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Abstract

A COMPARISON BETWEEN THE VERTICAL SCALING

OF TESTS SENSITIVE TO MULTIPLE DIMENSIONS

USING COMMON-ITEM AND COMMON-GROUP DESIGNS

by

Jing Yu

Three methods of item response theory (IRT) linking—common-item, common-group

and a combination of common-item and common—group (referred to as common-common)

linking designs were compared using real testing data from an English as second language

(ESL) exam program. The methods were considered as “vertical scaling” instead of

“equating” because, first, the test was designed to examine three different traits of English

ability; multidimensional IRT and factor analysis on testing data confirms that the test was

multidimensional. Second, the two test forms are not at the same difficulty level, the

averaged difficulty parameters were different by about 0.5, 1.0 or 1.5 standard units, thus the

linking was considered vertical. The effects of test length and averaged difficulty level

differences were also analyzed. For practical reasons, the anchor test used in the

common-item linking design could not represent all the dimensions of the test forms.

The original data contained dichotomous responses from about 30,000 individuals on

130 items. For the evaluation of each linking design, a sub-sample of cases and responses

were selected. The linking designs were evaluated by calculating the standard error of

equating and by comparing the examinees’ scores and item parameters before vs. after

equating. Results of the analyses indicate that common-group and common-common linking

designs can serve as adequate alternatives to the well-recognized common-item design.

Longer test forms work better for item parameter estimation and have smaller standard errors

of equating. When the ability of the group does not match the difficulty level of the assigned



form, the common-item design has a slightly smaller standard error of equating than the

common-group and common-common designs.
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Chapter 1. Introduction

I. Equating or Scaling

IRT (item response theory) models gain theirflexibility by making strong statistical

assumptions, which likely do not holdprecisely in real testing situations. For this reason,

studying the robustness ofthe models to violations ofthe assumptions, as well as studying the

fit ofthe IRT model, is a crucial aspect ofIRTapplications.

(Kolen and Brennan, 2004, p156)

Equating the scores of two test forms has been in practice for at least half a century.

In the early stage of the development of score equating, the similarity of forms in terms of

structure or reliability was emphasized. Such requirements are reflected in the early works in

educational measurements of Lord (1980), Angoff (1 971), and Lord and Novick (1968).

Kolen and Brennan (2004) summarized five desirable properties of equating relationships

between the forms or between the equated scores. The properties are: symmetry of equating

transformations; same specifications between the two test forms; equity property, which

holds when examinees with a given true score have the same distribution of converted scores

on Form X as they would on Form Y; observed score equating property in observed score

equating; and group invariance property that means that the same equating relationship can

be found using different groups of examinees. If all requirements are met, the forms are

strictly parallel and need not to be equated. What has never been clear is the degree to which

the requirements require fulfillment so that equating can be performed.

In recent years, as the demand for measuring achievement has increased,

psychometricians have been challenged to put scores from test forms of differing content,

structure or difficulty level on the same score scale. To differentiate traditional equating



methods from the more recently developed ones that link two forms obviously differing in

structure or difficulty, three names have been applied to the statistical process. Equating

refers to the traditional approach wherein the five properties are relatively met. The process is

called vertical scaling when two forms differ in difficulty levels while the test structures are

believed to be Similar. And vertical scaling is most often used to assess growth such as in

math achievement between different grades. Linking usually refers to the statistical process

for putting scores from tests that are different in both difficulty and in content on the same

scale. A typical example is to identify the equivalent ACT score for an SAT I (V+M)

composite score (Kolen and Brennan, 2004). In this dissertation, the two forms studied are of

the same test specification but are at different difficulty levels, thus the equating method

Should be categorized as vertical scaling. However, in this dissertation, the process is

sometimes called equating to for convenience.

As often repeated in the history of science, practical issues usually challenge theories

and technologies to improve. So is the case for test equating. When IRT was first developed,

it required all items in a test measure the same trait or ability, or the same combination of

traits/abilities. However in practice, it is well acknowledged that multiple skills are required

to determine the correct answers for many test items. Multidimensional item response theory

(MIRT) was developed to quantitatively analyze test structure. It has also been applied to

equate tests that do not meet the unidimensionality assumption required by other procedures.

However, MIRT models are more sophisticated and difficult to apply in practice. IRT models

are robust and can tolerate multidimensionality to a certain degree, but it is necessary to

consider in what situations, and to what degree, the simplicity of unidimensional IRT will

reasonably model the data (Goldstein and Wood, 1989; Wang, 1985).

In recent years, especially after the NCLB (No Child Left Behind) implementation,

accurate and accountable methods have been required to measure growth in achievement.



Measurement instruments that are different in specifications need to be put on the same scale

to enable accurate growth evaluation. Recently developed IRT software, BILOG-MG and

ICL, have integrated vertical equating features so that two forms of different difficulty levels

can be put on the same scale. These developments make it possible to link forms that are

different from each other in terms of test structure, examinee population, test difficulty etc.

However, the validity of the scoring method and its accountability of measuring student

achievement and growth still remain to be evaluated.

ll. Purposes and Research Questions

The testing data studied in this dissertation characterizes the above mentioned

challenges of IRT equating: the data have multidimensional structure, and difficulty

differences exist between the forms—the equating is vertical by nature. Less studied equating

designs are applied to explore their feasibility, and to find optimum solutions for today’s

testing practice.

Among the equating designs that are compared in this dissertation, common-item

equating is most often seen in equating literature. In today’s well-recognized textbook of

equating by Kolen and Brennan (2004), common-group and common/common equating

designs are not even mentioned. Common-item equating links the two test forms by items

that appear in both forms. Equating methods seldom utilized—common-group equating and

common-group/common—item combined equating—will undergo a detailed examination in

this dissertation; the comparison between the common-item and common-group equating

designs in vertical scaling will be discussed. Common-group equating here refers to an

equating design that has three groups of examinees who take different test form(s). Group 1

takes test form 1, Group 2 takes test form 2 and Group 3 takes both forms (form 1 and form 2

share no common items). The data collected from all three groups will be used to

concurrently calibrate the test item parameters and examinees’ ability scores with the



unidimensional IRT three parameter logistic (3-PL) model using maximum likelihood

estimation.

Another relatively obscure equating method—common—group/common-item equating,

is also applied in this study. This equating design combines the common-group and

common-item design. A detailed description of this method is. found in chapter 3. All

equating was done as multiple group concurrent estimation of item parameters with the

unidimensional 3-PL IRT model, using maximum marginal likelihood (MML) estimation.

Therefore, the research questions will be answered by comparing the results of the three

equating designs are:

1. What is the difference in item parameter calibration or ability score calculation

between the three equating designs?

2. Which design is more advantageous at different test lengths: 36, 48 and 60 items?

3. Which design is more advantageous when the average difficulty difference between

the exams is 0.5 unit, 1 unit and 1.5 unit?

Standard errors of equating are calculated in evaluating the quality of equating

designs; the item parameters and examinees’ ability scores obtained through equating are

compared with those of their real values (the “real values” will be defined in chapter 3). IRT

model fit and practical issues of equating design are also discussed.



Chapter 2. Literature Review

I. IRT and IRT Vertical Scaling Designs

A. The Strength and Limitations of[RTin Test Equating

Before the IRT models were widely used in testing practice, several equating designs

based on true score theory were developed and applied. Kolen and Brennan (2004)

thoroughly describe these equivalent group equating, non-equivalent group equating, linear

equating, equipercentile equating, and other methods. Compared to equating methods based

on classical testing theories, IRT models are more advantageous in that they model examinee

responses at the item level instead of the total score level. IRT models are now widely used in

almost all aspects of psychometrics such as item banking, scoring, differential item

functioning (DIF) analysis, adaptive testing etc. Increasingly more powerful computer

software for IRT models have been developed for the expanding IRT applications. Due to the

simplicity of the IRT models and the availability of software, progressively more equating or

scaling are now performed with IRT.

Despite its strengths, IRT makes strong statistical assumptions, which are hard to

meet precisely in real testing situations. The two major assumptions are local independence

and unidimensionality; the two assumptions are related. Local independence means that the

answer to one question is not related in any way to the answer(s) of other question(s). Lord

(1980) stated it as Lazarsfeld’s assumption of local independence, which is described as: “if

we know the examinee’s ability, any knowledge of his success or failure on other items will

add nothing to the determination (of 9), if it did add something, then performance on the

items in question would depend in part on some trait other than 9 ...... " Lord (1980) further



described this assumption in a mathematical statement “that the probability of success on all

items is equal to the product of the separate probabilities of success” (p19). This assumption

cannot hold when testlets (like a reading test where items are grouped according to reading

passages) are included in an exam. By unidimensionality is meant that all the test items test

the same type of knowledge/ability or the same combinations of knowledge/abilities; put in

the context of Lord (1980), a Single 9 is measured by the test.

When multidimensionality exists, more complicated IRT models are needed to

accurately express the mathematical relationships between 9 and item response pattern.

Reckase (1997, p271) stated that “The number of skill dimensions needed to model the item

scores from a sample of individuals for a set of test tasks is dependent upon both the number

of skill dimensions and level on those dimensions exhibited by the examinees, and the

number of cognitive dimensions to which the test tasks are sensitive.” Unidimensionality

almost certainly does not hold for data from most achievement test. Fortunately, IRT models

are robust to a certain degree against assumption violations, which means that, although

sometimes the model does not perfectly fit, the estimation based on it is still accurate enough

to make educational decisions.

A combination of several elements determines the degree such violations are tolerable,

and the degree of tolerance also depends on the research design. For example, in

common-item nonequivalent equating using the IRT model, issues affecting the quality of

equating may include the reliability of each test form, the quality of the test items, the

selection of anchor items etc. The quality of test equating can be seriously undermined by a

combination of inadequate test equating design and unsatisfied assumptions (Jodoin, 2003;

Goldstein and Wood, 1989; Klein and Jarjoura, 1985; Beguin et a1 2000; Skyes et a1 2002).

A number of IRT models have been developed so that different models can be applied



according to the feature of the data and the needs of the analysis. In large-scale test equating

designs, unidimensional IRT models are most often used because the practice is simpler and

more economical than multidimensional IRT, even though sometimes the unidimensional

assumption is not satisfied. In this study, in order to test the model’s tolerance to

multidimensionality, we will use unidimensional IRT equating although the evidence

indicates that the data are multidimensional. The model applied here is three-parameter

logistic model (3-PL), as presented in equation (2.1), which is widely used in multiple—choice

large-scale testing. The definitions of the symbols in the equation are: P (Xij=1)—probability

that person j with ability level Bj can answer item i correctly; B—examinee ability; b—item

difficulty; a—item discrimination; c—lower asymptote or guessing parameter.

exp[a,. (9}. _ br)]

1+ exp[a,(l9j —b,.)]

 Par,j =1|ej,b,.,a,,c,.)=c, +(1—c,) (2.1)

B. IRTin Vertical Scaling

In theory, item parameters calibrated with IRT models are independent of the

examinees’ ability level. The a,-, b,- and c,- in equation (2.1) are invariant parameters (Lord,

1980, p34). The difficulty parameter (b,-) is on the same scale as the examinees’ ability levels.

The distribution of examinees’ ability is usually set as a standardized normal distribution.

Another feature of item parameter calibration with the IRT model is called indeterminacy,

which means “the choice of origin for the ability scale is purely arbitrary” (Lord 1980, p36).

Thus the IRT parameters calibrated from the two forms require adjustment in order to be put

in the same scale, because these parameters were calibrated based on different examinee

groups.

The quality of IRT equating is not only decided by quality of the test items and

whether the data collected from the examinees fit the IRT model, but also by the

appropriateness of the design of test equating. Best equating results could be obtained when



the two forms satisfy the requirements of equating mentioned in Chapter One. However, this

study focuses on vertical scaling—equating between two forms that are different in difficulty

levels, and more often than not, also different in test domains. The process therefore requires

tolerance to both lack of fit of the IRT model (multidimensionality) and that of the unsatisfied

requirements in equating. ‘

According to Kolen and Brennan (2004), vertical scaling refers to the “process used

for associating performance on each test level to a single score scale, and the resulting scale

is a developmental score scale.” Because tests of different levels—and quite inevitably,

different constructs—are involved in vertical scaling, issues such as domains measured,

definition of growth, multidimensionality, and others. need to be considered. Vertical scaling

is much more sophisticated than equating and it involves more decisions in the design for

equating. It is challenging that in testing practice, large-scale assessment Often requires the

scaling procedure to be simple and involve as little computation as possible.

Most of the studies that approach the issues in vertical scaling use a common-item

equating design. Considering the challenges of vertical scaling, this study proposes two

designs that are seldom mentioned in psychometrics literature. These designs may serve as

better alternatives to the well-recognized common-item design.

a. Common-item vertical scaling

As is indicated by its name, in common-item equating, the two forms have some

items in common. According to the invariant item (Lord, 1980) feature of the IRT model, the

common items are supposed to function identically even when the examinees are different.

Thus, based on the parameters of the common items, the two forms are linked. As for how

many common items is enough for adequate linking accuracy, no theoretical conclusion can

be drawn based on solid research. Conventionally, the linking items should take at least 20%

of the total items in a form (Kolen and Brennan, 2004). In this study, three levels of test



length were applied to investigate the effect of test length. When the total number of unique

items in the two forms was 120, 20 items were used as linking items; when the total number

of items was 96, 16 items were used as linking; and when the total items was 72, 12 items

were used as linking. Other than the requirements of the percentage that should be considered

when selecting the linking items, the linking items are supposed to have high discrimination

value, with stable function among different samples. What is more, the linking items Should

represent all the domains of the test forms. Due to practical considerations such as test

security, linking items sometimes may not be able to satisfy these requirements.

Compare to concurrent IRT equating, two-step IRT equating is more often seen in the

literature, especially in studies at the early stage of IRT equating. In two-step equating, the

first step is to calibrate item parameters and examinee ability of the two forms separately.

Then based on two sets of the parameters calibrated for the linking items from the two test

forms, a linear or non-linear function is developed so that the two sets ofparameters can be

transformed to be equivalent to each other. The parameters of all the other items are then

transferred in the same scale by the same mathematics function. Because the IRT ability

estimates are on the same scale as the item difficulty parameters, the examinees’ ability

estimates of the two groups can also be transferred to the same scale based on this

mathematical function.

Before BILOG-MG was available, BILOG is often used in IRT calibrating and

equating. BILOG can be used for concurrent calibration of the item parameters when the two

groups taking the two forms are randomly equivalent, but it is not strictly appropriate to use

BILOG to concurrently estimate groups of different latent ability distributions. By using

BILOG-MG, common-item non-equivalent group vertical scaling using IRT model becomes

very convenient. BILOG-MG accomplishes multiple-group, common-item IRT equating

concurrently for all the groups, with all item parameters calibrated concurrently. Research



indicates that the concurrent BILOG-MG equating using marginal maximum likelihood

(MML) estimator is comparable or even superior to that of the two-step equating methods

(Hanson and Beguin, 1999). However, DeMars (2002) shows that if group ability level is not

taken into consideration, item parameter estimation is biased using MML estimation.

b. Common-group vertical scaling
 

The common-group equating design that is studied in this dissertation refers to the

following: two test forms (with no item in common) are given to three groups ofpeople,

Group 1 takes Form 1 only and Group 2 takes Form 2 only, Group 3 takes the items on both

forms. This method is different from the single-group design described in Kolen and Bremen

(2004). The usual single-group design has one group of examinees answer the two test forms.

However, in practice it is often expensive to have a sufficient number of examinees take the

two tests. The common-group design does not require Group 1 and Group 2 to be equivalent,

and Group 3 can be different from the other two groups. In this study, data is analyzed using

BILOG-MG, and equating is performed concurrently using MML estimation.

Compared to common-item equating, studies on common-group equating are rare

(Hambleton & Swanminathan, 1985, p.205; Hambleton et al., 1991, p.128; Noguchi, 1986,

Noguchi, 1990; Toyoda, 1986, Ogasawara, 2001). This kind of equating links two test forms

based on the same group of examinees that take both forms. Considering the

number/percentage of examinees should be included in the common-group equating, no

theory has been available for reference. In this study, the common-group equating is designed

to be compared with the common-item equating; the strength of linking should be

comparable between the designs. For example, in common-item equating, when the total

number of items is 120, the number ofcommon items is 20 and the number of examinees is

5,000 (2,500 for each group), a total number of 20*5,000=100,000 cells link the two forms

together. To have the same number of cells linking the two forms, in common group equating,
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the number of common examinees should be 100,000/1202830. This principle was applied in

the common-group equating of this study.

When linking items are unavailable, or when the statistical assumptions or

requirements of common-item design cannot be fulfilled, common-group equating can be

considered. Although issues such as fatigue exist in this design, common-group equating still

serves as a possible alternative for the common-item equating design. In vertical scaling

where the assumptions of IRT common-item equating are not fulfilled, common-group

equating can possibly be a better choice. Harris (1991) compared spiraling design and single

group design in vertical scaling, and found that across different examinee populations, the

single group design exhibit more stability. The result of this study may or may not be applied

to the common-group design here, for in the single-group design, two forms were equated by

one group of people that were administered both forms. The common-group design described

here has been seldom studied.

c. Common-item/common-qroup combi_ned equating

This type of equating design combines the characteristics of the two equating

methods introduced above: the two test forms share some common items and there is also a

group of examinees that takes all the items from both test forms. However, the number of

common items is only half as many as the common-item design, and the number of common

examinees is also only half as many as the common-group design. This equating design has

been used in large-scale testing practice but is not documented in publications (Y. M. T'hum,

personal communication, Nov. 18‘“, 2005).

This method is studied here because it may serve as an alternative practice when the

number ofcommon items and common examinees cannot satisfy the requirements of the

common-item or common-group methods. Because this method combines the features of

common-item and common-group equating, it contributes to the theory of equating design,
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especially to the comparison between the common-item and common-group equating.

ll. Issues of Multidimensionality in IRT Equating

As stated above, appropriate use of the IRT models requires the tenability of

assumptions of unidimensionality and local independence. Intest equating, each of the

individual test forms should satisfy the assumptions. The testing data of each form should

adequately fit the IRT model. However, in testing practice, these assumptions can be very

stringent and impractical. In the past, a number of studies have been published on the effect

Of multidimensionality on IRT equating.

Jodoin (2003) used simulation data to investigate the impact of the violation of

unidimensionality for individual test forms and inconsistency between the dimensional

structure of the reference and focal forms. His conclusion was that low levels of dimensional

inconsistency between the forms are reasonably well tolerated, but multidimensionality in

either test form is not. Jodoin (2003) used IRT ability scores; he did not discuss the effect

when anchor items do not represent all the domains of the form(s). Multiple studies have

used IRT-true score equating functions to analyze the effect of test multidimensionality

(Bogan & Yen, 1983; Bolt, 1999; Camilli, Wang & Fesq, 1992; Cook & Douglass, 1982;

Cook, Dorans, Eignor, & Petersen, 1985; Dorans & Kingston, 1985; Kolen & Whitney, 1982;

Snieckus & Camilli, 1993; Stocking & Eignor, 1986; Wang, 1985; Yen, 1984). Their results

disagree with those of Jodoin (2003). The majority of these studies concluded that although

multidimensionality Of the latent ability Space did affect the quality of IRT true-score

equating, the impact often appeared to be minimal and of little practical significance,

especially when correlations among the dimensions are high. Goldstein and Wood (1989)

stated that the impact of multidimensionality on the quality of IRT equating is likely to be

negligible as long as the same linear composite of latent traits, or reference composite (Wang,

1985), underlies the item response on both tests.
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However, these studies did not clearly state whether the effect of the linking item

design was considered. Although no explicit “requirements” are stated for linking item

design, accepted practice calls for the set of common items to be proportionally

representative of the total test forms in content and statistical characteristics (Kolen &

Brennan, 2004). Previous research indicates that in linear equating, inadequate common item

content representation can impact test scores when examinee groups taking alternate forms

differ considerably in achievement level (Klein and Jan'oura, 1985). A later study by Beguin

et a1 (2000) using simulated data noted a large effect of multidimensionality on IRT equating

for nonequivalent groups. According to Sykes’s et al (2002) research on a mixed-format math

examination, equating by using anchors containing items that loaded more heavily on the

first or the second dimension resulted into different standard errors.

The testing program used in this research is designed to measure three different types

of English language ability—grammar, vocabulary and reading. Previous studies suggest that

the data indicate a multidimensional pattern (Yamashiro and Yu, 2005a; Yamashiro and Yu

2005b). Further, the reading items are in the form of testlets, with a set of items focusing on

the same reading passage. The grammar and vocabulary items are individual items. Due to

security considerations, the anchor test of the ECPE GN/R/ section contains only grammar

and vocabulary items, no reading items. Based on the results from previous research, such

anchor test designs are subject to systematic error (Sykes et al 2002). By comparing the

equating results based on common-item equating design, common-group equating design and

common-common design the study will estimate how much anchor test’s lack of

representative may affect the common-item equating, and whether common-group equating

can circumvent the problem.

In this study, exploratory MIRT and exploratory factor analysis with oblique rotation

on three factors/dimensions were applied to investigate the test’s dimensionality. Tate (2003)



comprehensively summarized and compared the empirical methods of assessing the structure

of tests with dichotomous items. About ten methods from exploratory and confirmatory

families were included in this study, the methods were also categorized as parametric vs.

non-parametric based on conditional item covariance. The results of this study indicated that

for the most part, all methods performed reasonably well over a relatively wide range of

conditions; exceptions only occurred when the test data departed appreciably from the

assumptions or there is inherent limitation of a method. Compare with nonparametric

methods, parametric modeling provides parsimonious and description of data structure.

Factor analytic and MIRT methods were listed as parametric methods in Tate (2003). The

MIRT method used to assess test dimension is the Normal-Ogive Harmonic Analysis Robust

Method (NOHARM) developed by McDonald (2000) and programmed by Fraser and

McDonald (1988).

III. Issues in Vertical Scaling

When different achievement tests are administered to different grades to assess

growth in achievement, vertical scaling becomes inevitable. In vertical scaling, two test

forms composed of items that have different difficulty levels are taken by two groups of

examinees differing in ability. The results of vertical scaling can be unstable for multiple

reasons such as: equating design, test dimensionality, test characteristics, DIF in different

groups etc. These issues are discussed in the following sessions, and possible solutions are

also introduced.

A. Issues ofstructure or dimension shift

When two test forms are composed of items from the same battery but are different in

difficulty levels, there is a tendency for easier items to denote different constructs than higher

difficulty items, even though they are designed to test the same constructs. A substantial

amount of research suggests that when the same achievement battery measures achievement



at different levels, the content, complexity and difficulty of the assessment tasks also change

(Linn, 1993; Mislevy, 1992; Yen, 1985, 1986). Even in a single form, differences in scores at

the lower end ofthe scale may represent a different constructs from the differences in scores

at the higher end of the construct (Reckase, 1989). Even when the two forms are carefully

constructed to be parallel, different constructs can be empirically identified between the

forms (Reckase, 1998). Dorans (1990) emphasized that forms to be equated should measure

the same mix of content so that construct invariance could be achieved. However, in vertical

scaling, this requirement is purposely violated. When the two forms cannot be considered to

have the same construct, all the issues concerning test multidimensionality in equating would

affect the vertical scaling results.

B. Issues ofDIF

Among the issues that arise with vertical scaling, differential item functioning (DIF)

should be considered seriously, especially when IRT models are applied. In vertical scaling,

items that can be included in a battery should firnction identically between examinee

populations that are of different ability levels (Kolen and Brennan, 2004'). In common-item

equating, only the linking items are administered to both examinee populations, and thus

most of the items cannot be tested for DIF. As psychometricians are striving to improve the

accountability of vertical scaling, different equating designs should be compared and

evaluated. In common-group equating design, all the items are administered to part of the

examinees from both groups. Thus, it is possible to estimate the DIF effect on the equating

results.

Harris (1991) compared the results ofAngoff’s design I (spiraling design) and design

11 (single group design) in vertical scaling, and concluded that the single group design

exhibits more stability across different samples. However, the increase in stability here is at

the cost ofmore items administered to more examinees. In this study, vertical scaling results
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will be compared using common-item or common-group as the linking design. This study

can serve as reference to a seldom approached vertical scaling design that is of great

potential.

C. Dzfiiculty diflerence between theforms

Vertical equating is used to equate forms that differ indifficulty level. A major

question is how much difference is reasonable between the two adjacent forms. No research

has been found that directly explores this issue. Most studies on vertical equating use exams

whose structures and designs are usually decided based on factors like test specifications,

curriculums, policies etc. other than based on the requirements of vertical scaling. Item

difficulty differences between the two forms, or the ability differences between the two

groups, are seldom reported. Table 2.] lists the item difficulty difference or group ability

difference from several vertical scaling studies. The numbers provided here set a reference

for how much growth (or difference) one may expect from the two groups in vertical scaling.

Pomplun et a1 (2004) and Kolen and Brennan (2004) reported the averaged item

difficulty parameter after the forms were equated. In Pomplun’s (2004) study, the differences

in averaged item difficulty between the two adjacent grades are around 0.5-1.5 SDs; while

the differences in item difficulty reported by Kolen and Brennan (2004) are more likely to be

around 0.5 SD, even though both examined math achievement tests of a similar grade range.

Russell (2000) focused on the ability growth between the two grades; and data on three

subject areas (math, reading and language) were reported. Ability growth ranged from about

0.3 to about 1.5 SD, with bigger grth expected between lower grade levels. The ability

difference levels reported in Jodoin (2003) are not comparable with those reported by other

studies, because the forms were administered to students from the same grade, while different

students were tested each year. The differences in averaged ability between years are very

small (less than 0.1), indicating that, for the same grade, little change was observed in
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students’ ability from year to year. Based on the literature about item difficulty differences in

vertical scaling, this dissertation assigns the forms to be different by 0.5, 1.0 and 1.5 SDs of

averaged item difficulty.

D. The eflect oftest length

It is well-known from the literature that longer tests are usually of higher reliability,

as long as the items all target the same trait or ability. To obtain sound accuracy in equating,

each test form Should have good reliability (above 0.85 in most high-stake exams) and a

stable estimate of the IRT parameters. Existing literature offers some guidance on the test

length needed to Obtain reasonable estimates of IRT parameters. Lord (1980) clearly stated

that test length and sample Size, in combination, affects the quality ofparameter estimates.

Swaminathan and Gifford (1983) reported that multiple-choice tests below 15 items gave

poor parameter estimates, and the inadequacy in item number could not be compensated by

increasing sample size. Hambleton and Cook (1983) recommended a minimum of 200

examinees and 20 items to obtain stable testing results. Few studies have been found

targeting the effects of test length on equating. Fitzpatrick and Yen (2001) suggested that a

test should have at least eight 6-point items or at least twelve 4-point items. This study

investigated constructed-response tests.

The situation becomes more complicated when multidimensional tests are equated.

Sometimes tests that have only 20 items are seen in multidimensional IRT equating (Kim,

2001). It is assumed that both forms should have enough items to meet the requirement of

reliability. Moreover, additional items may be needed for accurate equating results. While

longer tests are favored when reliability is considered, shorter tests are preferred when cost is

considered. This dissertation study explored the effects of test length using forms that contain

36, 48 and 60 items. It intends to address the question of whether shorter tests will perform

equally well as longer tests in vertical scaling when reliability is adequate.
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IV. Evaluating the errors of equating

A. Comparing theparameters ’true values and those obtained through equating

A lot of equating studies use generated data to evaluate a certain equating method in

which the true item parameters values are known. Typically in these studies, the standard

errors of item parameters are calculated through the squared difference between the

parameters obtained by equating and the true parameters on which the data were created --

for example the study by Hansen and Beguin (2002). Some studies that compare the quality

of different equating methods by directly comparing the parameter Obtained through these

methods using scatter plots or correlation coefficients (Li, Griffith and Tam, 1997).

When real data is used and the true parameters are unknown, error estimation can be

challenging. In this dissertation study, we use real data and the true parameters are unknown.

We consider the parameters obtained using the original data (about 30,000 examinees’

responds to 130 items) as the “real parameters”. Sub-samples of about 5000-6000 were

drawn from the original data: the items were split into two forms for each of the equating

design. Item parameters obtained through each equating design were compared with the “real

parameters” to reflect the quality of equating.

B. Standard error ofequating

Standard error of equating usually refers to the errors due to sampling, instead of

systematic errors. The two methods most commonly used in estimating standard errors of

equating are the bootstrap and delta methods. The delta method is a set of “procedures [that]

result in an equation that can be used to estimate the standard errors using sample statistics”

(Kolen and Brennan, 2004, p234). This analytic method usually includes a process of

time-consuming development of the equations, and it often results in very complicated

equations. In this dissertation, standard errors of equating are estimated by a method similar
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to the bootstrap method.

The bootstrap method calculates the standard deviation of equated scores over

hypothetical replications Of an equating procedure in samples from a population. In one

hypothetical replication, a specified numbers ofexaminees would be randomly sampled.

Then the Forrn Y equivalents ofForm X scores would be estimated at various score levels

using a particular equating method. The standard error of equating at each score level is the

standard deviation, over replications, of the Form Y equivalent at each score level on Form X.

Standard errors typically differ across score levels.

Bootstrapping is very computationally intensive, in which many samples are drawn

from the data at hand and the equating functions are estimated on each sampling. In this

dissertation study, a method similar to the bootstrapping but less computationally intensive

was used. This method does not repeatedly sample subjects, makes the standard error

estimate more reliable than bootstrapping. A large sample size of the testing data (about

30,000 for both forms) allows the examinees to be randomly divided into groups. For each

test, the two forms were randomly paired to form ten paired samples. IRT equating of

different designs was applied to each paired sample to Obtain the ability scores. The standard

deviations were calculated between the ten values to obtain standard error at each score level.

This method of standard error calculation will be introduced with more detail in the

following chapter.
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Chapter 3. Methods

I. Data Description

The data for this study is from a real examination program that tests the English

proficiency of ESL (English as Second Language) learners. The exam is administered abroad

annually in about 20 countries; at each administration, approximately 30,000 people take the

exam. The whole exam program contains four sections: Writing, Speaking, Listening and the

Grammar/Vocabulary/Reading (GVR) sections. The Writing and Speaking sections are

performance assessment sections, while the Listening and GVR sections are composed of

multiple-choice questions.

In this study, the data from the GVR section in one administration is used. The original

data contains dichotomous responses Of 130 GVR items administered to 29,935 examinees.

Among the items, 50 test the learners’ grammar ability, 50 test their vocabulary proficiency

and 30 test their reading ability. The items testing grammar and vocabulary are independent

items, while the reading items are given in the form of testlets. Not all the items were

included in this study. The items were selected according to their quality (based on the values

of classical test theory item parameters) and the test length of the equating designs. The

numbers of items that were selected from each section for each level of test length are shown

in Table 3.1.
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Table 3.1. Number of Unique Items

 

Total number of unique

 

 

, 120 96 72

ms In the two forms

* Number of item

. 60 48 36

In each form

Section G V R G V . R G V R
 

Number of items

_ _ 23 24 13 19 19 10 15 15 6

In each section             
I"The item numbers listed are for common-group design, in common-item and common-common designs,

more items were used in each form due to common items.

A. The Items 'Unidirnensional and Multidimensional IRTParameters

All the items were first treated as one test administrated to one group of examinees. The

examinees’ scores and the item parameters for all the items were calibrated for the

three-parameter logistic (3-PL) IRT model using BILOG-MG (Zimowski, 2003) with

maximum marginal likelihood estimation. Item parameter estimates are presented in Chapter

4.

The examination program for this study is designed to test three aspects of English

language proficiency—Grammar, Vocabulary and Reading. Previous statistical analysis on

the data from this examination program and other ESL programs developed with similar test

specification confirms that the test items are sensitive to differences in Skills on three

dimensions. Evidence of the multidimensionality Of the item response data comes from

exploratory factor analysis on the dichotomous response data, exploratory factor analysis on

the scores of item clusters in each of the G, V, R subsections (Yamashiro & Yu, 2005), and

structural equation modeling analysis on another exam that was developed with similar test

specifications (Johnson, Yamashiro and Yu, 2004).

Multidimensional IRT parameters were estimated using TESTFACT (Bock, Gibbons,

Schilling, Muraki, Wilson, & Wood, R., 2003) and NOHARM (Fraser, 1986), results from the

two methods are very similar. The parameters estimated through the NOHARM program are
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presented in Chapter 4. The lower-asymptote parameters calibrated in the previous step were

used in the NOHARM control file, a three-dimensional, exploratory solution was specified.

One item from each of the G, V, R section was selected as anchor item for dimension 1, 2,

and 3 respectively. The d-parameter and the discrimination parameters on each of the three

dimensions are shown in Chapter 4.

B. Factor analysis

To further check the dimension of the response data, three-factor exploratory analysis

with oblique rotation were done on the dichotomous testing data using SPSS. The factor

loadings and the correlations between factors are presented in Chapter 4.

C. Goodness offit

Approximate chi-square indices of fit were computed by BILOG-MG for each item in the

item calibration phase, using the responses from all examinees to the 120 item, 96 item and

72 item data sets. For the purpose of computing these chi-squares, the scale score continuum

was divided into 20 intervals (the maximum number of intervals allowed by BILOG-MG).

For each item, within each of the intervals, the actual and the expected percentage of item

endorsements were computed. The chi-square indices reveal the discrepancy between the two

percentages. The bigger the chi-square, the less likely the model fits the actual responses to

the item. The expected percentage of item endorsement at each ability level was calculated

based on BILOG-MG3 parameter estimation, with EAP (expected a posteriori) estimation of

theta. The degree of freedom for chi-square indices equaled the number of intervals, in this

case, was 20. Because the sample size is very large and chi-square is sensitive to sample Size,

model fit cannot be solely decided by the p-value Of chi-square. The rule of thumb that

chi-square equal or less than three times degree of freedom was used to evaluate item model

fit, together with the p-value (pé0.01) of chi-square.
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ll.Equating Designs

This research study investigates the difference in equating results among three different

equating designs, given that the forms are of different lengths and have different difficulty

differences. The original data is from one test that has 130 items. According to the test length

assigned to test equating design, 120, 96 and 72 items were selected from these items. The

items were then split into two groups—Form l and Form 2. Which item was assigned to

which form was mainly decided based on the category of the item (grammar, vocabulary or

reading) and the item’s IRT difficulty parameter. For each level of test length, the items were

selected so that the averaged difficulty differences between the two forms were designed to

be 0.5, 1.0 or 1.5 standard deviation(s) Of the IRT ability score. As introduced in the previous

chapter, among the studies reported different difficulty differences between the forms in

vertical scaling, the difference between adjacent levels can be as small as 0.3 SD to as big as

1.4 SD’s, depending on the examinee of the exam and the grade levels Of the forms (Russell,

2000; Pomplun, Omar and Custer, 2004; Jodoin, Keller and Swaminathan, 2003). In most of

the studies listed here, the averaged item difficulty difference between adjacent forms in

vertical scaling is expected to be between 0.5 and 1.0. No study was found that reported the

vertical scaling of ESL exams. In this dissertation, difficulty difference between the two

forms were assigned to be 0.5, 1.0 and 1.5, for the reason that a difference of 0.5 or 1.0 can

reflect situations in real tests; while a difference of 1.5 exaggerated the difference a little bit,

so that if the effect of difficulty difference was subtle, it could be detected.

Three equating designs were studied: common-group equating, common-item equating

and the combination of common-group and common-item equating. Different test lengths

were tried and it was found that reliability drops to lower than 0.85 when test length for each

form is less than 36. It was considered that the same number of anchor items should be

selected from the grammar and vocabulary sections, because in the examination program, the
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same numbers of items were in these two sections. The number of common items in the

common-item design is twice as much as that of the common items in the common-common

design. Considering these requirements, three levels of test lengths were selected for

comparison in this study: 60, 48 and 36.

The dissertation investigates the main effect of three factOrs: equating design, test length

and difficulty difference between forms; and there are three levels in each factor. Thus a total

number Of 3*3*3=27 designs of equating were structured and analyzed in this study.

A. Common—Group Equating

In this design, two sub-samples shared about 20% of the total examinees (Group 2), the

responses of these examinees on both Form 1 and Form 2 were applied to final analysis. The

responses of40% examinees that had relatively lower ability level (Group 1) on the lower

level form were included, while the responses of another 40% examinees that had relatively

higher ability level (Group 3) on the higher level form were selected. The ability distribution

of the combination of Group 1 and 2 is normal; the ability distribution of the Group 2 and 3

combined is also normal. No common items are taken by Group 1 and Group 3.

The examinees in each group were selected based on their ability scores using a

MATLAB program. Examinees in Group 2 (N=1000) were first selected so that the mean Of

the group is zero with standard deviation equals 0.5. To select the examinees of the designed

distribution in ability scores, the first step was to create 1000 numbers Of normal distribution

with mean=0 and SD=0.5. The created numbers were divided into 40 bins that had equal

intervals. These bins were then used as template to select ability scores from the 19,935 cases

in the original data, examinees were selected until all the bins were full. The MATLAB

commands for selecting Group 2 for common-group and common-common equating are

shown in Appendix 1.
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Then, according to the difference in averaged item difficulty, Group 1 and Group 3 were

formed. For example, when the two forms’ averaged item difficulty were different by 1.0,

Group 1 and Group 2 combined together should have distribution ofmean=-0.5 and SD= 1,

total number Of 3000 cases; while Group 3 and Group 2 combined together Should have

distribution of mean=0.5 and SD=] , also with total number of 3000 cases. Thus Group 1,

with 2000 cases and a distribution in which a group of N{O, 0.5} (normal distribution with

mean=0 and SD=0.5, 1000 cases) is deleted from a group of N{-O.5, 1} (normal distribution

with mean=-0.5 and SD=], 3000 cases). The 2000 cases that satisfied this distribution were

also selected using the MATLAB program. The MATLAB commands that were used to select

cases in Group 1 or Group 3 for common-group and common-common designs are shown in

Appendix 2.

B. Common-Item Equating

In this design, about 20% of items from each form were selected as common items (as

illustrated in Figures 31-33). However, the linking items do not represent all the subsections

of the exams, because only grammar items and vocabulary items were selected; in real test,

reading items can not be used as anchor item for security reasons. AnchOr items were selected

from different levels of difficulty (i.e. approximately equal number of items were drawn from

top 30% difficult ones, middle 30% difficult ones and lower 30% difficult ones). The

averaged difficulty differences were kept the same between the two forms after adding in the

common items.

Two sub-samples were drawn from the original data, with one sub-sample contained

examinees of lower ability scores, and the other contained higher ability examinees. The two

sub-samples were both normally distributed in IRT ability scores with standard deviation

equals 1. The means of the two sub-samples were decided based on the item difficulty

difference. When the averaged item difficulty was different by 0.5, the mean of ability scores
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of the two groups were -0.25 and 0.25; when difficulty difference was 1.0, the mean of ability

scores were -0.5 and 0.5; when difference was 1.5, the mean of ability scores were -0.75 and

0.75. Each sub-sample contained 3000 cases that were drawn from the original data. The

MATLAB commands used for case selecting here is very similar with the ones used in

selecting Group 2 for the common-group design (Appendix 1). Only the values of the

means needed to be changed to obtain the target distribution. For each pair of sub-samples,

no common examinees were shared.

C. Common-group and common-item combined equating

As its name indicated, this design combined the features of the two above mentioned

equating designs. About 10% of the items were shared by the two forms as common items,

and about 10% of the total examinees were shared by the two groups as common-group. The

item/common item numbers at each test length is given in Figures 3.1—3.3. The common

items were selected from diffierent levels of item difficulty as described in common-item

design. Unlike the Group 2 described in the common-group design that have 1000 examinees,

the common groups in the common-common design have 500 examinees. Group 1 or 3 each

has 2000 examinees. The 500 examinees were drawn to have normal diStribution with mean

of 0 and SD of 0.5. The 2000 examinees of Group 1, when combined with the 500 examinees

of Group 2 have normal distribution with SD=] and mean=-0.25, -0.5 or -0.75 according to

the difficulty difference between the forms in the equating design. The 2000 examinees of

Group 3, when combined with the 500 examinees of Group 2, have normal distribution with

SD=] and mean=0.25, 0.5 or 0.75 according to the difficulty difference betweeen the forms

in the equating design. The examinees of this design were also drawn with MATLAB

software using similar commands shown in Appendix 1 and 2.
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Figure3.1. Three designs when total item=120
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Figure3.2. Three designs when total item=96
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Figure 3.3. Three designs when total item=72
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At each test length, the numbers Ofcommon cells in the data matrix for each design were

kept the same. For example, when the total item number was 120, common-group equating

overlapped part had 1000*120=120,000 ofcommon cells in the data matrix; the

common-item design had the overlapped part of 6000*20=120,000 common cells in data

matrix; while the common-common design had 500*120=60,000 plus 5500*10=55,000, a

total of 115,000 common cells. The overlapped parts are comparable in size for the three

designs.

D. Data Analysis and Evaluation ofDzflerent Designs

The ability scores of all the examinees were calibrated from the original data (29935*130)

matrix, using BILOG-MG3 with maximum marginal likelihood (MML). The proficiency

estimate for each examinee obtained this way is considered as the estimate closest to the

examinee’s real ability, and is thus used as standard. It is called the “real score”. For each

design at each test length with specific item difficulty difference, certain items were selected;

the responses for these items from all the 29,935 examinees were included in the data. Thus

altogether 27 sets of data were prepared.

Two criteria were used to evaluate the quality Of different equating designs. One criterion

compares the examinees’ scores between the “real score” and the scores obtained through the
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equating design data matrix that are described in Figures 3.1-3.3. The other criterion

compares the item parameters estimated through linking and those estimated using the

original data. The values estimated using the original data are considered the “real parameter

values”.

A sub-sample of 5000-6000 cases was drawn for each of the 3*3*3=27 designs using the

MATLAB program as described above. Although the items represented different dimensions

of English language ability, the original data (the 29935*130 matrix) was calibrated as if it

was unidimensional multiple-group dichotomous data using BILOG-MG3; because this

method is the most widely used in testing application. Chi-squares of the items were used as

model-fit index, the chi-squares are presented in chapter 4, the values indicate that the data fit

3-PL unidimensional IRT model reasonably well. The data matrices described in Figures

3.1-3.3 were also calibrated as if they were unidimensional using BILOG-MG3. In each

equating design, item parameters and examinee ability scores of all the groups were

calibrated simultaneously using MML estimation. The calibrated item parameters and the

examinees’ ability scores were plotted against the corresponding parameters that were

calibrated with the original data. The correlations and the average squared differences

between the “real scores” and the equated scores of each design were also calculated.

Ill. Standard Error of Equating

AS introduced before, 27 sets of data were created, each had different item sets according

to the design of test length and difference in averaged test difficulty; but all data sets contain

responses from 29,935 examinees. To calculate the standard error of equating in each design,

each data set was divided randomly into 10 groups of examinees. The examinees in each

group were then randomly divided into two sub-groups (each has about 1500 cases) for

equating. The two sub-groups shared 500 common examinees in common-group design and
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shared about 250 examinees in common-common design; but in common-item design, they

shared no common examinee. Although the two forms are different in averaged difficulty

level, the two sub-groups were not designed to be different in ability level.

Each of the ten data sets was calibrated using the 3-PL IRT model with BILOG-MG,

MML estimation were used to estimate the ability scores and’the item parameters. The

sampling method used in standard error calculating was different from the one that used

before, here the 10 groups were randomly divided using the original data; however, the in the

equating design that was introduced in the previous section, the samples were drawn based

on their ability score distribution and the averaged ability scores are different between the

two sub-groups. Separate random samples were used to calculate the standard error of

equating because the number of examinees in the original data is limited. It is impossible to

draw ten groups (with at least 1500 examinees in each group so that 3-PL IRT estimation is

sufficiently accurate) and each contains two sub-groups that satisfy the distribution

requirements as described before.

The “real scores” for all examinees were divided into 80 levels between -4 and 4, with an

interval of 0. 1. For the examinees whose “real scores” were within each interval, their

equated scores calculated in the sub-samples were determined. The standard deviation of the

equated scores from the same interval provided an estimate of the standard error of equating

at this score level.
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Chapter 4. Results

I. Parameters, dimenslons and model fit analysis

The discrimination, difficulty, and lower asymptote (a, b and c) parameters are shown in

table 4.1. The item IDs indicate the subsection and sequence number of each item—grammar

(G), vocabulary (V) and reading (R) subsections respectively. Thus, “G1” is the first

grammar item. Table 4.2 gives the multidimensional IRT item parameters estimated by

NOHARM. The highest discrimination parameter is bolded. When two discrimination

parameters for an item differ by 0.02 or less, both parameters are bolded. The design of the

G/V/R structure is reflected through the MIRT a-parameters. Most of the Grammar items’

highest a-parameter estimates are on the first dimension—a1, while the Vocabulary and

Reading items mostly have their highest parameter estimates on the third and the second

dimension, respectively. The result of a factor analysis with oblique rotation Shows a similar

pattern (Table 4.3). The percentage of items that load high on each factor or dimension is

listed in Table 4.4.
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In the MIRT analysis, 98% of the grammar items have the highest a-coefficient on 81;

60% of the vocabulary items have the highest a-coefficient on a2; and 76.7% reading items

have the highest a-coeffrcient on a3. In the factor analysis with oblique rotation, 94% of

grammar items and the same percentage of vocabulary items have the highest loading on the

first and third factor respectively, and 76.7% of reading items have the highest loading on the

second factor. About 16.0% of total variance is extracted by the first factor.

Table 4.4. Percentage of the Highest Loading Items on One Dimension/Factor

 

 

 

 

 

   
 

 

 

 

Dimension

% 1 2 3

Grammar 98 mm ......

Vocabulary ------ ------ 60

Reading ------ 76,7 ......

Factor

% 1 2 3

Grammar 94 ............

Vocabulary ............ 94

Reading ------ 76,7 ......       
As noted in the previous chapter, a portion of the 130 items in the Original test were

selected according to each equating design. The item/common item numbers for each design

are shown in Figures 31-33 in the previous chapter. Three levels of test length were selected

for the equating designs. At each level of test length (120 items, 96 items and 72 items), the

same set of items were used for all the equating designs that differ in difficulty differences or

methods of equating; however, the items were grouped differently when designs are different.

Item model fit was estimated at each level of test length according to methods presented in

the previous chapter, and the results, exhibited in Table 4.5, are discussed in the next chapter.
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Table 4.5. Percentage of Items Fitting the Model

 

 

 

 

  

Test _

length ch1-squareé60 (3*df) P>0.01

120 items 87% 75%

96 items 90% 70%

72 items 86% 67%  
 

*for all the items, the degree of freedom (df) for chi-square estimate is 20

II. Item selection for each design

The difference in the average difficulty between the two forms of each design is shown

in Table 4.6. As the original items were actually developed for one test, and were not

intended to be dramatically different in difficulty, it was challenging to select items and

separate them into two forms whose average difficulty levels were different by 1.5 units on

the 0-scale. Thus for the designs targeted to have a difficulty level difference of 1.5, the

targets are not met; the differences between the two forms are particularly smaller in the

common-item designs and also smaller when more items are included in each form (such as

in data sets that have 120 total items). This may affect the results of the study. The item

numbers in each section (G, V and R) maintain the same ratio as in the Original test;

item/common item numbers of each section are shown in Table 4.7.

The chi-squares of item fit for the linking items are displayed in tables 4.8-10. For

designs that are of different difficulty difference between the test forms, the linking items in

common-item and common-common designs are also different in a few items. The linking

items used in each of the common-item designs are shown in tables 4.8-10; each table is for

different test length. The linking items in the common-common design were included in the

correspondent common-item. The items that do not fit the 3-PL IRT model according the rule

of thumb that was mentioned before (chi-square<3*df) are marked. Most of the linking items

(90% in average) fit the 3-PL IRT model.
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Table 4.6. Difference between the Averaged Item Difficulty

 

 

 

 

 

    

Nltem=120 Nltem=96 Nltemg72

Target

, 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50

difference

Common

. 0.48 0.95 1.14 0.52 0.92 1.29 0.52 0.99 1.34

-1tem

Common

0.50 0.95 1.21 0.48 0.97 1.40 0.48 1.03 1.46

-common

Common

0.51 0.99 1.28 0.51 0.99 1.45 0.51 1.07 1.51

-group       
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Table 4.7. Item/Common-Item Numbers for Each Design

 

Total item= 1 20
 

 

 

 

 

 

      
 

 

 

 

 

 

       
 

 

 

 

 

 

  

Design Common-group Common-item Common-common

Number Items in Number Items in Number Items in

of Items anchor of Items anchor of Items anchor

Grammar 23 0 28 10 27/25* 6

Vocabulary 24 0 29 10 26/28* 6

Reading 13 0 13 0 13 0

Total 60 O 70 20 66 12

Total item=96

Design Common-group Common-item Common-common

Number Items in Number Items in Number Items in

of Items anchor of Items anchor of Items anchor

Grammar 19 0 23 8 21 4

Vocabulary 19 0 23 8 21 4

Reading 10 0 10 O 10 0

Total 48 0 S6 16 52 8

Total item=72

Design Common-group Common-item Common-common

Number Items in Number Items in Number Items in

of Items anchor of Items anchor of Items anchor

Grammar 15 0 l8 6 17/ l 6* 3

Vocabulary 15 0 18 6 16/17* 3

Reading 6 0 6 0 6 0

Total 36 0 42 12 39 6      
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Table 4.8 Linking Item Fit for the Equating Design of 120 Item Tests (df=20)

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Difficulty Difficulty

Difference Difference

Item Chi-Square 0.5 1.0 1.5 Item Chi-Square 0.5 1.0 1.5

G51 22.6 X V108 20.9 X

G52 20.9 X V109 91 X

GSS 28.7 X X V113 31.9 X

658 22.4 X X V120 24.8 X

G59 32.4 X X V126 12.3 X X

G60 27.4 X V127 76. l * X

G67 24.8 X V128 30.6 X X

G69 44.4 X V132 35.7 X X

G72 38.6 X V134 72* X

G73 1000* X V135 43.2 X

G74 44.3 X V139 28.5 X X

G75 792* X X V142 49.4 X X X

G78 33.8 X X V143 26.9 X X

GSI 55.1 X V144 40 X X

G83 697* X X V145 42.7 X

G84 20.6 X X X V146 17.6 X

688 39.8 X X V147 39.4 X

G90 60.4 X X V148 58.5 X X

G92 28.8 X V149 42.6 X X

G94 33.5 X    
 

*Chi-square>3*df, item does not fit IRT 3-PL model.
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Table 4.9 Linking Item Fit for the Equating Design of 96 Item Tests (df=20)

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Difficulty Difficulty

Difference Difference

Item Chi-Square 0.5 1.0 1.5 Item Chi-Square 0.5 1.0 1.5

G52 34.2 X V101 25.1 X

G58 25.5 X X V106 19.1 X X

G60 21.] X X X V114 21.6 X X X

G61 32.3 X X V117 45.1 X X

G62 30.4 X V120 31.7 X X

G69 47.1 X V126 19.5 X X

G72 39.3 X V128 24.5 X

G77 34.9 X V132 41.1 X X

G79 32.8 X V134 83.7“ X X

G81 50.5 X V135 54.8 X

G82 29.7 X V137 30.2 X

G83 70.7* X V139 33.9 X X

G85 1030* X X V142 54.0 X

G86 35.1 X V148 660* X

G88 53.8 X X V149 37.9 X

G89 33.8 X X

G90 50.3 X       
*Chi-square>3*df, item does not fit IRT 3-PL model.

 



Table 4.10 Linking Item Fit for the Equating Design of 72 Item Tests (df=20)

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

Difficulty Difficulty

Chi- Difference Chi- Difference

Item Square 0.5 1.0 1.5 Item Square 0.5 1.0 1.5

658 25.0 x V101 23.8 x

G60 26.8 X X X V106 29.7 X

G61 37.7 X V118 19.5 X

G75 79.2* X V120 23.5 X X

G79 35.0 X V128 30.5 X X

G83 692* X X X V132 41.1 X X

G85 94.4* X V134 81.1* X X

G86 44.8 X X V135 59.3 X

G88 36.3 X X X V137 38.9 X

G89 25.4 X X V142 51.4 X

V143 36.5 X

V148 55.9 X X

V149 37.9 X         
 

*Chi-square>3*df, item does not fit IRT 3-PL model.
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Ill. Regressions between the two sets of item parameters

Item parameters were estimated using the original data and the data sets for the different

equating designs. The parameters estimated using the original data are regarded as “real”

values and those estimated using the data samples designed for each equating method are

called equated parameters. Figures 4.1-4.9 illustrate the scatter plots between the “real”

values and the equated values of the parameters. The graphs indicate that difficulty (b)

parameter estimation is the most stable across different designs. In general, the values

estimated through the common-group designs tend to be high and those estimated by the

common-item design tend to be low. The values estimated by common-common design fall

in the middle. Compared with the scatter plots of the b parameters, the scatter plots of the

discrimination (8) parameters show more variance in their estimates; and even bigger

variance in the lower asymptote (c) parameters. The same trend is also indicated in the

correlation coefficients.

Table 4.11 demonstrates the correlation coefficients for the a, b and c (slope, difficulty

and asymptote) parameters between their “real” and equated values. The correlation

coefficients are highest for the difficulty parameters (around 0.97-0.99), lower for slope

parameters (around 0.90-0.93) and lowest for lower asymptote parameters (06-08). Table

4.12 lists the significance ofANOVA analysis between the means of each level. None of the

parameters has significant difference in correlation coefficients between different designs. “a”

and “b” parameters are significantly different when test lengths are different, “c” parameters

are significantly different when item difficulty between the forms are different. Tables 4.13

and 4.14 list the slope and interception from the regressions respectively.
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Table 4.13. Slope of the Regression Function

 

 

        
 

 

 

 

    
 

 

 

 

        
 

 

 

          

Difficulty Common-item Common-common Common-group

ierence a b c a b c a b c

120 items

0.5 1.13 0.86 0.71 1.13 0.82 0.64 1.26 0.81 0.66

1.0 1.10 0.81 0.69 1.04 0.83 0.68 1.18 0.82 0.59

1.5 1.08 0.84 0.71 1.00 0.89 0.62 1.13 0.89 0.67

96 items

0.5 1.06 0.90 0.70 1.08 0.83 0.61 1.26 0.75 0.67

1.0 1.05 0.89 0.67 1.09 0.83 0.63 1.07 0.83 0.59

1.5 1.09 0.86 0.69 1.09 0.83 0.66 1.13 0.89 0.63

72 items

0.5 0.95 0.89 0.70 0.97 0.86 0.67 1.13 0.80 0.61

1.0 1.10 0.84 0.73 1.25 0.85 0.73 1.18 0.86 0.82

1.5 1.03 0.83 0.80 1.12 0.82 0.70 1.28 0.87 0.79  
 

Table 4.14. Intercept of the Regression Function

 

 

        
 

 

 

 

        
 

 

 

 

        
 

 

 

  

Difficulty Common-item Common-common Common-group

Difference a b c a b c a b

120 items

0.5 0.05 0.32 0.09 0.10 0.40 0.16 -0.00 - 0.51 0.10

1.0 0.14 0.52 0.09 0.18 0.62 0.10 0.03 0.85 0.13

1.5 0.16 0.90 0.14 0.14 0.98 0.11 0.04 1.30 0.12

96 items

0.5 0.05 0.44 0.15 0.12 0.45 0.17 0.09 0.54 0.11

1.0 0.11 0.65 0.16 0.08 0.60 0.09 0.10 0.82 0.11

1.5 0.12 0.73 0.08 0.17 0.90 0.09 0.06 1.26 0.12

72 items

0.5 0.24 .34 0.07 0.30 0.33 0.14 0.12 0.47 0.10

1.0 0.10 0.47 0.06 -0. 10 0.58 0.06 0.02 0.83 0.06

1.5 0.28 0.78 0.08 0.17 0.91 .09 -0.10 1.26 0.09         
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Figure 4.1 Item parameters for test length 120, difficulty difference 0.5

 

E
q
u
a
t
e
d
D
i
s
c
r
i
m
i
n
a
t
i
o
n

Equated Discriminating Parameters

120-items Difficulty difference 0.5

 

   

3 . .

”to: '1: z

.5 2 ~~ “2;;4‘ "-ii‘fl

f’s’ 1;;er =
59 Eéiz.:" °

(0 1 7* i .5; .V
0.. 0‘ :.' .

0 l l

0 1 2 3

Original Discrimination Parameters

 

. Common item - Common common 4 Common People

  
 

 

E
q
u
a
t
e
d

D
i
f
fi
c
u
l
t
y

P
a
r
a
m
e
t
e
r
s

1

O
D

Equated Difficulty Parameters

120 Items Difficulty Difference 0.5

 

a

a

a"

. o

1 o

.4”

3""

, 9 “PM?

‘0 .

1313'?-

   
-2 -1 O 1

Original Difficulty Parameters

  - Common item - Common common 4 Common People   
 

49

  



(Figure 4.1 Continued)
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Figure 4.2. Item parameters for test length 120, difficulty difference 1.0

 

 

   

 

Equated Discrimination Parameters

120-items Difficulty Difference 1.0

c 3

0 ° 4
4'3 3’ f ‘

(U . 5..

E o ’51. .

E g 2 i - 433 215‘: i

8% iffif'
5031+ 36%;;3.

m 4 3
:3

18
O % .1

O 1 2 3

Original Discrimination Parameters

4 Common item - Common common 4 Common people  

 
 
 

 

Equated Difficulty Parameters

120-items Difficulty Difference 1.0

 

   

3 T

O

E‘ 2 «— :

3 . 4.832 4

.88 . - 444’
‘3, E ‘39 255‘”
<1) 9 -- ‘ . ‘ '1 4’

§ 3 O ‘;:4.;1§?:°'. '

0' 4 3‘ 2544‘? ’ -

UJ -1 “r E :0 r ';

'2 r L i l 1

-3 -2 -1 0 1 2 3

Original Difficulty Parameters

    
4 Common item - Common common 4 Common people
  
 

51



Figure 4.2 (Continued)

 

E
q
u
a
t
e
d
L
o
w
e
r

 

A
s
y
m
p
t
o
t
e

Equated Lower Asymptote

120-items Difficulty Difference 1.0

 

   

0.5 .

0.4 «— . , .f ,4 “I
a e. . ::9: u

0.3 7” ‘ 2 :.. ‘: ‘.ol 0‘ '5'

1.. .e‘”..a o..“'0I 2.0.? 2 o

:‘a 9' '

.:3. 9:15“59:11::t“ .

0.1 7" - o ' ’8

0 f . f +

0 0.1 0.2 0.3 0.4

Original Lower Asymptote

0.5

 

 

4 Common item - Common common 4 Common people

 

52

 



Figure 4.3. Item parameters for test length 120, difficulty difference 1.5
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Figure 4.3 (Continued)
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Figure 4.4. Item parameters for test length 96, difficulty difference 0.5
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Figure 4.4 (Continued)
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Figure 4.5. Item parameters for test length 96, difficulty difference 1.0
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Figure 4.5 (Continued)
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Figure 4.6. Item parameters for test length 96, difficulty difference 1.5
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Figure 4.6 (Continued)
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Figure 4.7. Item parameters for test length 72, difficulty difference 0.5
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Figure 4.7 (Continued)
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Figure 4.8. Item parameters for test length 72, difficulty difference 1.0
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Figure 4.8 (Continued)
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Figure 4.9. Item parameters for test length 72, difficulty difference 1.5
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Figure 4.9 (Continued)
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IV. Regression between the “real scores” and equated scores

As noted in chapter 3, sub-samples were selected from the original data set according to

each equating design (as is shown in Figures 3.1-3.3). Some of the responses in each of the

sub-samples were deleted according to the designed data matrices. The data were then

processed through BILOG-M63 as vertical equating data. BILOG-MG3 calibrates item

parameters and ability scores concurrently with marginal maximum likelihood (MML)

estimation.

The “real scores” in each data set was divided into intervals of 0.1 standard deviation,

the mean of the equated scores for examinees whose “real scores” fall in the corresponding

interval were calculated. The scatter plots between the mean of the equated scores and the

interval of the “real scores” for each design are shown in Figures 4.10-4.12. Figure 4.10 is for

tests with 120 items in total, Figure 4.11 is for 96 items and Figure 4.12 is for 72 items. In

each figure, the first column is for common-item design, second column for

common-common design and the third for common-group design. The first row is for the

designs when the two forms differ in averaged difficulty for 0.5 SD, the second row when

they differ in 1.0 SD and the third when differ in 1.5 SD. BILOG-MG3 assigned the lower

ability group as the control group, thus the means of thetas in lower ability groups are zero;

the means of the thetas for higher ability groups are higher in about 0.5, 1.0 or 1.5 standard

deviations according to the design of the equating. The correlations between equated and

“real” scores are calculated and listed in Table 4.15. The results show no obvious difference

across different designs and different test length. However, the correlation coefficients are

significantly (p<0.01) different when item difficulties are different (Table 4.15).
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Figure 4.10. “Real” vs. mean of the equated scores, test length=120
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Figure 4.10 (continued)

Common Item Equating, Difficulty DIfference=1.0
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Figure 4.10 (continued)

Common Item Equating, Difficulty Difference=1.5
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Figure 4.11 “Real” vs. mean of the equated scores, test length=96 items
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Figure 4.11 (continued)

Common Item Equating, Difficulty leference=1.0
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Figure 1 1 (continued)

Common Item Equating, Difficulty Difference =1.5
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Figure 4.12 “Real” vs. mean of the equated scores, test length=72 items
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Figure 4.12 (continued)

Common Item Equating, Difficulty Difference=1.0
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Figure 4.12 (continued)

Common Item Equating, Difficulty Difference=1.5
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The correlation coefficients are listed in Table 4.15. In common-group designs, the

higher-level group and the lower-level group share more common examinees than those of

the common—common and common-item designs; the total number of examinees in each

common-group design is 5000. The common-common design has 5500 and the

common-item design has 6000.

The square of the difference between “real score” and the adjusted equated score for

each examinee was calculated, and the averaged value of the square difference for each

equating design is listed in Table 4.16. The adjusted equated score equals the equated score

reduced by 0.25, 0.5, or 0.75 for designs when difficulty level differences are 0.5, 1.0 or 1.5

respectively. The reason for using adjusted equated score instead of equated score will be

discussed in Chapter 5. The values indicate that on average, the average squared differences

are smaller for longer tests; and when the difficulty difference between the two forms

increases, the average squared difference increases. However, the differences between

different test lengths or different form difficulty levels are not significant. Equating of

common-group designs has higher average squared differences than those of the

common-common designs. The common-item designs have the lowest average squared

differences. The difference in average squared differences between the equating designs is

statistically significant.
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Table 4.15. Correlation Coefficients between “Real Score” vs Equated Score
 

   
 

 

 

 

   

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

       

Difference Common Common Common Averaged by Averaged by

-item -common -group test length Difficulty

Difference“

120 items 0.976

0.5 0.977 0.960 0.975 0.966

1.0 0.980 0.980 0.975 0.974

1.5 0.971 0.985 0.980 0.978

96 items 0.970

0.5 0.964 0.958 0.961

1.0 0.966 0.972 0.976

1.5 0.982 0.978 0.975

72 items 0.972

0.5 0.972 0.961 0.966

1.0 0.976 0.974 0.967

1.5 0.978 0.978 0.974

Average 0.974 0.971 0.972

 

"The averaged values between the levels are significant different (PANOVA<O.001)
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Table 4.16 Adjusted Averaged Squared Difference

 

  
 

 

 

 

   

 

 

 

   

 

 

 

 

Difference Common Common Common Averaged Averaged

-item -common -group by by

test length difficulty

difference

120 items . 0.108

0.5 0.058 0.094 0.114 0.104

1.0 0.061 0.068 0.155 0.112

1.5 0.097 0.080 0.246 0.173

96 items 0.128

0.5 0.105 0.105 0.158

1.0 0.106 0.089 0.168

1.5 0.070 0.098 0.253

72 items 0. 153

0.5 0.020 0.117 0.165

1.0 0.081 0.099 0.181

1.5 0.099 0.109 0.507

Average“ 0.077 0.096 0.216        
MThe averaged values at each level are significantly different (PANOVA<0.001)

IV. Standard Errors of Equating

The testing data for each design was randomly divided into ten parts for standard error

calculation according to the description in chapter 3, part III. The plots of standard errors of

different equating designs are exhibited in figures 4.13421. Three obvious trends are

evident in the results. First, the plots indicate that in designs where the difficulty differences

between the two forms are lower (if =0.5), the SE level tends to be lower and the range of

lower SE are wider. Second, when test length and the level of difference in difficulty are kept

the same, common-item equating tends to have lower SE between ability level -1 and l;

common-group equating tends to have higher SE in that range, although the difference in SE

between the two designs are not large. Third, the SE level tend to be lower when the length

of the forms is longer.

The averaged SE between ability scores of -l and +1 are listed in Table 4. l 7. On
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average, shorter test forms tend to have higher standard error of equating. What is more,

common-item designs have lower standard error than common-common designs, which is

again lower than the common-group design. However, none of the above differences are

statistically significant. Higher difference in difficulty between the two forms also

contributes to increased standard error of equating, and this trend is statistically significant

(p<0.01). The trend agrees with what is shown by the average squared differences between

the “real” and equated scores (Table 4.16).
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Table 4.17. Averaged Standard Error between Scores - l .0 and 1.0

 

   

 

 

 

   

 

 

 

   
 

 

 

  

Difference Common Common Common Averaged Averaged by

-item —common -group by test difficulty

length Difference“

120 item , 0.196

5 0.170 0.170 0.184 0.199

10 0.192 0.204 0.210 0.229

15 0.193 0.211 0.227 0.253

96 item 0.224

5 0.183 0.198 0.212

10 0.205 0.236 0.227

15 0.232 0.249 0.273

72 item 0.261

5 0.215 0.221 0.237

10 0.247 0.261 0.278

15 0.267 0.303 0.320

Average 0.212 0.228 0.241      
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**The averaged values at each level are significantly different PANOVA<0.001

 



Figure 4.13. Standard error, 120 items, difficulty difference=0.5
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Figure 4.14. Standard error, 120 item, difficulty difference=1.0
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Figure 4.15. Standard error, 120 items, difficulty difference=1 .5
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Figure 4.16 Standard error, 96 items, difficulty difference=0.5
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Figure 4.17 Standard error, 96 items, difficulty difference=1 .0
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Figure 4.18 Standard error, 96 items, difficulty difference=1 .5
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Figure 4.19 Standard error, 72 items, difficulty difference=0.5

 

S
t
m
d
a
d

 

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Standar Erro of Equating. 72 items, difficulty difference=0.5

 

 

 
 

  
 

 

  

 
 

 
       
 

Un-Equated Score

 

 

—e— item

—-O-——CC

—— people
 

 

Figure 4.20 Standard error, 72 items, difficulty difference=1.0
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Figure 4.21 Standard error, 72 items, difficulty difference=1 .5
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Chapter 5. Conclusions and Discussions

I. Dimensionality and Model fit

A. Unidimensional 0r Multidimensional Structure

One major purpose of this dissertation study is to test the robustness of unidimensional

IRT vertical equating when testing data is multidimensional. Thus the first step of data

analysis starts from the dimensionality analysis. The direct reason that the data is considered

to be multidimensional comes from the structure of the exam. The exam has three sections

that are designed to probe different dimensions of language ability of ESL

leamers—grammar, vocabulary and reading. As IRT is a quantitative model used to

interpreting testing data, the dimensionality of the data should be investigated in order to

decide whether IRT model is appropriate.

Table 4.2 presents the NOHARM analysis result and 4.3 present dichotomous factor

analysis results. The discrimination parameters (the a’s) on different dimensions in Table 4.2

mostly agree with the factor loadings in Table 4.3. The summary in Table 4.4 indicates that

the multidimensional/factor pattern agrees with the test design (in Grammar, Vocabulary and

Reading sections). Although the same test dimensionality is reflected in factor analysis and

MIRT, the percentage of items that load the highest disagrees between the two methods.

Factor analysis methods assume that the variables are normally distributed and do not

allow guessing in the model, thus MIRT is more suitable for dichotomous testing data where

guessing probably exists. Exploratory factor analysis and MIRT were applied in this

dissertation, both with oblique rotation on three factors/dimensions, because the test were

developed to measure three types of English language ability and previous results indicated

the distinctive dimensions between Grammar, Vocabulary and Reading sections.
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As already mentioned in chapter 2, the effect of violation in unidimensionality might

not be substantial on IRT equating. Among the studies exploring the issue of robustness of

IRT unidimensionality assumption, Reckase, Ackerman and Carlson (1988) provides

substantial evidence theoretically and empirically that IRT unidimensionality assumption was

robust. The study concluded that even though more than one dimension of ability was

manifested in examinees’ test performance, a set of items measuring the same weighted

composite of abilities should be able to meet the assumptions of unidimensional IRT model.

The studies by Yen (1984) and Dorans (1990) further support this argument. In this study, the

effect of multidimensionality will be analyzed in combination with the effect of vertical

equafing.

B. IRT Goodness offit

Although the assumption of unidimensionality is robust for IRT equating, model fit of

the data is essential for stable results in parameter calibration and equating. According to van

der Linden and Hambleton (1997), well-established statistical tests for, two or three parameter

IRT models do not exist. And the study further stated that “even if they did, questions about

the utility of statistical test in assessing model fit can be raised, especially with large

samples.” McDonald (1989) even concluded that when sample size is big enough, an IRT

model will be rejected by statistical tests.

Currently, model assessment methods that most often used are: judging item fit, judging

person fit and compare the fit of different models (Embretson and Reise 2000). The item

model-fit tool provided by BILOG-MG3 is a chi-square index. As described in chapters 3

and 4, the test data for this thesis were analyzed with item model fit for all the items at each

level of test lengths. According to the p-value of chi-square analysis (Table 4.5), 65 to 75

percent of the items fit the model. Because chi-square analysis is sensitive to sample size, for
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an exam that has about 30,000 examinees as here studied, fit analysis based on chi-square

can be misleading. The rule of thumb for large-scale exam was then applied so that

chi-square values less than 3 times of the degree of freedom is considered as non-significant

(M. D. Reckase, personal communications). When this method is applied, 85 to 90 percent of

the items fit the [RT model. The results indicate less item-fit for shorter tests—percentages of

item-fit are the smallest for the 72 item tests. According to Stone and Zhang (2003), this

can be a result of increased Type I error. The results of this study (Zhang, 2003) indicates that

Type I error for the traditional item-fit method is big for short tests (less than 40 items),

especially for large sample size.

As no well-established, well-recognized method is available in testing two- and

three-parameter IRT model fit, checks of model fit from different perspectives are often

recommended. This includes checks on the unidimensionality assumption. However, as

indicated before, IRT equating can still be valid even when unidimensionality is not fulfilled.

Other checks on data include item biserial correlations, test format and difficulty analysis and

the test speededness analysis. The biserial correlations of the original test are high (more than

95% of the items have biserial correlations higher than 0.30), however, no data are available

to check the test speededness.

Van der Linden and Hambleton (1997) suggest that if the model fit is acceptable,

examinee ability estimates ought to be the same from different samples of items within the

test. The results that will be discussed later in this chapter show the ability estimates based on

a portion of the total items (120, 96 and 72 items). The estimates have high correlations with

those based on the original data. The results support the goodness of fit for the IRT model

(Figures 4.10-12). On the other hand, van der Linden and Hambleton (1997) also suggest that

item parameter estimates ought to be about the same from different samples of examinees

from the population of examinees for whom the test is intended. The results in the following
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section also supports the model fit from this perspective, the correlations are high between

item parameters that were obtained based on different equating designs and different

sub-samples. In summary, the chi-square test of item fit, the biserial correlations and the

ability estimates based on part of the items, or part of the samples, all support that the

data-model fit of this study is satisfactory.

MIRT and factor analysis results provide evidences that the data of this study is

multidimensional; however, item model fit analysis and other results indicate that the data fit

the IRT model relatively well. Because IRT model requires unidimensionality of the data,

when the dimensions are very distinct, the data would not fit the IRT model. Here in this

study, the dimensions are correlated between each other with moderately high correlation

coefficients (around 0.6-0.7, results not shown). This can be the reason that the items still

meet the unidimensionality assumption. If the dimensions were more distinct, the IRT model

fit might not be satisfied. When the data does not fit the IRT model, the calibration results

obtained through unidimensional IRT would not be stable. In such cases, multidimensional

IRT is suggested for item calibration and ability scoring.

II. Correlation behueen “real” and equated Item parameters

Figures 4.1-4.9 present the scatter plots between item parameters calibrated using the

original data (130 items by 30,000 examinees) and those calibrated using each equating

design. Due to errors in IRT scoring and in equating, the “real” scores and the equated scores

are not perfectly correlated, although the correlation is high. What is more, due to scale

indeterminacy, we do not expect the regression between the “real” parameters and the

equated parameters to cross the origin with slope equals one. The correlations are presented

in Table 4.11 and the slope and the origin of each regression are presented in Tables 4.13 and

4.14. In the following sections, the results will be discussed from the perspectives of item

parameter indeterminacy, error in parameter estimates and how to evaluate the errors in
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parameter estimates.

A. Scale indeterminacy in equating

The BILOG-MG3 3-PL calibration used in this study defines the 9~scale as having a

mean of 0 and a standard deviation of I for the set of data being analyzed. The [RT

parameters are estimated based on this scale. In nonequivalent group equating, when the two

groups have samples that are different in the distribution of ability (8) levels, scale

transformation has to be done so that the item parameters and ability levels can be interpreted

according to the same scale. The linear relationship between the two scales can be expressed

through a set of equations:

91i=A*92i+B (5.1)

a1j=a2j/A (5.2)

b1j=A*b2j+B (5.3)

A and B are called the equating coefficients. 9“ represents the ability level of person

“i” estimated by scale 1; 82; represents the ability level of the same person estimated by

scale 2. a1j is the slope parameter of item “j” estimated in scale 1, and azj is the slope of the

66°99

same item estimated in scale 2; b]j is the difficulty parameter of item j estimated in scale 1,

and sz is the difficulty parameter of this item estimated in scale 2. If the data fits the IRT

model perfectly, the same A and B should be applied to all the examinees on all the items. In

practice, in common-item equating, A and B are calculated using the averaged value of the of

the slope parameters and difficulty parameters across the common items.

According to the equations above, “A” equals the ratio between the two SDs (standard
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deviation) of ability distributions. Mathematically, it is calculated as the ratio between

averaged “a” parameters of the common items estimated through the data of the two groups.

“B” coefficient is related to the difference between the mean of ability distributions,

mathematically, it can be calculated through equations:

B=b1j-Ab2j=91i'A92i (5.4)

According to IRT scaling indeterminacy described before, the slopes of both

a-parameter and b-parameter regressions (coefficient A’s) are related to the ratio between the

standard deviation of the two samples (SDel/SDgz) from which the parameters were

estimated. Generally speaking, the original data should have bigger variance in ability

distribution than any of the equating samples. Among the equating designs, common-group

equating has the smallest variance in ability since it has the biggest percentage of overlapped

examinees shared by the two groups (20%). Common-common design has 10% of examinees

shared by the two groups and common-item design has no overlapped examinee. Each of the

examinee group in these designs has a standard deviation of 1. When the difference keeps

constant between the means of ability for the two groups, the more common examinees are

shared by the groups, the less variance exists in the sample.

The effect of the ability variance in each design is reflected in the slopes shown in

Table 4.13: most of the slopes of “a” parameters for common-item equating are smaller

(closer to 1) than the correspondent slope for common-group equating, since a slope closer to

1 indicates less difference between the variance of ability in the sample and that in the

original data. The slope of the “b” parameter is the reverse to that of the corresponding “a”

parameter (according to equations 5.2 and 5.3), again, the slopes ofcommon-item equating

b-parameters are most close to “1” among the three designs. The reason lies in that

common-item design has the biggest variance in examinee ability levels.
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On the other hand, the intercept of the b-parameter regression (coefficient B’s) is

related to the difference in the means of ability estimates (Equations 5.1 and 5.2). When

coefficient A is close to l, the intercept almost equals the difference between the means of the

two groups’ ability estimates. The results in the figures for-the b-parameters reflect this rule

in that for designs with bigger difficulty difference, the regression lines lie further from the

origin. Because when the item difficulty difference increase, the ability difference between

the two groups increases accordingly to the data sampling. During equating, one of the

groups (the lower ability group in this study) was assigned as the reference group and its

scale was kept unchanged. The averaged ability estimate of this group is 0.25, 0.5 or 0.75

unit lower than that of the examinees in the original data. This difference is reflected in the

intercepts of the b-parameter regression lines.

B. Errors in parameter estimate of[RTequating

Even when coefficients A and B are determined, the relationship between “real”

parameter and the equated parameter still cannot be expressed through an equation. The

reason lies in that error exists in both IRT parameter estimates using the original data and in

the parameter estimate during IRT equating. The error in the parameter estimates can be

defined as the amount of variance around the true parameter value. In IRT equating, we look

for designs that has smaller errors in parameter estimate.

A variety of factors can cause the error in parameter estimate of IRT equating. The first

kind of factors come from IRT calibration process itself. Among these, four factors are

often highlighted in the literature. First, because IRT make strong assumptions in modeling

item functions, parameter estimate error is incurred when the assumptions are not met

(Ackerrnan, 1992); second, estimation methods such as marginal maximum likelihood

estimation (MMLE) or joint maximum likelihood estimation (JMLE) may not convert to the

true values. Increased sample size and number of items may affect the accuracy of JMLE and
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incorrect prior ability distribution specification may affect the result of MMLE (Baker, 1992;

Seong, 1990). Third, model misfit can surely cause unstable item parameter estimation and

fourth, practical limitations, such as small sample size or lack of variance in examinees’

ability may cause increased error in parameter estimate of too hard or too easy items

(Stocking, 1990).

Other than the errors that result from inaccuracies in the estimation of the parameters of

the IRT model, the equating process does not perfectly transform item parameters to a

common scale. Almost all the aspects of equating design can affect the translation of

parameter estimates to a common scale such as the method of equating (single group or

common-item, equivalent or non-equivalent group equating), the characteristics of the anchor

test (in common-item equating), the characteristics of the two groups, the features of the two

forms etc. Evaluating the errors in parameter estimate translation or ability estimation using

the translated parameters is very important in evaluating the quality of certain equating

design.

C. Evaluating errors in parameter estimation

Table 4.11 presents the correlation coefficients between the “real” and equated

parameters: higher correlation coefficients indicate less discrepancy between the “real” and

equated parameters. All the “real” parameters used here were obtained through the original

data (130 items by 30,000 examinees). The first trend we can see in Table 4.11 is that the

correlations of c-parameter estimates are obviously smaller than those of the correspondent a-

and b-parameters’. c-parameters are not well estimated when the sample does not have

enough low-ability cases. The second conclusion we can draw from the results presented in

this table is that tests with fewer items tend to have lower correlations, and this trend is

statistically significant for the “a” and “b” parameters. Since test reliability declines as the

number of items decreases, error of estimate gets higher when the number of items gets
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smaller. No obvious difference is seen between different equating designs or different form

difficulty differences.

III. IRT ability estimate

In IRT equating, two sources of error exist in estimating ability. One is from the process

of equating, the other comes from the process of IRT ability estimation itself. It is hard to

separate the errors from the two resources. This study analyzes the error in ability estimate

from two perspectives: first, comparing the ability scores obtained through the original data

and those obtained through equating between the samples; second, computing the standard

error of equating.

A. Scatter plots of[RTscore estimate

In each equating design, the data set has about 5000-6000 examinees, scatter plots

between equated scores and “real” scores of each examinee show strong relationship in the

middle part of the ability range; while the dots are more scattered and the scores less related

at the extreme values of ability (plots not shown). In the plots shown in Figures 4.10-12,

“real score” is divided into intervals of 0.1 standard deviation, the corresponding equated

scores for each interval are plotted. Compare with the scatter plots of the “real" vs. equated

scores, Figures 4.10-12 provides a clearer relationship between the two score. Figures

4.10-12 shows that for ability levels from -2 to 2, a strong linear relationship is demonstrated

between the “real” and equated scores. However, the two scores are not linearly correlated at

extreme values. The reason is very likely because when an examinee has very high or very

low ability, the exam does not have enough items to provide an accurate estimate at the

examinee’s ability level. Thus the ability estimate of such examinees is not consistent

between the results obtained using the original data and those obtained through the equating.

It is also noticeable that for the common-item designs, the ranges of “real” scores are usually

broader than those of the common-common designs. The ranges are the narrowest for the
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common-group designs. The fact that the samples for different designs are differ in their

ability score variance has been discussed in the previous session (chapter 5, II. A).

The correlation coefficients summarized in Table 4.15 reflect no trend of the effect by

test length or equating design (common-item, common-common or common-group). Longer

tests are supposed to have higher reliability, and are thus expected to have higher correlation

between the equated and “real” scores. However, in this case, all three lengths may have

adequate reliability and the difference may not be large enough to be explicit in the scatter

plots and the correlation coefficients. In Table 4.15, the averaged correlation coefficients by

difficulty difference show that equated scores between forms that have bigger difficulty

difference are more highly correlated with the “real” scores. And the difference is statistically

significant. The reason probably lies in the sampling of the equating design for forms with

bigger difficulty difference, more examinees with extreme ability levels are included in the

sample, thus the ability at extreme levels are more accurately estimated. Another factor that

contributes to the higher correlation is the bigger variance of examinees’ ability, for we know

when two variables are correlated, the bigger the variance of each variable, the higher the

correlation coefficient. No obvious difference in scatter plots or correlation coefficient is seen

between different equating designs (common-item, common-common or common-group).

B. Square Root ofthe Average squared dtflerence between the ”Real ” and Equated Scores

In studies that using generated data to evaluate the quality of equating designs, squared

difference between the true parameter and the parameters obtained from equating are

calculated as a criteria for the evaluation (Hansen and Beguin, 2002). This study uses real

data and the true values of examinees’ ability or item parameters are not known, however, the

parameters obtained from the original data can be considered as close to their true values. For

each design, the average squared difference between the examinees’ “real scores” and their

adjusted equated scores is calculated. For equating designs with difficulty level differences of
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0.5, 1.0 or 1.5, a value of 0.25, 0.5 or 0.75 were deducted from the equated scores to obtain

the adjusted equated scores respectively. The reason of the deduction is because the scale

indeterminacy introduced in the previous session (Chapter 5, II, A). By equating, a common

scale is introduced, in which the lower ability group is assigned as reference group and its

averaged ability is arbitrarily set as zero. However, while sampling the data, the averaged

score of the lower ability group was set at -0.25, -0.5 and -0.75. Thus the equated scores were

adjusted so that they are on the same scale with the ability scores obtained by the original

data. Results of the average squared difference of each design are listed in table 4.16.

Unlike the correlation coefficients, the average squared differences show a trend that

shorter exams have higher differences between the original and the equated scores, although

the trend is not statistically significant. Combined with the plots of the “real” scores vs. the

means of equated scores, the discrepancy between the “real” and the equated scores is mostly

caused by unstable estimates of the ability with extreme values. It is likely that shorter tests

has less items targeting examinees of very high or very low abilities, and thus are less reliable

in measuring extreme abilities than longer tests. However, the overall, reliability of shorter

tests are big enough and thus the overall correlation between the “real” and equated scores

show no difference across test lengths.

On average, the common-item design has smaller average squared differences than the

common-common design, and the common-common design’s average squared difference is

lower than that of the common-group design. And the difference here is statistically

significant. One of the explanations can be because the common-group design has the

smallest variance in examinees’ ability. Since fewer examinees score at the two extremities,

the common-group equating cannot measure the abilities of these ranges as accurately as the

other equating designs. Another possible explanation is that the common-group design itself

is not as reliable as the common-item design. As very few studies on common-group
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equating are available, no reference here can be quoted regarding the comparison between

the two equating designs.

Another obvious trend seen in Table 4.16 indicates that designs for bigger difficulty

difference between the test forms have higher average squared difference, especially for tests

with fewer items. When the difficulty difference between the two forms is bigger, it is likely

that IRT model fit becomes more difficult, and thus the score estimate through equating is

less stable and accurate.

C. Standard Error ofEquating

The standard error curves in Figure 4.13-4.21 reflect the effects of test length, difficulty

difference and equating design from several perspectives. The averaged standard errors of

equating between scores of -1 .0 and 1.0 are listed in Table 4.17. Several conclusions can be

drawn from the analysis of the standard errors. First, the standard error is lower (statistically

not significant), and stays low for a wider range, when the test length is longer. When the two

forms have a total of 120 items, most of the standard errors between ability level of -1 and +1

are lower than 0.2 of SD; however, when the forms have a total of 72 items, the standard

error is almost never lower than 0.2 of SD. The second obvious trend is that when test length

and difficulty difference between forms are kept the same, most of the time the standard error

of common-item equating is the smallest, common-common is bigger and that of the

common-group is the biggest among the three; however, the difference between the standard

errors is very small, and sometimes the trend is not clear. Third, keeping test length the same,

when the difference in item difficulty gets bigger, the standard error tends to be significantly

higher.

The values of averaged standard errors in Table 4.17 agree with the average squared

differences listed in Table 4.16. First, as test length increases, the standard error decreases;

second, standard error increases with the difficulty difference; and third, common-group
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equating has the biggest errors while common-item equating has the smallest errors. Possible

explanations of this pattern are provided in the previous session (Chapter 5, III, B), the

results of Table 4.14 support the discussions about the results of Table 4.16.

The standard error calculated here is the random error of equating. The standard error

curves agree with the scatter plots shown in Figures 4.10 to 4.12: both reflect less error

variance in the middle range of ability. However, the subtle difference between equating

designs, forrn difficulty differences and test lengths are reflected through the standard error

curves but not through the scatter plots. Part of the reason lies in that the sampling methods

of the two analyses are different: in scatter plot analysis, the two groups have different ability

levels; in standard error analysis, the two groups have similar ability levels (both were

randomly drawn from the total sample).

IV. The effects of equating design, test length and difficulty difference

This dissertation study compares the effects on vertical equating of different equating

designs, different test lengths and difference in averaged item difficulty between forms. The

results of the analysis are summarized in the following sessions.

A. The eflects ofequating designs

In the analysis of item parameter estimates and examinee ability estimates, the samples

were selected so that the difference between the two groups’ abilities matches the difference

between the two forms’ test difficulty levels. Through the correlation between the “real”

ability scores and the equated scores, no obvious difference between the common-item,

common-common and common-group designs can be seen. However, the average squared

differences between the two scores reflect that equating of the common-group designs may

be less accurate than common-item and common-common designs. In the standard error of

equating analysis, the samples were randomly selected from the original data and are

considered equivalent. In standard error analysis, test forms are different in difficulty level,
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while groups are equivalent in ability. The results of standard error agree with that of the

average squared difference—common-item equating gives less error than common-group

equating, although the difference in error is small and not significant.

B. The eflects oftest length

In general, longer test means a test has higher reliability, what is more, longer tests

usually contains more items targeting different ability levels. Three different test lengths were

chosen for this study so that in each equating, the numbers of unique items are 120, 96 and

72. The reliability of all the test forms are 0.85 and higher (results not shown), which

satisfies the requirement of most achievement or ability tests in education; however the

subtle difference in reliability may still affect the equating results. It is likely that longer tests

have more items that accurately measure very high or very low ability, the average squared

differences between “real” and equated scores for longer tests are lower than those for the

shorter tests. However, the no obvious difference is seen in the correlation between the “real”

and equated ability score estimation for different test lengths. For most of the examinees,

different test lengths would not affect the effect of their ability estimation. The standard error

is lower when test length is longer (not statistically significant), which indicates it is possible

that standard error of the vertical equating is sensitive to test reliability.

C. The eflects ofform dzfiiculty dzflerence

The analysis results indicate that difference between the difficulty levels of two forms

does not affect the item parameter estimation; however, in examinee ability estimation, the

average squared difference is smaller for equating that has smaller difficulty difference

between the forms. On the other hand, bigger difference in difficulty results in higher

correlation between the “real” and equated scores; the reason for this may because of bigger

ability variance instead of more accurate score estimation. Like the average squared

difference, the standard error of equating is higher when item difficulty difference is bigger.
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D. Future directions

This dissertation studies equating designs (common-group and common-common) that

seldom explored in the practice of educational measurement. Although some of the issues

such as fatigue, speededness may arise when using common-group or common-common

designs, these designs can still serve as alternatives for the well-practiced common-item

design, especially when common items are not available because of security or other issues.

In vertical equating, especially when the testing data shows evidence of multidimensionality,

common-item equating can be challenging. First, in vertical equating, the common items

would be too advanced for examinees at the lower level while too elementary for examinees

at the higher level. Higher level examinees may be careless in answering the questions, and

lower level examinees may not be able to use their time efficiently (Kolen and Brennan,

2005). In common-item equating, when only a few such items are administered to both

groups, the items may not function effectively as an anchor test. However, the

common-group or common-common design may overcome this disadvantage. Second, when

the test is multidimensional, it is ideal to design common-items that represent all the

dimensions of the test; however, this may be impractical for some tests. The results of this

study indicate that common-group or common-common designs, although they may not be

superior to, are comparable in quality with common-item equating design in vertical equating

of multidimensional data.

When common-group or common-common equating is applied in testing practice, it is

suggested that examinees take both of the forms are recruited from different ability levels. To

minimize the effect of speededness or fatigue, the sequence of the two forms should be

arranged so that half of the examinees in the common group take form 1 first and form 2

second; the other half take form 2 first and form 1 second. If sample size allows, testing data

obtained from the common-group can be calibrated separately, data of either forms can also

100



be calibrated separately, and then data from all the examinees can be calibrated using

concurrent methods. The results can be compared in terms test structure, examinees’ ability

estimation etc. Such comparisons provide evidence of the validity for the scoring method. On

the other hand, if the test is administered annually as in the case ofmany achievement exams,

data from different administrations can be analyzed to check if the new equating design

provides stable scoring over the years. Such analysis using longitudinal data can provide

evidence for validity from different perspective.

Because the study on this topic is still preliminary, many directions can be explored.

Based on the results obtained from this dissertation, following suggestions are made for

future research. First, for the convenience of sampling, the ability levels of the

common-group used for this study are centered around the middle range. For example, in

common-group design where difficulty difference between the two test forms is 1.0, a sample

of 1000 normally distributed cases with mean=0 and SD=0.5 were first selected from the

original data that has 30000 cases. These 1000 cases were used as common—group who are

administered all the items. Then a sample of 2000 cases were selected from the rest of the

data (now has about 29000 cases), so that these cases, together with the 1000 cases selected

previously, form a normal distribution of mean=-0.5 and SD=]. Only half of the items are

administered to these cases. In the next step, another sample of 2000 cases were selected

from the rest of the data (now has about 27000 cases), so that these cases, together with the

1000 cases selected before, is a 3000-case normal distribution of mean=0.5 and SD=1. Again,

half of the items are administered to these cases. When common-item equating is applied,

usually items from different difficulty levels are selected; thus common-group design may

give better equating results when the common-group represents cases from different ability

levels.

Second, the analyses here presented are based on data collected from real test. Although
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the sample size is very big and normally distributed and the item model-fit is good, the

results may not perfectly reflect the effects of the equating designs from pure theoretical

perspective. To rule out the impact of some unexpected elements, it is suggested that

generated data might be used to explore further about common-common or common-group

design.



Appendix 1. MATLAB code(1)

«for selecting a normally distributed group from the original data

clear all; clc

%reset seeds for data generation%

rand('state',sum( 100*clock));

% set the mean, SD and the number of subjects to be selected and

%the number of bins

u_demand=0

N_demand= I 000

SD_demand=0.5

N_bin=40

% Start simulation

°/odata_30K.dat is the available data with 29935 theta values

data_30K=sort(data_30K);

[N_30K,X_30K] = hist(data_30K,N_bin);

N_30K=N_30K';

X_30K=X_30K’;

%generate 1K normal distribution random numbers to define the bins

for i=1 :N_demand

data_3K(i,l) = randn*SD_demand + u_demand;

end

%check the mean and SD of the created data

mean(data_3K)

std(data__l K)

%set the center of each bin for I K data equals the center of correspondent

%bin for the 30K data
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N_l K=hist(data_l K,X_30K);

%compare the histogram of the original data and the target histogram

figure

hist(data_30K,N_bin)

title('Mother Data Set')

figure

hist(data_3K,N_bin)

title('Son Data Set')

%select the ability scores to fill the bins

for i=1 :N_bin

i

N_large=N_30K(i)

N_small=N_l K(i)

if N_small~=0

X_large=data_30K((sum(N_30K( l :(i-1)))+1):sum(N_30K(l :i)));

%see to the attached "N_select_n.m"

[X__small]=N_select_n(N_large,X_Iarge,N_small);

data_new_l K((sum(N_l K( I :(i- l )))+] ):sum(N_l K(l :i)))=X_small;

end

end

data_new_l K=data_new_l K';

%display the histogram of the selected cases

figure

hist(data_new_l K,N_bin)

title('Final Data Set')

%check the number, the mean and the SD of the selected cases

N_demand

size(data_new_3K)

mean(data_new_3K)

std(data_new_3K)

%in the resulted data contains IK cases

save data_new_l K.dat data_new_1 K -ascii
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% label the 1K selected data in the original 30K data

data_30K(:,2)=0;

for i=1 : 1000

i .

forj=l :size(data_30K, 1)

if data_30K(j,2)%

if data_new_1 K(i,l )==data_30K(j, l )

data_30K0,2)= 1 ;

end

end

end

end

%the result data set contains 29935 cases with the 1000 cases labeled. the

%labled cases were screened out, the rest can be used to select group I or

%group 3.

save new_30K.dat data_30K -ascii

% 'N_select_n.m'

% To generate a small data set from a large data set

function [X_sma1l]=N_select_n(N_large,X_large,N_small)

for i=1 :N_small

index(i)=round(rand*N_large+0.5);

% To compare with index selected for the small data set

forj=1:(i-l)

% If two index are the same, select again until there are no two identical index

while index(i) == index(i)

index(i)=round(rand*N_large+0.5);

end

end

X_small(i)=X_large(index(i));
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End

Appendix 2. MATLAB code (2)

-for selecting 2000 cases for Group 1 in common-group equating

clear all; clc

%reset seeds for data generation%

rand('state',sum( 100*clock));

%first generate a distribution that has 2000 cases, in which 1000 cases

%N{0, 0.5} are deleted from 3000 cases N{0.5, l}

% Input

u_demand=0.5

N_bin=40

%generate 3K normal distribution random numbers to define the bins

for i=1 :3000

data_3 K(i,l) = randn + u_demand;

end

%generate 1K normal distribution random number mean=0,std=0.5

for i=1:1000

data_l K(i,l) = randn*0.5;

end

mean(data_3K)

std(data_3 K)

mean (data_l K)

std(data_l K)

data_3K=sort(data_3K);

[N_3K,X_3K] = hist(data_3 K,N_bin);

N_3K=N_3 K';

X_3K=X_3 K';

%set the center of each bin for [K data equals the center of correspondent

%bin for the 3K data

N_1K=hist(data_l K,X_3 K);
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%compare the histogram of the original data and the target histogram

figure

hist(data_3K,N_bin)

title('Mother Data Set')

figure

hist(data_l K,N_bin)

title('Son Data Set')

for i=1 :N_bin

i

N_large=N_3K(i)

N_small=N_l K(i)

if N_small~=0

X_large=data_3K((sum(N_3 K(l :(i-l )))+ l ):sum(N_3K(l :i)));

%see to the attached "N_select_n.m"

[X_smalI]=N_select_n(N_large,X_large,N_small);

data_new_lK((sum(N_1 K( I :(i-1)))+l):sum(N_lK(l :i)))=X_small;

end

end

data_new_l K=data_new_l K';

figure

hist(data_new_l K,N_bin)

title('Final Data Set')

size(data_new_l K)

mean(data_new_l K)

std(data_new_l K)

save data_new_lK.dat data_new_l K -ascii

%the in the 3000-case group, the 1000 cases were labled

data_3K(:,2)=0;

for i=111000
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r

for j= l :3000

if data_3K(i,2)==0

if data_new_l K(i, l )==data_3 K(j,l )

data_3 K(j,2)= I ;

end

end %data_3 K(j,2)==

end

end

save data_3 K.dat data_3K -ascii

%the 3000-case group were reorganized in Excel file and the 1000 cases were

%deleted from it, ending up with 2000 cases that have the target

%distribution, the data's name is gen_p|us_2K.dat. data_29K is the data set

%that has 1000 cases {0, 0.5) deleted from the original 30K data.

clear all; clc

% Input

N_bin=40

% load data

load data_29K.dat

load gen_plus_2K.dat

data_29K=sort(data_29K);

[N_29K,X_29K] = hist(data_29K,N_bin);

N_29K=N_29K';

X_29K=X_29K';

N_2K=hist(gen_plus_2K,X_29K);

figure

hist(data_29K,N_bin)

title('Mother Data Set')

figure

hist(gen_plus_2K,N_bin)

title('Son Data Set')
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for i=1 :N_bin

i

N_large=N_29K(i)

N_small=N_2K(i)

if N_small~=0 .

X_large=data_29K((sum(N_29K( I :(i-l )))+] ):sum(N_29K(l :i)));

[X_small]=N_select_n(N_large,X_large,N_smalI);

data_new_2K((sum(N_2K( i :(i-l )))+ l ):sum(N_2K(1 :i)))=X_small;

end

end

data_new_2K=data_new_2K';

figure

hist(data_new_2K,N_bin)

title('Final Data Set')

size(data_new_zK)

mean(data_new_ZK)

std(data_new_2K)

save data_new_2K.dat data_new_ZK -ascii
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