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ABSTRACT

POLYNOMIAL SPLINE SMOOTHING FOR

NONLINEAR TIME SERIES

By

Li Wang

Nonlinear time series analysis has gained much attention in recent years due primar—

ily to the fact that linear time series models have encountered various limitations in real

applications and the development in nonparametric regression has established a solid foun-

dation for nonlinear time series analysis. In this dissertation, polynomial spline smoothing

is studied for nonlinear time series.

For univariate nonlinear time series, uniform confidence bands of a nonparametric pre-

diction function are constructed using the polynomial spline method. As an application,

after removing the environmental Kuznets curve trend effects, the impact of the economic

intervention on environmental quality change is quantified for the United States and Japan,

with different conclusions.

Application of non- and semiparametric regression techniques to high dimensional time

series data have been hampered due to the lack of effective tools to address the “curse of

dimensionality”. There are essentially two approaches to circumvent this difficulty: function

approximation and dimension reduction.

For the function approximation approach, the nonlinear additive autoregression (NAAR)

model is examined. Under rather weak conditions, spline-backfitted kernel estimators of the

component functions are proposed for weakly dependent samples that are both computa-

tionally expedient (so it. is usable for analyzing very high dimensional time series), and



theoretically reliable (so inference can be made on the component functions with confi—

dence).

For the dimension reduction approach, a single-index prediction (SIP) model based on

weakly dependent sample is studied. The single-index is identified by the best approximation

to the multivariate prediction function of the response variable, regardless of whether or not

the prediction function is a genuine single-index function. A polynomial spline estimator is

proposed for the single—index prediction coefficients, and is shown to be root-n consistent

and asymptotically normal. An iterative optimization routine is used which is sufficiently

fast for the user to analyze large data sets of high dimension within seconds. Application of

the proposed procedure to the river flow data of Iceland has yielded superior out-of—sample

rolling forecasts.
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CHAPTER 1

Introduction

1.1 Nonlinear Time Series Prediction Model

Classic regression and time series tools such as the generalized linear model and the lin-

ear autoregression are known to be inadequate for complex data that exhibit nonlinearity.

This recognition has motivated the development of non— and semiparametric regression

techniques, with far reaching applications, see, for example, Fan and Gijbels (1996), Bosq

(1998), Fan and Yao (2003).

A typical nonparametric problem in time series analysis is the classical decomposition of

a realization of a time series into a slowly changing function known as a “trend component”,

or simply trend, a periodic function referred to as a “seasonal component”, and finally a

“random noise component”, which in terms of the regression theory should be called the -

time series of residuals. In time series analysis smoothing problems occur of course in the

spectral domain when we want to estimate the spectral density, e.g. for model fitting. In

the time domain nonparametric prediction is one of the fields where smoothing methods are

intensively used. A well-known example is the water flow prediction from a time series of

river data, see Section 4.5 in Chapter 4. In the motorcycle crash test, the acceleration of the

dummy head after impact follows a complicated instead of a simple polynomial time trend.

Another example of the nonlinear time series is the quarterly unemployment rate of US.

women, which follows a nonlinear instead of a simple linear prediction formula. Effective

tools for extracting information from such complex regression data have to be non- and

semiparametric in nature.



In the following, let {X$,K}n 1 = {X,-,1,...,X,,d,Y,~}?_l be a (d+1)—dimensional
z: _

strictly stationary process following the stochastic regression model

Yz' = m (Xi) +0(Xi)€z‘,m(xtl = E(Yz'|xz'), (1-1-1)

in which E(e,- IX,) 2 0, E (5?|X,-) = 1, 1 _<_ i g n. The-d-variate functions m, a are

the unknown mean and standard deviation of the response Y, conditional on the predictor

vector X,, often estimated nonparametrically.

Two very popular forms of nonparametric regression are kernel/local polynomial type

and spline type smoothing. In this work, the polynomial spline smoothing is extensively

studied for nonlinear time series. The greatest advantages of spline smoothing, as pointed

out in Huang and Yang (2004), Xue and Yang (2006 b) are its simplicity and fast compu-

tation.

For model in (1.1.1), when the dimension of the predictor vector X,- is l (d = 1), spline

confidence bands are obtained in Chapter 2 for time series prediction function m under weak

dependence. Application of smoothing techniques to high dimensional time series have been

hampered due to the lack of effective tools to address the “curse of dimensionality”, which

refers to the poor convergence rate of nonparametric estimation of general multivariate

function. Much effort has been devoted to methods of circumventing. this difficulty. In

the words of Xia, Tong, Li and Zhu (2002), there are essentially two approaches: function

approximation and dimension reduction. Additive model and single~index model, special

cases of model (1.1.1), are good examples to represent these two approaches. Chapter 3 and

Chapter 4 discuss these two models separately.

1.2 Spline Confidence Bands

Consider the one dimensional case of model (1.1.1) for strictly stationary bivariate time

series {(X,,I/,-)}?:1

Y,- =m(X,)+o(X,-)5,-,i=1,...,n, (1.2.1)

where the errors {5,}?21 are white noise, i.e., E(E,‘ IX,) = 0,var(5,- IX,) 2 1 and 5,- is a

martingale difference for the a—fieltl f,- = 0 {Xj,8j_1, 1 3’ j S i} for 2' = 1, ...,n.



To put the discussion in perspective, consider the question of how the adjustment of

GDP autonomously influence the change of the environmental quality in Japan, see Section

2.5.2 in Chapter 2. The logarithm of GDP per capita and the emissions per capita of Japan

are decomposed as u(t) + X: and v(t) + Yt, t = 1, ...,n respectively, where the quadratic

trends u(t) and v(t) are given in (2.5.3), {(Xt, IQ)}?___1 are zero mean stationary time series

of residuals. The aforementioned question can be formulated in terms of various hypotheses

about the prediction function m(:z:) = E(Yt|Xt = :r). In Figure 4.11 (b), a 99% conservative

simultaneous confidence band of m(:c) is plotted together with the linear regression line,

clearly showing the nonlinear dependence of Y; on Xt. The corresponding Figure 4.10 (b)

for the United States, however, shows a linear and insignificant m(:r). Making such inference

about the global shape of the prediction function m(:i:) depends crucially on the construction

of simultaneous confidence bands for m using the time series observations {(Xi, Y,)}?___1.

In Chapter 2, asymptotically conservative simultaneous confidence bands are con—

structed for nonparametric prediction function m based on piecewise constant and piecewise

linear polynomial spline estimation, respectively. Simulation experiments have provided

strong evidence that corroborates with the asymptotic theory. As an application, after

removing the environmental Kuznets curve trend effects, the impact of the economic inter-

vention on environmental quality change is quantified for the United States and Japan, with

different conclusions.

1.3 Nonlinear Additive Autoregression (NAAR) Model

For multi-dimensional strictly stationar time series X - ,...,X' ,Y- 7.: , the followin
3’ 1,1 z,d 2 ,_1 g

additive structure is assumed for model ( 1.1.1)

(1

v, = c+ 2 ma (Xi’a) +0(X,-)5,- (1.3.1)

021

In nonlinear additive autoregression data-analytical context, each predictor Xaa, 1 S a g

d could be observed lagged values of Y,, such as X”, = Y,-_(,, or of a different times

series. Model (1.3.1) therefore, is the exact same nonlinear additive autoregression model of



Huang and Yang (2004), which allows for exogenous variables. For identifiability, additive

component functions must satisfy the conditions Ema (Xi,a) E 0, a = 1, ..., d.

Application of additive model to high dimensional time series data has been hampered

by the scarcity of smoothing tools. The straightforward kernel methods are too compu-

tationally intensive for high dimension, thus limiting their applicability to small number

of predictors. Spline methods on the other hand, provide only convergence rates but no

asymptotic distributions, so no measures of confidence can be assigned to the estimators.

In Chapter 3, a spline-backfitted kernel estimator is proposed for estimating the un-

known component functions {ma (-)}g=1 based on a geometrically strong mixing sample

following model (1.3.1). under minimal smoothness assumptions. The idea is to employ one

step backfitting after the spline pilot estimators, and then follow up with kernel smoothing,

which combines the fast computing of polynomial spline smoothing and the good asymptotic

property of kernel smoothing. Thus, the spline-backfitted kernel estimator is both computa-

tionally expedient for analyzing very high dimensional time series, and theoretically reliable

to make inference on the component functions with confidence.

1.4 Single-Index Prediction (SIP) Model

Single-index model, a special case of projection pursuit regression, has proven to be an effi-

cient way of coping with the high dimensional problem in nonparametric regression. Single—

index model summarizes the effects of the explanatory variables within a single variable

called the index. The basic appeal of single-index model is its simplicity: the d-variate func—

tion m (x) = m (:51, ..., xd) is expressed as a univariate function g of xTBO = 25:1 90’pIp.

In Chapter 4, a robust singleindex prediction (SIP) model is introduced for stochastic

regression model 1.1.1 regardless if the underlying function is exactly a single-index function.

Applications of SIP models lie in a variety of fields, such as discrete choice analysis in

econometrics and dose—response models in biometrics, where high-dimensional regression

models are often employed, see Hardle, Hall and Ichimura (1993). The proposed spline

estimator of the index coefficient possesses not only the usual strong consistency and fi-



rate asymptotically normal distribution, but also is as efficient as if the true link function g

is known. By taking advantage of the spline smoothing method and the iterative method,

the proposed procedure is much faster than the MAVE method, see Xia, Tong, Li and Zhu

(2002). This procedure is especially powerful for large sample size n and high dimension d

and unlike the MAVE method, the performance of the SIP remains satisfying in the case

d>n.

1.5 Polynomial Spline Smoothing

Let {X,, 1”,}?21 be a strictly stationary process. Assume that X,, i = 1, ..., n, are supported

on a compact interval [a, b]. Polynomial splines begin by choosing a set of knots (typically,

much smaller than the number of data points 11), and a set of basis functions spanning a

set of piecewise polynomials satisfying continuity and smoothness constraints.

To be specific, divide [a,b] into (N+ 1) subintervals Jj = [tj,tj+1), j = 0,...,N —

1, JN = [tN,1], where T := {tj )9; is a sequence of equally-spaced points, called interior

knots, given as

t1_k=...=t_1=t0=a<t1<...<tN <b=tN+1 =...:tN+k,

in which t,- = jh, j = 0, 1, ..., N + 1,12 = 1/ (N + 1) is the distance between neighboring

knots. Denote by

00") [a, b] = {m|the kth order derivative of m is continuous on [a,b]} (1.5.1)

and Gag-2) = C(k‘Ql [a,b] the space of all CUE—2) [a,b] functions that are polynomials of

degree It — 1 on each interval. The j—th B-spline of order k for the knot sequence T denoted

by Bi), is recursively defined by the de Boor (2001), i.e.

u—t- B: __ —t’ B- _

1k (u):( J) 1.1: if“) __ (“ J+kl J+1,k 1(a),1—kgjgN, (1.5.2)

tj+k—1—tj tj+lc " tj+1

 

for k > 1, with

I t' < u < t" 1

B- :1 = 3“ 3+
3’1 (u) { { 0 otherwise'uEJj}



For model (1.2.1), assume that m(:1:) belongs to 00¢) [a,b], the space of functions that

have k—th order continuous derivatives for some integer k > 0, on the interval [(1,1)]. The

polynomial spline estimator is

it

fit], () :2 argmin Z {Y,- - g (X,-)}2 ,k > 0. (1.5.3)

g(-)€G(k-2)[a,b] i=1

In the rest of this dissertation, spline smoothing is applied for the stochastic regression

model (1.1.1) under different conditions.



CHAPTER 2

Spline Confidence Bands for Time Series

Prediction Function

2.1 Introduction

Theoretical properties of nonparametric smoothers are typically examined in terms of mean

square, pointwise, or uniform rate of convergence, while practical consideration favors meth-

ods that are easy to implement and interpret. In addition, fast computing is appealing for

users of smoothers. For kernel smoothing of independent data, satisfactory results on rates

of convergence have been obtained, see Fan and Gijbels (1996) for pointwise and mean

square convergence rates, Miiller, Stadtmiiller and Schmitt (1987) for confidence intervals

of derivative estimates, Neumann (1995, 1997) for bandwidth choice and construction of

confidence intervals, Hall and Titterington (1988), Hardle (1989), Xia (1998), Claeskens

and Van Keilegom (2003) for uniform confidence bands. Spline smoothers of independent

data have been investigated in parallel, see for example, Stone (1985, 1994) for mean square

convergence, Huang (2003) for pointwise convergence, and Zhou, Shen and Wolfe (1998) for

uniform confidence bands.

Nonparametric smoothing of weakly dependent data has been vigorously pursued in

many directions due to its superiority for the modeling and forecasting of nonlinear time

series, see, for instance, Fan and Yao (2003) for kernel type autoregression smoothing,

and Huang and Yang (2004) for spline type autoregressive smoothing. Confidence bands,

however, remain unavailable for all nonparametric smoothers based on dependent observa-



tions, due to the lack of Hungarian embedding for dependent random variables, similar to

that established by Tusnady (1977) for independent random variables. Existing results on

nonparametric smooth confidence bands rely on such strong approximation result of i.i.d.

sample, see, for instance, Bickel and Rosenblatt (1973), Rosenblatt (1976), Hardle ( 1989),

Xia (1998), Claeskens and Van Keilegom (2003).

In this chapter, asymptotic simultaneous confidence bands are obtained for the unknown

regression function m (x) in (1.1.1) based on the polynomial spline estimator 772,, (2:) defined

in (1.5.3), while the observations {(X,, Y,)},’-‘=1 are only assumed to have a—mixing coefficient

a(n) decaying geometrically (see Assumption (A4) of Section 2.2). Instead of applying

the usual Hungarian embedding technique used in most existing works, we make use of

the Berry-Esseen bound in Sunklodas (1984) for sequences of mixing random variables to

establish that the constructed confidence bands are conservative. The resulting confidence

bands are comparable in terms of formula and narrowness to those constructed for i.i.d.

sample. Further research will show that these simultaneous confidence bands are very

useful for multi-step ahead forecasting of time series data, such as studied in Chen, Yang

and Hafner (2004).

The rest of this chapter is organized as follows. The main findings of splines confidence

bands are stated in Section 2.2. Section 2.3 provides further insights into the error structure

of spline estimators, from which one is able to obtain the asymptotic confidence bands. This

is accomplished by establishing simultaneous Berry-Esseen bound for the estimation noise.

Section 2.4 describes the actual steps to implement the confidence bands. Section 2.5 reports

the findings in an extensive simulation study and the application to the environmental

Kuznets curve (EKC) analysis. All technical proofs are contained in Section 2.6.

2.2 Main results

Before stating the main theorems, we formulate some assumptions.

(A1) The regression function 711 E C(k) [a, b], k = 1,2.

(A2) The marginal density function f (11:) of X is continuous and positive on its compact



support, the interval Ia,bI. The standard deviation function 0(17) is continuous and

positive on Ia, 1)].

(A3) The number of interior knots N satisfies: (n/ log n)1/(2k+1) << N << 111/3, hence for

k = 2, one can take N N n1/5, while for k = 1, one can take N N n1/3(logn)”1/6.

(A4) There exist positive constants K0 and A0 such that a(n) S Koe“’\0" holds for all n,

where the strong mixing coefl'icient of order n is defined as

a(n)= sup IP(BflC)—P(B)P(C)I,n21.

BEO’{X3,Ys,3£t},CEO’{X3,Y3,SZt‘f'Tl}

(A5) The joint distribution of random variables (X,5) satisfies the following:

(a) The error is a white noise, E(e IX 2 :15) = 0, E (52 IX = 2:) =1.

(b) There exists A10 > 0 such that

sup E (IEI3 IX = 2:) < MO.

xEan

Assumptions (A1)-(A5) are typical in the nonparametric smoothing literature, see for

instance, Fan and Yao (2003), Huang and Yang (2004).

For any a: 6 [a,b], define its location index j (:13) and relative location index (5 (:22) as

._ a: — t -

J’ (2:) = in (2:) = min I IE—h—‘EI ,N}, 6(1) 2 —IJ'(_I)’ (2.2.1)

It is clear that tj(x) g :1: < tj(_,,,)+1, 0 S 6(12) < 1, Va: 6 [a,b], j(b) = N, 6(b) = 1. For any

1.2-integrable functions (15, (p on Ia, b], the theoretical and empirical inner products and the

corresponding L2 norms are defined respectively by

b

at» = / immense = mangoes},

”as = E {i2 (X)} = /b¢2 (as) f($)d:c,

we). 2 n4 2 {a5 or.) 990(1)} , “at. = 72-1: ,2 (X0.

i=1 i:1



For notation simplicity, we denote by IIII00 the supremum norm of a function r on Ia,b],

:2 sup Ir (1:)I, and the moduli of continuity of a continuous function r on [a,b]

:cEIa,bI

is denoted as w (r, h.) 2

wide

max Ir (x) — r (23’) I. By the uniform continuity of r on

:r,r’€[a,bI,Ix-$’Igh

an interval [a, b], one has ’Iimow (r, h) = 0.

We denote the theoretical norms of Bj,k: k = 1,2 in (1.5.2) as follows

%n=lwnfi=/GWU@ML was

d”, = IIBJ'JIIE = [K {(11: -— tj+1) h-l} f(:1:) d:r.. (2.2.3)

For theoretical analysis, in the following of this chapter, we use the rescaled B-spline basis

(divided by its theoretical norm cj'n, dj,n) {By-,1 (:12) }§V=0 and {8,32 (:12) }j.v:_1 for constant

spline space C(‘ll and linear spline space (7(0) defined in Section 1.5. The inner product

matrix of the B-spline basis {83,1 (:3) }j:0 is obviously the identity matrix IN+12 while the

corresponding matrix V of the B-spline basis {Bj,2(1‘)}§:_1 is denoted as

V N B B N 2 2 4

_ (Ujlj)jsj,:—l — (< jl’2, J’2>)jsj,=—I,
( . I )

whose inverse matrix S and its 2 x 2 diagonal submatrices are expressed as

N —1 Sj—Ij—I Sj—lj -S: (34.) ,, 2V ,S, = , . ,9 =0,...,N. (2.2.5)
J J Jr.) :_1 Sj7j_l Sjij ‘

Next define matrices 2, A (:13) and 83- as

N

N 2

23 ‘-‘ (011),):4 = {f0 (’0) 33,2 (U) 131,2 (“IN”) 411} 1 , (225)

j: 2—1

= Cj(x)_1{1—5($)} ,2 J2 j=—1,N

ACE) (OJ-(306(1)) ,CJ 1 OSjSN—I ,

lj+2,j+1 lj+2,j+2

where terms {liklli-qu are the entries of the inverse of the (N +2) x (N + 2) matrix

1- - l- -
E,=(J+1’J+l 3+1”+2),j=0,1,...,N, (2.2.7)

MN+2 and can be computed by Lemma 2.6.10

  

1 \f2/4 0 \

fi/zi 1 1/4

MN+2 = 1/4 _1 , (23-8)

., 1/4

1/4 1 fi/4

\0 fi/4 1 f

10



Define next

f 13(1) (v) 02 (v) f (v) dv

 

2
o,,,1(:1:) = 2 , (2.2.9)

716.

3(1),"

N

1
2

an,2(a:) = E Z 814,2($)B,,’2(:r)sjj;su/afl, (2.2.10)

j,j’,l,l’=—l

with j(:r) defined in (2.2.1), ij in (2.2.2) and s“; and 03-) in (2.2.5), (2.2.6). These

03, k (2:) are shown in Lemmas 2.6.5, 2.6.11 to be the pointwise variance functions of the

spline estimators 1a,, (2:), l: = 1,2. Lastly, define an inflation correction factor, for any

a 6 (0,1)

dn(a)=1—-—{2log(N +1)}—1 log (Ct/2) + % {log log (N +1) +log47r} . (2.2.11)

THEOREM 2.2.1. Under Assumptions (AU—(A5), for any a 6 (0,1), an asymptotic

100 (1 —— a) % conservative confidence band for m (an) over interval [a, b] is

mm :1: an), (11:) {2k log (N +1)}1/2 an (oz/k) ,k = 1, 2. (2.2.12)

In other words, for k z 1, 2

limian Im (I) 6 ink (:17) j: 0",), (.17) {2k log (N +1)}1/2dn(a/k),Va:”E [a,bII _>_1— a,
Tl—'*OO

in which on,1(:r.) is given in (2.2.9), replaceable by o(:1:) {f(2:)nh}‘"1/2 accord-

ing to (2.6.6) in Lemma 2.6.5, on; (:r) is given in (2.2.10), replaceable by

l 2

o(:1:) {2f ($)nh/3}—1/2 {AT (:13) Ej(I)A(:r)} / according to Lemma 2.6.9 and (2.6.1.9) in

Lemma 2.6.11, and d" (a) is given in (2.2.11).

2.3 Error decomposition

In this section, we break the polynomial spline estimation error at, (:13) —— m (2:) into a bias

term and a noise term, with fiik(:17) given in (1.5.3). We first establish the uniform rate

at which the empirical inner product approximates the theoretical inner product for all

B-splines.

11



LEMMA 2.3.1. Under Assumptions (A3) and (A5), we have

A,“ = sup IIIBj,1II§ n — 1| 2 Op {(nh)—1/2 log n} , (2.3.1)

OSISN ’

(91.92%; ‘ (91,92)

l|91l|2 l|92ll2

 
A112 : sup

  

= 0,, {(nh)_1/2 log n} . (2.3.2)

Note that the spline estimator in (1.5.3) is ya}, (x) that m, (x) E XIV—14c)?kBjk (x),

where

- . T "

{AI—k,k1“‘1/\N,k} = argmin Z Y,‘ - Z )‘jkBJk(Xi)

{A1_k’k,...,x\N,k}eRN+k i=1 3'- 1—k

With a slight abuse of notation, introduce a function Y defined only on data points:

Y (X,) E Y,,1§i§ n, and write

B T B B —1 Y B > NT)—{ 2.k(I)}i—kstN (< 2%” Jik>n)1—k52,2’SN{< ’ 3"“ n}j=1—k‘

Define asimilar function E as E (X,) E a (X,) 5,, 1 S i S n, then on data points Y = m+E

with m = {m(X1), ...,m(Xn)}T. An empirical inner product yields m, (x) = r72), (x) +

Ek (x), where

T -l

= {BM (33)}1—kfijiN (<Bi'JC’Bj*k>n)1-kgj,j’giv{<m’ 81k)" lj=1—k (2'33)

x) = {BM (x)}'f_ijSN ((3,411 Bj’k>n)1—jkgj,j’gN {(13, B,,,)n}:l_k. (2.3.4)

Thus, the estimation error in), (2:) — m (x) consists of a bias term 171,, (x) — m (2:) and a noise

term E), (x), such that

721,, (x) —— m (x) : {171k (2:) — m (27)} + 5k (x). (2.3.5)

LEMMA 2.3.2. [de Boor (2001) page 149/ There exists an absolute constant Ck > 0, k 2 1,

such that for every 771 E (70‘) Ia, b], there exists a function g E C(k—2) [(1,1)], such that

IIg — mIIOO S Ck IIw (mac—‘1), h) II h“‘1 g Ck

OO

 

 

771(k) II 11“.

00
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LEMMA 2.3.3. [Huang (2003) Theorem 5.1] Under Assumptions (A 1)-(A4), there exists an

absolute constant Ck > 0, k 2 1, such that for any m 6 CU”) Ia,b] and the function 771,, (x)

as in (2.3.3), with probability approaching 1

um), (I) — m mum g 0,, inf IIg — mud, = o, (hk) . (2.3.6)

966' ’2)

Lemmas 2.3.2 and 2.3.3 establish that the bias term is of order Op (hk) uniformly over

2: 6 [a,b]. Hence the main hurdle of proving Theorem 2.2.1 is the noise term 5,, (x) defined

in (2.3.4). This is handled by the next proposition.

PROPOSITION 2.3.1. Under Assumptions (A2)—(A5), with 071,1 (x) given in (2.2.9) and

07,2 (x) given in (2.2.10), for any 0 < a < 1, k = 1,2, one has

 

limian I sup 0;), (2:) 5k (2:) g {2klog(N + 1)}1/2d/n (oz/k) Z 1 -— a. (2.3.7)

"HOG IEIde

2.4 Implementation

In this section, we describe in detail the procedures implemented to construct the confidence

bands in Theorem 2.2.1. All of the codes have been written in R.

Given any sample {(X,, Y,)}?_:_1, use the minimum and maximum values of {X,-}?:1 as

the endpoints of interval [a, b]. The number of knots N is taken to be Ickn1/3(logn)—1/6I

for k = 1 and Icknl/SI for k = 2, where ck (k = 1,2) are positive integers. As with

previous works on confidence bands (Hardle 1989, Xia 1998, Claeskens and Van Keilegom

2003), explicit formula of coverage probability for the bands does not exist, hence there

is no Optimal method to select C), (k = 1,2). So we have not attempted adaptive knot

selection, as Hardle, Marron and Yang (1997) had illustrated that it could lead to uniform

inconsistency. We have set c1 = 6, c2 = 3 for piecewise constant and piecewise linear bands

respectively, which works well in all simulations.

The least squares problem in (1.5.3) is solved by writing spline functions as linear com-

k—l

+ ,j=1,...,N. Inbinations of the truncated power base, which are 1, x, ...,xk’l, (2: — tj)

13



other words, we take

)k— 1
772,, (2:): :ypxp +22")ij , (2.4.1)

1120

where the coefficients {’70, ..., 7k—1:’71,ka ..., 3N,k}T minimize the following sum of squares

2
11

Z Y27px? JFZIJ'HX Jlkl

i=1

When constructing the confidence bands, one needs to estimate the unknown functions

f (2:) and 02 (x) for the evaluation of the functions 011,1 (2:) in (2.2.9) and 07,3 (x) in (2.2.10)

according to Lemma 2.6.5 and Lemma 2.6.11.

Let R (u) = 15 (1 -— u2)2 I {IuI _<_ 1} /16 be the quartic kernel, 3,, be the sample stan-

dard deviation of {X,- H_1 and

A , :1 hr—oltlf {U -15) ’ (2.4.2)

hrot ,f

 

where hm,f:(47f)1/10(140/3)1/571-1/5sn is the rule-of—thumb bandwidth of Silverman

(1986). Theorem 2.2 of Bosq (1998), page 47, implies the following uniform consistency

result

sup

xEIa,bI
 
f (:17) — f (I)I = 0, as. (2.4.3)

Define vectors Z), = {Z1,k, .., Z,,,k}T, k = 1, 2 with Zn), 2 {Y,- — m), (X,)}2, then the

spline estimation of o2 (x), 6% (x), k = 1, 2, can be obtained by using the Nadaraya-Watson

estimation on data {X,, Z,,k}?:1. It is clear from standard theory of kernel smoothing that

max sup I0% (2:) - 02 (2:) = Op (h). (2.4.4)

k=12 xEIa,b]

With all the above preparation, one can compute the following confidence bands

1a,,(a:)ionk(x, opt){2klog(N+1)}1/2d%(,a/2) k=1,2,0pt= 1,2, (2.4.5)

where m, (x) is given in (2.4.1), the additional parameter opt = 1, 2 indicating the estima—

tion being at each value 1: or at the nearest left knot with j (x) and f(r) defined in (2.2.1)
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and (2.4.2)

s,,,1(.z:,1) =-_ 1310““) 134/2 (5,”) n—1/2h_1/2, (2.4.6)

as (x. 2) = 61(r)f‘1/2(x)n‘1/2h‘1/2. (2.47)

an; (x, 1) : {AT (x) amp: (2))”2 {nhf (t,(,,)}—l/2 fi/‘isg (1%), (2.4.8)

. _ 1/2 . —1/2 -

07,2 (x, 2) 2 {AT (2:) =j(x)A (x)} {nhf (x)} \/3/202 (x). (2.4.9)

Since sup x — tJ-(x) S h —~> 0, as n ——> 00, and according to Lemma 2.6.9, the matrix B]-

  
xEIa,bI

approximates matrix 83- uniformly for 0 S j S N, (2.4.3) and (2.4.4) entail that all of the

four bands above are asymptotically conservative.

2.5 Examples

2.5.1 Simulation example

To illustrate the finite—sample behavior of the proposed confidence bands, some simulation

results are presented. The number of interior knots N is chosen according to Section 2.4.

The data set in our simulation study is generated from heteroscedastic regression model

(1.2.1), with

100 -— exp (x)

100 + exp (2:) ’

 m (x) = sin (27rx), 0 (x) = 00 5 ~ N (0, 1), 00 = 0.2, 0.5. (2.5.1)

We simulate {7}}?‘21 from a moving average sequence of order q, i.e,

 
 

1

T1 = 2 2 (62' + 9161—1 + 9251—2 + + qui—q),

\/1+61+...+6q

where in the simulation, q is taken to be 4, 61 = = 6g 2 0.2 and f,’s are i.i.d. r.v.’s

~ N(0,1). We then define X, = (I)(T,-), where (I) is the standard normal distribution

function, so X, is uniformly distributed on [0,1].

We choose sample size n to be 100, 200, 500 and 10000, confidence level 1 — a =

0.99, 0.95 as usual. Tables 4.1 and 4.2 contain the coverage probabilities as the percentage

of coverage of the true curve at all data points by the confidence bands in (2.4.5) with 500

replications of sample size n = 100, 200 and 500. The coverage probabilities of the confidence
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bands in (2.4.5) have also been computed by plugging in the true value of density function

f(x) = IIO,1I(x) and the variance function 0(x) in (2.5.1), called the oracle bands as they

use quantities that are unknown but for “oracles”.

Table 4.1 shows that the performance of all four bands becomes much closer with larger

sample size. When sample size reaches 500, all four bands have nearly the same coverage

at noise level 0.2. In Table 4.2, the coverage percentages show very positive confirmation

of Theorem 2.2.1 when k = 2. At sample size 100, regardless of noise level, both of the two

piecewise linear bands in (2.4.5) achieve at least .980 and .948 for confidence level 1 ——a = .99

and .95, respectively.

From Tables 4.1 and 4.2, it is obvious that larger sample size guarantees improved

coverage, while reasonable coverage has also been achieved at moderate sample sizes. While

under the same circumstances, the band by linear spline performs much better than the

band by constant spline. We have also observed that the noise level has more influence on

the constant bands coverage, and very little on the linear bands’.

Corresponding to opt = 1, 2, four figures of constant bands (Figures 4.1 - 4.4) and four

figures of linear bands (Figures 4.5 - 4.8) are created for graphical comparison: each with

four types of symbols: dots (data), center smooth solid line (true curve), center dotted line

(the spline estimated curve), upper and lower thick solid line (confidence bands). Comparing

Figures 4.1 - 4.4, one sees that the band widths are very close as sample size reaches 500.

This is more evident from Figures 4.5 - 4.8.

In all figures, the confidence bands of n = 500 are thinner and fit better than those of

n = 100. Also the smaller the significance level, the wider the confidence band. Overall,

linear bands are superior to constant ones in terms of smoothness and narrowness.

Observing that the estimation of on; (x) by 6mg (x, 1) at knots as in (2.4.8) or by

6mg (x,2) at all observations as in (2.4.9) does not seem to have much noticeable impact

on the widths of the confidence bands, while the estimation at knots seems to produce

closer coverage probabilities to the nominal confidence level, we recommend always using

estimation by (3mg (2:, l) at knots for simpler and faster implementation.

For the linear bands, we have also carried out simulation at noise level 0.2, for sample
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size n = 10000 and Opt = 1 (estimation on knots). The coverage is always 99.6% for a = 0.01

and 97.6% for a = 0.05, both higher than the nominal coverage of 99% and 95%, consistent

with their conservative definitions. Remarkably, it takes merely 365 seconds to run 500

replications with sample size as large as 10000 on a Pentium III PC. This is extremely fast

considering that nonparametric regression is done without WARPing, see Hardle, Hlavka

and Klinke (2000).

2.5.2 Environmental Kuznets curve (EKC)

The environmental Kuznets curve (EKC), an inverted—U relationship between pollution and

income, is an influential generalization about the way environmental quality changes as a

country makes the transition from poverty to relative affluence. The EKC predicts that

pollution will first increase, but subsequently decline if income growth proceeds far enough.

The shape of the relationship between the rate of environmental degradation and GDP per

capita has been the subject of much empirical examination. Several studies have attempted

to test the EKC hypothesis empirically. The majority of these studies use panel data in

conjunction with a static fixed and/or random effects panel estimator. In this section, we

examine whether or not countries (here we select US and Japan) actually behave like the

EKG, and we further look at the nonparametric time series nature of the data set after

elimination of the trend.

One key variable of this study, the environment index is the emissions of sulfur from

1850 to 1990, see Lefohn, Husar and Husar (1999). The other key variable is GDP per

capita from 1850 to 1990, which can be obtained in Maddison (2003).

To gain an insight into the model structure, we decompose the logarithm of GDP per

capita and Emission per capita into their trend parts and noise parts, respectively, i.e., for

t = 1, ...,n

{log(GDP per capita)}, = u(t) + Xt, {log(Emission per capita)}, = v(t) + Yg.

We are interested in two sets of hypotheses, given here separately in terms of the relationship

between the trends u(t) and v(t), and between the stationary noise {Xt}?:1 and {Yt}?:1.
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EKC hypothesis: There exists an inverted-U relationship between u(t) and v(t). (see

Figure 4.9)

Residual/noise hypothesis: There exists a linear relationship between {Xt}?__.1 and

{Ytliéi-

The EKC hypothesis can be tested by performing a routine trend analysis. After de-

trending, {Xt}?=1 and {IQ}?=1 are obtained, then one can estimate the regression relation

between them and construct an piecewise linear spline confidence band for the testing.

Case 1. United States Example

We get the trends u(t), v(t) of US data by fitting a polynomial regression on time t.

u(t) :2 0.00511+ 3.3127, v(t) = -—O.0001t2 + 0.0261t — 2.1788, (2.5.2)

with the corresponding R2 = 0.9814,0.9256. So for US, the EKC hypothesis is retained by

the trend analysis. After elimination of the trend, {Xt}?=1, {Y1}?=1 appear to be stationary.

For the residual hypothesis, Figure 4.10 shows that when confidence level is as small

as 80%, the linear regression line is still covered by the confidence band. This phenomena

implies that the residual hypothesis is retained.

Moreover, we can see that the confidence bands also cover the horizontal line E (YtIXt) E

0. So one concludes that Y; is unpredictable from Xt, that is, the intervention of emission

is immune to the intervention of economy.

Case 2. Japan Example

The quadratic trends u(t), v(t) for Japan data are given as

u(t) = 0.000312 -— 0.00191+ 6.7308, v(t) = —0.000512 + 0.0952t — 9.0772 (2.5.3)

with R2 = 0.9829,0.9544. From the trend relationship curve, one sees that it is not a U

shaped curve as EKC predicted. However, we are not sure whether it would succeed to

decouple environmental pollution and resource use from economic growth, which will make

this a tuning point and U shape later. To test the residual hypothesis, Figure 4.11 shows

that neither the linear regression line nor the horizontal line E (i’tIXt) E O can be covered by

the confidence bands even when the confidence level reaches 99%. So the residual hypothesis

is rejected at significance level smaller than 0.01 given that the confidence band is already
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conservative. This phenomena implies that the intervention of emission is not immune to

the intervention of economy, or say that the adjustment of GDP has autonomous influence

on the change of environmental quality, but not in a linear way.

2.6 Proof of Theorem 2.2.1

2.6.1 Preliminaries of Theorem 2.2.1 with k = 1

Throughout the following, denote by c, C, any positive constants, without distinction.

The properties of C2.” and djjn are given in the following lemma, whose proof consists

of direct algebraic verifications.

LEMMA 2.6.1. As 71 ——* 00, for C2," defined in (2.2.2) and d”, in (2.2.3)

cm = f(tj)h(1+rj,n,1),<bj,1,bj;,1>EO,j7éj', (2.6.1)

2 1+r- 2 j=0...N—1
d. = — t- h 3*"1 ’ ’ ’

9'" 3H3“) I1/2+r,-,,,,2 j=—1,N,

1 1+f- , j’-—j =1,

<bj,2, 31,2) 2 gfftj+l)h{0 “12 III-ji>lv

where

02}sz lTj,n,lI + 412?:‘N ITj1n,2I + 451%4 Ifjanfll g Cw (f, h), (2.6.2)

if (tj+1) h {1 — Cw (f, h)} g (1,,” 3 if (9+1) h {1 + Cw (f, 11)} . (2.6.3)

To prove Lemma 2.3.1, we make use of the following Bernstein inequality for geometri—

cally a-mixing sequence.

LEMMA 2.6.2. (Bosq (1998), page 31, Theorem 1.4/ Let {§,,t E Z} be a zero mean real valued

a—mixing process, Sn = 221:1 g, Suppose that there exists c > 0 such that fori = 1, ...,n,

k = 3, 4,..., EI§,Ik S elf—2ME6,2 < +00, then for each n > 1, integer q E I1,n/2], each

5 > 0 and k 2 3

(152 n 2k/(2k+1)

P(ISnI 2 n5) ‘3 a1 exp (———-————) + (12 (k) 01 (I I) ,

25771122 + 568 q + 1
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where a() is the a-mixing coeflicient defined in (3. 2.10) and

2 577121c/(21c+1)

),a2(k)=lln 1+—‘~‘———— ,61:27—’+2(1+
q E25mg + 5a:

with mr = Ina-X1992 lléillr, 7‘ 2 2.

PROOF OF LEMMA 2.3.1. For brevity, we only give the proof of Lemma 2.3.1 for An,l-

—1
For any 0 S j S N, let 1),-J = B121(X,-)-1, then llBlelin — 1 = 11 1‘11)”, with

Ema- = 0 and for any r _>_' 2, C1- inequality implies that

E low-l" = E Is},1 (X,) — 1Ir g 2T—1EIB,2j‘,(X,-)+ 1I 3 CO {2h—1}r_l,

where cjjn is as (2.22) with properties given in (2.6.1) and (2.6.2). On the other hand

130112,): EBf-I1 ' —)1I2 2 EIB;,1(X,-)-1I = {2c,-,,,}‘1—12 Clh‘l.

. ~ it—
So there is a constant c, such that for all k > 2, E'Ii),JIA S (ch—l) 2klEnz2j. Thus

Cramer’s condition is satisfied with Cramer’s constant equal to ch‘l. Applying Lemma

2.6.2 to n’1 2?:1711‘03 for any 6 > 0, q E [1,n/2I, one has for k = 3

1 n —q62 n 6/7

P — >6 <a ex ——————” +a 30(I—I) ,
{n 2772,} n} _ 1 P (25mg +5(:(5n) 2() (1+1

i=1

(5k 71 n (52

(In: )g ,a1:2—-+2 1+———r,—l——- ,1‘1132E1fl-Nh-1

nh (I 25111.} + 5125,,

  

where

 

6/7
5m 2 2

a2 (3) = Mn 1+ 6: , 17-13—112;”t§2<lIl’lz,jll3 S {CO (h) }

Observe that 6n = 0(1), then by taking q such that Ifi—II Z colog n, q _>_ cln/logn for

 

some constants c0,c1, one has a1 = 0(n/q) : 0 (log 71), a2 (3) = 0 (n2). Assumption (A4)

6/7 6/7

q + 1 q +1

Thus, for 71 large enough,

$1272..»

yields that

 

(Slogn

  

—} S clog 71 exp {4:263 log n} + C71,?"6A0C0/7.

nh
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Taking c0, 6 large enough, one has for large n, P {111 121:1 712331 > (nh)—1/2 6 log n} S TF3.

Hence (2.3.1) holds because

00

0° 2 Log: {3 00 _2

E P sup “1133111211. — 1|> 372 N g 2 271 < 00. Cl

n=l ‘ N , n21
OSJS 121:

2.6.2 Proof of Proposition 2.3.1 with k = 1

To prove Proposition 2.3.1, the following important lemmas are needed. We denote by (I)

the standard normal distribution function.

LEMMA 2.6.3. [Sunklodas (1984), Theorem 1] Let {£3211 be an a-mirtrzg sequence with

Efn = 0. Denote d :2 maxlgign {ElfiIZ‘HS} ,0 < 6 S 1, Sn 2 227-121 52': 03, := ES}, 2 con

for some ('0 E (0, +00). [fa (n) g Koe‘AO", A0 > 0, K0 > 0, then there extstcl = c1(K,6),

62 = (:2 (K, (5), such that

A

 

d

S Cl

coon

6{log(on/((1)/2) /)\}1+6         {01:15}, < z} — ‘1)(2)

 

for any A with /\1 g A 3 A2, where

/\1=(:2{log (On/CO/2V} /n. b>2(1+(5)/6; A2245—1(2+6)log(0n/C5/2.)

LEMMA 2.6. 4. [Leadhette1, LGdgren and Rootzen (198?), Theorem 1.5.3] As N —* 00, one

has

[(1) (r/(LN + bN)]N -—+ exp (—e—T),

where

aN = (210g N)”2 , bN = (210g N)1/2 — (2 log N)"1/2 (log logN + log47r) /2.

Note that E1 (:13) in (2.3.4) can be rewritten as

2:38e 31.1“22n, (2.6.4)

with 8; ——(13,8j 1),, = £2121 Bj,1(Xi)0(Xi)5i- NOW define

—ZE;B,1,:; e [a 1)] (2.6.5)

The next lemma gives the pointwise variance of 51 (1:).

21



LEMMA 2.6.5. The pointwise variance of E1 (:r) is the function 031.1(1) defined in (2.29)

which satisfies

02(1.

f (1:) 73h

 
Eel (11122031 (so): {1+ ma}zeia 1] (2.6.6)

with supIE[a,b] lrnJ (I)l -1 0.

PROOF. Note that E(ez-IX--)—— 0, E[Bj1(X,-)Bj1 (Xk)o(Xi)a(Xk)el-ek] = 0,Vi # k,

the rest of the proof follows from Lemma 2.6.1 and the continuity of functions a (:r) and

f (:13). Cl

The difference between E1 (1:) in (2.6.4) and 5:1 (as) in (2.6.5) is negligible uniformly over

as 6 [a,b].

LEMMA 2.6.6. Under Assumptions {A2) and (A5)

1131(1) — 121(1):: A,“ (1 - 11.1)"1 121 (2:11 e 11.11.

PROOF. For any :1: 6 [a,b]

51(x)- 51(zr)| _<_ I51 (3:)| sup I B31 . — 1| sup 31,1 .
1 03.131), M .7 “2,11 OSjSN H J “2,1:

Meanwhile (2.3.1) of Lemma 2.3.1 implies that

2
_1

_1

032111 lllBlelgn — 1| S An,1, (1 + An,1) S 0<SUEN “81111127213 (1 _ An,1) ,

hence the lemma follows. C]

Since the stochastic function 13:1 (:13) given in (2.6.5) takes constant value on each interval

I3, one only has to bound each of the N + 1 rescaled noise terms simultaneously by the

Berry-Esseen bound for weakly dependent data. First we verify the conditions in Lemma

2.6.3 for {1"}- E Bj,1 (Xi)U(Xi)511 1 S i g n, j = 0, ..., N.

LEMMA 2.6.7. There exist constants c0 (f,o) ,CU (f,o) > 0, such that for each j = 0, ..., N

2
n

2 __

0310- E E (£15,0-) == nE{BJ-,1(Xz-)0(X,-)e,-} = ncjflll/ o2 (u) f (u) du = on,

i=1 ’1'

(2.6.7)

where COJ: c].nf1 (u)f (u))du > (0 (f, a) > 0 with C1," defined in (2.22) and

d1 _:_ 5151,31" = E {B3111 (21.10“ (X0 15.13} 5 Co (f,0)h“1/2- (2.6.8)
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Proof. Using the definition of on 1 (:r) in (2.2.9)

n 2 2

03m- = E (251,3) "271—Cj,En"71;z{ZBj,1(B$)j,1(Xi)0(:i)€i} =n20j,n031,1($)

i=1

2 ncjjfll/Iflx) (u)o2 (u)f(u) du = nco,j>__ neg (f, o)>

Next, by Lemma 2.6.1 and the continuity of functions 02 (:12) and f (1:), one has

—3 2 _

=,EIaJ-I3<— JJ/ [1 a3 (u)f(u1du s 001120)}: V2. C1
1'

PROOF OF PROPOSITION 2.3.1 WITH p = 1. Note that for any j = 0,...,N, :1: e I]-

.1101)—3,}:119,)191(:c (XJ)a(XJ-)e.-=a;,}Ze-,J. (2.6.9)

i=1

in which 03”- = on 2 q;(f,o) > O as in (2.6.7) and dj S C'(f,or)h-1/2 as in (2.6.8).

Observing that {§,-,j}?___1 forms a stationary a-mixing sequence, with Efim = 0. Define

 

An—_ 0ga<xN :ng P{on11(:r)51(:1:) 3 2,21: E 1]} -— <D(z)l. (2.6.10)

i.e.,

22:1 33101?) Bj,z‘01(X)010051
A = ’ < - — z

” @2511“? P{ non1(:r) ”619 (N )’  

equations (2.6.9), (2.6.10) and Lemmas 2.6.3, 2.6.7 imply

_ n

C (to)
l_ i°< ’ E I' —<I> < 01 0

Plow:50 — z a: J} Ml _ h1/2C0(f’0)0"’j

 
An = max sup

0<j<N z

E 0%) =0(N’1)J

where the last step follows from Assumption (A3). Using the above, for awaN given in

 

 

Lemma 2.6.4 and eachj = 1, ..., N, one has

P1;J._‘;€J-J<

P{0;,;Zléi,j _ _l_(_)_g_(a_/2_) +bN,.’II E Ij}

a

i— 1 N

POn{11:21gi,'£1———0g(Ea/2)—bN,III€Ij}

<1>(— 10g<a/2)/aN + 1w) — <1 <10g<a/2)/a~ — 1N) + o (Iv—1).

 

—log (a/2)/aN+bN,:E€ I}

 

ll
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Applying Lemma 2.6.4, one easily Obtains that as n ——) OO

(PCT/(IN +bN) = 1—(‘3uT1Vm1 +0(N_1) ,

@(T/aN+bN)—q>(—T/aN—bN) —_- I—Qe’TN"l+o(N”1).

Letting 2e-T = a or 7' = — log (oz/2) entails that uniformly in j,

  

n

_ 108(01/2) a -1
P 01- €'-S--—-—-—+bN 1,3:61- =1——————+0(N ).

{ 71,3; 1’] aN+1 + ‘7 1+N

Thus

11

_ log a/2 ,

P{0n$-E gm- >—TIEIWT)+bN+1’$EIJ-, for someOS] _<_N}

i=1   

l> _ Og(a/2)

aN+1

N n

—l

s :P{ 2a-
j=0 121

So as n —+ 00, one has

n

—1

P { 0m 2&3)"

i=1

  

+bN+1,1:E Ij}=oz+0(1).

_10g(a/2)

aN+1

S

  

+bN+11$€1j10SjS N} 21—a+0(1).

Hence

lim inf P sup

"—00 :1:€[a,b]

n

-1

an,j Z €21.7-

i=1

Therefore, using Lemma 2.6.6, one has proved (2.3.7) for k = 1. Cl

 
0;,11(x)é1(x)| 3 {210g (N MW2 at («0]

— _log (CY/2)

aN+1

: lim inf P

“H00

S

   

+bN+1,xEIJ-,0§jSN] 21—01.

.-

2.6.3 Proof of Theorem 2.2.1 with k = 1

PROOF OF THEOREM 1 WITH 1: = 1. By (2.3.6) and Assumption (A3), one has

(17mm — m (2:)"... = OJ (1») = op {fl/211‘”? (log (N + 1))1/2}.

so the uniform bias order is negligible compared tO (nh)_1/2 {log(N + 1)}1/2, which is the

uniform noise order of

aJ.,1(x){—log(a/2)/aw+1 + m1} =m (J) (210g (N +1)}1/2 dn (a).
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Now (2.3.5) and Proposition 2.3.1 yield the conservativity of the band in (2.2.12) for k = 1

limian pm (:11) E 1i11(;r) :1: 0,1,1 (1:) {210g (N +1)}1/2dn(a),‘v’1: 6 [a,b]]
”-400 1.

= limian sup 01:11 (:11) Isl (1:) + 7711(r) — m (:r)| 3 {210g (N +1)}1/2dn(a)]

"—900 _x€[a,bl ’ .

ll

 
limian sup o_1(:r)17:1(1:) S {2log(N + 1)}1/2 dn (C1)] 2 1 — a.

,1

"“00 _z€[a,b] "

Therefore, Theorem 2.2.1 has been proved for the case Of k = 1. Cl

2.6.4 Preliminaries of Theorem 2.2.1 with k = 2

In this subsection we examine some matrices used in the construction Of confidence band

in (2.2.12) for k = 2. In what follows, |T| is used to denote the maximal absolute value Of

all the elements in matrix T, V is the inner product matrix defined in (2.2.4) and MN+2

is the tridiagonal matrix as defined in (2.2.8).

AI

LEMMA 2.6.8. Given matrix Q = MN+2 +I‘, in which F = (73-3-1) . -/ 1 satisfies 7.7-1.1 .=_ 0

.73] :—

if lj —j'| > 1 and [Fl 3, 0. Then there exist constants c,C > 0 independent ofn and I‘,

such that with probability approaching one

c151 s IQEI s 0151,0-11asln'lsl s c-1 (a as 6 RN”.

Proof Of the above lemma is trivial. As an application Of Lemma 2.6.8, consider the

N

, then there exists a positive
. _ ..1 - ~ ——matrlx S —— V defined 1n (2-2-5l- LBt £3" — {sgn (Sj'j) }]=_1

Cs such that

 

N

Z lsj’jl S lSéj/l S 05 éjll = C3,Vj’ : —1,0,...,N. (2.611)

j=—1

The next lemma follows by applying Lemma 2.6.8 with Q = MN+2- It ensures that

one can approximate S with the inverse Of MN+2, with a simpler distribution-free form in

(2.2.8). This approximation is uniform for Sj in (2.2.5) and Ej in (2.2.7) as well.

LEMMA 2.6.9. As 72 ——> OO,|lVIj_V1+2 — SI —> 0 and max lEj — Sjl —» O.

OSjSN

The tridiagonal terms of the matrix MIT/1+2 can be computed through the following

lemma, which is a direct result Of Zhang (1999), Theorem 4.5, page 101.



LEMMA 2.6.10. Let

21: (2+x/3)/4, z2= (2— Jig/4, 9=z2/z1=7—4\/3,

one can compute the terms 12”,]: = l)”, Ii — k| S 1 defined in (2.2.8) by the following formulae

8219' (1 — 6N+1)— 2:1 (1 — 0”)

8.212 (1 — 0N+1)— 221 (1 - (9N) + (1 — 6N—1)/8’

{8.1 (1_ JAM-k) _ (1.. J~+1—k)} {8... (1- 6H) _ (1- ale-2)}

(Z1 — 22){64z%(1_ 9
N“) -16z1 (1— 9N) + (1 _ 9N-1)} ’

for 2 S k g N +1.

 

l11 =1N+2,N+2 =

lch =

(—2\/§) (21 (1 — 6N) — (1 — 6N‘1)/8)

8.2% (1 — 01"“) — 2.21 (1 — 6N) + (1 — 9N—1)/8’

{.., (1 —.M) - (1 -— M) {... (1 - 9H) — (1 #2))
421(21— 22) {64.2% (1 — 6N“) — 167.1 (1 - 0N) + (1 — 6N‘1)} ’

for 2 g k S N. In particular, there exists a constant c, > 0 such that | malix llikl _<_ C).

i—k £1

 

112 = lN+1.N+2 =

lk,k+1 = '-

2.6.5 Variance calculation

We examine the behavior Of 52 (z) defined in (2.3.4), rewritten as

N

£2 (:12) = 2 (1,8,2 (3:),11: 6 [a,b], (2.6.12)

j=-1

where the spline coefficient vector 5 = ((1-1, - - - , (LN)T according to (2.3.4) is

n N

t -l 1 * N

(v + v ) 5 Z BJ,2 (XJ)a (X.-)eJ- , v = ((BJ2.13,-,.,J>J.)jj,___1 — v.
i=1

j:_l
9 _

where V*, the difference between empirical and theoretical inner product matrices, satisfies

lv*| g An; = 0,, {(nh)-1/21og1/2 (11)} by (2.3.2).

Now define a = (a._1, - -- ,aN)T by replacing (V + V"‘)_1 with V—1 = S in above for-

mula, i.e.

N N

nN

- 1 Z" , , Z 1
a : S {; Bj12 (At) 0 (At) 51'} : Sjlj’; E Bil-.2 (Xi) 0' (X053 1

i=1i=1 j=—1 j=-1 j’z—l
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and define, with j(:r) in (2. 2. 1) and

N N

32(37) = :0aij,2(T17:) ZS $23j,2(Xi)0(Xi)5iBJ/,2(I)

32—1 jij,=-1

1 n

:2 I Z Bj’,2($) Z sj’,j;§;BjJ2(Xi)0(Xi)Ei (2.6.13)

. _. . ]=—l z—l

J -J(I)-1J(I)

for :1: 6 [a,b]. Next define an (N + 2)-vector U

n
N

and 2-vectors {Aj};:0

._ A11 :1 ___1_ 2::12:12-18SJ-1JI312(X)(J5)J-

A] _ < A]? l _ SJU “W ( Z":12N__18j,,~J-IBrJ2(XJ-)0(X )5J ’ (2615)

in which the (j — 1)—th and j-th rows Of the matrix S is denoted as an 2 x (N + 2) matrix

~ (I-.__ _ 8'__ ... S'_ .

s,-=(';Js_1'1l 38:)" 1;”),0333N. (2.6.16)

.71— J) 3)

Then, one can write 52(37) in the following matrix form

em) = DT(:C)A ), :1: 6 [a,b], (2.6.17)
J'(I

in which the function D (x) is a 2-vect0r such that

T

D (x) E {DJ(J)_1 (5-) J 1),-(J) (2:)} .DJ- (:5) a n‘l/zBJ-gcc). —1 s j : N. (26.18)

The next lemma provides the pointwise variance of 22 (x).

LEMMA 2.6.11. The pointwise variance ofég (x) is the function 0% 2 (x) defined in (2.2.10),

which satisfies

02 :1:

E {5:3 (x)} E 031,2(x) = :f—(a:)—7%AT (x) Sj(x)A (:13) {1+ rng (x)}, (2.6.19)

with sque[a,b] I7'11,2 (13)] —+ 0, j (x) is as defined in (2.2.1), A (x) as defined in (2.2.7) and

matrix Sj in (2.25). Consequently, there exist positive constants c(I and C0 such that for

large enough 71

ca (nh)—1/2 g 0712(13) g Co (nh)_1/2 ,Vx 6 [(1,1)]. (2.6.20)
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PROOF. From (2.6.15) and (2.6.17), one has

E {5:3 (x)} = DT (x) cov (A1010) D (x) = DT (x) Sj(x) cov (U) §fl$)D (x).

Note that E(Ei|Xz') = 0, E [8.712 (Xi) 81,2 (Xk)0‘(Xz')(I (Xk) 52511:] = 0,Vi 75 k, the jl-th

entry of the covariance matrix of U defined by (2.6.14) is

~11; :2 E {BJJ(XJ)BJ,J(XJ)a(XJ-)a(XJ)5J5-J}
i=1k=1

1 Tl

= 52131Bj,(i,i2X)Bl2(X)02(Xi)=} [02(7) ‘U,)Bzz(v)f(v)dv=0'jl

which is the jl-th entry of the matrix 2 defined in (2.2.6), i.e., cov (U) = E. The rest of

the prOOf is simple algebra. Cl

2.6.6 Proof of Theorem 2.2.1 with k = 2

Prior to the proof Theorem, we introduce some notation. First we define 2—vectors {ZJ- ”:0

(j) (3') ,

z,- -=- (311,212) = Af{COV(Aj)}_l/2 = (2%”Afl +fi1215M ) v (2.6.21)

312/)1'1 +2221)3

where denote ( )

J

{cov (Aj)}_1/2 E ( [301) #12:) . ' (2.6.22)

'612) '822)

2 Then it is clear that var (Z3) 2 I , var (2.7"!) = 1,7 21,2, for any 3' = 0, ..., N.

The covariance matrix Of Aj approximates 02(tj+1)Sj defined in (2.2.5) uniformly.

LEMMA 2.6.12. For {Aj ”:0 defined in (2.6.15) and matrix Sj defined in (2.2.5), one has

_. 2 . . " . __
cov (Aj) — o (tJ+1)SJ +Rj,() _<_ j < N, 111320021]?lele —— 0.

PROOF. Since Aj = SjU with S, defined in (2.6.16) and cov (U) = 2 as in the proof Of

Lemma 2.6.11. Thus the covariance matrix Of AJ- is

N _ , N . ,
COV (Aj) : 3123? = Zfilz—l Sj—lJcsj—IJUkl 2k l=—1 5],k5]—1,lakl .

2k,l:—1Sj—1,ksj,lakl Zk,z=_.18j,k8j,10k1

By Assumption (A2), (2.6.16) and (2.2.6)

01-1 = /02 (U) Bk,2 (U) 31,2 ("0)“de = 02 (tk+1)'U/Jz + 010(f02Jl) -
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Similarly, one also has 0k! = 02 (t1+1)vk1 + cw (fa2, h). Thus

N

31—1 ij—l 11’k102(t1+1) 5]" ij—l 1'01-102 (t1+1) ~ ..

COM/‘1'): ’ ’ 2 ' ’ 2 +Rj,

“2-1 Si-Lk'stvkl" (tk+1) Sj,k3j,1vk10 (tk+1)

where

N N

~ 2 Zk1=_15'—1,kS'—1,1 Z =_ 3',k5'—1,l
thcw(fa,h)( N J J [NI 1] J )

J 221:4 3j~1,k3j.l 2112—1 $chij

Note that 2152,24 8]"):ka =— 011.175 j and Efcv=_1 5]"ka = 1 ifl = j, thus

2 2

. = 314.10 (6') 31—110 (6+1) ~.,_ 2 . . ~.

(Sm/(A3) ( 5241.102 (9+1) 31.10% (6+1) +R’ _ a “”283 +11"

LEMMA 2.6.13. For the matrices 5;”? defined in (22 7)

. ...—1/2
hm max :1 -

"—00 OSJ'SN

— u(tJ-H) {cov (Aj) }“1/2| = 0. (2.6.23)

— 2 — . . . .

PROOF. Note that Ej 1/ , {cov (Aj)} 1/2are symmetric matrices and usmg the followmg

fact for symmetric matrices A and B

 

C

A—1/2 _ B—l/2l = C max (A—1/2 _ B—1/2) 61

1:12

(BAUQ + .A.Bl/2)(A”1/2 — 3‘1/2) 12,-] = |B - Al,

 

 

_<_ max

221,2

together with Lemma 2.6.12, one has

c|:~:;1/2 — v(t)-+1) {cov (A1) }“/2| .<.. lo“2(tj+1>cov (A1) — 5,]

S lSj - E)" + IU—2(tj+1)COV (Aj) - 8]" = ISJ' — Ejl + U”2(tj+1)fi.j.

The desired result follows from Lemma 2.6.9. Cl

LEMMA 2.6.14. Under Assumptions (A 1)-(A5), for the variables Zj'w ’y = 1,2, 0 gj g N,

defined in (2.6.21), one has

max lim sup P max {Z2 } > 2 {log (N + 1)} ((1,, (Cl/2)}2 S 01/2. (2.6.24)

7:112 n—100 USJSN J2
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PROOF. Without loss of generality, we prove (2.6.24) only for 7 = 1.

{Z,21} > 2 {log (N + 1)} {11. (042112]
P[O_<_j<N

= P[Or<na.XN{ZJI}>{210g(N+1))1/2dn(a/2)]1

where, according to (2.6.21) and (2.6.22)

211— 59/91 +flij2)Aj2= £2: 2 (2021131: 1,11 +fii£)3j,k) Bk,2(X1)0(X1)€1-

fii=lk=—l

Let (id' 2 25:4 (6933);”, + 6132)Sch) Bk,2(X,-)U(X,-)e,-, j = 0,...,N,1§= 1, ...,n, then

17.

r 2 r

(7—1431 = Sn = 2C1,» ICU/5231) = 7135321 =

'=-_1

So one only needs to find a bound for E lC11jl3 in order to apply Lemma 2.6.3 to Sn. By

the boundedness of max IE”, (2.6.3) and (2.6.23)

OSjSN

3

N .

E|<1,,I3:E Z (115%s,.. 11+13§Qs,1) 3,,1111) 03(X1)|si|
k=—1

3

N . ,

s MOE Z (11Ei’s,_1,1+fl§’,)s,,1)B11011) 03(X1) 3011,0114”.

112—1  

Lemma 2.6.3 entails that An = 0 (n—l/zh-lfl) = 0 (N‘2), in which An is

P{n_l/2ZC,J S 2} — (13(2) .

i=1

OgistuplP{ZJ-1 < z}—— <I>(z))l——— Ornjachsgp

  

By Lemma 2.6.4, one has uniformly in j

PZ[I,11<{21og(=1N+1)}1/21,(a/2,] ——2—W“Tfi+o(N-l).

Therefore

T
1

[0211;ng lell > {210g (N + 1)}1/2 dn (Cl/2)]

M
z
m

P[|z,11 >{2log((N+ 121/211111121]

1
» H O

[1— {1— 27h” +0(1) =a/2+o(1).

0

14
.1 l

I

II

I
‘
M
Z
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Hence

limsupP[0g}z1£x}v{ZJ-1} > 2 {log (N + 1)} {(111 (Or/2)} 2] = a/2. D

121-"’00

LEMMA 2.6.15. For a given 0 < a < 1, and 0112(1) as given in (2.2.10)

lim inf P

n—100  

sup

$6 [a,b]

 

1.1111111 (11)] S 21log<N + 131/21,11,121] 2 1— a.

PROOF. Note that 62(13) = DT (11:) Aj(x)1 where D (3:) and Aj(x) are defined in (2.6.18) and

(2.6.15). Thus, standardization leads to

{a;,§(z)é2(a:)}2 = {11;}2(11)D (,)}T A111) A321) {a;,12(:rr)D (11)} . (2.6.25)

{0;’12(x)D (11)}T cov (Am) {a;,12(:r)D (1)}

~ -_ __T .“1._.T__ r2
Define for any J —— 0,...,N, Q.7 -— AJ- {cov (A])} A] —— ZJZ]. — 27:13 A'fl. The

 

maximization lemma of Johnson and Wichern (1992), page 166, ensures that for any :1: E

[01 bl

 

211-). T A AT_11(_11__
1111(2) (1) 1(1) 11,1211) T

T S A11
D :r) I (A . ) D 1:)

an’2(;r CO\ 3(1’) an,2(x

2

0;,12(z)52(:r)| g 03%); Qj. Thus (2.6.24)

1:) {C0V(AJ'(I)) }—1 A111) 2 ijrl’

which together with (2.6.25) entails that sup

xE[a,b]
 

implies

limian sup la;12($)52(x)| _<_ 2 {log (N +1)}1/2dn(a/2) 2

"HOG x6[a,b] ’ 1

limian [max
71—400 0<j<N  Q1 < 4{10g(N+ 1)}{d11(a/2)}2 2

_ l 2 > — = — . [:11 721:2hfrlndsoiépP[0EELSXN{Zj7} >2{og(N+1)}{dn(a/ )} 2] _1 a/2x2 1 a

The next lemma’s proof follows from Lemma 2.6.8, (2.6.12), (2.6.13), (2.3.2) and (2.6.20).

LEMMA 2.6.16. Under Assumptions (A3) and (.45), one has

 

sup 01112“.5).1112()' — sup =Op{(nh)“l/Qlogn} =op(1).

r6[a,b] :rE[a,b]
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PROOF OF PROPOSITION 2.3.1 WITH k = 2. It follows from Lemmas 2.6.15 and 2.6.16

automatically. [:1

PROOF OF THEOREM 2.2.1 WITH k = 2. Note that equation (2.3.6) implies that

”7712 (51:) — m (a:)||OO = Op (h2), hence

(1111)”? {log(N+ 1)}"1/2 111711 (:1) — 111(1)“...

= 0, {(111)1/2 {101m +1)}*1/212} = 01(1).

which implies that the bias order is negligible compared to the noise order. Applying (2.3.7)

with k = 2 in Proposition 2.3.1

lim inf P pm (3:) E 7112 (x) :1: 20,12 (:13) {log (N +1)}1/2 dn(a/2),V:1: E [a,b]]
111—’00

: limian sup 0;,12 (as) |52 (:13) + 7712 (:c) — 771(1E)| S 2 {log (N +1)}1/2 dn (Or/2)]

”“00

 

L:ic€[a,b]

= lilmiééfP sup 0;§($)E2 (1:) §2{log(N+1)}1/2dn ((1/2)] 2 1—a. D

H be[a,b] ’
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CHAPTER 3

Spline-Backfitted Kernel Smoothing of

NAAR Models

3.1 Introduction

For the past two decades, various non— and semiparametric regression techniques have been

developed for the analysis of nonlinear time series; see, for example, Robinson (1983),

Tjostheim and Auestad (1994), Huang and Yang (2004), to name one article represen-

tative of each decade. Application to high dimensional time series data, however, has been

hampered due to the scarcity of smoothing tools that are not only computationally expe—

dient but also theoretically reliable. This has motivated the proposed procedures of this

Chapter.

For the NAAR model in (1.3.1), estimators of the unknown component func-

tions {n1.a(-)}g:1 are proposed based on a geometrically strong mixing sample

(14,-, X“, ..., X,,d}?:1. If the data were actually i.i.d. 'observations instead of a time series re—

alization, many methods would be available for estimating {ma (”321. For instance, there

are four types kernel-based estimators: the classic backfitting estimators (CBE) of Hastie

and Tibshirani (1990), Opsomer and Ruppert (1997); marginal integration estimators (MIE)

of Linton and Nielsen (1995), Linton and Hardle (1996), Fan, Hardle and Mammen ( 1998),

Sperlich, Tjostheim and Yang (2002), Yang, Sperlich and Hardle (2003) and a kernel based

method of estimating rate to optimality of Hengartner and Sperlich (2005); the smoothing

backfitting estimators (SBE) of Mammen, Linton and Nielsen (1999); and the two—stage
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estimators, such as one step backfitting of the integration estimators of Linton (1997), one

step backfitting of the projection estimators of Horowitz, Klemmela and Mammen (2006),

and one Newton step from the nonlinear LSE estimators of Horowitz and Mammen (2004).

For the spline estimators, see Stone (1985), (1994), Huang (1998), and Xue and Yang (2006

b).

In time series context, however, there are fewer theoretically justified methods due

to the additional difficulty posed by dependence in data. Some of these are: the kernel

estimators via marginal integration of Tjestheim and Auestad (1994), Yang, Hardle and

Nielsen (1999); and the spline estimators of Huang and Yang (2004). In addition, Xue and

Yang (2006 a) have extended the marginal integration kernel estimator and spline estimator

to additive coefficient models for weakly dependent data. All of these existing methods are

unsatisfactory in regard to either the computational or the theoretical issue. The existing

kernel methods are too computationally intensive for high dimension d, thus limiting their

applicability to small number of predictors. Spline methods, on the other hand, provide

only convergence rates but no asymptotic distributions, so no measures of confidence can

be assigned to the estimators.

If the last (1 — 1 component functions were known by “oracle”, one could create

{33,11X1,1}?=1 With Yi,1 = Y1“ — C — 232277101 (X13111) = m1(X1',1) + 0 (Xi,11---1Xi,d)51‘1

from which one could compute an “oracle smoother” to estimate the only unknown func—

tion m1 (1:1), thus effectively bypassing the “curse of dimensionality”. The idea of Linton

(1997) was to obtain an approximation to the unobservable variables Y“ by replacing

ma (X230) ,2' = 1, ...,n, a = 2, ..., d with marginal integration kernel estimates and arguing

that the error incurred by this “cheating” is of smaller magnitude than the rate 0 (71-2/5)

for estimating function m1 (3:1) from the unobservable data. The procedure of Linton (1997)

is modified by substituting mo, (X1301) ,i = 1, ..., n, a = 2, ..., d with spline estimators, specif-

ically, a two-stage estimation procedure is proposed: first one pre—estimates {ma (30)}g:2

by its pilot estimator through an under smoothed centered standard spline procedure, next

one constructs the pseudo response Y“ and approximates m1 (2:1) by its Nadaraya—Watson

estimator as given in (3.212).
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The above proposed spline-backfitted kernel (SPBK) estimation method has several ad-

vantages compared to most of the existing methods. Firstly, as Sperlich, Tjostheim and

Yang (2002) mentioned, Linton (1997) mixed up different projections, making it uninter-

pretable if the real data generating process deviates from additivity. While the projections

in both steps here are with respect to the same measure. Secondly, since our pilot spline

estimator is thousands of times faster than the pilot kernel estimators in Linton (1997), the

proposed method is computationally expedient, see Table 4.4. Thirdly, the SPBK estima-

tor can be shown as efficient as the “oracle smoother” uniformly over any compact range,

whereas Linton (1997) proved such “oracle efficiency” only at a single point. Moreover,

the regularity conditions considered here are natural and appealing and close to being the

minimal compared to the papers mentioned above. In contrast, higher order smoothness is

needed with growing dimensionality of the regressors in Linton and Nielsen (1995). Stronger

and more obscure conditions are assumed for the two-stage estimation proposed by Horowitz

and Mammen (2004).

The SPBK estimator achieves its seemingly surprising success by borrowing the

strengths of both spline and kernel: Spline does a quick initial estimation of all additive

components and removes them all except the one of interest; kernel smoothing is then ap—

plied to the cleaned univariate data to estimate with asymptotic distribution. Propositions

3.4.1 and 3.5.1 are the keys in understanding the proposed estimators’ uniform oracle ef-

ficiency. They accomplish the well-known “reducing bias by undersmoothing” in the first

step using spline and “averaging out the variance” in the second step with kernel, both steps

taking advantage of the joint asymptotics of kernel and spline functions, which is the new

feature of the proofs here.

Fan and Jiang (2005) provides generalized likelihood ratio (GLR) tests for additive

models using the backfitting estimator. Similar GLR test based on the SPBK estimator is

feasible for future research.

The rest of the chapter is organized as follows. Section 3.2 introduces the SPBK esti-

mator, and states its asymptotic “oracle efficiency” under appropriate assumptions. Section

3.3 provides some insights into the ideas behind the proofs of the main theoretical results,



by decomposing the estimator’s “cheating” error into a bias and a variance part. Section

3.4 shows the uniform order of the bias term. Section 3.5 shows the uniform order of the

variance term. Section 3.6 presents Monte Carlo results to demonstrate that the SPBK

estimator does indeed possess the claimed asymptotic properties. All technical proofs are

contained in Section 3.7.

3.2 The SPBK estimator

In this section, a spline-backfitted kernel estimation procedure is proposed. For convenience,

denote vectors as x = (1:1,, ...,xd) and take I] - I] as the usual Euclidian norm on R“ such

that ”x“ : “Sid 1:2,, and H - “00 the sup norm, “X“oo = $11315an Ira]. In what

follows, let Y,- and X,- = (X111: ..., X,,d)T be the ith response and predictor vector. Denote

Y = (Y1, ..., Yn)T the response vector and (X1, ..., X”)T the design matrix.

Assume that the predictor X0 is distributed on a compact interval [am ba] ,a = 1, ..., (1.

Without loss of generality, all intervals [am b0] = [0, 1] , or = 1, ..., d. We pre-select an integer

N 2 Nn ~ n2/5 log n, see Assumption (B6) below. For any a = 1, ...,d, the constant B-

spline function in (1.5.2) can be rewritten as the indicator function 1,1,0, (2:0,) of the (N + 1)

equally-spaced subintervals of the finite interval [0,1] with length H '= Hn = (N +1)-1,

that is

1.1ng0, <(J+1)H,

=0 l N. 3.2.1

0 otherwise, ”I ’ ’ ’ ( )
IJ,a ($01) 2 {

Define the following centered spline basis

III.1+1,11||2

]l1J10l]2

with the standardized version given for any a = 1, ..., d,

(11,00,130) : IJ+1,Q(1:(1) — IJ,a (Ea) ,Va 2 1, ...,d, J = 1, ..., N, (3.2.2)

bJ,o: (Ia)

“bJ,a”2 ,

Define next the (1+ dN)-dimensional space G = G[0, 1] of additive spline functions

8,1,0, (11,) = VJ = 1, N. (3.2.3)

as the linear space spanned by {1,BJ,a (ma) ,a = 1,...,d,J = 1, ...,N}, while denote by

Gn C R” spanned by {1,{BJ’O (Xi’a)}?:1,a =1,...,d,J =1,...,N}. As 11 —1 00, the

dimension of 0,, becomes 1 + dN with probability approaching one. The spline estimator
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of additive function m (x) is the unique element 111(x) = fnn (x) from the space C so that

the vector {7110(1) , ...,riz (X,,)}T best approximates the response vector Y. To be precise

._~10 + ZZA’JQIJC,1:0,) (3.2.4)

a=1J=l

~I 1.] AI

where the coefficients (A0, )‘111’ ..., AMd) are solutions of the least squares problem

. T "

{A01A1, 11 Alma] = argmianN+1 2 Y1 - A0 - Z Z )‘J,a[J,a (X1,a)

i=1 (1:1le

Simple linear algebra shows that

. d N

Th(x)=)\0+ ZJZ1,118,111.1(111) (32.5)

where (Ag, 111,1, ---1:\N,d) are solutions of the following least squares problem

2

d N
T

{A03A1,11“'3 ANfif} =argmianN+IZ Y—— AO‘ZZAJHOBJO (Xz,a) )

i=1 a=1J= 1

(3.2.6)

while (3.2.4) is used for data analytic implementation, the mathematically equivalent ex-

pression (3.2.5) is convenient for asymptotic analysis.

The pilot estimators of each component function and the constant are

N n

7510(1130) = ZAJMBJQIa) — "_IZZAJMBJOXi,a)

_ 1':1J= 1

. d n N ..

11. = 1111-122211131. (x111)- (32-7)
a=12=1 J=l

These pilot estimators are then used to define new pseuddresponses Y“, which are estimates

of the unobservable “oracle” responses Y“. Specifically,

(122

(1

{[2,1’“ - — c — 2 ma( Y,1-— ,-— c — Z n1.a(X,-,a), (3.2.8)

01:2

where 6 = 7,, = 11‘1 2:21 Y,, which is a Vii-consistent estimator of c by Central Limit

Theorem. Next, define the spline-backfitted kernel (SPBK) estimator of ml (1:1) as 711] (2:1)
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n

i:

based on {Yi’hXi’l} 1, which attempts to mimic the would-be Nadaraya-Watson esti-

mator 171.;(111) of m1(:c1) based on {Yi’th-szl if the unobservable “oracle” responses

{1331}le were available

23121 K11 (X131 — $1) 13.1

221:1 Kh (X131 — 171)

where 1),-,1 and Y“ are defined in (3.2.8).

1‘. K X- — Y-
,111'{(11,)=Z'-1 "( "1 I1) ”1 (3.2.9)

211:1 Kh (X131 - $1) ’

  

mi (331) =

Throughout this chapter, on any fixed interval [0, 1], denote the class of Lipschitz con-

tinuous functions for any fixed constant C > 0 as

Lip([0,1],C) ——— {ml ]m(:1:) — m(:z:')] S C la: — :r'] ,Vx,$’ 6 [0,1]} .

(Bl) The additive component function 1n1(a:1) 6 C(2) [0,1] defined in (1.5.1), while there

is a constant 0 < Coo < 00 such that mfi E Lip ([0,1],000), V13 = 2, ...,d.

B2) There exist positive constants K and )1 such that a n S K e-AO" holds for all n,( 0 0 0

T!

with the a-mixing coefficients for {Zi = (X21150) defined as

a(k) = sup |P(BflC)—P(B)P(C)|, k_>_ 1. (3.2.10)

BEG{Zs,sgt},C€o{Zs,32t+k}

(BB) The noise 5,- satisfies E(5,- ]X,-) = 0, E (5,2 ]X,-) = 1, E (I51|2+5]X1) < M5 for some

6 > 1/2 and a finite positive M5. The conditional standard deviation function a (x)

is continuous on [0,1]d and

0 <ca g inf o(x) S sup o(x) 3 Ca < 00.

x6101)“ 1610,1111

(B4) The density function f (x) of X is continuous and

0<cf§ inf f(x)§ sup f(x)SCf<oo.

x€[0,1]d x€[0,1]d

The marginal densities fa (230,) of X0 have continuous derivatives on [0, 1] as well as

the uniform upper bound Cf and lower bound Cf.
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(B5) The kernel function K ELip ([—1, 1],Ck) for some constant Ck > 0, and is bounded,

nonnegative, symmetric, and supported on [—1,1]. The bandwidth h of the kernel K

1/5
is assumed to be of order n" , i.e., chn-l/5 S h _<_ C'hn’l/5 for some positive

constants Ch, ch.

(86) The number of interior knots N ~ 112/5 log n, i.e., anQ/5 logn g N S CNnZ/5 logn

for some positive constants cN,CN, and the interval width H = (N + 1)’1 .

REMARK 3.2. 1. The smoothness assumption of the true component functions is greatly

relaxed and Assumption (BI) is closed to the minimal. By the result of Pham (1986), a

geometrically ergodic time series is a strongly mixing sequence. Therefore, Assumption (B2)

is suitable for (1.3.1) as a time series model under aforementioned assumptions. Assumption

(B3)-(B5) are typical in the nonparametric smoothing literature, see for instance, Fan, and

Gijbels (1996). For (B6), the proof of Theorem 3.2.1 in Section 3.7 will make it clear that

the number of knots can be of the more general form N ~ n2/5N', where the sequence N’

satisfies N’ —+ 00, n’ON' —1 0 for any 0 > 0. There is no optimal way to choose N’ as in

the literature. Here N is selected to be of barely larger order than n2/5.

The asymptotic property of the kernel smoother 111'; (2:1) is well-developed. Under As-

sumptions (Bl)-(B5), it is straightforward to verify (as in Bosq 1998) ”that

sup lift; (1:1) — m1(:r1)| = 0,, (n_2/5 log n)

$1€]h,1—h]

\/fl—h{ 311071) - m1 (931) — b1(1:1)h2] 2 N {0’1}? (1:1)},

where

b1(1‘1) IUZKfuldufm'l'fxilfi($1)/2+m'1($1)f{($1)}f1_1($1)1 (3211)

vi (1,) = 1160011113 [02(X1....,X.1) 1X1 = 111111-1011). ' '

The following theorem states that the asymptotic uniform magnitude of difference between

111; (2:1) and 1111‘ (2:1) is of order 0,, (n‘2/5), which is dominated by the asymptotic uniform

size 01171; (3:1) -— m1 (171). As a result, 111; (2:1) will have the same asymptotic distribution

as 171’,“ ($1).
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THEOREM 3.2.1. Under Assumptions (BI) to (B6), the SPBK estimator riff (11:1) given in

(3.2.9) satisfies

sup (111; (11,) — 111; (1:1)1 = 0,, (152/5).

x1€[0,l]

Hence with b1 (3:1) and v? (2:1) as defined in (3.2.11), for any 2:1 E [h,1 — h]

1111(111’; (2:1) — m1 (11:1) — b1(:1:1)h2} 2, N {010% (3:1)} .

REMARK 3.2.2. The above theorem holds for 111:, (3:0,) similarly constructed as 1111‘ (11:1),

for any a 2 2, ...,d, i.e.,

TL K X- —1: 1?- .

111:“,(.1O,)=21-}l $5; a) “'0‘, 19,,,=1/,-—a— Z 111, (Xw), (3.2.12)

21:1 h 1,1—2211) 13113111311111

 

where 111.), (Xiyfl), [3 : 1, ...,d are the pilot estimators of each component function given

in (3.2.7). Similar constructions can be based on local polynomial instead of Nadaraya—

Watson estimator. For more on the properties of local polynomial estimators, in particular,

its minimax efficiency, see Fan and Gijbels (1996).

REMARK 3.2.3. Compared to the SBE in Mammen, Linton and Nielsen (1999), the

variance term v1 (3:1) is identical to that of SBE and the bias term b1 (2:1) is much more

explicit than that of SBE at least when Nadaraya—Watson smoother is used. Theorem 3.2.1

can be used to construct asymptotic confidence intervals. Under Assumptions (B1)-(B6),

for any a E (0, 1), an asymptotic 100 (1 - a) % pointwise confidence intervals for m (2:) is

111.1(11) —b,(111)11‘2110mm,){/K2(11)d11]1/2/{11hf,(1:1)}1/2, (3.213)

where 61(x1) and f1 (1:1) are any constant estimators of E [o2 (X) IX1 = 2:1] and f1 (2:1).

The following corollary provides the asymptotic distribution of fit" (x). The proof of

this corollary is straightforward and therefore omitted.

COROLLARY 3.2.1. Under Assumptions (BI) to (B6) and the additional assumption that

ma ($0,) E 0(2) [0,1], 0: == 2,...,d, for any x E [0,1]d, the SPBK estimator 111:, (x), a =

1, ...,d, are defined as given in (3.2.12). Let

d

711* (x) = (3 + 2 7T1; (350)1bfx) : Z (10(1301) ,v2(x) : Z U121,($a)1

0:1



then

M{m* (x) -— m (x) —b(x)h2} 2, N {0,122 (x)}.

3.3 Decomposition

In this section, some additional notations are introduced in order to shed some light on

the ideas behind the proof of Theorem 3.2.1. Denote by ||¢||2 the theoretical L2 norm of

a function 45 on [O,1]d, ||¢||§ = E {(1)2 (X)} = fl0 11d d2 (x)f(x) dx, and the empirical L2

_1 n

i=1
norm as Mug,” 2 n (t2 (X,). The corresponding inner products for L2-integrable

functions (f), 90 on [O,1]d are

m» E{¢(X)w(X)} = [[0 lld¢(X)so(X)f(X)dx,

(cf), so>2,n = n“ E (I) (Xi) so (Xi)-

i=1

The evaluation of spline estimator m (x) at the n observations results in an n—dimensional

vector, in (X1, ..., Xn) = {in (X1) , ..., m (Xn)}T, which can be considered as the projection

of Y on the space 0,, with respect to the empirical inner product (-, )2,” . In general, for any

n-dimensional vector A 2 {A1, ..., An}T, define PnA (x) as the spline function constructed

from the projection of A on the inner product space (Gm (3)231)

d N

PnA (X) Z )‘O '1‘ Z Z AJ,aBJ,a ($01):

a=1J=l

with the coefficients (20, 21,1, ...,;\N,d) given in (3.2.6). Next, the multivariate function

PnA (x) is decomposed into empirically centered additive components PmaA (2:0,), (1 =

1, ..., d and the constant component Pch

n

pr (2:0) = P3,.» (ma) — n“ 2 PtaA (X...) , (3.3.1)

i=1

A d n

PMA = A0 + n_1 2 Z P;,OA (Xm) . (3.3.2)

021 i=1

where PE‘QA (3:0,) 2 291:1 X1,“ B1’0. ($01). With these new notations, one can rewrite the

spline estimators m (x) , ma (2:0) , me defined in (3.2.5) and (3.2.7) as

771' (X) : PnY (X) , filo (Ia) Z Pn,aY (ma) ,filc = Pn,cY,
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Based on the relation Y = m(X)+o (X) 5 = m (X)+E with noise vector E = {o (Xi) ei};l=1,

one defines similarly the noiseless spline smoothers

m (x) = Pn {771(X)}(x),1iia(a:a) = Pma {m (X)} (ma) ,mc = Pmc {m (X)} , (3.3.3)

and the variance spline components

E (x) = m: (x) .2.. (x3) = Pics (ma) ,5. = p.,.E. (3.3.4)

Due to the linearity of operators Pn, Pmc, Puma = 1, ...,d, one has the following crucial

decomposition for proving Theorem 3.2.1,

m (x) = m (x) + E (x), mc = The + EC, ma (2:0)) 2 ma (11:0,) + E00130) (3.3.5)

for a = 1, ..., (1. As closer examination is needed later for E (x) and Ea (11:0), one defines in

addition 5 = {(10, (11,1, ..., aN,d}T as the minimizer of the following

2

n d N

Z 0 (X051 — a0 - Z Z aJ,oBJ,a (X130) - (3.3-5)

i=1 a=1J=1

—1

Then 2‘ (x) in (3.3.4) can be rewritten as 5TB (x), where 5 = (BTB) BTE is the solution

of (3.3.6), and vector B (x) and matrix B are defined as

T

B (X) 2’— {1, 31,1 (11:1) , ..., BN,d ($d)} , B = {B (X1) , ..., B (Xn)}T . (3.3.7)

To be specific, the least square solution of the noise is

—1
T

a: 1 OdN ézy=10(xi)5i

OdN <BJ,aaBJ’,a/>2’n Isma’sd, a ?=1BJ,a(Xi,a)0(Xi)€i 1ngN,

ng,J’gN 1309’

(3.3.8)

where 0p is a p—vector with all elements 0. The main objective here is to study the difference

between the smoothed backfitted estimator m; (3:1) and the smoothed “oracle” estimator

m’i‘ (3:1) , both given in (3.2.9).

Horn now on, assume without loss of generality that d = 2 for notational brevity.

Making use of the definition of ('3 and the signal noise decomposition (3.3.5), the difference

m; (11:1) —- m; (2:1) — f: + c can be treated as the sum of two terms

% ELIKh(Xi,1-$1){fil2(xi,2)“m2(Xz',2)}Z ‘I’t($1)+\1’v(rvi)

hill KI: (X231 — $1) $121119; (Xi,l - 2:1)

  , (3.3.9)

42



where

‘1’!) (171) = 7-11-2101 (X131 - $1) {(7129132) - m2 (Xi,2)}, (3-3-10)

Wu (5151) = —;:21Kh(x1 — $1)€2(Xi,2) . (3.3.11)

The term \Ilb (2:1) is induced by the bias term 1712 (X232) —m2 (Xi,2), while ‘11,, (2:1) is related

to the variance term E2 (X132). Both of these two terms have order op(n“2/5) by Propositions

3.4.1 and 3.5.1 in the next two sections. Standard theory of kernel density estimation ensures

that the denominator term in (3. 3.9), 1 2,; 1 Kh (X131 — 3:1), has a positive lower bound

for 2:1 E [0, 1]. The additional nuisance term 6 —— c is of clearly order 0,, (n‘lfl) and thus

0,, (n’2/5), which needs no further arguments for the proofs. Theorem 3.2.1 then follows

from Propositions 3.4.1 and 3.5.1.

3.4 Bias reduction

In this section, we show that. the bias term \Ilb (2:1) of (3.3.10) is uniformly of order

0;, (n‘2/5) for 1171 E [0,1], which is given by Proposition 3.4.1 as below.

PROPOSITION 3.4.1. Under Assumptions (B1) to (B2), and (B4) to (B6)

..1‘13,..""b<$1>' = 0p (.412 + H) = ., (Tl-”5)-

One important result from page 149, de Boor (2001), is cited before the proof.

LEMMA 3.4.1. There exists a constant Coo > 0 such that for any component function ma 6

Lip([0,1] ,Coo) and function 90 E 0,01 =1,...,d, Hga — mall00 S COOH.

LEMMA 3.4.2. Under Assumption (8]), there exists function 91, 92 E G, such that

2

Th — g + :3 (1,901 (X0)>2,n

(.121

= 017(n'1/2 + H) ,

2,n    

where g (x) = c + 23:1 9“ (1rd) and 171 is defined in (3.3.3).
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PROOF. By Lemma 3.4.1, there is a constant C'00 > 0 such that for function go, E G

”90 —malloo _<_ COOHv a = 132' Thus “g_mlloo S 231:1“90 “malloo S 2CooH 311d

||m — m||2,,, S “g — mllzn S 2CooH. The triangular inequality then implias that

”771 — 9|l2,n 5 “Th — mll2,n + ”9 - m”2,n S 4000(1)

|(9a(Xa),1)2,nl s |<1,ga (X3)... — (11m0(XC1))2,n
 
+ |<1.ma(Xa)>2,n

    

 

 

 

 

 

3 COOH + 0,,(n-1/2) . (3.4.1)

Therefore

2 2

7h _ g + Z (1290 (XO))2,n S “777' _ gll2,n + Z I<1290 (XO))2,n

0:1 2,n 0:1

3 600011 + 0,, (71-1/2) = 0,, (TH/2 + H). E]

PROOF OF PROPOSITION 3.4.1. Denote

Rr ___ sup Z?=1Kh(Xi,1 - 1‘1) {92 (X232) - m2 (Xi.2)}

3:1€[0,1] ZZZ—.110; (X231 ‘ 171)

R Z?=1Kh (X231 - I1) (7712 (Xi,2) - 92 (Xi,2) +(1:!12(X2))2,n}

2 = sup
a

x16[0,1] Z?=1Kh(xi,1 — 31)

then supxlelml [\I/b (2:1)|< ((1,512 (X2))2,, + R1 + R2. For R1, usingLemma 3.41

To deal with R2, let 3120120,) 2: BJ’z (2:0)) — (1, 8J2 (Xa))2,n, for J = 1, ..,N, O: = 1,2,

then one can write

2 N

m(x) (x)+:(1, ga(Xa))2 "“251 +0223}, BJa((.230)

(1:1

Thus, n'l 221:1 Kh (X131 — 31:1) {1712 (XL?) — 92 (X13) + (1,92 (X2))2,,,} can be rewritten

n—l 2?:1Kh (Xi,1 — x1) 2:"); 1aJ2BJ2 (X132): bounded by

N

Z “1,2
=1 1<J<Nn

N

3261'} 2 { sup

J21 nggN

  ":1Kth211— 331) 33,2 (X232)

n“ 2w (X331)

i=1

k
,   

  

  

Tl

+ An,l 'Wl 2: Kb (X131 — 231)

i=1  

},
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where A,“ = 0,, (log n/\/1—i) as in (3.7.15), LUJ (X1321) is as given in (3.5.5) with mean

you (2:1). By Lemma 3.7.2

sup sup

x16[0,l]1SJSN

+ sup sup In,” ($1)! 2 Op (logn/M) +Op (HI/2) = Op (HI/2).

IIEIO,” ISJSN

sup sup

n

-l

71, ij (Xia-Tl)“qu (IE1)

I16[0,l] ISJSN
i=1 

n

”‘1 ZWJ (X13351) <

i=1    

Therefore, one has

n‘1 2191(th — 2:1) {1712 (X132) - 92 (X232) + (1,92 (X2))2,n}

  

 

       

sup

$16l0,l] i=1

N .. 2 1/2 1/2 logn N d 2 1/2

S N Z (am) 0,, (H ) + 0,. W, = 0. Z (w)
J=l J=1

2 2

_—. 0,,( ... — g + 5; (1,9... we»... ) = 0.. .. —g + : <1.ga(Xa)>2,..
0:21 2 0:1 2,n

where the last step follows from Lemma 3.7.7. Thus, by lemma 3.4.2

R2 = 0,,(rr1/2 + H) . (3.4.3)

Combining (3.4.1), (3.4.2) and (3.4.3), one establislws Proposition 3.4.1. CI

3.5 Variance reduction

This section shows that the term ‘11., (1:1) given in (3.3.11) is uniformly of order 0,, (n72/5).

This is the most challenging part to be proved, mostly done in Section 3.7. Define an

auxiliary entity

m
:

N

~200,12 B,J2( (3-5—1)

where (1J2 is given in (3.3.8). Definitions (3.3.1) and (3.3.2) imply that E2 (2:2) is simply

the empirical centering of (2‘; (11:2), i e

n

3:2 (:2) E g; (.172) — 114: a; (Xw). (3.5.2)

i:l



PROPOSITION 3.5.1. Under Assumptions (B2) to (B6),

sup N. (2:1)l = 0p (H) = 010 (7772/5) .
1216(0,”

According to (3.5.2), one can write ‘111, ($1) = ‘11?) (x1) -— 315,1) (11:1), where

1)(3131) 2 ”Plth((,)X11-$1 711253, (X132), (3-5-3)

i=1

wt” (x1) = WZXI. (Xz,1-$1)5§(X1,2), (3.5.4)

[=1

in which E; (X2?) is given in (3.5.1). Further one denotes

an (X1421) = Kh(X(,1 - 1‘1)BJ,2 (X12) , no] ($1) = EWJ (X1551), (35-5)

by (3.3.8) and (3.5 1), ‘11,,(2) (2:1) can be rewritten as

n N

2 _ ..

\I/S, ) (171) = n l E E aJ,2wJ (X),:1:1). (3.5.6)

l=l J=1

The uniform order of ‘11“) (11:1) and \I/(2 )(1121) are given in the following two lemmas.

LEMMA 3.5.1. Under Assumptions (B2) to (86), (11.8%,) in (3.5.3) satisfies

  l,” (1:1)] = 0,, {N (logn)2/n}.    

;E1€[0,l]

PROOF OF LEMMA 3.5.1. Based on (3.5.1)

71 Tl

—1 :55 (Xi,2) = 9.1.2 {71—12322 (Xi,2)}

n

l

5 2 31,2 (X232) -

i=1

M
2

J

N

2am - sup
J21 ingN

l

l
/
\

  

Lemma 3.7.5 implies that

N 1/2
N

25.1.2 g N233, g{N.5T5}

J=lJ=l

”2 = Op(Nn—1/210gn) .

By (3.7.15),(3.7.18), sup In“l 21:1 8,1,2 (Xi,2)| S An,l = 0,, (n71/2 log n), so

IngN

”—1252“ =Op{N(logn)2-/n} (3.5.7)
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By Assumption (B5) on the kernel function K, standard theory on kernel density estimation

entails that squle[0,1] ln‘l 211:1 Kh (Xhl — 1:1)l 2 Op (1). Thus with (3.5.7) the lemma

follows immediately. CI

LEMMA 3.5.2. Under Assumptions (B2) to (B6), ‘1’?) (2:1) in (3.5.4) satisfies

sup

11610.1]
 
«153’ (ml = 0M).

Lemma 3.5.2 follows from Lemmas 3.7.9 and 3.7.10. Proposition 3.5.1 follows from

Lemmas 3.5.1 and 3.5.2.

3.6 Simulations

In this section two simulation experiments are carried out to illustrate the finite-sample

behavior of the SPBK estimators m; (sea) for a = 1,...,d. The programming codes are

available both in R 2.2.1 and XploRe. For more information on XploRe, see Hardle, Hlavka

and Klinke (2000) or visit the following website, http://www.xplore—stat.de.

The number of knots N for the spline estimation as in (3.2.6) will be determined by the

sample size and a tuning constant c. To be precise

N = min ([cn2/510gn] +1, [(n/Q —1)d_1]),

in which [a] denotes the integer part of a. In this simulation study, c is chosen to be 0.5 and

1.0. As seen in Table 4.3, the choice of c makes little difference, so we always recommend

to use c z 0.5 to save computation for massive data set. The additional constraint that

N g (n/2 - 1) d—1 ensures that the number of terms in the linear least squares problem

(3.2.6), 1+dN, is no greater than n/2, which is necessary when the sample size n is moderate

and dimension d is high.

We have obtained for comparison both the SPBK estimator my; (350,) and the “oracle”

estimator mg, (33a) by Nadaraya-Watson regression estimation using quartic kernel and the

rule—of-thumb bandwidth.

We consider first the accuracy of the estimation, measured in terms of mean average

squared error. To see that the SPBK estimator mg, (2:0) is as efficient as the “oracle”
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smoother fit; (ma), define the following empirical relative efficiency of my, (.130) with respect

to in; (3:0,) as

11 ~ .. 2 1/2
Zizl {ma (X1170) - m0, (Xi,a)}

.. 2

ESE-.1 {m3 (X130) - ma (Xi,a)}

Theorem 3.2.1 indicates that the effa should be close to 1' for all a = 1, ...,d. Figure 4.15

 (3.6.1)effa =

and 4.16 provide the kernel density estimations of the above empirical efficiencies to observe

the convergence, where one sees that the center of the density plots is going toward the

standard line 1.0 and the shape of those plots becomes narrower as well when sample size

n is increasing.

3.6.1 Example 1

A time series {1’2}?:§1999 is generated according to the NAAR model with sine functions

given in Chen and Tsay (1993),

. 7T , 71‘

Y; =1.551n(;2—Yt_2) —1.081n(-2-Yt_3) + cost, 00 = 0.5,1.0,

where {502331996 are i.i.d. standard normal errors. Let X? = {Yt__1, Yt_2, Yt_3}. Theo-

n+3

rem 3, page 91 of Doukhan (1994) establishes that {Yb X?) is geometrically ergodic.

t=—1996

The first 2000 observations are discarded to make the last n+3 observations {Yt}?=+13 behave

like a geometrically a-mixing and strictly stationary time series. The multivariate datum

{1Q,XtT}::: then satisfies Assumptions (Bl) to (86) except that instead of being [0,1],

the range of Yt—a, a = 1, 2, 3 needs to be recalibrated. Since there is no exact knowledge of

the distribution of the Yt, many realizations of size 50000 have been generated from which

one sees that more than 95% of the observations fall in [—2.58,2.58] ([—3.14,3.14]) with

00 = 0.5 (00 = 1) . We will estimate the functions {ma(a:a)}g=1 for ma 6 [—2.58,2.58]

([—3.14,3.14]) with 00 = 0.5 (00 = 1.0), where

m1(5131) E 0,

m2 (1:2) E 1.5 sin (£3172) — E [155111619] ,

m3 (1'3) E —1.0$in (€173) -— E[—1.031n(th)] .
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Sample size n is chosen to be 100, 200, 500 and 1000. Table 4.3 lists the average squared

error (ASE) of the SPBK estimators and the constant spline pilot estimators from 100 Monte

Carlo replications. As expected, increases in sample size reduce ASE for both estimators

and across all combination of c values and noise levels. (Table 4.3 also shows that the

SPBK estimators improve upon the spline pilot estimators immensely regardless of noise

level and sample size, which implies that our second Nadaraya—Watson smoothing step is

not redundant.

To have some impression of the actual function estimates, at noise level 00 = 0.5 with

sample size n = 200, 500, the oracle estimators (thin dotted lines), SPBK estimators in;

(thin solid lines) and their 95% pointwise confidence intervals (upper and lower dashed

curves) for the true functions ma (thick solid lines) have been plotted in Figure 4.12, 4.13

and 4.14. The visual impression of the SPBK estimators are rather satisfactory and their

the performance improves with increasing n.

To see the convergence, Figure 4.15 plots the kernel density estimations of the 100

empirical efficiencies for sample sizes n = 100, 200, 500 and 1000 at the noise level 00 = 0.5.

The vertical line at efficiency = 1 is the standard line for the comparison of fit; (11:0,) and

1h; (10.). One can clearly see from Figure 4.15 that as sample size 71. increases the efficiency

distribution converges to 1, confirmative to the conclusions of Theorem 3.2.1.

Lastly, the computing time of Example 3.6.1 is provided based on 100 replications done

on an ordinary PC with Intel Pentium IV 1.86 GHz processor and 1.0 GB RAM. The average

time run by XploRe to generate one sample of size n and compute the SPBK estimator and

marginal integration estimator (MIE) has been reported in Table 4.4. The MIEs have been

obtained by directly recalling the “intest” in XploRe. As expected, the computing time for

M113 is extremely sensitive to sample size due to the fact that it requires n2 least squares

in two steps. In contrast, at least for large sample data, the proposed SPBK is thousands

of times faster than MIE. Thus our SPBK estimation is feasible and appealing to deal with

massive data set.
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3.6.2 Example 2

Consider the following nonlinear additive heteroscedastic model

d W . o d

. 1.1..

Yt = 2:18111(EX¢_0)+ 0(X) abet .~ N(0, 1) ,

a:

in which X? = { Xt_1, ..., Xt—d} is a sequence of i.i.d random variables with standard normal

distribution truncated in the interval [—2.5,2.5] and the conditional standard deviation

function is defined as

o (X) 2 JOE - 5 — eXP(Zg=1lXt-a|/d) 00 : 0.1.

2 5 + exp (22:1 lXt—al/ d) ,

This choice of a (X) ensures that the design is heteroscedastic, and the variance is roughly

 

proportional to dimension d. This proportionality is intended to mimic the case when

independent copies of the same kind of univariate regression problems are simply added

together.

For d = 30, 100 replications have been done for sample sizes n = 500, 1000, 1500 and

2000. The kernel density estimator of the 100 empirical efficiencies is graphically represented

in Figures 4.16 and 4.17. Again one sees that with increasing sample sizes, the relative

efficiency are becoming closer to the vertical standard line, with narrower spread out.

3.7 Proof of Theorems

Throughout this section, an >> 1),; means lim bn/an = 0, and an ~ on means lim bn/an =

n—+oo n——+oo

c, where c is some constant.

3.7.1 Preliminaries

Define for a =1,2,J =1,...,N +1

on. = IIIJ,..||§ ——- [13,... (was (mantra. (3.7.1)

LEMMA 3.7.1. Under Assumptions {B4} and (B6), one has:
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PROOF. By definition,

 

[1&1] (2:1)l 2 IE {Kh (XL! — 3:1) B112 (X1,2)}| is bounded by

ijh(u1—:1:1)I1312(ug)|f(u1,u2)du1du2

//1{(U)'————bJ2(u2)lf(hU1 +£1,U2)dU1dUg

“’9J2II2

(111,2)‘21{f/K m11+12<u2>1<1w1 +xl,u2>dvldu2

+ (fig—2)”2//K (W) ’12 (U2)f(’wl + $1,U2)dvld‘u2}-

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

II

then imply that

sup sup f/K (v1) 1J2 (112) f (11111 + x1),112)dv1du2 S CKCIH,

$1€[0,l] ISJSN

the proof of the lemma is then completed, by (i) of Lemma 3.7.1. Cl

LEMMA 3.7.3. Under Assumptions (84) and (BU), there exist constants CO > CO > 0 such

that for any a = (a0,a1,1, ...,aN,1,a1)2, ...,n/(1,2),

‘2

2 , 2 2 r
C0 (10 + Zaia S 110 + Z (lJaaBJ’a E Co 0.0 + Zaj’a . (3.7.2)

J,a J,a 2 J,a

PROOF. Lemma 1 of Stone (1985) provides a constant (:0 > 0 such that

‘2 N 2 N 2

2

(10 + Z aJ,aBJ,a 2 C0 (10 + Z aJ,lBJ,l + Z aJ,ZBJ,2 )

J,a 2 .121 2 J=l 2

then (3.7.2) follows if there exist constants 06 > 06 > 0 such that for a = 1, 2

‘2

N N

1 2

60 Z "aka 3 2 «1,0810

J=1 1:1

N

g 06 2 (13,0. (3.7.3)

2 J=1

To prove (3.7.3), the original B—Spline basis is employed. Without loss of generality, let

a = 1, and use the constant basis {1.11 (11)}y:ll. Represent the term 2.11:1 aJJBJ,1 (2:1)

as follows

N N +1

ZONE/11‘1) 22dM111J1W1) (3-7-4)

J: l
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Theorem 5.4.2 in Devore & Lorentz (1993) says that there is an equivalent relationship

between the Lp (p > 0) norm of a B-spline function and the sequence of B-spline coefficients.

To be specific

NH 2 NH N+l
2

Z dJ,lIJ,1 =/ Z dJ,IIJ,1($1) idl‘l = 2 (13,13

J=l J=1 J21
L2

The uniform boundedness of the joint density in Assumption (B4) implies that

NH 2 NH 2 NH 2

c, Zdulu s Edwin SC; Zdu’m
J=l J=1

L2 2 J=l L2

Then Lemma 3.7.1 and (3.7.4) lead to

N+1 N 2 2
a

2 J,l C.I+1,1

§:dJ,l:§:_—{< )+1}‘

J21

 

J=1 “bull: C“

Then

N N+1 N

ca 2 ailH—l 3 2 d2“ 5 Ca 2 ailH‘l,

J=l J=1 J=l

for positive constants ca and Ca. Therefore,

N N 2 NH 2 N

2 2

“f0“ 2 “JJ 3 Z “1,131.1 = Z dJJIJJ 5 CfCa 2 0.1.1,
le J31 2 J=1 2 J21

i.e. (3.7.3) holds given c6 = cfca, 06 = CfCa. C]

Lemmas 2.6.2 and 3.7.2 entail the next Lemma 3.7.4, which shows the uniform supre-

mum magnitude of 71—12221 {WJ(X[,$1) — pwJ (2:1)} and n-1 Z?=1WJ(Xla-’Cl)- The

quantities wJ(X1,:rl) and pwJ (3:1) are defined in (3.5.5).

LEMMA 3.7.4. Under Assumptions (82), (B4) to (B6)

sup sup

xle[0,1] ISJSN

= 0,, (log n/M) , (3.7.5)

  

71—1 1E: {wJ(X1,$1) — M.” (131)}

Tl

n—1 ZLUJ (X1,:1:1)

[:1

Sllp sup 2 0,,(H1/2) . (3.7.6)

x1€[0,l] nggN   



PROOF. For simplicity, denote w} (X1, 2:1) = mg (X1, 2:1) —— ya” (11). Then

2

E{w§(xl,$1)} = Ew3(xz,x1) - #3,, (x1).

While Ew2, (X1, 1:1) is equal to

 
_ -2 CJ+1,2

h l “bulb K2 (“1) 1J+1,2 (“2) + IJ,2 (W) wal + I1,U2)dvldU2,
CJ,2

which implies that Ewfi (Xl,:1:1) ~ h’1 and Ewg (Xbrl) >> [13” (2:1). Hence for n suffi-

ciently large

* 2 * '-

E{WJ(X1,171)} =Ew3(xz,$1)-HEJJ($1) 26 h I,

for some positive constant c*. When 1' Z 3, the r—th moment E IwJ (X1, 2:1)Ir is

{IIbJ,2“2}_r//K£(ul “171){IJ+1,2(U2) + (Cum) 1.1,2 (U2)}f(u1,U2)du1dU2-
CJ2

)

 

It is clear that EIwJ (Xl,$1)|r ~ 11(1—T)H1”r/2 and IELUJ‘ ()'{l,.1:1)|r S CHr/2 by Lemma

T

3.7.2, thus Ele(Xl,$1)lr >> lywj (11:1)l .

T

E I”; (X1,I1)|r = EIWJ(X1:$1)“ M.” (351)

S 2T_1(EIWJ(X12$1)iT+l/vaJ($1)lr) S {c/L’lH—1/2}

 

(“2) rlE [a]; (x,, x1)'2,

then there exists a constant (5* : ch-IH“l/2 such that

—— 2

Elm} (X1,:I:1)|r S C: 2T!Elw3(xz,$1)l ,

that means the sequence of random variables {wj(Xl,x1)}?=l satisfies the Cramér’s con—

dition, hence by the Bernstein’s inequality one has for r = 3

2 6/7
qpn 72'

P > <0. ex — +a 3 a —-— ,

{ "p”}" l p( 25m§+5c*pn) 2” ([q+1i)

n

"—1 ij (X13161)

i=1

 

  

 

 

where

log" 'th 2” +2 1+ ’02 'u 2 I“p=p-—-—-,w1 az— ,w11m~z,

n Vnh l q 25mg + 504)” 2

a2 (3) = 1172. 1 + 5m‘2/7 with 7713 : max “w" (X :1: )H < C0 (211—1)2 ”3pn 1 ISiSn J l) l 3 _. .
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Observe that 504),, = 0(1), then by taking q such that [fir] 2 ('0 log n, q 2 cln/ logn for

some constants (0,01, one has a1 = 0(n/q) = 0 (log n), 0.2 (3) = 0(112). Assumption (82)

n 6/7 n 6/7 6A

_ __ - - C0/7

a<i¢1+1D S{K0exp( 20i€1+1i)} 5011 0 .

Thus, for n large enough,

yields that

 

 

l n plogn . 2

P — w" X,:c > <cn—C2p lo n+Cn2_6’\0C0/7. 3.7.7{n .22 J< , 1) H}. g < >
  

We divide the interval [0, 1] into Mn ~ n6 equally spaced intervals with disjoint endpoints

0 = 551,0 < 1:111 < < $1,Mn = 1. Employing the discretization method, one has

n

n-1 :00} (X1, 121$)

[=1

sup sup (3.7.8)

x1€[0,1]1SJSN

= sup sup

OSkSMn ngSN    

n

"—1 wa‘, (X1431)

1 1  

n

n“1 Z {$109.11) - 01} (Xz,x1,k)}
[=1

By (3.7.7), there exists large enough p > 0 such that for any 1 S k g Mn,1 S J _<_ N

1

p {.
n

which implies that

(X)

Z P { sup sup

0315311!" ISJSN

N

23%

Thus, Borel-Cantelli Lemma entails that

+ SUp Sllp sup

ISkSIWn ISJSN $1El$l k—l’xl k]   

n

Zed} (X1,$1,k) > p(nh)-1/210gn} ;<_ 11‘“),

[=1  

Tl.

n71 2w} (X1, 331$)

[=1

 

 

> logn

“pm
 

 

n

77,-1ng (Xlaxljc)

[=1

s 

l (X)

2 p 08"} g Ewan-10 < 0...
n=1 

12"12w3 (szrLk) = Op (log n/fi) . (3.7.9)

[=1

sup sup

ogkgMn ingN   

Employing Lipschitz continuity of kernel K, one has for 2:1 6 [$1,k—1:$1,kl

sup |Kh(X,,1— 1:1) -— Kh(X,,1— x1,k)| g CKMgllz—2.

lngMn
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Hence one has

n.

n-lz{w3(xz.x1)— w; (Xl»$1,k)}

[:1

Sup sup SUP

ISkSMn ISJSN$1€[31,k_lvxliki   

S CKMglh"2 sup sup IBJ2 (2:2)l = 0(Mn—1h‘2H71/2).

$2E[0,l] ISJSN

Thus, one has

1

n 2 {w} (X11331) — w} (X1111,k)}

[=1

sup sup SUP

lskSMn ISJSNI1€lxl,k—lv$1,kl   

= o (i) , (3.7.10)

since Mn ~ 716. (3.7.5) follows instantly from (3.7.8), (3.7.9) and (3.7.10). As a result of

Lemma 3.7.2 and (3.7.5), (3.7.6) holds. D

The next lemma provides the size of 5T5.

LEMMA 3.7.5. Under Assumptions (32) to (86), the least square solution 5 defined in

(3. 3. 6) satisfies

N 2

5% = 213 + Z Z 213,, = 0,, (N (log n)2 /n) . (3.7.11)

J=la=l

—l

PROOF. According to (3.3.8) and (3.3.7), ii = (BTB) BTE, then

-1

5TBTB5 _—. (5TBTB) (BT13) BTE 2 5T (BTE) .

As the matrix B is given in (3.3.7), one has

1

“Bang," = 5T > 5 = 5T(71'IBTE) . (3.7.12)

Zn

B B
< 2"“ J’.a’

According to (3.7.21), ”Bang,” is bounded below in probability by (1 - An) ”Bang. By

(3.7.2), one has

2

N 2

- 2 ~ _ -2 -

”Ban2 = a0 + E : 2 :71), 3 c0 (10 +2 :aia . (3.7.13)

Meanwhile one can show that 5T (n‘lBTE) is bounded above by

1/2
2

- - 1 n 1 "

“(21+Zafia {52009181} +Z{;ZBJ,O(Xi,O)U(Xi)€i}

La i=1 [0 i=1

2 1/2

(3.7.14)
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Combining (3.7.12), (3.7.13) and (3.7.14), the squared norm 5T5 is bounded by

W2(1—An {i- 20(Xi)51}2+2{% 231,0(Xi,a)0(xi)5i}

i=1

Using the same truncation version of 5 as in Lemma 3.7.10, Bernstein inequality entails that

    

n

”-1
—l

:0 (X)si+ nggNa=12 n E BJ,a (-Xi,a) a (Kl-)52 = 0;, (logn/J77).

Therefore (3.7.11) holds since An is of order 0,,(1). C]

3.7.2 Empirical approximation of the theoretical inner product

  

  

 

Let

71

Am] = sup [(1, 81,0)2 n — <1,BJ,Q>2| = sup 72.—1 Z BJ’a (X (3.7.15)

J,CX ,
J,O’ 1:1

An,2 = SUP <BJ,OuBJ’a> - (31,71,311 a) , (3-7-15)

J,J’,a ’ 21" ’ 2

A ,3 = sup <BJ ,B I I — <BJ ,B I I) l. (3.7.17)

n lSJJ’gNnaéa/ ’0 J ’0 >2,n ,a J ’a 2

LEMMA 3.7.6. Under Assumptions (32), (B4) and {B6}, one has

Am} = 0,, (7171/2 log n) , 2 (3.7.18)

An’g = Op (n‘l/2H_l/2 log n) , (3.7.19)

An,3 = 0,, (n—l/2 log n) . (3.7.20)

PROOF. The proof of (3.7.18) follows from Bernstein’s inequality immediately, thus is

omitted. Here we only prove (3.7.19) and (3.7.20). We will discuss case by case with

various (:1, a’, J and J’, via Bernstein’s inequality. For brevity, set

62' : €i,J,J’,a,a’ : ”—1 [BJ,a (Xi,a) BJ’,a’ (Xm’) “ E {3.1.01 (X230) BJ,’a’ (Xi,a’) }] 1

then

Zéifl’JJHad

i=1

ZEiH’JJHaa’

i=1

An 2 = sup, 124,113: sup

1<J<N,=a 1,2 l<J,J’<N,’a;éa

 

   

We will consider a = 07' = 1 in the CASE 1.1 to CASE 1.3.
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CASE 1.1 when IJ— J'I > 1. The definition of BJ‘l in (3.2.3) will guarantee that

31,1 (X,-,1)BJ;,l (Xu) = 0 if |J — J’| >1.

CASE 1.2 when J = J'. By Lemma 3.7.1, the variable 5,- and its second moment can be

simplified as follows

5,- = n“1{B.2,,1(X,,1)—1},E£,2: $E{B§11(X,,1)—1}2 = —1—2{E83,1(X,-,1)—1},
7!-

in which EBfu(X,,1) = lle’lll;4(CJ+1,l+ cf,“ 1/6},) .The selection of H will make

E811 (X231) the major term of {E811 (Xm) — I}, then there exist constants c532 and

C,

E 2 > 0 such that

c€,2n—2H-l _<_ E53 3 CAngH—l.

In terms of the Minkowski’s inequality, the k-th absolute moment has the following upper

bound

k _ ,__ .

E|g,.|k =n7kElBil(X,-,1) —1| g ”42" 1(53351 (Xi,1)+1}.

where E832}, (Xi,l) ~ 1 according to Lemma 3.7.1. Hence there exists a constant 05,2 > 0

such that

E|§,|k g cg,n—k2k—1H1—k.

Next step is to verify the Cramér’s condition

Eléz‘lk S ngn—ka—lHl—k = Cfgn—(k—Qbk—lH—(k—2)n—2H—l

 

202 20 (k4) k—2
6’2 £12 .“2 -1 It 2

cm (nH ) 652” H 5 {05,2} “562',

—l

5,2 "‘ 5,265.2

Cantelli lemma, when J = J’, a = a’ = 1, one has (3.7.19).

in which C“ - 2C 'n‘lH_l max 1,2C2 . Applying Lemma 2.6.2 and Borel -
6,2

CASE 1.3 when IJ —- J’l = 1. Without loss of generality we only prove the case that

J' = J +1. Now 5,; = Tl—lBJ’l (X131) BJ+L1 (X231) has the second moment

as? = [E33, (xi,1)83.1,.(x.,1) — {Ba/,1 (x...) 8m. mar] ,

where {EBJ’1(X1"1)BJ+1,1(Xi,1)}2 ~ 1, E33,1(Xi,1)33+1,1(xi,1) ~ H71, according



to Lemma 3.7.1. Hence, E612 ~ H‘l. The k-th moment is given by

Eléilk = n—kEIBJJ (X131) BJ+1,1 (X231) - EBJ,1(X2',1)BJ+1,1 (X,,1)Ik

11"”‘2k—1[EIBJ,1(X1,1)BJ+1,1(Xmllk + IEBJJ (X131) 31+” (Xillllkl’
l
/
\

where |EBJ)1(X,)1)BJ+1)1(X,)1)|k ~ 1 and EIBJ)1(X,)1)BJ+1)1(X,)1)Ik ~ Hl‘k, ac-

cording to Lemma 3.7.1. Hence there exists a constant 06,3 > 0 such that

k k -k k—l l—k

Similar as in Case 1.2, (3.7.19) follows by using Bernstein’s inequality.

CASE 2 when a = 01' = 2, all the above discussion applies without modifications.

CASE 3 when a # a'. Without loss of generality, suppose a = 1, (1’ = 2. First we still

need to calculate the order of second moment E63,

2 __2 2 2

Ea.- = n E {8h (X131) 3),, ma} - (133,), (xx-,1) BJe ma} .

The boundedness of the density function f (2:1, 2:2) implies that

IEBJ)1(X,-1) 3J5, (X-)2)I < E|€,-|

IIbJ,l”2—1IIbJ’)2II2—//IbJ,(l132,1 )bJI)2 (131,2 )If($l,1=2)d’1?ld$2

Cf {lleJllé—I [Ill/,1 (1171',1)Id$1} {Ilbjlz II2 l/IbJIM112,2 )Idxg}

0.} 1,1 —1 J’ 1,2 1
c,{1+ 6:1 }{||bJ)1||, H}{1+C; IIIIbJ,))'I| HIch),H,

for some constant 013,1 > 0, where the last step is derived by Lemma 3.7.1. As a con-

l
/
\

|
/
\

  

|
/
\

1:

sequence, IEBJJ (X131) BJI2 (X,)2)I _<_ C); lHk' Meanwhile, by Assumption (B4) and

Lemma 3.7.1,

2

E{BJ),(X),1)BJ,, (X,-2)}

”bJ,l||22 I)IbJI22I2//bj)(1151,1)bJ/2 (1,7L‘i2)f(117772)‘1171d$2

_. —2

Cf {IIbJ,1ll22 [:J,l (13,1) (1351} {lle/12 2 fb.2/’,2 (171,2)(111‘2}

C/{1+ €3+1,l/.C.21,1}{”b-1,1ll;2 H}{1+ ‘J’+12/‘J'2 } {IIbl’

 

I
V

  

 

—2

I; H} 2 68,2-
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Hence there exist constants 66’ C2 > 0 such that

—2 CnI—2

cné _<_E{-<C'n€

For any I: > 2, the k-th moment of Ifiil is given by

' k

E|§,|k = 71—kEIBJ,1 (Xm) BJ’)2 (X232) — EBJ,1 (Xi,1) 131/)2 (Xi,2)I

l
/
\

k k

"_k2k—l [EIBJ)1 (X131) 311,2 (Xi,2)l + IEBJ.1 (Xi,1)BJ’,2(Xi,2)I I

where there exists a constant CB] > 0 such that

EIBJ)1(X,;)1)BJI2 (X,)2 )IIc

lle,1||;"|IbJr,;"//|bs, ,1)b,

affirm"; /|b1,(1 ,1; 21,}{||b,,),;'°

cIc ,
c,{1+ ’3‘} 1+ 1;” {“bJ,||;’°IIbJ,,)‘

(.,I’2

l
/
\

(Ti,2I f (1131,1132ld131d132

_/-’2(le’$12)I kdilrg}

M
k k

c C I _

Cf{1+ ”’Zm} 1+ J “’2 {cf(1+c,/C,)} "112* <Cg,H2—k.
. .k

91,1 “J’ ,2

  

|
/
\

  

  

|
/
\

 

 

|
/
\   

Thus there is a constant CE > 0 such that

Eléilk S n—ka‘l [Cg/H24" + C}; 1H’"I g (Cakn‘kzk‘lIfl—k

k—2

202 k—‘2 . 20 202
_£_ 1 . ——2 < 6 € . 2
C5 (2067; H 1) (,{n _ {11H max ( Cg ,1) } k.E{,.l

/
\

—2
Employing the Bernstein’s inequality and the fact that Egg ~ 71 , one has

n

z},— [31,, (2,0) (2,0,) — E {31, (xm) (x,,,,,)}]|
i=1

sup sup

ng,J’gN aséa’  

is of order 0,, (n"1/2 log 71). So the proof of (3.7.19) and (3.7.20) is completed. C]

LEMMA 3.7.7. Under Assumptions (82), (B4) and (B6), the uniform supremum 0f the

rescaled difference between (91,92), n and (511,92), zs

 An = sup (3.7.21)

91,92€C(_1)

I(91,g2)2 ’(91,92)2I

, ’" .—.()( 10g" )=op(1).

||91|l2 llgzllz 111/2H1/2
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PROOF. For every 91,92 6 G('1), one can write

91(X12X2) : a0 + Z.Z=123=10J,QBJ,Q(X0),

.92 (X11X2) : ‘16 + Zlel £3,121 afl’p’B-l'fl’ (X01),

in which for any J, J’ = 1,...,N,a,a’ = 1,2, 0,1,0, and aJ/a/ are real constants. The

difference between the empirical and theoretical inner products of 91 and 92 is

[(gi,g2>2,n - (91.92%! S Z<a6.a1,aBJ,a>2,n + Z <a0,a’J,,a/BJ/,az>

1.0 J’,a’

+ Z laJ,al (81,0, BAG/>2,” — <31,” raj/WM = L1+ L2 + L3.

J,J’,a,a’

2,n

 

 

I

011'
J,a

The equivalence of norms given in equation (3.7.2) and definition (3.7.15) lead to

1/2 1/2

An,l ' lab] ' Z I‘Mal S 00A“ 062 + Za’JZ’a 2:03.01 NV2

Ja Ja J,a

: CA,1An,1ll91“2||92H2 H‘”2 = 0,, (...—I/m—I/z logn) "911:2 1:92:12-

L1 |
/
\

Similarly, one has

— ‘ — '2 -l2

L2£C§,1An,1ll91||2ll92II2H 1/2:0p(” 1/ H / logn)|l91||2||g2l|2-

For the last term L3, one has, by definitions (3.7.16) and (3.7.17)

 
L3 S 2 la.l,al ail/,allmaXMmaAns)

J,J’,a,a’

1/2 1/2

S CA,2maX(An,2iAn,3) 203.01 20324

J.0 J’,a’

< C A A a —0 “WWI/21_ A,2max( n,2: 71,3)”91II2H92II2- p n 0%“ H91|l2||92|l2~

Therefore, statement (3.7.21) is established. Cl

3.7.3 Proof of Lemma 3.5.2

In the following, denote V as the theoretical inner product of the B-spline basis

{1,840 (ma),J =1,...,N,a =1,2},i.e.

T T1 031V 1 0N 0N

02N <BJ,O’BJ,,QI>2 150,0,‘521 O V VngJ’sN N 21 22
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where 0,, = {0, ..., 0}T. Let S be the inverse matrix of V, i.e.

1 0% 0%

S=V‘1= 0N S11 512 . (3.7.23)

0N 321 322

The next lemma on the positive definiteness of matricesiV and S is a sufficient step to

achieve Lemmas 3.7.9 and 3.7.10.

LEMMA 3.7.8. Under Assumptions {B4} and (B6), for the matrices V and S defined in

(3.7.22) and (3.7.23) respectively, there exist constants CV > CV > O and Cs > 65 > 0

such that

cv12N+1 S V S Cv12N+n CSIZN+1 S S S 0512N+1- (3.7-24)

PROOF. Take a real vector fl = ([30,[31,1,...,EN,1,51,2,...,fiN,2)T E R2N+l, One has

TB 2: T 1 03), 2 TV

”a won. a (mm) [3 . a

where denote B2 (x) = {1,B1,1 (X1) , ..., BN3 (X2)}T. According to (3.7.2), there exist

constants CV > CV > 0 such that

2

2 .

CV n3 + Zflia Z “fiTB2 Oi)“2 = (3(2) + 25.1,a3.1,a (Ia) ,

J,(1 J,a 2

2

||3T132(x)||:=a3+ gamma) 2w 33+Zfiia .
J,a 2 J,(I

thus one concludes that

CvnTn = Cv 33 + 2133,... 2 NW} 2 av [33 + 2:33,... = cvnTn.

J,a J,a

which implies that cVI2N+1 _<_ V S CVI2N+1. The second half of (3.7.24) follows by

changing )6 by V"1/2fi. Cl

As an application of the above Lemma, for any (2N + 1)-vectors x and y

XTSy S C's(2N + 1) ||X|| ° IIYII, (37.25)
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where CS is the same as in (3.7.24). Note that a given in (3.3.8) can be rewritten as

- T ‘1 T 1 T _1 1 T ... —1 1 T
a=(B B) BE: EBB EBE =(V+V) 513E, (3.7.26)

where V* is the difference between empirical and theoretical inner product matrices, i.e.

T
V“ _ O 02N

021V <BJ’O” BJ',0'>2,n _ <BJ'O" BJ’a0’>2 Isaac/£2,

1gJ,J’gN

Now define a = {30,314,...,aN,1,a1,2,...,aN,2}T by replacing (V + V"')‘1 with V‘1 = S

in the above formula, that is

a = V“1 (n’lBTE) —_— S(n"‘1BTE) . (3.7.27)

and define

- (2) n N

‘1’2; (331) = "-1: Z (34,2011 (X2331)- (3-7-28)

i=1J=l

The next lemma shows that the difference between 4132) (3:1) in (3.5.6) and fill?) (51:1) in

(3.7.28) is negligible uniformly over 2:1 6 [0,1].

LEMMA 3.7.9. Under Assumptions (B2) to (B6),

sup @182) (2:1) -— ii?) (2:1)] 2 Op ((log n)2 /nH) .

1216(0,”

PROOF. According to (3.7.26) and (3.7.27), one has V a = (V + V*) a, which implies that

V*" = V (a — 5). Using (3.7.19) and (3.7.20), one obtains that

W (a — a)“ = “wan 3 Op (ml/2H-1 logn) nan.

By Lemma 3.7.5, ”a” 2 Op (n—l/ZNI/2 log n), so one has

"v (a — a)“ 3 0p ((105511)? n-1N3/2}.

Thus according to Lemma 3.7.8, one has

"(a _ 5)“ 2 0p {(logn)2 n‘
1N3/2}_
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Using Lemma 3.7.5 again, one has

“an s ”(a — a)” + nan = 0,,(1ognm/n) . (3729)

Hence

(2) “(2) N 1 "
(w. (x1) - a (seal = 2 (an — an) ; Zea. (xtm .

J=l [=1

Cauchy-Schwartz inequality implies that

      

2

(2) (log n)2 1/2 (log 11)
sup 1)—\Ilv (x1) <\/—O O H =0 —— .

x€[0,l] l p ”H p ( ) p nH

Therefore the lemma follows. Cl

LEMMA 3.7.10. Under Assumptions (82) to {B6}, for \TISZ) (2:1) as defined in (3.7.28)

 

   

N
A 2

A

\Ils, ) (2:1)l = sup 1 E1 Kh(X231— .731))E GJJBJJ (XI-,2) = 0,, (H).

x16[0,1] x1€[0.lln J: 1

PROOF. Note that

 

N

@£Q)($l)l S 2042qu (1‘1)++ZdJ,2”1}—_:{W.I(quf151)—1UoJ($1)}

= Q1 ($1) + Q2 (351)- . (3-7-30)

)2.

By Cauchy—Schwartz inequality, one has

N

a. .2...;{
J_. 1 316(0,”

”—1 Zn: (142709.11) - In” (131)}

i=1   

Observe that "an 2 Op (log m/N/n) as given in (3.7.29) and

sup

x1€[0,l]  

n“ Z{WJ(X7L,$1) — u...) (x1)}| = 0p(logn/\/571) ,
i=1

given in Lemma 3.7.4, so by Assumptions (BS) and (B6)

sup Q2 (’51) = 0,, (logn/N771) Wop (If/8%) : 0,, {Ego—$23}
$1€[0,l]

2 0,, {(log n)3 NH}. (3.7.31)
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Using the discretization idea again as in the proof of Lemma 3.7.4, one has

N

sup Q1(2:1) 3 max (1)211“, (1131,]c) + (3.7.32)

x1€[0,l] ISkSMn ng J

N N

K113i! sup 2 (“Us/11.” (15 1) _ 2 71mm” (Jim) = T1 + T2.

- - "$1€l$1,k-1’$1,kl J=1 J=1

where Mn ~ n. Define next

W = max n‘1 l, :1: s B X- 0 X- e-
1 ISkSMn 1g§n131§g1vle( l,k) J+N+1,J’+l J’,1( 2,1) ( 1.) i

 

W2

ll

1

—l

m
B X: x- -

13kg” n ISEnISJ’ZJlsNqu
(lec) SJ+N+LJJ+N+1

J],2( 2,2)0( I)El

  

then it is clear that T1 _<_ W1 + W2. To show that both of the two terms W1 and W2 have

order 0,, (H), we truncate the random variable 5,- at the level of

1 2

D = 90 —— — . 3..n n (2+6<90<5) (733)

where 6 is the same as in Assumption (B3). Without loss of generality, we only give the

proof of W1 = 0,, (H). Let

55,0 = 8,105.15 Du), 5:0 = 8110521 > Dn), EZD = 5,7,0 —- E (527:0 |X,-),

.ng = Z (1W($1,k)sJ+N+1,J,HBJ/,1(X,-,1)a(X,)€;‘,D,

lgxng

and denote W10 as the truncated centered version of W , i.e.,

n

”-1 Z (1,,

i=1

Next we show that 'Wl — WID I = Op (H) Note that (W1 _ IVID

W10 :.— max . (3.7.34)
lngMn

  

 

S A1+ A2, where

1 "
_

A1 = 1334,, E: Z a” (2:1).) SJ+N+1,J,+IBJI,1(Xi11)U(Xi)E(8i,D|xi) ,

”'1ng,ng

1 " 1.

A2 — 131/212%!" 71;: Z 1th (15m) 3J+N+1,JJ+1BJI,1(X¢',1)U (X05130 ~

”119,ng
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T

Let flu) ($1,113) : {“1421 (11,16) 1' ° ' #in ($1,k)} 1 then

N
nT _

_
A1 = max Ha; (lec) S2l {n l ZBJ’ 1(Xi'1)0 (X01; (El-’0 lXi)}JJi=1 ’

=1

lgkgMn

1/2
N N i 2

“8122214 D‘ZiZBJ“X“)°()E(EZD'X“)} ’i=1

according to (3.7.25). By Assumption (BB),

IE (egDux.)| = IE (5301):.) S

and slupl% 22:1 BJ,1(X1‘,1)0'(X1‘)

,0:

Lemma 2.6.2. Therefore

 

E 051le lxi)
—(1+6)

D}l+6 S MéDn 1

 

 

= Op(log n/fi) by Bernstein inequality given in

2 1/2

/
\

n

z:

N N
—(1+6) 2 l .

A1 .. M6011 131334" 211% ($1,k)Jz—:l{nZBJ1(le 0(2)}

1

Op {ND;(1+6) log2 71/11} = 0p (H),

where the last step follows from the choice of Du in (3.7.33). Meanwhile

2+6 . 00
EIEnl2+6 00 E (Elsnl |xn) Ma

2Pugnl > D”) < Z_____D2+6 —2: D31” 5 2 2+6 < 00’

11:1 11:1 11:] n

  

since 6 > 1/2. By Borel-Cantelli Lemma, one has with probability 1

n

”—1 Z Z #wJ (331,1c) SJ+N+1,J'+IBJI,1(Xi’l)0 (x0531) : 0

i=1 ISJ,J’5N

for large 11. Therefore, one has |W1 — WID I 5 A1 + A2 = Op (H). Next we want to show

that wlD = 0,, (H), with wlD defined in (3.7.34). Since

ch = ”w (131,1)T321 {31,1(Xi,1),-~ ,31,N (Xi,l)}T 0098*)5,.D,

so the variance of UM is

“w ($1,k)TS21VHI ({Bl,1(Xi,1),--° ,BN,1(X1,T1)} 0095)i0) 321111.) (131,k)-
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According to Assumption (BB), 0 (x) is continuous on a compact set [0,1]d, so it is clear

that chu 5 var ({Bl,1(Xi,1), - - - , BN,1 (Xi,1) }TU(X1')) S 03V”. Thus

var (Ui,k) ~ pw (x1,k)T 821V11521uw (331,1) V£,D

: “w ($1,107. 521%; (zlJc) V€,Dv

* T 1/2

where VQD = var {El-,0 [Xi }. Let n (1131,11) = {uw (IlJc) [1w ($1,k)}

0363 {N (11311)}2 V5,D S var (Ui,k) S 0303 {K (1131,10)2 V5,D-

When 1‘ 2 3, the r-th moment EUsz is

E lUiJclr = E Z l‘wJ (171$) SJ+N+1,J,+IBJJ,1(Xi’l)O (X05210

  

  

  

igxng

1'

* T

g E 2 "“U ($1,k) SJ+N+1,J'+IBJ’,1(Xi’1)0(xi) 13(5750 Ixi)

1gLng

T

_<_ E Z #1.”(13m)3J+N+1’JI+IBJI,1(X1,1)0(Xi) Dir—2‘43,

IgLfSN

while

T

E Z Ile(1131,11)3J+N+1,JI+IBJIJ(X1,1)0(Xi)

1gLng

T T T
: E [1,“,(1'1’k) $21 {BI,1(X1°,1)," ' ,Bl,N (Xi,l)} ”(Xi)

r

g CgCgE lpw (x1,k)T {31,1(Xi,1)a ' " ,BI,N(X1‘,1)}T|

N r/Z

S CECE {n ($1,k)}rE 2 33,1091)

J=1

3 ago; in (x1,.)}”0 (HM/2) ~

Therefore

'5 le'Jclr S CECE {5 ($1,k)}r0 (”hr/2) Bil—2&0

—2

_<_ {can (x1,k)D,,H-l/2}r rush/(kl2 < +00,
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which means the sequence of random variables {UMHLI satisfies the Cramér’s condition

with Cramér’s constant equal to c... 2: cor: (rue) DnH“1/2, hence by the Bernstein’s in-

equality we have for r = 3

-1" (10?. n 6/7
P ” Zuni: an SaleXp —25m§+5c,pn' +a2(3)0([q—+-1-D ,

 

  

  

(=1

where

2 5mG/7

,,n=pH,01=23+2 1+ 2p" ,a2(3)=lln 1+ 3 ,
q 25m2 + 5c1pn Pn

_ 1/3

m3 N {"3 (351,0)2 Ve,D, ms S {C{"(I1,k)}3 H 1/2DnVe,D} -

Observe that 5gp" = 0(1), then by taking q such that [q—i‘f] 2 c0 log n, q 2 cm/ logn for

some constants c0,cl, one has a1 = 0(1),/Q) = 0 (log n), (12 (3) = 0 (n2). Assumption (B2)

6/7 6/7

__7}_ __ _n_ *6/\0C‘0/7at...) siKoew<Aot+1Dl ,
and as n —+ 00, one has

yields that

«11% N q_/>n_ : mfg/5

25mg + 5C*pn C... CO (10g ")5/2 D

  
-—> +00.

Thus, for 12. large enough,

1 n

P {; Zuni:
i=1

Taking q), p large enough, P {'37: 2&1 UiJCl > pH} S 11.3, for large 11. Hence

 

> pH} g clognexp {—C‘2p2 log n} + Cn2‘6Allco/7 3 11—3.

 

§P(Iwflzwi= i245:
n—lk- l   

Thus, Borel-Cantelli Lemma entails that W10 = 0,, (H). Noting that lWl — WIDI =

0,; (H), one obtains that W1 = 0,, (H). Similarly one can show that 1V 2 Op (H). Hence

T1 g wl + w2 = 0,, (H). (3.7.35)
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Employing Lipschitz continuity of kernel K, the term T22 is bounded by

N
2

- 2 .. 2

“an max sup §:{uw1($1)-uwj ($1.10} _<.lla|| x

N .

max sup E K X -—:1:)——K X -:1: 2 B X )2

1SKM"351€l3'¢1,Ic—1v1=1,kl1X5 [{ h( 11 1 h( 11 1'0} { J'2( 12 }]

Therefore, according to Assumption (BS), Lemma 3.7.1 (ii) and (3.7.29),

N 2 1/2

T <0 Nl/zlogn {ZJ=1EBJ,2(X12)} -O Nl/Zlogn _ _1/2

2“ p 1.1/2 112114., ‘" m ”Pi" )

(3.7.36)

Combining (3.7.32), (3.7.35) and (3.7.36) one has SUlee[0,1] Q1 (2:1) 2 Op (H). The desired

result follows from (3.7.30) and (3.7.31). Cl
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CHAPTER 4

Spline Single-Index Prediction Model

4.1 Introduction

Consider the stochastic heteroscedastic regression model given in (1.1.1), an attractive di-

mension reduction method to deal with the “curse of dimensionality” is the single-index

model, similar to the first step of projection pursuit regression, see Friedman and Stuetzle

(1981), Hall (1989), Huber (1985), Chen (1991). The basic appeal of single-index model

is its simplicity: the d-variate function m (x) = m (151, ...,xd) is expressed as a univariate

function of xTBO 2 23:1 351,00? Over the last two decades, many authors had devised

various intelligent estimators of the single-index coefficient vector 90 = (60,1, ..., 6’0,d)T, for

instance, Powell, Stock and Stoker (1989), Hardle and Stoker (1989),.Ichimura (1993), Klein

and Spady (1993), Hardle, Hall and Ichimura (1993), Horowitz and Hardle ( 1996), Carroll,

Fan, Gijbels and Wand (1997), Xia and Li (1999), ‘Hristache, Juditski and Spokoiny (2001).

More recently, Xia, Tong, Li and Zhu (2002) proposed the minimum average variance esti—

mation (MAVE) for several index vectors.

All the aforementioned methods assume that the d-variate regression function m (x) is

exactly a univariate function of some xTBO and obtain a root-n consistent estimator of 00.

If this model is misspecified (m is not a genuine single-index function), however, a goodness-

of—fit test then becomes necessary and the estimation of 00 must be redefined, see Xia, Li,

Tong and Zhang (2004). Here instead of presuming that underlying true function m is a

single-index function, a univariate function g is estimated that optimally approximates the
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multivariate function m in the sense of

g(1/) = E [m(X)|XT60 = V], (4.1.1)

where the unknown parameter 00 is called the SIP coefficient, used for simple interpretation

once estimated; XTOO is the latent SIP variable; and g is _a smooth but unknown function

used for further data summary, called the link prediction function. Our method therefore

is clearly interpretable regardless of the goodness~of—fit of the single-index model, making it

much more relevant in applications.

Estimators of 00 and g are proposed in this chapter based on weakly dependent sample,

which includes many existing nonparametric time series models, that are (i) computationally

expedient and (ii) theoretically reliable. Estimation of both 00 and g has been done via

the kernel smoothing techniques in existing literature, while polynomial spline smoothing

is used here. The greatest advantages of spline smoothing, as pointed out in Huang and

Yang (2004), Xue and Yang (2006 b) are its simplicity and fast computation. The proposed

procedure involves two stages: estimation of 00 by some JE—consistent B, minimizing an

empirical version of the mean squared error, R(0) = E{Y - E( YI XT0)}2; spline smoothing

of Y on XTB to obtain a cubic spline estimator g of g. The best single-index approximation

to m(x) is then m(x) = g) (XTB).

Under geometrically strong mixing condition, strong consistency and (fa-rate asymp—

totic normality of the estimator B of the SIP coefficient 00 in (4.1.1) are obtained. Proposi—

tion 4.2.2 is the key in understanding the efficiency of the proposed estimator. It shows that

the derivatives of the risk function up to order 2 are uniformly almost surely approximated

by their empirical versions.

Practical performance of the SIP estimators is examined via Monte Carlo examples.

The estimator of the SIP coefficient performs very well for data of both moderate and high

dimension d, of sample size n from small to large, see Tables 4.5 and 4.6, Figures 4.19,

4.20 and 4.21. By taking advantages of the spline smoothing and the iterative optimization

routines, one reduces the computation burden immensely for massive data sets. Table 4.6

reports the computing time of one simulation example on an ordinary PC, which shows that

for massive data sets, the SIP method is much faster than the MAVE method. For instance,
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the SIP estimation of a 200-dimensional 60 from a data of size 1000 takes on average mere

284 seconds, while the MAVE method needs to spend 2432.56 seconds on average to obtain

a comparable estimates. Hence on account of criteria (1) and (ii), our method is indeed

appealing. Applying the proposed SIP procedure to the rive flow data of Iceland, we have

obtained superior forecasts, based on a 9-dimensional index selected by BIC, see Figure

4.25.

The rest of this chapter is organized as follows. Section 4.2 gives details of the model

specification, proposed methods of estimation and main results. Section 4.3 describes the

actual procedure to implement the estimation method. Section 4.4 reports the main findings

in an extensive simulation study. The proposed SIP model and the estimation procedure

are applied in Section 4.5 to the river flow data of Iceland. Most of the technical proofs are

contained in Section 4.6.

4.2 The Method and Main Results

4.2.1 Identifiability and definition of the index coefficient

It is obvious that without constraints, the SIP coefficient vector 00 2 (00,1, ...,60,d)T is

identified only up to a constant factor. Typically, one requires that “90“ = 1 which entails

that at least one of the coordinates 00,1, ..., 60") is nonzero. One could assume without loss

of generality that 0041 > 0, and the candidate 60 would then belong to the upper unit

hemisphere Si“ 2 ((61,...,6d)|zg:1 0,2, = 1,0,, > 0}.

For a fixed 9 = (61, ...,od)T, denote X9 = xTo, X9, = xfe, 1 g i g 71. Let

mo (X0) = E (YlXa) = E{m (X) |X0}- (4.2.1)

Define the risk function of 0 as

12(0) 2 E [{Y — me mm?) = E {m(X) —- 1r1.9(X)5))}2 + E02 (X), (4.2.2)

which is uniquely minimized at 00 6 51—1, i.e.

90=arg min [{(B).

0631—1
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REMARK 4.2.1. Note that 51—1 is not a compact set, so a cap shape subset of 81-1 is

introduced

d

Sf!“ = (61,.--,6d)|26§=1,6d 2 x/1—-c2 .c e (0.1)

p=1

Clearly, for an appropriate choice of c, 60 6 511—1, which is assumed in the rest of the

chapter.

Denote 0_d = (61, ..., 6d__1)T, since for fixed 0 6 31-1, the risk function R (6) depends

only on the first d — 1 values in 6, so R (0) is a function of 9—d

R" (9-.» = R (61.62,...,ad-1,(/1 —- Ila—dig) ,

with well-defined score and Hessian matrices

32
c9

3* 0_ 2 ”__R* 6__ , H,“ 0_ : ___-___—

( d) ( d) ( d) 394397;)
6a,,

R“ (6—d)- (4.2.3)

ASSUMPTION (C1): The Hessian matrix H* (90,—d) is positive definite and the risk func-

tion R“ is locally convex at 60,—d: i.e., for any 6 > 0, there exists 6 > 0 such that

R* (6—d) — Rik (00,—d) < 6 implies ”B-d — 00,—dll2 < 8.

4.2.2 Variable transformation

Throughout this chapter, denote by B31 = {x 6 Rd |||x|| g a} the d-dimensional ball with

radius a and center 0 and

00°) (33) = {m lthe kth order partial derivatives of m are continuous on 83 }

the space of k-th order smooth functions.

ASSUMPTION (C2): The density function of X, f (x) 6 0(4) (831), and there are constants

0 < cf S Cf such that

ef/void (33) 3 f(x) 3 cf/void (83), x e Bf;l

f(X) —=— 0, x ¢ Bi '

For a fixed 9, define the transformed variables of the SIP variable X9

U9 = Fd(X0),Uo,i = Fd (X94) ,1 S i _<_ 72, (42-4)
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in which Fd is the a rescaled centered Beta {(d + 1) /2, (d + 1) /2} cumulative distribution

function, i.e.

_ "/0 I‘(d+ 1) 2 (d-1)/2
E) (V) —— [I P{(d +1)/2}22d (1 —- t ) dt,1/ E [—a, a]. (4.2.5)
 

REMARK 4.2.2. For any fixed 6, the transformed variable U9 in (4.2.4) has a quasi-uniform

[0, 1] distribution. Let f9 (21) be the probability density function of U9, then for any 11 E [0, 1]

f0 (u) = {112’i (vi) xx, (v), v = 171(1),

in which fxl9 (v) = limAVfio P(1/ S X9 S u + AV). Noting that 1139 is exactly the projection

ofx on 0, let 7),, = {xlu S 2:9 S u+Au}flBg, then one has

P(VSX9SV+AV)=P(X€’DV)=/ f(x)dx.

Du

According to Assumption (C2)

chold(’D,,)

Vold (3g)
<P <X < +21 < .
— (V— 9*” "L veid(Bg)

On the other hand

Vold(’DV) = Vold_1(,7V)Au + 0 (Au) ,

where JV 2 {xlxg : v} n 83. Note that the volume of Bf,i is nd/2ad/I‘ (cl/2 + 1) and

l~1 2

was (7,) = «(d—1V2 (a2 — V2)“ V / l“{(d+1)/2},

thus

 

VOl_(j1/)_ 1 F(d+1) 1/ 2 (“W

W—afignwfwll—(E) l '

Therefore 0 < C] S f0 (u) S Cf < 00, for any fixed 0 and u E [0, 1].

In terms of the transformed SIP variable U9 in (4.2.4), one can rewrite the regression

function mg in (4.2.1) for fixed 6

79 (U9) = Eim (X) We} = E {m (X) IXB} = "100(0), (42-5)

then the risk function R (6) in (4.2.2) can be expressed as

W) = E [{Y — 79 (U0)}2] = E (m (X) — ‘19 (Ueii2 + E02 (X). (4.2.7)
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4.2.3 Estimation Method

Estimation of both 60 and 9 requires a degree of statistical smoothing, and all estimation

here is carried out via cubic spline. In the following, define the estimator B of 60 and the

estimator f] of 9.

According to the definition of B-spline in Section 1.5 of Chapter 1, for fixed 0, the cubic

spline estimator ”)9 of 79 and the related estimator rho of me are defined as

n

79 (') = arg mi? 2: {Y1 - ’7 (U0,i)}21 771M”) = ’19 {Ed (V)}- (423)

7(')€G(2)l0»1li=1

Define the empirical risk function of 0

R

=n—IZ{Y 70 (,UOi)} 2114207,- The (,Xoi)}2 , (42-9)

i=1

then the spline estimator of the SIP coefficient 00 is defined as

B=arg min [2(6),

06 C"

and the cubic spline estimator of g is me with 6 replaced by 9, i.e.

)€G(2)l011i=1

§(u) = {arg ( min Zn:{Y— 7(U0.)}2} {Fd (u)}. (4.2.10)

4.2.4 Asymptotic results

The following are some other assumptions to achieve the main theorems.

ASSUMPTION (C3): The regression function m E 0(4) (33) for some a > 0.

ASSUMPTION (C4): The noise 8 satisfies E(5 IX) 2 O, E (82 IX) = 1 and there exists a

positive constant M such that sup E (IEI3 [X = x) < M. The standard deviation function

xEBd

o (x) is continuous on Bg,

0 < C0 S inf 0(x) S sup o(x) S Cg < oo.

x683 x6831

ASSUMPTION (C5): There exist positive constants K0 and A0 such that a (n) S K()e"’\0"

11

holds for all n, with the a-mixing coefficient for {Zi = (Xia,) } 1 defined as

1:

a(k)= sup |P(BflC)-P(B)P(C)|,k21.

B€o{Z3,sS t},CEo{Zs,s>t+k}
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ASSUMPTION (C6): The number of interior knots N satisfies: nl/6 << N <<

111/5 (log n)_2/5.

REMARK 4.2.3. Assumptions (C3) and (C4) are typical in the nonparametric smoothing

literature, see for instance, Hardle (1990), Fan and Gijbels (1996), Xia, Tong Li and Zhu

(2002). By the result of Pham (1986), a geometrically ergodic time series is a strongly

mixing sequence. Therefore, Assumption (C5) is suitable for (1.1.1) as a time series model

under aforementioned assumptions.

THEOREM 4.2.1. Under Assumptions (CU—(C6), one has

A

041—2 00,__d,a.s.. (4.2.11)

(X)

PROOF. Denote by (f2, 7:, 73) the probability space on which all {(X?, 13)} , 1 are defined.

1

By Proposition 4.2.2, given at the end of this section

 

sup it“ (0_d) — R' (B-dll —-+ 0,a.s.. (4.2.12)

lie-allhS ' 1'62

So for any 6 > 0 and w 6 9, there exists an integer no (to), such that when n > 120(w),

it“ (00,_d,w) — R“ (90,—d) < 6/2. Note that 6-)) = fi_d (w) is the minimizer of

Ti" (9_d,w), so f2" (fi_d (w) ,w) —- R“ (90,—d) < 6/2. Using (4.2.12), there exists n1 (w),

such that when n > n1(w), R“ (6_d(w),w) - ft“ (de (w),w) < 6/2. Thus, when

n > max(n0(w),n1(w)),

12* (a, (w) ,w) — 12* ((907)) < 5/2 + {2* (a, (w) ,w) — 12* (00,—2) < 5/2 + 6/2 = 6.

According to ‘Assumption (C1), R“ is locally convex at 90,—d: so for any 5 > 0 and any a), if

R“ (fi_d (w) ,w) — R“ (90,-d) < 6, then "9_d(w) —60,_.d“ < e for n large enough , which

implies the strong consistency. Cl

THEOREM 4.2.2. Under Assumptions (CU-(06), one has

“77(9-(1'904-(1) 41» N {0, 2 (00)},
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where Z (60) = {11* (90,..d)}T1 ‘1’ (60) {Hill (90:11)}

60) : {‘l’pqlggil with

1M 2 —2E [ (1,), + 790)”) (U90)] + 260,q6(;(11E[{’1’p')’d(U90) + 7902,14} ((190))

+2653E [(700711) (1190)] {(93,111 + 96,112) I{p=q} + 60.1260141{p#q}}

+260p60(11E [{TY”Yp'yq + 7607p,q} (U60)] — 26011360196661? [{7}2i + 700fid’d} (U00)] ,

= ... [1(1) -W) (4 — 412114)} (..,) he. (..,) — v12],
2

in which 7p and '71,” are the values of 33579, 33359-679 taking at 0 = 60, for any p,q =

H“ (60,—d): {lpq}pql:1 and

1,2, ...,d —— 1 and 79 is given in (4.2.6).

REMARK 4.2.4. Consider the Generalized Linear Model (GLM): Y = g (XTHO) + o (X) e,

where g is a known link function. Let 6 be the nonlinear least squared estimator of 00 in

GLM. Theorem 4.2.2 shows that under the assumptions (C1)-(C6), the asymptotic distri-

bution of the 6_d is the same as that of 6. This implies that the proposed SIP estimator

6_d is as efficient as if the true link function g is known.

The next two propositions play an important role in the proof of the main results.

Proposition 4.2.1 establishes the uniform convergence rate of the derivatives of ”)9 up to

order 2 to those of '19 in 6. Proposition 4.2.2 shows that the derivatives of the risk function

up to order 2 are uniformly almost surely approximated by their empirical versions.

PROPOSITION 4.2.1. Under Assumptions {C2)—(C6), with probability 1

 

  

sup sup Hg (u) — 79 (u)| = O {(nh)”1/210gn + h4} , (4.2.13)

96531-4 HEIOJ]

811p SUP max —{‘108 (U91) - 20 ((101)) = 0(10,——gn + '13) . (4-2-14)
l<p<d9€Sd— llSiSn 86p ’ ’ nh3

2

6
10 n

67—p86q{&0(U91i)—7
0(1U0i)=}| O(\/§fi— +h2) . (4.2.15)

PROPOSITION 4.2.2. Under Assumptions (C2)-(C6), one has for k : 0,1, 2

k

ak0_d

 sup sup max

151)q<d9€Sd— llSiSn  

 {12* (ad) — 12* (0-2)} = o(1),a.s..

 

 

sup

llmllsv 1-62

Proofs of Theorem 4.2.2, Propositions 4.2.1 and 4.2.2 are given in Section 4.6.
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4.3 Implementation

This section describes the actual procedure to implement the estimation of 00 and g.

We first introduce some new notation. For fixed 0, denote the B-spline matrix as

N

BO 2 {BjA (U0,i)l;:1,j=_3 and

-1

P9 2 By (Bng) B; (4.3.1)

as the projection matrix onto the cubic spline space 05,22). For any p = 1, ..., d, denote

Bp : _—

as the first order partial derivatives of B9 and P9 with respect to 6.

It is easy to see that the distribution function Fd in (4.2.5) satisfies

 

- d I‘(d +1) ( 1:2) 2

F'scz—Fz -— Ix<a. 4.3.2d() d, .1 ar{(d+1)/2}22d ..2 (ll_) ( )

Let S*(0_d) be the score vector of 13* (6_d), i.e.

“at a “at

S (6_d) = ———-—R (0_d). (4.3.3)

ao_d

The next lemma provides the exact forms of S“ (6_d).

LEMMA 4.3.1. For the score vector of 13* (6_d) defined in (4.3.3), one has

. . . d-l
3* (ad) —_- —n—1 {YTPPY — opeglvTPdY} 1 , (4.3.4)

p:

where for any p 21, 2, ...,d

r . . . -1

YI PpY : 2YT (I — P9) 3,, (3339) 3331, (4.3.5)

n,N

where Bp = {{Bj’3 (U0,i) — Bj+1,3 (U0,i)}Fd(X0,i)h—1Xi,p} 3 with Fd in (4.3.2)

i=l,j=—-

PROOF. For any p = 1, 2, ..., d, the derivatives of B—splines in de Boor (2001) implies

. a ( ) "(N d ( ) d "'NBp : {_ .4 (19).} :{_B.’4 U9. —Ue,'}

39p ’ ‘ i=l,j=—3 d“ J ,1 d9? 1 i=1.j=—3

N

B- u. B- U- - ..,3 1339“.) ‘ 231.2} .32) Fd(x9’i)Xi*”
t3+3 ‘3 5+4 t3“

izljz-3
n,N

H   

ll

{{Bj,3 ((19.1) " Bj+1,3 (U20) Fd (x912) hfilxi’p i=1j=-3°

78



Next, note that

Pp : Bp (Bng)—1 B; + Ba [52— {(B3B0)"1Bg}]

 
 

p

= 13,, (33130) B}; + B9 {29%; (335139) — } 133" + Bo (13,9 B9) 133,"

Since

a{ BTB -1BTB } r ‘1 __ :r
0 E ( 9 2p 9 o z 6032:?) 13ng + (Bng) 16(3)::39),

and 53; (Bgeg) 2 1'3ng + 3313,, thus

a —l -l . . —l

—— (3339) = — (3339) (BZ‘BQ + 333p) (3339) .
36,,

Hence

. . T —l T T —l . T

P, = (I — P9) 3,, (B,9 B9) B0 + B), (3939) 8,, (I — P9).

Thus, (4.3.5) follows immediately. El

In practice, the estimation is implemented via the following procedure.

Step 1. Standardize the predictor vectors {X3331 and for each fixed 6 E 33-1 obtain

the CDF transformed variables {U9,i}?=1 of the SIP variable {XeiiliLI through formula

(4.2. 5), where the radius a is taken to be the 95% percentile of {lle-II}?___1.

Step 2. Compute quadratic and cubic B-spline basis at each value U9,,~, where the number

of interior knots N is

N = min {c1 [ml/5"] ,cz}, (4.3.6)

Step 3. Find the estimator 6 of 60 by minimizing it“ through the port optimization

routine with (0,0, ..., 1)T as the initial value and the empirical score vector 6* in (4.3.4).

If at < n, one can take the simple LSE (without the intercept) for data {IQ,X,-}?___l with its

last coordinate set positive.

Step 4. Obtain the spline estimator g of g by plugging 6 obtained in Step 3 into (4.2.10).

REMARK 4.3.1. In (4.3.6), c1 and c2 are positive integers and [V] denotes the integer part

of u. The choice of the tuning parameter c1 makes little difference for a large sample and

according to the asymptotic theory there is no optimal way to set these constants. We

79



recommend using c1 = 1 to save computing for massive data sets. The first term ensures

Assumption (C6). The addition constrain oz can be taken from 5 to 10 for smooth monotonic

or smooth unimodel regression and c2 > 10 if has many local rninima and maxima, which

is very unlikely in application.

4.4 Simulations

In this section, two simulations are carried out to illustrate the finite-sample behavior of the

SIP estimation method. The number of interior knots N is computed according to (4.3.6)

with c; = 1, c2 = 5. All of the codes have been written in R.

4.4.1 Example 1

Consider the model in Xia, Li, Tong and Zhang (2004)

Y = m (X) + 0‘08, 00 = 0.3, 0.5, 51-?in N(0, 1)

where X = (X1,X2)T ~N(0,12), truncated by [~2.5,2.5]2 and

1/2

m (x) 2 31+ 2:2 + 4exp {— (2:1 + 3:2)2} + (501:? + 33%) . (4.4.1)

If 6 = 0, then the underlying true function m is exactly a single-index function, i.e., m (X) =

\/2XT60 + 4exp {~2 (XT60)2}, where 63‘ = (1,1)/\/2. While (5 75 0, then m is not a

genuine single—index function. An impression of the bivariate function m for 6 = 0 and

6 = 1 can be gained in Figure 4.18.

For 6 = 0,1, one hundred random realizations of each sample size n 2 50,100,300

are drawn respectively. To demonstrate how close the SIP estimator is to the true index

parameter 60, Table 4.5 lists the sample mean (MEAN), bias (BIAS), standard deviation

(SD), the mean squared error (MSE) of the estimates of 60 and the average MSE of both

directions. Horn this table, one sees that the SIP estimators are very accurate for both

cases 6 = 0 and 6 = 1, which shows that the proposed method is robust against the

deviation from single-index model. As we expected, when the sample size increases, the SIP

coefficient is more accurately estimated. Moreover, for n = 100,300, the total average is

inversely preportional to n.
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4.4.2 Example 2

Consider the heteroscedastic regression model (1.1.1) with

05{ —exp( "XII/«50)

°s+exp(uxn/f)

 m (X) = sin (ng00) , o (X): (4.4.2)

in which x,- = {X,-,1,...,X,-,d}T and 5,, i = 1,. ,,n are '~ N(0,1), do = 0.2. In this

simulation, the true parameter 60 = (1, 1,0, ...,0, l)/ \/3 for different sample size n and

dimension d. The superior performance of SIP estimators is borne out in comparison with

MAVE of Xia, Tong, Li and Zhu (2002). We also investigate the behavior of SIP estimators

in the previously unexplored cases that n is smaller than or equal to d, for instance, n =

100,d = 100, 200 and n = 200,d = 200,400. The average MSEs of the d dimensions are

listed in Table 4.6, from which one sees that the performance of the SIP estimators are quite

reasonable and in most of the scenarios n S d, the SIP estimators still work astonishingly

well where the MAVEs become unreliable. For n = 100, d = 10, 50, 100, 200, the estimates

of the link prediction function from model (4.4.2) are plotted in Figures 4.20 and 4.21, which

are rather satisfactory even when dimension exceeds the sample size.

Theorem 4.2.1 indicates that 6_d is strongly consistent of 60’_d. To see the convergence,

we run 100 replications and in each replication, the value of “6 —- 6OII/ \/d is computed.

Figures 4.22 and 4.23 plot the kernel density estimations of the 100 “6 — 60" in Example

2, in which dimension d = 10,50, 100,200. There are four types of line characteristics:

the dotted-dashed line (n = 100), dotted line (n = 200), dashed line (500) and solid line

(n = 1000). As sample sizes increasing, the squared errors are becoming closer to 0, with

narrower spread out, confirmative to the conclusions of Theorem 4.2.1.

Lastly, Table 4.6 reports the average computing time of Example 2 to generate one

sample of size n and perform the SIP or MAVE procedure done on the same ordinary

Pentium IV PC. Horn Table 4.6, one sees that the proposed SIP estimator is much faster

than the MAVE. The computing time for MAVE is extremely sensitive to sample size as we

expected. For very large (1, MAVE becomes unstable to the point of the breaking down in

four cases.
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4.5 Application

In this section the proposed SIP model is demonstrated through the river flow data of

Jékulsa Eystri River of Iceland, from January 1, 1972 to December 31, 1974. There are

1096 observations, see Tong (1990). The response variables are the daily river flow (Yt),

measured in meter cubed per second of Jékulsa Eystri River. The exogenous variables are

temperature (Xt) in degrees Celsius and daily precipitation (Zt) in millimeters collected at

the meteorological station at Hveravellir.

This data set was analyzed earlier through threshold autoregressive (TAR) models by

Tong, Thanoon and Gudmundsson (1985), Tong (1990), and nonlinear additive autoregres-

sive (NAARX) models by Chen and Tsay (1993). Figure 4.24 shows the plots of the three

time series, from which some nonlinear and non-stationary features of the river flow series

are evident. To make these series stationary, the trends are removed by a simple quadratic

spline regression and these trends (dashed lines) are shown in Figure 4.24. By an abuse of

notation, we shall continue to use Xt, Yt, Z; to denote the detrended series.

In the analysis, we pre-select all the lagged values in the last 7 days (1 week),

i.e., the predictor pool is {Yt_1,...,Yt_7,Xt,Xt_1,...,Xt_7,Zt,Zt-1,...,Zt_7,}. Using

BIC similar to Huang and Yang (2004) for the proposed spline SIP model with 3

interior knots, the following 9 explanatory variables are selected from the above set

{Yt_1,...,Yt_4,Xt,Xt_1,Xt_2,Zt,Zt_1}. Based on this selection, we fit the SIP model

again and obtain the estimate of the SIP coefficient

0 = {—O.877, 0.382, —O.208, 0.125, —0.046, —0.034, 0.004, ~0.126, 0.079}T.

The first two plots of Figure 4.25 display the fitted river flow series and the residuals against

time.

Next we examine the forecasting performance of the SIP method. We start with esti—

mating the SIP estimator using only observations of the first two years, then we perform the

out-of-sample rolling forecast of the entire third year. The observed values of the exogenous

variables are used in the forecast. The last plot of Figure 4.25 shows the SIP out-of—sample

forecasts. For the purpose of comparison, the MAVE method is also used, in which the
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same predictor vector is selected by using BIC. The mean squared prediction error is 60.52

for the SIP model, 61.25 for MAVE, 65.62 for NAARX, 66.67 for TAR and 81.99 for the

linear regression model, see Chen and Tsay (1993). Among the above five models, the SIP

model produces the best forecasts.

4.6 Proof of The Theorems

4.6.1 Preliminaries

In this section, some properties of the B-spline are introduced.

LEMMA 4.6.1. For each 0 < r g 00, there exist constants c > 0 such that for each spline

combination 2?]:_k+1 aj,kBJ-,k up to order k = 4, one has

4 N' _ 1r

cal/111a"...||Z1._221-_1..1a1,81.1,31.”(3' 11.) / Han... 1<r<oo

chl/rllallrsllZi-221—1“ a11.B11..||,s((3h)‘/’nau.1 0<r<1

where a:=(a 1 2,002, ...,aNQ, ...,aNA). In particular, under Assumption A2, for any

fixed 0, one has

4 N

l 2
ch / ”an2 3 Z Z aj,1,B,-,,, g Gill/2 ”an2

PROOF. It follows from the B-spline Property on page 96 of de Boor (2001),

22:2 29”:_k+1 B“: E 3 on [0,1]. So the right inequality is immediate for r = 00. When

1 g r < oo, Holder’s inequality implies that

4 N 4 N V” 4 N 1’1”

Z Z 0111:3231: E Z Z Ian-V3131: Z Z 3ch
k=2j=—k+1 k=2j=—k+1 k=2j=—k+1

4 N l/r

31-111 2 Z lc’j1leBj1k
k=2j=~k+1

Since all the knots are equally spaced, f_oo 83-k (u) du S h, the right inequality follows

from
T

[01: Z (51,8301)d'ug3r"l1||a||;.

k:2j=—k+1
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When r < 1, one has

4 N T 4 N

Z Z “1kach S}: 2 laskerr

k=2j=—k+l k=2j=—k+l

SincefoO00 Bjk(u)(lugtj+k-tj=khand

r

00

A12 2 “MBNC (11) dug llall;/;ooB;’k (u)du§3h||a||;,

k:2j=——k+l

the right inequality follows in this case as well. For the left inequalities, Theorem 5.4.2,

DeVore and Lorentz (1993) implies that

r

la,,k| gel/1 / Z 01,1811. (11) du

j j=-k+1

for any 0 < r g 00, so

7'

la- |r<Crh'1/tj+l Z d
Jfi — l ajkB],k (u) u'

ti j=—k+l

Since each u E [0,1] appears in at most 10 intervals (tj,tj+k), adding up these inequalities,

one obtains that

T N T

j+k _

||a||;golhIZ/t: Z a,,,B ()u 111133011 1 . Z 01MB”

j=—k+l j=~k+1 r

The left inequality follows. [:1

For any functions <15 and (,0, define the empirical inner product and the empirical norm

1 n

(<1. «19>. = [0 .11.),111111191111111, 11115113,... = ...-I Z 152 (U...) .
i=1

In addition, if functions 43,1p are L2 [0, l]-integrable, define the theoretical inner product and

its corresponding theoretical L2 norm as

“11111311: /(11> (1111110111111 (11 10>..11=n21501111) «pa/11.)-
i=1

LEMMA 4.6.2. Under Assumptions {02), (C5) and (CG), with probability 1,

 

sup max <Bj‘k, BjI k’> - <Bj,k1lek/> I: O {(nN)"l/2 log n} .

d— lk,k’ =2,3,1 ' ’ 7%9 ’ 9
QESC

1<j1j'<N
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PROOF. \Ne only prove the case I: = k' = 4, all other cases are similar. Let

(03,343 = BM (Urn) 314,4 (119,1) — E3334 (U0,i) 334,4 (”0,0 ,

with the second moment

I 2

EC; = E [312,4 (110,1) 332-54 (1103)] * {33334 (U93) 334,4 (U0,i)} ,.1143

2

where {1313,34 (09,-) 3,4,4 (U9,,-)} ~ N-2 and E [3%, (09,-) 312,,4 (U9,,)] ~ N-1 by As-

sumption (C2). Hence, EC: . ., . ~ N‘l. The k-th moment is given by

’1!) )2

k
k

E Ing'J-IJI = E lBjA (Ugfi') 3.7-[’4 (Ugfl') - EBj,4 (119.1“) le’4 (U9,i)l

k
k

S 2k_1 {ElBj14 (U9,i)Bj’,4(U91i)| + EBJ'A (Ugfl') le’4 (U0,i)| } 1

 

I:

N N‘1 by As-

Ik

where

k

N N‘k, E lEBM (09,1) le,4 (UM)
  
53134 (09,1) le,4 (UM)

sumption (C2). Thus, there exists a positive constant C such that E|C0,j,j’,i

 

<

Ck“1k!E(§j, .. So the Cramér’s condition is satisfied with Cramér’s constant c*. By

1

Lemma 2.6.2, one has for k = 3

1 n (1(52 n 6/7p f .. . >6 <a ex — n +0 ka([-—]) ’1 g (01.70/12 _— n — l p 257713 + 5C*6n 2( ) q + 1

where

1 62 .N ‘11 2
6n=60gn,a1=22+2(1+ (n ) 0g n),m%~N_l,

q

 

  

  

 

x/nN 25mg + 5min

‘ "lg/7 1/3
3 = 11 1 , - = . I .. . <cN .

a2( ) n + 6n m3 1???” (add/,1 3 '-

   

Observe that 506,, = 0(1) by Assumption (C6), then by taking q such that [5%] 2 c0 log n,

q 2 cm/ logn for some constants (20,01, one has a1 = 0(n/q) = 0 (log n), a2 (3) = 0 (112)

via Assumption (C6) again. Assumption A5 yields that

6/7 6/7

. _L _ " “6*000/7

0(lq+1l) S {KOCXP( AOlq+1l)} SC” '

Thus, for fixed 0 6 521—1, when 71 large enough

1 n

P {'5 241401121
1,:

 

  

> 6"} g clog 11 exp {-(:262 logn} + Cn2-6AOCO/7. (4.6.1)
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\Ne divide the d — 1 intervals into nG/(d‘l) equally spaced intervals with disjoint endpoints

—1 = 61W < 6N < < 6AM” = 1, for p = 1,...,(1— 1. Projecting these small cylinders

onto 82*, the radius of each patch Ar, 1' = 1, ...,Mn is bounded by CM; 1. Denote the

 

projection of the Affn points as 9,. = (0,._d, \/1 — “0,.fling), r = O, 1, ..., Mn. Employing

the discretization method, sup axICQ [ii is bounded by
d—l 1<mI<N 1],],

065C _jij

sup ICG I + sup max sup ICO - .1 . -— C - 4 - . (4.6.2)

0<r<Mn1<jj’<N r’j‘j’i O_<_r<Mnl<jj’<N9€A ’3’] ’1 9”“ ’1

By (4.6.1) and Assumption (C6), there exists large enough value 6 > 0 such that

1 n —10

PI; Egan"; >5"} 3” ,
z:

n (X) 00

""1 ZCGrJ’J'd 3 5n} S 2 Z ”WW—10 5 C2 "‘3
[:1 n=1 11:1

Thus, Borel—Cantelli Lemma entails that

71

lo n-12 g

71 ' ' ’ : O ,a-So- 4.6-3

[:1 (91‘1313’11 ( GEN) ( )

Employing Lipschitz continuity of the cubic B-spline, one has with probability 1

  

which implies that

00

ZP{ max

1121 H
ISJJ’SN   

sup max

O<r<Mn l<j,jI<N

 

  

  

n

-l —l —6
sup max sup {C - -/ - —( . -/ } = O (M h ) . (4.6.4)

0<r<A/Inl<j,j<N9€A1-n; 0’“ ’2 0r,“ ’1 n

Therefore Assumption (C2), (4.6.2), (4.6.3) and (4.6.4) lead to the desired result. [:1

Denote by G = C(O) U C“) U 0(2) the space of all linear, quadratic and cubic spline

functions on [0,1]. We establish the uniform rate at which the empirical inner product

approximates the theoretical inner product for all B-splines Bj,’c with k = 2, 3, 4.

LEMMA 4.6.3. Under Assumptions (C2), (C5) and (C6), one has

(71,72)n,0" (7172M:
An: sup sup

065g—171,726C: “’71 ”2,9 ll72l|2,9

 O{(nh) ”2 logn} . (4.6.5)

 

PROOF. Denote without loss of generality,

4 N 4 N

71:2_Z 09-1811an 2 £31an
—k+l k=2j=~k+1

86



for any two 3 (N + 3)-vectors

a I (C!_1,2,0’0,2, "HO/1V2) "'1aN,4)1fi : (fl—1,2)fi0,23 "'1fiN,2) "'HBNA) -

Then for fixed 6

4 N

(71,72)n,9 = 1 Z Z 013', Bj,k(U0,i) Z Z IBj,Bk],k (,U9z')

i=1 Nk=2j=——k+l k:2j=—-k+1

4 4 N
: Z: Z_Z aJkfilecl <Bj,kile,k’>n’g’

N

“3:4,.a,,,.,<s.,.,a,,,,>,,

N

“:2“:fljdkfi1k1< Bjkilek,>9-

According to Lemma 4.6.1, one has for any 9 E 33!“,

2

ll71||2,9

2

ll72ll2,0 :

<1h||0l|2_ l|71||2,_9< C2hllal|2161hllfill2_< ||72||2,9_< C2hllfill2,

Cih llall2 llfillz S ll711l2,9||72l|2,9 S Czhllall2 llfill2.

Hence

llalloo llfilloo

‘ 61h llallz llfillz

(711 72)n,0 - <71)72)9

ll71ll2,9”72ll2,9

 An = sup sup

aesg—l 7167,7261‘   

  

1 n

x sup -Z{<Bjk’Bj’k[>11 "<Bj,kiB.lk,> },

96391k,km=2,,34 "2:1 n, 1* 9

l_<_j,j/<N

1 n

AnSCOh-l sup —2 <Bjk’Bj’k,> _<Bj,k,B,Ik,> ,

add—M11234 "i=1 n,9 3' 9   
l<jjI<N

which, together with Lemma 4.6.2, imply (4.6.5).

4.6.2 Proof of Proposition 4.2.1

For any fixed 6, write the response YT: (Y1, ..., Y”) as the sum of a signal vector 79, a

parametric noise vector E9 and a systematic noise vector E, i.e.,

Y=79+E3+E,
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in which the vectors 7?; 2 {79(U0,1),...,79(U9,n)}, ET = {o (X1)51, ...,o(Xn)5n} and

E2; = {m(xl) - ‘19 (Um) (X...) -— 7'9 (Ua,n)}.

REMARK 4.A.1: If m is a genuine single-index function, then E90 E 0, thus the proposed

SIP model is exactly the single-index model.

Let ng be the cubic spline space spanned by (B334 (U93) }?=1’ —3 S j S N for fixed

6. Projecting Y onto 051mg yields that

A ,. .. T . . .

‘79 = {70(U0,1)2 --‘170(U0,n)} 2 FIG] (2) ’79 + PTO] (2)139 + FIG] (2) E,

C G G
n,0 n,0 11,0

where ”ya is given in (4.2.8). We break the spline wtimation error ’3’0 (no) — 79 (11.9) into a

bias term ’79 (no) — 79 (no) and two noise terms E9 (no) and £9 (1L0)

39 (U9) - 79 (U9) = {39 (U9) - 79 (U9)} + 5‘9 (U9) + 3‘9 (U9) , (45.6)

where

59 (U) I {33,4 ONES-9v V39 {(79, Bj,4)n,g}:.:_3, (4-6-7)

69 (u) = {9,34 (u) [39.1:N v;}, {(Eg, 31.4)",9}:_3 , (4.6.8)

5-59 (u) = {Bji4(u)}1—13;<_jSN V7119 {(E, Bj,4>n,0}:___3‘ (4.6.9)

In the above, denote by Vmg the empirical inner product matrix of the cubic B-spline basis

and similarly, the theoretical inner product matrix as V9

N N

,v ={(B. ,B- > } . 4.6.10
3 0 3,,4 ],4 0 jJ’Z-3 ( )

The next lemma is a special case of Theorem 13.4.3 in DeVore and Lorentz (1993).

1 TV =_ = < . B- >
n,0 nBaBH { BJIA’ 1,4 "’9}j,j’=*

LEMMA 4.6.4. If a bi-infinite matrix with bandwidth r has a bounded inverse A"1 on [2 and

K. = m(A) := ||A||2 “A4“2 is the condition number of A, then ||A_1||oo 3 200(1— u)—l,

with CO = u-2r ”14-1”, 11 = (n2 _1)‘/4"(n2 +1)*‘/4’.

LEMMA 4.6.5. Under Assumptions (CB), (C5) and (C6), there exist constants 0 < CV < CV

such that cVN-l nwng g wTvgw g ovN-l “ng and

N‘1 2< Tv <C N’1 2 4611cv llWll2 _ w n,9W ._ v ”W112 .a.s., ( - - )
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with matrices V9 and Vn,0 defined in (4.6.10). In addition, there exists a constant C > 0

such that

sup “V1?” _<_CN,a.s., sup ”VB—1” SC'N. (4.6.12)

BeSg'l 00 9652i—1 00

PROOF. First we compute the lower and upper bounds for the eigenvalues of Vnfl.

Let w be any (N+4)-vector and denote 7w (u) = 29,:_3 ijJ'A (u), then ng =

{7w (UgJ) , ...,7w (U9,n)}T and the definition of An in (4.6.5) from Lemma 4.6.3 entails

that

2 T 2 2

lhwll2,9 (1 — An) S W Vn,9W = ||7w||2,n,9 S ||7w||2,9 (1 + An)- (4-5-13)

Using Theorem 5.4.2 of DeVore and Lorentz (1993) and Assumption (C2), one obtains that

2

N

C 2 C 2

cm uwng s “mute = WTV9W = Z ijJ-A 3 01,91le6. (4.6.14)

i=‘3 29

which, together with (4.6.13), yield

cfoN-l “w“; (1 — An) g wTv'nflw _<_ ofozv-l nwug (1 + A"). (4.6.15)

Now the order of An in (4.6.5), together with (4.6.14) and (4.6.15) implies (4.6.11), in which

cv = ch, CV = CfC. Next, denote by Amax (Vmg) and Ami“ (Vmg) the maximum and

minimum eigenvalue of Vn’g, simple algebra and (4.6.11) entail that

Cl/(V—1 _>.. ”Vnflllz : )‘max (Vnfl) 1| V8119 2 : Aaliln (Vnfl) .<_ clea “-3-:
   

thus

K :2 “V71,9||2 “Va-folk = )‘max (Vnfl) All?" (Vnfl) S CVCT/l < 00,05"

Meanwhile, let wj = the (N + 4)-vector with all zeros except the j—th element being 1, j =

—3, ..., N. Then clearly

Tl

1 .

WJTVnflWJ' 2 ; 2332,4(1103') = “324“:9 2 llellz : 1’ ‘3 S J -<— N

i=1

and in particular

WgV71,9W0 S )xmax (Vmg) “WOll2 = Amax (vnfl) 1

WZ‘3‘ln,(le--3 2 )‘min (Vnfl) ”w—3ll2 : )‘min (Vnfl) -
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This, together with (4.6.5) yields that

TV W ”BO 4”2 ”Bo 4”2 l— A
F:)\ 2 V /\—.l V 2 WO 11,9 0 :—-—,——n’-0—> , 0 n1

“ "M "(9) .....< '1’”) wax/...“.-. Ila—3,413..) ‘ Ila—3.413 1 + A,
  

which leads to a 2 C > 1,a.s. because the definition of B—spline and Assumption (C2)

ensure that ”80,4“; _>_ C0 "843,4“: for some constant (C0 > 1. Next applying Lemma

4.6.4 with u = (n2 — I)”16 (n2 + 1).”16 and c0 = u‘8 ”V;},|l2, one gets “V’Zblloo g

21/”8N(1 — u)"1 2: CN,a.s.. Hence part one of (4.6.12) follows. Part two of (4.6.12) is

proved in the same fashion. [:1

In the following, denote by QT (m) the 4-th order quasi-interpolant of m corresponding

to the knots T, see equation (4.12), page 146 of DeVore and Lorentz (1993). According to

Theorem 7.7.4, DeVore and Lorentz (1993), the following lemma holds.

LEMMA 4.6.6. There exists a constant C > 0, such that for O S k S 2 and 7 6 C(4) [0,1]

[[6 -- QT 6W” 3 0 ”7(4)” h”,
00 oo

LEMMA 4.6.7. Under Assumptions (02), (C3), (C5) and (C6), there exists an absolute

constant C > 0, such that for function 370(11.) in (4.6. 7)

  

    

  

 

 

dk

sup —-—- (99 - 79) g C 772(4)” h4_k,a.s.,0 g k g 2, (4.6.16)
Sd‘l duk oo .

Re c 00

PROOF. According to Lemma 2.3.3, there exists an absolute constant C > 0, such that

sup Ina — you... s C sup inf u) — is"... _<_ C||m(4)|| h4.a.s.. (4.6.17)

96353—1 9633—1760 2) 00

which proves (4.6.16) for the case k = 0. Applying Lemma 4.6.6, one has for O _<_ k g 2

(1" 4 - _

sup ———k- {QT (79) - '79} S C sup "7(9 )” h4 k S C “mm” h4 k, (4.6.18)

(1.] du _1 00 00

065C 00 96 C

As a consequence of (4.6.17) and (4.6.18) for the case I: = 0, one has

 

 
sup "won—6910030 mm” h4.a.s.,

CD

9653—1

which, according to the differentiation of B-spline given in de Boor (2001), entails that

k

    
  

d

sup “7; {QT (79) — 59} g 0 771(4)“ h4~k,a.3., 0 _<_ k g 2. (4.6.19)
(1-1 du 00

9686 00

Combining (4.6.18) and (4.6.19) proves (4.6.16) for k = 1,2. C]
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LEMMA 4.6.8. Under Assumptions (C1), (C2), (C4) and (C5), there exists an absolute

constant C > 0, such that

8

551—259(0),» - 79 (U0,i)}?:1 00 S Csup SUP

< < .d—     
  

"1(4)” 19, 0.8., (4.6.20)
00

92 1

m{’79 (U93) — 79 ((193));
   

sup sup l S C “m(4)“ h2,a.s.. (4.6.21)

ISPflSdgegg—l 00 0°

PROOF. According to the definition of 79 in (4.6.7), and the fact that QT (79) is a cubic

spline on the knots T

{(4% (79) - 79}(U9,i)}?=1 = P9 {{QT (79) — 79}(U9,i)},:1,

which entails that

5%; {{9T (79) — n} (09,.) )2; = 552-30 {{QT (79) ‘ U}(U94)}?=1

= 6,, {an (79) — 79}(l]0,i)}:;1 + P953; {{QT (79) — vo}(Uo,.->}?=1-

Since

2:1

819,, “Q?“ (79) — 79} (U0,i)}?:1 Z {{QT (3?;79) _ 53;”) 0194))“

+ (Ed; {QT (79) - 79} (U92) Xip}:=li

applying (4.6.19) to the decomposition above produces (4.6.20). The proof of (4.6.21) is

similar. Cl

LEMMA 4.6.9. Under Assumptions (CS), (C5) and (C6), there exists a constant C > 0 such

that

-l T -l°T
sup ”n B9” $Ch,a.s., sup sup ”n Bp“ SC,a.s., (4.6.22)

963;"1 0° ‘SP‘Sdoesg‘l 0°

sup “Pg“oo gC,a.s., sup sup "Pp“OOSCh—l,a.s.. (4.6.23)

9632-1 1SPSdassg‘l

PROOF. To prove (4.6.22), observe that for any vector a 6 R", with probability 1

n

”*1 Z 8,7,4 ((10,1')

i=1

  

—l T

n B a“ < a max
9 — ll ”00

<Cl (4,93,, _ luau...
  

1141.353”

00
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< llalloo nhLZUB3,3 Bj+l3) ((199)) Fat (X92) Xi,p S Cilalloo'

To prove (4.6.23), one only needs to use (4.6.12), (4.6.22) and (4.3.1). Cl

—3<j<N

  

LEMMA 4.6.10. Under Assumptions (C2) and (C4)-(C6), one has with probability 1

 

      

 

BTE " 16
9 _1 gn

— = B- U - x. - =0 , 4.6.24

n .2. M W )2 (m) < >C _

9 BTE BTE
sup sup -— —Q— = sup sup —p— :O(logn). (4.6.25)

13105496531“1 86” n 00 13099635?“1 00 Vnh        

Similarly, under Assumptions (C2), (C4)-(C6), with probability 1

 

     

 

  

BTE9

sup 9 = sup 3rr<1a§N——Z Bj4 (U9 2') {m (X,- ) — 79 (U9i)}l

965;!"1 00 965g 1 — J

logn)

0 , 4.6.26

(VnN ( )

BTE
sup sup 1 9 0 = O (logn) ,a.s.. (4.6.27)

lgpgd 96521—1 59p U 00 \/nh
    

PROOF. We decompose the noise variable 8,- into a truncated part and a tail part 5,- =

8,01" + 5,.2" + mp", where Dn = n" (1/3 < 1} < 2/5), 5,01" = 5,1{Ieil > Dn},

ED2n—-— EiIHEiI < Dn} “‘ 7712'DnamDn—“EIE1I{|EiI < Dn} [Xi]

It is straightforward to verify that the mean of the truncated part is uniformly bounded by

D,’,‘2, so the boundedness of B-spline basis and of the function 02 entail that

= o (1);?) = o (71—2/3) .sup 3:12:31); (U9i) 0(Xi) m?"

965d 1  

The tail part vanishes almost surely

CX) OO

Epilgnl > Dn} S 201:3 <00

n=l n21

Borel-Cantelli Lemma implies that

_ZBJ4 (U9,-)oo(,-z.X)e,ln =O(n~k),foranyk>0.
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For the truncated part, using Bernstein’s inequality and discretization as in Lemma 4.6.2

sup sup n1sz4 U9),- (X0510; = 0 (log n/x/nN) ,a s

965914 131'SN '

Therefore (4.6.24) is established as with probability 1

= o(n"2/3) +0(n_k) +0 (logn/W) = 0(logn/\/1_t—N—).

 

 

iBTEsup

96Sd— l

The proofs of (4.6.25), (4.6.26) are similar as E (m (Xi) — 79 (U91') |U9i} E 0, but no trun-

   IOO

cation is needed for (4.6.26) as sup 1219.?” Im (X- ) -— 79 (U9,)| < C < 00 Meanwhile,

d- l 7'
968C

to prove (4.6.27), we note that for any p = 1, ..., d

N

6

agP(BTE9):{:j—'la9pBJi4U91){m(Xi)_ ’79 (U9,i)}l}

According to (4.2.6), one has 79 (U9) E E {m (X) |U9}, hence

j=—3

E [9,, (U9) {m (X) — 79 (U9)}l s 0, —3 s ,- _<. N.9 e st“.

Applying Assumptions (C2) and (C3), one can differentiate through the expectation, thus

(9 . __

13(59;[Bj,4(U9){TU(X)-79(U9)}]}EO,1_<_de,-3SJSNflESg 1.

which allows one to apply the Bernstein’s inequality to obtain that with probability 1

N

{n1 23—19%“ (U9)-Hm (Xi,)-79(U9.-)}]} =o{(nh)-1/2iegn},

j=—3 00

which is (4.6.27). [3

LEMMA 4.6.11. Under Assumptions (C2) and (C4)—(C6), for £9 (u) in (4.6.9), one has

sup sup IE9 (11)] = O {(nhrl/2 log n} ,a.s.. (4.6.28)

96 gd—l U€[0,1]

--c

-1

PROOF. Denote 6 E (6-3,...,6N)T=(B§BB) 133E = v;},(n-lBTE), then

3‘9 (u) = Zf;_3 6,3,), (u), so the order of E9 (u) is related to that of a. In fact, by

Theorem 5.4.2 in DeVore and Lorentz (1993)

sup sup Iég(u)l S 3‘11) llélloo:

  

sup "ng (n—lBg‘E) N 3 CN sup n‘lB'GI‘EH , a s

oesg‘l 0° 965:.”1 0°
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where the last inequality follows from (4.6.12) of Lemma 4.6.5. Applying (4.6.24) of Lemma

4.6.10, one has established (4.6.28). 1]

LEMMA 4.6.12. Under Assumptions (C2) and (C4)-(C6), for E9 (u) in (4.6.8), one has

sup sup IE9 (u)| = 0 {(nh)_l(2 log n} ,a.s.. (4.6.29)

OESg—‘l ILEIO,” .

The proof is similar to Lemma 4.6.11, thus omitted. C]

The next result evaluates the uniform size of the noise derivatives.

LEMMA 4.6.13. Under Assumptions (C2)-(C6), one has with probability 1

 

  

sup Esup max ——5 U = 0{ nh3 _1/210 11}, 4.6.30

8

sup sup max ——-—59 (U92') =0 {(nh3) ”2 log n} (4.6.31)

l<p<d0€Sd-l l<i_<_n 09p

su ‘92 _ 5 —1/2
p sup max 59(U9,) =0 ()nh logn , (4.6.32)

1<pq<d9€8d- 1 l<i_<_n 69,,89459

sup 6_sup max __(9__2 =0 {(nh5)1/2 log n} (4.6.33)

  

PROOF. Note that

8e (U ) n =(I—P)B(BTB)~1BTE+B (BTB )_IBT(I—P )E36 9 9,5 9 p 9 9 9 9 9 9 p 9 -

P i=1

Applying (4.6.24) and (4.6.25) of Lemma 4.6.10, (4.6.12) of Lemma 4.6.5, (4.6.22) and

(4.6.23) of Lemma 4.6.9, one derives (4.6.30). To prove (4.6.31), note that

3 n 3 . 6

U = —— P = P —— = T 4.6.34{ET-9;“ 9,i)}i:1 69p{ 9E9} 9139 + P939;)139 T1 + 2, ( )

in which

T1 ((1 —- P9) 13,, — B9 (3313,) BT39}(}(BTB9)_ B9E9

ll   

1
(I—P9)Bp—B9()

—1

BT0B9 8

94

B339)“851:}(11(11:39) lBg‘Eg

71

£913

En”)

 

 



By (4.6.24), (4.6.12), (4.6.22) and (4.6.23), one derives

sup ||T1||00 = 0 (11"1/2N3/2 log n) ,a.s., (4.6.35)

GeSg‘l

while (4.6.27) of Lemma 4.6.10, (4.6.12) of Lemma 4.6.5 .

sup “TZHOO = N x 0 (n-1/2h_1/2logn) = 0 (n'lflh-3/2 log n) ,a.s.. (4.6.36)

BESd—l
C

Now, putting together (4.6.34), (4.6.35) and (4.6.36), one can establish (4.6.31). The proof

for (4.6.32) and (4.6.33) are similar. Cl

PROOF OF PROPOSITION 4.2.1. According to the decomposition (4.6.6)

(39(10— ’79 (U)| = |{i9 (U) - 79 (u)} + 59 (U) + g39(11)| -

Then (4.2.13) follows directly from (4.6.16) of Lemma 4.6.7, (4.6.28) of Lemma 4.6.11 and

(4.6.29) of Lemma 4.6.12. Again by definitions (4.6.8) and (4.6.9), we write

8 8 6 8
-...__. * _ U . :_._ ~ _ . .~ . _“ . .
99p {(79 79) ( 9.2)} 86,, (79 79) (U92) + 86,,“ (U99) + 86,,89 (U9“)

It is clear from (4.6.20), (4.6.30) and (4.6.31) that with probability 1

sup sup max

1<p<d96Sd— 11<i<na 
82p (‘79 - '79) (U6,i)l = 0 (’13) ,

    

9 9 -—1/2

~ U U _ o h3 1 .

12229962?11<?an{ 5995M 0i)+ 899%8“ O’i) } {(n ) Ogn}

Putting together all the above yields (4.2.14). The proof of (4.2.15) is similar. El

4.6.3 Proof of Proposition 4.2.2

LEMMA 46.14.. Under Assumptions (02)-(C6), one has

sup 1[133(0) — RB()l = o(1),a.s..

0656

PROOF. For the empirical risk function 13(0) in (4.2.9), one has

{a (9) __- 91299919,.) — (x9 — 0 (X0692
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n

= n'1 2 {79 (119,1) - 79 (U6,i) + 79 (U99) —' m (Xi) - 0 (X,)e,~}2,

i=1

hence

Ii (0) = 7171::{79 (U0,i) - 79 (1199)}2 + "“1 :02 (X05?

i=1 ' i=1

+2971 2 {790199) - 79 ((19.2)) (79019.9) — m (Xi) * 0 (Xi) 5,}

i=1

+n_12(’y9 (U99) — m (X0)2 + 271—1 E {’76 (U0,i) " 7710(1)} ‘7 (Xil5i,

i=1 i=1

where ’y9 (51:) is defined in (4.2.8). Using the expression of R (6) in (4.2.7), one has

sup |R(6) -— R(0)| 3 11+ 12 + 13 + I4,

 

  

Gesg’l

with

n 2

11 = SUP 7712(790/99) -79(U9,i)} '

9esg'1 £21

11

12 = SUP 2n‘12{79 (Hos) - 79 (U6,i)} {79 (U99) — m(Xi) - 0(Xi)€i} .

OESd_1 i=1
C

n 2
13 = SUP ””1 Z {79 (U0,i) — m(Xi)} - E {79 (U9) - m(X)}2 ,

Besg—l i=1  

+

 

}.

13 + 14 = 0(1),a.s.. (4.6.37)

 

1 n

— Zn? (xae? - E02 (X)
2—1

n.

  

2 Tl

14 = SUP { :5 Z {79 (U93) - 7" (X0) 0 (Xi)€i

96531—1 i=1

Bernstein inequality and strong law of large number for a mixing sequence imply that

Now (4.2.13) of Proposition 4.2.1 provides that

sup sup H9 (u) — '79 (u)| = 0(n‘l/2h71/2logn + 714) ,a.s.,

C

which entail that

11 = 0 { (n_1/2h—1/2 log n)2 + (h4)2} ,a.s., (4.6.38)

11

12 S 0 {(1Lh)71/2 logn +114}>< sutp 1211‘lZI'7'9(U9,,-)— 1n(X,-) — a (X,) 52".

GESC‘ i=1

96



Hence

[2 g 0 (77—1/2h71/2logn + h4) ,a s

The lemma now follows from (4.6.37), (4.6.38) and (4.6.39) and Assumption (C6).

LEMMA 4.6.15. Under Assumptions (CB) - (06), one has

sup sup

Oesg‘llspsd   

a ,. _ n

331-113(9) — R(9)} — 71 1;:15994;

in which

. (9 8

€6,239 2 2 {79 (U99) — Yi} 53—9970 (U6,i)" 8010120) E(€g,,-,p) = 0.

Furthermore for k = 1, 2

sup

9esg‘1

——kk- {9(9) — 9(9)} -_—

  

PROOF. Note that for any p = 1,2, ...,d

1 (‘9 . 8

5535;3(3Fn12{79(U9,4) - Y}a—-0p79 ((19.4),

556;):(9) = E[{79(Ug)—m(x)}(97——9(U9)]

ll

Thus E (99,9) = 213 “790109) — 19} 33579 ((199)) — 335mm = o and

1 8 ~ ~—1 n
9’99; {12(9) - 12(0)} = (2") gain) + J1,0,p + me + J3flm’

with

J1,9,p = “—1 Z {79 ((19.4) - 79 (1199)} 5% (79 - 79) (U9,1')

J2,9,p = n7121790199) — 771(39)— 0 (Xi) 84‘} 8%; (79 — 79) (U99),

Tl

_ . 8

J3,0,p = n l E :{79 (U99) ’79 ((199)) —66p79(U9,i).

97

: 0(n_1/2) , a.s.,

0 (n—1/2h-1/2_k logn + h4"k) , a.s..

E[{44(U4>—m (x)—a(X>e}a%79(U9)l‘

(4.6.39)

[:1

(4.6.40)

(4.6.41)

(4.6.42)

(4.6.43)



Bernstein inequality implies that

sup sup
"1269,43,;

Meanwhile, applying (4.2.13) and (4.2.14) of Proposition 4.2.1, one obtains that

0{(nh)_1/210gn + h4} X 0 {(nh3)-1/210gn + hs}

  

=0(n_1/210gn) ,a.s.. (4.6.44)

sup supIJ19,pl

= 0(n‘1h7210g2 n +117) ,a.s.. (4.6.45)

Note that

” 9

J2,9,p = "—1 Z {79 (U0,i) - 7” (Xi) — 0 (X054) 59-; (79 - 79) (119,4)

_1 T 8

”TL (E+E0) 'a—é-{Pg (E+E6)}.

P

Applying (4.2.13), one gets

J2,,9p+n1(E+E9)T—{P9(E+E9)}= 0(h3) ,assup sup

96541-1 l_<_p<d   06,,

while (4.6.24), (4.6.26) and (4.6.12) entail that with probability 1

sup sup

9eS§“11$PSd  
n"1 (E +139)ng {P9 (12+ E9»

 

— 0{(nN)_1/210gn} X N X N X 0 {(nN)'—1/210gn} = 0{n"1Nlog2n} ,

thus

sup supIJ29pl——- 0(h3 + n-IN log2 n) ,a.s.. (4.6.46)

Lastly

n

_ 8

J3,9,p “-71 1 E :((79 —79)(971:79 (U94)

i=1

—-1

BTB BT 9
= n_1(E + E9)T B9 (——0n_£) -—Q-—-'y9.

By applying (4.6.24), (4.6.26), and (4.6.12), it is clear that with probability 1

-1

T BTB BT a
sup sup (n-lBgE+n—1B3‘E0) 9 9 _Q._.70

oesg—I 192d n

 

0 {(nN)_1/2logn} X N X 0 {h + (nN)—1/2logn}

H 0 {n71 log2 n + (nN)—l/2 log n} ,
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while by applying (4.6.16) of Lemma 4.6.7, one has

sup sup = 0 (174) ,a.s.,

gegg-llspgd

n:(79-79)56—p79(U9,4)

  

together, the above entail that

sup sup IJ39pl—— {0h4 + n-1 log2 n + (nN).l/2 log n} ,a.s.. (4.6.47)

BESd- ll<p<d

Therefore, (4.6. 43), (4.6.45), (4.6.46), (4.647) and Assumption A6 lead to (4. 6.40),which,

together with (4.6.44), establish (4.6.42) for k— 1.

Note that the second order derivative of R (0) and R (0) with respect to (9p, 6‘, are

n 82

. . " 9 9 .
Z{79(U9,4)-Y4}m79(U9,4) +§T799(U9,4) 89p79(U9’i) 4

i=1

2n"1

 

92 9

2 IE {79 (U9) - m (X)} W79 (U9) + E {86779 (U9);97;“ (U9)}I

The proof of (4.6.42) for k = 2 follows from (4.2.13), (4.2.14) and (4.2.15). CI

PROOF OF PROPOSITION 4.2.2. The result follows from Lemma 4.6.14, Lemma 4.6.15,

equations (4.6.50) and (4.6.51). Cl

4.6.4 Proof of the Theorem 4.2.2

Let 3'; (6_d) be the p—th element of 3* (0_d) and for 79 in (4.2.6), denote

714,1) 2: 2 {7p _ 60,1)66’31’7’d} (U90,i) {790 (U00,i) — K} 1 (4"648)

h ‘° 1 13 tk' 49:94 =12...d—1.w ere 71,15 vaueo 53579 a mga 0, or any p,q , , ,

LEMMA 4.6.16. Under Assumptions (02)—{C6), one has

n

9 (90:0!) " "71:77:39 =

i=1

PROOF. For any p = 1, ...,d — 1

sup 0(n'1/2) ,a.s.. (4.6.49)

ISde—l   

3;: (6-4) -S;(6-4) = (9%];— 946515—1){R(6)—R(6)}.
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Therefore, according to (4.6.40), (4.6.41) and (4.6.48)

n 11

774,44 : ”—1 £590,444 "' 60,1266,(1171—1 250099: E (724,44) = 04

i=1 i=1

Tl

3'; (90,—4) — 517(00,-d) — 71—1 2 77,3, = 0(n—1/2) ,a.s..

i=1

Since 3* (6-9) attains its minimum at 90,-d4 for p = l, ..., d - 1

sup

ISPSd-l   

50,

,, __ 9 _19
Sp(60.~d)=(99'1’66d 769)R(6)9=90

 

which yields (4.6.49). Cl

LEMMA 4.6.17. The (p, q)-th entry of the Hessian matrix H“ (60,—d) equals [p,q given in

Theorem 4.2.2.

PROOF. It is easy to show that for any p,q = 1, 2, ...,d,

£1120): 831,130" (X) 79 (U9))2 —QE [79(U9)86p70 (U6)I

 

 

  

 

32 a
a2

agpaqu(0)— —2E [ca—[p70 (U9)—’79an (U9) +79 (U9) 66p1————-9(d6qU9)],

Note that

3 8 8 8

-——R* 0 z — “ ‘1:— 4.6."0

86p ( “0 99pR(6) 9d96d3(9)4 ( 0 )

62 92 9 92 9 92

R* 9 = —— _ _(l _B 6

(99443641 ( _d) 861,636,, ( 69 661,869 ( ) 69 86986,, R( )

9 9,, 9 9994 92

u“ r—‘_— —-1‘?((9 + ——-————R 6). 4.6.51)

06‘] 1__ Ila—dug 89d ) 93 869869 ( (

Thus

9%;R*(0-4)—— —2E I49 (U9) 9049 (9,9)I 4293-19,]; [70(99):7,3479%)I

(901)3qu (6-41) —2E{5_9p79(U9) 0879 (U9)+79 (U9) 8639‘] 79019)}
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_ 9 9 9‘2

449,4,19 {54,4244 (U44) 55544614) + 44 (U4) 94,94,” (99)} 

9 9,,

99
‘7 1 - ||0_4||§

 

+2 E {79 (U9) 810979 (U9))

_ 9 9 - 92

+2999913 {579;79 (U9) 55379019) + 79 (U9) W79 (110)}

 

9 2 92
4999—215: _— U 4 U U .p q d [{36d79( 9)} +79( 9) 39939417“ 9)I

Therefore we obtained the desired result. Cl

PROOF OF THEOREM 4.2.2. For any 1) =1,2,...,d — 1, let

)4 (t) = S; (49.4 + (1 — 904-4) ,4 e (0.11,

then

A

4422—9441-4044) (64—44)-

Note that 8* (6_d) attains its minimum at 6-9, i.e., 5‘; (6_d) E 0. Thus, for any p =

1,2,...,d — 1, tp 6 [0,1], one has

‘3; (90,—41) = 3; (é—d) " 3; (90,—41) = fp (1) — fp (0)

 

... {5335239 (4,9,, 4 (1 _ 4,.) 94-4) lq=4,...,4_4 (49-4—04-4) .

then

. a? - . -

_s* (00,-41) = {agqagpw (tpéLd + (1 — tp) 00’_d)}p,q=1,...,d—1 (9—4 — 90,-4) .

Now (4.2.11) of Theorem 4.2.1 and Proposition 4.2.2 with k = 2 imply that uniformly in

p,q=1,2,...,d—1

92 - .

7 ‘ —+ . . . . 2

99,,99PR (tpa‘d+(1 ”7604-01) ((1.94934 (465 )

 

where [p,q is given in Theorem 4.2.2. Noting that \/1—1 (é—d“90,—d) is represented as

1

fig” (60,—(1) 1

02 ,* .

_ llmR (tPO—d + (1 7 7’) 607(1) lp,q=1,...,d—1l
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d—l

where 8* (90,—(1) = {8; (60’_d)} 1 and according to (4.6.48) and Lemma 4.6.16

11

s; (90,_d) = 44-1244,,- + 0 (4-1/2) ,a.s., E ((74.4) = 0.

i=1

_ ' A d—l

Let ‘11 (00) = (dm):,q_l__l be the covariance matrix of JR {5; (60,—d) }p=l with dim given

in Theorem 4.2.2. Cramér-Wold device and central limit theorem for a mixing sequences

entail that

. *4 d

J53 (90,—41) r“) N {04‘1’(90)}-

—1

Let )3 (60) = (H* (90,—d)}—1‘I’(90) I{H* (90,—dllTI , with H“ (90,—d) being the Hes-

sian matrix defined in (4.2.3). The above limiting distribution of fiS“ (00,—d): (4.6.52)

and Slutsky’s theorem imply that

\fl-l (largo—41) L N {042 (90)}- U
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Table 4.1. Example 2.5.1: Piecewise constant spline bands coverage probabilities

 

 

 

 

 

 
 

 

noise level sample size confidence level estimated bands oracle bands

1 — 0.01 0.588 0.588 0.590 0.582

100 1 - 0.05 0.320 0.288 0.278 0.276

1 — 0.01 0.660 0.716 0.772 0.766

0.2 200 1 — 0.05 0.410 0.428 0.522 0.512

1— 0.01 0.858 0.856 0.858 0.856

500 1 — 0.05 0.548 0.556 0.564 0.554

1— 0.01 0.7040.792 0.870 0.864

100 1— 0.05 0.4820.542 0.682 0.666

1 — 0.01 0.762 0.812) 0.880 0.876

0.5 200 1 — 0.05 0.568 0.570) 0.690 0.676

1 -— 0.01 0.9220.924 0.930 0.926

500 1 — 0.05 0.7320.744 0 782 0 776     
Table 4.2. Example 2.5.1: Piecewise linear spline bands coverage probabilities

 

noise level sample size confidence level 0.99 confidence level 0.95

 

 

   

100 0.980 (0.990) 0.948 (0.962)

0.2 200 0.994 (0.996) 0.956 (0.978)

500 0.994 (1.000) 0.950 (1.000)

100 0.984 (0.992) 0.956 (0.974)

0.5 200 0.994 (1.000) 0.972 (0.988)

500 0.996 (1.000) 0.978 (1.000)    
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Table 4.3. Report of Example 3.6.1

 

component #1 component #2 component #3

 

 

 

 

 

 

 

00 n

lst stage 2nd stage lst stage 2nd stage lst stage 2nd stage

100 0.5 0.1231 0.0461 0.1476 0.0645 0.1254 0.0681

1.0 0.1278 0.0520 0.1404 0.0690 0.1318 0.0726

0‘5 200 0.5 0.0539 0.0125 0.0616 0.0275 0.0577 0.0252

1.0 0.0841 0.0144 0.0839 0.0290 0.0848 0.0285

500 0.5 0.0263 0.0031 0.0306 0.0107 0.0278 0.0102

1.0 0.0595 0.0044 0.0578 0.0115 0.0605 0.0119

1000 0.5 0.0169 0.0015 0.0210 0.0053 0.0178 0.0054

1.0 0.0364 0.0018 0.0367 0.0054 0.0375 0.0059

100 0.5 0.3008 0.0587 0.3298 0.1427 0.3236 0.1393

1.0 0.3088 0.0586 0.3369 0.1364 0.3062 0.1316

1'0 200 0.5 0.1742 0.0256 0.1783 0.0802 0.1892 0.0701

1.0 0.2899 0.0328 0.2830 0.0824 0.3043 0.0721

500 0.5 0.0924 0.0065 0.1124 0.0421 0.1004 0.0345

1.0 0.2299 0.0078 0.2305 0.0458 0.2314 0.0362

1000 0.5 0.0616 0.0033 0.0637 0.0270 0.0646 0.0224

1.0 0.1460 0.0034 0.1433 0.0275 0.1429 0.0219

 

 

       
Table 4.4. The computing time of Example 3.6.1

 

 

 
Method n = 100 n = 200 n = 400 n = 1000

 

MIE 10 76 628 10728

 

SPBK 0.7 0.9 1.2 4.5
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Table 4.5. Report of Example 4.4.1

 

 

 

 

 
 

90 n 90 BIAS SD MSE Average MSE

9 59 — 04 0.00825 76 — 05

100 041 (—0.00236) (0.02093) (0.00044) 7e — 05

9 —6e — 04 0.00826 76 — 05 (0.00043)

03 042 (0.00174) (0.02083) (0.00043)

9 —0.00124 0.00383 24 — 05

300 041 (—0.00129) (0.01172) (0.00014) 26 — 05

0 —0.00124 0.00383 2e - 05 (0.00014)

04? (0.00110) (0.01160) (0.00013)

9 0.00121 0.01346 0.00018

100 041 (—0.00137) (0.02257) (0.00051) 0.00018

9 -0.00147 0.01349 0.00018 (0.00051)

05 02 (0.00062) (0.02309) (0.00052)

9 -0.00204 0.00639 46 — 05

300 041 (-—0.00229) (0.01205) (0.00015) 46 — 05

9 0.00197 0.00637 4e - 05 (0.00015)

0:2 (0.00208) (0.01190) (0.00014)    
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Table 4.6. Report of Example 4.4.2

 

 

 

 

 

 

 

 

 

Sample Size n Dimension d Average MSE Time

MAVE SIP MAVE SIP

4 0.00020 0.00018 1.91 0.19

10 0.00031 0.00043 2.17 0.10

50 50 0.00031 0.00043 3.29 0.10

100 0.00681 0.00620 5.94 0.31

200 0.00529 0.00407 27.90 0.49

4 0.00008 0.00008 3.28 0.09

10 0.00012 0.00017 3.93 0.13

100 50 0.00032 0.00127 8.48 0.16

100 —— 0.00395 — 0.44

200 -— 0.00324 — 0.73

4 0.00004 0.00003 5.32 0.17

10 0.00005 0.00007 7.49 0.24

200 50 0.00007 0.00030 15.42 0.24

100 0.00015 0.00061 40.81 0.54

200 — 0.00197 — 1.44

4 0.00002 0.00001 14.44 0.76

10 0.00002 0.00003 24.54 0.79

50 , 0.00002 0.00010 52.93 0.89

500 100 0.00003 0.00012 143.07 0.99

200 0.00004 0.00020 386.80 1.96

400 — 0.00054 —— 4.98

4 0.00001 0.00001 33.57 1.95

10 0.00001 0.00001 62.54 3.64

50 0.00001 0.00003 155.38 2.72

1000 100 0.00001 0.00005 275.73 1.81

200 0.00008 0.00006 2432.56 2.84

400 —— 0.00010 — 9.35    
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confidence band, n=100, level=0.95
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Figure 4.1. Example 2.5.1: 95% constant spline confidence bands with opt = 1

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 1, opt = 1, 941(4) (center dotted curve), m(x) = sin(27r:r) (center smooth solid curve).
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confidence band, n=100, Ievel=0.99
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Figure 4.2. Example 2.5.1: 99% constant spline confidence bands with opt = 1

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 1, opt = 1, 7771(3) (center dotted curve), m(x) = sin(27rz) (center smooth solid curve).
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confidence band, n=100, Ievel=0.95

 

   
 

 

 

—
2 I      

Figure 4.3. Example 2.5.1: 95% constant spline confidence bands with opt = 2

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 1, opt = 2, 7711(3) (center dotted curve), m(x) = sin(27rar) (center smooth solid curve).
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confidence band, n=100, Ievel=0.99
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Figure 4.4. Example 2.5.1: 99% constant spline confidence bands with opt = 2

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 1, opt = 2, 7721(3) (center dotted curve), m(x) = Sin(21r:c) (center smooth solid curve).
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confidence band, n=100, Ievel=0.95
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Figure 4.5. Example 2.5.1: 95% linear spline confidence bands with opt = 1

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 2, opt = 1, 942(4) (center dotted curve), m(x) = sin(27r:r) (center smooth solid curve).
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confidence band, n=100, Ievel=0.99
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Figure 4.6. Example 2.5.1: 99% linear spline confidence bands with opt = 1

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 2, opt = 1, 77120:) (center dotted curve), m(x) = sin(27ra;) (center smooth solid curve).
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confidence band, n=100, Ievel=0.95
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Figure 4.7. Example 2.5.1: 95% linear spline confidence bands with opt = 2

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k: = 2, opt = 2, Th2(:r) (center dotted curve), m(x) = sin(27r:r) (center smooth solid curve).
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confidence band, n=1oo, Ievel=o.99
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confidence band, n=500, level=0.99

N .—

o _

‘7 _

N _
I

F I I I I I

o o o 2 0.4 o 6 o a 1 o    
Figure 4.8. Example 2.5.1: 99% linear spline confidence bands with opt = 2

Note: confidence bands (upper and lower dashed curves) computed from (2.4.5) with

k = 2, opt = 2, Th2(:c) (center dotted curve), m(x) = sin(27r$) (center smooth solid curve).
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Figure 4.9. Example 2.5.2: Plot of the EKC in terms of u(t) and v(t)

 



 

Plot of the Trend Relationship of the EKC for US
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Figure 4.10. Example 2.5.2: Trend and noise analysis of US

Note: linear fit (solid), zero fit (dotted dashed) and spline fit (dashed) with 80% bands

(upper and lower solid).
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Plot of the Trend Relationship of the EKC for Japan
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Figure 4.11. Example 2.5.2: Trend and noise analysis of Japan

Note: linear fit (solid), zero fit (dotted dashed) and spline fit (dashed) with 99% bands

(upper and lower solid).
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Estimation of component #1, n = 200
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Estimation of component #1, n = 500
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Figure 4.12. Example 3.6.1: SPBK estimator with confidence intervals for the first component

Note: oracle estimator (dotted), SPBK estimator (solid) and 95% pointwise confidence

intervals constructed by (3.2.13) (thin dashed) of the first component (smooth solid curve).
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Estimation of component #2, n = 200
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Figure 4.13. Example 3.6.1: SPBK estimator with confidence intervals for the second component

Note: oracle estimator (dotted), SPBK estimator (solid) and 95% pointwise confidence

intervals constructed by (3.2.13) (thin dashed) of the second component (smooth solid).
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Estimation of component #3, n = 200

 

      
 

 

 

 
         

Figure 4.14. Example 3.6.1: SPBK estimator with confidence intervals for the third component

Note: oracle estimator (dotted), SPBK estimator (solid) and 95% pointwise confidence

intervals constructed by (3.2.13) (thin dashed) of the third component (smooth solid).
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Efficiency density of component #2
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Figure 4.15. Example 3.6.1: Plot of the relative efficiencies of components 2 and 3

Note: the empirical efficiencies of fit; (3:0) to in; (ma) computed by (3.6.1) based on 100

replications, a = 2, 3.

121



 

 

   

   
   
 

 

 

 
 

  

 

  
 

Efficiency density of component #1

..... n‘soo

"‘ é -— n=1000

: --- n=1500

I — n-2000

.. — E

0 - I
.>.~ .

's .
c I

o I

u I

N — i

o _. I

I I I I

0.0 0.5 1.0 1.5

Efficiency density of component #2

. ..... "35m

“‘ ’4 ; — n=1ooo

. -- n=1500

: -- n=2000

‘* - 2

o -4 l

.2: i
to I

C I

d) I

D I

u — I

O —. I

I I I I

0.0 0.5 1.0 1.5   
 

Figure 4.16. Example 3.6.2: Plot of the relative efficiencies of components 1 and 2

Note: the empirical efficiencies of m; (1:0,) to in; (1:0,) computed by (3.6.1) based on 100

replications, a = 1, 2.
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Figure 4.17. Example 3.6.2: Plot of the relative efficiencies of components 15 and 30

Note: the empirical efficiencies of fit; (3:0,) to in; (1:0) computed by (3.6.1) based on 100

replications, a = 15, 30.
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Note: the

Figure 4.18. Example 4.4.1: The actual bivariate surface

actual surface m in model (4.4.1) with respect to 6 = 0, l.
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Figure 4.19. Example 4.4.1: The univariate approximation to the bivariate surface

Note: function 9 (solid curve); estimate of g (dotted curve) by 90; estimate of 9 (dashed

curve) by (i = (0.69016, 0.72365)T for 6 = 0 and (0.72186, 0.69204)T for 6 = 1.
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n: 100, d: 10
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Figure 4.20. Example 4.4.2: The univariate approximation ((1 = 10, 50)

Note: estimate of g with 9 (dotted curve), estimate of g with 00 (dashed curve), true

function m (x) in (4.4.2) (solid curve).
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n= 100, d: 100

 

    
 

n= 100, d: 200

 

       
Figure 4.21. Example 4.4.2: The univariate approximation ((1 = 100, 200)

Note: estimate of g with 9 (dotted curve), estimator of g with 00 (dashed curve), the true

function m(x) in (4.4.2) (solid curve).
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Density Estimation, d=10
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Density Estimation, d=50

 

  

   

v a .

1"

I

I

I

I

I

l

m— I

1

I

l

I

1

>~ I

.0: ,

"c' N -'
Q I

Q I

I

l

I

I

I

v- '1'

I

1

I

I

l

1

0.1L . . . ,

l l l I I I I I
 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35   
 

Figure 4.22. Example 4.4.2: Kernel density plots of the error norms

Note: the kernel density estimators of "0 — Boll/x/d are based on 100 replications.
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Density Estimation, (1:100
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Figure 4.23. Example 4.4.2: Kernel density plots of the error norms

Note: the kernel density estimators of "0 — Boll/fl are based on 100 replications.
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Figure 4.24. Time plots of the daily river flow data

Note: the first, second and third are flow (solid) with trend (dashed), temperature (solid)

with trend (dashed line) and precipitation(solid) with trend (dashed) respectively.

130



 

 

1
5
0

1
0
0

1

5
0 1

  
 

0 200 400 600 800 1 000

 

 

6
0

r
e
s
i
d
u
a
l

0
2
0

j
J

-
2
0

1

  
 

0 200 400 600 800 1 000

days

 

 

1
5
0

1

fl
o
w

1
0
0

A

5
0 l

  
 

800 900 1000 1100

days  
 

Figure 4.25. The fitted, residual and forecast plots of the river flow data

Note: the first is the river flow data (“+”) with the SIP fitted values (line); the second is

the residual plot; the third is the out-of-sample rolling forecasts (line) for the third year.
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