Gddel’s Incompleteness The-

orem) proposed in 1931. This observation stems directly from the causal connectivity

of the meta and base-levels. Whatever happens to the base-level must be correctly

reflected in the meta-level or causal connectivity ceases. However, if causal connec-

tivity survives then it necessitates that information afforded to the base-level by the

37

4_x

a»~.

4..-.

nah

- ‘u

.
U
.

\
.
\

.

CT”
I-

meta-level be directly coupled with the state of the base-level. As such, the base—level

is examining itself indirectly, but precisely.

Thus, all introspections and intercessions applied to the meta-level are directly

representative of what happens in the base-level. Turing’s halting problem [126] tells

us that there are things that a program cannot decide about itself. Even when using

a meta-level to indirectly introspect on the base-level, a program cannot decide all

things about itself. As such, reflective systems are considered as incomplete. The

alternative is that they are inconsistent, enabling the computation of contradictory

“truths” about system state.

Our observations about the properties and theoretic limitations of runtime be-

havioral reflection are two—fold. First, the principled design and implementation of

runtime recomposable software requires careful consideration of the mechanisms to

support behavioral reflection. These mechanisms must separate the base and meta-

levels such that the design and implementation of the base-level does not require in-

timate knowledge of meta-level function. Moreover, despite this separation, a causal

connection must be maintained to ensure accurate introspection on base-level behav-

ior. Second, computational introspection has its limitations. Precisely, reflection does

not remove the theoretic limitations imposed on axiomatic, symbolic systems.

Hence, Maes’ five properties, even though some of them may not be fully attain-

able, represent the basic goals of a reflective framework. In a nutshell, it is desirable

to implement these five properties such that the tendency of the system to preempt

how it is later used is reasonably minimized. This Objective applies both during the

implementation of an application that uses this framework and during runtime re-

38

configuration.

3.2 Building Adaptive Software

An important issue that arises in the application of reflection to software systems, is

the degree to which the system should be able to change its own behavior. As dis-

cussed by Kiczales for meta-level interfaces [127] (and earlier by Shaw and Wulf for

programming languages [128]) preemption occurs when the designer of a program-

ming language or framework makes a decision in the implementation that prevents a

programmer from using a feature of the language or framework in a way that would

otherwise seem natural. That is to say, decisions made when the framework is imple-

mented preemptively restrict how a programmer can effectively use the framework.

On the other hand, a completely open implementation implies that an applica-

tion can be recomposed entirely at runtime. Specifically, it is possible for all the

default components of the system to be destroyed and and new ones instantiated

such that the goal of the imperative (base-level) computation is changed. For ex-

ample, this extreme allows a calculator to be recomposed as a video player. Thus,

runtime recomposition can produce a system that is inconsistent with the program-

mer’s intended goal. Moreover, a higher degree of Openness in a system entails greater

resource consumption to construct and maintain the necessary data structures that

enable runtime reflection. In particular, storage and processing power are needed to

support meta-models [77,83,129], which must be reified as objects and maintain a

causal connectivity to the base—level. Thus, complete Openness, particularly at run-

39

time, is not entirely desirable. In fact, it seems that greater openness is more desirable

in languages than in runtime reflective systems.

A central focus of our approach is the reflective interfaces exhibited by compo-

nents. Rather than considering MOPS as orthogonal portals into base-level function-

ality [75], we consider an alternative architecture in which MOPS are constructed

from a set of primitive operations. While different MOPS address different aspects

of behavior, they may well overlap in their use of these primitives.

Figure 3.1 illustrates this view of MOPS and their composition. Different MOPS

are defined for different dimensions of adaptability (e.g., fault tolerance, security,

quality-of—service, power consumption). Each MOP accesses the base layer through

a subset of the primitive operations, and these subsets may intersect. This design

appears to exhibit several desirable features. First, explicitly defining intersections

in MOP functionality may facilitate coordinated adaptation to events. Second, addi-

tional MOPS can be constructed to address issues that did not arise in the original

design. Third, limiting interaction with the base level may improve the ability of the

system to check, at runtime, the consistency of modifications with the specified be-

havior of the component. Finally, since MOPS are composed of mutable primitives,

they can be adapted to meet the subjective concerns of adaptive agents. MOPS can

be augmented or new ones built such that these agents can construct views of the

system to suit their needs.

In the remainder of this section, we describe an approach to defining and con-

structing such primitive meta-operations that is based on whether the operation in-

volves introspection or intercession of the base-level. As shown in Figure 3.2, we can

40

QVmy:/ /

Base Level

Figure 3.1: Relationship between MOPS and primitive operations.

View these as functionally orthogonal to each other and to the imperative computa-

tion of the application. The computation dimension of the application has the goal

of fulfilling the principle goal imbued by the designer. The goal of the introspection

dimension is to allow the application to observe itself, while that of the intercession

dimension is to allow the application to modify its own behavior and structure.

A

C

.2

i
m

o

3:.

E

Computation
<

’o
(o
1*

°e

we
’6
9

Figure 3.2: Dimensions of component behavior.

41

3.2.1 Model of Adaptive Components

The basic building blocks used in our adaptive system are components. A component

can be accessed through three interfaces corresponding to the three dimensions dis-

cussed above. Operations in the computation dimension are known as invocations;

Operations in the introspection dimension are called refractions, since they offer only

a partial view of internal structure and behavior. Operations in the intercession di-

mension are called transmutations; they are used to transform the imperative behavior

of the component. Following are formal definitions of these terms.

Definition 1 Computation is the interpretation of the imperative function of a

computer application.

Definition 2 A refraction is a function for observing an application’s composition,

resources or other internal properties in a principled fashion.

Definition 3 A transmutation is a function for transforming an application’s com-

putational interpretation in a principled fashion.

Refractive and transmutative interfaces are reified by meta-components to support

introspection and intercession. Figure 3.3 illustrates the structure implied by our

understanding of these component interfaces. In this figure, the meta-level reflects

the base-level computation. A causal connection between the meta-level and the

base-level is maintained such that any changes resulting from the use of refractive

and transmutative interfaces are carried to the base-level.

With the above definitions in hand, a formal definition of computational meta—

morphosis can be presented.

42

O Computation) ‘ -0 Comhgtion)

Meta-level

Figure 3.3: Basic Metamodel

Definition 4 Computational metamorphosis is the principled transmutation of

of a running system from one composition to another such that the imperative goal

remains unchanged. The morphology of the imperative function comprises the set of

compositions that have the same imperative goal. Each member of this set is called a

polymorph.

In short, this definition implies a necessary condition of correctness such that a

runtime recomposable system can only be considered correct as long as the imperative

goal of the system is maintained. Implicitly, it can be assumed that such a system

remains functional such that it does not exhibit anomalous behavior as a result of

being recomposed.

43

3.2.2 The Role of Encapsulation

Most object-oriented languages are based on a static binding of inheritance between

subclasses and superclasses. This structure prohibits dynamic restructuring of a pro-

gram at runtime. For this reason, we adopt encapsulation, where one component

contains another, as the principle mechanism for the composition in our system.

Encapsulation provides a means by which the functionality of a component can be

extended or limited by dynamically encapsulating it within another. Moreover, the

addition, deletion and exchange of encapsulated components can be carried out dy-

namically at runtime.

The composition of a system can be viewed as the parameterization of one com-

ponent with another. We represent these relationships using notation from Gen-

Voca [98,130]. Specifically, S = G[F] states that system S is composed of component

G parameterized by F, or that F is encapsulated by G. Multiple components can

be encapsulated within another component, and this relationship is represented as

S = G[E, F] The morphology of a system built using encapsulation can be de-

scribed by a set of system definitions:

G[E , F]

5 = G[E,F[A, 3]]

H[GIE. Fll

Moreover, a polymorph may result from encapsulating (parameterizing) an exist-

ing system within a new component such that S = H[G[E, F]]

44

3.2.3 Absorption

Components are constructed from objects defined in an object-oriented language

(OOL). We used Java in our study. The process Of constructing a component from an

existing class is referred to as absorption. In effect, an object, as provided for by the

OOL, can be considered a component without refractive and transmutative capacity.

That is, objects are essentially black boxes that do not facilitate reflection.

Absorbing components provides a way to recognize when actions that bore down

through the encapsulation layers, such as inheritance, should terminate. Figure 3.4

illustrates the absorption of a class and the metafication Of the resulting base-level

component to support reflections and transmutations. AS part of the absorption pro—

cedure, mutable methods called invocations are created on the base-level component

to expose the functionality of the absorbed class. Invocations are mutable in the

sense that they can be added and removed from existing components at runtime us-

ing meta-level transmutations. However, the relationship between invocations on the

base-level component and methods on the base-level class need not be one-tO-one.

Indeed, when a component is added to an adaptive system it may be necessary to

modify the component’s interface such that it fits properly into the system structure.

Since component interfaces are mutable and composed of primitive operations, aug-

mentation of an existing interface is possible. Thus, a component can be adapted to

achieve a subjective fit. However, some of the base-level methods may be occluded

or even combined under a Single invocation as the system’s form is modified. For ex-

ample, a read-only socket component can be constructed by occluding the methods

45

that enable writing.

retraction

transmutation

—Invocations

‘\I ‘\
o e

base-level

component

methods

base-level

class

meta component

Figure 3.4: Component absorption and metafication

3.2.4 Metafication

Metafication is used to create refractions and transmutations that operate on the

base component, as shown in Figure 3.4. Refractions and transmutations embody

limited adaptive logic and are intended for defining how the base level can be in—

spected and changed. The logic for how and why these tool-like operations Should

be used is provided at other component levels or by other components entirely. That

is, a component may refract and transmute itself or a component can be refracted

and transmuted by another. For instance, an execution thread providing the im-

perative functionality of the system might be defined as S = A[B] where A is a

meta-component reflecting B. Another execution thread, R, could adapt S using the

refractions and transmutations defined by A to recompose S = A[C].

46

3.3 A Prototype Language: Adaptive Java

In order to gain a better understanding of how the addition of refractive and trans-

mutative elements to a language would affect its use and structure, we defined and

implemented a prototype language, Adaptive Java, as an extension to Java.

In this study, we used CUP [131], a parser generator for Java, to implement

Adaptive Java. CUP takes our grammar productions for the Adaptive Java extensions

and generates an LALR parser, called ajc, which converts Adaptive Java code into

Java. Semantic routines were added to this parser such that the generated Java code

could then be compiled using a standard Java compiler.

Adaptive Java is a prototype whose purpose is to improve our understanding of

which language constructs and mechanisms are desirable in dynamic and adaptive

languages. Several of the concepts resulting from this investigation have been incor—

porated into other tools developed by our group [132,133]. In this section, we provide

some examples of the language constructs used to code refractive and transmutative

software in Adaptive Java.

3.3.1 Basic Component Structure

Figure 3.5 shows the language structure of a typical Adaptive Java component. Most

Java statements are supported within invocation and constructor blocks. Construc-

tors in Adaptive Java are essentially identical to Java constructors and are immutable,

only being used to provide flexibility in the initial instantiation of a component. Stan-

dard Java methods are replaced by invocations and standard immutable variable dec-

47

larations are supplemented with mutable variable declarations. Mutable variables can

be added and removed from components, using transmutations at the meta-level, in

much the same way as can invocations.

// A simple component

component BasicComponent {

// Constructor

public BasicComponentC) { ... }

// Invocation

public invocation void method1(String arg) { ... }

Figure 3.5: Adaptive Java component structure.

Optionally, a component can be declared to extend another component. Extend-

ing a component encapsulates the extended component within the newly declared

component. The extended component is called the inner component whereas the ex-

tending component is called the outer component. Inheritance is simulated by exam-

ining the outer component’s invocations for the desired invocation. If the invocation

is not found then a recursive search is performed of encapsulated components. For

instance, let S = A[B[C]] be a system composed by extending component C with B

and then extending B with A. If the execution of invocation A.exec() is requested,

first component A then B and finally C will be searched for exec O. The first instance

of and) found will be executed, thus allowing inner invocations to be overridden by

48

those found at more outer encapsulation levels. It is worth noting, that simulating in-

heritance in this way allows the inheritance chain to be decomposed and recomposed

with different components, possibly modifying the internal processing Of component

composition.

3.3.2 Absorbing Existing Classes

The absorbs keyword is used to construct a component from a regular Java class.

Figure 3.6 Shows the Adaptive Java code for absorbing a Java socket class into a

socket component that is used only for receiving packets. Invocations are created to

expose selected functionality of the absorbed class, in this case only the receive and

close methods. The absorbed class is accessed by the absorbing component through

the base keyword. The other methods of the base class are hidden at this level.

// receive-only socket component

public component RecvSocket absorbs Socket {

// constructor

public RecvSocket(int port, String group, byte ttl)

throws UnknownHostException, IOException {

setBaseCnew Socket(port, group, tt1));

}

public invocation void receive(DatagramPacket p)

throws IOException {

base.receive(p);

}

public invocation void close()

throws IDException {

base.close();

}

}

Figure 3.6: Absorbing a class into a Component

49

3.3.3 Reifying a Meta-level

Meta-components encapsulate other components and support only reflective func-

tionality. The encapsulated component is the meta-component’s base level. Meta

components are declared using the metafy keyword. Figure 3.7 shows an example in

which we metafy the Rechomponent component defined in Figure 3.6.

// Meta receive-only socket component

public component MetaRecvSocket metafy RecvSocket {

// Constructor

public MetaRechomponent(int port, String group, byte ttl)

throws UnknownHostException, IOException {

setBase(new RecvSocket(port, group, ttl));

}

// Transmutation that sets the data stream compression level.

public transmutation void SetCompression(int level) {

}

// Refraction that returns the observed bytes transfered

// by the RecvSocket component.

public refraction long GetBytesXmit() {

return bytes;transfered;

}

}

Figure 3.7: Metafying a component

50

An invocation is called using the invoke keyword (e.g., invoke

rSock.receive (pckt)). This causes the retrieval of a matching invocation

object from a hash table that is then cast to the appropriate invocation type. This

effects a prototypical indirect binding for invocations. Indirection enables support

for adapting component interfaces and supporting subjective MOPS.

3.4 Case Study: MetaSockets

In order to evaluate the design of the Adaptive Java language constructs, our group

used Adaptive Java to develop a component called a “metamorphic” socket, or simply,

metasocket. In response to external events, an application or middleware platform

can use refractions and transmutations on this component to observe and modify

socket functionality. In this study, metasockets are used to enhance the quality of

wireless audio channels at run time. Figure 3.8 shows the configuration where live

audio is streamed from a workstation to multiple iPAQ handheld computers running

Windows CE. The audio stream is transmitted on a 100 Mbps Ethernet LAN to a

wireless access point, where it is multicast at 11 Mbps on an 802.11b wireless LAN.

A

f (((t 9)) , ,
. ' Audlo Stream .--——.., ’ .

.. i g —--' F F ‘ ‘ b
.53”; “:23

WIred Access Wireless

Sender Point Receivers

Figure 3.8: Physical experimental configuration.

51

3.4.1 Block-Erasure Codes

The characteristics of wireless LANs are very different from those of their wired

counterparts. Factors such as signal strength, interference, and antennae alignment

produce dynamic and location—dependent packet loss [134]. Forward error correction

(FEC) can be used to improve reliability by introducing redundancy into the data

channel, enabling a receiver to correct some losses without contacting the sender for

retransmission. The FEC method used in this study addresses erasures of packets

resulting from CRC—based detection of errors at the data link layer. As shown in

Figure 3.9, an (n, k) block erasure code [135,136] converts k source packets into n

encoded packets, such that any k of the n encoded packets can be used to reconstruct

the k source packets. These codes have gained popularity recently due to an efficient

implementation by Rizzo [136]. Each set of n encoded packets is referred to as a

group. Here we use only systematic (n, k) codes, meaning that the first It packets in

a group are identical to the original 19 data packets. The remaining n — k packets are

referred to as parity packets.

Encoded

Data

Figure 3.9: Operation of FEC based on block erasure codes.

52

3.4.2 MetaSocket Design and Operation.

An audio streaming application was implemented in Adaptive Java. The application

comprises two main parts. The Recorder uses the Java Sound API to read audio

data from a workstation’s microphone and multicast it on the network. The Player

receives the audio data and plays it using the Java Sound API. Both applications

were written in Adaptive Java and converted into pure Java using the ajc parser.

They communicate using MetaSockets instead of regular Java sockets.

Figure 3.10 depicts the structure of a MetaSocket component. The base com-

ponent, called SendSocket, was created by absorbing the existing Java Socket

class. Certain public members and methods are made accessible through invoca—

tions on SendSocket. Since this component is intended to be used only for send-

ing data, the invocations available to other components are send() and close().

Hence, the application code using the computational interface of a metamorphic

socket looks similar to code that uses a regular socket. In addition, three invoca-

tions (SetBufferO , GetFilter() , GetLastFilterO) are intended for use by the

meta-level. The SendSocket was metafied to create a meta-level component called

MetaSocket. GetStatusO is a refraction that is used to obtain the current configu-

ration of filters. InsertFilterO and RemoveFilterO are transmutations that are

used to modify the filter pipeline.

A separate utility thread resides within each application and can be used to control

the behavior of its respective MetaSocket based on current observable status. For

purposes of testing the MetaSocket interfaces, an interactive administration utility

53

 InsertFilterO

RemoveFflterO

GetStatusO

...» SetBufferO

3 0

.M M n
8 8 0M!-

[3 % Filter()

0 5 GetFilterO

2 g ”3

JVM

*Data Flow v Ffilter with thread

""me can -and buffer

Figure 3.10: Structure of a MetaSocket.

was developed that enables the manipulation of MetaSockets directly. Figure 3.11

shows an example trace where audio was streamed from a desktop to an iPAQ across

an 802.11 wireless LAN. The transmutative interface was used to insert an (8,4)

forward error correction filter dynamically, significantly reducing packet loss, until

the filter was removed.

3.5 Mechanisms Enabling Operator Adaptation

Our implementation of Adaptive Java and our subsequent investigation with the

MetaSocket improved our understanding on how to design and build adaptable com-

ponents. Separation of introspection and intercession enables a software developer to

focus on each of these concerns separately and address the design of each in an or-

54

Packet loss percentage with (n,k) = (8,4)

20

Filter Filter

15 _ Inserted Removed

15 9 13 1721 25 2933 3741 4549 5357

PacketGroup

Figure 3.11: Sample results of dynamically changing MetaSocket configuration.

thogonal fashion, easing the burden of designing adaptive software. However, not all

approaches to software adaptation focus on language support or component reconfigu-

ration. In distributed, data-streaming systems, adaptation is possible if operators can

be introduced into the data stream transparently or gracefully redeployed to different

hosts. In this section we introduce the design and implementation of Dynamic River,

an extension to the DaSH data acquisition system [137]. Dynamic River comprises

operators designed for processing sensor data streams and enables sets of operators

to be dynamically relocated to more suitable hosts to better meet quality-of—service

requirements.

55

3.5.1 Dynamic River Operators and Segments

A Dynamic River pipeline is defined as a sequential set of operations composed be-

tween a data source and its final sink (destination). Operations can transform,

filter or perform other processing on pipelined data. Shown in Figure 3.12 is a

high-level diagram of the structure of a basic operator and two network operators

(streamin and streamout). This pipeline can be represented using the notation

2) [streaminloperatorlstreamout]. A basic Dynamic River operator is a system-

level process (program) that reads data records from stdin and writes records to

stdout. An operator can process a record, for instance by converting a record com-

prising a vector of floating pointing values to its complex representation, and emit the

results as a new record. The network Operator streamin reads records from a network

socket and writes them to stdout. Correspondingly, streamout reads records from

stdin and writes them to a network socket. The network operators enable record pro-

cessing to be distributed across the processor and memory resources of many hosts.

Thus, processor or memory intensive operations can be strategically located on hosts

within a compute cluster or across a network to improve overall throughput. Pipeline

segments are created by composing sequences of operators that produce a partial re-

sult important to the overall pipeline application. For instance, a pipeline constructed

to compute the Fourier transform might include a segment comprising an operator

for converting floating point values to complex numbers, followed by a Fourier trans-

form operator for conversion to frequency data. Segments can receive records using

streamin and emit records using streamout, enabling instantiation of segments and

56

the construction of a pipeline across networked hosts. Moreover, network operators

enable dynamic, runtime pipeline recomposition by enabling a pipeline segment to be

moved to a different host.

2* .4; : g

: 1 __ . . -

I- .— ~‘< ‘.~ ._

o ... ,_ . _..

'O '5 '8 2 i '8 ‘
a if an t ‘ ‘. a J'-
0 a d: A’ o 3

% l l “i E n:
a. g! E I- .2

O a o o . O

8 3, o 0 o

vq a: 0 u

a: a: It s. a:

"3L ,is
};

~2
5;

i i
t
:

I
.

Figure 3.12: Basic internal structure of basic stream operators and the streamin and

streamout network operators.

Figure 3.13 is an elided sequence diagram for the normal operation of a pipeline.

The source and sink are abstract in that they represent an application specific data

source and final destination. Moreover, other operators (elided) may be inserted

between the source and streamout or between streamin and the sink. During

normal operation each pipeline operator loops, reading and writing records until the

connection between streamout and streamin closes. Connection closure may occur

due to graceful shutdown of a segment, or if a segment unexpectedly terminates due to

a program fault. In addition to what is depicted, the entire pipeline can be gracefully

shutdown from the source to the sink, by flushing the pipeline sequentially, if the

source should reach end-of—file (EOF).

Currently, Dynamic River provides 60 operators for processing or routing data and

more operators are being implemented on a regular basis to meet the needs of different

applications. Table 3.1 describes a subset of basic operators, 2 network operators and

2 support programs discussed in this dissertation. A more detailed description of these

57

Source StreemOut Streemln Sink

}
. l }
.

l

Lo : whl —" ’

connect

= true]

writeflecordo reedfieoordo

record _

,-....--.-.qk..............

wfltefiecordo readRecordO

record _

ok
.‘.

“WRWOMO reedRecordO

record

.m-9k............. l

Figure 3.13: An elided sequence diagram depicting the normal operation of the

streamout and streamin pipeline operators.

and other operators and supporting programs is provided in Appendix B. Notably,

the dynriverd daemon enables remote reconfiguration and redeployment of Dynamic

River operators. This daemon can issue control messages, over a named FIFO, to

local streamin and streamout operators, triggering graceful shutdown of pipeline

segments. Moreover, dynriverd can instantiate new pipeline segments and connect

them to segments executing on remote hosts.

3.5.2 Dynamic River Records

As shown in Figure 3.14, a Dynamic River record comprises a fixed length record

header and a variable length field that comprises the application record data. Record

fields are defined in Table 3.2 and provide meta information needed for record storage,

transmission and processing in a distributed environment. Moreover, header fields are

58

Table 3.1: Description of a subset of Dynamic River operators and support programs.

Basic Stream Operators

Operator Description

cabs Convert an input record of complex floating point values to

a record of comprising the complex absolute values of the

input record. The output record comprises floating point

values.

cutout Convert an input record of floating point values by selecting

a specific range of values and discarding the remainder.

dft Convert an input record of complex floating point valuesby

computing the discrete Fourier transform.

float2cplx Convert an input record of floating point values to a com-

plex number representation. Specifically, the real part of the

imaginary number contains the original floating point value

and the imaginary part is set to 0.

wav2rec Convert WAV format acoustic data into Dynamic River

records.

welchwindow Convert an input record by filtering it with a Welch win-

dow [138].

readout Acquire sensor readings from either real or synthetic sensors

and emit records comprising these readings. This operator

is abstract and has different implementations depending on

application requirements.

Network Stream Operators

Operator Description

streamin Accept or initiate network connections to/from streamout.

Reads records over the network connection and emits these

records unaltered to standard output.

streamout Accept or initiate network connections to/from streamin.

Reads records from standard input and emits these records

unaltered on the network connection.

Support Programs

Program Description

ctrlcmd A command line executable for issuing commands to

dynriverd. Commands can invoke pipeline segments, ter-

minate segment execution and make status inquiries.
 dynriverd A daemon for remote control of pipeline segments.

Dynriverd can invoke pipeline segments, terminate segment

execution and make status inquires. Dynriverd is controlled

using ctrlcmd.

automatically converted to network byte order (using hton1() and htons()) when

written and converted to host byte order when read.

59

typedef struct recordgheader;struct {

uint164t version;

uint32.t record_size;

uint324t recordgtype;

uint32rt record_subtype;

uint164t status-code;

uint324t byte_order;

uint324t data_size;

uint32rt entity-count;

uint32rt scope-type;

uint32;t scope;

//

// The data field follows the

// static sized header. The data

// field has byte length

// data_size and comprises the

// application record data.

//

// ubyte *data;

} record_header_t ;

Figure 3.14: C/C++ Definition of the Dynamic River record header.

As depicted in Figure 3.15, records can be grouped using the record.subtype,

scope and scope_type fields. We define a data stream scope as a sequence of records

that share some contextual meaning, such as having been produced from the same

acoustic clip. Within the data stream, each scope begins with an OpenScope record

and ends with a CloseScope record. Scope opens and closes are indicated using the

record header record_subtype field. The record-type for scope records is identical

to that of the data records within the scope so that data records and their associated

scope information are kept together within the data stream. Optionally, CloseScope

records can be replaced with BadCloseScope records to enable scope closure while

indicating that the scope has not reached its intended point of closure. For instance,

if an upstream segment terminates unexpectedly and leaves one or more scopes open,

the streamin operator will generate BadCloseScope records to close all open sc0pes,

60

I
M
I
O
p
e
n
S
c
o
p
e

I

 I
O
I
C
I
o
s
e
S
c
o
p
e

I

 P
I
C
I
o
s
e
S
c
o
p
e

I

I
‘
I
O
p
e
n
S
c
o
p
e

I

 scope: Z -

Figure 3.15: Depiction of a record stream with data sc0ping. Numbers indicate the

scope nesting depth indicated by the record header sc0pe field.

Sc0pes can also be nested. The scope field indicates the current scope nesting

depth, larger values indicate greater nesting while scope depth 0 indicates the outer-

most sc0pe. The outer most sc0pe is defined as the sc0pe that represents the data

stream as a simple stream of records without any further contextual grouping. Scopes

at greater depths indicate an application specific grouping that should be maintained

during record transmission and processing. As shown in Figure 3.15, the scope field

for OpenSc0pe records indicates the depth of the newly Opened scope. Conversely, the

scope field on CloseScope records indicates the sc0pe depth that will be reentered

after scope closure. The scope_type field enables the specification of an application

specific scope type. For instance, a sc0pe can be identified as comprising an acoustic

clip. Optionally, OpenScope records may contain context information. As we shall

see in Chapter 7, this functionality is useful for recording the sampling rate of an

acoustic clip, needed for computing the frequency range depicted by a spectrogram.

3.6 Related Work

Several projects have explored the use of program language constructs to support run-

time adaptation. For instance, the Program Control Language (PCL) [90] provides

61

Table 3.2: Description of record header fields.

Field I Description

version The current record header version. Used for detecting

incompatibilities or translating between different record

versions.

record-size The entire size of this record in bytes. This size includes

the size of this record header and data.

record_type The record type. For instance, may be assigned a well-

known named type such as PktDoc or Data, or a user

defined type.

record_subtype The record subtype. For instance, may be as-

signed a well-known named type such as OpenScope or

CloseScope, or a user defined type.

status_code The current status of this record. For instance, indicating

if the record is complete or truncated.

byte_order The four bytes: 0x01020304. Used for determining the

byte order when switching between different architec-

tures.

data_size The size of the data field in bytes. This field is present

largely to ease application level record processing.

entity_count Set to indicate the number of entities included in the data

field. This field is set by the application programmer.

Typically, this field will indicate the number of events,

floats, integers or other data types comprising the data

field.

scope_type The current data scope type.

scope The data scope nesting depth.

data Application specific data. This field immediately fol-

lows the record header and is not explicitly defined by

record_header_t.
programming language support for computational adaptation. An adaptive program

is specified using adaptors and targets for the adaptors. Adaptors are typically sub-

classes of targets and have access to many of the variables defined in the target class.

Adaptors can change the behavior of a single target class through the use of vari-

ables and methods, called ControlParameters and ControlMethods, visible in the

superclass to the Adaptor. The Adaptor can read and modify ControlParameters

and call ControlMethods as part of the adaptation policy, enabling parameter obser-

62

vation and modification. Adaptation policies are specified using metrics associated

with variables of the target class. Metrics can be sampled, timed or rate based, and

are used to trigger events that execute adaptive processing. The PCL project demon-

strates how an adaptive system is constructed, providing domain specific constructs

layered atop C++. However, PCL does not enable recomposition of a running system,

but rather enables the modification of parameters using existing strategies.

Other projects have explored the use of computational reflection. DAS [3] defines

a software model supporting dynamic application adaptability, and LEAD++ is an

object-oriented reflective language that uses DAS. As shown in Figure 3.16, DAS de-

scribes an application using a component graph, where the nodes are components and

the edges are message paths. LEAD++ aims to provide program language support

for effective design and implementation of adaptive software. Runtime adaptation is

realized in several ways. Plug-and-play components can be dynamically instantiated

and inserted into the component-graph. Messages can be redirected along different

component-graph edges, effectively changing application behavior through invocation

of different methods. The component-graph structure can be changed by adding or

replacing components and message paths. The lDAS system is divided into a base-

level and a meta-level. Messages initiated by base-level components are intercepted

by dispatchers in the meta-level and directed to the apprOpriate base-level component

as determined by the current environmental context. However, unlike Adaptive Java,

DAS and LEAD++ do not address the separation of introspection and intercession

or the role of encapsulation for enabling OOL design and development of dynamically

recomposable software.

63

I” - “

\

a ---------- p: Com2 l Com1 . ”'4 >

\ I \

I \

a \

I

I

I

I

I

I

I

I

I

I

I

I

I

I
m

I ' ‘

\ uz-a

\\

\\

\

from A to B \

V

= \
from B to A M34

Com e——‘_,

’I

was ,”

I”

ll ”

sum) sums)

Figure 3.16: The construction and alteration of a component-graph [3]. Solid nodes

are active, while dashed nodes are inactive slots for storing components. The inactive

slots on the left are filled on the right. Messages are redirected through the newly

activated nodes.

The TAILOR project [139] studies unanticipated software change by studying ex-

tensions to programming languages and runtime systems. GILGUL [94] is a Java

extension language providing a mechanism and type system for handling the update

of references during dynamic object replacement. Although sharing a language—based

approach with LEAD++ and Adaptive Java, GILGUL does not provide a reflec-

tive system supporting adaptive applications. Instead, GILGUL focuses on designing

special language features that ease runtime, application restructuring. GILGUL im-

plements objects such that they have a comparand and a referent. Comparands can

be used to compare objects such that equivalence of two objects can be determined

64

separately from comparing their references. That is, equivalence is not tied directly to

object identity. Referents enable the dynamic replacement of objects by allowing mul-

tiple objects to hold referents that all indirectly point to a particular object reference.

As such, updating a particular referent updates all the other referents that point to the

same object reference. Thus, objects can be dynamically replaced through the assign-

ment of references and determination of whether an assignment can be made through

comparison of comparands. GILGUL also defines implementation-only classes that

cannot be used as types. Variables cannot have the type of an implementation-only

class. However, implementation-only objects can be assigned to variables that are

typed as a superclass of the implementation-only class. Implementation-only classes

help extend the type system such that additive and subtractive replacement of objects

is less restrictive.

In this chapter, we studied a possible approach, based on separation of introspec-

tion and intercession, for designing reflective primitives. We developed a prototype

language, Adaptive Java, and showed how it can be used to construct adaptive com-

ponents from existing classes. We intend these low-level mechanisms to provide a

foundation for the construction and maintenance of meta-object protocols for cross-

cutting concerns. Moreover, we introduced Dynamic River, a system that focuses on

adaptation of data stream processing. Dynamic River extends our study of adaptive

mechanisms to distributed operator reconfiguration and redeployment.

A number of research projects have addressed the construction of distributed

stream processing engines that provide quality-of—service optimization or guarantees.

Wavesc0pe [140] addresses the need for data streaming systems that combine sig-

65

nal processing and event-stream processing for sensor data. Wavescope provides a

scripting language, called WaveScript, to simplify the implementation of user de-

fined processing and data stream queries and is designed to address resource limi-

tations imposed by sensor platforms or embedded systems. Unlike Dynamic River,

Wavescope does not address runtime reconfiguration and redeployment of operators.

Aurora [141,142] and Borealis [143], that inherits Aurora’s stream processing abilities

and Medusa’s [144] distributed functionality, focus on database-like query Optimiza-

tion for data streams. The Aurora/Borealis approach optimizes query processing in

a piecewise fashion that “drains” a subset of the Operators prior to runtime reconfig-

uration. As such, query processing and dependent data tables can be collocated or

queries can be reordered. Similarly, CANS [109,110] Enables data-stream applica-

tions to be composed using Operators, called drivers, that contain only soft state that

does not need to be retained. CANS supports data path reconfiguration involving

insertion and deletion of drivers. The Aurora/Borealis approach to query optimiza-

tion and CANS reconfiguration of drivers is similar to Dynamic River’s method for

Operator redeployment and reconfiguration.

3.7 Discussion

In this chapter, we studied mechanisms that enable runtime recomposition. However,

building autonomous software requires more than the design and implementation of

adaptive mechanisms. The exchange of components in a running system requires

consideration Of component state. For instance, components Often encapsulate data

66

important to proper program execution. In the face of component exchange, such non-

transient data must be maintained. Moreover, distributed operator redeployment and

reconfiguration requires state maintenance to avoid loss or corruption of data. As we

will describe in Chapter 4, our work with Dynamic River complements other projects

by directly addressing state maintenance for distributed pipelines while considering

graceful recomposition and fault resilience. Moreover, our design and implementa-

tion demonstrates our principled, integrated approach to designing and implementing

dynamically adaptive software.

67

Chapter 4

State Maintenance for Autonomic

Software

State maintenance comprises the protocols and data transformations required to avoid

loss of nontransient state and ensure proper program execution during runtime pro-

gram recomposition. Where mechanisms supporting dynamic recomposition address

the need for principled approaches for decoupling application components and data

structures, state maintenance addresses the need for principled approaches for dy-

namically transitioning an application from one composition to another. As intro-

duced in Section 2.4, state maintenance comprises three major concerns: reference

update, state migration and synchronizing intercession. The most common solution

for the reference update problem is the use of indirection, where application objects

are not referenced directly, but rather through secondary data structures or compo-

nents. However, while indirection is relatively well-understood, state migration and

synchronization of intercession are more complex problems that are less understood.

68

Dynamic recomposition involves state transfer as it relates to collateral change, state

transformation and recomposition protocols. In the next section, we will begin by

describing state transformation as it relates to runtime recomposition.

The remainder of this chapter is organized as follows. Section 4.1 discusses non-

transient state, component equivalence and collateral change as related to state migra—

tion and synchronization. Section 4.2 formalizes state transformation to help clarify

how state transformation can enable and limit the flexibility of a recomposable sys-

tem. Section 4.3 describes Perimorph, an API that enables the capture and migration

of state between components during recomposition, and discusses our approach for

providing programmer support for principled implementation of state maintenance in

adaptive software. An example application and a case study, both implemented us-

ing Perimorph, are described in Sections 4.4 and 4.5. State maintenance in Dynamic

River is described in Section 4.6. Section 4.7 discusses prior work addressing state

maintenance and capture. Finally, Section 4.8 concludes this chapter.

4.1 Key Concepts and Issues

In this section, we introduce key concepts and issues that relate to state maintenance

for autonomic software. The issues discussed are general, however, the design and

implementation Of approaches that address these issues are often specific to the appli-

cation domain Or adaptation goals, such as component upgrade or quality—of-service

improvement. Later, in Sections 4.3 and 4.6 we describe implementations that ad-

dress these issues using an API-based approach in Perimorph, and an approach for

69

distributed data stream processing in Dynamic River.

4.1.1 Nontransient state

Nontransient state refers to program data that must not be lost during dynamic re-

composition if a program is to continue functioning correctly. At the component level,

one solution is to enable state extraction to export a normalized representation of the

component’s state, understood by all other components of the same abstract type

(i.e. implements a queue). The normalized state can then be assigned to an algo-

rithmically or structurally dissimilar component. A component needs to know only

how to code a normalized memento of its own state and how to decode a normalized

state memento captured from another component. The memento pattern [145] en-

ables the state Of an Object to be captured and extracted and later injected back into

the same object without violating encapsulation. For example, by using the memento

pattern in conjunction with normalization, an array-based queue can be assigned to

a vector-based queue.

Transformation of state can be avoided if a component can be quiesced such that

it does not contain any nontransient state. For instance, the SwitchWare project [104]

uses an active network bridging architecture [65] that allows reprogramming of a net-

work bridge as it executes. Loadable modules, called switchlets, are used to recompose

a network protocol stack such that an improved, more secure or repaired version of

a protocol can be instantiated dynamically. When a switchlet is upgraded, the old

implementation remains until all routers have received the update. In this way, con-

70

nections using the old protocol can still be serviced during the upgrade. Since the old

protocol remains until it is no longer needed, no transformation or transfer of com-

ponent state is needed. However, transformation of state cannot always be avoided

in this manner. For instance, components that collect aggregate statistics about the

running system may never be quiesced. Moreover, it may not be acceptable to con—

tinue to use an old component when upgrading a component to address security or

time-sensitive issues.

4.1.2 Component equivalence

During static composition, an application composer need only consider interface and

component function when selecting one plug-compatible component over another.

During dynamic composition, on the other hand, the composer must also consider

the migration of state from an active component to its replacement. The set of

components that can be exchanged with an active component form an equivalence

class based on interface compatibility and whether the state of an active component

can be transformed into the state of a potential replacement. That is, during dynamic

composition, two components can be considered equivalent if they share the same

interface and the state of the active component can be transformed and transferred

to the replacement. This equivalence class represents a set of candidate component

replacements. However, even when component A can be replaced with component B,

this relation does not imply that component B can be replaced with component A. In

other words, the equivalence class for active component A may not be the same as that

71

for active component B, although both components may be plug-compatible during

static composition. For example, replacement of a dynamically resizeable queue with

one that has a fixed size may be impossible if the entire contents of the resizeable

queue cannot be contained by the fixed length implementation.

4.1.3 Collateral change

We have discussed state maintenance as it applies to the exchange of a single compo-

nent. However, dynamically recomposing software may require implementing more

than one exchange to achieve the desired system behavior. We define collateral

change [44] as the set of recompositions that must be applied to an application atom-

ically, or through an orchestrated set of steps, for continued correct execution. For

instance, to insert FEC into a data stream, the sender must first insert an encoder and

only after reception of the first encoded packet should the receiver insert a decoder.

Of course, the dependencies between components or fragments can be more complex,

possibly resulting in a cascade of replacements. Capturing these dependencies enables

dynamic recomposition by recognizing the set of components that must be replaced

to ensure continued correct program function. Moreover, realizing when a recomposi-

tion will cause a cascade Of component replacements helps identify potentially costly

recompositions that may fail to meet quality-Of-service requirements.

Understanding state maintenance is key to designing and implementing dynam-

ically recomposable software. Both the correct operation and system flexibility are

impacted significantly by the selected design and implementation chosen for an au-

72

tonomic system. If a decision maker adapts a system using components that cannot

later be easily replaced in the face of changing environmental conditions or user re-

quirements, then the system may become rigid and unable to adapt. As such, state

maintenance is a “forward-looking” concern in that changes made in the past may

preclude future system polymorphs. Moreover, state maintenance is a holistic con-

cern that must address the effects of adaptive actions on the entire application, not

only the replacement of individual components but also the collateral and possibly

cascading replacement of components or fragments. Good designs and implementa-

tions enable continued system flexibility and ensure correct application functionality

while enabling component configurations to converge, meeting the requirements of

specific environments or users.

4.2 State Transformation

Making good design decisions for dynamically recomposable software requires under-

standing the association between the flexibility Of the system and state transfer and

transformation. This association can be clarified using basic mathematical relations.

At the component level, we consider state maintenance as comprising a relation, R,

that transfers and transforms the state of one component to meet the form required

by its replacement. Below we provide three definitions that describe this relationship.

Definition 5 Given the set of possible states, SA, of old component A, we define

relation R as reflexive ifi: aRa for all a in SA.

73

That is, state transfer between component A and its replacement requires no state

transformation. Such relations are found during upgrade of stateless components and

in applications where components can be completely quiesced such that no nontran-

sient state remains.

Definition 6 Given the set of possible states of an old component A, SA, and the

possible set of states of new component B, SB, we define relation R as symmetric

ifi. aRb implies bRa for a in SA and all b in SB.

Notice that if R is reflexive it is also symmetric under the null transformation. The

symmetric relation is Often found in component upgrades, where the same Operation

is computed in the new component, but in an Optimized fashion. For example, a

component can be replaced by one requiring less memory. The symmetric relation

implies that a component can be downgraded, where a component is replaced with

an earlier implementation. The symmetric relation could also be read as: “R is

invertible.”

Definition 7 Given components A, B and G, with state sets SA, SB and 50 we

define R as transitive ifl: aRb and bRc implies aRc for all a, b and c in SA, 53 and

SC- respectively.

From a pragmatic perspective, a reflexive, symmetric and transitive relation is

rare. Even in data streaming applications, where components can often be quiesced

(by halting the input stream and flushing the component), some components may still

retain nontransient state. For example, a component that generates a histogram of the

74

data in the stream can be replaced by a component that computes an arithmetic mean.

In this case, the histogram data can be transformed into the mean by summing the

histogram bin values and counts and dividing the sum by the total count. However,

this transformation is neither symmetric nor transitive. In fact, adaptive systems

that require continued state transformations require consideration not only Of a set Of

potential components, but reduction to a set of components that address the required

adaptation with respect to the allowed or possible state transformations.

4.3 Perimorph Design and Implementation

In this section we describe the architecture and Operation of Perimorph, an API de-

signed to facilitate state transfer in adaptive programs. Perimorph is implemented us-

ing Java and enables an application designer to quantify and codify collateral changes,

as related to compositional adaptation, in terms of factor sets. Perimorph uses reposi-

tories, called stores, to provide a well known structure and interface for manipulating

and recomposing an application. Moreover, Perimorph stores provide a meta-level

view of the base-level application composition while supporting runtime recomposi-.

tion. The main contribution of this study is a better understanding of how to codify

collateral change and to introduce a principled approach for integrating state main-

tenance into the design and implementation of adaptive software. A data dictionary

for Perimorph major components can be found in Appendix A.

75

4.3.1 Component construction

Figure 4.1 shows the relationship of a component, factor sets and factors. Factors

represent modifications that can be applied to component operations. Each set of

collateral changes can be codified as a factor set that contains factors and nontransient

data structures shared between the factors. Components are identified by a name

(a Java String) given to them when they are created. Interface sets are added to

components and contain operation signatures defining the interfaces implemented by

a component. For instance, the adaptive queue has an interface set consisting Of

the signatures putCItem), get() and isFu11(). Operations comprise an interface

signature and zero or more factors. Factors are attached to an interface signature

forming the body of an operation.

Factors may be attached as either pre or post factors. Pre—factors are executed

before a return and post-factors are executed following a return. Pre—factors imple-

ment the operation body, while post-factors provide post Operation processing. Any

pre-factor can trigger a return, preventing the execution of subsequent pre—factors and

jumping to post-factor processing. Similarly, any post-factor can trigger completion

Of an Operation. Post—factors allow the completion of functions begun by pre—factors.

For instance, a pre-factor may lock a mutex to control concurrent access to a compo—

nent. A post-factor could unlock the mutex, ensuring that other threads are allowed

continued access.

Data structures defined within factor sets represent nontransient state. When

factors from one factor set are replaced by another, nontransient state needs to be ex-

76

 Factor 7 "

Interface

Operations

Nontranslent

' 1'’ Data Structures

Figure 4.1: Relationship of factors, factor sets and a. component definition.

tracted from the old set and injected into the new. The transfer of state is completed

using getStateO and setStateO factor set methods that extract and inject 3 nor-

malized state memento. Factor set data structures are shared by all factors belonging

to the same factor set.

Aspect Oriented Programming (AOP) aspects [57,58] and factor sets are related

in that an aspect may comprise one or more factor sets. However, rather than focus

on designing a system in terms Of crosscutting concerns and disentangled code, as

in AOP, factors together with factor sets provide constructs that enable a program-

mer to codify adaptations that must happen collaterally and declare variables that

contain nontransient state. In other words, sets of collateral changes represent the

factoring of an application such that recomposition is defined in terms Of viable sets

of modifications. All factors that are members of the same factor set must be applied

77

atomically. Applying nonviable changes to an application usually results in program

failure.

4.3.2 References and invocations

Proxies represent components in the base-level, allowing the application to invoke

component operations while decoupling components and providing the base-level with

a consistent view of the program’s structure. Proxies are used in place of base-level

component references. For example, if a producer and consumer thread communicate

using an array-queue both threads hold a proxy, instead of a reference, for the queue

component. When a control thread recomposes the array-queue as a vector-queue, it

is unnecessary to update these proxies, since the next invocation of a put 0, get () or

isFull() Operation, will retrieve the vector-queue, instead of the array-queue, from

the ComponentStore.

Execution Of a component Operation is depicted in Figure 4.2. An application

invokes a component operation by calling a proxy’s invoke () method and specifying

an Operation signature, such as put(Item), as a parameter. Using the component’s

name, the required component is located in the ComponentStore, and the specified

operation is retrieved from the component’s interface set. Factors, previously attached

to the Operation signature, are invoked one after the other until operation execution

is complete. Finally, control is returned to the base—level caller.

78

Component Factor

Store Store

3. Return
+ "queue" t

°°mP°"°“ Mani uiates, Haws} definition Facm‘,’ 5,0,9

com nent

‘x. def nition

- - ‘ are.a c o

4. Execute ..--,"_ -- °°mp°"e'“ «- Interfaces-v PM"
OOMM)II..¢~~* "anagef prior to Manager

fillets Level

B see Level

Perimo
Application Code Execu ed by

-‘ the application

/

 /
queuere£.invoke

("put(Iten)",

new Classl]

{aItem.getClaee()},

new Objectt]

intent);

Figure 4.2: Executing a component Operation.

4.3.3 Recomposition

As shown in Figure 4.3, recomposing a component involves adding, deleting or re-

placing factors. Both functional and nonfunctional factors can be added, removed or

replaced, allowing the entire function of a component to be changed or augmented.

For instance, an array-based queue can be replaced with a vector-based queue. Non-

functional concerns, such as concurrency controls or security, can be added and re-

79

moved as needed. Reference update is automatic as recomposition Operates on the

component definition, leaving all component proxies alone. Separating the definition

of a component from the references to it obviates the need to update Object references

scattered throughout the code, simplifying recomposition significantly.

Figure 4.3: Recomposition of a component where a factor is replaced by a new one

from a different factor set. Nontransient state is assigned to the replacement factor

set from the old.

4.3.4 Activation and deactivation

Factor sets can be activated or deactivated as they are put into or removed from use.

Activation and deactivation automates the process of initialization and shutdown of

factor sets, such as those defining graphical interfaces or using threads. Reference

80

counts are kept for all factor sets such that the system can determine when factors

are attached to component interfaces. When the reference count drops to zero, the

FactorManager calls the factor set’s deactivate() method. When the reference

count first rises above zero, the activateO method is called. A designer needs only

to implement these methods for factor sets that require activation or deactivation;

for other factor sets they can simply be left as empty methods. Next, let us describe

how to implement an adaptive queue using Perimorph.

4.4 Example: ' Adaptive Queue

As shown in Figure 4.4, we consider two implementations of a producer-consumer

queue as a simple illustrative example. One implementation uses a fixed-length array

and the other uses a dynamically resizeable vector. Both implementations provide

the same operations, put(), get(), and isFull(). However, the vector isFull()

operation will always return FALSE since the put() Operation dynamically allocates

the necessary structures for appending a new item to the queue. Functional concerns

are defined by the array and vector-based queue factor sets, shown at the bottom

of the figure. Recomposing a queue using a vector, requires the exchange Of factors

from the array-based factor set with those of the vector-based factor set. Moreover,

the nontransient state Of the array—based factor set must be transferred to the vector-

based factor set. Two nonfunctional concerns are also implemented. Tracing, as

defined by the trace factor set, prints informational messages about calls to the queue

interface. Thread concurrency controls, defined by the mutex factor set, prevent the

81

producer and consumer threads from operating on the queue simultaneously.

I

i
i
2

i

Trace

Factor Set _

............... . . . I

I

E] '--------mMEX“ '

.......

"""""" 19291939329293? —>
,.......,...,......

v’e’e’o‘e’e’o’e’e’d r . .
,
-
_
-
_
-
_
_
_
_
\

Figure 4.4: Composition of the adaptive queue showing several factor sets.

A segment of Perimorph code, used to convert the adaptive queue from an array to

a vector-based implementation, is shown in Figure 4.5. Recomposition of components

requires synchronization such that the factor set in use can be frozen, allowing the

extraction of state and the replacement of factors. Synchronization can either be ex-

plicit or implicit. The adaptive queue employs explicit synchronization using pause ()

and resume() operations. The factors that implement pause() and resume() are

82

members of the mutex factor set, locking and unlocking the mutex. An interactive

application, like the mapping application described in Section 4.5, may be implicitly

synchronized since it may simply respond to user requests. Neither the tracing nor

the concurrency controls are modified during this recomposition.

Figure 4.6 shows the simple producer-consumer queue system built using Peri-

morph. The left pane depicts that state Of the producer while the right depicts the

state of the consumer. The producer put() 3 an integer counter value on the queue,

increments the counter by 4 and then repeats. The consumer get () s a value from the

shared queue as needed. The center window depicts the application status, printing

messages indicating the Operations of the producer and consumer, and the invoca-

tion of trace factors, that are executed before and after each get() Operation. Also

printed are [Pause] and [Resume] messages, indicating the synchronization required

for dynamic recomposition of the array-based queue as a vector-based queue.

4.5 Case Study: Mapping Application

In addition to the example adaptive queue application, we have used Perimorph to im-

plement a digital elevation model (DEM) [146] mapping program. The DEM format

is a common data format used by the United States Geological Survey (USGS) and

other organizations for recording geographical elevation information. We developed

our mapping application using Perimorph such that a 2D viewer can be recomposed

into a 3D viewer at run time. Such recompositions are useful during handoff between

dissimilar devices. For instance, a palmtOp, due to limited memory, processing power

83

// If the queue is full and hasn’t been switched to the

// vector-queue, then switch to the vector-queue.

if (isfull.booleanValue()&&(switched)) {

// Pause Operations on the queue.

queue.invoke("pause”,new C1ass[] {},new 0bject[] {});

try {

// Assign state from the array-queue to the vector-queue

FactogramManager.assignFactogramset(

"QueueVectorFactogramset",

"QueueArrayFactogramset");

// Replace the “put(0bject)” factor

ComponentManager.replacePreFactogram("queue”,

“put(0bject)”,

"QueueArrayFactogramset.ArrayPutFactogram",

"QueueVectorFactogramset.VectorPutFactogram");

// Replace the “get()” factor

ComponentManager.replacePreFactogram("queue”,"get()”,

"QueueArrayFactogramset.ArrayGetFactogram",

"QueueVectorFactogramset.VectorGetFactogram");

// Replace the “isFull()” factor

ComponentManager.replacePreFactogram("queue",

“isFull()”,

"QueueArrayFactogramset.ArrayIsFullFactogram",

"QueueVectorFactogramset.VectorIsFullFactogram");

} catch (Error e) {

AdaptGUI.appendCenter("Cannot switch queues: ”

+e.toString());

}

// Resume operations on the queue.

queue.invoke(“resume",new C1ass[] {},new 0bject[] {});

switched = true;

se1f().variables.setVar("switched",true);

}

Figure 4.5: Code segment used to recompose the adaptive queue into a vector based

queue. Note the invoke calls for pausing and resuming queue access, the assignment

of factor sets and the replacement of factors.

and display capability, might use only the 2D viewer. However, upon arriving at the

office, a user may handoff the application to a workstation that can easily present a

three-dimensional map. With Perimorph, the viewer can dynamically be transformed

84

Figure 4.6: Adaptive queue example application. The left pane is the producer, the

right the consumer and the center represents status information. Note the Pause

and Resume messages where the array-based queue is exchanged with a vector-based

queue by the control thread.

into a 3D viewer without loss of application state.

Figure 4.7 shows a two-dimensional representation of Mount St. Helens after

eruption in 1980. This representation uses different colors to indicate changes in

elevation. Typically, the lighter the color the greater the elevation. Initially, the

mapping application comprises factors implementing a 2D viewer. Figure 4.8 depicts

the factors recomposed during conversion to a 3D display. Upgrading the map requires

modification of the functional concerns of both the map plotter and map window

components. The map plotter paints the map on the map window. Depending on

whether the map plotter and map window are composed using the two or three-

dimensional factor set determines how the map data will be displayed. Nontransient

85

state, comprising DEM map data, is assigned from the two-dimensional to the three-

dimensional factor set during factor exchange.

[3a $535..

[M AS

g:OST-ER>JIITION)SMSH-Mao

so

0.0X1.00 S-2.00X1.00MM

IBMPANEL FILES 30 M X 30M

NTERV

Figure 4.7: 2D map prior to recomposition.

Figure 4.9 shows a three-dimension map following dynamic, runtime recomposi-

tion. Proper initialization and construction Of the GUI components require the coding

of activate () and deactivate() factor set methods, which were left as empty meth-

ods for the adaptive queue.

Besides dynamic reconfiguration, constructing applications with Perimorph en—

ables other state—related functionality. For example, both the adaptive queue and the

elevation mapping application can be captured at any point in their execution and

86

/\/\/\

newMap) (getlntoStr) C repaint

3D Ma

Factor t Factor t

newMa -

 +-—
Assign State ‘

Figure 4.8: Recomposition of the DEM mapping application. Recomposition of both

the map plotter and map window components is required. Operations on these com-

ponents are called by the map control which does not require any change.

stored on disk or sent over the network to another machine. A state memento for an

entire application can be constructed by saving the contents of the Perimorph stores

and the nontransient state of all factor sets. This memento can be serialized and

stored on disk or sent over a network. When the application is restarted, Perimorph

requests a reload, deserializing these stores. References to components are reestab-

lished as the application requests references from the ComponentManager. Thus,

Perimorph applications can easily support checkpointing and distributed handoff in

87

M0 T ST. HELENS, WASH.

(POSTiRUPTION) MSH-MBO

, 3-176 09/06 0 -B

N-2.00X1,00 S-2.00X1.00M M

9 PANEL FILES 30M X 30M

iNTEFiVAL

Figure 4.9: 3D map following recomposition.

addition to runtime recomposition. Moreover, composition can be adjusted follow-

ing handoff, allowing adaptation to new environmental conditions, such as reduced

memory or a smaller physical display.

4.6 State Maintenance in Dynamic River

Pipeline recomposition may move segments to different networked hosts to improve

performance or (by inserting or removing segments) alter the pipeline functionality.

As such, stream processing can be dynamically altered to meet new requirements

or to better use the computational resources of networked hosts. However, to avoid

88

data loss, dynamic recomposition requires that data stream state be maintained when

pipeline segments are moved or when segments are added or deleted. Where adapta-

tion at the program level often requires extraction and transformation of nontransient

component state, Operator reconfiguration and redeployment may require protocols

to ensure that reconfiguration is orchestrated and avoids loss of stream data. More-

over, removal and insertion of Operators should occur at application specific semantic

boundaries so that application processing can continue uninterrupted. In this section

we extend our study to the design and implementation of state maintenance for sup-

port Of adaptive, data streaming applications. There are two basic cases to consider

for maintaining data stream state: graceful shutdown and faults.

4.6. 1 Graceful Shutdown

Figure 4.10 is a sequence diagram depicting the graceful termination of streamin in

response to stop command issued by ctrlcmd. To issue a stop command, ctrlcmd

connects to dynriverd and requests that a stop command be sent to streamin. Sub-

sequently, streamin sends a stop command to streamout. In response, streamout

reads and emits records until the outer most scope has been reached. The outer most

scope is identified by streamout receiving a record with a scope equal to 0 that is

either a data record or a CloseScope record. If a CloseScope record is received, it

is transmitted to streamin prior to streamout closing the connection. As such, seg-

ment termination is gracefully completed at the outer scope boundary. All records

read by streamin are written and the pipeline segment is flushed prior to shutdown.

89

StreamOut Streamin Dynriverd Ctrlcmd

stop .I:I

ok

stop -----------------------

etoL I

Loop: until J ><

[scope = 0]

writeflecordo readRecordO

record

a---.-----9.ls..............

close connection

ok
a.

4.
X T

Figure 4.10: A sequence diagram depicting the graceful termination of streamin in

response to a stop command.

4.6.2 Fault resiliency

Although it is difficult or impossible to address catastrophic hardware failures, we

can strive to design a system to be resilient to lesser faults. Since faults typically risk

some data loss, it is necessary to consider how to restore the state of a distributed

pipeline such that execution following a fault will produce correct results. That is, a

recovery oriented approach [147] is needed to close sc0pes left open and resume data

stream processing at a scope boundary and depth suitable for resynchronization. By

default, Dynamic River resumes processing at the outer most scope in response to

unexpected segment termination.

Figure 4.11 depicts a sequence diagram for streamin’s response to the unexpected

termination of streamout. When an unexpected upstream termination generates

an end-of-file (EOF) condition on streamin’s input socket, streamin responds by

writing BadCloseScope records until the outer most scope has been reached. This

90

closes all Open scopes and enables the detection of early scope closure by downstream

Operators. In effect, this action enables the detection of an exception condition by

downstream operators while closing Open sc0pes and returning the data stream to a

point where synchronization is possible.

StreamOut Streamin Sink

[I s

. unexpected EOF

>:< Loop: until J

[scape = 0]

writeRecordO readRecordO

BadCloseScope record

..........9.".

-
-
I .
I

Figure 4.11: A sequence diagram depicting the unexpected termination of streamout.

Figure 4.12 depicts a sequence diagram for when a connection is reestablished

between streamout and streamin. The scopesync guard is a short function that is

shown in Figure 4.13. The scopesync algorithm returns true, indicating that the

data scope has reached a synchronization point, when either an OpenScope record

was read with a scope depth equal to 1 or when a CloseScope or BadCloseScope

record was read with a scope depth equal to 0.

During reconnection following a fault, as shown in Figure 4.12, streamout reads

and consumes records until scopesync returns true. The record that triggered

91

Source StreamOut Streamin Sink

‘ v r

u—L —- uh uh:

connection attempt

rn£flwflfiflgflflflkfififi.

. oo :whfie

mm readflgcordo

record _

.......... 9.".

writefiecordo readRecordO

record _

Fumes............

writeHecordo readfiecordi)

record 7

4............ 9!!

.. L J
Normal connected

operation begins

Figure 4.12: A sequence diagram depicting streamin reconnecting to streamout.

function scopesync(record_header;t

hdr)

begin

if (hdr.scope == 1) and

(hdr.subtype = Openscope)

then return true

else if (hdr.scope == 0) and

((hdr.subtype 7’: close_scope) and

(hdr.subtype 75 bad-close))

then return true

else

return false

endif

end
Figure 4.13: Data scope synchronization algorithm.

scopesync to return true is written to streamin and then normal pipeline Oper-

ation resumes. Thus, in the face of a fault, data stream state is resynchronized by

orchestrated interaction between streamout and streamin.

92

4.7 Related Work

The problem of state capture has been explored in a variety Of domains. Checkpoint-

ing [31,32], process or thread migration [32—34], and mobile agents [35,36] all employ

mechanisms that extract state from a running program, and restore it in some way.

Storing a snapshot of a running program provides a level of fault tolerance for a pro-

gram that executes over long periods. Checkpointing allows an image of the running

program to be stored in a file. If the program or machine should crash, this image

can be used to restart the program as of its last checkpoint. However, process level

checkpointing does not allow transfer Of state at the component level, since taking

a full image Of a program will not help extract and inject state at the component

level. Process migration involves saving the process state and restoring it on another

machine. Mobile agents [35,148, 1149] use state preservation and restoration to move

from machine to machine. Several research groups [32,33] have implemented mecha-

nisms for migrating Java threads. Although threads are not complete processes, the

granularity of state preservation exceeds that of a component.

The state capture problem has also drawn attention from the adaptive middleware

community. DynamicTAO [68] and some agent systems [150] use a state transfer

process similar to the memento pattern [145]. Even if state transfer is allowed between

different components, however, the exchange is often between data structures that are

identical. Support for transfer of state between dissimilar components requires the

conversion of the extracted memento into a form acceptable for injection into a new

component.

93

The memento pattern is not the only way to address state maintenance, how-

ever. Candea et al [151] rely on the externalization of nontransient state to support

recovery-oriented computing (ROG) [147,152,153]. This project targets restarting,

or microrebooting, software components when they fail, enabling faster recovery and

reducing down time. Component state is stored outside the component. When a

component fails, its state is not lost and can be recovered following reboot. Unlike

our queue example above, microreboot does not require the transformation of state to

meet the requirements of a different implementation. Externalizing component state

removes the need to extract and inject component state during recomposition, but

does not alleviate the need for transforming state when exchanging different imple-

mentations of a component.

In data streaming applications, Aurora [141,142] quieses subnets of operators by

“draining” Operators that contain only soft state prior to reconfiguration. This ap—

proach is similar to Dynamic River’s use Of protocols, but does not use data stream

sc0pe to detect a viable stream juncture at which to begin pipeline reconfiguration

or redeployment. Borealis [143] addresses state maintenance for aggregate operators,

that contain nontransient state, by replaying data stream data following Operator re-

deployment. However, knowing when data buffered for replay will no longer be needed

is difficult in many applications. Further study on support of aggregate Operators is

needed; approaches like the memento pattern may also prove useful for enabling state

capture in data streaming applications.

94

4.8 Discussion

In this chapter, we presented a programmer’s API, Perimorph, that enables princi-

pled implementation of collateral change and declaration of nontransient state. Peri-

morph enables dynamic, runtime recomposition Of both functional and nonfunctional

concerns. This API supports transparent reconfiguration of components. Factor sets

provide a construct for describing how collateral change affects system recomposition.

Nontransient state is defined at the factor set scope and can be assigned between fac-

tor sets of equivalent abstract type using state normalization in conjunction with the

memento pattern. In particular, we built both a simple, illustrative “adaptive queue”

and a digital elevation mapping application, demonstrating the usefulness of Peri-

morph constructs. In addition, we studied collateral change in Dynamic River, and

introduced the concept Of data stream scope. We described several protocols that, in

conjunction with stream sc0ping, enable graceful shutdown, pipeline reconfiguration

and fault resiliency for data stream processing.

Fhrther study is needed on how best to factor adaptive systems with respect to col—

lateral change and automate state maintenance. Constructs that provide a high level

of abstraction for systems and APIs, like Perimorph, can further improve a software

designer’s ability to understand and build applications supporting adaptation. More-

over, while the memento pattern provides a useful abstraction of the state transfer

and transformation process, it does not address the implementation and data de-

pendent nature Of state transformation. Specifically, dynamic recomposition requires

that the relation between the state Of an Old component and its replacement be under-

95

stood. Systems that support state maintenance in the face of dynamic composition

will benefit from methods for reasoning about the transformation of nontransient

state, component equivalence and collateral change to verify correctness and guide

design and implementation.

96

Chapter 5

Perceptual Memory

The third major issue we address is decision making. Autonomic software needs to

decide how to adapt to dynamic external conditions involving hardware components,

network connections, and changes in the surrounding physical environment [9, 10,12].

For example, to meet the needs Of mobile users, software integrated into handheld,

portable and wearable devices must balance several conflicting and possibly cross-

cutting concerns, including quality-of-service, security, energy consumption, and user

preferences. Applications that monitor the environment using sensors must interpret

the knowledge gleaned from those Observations such that current and future require-

ments can be met. Autonomous systems must be able to react to sensor input and

make decisions that enable the system to adapt to uncertain and changing conditions.

Moreover, many systems must make decisions in real time to prevent damage or loss

Of service with only high-level human guidance.

We argue that perceptual memory, a type of long-term memory for remembering

external stimulus patterns [45], may offer a useful model for an important compo—

97

nent of decision making in context-aware, adaptive software. The ability to remember

complex, high-dimensional patterns that occur as a product of interaction between

application users and the environment, and to quickly recall associated actions, en-

ables timely, autonomous system response. Moreover, it has been proposed that

perceptual memory can play an important role for enabling autonomous software to

discover new or improved algorithms [46].

This chapter presents MESO, alperceptual memory system we designed to support

online, incremental learning and decision making in autonomic systems. A novel fea-

ture of MESO is its use of small agglomerative clusters, called sensitivity spheres, that

aggregate similar training samples. Sensitivity spheres are partitioned into sets dur-

ing the construction Of a memory-efficient hierarchical data structure. This structure

enables the implementation of a content-addressable perceptual memory system: in-

stead of indexing by an integer value, the memory system is presented with a pattern

similar to the one to retrieve from storage. Moreover, the use of sensitivity spheres

facilitates a high rate of data compression, which enables MESO to execute effec-

tively in resource-constrained environments. Additional benefits of MESO include:

incremental training, fast reorganization of the existing hierarchical data structure,

high accuracy, and lack of dependence on a priori knowledge of adaptive actions or

categorical labels. Each of these benefits is important to online decision making.

After describing the design and operation of MESO, we demonstrate its accuracy

and performance by evaluating it strictly as a pattern classifier. In these experiments,

cross-validation experiments are used to determine accuracy using standard data sets.

The performance of MESO, in terms of accuracy and execution time, compares fa-

98

vorably to that of other classifiers across a wide variety of data sets.

The remainder of this chapter is organized as follows. Section 5.1 discusses back—

ground and related work. Section 5.2 describes MESO’s clustering algorithm and the

role of sensitivity spheres; three data compression methods that leverage MESO’S in-

ternal structure are also introduced. Section 5.3 presents experimental results that

assess MESO performance (accuracy, compression rate, and execution time) on eight

standard data sets. MESO performance is also compared directly with that Of other

classifiers. Section 5.4 presents related work. Finally, Section 5.5 concludes this chap-

ter.

5. 1 Background

Our work with MESO explores data clustering methods for associating adaptive re-

sponses with observed or sensed data. The embodiment of this approach is a clus-

tering [4,154] algorithm that produces an internal model of environmental stimuli.

As shown in Figure 5.1, two basic functions comprise the Operation of MESO: train-

ing and testing. During training, patterns are stored in perceptual memory, enabling

the construction of an internal model of the training data. Each training pattern is a

pair (33,-, y,), where .73,- is a vector of continuous, binary or nominal values, and y,- is an

application specific data structure containing meta-information associated with each

pattern. Meta-information can be any data that is important to a decision-making

task, such as the codification of an adaptive action to be taken in response to cer-

tain environmental stimuli. MESO can be used as a pattern classifier [4] if an a

99

priori categorization is known during training. That is, for a classification task, the

meta-information need only comprise a categorical label assigning each pattern to a

specific real-world category. However, MESO does not rely on categorical labels or

meta-information, and instead incrementally clusters the training patterns in a label

independent fashion. Lack of dependence on a priori knowledge of categorical labels

is an important distinction between MESO and other pattern classifiers. Where many

classifiers leverage categorical labels to better classify training samples [4], percep-

tual memory must accurately retrieve training samples and meta-information without

knowledge of fixed categories. Meta-information is malleable, enabling its update by a

decision maker to address changing context, user preference or new adaptive actions.

Train Test

-lTlBélIlllll [llllfi‘l‘lllllll

Figure 5.1: High level view Of MESO.

Like many clustering and classifier designs, MESO organizes training patterns in

a hierarchical data structure, such as a tree, for efficient retrieval. Once MESO has

been trained, the system can be queried using a pattern without meta-information.

MESO tests the new pattern and returns either the meta-information associated with

100

the most similar training pattern or a set of similar training patterns and their meta-

information. In some domains, it may not be possible to collect a representative set

of training samples a priori, so incremental learning is required. This process uses

an estimation function f,, which is a function of the first i samples, and which is

constructed incrementally using the previous estimator f,-1 and the current pattern

(351', yr)-

5.2 MESO Design and Operation

If categorical labels are known during training, MESO can function as a pattern clas-

sifier that incrementally classifies environmental stimuli or other data while accom-

modating very large data sets. Prior to developing MESO, we conducted experiments

using the HDR classifier [155] for this purpose. The insights gained from those ex-

periments led to our design of MESO. MESO incrementally constructs a model Of

training data using a data clustering approach whereby small clusters of patterns,

called sensitivity spheres, are grown incrementally. These sensitivity spheres are or-

ganized in an hierarchical data structure, enabling rapid training and testing, as well

as significant data compression, while maintaining high accuracy. In this section,

the details of MESO’S core algorithm and data structures are discussed. MESO is

based on the well-known leader-follower algorithm [156], an online, incremental tech-

nique for clustering a data set. The basic Operation of the leader-follower algorithm

is shown in Figure 5.2. A training pattern within distance 6 of an existing cluster

center is assigned to that cluster; else a new cluster is created.

101

initialize cluster centers, 6

input pattern m(t)

find nearest center, e.g., w,-

if d(:1:,-,w,-)S 6

update cluster center

else

create new center wj = m(t)

next pattern

end
Figure 5.2: Leader-follower algorithm (adapted from Duda and Hart [4]).

Traditionally, the value Of 6 is a constant value initialized based on a user’s under-

standing or experience with the data set at hand. However, this approach makes it

difficult to generalize the leader-follower algorithm to arbitrary data sets. We address

this issue in MESO by calculating the value of 6 incrementally and by organizing the

resulting clusters using a novel hierarchical data structure, as described below.

5.2.1 Sensitivity Spheres

In adaptive software, training patterns comprise Observations related to quality of ser-

vice or environmental context, such as network bandwidth or physical location. The

quantity of training patterns collected while a system executes may be very large,

requiring more memory and processing resources as new patterns are added to the

classifier. Unlike the traditional leader-follower algorithm, in MESO the value of 6

changes dynamically, defining the sensitivity spheres, which are small agglomerative

clusters of similar training patterns. Effectively, the value Of 6 represents the sensi-

tivity of the algorithm to the distance between training patterns. Figure 5.3 shows

an example of sensitivity spheres for a 2D data set comprising three clusters. A

102

sphere’s center is calculated as the mean of all patterns that have been added to that

sphere. The 6 is a ceiling value for determining if a training pattern should be added

to a sphere, or if creation of a new sphere is required. As defined by the 6 value,

sphere boundaries may overlap, however, each training pattern is assigned to only

one sphere, whose center is closest to the pattern.

20 F I r

15-

"l

- j ‘ :.-"..-'-
'. v‘. . 3’, . '

r .q ~- . .: 10' .: .. D
.' "-... '. -.‘k'_.~ ._ ‘.._ ”3'..." , .f ‘ U.

l- ' . , ‘i- t ~ {I .-'
‘ f " ‘ .

.'. .. ' e I ’0 .

.‘ '. - a , . ‘-
_ ._ '-. , a n

n - e

' . ". 9. I. ’

O 0 20

Figure 5.3: Sensitivity spheres for three 2D-Gaussian clusters. Circles represent the

boundaries of the spheres as determined by the current 6. Each sphere contains one

or more training patterns, and each training pattern is labeled as belonging to one Of

three categories (circle, square, or triangle).

5.2.2 MESO Tree Structure

As with many approaches to clustering and classification, MESO uses a tree structure

to organize training patterns for efficient retrieval. However, the MESO tree, depicted

in Figure 5.4, is novel in that its organization is based on sensitivity spheres. A MESO

tree is built starting with a root node, which comprises the set Of all sensitivity spheres.

103

The root node is then split into subsets Of similar spheres, producing child nodes.

Each child node is further split into subsets until each child comprises only one sphere.

Many clustering algorithms construct a tree by agglomerating individual patterns into

large clusters near the root of the tree, and then splitting these clusters at greater tree

depths. Reorganizing such a tree requires processing of the training patterns directly.

In contrast, MESO’S consolidation of similar patterns into sensitivity spheres enables

construction of a tree using only spheres, rather than individual patterns. Moreover,

a MESO tree can be reorganized using only existing sensitivity spheres and hence

more rapidly than approaches that require direct manipulation of training patterns.

600®®030®930

Figure 5.4: MESO tree organization. The rectangles are partitions and the shaded

spheres are partition pivots. Partitions are split successively until a leaf is formed

where a partition contains only one sphere.

The set of sensitivity spheres for a data set is partitioned into subsets of similar

spheres during the construction of a MESO tree. Each node of the tree comprises one

such subset, called a partition. Figure 5.5 shows the algorithm for building a MESO

tree from existing sensitivity spheres. The parameters for this algorithm include: q,

the number of children per tree node; p, a partition pivot sphere; parent, the parent

104

node for a set of children; root, the root node of the tree; and part, the partition

associated with a parent node. The algorithm is recursive, starting at the root of

the tree with a partition (part) comprising all spheres in the tree. Each call to

splitpartition divides part into q smaller partitions and assigns these partitions as

children of the parent node. The processes terminates when a partition contains only

one sphere. When a partition is divided, the first sphere in each Of the q segments

is identified as a pivot, which is used subsequently in assigning other spheres to that

partition. Specifically, for a sphere to be added to a partition requires that the

sphere be nearer to that partition’s pivot than to the pivot of any other child node.

Intuitively, this algorithm can be viewed as a q—way heap sort that organizes sensitivity

spheres according to their similarity. The parameter q can be set to any integer value

22 and, in our experience, has limited impact on the accuracy Of retrieving patterns

from MESO during testing. In the experiments described in Sections 5.3 we set q = 8.

As a result of this process, each non-leaf node in a MESO tree has one or more

children, each comprising a subset of the parent’s sensitivity spheres. Smaller parti-

tions comprise training patterns of greater similarity and provide finer discrimination

during testing. Moreover, the partitioning of sensitivity spheres produces a hierarchi-

cal model of the training data. That is, each partition is an internal representation

of a subset of the training data that is produced by collecting those spheres that

are most similar to a pivot sphere. At deeper tree levels, parent partitions are split,

producing smaller partitions of greater similarity.

Using a test pattern, the meta-information associated with the most similar train-

ing pattern can be retrieved. Retrieval proceeds by comparing a test pattern with a

105

begin initialize q,p = nil,root,part

splitpartit ion (q , p , root ,part)

procedure splitpartition (q , p , parent , part)

if part has a cardinality > 1

select q pivots from part including

1’: p1 - 'pq

create q subpartions, part1. .partq

foreach s,- in part do

find the nearest pj pivot and add

s,- to part]-

done

foreach pj,partj pair do

create a child node

add pj to child

add child to parent

splitpartition(q,pj ,child,partj)

done

endif
Figure 5.5: Building a MESO tree from sensitivity spheres.

pivot, starting at the root, and following one or more paths of greatest similarity. At

a leaf node, the meta-information associated with the most similar training pattern

is returned. In lieu Of returning only one training pattern’s meta-information, all the

training patterns contained in the most similar sensitivity sphere can be retrieved.

The MESO tree can be constructed incrementally, enabling MESO to be trained and

tested during simultaneous interaction with users or other system components.

5.2.3 Sensitivity Sphere Size

An important consideration in building an effective MESO tree is the apprOpriate

value Of 6 to use in defining sensitivity spheres. Our experiments show that training

and testing time are influenced by the choice of 6. For example, Figure 5.6(a) shows

results for the letter data set (discussed further in Section 5.3.1), with 6 fixed at

106

various values. If 6 is too small, training time increases dramatically. If 6 is too

large, testing time increases (more evident for larger data sets). Moreover, data set

compression requires a proper value Of 6 to balance the tradeoff between compression

rate and accuracy.

80 I I I I I I I

Training 80 ' ' . u v. . .

70 r estlng —— - 70 L $223528 _ _

. 60 L l

‘ '§ 50 ~ ~

- § 40 _ .

- m 30 - .

‘ 20 r ‘

_ 10 ,_ .-

.5: O i L 1 x 1 . T,

7 8 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Delta c

(a) using fixed 6 (b) using dynamic 6

Figure 5.6: Training and testing time for the letter data set (see Section 5.3.1).

To address this issue, the value of 6 is adjusted incrementally as MESO is trained.

The 6 growth function balances sphere creation rate and sphere size. Figure 5.7 shows

the algorithm for construction of sensitivity spheres from training patterns. This

algorithm begins by initializing the sensitivity 6, the first sensitivity sphere mean

vector (ul), and the first sensitivity sphere (31) to 0, x1, and empty, respectively.

Then, for each pattern (33,-), the closest sphere mean vector is located. If the distance

between 3:,- and the nearest sphere mean is less than or equal to 6, then (1:,- is added

to the sphere and the sphere mean recalculated. If the distance between the closest

sphere mean and at,- is greater than 6, then the 6 is grown, a new sphere is created

for r, and an associated mean vector is initialized.

107

begin initialize 6 = O,u1 = 121,31

foreach 33,- sample do

find the nearest u,- for 3:]-

if distance from u, to 2:, <= 6

add xj to s,-

recompute u, using samples in 3,-

else

let 6 = growa

create new s,~+1

add :rj to si+1

let ui+1 = LEj

endif

done
Figure 5.7: Sensitivity sphere creation algorithm.

A good grow, function needs to balance sphere creation with sphere growth. Rapid

growth early in the training process can produce few spheres with very large 6’s,

creating a coarse-grained, inefficient representation. However, slow growth produces

a large number of very small spheres, and the resulting tree is expensive to search.

In the MESO implementation reported here, the 6 growth function is:

(ct—of?

1+ln(d—6+1)2,

growa =

where d is the distance between the new pattern and the nearest sensitivity sphere.

The 3 factor scales the result relative to the difference between the current 6 and d.

1

l+ln(d—6+1)

Of growg limits the growth rate based on how far the current 6 is from d. If at is close

Plotted in Figure 5.8 is the function 2 Intuitively, the denominator

to 6 then 6 will grow to be nearly equal to d. However, if d is much larger than 6, then

the increase will be only a small fraction of d — 6. As such, 6 growth is discouraged

in the face of outliers, new experience and widely dispersed patterns. Hence, when

108

a new training pattern is distant from existing spheres, a new sphere is likely to be

created for it.

.
9
m

1

 .
O

O
\ 1

G
r
o
w
t
h

r
a
t
e

.
9
h

l

.
O
N

1

0 , . .

0102030405060708090100

Minimum distance to nearest sphere

Figure 5.8: Sensitivity sphere growth function denominator for 6 = 1,10,100,1,000

and 10, 000.

The activation function, f, needs to balance the creation of new spheres with

sphere growth. Table 5.1 depicts 6 candidate activation functions, where r = 5%

and c is a configuration parameter in the range [0, 1.0]. Increasing c moves the center

of the activation function to the right. The statistics shown were generated using

cross-validation (discussed further in Section 5.3.1) in conjunction with the letter and

MNIST data sets. As shown, functions (b), (d) and (f) produce a significantly larger

number of sensitivity spheres than the other functions. However, a large sphere count

inhibits compression (discussed further in Section 5.2.4) and exhibits higher training

and testing times. Functions (c) and (e) produce fewer spheres, but exhibit somewhat

lower accuracies or longer training and testing times than function (a). Overall,

function (a) shows the best balance between accuracy and training and testing times

while producing a sufficiently small number of spheres to enable high compression.

109

Intuitively, function (a) inhibits sensitivity sphere growth when the number of spheres

is small compared to the number of patterns, but encourages rapid sphere growth

when the number of spheres is large. The remaining experiments presented in this

paper use the activation function (a), with parameter c set to 0.6.

Figure 5.6(b) plots the measured training and testing time for the letter data

set, against the configuration parameter, c. The growa function balances sphere

production with sphere growth, producing good spheres for a wide range of values

for 0. Only for very large values of c is growth inhibited sufficiently to significantly

impact training time. The grow; function promotes the production Of trees that are

comparable with good choices for fixed 6 values.

Using this grow; function, let’s consider the example data set shown in Figure 5.9.

This synthetic data set comprises three 3D-Gaussian clusters. Two of these clusters

overlap while the third is largely separated from the other two.

Figure 5.9: The Gaussian 3D example dataset.

Figure 5.10 depicts several frames showing the production and growth Of sensitiv-

ity spheres using the example data set shown in Figure 5.9. The training sequence

110

Table 5.1: Comparison of 6 different activation functions using c = 0.6 for the letter

data set (see Section 5.3.1).

Data set (a) (b) (c)

tanh (SS—1: — 3)

% + 2C c = 0.6 %

Tetter

Accuracy% 90.6:I:0.3% 88.1:I:0.2% 87.9:I:0.2%

Training (8) 1.8:I:0.0 2.0:I:0.0 1.8:t0.0

Testing (3) 0.2:I:0.0 0.2:1:0.0 0.2:I:0.0

Spheres 570:1:22 659:1:2 5632i:3

MNIST

Accuracy% 94.3:l:0.1% 94.8:I:0.1% 94.6:I:0.1%

Training (S) 70.9:l:1.1 109.9:t1.6 92.1:l:3.2

Testing (8) 6.7i0.2 9.3:l:O.3 8.6:1:0.7

Spheres 6279i1 I 9696i6 7050i8

((1) ?| (£5

(93 109,, (s) 1— (93

—Letter

Accuracy% 88.7:I:0.3% 87.9:I:0.2% 88.7:I:0.2%

Training (8) 2.2:l:0.0 1.7:l:0.0 2.5:t0.0

Testing (5) 0.3:I:0.0 0.2:}:0.0 0.3:I:0.0

Spheres 803i8 510:1:3 953:1:4

MNIST

Accuracy% 95.0:l:0.1% 94.5:l:0.1% 9523:0170

Training (S) 125.9i1.4 86.7:l:1.2 l75.0:l:1.6

Testing (3) 10.2:i:0.1 7.9:I:0.2 11.3i0.3

Spheres 1030021: 19 6300i2 13758:l:2

proceeds from left to right. The top sequence shows sphere 6’s while the bottom

sequence shows the average distance between sphere patterns and the sphere mean

vector. Notice that early training produces many small spheres while sphere growth

111

l

Figure 5.10: Snapshot frames showing MESO sensitivity spheres and mean sphere

distances as the spheres are built for the Gaussian 3D example dataset. Top, sphere

6’s. Bottom, mean sphere distances.

is inhibited until later.

5.2.4 Compression

Online learning is a data intensive process, and adaptive systems Often must continue

to function for long periods of time while responding to the sensed environment.

The enormous amount of input data consumes substantial processing and storage re-

sources, potentially inhibiting timely responses or impacting application performance.

MESO uses lossy compression to limit the consumption of memory and processor cy-

cles. Compression is applied on a per sensitivity sphere basis. That is, rather than

trying to compress the entire data set using a global criterion, the patterns in each

sensitivity sphere are compressed independent of other spheres. Since information

about each sphere is retained, the effect Of information loss on accurate pattern re—

trieval is minimized. We implemented three types of compression, the evaluation of

112

which is discussed in Section 5.3.2.

Means compression reduces the set of patterns in each sensitivity sphere to the

mean pattern vector. If training patterns are categorically labeled, then the mean

vector for each category is retained. This is the most aggressive and simple Of the

compression methods. Moreover, the computational requirements are quite low.

Spherical compression is a type of boundary compression [157] that treats patterns

on the boundaries between spheres as most important to the classification of test

patterns. For each sphere, the feature values are converted to spherical coordinates.

Along a given vector from the sphere center, only those patterns farthest from the

sphere center are kept.

Orthogonal compression removes all the patterns that are not used for constructing

an orthogonal representation of a sphere’s patterns. The idea is to keep only those

patterns that are most important as determined by their orthogonality. Patterns that

represent parallel vectors in m-dimensional space are removed.

Using compression requires some consideration of 6 growth. As shown in Fig-

ure 5.11(a), accuracy decreases with higher compression rates. Moreover, compres-

sion rate is directly influenced by the value of 6 . That is, if the sensitivity sphere

6 is very large and few spheres are produced, compression is high and too much in-

formation will be lost during compression. However, if the 6 is very small, very little

compression is possible.

TO avoid growing overly large spheres in the face of compression, we modified the

113

$00 $100 I 1 f i r r *r

r:

.2 8

s80 '5 80 ~ —

a
9.

E60 ca) 60 . _

U U

:40 \ 4o » -§ 0

a in
$20 - - § 20 » ~

8 Accuracy, _ 8 Accuracy, ——

2 3 4 5 6 7 8 9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Delta c

(a) accuracy and compression, fixed 6 (b) accuracy and compression, variable 6

Figure 5.11: Effect Of means compression on training and testing times for the letter

data set, using fixed and variable 6.

activation function f to be:

tanh (l— — 3)
max(v, c)

2 I

 f=+

N
I
H

where v is the compression rate, defined as the fraction of patterns removed during

compression. Under high compression rates, using v instead of c as the center point

of the activation function causes the sigmoid curve to move to the right, further

inhibiting sphere growth. Figure 5.11(b) plots the accuracy and compression rate for

experiments on the letter data, using means compression and the modified activation

function. Accuracy and compression rate remain high for a wide range of c values.

Only very large values of c cause a drop in compression rate, along with a slight

increase in accuracy.

114

5.2.5 Complexity

Table 5.2 shows the space and time complexities for training MESO and several well-

known clustering algorithms [1]. In this table, n is the number of patterns, It is

the number of clusters and l is the number of iterations to convergence. Without

compression, MESO has a worst case space complexity of 0(n), comparable to the

shortest spanning path algorithm. MESO’s memory consumption can be significantly

reduced with compression, as shown in the next section.

Intuitively, time complexity for training can be considered in terms of locating the

sensitivity sphere nearest to a new pattern and adding the pattern to that sphere.

If a sufficiently close Sphere cannot be found, a new sphere is created. Locating

the nearest sphere is an 0(logq k) Operation. This search must be completed once

for each of n patterns. Each pattern must also be added to a sensitivity sphere,

and k sensitivity spheres must be created and added to the MESO tree. Assuming

an appropriate value of 6 and a data set of significant size, this process yields a

complexity of 0(nlogq k) + 0(n) + 0(k) + 0(k log,I k) which reduces to 0(nlogq k).

Table 5.2: Space and time complexities for MESO and several other clustering algo—

rithms [1].

er

-means

ortest

sin e-'

com ete-'

The complexity for classifying a test pattern using MESO is 0(logq k) + 0(5)

115

for a balanced tree, where q is the maximum number of children per node, 5 is the

average number patterns agglomerated by a sensitivity sphere, and It represents the

number of sensitivity spheres produced. The s component represents the number of

operations required to assign a category label once the most similar sensitivity Sphere

has been located. Thus, the worst case search complexity occurs when only one

cluster is formed and the search algorithm degenerates into a linear search of 0(n).

Conversely, a best case search complexity Of O(log,, n) occurs when one sensitivity

sphere is formed for each training pattern.

5.3 MESO Assessment

In this section, we evaluate MESO as a pattern classifier, where pattern meta—

information comprises a categorical label, on several standard data sets in cross-

validation experiments. First, we describe the data sets used in the experiments and

the experimental procedures. Next, we present baseline results that evaluate the ac-

curacy Of MESO, the training and testing time needed, and the effects of the three

compression methods described earlier. Finally, to benchmark performance, we com-

pare MESO performance to that of other classifiers, specifically three versions of

IND [158], which uses batch training, and HDR [155], which can be configured to use

either batch or incremental training.

116

5.3.1 Data Sets and Experimental Method

Table 5.3 lists the eight data sets used to assess MESO. The number of patterns and

features per pattern are shown for each data set, along with the number of distinct

labels (or classes) of patterns. Six of the data sets were retrieved from the UCI [159]

and KDD [160] machine learning repositories. The exceptions are AT&T faces [161],

acquired from AT&T Laboratories Cambridge, and MNIST [162], downloaded from

http://yann.lecun.com/exdb/mnist/.

Table 5.3: Data set characteristics.

atterns eatures

aces

tr e eature

€88 0W8

These sets represent a wide variety of data types and characteristics. The iris data

set [163] comprises just 150 patterns from 3 classes, each class representing a type of

iris plant. The classification task is to correctly identify the type of iris by the length

and width of the flower’s sepals and petals. The AT&T faces data set [161] is also

relatively small, comprising 360 images of 40 different human subjects. However, the

number of features (each of 10,304 image pixels) is very large. The classification task

is to identify the subject of the image from the pixel values.

Three data sets involve numbers and letters. Patterns in the multiple feature data

set [164,165] consist of features that describe 10 handwritten numerals extracted from

117

Dutch utility maps. examples include morphological features, Fourier coefficients, and

pixel averages. The classification task is to identify a digit from these features. The

MNIST data set [162] also comprises features of handwritten digits, and the task is

to identify the digit. However, the features are the 784 integer pixel values, and the

number of patterns is much larger than in the multiple feature data set. The letter

data set [166] contains 20,000 patterns, each comprising 16 integer measurements of

features such as width, height or mean pixel values. The classification task is to

classify each pattern as one Of the 26 letters in the Latin alphabet.

The mushroom [167] and Japanese vowel [168] data sets are similar in size and

feature count, but very different in content. Each pattern in the mushroom data

set comprises 22 nominal values (alphabetic characters) that represent mushroom

features such as cap shape or gill attachment. Since MESO does not address non-

numeric attributes explicitly, each alphabetic character is converted to its numeric

ASCII value. The binary label associated with a pattern indicates whether the mush-

room is poisonous or edible. The Japanese vowel data set comprises 270 time series

blocks, where each block consists of a set of records. Each record comprises 12 con-

tinuous measurements of utterances from nine male speakers. The 9,859 patterns are

produced by treating each record as an independent pattern and randomizing the

data set. As such, no understanding of utterance order is retained. The classification

task is to identify the speaker of each utterance independent Of its position in a time

series.

Finally, the cover type data set [169] comprises 581,012 patterns for determining

forest cover type. Each pattern has 54 values, including: 10 continuous values, indi-

118

cating features such as elevation and slope; 4 binary wilderness areas; and 40 binary

soil types. The classification task is to identify which of 7 forest cover types (such as

spruce, fir or aspen) corresponds to a test pattern.

We tested MESO using cross-validation experiments as described by Murthy et

al. [170]. Each experiment is conducted as follows:

1. Randomly divide the training data into k equal—sized partitions.

2. For each partition, train MESO using all the data outside Of the selected parti-

tion. Test MESO using the data in the selected partition.

3. Calculate the classification accuracy by dividing the sum of all correct classifi-

cations by the total number of patterns tested.

4. Repeat the preceding steps n times, and calculate the mean and standard de-

viation for the n iterations.

In our tests, we set both It and n equal to 10. Thus, for each mean and standard

deviation calculated, MESO is trained and tested 100 times.

5.3.2 Baseline Experiments

Tables 5.4 and 5.5 presents results of cross-validation experiments using MESO to

classify patterns in the eight data sets. All tests were started with 6 = 0.0 and

c = 0.66 and executed on a 2GHz Intel Xenon processor with 1.5GB RAM running

Linux. Means and standard deviations are provided. Before discussing the results, let

us briefly comment on the distance metric used. Since the use of sensitivity spheres

effectively divides the larger classification problem into a set of smaller tasks, it turns

out that a relatively simple distance metric, such as Euclidean distance, can be used

to achieve high accuracy. Euclidean distance is defined as:

119

n

diStanceEuclidean(Qi P) E 2: (Q2' — 1902,

i = 1

where Q and P are two patterns of length n. Although we experimented with more

complicated distance metrics (e. g., Mahalanobis), none achieved higher accuracy than

Euclidean distance, which also exhibited shorter times for training and testing. There-

fore, all experiments described here and in later sections use Euclidean distance.

Let us focus first on the results for experiments that do not use compression,

shown in Table 5.4. MESO exhibits an accuracy of over 90% on all the data sets,

using either sequential or tree based search. MESO’s accuracy on the AT&T Faces

and MNIST data sets, which contain high-dimensional, image data, indicates that

MESO may be effective in computer vision applications. Compared to a sequential

search of sensitivity spheres, use Of the MESO tree structure reduces training and

testing times in most cases. The improvement is particularly notable for large data

sets. For MNIST, training time is improved by a factor of 18 and testing time by a

factor of 20. For Cover Type, training time is improved by a factor of 18 and testing

time by a factor of 12. Although using the hierarchical tree structure reduces the

accuracy in most cases, typically between 0% to 4%, this tradeoff may be considered

acceptable for applications where decision making is time sensitive.

Next, let us consider the results for experiments using data compression, shown in

Table 5.5. The three methods (means, spherical, and orthogonal) had only minimal

effect on the three smallest data sets, where sphere growth is inhibited early in the

training process, producing spheres with few samples. However, the memory usage

120

Table 5.4: MESO baseline results comparing a sequential search to MESO tree search.

Data set Uncompressed

(Sequential) I (Tree)

Iris

Accuracy% 95.5:l:0.0% 96.1:l:1.4%

Compression% 0.0% 0.0%

Training (secs) 0.0:I:0.0 0.03:l:0.0

Testing (secs) 0.0i0.0 0.0:l:0.0

ATT Faces

Accuracy% 97.3:l:0.0% 94.0:l:l.4%

Compression% 0.0% 0.0%

Training (secs) 1.85:1:00 1.8721200

Testing (secs) 0.39:I:0.0 0.08:1:00

Mult. Feature

Accuracy% 95.0:l:0.0% 94.1:I:0.5%

Compression% 0.0% 0.0%

Training (secs) 4.58:t0.0 1.69:I:0.0

Testing (secs) 0.99:1:0.0 0.07:l:0.0

Mushroom

Accuracy% 100.0:I:0.0% 100.0i0.0%

Compression% 0.0% 0.0%

Training (secs) 1.24:l:0.1 0.62:t0.0

Testing (secs) 0.14:I:0.0 0.05:I:0.0

Japanese Vowel

Accuracy% 93.1:I:0.2% 91.5:l:0.3%

Compression% 0.0% 0.0%

Training (secs) O.30:I:0.0 0.39i0.1

Testing (secs) 0.04:I:0.0 0.05:1:00

Letter

Accuracy% 93.1:t0.2% 90.6:l:0.3%

Compression% 0.0% 0.0%

Training (secs) 1.83i0.2 1.27:1:00

Testing (secs) 0.21:1:0.0 0.16:I:0.0

MNIST

Accuracy% 96.5:i:0.0% 94.3:I:0.1%

Compression% 0.0% 0.0%

Training (secs) 1307.22:I:9.7 70.94:I:1.1

Testing (secs) 157.32:I:1.3 6.73:l:0.2

hover Type

Accuracy% 96.3:I:0.0% 96.1:l:0.0%

Compression% 0.0% 0.0%

Training (secs) 1974.76:1:11.8 109.97:l:0.4

Testing (secs) 227.08:I:1.4 18.74:I:0.1
121

Table 5.5: MESO baseline results comparing different compression methods.

Data set Compressed (Treef

Means L Spherical I Orthogonal

Iris

Accuracy% 95.82t0.8% 95.1i1.3% 95.9i2.1%

Compression% 1.862t0.2% 0.021200% 1.92t0.0%

Training (secs) 0.0321200 0.0321200 0.032‘200

Testing (secs) 0.021200 0.021200 0.021200

ATT Faces

Accuracy% 93.52t1.6% 94.52121.2% 93.72121.4%

Compression% 0.021200% 0.021200% 0.021200%

Training (secs) 1.9021200 1.8621200 2.0421200

Testing (secs) 0.0821200 0.0821200 0.0821200

Mult. Feature

Accuracy% 94.22120.4% 94.12120.5% 94.421:0.5%

Compression% 0.321200% 0.021200% 0.321200%

Training (secs) 1.7321200 1.8121200 1.7821:0.0

Testing (secs) 0.0721200 0.0721200 0.0721200

Mushroom

Accuracy% 100.021:0.0% 99.8:1:0.0% 99.9:1:0.0%

Compression% 90.221:0.0% 73.9:120.3% 90.221200%

Training (secs) 0.6721200 0.8121200 0.7721200

Testing (secs) 0.0521200 0.0521200 0.0521200

Japanese Vowel

Accuracy% 81.321:0.4% 90.221:0.3% 8132120270

Compression% 93.72120.0% 28.32120.2% 93.8:1200%

Training (secs) 0.4121200 0.8921200 0.4921200

Testing (secs) 0.0321200 0.0521200 0.0321200

Letter

Accuracy% 87.8:t0.3% 90.12120.2% 87.82120.3%

Compression% 88.6:t0.2% 23.62120.2% 88.32120.2%

Training (secs) 1.42i00 2.2821200 1.7721200

Testing (secs) 0.1221200 0.1721200 0.1221200

MNIST

Accuracy% 93.3i0.1% 94.3:1:0.1% 93.3i0.1%

Compression% 86.521:0.0% 0.021200% 86.521:0.0%

Training (secs) 73.35:I:1.3 1795321254 78.65:I:1.4

Testing (secs) 6.2921202 6.8121202 6.3021202

Cover Type

Accuracy% 81.6:h0.1% 95.221200% 81.6:t00%

Compression% 98.5i0.0% 50.2i0.0% 98.5i0.0%

Training (secs) 1145421207 2326421225 1279721209

Testing (secs) 11.1421201 l7.2921:.03 11.562t0.1
122

for these data sets is low. On the other hand, both the means and orthogonal methods

were very effective in reducing the memory requirements for the five larger data sets

(at least an 85% reduction in all cases), while retaining high accuracy. We attribute

this behavior to the application of compression to individual sensitivity spheres, en-

abling the capture Of the n-dimensional structure of the training data while limiting

information loss. Spherical compression was the least effective in reducing memory

usage; the translation of training patterns from Euclidean to spherical coordinates

also adds to the cost of training.

Figure 5.12 shows how MESO’s accuracy and training times scale with the size of

the training data set. To create these plots, each data set was first randomized and

then divided into 75% training and 25% testing data. The training data was further

divided into 100 segments. MESO was trained and then tested 100 times. During

the first iteration only the first segment was used for training; at each subsequent

iteration, an additional segment was added to the training set. This process was

repeated 10 times for each data set and the mean values calculated. The mean values

are plotted in Table 5.12. As shown, MESO’s accuracy increases rapidly during early

training, and then slows but continues to improve as training continues. Training

time increases linearly with respect to the size of the training data set.

5.3.3 Comparison with Other Classifiers

In this section, we compare MESO performance with that of the IND [158] and

HDR [155,171] classifiers. We note that MESO is trained incrementally, whereas

123

DzLaISet

A Letter 0

ml 5 L Japanese Vowel A

’3 § ' Multiple Feature 0

S ‘0’ Mushroom '3

5‘ E

s 1'
8 40 " 2 E"

F:

< x 50.5 ~
20 Japanese owel A 6—

Multiple Feature 0

0 . MushroomL . Cl 0 _ _ - J . 1 .

20 40 60 80 100 20 4O 60 80 100

Training data fraction (%) Training data fraction (%)

(a) Accuracy (b) Training time (small sets)

120 . - . .

_ Data Set

MNIST A

g 100 Cover Type X

3 80
0

5 60
an

.S 40

E" 20

o l l 1 I

20 40 60 80 100

Training data fraction (%)

(c) 'Ii-aining time (large sets)

Figure 5.12: Scalability with respect to training set size. For all data sets, typi-

cal standard deviations are less than 10% with respect to the corresponding mean

accuracies and training times.

IND can be trained only in batch mode. Classifiers that are batch trained typically

have an advantage over those that are trained incrementally: processing the entire

training data set when building a classifier may produce a better data model than

that produced by incremental training. Therefore, batch training often yields higher

accuracy and faster testing.

Table 5.6 compares the MESO results, shown in Table 5.4, with those mea-

sured for the IND and HDR classifiers. The implementation of IND, written in

124

C, was provided by W. Buntine, formerly with NASA’s Bayesian Learning Group

(http://ic.arc.nasa.gov/ic/projects/bayes—group/ind). The HDR implementation,

which uses both C and C++, was provided by J. Weng of the Embodied Intelli-

gence Laboratory at Michigan State University (http://www.cse.msu.edu/ei). MESO

is implemented in C++. IND can be used to build a decision tree style classifier us-

ing several different algorithms. We tested three different algorithms: CART [172],

ID3 [173] and Bayesian [174]. We conducted two sets of experiments with HDR, one

using batch training and the other using incremental training.

Let us first compare the MESO results with those of IND. As shown, despite

its use of incremental training, MESO accuracy compares favorably with that Of

all three IND variations, exhibiting higher accuracy in almost all cases. The NC

designation indicates that IND could not complete a particular test. Specifically, for

the AT&T Faces data set, insufficient memory prevented IND from completing the

data set encoding process, which must be done before IND is trained. Somewhat

surprisingly, MESO exhibits high accuracy for the Mushroom data set. This data

set consists entirely Of nominal values, which have no comparative numeric value

since they simply indicate characteristics, such as cap shape, by name. IND, like

many decision tree algorithms [175], addresses the issue by designating some features

as nominal. MESO does not explicitly address nominal values, but still accurately

classifies these patterns.

Next, let us consider the training and testing times Of MESO relative to those of

IND. Although MESO exhibits slower testing times than IND for most data sets, in

many cases MESO spends less time training, which would help to reduce the overhead

125

Table 5.6: Accuracy, training and test times of IND and HDR (compare with Ta-

ble 5.4).

IND (Batch) HDR

Data set CART ID3 I Bayesian (Batch) (Incremental)

Tris

Accuracy % 92.8 21:03% 93.5 :l:07% 94.2 2121.1% 96.4 21:1.4% 89.5 :1:3.6%

Training (secs) 0.021206 0021200 00121200 0.02t00 0.021200

Testing (secs) 0.021200 0.021200 0.021200 002200 0021200

ATT Faces

Accuracy % 94.8 2121.7% 93.1 2121.9%

Training (secs) NC NC NC 9.021202 1.8i01

Testing (secs) 0.321200 0.321200

Mint. Feature

Accuracy % 93.1 :1206% 94.2 21:02% 94.4 2121.1% 95.2 21:04% 88.8 21:05%

Training (secs) 22.22t0.3 8.621200 19.221202 2.121200 2.5:t00

Testing (secs) 0.021200 0.021200 0.021200 2.1:t00 0.521200

Mushroom

Accuracy % 99.9 :1200% 100.0 :1:00%1000 i00% 100.0 2120.0% 64.6 21:06%

Training (secs) 0.721200 0.021200 0.02t00 4.521201 4.221201

Testing (secs) 0.021200 0.021200 0.021200 1.4:t00 1.1i00

Japanese

Vowel

Accuracy % 82.3 2120.3% 84.2 2120.3% 84.7 :t0.3% 96.3 2120.2% 84.9% i08%

Training (secs) 82.3:1:0.3 2.62t00 7.0i0.6 0.921200 5.021202

Testing (secs) 0.021200 0.021200 0.0:t00 0.9i00 1.321200

Letter

Accuracy % 84.4 2120.3% 87.9 2120.1% 88.6 2120.2% 93.4 :120.1% 86.2 2121.0%

Training (8808) 5.421201 09:1:00 30:1:00 50:1:01 308:1:05

Testing (secs) 0.021200 0.021200 0.121200 0.621200 7.0i0.1

NIST

Accuracy % 88.3 :120.1% 88.1 2120.1% 89.0 2120.1% 97.4 2120.0% 91.2 i0.8%

Training (secs) 12252212482 2119:1238 565.1i42.4 5887.0:t4390 3997.9:1:252.4

Testing (secs) 12.721212 10.9:t0l 10.9:t01 600772121582 898.1:t55.8

Cover Type

Accuracy % 93.9 2120.9% 95.2 2120.2% 94.4 2120.3% 96.6% I 71.2% 1

Training (secs) 414.421230 51.521:02 118.921:5.1 41164.0 52755.3

Testing (secs) 0.521200 0.621202 1.0i0.3 15148.0 11600.0

All tests began with 6 = 0.0 and c = 0.6. Executed on a 2GHz Intel Xenon processor

with 1.5GB RAM running Linux. All experiments conducted using cross-validation.

I The Cover Type data set was not completed for either batch or incremental execu-

tions of HDR. Neither was completed due to long execution time requirements.

in acquiring and assimilating new experiences in an online decision maker. Moreover,

incremental training as provided by MESO is important to autonomic systems that

126

need to address dynamic environments and changing needs of users.

Finally, let us compare MESO with HDR, which was designed primarily for com-

puter vision tasks. Batch-trained HDR demonstrates slightly higher accuracy than

MESO, attributable to HDR’s use of discriminant analysis to help select salient fea-

tures from the training patterns. However, when HDR is trained incrementally, MESO

achieves higher accuracy on all eight data sets, including the two image data sets,

AT&T Faces and MNIST. Moreover, the training and testing times of MESO are sig-

nificantly lower than those of HDR in almost all cases. In several cases, the advantage

is more than an order of magnitude. Collectively, these results indicate that MESO

may be effective in a variety of autonomic applications requiring online decision mak-

ing.

5.4 Related Work

Research in clustering and pattern classification is a very active field of study

[170176—178]. Recently, a number of projects have addressed clustering and classifi-

cation of large data sets, a characteristic of decision making for autonomic software.

Tantrum et al. [179] consider model-based refractionation for clustering large data

sets. Yu et al. [180] use an hierarchical approach to clustering using support vector

machines (SVMs). Kalton et al. [181] address the growing need for clustering by con-

structing a framework that supports many clustering algorithms. Methods for online

clustering and classification have also been explored [182—184]. Like MESO, methods

that address large data sets and online learning may provide a basis for a percep—

127

tual memory system. However, to our knowledge, MESO is the first to consider the

combined tradeoffs of data intensity, time sensitivity and accuracy with respect to

memory systems within a decision making environment.

Some of the concepts used in MESO are reminiscent of other clustering systems,

and in some cases a complementary relationship exists. For example, like MESO,

M-tree [185] partitions data objects (patterns) based on relative distance. However,

MESO uses an incremental heuristic to grow sensitivity spheres rather than splitting

fixed sized nodes during tree construction. Moreover, rather than select database

routing objects for directing the organization of the tree, MESO introduces the con-

cept of pivot spheres for this purpose. BIRCH [186] also uses hierarchical clustering

while iteratively constructing an Optimal representation under current memory con-

straints. Where BIRCH mainly addresses data clustering when memory is limited,

MESO attempts to balance accuracy, compression and training and testing times to

support online decision making. MESO may benefit from BIRCH’s concept of clus-

tering features as an efficient representation of training patterns, while BIRCH may

benefit from MESO’S approach to growing sensitivity spheres. Data Bubbles [187]

focuses on producing a compressed data set representation while avoiding different

types of cluster distortion. Its data analysis and representation techniques might en-

able alternative approaches to representing and compressing sensitivity sphere data in

MESO, whereas MESO’s growth and organization of sensitivity Spheres could provide

an efficient data structure for application of these techniques.

Other works have explored the use of statistical methods and pattern classification

and clustering techniques in learning systems, including those that enable a system

128

to learn online through interaction with the physical world. For example, Hwang

and Weng [155] developed hierarchical discriminant regression (HDR) and applied it

successfully as part of the developmental learning process in humanoid robots. No-

tably, HDR provides an hierarchical discrimination of features that helps limit the

impact of high-dimensional feature vectors, enhancing the ability of the system to

correctly classify patterns. However, as shown in Section 5.3, HDR requires signifi-

cantly more time for training and testing than does MESO. In addition, Ivanov and

Blumberg [157] developed the layered brain architecture [120], which was used for the

construction of synthetic creatures, such as a “digital dog.” That project used clus-

tering and classification methods to construct perceptual models as part of the dog’s

developmental learning system. A notable aspect of the layered brain project is the

use of compression to limit the effect of large training sets on memory consumption

and processing power requirements. MESO also uses compression, but applies it to

individual sensitivity spheres in order to maintain high accuracy in the face of data

loss.

Finally, researchers have applied data clustering and classification methods to

other aspects of autonomic computing, such as fault detection and optimization of

algorithms. Fox et al. [188] used data clustering to correlate system faults with

failing software components. Once the failing components were identified they could

be selectively restarted, avoiding a complete system reboot while shortening mean

time to recovery. Geurtz et al. [189] considered several machine learning algorithms

for identifying if a system is running atop a wired or wireless network. This method

enables the autonomous adaptation of the TCP protocol to address dynamic network

129

conditions. We anticipate that similar systems can use MESO for automated fault

detection or optimization when the software is faced with the uncertainty found in

dynamic environments.

5.5 Discussion

We have presented a perceptual memory system, called MESO, that uses data cluster-

ing techniques to support online decision making in autonomic systems. We showed

that, when used as a pattern classifier, MESO can accurately and quickly classify

patterns in several standard data sets, comparing favorably to existing classifiers. We

postulate that the integration of a perceptual memory into adaptive software may en-

able better decision making by autonomous systems. Moreover, by enabling the stor-

age and retrieval of sensed environmental stimuli and associated meta-information,

decision makers may be better able to address the uncertainty found in autonomic,

pervasive and ubiquitous [122,123] computing environments. In the next three chap-

ters, we test this hypothesis.

130

Chapter 6

Case Study: Adaptive Error

Control

To explore the use of MESO to support learning in adaptive software, we conducted

a case study involving adaptive error control. Specifically, we used MESO to imple-

ment the decision maker in an audio streaming network application, called Xnaut,

that adapts to changes in packet loss rate in a wireless network. The Xnaut uses

forward error correction (FEC), whereby redundant information is inserted into the

data stream, enabling a receiver to correct some losses without contacting the sender

for retransmission. In our experiments, the Xnaut decision maker is trained, through

interaction with a human user, in how to balance packet loss with bandwidth con-

sumption. Once trained, the Xnaut is allowed to autonomously adapt to changing

network conditions as a user roams about a wireless cell.

The remainder of this chapter is organized as follows. Section 6.1 presents back-

ground and related work. Section 6.2 describes our experimental scenario and method.

131

State maintenance and collateral change are discussed in Section 6.3. Next, Sec-

tion 6.4 presents the results of our experiments, while Section 6.5 provides an analysis

of pattern features to better understand what types of features automated decision

makers find most useful. Finally, Section 6.6 concludes this chapter.

6.1 Background and Related Work

This case study complements other studies of imitative learning, where a learner

acquires skills by observing and remembering the behavior of a teacher. For exam-

ple, Amit and Matarié [190] used hidden Markov models (HMMs) to enable humanoid

robots to learn aerobic-style movements. The ability of the system to reconstruct mo-

tion sequences is encouraging, demonstrating the potential importance of imitative

learning. Jebar and Pentland [121] conducted imitative learning experiments using a

wearable computer system that included a camera and a microphone. A human sub-

ject was observed by the system during interactions with other people. The observed

training data was used to train an HMM. Later the system was allowed to respond

autonomously when presented with visual and audio stimuli, demonstrating a limited

ability to reproduce correct responses. However, since learning by observing real hu-

man behavior is very complex, even limited recognizable response is significant and

promising. This case study complements these approaches by studying perceptual

memory to support autonomic decision making for mobile, wireless communication.

In earlier studies, our group has investigated several ways that mobile systems

can adapt to changing conditions on wireless networks. Examples include adapt-

132

able proxies for video streaming [191], adaptive FEC for reliable multicasting [192],

several adaptive audio streaming protocols [193,194], and the design of middleware

components whose structure and behavior can be modified at run time in response to

dynamic conditions [42,43]. However, in those approaches, the rules used to govern

adaptation were develOped in an ad hoc manner as a result of experiments. Here, we

investigate whether the system itself can learn how to adapt to dynamic conditions.

6.2 Experimental Scenario and Method

In our experimental scenario, depicted in Figure 6.1, a stationary workstation trans-

mits an audio data stream to a wireless access point, which forwards the stream to a

mobile receiver over the wireless network. As a user roams about the wireless cell and

encounters different wireless channel conditions, the Xnaut should dynamically ad-

just the level of FEC in order to maintain a high—quality audio stream. However, the

Xnaut should also attempt to do so efficiently, that is, it should not consume channel

bandwidth unnecessarily.

Figure 6.1: Physical network configuration used in the Xnaut case study.

133

6.2. 1 Pattern Features

In the experiments, 56 environmental features are sensed directly, or calculated from

other features, and used as input to the decision making process. The features are

listed in Table 6.1. The first 4 features are instantaneous sensor readings. Perceived

features represent the application’s viewpoint. That is, perceived packet loss repre-

sents the packet loss as observed by the application after error correction, while real

packet loss is the number of packets actually dropped by the network prior to error

correction. The second group of 28 features are produced by applying 7 different met-

rics (mean, standard deviation, etc.) to each of the four directly measured features

as sampled over time. The last group of 24 features are produced by calculating 6

Fourier spectrums for each of the four directly measured features.

Table 6.1: Features used for training and testing the Xnaut.

Feature Description

1—4 Instantaneous measurements:

bandwidth, perceived packet delay,

perceived loss and real loss.

5—32 Timesampled measurements: me-

dian, average, average deviation,

standard deviation, skewness, kur-

tosis and derivative.

33-56 Fourier spectrum of the time-

sampled measurements: median,

average, average deviation, stan-

dard deviation, skewness and kur-

tosis.

The decision maker’s goal is to consider these 56 features and autonomously adapt

the system to recover from network packet loss while conserving bandwidth. The

adaptation is realized by having the receiving node request the sender to modify the

134

(n, k) settings and change the packet size. The decision maker needs to increase the

level of error correction when packet loss rates are high and reduce the level of error

correction when packet loss rates are low.

Audio is sampled at 8 KHz using 16—bit samples. Each application-level packet

includes a 12-byte application-level header containing a sequence number, stream off-

set and data length. So, for example, a 32-byte packet contains the header and 10

samples, equivalent to 1.25 milliseconds of audio. A system-level header is prepended

to the application-level packet containing 16—bytes of information required for orches-

trating FEC code parameter changes. These parameters include an FEC sequence

number, FEC packet size and an FEC (n, k) combination. We experimented with

larger packet sizes and other (n, k) combinations, but the above values provided suf-

ficient diversity in MESO-based learning and autonomous decision making.

6.2.2 Imitative Learning

In our experiments, the Xnaut decision maker uses MESO to “remember” user pref-

erences for balancing packet loss with bandwidth consumption. The decision maker

gains this knowledge through imitative learning. A user shows the Xnaut how to adapt

to a rising loss rate by selecting an (n, 1:) setting with greater redundancy. If the new

setting reduces the perceived loss rate to an acceptable level, the user reinforces the

new configuration (e.g., by pressing a particular key), and the Xnaut uses MESO to

associate the sensed environment and selected (n, k) configuration. Later, when oper-

ating autonomously, the decision maker senses current environmental conditions and

135

calculates time—sampled and Fourier features, constructing a pattern. Using this pat-

tern, the Xnaut queries MESO for a system configuration that most likely addresses

current conditions. Then, the decision maker emulates the user’s actions and adapts

the Xnaut, changing the configuration to match that returned from MESO.

Specifically, a user (teacher) shows the Xnaut (learner) how to adapt to a rising loss

rate by selecting an FEC code with greater redundancy. If the perceived loss rate then

drops to an acceptable level, the user reinforces the Xnaut’s new configuration. During

this process, the decision maker has two states. In the training state, the decision

maker observes the teacher, remembering good responses to observed conditions. In

the testing state, the decision maker autonomously implements responses to current

conditions based on what it observed during training.

Figure 6.2 depicts this procedure. We can separate the activities that require

human interaction from those that can be completed independently by the decision

maker. When the Xnaut is training, the user issues commands to the system that

adapt the application to current conditions. Implementing these adaptations also

updates the MessageRepository to reflect these changes. If the user’s actions produce

a good software configuration, then the user reinforces this configuration. The decision

maker then saves the current system configuration to MESO.

When the Xnaut is testing, the decision maker retrieves the current conditions

from the MessageRepository, and queries MESO for a system configuration to ad-

dress current sensed conditions. If the query returns a configuration that differs from

the one currently implemented, the decision maker adopts the retrieved configuration

and changes the Xnaut’s configuration to match that returned by MESO.

136

User Declslon

Interaction Maker

U ates Provides T

tate Measurable Trains "

1 °““ W
Mes e r

Reposi ory

 K—ML

Figure 6.2: High-level diagram of the primary decision making components.

6.3 State Maintenance

During execution, the Xnaut sender and receiver can instantiate new FEC encoders

and decoders to exchange with those in current use. However, this exchange must be

orchestrated such that data encoded with one (n, k) combination is not decoded with

a. different (n, k) combination, causing data to be corrupted or lost.

The sequence diagram in Figure 6.3 illustrates how the Xnaut orches-

trates encoder/decoder exchange. When the receiver decides that a different

FEC code is required to address the current packet loss rate, it transmits a

ChangeFEC(n,k,pktsize) request to the sender. The sender receives the request

and continues transmitting packets until all n packets encoded with the current FEC

Code have been sent. The sender then calls newEncoder (n,k,pktsize) to instanti-

ate and insert a new encoder using the (n, k) combination and packet size requested

by the receiver. When the receiver receives a packet encoded with the new FEC code

137

(as indicated by the system-level header), it calls newDecoder (n,k,pktsize) to in-

stantiate and insert a new decoder. The packet is then passed to the new decoder for

processing, and normal packet transmission resumes.

Sender Receiver

chengeFEC(n,k,pktsize)

.............................9's.

[M

[and of FEC group]

eendPecketo recheeketo

packet

MEneodedn,k,pktsm)

packet

newbeoodednfipktslze)

T J

: Resume normal 5

- packet transmission

Figure 6.3: A sequence diagram depicting sender/receiver interaction when changing

FEC codes.

6.4 Results

We report results for two sets of experiments designed to evaluate the ability of the

Xnaut to autonomously balance error control effectiveness and bandwidth consump-

tion. The transmitting station was a 1.5GHz AMD Athlon workstation, and the

138

mobile receiver was a a 500MHz X20 IBM Thinkpad notebook computer. Both sys—

tems run the Linux operating system.

The first set of experiments was conducted in a controlled setting, specifically

using a wired network and artificially generated packet losses. These experiments

were designed to verify that the Xnaut could learn to respond accurately to a simple

loss model. We trained and tested the Xnaut using TCP over a 100Mb wired network,

thereby avoiding the effects of spurious errors and overruns of UDP buffers. Packets

Were dropped at the sender according to a probabilistic loss model, which varied

the loss rate from 0.0 to 0.3 in steps of size 005, at 15 second intervals. After

Starting the receiver and sender, the system was trained by having a user select (n, k)

Values and packet sizes in an attempt to minimize the perceived loss and bandwidth

consumption. When a combination satisfying user preferences is found, the Xnaut

(receiver) is notified that the current combination is “good” (by pressing the “g”

key). Good FEC/packet size combinations and system measurements were then used

to train MESO. Training concluded in one hour with MESO storing 34,982 training

patterns associated with 6 FEC code combinations:

32(10, 2) 32(8, 2) 64(1,1) 64(4, 2) 64(6, 2) 64(8, 2).

In testing, the Xnaut collected system measurements and used them to query MESO

for the FEC code/packet size combination associated with the most similar set of

measurements observed during training.

Figures 64(3) and (b), respectively, show the (artificially generated) network

packet loss and the perceived packet loss, during the testing phase of the experi-

139

ment. All changes to error correction are made autonomously by the Xnaut decision

maker. Figure 6.4(c) plots the redundancy-ratio defined as:

ratio — (n _ k)
redundancy = n ,

reflecting the changes in FEC (n,k) values corresponding to the loss rates shown

in Figure 6.4(a). For comparison, Figure 6.4(c) also depicts a plot of the optimum

redundancy ratio given the FEC codes specified during training. The optimum ratio

iS computed using the FEC code that provides redundancy greater than or equal to

the real loss rate. From these figures, it can be seen that the Xnaut significantly

reduces packet loss as perceived by the application by automatically adapting FEC

parameters and packet size. Notably, in order to conserve bandwidth the Xnaut did

not simply choose a high (n, k) ratio, but changed parameters to correspond with the

Changing loss rate.

The second set of experiments were conducted using real packet losses on an

lleps 802.11b wireless network. The experimental configuration is shown in Fig-

Ure 6.1. These tests required the Xnaut to autonomously balance real packet loss

and bandwidth consumption as a user roamed about a wireless cell. The Xnaut was

trained by a user for one hour using an artificial loss rate that varied from 0.0 to

0.6 in steps of size 0.05 at 15 second intervals. Such a model allowed the Xnaut to

be trained for the higher loss rates often found at the periphery of a real wireless

Cell. Training generated 32,709 training patterns in 10 classes that were used to train

MESO for autonomous testing atop a wireless network. Each class “label” is a FEC

140

l I l I T l l I r W

0'8 b ‘ 0.8 [1

8 .530'6
g 0.6

a a

.30-4 - 30.4

0.2 -
0.2 ~

0 v 1 l l l O n n A n l

0 50 109 150 200 250 300 0 so 100 150 200 250 300

Testing time (seconds) Testing time (seconds)

(a) network packet loss (b) perceived packet loss

1 I I l'

MESO —-—

Optimum—

0.8 .

73 r—‘W‘L

ins -
0

5
g0.4 J

E
0.2 . 4

0 i 1
50 160 150 "200 250 300

Testing time (seconds)

(c) redundancy ratio

Figure 6.4: Xnaut results for artificially generated packet losses.

Configuration specifying a (n, k) pair and a packet size. The 10 classes (packet size /

FEC code combinations) were:

32(10,2) 32(12,2) 32(14,2) 32(16,2) 32(18,2)

32(8,2) 64(1,1) 64(4,2) 64(6,2) 64(8,2).

In the testing phase, we turned off simulation and enabled the Xnaut to au-

tonomously balance real packet loss and bandwidth consumption. The sender was

located on a stationary workstation connected to a wireless access point through a

100Mb hub. A wireless PCMCIA card provided network access to the notebook com-

puter. The UDP/1P multicast protocol was used for transmission of the data stream.

141

Data was collected as a user roamed about a wireless cell carrying a notebook running

an Xnaut receiver. Again, all changes to error correction were made autonomously by

the Xnaut decision maker. Figure 6.5 shows the results, using the same format as in

the earlier tests. Under real conditions, the Xnaut is able to significantly reduce loss

rate as perceived by the application, while conserving bandwidth under good channel

conditions.

1 T j T I T l I T I ‘T W

0.8 - 0.8 ~ 2

g 05 . $0.6 - -

a 3

.3 0.4 - ,3 0.4 - .

0.2 0.2 ~ ~

0 1 1
00100 200 300 400 500 600 700 800

Testing time (seconds)

0100 200 300 400 510 600 700 800

Testing time (seconds)

(a) network packet loss (b) perceived packet loss

T

1 *Optimum—

.
o
c
o

R
e
d
u
n
d
a
n
c
y

r
a
t
i
o

9 N
P a
s

p A

.l

-' .: ’
l l

‘ i
.

1,, 3 .
in_ Z '

r1., .

l i

l

g. .

I

100 200300 400500600700800

Testing time (seconds)

O

(c) redundancy ratio

Figure 6.5: Xnaut results for real packet losses on a wireless network.

We further tested MESO using cross-validation experiments (described in Chap-

ter 5.3.1). In our tests, we set both It and n equal to 10 Thus, for each mean and

standard deviation calculated, MESO is trained and tested 100 times. Table 6.2 shows

142

Table 6.2: Xnaut results with and without compression.

Data set I] Uncompressecfl Means [Spherical [Orthogonal

Xnaut

Accuracy% 94.1%21202% 87.7%i02% 92.4%21207% 87.3%i04%

Compression% 0.0% 91.8%:120.1% 5.8%i0.2% 91.8%2120.14%

Training (3) 33.096i2.123 18.05921203 74.70521265 19.3592t0582

Testing (5) 1.1272120016 1.0242120013 1.1192120014 1.0242120010

Data set size is 32,709. Executed on a QGHZ Intel Xenon processor with 1.5GB RAM

running Linux. All experiments conducted using cross-validation.

results from running cross-validation tests using the data acquired during Xnaut train-

ing. This data was produced during training for autonomous Xnaut operation on the

real wireless network. This table shows accuracy, with and without compression,

helping quantify how well the Xnaut can be expected to imitate a user. The system

achieved 94% accuracy without compression, and maintained an accuracy level above

87% even when data was compressed by over 90%. We regard these results as promis-

ing and justifying further study of MESO for on-line decision making in autonomic

systems.

6.5 Feature Analysis

Using cross—validation, we designed an experiment to determine which of the 56 fea-

tures were most significant for classifying the patterns used by the Xnaut decision

maker. Each experiment is conducted as follows:

1. Starting with the first pattern feature, iteratively select a feature and remove

it from the set of patterns.

2. Run a cross-validation experiment and calculate the classification accuracy.

3. If classification accuracy has been reduced by greater than 2%, retain the feature

and add it back into the set of patterns. Otherwise, do not retain the feature

for use in subsequent cross-validation runs.

143

4. Repeat the preceding steps until all features have been tested.

In our tests, we set the cross-validation parameters, k and n, both equal to 10 Thus,

for each mean and standard deviation calculated, MESO is trained and tested 100

times.

As shown in Table 6.3 (continued on the next page), our analysis of pattern fea-

tures revealed that only 4 features accounted for approximately 91.7% of the accuracy

attained when using all 56 features. Moreover, these 4 features were statistical met-

rics, such as skewness and kurtosis, calculated over multiple sensor readings. We

attribute the significance of these 4 features to the utility of statistical metrics for

characterizing distributions of sensor readings. However, sensor readings taken from

dynamic environments are unlikely to produce a single stationary distribution, but

rather are likely to transition between many distributions. Detecting sensor reading

transitions may enable a decision maker to better recognize when current environ-

mental conditions have changed that may require the software to adapt.

6.6 Discussion

In this chapter we presented a case study that demonstrates that perceptual memory

can support decision making in dynamic environments. As a user roamed about

a wireless cell, the Xnaut decision maker autonomously exchanged FEC encoders

and decoders to balance packet loss with bandwidth consumption. Moreover, MESO

demonstrated high accuracy, with and without compression, when classifying patterns

comprising the 56 features sensed or computed by the Xnaut. These results indicate

144

Table 6.3: Feature contribution to MESO accuracy.

ept ccuracy ptlon

M t

1 e a

038

oss

w1 m

M mean

a . ev.

w1 . ev.

w1 ess

w1

w1 erlvatlve

w1 m

M mean

W1 a . ev.

w1 . ev.

W1

percei

erlvatlve

m

a mean

y a . ev.

a . ev.
Classification accuracy when all 56 features are used is 91.3%2120.5%. Using only

the 4 most significant features accuracy is 83.7%:1: 0.6%. Accuracy column indicates

accuracy after that feature was removed.

that perceptual memory can play an important role in the design and implementation

of autonomic decision makers. However, an analysis of the 56 pattern features revealed

that only 4 features accounted for most of MESO’s accuracy. Moreover, these 4

features were statistical metrics calculated using multiple sensor readings, indicating

a preference for metrics that describe the underlying distribution of sensor readings.

145

Table 6.3: (cont’d)

tlon

y

OSS m

OSS mean

OSS av . 8V.

OSS . 8V.

ess

erivative

m

mean

av .

8V.

ess

erivatlve

m

mean

av . ev.

146

Chapter 7

Automated Ensemble Extraction

and Analysis of Acoustic Data

Streams

The main contribution of this chapter is to introduce a process that enables detec-

tion of transitions and extraction of meaningful sequences, called ensembles, from

sensor data streams. We define ensembles as time series sequences that recur, though

perhaps rarely. We couple MESO and Dynamic River to address decision making

related to pipeline processing. Using Dynamic River, we implement our technique

for automated extraction of ensembles that can be processed by MESO for detection

and classification of sensed events. Here we apply this method to support automated

detection and classification of bird species using acoustic data streams collected in

natural environments. Classification attempts to accurately recognize which species

147

produced a particular vocalization, while detection indicates the likelihood that an

acoustic clip contains a song voiced by a particular species. The effort is a collabora-

tion between computer scientists and researchers at the Computational Ecology and

Visualization Laboratory (CEVL) [195] at Michigan State University. Acoustic data

is collected from in field sensor stations located at the Kellogg Biological Research

Station (KBS) [196] and other locations in Michigan. Species classification and de-

tection enables the automation of ecological surveys [197—199], traditionally done by

human observers in the field. Moreover, processing of data as it is collected enables

annotation of sensor data with meta information that can facilitate analysis and en-

able autonomic decision making. For instance, detection of a specific species may

trigger a decision maker to increase sensor sampling rate or invoke specialized pro-

cessing. Although this target application is relatively specific, the process employed is

general and can be extended to other problem domains such as mobile communication

and military reconnaissance.

As shown in Figure 7.1(a), the acoustic sensor stations comprise a polemounted

sensor unit and a solar panel coupled with a deep cycle battery for providing power

over extended periods. Figure 7. 1 (b) shows the internal components of the sensor unit.

Each sensor unit contains a Crossbow Stargate processing platform [200] equipped

with a microphone and an 802.11b wireless interface card. The Stargate platform has

a 400MHz Intel PXA225 processor and 64MB of RAM. The operating system used is

TinyOS [201]. Acoustic clips are collected by the sensor units and transmitted over

a wireless network to a laptop in a protected enclosure, for temporary storage and

later relay to the CEVL. Currently, clips are approximately 30 seconds long and are

148

collected every half hour. We anticipate increasing the collection rate as computing,

storage and power resources permit.

 (b) Sensor unit

Figure 7.1: Acoustic sensor station and closeup of a Stargate sensor.

Sensor collection of acoustic data facilitates monitoring of natural environments

despite visual occlusions, such as trees or buildings, or even darkness. Moreover,

microphones can collect data from all directions simultaneously. However, acoustic

data is rich and complex. For instance, bird vocalizations vary considerably even

within a particular bird species. Young birds learn their songs with reference to

adult vocalizations during sensitive periods [202—204]. At maturity, the song of a.

specific bird will crystallize into a species-specific stereotypical form. However, even

stereotypical songs vary between individual birds of the same species [205]. Moreover,

many vocalizations are not stereotypical but are instead plastic, and may change when

149

sung or due to seasonal change, while some species can learn new songs throughout

their lives [206]. Variation of song within a species and the occurrence of other sounds

in natural settings, such as the sound of wind or that produced by human activity, is

a significant obstacle to automated detection and classification of birds. Extraction

of candidate bird vocalizations from acoustic streams enables accurate recognition of

a species where misidentifying one species as another should be avoided.

Our technique for ensemble extraction uses Dynamic River operators to construct

a pipeline for detecting anomalies in sensor data streams. When an anomaly is

detected, downstream operators respond by extracting an ensemble. Once extracted,

each ensemble is further processed and then converted into a set of patterns suitable

for processing by MESO. Results of the experiments presented later in this chapter

are promising and suggest that the proposed methods for automated monitoring of

natural environments are effective. Moreover, the processes employed are general and

can be extended to other problem domains.

The remainder of this chapter is organized as follows. Section 7.1 describes back-

ground on the components of the ensemble extraction method. Section 7.2 describes

in detail the approach for ensemble extraction, and Section 7.3 presents the results

of our experiments using ensemble extraction for classification and detection of bird

species. Section 7.4 presents related work. Finally, in Section 7.5, we summarize and

discuss the contribution of this chapter.

150

7.1 Background

This section provides background on processing of acoustic and other time series data

streams. First, in Section 7.1.1, we describe the methods we use for visualizing acous-

tic clips. In Section 7.1.2 and 7.1.3, respectively, we briefly review piecewise aggregate

approximation (PAA) [207,208] and symbolic aggregate approximation (SAX) [5] and

describe the benefits of using PAA representation and how SAX bitmaps can be used

for anomaly detection.

7.1.1 Visualizing Acoustic Events

Figure 7.2 depicts two common methods for visualizing an acoustic clip, such as those

collected by sensor stations at the KBS. The top graph shows a plot of the signal’s am-

plitude normalized by subtracting the mean and scaling by the maximum amplitude.

The bottom graph shows the same clip plotted as an acoustic spectrogram. A spectro-

gram depicts frequency on the vertical axis and time on the horizontal axis. Shading

indicates the intensity of the signal at a particular frequency and time. Spectrograms

are useful for visualizing acoustic signals in the frequency domain. Moreover, spec-

tral representations can be used for automated classification and detection of acoustic

events. In this study, for example, spectrogram segments are distilled into signatures

that can be used to identify the bird species that produced a particular vocalization.

Figure 7.3 depicts a block diagram of a pipeline for constructing a spectrogram.

This process uses the discrete Fourier transform [209] to compute the frequency do-

main power spectra. To plot a spectrogram, the acoustic data is first divided into

151

 1 I

A
m
g
l
l
t
u
d
e

"
—
1

I

K
H
z

5
5

u
A

l
.

.
V
.
.
‘
,
<
_
_
.
F
_
_
.
f
‘
,
-
:
.
_
.
<
.
_
_

<
_
“
N

.
_
.
.
.

_
"
3
N
2
“

Figure 7.2: Top, an oscillogram (normalized) of an acoustic signal. Bottom, a spec-

trogram of the same acoustic signal.

equal sized segments and then filtered using a Welch window [138] to mitigate edge

effects (or leakage) between segments. Then the discrete Fourier transform is used to

compute a frequency domain representation of each segment. Computing the complex

absolute value converts the complex representation used by the Fourier transform to

a real representation of signal intensity. Finally, each segment is plotted to produce

a spectrogram.

Discrete Complex

Acoustic Welch Plot
Fourier Absolute Spectrogram #Spectrogram

Data Window Transform Value

Figure 7.3: A block diagram depicting the operators required to produce a spectro-

gram.

152

7.1.2 Piecewise Aggregate Approximation

Piecewise aggregate approximation (PAA) was introduced by Keogh et al. [207], and

independently by Yi and Faloutsos [208], as a means to reduce the dimensionality of

time series. For completeness an overview of PAA is presented here; full details can

be found in the papers cited. As shown in Figure 7.4, an original time series sequence,

Q, of length n is converted to PAA representation, Q. First, Q is Z-normalized [210]

as follows:

Vi Qi - [1

93' = 7

U

where u is the vector mean of original signal, a is corresponding standard deviation

and q,- is the it” element of Q. Second, Q is segmented into w _<_ n equal sized

subsequences, and the mean of each subsequence computed. Q comprises the mean

values for all subsequences of Q. Thus, Q is reduced to a sequence Q with length

w. Each it” horizontal segment of the plot shown in Figure 7.4(c) represents a single

element, q,-, of Q. Thus, the complete PAA algorithm first Z-normalizes Q and then

computes the segment means to construct Q, as depicted in Figure 7.4(c).

Z-normalization and conversion to PAA representation facilitate detection and

classification in two ways. First, detection and classification using acoustics in natural

environments is often impeded by variance in signal strength due to distance from

the sensor station or differences between individual vocalizations. Z-normalization

converts two signals that vary only in magnitude to two identical signals, enabling

comparison of signals of different strength. Second, conversion to PAA representation

153

‘4 I _4 1 _4 1

O 1.5 3 0 1.5 3 0 1.5 3

(a) Original signal. (b) Z—normalized signal. (c) Z-normalized signal with

PAA.

Figure 7.4: Example signal and results of Z-normalization and subsequent PAA pro-

cessing.

helps smooth the original signal to facilitate comparison of vocalizations. That is,

during classification or detection, signals are typically represented as vectors of values,

called patterns. For acoustics, many pattern values may represent noise or sounds

other than those voiced by a bird. These values do not contribute usefully when using

distance metrics, such as Euclidean distance, for pattern comparison. PAA smoothes

intra—signal variation and reduces pattern dimensionality, while Z-normalization helps

equalize similar acoustic patterns that differ in signal strength.

Figure 7.5 depicts the spectrogram shown in Figure 7.2 after conversion to PAA

representation. This spectrogram was constructed by applying PAA to the frequency

data comprising each column of the original spectrogram. Despite smoothing and

reduction using PAA, these Spectrograms are similar in appearance, demonstrating

the potential utility of using PAA representation.

As mentioned, we use distance metrics for comparing patterns. For comparison

of patterns that have not been reduced using PAA, Euclidean distance can be used.

Computing the distance between two patterns reduced using PAA is similar to com-

154

1
1

K
H
z

 in
Seconds

Figure 7.5: Spectrogram of the acoustic signal (see Figure 7.2) after conversion to

PAA representation (stretched vertically for clarity).

puting Euclidean distance. PAA distance is defined as:

w
. _ _ [n _ _

distancePAA(Q, P) E E E (Qt “ I702,

i=1

where Q and F are two patterns reduced using PAA. The terms n and w are the

lengths of the original patterns and those after PAA reduction, respectively. PAA

distance has been shown to be a tight lower bound on Euclidean distance [207],

providing a close estimate of Euclidean distance between the original two patterns

despite PAA dimensionality reduction.

7.1.3 Symbolic aggregate approximation

Extending the benefits of PAA is a representation introduced by Lin et al. [5] called

Symbolic Aggregate approXimation (SAX). The purpose of SAX is to enable accurate

comparison of time series using a symbolic representation. As shown in Figure 7.6,

SAX converts a sequence from PAA representation to symbolic representation, where

each symbol (we use integers as symbols, others have used alphabetic characters)

appears with equal probability based on the assumption that the distribution of time

155

series subsequences is Gaussian [5]. Thus, each PAA segment is assigned a symbol by

dividing the Gaussian probability distribution into 0: equally probable regions, where

a is the alphabet size (a = 5 in Figure 7.6). Each PAA segment falls within a specific

Gaussian region and is assigned the corresponding symbol.

2 f f I 7 r

'5 F F] is\
l - J

— I'L r1 | .——. _ ..

o~.--.|"'I_r" IU"

415.11.! Il— ~=
I \i
L~ .//

0 05' l 1.5 2 2.5 3

Haw—WW

SAX=232433341531244343

Figure 7.6: Conversion of the example PAA processed signal converted to SAX

(adapted from [5]).

Kumar et al. [6] proposed time series bitmaps for visualization and anomaly detec-

tion in time series. SAX bitmaps are constructed by counting occurrences of symbolic

subsequences of length n (e.g., 1, 2 or 3 symbols). Each bitmap can be represented

using an n-dimensional matrix, where each cell represents a specific subsequence. An

example is shown in Figure 7.7; using subsequences of length n = 2, matrix cell (1, 1)

contains the count and frequency with which the subsequence 1, 1 occurs. Frequencies

are computed by dividing the subsequence count by the total number of subsequences.

For visualization as a bitmap, each cell is assigned a color according to the cell’s value.

An anomaly score can be computed by comparing two concatenated bitmap matri-

ces using Euclidean distance. The matrices are constructed using two concatenated

sliding windows. For each anomaly score computed, both windows are moved for-

156

ward along the time series one time step and the corresponding matrices recomputed.

The distance between the matrices is computed and reported as an anomaly score.

Greater distances indicate significant change in the time series. As further discussed

in Section 7.2, we use SAX bitmap matrices to compute an anomaly score for acoustic

signals, enabling the extraction of bird vocalizations and other acoustic events.

232433341

1

1 0 0 0 0 0 1

0.0 0.0 0.0 0.0 0.0 0 0 0123 0.0 0.0 0.0

2 0 0 1 1 O 0 0 1 0 2

0.0 0.0 125 0.125 0.0 0.0 0.0 0.0 0.125 0.0

3 0 1 2 1 0 1 0 0 1 0 3

0.0 0.125 0.25 0.125 0.0 0.125 0.0 0.0 10.125 0.0

4 1 0] 1 0 0 0 0 2 1 0 4

”.125 0.0 0.1 25 0.0 0.0 0.0 0.0 0.25 0.125 0.0 '

5 0 0 0 0 0 0 0 1 0 0 5

0.0 0.0 0.0 0.0 0.0 0.0 0.0 [0.125 0.0 0.0

1 2 3 4 5 1 2 3 4 5

anomaly score = 0.433013

Figure 7.7: Using SAX bitmaps to compute an anomaly score for a signal (see [6] for

more information). Number of subsequence occurrences shown over frequency.

7.2 Ensemble Extraction and Processing

A sensor data stream is a time series comprising continuous or periodic sensor read-

ings. Typically, readings taken from a specific sensor can be identified and each

reading appears in the time series in the order acquired. Online clustering or detec-

tion of interesting sequences benefits from time-efficient, distributed processing that

extracts finite candidate sequences from the original time series. Moreover, cluster-

ing time-series data using sliding windows has been shown to be ineffective [211],

prompting the need for research in ways to extract sequences that can be usefully

157

clustered. Our goal is to extract potentially recurring sequences that can be used for

data mining tasks such as classification or detection.

As noted earlier, we define ensembles as time series sequences that recur, though

perhaps rarely. Notably, this definition is similar to other time series terms. For

instance, a motif [212—215] is defined as a sequence that occurs frequently and a

discord [216] is defined as the sequence that is least similar to all other sequences. A

notable limitation for finding a discord in a time series is that the time series must

be finite. Our use of ensembles addresses this limitation by using a finite window for

computing an anomaly score and thereby detecting a distinct change, or transition, in

time series behavior. An anomaly score greater than a specified threshold is considered

as indicating the start of an ensemble that continues until the anomaly score falls

below the threshold.

Figure 7.8 depicts a typical approach to data acquisition and analysis using a

Dynamic River pipeline that targets ecosystem monitoring using acoustics. The in-

terested reader may refer to Appendix B for further information on the Dynamic

River operators described in this section. First, audio clips are acquired by a sensor

platform and transmitted tO a readout Operator that encapsulates clips as records

and then writes the records to record for storage. Although additional record pro-

cessing is possible prior to storage, it is often desirable to retain a copy of the raw

data for later study. During analysis, a data feed is invoked to read clips from stor-

age and write them to wav2rec to encapsulate acoustic data (WAV format in this

case) in pipeline records. The remaining Operators comprise the process for extracting

ensembles and processing them for classification or detection using MESO.

158

 Ensembles

Figure 7.8: Block diagram of pipeline operators for converting acoustic clips into

ensembles for detection of bird species.

The pipeline segment, =>[saxanomalyltriggericutter], transforms records

comprising acoustic data into ensembles. The incoming record stream is scoped,

with each clip delimited by an OpenScope/CloseScope pair. The outgoing record

stream comprises ensembles that are also delimited by an OpenScope/CloseScope

pair. The clip and ensemble scopes are typed, using the scope_type record header

field, as scope_clip or scope_ensemble respectively.

The moving average of the SAX anomaly score, as described in Section 7.1.3, is

output by saxanomaly in addition to the original acoustic data. Parameters, such

as the SAX anomaly window size, SAX alphabet size and a moving average window

size, can be set to meet the needs of a particular application or data set. The SAX

159

anomaly window size specifies the number of samples to use for constructing each

concatenated matrix used for computing the SAX anomaly score, for a given SAX

alphabet. The moving average window size specifies the number of anomaly scores

to use for computing a mean anomaly score that is output by saxanomaly. Using a

moving average smoothes anomaly score “spikes” over a longer period that can be

used as a window Of anomalous behavior by the cutter Operator. In our experiments

with environmental acoustics, we set the moving average window to 2250 samples,

the SAX anomaly window to 100 samples and the SAX alphabet size to 8. Figure 7.9

plots the anomaly score computed by the saxanomaly pipeline operator for the signal

depicted in Figure 7.2. As shown, larger anomaly scores are computed when time

series behavior is changing.

0
.
5

W

0 1'0 it :10 ab
Seconds

 0.4 I

A
n
o
m
l
a
y
S
c
o
r
e

0
5

p

Figure 7.9: Anomaly score generated for the acoustic signal shown in Figure 7.2.

Figure 7.10 depicts the trigger signal output by the trigger Operator (top) and

the corresponding ensembles extracted from the original acoustic signal by the cutter

operator (bottom). The trigger Operator transforms the anomaly score output by

saxanomaly into a trigger signal that has the discrete values Of either 0 or 1. The

trigger operator is adaptive in that it incrementally computes an estimate of the

mean anomaly score, #0. for values when the trigger value is O. Trigger emits a

value Of 1 when the anomaly score is more than 5 standard deviations from no and a

160

0 otherwise. The number of standard deviations is specific to the particular data set

or application.

 2

I i

T
r
i
g
g
e
r
V
a
l
u
e

0
1

l
I

.
,
,

i
.
n

.

-
I
.
‘
t
1
"
"

'
A

“I

I
‘

.
.
,
!

J
-

I
’

l

t
.
.

.
3
.
.
.

 1 I

A
m
p
l
i
t
u
d
e

o I

 -1

Figure 7.10: Trigger signal and ensembles extracted from the acoustic signal shown

in Figure 7.2.

The cutter Operator reads both the records containing the original acoustic signal

and the records emitted by trigger. When the trigger signal transitions from O to

1, cutter emits an OpenScope record, designating the start of an ensemble, and

begins composing an ensemble. Each ensemble comprises values from the original

acoustic signal that correspond to when the trigger value is 1. When the trigger value

transitions from 1 to 0, cutter emits a CloseScope record, and resumes consuming

acoustic values until the trigger value again transitions to 1. The record stream, as

emitted from cutter, comprises clips that contain one or more ensembles.

The pipeline segment, => [reslice lwelchwindowl float2cplx1dft l cabs] , trans-

forms the amplitude data of each ensemble into a frequency domain (power spectrum)

representation in a way similar to that used for producing a spectrogram. First, for

each pair of ensemble records, the reslice Operator constructs a new record compris-

ing the last half of the first record and the second half of the second original record.

161

This new record is then inserted into the record stream between the two original

records. “Reslicing” ensemble records is a method similar to that used by Welch’s

method [138] for minimizing variance when computing power spectral density (PSD)

using finite length periodograms. The remainder Of the pipeline segment, starting

with welchwindow, computes a floating point representation of each ensemble’s spec-

trogram, where each ensemble comprises one or more records of spectral data. If

desired, each record could be plotted as a single column of pixels in a spectrogram.

Next, each record Of each ensemble is passed to the cutout Operator. The cutout

Operator selects specific frequency ranges from each record and emits records com-

prising only these ranges. Data outside of the selected range is discarded. For our

classification experiments, the frequency range z[1.2kHz,9.6kHz] was extracted using

cutout. Frequencies above and below this range typically have little data useful for

classification or detection of bird species. Moreover, data below this range typically

comprises low frequency noise, including the sound Of wind and sounds produced by

human activity. For our detection experiments, discussed in Section 7.3, cutout was

used to further reduce the frequency range for better detection of specific species.

The Optional paa operator reduces each record to a PAA representation as dis-

cussed in Section 7.1. For our experiments, we used records that were either reduced

by a factor of 10 using PAA or that were not reduced. The effectiveness Of using

PAA representation for smoothing acoustic spectral data is demonstrated in Sec-

tion 7.3. Finally, the record2vect Operator converts pipeline records to vectors of

floating point values (patterns), suitable for use in our classification and detection

experiments with MESO.

162

7.3 Assessment

Listed in Table 7.1 are the four-letter species codes and the common names for the 10

bird species whose vocalizations we use in our experiments. Also listed are the number

of individual patterns and ensembles extracted from the recorded vocalizations and

included in our experimental data sets. For testing classification accuracy, we used

four data sets produced from a set Of audio clips, and each extracted ensemble contains

the vocalization from one of the 10 bird species. Although each ensemble contains

the vocalization for only a single species, the clips typically contain other sounds such

as those produced by wind and human activity.

Table 7.1: Bird species codes, common names and the number of patterns and en-

sembles used in the experiments discussed in Section 7.3.

Code Common name Patterns Ensembles

AMGO American goldfinch 229 42

BCCH Black capped Chickadee 672 68

BLJA Blue Jay 318 51

DOWO Downy woodpecker 272 50

HOFI House finch 223 26

MODO Mourning dove 338 24

NOCA Northern cardinal 395 42

RWBL Red winged blackbird 211 27

TUTI Tufted titmouse 339 59

WBNU White breasted nuthatch 676 84

7.3.1 Data Sets and Methodology

Ensemble data sets. Two ensemble data sets, comprising 473 ensembles, were

produced using the method described in Section 7.2. The data sets differ in that

one was processed with PAA while the other was not. The ensembles produced by

163

the cutter operator were validated by a human listener as being a bird vocalization.

The validated ensembles were then fed to the dft Operator for further processing

(refer to Figure 7.8). Each ensemble comprises one or more patterns. Each pattern

was constructed by merging 3 frequency domain records. A single pattern represents

0.125 seconds of acoustic data in the range z[1.2kHz,9.6kHz] and comprises either

1050 features or, when processed with PAA, 105 features. A voting approach is used

for testing each ensemble, specifically each pattern belonging to a given ensemble is

tested independently and represents a “vote” for the species indicated by the test.

The species with the most votes is returned as the recognized species.

Pattern data sets. Each of the two pattern data sets comprises 3,673 patterns

extracted from the 473 ensembles in the ensemble data sets. Like the ensemble data

sets, each pattern has either 1050 or 105 features and represents 0.125 seconds of

acoustic data. Ensemble grouping is not retained and, as such, recognition is based

on testing with a single pattern.

Experimental method and assessment. We tested classification accuracy using

cross-validation experiments as described by Murthy et al. [170] using a leave-one-out

approach [154]. The leave—out-out approach was used due to the high variability found

in bird vocalizations and the relatively small size of the data sets. Each experiment

is conducted as follows:

1. Randomize the data set. For the ensemble data set, randomize the order of the

ensembles. For the pattern data set, randomize the order Of the patterns.

2. In turn select each ensemble/pattern as a test pattern, train MESO using all

remaining data. Test MESO using the single selected ensemble/pattern.

164

3. Calculate the classification accuracy by dividing the sum of all correct classifi-

cations by the total number Of ensemble/patterns.

4. Repeat the preceding steps n times, and calculate the mean and standard de-

viation for the n iterations.

In our leave-one-out tests, we set n equal to 20 Thus, for each mean and standard

deviation calculated, MESO is trained and tested 9,460 times in the case Of the

ensemble data set and 73,500 times in the case of the pattern data set.

We also executed a resubstitution test, where MESO was both trained and tested

using the entire data set. Although lacking statistical independence between training

and testing data, resubstitution affords an estimate of the maximum classification

accuracy expected for particular data set. Each experiment is conducted as follows:

1. Randomize the data set. For the ensemble data set, randomize the order Of the

ensembles. For the pattern data set, randomize the order Of the patterns.

2. Train and test MESO using all ensembles/patterns.

3. Calculate the classification accuracy by dividing the sum Of all correct classifi-

cations by the total number Of ensemble/patterns.

4. Repeat the preceding steps n times, and calculate the mean and standard de-

viation for the n iterations.

In our resubstitution tests, we set n equal to 100 Thus, for each mean and

standard deviation calculated, MESO is trained and tested 100 times for both the

pattern and ensemble data sets.

7.3.2 Classification Results

Table 7.2 summarizes the accuracies and timing results for the four bird song data

sets. Resubstitution is greater than 92% accurate for all data sets while leave-one-out

results are somewhat less accurate. Given that bird vocalizations are highly variable

and that data set sizes are relatively small, we can consider these results promising.

165

Table 7.2: MESO classification and timing results.

Data set

Pattern [Ensemble | PAA Pattern | PAA Ensemble

Accuracy%

Leave-one-out 71.5%d20.9% 76.0%2121.1% 804%:t03% 82.2%:t09%

Resubstitution 92.3%:t3. 1% 96.3%i2.8% 94.7%:1:0.8% 972702121270

Timing (s)

Training 57.7i1.1 56.121217 57.7:1:1.1 56.121217

Testing 57.7i1.9 58.621228 57.721219 58.6:t2.8

Accuracy experiments were conducted using cross-validation with the leave-one-out

approach and resubstitution. Timing experiments were run using the entire data set

for both training and testing. For the PAA data sets, timing results include the time

required for conversion to PAA representation. Timing tests were executed on a 2GHz

Intel Xenon processor with 1.5GB RAM running Linux.

Shown in Table 7.3 is the confusion matrix [176,217] for classification using PAA

patterns and the leave-one-out approach. Matrix columns are labeled with the species

predicted by MESO, while rows are labeled with the species that actually produced

the original vocalization. The main diagonal (in bold) indicates the percentage of

patterns correctly classified. Other cells indicate the percentage of patterns confused

with other species. For instance, the intersection of the row labeled AMGO with the

column labeled BLJA indicates that 4.66% of blue jay patterns were confused with

the American goldfinch. As shown, most patterns are correctly classified, with the

northern cardinal most likely to be classified correctly while the American goldfinch

is most likely to be confused with another species.

Table 7.4 shows the confusion matrix for classification using PAA ensembles and

the leave-one-out approach. Again, most ensembles are correctly classified. Moreover,

ensemble classification is typically more accurate than classification using individual

patterns. However, the black capped Chickadee and the mourning dove are notable

166

Table 7.3: Confusion matrix for classification using individual PAA patterns.

exceptions and are misclassified more frequently than when testing with individual

patterns. Using ensembles, the red winged blackbird is most likely to be classified

correctly, while the mourning dove is most likely to be confused with a different

species.

Table 7.4: Confusion matrix for classification using ensembles comprising PAA pat-

terns.

Values are percentages with empty cells indicating 0%

167

7.3.3 Species Detection

The goal of species detection is toqindicate that the bird song for a specific bird

species is present in an acoustic clip. Detection should maximize the detector’s true-

positive rate while holding false-positives (where other sounds are identified as the

target species) to an acceptably low level. Species detection is useful for automating

ecological surveys and for annotating sensor data, with metadata, to ease identifi-

cation Of candidate data sets for study [14, 23,28]. More generally, detection can be

used to alert human Operators or automated decision makers Of important events. For

instance, acoustics has been used for the detection of railroad car bearing failure [218].

Experimental method. For our detection experiments we divided the ensemble

and pattern data sets into a training and testing set. The two training sets comprise

the patterns (or ensembles) for a single species. For our experiments we used either

the black capped Chickadee or the white breasted nuthatch for training. The two

corresponding testing sets comprise all ‘the patterns for the remaining 9 species after

occurrences Of the training species had been removed. Each experiment is conducted

as follows:

1. Randomize the training set. For the ensemble data set, randomize the order Of

the ensembles. For the pattern data set, randomize the order of the patterns.

2. Select 10% Of the training set and add it to the testing set. Remove the selected

patterns/ensembles from the training set.

3. Train MESO using the remaining data in the training set. Test MESO using

all the data in the testing set, reporting whether a test ensemble/pattern is

correctly identified as the target species.

4. Repeat the preceding steps n times, and calculate the true-positive and false-

positive rates over all n iterations.

168

In our tests, we set it equal to 100 Thus, for each true— and false-positive rate

calculated, MESO is trained and tested 100 times. This process was repeated for each

Of 200 detector settings. Each detector setting specifies a proportion, p, of the MESO

sensitivity sphere 6 grown during training. If the distance between a test pattern and

the closest sphere mean is S p6, then the test pattern is considered as indicating the

presence of the target species and the detector returns true. Otherwise, the pattern

is rejected and the detector returns false. We varied p over the interval [00,20] in

steps of 0.01 and calculated the true— and corresponding false-positive rates for each

setting. When testing using ensembles, a voting method is again used where the

target species is reported as detected only if 50% or more Of the votes are for that

species.

Detector assessment. Receiver Operating characteristic (ROC) curves [219] have

been used for evaluating machine learning and pattern recognition techniques [220,

221] when the cost Of error is not uniform. ROC curves plot the false-positive rate

against the true-positive rate where each point on the curve represents a different

setting of detector parameters. As such, if the cost Of incorrect detection is high, a

detector setting is needed that will hold the false-positive rate low even at the cost Of

failing to detect the target species in many clips. However, since clips are regularly

produced by each sensor platform, failure to detect the target species in some clips

will likely be compensated for during subsequent detector Operation. Moreover, pre-

cision [217] is also computed using the number of true- and false-positives. Precision

is the rate of true-positives to the total number of positive predictions, and is defined

169

TP

FP+ TP’

precision =

where TP and FP are the number of true- and false-positive predictions respectively.

A score of 1.0 indicates perfect precision, and occurs where there are no false-positives.

A larger false-positive count reduces precision.

Figure 7.11 depicts ROC curves for detecting the black capped Chickadee and the

white breasted nuthatch. For the black capped Chickadee, detection is approximately

50% true-positive when the false-positive rate is approximately 4% using either pat-

terns or ensembles. Detection of the white breasted nuthatch is approximately 50%

true-positive with a corresponding 1% false-positive rate using either patterns or en-

sembles. These rates are promising for detection Of species in real environments,

where many other sounds may be heard. Moreover, continuous clip collection yields

future opportunities for detection of a species even when current environmental con-

ditions make detection difficult.

As shown in Figure 7.12, further insight can be gleaned by plotting a ROC curve

together with precision. A semi-log scale magnifies their relationship. For the black

capped Chickadee, the best true-positive rate attained, while maintaining a precision

of 209, is approximately 10% and 9% for patterns and ensembles, respectively. Sim-

ilarly for the white breasted nuthatch, the best true-positive rates attained with a

precision of 209 are approximately 28% and 33%.

High variance is particularly notable in the ROC curve shown in Figure 7.11(b)

170

H i-o

d.) o

o> e>

E :3
m 0.5 a, 0.5

O O

O. Q.

“a’ E
l-* i-'

0 I
0 l

O

(a) BCCH ROC curve using patterns.

T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e

O t
l
t

0-.5 .

False posrtrve rate

I

l

0-.5 .
False posmve rate

(b) BCCH ROC curve using ensembles.

l l

0.5

T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e

 0 l

005 .

False posmve rate

(c) WBNU ROC curve using patterns.

05 .

False posmve rate

(d) WBNU ROC curve using ensembles.

Figure 7.11: ROC curves for detection of the black capped Chickadee (BCCH) and

white breasted nuthatch (WBNU).

and 7.12(b). This variance is in part due to the small size Of the data sets with respect

to the variability found in bird vocalizations. Moreover, a significant proportion of

the frequency range used may not be useful for detection of the target species. For

detection, we can further reduce pattern dimensionality and target a specific frequency

range for each species being detected.

Power spectral density (PSD) histograms plot the power, or intensity, Of an acous-

171

1 I i l

c:

.2

.52 ROC Curve
0

g \

52.3
H 0.5 ’- / "'

d.) . .

,2 Prec1$10n

3::

§.
4.)

E
E-1 0 1 1 1

0.0001 0.001 0.01 0.1

False positive rate

(a) BCCH ROC curve and precision using pat-

terns.

1 l l I

ROC Curve

\

0.5 "-

/

Precision T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e
/
P
r
e
c
i
s
i
o
n

1 1 1

0
0.0001 0.001 0.01 0.1

False positive rate

1

l

ROC Curve

\

/

Precision

T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e
/
P
r
e
c
i
s
i
o
n

8 I

 0 1 1 1

0.0001 0.001 0.01 0.1

False positive rate

(b) BCCH ROC curve using ensembles.

1 I fl I

s:

,2 ROC Curve

.33

o \

é’
O
d—I

e 0.5 e

0.)

>

2+3
V.)

c

Q I O /

“é Prec131on

F 0 1 1 1

0.0001 0.001 0.01 0.1

False positive rate

(c) WBNU ROC curve and precision using pat-

terns.

(d) WBNU ROC curve using ensembles.

Figure 7.12: Semi-log scale ROC curves and precision for detection Of the black capped

Chickadee (BCCH) and white breasted nuthatch (WBNU).

tic signal at different frequencies. Welch’s method [138] is a common approach for

estimating the PSD of acoustic or other types signals across an entire frequency band.

Concisely, Welch’s method estimates the PSD Of a signal by dividing the original sig-

nal into equal sized overlapping sequences. The Fourier transform is then applied to

each sequence and the power Of the signal computed at each frequency. The average

172

power at each frequency is then computed across all sequences.

Figure 7.131 shows PSD histograms for the black capped Chickadee and the white

breasted nuthatch. For comparison, PSD histograms are also shown for the other 9

bird species remaining after removal Of the respective target species. These histograms

show that the most useful frequency ranges for detecting a black capped Chickadee

or white breasted nuthatch in the presence of the other species is afforded by the

ranges z[1.2kHz,6.0kHz] and z[1.2kHz,4.8kHz] respectively. Thus, the number Of

pattern features can be further reduced without increasing the false-positive rate.

Moreover, the removal of unneeded features may reduce variability in detection rates

and improve ROC curve quality.

Figure 7.14 shows the ROC curves for detection experiments using limited fre-

quency ranges. The ranges z[1.2kHz,6.0kHz] and z[1.2kHz,4.8kHz] correspond to

60 and 45 pattern features respectively when using PAA. These curves have similar

shape and interpretation as those in Figure 7.11 but are smoother indicating a reduc-

tion of detector variance. However, when ensembles are used for detection, the ROC

curves still show significant variability, indicating that more training data would be

valuable for improving detection and further reducing variance.

Figure 7.15 plots the ROC curves and precision using a semi—log scale for lim-

ited frequency ranges. For the black capped Chickadee, the best true-positive rate

attained while maintaining a precision of 209 is approximately 9% and 6% for pat-

1Decibels (dB) is a ratio of the difference between a reference signal and the signal

under consideration. For measures of intensity dB is defined as 1010g(3i0) where So

is the reference signal and S is the signal under consideration. The PSD plots are

computed as dB Of intensity where 30 is the normalized mean signal.

173

P
S
D
(
d
B
/
H
z
)

N
w

A
u
:

P
S
D
(
d
B
/
H
z
)

N
w

A
U
:

 h

I

—

O

12 33 SA 75 95 L2 13 i4 15 96

Frequency (kHz) Frequency (kHz)

(a) BCCH PSD histogram. (b) PSD histogram without BCCH.

(‘5' ,\5

i 4 r i 4 r

33 » 33

91 2 91 2 - .

n. a.

l r IHI‘IIIII. «

O

12 33 5A 75 95 12 33 5A 75 95

Frequency (kHz) Frequency (kHz)

(0) WBNU PSD histogram. (d) PSD histogram without WBNU.

Figure 7.13: Power spectral density (PSD) histograms for the black capped Chickadee

(BCCH) and the white breasted nuthatch (WBNU).

tems and ensembles respectively. Similarly for the white breasted nuthatch, the best

true-positive rates attained with a precision of 209 are approximately 29% and 23%.

Although reducing the frequency range used for detection smoothed the ROC curves,

overall detection did not improve. However, a relatively high true-positive rate is

attained with respect to the false-positive rate. Since the count of potential false-

positives is much larger than that for true-positives, a relatively small percentage

increase in false-positives represents a much greater deterioration of precision. For

instance, in our experiments with white breasted nuthatch patterns, only approx-

imately 1.9% of the test set represented the target species. Since the majority of

acoustic events sensed in natural environments will not be voiced by the species of

174

T
r
u
e
p
o
s
m
v
e

r
a
t
e

0 L
A I 1

T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e

0 U
I I J

0 l
0 m

0 0.5, 1 0,5, 1

False posmve rate False posmve rate

(a) BCCH ROC curve using patterns. (b) BCCH ROC curve using ensembles.

1 l I l

8 8
cs «1
L. 1-1

«D o

> >

’5 '5

'53 0.5 — 'a 0.5 _

O O

Q: O.

3 i3
[-‘ E—

O l 0 1

0 0.5 l O 0.5 1

False positive rate False positive rate

(c) WBNU ROC curve using patterns. (d) WBNU ROC curve using ensembles.

Figure 7.14: ROC curves for detection of the black capped Chickadee (BCCH) and the

white breasted nuthatch (WBNU) using only the frequency range z[1.2kHz,6.0kHz]

and z[1.2kHz,4.8kHz] respectively

interest, future research must strive for precise and accurate detection.

7.4 Related Work

Several research projects address selection of tuples from data streams [222—225].

Such works treat a data stream as a database and Optimize query processing for better

175

1':

3 .9.
.2’ ROC curve 8 ROC curve

0
G.)

<1)

s \ s \

9 3
:3 05 — / ~ 2 5 0.5 — / 2

o >> Pr . . .

-~ ec131on :3 . .

’5, 'g Pre0131on

O

Q' 3
O

E

E 0 1 L 1 H 0 J 1 L

00001 0,001 0.01 0,] 1 0.0001 0.001 0.01 0.1 1

False positive rate False positive rate

(a) BCCH ROC curve using patterns (semi-log (b) BCCH ROC curve using ensembles.

scale).

1 r l l 1 1 I 1

ROC Curve

\

ROC Curve

0.5 [- r 0.5 *- -

/ /

 T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e
/
P
r
e
c
i
s
i
o
n

T
r
u
e
p
o
s
i
t
i
v
e
r
a
t
e
/
P
r
e
c
i
s
i
o
n

Precision Precision

0 l 1 l O l 1 1

0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1

False positive rate False positive rate

(c) WBNU ROC curve using patterns (semi-log (d) WBNU ROC curve using ensembles.

scale).

Figure 7.15: Semi-log scale ROC curves and precision for detection of the black

capped Chickadee (BCCH) and the white breasted nuthatch (WBNU) using only the

frequency range z[1.2kHz,6.0kHz] and z[1.2kHz,4.8kHz] respectively

efficiency. Other works address content-based routing [226], where tuple selection is

used to route information based on data stream content. Our work with automated

extraction of ensembles and annotation of data stream content may be beneficial to

many Of these approaches. For example, annotations can be treated as tuples that

176

describe the underlying data stream and can be used by selection schemes for routing

data stream to address application specific requirements.

Recently, there has been increased interest on identifying motifs [212—214,227] in

time series. Motifs are defined as frequently occurring time series sequences. Identi-

fication of motifs requires analysis of a time series to determine which subsequences

occur frequently. Motifs can be used for the construction of a model that represents

the normal behavior of a time series. For instance, the motifs produced by an electro-

cardiogram may be used as a normal reference for a patient’s heartbeat. Moreover,

motifs can be clustered in support Of time series data mining. On the other hand,

a discord [216] is defined as the sequence that is least similar to others. Continuing

with our electrocardiogram example, a discord may represent an aberration of a pa-

tient’s heartbeat. Our work with ensembles complements work on motifs and discords

in that ensembles can be considered as candidate motifs or discords. However, rather

than focus on the most or least frequent time series patterns, ensembles are locally

anomalous patterns that may recur only rarely. Each ensemble may be a motif, a

discord or neither. Some approaches to motif and discord identification focus on sub—

sequences Of a specific length and require both scanning the time series and comparing

subsequences to determine how Often each occurs [213,216]. Others consider variable

length subsequences by iteratively increasing the subsequence length and rescanning

the time series until a specified maximum length has been reached [215]. Our focus is

on the timely, automated processing of continuous streams of sensor data that likely

comprise variable length events. As such, processor and memory efficient techniques

for extracting and processing ensembles are needed. Moreover, our approach to en-

177

semble extraction requires only a single scan Of a time series and extracts variable

length ensembles.

Methods that cluster data stream content to discover a meaningful structuring for

the raw data [228,229] may also benefit from our approach for extraction Of ensembles.

As explained in [211], clustering data streams using sliding windows is ineffective in

the general case. However, clustering motifs can be effective. Although ensembles

are not necessarily frequently recurring, they are time series sequences that can be

treated as candidate motifs. As we have shown, ensembles are useful for classification

and detection applications using acoustic data streams.

Several projects have addressed detection and identification using time series data.

For instance, MORPHEUS [215] addresses the need for unlabeled data sets that rep-

resent normal behavior for training anomaly detectors. MORPHEUS uses a motif

oriented approach that extracts frequently occurring subsequences and treats them

as normal pattern suitable for training a detector. Agile [230] uses a variable memory

Markov model [231] (VMM) to detect transitions in an evolving sensor data stream

produced by Observing an underlying process. Agile uses a VMM to construct a ref-

erence model for a process and then reports a transition when process behavior no

longer corresponds with the model. Partridge, et al. [232] demonstrated that traf-

fic analysis Of encrypted wireless network packet streams can be realized using signal

processing techniques borrowed from acoustics. Using network timing information

and coherence analysis, it was possible to determine how traffic was routed and iden-

tify client and server nodes. Our approach for ensemble extraction and processing

may benefit from leveraging techniques described by these works, and in turn may

178

may provide an effective alternative for use by MORPHEUS or in place of Agile’s use

of VMM.

Recently, researchers have used computer vision techniques to help in the recogni-

tion of recorded music. For instance, Ke et al. [233] used such techniques to produce

signatures from acoustic Spectrograms for recorded songs. These signatures facilitated

later online recognition of replayed music in the presence Of noise or other sounds.

Construction of signatures for classification or detection using acoustics complements

our work by affording new techniques that may further improve species classifica-

tion and detection in natural environments. However, recognition of a species Of bird

is likely more difficult than recognition Of a specific recording, due to the natural

variation found in bird vocalizations.

Other research groups have addressed classification of organisms based on their

vocalizations. Mellinger and Clark [234] addressed classification of whale songs, with

specific application to identification Of bowhead song end notes, using spectrogram

correlation. Fagerlund and Harma. [235] studied parameterization and classification

Of bird vocalizations, using 10 parameters that were used to describe the inharmonic

syllables of 6 bird species. The 10 parameters were used to classify bird species

using a k—nearest neighbor (kNN) approach using Euclidean and Mahalanobis dis-

tance. Classification accuracy was 49% using Euclidean distance and 71% using Ma-

halanobis distance. Another study [236] used bird song syllables and dynamic time

warping [227] (DTW) to mitigate the impact of varying syllable lengths when com-

puting distances. Syllables were clustered and then used for constructing histograms

for each species. The histograms were compared, by computing their mutual corre-

179

lation, for recognition of 4 bird species. The highest classification accuracy attained

was 80%, comparing favorably with our approach. However, we considered 10 species

rather than 4 in our classification experiments.

Kogan and Margoliash [237] used DTW-based long continuous song recognition

(LCSR) and hidden Markov models (HMM) in a comparative study for recognition of

individual birds Of a particular species. Specifically, experiments were conducted us-

ing the vocalizations of 4 zebra finches and 4 indigo buntings. LCSR requires careful

selection of templates for matching vocalizations and other sounds (e.g., cage noises)

in recordings. For HMM, a compound model was constructed by training separate

HMMs on 3 sound categories: calls, syllables and cage noises. A proportion of each

data set is used for HMM training (as much as 59%), while the entire data set is

used for testing. Classification accuracy varied widely depending on the recognition

method used whether recognition was based on syllables or songs, size Of training and

testing sets, template selection, and on which individual bird was to be recognized.

For zebra finches, accuracy was in the range 4.4%—97.9% and 75.8%-98.6% for HMM

and LCSR respectively; similarly for indigo buntings, 21.3%-99.4% and 62.0%—99.2%.

Although very good recognition is attained in some cases, high classification accuracy

depends on expert knowledge for selection Of classifier parameters, and is somewhat

Optimistic since testing and training data overlap. Moreover, as noted [237], it has

been shown that song birds learn their vocalizations with auditory feedback, which

introduces variation between vocalizations of different individuals [203,204] facilitat-

ing recognition in a controlled environment. Due to environmental challenges, such as

noise, it is expected that species detection in natural settings will be more difficult.

180

However, the LCSR and HMM approaches may benefit from automated ensemble

extraction for selection of candidate sounds for training, testing and template con-

struction. Moreover, use of LCSR and HMM techniques may complement our work

with species detection and help improve detector precision.

Each of the above classification studies used different sized populations and differ-

ent species, making direct comparison with our results difficult. However, in general,

our method appears to compare well with other methods used for classification of

birds. Moreover, none of the studies described above addressed the automated on-

line extraction Of acoustic events (ensembles) from streaming data for detection and

classification of bird species in natural environments. Ensemble extraction helps re-

duce the processor and memory requirements for processing continuous data streams

by focusing classification and detection tasks on ensemble data.

7.5 Discussion

We have presented a technique for extracting ensembles from acoustic data streams

with the goals Of classification and detection of bird species. Results of our classifi-

cation and detection experiments show promise for automating species surveys using

acoustics. Moreover, ensemble extraction and processing using distributed pipelines

may enable timely annotation and clustering of sensor data streams. Annotation and

clustering is a first step for transmuting raw data into usable information and its

subsequent use for expanding our knowledge and understanding of our environment

and other complex systems. Although our goals, as presented in this paper, are rela-

181

tively specific, the process for extracting ensembles is general and can be extended to

other types of streaming sensor data and other applications. For instance, automated

monitoring Of a wireless communication channel may indicate that future packet loss

rate is likely to increase. In turn, an autonomous decision maker may choose to in-

sert new pipeline operators or modify parameters, enabling continued communication,

by adding redundancy and correcting for lost packets. Moreover, automated detec-

tion Of mechanical problems, such as bearing failure [218], enables early response and

prevention Of accidents.

182

Chapter 8

Forecasting Network Packet Loss

The main contribution of this chapter is to expand upon our work in Chapter 7, by

investigating automated ensemble extraction for forecasting [238—240] network packet

loss. Specifically, we extract ensembles from four network traces: one trace was

collected as a user roamed about a wireless cell, and three traces were generated using

packet loss models. Using these traces, we evaluate how accurately packet loss can be

predicted as data is streamed to a receiver. The goal Of forecasting is to predict near

term transitions in system behavior [241]. We investigate automated forecasting of

wireless network packet loss to enable early corrective response by autonomic decision

makers. Specifically, we assume packet traces contain events comprising multiple

sensor readings that collectively describe a period of similar packet loss behavior. For

instance, events may capture the vocalization Of a specific bird species or a period Of

high packet loss. Accurate forecasting enables decision makers to invoke preemptive

adaptations to sensed conditions shortly after the onset of an event. For instance, a

decision maker for a data streaming application can increase FEC redundancy soon

183

after the application encounters a period of increased packet loss. Forecasting differs

from classification and prediction in that forecasting attempts to predict overall event

characteristics based on early sensor readings, rather than processing an entire event

at once.

The remainder of this chapter is organized as follows. Section 8.1 describes our ap-

proach for collecting roaming network traces, and Section 8.2 introduces the packet

loss models used in this study. Next, in Section 8.3, a detailed description of our

approach for extracting ensembles from network traces is presented. Section 8.4

describes our experimental method, and Section 8.5 presents the results of our ex-

periments using ensemble extraction for forecasting network packet loss. Section 8.6

describes related work. Finally, in Section 8.7, we summarize and discuss the contri-

bution of this chapter.

8.1 Trace Collection and Characterization

Our trace collection scenario is similar to that used in our Xnaut case study in that

a stationary workstation transmits a data stream to a wireless access point that

forwards the stream to a mobile receiver over an 11Mbps 802.11b wireless network.

The transmitting station was a 1.5GHz AMD Athlon workstation running the Linux

Operating system, and the mobile receiver was a 1.83 GHz Intel Core Duo MacBOOk

Pro running Mac OS X. The workstation transmitted packets comprising 200 bytes of

data 40 times per second using the UDP/1P protocol. This produced a data stream

with a rate of 8,000 bytes per second, sufficient to support 8 bit vocal communication.

184

Trace data comprises the sequence number for each packet received and the delay, in

microseconds, between the arrival of each packet.

A user roamed about a wireless cell in an outdoor environment, and 5 hours of

trace data was collected in half hour increments. The workstation and the access

point were both located inside a wood and brick building and transmitted to a roam-

ing receiver outside the building. Receiver motion, physical distance, reflection and

occlusions caused by physical Objects, such as trees or the body Of the user carrying

the receiver, all affected packet loss rate. Notably, wireless computer networks typ-

ically Operate at 2.4GHz that transmits poorly through obstacles containing water,

such as dense vegetation. The user performed several different activities while car-

rying the receiver including: standing in one place, pacing back-and—forth over short

distances, and walking over longer distances. Typically, the user stood at one loca-

tion or paced for approximately 15 to 20 seconds before walking to a new location.

Distance from the access point ranged from only a few feet to approximately 90 feet.

8.1.1 Trace Scoring and Sampling

One problem when making decisions using trace data is that the sequence number and

inter-packet delay are only updated when a new packet is received. During periods

of high loss, the time between packet receptions can become protracted, inhibiting

timely response by a decision maker. For this reason, in software, we implemented a

synthetic sensor to compute a trace score that can be sampled at regular intervals,

rather than being read only when a new packet arrives. Our trace score is defined as:

185

0, iffAs=0

scoretmce(As, Ar) E 1

1%séi’ otherwise

where As is the difference between the current sequence number and the one when the

sensor was last read, and Ar is the change in the number Of packets received. When

there is no change in the sequence number, this function returns 0 When no packets

are lost, the sequence number and the number Of packets received both increase by

one, and the function returns 2. When packets are lost, the sensor returns a value

between 0 and 2. In our approach, the sensor executes in a thread separate from that

of the receiver. Thus, it is possible for the sensor to read both the sequence number

and packet counter before an update of both is complete. A mutex can be used to

prevent the sensor from reading during an update. However, we prefer to sample at

a specific regular interval, and the use of a mutex may incur additional delay during

trace score computation. Our trace score is designed to differentiate between when

no new packets were received, and As does not increase, and when all packets appear

to be lost, and only As increases.

In our approach, the sensor sampling frequency must be computed. The Shannon-

Nyquist sampling theorem [242—245] holds that a continuous-time signal can only be

reconstructed from its samples if the sampling frequency is more than twice the

frequency of the signal. We Observe that the rate at which the sequence number

and inter-packet delay are updated is at most 40 times per second. Thus, the sensor

should be sampled at a frequency greater than 80 times per second to avoid aliasing,

186

where different signals appear to be identical. We sampled the trace score 120 times

per second, which produces a signal that repeats the sequence 0,0,2 during periods

without packet loss.

8.1.2 Trace Characterization

Figure 8.1 depicts two methods for visualizing network traces using trace scores. The

top graph shows a scatter plot Of the trace score for a 30 minute roaming trace. The

solid lines at the tOp and bottom comprise the most frequently occurring trace score

values, 2 and 0 Points plotted between 2 and 0 indicate that packets have been lost.

The bottom graph shows the same trace plotted as a spectrogram. Using a sam-

pling approach for observing packet loss enables the construction of a spectrogram.

Construction of a spectrogram from trace score data, is similar to the method for

constructing a spectrogram from acoustic data, discussed in Chapter 7.1.1. First, the

trace score data is divided into equal sized segments and then it is passed through

the pipeline depicted in Figure 7.1.1 to construct a frequency domain representation.

Spectrograms are useful for visualizing the rate at which the trace score changes.

Comparing the scatter plot and the spectrogram reveals that, during periods of packet

loss, trace score values exhibit rapid, broad-spectrum, change. Notably, when roam-

ing, packet loss behavior is significantly affected by the motion Of the person carrying

the receiver. When the receiver is moving, packet loss is typically more pronounced.

As such, the periods of packet loss shown in Figure 8.1 Often correspond to periods

when the user is pacing or walking from one place to another.

187

3

2
ON.

'21,..- Tuiszsfisr-fi—wfi'u—wfifiww—wfi

§o

1-'7_

N

:8

o

1.) 1?) Minutes 215 50

Figure 8.1: Top, a scatter plot of the trace scores for a 30 minute roaming trace.

Bottom, a spectrogram of the same roaming trace.

We consider a burst to be a period when no packets are lost. Conversely, a gap is a

period where all packets are lost, terminated by the reception of the first packet of a

new burst. To characterize burst and gap periods we plot histograms and probability

plots for inter-packet delay, run length and loss rate. Probability plots are produced

by plotting the frequency at which data points occur in comparison with a selected

distribution. If the plotted points are drawn from this distribution, they appear to

have a. linear relationship. Histograms and probability plots are computed using the

5 hours of roaming trace data.

Shown in Figure 8.2 are histograms and normal probability plots for burst and gap

inter-packet delay on a per packet basis. First, let us consider the distribution of burst

inter-packet delays. The histogram, depicted in Figure 8.2(a), shows that the most

188

common value is approximately 25 milliseconds, as expected for a packet transfer

rate Of 40 packets per second. Moreover, the computed mean and standard deviation

are 24.6:t5.0, indicating a similar central value. Although the histogram distribution

appears to be somewhat bell shaped, Figure 8.2(b) reveals that the distribution of

burst delays does not appear to be Gaussian. Now, let us consider the distribution of

gap inter—packet delays. Figure 8.2(c) plots the histogram of gap inter-packet delays.

The most common value is approximately 35 milliseconds, and similarly the computed

mean and standard deviation are 34.521259. Gap delays tend to be significantly larger

than those for bursts. Again, the histogram appears to be bell shaped, and from

Figure 8.2(d) the distribution appears to be approximately Gaussian.

Next, let us consider the distribution of burst and gap run-lengths in terms of

packet count. The histogram, shown in Figure 8.3(a), shows that most bursts com-

prise only a few packets. Moreover, the plot in Figure 8.3(b) shows that burst run-

lengths appear to be geometrically distributed except for very long bursts. Similar to

bursts, most gaps comprise only a few packets, as shown in Figure 8.3(c). However,

as shown in Figure 8.3(d), the distribution Of gap run-lengths is not clearly geomet-

ric. Intuitively, if the burst run-lengths are geometrically distributed, a geometric

distribution of gap run-lengths is expected. However, if individual packet losses are

not independent Bernoulli trials, then a geometric distribution may not exist. NO-

tably, packet losses often correlate with conditions that impact packet delivery, such

as signal occlusion, distance or receiver motion.

Finally, let us consider the distribution Of loss rates for 1 and 5 second segments.

We compute these loss rates by dividing the 5 hours of roaming trace data into 1-

189

1 I I I I 3

cu

3 2

0.8 - r a

>

CD '3 1
H

E! 0.6 ~ ~ E

3 O 0

.54 G

8 0.4 - — '8

m *5 -1

o

0.2 — 4 S“ _2

Lil

0 ' L —3

<3 25 50 >75

Delay (ms)

(a) Burst histogram.

1 I f I I 3

o

0.8 — — § 2

>

0 B 1
H

806~ — E

‘ES 0
.M c: 0

8 0.4 - a '8

m 3 -1

8.
0.2 - 'r x _2

LL]

0 -L _3

<3 25 50 >75

Delay (ms)

(c) Gap histogram.

50

If/ 9,

F yfinearfitf

1- g _190

f 70

/: ,0

L /1

O
“

X

1

 \ 1

0.5 1

Delay (scaled)

(b) Burst normal probability.

r I

o / W

* hnear fit \/ "

_ 90

70

50

30

_ f 10

 I. / ,

0.5

Delay (scaled)

(d) Gap normal probability.

P
e
r
c
e
n
t
i
l
e
(
%
s
)

P
e
r
c
e
n
t
i
l
e
(
%
s
)

Figure 8.2: Burst and gap delay histograms and normal-probability plots for a roam-

ing receiver. Normal-probability plots represent the delay range [3ms-50ms] scaled

by subtracting 3ms and dividing by 50ms.

and 5-second, non-overlapping segments, and compute the loss rate for each. We

plot histograms and exponential probability plots in Figure 8.4. The sets Of 1 and 5

second loss rates both comprise many segments of little or no loss that are distributed

approximately exponentially. In fact, for most segments, no packets were lost, and

more than 90% of segments had a loss rate _<_1%. As such, a loss rate increase likely

correlates with an increase in the number Of low loss segments. This suggests that

190

l I I I I I 10 I

<1)

%
0.8 ~ —

3 1:;
a) ' 99 Q

*5 o. _ _ g E
f: ' E . .2
3 8 5 linear fit a:

8 0.4 ~ — on g

m B ...“? 90 3

‘5’ ./ 80 a.
J -

0.2 r g. f 70

LL] ‘ 50

o J 1 l— o 10
<3 25 50 75 >100 0.5 1

Run length (packets) Run length (scaled)

(a) Burst histogram. (b) Burst geometric probability.

1 I r I I I

0

§
0.8 - -

Z a:
0 ' 99 0

a o. _ - 5 ‘3H a

3'3 CE: 4 =2
.54 a, g

o _ - no on
:3 0.4 U

m 3 9o :5
H

o 80 Du

0.2 - "‘ § 70

m 50

0 J 1 l L 0 10

<3 25 50 75 >100 0.5 1

Run length (packets) Run length (scaled)

(c) Gap histogram. (d) Gap geometric probability.

Figure 8.3: Burst and gap run-length histograms for a roaming receiver. Geometric-

probability plots are scaled by dividing by the longest run-length.

packet loss can be described as comprising distributions of loss rate segments.

In this section, we described a sampling approach for collecting and characterizing

computer network packet loss. Our analysis of traces collected while roaming about

a wireless cell reveals that lossy periods are characterized by rapid, broad-spectrum

Moreover, an increase in loss rate likely correlates with a correspondingchange.

increase of short, low-loss segments, a result similar to that observed in other works [7,

191

I F I I I I I 5 I

O

a .

0.8 ~ ‘ .

> linear fit A
'3 w

93 3:: 5°
:3 0.6 b .. g 99 v

D

‘6 o 93 :—
.54 o. 2 5 — — :1

o _ J >< I:
g 0.4 0 95 8

m B 90 3

8 O1

0.2 k .. a)

an
70

LL]

0 1 1 I 1 I 0 L 30

l 5 10 15 20 25 O 0.5 l

LOSS rate (%) LOSS rate

(a) l-second loss histogram. (b) l-second exponential probability.

1 I I I I I T 5 I

D

3 .

'3 linear fit 3
0.8 b " >

A

o 3: s‘3H H

:3 0.6 — — g 99 v
a)

‘5 0 9s :7:
x G. 2.5 "‘ T H

o >< c:
g 0.4 e - 0 95 8

m E 90 :3

2", On

0.2 - - 0.)

CL
70

:5 l’
0 1 l 1 i i 0 1 3O

1 5 10 15 20 25 0 05 1

LOSS rate (%) LOSS rate

(c) 5-second histogram. (d) 5-second exponential probability.

Figure 8.4: l-second and 5—second Loss rate histograms and exponential probability

plots. Exponential probability plots are scaled by dividing by the largest loss rate.

246—248]. Moreover, the distribution of burst and gap inter-packet delay and run-

length may differ significantly.

8.2 Packet Loss Models

In our forecasting experiments, described in Section 8.4, we compare and contrast

forecasting packet loss using a real, 5-hour, roaming trace with 2 simulation models

192

and a stepwise model for generating artificial packet losses. In autonomic software,

models can be used to train a decision maker and construct statistical representations

of environmental or software behavior offline. Moreover, collecting traces in real

environments that provide good coverage of overall behavior can be time consuming

and difficult. As such, simulation of environmental conditions and software operation

can ease the implementation of autonomic decision makers.

First, we describe the Gilbert-Elliot model [249,250] that is well known and widely

used for modeling network packet loss. For our forecasting experiments, we use the

simplified Gilbert-Elliot model described by Tang et al. [7]. As depicted in Figure 8.5,

a two-state Markov model is used to transition between a burst and gap state in a

probabilistic fashion. As shown, the probabilities of remaining in the burst and gap

states are a and ,6, respectively. Moreover, the burst-to—gap transition probability is

given by (1 — a) while the gap-to—burst probability is given by (1 — [3).

Burst Gap 5

(error- (error)

tree)

l-B

Figure 8.5: Simplified Gilbert-Eliot Model (adapted from [7]).

Since, packet losses are independent Bernoulli trials in this model, both burst and

gap run-lengths are geometrically distributed. As such, the burst and gap run-length

can be computed when generating a trace by [7]:

193

10 u

lengthrun(u,p) = Egg-9LT),

where u is a uniformly distributed random variable drawn from the interval [0,1], and p

is the probability for transitioning out of the burst or gap state, depending on whether

a burst or gap run-length is being computed. As described in [247], we compute a

and ,6 directly using the run-lengths extracted from the 5 hours of roaming trace

data, and set the burst-to—gap and gap-to—burst transition probabilities to 0.0184534

and 0.299966, respectively.

The second model we consider is a trace-based approach for modeling network

channel behavior introduced by Nguyen et al. [246]. This approach also uses a two-

state model, but differs from the simplified Gilbert-Elliot model by using a composite

function comprising the piecewise assembly of pareto and exponential distributions.

Using a large number of packet traces collected in a 2Mbps Lucent WaveLan network,

linear regression was used to compute distribution parameters that best matched the

packet losses exhibited by the traces. The authors showed that this trace-based

model was more accurate than a simple Gilbert-Elliot model in terms of accurately

representing the distribution of run-lengths computed from the traces. Finally, the

third model that we use is the simple probabilistic loss model we used in our case

study for adaptive error control, described in Chapter 6. Artificial packet losses are

generated by varying the loss rate from 0.0 to 0.8 in steps of size 0.025.

Inter-packet burst and gap delays were added to each of these three models based

on histograms computed using the 5-hour roaming trace data. For each generated

194

packet, a burst or gap delay was randomly selected from a histogram according to the

frequency with which each delay period appears. The inclusion of inter-packet delay

enabled these generated traces to be sampled in the same way as the real roaming

trace. We generated ten hours of trace data using each of these three models for use

in our experiments.

8.3 Ensemble Extraction and Processing

Figure 8.6 depicts our approach to automated network trace analysis using a Dynamic

River pipeline that targets forecasting of packet loss. First, trace scores are sampled

by the readout operator that encapsulates trace scores as Dynamic River records.

The remaining operators comprise the process for extracting ensembles and processing

for forecasting packet loss using MESO.

The pipeline segment, =>[saxanomalylsteptrigger|stepcutter], transforms

records comprising trace scores into ensembles. The moving average of the SAX

anomaly score, as described in Section 7.1.3, is output by saxanomaly in addition to

the original trace data. This moving average is used as a window of anomalous be-

havior by the stepcutter Operator. In our experiments with forecasting packet loss,

we set both the moving average window and the SAX anomaly window to 120 and

the SAX alphabet size to 8. Figure 8.7 plots the anomaly score computed by the

saxanomaly pipeline Operator for the signal depicted in Figure 8.1.

Figure 8.8 depicts the trigger signal output by the steptrigger operator (tOp) and

the corresponding 5-second loss rates (bottom). The steptrigger operator trans-

195

 Processed
Ensemble ~ '

F reccordz- ,

Figure 8.6: Block diagram of pipeline operators for converting network traces into

ensembles for forecasting packet loss.

1

 0

A
n
o
m
l
a
y
S
c
o
r
e

0
.
5

0 1‘5 Mlnutes 25 fl)

Figure 8.7: Anomaly score generated for the signal shown in Figure 8.1.

forms the anomaly score output by saxanomaly into a trigger signal that has discrete,

integer values selected based on a threshold setting. If the anomaly score increases

or decreases by more than the specified threshold, the trigger score emitted is cor-

respondingly adjusted by dividing the anomaly score by the threshold and rounding

to nearest whole number. In our experiments, we set the Steptrigger threshold to

0.05.

196

 7

fl

1
O

fi
r

L
o
s
s

r
a
t
e

T
r
i
g
g
e
r
V
a
l
u
e

0
.
5

 O MhmflrmMMWMMM/A‘MJMA

Minutes 200

Figure 8.8: Step trigger signal and 5 second loss rates for the trace score shown in

Figure 8.1.

The stepcutter operator reads both the records containing the original trace

scores and the records emitted by steptrigger. When the trigger signal transitions

to a different value, stepcutter first closes the current scope and then emits an

OpenScope record, designating the start of a new ensemble. Stepcutter then begins

composing a new ensemble. Each ensemble comprises values of the original trace

score data that correspond to periods when the trigger signal had a specific value.

The record stream, as emitted from stepcutter, comprises ensembles that represent

periods of similar packet loss behavior as detected by saxanomaly. Each ensemble

is then written to saxbitmap for conversion to SAX bitmap representation. Finally,

this bitmap is passed to record2vect for conversion to a vector representation that

can be used as a training or testing pattern by MESO. A sequence length of 2 was

used for constructing SAX bitmaps for our forecasting experiments.

197

8.4 Data Sets and Methodology

We divide all the ensembles extracted from a trace into a training and testing set

using the mean 5-second loss rate computed for each ensemble. Computed loss rates

have a resolution of 0.01. Ensembles are grouped by loss rate and each group is

divided evenly between the training and testing sets with extra ensembles, from odd

numbered groups, assigned for training. Moreover, we retain only ensembles that are

at least 10 seconds in length for our forecasting experiments. The data sets used in

our forecasting experiments differ from those used for our classification and detection

experiments, described in Chapter 7, in that ensembles are not comprised of patterns.

Instead, patterns are constructed by computing a SAX bitmap for one or more seconds

of ensemble data. As shown in Table 8.1, each ensemble is used to produce one or more

patterns for processing by MESO. Training patterns are constructed by computing a

SAX bitmap on a second—by—second basis for each ensemble. That is, a SAX bitmap

is computed using the first second of ensemble data, then the first two seconds of

ensemble data and so forth. For training, all second-by-second bitmaps are computed

for each training ensemble. Testing patterns are computed for each testing ensemble,

on a second-by-second basis, for the first 1 through 10 seconds of ensemble data.

Table 8.1 gives the name of each data set, a brief description, the number of training

and testing ensembles used to produced MESO patterns, and the number of training

and testing patterns produced.

For our experiments, we labeled the training and testing patterns in two ways.

First, we assigned each pattern a metadata label comprising the minimum, maximum

198

Table 8.1: Total training and testing ensemble counts.

Ensemble count Pattern count

Data set Description 'I‘raininngesting Training Testing

Roam 5—hour roaming trace 351 328 8238 328

Gsim Gilbert-Elliot model 802 797 15111 797

Wlsim Trace-based wireless model 735 712 16529 712

Ploss Step-wise probability model 544 498 17854 498

and mean 5-second loss rate computed using the trace data associated with each

ensemble. Loss rates are computed by dividing trace data into discrete 5-second

periods and computing the loss rate for each. Table 8.2 shows the number of training

and testing patterns for several ranges of mean loss rates. For the first three data

sets, most of patterns have relatively low loss rates. For the ploss data set, packet

losses are generated systematically. As such, the ploss data set has a more balanced

distribution of patterns across loss rate categories.

Second, for each pattern we selected the FEC (n, k) combination that provides the

least redundancy that is greater than or equal to the mean ensemble loss rate. Decision

makers for autonomic software, such as the Xnaut, can use these FEC labels to invoke

corresponding adaptive actions. We selected each FEC code from the following set of

13 (n, k) combinations:

(1, 1) (10,9) (5,4) (4,3) (3, 2)

(4,2) (6,2) (8,2) (10,2) (12, 2)

(14,2) (16,2) (18,2).

The number of training and testing patterns assigned a particular FEC code is

shown in Table 8.3 (continued on the next page). For the first three data sets, most

patterns are assigned an FEC code that provides relatively little redundancy, while

the ploss data set has a more evenly balanced assignment.

199

Table 8.2: Training and testing data set characterization.

Pattern count

])ata set Loss% (r) Training Testing

FRoam 7‘ =0 3599 [43.7%] 161 [49.1%]

0< 7' $20 4002 (48.6%) 149 (45.4%)

20< r g 40 508 (6.2%) 16 (4.9%)

40< r g 60 78 (0.9%) 1 (0.3%)

60< r _<_ 80 30 (0.4% 0 (0.0%)

80< 7‘ g 100 21 (0.3%) 1 (0.3%)

Gsim 7' =0 161 (1.1%) 12 (1.5%)

0< 7' 320 14950 (98.9%) 785 (98.5%)

20< 7‘ g 40 0 (0.0%) 0 (0.0%)

40< r g 60 0 (0.0%) 0 (0.0%)

60< r g 80 0 (0.0%) 0 (0.0%)

80< 7' s 100 0 (0.0%) 0 (0.0%)

im 1' =0 10656 (64.5%) 497j69.8%7l

0< 1' $20 2713 (16.4%) 112 (15.7%)

20< 7' g 40 3149 (19.1%) 103 (14.5%)

40< r g 60 11 (0.1% 0 (0.0%)

60< r S 80 0 (0.0%) 0 (0.0%)

80< r S 100 0 (0.0%) 0 (0.0%)

loss 7' =0 319 (1.8% 16 (3.2%]

0< 7' $20 3199 (17.9%) 105 (21.1%)

20< 7' g 40 4212 (23.6%) 120 (24.1%)

40< 7' g 60 4881 (27.3%) 157 (31.5%)

60< r _<_ 80 5121 (28.7%) 96 (19.3%)

80< r g 100 122 (0.7%) 4 (0.8%)
Experimental method. For our forecasting experiments we select one data set

for training MESO and select either the same data set or a different one for testing.

Training uses the entire set of training data while testing uses SAX bitmap patterns

constructed using only the first 1 to 10 seconds from each testing set ensemble. Note,

when the same data set is used for both training and testing, training and testing

data do not overlap. Each experiment is conducted as follows:

1. Randomize the patterns in the training set.

2. Train MESO using all the data in the randomized training set.

3. Using the ensembles in the test set, construct a SAX bitmap test pattern for

each ensemble using only the first t seconds of ensemble data.

200

Table 8.3: Training and testing data set characterization labeled with FEC codes.

Pattern count

_Data set FEC(n,k) Training Testing

Roam HA) 3620 (43.9%; 162 (49.4%]

(10,9) 2955 (35.9%) 111 (33.8%)

(5,4) 1047 (12.7%) 38 (11.6%)

(4,3) 300 (3.6%) 9 (2.7%)

(3,2) 116 (1.4%) 7 (2.1%)

(4,2) 155 (1.9%) l (0.3%)

(6,2) 30 (0.4%) 0 (0.0%)

(8,2) 15 (0.2%) 0 (0.0%)

(10,2) 0 (0.0%) 0 (0.0%)

(12,2) 0 (0.0%) 0 (0.0%)

(14,2) 0 (0.0%) 0 (0.0%)

Gsim (1,1) 161 (1.1%) 12 (1.5%]

(10,9) 14792 (97.9%) 778 (97.6%)

(5,4) 158 (1.1%) 7 (0.9%)

(4,3) 0 (0.0%) 0 (0.0%)

(3,2) 0 (0.0%) 0 (0.0%)

(4,2) 0 (0.0%) 0 (0.0%)

(6,2) 0 (0.0%) 0 (0.0%)

(8,2) 0 (0.0%) 0 (0.0%)

(10,2) 0 (0.0%) 0 (0.0%)

(12,2) 0 (0.0%) 0 (0.0%)

(14,2) 0 (0.0%) 0 (0.0%)

4. Test MESO using all the SAX bitmap test patterns, reporting both the predicted

and actual minimum, maximum and mean ensemble loss ratas and FEC code

metadata.

5. Repeat the preceding steps 71 times, and evaluate using the evaluation metrics

discussed in Section 8.4.1 over all 71 iterations.

In our tests, we set 77. equal to 100 and t ranges from 1 to 10 seconds. Thus, MESO

is trained and tested 100 times for each experiment and 10 experiments, one for each

time period, are completed for each training/testing data set combination.

201

Table 8.3: (cont’d)

Pattern count

Eta set FEC(n,k) Training Testing

Wlsim (1,1) 10656 (64.5%] 497 (69.8%)

(10,9) 1937 (11.7%) 89 (12.5%)

(5,4) 776 (4.7%) 23 (3.2%)

(4,3) 1037 (6.3%) 28 (3.9%)

(3,2) 1891 (11.4%) 65 (9.1%)

(4,2) 232 (1.4%) 10 (1.4%)

(6,2) 0 (0.0%) 0 (0.0%)

(8,2) 0 (0.0%) 0 (0.0%)

(10,2) 0 (0.0%) 0 (0.0%)

(12,2) 0 (0.0%) O (0.0%)

(14,2) 0 (0.0%) 0 (0.0%)

Ploss (1,1) 319 (1.8%) 16 (3.2%)

(10,9) 1722 (9.6%) 56 (11.2%)

(5,4) 1477 (8.3%) 49 (9.8%)

(4,3) 1073 (6.0%) 27 (5.4%)

(3,2) 1564 (8.8%) 44 (8.8%)

(4,2) 3998 (22.4%) 139 (27.9%)

(6,2) 3800 (21.3%) 88 (17.7%)

(8,2) 2643 (14.8%) 44 (8.8%)

(10,2) 1136 (6.4%) 31 (6.2%)

(12,2) 122 (0.7%) 4 (0.8%)

(14,2) 0 (0.0%) 0 (0.0%)

8.4.1 Evaluation Metrics

In these experiments, the goal is to accurately predict overall ensemble packet loss

behavior using only the first few seconds of ensemble data, potentially enabling timely

response by an autonomic decision maker. We evaluate forecast accuracy in three

ways. First, using the mean ensemble loss rate, we evaluate accuracy using loss rate

margins. A margin specifies how much the predicted loss rate can differ from the

actual mean and still be counted as an accurate forecast. For instance, a prediction

will be considered accurate, using a 2% margin with an actual mean loss rate of 20%,

if the predicted rate is in the range [18%-22%]. Second, using the FEC code metadata

202

labels, we evaluate how accurately MESO predicts the optimal code assigned to each

test pattern. Finally, we evaluate using the minimum and maximum loss rates using

coverage and precision, discussed next.

Coverage. Packet loss behavior, as captured using ensembles, can be described as a

period when the loss rate varies only over a limited range. In our experiments, we use

ranges with an upper and lower bound set to the maximum and minimum 5-second

loss rate. Changing FEC codes to address changes in the mean loss rate may provide

insufficient redundancy for a wide range of loss rates. That is, many packets may

still be lost when the loss rate increases above the mean. A decision maker that can

accurately forecast packet loss ranges may choose to add greater redundancy for a

period when loss rate varies widely while conserving bandwidth during a period with

a narrow range. We evaluate forecasting accuracy, using packet loss ranges, with

coverage and precision metrics. Coverage is the proportion of the actual range that

is covered by the predicted range. A value of 1 indicates complete coverage, while 0

indicates no coverage of the actual range. Formally, we define coverage as:

0, if (CU—CL) <0

coverage(C’L, CU,TL,TU) E ,

C — C' +1 .
W, otherwise

where TU and TL are the upper and lower loss percentages for the actual (true)

ensemble range, and CU and CL are the upper and lower values of the coverage range.

We define CU and CL as:

203

PU, i3 PU S TU PL: iff PL 2 TL

CU(TU,PU) E CL(TL,PL) E ,

TU, otherwise TL, otherwise

where PU and PL are the upper and lower loss percentage for the predicted range.

Precision. Notably, a very wide predicted range can completely cover the actual

range, but be imprecise. That is, the range predicted can be much wider than the

actual range, and may cause a decision maker to add too much redundancy and waste

bandwidth. We further evaluate forecasting loss ranges using a measure of precision

defined as:

[TU—Pu]+]TL—PL]

200 ,

 precision(TL,TU, PL,PU) E 1 —

that computes how closely the predicated range matches the actual range. A precision

of 1 indicates a perfectly precise forecast.

8.5 Assessment

Figure 8.9 shows the forecasting accuracies when using mean ensemble loss rates with

margins. Tabulated data, used for producing the plots included in this section, can

be found in Appendix C. In these experiments, training and testing patterns came

from the same data set. As shown, MESO accuracy increases with an increase in

margin size and as more ensemble data is used for creating a test pattern. For a 0%

margin, accuracy is typically low for all data sets. With a 5% margin, accuracy is

204

minimally 44.1% for the ploss data set when test patterns are constructed using only

1 second of data. However, when test patterns are constructed using 10 seconds of

data, accuracy is more than 80.5% for all data sets. Since packet loss behavior is very

dynamic while roaming, we consider these results promising.

Figure 8.10 shows the forecasting accuracies when MESO was trained with pat-

terns produced using generated data and tested using real data from the roam data

set. Again, mean ensemble loss rates and margins are used for evaluation. As shown,

accuracy typically increases with margin size. However, as longer periods are used

for constructing test patterns, accuracy does not show clear improvement when train-

ing with the gsim or wlsim data sets. Moreover, variance is significant for all data

sets and standard deviations are often >5%. However, when training with the ploss

data set, accuracy increases with an increase in margin size and the period used for

constructing test patterns. We attribute the utility of training with ploss data to

the systematic approach used for generating packet losses. This systematic approach

provides a better representation of the wide range of packet loss rates found in a real

roaming trace.

Figure 8.11(a) shows forecasting accuracy when patterns are labeled with the 13

FEC codes introduced in Section 8.4. In all cases except gsim, accuracy increases as

longer periods are used for constructing testing patterns. Using discrete FEC codes,

the highest accuracy attained was 96.5% for the gsim data set, while for the roam

data set, an accuracy of 71.8% was attained when test patterns were constructed

using 10 seconds of ensemble data.

Results when training using generated data and testing on data collected while

205

100

A

1
80¢

8° 8°
>5 >~. 60 _ I

O O

a a

o o 40 ‘

<2 <2

20 '—
" ZOJM.

0 l l l l l l l l 0 l l l M l l l 1

12345678910 12345678910

Ensemble data (seconds) Ensemble data (seconds)

(a) Roam accuracy. (b) Gsim accuracy.

100 l I l I 1 I I I

80

8° 8°

>~. >5 60

8 8
H H

8 8 4
o 40 V ‘ o 40<

<2 <1 ..

20 ~ 5 20

O l J I l l l l l O l l 1 l l l l L

12345678910 12345678910

Ensemble data (seconds) Ensemble data (seconds)

(c) Wlsim accuracy. ((1) Ploss accuracy.

Loss Rate Margin

0% margin —1—

1% margin -—x—

2% margin +

3% margin —8—

4% margm —e—-

5% maram —.e.—

Figure 8.9: MESO forecasting accuracy with loss rate margin. Experiments conducted

using the method described in Section 8.4.

roaming are shown in Figure 8.11(b). Data patterns are labeled with FEC code

labels. Similar to our results when using margins, when longer periods are used for

constructing testing patterns, gsim and wlsim show little improvement, while training

206

8° 8°

5 5
CU <6

‘— H

:3 :3

0 O

O O

< <

20 — ~

0 I I j l Ifl I I I O I l l 1 1m 1 l 1

12345678910 12345678910

Ensemble data (seconds) Ensemble data (seconds)

(a) Gsim/Roam accuracy. (b) Wlsim/Roam accuracy.

100 l I I I 1 I I I

80

8°

>7 60 t:

8 .
H

:3

° 400 .

<2 Loss Rate Margm

20-_ - 0% margin —1—

1% marg1n ——x——

2% margin +

0 1 1 1 1 1 1 L 1 3% margln —E—

1 2 3 4 5 6 7 8 9 10 4% margin —9—

Ensemble data (seconds) 5% margm -—A—
(c) Ploss/Roam accuracy.

Figure 8.10: MESO forecasting accuracy when trained using generated data. Exper-

iments conducted using the method described in Section 8.4.

with ploss data shows a moderate, corresponding increase in accuracy.

For comparison with our Xnaut case study, described in Chapter 6, we relabeled

the data sets using the FEC codes used by the Xnaut decision maker during au-

tonomous operation atop a wireless network. Again, the FEC code selected as a label

for each pattern is the FEC code that provides the least redundancy that is greater

than or equal to the mean ensemble loss rate. Again, for completeness, the FEC

207

100 I I I I I I l > 100 l I l I I I I I

<

Gsim/Roam —a—

80 - Wlsun/Roam—e— ‘

Ploss/Roam —e.—

8° 8°

5 5 60
«1 «1
H H

:1 :1

8 8 40

<1: <1 '

20 — —

0 1 L L l l l l l 0 1 l l l 1 l l I

12345678910 12345678910

Ensemble data (seconds) Ensemble data (seconds)

(a) Trained and tested using the same data set. (b) Trained and tested on different data sets.

Figure 8.11: MESO forecasting accuracy with FEC code labels. Left, results are

produced by training and testing using patterns from the same data set. Right,

results are produced by training on generated data and testing on data from the roam

data set. Note, when using the same data set for training and testing, training and

testing data does not overlap. Experiments conducted using the method described in

Section 8.4.

(71,16) combinations used by the Xnaut are:

(1,1) (4,2) (6,2) (8,2) (10,2)

(12,2) (14,2) (16,2) (18,2).

Figure 8.12(a) shows MESO forecasting accuracy when using Xnaut FEC code

labels. Notably, accuracy increases as longer periods are used for constructing test

patterns. Moreover, by reducing the number of FEC codes, overall accuracy has

also increased. Again, gsim has the highest accuracy, 97.4%, when 10 seconds of

data is used for constructing testing patterns. Similarly, the roam data set attains

an accuracy of 85.3%. These results suggest that, for highly dynamic environments,

adaptive actions that address a wide range of conditions may be more viable than

those that only target specific situations. Figure 8.12(b), plots our results when

208

training on generated data and testing using roam data set patterns. Again, only

when training with ploss data does accuracy improve.

8° 8°

5 5
:6 <6

H H

:3 5

8 40 — r 8 40 "- '

< Roam —B— < .
Gsrm _9_ Gsun/Roam —EI—

20 — Wl81m—A— J 20 r- WISIm/Roam—e— -

Ploss ——)l(—— Ploss/Roam —A—

O 4 l l l 1 l l 1 0 l l l l l l 1 1

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Ensemble data (seconds) Ensemble data (seconds)

(a) Trained and tested using the same data set. (b) Trained and tested on different data sets.

Figure 8.12: MESO forecasting accuracy with Xnaut FEC code labels. Left, results

are produced by training and testing using patterns from the same data set. Right,

results are produced by training on generated data and testing on data from the roam

data set. Note, when using the same data set for training and testing, training and

testing data does not overlap. Experiments conducted using the method described in

Section 8.4.

Depicted in Table 8.4 are our results when evaluating MESO accuracy using cov-

erage and precision. In these experiments, training and testing patterns come from

the same data set. For all data sets, both coverage and precision improve with an in-

crease in the period used for constructing test patterns. The best coverage is 0.705,

attained using the ploss data set, while 0.616 is attained using the roam data set.

The highest precision, 0.976, is attained using the gsim data set, while a precision of

0.955 is attained using the roam data set.

Table 8.5 depicts MESO coverage and precision when generated data is used for

training and the roam data set is used for testing. As the period for constructing

209

Table 8.4: MESO forecasting coverage and precision.

Coverage

Data set

Seconds Roam Gsim L Wlsim Ploss

1 second 0.377:l:0.0T7 0.592:l:0.012 0.3822t0.013 032310.011

2 second 0.476:l:0.044 0.621:l:0.010 0.496:l:0.016 0.460:l:0.011

3 second 0.4732t0.029 0.6282t0.008 0.560:l:0.017 0.514:t0.011

4 second 0.458i0.021 0.620:l:0.009 0.586:l:0.014 O.554:l:0.010

5 second 0.501zlz0.021 0.636i0.009 0.593i0.012 0.585:l:0.011

6 second 0.549i0.018 0.648:l:0.009 O.631:l:0.013 0.608:l:0.011

7 second 0.590:l:0.017 0.652:l:0.009 0.637i0.011 0.647:t0.009

8 second 0.592i0.019 0.658i0.007 0.661:l:0.012 0.667i0.009

9 second 0.605i0.019 0.673:|:0.007 0.685:l:0.011 0.690i0.009

10 second 0.616:l:0.016 0.6_8_7:l:0.007 0.692:l:0.011 0.705i0.008

Precision

Data set

Seconds Roam Gsim Wlsim Ploss

1 second 0.924:l:0.008 0.971:l:0.001 0.937:lz0.002 0.914:l:0.002

2 second 0.929:l:0.006 0.971:l:0.001 0.954i0.002 0.942:l:0.001

3 second 0.938:l:0.004 0.973:l:0.000 0.964:l:0.002 0.951:l:0.001

4 second 0.939:t0.005 0.973i0.001 0.967i0.001 0.958i0.001

5 second 0.941:l:0.003 0.974:l:0.000 0.968zt0.001 0.959:l:0.001

6 second 0.951:t0.002 0.975:l:0.000 0.970:l:0.001 0.962:l:0.001

7 second 095010.003 0.975:l:0.000 0.972:l:0.001 0.965i0.001

8 second 0.952:l:0.002 0.975zt0.000 O.974:l:0.001 0.967:l:0.001

9 second 0.955:lz0.002 0.976:l:0.000 0.975i0.001 0.967:l:0.001

10 second 0.955i0.002 0.976:l:0.000 0.974:l:0.001 0.968:l:0.001

Experiment conducted using the method described in Section 8.4.

test patterns increases, a corresponding improvement in coverage and precision does

not occur when training with gsim or wlsim. For ploss, a moderate improvement in

precision occurs with no corresponding increase in coverage.

In this section, we evaluated forecasting packet loss in three ways using three

generated and one real roaming trace. We also explored training with generated traces

while testing with real roaming data. Since collection of data in real environments can

be time consuming and difficult, training a decision maker under simulation can ease

the implementation of autonomous software. Our results show that when training

210

Table 8.5: MESO forecasting coverage and precision when trained on generated data.

Coverage

Data set

Seconds Gsim/Roam [Wlsim/Roam | Ploss/Roam

1 second 0.299:l:0.013 0.229i0.025 0.151:l:0.013

2 second 0.318:l:0.024 0.342i0.049 0.139i0.011

3 second 0.297zlz0.021 0.333zlz0.034 01292120012

4 second 0.295:l:0.022 0.380:L-0.040 0.138i0.009

5 second 0.292:l:0.023 0.393:lz0.042 0.150:l:0.011

6 second 0.266:l:0.020 0.417:l:0.046 0.152:lz0.010

7 second 0.281:l:0.026 0.434:l:0.050 0.173:l:0.014

8 second 0.279:l:0.024 0.442i0.060 0.169:l:0.013

9 second 0.271:l:0.025 0.400:l:0.056 0.167:l:0.015

10 second 0.270:l:0.02_8 0.408i0.054 O.168:l:0.016

Precision

Data set

Seconds Gsim/Roam Wlsim/Roam Ploss/Roam

1 second 0.93521:0.002 0.926:l:0.006 0.905i0.011

2 second 0.939:l:0.003 0.934:l:0.006 0.931:l:0.004

3 second 0.940:l:0.003 0.934:l:0.006 0.936:l:0.003

4 second 0.941:l:0.003 0.933:l:0.012 0.943:l:0.003

5 second 0.941:l:0.003 0.933:l:0.013 0.948:lz0.002

6 second 0.941:l:0.003 0.926:t0.016 0.950:l:0.003

7 second 0.941:l:0.002 0.932:l:0.016 0.954i0.002

8 second 0.941:l:0.003 0924320020 0.955i0.002

9 second 0.940:l:0.004 0.928:l:0.018 0.955:l:0.002

10 second 0.941:l:0.004 0.925:lz0.017 0.955:l:0.002
Experiment conducted using the method described in Section 8.4.

and testing using data collected in the same way, forecasting accuracy improves as

more ensemble data is used for testing. However, when we trained with generated

data and tested with real data, accuracy improved only when training with the ploss

data set. Also, when data sets were labeled with FEC (n, k) combinations, higher

accuracy was attained than that using loss-rate margins. In short, simulations used for

training must accurately represent the conditions found under real operation. In lieu

of accurate simulation, training with artificially generated data, that systematically

covers a broad range of conditions, may enable better decision making. Moreover,

211

when adapting in highly dynamic environments, actions that address a wide range of

behaviors may be more successful that those that only target specific situations.

8.6 Related Work

Forecasting has been studied in many fields, such as for predicting economic

trends [251] or river flow [252]. Many of these studies use techniques based on mov-

ing averages (MA) or auto-regression (AR) to construct a time—series model that can

be used to predict future time-series evolution. Other approaches, such as the auto-

regressive moving average, or ARMA, combine techniques to improve predication

accuracy [240]. These techniques rely on the correlation between historic, time—series

values to accurately predict the future. While these approaches have been success-

ful in forecasting stationary or slowly—decaying time-series, they are error prone when

time series behavior changes rapidly [253]. To address this problem, Ilow [254] used

fractional auto—regressive integrated moving average (FARIMA) predictors in con-

junction with cepstral [255] techniques to improve estimation of ARIMA parameters

and include short—term data dependence. Results demonstrate that this model bet-

ter predicts network bandwidth requirements. Notably, packet loss, as a user roams

about a wireless cell, is highly dynamic and changes suddenly when the user begins

walking or the wireless signal is occluded. Thus, historic packet losses may correlate

poorly with those in the near term. Ensembles use anomaly detection to automati-

cally recognize transitions in the time-series and extract periods that exhibit similar

behavior. Rather than assume that near term behavior correlates with that of the im-

212

mediate past, our approach forecasts overall ensemble characteristics based on early

ensemble data, enabling timely automated decision making.

Cui et al. [253] investigate Gaussian, ARMA and FARIMA predictors in a virtual

private network (VPN). The authors investigate dynamically resizing the bandwidth

of VPN links based on predicted bandwidth usage. They observe that a Gaussian

predictor is more accurate than either the ARMA or FARIMA predictors, attributed

to the Gaussian predictor’s greater sensitivity to rapid change in bandwidth usage.

That is, ARMA and FARIMA predictors depend heavily on historical data, and

change slowly due to regression and averaging using past data. Thus, the authors

propose a more responsive method, called linear predictor with dynamic error com-

pensation (L—PREDEC), to improve predictor sensitivity in the face of rapid change.

Like our technique, L—PREDEC addresses the need for forecasting in dynamic envi-

ronments that may change rapidly. Instead, we use perceptual memory in conjunction

with ensemble extraction rather than linear models that adapt to correct prediction

errors. Moreover, further study is required to understand how linear models can be

used for decision making when software must respond to changes in very dynamic

environments.

PapadOpouli et al. [256] study several models for forecasting traffic load on the

University of North Carolina at Chapel Hill’s wireless network. The simple network

management protocol (SNMP) was used to query 488 wireless access points, every

five minutes for 63 days. They target middle term forecasting (2-weeks ahead) on

individual access points using mean bandwidth and recent history or other predic-

tors, such as ARIMA. Evaluation used a prediction tolerance interval, computed as a

213

percentage of the mean bandwidth usage. The percentage of correct predictions was

typically <35% when using a tolerance interval of 25%. Our work complements stud-

ies that investigate forecasting network traffic by enabling automated extraction of

ensembles that can be processed using clustering and classification techniques. More-

over, our study addresses near term forecasting of packet loss when roaming, rather

than middle term forecasting of network bandwidth.

Other projects have investigated the use of artificial neural networks (NNs) [252,

257] and hidden Markov models (HMMs) [258] for forecasting time-series. Atiya et

al. [252] studied forecasting the flow of the River Nile in Egypt using a neural network.

The goal was to predict the river flow rate for 10 or more days into the future based on

historical data. A artificial neural network was trained for 4000 iterations and tested,

producing “fairly accurate forecasts.” Fraser et al. [258], investigated HMMs during

participation in a Santa Fe Institute and NATO sponsored competition. The contest

goal was to explore and compare different forecasting methods. The authors provide

an overview of HMM techniques, and investigate hidden filter and mixed state HMMs

for forecasting a numerically generated time series constructed for the competition.

These HMMs produced good predictions for both short and longer term forecasts.

MESO complements these works by investigating forecasting for automated decision

making and adaptation of autonomic software. It is likely that HMMS and other

approaches can be used to enable autonomic decision making in software, perhaps in

conjunction with perceptual memory.

214

8.7 Discussion

We have presented a technique for extracting ensembles from wireless network traces

with the goal of forecasting future ensemble packet loss behavior. Forecasting enables

timely, autonomous response by software decision makers in autonomic computer sys-

tems. Moreover, automated ensemble extraction enables capture of discrete periods

Of similar behavior, as described by the distribution of time series values. Results

of our forecasting experiments show promise. We learned that if an autonomic de-

cision maker is trained under simulation, care must be taken that the simulation

accurately produces conditions similar to those found when the software is Operating

autonomously. Alternatively, models that systematically generate artificial data may

provide better coverage Of conditions found under autonomous Operation than those

provided by simulation models.

215

Chapter 9

Conclusions and Future Work

Integration of adaptive mechanisms, state maintenance and automated decision mak-

ing enables implementation Of autonomic software. In this dissertation, we investi-

gated the design and integration of these methods and applied them to data streaming

applications, an important class of software that includes communications, mobile

computing, command-and-control, and environmental monitoring. In this chapter,

we summarize our specific contributions and discuss future work.

9. 1 Contributions

This research has produced five main contributions:

A programming model that separates intercession and introspection. In

the first part of our study, we described and evaluated a programming model that sep-

arates intercession and introspection. We developed Adaptive Java, an extension to

Java that incorporates programming language constructs to support instrumentation

216

and dynamic recomposition. Our group used Adaptive Java to design and evaluate

the MetaSocket component, whose behavior can be adapted in response to changing

network conditions by enabling structural reconfiguration. In addition, we developed

Dynamic River, a distributed, data-stream pipeline platform that enables dynamic

recomposition of pipeline operators across multiple hosts. Our studies show that the

integration of mechanisms that enable both introspection and and intercession are

important tO the design of autonomic and adaptive software. Where mechanisms for

intercession enable dynamic recomposition Of software, those for introspection sup-

port instrumentation and sensor data collection, which in turn enable automated

decision making.

State maintenance in adaptive software. In the second part of our study, we

investigated state maintenance at the program and pipeline level. Where Perimorph

transferred nontransient state during recomposition, Dynamic River used protocols

in conjunction with data stream scope to resynchronize processing following Operator

reconfiguration. Perimorph addresses collateral change by enabling the declaration

of sets Of program modifications that must occur atomically when an application is

adapted. In a case study, we demonstrate that externalizing state supports appli-

cation handoff between different devices in a mobile computing environment while

enabling recomposition to meet the resource capabilities of different devices. In ad-

dition, when data stream processing is distributed among networked hosts, Dynamic

River supports graceful recovery in the face Of software, host or network failure.

217

Perceptual memory. In the third part of our study, we investigated the effect

Of perceptual memory on the autonomous decision making process. Storing and

retrieving external stimuli and associated meta information in dynamic environments

is typically incremental, data intensive and time sensitive. Moreover, storage and

recall must be efficient and avoid impacting the function of the application being

adapted while enabling the decision maker to make correct and timely decisions. We

have designed and implemented the perceptual memory system, MESO, to address

these requirements. We showed that MESO accurately and quickly retrieves prior

experience that can be used to help an autonomous decision maker enhance and

Optimize an underlying adaptable application.

An integrated, autonomic application. In the fourth part Of our study, we in-

vestigated and evaluated the integration and application of adaptive mechanisms,

state maintenance and decision making to adaptive software and data streaming. We

conducted a case study using an autonomous, adaptive application, called Xnaut. We

show that a decision maker can learn through interaction with a user to Operate com-

pletely autonomously while attempting to adapt and Optimize an underlying mobile

computing application. When we examined which pattern features were most sig-

nificant for deciding which adaptations to invoke, we discovered that instantaneous

sensor readings were of little importance for making decisions that balance packet

loss with bandwidth consumption. Instead, statistical measures computed over mul-

tiple instantaneous readings prove most useful when deciding how and when to adapt

the application.

218

Automated analysis of sensor data streams. Finally, we introduced a tech-

nique for automated extraction and analysis of ensembles from sensor data streams.

We investigated the utility of using ensembles for classification and detection of bird

species using acoustic data streams and for forecasting near-term, packet-loss behavior

when streaming data to a mobile receiver. Our investigations showed that ensembles

improve classification, detection and forecasting of time-series events, such as those

that can be used by autonomic decision makers when adapting an application.

Figure 9.1 summarizes the contributions discussed in this dissertation as a whole,

and shows how they are related and how they fit into our integrated approach to

autonomous computation. Three major elements must be considered during design

and implementation: adaptive mechanisms, state maintenance, and decision making.

Our investigations uncovered abstractions that enabled each Of these elements to be

further refined.

State maintenance can be further refined by normalized state transfer and collat-

eral change. Using Perimorph, we studied state maintenance for component-based

software and learned that normalized state extraction can be used to transfer state

to a new component during component exchange. However, dynamic recomposition

must also be orchestrated to avoid incorrect program Operation or data loss. Peri-

morph enabled collateral change tO be codified using factor sets. On the other hand,

Dynamic River provides protocols, in conjunction with data stream scoping, to or-

chestrate redeployment and recomposition Of data stream processing.

219

Integatod Approach to Autonomous Computatlon

l

[Adaptive Mechanisms]] State Malntonance [Doclslon Making]

l L f 4 l ?

lntroepoctlon Intorcoulon "0's???“ Collateral Classlflcatlon Doucflon Forecastlng

Transfer Change

Dynamlc Ensemble 0

A Perl M Extractlondaptlvo Java morph Rm, Xnaut 530 mu P 8'01]

l__l L____I

Figure 9.1: Achievements presented in this dissertation viewed as a whole.

—{>Roflnes —>Supporls —¢lntegratoe all»:

Decision making using perceptual memory can be further refined as supporting

classification, detection or forecasting. Using acoustic data streams, we studied clas-

sification and detection to better understand the difficulties of distilling information,

useful for making decisions, from raw data. An analysis Of the pattern features used

for our Xnaut case study revealed that metrics computed using multiple instanta-

neous sensor readings were most significant. This lesson prompted further analysis Of

sensor data to better support autonomous decision making, and led to the develop-

ment of our technique for extracting ensembles from sensor data streams. We learned

that perceptual memory, used in conjunction with automated ensemble extraction

and processing, can enable decision making for autonomous software.

220

9.2 Future Work

The work presented in this dissertation has revealed directions for further research.

We identify five research topics that need to be addressed (and in some cases are

already under study) in the design of autonomic software.

Adaptive protocols and techniques. The set Of protocols and techniques de-

scribed in this dissertation can be expanded. For instance, programmers that must

implement an adaptable application will benefit from design patterns that describe

accepted methods for dynamically recomposing applications. Documented protocols

and other methods for orchestrating runtime recomposition and capturing collateral

change are also needed. Moreover, there are many different application classes, and

each may require different techniques to enable autonomous adaptation. For instance,

protocols that target distributed recomposition of pipeline Operators may not be ef-

fective when recomposing components.

Safety and security when adapting. Runtime composition complicates ensur-

ing the safety and security Of an application [52,259]. Ensuring safety requires that

the software continues to execute acceptably during and after an adaptation. That

is, when software undergoes structural change during execution it often exhibits com-

plex and changing interactions that can be difficult to coordinate. Such interaction

problems can be difficult tO characterize, particularly when the number Of possible

compositions is large. Nonviable compositions need to be recognized prior to their

use to ensure that the adaptation recommended by a decision maker preserves the

221

correctness and safety properties required Of the original system. Ensuring security

requires that an adaptation does not expose a breach that can be exploited by a ma-

licious entity. Similar to safety, ensuring security is often difficult due to the complex

interactions that exist between different parts Of a running program. Autonomic soft-

ware needs methods for ensuring that the adaptive process will produce a safe and

secure system.

Extending ensemble extraction and processing to other domains. We pre-

sented ensemble extraction as applied specifically to acoustic data streams and net-

work traces. However, the process for extracting ensembles is general and can be

extended to other types of streaming sensor data and other application domains. For

instance, automated detection of mechanical problems, such as bearing failure [218],

enables preemptive response and prevention Of accidents. Moreover, forecasting of

catastrOphic events, such as the eruption Of a volcano, enables early response or evac-

uation. We anticipate that automated ensemble extraction may prove to be a useful

analysis tool in many disciplines.

Ensemble extraction from multiple sensor streams. Currently, we have ex-

tracted ensembles from data streams comprising a single signal. Although acous-

tic data streams are data rich, extracting ensembles from multiple correlated data

streams may enhance classification, detection and forecasting of time series events.

For instance, species identification may be more accurate when acoustic data is cou-

pled with geographic, weather or other information about the environment. Moreover,

222

monitoring the health of an organization’s or nation’s cyberinfrastructure will require

the acquisition and correlation of data from many sensors to capture the complex

behavior afforded by multiple interacting components, systems and networks. Au-

tonomous decision makers will require accurate and timely extraction, detection and

identification of sensed events to correctly respond to faults and attacks.

Automated programming for adaptation. Approaches that use genetic pro-

gramming [260,261] or digital evolution [262] Operate on sequences Of instructions

that are reminiscent of computer machine code or higher level language constructs.

Programs evolved in these languages can be interpreted much like a traditional com-

puter program. Decision makers might use such automated approaches to construct

adaptable components that address specific sensed conditions or to better interpret

sensor data. That is, a decision maker that must detect and respond to the song

of a specific bird species could request the automated construction of a customized

detector. Moreover, some sensor data streams may have a syntactic structure that

is better captured as a series of programmatic steps. For instance, many bird songs

have a syntax that is useful for recognizing individual birds and members of a spe-

cific species. Approaches like digital evolution may enable automated generation Of

components and tools for analyzing and adapting to sensed conditions and improve

decision making.

223

APPENDICES

224

Appendix A

Perimorph Data Dictionary of

Major Components

This appendix provides an elided data dictionary for the major components Of the

Perimorph API. This data dictionary describes the public and protected component

interfaces, including private methods and variables only when they may improve

understanding. Some of the less used methods and components, such as those that

implement visitors or throwable errors, have been omitted to make this appendix

more concise.

A.1 BaseComponentDefinition

Description: Basic component definition that implements functional-

ity needed by all Perimorph components. This class is

abstract and should be inherited by application specific

components.

Relationships: Extends: Serializable

BaseComponentDefinition() [protected]

Description: Default constructor for this class.

Returns: this

225

BaseComponentDefinition(String aName) [public]

Description: Constructor that specifies a name for this compo-

nent instance.

Parameters: , _

e aName — A name for this component instance.

Returns: this

void setName(String aName) [protected]

Description: Set the name for this component instance.

Parameters: _ ,

e aName — A name for th1s component instance.

Returns: None.

String getName() [public]

Description: Return the name for this component instance.

Returns: The name for this component instance.

ObjectReference getReference() [protected]

Description: Return an ObjectReference for this component.

An ObjectReference acts as a proxy for this com-

ponent, enabling indirect execution of component

factors.

Returns: An ObjectReference for this component.

A.2 BaseFactor

Description: Basic factor definition that implements functionality

needed by all Perimorph factors. This class is abstract

and should be inherited by application specific factors.

Relationships: Extends: Serializable

Scope self() [protected]

Description: Return this factor’s current execution scope. This

scope can contain component specific variables

and method parameters.

Returns: The current execution scope.

boolean invoke() [public, abstract]

Description: Execute this factor’s function using the current

factor execution scope.

Returns: True if execution was successful.

226

A.3 BaseFactorContext

Description: This class defines a factor specific context.

Atrributes: ,

e BaseFactor factor [public]

Factor associated with this context.

0 FactorsetVars variables [public]

Factor specific variables.

Relationships: Extends: Serializable

BaseFactorContext(BaseFactor aFactor,FactorsetVars aVars)

[public]

Description: Constructor that specifies the factor and variables

belonging to this context. The factor specified is

the one that will use this context.

Parameters:

o aFactor - The factor that will use this context.

0 aVars — The variables that will be used by

aFactor.

Returns: this

A.4 BaseFactorset

Description: A set of factors and variables that can be associated with

components. This class is abstract and should be inher—

ited by application specific factor sets.

Atrributes: .

0 long refcnt [private]

Reference count for this factor set.

0 HashMap factorcollection [private]

Collection of named factors.

0 FactorsetVars variables [protected]

Set of factor set variables.

0 String factorsetname [protected]

Name for this factor set.

Relationships: Extends: Serializable

BaseFactorset(String aName) [public]

Description: Construct a factor set with the specified name.

Parameters:

e aName — A name for this factor set.

Returns: this

227

void setName(String aName) [protected]

Description: Set this factor set’s name.

Parameters:

e aName - A name for this factor set.

Returns: None.

String getName() [public]

Description: Get this factor set’s name.

Returns: The name for this factor set.

FactorsetVars getVariablesO [public]

Description: Get the variables associated with this factor set.

Returns: The variables associated with this factor set.

void addFactor(BaseFactor aFactor) [public]

Description: Add a factor to this factor set.

Parameters:

e aFactor — The factor to add to this factor set.

Returns: None.

void removeFactor(String aName) [public]

Description: Remove a factor from this factor set by name.

Parameters:

e aName — The name of the factor to remove.

Returns: None.

BaseFactor getFactor(String aName) [public]

Description: Get a factor from this factor set by name.

Parameters: .

e aName - The name Of the factor to retrieve.

Returns: The factor requested.

void initialize() [protected, abstract]

Description: Initialize this factor set.

Returns: None.

void activate() [protected, abstract]

Description: Activate this factor set. That is, application spe-

cific bootstrap processing can be codified by this

method. For instance, code for initial display

Of graphical interfaces might be included in this

method.

Returns: None.

228

void deactivate() [protected, abstract]

Description: Deactivate this factor set. That is, application

specific component termination processing can be

codified by this method. For instance, code for

removal of graphical interfaces from the desktOp

might be included in this method.

Returns: None.

long getRefCount() [public]

Description: Get the current reference count for this factor set.

The FactorManager typically activates and deac-

tivates factor sets when the reference count rises

above or drOps below zero, respectively.

Returns: The current reference count.

void incRefCount() [protected]

Description: Increment the reference count for this factor set.

Returns: None.

void decRefCount() [protected]

Description: Decrement the reference count for this factor set.

Returns: None.

void setState(Object aState) [protected, abstract]

Description: Set this factor set’s nontransient state using a

state memento.

Parameters:

o aState — A state memento for this factor set.

Returns: None.

Object getState() [public, abstract]

Description: Extract this factor’s nontransient state as a me-

mento.

Returns: The state memento for this factor set.

A.5 BaseInterface

Description: Basic interface definition that contains invocations and

pre and post factors. This component enablw reconfigu-

ration Of a component’s interface.

Atrributes: , _ ,

e HashMap 1nvocat10n_map [private]

Hash map containing invocations.

 Relationships: Extends: Serializable

229

void addInvocation(String aSigAlias) [public]

Description: Add an invocation to this interface.

Parameters: , . .
e aSigAlias - The Signature of the 1nvocat10n

(stored in invocationnap).

Returns: None.

void removePreFactor(String aSigAlias,String Factor)

[public]

Description: Remove a pre factor from an invocation.

Parameters:

o aSigAlias - The signature of the invocation.

e aFactor — The name of the pre factor to remove.

Returns: None.

void removePostFactor(String aSigAlias,String Factor)

[public]

Description: Remove a post factor from an invocation.

Parameters:

o aSigAlias — The signature of the invocation.

e aFactor — The name of the post factor to remove.

Returns: None.

void prependPreFactor(String aSigAlias,String Factor)

[public]

Description: Prepend a pre factor to an invocation.

Parameters:

o aSigAlias — The signature of the invocation.

o aFactor — The name of the pre factor to prepend.

Returns: None.

void appendPreFactor(String aSigAlias,String Factor)

[public]

Description: Prepend a pre factor to an invocation.

Parameters:

e aSigAlias — The signature Of the invocation.

e aFactor — The name of the pre factor to append.

Returns: None.

230

void replacePreFactor(String aSigAlias,String Factor,String

aNewFactor) [public]

Description: Replace an invocation pre factor.

Parameters:

o aSigAlias — The signature of the invocation.

o aFactor — The name of the pre factor to replace.

0 aNewFactor -— The name of the replacement pre

factor.

Returns: None.

void prependPostFactor(String aSigAlias,String Factor)

[public]

Description: Prepend a post factor to an invocation.

Parameters:

o aSigAlias — The signature of the invocation.

e aFactor — The name of the post factor to prepend.

Returns: None.

void appendPostFactor(String aSigAlias,String Factor)

[public]

Description: Prepend a post factor to an invocation.

Parameters:

e aSigAlias — The signature of the invocation.

e aFactor — The name Of the post factor to append.

Returns: None.

void replacePostFactor(String aSigAlias,String Factor,String

aNewFactor) [public]

Description: Replace an invocation post factor.

Parameters:

e aSigAlias — The signature of the invocation.

e aFactor — The name Of the post factor to replace.

0 aNewFactor — The name of the replacement pre

factor.

Returns: None.

void invokeFactors(String aSigAlias) [public]

Description: Execute an invocation’s pre and post factors.

Parameters:

O aSigAlias — The signature of the invocation.

Returns: None.

231

A.6 ComponentFactorStore

Description: A repository of pre and post factors and their component

associations.

Atrributes: _ _

e HashMap preiactorcollection [private]

Collection of component pre factors.

0 HashMap postiactorcollection [private]

Collection of component post factors.

 Relationships: Extends: Serializable

ComponentFactorStore() [protected]

Description: Default constructor.

Returns: this

void removePreFactor(String aComp,String aSig,String aFac-

tor) [protected, static]

Description: Remove a pre factor from a component.

Parameters:

o aComp — The component name from which to re-

move a pre factor.

0 aSig — The interface signature from which to re—

move a pre factor.

0 aFactor — The name Of the factor to remove.

Returns: None.

void removePostFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Remove a post factor from a component.

Parameters:

e aComp — The component name from which to re-

move a post factor.

0 aSig — The interface signature from which to re-

move a post factor.

0 aFactor — The name of the factor to remove.

Returns: None.

232

void prependPreFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Prepend a pre factor to a component.

Parameters:

o aComp — The name of the component to use when

prepending a pre factor.

0 aSig — The interface signature to use when

prepending a pre factor.

0 aFactor — The name of the factor to prepend.

Returns: None.

void appendPreFactor(String aComp,String aSig,String aFac-

tor) [protected, static]

Description: Append a pre factor to a component.

Parameters:

o aComp — The name Of the component to use when

appending a pre factor.

0 aSig — The interface signature to use when ap-

pending a pre factor.

0 aFactor — The name of the factor to append.

Returns: None.

void replacePreFactor(String aComp,String aSig,String aFac-

tor,String aNewFactor) [protected, static]

Description: Replace a component pre factor.

Parameters:

e aComp - The name of the component tO use dur-

ing factor replacement.

0 aSig — The interface signature to use during factor

replacement.

0 aFactor — The name of the factor to replace.

0 aNewFactor — The name Of the replacement fac-

tor.

Returns: None.

void prependPostFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Prepend a post factor to a component.

Parameters:

e aComp - The name Of the component to use when

prepending a post factor.

0 aSig — The interface signature to use when

prepending a post factor.

0 aFactor — The name of the factor to prepend.

Returns: None.

233

void appendPostFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Append a post factor to a component.

Parameters:

o aComp — The name of the component to use when

appending a post factor.

0 aSig — The interface signature to use when ap-

pending a post factor.

0 aFactor — The name Of the factor to append.

Returns: None.

void replacePostFactor(String aComp,String aSig,String aFac-

tor,String aNewFactor) [protected, static]

Description: Replace a component post factor.

Parameters:

e aComp — The name of the component to use dur-

ing factor replacement.

0 aSig — The interface signature to use during factor

replacement.

6 aFactor — The name Of the factor to replace.

0 aNewFactor — The name of the replacement fac-

tor.

Returns: None.

Vector getPreFactors(String aComp,String aSig) [protected,

static]

Description: Get the pre factors associated with a specific com-

ponent and interface signature.

Parameters:

o aComp - The name Of the component.

0 aSig - The interface signature.

Returns: A vector containing the pre factors for the speci-

fied component.

Vector getPostFactors(String aComp,String aSig) [protected,

static]

Description: Get the post factors associated with a specific

component and interface signature.

Parameters:

e aComp — The name of the component.

0 aSig — The interface signature.

Returns: A vector containing the post factors for the Spec-

ified component.

234

A.7 ComponentManager

Description: This class enables public access and manipulation of the

ComponentStore.

Relationships: Extends: Object

ComponentManager() [protected]

Description: Default constructor.

Returns: this

void addComponent(BaseComponentDefinition aComponent)

[public, static]

Description: Add a component to the component store.

Parameters:

o aComponent - The component to add to the com-

ponent store.

Returns: None.

void loadComponent(String aName) [public, static]

Description: Dynamically loads the component with the name

specified and adds it to the component store.

Parameters:

e aName — The name of the component to load.

Returns: None.

void removeComponent(String aComponent) [public ,

static]

Description: Removes a component from the component store.

Parameters:

o aComponent — The name of the component to re-

move.

Returns: None.

BaseComponentDefinition getComponent(String aCompo-

nent) [public, static]

Description: Retrieve a component from the component store.

Parameters:

e aComponent — The name of the component to re-

trieve.

Returns: The component with the specified name.

235

void replicateComponent(String aFromComponent,String

aToComponent) [public, static]

Description: Replicate a component under a new name and add

it to the component store.

Parameters:

o aFromComponent — The name Of the component

to replicate.

o aToComponent — The name of the new compo-

nent.

Returns: None.

ObjectReference newInstance(String afiomCompo—

nent,aToComponent,Class[] argtyps,Object[] args) [public,

static]

Description: Create a new instance of a component and instan-

tiate it with the arguments specified.

Parameters:

o aFromComponent — The name of the component

for which to create a new instance.

0 aToComponent - The name of the new component

instance.

0 argtyps — The parameter types to use when con-

structing the new instance.

0 arys — The parameter values to use when con-

structing the new instance.

Returns: A reference to the new instance.

ObjectReference getReference(String aComp) [public ,

static]

Description: Get a reference to an existing component.

Parameters:

o aComp — The name of the component for which

to retrieve a reference.

Returns: A reference to a component.

void addInterface(String aComp,BaseInterface aISet)

[public, static]

Description: Adds an interface to a component.

Parameters:

e aComp - The name of the affected component.

0 aISet — The interface to add.

Returns: None.

236

void prependPreFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Prepend a pre factor to a component.

Parameters:

e aComp — The name of the component to use when

prepending a pre factor.

0 aSig — The interface signature to use when

prepending a pre factor.

0 aFactor — The name of the factor to prepend.

Returns: None.

void appendPreFactor(String aComp,String aSig,String aFac-

tor) [protected, static]

Description: Append a pre factor to a component.

Parameters:

e aComp — The name of the component tO use when

appending a pre factor.

0 aSig — The interface signature to use when ap-

pending a pre factor.

0 aFactor — The name of the factor to append.

Returns: None.

void replacePreFactor(String aComp,String aSig,String aFac-

tor,String aNewFactor) [protected, static]

Description: Replace a component pre factor.

Parameters:

e aComp — The name of the component to use dur-

ing factor replacement.

0 aSig — The interface signature to use during factor

replacement.

0 aFactor —- The name of the factor to replace.

0 aNewFactor — The name of the replacement fac-

tor.

Returns: None.

void prependPostFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Prepend a post factor to a component.

Parameters:

o aComp — The name of the component to use when

prepending a post factor.

0 aSig -— The interface signature to use when

prepending a post factor.

0 aFactor - The name of the factor to prepend.

Returns: None.

237

void appendPostFactor(String aComp,String aSig,String

aFactor) [protected, static]

Description: Append a post factor to a component.

Parameters:

o aComp — The name of the component to use when

appending a post factor.

6 aSig — The interface signature to use when ap-

pending a post factor.

0 aFactor — The name of the factor to append.

Returns: None.

void replacePostFactor(String aComp,String aSig,String aFac-

tor,String aNewFactor) [protected, static]

Description: Replace a component post factor.

Parameters:

o aComp — The name of the component to use dur-

ing factor replacement.

0 aSig — The interface signature to use during factor

replacement.

0 aFactor - The name of the factor to replace.

0 aNewFactor - The name of the replacement fac-

tor.

Returns: None.

void removePreFactor(String aComp,String aSigAlias,String

Factor) [public]

Description: Remove a pre factor from a component’s invoca-

tion.

Parameters:

e aComp - The name of the component to use dur-

ing factor removal.

0 aSigAlias — The signature of the invocation.

e aFactor - The name of the pre factor to remove.

Returns: None.

void removePostFactor(String aComp,String aSigAlias,String

Factor) [public]

Description: Remove a post factor from a component’s invoca-

tion.

Parameters:

e aComp — The name of the component to use dur-

ing factor removal.

0 aSigAlias - The signature of the invocation.

e aFactor — The name Of the post factor to remove.

Returns: None.

238

Object invoke(String aComp,ObjectReference aThis,String

aName,Class[] argtyps,Object[] args) [public, static]

Description: Invoke a component method using a specific ref-

erence.

Parameters:

e aComp — The name of the component.

0 aThis — The reference to use during execution.

e aName — The name of the interface invocation to

invoke.

e argtyps — The invocation parameter types.

0 args — The invocation parameter values.

Returns: None.

A.8 ComponentStore

Description: Repository of Perimorph components.

Atrributes: , ,

e HashMap componentcollection [private]

Collection Of named components.

 Relationships: Extends: Serializable

ComponentStore() [protected]

Description: Default constructor.

Returns: this

void addComponent(BaseComponentDefinition aComponent)

[protected, static]

Description: Add a component to the repository.

Parameters:

e aComponent — The component to add to the

repository.

Returns: None.

void removeComponent(String aComponent) [public,

static]

Description: Removes a component from the repository.

Parameters:

e aComponent — The name of the component tO re—

move.

Returns: None.

239

BaseComponentDefinition getComponent(String aCompo-

nent) [public, static]

Description: Retrieve a component from the repository.

Parameters:

o aComponent — The name of the component to re-

trieve.

Returns: The requested component.

A.9 DynamicLoadManager

Description: Enables the dynamic loading of factors and components.

Relationships: Extends: ClassLoader

BaseFactor loadFactor(String aName) [public, static]

Description: Dynamically load a Perimorph factor.

Parameters:

e aName — The name of the factor to load.

Returns: An instance of the dynamically loaded factor.

BaseFactorset loadFactorset(String aName) [public, static]

Description: Dynamically load a Perimorph factor set.

Parameters:

e aName — The name of the factor set to load.

Returns: An instance of the dynamically loaded factor set.

BaseComponentDefinition loadComponentDefinition(String

aName) [public, static]

Description: Dynamically load a Perimorph component.

Parameters:

e aName — The name of the component to load.

Returns: An instance Of the dynamically loaded compo-

nent.

A.10 FactorManager

Description: This class enables public access and manipulation of the

FactorStore.

Relationships: Extends: Object

FactorManager() [protected]

Description: Default constructor.

Returns: this

240

void addFactorset(BaseFactorset aFactorset) [public, static]

Description: Add a factor set to the factor store.

Parameters:

e aFactorset — The factor set to add to the factor

store.

Returns: None.

void loadFactorset(String aName) [public, static]

Description: Dynamically load a serialized factor set and add

it to the factor store.

Paramete s:

r e aName — The name of the factor set to dynami-

cally load.

Returns: None.

void removeFactorset(String aFactorset) [public, static]

Description: Removes a factor set from the factor store.

Parameters:

e aName — The name Of the factor set to remove.

Returns: None.

BaseFactorset getFactorset(String aFactorset) [public,

static]

Description: Retrieve a factor set from the factor store.

Parameters:

e aFactorset - The name of the factor set to retrieve.

Returns: The factor set retrieved from the factor store.

void assignFactorset(String aLHFactorset,String aRHFac—

torset) [public, static]

Description: Assign one factor set to another.

Parameters:

e aLHFactorset — The left-hand factor set (the tar-

get Of the assignment).

0 aRHFactorset — The right-hand factor set.

Returns: None.

void replicateFactorset(String afiomFactorset,String aToFac-

torset) [public, static]

Description: Replicate a factor set under a new name.

Parameters:

e aFromFactorset — The name Of the source factor

set to be replicated.

e aToFactorset — The name of the destination factor

set.

Returns: None.

241

void removeFactor(String aName) [public, static]

Description: Removes a factor from the factor store.

Parameters:

e aName — The name Of the factor to remove.

Returns: None.

void addFactor(String aFactorset,BaseFactor aFactor)

[public, static]

Description: Add a factor to a factor set.

Parameters:

o aFactorset —- The name of the factor set.

0 aFactor -— The name Of the factor to add to the

specified factor set.

Returns: None.

void loadFactor(String aFactorset,String aName) [public,

static]

Description: Dynamically load a factor and add it to a factor

set.

Parameters:

e aFactorset - The name of the affected factor set.

0 aName - The name of the factor do dynamically

load.

Returns: None.

BaseFactorContext getFactor(String aName) [public ,

static]

Description: Retrieve a factor and its context from the factor

store.

Parameters: _

e aName — The name of the factor to retrieve.

Returns: The retrieve factor and its context.

void removeComponentPreFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Removes a pre factor from a component interface.

Parameters:

e aComp — The name of the component.

0 aSig — The interface signature from which to re-

move a factor.

0 aFactor —- The name Of the factor to remove.

Returns: None.

242

void removeComponentPostFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Removes a post factor from a component inter-

face.

Parameters:

o aComp — The name of the component.

0 aSig — The interface signature from which to re-

move a factor.

0 aFactor —- The name of the factor to remove.

Returns: None.

void prependComponentPreFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Prepend a pre factor to a component interface.

Parameters:

e aComp — The name of the component.

0 aSig — The affected interface signature.

6 aFactor —- The name of the factor to prepend.

Returns: None.

void appendComponentPreFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Append a pre factor to a component interface.

Parameters:

e aComp — The name of the component.

0 aSig — The affected interface signature.

0 aFactor — The name Of the factor to append.

Returns: None.

void replaceComponentPreFactor(String aComp,String

aSig,String aFactor,String aNewFactor) [public, static]

Description: Replace component interface pre factor.

Parameters:

e aComp — The name Of the component.

0 aSig — The affected interface signature. 8

o aFactor — The name of the factor to replace.

0 aNewFactor — The replacement factor.

Returns: None.

243

void prependComponentPostFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Prepend a post factor to a component interface.

Parameters:

o aComp - The name of the component.

0 aSig — The affected interface signature.

0 aFactor — The name of the factor tO prepend.

Returns: None.

void appendComponentPostFactor(String aComp,String

aSig,String aFactor) [public, static]

Description: Append a post factor to a component interface.

Parameters:

e aComp — The name of the component.

0 aSig - The signature Of the affected interface.

0 aFactor — The name of the factor to append.

Returns: None.

void replaceComponentPostFactor(String aComp,String

aSig,String aFactor,String aNewFactor) [public, static]

Description: Replace component interface post factor.

Parameters:

o aComp — The name of the component.

0 aSig — The affected interface signature.

0 aFactor — The name of the factor to replace.

0 aNewFactor — The replacement factor.

Returns: None.

Vector getComponentPreFactors(String aComp,String aSig)

[public, static]

Description: Retrieve a component’s pre factors.

Parameters:

o aComp - The name of the target component.

0 aSig — The target interface signature.

Returns: A vector containing the specified component’s pre

factors.

Vector getComponentPostFactors(String aComp,String aSig)

[public, static]

Description: Retrieve a component’s post factors.

Parameters:

e aComp — The name of the target component.

0 aSig - The target interface signature.

Returns: A vector containing the specified component’s

post factors.

244

void activateFactorset(String aName) [public, static]

Description: Activate a factor set.

Parameters: ,

e aName —- The name Of the factor set to actlvate.

Returns: None.

void deactivateFactorset(String aName) [public, static]

Description: Deactivate a factor set.

Parameters: ,

o aName — The name of the factor set to deactlvate.

Returns: None.

A.11 FactorStore

Description: A repository of Perimorph factors and factor sets.

Atrributes: . ,

e HashMap factorcollection [private]

Collection of factors.

Relationships: Extends: Serializable

FactorStore() [protected]

Description: Default constructor.

Returns: this

void addFactorset(BaseFactorset aFactorset) [protected,

static]

Description: Add a factor set to the repository.

Parameters:

o aFactorset — The factor set to add to the reposi-

tory.

Returns: None.

void removeFactorset(String aFactorset) [protected, static]

Description: Remove a factor set from the repository.

Parameters:

o aFactorset — The name of the factor set to remove.

Returns: None.

BaseFactorset getFactorset(String aFactorset) [protected,

static]

Description: Get a factor set from the repository.

Parameters: .

e aFactorset — The name of the factor set tO retrieve.

Returns: The factor set retrieved.

245

void removeFactor(String aName) [protected, static]

Description: Removes a factor from the repository.

Parameters:

e aName — The name of the factor to remove.

Returns: None.

void addFactor(String aFactorset,BaseFactor aFactor)

[protected, static]

Description: Adds a factor to a factor set.

Parameters:

o aFactorset — The name of the affected factor set.

0 aFactor — The factor to add to the specified factor

set.

Returns: None.

BaseFactorContext getFactor(String aName) [protected,

static]

Description: Get a factor and its context from the repository.

Parameters:

o aName — The name of the factor to retrieve.

Returns: The retrieved factor and its context.

A. 12 FactorsetVars

Description: A set of variables specific to a particular factor set.

Atrributes: _ _

e HashMap var1ables.map [private]

Set of named factor set variables.

Relationships: Extends: Serializable

void setVar(String aName,boolean aBool) [public]

Description: Assign a boolean value to a named variable.

Parameters:

e aName - The varlable name.

0 aBool - The boolean value.

Returns: None.

void setVar(String aName,booleanfl aBool) [public]

Description: Assign a boolean array to a named variable.

Parameters:

e aName — The variable name.

0 aBool — The boolean array.

Returns: None.

246

void setVar(String aName,byte aByte) [public]

Description: Assign a byte value to a named variable.

Parameters: ,

e aName — The varlable name.

0 aByte — The boolean value.

Returns: None.

void setVar(String aName,bytefl aByte) [public]

Description: Assign a byte array to a named variable.

Parameters: ,

e aName — The variable name.

0 aByte — The byte array.

Returns: None.

void setVar(String aName,char aChar) [public]

Description: Assign a character value to a named variable.

Parameters:

e aName - The variable name.

0 aChar — The character value.

Returns: None.

void setVar(String aName,charfl aChar) [public]

Description: Assign a character array to a named variable.

Parameters:

o aName — The varlable name.

0 aChar — The character array.

Returns: None.

void setVar(String aName,short aShort) [public]

Description: Assign a short integer value to a named variable.

Parameters:

e aName — The variable name.

0 aShort — The short integer value.

Returns: None.

void setVar(String aName,short[] aShort) [public]

Description: Assign a short integer array to a named variable.

Parameters:

e aName - The varlable name.

0 aShort — The short integer array.

Returns: None.

247

void setVar(String aName,int aInt) [public]

Description: Assign an integer value to a named variable.

Parameters:

e aName — The variable name.

0 aInt — The integer value.

Returns: None.

void setVar(String aName,intfl aInt) [public]

Description: Assign an integer array to a named variable.

Parameters:

e aName - The variable name.

0 aInt — The integer array.

Returns: None.

void setVar(String aName,long aLong) [public]

Description: Assign a long integer value to a named variable.

Parameters:

e aName — The variable name.

0 aLong — The long integer value.

Returns: None.

void setVar(String aName,longfl aLong) [public]

Description: Assign a long integer array to a named variable.

Parameters:

e aName - The variable name.

0 aLong — The long integer array.

Returns: None.

void setVar(String aName,float aFloat) [public]

Description: Assign a float value to a named variable.

Parameters:

o aName - The variable name.

0 aFloat — The float value.

Returns: None.

void setVar(String aName,float[] aFloat) [public]

Description: Assign a float array to a named variable.

Parameters:

e aName - The variable name.

0 aFloat - The float array.

Returns: None.

248

void setVar(String aName,double aDouble) [public]

Description: Assign a double value to a named variable.

Parameters: _

o aName — The varlable name.

0 aDouble — The double value.

Returns: None.

void setVar(String aName,double[] aDouble) [public]

Description: Assign a double array to a named variable.

Parameters: ,

e aName —- The varlable name.

0 aDouble — The double array.

Returns: None.

void setVar(String aName,Object aObj) [public]

Description: Assign an Object to a named variable.

Parameters:

o aName — The variable name.

0 aObj — The Object.

Returns: None.

void setVar(String aName,Objectfl aObj) [public]

Description: Assign an Object array to a named variable.

Parameters:

e aName - The variable name.

e 0003' - The Object array.

Returns: None.

Object getObject(String aName) [public]

Description: Retrieve the value of a named variable as an Ob-

ject.

Parameters: _

e aName — The variable name.

Returns: The value of the named variable.

Objectfl getObjectArray(String aName) [public]

Description: Retrieve the value of a named variable as an Ob-

ject array.

Parameters:

o aName — The variable name.

Returns: The named variable value array.

249

boolean getBoolean(String aName) [public]

Description: Retrieve the value of a named variable as a

boolean.

Parameters:

e aName - The variable name.

Returns: The boolean value.

booleanfl getBooleanArray(String aName) [public]

Description: Retrieve the value of a named variable as a

boolean array.

Parameters:

o aName — The variable name.

Returns: The boolean array of values.

byte getByte(String aName) [public]

Description: Retrieve the value of a named variable as a byte.

Parameters:

o aName — The variable name.

Returns: The byte value.

byte[] getByteArray(String aName) [public]

Description: Retrieve the value of a named variable as a byte

array.

Parameters:

e aName — The variable name.

Returns: The byte array of values.

char getChar(String aName) [public] .

Description: Retrieve the value of a named variable as a char-

acter.

Parameters:

e aName — The variable name.

Returns: The character value.

char[] getCharArray(String aName) [public]

Description: Retrieve the value of a named variable as a char-

acter array.

Parameters:

e aName — The variable name.

Returns: The character array of values.

250

short getShort(String aName) [public]

Description: Retrieve the value of a named variable as a short

integer.

Parameters: .

e aName — The variable name.

Returns: The short integer value.

short[] getShortArray(String aName) [public]

Description: Retrieve the value of a named variable as a short

integer array.

Parameters:

e aName — The variable name.

Returns: The short integer array of values.

int getInt(String aName) [public]

Description: Retrieve the value of a named variable as an inte-

ger.

Parameters:

e aName — The variable name.

Returns: The integer value.

int[] getIntArray(String aName) [public]

Description: Retrieve the value of a named variable as an inte-

ger array.

Parameters:

e aName — The variable name.

Returns: The integer array of values.

long getLong(String aName) [public]

Description: Retrieve the value Of a named variable as a long

integer.

Parameters:

o aName — The variable name.

Returns: The long integer value.

longfl getLongArray(String aName) [public]

Description: Retrieve the value of a named variable as a long

integer array.

Parameters:

e aName — The variable name.

Returns: The long integer array of values.

251

float getFloat(String aName) [public]

Description: Retrieve the value of a named variable as a float.

Parameters: ,

e aName — The variable name.

Returns: The float value.

float[] getFloatArray(String aName) [public]

Description: Retrieve the value of a named variable as a float

array.

Parameters: ,

e aName — The variable name.

Returns: The float array Of values.

double getDouble(String aName) [public]

Description: Retrieve the value of a named variable as a double.

Parameters: ,

e aName — The variable name.

Returns: The double value.

double[] getDoubleArray(String aName) [public]

Description: Retrieve the value of a named variable as a double

array.

Parameters: ,

e aName — The variable name.

Returns: The double array of values.

boolean isVar(String aName) [public, static]

Description: Checks if a named variable exists.

Parameters:

e aName — The name of a variable to check.

Returns: True if the named variable exists.

A.13 ObjectReference

Description: A proxy that refers to the a specific component by name.

Atrributes: , ,

0 String componentname [private]

Name of the component referred to by this proxy.

Relationships: Extends: Serializable

ObjectReference() [protected]

Description: Default constructor.

Returns: this

252

ObjectReference(String aName) [public]

Description: Constructor with the name Of the component to

refer to.

Returns: this

void setName(String aName) [protected]

Description: Set the name of the component to which this

proxy refers.

Parameters:

o aName - The name of the component.

Returns: None.

String getName() [public]

Description: Get the name of component to which this proxy

refers.

Returns: The name of the component to which this proxy

refers.

Object invoke(String aName,Class[]

argtyps,Object[] args) [public]

Description: Execute a component invocation.

Parameters: . . .

o aName - The Signature of the invocation to exe-

cute.

0 argtyps - The invocation parameter types.

0 args — The invocation parameter values.

Returns: None.

A.14 Parameters

Description: Parameters associated with invocation scope.

Relationships: Extends: Object

void setParameter(String aName,boolean aBool) [public]

Description: Set a named boolean parameter.

Parameters:

o aName — The parameter name.

0 aBool — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,booleanfl aBool) [public]

Description: Set a named boolean array parameter.

Parameters:

o aName — The parameter name.

6 aBool — The value to assign to the parameter.

Returns: None.

253

void setParameter(String aName,boolean aByte) [public]

Description: Set a named byte parameter.

Parameters:

e aName — The parameter name.

0 aByte — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,bytefl aByte) [public]

Description: Set a named byte array parameter.

Parameters:

e aName — The parameter name.

0 aByte - The value to assign to the parameter.

Returns: None.

void setParameter(String aName,boolean aChar) [public]

Description: Set a named character parameter.

Parameters:

e aName — The parameter name.

0 aChar — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,charfl aChar) [public]

Description: Set a named character array parameter.

Parameters:

e aName — The parameter name.

0 aChar — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,short aShort) [public]

Description: Set a named Short integer parameter.

Parameters:

e aName — The parameter name.

0 aShort — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,short[] aShort) [public]

Description: Set a named short integer array parameter.

Parameters:

e aName — The parameter name.

0 aShort - The value to assign to the parameter.

Returns: None.

254

void setParameter(String aName,int aInt) [public]

Description: Set a named integer parameter.

Parameters:

e aName - The parameter name.

0 aInt —- The value to assign to the parameter.

Returns: None.

void setParameter(String aName,intfl aInt) [public]

Description: Set a named integer array parameter.

Parameters:

e aName — The parameter name.

0 aInt — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,long aLong) [public]

Description: Set a named long integer parameter.

Parameters:

e aName - The parameter name.

0 aLong — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,longfl aLong) [public]

Description: Set a named long integer array parameter.

Parameters:

e aName — The parameter name.

0 aLong — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,float aFloat) [public]

Description: Set a named float parameter.

Parameters:

e aName — The parameter name.

0 aFloat — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,float[] aFloat) [public]

Description: Set a named float array parameter.

Parameters:

e aName — The parameter name.

0 aFloat — The value to assign to the parameter.

Returns: None.

255

void setParameter(String aName,double aDouble) [public]

Description: Set a named double parameter.

Parameters:

e aName - The parameter name.

0 aDouble — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,double[] aDouble) [public]

Description: Set a named double array parameter.

Parameters:

e aName — The parameter name.

0 aDouble — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,Object aObj) [public]

Description: Set a named Object parameter.

Parameters:

e aName — The parameter name.

e 0003' -— The value to assign to the parameter.

Returns: None.

void setParameter(String aNarne,Object[] aObj) [public]

Description: Set a named Object array parameter.

Parameters:

e aName — The parameter name.

0 aObj — The value to assign to the parameter.

Returns: None.

Object getParameter(String aName) [public]

Description: Get a named Object parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as an Object.

Object getParameter(int aIdx) [public]

Description: Get a named Object parameter at an index.

Parameters:

e aldz — The parameter index.

Returns: The parameter as an Object.

boolean getBoolean(String aName) [public]

Description: Get a named boolean parameter by name.

Parameters:

e aName —- The parameter name.

Returns: The named parameter as a boolean.

256

boolean[] getBooleanArray(String aName) [public]

Description: Get a named boolean array parameter by name.

Parameters:

o aName — The parameter name.

Returns: The named parameter as a boolean array.

Object getBoolean(int aIdx) [public]

Description: Get a named boolean parameter at an index.

Parameters:

o aIdr — The parameter index.

Returns: The parameter as a boolean.

boolean[] getBooleanArray(int aIdx) [public]

Description: Get a named boolean array parameter at an index.

Parameters:

e aIdz — The parameter index.

Returns: The parameter as a boolean array.

byte getByte(String aName) [public]

Description: Get a named byte parameter by name.

Parameters:

e aName —— The parameter name.

Returns: The named parameter as a byte.

byte[] getByteArray(String aName) [public]

Description: Get a named byte array parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a byte array.

byte getByte(int aIdx) [public]

Description: Get a named byte parameter at an index.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as a byte.

byte[] getByteArray(int aIdx) [public]

Description: Get a named byte array parameter at an index.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as a byte array.

char getChar(String aName) [public]

Description: Get a named char parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a character.

257

char[] getCharArray(String aName) [public]

Description: Get a named character array parameter by name.

Parameters:

e aName - The parameter name.

Returns: The named parameter as a character array.

char getChar(int aIdx) [public]

Description: Get a named character parameter at an index.

Parameters:

e aIdzr — The parameter index.

Returns: The parameter as a character.

char[] getCharArray(int aIdx) [public]

Description: Get a named character array parameter at an in-

dex.

Parameters:

o aIdri: — The parameter index.

Returns: The parameter as a character array.

short getShort(String aName) [public]

Description: Get a named short integer parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a short integer.

short[] getShortArray(String aName) [public]

Description: Get a named short integer array parameter by

name.

Parameters:

o aName — The parameter name.

Returns: The named parameter as a short integer array.

short getShort(int aIdx) [public]

Description: Get a named Short integer parameter at an index.

P am t :ar e er8 . aIdz — The parameter index.

Returns: The parameter as a short integer.

short[] getShortArray(int aIdx) [public]

Description: Get a named short integer array parameter at an

index.

Parameters:

0 aIdrc — The parameter index.

Returns: The parameter as a Short integer array.

258

int getInt(String aName) [public]

Description: Get a named integer parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as an integer.

int[] getIntArray(String aName) [public]

Description: Get a named integer array parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a integer array.

int getInt(int aIdx) [public]

Description: Get a named integer parameter at an index.

Parameters:

e aIda: — The parameter index.

Returns: The parameter as an integer.

int[] getIntArray(int aIdx) [public]

Description: Get a named integer array parameter at an index.

Parameters:

e aIdz — The parameter index.

Returns: The parameter as an integer array.

long getLong(String aName) [public]

Description: Get a named long integer parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a long integer.

longl] getLongArray(String aName) [public]

Description: Get a named long integer array parameter by

name.

Parameters: '

e aName — The parameter name.

Returns: The named parameter as a long integer array.

long getLong(int aIdx) [public]

Description: Get a named long integer parameter at an index.

Parameters:

e aIda: — The parameter index.

Returns: The parameter as a long integer.

259

float getFloat(String aName) [public]

Description: Retrieve the value of a named variable as a float.

Parameters: ,

e aName — The variable name.

Returns: The float value.

float[] getFloatArray(String aName) [public]

Description: Retrieve the value of a named variable as a float

array.

Parameters: .

o aName - The variable name.

Returns: The float array of values.

double getDouble(String aName) [public]

Description: Retrieve the value of a named variable as a double.

Parameters:

e aName — The variable name.

Returns: The double value.

doublefl getDoubleArray(String aName) [public]

Description: Retrieve the value of a named variable as a double

array.

Parameters:

e aName — The variable name.

Returns: The double array of values.

boolean isVar(String aName) [public, static]

Description: Checks if a named variable exists.

Parameters:

e aName —— The name of a variable to check.

Returns: True if the named variable exists.

A.13 ObjectReference

Description: A proxy that refers to the a specific component by name.

Atrributes: , .

0 String componentname [private]

Name of the component referred to by this proxy.

Relationships: Extends: Serializable

ObjectReference() [protected]

Description: Default constructor.

Returns: this

252

ObjectReference(String aName) [public]

Description: Constructor with the name of the component to

refer to.

Returns: this

void setName(String aName) [protected]

Description: Set the name of the component to which this

proxy refers.

Parameters:

e aName — The name of the component.

Returns: None.

String getName() [public]

Description: Get the name of component to which this proxy

refers.

Returns: The name of the component to which this proxy

refers.

Object invoke(String aName,Class[]

argtyps,Object[] args) [public]

Description: Execute a component invocation.

Parameters: . . .

e aName — The Signature of the invocation to exe-

cute.

0 argtyps — The invocation parameter types.

0 args — The invocation parameter values.

Returns: None.

A.14 Parameters

Description: Parameters associated with invocation SCOpe.

Relationships: Extends: Object

void setParameter(String aName,boolean aBool) [public]

Description: Set a named boolean parameter.

Parameters:

e aName - The parameter name.

a aBool — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,booleanfl aBool) [public]

Description: Set a named boolean array parameter.

Parameters:

e aName - The parameter name.

0 aBool — The value to assign to the parameter.

Returns: None.

253

void setParameter(String aName,boolean aByte) [public]

Description: Set a named byte parameter.

Parameters:

e aName — The parameter name.

0 aByte —- The value to assign to the parameter.

Returns: None.

void setParameter(String aName,bytefl aByte) [public]

Description: Set a named byte array parameter.

Parameters:

e aName —- The parameter name.

0 aByte — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,boolean aChar) [public]

Description: Set a named character parameter.

Parameters:

o aName — The parameter name.

0 aChar - The value to assign to the parameter.

Returns: None.

void setParameter(String aName,charfl aChar) [public]

Description: Set a named character array parameter.

Parameters:

e aName — The parameter name.

0 aChar — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,short aShort) [public]

Description: Set a named short integer parameter.

Parameters:

o aName - The parameter name.

0 aShort — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,short[] aShort) [public]

Description: Set a named short integer array parameter.

Parameters:

e aName — The parameter name.

0 aShort — The value to assign to the parameter.

Returns: None.

254

void setParameter(String aName,int aInt) [public]

Description: Set a named integer parameter.

Parameters:

e aName — The parameter name.

0 aInt - The value tO assign to the parameter.

Returns: None.

void setParameter(String aName,intfl aInt) [public]

Description: Set a named integer array parameter.

Parameters:

e aName - The parameter name.

0 aInt — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,long aLong) [public]

Description: Set a named long integer parameter.

Parameters:

e aName — The parameter name.

0 aLong — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,longfl aLong) [public]

Description: Set a named long integer array parameter.

Parameters:

e aName — The parameter name.

0 aLong — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,float aFloat) [public]

Description: Set a named float parameter.

Parameters:

e aName - The parameter name.

0 aFloat — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,float[] aFloat) [public]

Description: Set a named float array parameter.

Parameters:

e aName - The parameter name.

0 aFloat — The value to assign to the parameter.

Returns: None.

255

void setParameter(String aName,double aDouble) [public]

Description: Set a named double parameter.

Parameters:

e aName - The parameter name.

0 aDouble — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,double[] aDouble) [public]

Description: Set a named double array parameter.

Parameters:

o aName - The parameter name.

0 aDouble — The value to assign to the parameter.

Returns: None.

void setParameter(String aName,Object aObj) [public]

Description: Set a named Object parameter.

Parameters:

e aName — The parameter name.

e aObj - The value to assign to the parameter.

Returns: None.

void setParameter(String aNarne,Object[] aObj) [public]

Description: Set a named Object array parameter.

Parameters:

e aName - The parameter name.

0 aObj — The value to assign to the parameter.

Returns: None.

Object getParameter(String aName) [public]

Description: Get a named Object parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as an Object.

Object getParameter(int aIdx) [public]

Description: Get a named Object parameter at an index.

Parameters:

o aIdz — The parameter index.

Returns: The parameter as an Object.

boolean getBoolean(String aName) [public]

Description: Get a named boolean parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a boolean.

256

boolean[] getBooleanArray(String aName) [public]

Description: Get a named boolean array parameter by name.

Parameters:

o aName — The parameter name.

Returns: The named parameter as a boolean array.

Object getBoolean(int aIdx) [public]

Description: Get a named boolean parameter at an index.

Parameters:

o aIdr — The parameter index.

Returns: The parameter as a boolean.

boolean[] getBooleanArray(int aIdx) [public]

Description: Get a named boolean array parameter at an index.

Parameters:

o aIda: — The parameter index.

Returns: The parameter as a boolean array.

byte getByte(String aName) [public]

Description: Get a named byte parameter by name.

Parameters:

o aName - The parameter name.

Returns: The named parameter as a byte.

byte[] getByteArray(String aName) [public]

Description: Get a named byte array parameter by name.

Parameters:

o aName —- The parameter name.

Returns: The named parameter as a byte array.

byte getByte(int aIdx) [public]

Description: Get a named byte parameter at an index.

Parameters:

o aIda: — The parameter index.

Returns: The parameter as a byte.

byte[] getByteArray(int aIdx) [public]

Description: Get a named byte array parameter at an index.

Parameters:

e aIda: — The parameter index.

Returns: The parameter as a byte array.

char getChar(String aName) [public]

Description: Get a named char parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a character.

257

char[] getCharArray(String aName) [public]

Description: Get a named character array parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a character array.

char getChar(int aIdx) [public]

Description: Get a named character parameter at an index.

Parameters:

e aIdr - The parameter index.

Returns: The parameter as a character.

char[] getCharArray(int aIdx) [public]

Description: Get a named character array parameter at an in-

dex.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as a character array.

short getShort(String aName) [public]

Description: Get a named short integer parameter by name.

Parameters:

e aName - The parameter name.

Returns: The named parameter as a short integer.

short[] getShortArray(String aName) [public]

Description: Get a named short integer array parameter by

name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a Short integer array.

short getShort(int aIdx) [public]

Description: Get a named short integer parameter at an index.

Parameters:

e aIda: — The parameter index.

Returns: The parameter as a short integer.

short[] getShortArray(int aIdx) [public]

Description: Get a named short integer array parameter at an

index.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as a short integer array.

258

int getInt(String aName) [public]

Description: Get a named integer parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as an integer.

int[] getIntArray(String aName) [public]

Description: Get a named integer array parameter by name.

Parameters:

e aName - The parameter name.

Returns: The named parameter as a integer array.

int getInt(int aIdx) [public]

Description: Get a named integer parameter at an index.

Parameters:

e aldr — The parameter index.

Returns: The parameter as an integer.

int[] getIntArray(int aIdx) [public]

Description: Get a named integer array parameter at an index.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as an integer array.

long getLong(String aName) [public]

Description: Get a named long integer parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a long integer.

longfl getLongArray(String aName) [public]

Description: Get a named long integer array parameter by

name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a long integer array.

long getLong(int aIdx) [public]

Description: Get a named long integer parameter at an index.

Parameters:

e aIdz - The parameter index.

Returns: The parameter as a long integer.

259

long[] getLongArray(int aIdx) [public]

Description: Get a named long integer array parameter at an

index.

Parameters:

e aIdr - The parameter index.

Returns: The parameter as a long integer array.

float getFloat(String aName) [public]

Description: Get a named float parameter by name.

Parameters:

e aName —— The parameter name.

Returns: The named parameter as a float.

floatfl getFloatArray(String aName) [public]

Description: Get a named float array parameter by name.

Parameters:

e aName —- The parameter name.

Returns: The named parameter as a float array.

float getFloat(int aIdx) [public]

Description: Get a named float parameter at an index.

Parameters:

e aIdr - The parameter index.

Returns: The parameter as a float.

floatfl getFloatArray(int aIdx) [public]

Description: Get a named float array parameter at an index.

Parameters:

e aIdz — The parameter index.

Returns: The parameter as a float array.

double getDouble(String aName) [public]

Description: Get a named double parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a double.

doublefl getDoubleArray(String aName) [public]

Description: Get a named double array parameter by name.

Parameters:

e aName — The parameter name.

Returns: The named parameter as a double array.

260

double getDouble(int aIdx) [public]

Description: Get a named double parameter at an index.

Parameters:

e aIdr — The parameter index.

Returns: The parameter as a double.

double[] getDoubleArray(int aIdx) [public]

Description: Get a named double array parameter at an index.

Parameters:

e aIda: — The parameter index.

Returns: The parameter as a double array.

boolean isParameter(String aName) [public, static]

Description: Checks if a named parameter exists.

Parameters:

e aName — The name of a parameter tO check.

Returns: True if the named parameter exists.

A.15 ReturnCode

Description: Invocation return code. Encapsulates the value returned

by an invocation with type information.

Attributes: ,

0 short rctype [public]

Return code type.

0 Object retcode [public]

Return code value.

Relationships: Extends: Object

A.16 Scope

Description: Invocation execution scope data. This data is available to

each factor executed as part Of an invocation execution.

Atrributes:

e ObjectReference self_component [public]

Proxy reference to the component using this sc0pe.

e ReturnCode return_code [public]

The invocation return code associated with this SCOpe.

0 Parameters parameters [public]

The parameters passed to this invocation.

e FactorsetVars variables [public]

The factorset variables associated with this invocation.

Relationships: Extends: Object
261

A.17 SCOpeManager

Description: This class enables modification of the scope store.

Relationships: Extends: Object

ScopeStore() [protected]

Description: Default constructor.

Returns: this

void push(Scope aScope) [public, static]

Description: Push a scope on the scope stack (ScopeStore).

Parameters:

e aScope — The scope to push on the scope stack.

Returns: None.

Scope pop() [public, static]

Description: Pop a scope Off the top of the scope stack (Scope-

Store).

Returns: The scope from the top of the scope stack or null

if the stack is empty.

Scope peek() [public , static]

Description: Peek at the SCOpe on the tOp of the SCOpe stack

(ScopeStore) without removing the scope from the

stack.

Returns: The scope on the tOp Of the scope stack or null if

the stack is empty.

A.18 ScopeStore

Description: A repository of Perimorph execute scopes. When a in-

terface method is invoked, an execution scope is pushed

onto the execution stack that can be retrieved by the fac-

tors during execution. Each thread has its own execution

stack.

Atrributes: _

e HashMap scopemap [private]

Collection that stores scope stacks on a per thread basis.

 Relationships: Extends: Object
void push(Scope aScope) [public, static]

Description: Push a scope on the scope stack. A different scope

stack is maintained for each execution thread.

Parameters:

e aScope — The scope to push on the scope stack.

Returns: None.

262

Scope pop() [public, static]

Description: Pop a scope off the top of the current thread’s

scope stack.

Returns: The scope from the top Of the scope stack or null

if the stack is empty.

Scope peek() [public, static]

Description: Peek at the scope on the top of the current

thread’s scope stack without removing the scope

from the stack.

Returns: The scope on the top of the scope stack or null if

the stack is empty.

263

Appendix B

Dynamic River Operators and

Support Programs

In distributed, data-streaming systems, adaptation is possible if operators can be

introduced into the data stream transparently or gracefully redeployed to different

hosts. This appendix briefly describes the usage of the Dynamic River support pro-

grams and pipeline Operators referred to in this dissertation. Dynamic River, an

extension to the DaSH data acquisition system [137], comprises Operators designed

for processing sensor data streams and enables sets Of Operators to be dynamically

relocated to more suitable hosts to better meet quality-of—service requirements. The

programs described here represent an incomplete list; many other Operators are avail-

able. Currently, Dynamic River provides 60 Operators for processing or routing data

and more Operators are being implemented on a regular basis to meet the needs of

different applications.

B.1 Basic Pipeline Operators

B. 1. 1 Asciionramp

Enable the injection of ASCII data into the data stream. The asciionramp operator

enables ASCII output from USERCOMMAND (scripts or other programs) to be easily

264

injected into the data stream. The output of USERCOMMAND is automatically

packaged into records prior to being injected into the data stream. The essential

characteristics of asciionramp are as follows:

Records appearing on asciionramp’s stdin are transferred to stdout.

Once a BEGINRUN record has been read from stdin, the BEGINRUN record

is written to stdout and USERCOMMAND executed. USERCOMMAND’S

stdout is connected to a pipe, enabling asciionramp to read data produced

by USERCOMMAND. USERCOMMAND’s stderr is also connected to a pipe,

enabling asciionramp to read error messages produced by USERCOMMAND

and relay them to asciionramp’s stderr.

Data produced by USERCOMMAND is automatically packaged into records

and written to asciionramp’s stdout.

If USERCOMMAND exits and --restart is not specified, asciionramp continues

reading records from stdin and writing them to stdout.

If asciionramp’s stdin is closed, asciionramp kills USERCOMMAND (if nec-

essary) and then exits.

Synopsis:

Usage: asciionramp --packet=PACKET [OPTION]... USERCOMMAND

Options:

0 --version Output version information and exit

--help Display this help and exit

--one1iner Produce a new record for each line of output produced by USER-

COMMAND and write it to stdout.

--separator=CHARACTER Collect output from USERCOMMAND until CHAR-

ACTER is received. The collected output, excluding the separator, is packaged

into a single record and written to stdout.

--restart [=RETRIES] (default: infinite restarts) Restart USERBINARY each

time it exits. If RETRIES is Specified, only restart the program RETRIES

times.

--packet=PACKET Mandatory. PACKET can be either a single positive inte-

ger or a symbolic name (e.g., Physics). Records produced from the output Of

USERBINARY will be assigned a type Of PACKET.

Examples:

265

e readout --run=45 I asciionramp --packet=104 --oneliner

timestamp.sh I segmenter /evt/data/output

Inject a time stamp into the data stream. Each line output by timestampsh is

packaged into a record and written to stdout.

e readout --run=46 I asciionramp --packet=103 --restart periodic.sh

l segmenter /evt/data/output

Inject periodically produced data into the data stream. The entire output

of periodicsh is packaged as a single record and written to stdout. When

periodicsh terminates, it is restarted.

e readout --run=47 | asciionramp --packet=105 --separator=“\f”

--restart thresholds.sh I segmenter /evt/data/output

Collect output from thresholds.sh until a form feed character is received. The

collected output, excluding the form feed character, is packaged into a single

record and written to stdout. When thresholds.sh terminates, it is restarted.

B.1.2 Binary2record

Convert binary data directly into DaSH records. This operator is not intended as

an injection operator, but as a primary source that can consume binary data from

stdin and write DaSH records on stdout. Data read from stdin is automatically

packaged into records prior to being written to stdout. The essential characteristics

of binary2record are as follows:

0 Binary2record first emits a BEGINRUN record on stdout.

0 Data read from stdin is expected to have a structure that includes a leading

byte count, indicating the number of data bytes produced, followed by the data.

The leading byte count should be a 4 byte integer in host byte order.

0 Data read from stdin is automatically packaged into records and written to

binary2record’s stdout.

e If binary2record’s stdin is closed, or binary2record receives a‘SIGINT,

binary2record will emit a ENDRUN record on stdout and then exit.

Synopsis:

Usage: binary2record --run=INTEGER --packet=INTEGER [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

6 --run=INTEGER Mandatory. Specify an experiment run number

266

--packet= [PACKETItyped] Mandatory. Record type to use for records pro—

duced. PACKET may be an integer or the symbolic name for a well known

packet type such as Physics. If the argument is the string “typed,” then the

binary records read are assumed to have an host-byte—order integer field, indi-

cating the record type, following the length.

—-tit1e=STRING Experiment title string.

Examples:

0 binary2record --run=45 --packet=104 --title=“Experiment number

45”

Produce records using run number 45 and title “Experiment number 45.”

Records produced from binary data read from stdin will have a record type of

104.

B. 1.3 Binaryonramp

Enable the injection of binary data into the data stream. The binaryonramp Opera-

tor enables binary output from USERBINARY (executable programs) to be easily in-

jected into the data stream. The output of USERBINARY is automatically packaged

into records prior to being injected into the data stream. The essential characteristics

of binaryonramp are as follows:

Records appearing on binaryonramp’s stdin are transferred to stdout.

Once a BEGINRUN record has been read from stdin, the BEGINRUN record

is written to stdout and USERBINARY executed. USERBINARY’S stdout

is connected to a pipe, enabling binaryonramp to read data produced by

USERBINARY. USERBINARY’S stderr is also connected to a pipe, enabling

binaryonramp to read error messages produced by USERBINARY and relay

them to binaryonramp’s stderr.

Data produced by USERBINARY is expected to produce output that includes

a leading byte count, indicating the number of data bytes produced, followed

by the data. The leading byte count should be a 4 byte integer in host byte

order.

Data produced by USERBINARY is automatically packaged into records and

written to binaryonramp’s stdout.

If USERBINARY exits and «restart is not specified, binaryonramp continues

reading records from stdin and writing them to stdout.

If binaryonramp’s stdin is closed, binaryonramp kills USERBINARY (if nec-

essary) and then exits.

267

Synopsis:

Usage: binaryonramp --packet=PACKET [OPTION]... USERBINARY

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --restart [=RETRIES] (default: infinite restarts) Restart USERBINARY each

time it exits. If RETRIES is Specified, only restart the program RETRIES

times.

0 --packet= [PACKETItyped] Mandatory. PACKET can be either a single pos-

itive integer or a symbolic name (e.g., Physics). Records produced from the

output of USERBINARY will be assigned a type Of PACKET. If the argument

is the string “typed,” then the output of USERBINARY is assumed to have an

host-byte—order integer field, indicating the record type, following the length.

Examples:

0 readout --run=45 I binaryonramp --packet=104 mybinary I segmenter

/evt/data/output

Inject output from mybinary into the data stream. Records produced from

data emitted by mybinary will have a type of 104. If mybinary terminates, it

will not be restarted.

e readout --run=46 I binaryonramp --packet=103 --restart mybinary I

segmenter /evt/data/output

Inject output from mybinary into the data stream. Records produced from

data emitted by mybinary will have a type of 103. When mybinary terminates,

it is restarted.

B.1.4 Cabsf

Read records that contain an array of complex float values and calculate the complex

absolute value for each element. Input format is (r,i),(r,i),(r,i), . . .

Synopsis:

Usage: cabsf [OPTION]...

Options:

0 --version Output version information and exit.

0 --help Display this help and exit.

268

--packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as DATA.

Default type is DATA.

--pass Pass all input records through to output without modification. This

Option only applies to records that are processed by this segment as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

--emit=PACKET Records that are created by this Operator are emitted with the

type Of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as DATA. Default type is DATA.

--half Only output the first half of the data in the output array (with FFT

data, the second half is a mirror image Of the first half and is not used for

plotting Spectrograms).

Examples:

B.1.

cat audio.dat l wav2rec --samples=768 I float2cp1x l dft I cabsf

> cabsf.recs

Read the sox .dat file from stdin and pipe it through the discrete Fourier

transform (dft) and then into cabsf to create a file of power spectrum records.

5 Cutout

Read records that contain an array of floating point values and reformat them such

that emitted records contain only a specified range of values.

Synopsis:

Usage: cutout --range=INTEGER,INTEGER [OPTION]...

Options:

--version Output version information and exit

--help Display this help and exit

--packet=PACKET Process records with the type Of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

--range=INTEGER,INTEGER Mandatory. Specify the accepted range as array

indices greater than or equal to zero.

Examples:

cat audio.wav I wav2rec --samples=768 | cutout --range=0,99 >

cutout.recs

Use cutout to create a file of data where only the first 100 values are retained

for each original record.

269

B.1.6 Cutter

Read records that contain an array of time series float values and a trigger signal.

Cut the time series into pieces based on when the trigger signal exceeds a threshold

value.

Synopsis:

Usage: cutter [OPTION]...

Options:

--version Output version information and exit

--he1p Display this help and exit

--pass Pass all input records through to output without modification. The

option only applies to records that are processed by this segment as indicated

by --packet or --signal. Records that are not processed are automatically

passed through to output without modification.

--emit=PACKE’I‘ Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

--packet=PACKET Process records with the type Of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

--signal=PACKET Records with the type of PACKET are used as the signal

for cutting data records (--packet). PACKET may be an integer or the sym-

bolic name for a well known packet type such as TRIGGER. Default type is

TRIGGER.

--threshold=REAL Set the signal threshold value for cutting data records. De-

fault is 1.0.

--all Cut sections for both high and low triggers (above and below/equal the

threshold). Default is to only cut sections for high triggers.

Examples:

cat audio.wav I wav2rec --samples=768 I trigger --pass

--emit=trigger I cutter --signal=trigger --threshold=0.5 >

cutter.recs

Pipe audio.wav through trigger to add trigger records to the data stream

that can be used to cut data records into pieces. Then use cutter to cut the

data stream based on the trigger signal.

270

B.1.7 Daqcat

Output the records from an experiment that has previously been saved to disk. Ex-

perimental data is stored in segmented files to avoid exceeding the maximum file size

Of the filesystem. To simplify processing experimental data, daqcat understands how

to output the records for a particular run starting at the first segment and terminating

at the last segment.

Synopsis:

Usage: daqcat --run=INTEGER [OPTION]... DIRECTORY

Options:

0 --version Output version information and exit

0 —-help Display this help and exit

0 --run=INTEGER Mandatory. Specify an experiment run number

Examples:

0 daqcat --run=45 /evt/data/output

Cat experiment with run number 45 found in directory /evt/data/output

0 daqcat --run=123 /evt/data/output I recorddump Cat experiment with

run number 123 found in directory /evt/data/output into Operator

recorddump.

B.1.8 Daqtail

Output the records from an experiment that has previously been saved to disk. Ex-

perimental data is stored in segmented files to avoid exceeding the maximum file Size

of the filesystem. To simplify processing experimental data, daqtail understands

how to output the records for the current experiment as the are appended to the

current segment.

Creation of new runs and new run segments in the specified directory is understood

by daqtail. When new runs are added to the directory, daqtail will detect that

a new run has been started and automatically resume processing with this new run.

When new segments are created for the current run, daqtail will detect that a new

segment has been created and continue processing with this new segment.

Unless the --catchup Option has been specified, processing begins by outputting

the last record Of the most recent segment.

Synopsis:

Usage: daqtail [OPTION]... DIRECTORY

Options:

6 --version Output version information and exit

271

0 —-help Display this help and exit

0 --catchup Start processing with the first record of the first segment of the

current run.

0 —-collate= [ctime Irunnumber] (default: ctime) Collate the event files found

in DIRECTORY according to either file ctime (inode change time) or by run-

number.

0 -—file Treat DIRECTORY as a file. The file specified will be tailed until an

ENDRUN, BADEND or CONTINUE record is encountered. Note that «collate

has no effect when tailing a specific file. If --catchup is specified, processing

begins at the start, instead of the end, of the specified file.

Examples:

0 daqtail /evt/data/output

Tail most recent experiment found in directory /evt/data/output

0 daqtail --catchup /evt/data/output I recorddump

Tail most recent experiment found in directory /evt/data/output into operator

recorddump. Processing begins with the first segment of the most recent run.

0 daqtail --collate=runnumber levt/data/output

Tail the most recent experiment found in directory /evt/data/output. Collate

using run numbers instead of ctime.

e daqtail --file experiment.data

Tail the file experiment . data and exit when an ENDRUN, BADEND or CON-

TINUE record is encountered.

B.1.9 Daqtee

Daqtee writes records from an experiment to two separate Operators enabling online

filtering and data processing while retaining the unfiltered or processed data. Records

written to the secondary (tee) data stream can be selected a priori using the «packet

flag. That is, daqtee considers each record read from stdin. If the record’s packet

type matches one of the specified packet types, then the record will be written to the

tee data stream. All records read from stdin are unconditionally written to the main

data stream on stdout. If the «packet flag is not specified, then all records read from

stdin are also written to the tee data stream.

Packet types can be specified as either a single positive integer, a range of positive

integers or by using one Of the known symbolic names for some well known packet

types. Currently, the list of symbolic well known packet types includes: Physics (a.k.a,

Data), Scaler, SnapSc, StateVar, RunVar, PktDoc, ParamDescript and Trigger.

The essential characteristics of daqtee are as follows:

0 Daqtee passes all records read on stdin to stdout.

272

e daqtee runs a client program with stdin connected to a pipe to which it write

a copy of the records Specified using the --packet flag. If, the --packet flag is

not Specified then a copy of all the records received on stdin will be written to

the pipe.

0 If PROGRAM breaks the pipe, daqtee degenerates to writing all records read

on stdin to stdout.

o If an EOF is received on stdin, daqtee exits.

Synopsis:

Usage: daqtee [--packet=PACKETS] ... [OPTION]... PROGRAM

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --packet=PACKETS If more than one occurrence Of this flag appears on the

command line, all packets and ranges specified will be considered. PACKETS

can be either a single positive integer, a range Of positive integers (e.g., 101-118

or 101,118) or a symbolic name (e.g., Physics). All ranges are inclusive.

Examples:

0 readout --run=123 l daqtee --packet=101 myfilter I segmenter

/evt/data/output

Output all records read on stdin to stdout and write a copy Of records that

have a packet type of 101 to myfilter.

e readout --run=890 | daqtee --packet=PktDoc recorddump I segmenter

/evt/data/output

Output all records read on stdin to stdout and write a copy of records that

have a packet type of PktDoc to recorddump.

B.1.10 th

Read records containing an array of complex values, in (real,imaginary) format, and

compute the discrete Fourier transform for each record.

Synopsis:

Usage: dft [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

273

o --pow2 Use a Fourier transform optimized for arrays of length power of 2.

e --invert Execute an inverse Fourier transform instead of a forward transform.

0 --packet=PACKEZT Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

0 —-pass Pass all input records through to output without modification. The

Option only applies to records that are processed by this segment as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

0 --emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

Examples:

0 cat audio.wav I wav2rec --samp1es=768 I float2cp1x --pow2 I dft

--pow2 >fft.recs

Use dft to create a file Of Fourier transformation records from an audio file in

WAV format.

B.1.11 Feed

Read DaSH records from storage and write them to stdout. As discussed in this

dissertation, this Operator is abstract. See daqcat or daqtail for a concrete example

Of a feed Operator.

B.1.12 Float2cplx

Read records that contain an array of float values and reformat the

array as an array Of complex numbers. The output ordering is

(real,imaginary) ,(real ,imaginary) , (real,imaginary) , . . . ,(real,imaginary) with the

imaginary part set to 0.0.

Synopsis:

Usage: float2cplx [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

6 --pow2 Structure complex data as an array Of length power of 2 padded with

zeros.

274

e —-packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

0 —-pass Pass all input records through to output without modification. The

option only applies to record that are processed by this segment as indicated by

--packet. Records that are not processed are automatically passed through to

output without modification.

0 --emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

Examples:

0 cat audio.wav I wav2rec --samples=768 I float2cplx --pow2 I dft

--pov2 >fft.recs

Use float2cplx to create a record stream Of audio data suitable for processing

by dft.

B.1.13 Paa

Read records that contain an array of time-series, float values and compute the piece—

wise aggregate approximation (PAA) for each data record.

Synopsis:

Usage: paa [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --pass Pass all input records through to output without modification. The

option only applies to records that are processed by this segment as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

0 --packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

0 --emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

0 --segments=INTEGER Set the number of segments to use for creating a PAA

(Piecewise Aggregate Approximation) Of the time series.

275

Examples:

0 cat audio.wav I wav2rec --samp1es=768 I paa > paa.recs

Use paa to compute the piecewise aggregate approximation of audio WAV data.

B.1.14 Ratemeter

Reads a DaSH record stream from stdin and either consume the record or pass it

through to stdout. Calculate rate statistics and print them to stderr. The size of

the record header is not included when calculating statistics.

Synopsis:

Usage: ratemeter [--consume] [--every=INTEGER]... [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --every=SECONDS An attempt will be made to output statistics to stderr every

INTEGER seconds of wall clock time. That is, statistics will output after the

specified number of seconds have passed and a new record has been read.

0 --consume Records will be consumed rather written to stdout.

Examples:

0 readout --run=123 I ratemeter --every=5 I recorddump

Calculate statistics for run 123, outputting statistics on stderr every 5 seconds.

Records are then written to stdout for consumption by recorddump.

e readout --run=890 I ratemeter --consume --every=2048

Calculate statistics for run 890, outputting statistics on stderr every 10 sec-

onds. Records are then consumed.

B.1.15 Raw2record

Convert raw data directly into DaSH records. This Operator is not intended as an

injection Operator, but as a primary source that can consume raw data from stdin and

write DaSH records on stdout. Data read from stdin is automatically packaged into

records prior to being written to stdout. The essential characteristics Of raw2record

are as follows:

6 Raw2record first emits a BEGINRUN record on stdout.

0 Data read from stdin is treated as a stream of bytes.

276

0 Data read from stdin is automatically packaged into records and written to

raw2record’s stdout.

o If raw2record’s stdin is closed, or raw2record receives a SIGINT, raw2record

will emit a ENDRUN record on stdout and then exit.

Synopsis:

Usage: raw2record --run=INTEGER --packet=INTEGER [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --run=IN'I‘EGER Mandatory. Specify an experiment run number

0 --packet=INTEGER Mandatory. Record type to use for records produced.

0 --title=STRING Experiment title string

0 —-size=INTEGER Size Of data in bytes to include in each record. Default 8192

bytes.

Examples:

0 raw2record --run=45 --packet=104 --title=“Experiment number 45”

Produce records using run number 45 and title “Experiment number 45.”

Records produced from raw data read from stdin will have a record type of

104.

o raw2record --size=1024 --run=51 --packet=Data

--title=“Experiment number 51”

Produce records using run number 51 and title “Experiment number 51.”

Records produced from raw data read from stdin will have a record type of

DATA. Each record will contain 1024 bytes of raw data.

B.1.16 Readout

Read experiment input from data acquisition hardware and output event records.

Each execution of readout begins with a BEGINRUN record and ends with either

an ENDRUN or BADEND record depending on how readout was terminated. If

readout is terminated with a SIGINT (Ctrl-C), then readout emits an ENDRUN

record. If readout is terminated by a SIGTERM, then readout will emit a BADEND

record prior to exiting. All other records are of type DATA.

Synopsis:

Usage: readout --run=INTEGER [OPTION]...

Options:

277

0 --version Output version information and exit.

0 --help Display this help and exit.

0 --run=INTEGER Mandatory. Specify an experiment run number

0 --title=STRING Experiment title string

Examples:

0 readout --run=45 --title=“Experiment number 45”

Produce records using run number 45 and title “Experiment number 45.”

o readout --run=123 --tit1e=“A cool experiment” I recorddump

Produce records using run number 123 and title “A cool experiment” and pipe

them into Operator recorddump.

B.1.17 Record

Read DaSH records from stdin and write them to storage. As discussed in this

dissertation, this Operator is abstract. See segmenter for a concrete example of a

record Operator.

B.1.18 Record2binary

Convert DaSH records directly into binary data. Binary data is data stream consisting

of records with a leading length field, written as an integer in host byte order, followed

by data bytes. Control records, such as BEGINRUN, ENDRUN, BADEND and

CONTINUE, are consumed and not passed to stdout as part Of the raw data stream.

Synopsis:

Usage: record2binary [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --typed Output typed binary data. That is, add a host-byte—order integer field,

following the length field, that indicates the record type.

Examples:

0 daqcat --run=45 /evt/data/output I record2binary

Produce a binary data stream from the event data for run 45 stored in directory

/evt/data/output. Conversion continues until record2binary receives an EOF

on stdin.

278

e daqcat --run=45 /evt/data/output I sieve --packet=DATA I

record2binary

Produce a binary data stream from the event data for run 45 stored in directory

/evt/data/output. Sieve restricts the type of records fed to record2binary

to be Of type DATA. Conversion continues until record2binary receives an

EOF on stdin.

B. 1.19 Record2raw

Convert DaSH records directory into raw data. Raw data is simply a stream of data

bytes about which no structure is assumed. Control records, such as BEGINRUN,

ENDRUN, BADEND and CONTINUE, are consumed and not passed to stdout as

part of the raw data stream.

Synopsis:

Usage: record2raw [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

Examples:

0 daqcat --run=45 levt/data/output I record2raw

Produce a raw data stream from the event data for run 45 stored in directory

/evt/data/output. Conversion continues until record2raw receives an EOF

on stdin.

e daqcat --run=45 /evt/data/output I sieve --packet=DATA |

record2raw

Produce a raw data stream from the event data for run 45 stored in directory

/evt/data/output. Sieve restricts the type of records fed to record2raw to

be of type DATA. Conversion continues until record2raw receives an EOF on

stdin.

B. 1.20 Record2vect

Read records comprising host format float arrays from stdin and write out vectors

(one vector per line) on stdout.

Synopsis:

Usage: record2vect [OPTION]...

Options:

0 --version Output version information and exit

279

0 --help Display this help and exit

0 --packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

0 --merge=INTEGER Merge multiple records into one vector. INTEGER indicates

the number of records to merge. Default is 1 (each record forms one vector).

Examples:

0 cat audio.wav l wav2rec --samples=768 I record2vect > audio.data

Use record2vect to convert audio data into vectors suitable for processing by

MESO.

B. 1.21 Recorddump

Reads a DaSH record stream from stdin and outputs the record headers in human

readable format.

Synopsis:

Usage: recorddump [OPTION]...

Options:

0 —--version Output version information and exit

0 --help Display this help and exit

0 --dump=NBYTES Dump up to NBYTES of record data in hex format

0 --print Also dump data as printable characters if possible.

0 daqtail --run=123 /evt/data/output I recorddump Use daqcat to output

the records from run 123 found in directory /evt/data/output and pipe them

into recorddump.

0 cat /evt/data/output/run0123-0001 .evt l recorddump Cat the first data

file segment from run 123 into recorddump.

B.1.22 Reslice

Read records that contain an array of float values and reformat each record so that

every two original records is separated by a record containing half of the first original

record and half of the second original record.

Synopsis:

Usage: reslice [OPTION]...

Options:

280

0 --version Output version information and exit

0 --help Display this help and exit

0 —-packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

Examples:

0 cat audio.wav I wav2rec --samples=768 I reslice > resliced.recs

Pipe records of audio WAV data through reslicef to create a file where each

original record is separated by a record containing half of the preceding record

and half of the following record.

B.1.23 Sample

Selectively sample records from an experiment that have the packet types specified

using the --packet flag. That is, sample considers each record read from stdin. If

the record’s packet type matches one of the specified packet types, then the record

will only be written to stdout if writing to stdout will not block. All other record

types are unconditionally written to stdout even if the write required to do so would

block.

Packet types can be specified as either a single positive integer, a range of positive

integers or by using one of the known symbolic names for some well known packet

types. Currently, the list of symbolic well known packet types includes: Physics (a.k.a,

Data), Scaler, SnapSc, StateVar, RunVar, PktDoc, ParamDescript and Trigger.

Synopsis:

Usage: sample --packet=PACKETS [--packet=PACKETS]... [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 —-packet=PACKETS Mandatory. If more than one occurrence of this flag ap-

pears on the command line, all packets and ranges specified will be considered.

PACKETS can be either a single positive integer, a range of positive integers

(e.g., 101-118 or 101,118) or a symbolic name (e.g., Physics). All ranges are

inclusive.

Examples:

0 readout --run=123 I sample --packet=101

Output those records that have packet type 101 only if writing to stdout will

not block. All other records are written regardless of blocking.

281

readout --run=890 I sample --packet=105-116 | recorddump

Pipe those records that have have a packet type falling in the range from 105

to 116 (inclusive) into the Operator recorddump only if writing to stdout will

not block. All other records are written regardless Of blocking.

readout --run=567 I sample --packet=DATA --packet=150 I

recorddump ,

Pipe those records that have have a packet type corresponding to the sym-

bolic type of DATA and those records with packet type 150 into the Operator

recorddump only if writing to stdout will not block. All other records are

written regardless Of blocking.

B.1.24 Saxanomaly

Read records that contain an array of time series, floating point values and compute

the symbolic aggregate approximation (SAX) anomaly score.

Synopsis:

Usage: saxanomally [OPTION]...

Options:

-—version Output version information and exit

--help Display this help and exit

--pass Pass all input records through to output without modification. The

Option only applies to records that are processed by this segment as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

--emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

--packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

--average=INTEGER Output anomaly score as a moving average over the spec-

ified window Size.

--samples=INTEGER The number of samples to encode per output record. De-

fault is 500.

--subseqsize=INTEGER The length Of subsequences to use for constructing the

SAX bitmaps. Default is 2.

282

o --window=INTEGER Set the sliding window size for selecting a maximum trigger

value. Default is 128.

e --alphabet=INTEGER Set the SAX alphabet size. Default is 8.

e --segsize=INTEGER Set the number of values to use for creating a piecewise

aggregate approximation (PAA) of the time series. This representation will then

be converted to SAX format. Default is 10.

e --dist=FLOAT1 , FLOAT2 Specify a precomputed mean and standard deviation to

use when Z—normalizing rather than compute the mean and standard deviation

for each vector. FLOATl and FLOAT2 are the specified mean and standard

deviation, respectively.

Examples:

6 cat audio.wav I wav2rec --samples=768 I saxbitmap >

saxbitmap.recs

Use saxanomaly to create a file containing records comprising SAX anomaly

scores.

B.1.25 Saxbitmap

Read records that contain an array of time series, floating point values and compute

the symbolic aggregate approximation (SAX) bitmap representation.

Synopsis:

Usage: saxbitmap [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --pass Pass all input records through to output without modification. The

option only applies to records that are processed by this Operator as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

0 --emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

0 —-packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

283

--subseqsize=INTEGER The length Of subsequences to use for constructing the

SAX bitmaps. Default is 2.

--alphabet=INTEGER Set the SAX alphabet size. Default is 8.

--segsize=INTEGER Set the number of values to use for creating a piecewise

aggregate approximation (PAA) of the time series. This representation will then

be converted to SAX format. Default is 10.

--rate Instead of outputting a bitmap containing counts Of subsequences, out-

put the rate at which subsequences occur. That is, divide the count in each cell

by the total count of subsequences.

--dist=FLOAT1 , FLOAT2 Specify a precomputed mean and standard deviation to

use when Z—normalizing rather than compute the mean and standard deviation

for each vector. FLOATl and FLOAT2 are the specified mean and standard

deviation respectively.

Examples:

cat audio.wav I wav2rec --samples=768 I saxbitmap >

saxbitmap.recs

Use saxbitmap to create a file containing records comprising a SAX bitmap

representation of the original records.

B.1.26 Segmenter

Divide a DaSH record stream into segments for storage on disk. This Operator does

the following:

Monitors stdin for records.

Upon receipt Of a BEGINRUN record, segmenter extracts the run number and

creates a file named run{runnumber}-0000.evt.

The BEGINRUN record is then written to this file.

Upon receipt of an ENDRUN record, segmenter writes the ENDRUN record

to file, closes the file and exits.

In response to a broken pipe, segmenter creates a BADEND record, signifying

that the run has ended, and writes this record to file and exits.

All other records are written to file without interpretation.

If any write would create a file larger than the current segsize, segmenter closes

the currently Open file, increments the segment number, creates a new file named

run{run,,umber}-{sequence}.evt, and continues writing records.

284

Synopsis:

Usage: segmenter [OPTION]... DIRECTORY

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --segsize=MEGABYTES Specify run file segment size. Default is 2GB.

Examples:

0 readout --run=56 I segmenter /evt/data/output

Use readout to produce records for run number 58 and pipe them

through segmenter. Segmenter will write run file segments in directory

/evt/data/output.

o readout -—run=123 I segmenter --segsize=5 /evt/data/output

Use readout to produce records for run number 128 and pipe them through

segmenter. Segmenter will write 5MB run file segments in directory

/evt/data/output.

B.1.27 Sieve

Output only those records from an experiment that have the specified packet types.

That is, only those records that have packet types corresponding with those Specified

using the «packet flag will be written to stdout. Records with type BEGINRUN,

ENDRUN, BADEND or CONTINUE are also written to stdout to enable proper

data stream parsing by consumers. All other records are dropped.

Packet types can be specified as either a single positive integer, a range Of positive

integers or by using one of the well known symbolic names for some well known packet

types. Currently, the list of symbolic well known packet types includes: Physics (a.k.a,

Data), Scaler, SnapSc, StateVar, RunVar, PktDoc, ParamDescript and Trigger.

Synopsis:

Usage: sieve --packet=PACKETS [--packet=PACKETS]... [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --packet=PACKETS Mandatory. If more than one occurrence of this flag ap-

pears on the command line, all packets and ranges specified will be considered.

PACKETS can be either a single positive integer, a range of positive integers

(e.g., 101-118 or 101,118) or a symbolic name (e.g., Physics). All ranges are

inclusive.

285

--invert Invert the sense of record type matching. That is, rather than includ-

ing only those record types Specified, only exclude those record types specified.

Examples:

readout --run=123 I sieve --packet=101

Output only those records that have packet type 101 to stdout.

readout --run=890 I sieve --packet=105-116 I recorddump

Pipe those records that have have a packet type falling in the range from 105

to 116 (inclusive) into the operator recorddump.

readout --run=567 I sieve --packet=DATA --packet=150 I recorddump

Pipe those records that have have a packet type corresponding to the sym-

bolic type of DATA and those records with packet type 150 into the operator

recorddump.

B.1.28 Stepcutter

Read records that contain an array Of time series float values and a trigger signal.

Cut the time series into pieces based on when the trigger signal changes to a different

integer value.

Synopsis:

Usage: cutter [OPTION]...

Options:

--version Output version information and exit

--help Display this help and exit

--pass Pass all input records through to output without modification. The

option only applies to records that are processed by this Operator as indicated

by --packet or ---signal. Records that are not processed are automatically

passed through to output without modification.

--emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

--packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

--signal=PACKET Records with the type of PACKET are used as the signal

for cutting data records (--packet). PACKET may be an integer or the sym-

bolic name for a well known packet type such as TRIGGER. Default type is

TRIGGER.

286

Examples:

cat audio.wav I wav2rec --samples=768 I steptrigger --pass

--emit=trigger I stepcutter --signal=trigger 5 > stepcutter.recs

Pipe audio.wav through steptrigger to add trigger records to the data stream

that can be used to cut data records into pieces. Then use stepcutter to cut

the data stream based on the trigger signal.

B.1.29 Steptrigger

Read records that contain an array of time series float values and output a trigger

signal that corresponds to the maximum value found within a Sliding window. This is

a threshold trigger that outputs a positive integer corresponding to a stepwise change

in the input values. The Size Of the step is specified using the --threshold parameter.

Synopsis:

Usage: steptrigger [OPTION]...

Options:

--version Output version information and exit

--help Display this help and exit

--pass Pass all input records through to output without modification. The

Option only applies to record that are processed by this operator as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

--emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

--packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

--samp1es=INTEGER The number of samples to encode per output record. De-

fault is 500.

--windov=INTEGER Set the Sliding window size for selecting a maximum trigger

value. Default is 128.

--threshold=REAL Set the threshold value for emitting a high Signal. Default

is 0.1.

287

e --adapt=INTEGER Indicate that the threshold should be adapted based on the

mean and standard deviation of the the data. The INTEGER value indicates

the number of standard deviations from the mean that will cause a change in

the trigger signal value. Default is not to adapt the threshold.

Examples:

0 cat audio.wav I wav2rec --samples=768 I steptrigger >

steptrigger.recs

Use tigger to create a file containing records of trigger signal data.

B.1.30 Trigger

Read records that contain an array of time series float values and output a trigger

signal that corresponds to the maximum value found within a sliding window.

Synopsis:

Usage: trigger [OPTION]...

Options:

0 --version Output version information and exit

0 ---help Display this help and exit

0 --pass Pass all input records through to output without modification. The

Option only applies to record that are processed by this operator as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

0 --emit=PACKET Records that are created by this process are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as Data. Default type is Data.

0 --packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as Data.

Default type is Data.

0 --samples=INTEGER The number of samples tO encode per output record. De-

fault is 500.

o --window=INTEGE‘.R Set the sliding window Size for selecting a maximum trigger

value. Default is 128.

e --threshold=REAL Set the threshold value for emitting a high Signal. Default

is 0.5.

288

e --adapt=INTEGER Indicate that the threshold should be adapted based on the

mean and standard deviation of the the data. The INTEGER value indicates

the number of standard deviations above the mean that will cause a high Signal

to be emitted. Default is not to adapt the threshold.

Examples:

6 cat audio.wav I wav2rec --samples=768 I trigger > trigger.recs

Use tigger to create a file containing records Of trigger signal data.

B.1.31 Wav2rec

Read a audio WAV file from stdin and output host format float arrays as records.

Synopsis:

Usage: wav2rec [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --run=INTEGER Specify an experiment run number

0 —-title=STRING Experiment title string

0 --packet=INTEGER Audio data records will have a record type of INTEGER.

INTEGER may be an integer or the symbolic name for a well known packet

type such as Data. Default type is Data.

0 --samples=INTEGER Number of samples that comprise each output record.

Examples:

0 cat audio.wav I wav2rec > audio.recs

Use wav2rec to convert a WAV file into a file Of records.

B.1.32 Welchwindow

Read records that contain an array of float values and filter the data using a welch

window.

Synopsis:

Usage: welchwindow [OPTION]...

Options:

0 -—version Output version information and exit

289

0 --help Display this help and exit

0 --packet=PACKET Process records with the type of PACKET. PACKET may

be an integer or the symbolic name for a well known packet type such as DATA.

Default type is DATA.

0 --pass Pass all input records through to output without modification. This

option only applies to records that are processed by this operator as indicated

by --packet. Records that are not processed are automatically passed through

to output without modification.

0 --emit=PACKET Records that are created by this Operator are emitted with the

type of PACKET. PACKET may be an integer or the symbolic name for a well

known packet type such as DATA. Default type is DATA.

Examples:

0 cat audio.wav I wav2rec --samples=768 I welchwindow > welch.recs

Filter audio WAV data using welchwindow to create a file Of filtered records.

B.2 Network Pipeline Operators

B.2.1 Streamin

Reads a pipeline record stream from a single network connection and writes it on

stdout.

Pipeline semantics specify that pipeline termination begins upstream (at the

source) and causes the subsequent termination of pipeline Operators in response to the

closure of of read-side connections. This is intended to reduce the occurrence Of data

loss by enabling records to be flushed as far downstream as possible as the pipeline is

shutdown. As such, loss of the read-Side network connection will cause termination

when not Operating in persistent mode. When in server mode, loss of the read—side

network connection will not cause termination only if --persist is specified. When

in client mode, and --persist is specified, closure of the read-side network connec-

tion will cause streamin to wait for commands on the command pipe (--fifo). If

no command pipe exists, then streamin will terminate.

A SIGHUP will cause streamin to exit once SCOping has reached a depth of zero.

That is, records will continue to be read and written until all open data SCOpes are

closed.

String commands, such as “stop” or “connect localhost 9095” can be passed to

streamin over the command pipe. Following is a list of available commands:

stop Terminate once the outer most data scope has been reached.

close Close the current network connection.

290

connect Connect to the specified host. When this command is called with a

hostname and port number as arguments, a connection is established. When

called with no arguments, the current connection status is returned on the

output FIFO.

Synopsis:

Usage: streamin [OPTION]...

Options:

0 --version Output version information and exit

0 --help Display this help and exit

0 --server Run in server mode rather than client mode.

0 --persist When in server mode, do not terminate when the read-Side network

connection is closed, but instead attempt to accept a new connection.

--port=INTEGER When running in server mode, this parameter specifies the

network port that will be listened on for new connections. When running in

client mode, the port number is used in conjunction with a host (specified with

--host) to establish a connection.

--host=STRING When running in client mode, this parameter Specifies the net-

work host to which to establish a connection.

--fifo=STRING Specify the path prefix of a command pipe. Two FIFOs will

be created by streamin. The first has the suffix “.in” and is used to pass

commands to streamin. The second has a suflix of “.Out” and is used to return

results to the user. The directory path must already exist prior to invoking

streamin.

--switch [=INTEGER] When in client mode, and the connection is closed, switch

to server mode. By default, use the port number specified with --port. Op-

tionally, a different network port can be specified as an Option. This option

implies --persist.

Examples:

streamin --server --port=9090 I recorddump

Wait for a connection on port 9090. Once a connection has been established,

read records from the connection and write records to stdout. Recorddump will

then print user readable record header information.

streamin --port=9090 --host=localhost I recorddump

Make a connection to localhost on port 9090. Once a connection has been

established, read records from the connection and write records to stdout.

Recorddump will then print user readable record header information.

291

B.2.2 Streamout

Pipeline semantics specify that pipeline termination begins upstream (at the source)

and cause the subsequent termination of pipeline Operators in response to the closure

of Of read-Side connections. This is intended to reduce the occurrence of data loss

by enabling records to be flushed as far downstream as possible as the pipeline is

Shutdown. As such, this Operator does not terminate when the write-side network

connection is lost.

Moreover, to prevent back pressure that inhibits the data source from transmitting

or other Operators from receiving data in a timely fashion, streamout degrades to

consumption mode when not connected. That is, streamout will continue to read

records from stdin and simply consume them unless there exists a connection on

which to emit records. When in server mode, new connections can be made by a

client. When in connection mode, streamout degrades permanently to consumption

mode until termination. If blocking, instead of consumption, is desired the --block

Option can be used. However, all pipeline traflic will halt if streamout is blocking.

Synopsis:

Usage: streamout [OPTION]...

Options:

0 --version Output version information and exit

0 --help DiSplay this help and exit

0 --block Block instead of consume when not connected.

0 --server Run in server mode rather than client mode.

0 --port=INTEGER When running in server mode, this parameter specifies the

, network port that will be listened on for new connections. When running in

client mode, the port number is used in conjunction with a host (specified with

--host) to establish a connection.

0 --host=STRING When running in client mode, this parameter specifies the net-

work host to which to establish a connection.

0 --—switch [=INTEGER] When in client mode, and the connection is closed, switch

to server mode. By default, use the port number specified with --port. Op-

tionally, a different network port can be specified as an option.

Examples:

0 daqtail --run=123 /evt/data/output I streamout --port=9090

--server

Use daqtail to output the records from run 123 found in directory

levt/data/output and pipe them into streamout. Streamout waits for

a connection on port 9090 and then reads records from stdin and writes them

to the network connection.

292

cat /evt/data/output/run0123-0001 .evt I streamout --port=9091

--host=localhost

Cat the first data file segment from run 123 into streamout. Streamout will

attempt to make a connection to localhost on port 9091.

B.3 Support Programs

B.3.1 Ctrlcmd

Command line utility for sending a command to a remote Dynamic River daemon

(dynriverd). Commands include:

kill Kill the executing pipeline segment.

running Check if a pipeline segment is running on a specific host.

shutdown Shutdown a dynriverd daemon.

signal Set a signal (e.g., SIGHUP) to a pipeline segment.

start Start a new pipeline segment.

status Query the status Of a dynriverd daemon.

Synopsis:

Usage: ctrlcmd --port=INTEGER [OPTION]...

Options:

--version Output version information and exit

--help Display this help and exit

--unix Use a Unix socket instead Of TCP socket to communicate with

dynriverd.

--port=INTEGER Mandatory. Network port to use when connecting to

dynriverd.

--host=STRING Host name where a remote dynriverd executes. Default is

localhost.

Examples:

ctrlcmd --port=1234 start mysegment 9092

Instruct the dynriverd daemon, running on port 1234, to start the pipeline

segment mysegment with parameter “9092.”

ctrlcmd --port=1234 kill

Instruct the dynriverd daemon, running on port 1234, to kill the current child

pipeline segment.

293

B.3.2 Dynriverd

The Dynamic River daemon. Dynriverd accepts commands for starting, stopping

and querying the status of pipeline segments.

Although this daemon should not be considered security hardened, a number of

precautions have been taken to avoid the unauthorized execution of commands. First,

all programs and scripts that can be invoked by this daemon must be in the directory

specified by --execpath. Moreover, all programs and scripts must be owned and

executable by the same user that invoked the daemon.

Synopsis:

Usage: dynriverd --port=INTEGER [OPTION]...

Options:

0 --version Output version information and exit

0 -—help Display this help and exit

0 --verbose Output what the daemon is doing to stdout.

e --daemonize Run the daemon in background and close stdin, stdout and

stderr. Daemonizing implies turning verbosity Off.

0 --port=INTEGER Mandatory. Network port to bind and use for receiving control

messages from ctrlcmd.

o --host=STRING Specify the single host from which commands will be accepted.

Default is to accept commands from all hosts.

0 —-execpath Specify the only directory from which commands (pipeline seg-

ments) will be executed. The default is the subdirectory pipes/ under the

current working directory.

0 --fifo=STRING Specify the path prefix of a command pipe. Dynriverd sets the

environment value DYNRIVERJ‘IFO that can be used by other programs, such as

streamin, for creating two FIFOS. The first FIFO has suffix “.in” and is used

to pass commands to the other program (e.g., streamin). The second FIFO

has a suffix of “.Out” and is used to return results. The directory path must

already exist prior to invoking dynriverd.

Examples:

0 dynriverd --verbose --port=9100

Start dynriverd with verbosity turned on and bind to port 9100 to receive

commands.

294

Appendix C

Tabular Data Used for Forecasting

Packet Loss

This appendix comprises that tabular data used for producing the plots discussed

in Chapter 8. Listed are both the mean accuracies and standard deviations as per-

centages. Tabulated statistics were generated using the data sets and methodology

described in Section 8.4.

295

Table C.1: MESO forecasting accuracy with loss rate margin. Plotted in Figure 8.9.

Margin

Data set Seconds II 0% | 1% 2%

Roam 1 sec. 35.8%i4.2% 42.9%:t4.7% 49.9%:1:4.7%

2 sec. 37.4%i3.6% 45.0%:t3.6% 52.4%:t4.0%

3 sec. 40.1%:I:2.8% 47.7%:I:3.0% 55.3%:I:3.0%

4 sec. 40.6%:lz2.8% 48.5%i2.8% 57.0%:Iz3.0%

5 sec. 41.5%:l:2.1% 49.6%:lz2.1% 55.7%:t2.0%

6 sec. 44.6%:I:1.7% 53.9%:tl.9% 60.6%i2.0%

7 sec. 46.1%:I:2.0% 54.4%i2.0% 61.4%:l:1.9%

8 sec. 46.4%:b1.4% 55.2%:lzl.5% 63.3%i1.6%

9 sec. 46.4%il.2% 57.5%:l:l.5% 66.3%i1.6%

10 sec. 47.8%i1.5% 59.9%:f:l.6% 67.9%:I:1.6%

Gsim 1 sec. 14.8%:t1.0% 41.6%:l:1.5% 63.5%:l:1.4%

2 sec. 15.7%:I:l.2% 42.5%:l:l.6% 64.6%i1.4%

3 sec. l6.4%:l:1.l% 46.7%:I:1.5% 68.5%:l:1.2%

4 sec. 16.0%:l21.1% 46.9%i1.4% 68.4%:t1.3%

5 sec. 16.8%i1.1% 47.4%:tl.4% 71.1%:Izl.2%

6 sec. 19.0%:tl.2% 52.6%:121.4% 74.7%:I:1.1%

7 sec. 18.6%:l:1.3% 53.4%:t1.4% 76.4%:l:1.1%

8 sec. 19.9%:t1.l% 55.4%:tl.5% 78.9%:I:1.2%

9 sec. 20.8%:I:l.2% 57.2%:lzl.4% 81.3%:t1.0%

10 sec. 22.7%:t1.1% 60.8%i1.3% 81.8%:t1.0%

Wlsim 1 sec. 55.8%:I:1.6% 61.1%i1.4% 65.7%i1.3%

2 sec. 59.6%:t1.1% 67.2%il.1% 72.3%:Izl.1%

3 sec. 59.6%i1.2% 67.9%:lzl.0% 74.4%:l:1.0%

4 sec. 62.8%:l:1.0% 71.2%:l:l.0% 77.9%:t0.9%

5 sec. 61.5%i0.9% 70.5%:Icl.1% 77.2%:l:1.0%

6 sec. 62.4%:t0.9% 71.7%:I:0.9% 79.4%:l:0.8%

7 sec. 63.1%:t1.0% 72.9%:l:0.8% 79.4%:l:0.7%

8 sec. 64.2%i1.0% 73.4%i0.9% 80.9%:I:O.8%

9 sec. 64.8%il.0% 76.2%i0.9% 83.5%:I:0.8%

10 sec. 63.4%:I20.9% 75.4%:t0.9% 82.8%:t0.8%

Ploss 1 sec. 6.0%:l:0.8% 13.4%:lzl.0% 22.2%:I:1.2%

2 sec. 9.6%:l:1.0% 21.8%:I:1.2% 34.8%:l:1.4%

3 sec. 11.2%i0.8% 25.5%il.2% 39.1%:I:1.4%

4 sec. l3.2%:l:0.9% 29.2%i1.3% 43.1%:tl.4%

5 sec. 14.4%:I:l.0% 32.1%:I:1.4% 49.1%:t1.3%

6 sec. 14.5%:l:0.8% 35.6%:I:1.3% 52.8%:t1.5%

7 sec. l7.1%:l:1.0% 41.3%i1.2% 58.1%:121.2%

8 sec. 17.9%:I:0.9% 43.5%:Izl.2% 62.0%:I:1.3%

9 sec. 19.8%:l:1.0% 45.2%:1:1.3% 64.7%i1.2%

10 sec. 20.3%:t0.9% 48.2%:lzl.4% 67.7%:Izl.4%

296

Table C.1: (cont’d).

Margin

Data set Seconds 3% 4% 5%

Roam 1 sec. 56.3%:I:4.7% 60.3%:I:4.2% 63.l%:l:4.0%

2 sec. 56.9%:l:4.0% 61.2%i3.6% 64.1%:I:3.6%

3 sec. 61.3%i2.8% 66.4%:t2.8% 69.6%:Iz2.8%

4 sec. 62.1%:t2.8% 66.2%:I:2.7% 68.0%:l:2.4%

5 sec. 62.6%:lz2.0% 66.6%:l:2.0% 70.3%:I:2.0%

6 sec. 67.9%i2.0% 72.5%:I:1.5% 76.8%:t1.4%

7 sec. 69.2%:lzl.4% 74.1%:I:l.5% 77.3%:l:1.4%

8 sec. 69.7%:tl.4% 73.9%:I:1.4% 76.8%:t1.4%

9 sec. 71.0%:l:1.5% 75.7%i1.4% 78.4%il.3%

10 sec. 72.6%:I:1.4% 77.0%:I:1.4% 80.5%:I21.3%

Gsim 1 sec. 78.1%i1.2% 87.4%:lzl.0% 93.2%i0.8%

2 sec. 79.8%:t1.1% 88.7%i0.9% 94.1%:t0.6%

3 sec. 82.4%i0.9% 91.0%:t0.7% 95.5%:I:0.5%

4 sec. 83.6%:I:1.0% 92.6%:t0.8% 96.1%:I:0.4%

5 sec. 85.8%:t1.0% 93.6%i0.6% 96.8%i0.4%

6 sec. 87.9%:I:0.8% 94.6%:I:O.6% 97.8%:lz0.3%

7 sec. 89.0%:I:0.8% 95.3%:I:0.6% 98.2%i0.3%

8 sec. 90.3%:t0.9% 95.8%i0.6% 98.4%:t0.3%

9 sec. 91.8%:1:0.8% 96.4%i0.5% 99.2%i0.3%

10 sec. 91.8%i0.7% 96.6%:I:0.4% 99.0%i0.2%

Wlsim 1 sec. 68.2%:l:1.3% 71.2%:l:l.2% 72.9%:I:1.2%

2 sec. 75.3%:I:1.1% 77.4%:I:1.0% 79.3%:I:1.0%

3 sec. 78.5%:I:1.0% 81.3%i0.9% 83.3%:t0.9%

4 sec. 80.8%:I:0.9% 83.2%:I:0.8% 85.1%:Iz0.8%

5 sec. 80.3%:t0.9% 83.2%:t0.8% 84.6%:I:0.8%

6 sec. 83.6%:t0.9% 86.4%:I:0.8% 87.6%:t0.7%

7 sec. 84.0%:I:0.7% 86.8%:t0.7% 89.0%i0.7%

8 sec. 84.8%:t0.8% 87.8%i0.6% 90.3%i0.6%

9 sec. 87.1%i0.8% 89.7%i0.7% 91.9%i0.7%

10 sec. 86.3%:I:O.8% 89.9%:L'0.6% 91.8%:I:0.6%

Ploss 1 sec. 30.5%:l:1.5% 37.7%i1.4% 44.1%:Izl.5 0

2 sec. 45.5%il.4% 54.7%:lzl.4% 63.1%:Izl.4%

3 sec. 50.9%:1:1.4% 60.6%:l:1.4% 70.3%:l:1.4%

4 sec. 56.2%:Izl.2% 67.3%i1.3% 77.2%i1.3%

5 sec. 61.5%:I21.3% 72.1%:I:1.2% 80.7%:I:l.2%

6 sec. 66.5%:t1.3% 76.4%:l:l.2% 84.8%i0.9%

7 sec. 71.8%:I:1.1% 80.4%:t1.0% 87.5%:Iz0.9%

8 sec. 76.7%:t1.3% 86.3%:hl.0% 92.2%i0.7%

9 sec. 79.4%i1.0% 87.4%:l:0.9% 92.5%:I:0.8%

10 sec. 81.7%:t.10% 88.9%:t0.9% 94.0%i0.7%
297

Table C.2: MESO forecasting accuracy when trained using generated data. Plotted

in Figure 8.10.

Data set Margin

(Train/Test) Seconds 0%] 1% 2%

Gsim7Roam 1 sec. 4.5%i0.8%_ 21.4%i4.3% 32.8%:I:4.4%

2 sec. 4.5%i1.2% 15.7%:I:3.6% 34.1%:Iz4.8%

3 sec. 4.5%:I:l.l% l4.5%:l:3.5% 37.1%:I:6.5%

4 sec. 5.1%:t1.2% 16.1%:Iz4.5% 44.0%:l:6.7%

5 sec. 5.1%:Izl.0% l7.0%:l:4.4% 42.9%:I:7.7%

6 sec. 4.4%i0.7% 17.0%:h5.0% 45.6%:I:8.2%

7 sec. 4.6%:t0.9% 16.5%:l:4.3% 44.0%:l:8.2%

8 sec. 4.7%:I:1.0% 16.2%i5.1% 44.1%:l:10.1%

9 sec. 5.0%:I:1.0% 15.6%:l:4.9% 42.4%:I:9.6%

10 sec. 5.3%:t1.1% l6.9%:f:5.8% 44.0%:l:8.9%

WFim/Roam 1 sec. 38.8%}38‘70 48.4%:I:3.2% 53.9%:I:3.4%

2 sec. 41.6%:l:3.7% 47.8%:l:3.7% 54.0%:I:3.8%

3 sec. 37.9%i5.3% 45.2%:I:5.7% 51.7%:I:5.5%

4 sec. 38.7%i6.0% 45.5%:I:6.4% 52.9%:I:6.3%

5 sec. 39.1%:l:5.5% 46.0%i6.0% 53.3%:l:6.1%

6 sec. 36.0%:Iz6.6% 43.2%:I:7.3% 50.5%:I:7.7%

7 sec. 39.0%:l:6.3% 46.1%:l:7.0% 52.9%:I:7.4%

8 sec. 34.2%:t8.4% 40.5%:Iz9.3% 47.4%:t10.0%

9 sec. 36.2%:I:8.4% 43.5%:t9.2% 49.7%:I210.0%

10 sec. 35.8%:t7.8% 43.7%:I:8.1% 49.3%:I:8.3%

Ploss]Roam 1 sec. 21.3%:l:4.7% 30.7%:t5.8% 48.0%:lz5.6%

2 sec. 34.1%:I:4.6% 48.9%:I:4.7% 58.1%:I:3.8%

3 sec. 33.8%:lz5.2% 49.7%:l:5.2% 58.0%:Iz4.4%

4 sec. 38.6%:I:5.0% 53.3%:I:4.2% 60.4%:t3.2%

5 sec. 39.4%:t5.1% 54.8%:I:3.9% 61.2%:l:2.9%

6 sec. 40.8%:l:6.9% 55.1%:lz4.7% 62.6%i3.6%

7 sec. 42.9%i6.9% 56.7%:l:4.3% 63.8%:I:3.6%

8 sec. 44.6%:I:5.9% 57.0%:t4.1% 63.9%:I:3.3%

9 sec. 45.2%:l:6.3% 56.3%:l:4.5% 63.7%:l:3.8%

10 sec. 45.7%:t5.8% 56.7%:I:3.3% 64.1%:t2.6%

298

Table C.2: (cont’d).

Data set Margin

(Train/Test) Seconds 3% 4% 5%

Sim am 1 sec. 44.4%i4.5% 53.3%:1:4.5% 63.4%:I:4.7%

2 sec. 51.7%:I:5.1% 61.4%:l:4.7% 72.5%:I:4.1%

3 sec. 56.8%:l:6.4% 64.8%:l:5.6% 74.7%:I:5.1%

4 sec. 60.2%:l:5.7% 66.6%:lz5.3% 76.7%:I:3.2%

5 sec. 59.7%:l:6.7% 67.1%:l:6.0% 77.1%:l:4.0%

6 sec. 60.0%:l:6.4% 68.0%:l:5.7% 77.2%:I:3.8%

7 sec. 60.2%i7.l% 69.3%:l:5.0% 78.3%:l:3.1%

8 sec. 56.6%:1:9.7% 66.9%:l:7.8% 77.9%:l:5.2%

9 sec. 57.0%:l:9.4% 67.1%:I:7.4% 77.6%:t5.2%

10 sec. 58.0%:l:8.6% 68.5%:l:6.4% 78.4%:h4.6%

Wlsim/Roam 1 sec. 58.8%i3.4% 61.7%2—Iz2.9% 64.1%:lz2.9%

2 sec. 60.0%:l:3.7% 63.3%:l:3.5% 65.4%i3.5%

3 sec. 58.7%:h5.3% 61.9%:l:5.2% 64.4%:l:4.9%

4 sec. 58.1%:Iz6.4% 60.5%:I:6.5% 63.2%:l:6.4%

5 sec. 57.7%:l:6.4% 60.7%:l:6.5% 63.4%i6.5%

6 sec. 55.1%:lz7.7% 57.6%:l:7.7% 61.3%:l:7.7%

7 sec. 56.8%:t7.5% 60.3%:l:7.5% 63.6%:l:7.8%

8 sec. 51.1%:l:10.1% 54.9%:lclO.l% 57.7%i10.2%

9 sec. 53.6%:lz9.7% 57.4%:lz9.8% 60.2%:t9.8%

10 sec. 53.4%:l:8.6% 57.1%:Iz8.5% 59.8%:l:8.7%

Ploss/Roam 1 sec. 52.2%325.4% 57.4%:l:3.9% 60.3%:l:3.6%

2 sec. 62.3%i3.7% 65.8%:l:3.4% 67.4%:lz3.l%

3 sec. 62.7%:l:4.2% 66.3%:l:3.8% 69.4%:t3.0%

4 sec. 65.8%:l:3.0% 69.0%:t2.8% 71.7%:l:2.6%

5 sec. 67.2%:h2.4% 71.0%:l:2.5% 74.9%:1:2.2%

6 sec. 68.1%:I:2.7% 71.6%:l:2.6% 75.8%:Iz2.2%

7 sec. 70.0%:l:1.4% 73.5%:I:1.6% 77.3%:h1.6%

8 sec. 69.8%:1:2.0% 73.0%:Ic2.0% 76.5%:t1.8%

9 sec. 70.6%:l:1.0% 74.3%:|:1.2% 77.2%il.2%

10 sec. 70.4%:I:1.5% 74.2%:I:l.6% 77.5%:lzl.5%

299

Table C.3: MESO forecasting accuracy with FEC code labels.

ure 8.11(a).

Plotted in Fig-

Data set

Seconds Roam] Gsim Wlsim Ploss

1 second 49.5%:l23.5% 94.3%:l20.9% 59.3%:l:1.6% 41.7%:I:l.5%

2 second 52.6%i3.1% 93.0%:t0.7% 65.1%:I:1.3% 54.9%:Izl.4%

3 second 57.1%i2.4% 94.3%:l:0.6% 67.3%:I:1.3% 62.2%i1.3%

4 second 57.5%:t2.8% 93.5%:t0.6% 70.2%il.0% 67.6%:t1.1%

5 second 61.3%:t2.2% 94.4%:t0.6% 69.1%:I:0.9% 70.9%:I:1.2%

6 second 64.9%:t1.9% 94.7%:l:0.4% 72.3%:t1.0% 72.8%:l:1.2%

7 second 65.1%:I:2.2% 95.3%:t0.4% 72.6%:I:1.1% 77.0%:t0.9%

8 second 65.3%:lzl.6% 95.0%:I:0.4% 73.1%:I:l.0% 79.5%:t0.9%

9 second 68.9%i1.6% 94.9%:t0.4% 74.7%:t1.2% 81.0%:l21.1%

10 second 71.8%:izl.5% 95.6%:t0.4% 73.8%:t1.1% 83.5%:l:0.9%

Table 04: MESO accuracy when trained using generated data with FEC code labels.

Plotted in Figure 8.11(b)

Data set

Seconds Gsim/Roam Wlsim/Rog Ploss/Roam

1 second 33.3%:t0.4% 45.4%53.3%‘ 3527'%:l:3.5 o

2 second 34.8%:l:0.6% 49.6%:I:3.2% 45.0%:lz3.6%

3 second 33.4%:l:0.5% 46.1%:124.9% 43.6%:1:4.8%

4 second 33.9%:t0.7% 46.9%:l:5.7% 48.7%:t4.4%

5 second 33.5%:t0.4% 49.4%:h5.7% 51.1%i4.5%

6 second 33.6%:I:0.4% 46.3%:I:6.7% 53.0%:lz6.0%

7 second 34.1%i0.5% 49.4%:t6.4% 54.9%:I:6.2%

8 second 33.7%:I:0.6% 45.2%:l:8.7% 55.2%:lz5.9%

9 second 33.9%:l:0.5% 48.0%:128.3% 57.1%:l:6.1%

10 second 33.8%i0.6% 48.1%:l:8.0% 58.3%:126.1%

300

Table C.5: MESO forecasting accuracy with Xnaut FEC code labels. Plotted in

Figure 8.12(a)

Data set

Seconds I Roam Gsim Wlsim Ploss

1 second 67—.7%:l:2.7% 96.5%:t0.8% 73.1%:t1.5% 67.2%:l:1.2%

2 second 72.2%:l:2.2% 96.6%:l:0.5% 81.3%:l:1.1% 74.8%:l:0.9%

3 second 75.6%:l:2.0% 96.8%:l:0.5% 80.9%:t1.3% 78.9%:120.9%

4 second 77.1%:1:2.4% 96.3%:l:0.4% 83.3%:I:0.9% 82.1%:t0.6%

5 second 79.2%i1.8% 96.9%:I:0.4% 82.3%:I:0.9% 84.0%:t0.9%

6 second 80.8%:t1.6% 96.9%:t0.4% 83.5%:I:O.9% 85.4%:120.8%

7 second 82.5%:l:1.9% 92.3%i0.3% 83.9%:l:1.0% 87.2%:t0.7%

8 second 82.6%:1:1.4% 97.2%:t0.3% 84.1%:t1.0% 88.8%:lz0.7%

9 second 83.9%:l:1.2% 97.0%:l:0.4% 85.0%:I:1.0% 88.7%:I:0.7%

10 second 85.3%:l:1.3% 97.4%:l:0.3% 83.4%i1.0% 90.2%i0.7%

Table C.6: MESO accuracy when trained using generated data with Xnaut FEC code

labels. Plotted in Figure 8.12(b)

Data set

Seconds Gsim/Roam Wlsim/Roag Ploss/Roam

1 second 5T).6%:I:0.3% 60.0%:I:2.4%_ 53.3%:l:2.8%

2 second 50.9%:t0.4% 67.3%i2.8% 60.0%:t3.3%

3 second 50.8%:I:0.3% 62.0%i4.5% 57.5%:I:4.2%

4 second 50.8%i0.5% 64.4%:l:4.8% 60.9%:t4.2%

5 second 50.5%:l:0.2% 65.7%:124.5% 62.8%:lz4.3%

6 second 50.6%:t0.3% 63.3%:I:5.2% 65.0%i5.3%

7 second 50.6%:t0.2% 65.9%:l:4.7% 66.8%:lz5.6%

8 second 50.5%i0.3% 62.1%:fz6.9% 67.2%i5.6%

9 second 50.6%i0.4% 63.2%i6.6% 68.9%:lz5.7%

10 second 50.5%:I:O.4% 63.8%:Iz6.4% 69.9%:I:5.9%

301

BIBLIOGRAPHY

302

Bibliography

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM

Computer Surveys, vol. 31, pp. 264—323, September 1999.

[2] L. Bergrnans, “The composition filters object model,” tech. rep., Department

of Computer Science, University of Twente, 1994.

[3] N. Amano and T. Watanabe, “An approach for constructing dynamically adapt-

able component-based software systems using LEAD++,” in OOPSLA Inter-

national Workshop on Object Oriented Reflection and Software Engineering,

(Denver, Colorado, USA), pp. 1—16, November 1999.

[4] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, Second Edition.

New York, New York, USA: John Wiley and Sons, Incorporated, 2001.

[5] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time

series with implications for streaming algorithms,” in Proceedings of the 8th

ACM SIGM0D Workshop on Research Issues in Data Mining and Knowledge

Discovery, (San Diego, California, USA), June 2003.

[6] N. Kumar, N. Lolla, E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Time-

series bitmaps: A practical visualization tool for working with large time series

databases,” in Proceedings of SIAM International Conference on Data Mining

(SDM’05), (Newport Beach, California, USA), pp. 531-535, April 2005.

[7] C. Tang and P. K. McKinley, “Modeling multicast packet losses in wireless

LANS,” in Proceedings of the Sixth ACM International Workshop on Modeling

Analysis and Simulation of Wireless and Mobile Systems (MSWiM) (in con-

junction with ACM Mobicom 2003), (San Diego, California, USA), pp. 130—133,

September 2003.

[8] “Proceedings Of the ACM workshOp on Self-Healing, Adaptive and self-

MANaged Systems (SHAMAN), held in conjunction with the 16th Annual ACM

International Conference on Supercomputing,” June 2002.

[9] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng, “Composing

adaptive software,” IEEE Computer, vol. 37, pp. 56-64, July 2004.

303

I10]

I11]

I12]

I13]

I14]

I15]

I16]

I17]

I18]

I19]

I20]

[21]

Proceedings of the Distributed Auto-adaptive and Reconfigurable Systems Work-

shop (DARES), held in conjunction with the 24th IEEE International Confer-

ence on Distributed Computing Systems (ICDCS). Tokyo, Japan, March 2004.

Proceedings of the IEEE International Conference on Autonomic Computing

(ICAC’04) New York, New York, USA, May 2004.

Proceedings of the Second IEEE International Conference on Autonomic Com-

puting (ICAC). Seattle, Washington, USA, June 2005.

J. O. Kephart and D. M. Chess, “The vision Of autonomic computing,” IEEE

Computer, pp. 41—50, January 2003.

J. Porter, P. Arzberger, H.-W. Braun, P. Bryant, S. Gage, T. Hansen, P. Han-

son, C.-C. Lin, F.-P. Lin, T. Kratz, W. Michener, S. Shapiro, and T. Williams,

“Wireless sensor networks for ecology,” Bioscience, vol. 55, pp. 561—572, July

2005.

R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An

analysis of a large scale habitat monitoring application,” in Proceedings of The

Second ACM Conference on Embedded Networked Sensor Systems (SenSys),

(Baltimore, Maryland, USA), November 2004.

T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo,

S. Son, and R. Stoleru, “EnviroTrack: towards an environmental computing

paradigm for distributed sensor networks,” in Proceedings SenSys 2003, (Los

Angeles, California, USA), November 2003.

W. Bourgeois, A.-C. Romain, J. Nicolas, and R. M. Stuetz, “The use of sensor

arrays for environmental monitoring: Interests and limitations,” Journal of

Environmental Monitoring, vol. 5, pp. 852-860, 2003.

D. Estrin, W. Michener, and G. Bonito, “Environmental cyberinfrastructure

needs for distributed sensor networks: A report from a national science founda-

tion sponsored workshop,” tech. rep., Scripps Institute of Oceanography, August

2003. 12 May 2005; www.1ternet.edu/sensorJeport/.

“Environmental sensor networks: A revolution in the earth system science?,”

Earth-Science Reviews, vol. 78, pp. 177—191, 2006.

K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor networks,” IEEE

Computer, vol. 37, pp. 50—56, August 2004.

R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Es-

trin, “Habitat monitoring with sensor networks,” Communications of the ACM,

vol. 47, pp. 34—40, June 2004.

304

[22] A. Suri, S. Iyengar, and E. Cho, “Ecoinformatics using wireless sensor networks:

An overview,” Ecological Informatics, vol. 1, pp. 213-340, November 2006. 4th

International Conference on Ecological Informatics.

[23] P. Arzberger, ed., Sensors for Environmental Observatories, (Seattle, Wash-

ington, USA), World Technology Evaluation Center (WTEC) Inc., Baltimore,

Maryland, December 2004. Report of 8 NSF sponsored workshop.

[24] “National ecological observatory network (NEON).”

http: //www.neoninc . org, November 2006.

[25] S. A. Isard and S. H. Gage, Flow of Life in the Atmosphere: An airscape

approach to understanding invasive organisms. East Lansing, Michigan, USA:

Michigan State University Press, 2001.

[26] A. O’Donnell, “Invasive species: Closing the door to exotic hitchhikers,” tech.

rep., National Invasive Species Information Center, November 2006. Land Let-

ter: The Natural Resources Weekly Report.

[27] “National invasive species information center (NISIC).”

http : //www . invasivespeciesinfo . gov/ , December 2006.

[28] The 2020 Science Group, “Towards 2020 science.” http://research.

microsoft . com/towards2020science/downloads/T2020S_ReportA4 . pdf ,

June/July 2005. Report from the Towards 2020 Science Workshop.

[29] B. C. Smith, “Reflection and semantics in Lisp,” in Proceedings of 11th ACM

Symposium on Principles of Programming Languages, 1984.

[30] P. Maes, “Concepts and experiments in computational reflection,” in Proceed-

ings of the ACM Conerfence on Object-Oriented Programming Systems, Lan-

guages, and Applications (OOPSLA), pp. 147—155, December 1987.

[31] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent check-

pointing under unix,” in Proceedings, Usenia: Winter 1995 Technical Confer-

ence, (New Orleans, Lousiana, USA), pp. 213-223, January 1995.

[32] S. Bouchenak and D. Hagimont, “Pickling threads state in the java system,”

in Proceedings of the 33rd International Conference on Technology of Object-

Oriented Languages (TOOLS), (St. Malo, USA, France), June 2000.

[33] M. Ma, C. Wang, and F. Lau, “Delta execution: A preemptive Java thread

migration mechanism,” Cluster Computing, vol. 3, no. 2, pp. 83—94, 2000.

[34] S. Zhang, M. Khambatti, and P. Dasgupta, “Process migration through virtu-

alization in a computing community,” in 13th IASTED Conference on Parallel

and Distributed Computing Systems (PDC52001), (Dallas, Texas, USA), Au-

gust 2001.

305

I35]

I36]

I37]

I38]

I39l

I40]

I41]

I42]

I43]

[44]

S. Fiinfrocken, “Transparent migration Of java-based mobile agents,” in Pro-

ceedings of Second International Workshop on Mobile Agents .98, (Stuttgart,

Germany), pp. 26—37, September 1998.

T. Watanabe, A. Noriki, and K. Shinbori, “Towards a substrate for reliable mo-

bile agent systems,” in Proceedings of the Workshop on Reflective Middleware,

(Palisades, New York, USA), April 2000.

E. P. Kasten, P. K. McKinley, S. M. Sadjadi, and R. Stirewalt, “Separating in-

trospection and intercession to support metamorphic distributed systems,” in

Proceedings of the 22nd IEEE International Conference on Distributed Com-

puting Systems ICDCS’02, (Vienna, Austria), July 2002.

P. K. McKinley, E. P. Kasten, S. M. Sadjadi, and Z. Zhou, “Realizing multi-

dimensional software adaptation,” in Proceedings of the ACM Workshop on Self-

Healing, Adaptive and self-MANaged Systems (SHAMAN), held in conjunction

with the 16th Annual ACM International Conference on Supercomputing, (New

York, New York, USA), June 2002.

S. Sadjadi, P. K. McKinley, and E. P. Kasten, “Metasockets: Run-time sup-

port for adaptive communication services,” in Addendum to the proceedings of

the International Symposium on Distributed Object and Applications (DOA),

(Irvine, California, USA), pp. 42—45, November 2002.

P. K. McKinley, S. M. Sadjadi, and E. P. Kasten, “An adaptive software ap-

proach to intrusion detection and response,” in Proceedings of the 10th In-

ternational Conference on Telecommunication Systems, Modeling and Analysis

(ICTSMIO), (Monterey, California,USA), October 2002.

P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and R. Kalaskar, “Programming

languages support for adaptive wearable computing,” in Proceedings of the In-

ternational Symposium on Wearable Computers (ISWCOE), (Seattle, Washing-

ton, USA), October 2002.

S. M. Sadjadi, P. K. McKinely, and E. P. Kasten, “Architecture and Operation of

an adaptable communication substrate,” in Proceedings of the 9th International

Workshop on Future Trends of Distributed Computing Systems (FTDCS ’03),

(San Juan, Puerto Rico), May 2003.

S. M. Sadjadi, P. K. McKinley, E. P. Kasten, and Z. Zhou, “Metasockets: Design

and Operation Of run-time reconfigurable communication services,” Software.-

Practice and Experience (SPOE). Special Issue: Experiences with Auto-adaptive

and Reconfigurable Systems, vol. 36, pp. 1157—1178, 2006.

E. P. Kasten and P. K. McKinley, “Perimorph: Run-time composition and

state management for adaptive systems,” in Proceedings of the 24th IEEE In-

ternational Conference on Distributed Computing Systems ICDCS’UI, (Tokyo,

Japan), March 2004.

306

[45] J. M. Fuster, Memory in the Cerebral Cortex: An Empirical Approach to Neural

Networks in the Human and Nonhuman Primate. Cambridge, Massachusetts,

USA: The MIT Press, 1995.

[46] S. Franklin, “Perceptual memory and learning: Recognizing, categorizing and

relating,” in Proceedings of the Developmental Robotics AAAI Spring Sympo-

sium, (Stanford, CA, USA), March 2005.

[47] E. P. Kasten and P. K. McKinley, “MESO: Perceptual memory to support online

learning in adaptive software,” in Proceedings 3rd International Conference on

Development and Learning (ICDL’04), (La Jolla, California, USA), October

2004.

[48] E. P. Kasten and P. K. McKinley, “MESO: Supporting online decision making

in autonomic computing systems,” IEEE Transactions on Knowledge and Data

Engineering (TKDE), vol. 19, pp. 485—499, April 2007. Featured article.

[49] K. Munagala, S. Babu, R. Motwani, and J. Widom, “The pipelined set cover

problem,” in Proceedings of the Tenth International Conference on Database

Theory (ICDT), (Edinburgh, Scotland), January 2005.

[50] W. Aspray, “John von Neumann’s contributions to computing and computer

science,” Annals of the History of Computing, vol. 11, pp. 189—195, Fall 1989.

[51] F. Hohl, “Time limited blackbox security: Protecting mobile agents from mali-

cious hosts,” in Lecture Notes in Computer Science (G. Vigna, ed.), vol. 1419,

pp. 92—113, Berlin, Germany: Springer-Verlag, 1998.

[52] N. Venkatasubramanian, “Safe ‘composability’ of middleware services,” Com-

munications of the ACM, vol. 45, pp. 49—52, June 2002.

[53] M. A. Hiltunen and R. D. Schlichting, “Adaptive distributed and fault-tolerant

systems,” International Journal of Computer Systems Science and Engineering,

vol. 11, pp. 125—133, September 1996.

[54] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”

Communications of the ACM, pp. 1053—1058, December 1972.

[55] K. Czarnecki and U. Eisenecker, Generative Programming. Boston, Mas-

sachusetts, USA: Addison-Wesley, May 2000.

[56] E. AvdiéauSevié, M. Mernik, M. Lenié, and V. Zumer, “Experimental aspect-

oriented language - AspectCOOL,” in Proceedings of 17th ACM Symposium on

Applied Computing, SAC 2002, (Madrid, Spain), pp. 943—947, 2002.

[57] E. Truyen, W. Joosen, and P. Verbaeten, “Run-time support for aspects in dis-

tributed system infrastructure,” in Proceedings of the First AOSD Workshop on

Aspects, Components, and Patterns for Infrastructure Software (ACP4IS ’2002),

(Enschede, Netherlands), 2002.

307

I58]

I59]

I60]

I61]

I62]

I63]

I54]

I65]

I66]

[67]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,

“Getting started with AspectJ,” Communications of the ACM, vol. 44, pp. 59—

65, October 2001.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-

ingtier, and J. Irwin, “Aspect-oriented programming,” in Proceedings of the

European Conference on Object-Oriented Programming (ECOOP) (M. Aksit

and S. Matsuoka, eds.), Springer-Verlag, June 1997. volume 1241 of Lecture

Notes in Computer Science.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd

ed. Boston, Massachusetts, USA: Addison-Wesley, 2002.

M. Mezini and K. Lieberherr, “Adaptive plug-and-play components for evo-

lutionary software development,” ACM SIGPLAN Notices, Proceedings of the

conference on Object-oriented programming, systems, languages, and applica-

tions, vol. 33, October 1998.

R. Keller and U. HOlzle, “Binary component adaptation,” in Proceedings of the

European Conference on Object- Oriented Programming (ECOOP 1998) (E. Jul,

ed.), (Brussels, Belgium), pp. 307—329, Springer-Verlag, July 1998. volume 1445

of Lecture Notes in Computer Science.

G. A. Cohen, J. S. Chase, and D. L. Kaminsky, “Automatic program transfor-

mation with JOIE,” in Proceedings of the USENIX Annual Technical Sympo-

sium, (New Orleans, Louisiana, USA), pp. 167—178, June 1998.

A. Duncan and U. HOlzle, “Load-time adaptation: Efficient and non-intrusive

language extension for virtual machines,” Tech. Rep. TRC899-09, Department

of Computer Science University of California, Santa Barbara, Santa Barbara,

California, USA, April 1999.

D. Alexander, M. Shaw, S. Nettles, and J. Smith, “Active bridging,” in Pro-

ceedings ACM SIGCOMM 1997, (Cannes, France), September 1997.

M. A. Hiltunen and R. D. Schlichting, “The cactus approach to building con-

figurable middleware services,” in Proceedings of the Workshop on Dependable

System Middleware and Group Communication (DSMG'C 2000), (Nuremberg,

Germany), October 2000.

R. Litiu and A. Prakash, “DACIA: A mobile component framework for build-

ing adaptive distributed applications,” in Principles of Distributed Computing

(PODC) 2000 Middleware Symposium, (Portland, Oregon, USA), July 2000.

also appeared as Technical Report CSE—TR—416—99, Department Of EECS, Uni-

versity of Michigan, Dec 1999.

308

I68]

I69]

I70]

I71]

I72]

I73]

I74]

I75]

I76]

I77]

[78]

F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and

R. Campbell, “Monitoring, security, and dynamic configuration with the dy-

namicTAO reflective ORB,” in Proceedings IFIP/ACM International Confer-

ence on Distributed Systems Platforms and Open Distributed Processing (Mid-

dleware’2000), (Hudson River Valley, New York, USA), pp. 3—7, April 2000.

E. Bruneton and M. Riveill, “Reflective implementation of non-functional prop-

erties with the JavaPod component platform,” in Proceedings of the European

Conference on Object-Oriented Programming (ECOOP 2000): Workshop On

Reflection and Metalevel Architectures, (Sophia Antipolis and Cannes, France),

June 2000.

F. Akkawi, A. Bader, and T. Elrad, “Dynamic weaving for building recon-

figurable software systems,” in Proceedings of OOPSLA 2001 Workshop on

Advanced Separation of Concerns in Object-Oriented Systems, (Tampa Bay,

Florida, USA), October 2001.

A. Popovici, T. Gross, and G. Alonso, “Dynamic weaving for aspect-oriented

programming,” in Proceedings of the Ist International Conference on Aspect-

Oriented Software Development, (Enschede, The Netherlands), pp. 141—147,

ACM Press, 2002.

L. Bergmans and M. Aksit, “Composing crosscutting concerns using composi-

tion filters,” Communications of the ACM, vol. 44, pp. 51—57, October 2001.

B. Redmond and V. Cahill, “Supporting unanticipated dynamic adaptation

of application behaviour,” in Proceedings of the 16th European Conference an

Object- Oriented Programming, Malaga, Spain: Springer-Verlag, June 2002. vol-

ume 2374 of Lecture Notes in Computer Science.

A. Oliva and L. E. Buzato, “The design and implementation of Guarana,”

in Proceedings 5th USENIX Conference on Object-Oriented Technologies and

Systems, (San Diego, California, USA), May 1999.

F. Costa, H. Duran, N. Parlavantzas, K. Saikoski, G. Blair, and G. Coulson,

“The role of reflective middleware in supporting the engineering of dynamic

applications” ,” Reflection and Software Engineering, pp. 79—98, 2000.

J. des Riviéres and B. C. Smith, “The implementation of procedurally reflective

languages,” in Conference Record of the 1984 ACM Symposium on LISP and

functional programming, (Austin, Texas, USA), pp. 331—347, 1984.

L. Capra, W. Emmerich, and C. Mascolo, “Reflective middleware solutions for

context-aware applications,” in Proceedings of Reflection 2001, Lecture Notes

in Computer Science, (Kyoto, Japan), Springer Verlag., 2001.

B. Foote and R. E. Johnson, “Reflective facilities in Smalltalk-80,” in Proceed-

ings of the Conference on Object-Oriented Programming Systems, Languages,

309

I79]

I80]

I81]

I82]

[83]

I84]

I85]

I86]

I87}

I88]

I89]

and Applications (OOPSLA), (New Orleans, Louisiana, USA), pp. 327—335,

October 1989.

M. Golm and J. KleinOder, “Jumping to the meta level: Behavioral reflection

can be fast and flexible,” in Proceedings of the Second International Confer-

ence on Meta-Level Architectures and Reflection (Reflection’99), (Saint-Malo,

France), pp. 22—39, July 1999.

M. Aksit, L. Bergmans, and S. Vural, “An Object-oriented language-database

integration model: The composition-filters approach,” in Proceedings of the

European Conference on Object-Oriented Programming (ECOOP’92), (Utrecht,

Netherlands), pp. 372—395, June 1992.

G. Kiczales, J. des Riviéres, and D. Bobrow, The Art of the Metaobject Protocol.

Cambridge, Massachusetts, USA: MIT Press, 1991.

G. Blair and M. Papathomas, “The case for reflective middleware,” in Proceed-

ings of the 3nd Cabernet Plenary Workshop, (Rennes, France), April 1997.

J. Itoh, R. Lea, and Y. Yokote, “Adaptive Operating system design using reflec-

tion,” in Proceedings of the 5th Workshop on Hot Topics in Operating Systems,

May 1995.

E. P. Kasten and P. K. McKinley, “A taxonomy for computational adaptation,”

Tech. Rep. MSU-CSE—04-4, Department of Computer Science and Engineering,

Michigan State University, East Lansing, Michigan, USA, January 2004.

B. Tekinerdogan and M. Aksit, “Adaptability in object-oriented software devel-

opment workshop report,” in Proceedings of the 10th Annual European Confer-

ence on Object-Oriented Programming (ECOOP), (Linz, Austria), July 1996.

A. K. Dey and G. D. Abowd, “The Context Toolkit: Aiding the development of

context-aware applications,” in Proceedings of the 22nd International Confer-

ence on Software Engineering (ICSE): Workshop on Software Engineering for

Wearable and Pervasive Computing, (Limerick, Ireland), June 2000.

Information Sciences Institute University Of Southern California, “RFC 793:

Transmission control protocol.” http:/lwww.faqs.org/rfcs/rfc793.html,

September 1981.

V. Jacobson, “Congestion avoidance and control,” in Proceedings of the SIG-

COMM ’88 Symposium, pp. 314—332, August 1988.

J. Flinn, E. de Lara, M. Satyanarayanan, D. S. Wallach, and W. Zwaenepoel,

“Reducing the energy usage of Oflice applications,” in IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware 2001), (Heidelberg,

Germany), November 2001.

310

I90]

I91}

I92]

I93]

I94]

[95]

I96]

I97]

I98]

I99]

[100]

[101]

V. Adve, V. V. Lam, and B. Ensink, “Language and compiler support for adap-

tive distributed applications,” in ACM SIGPLAN Workshop on Optimization

of Middleware and Distributed Systems (OM 2001), (Snowbird, Utah, USA),

June 2001. Held in conjunction with PLDI2001.

W.-K. Chen, M. A. Hiltunen, and R. D. Schlichting, “Constructing adaptive

software in distributed systems,” in Proceedings of the 21st IEEE International

Conference on Distributed Computing Systems (ICDCS—21), (Mesa, Arizona,

USA), pp. 635—643, April 2001.

R. van Renesse, K. Birman, M. Hayden, A. Vaysburd, and D. Karr, “Build-

ing adaptive systems using Ensemble,” Tech. Rep. TR97-1638, Department of

Computer Science, Cornell University, Ithaca, New York, USA, July 1997.

P. K. McKinley and U. I. Padmanabhan, “Design of composable proxy filters for

heterogeneous mobile computing,” in Proceedings of the Second International

Workshop on Wireless Networks and Mobile Computing, 2001.

P. Costanza, “Dynamic Object replacement and implementation-only classes,”

in Proceedings of the European Conference on Object-Oriented Programming

(ECOOP 2001): 6th International Workshop on Component-Oriented Program-

ming (WC'OP 2001), (Budapest, Hungary), June 2001.

“Distributed operating systems group: Computing communities project.”

http: //calypso . eas . asu . edu, March 2004.

R. Koster, A Middleware Platform for Information Flows. PhD thesis, Univer-

sity of Kaiserslautem, Hombrechtikon, Switzerland, July 2002.

V. Kumar, B. F. Cooper, and K. Schwan, “Distributed stream management

using utility-driven self—adaptive middleware,” in 2nd IEEE International Con-

ference on Autonomic Computing (ICAC), (Seattle, Washington, USA), June

2005.

D. Batory and B. J. Geraci, “Composition validation and subjectivity in gen-

voca generators,” in IEEE Transactions on Software Engineering, pp. 67—82,

feb 1997.

V. Singhal and D. Batory, “P++: A language for large-scale reusable software

components,” in 6th Annual Workshop on Software Reuse, (Owego, New York,

USA), November 1993.

D. M. Hoffman and D. M. Weiss, eds., Software Fundamentals: Collected Papers

by David L. Parnas, ch. 10. Boston, Massachusetts, USA: Addison-Wesley, 2001.

On the Design and Development of Program Families.

R. Koster and C. Pu, “Infopipes for composing distributed information flows,”

in The ACM Multimedia Workshop on Multimedia Middleware, (Ottawa,

Canada), October 2001.

311

[102] A. P. Black, J. Huang, R. Koster, J. Walpole, and C. Pu, “Infopipes: An

abstraction for multimedia streaming,” Multimedia Systems (special issue on

Multimedia Middleware), vol. 8, no. 5, pp. 406—419, 2002.

[103] R. Koster, A. P. Black, J. Huang, J. Walpole, and C. Pu, “Thread transparency

in information flow middleware,” Software: Practice and Experience (SPé’iE),

vol. 33, pp. 321—349, April 2003.

[104] “The SwitchWare project.” http://www. cis.upenn . edu/“switchware/, April

2006.

[105] P. Bridges, W.-K. C. Matti, A. Hiltunen, and R. D. Schlicht-

ing, “Supporting coordinated adaptation in networked systems.”

ftp: //ftp. cs . arizona. edu/ftol/papers/hotos .pdf, May 2001. A one page

summary of this paper was accepted as a position paper in the 8th Workshop

on Hot Topics in Operating Systems (HotOS-VIII).

[106] D. Lafferty and V. Cahill, “Real world evaluation of aspect-oriented program-

ming with Iguana,” in Proceedings of the International Workshop on Aspects

and Dimensional Programming at the 14th European Conference an Object-

Oriented Programming (ECOOP), (Sophia Antipolis and Cannes, France), June

2000.

[107] A. Gavrilovska, S. Kumar, S. Sundaragopalan, and K. Schwan, “Platform over-

lays: Enabling in-network stream processing in large-scale distributed applica-

tions,” in Network and Operating System Support for Digital Audio and Video

(NOSSDA V), (Skamania, Washington, USA), June 2005.

[108] G. Eisenhauer, F. Bustamente, and. K. Schwan, “Event services for high per-

formance computing,” in Ninth IEEE International Symposium on High Per-

formance Distributed Computing (HPDC-Q), (Pittsburgh, Pennsylvania, USA),

August 2000.

[109] X. I'll, W. Shi, A. Akkerman, and V. Karamcheti, “CANS: Composable, adap—

tive network services infrastructure,” in Proceedings of the 3rd USENIX Sym-

posium on Internet Technologies and Systems (USITS), (San Francisco, Cali-

fornia, USA), pp. 135—146, March 2001.

[110] X. Fu and V. Karamcheti, “Automatic creation and reconfiguration of network-

aware service access paths,” Computer Communications, vol. 28, pp. 591—608,

April 2005.

[111] B. Li, W. Jeon, W. Kalter, K. Nahrstedt, and J. Seo, “Adaptive middleware

architecture for a distributed omni—directional visual tracking system,” in Pro-

ceedings of SPIE Multimedia Computing and Networking 2000 (MMCN’00),

January 2000.

312

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

B. Li and K. Nahrstedt, “A control-based middleware framework for quality

of service adaptations,” IEEE Journal of Selected Areas in Communications,

Special Issue on Service Enabling Platforms, vol. 17, September 1999.

IBM Systems Journal, Special issue on Autonomic Computing, vol. 42, no. 1,

2003.

M. Wang and T. Suda, “The bio-networking architecture: A biologically in-

spired approach to the design of scalable, adaptive, and survivable/available

network applications,” Tech. Rep. 00—03, Department of Information and Com-

puter Science, Unversity of California, Irvine, California, USA, February 2000.

N. Arshad, D. Heimbigner, and A. L. Wolf, “Deployment and dynamic re-

configuration planning for distributed software systems,” in Proceedings of the

15th International Conference on Tools with Artificial Intelligence (ICTAI’03),

(Sacramento, California, USA), November 2003.

N. H. Gardiol and L. P. Kaelbling, “Computing action equivalences for planning

under time constraints,” Tech. Rep. MIT-CSAIL-TR-2006-022, Massachusetts

Institute of Technology OS & AI Laboratory, Cambridge, Massachusetts, USA,

2006.

D. O. Keck and P. J. Kuehn, “The feature and service interaction problem

in telecommunications systems: A survey,” IEEE Transactions on Software

Engineering, vol. 24, pp. 779—796, October 1998.

M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec, “Feature interaction:

A critical review and considered forecast,” Computer Networks, vol. 41, no. 1,

pp. 115—141, 2002.

P. Robertson and R. Laddaga, “A self-adaptive architecture and its application

to robust face identification,” in Proceedings of the 7th Pacific Rim Conference

on Artificial Intelligence, Springer-Verlag, 2002. volume 2417 of Lecture Notes

in Computer Science.

D. Isla, R. Burke, M. Downie, and B. Blumberg, “A layered brain architecture

for synthetic creatures,” in Proceedings of the 17th International Joint Con-

ference on Artificial Intelligence (IJCAI), (Seattle, Washington, USA), August

2001.

T. Jebara and A. Pentland, “Statistical imitative learning from perceptual

data,” in Proceedings of the Second International Conference on Development

and Learning, (Boston, Massachusetts, USA), pp. 191—196, June 2002.

M. Weiser, “The computer for the twenty-first century,” Scientific American,

pp. 94-110, 1991.

313

[123] R. Laddaga, M. L. Swinson, and P. Robertson, “Seeing clearly and moving

forward,” IEEE Intelligent Systems, vol. 15, pp. 46—50, November/December

2000.

[124] K. GOdel, “Uber formal unentscheidbare Séitze der principia mathematica und

verwandter systeme I,” Monatsh. Math. Phys, vol. 38, pp. 235—242, 1931.

GOdel’s 1931 writings on undecidability in axiomatic systems.

[125] K. GOdel, On Formally Undecidable Propositions of Principia Mathematic and

Related Systems. Dover Publications, Incorporated, 1992. translation of GOdel’s

1931 writings.

[126] C. Strachey, “Correspondence: An impossible program,” The Computer Jour-

nal, p. 313, January 1965.

[127] G. Kiczales, “Towards a new model Of abstraction in the engineering of soft-

ware,” in International Workshop on Reflection and Meta-Level Architecture,

(Tame-City, Tokyo, Japan), November 1992.

[128] M. Shaw and W. Wulf, “Towards relaxing assumptions in languages and their

implementations,” ACM SIGPLAN Notices, vol. 15, pp. 45—61, March 1980.

[129] H. Duran-Limon and G. Blair, “A resource management framework for adaptive

middleware,” in 3rd IEEE International Symposium on Object-Oriented Real-

Time Distributed Computing (ISORC’2K), (Newport Beach, California), March

2000.

[130] D. Batory and S. O’Malley, “The design and implementation of hierarchical

software systems with reusable components,” in ACM TOSEM, October 1992.

[131] Usability Center, Georgia Institute Of Technology, CUP User’s Manual, July

1999.

[132] S. M. Sadjadi, P. K. McKinley, B. H. Cheng, and R. K. Stirewalt, “TRAP/J:

'Ii'ansparent generation of adaptable java programs,” in Proceedings of the Inter-

national Symposium on Distributed Objects and Applications (DOA ’04), (Agia

Napa, Cyprus), October 2004.

[133] S. Fleming, B. H. Cheng, R. K. Stirewalt, and P. K. McKinley, “An approach to

implementing dynamic adaptation in c++,” in Proceedings of the ICSE Work-

shop on Design and Evolution of Autonomic Application Software (DEAS), (St.

Louis, Missouri, USA), May 2005.

[134] P. K. McKinley and A. P. Mani, “An experimental study of adaptive forward

error correction for wireless collaborative computing,” in Proceedings of the

IEEE 2001 Symposium on Applications and the Internet (SAINT-01), (San

Diego-Mission Valley, California, USA), January 2001.

314

[135] A. J. McAuley, “Reliable broadband communications using burst erasure cor-

recting code,” in Proceedings of ACM SIGCOMM, pp. 287—306, September

1990.

[136] L. Rizzo, “Effective erasure codes for reliable computer communication proto-

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

(145]

cols,” ACM Computer Communication Review, vol. 27, pp. 24—36, April 1997.

E. P. Kasten, DAQ Superhighway (DaSH) Reference Manual. National Su-

perconducting Cyclotron Laboratory, Michigan State University, East Lansing,

Michigan, USA, 2006.

P. D. Welch, “The use of the fast Fourier transform for the estimation Of power

spectra: A method based on time-averaging over short, modified periodograms,”

IEEE Transactions on Audio and Electroacoustics, vol. AU-15, pp. 70—73, June

1967.

“The TAILOR project.” http://javalab. iai .uni-bonn.de/research/

tailorl, April 2006.

L. Girod, K. Jamieson, Y. Mei, R. Newton, S. Rest, A. Thiagarajan, H. Balakr-

ishnan, and S. Madden, “The case for a signal-oriented data stream management

system,” in Proceedings of the Third Biennial Conference on Innovative Data

Systems Research (CIDR), (Pacific Grove, California, USA), January 2007.

D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,

M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams: A new class Of

data management applications,” in Proceedings of the 28th International Con-

ference on Very Large Data Bases (VLDB), (Hong Kong, China), August 2002.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new model and ar-

chitecture for data stream management,” VLDB Journal, vol. 12, pp. 120—139,

August 2003.

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H.

Hwang, W. Lindner, A. S. Maskey, A. Resin, E. Ryvkina, N. Tatbul, Y. Xing,

and S. Zdonik, “The design Of the Borealis stream processing engine,” in Pro-

ceedings of the Second Biennial Conference on Innovative Data Systems Re-

search (CIDR), (Pacific Grove, California, USA), January 2005.

S. Zdonik, U. Cetintemel, M. Stonebraker, M. Balazinska, M. Cherniack, and

H. Balakrishnan, “The Aurora and Medusa projects,” IEEE Data Engineering

Bulletin, vol. 26, March 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. Indianapolis, Indiana, USA: Addison-

Wesley, 1995.

315

[146] “Rocky mountain mapping center: Elevation program.” http: //rmmcweb. cr.

usgs.gov/elevation/, April 2006.

[147] G. Candea, A. B. Brown, A. Fox, and D. Patterson, “Recovery-oriented com-

puting: Building multitier dependability,” IEEE Computer, vol. 37, pp. 60—67,

November 2004. Cover feature article.

[148] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh, “Mobile agent

programming in Ajanta,” in Proceedings of the 19th International Conference

on Distributed Computing Systems, (Austin, Texas, USA), pp. 314—322, 1999.

[149] G. Karjoth, D. B. Lange, and M. Oshima, “A security model for Aglets,” IEEE

Internet Computing, pp. 68—77, July—August 1997.

[150] E. Kendall, P. M. Krishna, C. Pathak, and C. Suresh, “Patterns of intelligent

and mobile agents,” in Proceedings of teh 2nd International Confernece on Au-

tonomous Agents (AGENTS-98), (New York, New York, USA), pp. 92-99, May

1998.

[151] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox, “Microreboot -

A techinique for cheap recovery,” in Proceedings of the 6th Symposium on Oper-

ating Systems Design and Implementation (OSDI), (San Francisco, California,

USA), December 2004.

[152] A. Fox and D. Patterson, “Self-repairing computers,” Scientific American,

pp. 54—61, 2003.

[153] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox, “Autonomous recovery in

componentized internet applications,” Cluster Computing Journal, 2004.

[154] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston,

Massachusetts, USA: Pearson Education, Incorporated, 2006.

[155] W.-S. Hwang and J. Weng, “Hierarchical discriminant regression,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 22, November 2000.

[156] J. A. Hartigan, Clustering Algorithms. New York, New York, USA: John Wiley

and Sons, Inc., 1975.

[157] Y. A. Ivanov and B. M. Blumberg, “Developmental learning Of memory-based

perceptual models,” in Proceedings of the Second International Conference on

Development and Learning, (Boston, Massachusetts, USA), pp. 165-171, June

2002.

[158] W. Buntine, “Tree classification software,” in Proceedings of the Third National

Technology Transfer Conference and Exposition, (Baltimore, Maryland, USA),

December 1992.

316

[159] C. L. Blake and C. J. Merz, “UCI repository of machine learning databases.”

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

[160] S. Hettich and S. D. Bay, “UCI KDD archive.” http://kdd.ics.uci.edu, 1999.

[161] F. Samaria and A. Harter, “Parameterisation of a stochastic model for human

face identification,” in Proceedings of Second IEEE Workshop on Applications

of Computer Vision, (Sarasota, Florida, USA), December 1994.

[162] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278—

2324, November 1998.

[163] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” An-

nals of Eugenics, vol. 7, pp. 179—188, 1936.

[164] M. van Breukelen, R. P. W. Duin, D. M. J. Tax, and J. E. den Hartog, “Hand-

written digit recognition by combined classifiers,” Kybernetika, vol. 34, no. 4,

pp. 381—386, 1998.

[165] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A

review,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 22, pp. 4—37, January 2000.

[166] P. W. Frey and D. J. Slate, “Letter recognition using holland-style adaptive

classifiers,” Machine Learning, vol. 6, March 1991.

[167] J. S. Schlimmer, Concept Acquisition Through Representational Adjustment.

PhD thesis, Department Of Information and Computer Science, University of

California, Irine, Irvine, California, USA, 1987.

[168] M. Kudo, J. Toyama, and M. Shimbo, “Multidimensional curve classification

using passing-through regions,” Pattern Recognition Letters, vol. 20, pp. 1103—

1111,1999.

[169] J. A. Blackard and D. J. Dean, “Comparative accuracies Of neural networks

and discriminant analysis in predicting forest cover types from cartographic

variables,” in Proceedings of the Second Southern Forestry GIS Conference,

(Athens, Georgia, USA), pp. 189—199, 1998.

[170] S. Murthy, S. Kasif, and S. Salzberg, “A system for induction Of oblique decision

trees,” Journal of Artificial Intelligence Research (JAIR), vol. 2, pp. 1—32, 1994.

[171] J. Weng and W.-S. Hwang, “An incremental learning algorithm with automat-

ically derived discriminating features,” in Proceedings of the Asian Conference

on Computer Vision, (Taipei, Taiwan), pp. 426—431, January 2000.

[172] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and

Regression Trees. Chapman and Hall, Boca Raton, Florida, USA, 1984.

317

[173] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81—

106, 1986.

[174] W. L. Buntine, “Decision tree induction systems: A Bayesian analysis,” in

Proceedings of the Third Conference on Uncertainty in Artificial Intelligence,

(Seattle, Washington, USA), pp. 109—128, July 1987.

[175] S. K. Murthy, “Automatic construction of decision trees from data: A multi-

disciplinary survey,” Data Mining and Knowledge Discovery, vol. 2, no. 4,

pp. 345—389, 1998.

[176] C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, “Fast algo—

rithms for projected clustering,” in Proceedings of the ACM SIGMOD Confer-

ence on Management of Data, (Philadelphia, Pennsylvania, USA), pp. 61-72,

June 1999.

[177] S. Kumar, J. Ghosh, and M. M. Crawford, “Hierarchical fusion of multiple

classifiers for hyperspectral data analysis,” Pattern Analysis and Applications,

vol. 5, pp. 210—220, 2002.

[178] J. Tantrum, A. Murua, and W. Stuetzle, “Assessment and pruning of hierar—

chical model based clustering,” in Proceedings of the 9th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, (Washington,

DC, USA), August 2003.

[179] J. Tantrum, A. Murua, and W. Stuetzle, “Hierarchical model-based clustering

Of large datasets through fractionation and refractionation,” in Proceedings of

the 8th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, (Edmonton, Alberta, Canada), pp. 183-190, July 2002.

[180] H. Yu, J. Yang, and J. Han, “Classifying large data sets using SVMS with hier-

archical clusters,” in Proceedings of the 9th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, (Washington, DC, USA),

pp. 306—315, August 2003.

[181] A. Kalton, P. Langley, K. Wagstaff, and J. Yoo, “Generalized clustering, super-

vised learning, and data assignment,” in Proceedings of the 7th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, (San Fran-

cisco, California, USA), pp. 299—304, August 2001.

[182] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with kernels,”

in Proceedings of Advances in Neural Information Processing Systems (NIPS),

(Cambridge, Massachusetts, USA), 2002.

[183] K. Crammer, J. Kandola, and Y. Singer, “Online classification on a budget,”

in Proceedings of Advances in Neural Information Processing Systems (NIPS),

(Cambridge, Massachusetts, USA), 2003.

318

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

C. Gupta and R. Grossman, “Genlc: A single pass generalized incremental

algorithm for clustering,” in Proceedings of the SIAM International Conference

on Data Mining, (Lake Buena Vista, Florida, USA), April 2004.

P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method for

similarity search in metric spaces,” in Proceedings of the 23rd International

Conference on Very Large Data Bases (VLDB ’97), (Athens, Greece), pp. 426—

435, August 1997.

T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data clus-

tering method for very large databases,” in Proceedings of the 1996 ACM SIG-

MOD International Conference on Management of Data, (Montreal, Quebec,

Canada), pp. 103—104, June 1996.

M. M. Breunig, H.-P. Kriegal, P. KrOger, and J. Sander, “Data Bubbles: Quality

preserving performance boosting for hierarchical clustering,” in Proceedings of

the 2001 ACM SIGMOD International Conference on Management of Data,

(Santa Barbara, California, USA), May 2001.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Prob-

lem determination in large, dynamic, internet services,” in Proceedings of the

International Conference on Dependable Systems and Networks (IPDS Track),

(Washington, DC, USA), 2002.

P. Geurts, I. E. Khayat, and G. Leduc, “A machine learning approach to im-

prove congestion control Over wireless computer networks,” in Proceedings of

the 4th IEEE Conference on Data Mining (ICDM’OI), (Brighton, United King-

dom), pp. 383—386, November 2004.

R. Amit and M. Mataric’, “Learning movement sequences from demonstra-

tion,” in Proceedings of the Second International Conference on Development

and Learning, (Boston, Massachusetts, USA), pp. 165—171, June 2002.

P. Ge and P. K. McKinley, “Leader-driven multicast for video streaming on

wireless LANS,” in Proceedings of the IEEE International Conference on Net-

working, (Atlanta, Georgia, USA), August 2002.

P. K. McKinley, C. Tang, and A. P. Mani, “A study of adaptive forward error

correction for wireless collaborative computing,” IEEE Transactions on Parallel

and Distributed Systems, September 2002.

P. K. McKinley, U. I. Padmanabhan, N. Ancha, and S. M. Sadjadi, “Com-

posable proxy services to support collaboration on the mobile internet,” IEEE

Transactions on Computers (Special Issue on Wireless Internet), pp. 713-726,

June 2003.

Z. Zhou, P. K. McKinley, and S. M. Sadjadi, “On quality-of—service and energy

consumption tradeoffs in FEC-enabled audio streaming,” in Proceedings of the

319

12th IEEE International Workshop on Quality of Service (IWQoS), (Montreal,

Canada), June 2004. Selected as best student paper.

[195] “Computational Ecology and Visualization Laboratory (CEVL).”

http:/lwww. cevl .msu. edu, November 2006.

[196] “Kellogg Biological Research Station (KBS).” http://www.kbs.msu.edu,

November 2006.

[197] “North American Breeding Bird Survey.” http://www.pwrc.usgs.gov/bbs/,

December 2006.

[198] “Christmas Bird Count.” http://www.audubon.org/bird/cbc/, December

2006.

[199] “UK Breeding Bird Survey.” http://www.bto.org/bbs/, December 2006.

[200] “Crossbow Technology, Inc..” http:/lwww.xbow.com, November 2006.

[201] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pis-

ter, “System architecture directions for networked sensors,” in Proceedings of

the 9th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-IX), (Cambridge, Massachusetts,

USA), November 2000.

[202] W. H. Thorpe, “The learning of song patterns by birds, with especial reference

to the song Of the chaffinch, Fingilla coelebs,” Ibis: The international journal

of avian science, vol. 100, pp. 535—570, 1958.

[203] W. H. Thorpe, Bird Song: The biology of vocal communication and expression

in birds. New York, New York, USA: Cambridge University Press, 1961.

[204] O. Tchernichovski, T. Lints, S. Deregnaucourt, and P. Mitra, “Analysis of the

entire song development: Methods and rationale,” Annals of the New York

Academy of Science, vol. 1016, pp. 348—363, 2004. special issue: Neurobiology

Of Birdsongs.

[205] C. Catchpole and P. Slater, Bird Song: Biological themes and variations. New

York, New York, USA: Cambridge University Press, 1995.

[206] E. A. Brenowitz, D. Margoliash, and K. W. Nordeen, “An introduction to

birdsong and the avian song system,” Journal of Neurobiology, vol. 33, pp. 495—

500, 1997.

[207] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality re-

duction for fast similarity search in large time series databases,” Knowledge and

Information Systems, vol. 3, no. 3, pp. 263—286, 2000.

320

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

B.-K. Y1 and C. Faloutsos, “Fast time sequence indexing for arbitrary Lp

norms,” in Proceedings of the 26th International Conference on Very Large

Databases, (Cairo, Egypt), September 2000.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of

complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297-301,

April 1965.

K.-P. Li and J. E. Porter, “Normalizations and selection of Speech segments for

speaker recognition scoring,” in Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), vol. 1, pp. 595—598, April

1988.

E. Keogh, J. Lin, and W. Truppel, “Clustering Of time series subsequences

is meaningless: Implications for past and future research,” in Proceedings of

the 3rd IEEE International Conference on Data Mining, (Melbourne, Florida,

USA), November 2003.

B.-K. Yi, H. Jagadish, and C. Faloutsos, “Eflicient retrieval of similar time

sequences under time warping,” in Proceedings of the IEEE International Con-

ference on Data Engineering, (Orlando, Florida, USA), pp. 201-208, February

1998.

B. Chin, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series mo-

tifs,” in Proceedings of the 9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, (Washington, DC, USA), pp. 493—

498, August 2003.

J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time series,” in

Proceedings of the 2nd Workshop on Temporal Data Mining, at” the 8th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

(Edmonton, Alberta, Canada), July 2002.

G. Tandon, P. Chan, and D. Mitra, “MORPHEUS: Motif oriented repre-

sentations to purge hostile events from unlabeled sequences,” in Proceedings

of the Workshop on Visualization and Data Mining for Computer Security

(Viz/DMSEC) held in conjunction with the 11th ACM Conference on Computer

and Communications Security (COS), (Washington, DC, USA), pp. 16—25, Oc-

tober 2004.

E. Keogh, J. Lin, and A. Fu, “HOT SAX: Finding the most unusual time series

subsequence,” in Proceedings of the 5th IEEE International Conference on Data

Mining (ICDM 2005), (Houston, Texas, USA), pp. 226—233, November 2005.

F. Provost and R. Kohavi, “Glossary of terms,” Machine Learning, vol. 30,

pp. 271—274, February 1998.

321

[218] R. L. Smith, “Acoustic signatures of birds, bats, bells and bearings,” in Pro-

ceedings of the Annual Vibration Institute Meeting, (Dearborn, Michigan, USA),

June 1998.

[219] J. P. Eagn, Signal Detection Theory and ROC Analysis. Series in Cognitition

and Perception, New York, New York, USA: Academic Press, 1975.

[220] A. P. Bradley, “The use of the area under the ROC curve in the evaluation

of machine learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145—

1159, 1997.

[221] F. J. Provost and T. Fawcett, “Robust classification for imprecise environ-

ments,” Machine Learning, vol. 42, no. 3, pp. 203—231, 2001.

[222] T. S. Group, “STREAM: The stanford stream data manager,” IEEE Data

Engineering Bulletin, vol. 26, September 2003.

[223] B. Babcock, S. Babu,tM. Datar, R. Motwani, and J. Widom, “Models and

issues in data stream systems,” in Proceedings of the 2Ist ACM Symposium

on Principles of Database Systems (PODS), (Madison, Wisconsin, USA), June

2002.

[224] R. Avnur and J. M. Hellerstein, “Eddies: Continuously adaptive query pro-

cessing,” in Proceedings of the ACM SICMOD International Conference on

Management of Data, (Dallas, Texas, USA), May 2000.

[225] S. Chandrasekaran, 0. Cooper, A. Deshpande, M. J. Franklin, J. M. Heller-

stein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A.

Shah, “TelegraphCQ: Continuous dataflow processing for an uncertain world,”

in Proceedings of the First Biennial Conference on Innovative Data Systems

Research (CIDR), (Asilomar, California, USA), January 2003.

[226] P. Bizarro, S. Babu, D. DeWitt, and J. Widom, “Content-based routing: Dif-

ferent plans for different data,” in Proceedings of the Thirty-First International

Conference on Very Large Data Bases, ('Ifondheim, Norway), pp. 757—768,

September 2005.

[227] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns

in time series,” in Proceedings of KDD-94: AAAI Workshop on Knowledge

Discovery in Databases, (Seattle, Washington, USA), pp. 359—370, July 1994.

[228] J. Beringer and E. Hullermeier, “Online clustering of parallel data streams,”

Data and Knowledge Engineering, vol. 58, no. 6, pp. 180—204, 2006.

[229] F. Chu, Y. Wang, and C. Zaniolo, “An adaptive learning approach for noisy data

streams,” in Proceedings Forth IEEE Conference on Data Mining (ICDM’04),

(Brighton, United Kingdom), pp. 351—354, November 2004.

322

[230]

[231]

[232]

{233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

J. Yang and W. Wang, “AGILE: A general approach to detect transitions in

evolving data streams,” in Proceedings of the 4th IEEE Conference on Data

Mining (ICDM’04), (Brighton, United Kingdom), pp. 559—562, November 2004.

D. Ron, Y. Singer, and N. Tishby, “The power Of amnesia: Learning probabilis-

tic automata with variable memory length,” Machine Learning, vol. 25, no. 2—3,

pp. 117—149, 2004.

C. Partridge, D. Cousins, A. W. Jackson, rajesh Krishnan, T. Saxena, and

W. T. Strayer, “Using signal processing to analyze wireless data traffic,” in

Proceedings International Conference on Mobile Computing and Networking,

ACM workshop on Wireless security, (Atalanta, Georgia, USA), pp. 67—76,

2002.

Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music identifica-

tion,” in Proceedings of the IEEE International Conference on Computer Vision

and Pattern Recognition, (San Diego, California, US), June 2005.

D. K. Mellinger and C. W. Clark, “Recognizing transient low-frequency whale

sounds by spectrogram correlation,” Journal of the Acoustical Society of Amer-

ica, vol. 107, pp. 3518—3529, June 2000.

S. Fagerlund and A. Hiirméi, “Parameterization Of inharmonic bird sounds for

automatic recognition,” in 13th European Signal Processing Conference (EU-

SIPCO), (Antalya, Turkey), September 2005.

P. Somervuo and A. Halrmii, “Bird song recognition based on syllable pair his-

tograms,” in Proceedings of the IEEE International Conference on Accoustics,

Speech and Signal Processing (ICASSP), (Montreal, Quebec, Canada), May

2004.

J. A. Kogan and D. Margoliash, “Automated recognition of bird song elements

from continuous recordings using dynamic time warping and hidden markov

models: A comparative study,” Journal of the Acoustical Society of America,

vol. 103, no. 4, pp. 2185—2196, 1998.

M. Ghiassi, H. Saidane, and D. Zimbra, “A dynamic artificial neural network

model for forecasting time series events,” International Journal of Forecasting,

vol. 21, pp. 341—362, April-June 2005.

“Time Series Prediction: Forecasting the Future and Understanding the past:

Proceedings of the NATO Advanced Research Workshop on Comparative Time

Series Analysis,” May 1992.

P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting.

New York, New York, USA: Springer—Verlag, 1996.

323

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

N. A. Gershenfeld and A. S. Weigend, “The future of time series: Learning

and understanding,” in Time Series Prediction: Forecasting the Future and

Understanding the past: Proceedings of the NATO Advanced Research Workshop

on Comparative Time Series Analysis, (Santo Fe, New Mexico, USA), May

1992.

H. Nyquist, “Certain tOpics in telegraph transmission theory,” Transactions of

the American Institute of Electrical Engineers (AIEE), vol. 47, pp. 617—644,

April 1928.

H. Nyquist, “Certain topics in telegraph transmission theory,” Proceedings of

the IEEE, vol. 90, pp. 280—305, February 2002. Reprint of Nyquist’s 1928 classic

paper.

C. E. Shannon, “Communication in the presence of noise,” Proceedings of the

Institute of Radio Engineers (IRE), vol. 37, pp. 10—21, January 1949.

C. E. Shannon, “Communication in the presence of noise,” Proceedings of the

IEEE, vol. 86, pp. 447—457, February 1998. Reprint of Shannon’s 1949 classic

paper.

G. T. Nguyen, R. H. Katz, B. Noble, and M. Satyanarayanan, “A trace-based

approach for modeling wireless channel behavior,” in Proceedings of the Winter

Simulation Conference, (Coronado, California, USA), pp. 597—604, December

1996.

W. Jiang and H. Schulzrinne, “Modeling Of packet loss and delay and their effect

on real-time multimedia service quality,” in Network and Operating System

Support for Digital Audio and Video (NOSSDA V), (Chapel Hill, North Carolina,

USA), June 2000. '

I-I. Sanneck and G. Carle, “A framework model for packet loss metrics based

on loss runlengths,” in Proceedings of the SPIE/ACM SIGMM Multimedia

Computing and Networking Conference (MMCN), (San Jose, California, USA),

pp. 177—187, January 2000.

E. N. Gilbert, “Capacity of a burst-noise channel,” vol. 39, pp. 1253—1265,

September 1960.

E. O. Elliot, “Estimates of error rates for code on burst-noise channels,” vol. 42,

pp. 1977—1997, September 1963.

C. W. J. Granger, “Forecasting in economics,” in Time Series Prediction: Fore-

casting the Future and Understanding the past: Proceedings of the NATO Ad-

vanced Research Workshop on Comparative Time Series Analysis, (Santo Fe,

New Mexico, USA), May 1992.

324

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

A. F. Atiya, S. M. El-Shoura, S. I. Shaheen, and M. S. El-Sherif, “A comparison

between neural-network forecasting techniques — case study: River flow fore-

casting,” IEEE Transactions on Neural Networks, vol. 10, pp. 402—409, March

1999.

W. Cui and M. A. Bassiouni, “Virtual private network bandwidth management

with traffic prediction,” Computer Networks, vol. 42, pp. 765—778, 2003.

J. Ilow, “Forecasting network traflic using FARIMA models with heavy tailed in-

novations,” in Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing (ICASSP), vol. 6, pp. 3814—3817, June 2000.

B. P. Bogert, M. J. R. Healy, and J. W. Tukey, “The quefrency alanysis of time

series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe

cracking,” in Proceedings of the Symposium on Time Series Analysis (Brown

University, June 1962), (New York, New York, USA), pp. 209—243, John Wiley

and Sons, 1963.

M. PapadOpouli, H. Shen, E. Raftopoulos, M. Ploumidis, and F. Hernandez-

Campos, “Short-term traflic forecasting in a campus-wide wireless network,”

in Proceedings of the 16th International Symposium on Personal Indoor and

Mobile Radio Communications (PIMRC), (Berlin, Germany), September 2005.

M. C. Mozer, “Neural net architectures for temporal sequence,” in Time Series

Prediction: Forecasting the Future and Understanding the past: Proceedings of

the NATO Advanced Research Workshop on Comparative Time Series Analysis,

(Santo Fe, New Mexico, USA), May 1992.

A. M. Fraser and A. Dimitriadis, “Forecasting probability densities using hid-

den markov models with mixed states,” in Time Series Prediction: Forecasting

the Future and Understanding the past: Proceedings of the NATO Advanced Re-

search Workshop on Comparative Time Series Analysis, (Santo Fe, New Mexico,

USA), May 1992.

J. Zhang, B. H. C. Cheng, Z. Yang, and P. K. McKinley, “Enabling safe dy-

namic component-based software adaptation,” in Architecting Dependable Sys-

tems III, Springer Lecture Notes for Computer Science (A. R. Rogerio de Lemos,

Cristina Gacek, ed.), Springer-Verlag, 2005.

J. R. Koza, “Hierarchical genetic algorithms Operating on populations Of com-

puter programs,” in Proceedings of the 11th International Joint Conference

on Artificial Intelligence (N. Sridharan, ed.), (San Mateo, California, USA),

pp. 768—774, Morgan Kaufmann, 1989.

R. Friedberg, “A learning machine: Part I,” IBM J. Research and Development,

vol. 2, no. 1, pp. 2—13, 1958.

325

[262] C. Ofria, C. Adami, and T. C. Collier, “Design of evolvable computer lan-

guages,” IEEE Transactions in Evolutionary Computation, vol. 6, pp. 420—424,

August 2002.

326

 I[If][I]III[]I[I][II[]I]]II

